xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 2c684d89)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>	/* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/local.h>
27 
28 static void update_pages_handler(struct work_struct *work);
29 
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 	trace_seq_puts(s, "# compressed entry header\n");
36 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38 	trace_seq_puts(s, "\tarray       :   32 bits\n");
39 	trace_seq_putc(s, '\n');
40 	trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			 RINGBUF_TYPE_PADDING);
42 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			 RINGBUF_TYPE_TIME_EXTEND);
44 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return !trace_seq_has_overflowed(s);
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF		(1 << 20)
120 
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122 
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT		4U
125 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
127 
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT	0
130 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT	1
133 # define RB_ARCH_ALIGNMENT		8U
134 #endif
135 
136 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
137 
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140 
141 enum {
142 	RB_LEN_TIME_EXTEND = 8,
143 	RB_LEN_TIME_STAMP = 16,
144 };
145 
146 #define skip_time_extend(event) \
147 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148 
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153 
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 	/* padding has a NULL time_delta */
157 	event->type_len = RINGBUF_TYPE_PADDING;
158 	event->time_delta = 0;
159 }
160 
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 	unsigned length;
165 
166 	if (event->type_len)
167 		length = event->type_len * RB_ALIGNMENT;
168 	else
169 		length = event->array[0];
170 	return length + RB_EVNT_HDR_SIZE;
171 }
172 
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 	switch (event->type_len) {
182 	case RINGBUF_TYPE_PADDING:
183 		if (rb_null_event(event))
184 			/* undefined */
185 			return -1;
186 		return  event->array[0] + RB_EVNT_HDR_SIZE;
187 
188 	case RINGBUF_TYPE_TIME_EXTEND:
189 		return RB_LEN_TIME_EXTEND;
190 
191 	case RINGBUF_TYPE_TIME_STAMP:
192 		return RB_LEN_TIME_STAMP;
193 
194 	case RINGBUF_TYPE_DATA:
195 		return rb_event_data_length(event);
196 	default:
197 		BUG();
198 	}
199 	/* not hit */
200 	return 0;
201 }
202 
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 	unsigned len = 0;
211 
212 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 		/* time extends include the data event after it */
214 		len = RB_LEN_TIME_EXTEND;
215 		event = skip_time_extend(event);
216 	}
217 	return len + rb_event_length(event);
218 }
219 
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 		event = skip_time_extend(event);
236 
237 	length = rb_event_length(event);
238 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 		return length;
240 	length -= RB_EVNT_HDR_SIZE;
241 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243 	return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246 
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 		event = skip_time_extend(event);
253 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 	/* If length is in len field, then array[0] has the data */
255 	if (event->type_len)
256 		return (void *)&event->array[0];
257 	/* Otherwise length is in array[0] and array[1] has the data */
258 	return (void *)&event->array[1];
259 }
260 
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 	return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270 
271 #define for_each_buffer_cpu(buffer, cpu)		\
272 	for_each_cpu(cpu, buffer->cpumask)
273 
274 #define TS_SHIFT	27
275 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST	(~TS_MASK)
277 
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS	(1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED	(1 << 30)
282 
283 struct buffer_data_page {
284 	u64		 time_stamp;	/* page time stamp */
285 	local_t		 commit;	/* write committed index */
286 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
287 };
288 
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298 	struct list_head list;		/* list of buffer pages */
299 	local_t		 write;		/* index for next write */
300 	unsigned	 read;		/* index for next read */
301 	local_t		 entries;	/* entries on this page */
302 	unsigned long	 real_end;	/* real end of data */
303 	struct buffer_data_page *page;	/* Actual data page */
304 };
305 
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK		0xfffff
319 #define RB_WRITE_INTCNT		(1 << 20)
320 
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 	local_set(&bpage->commit, 0);
324 }
325 
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334 	return local_read(&((struct buffer_data_page *)page)->commit)
335 		+ BUF_PAGE_HDR_SIZE;
336 }
337 
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 	free_page((unsigned long)bpage->page);
345 	kfree(bpage);
346 }
347 
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353 	if (delta & TS_DELTA_TEST)
354 		return 1;
355 	return 0;
356 }
357 
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359 
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362 
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 	struct buffer_data_page field;
366 
367 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 			 (unsigned int)sizeof(field.time_stamp),
370 			 (unsigned int)is_signed_type(u64));
371 
372 	trace_seq_printf(s, "\tfield: local_t commit;\t"
373 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 			 (unsigned int)offsetof(typeof(field), commit),
375 			 (unsigned int)sizeof(field.commit),
376 			 (unsigned int)is_signed_type(long));
377 
378 	trace_seq_printf(s, "\tfield: int overwrite;\t"
379 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)offsetof(typeof(field), commit),
381 			 1,
382 			 (unsigned int)is_signed_type(long));
383 
384 	trace_seq_printf(s, "\tfield: char data;\t"
385 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 			 (unsigned int)offsetof(typeof(field), data),
387 			 (unsigned int)BUF_PAGE_SIZE,
388 			 (unsigned int)is_signed_type(char));
389 
390 	return !trace_seq_has_overflowed(s);
391 }
392 
393 struct rb_irq_work {
394 	struct irq_work			work;
395 	wait_queue_head_t		waiters;
396 	wait_queue_head_t		full_waiters;
397 	bool				waiters_pending;
398 	bool				full_waiters_pending;
399 	bool				wakeup_full;
400 };
401 
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406 	u64			ts;
407 	u64			delta;
408 	unsigned long		length;
409 	struct buffer_page	*tail_page;
410 	int			add_timestamp;
411 };
412 
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423 	RB_CTX_NMI,
424 	RB_CTX_IRQ,
425 	RB_CTX_SOFTIRQ,
426 	RB_CTX_NORMAL,
427 	RB_CTX_MAX
428 };
429 
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434 	int				cpu;
435 	atomic_t			record_disabled;
436 	struct ring_buffer		*buffer;
437 	raw_spinlock_t			reader_lock;	/* serialize readers */
438 	arch_spinlock_t			lock;
439 	struct lock_class_key		lock_key;
440 	unsigned int			nr_pages;
441 	unsigned int			current_context;
442 	struct list_head		*pages;
443 	struct buffer_page		*head_page;	/* read from head */
444 	struct buffer_page		*tail_page;	/* write to tail */
445 	struct buffer_page		*commit_page;	/* committed pages */
446 	struct buffer_page		*reader_page;
447 	unsigned long			lost_events;
448 	unsigned long			last_overrun;
449 	local_t				entries_bytes;
450 	local_t				entries;
451 	local_t				overrun;
452 	local_t				commit_overrun;
453 	local_t				dropped_events;
454 	local_t				committing;
455 	local_t				commits;
456 	unsigned long			read;
457 	unsigned long			read_bytes;
458 	u64				write_stamp;
459 	u64				read_stamp;
460 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
461 	int				nr_pages_to_update;
462 	struct list_head		new_pages; /* new pages to add */
463 	struct work_struct		update_pages_work;
464 	struct completion		update_done;
465 
466 	struct rb_irq_work		irq_work;
467 };
468 
469 struct ring_buffer {
470 	unsigned			flags;
471 	int				cpus;
472 	atomic_t			record_disabled;
473 	atomic_t			resize_disabled;
474 	cpumask_var_t			cpumask;
475 
476 	struct lock_class_key		*reader_lock_key;
477 
478 	struct mutex			mutex;
479 
480 	struct ring_buffer_per_cpu	**buffers;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 	struct notifier_block		cpu_notify;
484 #endif
485 	u64				(*clock)(void);
486 
487 	struct rb_irq_work		irq_work;
488 };
489 
490 struct ring_buffer_iter {
491 	struct ring_buffer_per_cpu	*cpu_buffer;
492 	unsigned long			head;
493 	struct buffer_page		*head_page;
494 	struct buffer_page		*cache_reader_page;
495 	unsigned long			cache_read;
496 	u64				read_stamp;
497 };
498 
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508 
509 	wake_up_all(&rbwork->waiters);
510 	if (rbwork->wakeup_full) {
511 		rbwork->wakeup_full = false;
512 		wake_up_all(&rbwork->full_waiters);
513 	}
514 }
515 
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 	DEFINE_WAIT(wait);
530 	struct rb_irq_work *work;
531 	int ret = 0;
532 
533 	/*
534 	 * Depending on what the caller is waiting for, either any
535 	 * data in any cpu buffer, or a specific buffer, put the
536 	 * caller on the appropriate wait queue.
537 	 */
538 	if (cpu == RING_BUFFER_ALL_CPUS) {
539 		work = &buffer->irq_work;
540 		/* Full only makes sense on per cpu reads */
541 		full = false;
542 	} else {
543 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 			return -ENODEV;
545 		cpu_buffer = buffer->buffers[cpu];
546 		work = &cpu_buffer->irq_work;
547 	}
548 
549 
550 	while (true) {
551 		if (full)
552 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 		else
554 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555 
556 		/*
557 		 * The events can happen in critical sections where
558 		 * checking a work queue can cause deadlocks.
559 		 * After adding a task to the queue, this flag is set
560 		 * only to notify events to try to wake up the queue
561 		 * using irq_work.
562 		 *
563 		 * We don't clear it even if the buffer is no longer
564 		 * empty. The flag only causes the next event to run
565 		 * irq_work to do the work queue wake up. The worse
566 		 * that can happen if we race with !trace_empty() is that
567 		 * an event will cause an irq_work to try to wake up
568 		 * an empty queue.
569 		 *
570 		 * There's no reason to protect this flag either, as
571 		 * the work queue and irq_work logic will do the necessary
572 		 * synchronization for the wake ups. The only thing
573 		 * that is necessary is that the wake up happens after
574 		 * a task has been queued. It's OK for spurious wake ups.
575 		 */
576 		if (full)
577 			work->full_waiters_pending = true;
578 		else
579 			work->waiters_pending = true;
580 
581 		if (signal_pending(current)) {
582 			ret = -EINTR;
583 			break;
584 		}
585 
586 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 			break;
588 
589 		if (cpu != RING_BUFFER_ALL_CPUS &&
590 		    !ring_buffer_empty_cpu(buffer, cpu)) {
591 			unsigned long flags;
592 			bool pagebusy;
593 
594 			if (!full)
595 				break;
596 
597 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600 
601 			if (!pagebusy)
602 				break;
603 		}
604 
605 		schedule();
606 	}
607 
608 	if (full)
609 		finish_wait(&work->full_waiters, &wait);
610 	else
611 		finish_wait(&work->waiters, &wait);
612 
613 	return ret;
614 }
615 
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 			  struct file *filp, poll_table *poll_table)
632 {
633 	struct ring_buffer_per_cpu *cpu_buffer;
634 	struct rb_irq_work *work;
635 
636 	if (cpu == RING_BUFFER_ALL_CPUS)
637 		work = &buffer->irq_work;
638 	else {
639 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 			return -EINVAL;
641 
642 		cpu_buffer = buffer->buffers[cpu];
643 		work = &cpu_buffer->irq_work;
644 	}
645 
646 	poll_wait(filp, &work->waiters, poll_table);
647 	work->waiters_pending = true;
648 	/*
649 	 * There's a tight race between setting the waiters_pending and
650 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
651 	 * is set, the next event will wake the task up, but we can get stuck
652 	 * if there's only a single event in.
653 	 *
654 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 	 * but adding a memory barrier to all events will cause too much of a
656 	 * performance hit in the fast path.  We only need a memory barrier when
657 	 * the buffer goes from empty to having content.  But as this race is
658 	 * extremely small, and it's not a problem if another event comes in, we
659 	 * will fix it later.
660 	 */
661 	smp_mb();
662 
663 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 		return POLLIN | POLLRDNORM;
666 	return 0;
667 }
668 
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)						\
671 	({								\
672 		int _____ret = unlikely(cond);				\
673 		if (_____ret) {						\
674 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 				struct ring_buffer_per_cpu *__b =	\
676 					(void *)b;			\
677 				atomic_inc(&__b->buffer->record_disabled); \
678 			} else						\
679 				atomic_inc(&b->record_disabled);	\
680 			WARN_ON(1);					\
681 		}							\
682 		_____ret;						\
683 	})
684 
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687 
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 	/* shift to debug/test normalization and TIME_EXTENTS */
691 	return buffer->clock() << DEBUG_SHIFT;
692 }
693 
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 	u64 time;
697 
698 	preempt_disable_notrace();
699 	time = rb_time_stamp(buffer);
700 	preempt_enable_no_resched_notrace();
701 
702 	return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705 
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 				      int cpu, u64 *ts)
708 {
709 	/* Just stupid testing the normalize function and deltas */
710 	*ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713 
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782 
783 #define RB_PAGE_NORMAL		0UL
784 #define RB_PAGE_HEAD		1UL
785 #define RB_PAGE_UPDATE		2UL
786 
787 
788 #define RB_FLAG_MASK		3UL
789 
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED		4UL
792 
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 	unsigned long val = (unsigned long)list;
799 
800 	return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802 
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 		struct buffer_page *page, struct list_head *list)
814 {
815 	unsigned long val;
816 
817 	val = (unsigned long)list->next;
818 
819 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 		return RB_PAGE_MOVED;
821 
822 	return val & RB_FLAG_MASK;
823 }
824 
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834 	struct list_head *list = page->list.prev;
835 
836 	return rb_list_head(list->next) != &page->list;
837 }
838 
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 				struct list_head *list)
844 {
845 	unsigned long *ptr;
846 
847 	ptr = (unsigned long *)&list->next;
848 	*ptr |= RB_PAGE_HEAD;
849 	*ptr &= ~RB_PAGE_UPDATE;
850 }
851 
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 	struct buffer_page *head;
858 
859 	head = cpu_buffer->head_page;
860 	if (!head)
861 		return;
862 
863 	/*
864 	 * Set the previous list pointer to have the HEAD flag.
865 	 */
866 	rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868 
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 	unsigned long *ptr = (unsigned long *)&list->next;
872 
873 	*ptr &= ~RB_FLAG_MASK;
874 }
875 
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 	struct list_head *hd;
883 
884 	/* Go through the whole list and clear any pointers found. */
885 	rb_list_head_clear(cpu_buffer->pages);
886 
887 	list_for_each(hd, cpu_buffer->pages)
888 		rb_list_head_clear(hd);
889 }
890 
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 			    struct buffer_page *head,
893 			    struct buffer_page *prev,
894 			    int old_flag, int new_flag)
895 {
896 	struct list_head *list;
897 	unsigned long val = (unsigned long)&head->list;
898 	unsigned long ret;
899 
900 	list = &prev->list;
901 
902 	val &= ~RB_FLAG_MASK;
903 
904 	ret = cmpxchg((unsigned long *)&list->next,
905 		      val | old_flag, val | new_flag);
906 
907 	/* check if the reader took the page */
908 	if ((ret & ~RB_FLAG_MASK) != val)
909 		return RB_PAGE_MOVED;
910 
911 	return ret & RB_FLAG_MASK;
912 }
913 
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 				   struct buffer_page *head,
916 				   struct buffer_page *prev,
917 				   int old_flag)
918 {
919 	return rb_head_page_set(cpu_buffer, head, prev,
920 				old_flag, RB_PAGE_UPDATE);
921 }
922 
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 				 struct buffer_page *head,
925 				 struct buffer_page *prev,
926 				 int old_flag)
927 {
928 	return rb_head_page_set(cpu_buffer, head, prev,
929 				old_flag, RB_PAGE_HEAD);
930 }
931 
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 				   struct buffer_page *head,
934 				   struct buffer_page *prev,
935 				   int old_flag)
936 {
937 	return rb_head_page_set(cpu_buffer, head, prev,
938 				old_flag, RB_PAGE_NORMAL);
939 }
940 
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 			       struct buffer_page **bpage)
943 {
944 	struct list_head *p = rb_list_head((*bpage)->list.next);
945 
946 	*bpage = list_entry(p, struct buffer_page, list);
947 }
948 
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 	struct buffer_page *head;
953 	struct buffer_page *page;
954 	struct list_head *list;
955 	int i;
956 
957 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 		return NULL;
959 
960 	/* sanity check */
961 	list = cpu_buffer->pages;
962 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 		return NULL;
964 
965 	page = head = cpu_buffer->head_page;
966 	/*
967 	 * It is possible that the writer moves the header behind
968 	 * where we started, and we miss in one loop.
969 	 * A second loop should grab the header, but we'll do
970 	 * three loops just because I'm paranoid.
971 	 */
972 	for (i = 0; i < 3; i++) {
973 		do {
974 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 				cpu_buffer->head_page = page;
976 				return page;
977 			}
978 			rb_inc_page(cpu_buffer, &page);
979 		} while (page != head);
980 	}
981 
982 	RB_WARN_ON(cpu_buffer, 1);
983 
984 	return NULL;
985 }
986 
987 static int rb_head_page_replace(struct buffer_page *old,
988 				struct buffer_page *new)
989 {
990 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 	unsigned long val;
992 	unsigned long ret;
993 
994 	val = *ptr & ~RB_FLAG_MASK;
995 	val |= RB_PAGE_HEAD;
996 
997 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998 
999 	return ret == val;
1000 }
1001 
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  *
1005  * Returns 1 if moved tail page, 0 if someone else did.
1006  */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 			       struct buffer_page *tail_page,
1009 			       struct buffer_page *next_page)
1010 {
1011 	struct buffer_page *old_tail;
1012 	unsigned long old_entries;
1013 	unsigned long old_write;
1014 	int ret = 0;
1015 
1016 	/*
1017 	 * The tail page now needs to be moved forward.
1018 	 *
1019 	 * We need to reset the tail page, but without messing
1020 	 * with possible erasing of data brought in by interrupts
1021 	 * that have moved the tail page and are currently on it.
1022 	 *
1023 	 * We add a counter to the write field to denote this.
1024 	 */
1025 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027 
1028 	/*
1029 	 * Just make sure we have seen our old_write and synchronize
1030 	 * with any interrupts that come in.
1031 	 */
1032 	barrier();
1033 
1034 	/*
1035 	 * If the tail page is still the same as what we think
1036 	 * it is, then it is up to us to update the tail
1037 	 * pointer.
1038 	 */
1039 	if (tail_page == cpu_buffer->tail_page) {
1040 		/* Zero the write counter */
1041 		unsigned long val = old_write & ~RB_WRITE_MASK;
1042 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043 
1044 		/*
1045 		 * This will only succeed if an interrupt did
1046 		 * not come in and change it. In which case, we
1047 		 * do not want to modify it.
1048 		 *
1049 		 * We add (void) to let the compiler know that we do not care
1050 		 * about the return value of these functions. We use the
1051 		 * cmpxchg to only update if an interrupt did not already
1052 		 * do it for us. If the cmpxchg fails, we don't care.
1053 		 */
1054 		(void)local_cmpxchg(&next_page->write, old_write, val);
1055 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056 
1057 		/*
1058 		 * No need to worry about races with clearing out the commit.
1059 		 * it only can increment when a commit takes place. But that
1060 		 * only happens in the outer most nested commit.
1061 		 */
1062 		local_set(&next_page->page->commit, 0);
1063 
1064 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 				   tail_page, next_page);
1066 
1067 		if (old_tail == tail_page)
1068 			ret = 1;
1069 	}
1070 
1071 	return ret;
1072 }
1073 
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 			  struct buffer_page *bpage)
1076 {
1077 	unsigned long val = (unsigned long)bpage;
1078 
1079 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 		return 1;
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * rb_check_list - make sure a pointer to a list has the last bits zero
1087  */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 			 struct list_head *list)
1090 {
1091 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 		return 1;
1093 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 		return 1;
1095 	return 0;
1096 }
1097 
1098 /**
1099  * rb_check_pages - integrity check of buffer pages
1100  * @cpu_buffer: CPU buffer with pages to test
1101  *
1102  * As a safety measure we check to make sure the data pages have not
1103  * been corrupted.
1104  */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107 	struct list_head *head = cpu_buffer->pages;
1108 	struct buffer_page *bpage, *tmp;
1109 
1110 	/* Reset the head page if it exists */
1111 	if (cpu_buffer->head_page)
1112 		rb_set_head_page(cpu_buffer);
1113 
1114 	rb_head_page_deactivate(cpu_buffer);
1115 
1116 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 		return -1;
1118 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 		return -1;
1120 
1121 	if (rb_check_list(cpu_buffer, head))
1122 		return -1;
1123 
1124 	list_for_each_entry_safe(bpage, tmp, head, list) {
1125 		if (RB_WARN_ON(cpu_buffer,
1126 			       bpage->list.next->prev != &bpage->list))
1127 			return -1;
1128 		if (RB_WARN_ON(cpu_buffer,
1129 			       bpage->list.prev->next != &bpage->list))
1130 			return -1;
1131 		if (rb_check_list(cpu_buffer, &bpage->list))
1132 			return -1;
1133 	}
1134 
1135 	rb_head_page_activate(cpu_buffer);
1136 
1137 	return 0;
1138 }
1139 
1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1141 {
1142 	int i;
1143 	struct buffer_page *bpage, *tmp;
1144 
1145 	for (i = 0; i < nr_pages; i++) {
1146 		struct page *page;
1147 		/*
1148 		 * __GFP_NORETRY flag makes sure that the allocation fails
1149 		 * gracefully without invoking oom-killer and the system is
1150 		 * not destabilized.
1151 		 */
1152 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153 				    GFP_KERNEL | __GFP_NORETRY,
1154 				    cpu_to_node(cpu));
1155 		if (!bpage)
1156 			goto free_pages;
1157 
1158 		list_add(&bpage->list, pages);
1159 
1160 		page = alloc_pages_node(cpu_to_node(cpu),
1161 					GFP_KERNEL | __GFP_NORETRY, 0);
1162 		if (!page)
1163 			goto free_pages;
1164 		bpage->page = page_address(page);
1165 		rb_init_page(bpage->page);
1166 	}
1167 
1168 	return 0;
1169 
1170 free_pages:
1171 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 		list_del_init(&bpage->list);
1173 		free_buffer_page(bpage);
1174 	}
1175 
1176 	return -ENOMEM;
1177 }
1178 
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 			     unsigned nr_pages)
1181 {
1182 	LIST_HEAD(pages);
1183 
1184 	WARN_ON(!nr_pages);
1185 
1186 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 		return -ENOMEM;
1188 
1189 	/*
1190 	 * The ring buffer page list is a circular list that does not
1191 	 * start and end with a list head. All page list items point to
1192 	 * other pages.
1193 	 */
1194 	cpu_buffer->pages = pages.next;
1195 	list_del(&pages);
1196 
1197 	cpu_buffer->nr_pages = nr_pages;
1198 
1199 	rb_check_pages(cpu_buffer);
1200 
1201 	return 0;
1202 }
1203 
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1206 {
1207 	struct ring_buffer_per_cpu *cpu_buffer;
1208 	struct buffer_page *bpage;
1209 	struct page *page;
1210 	int ret;
1211 
1212 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 				  GFP_KERNEL, cpu_to_node(cpu));
1214 	if (!cpu_buffer)
1215 		return NULL;
1216 
1217 	cpu_buffer->cpu = cpu;
1218 	cpu_buffer->buffer = buffer;
1219 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1220 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223 	init_completion(&cpu_buffer->update_done);
1224 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227 
1228 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229 			    GFP_KERNEL, cpu_to_node(cpu));
1230 	if (!bpage)
1231 		goto fail_free_buffer;
1232 
1233 	rb_check_bpage(cpu_buffer, bpage);
1234 
1235 	cpu_buffer->reader_page = bpage;
1236 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 	if (!page)
1238 		goto fail_free_reader;
1239 	bpage->page = page_address(page);
1240 	rb_init_page(bpage->page);
1241 
1242 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244 
1245 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246 	if (ret < 0)
1247 		goto fail_free_reader;
1248 
1249 	cpu_buffer->head_page
1250 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1251 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252 
1253 	rb_head_page_activate(cpu_buffer);
1254 
1255 	return cpu_buffer;
1256 
1257  fail_free_reader:
1258 	free_buffer_page(cpu_buffer->reader_page);
1259 
1260  fail_free_buffer:
1261 	kfree(cpu_buffer);
1262 	return NULL;
1263 }
1264 
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267 	struct list_head *head = cpu_buffer->pages;
1268 	struct buffer_page *bpage, *tmp;
1269 
1270 	free_buffer_page(cpu_buffer->reader_page);
1271 
1272 	rb_head_page_deactivate(cpu_buffer);
1273 
1274 	if (head) {
1275 		list_for_each_entry_safe(bpage, tmp, head, list) {
1276 			list_del_init(&bpage->list);
1277 			free_buffer_page(bpage);
1278 		}
1279 		bpage = list_entry(head, struct buffer_page, list);
1280 		free_buffer_page(bpage);
1281 	}
1282 
1283 	kfree(cpu_buffer);
1284 }
1285 
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288 			 unsigned long action, void *hcpu);
1289 #endif
1290 
1291 /**
1292  * __ring_buffer_alloc - allocate a new ring_buffer
1293  * @size: the size in bytes per cpu that is needed.
1294  * @flags: attributes to set for the ring buffer.
1295  *
1296  * Currently the only flag that is available is the RB_FL_OVERWRITE
1297  * flag. This flag means that the buffer will overwrite old data
1298  * when the buffer wraps. If this flag is not set, the buffer will
1299  * drop data when the tail hits the head.
1300  */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 					struct lock_class_key *key)
1303 {
1304 	struct ring_buffer *buffer;
1305 	int bsize;
1306 	int cpu, nr_pages;
1307 
1308 	/* keep it in its own cache line */
1309 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 			 GFP_KERNEL);
1311 	if (!buffer)
1312 		return NULL;
1313 
1314 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 		goto fail_free_buffer;
1316 
1317 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1318 	buffer->flags = flags;
1319 	buffer->clock = trace_clock_local;
1320 	buffer->reader_lock_key = key;
1321 
1322 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1323 	init_waitqueue_head(&buffer->irq_work.waiters);
1324 
1325 	/* need at least two pages */
1326 	if (nr_pages < 2)
1327 		nr_pages = 2;
1328 
1329 	/*
1330 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 	 * in early initcall, it will not be notified of secondary cpus.
1332 	 * In that off case, we need to allocate for all possible cpus.
1333 	 */
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 	cpu_notifier_register_begin();
1336 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1337 #else
1338 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339 #endif
1340 	buffer->cpus = nr_cpu_ids;
1341 
1342 	bsize = sizeof(void *) * nr_cpu_ids;
1343 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 				  GFP_KERNEL);
1345 	if (!buffer->buffers)
1346 		goto fail_free_cpumask;
1347 
1348 	for_each_buffer_cpu(buffer, cpu) {
1349 		buffer->buffers[cpu] =
1350 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1351 		if (!buffer->buffers[cpu])
1352 			goto fail_free_buffers;
1353 	}
1354 
1355 #ifdef CONFIG_HOTPLUG_CPU
1356 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 	buffer->cpu_notify.priority = 0;
1358 	__register_cpu_notifier(&buffer->cpu_notify);
1359 	cpu_notifier_register_done();
1360 #endif
1361 
1362 	mutex_init(&buffer->mutex);
1363 
1364 	return buffer;
1365 
1366  fail_free_buffers:
1367 	for_each_buffer_cpu(buffer, cpu) {
1368 		if (buffer->buffers[cpu])
1369 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 	}
1371 	kfree(buffer->buffers);
1372 
1373  fail_free_cpumask:
1374 	free_cpumask_var(buffer->cpumask);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376 	cpu_notifier_register_done();
1377 #endif
1378 
1379  fail_free_buffer:
1380 	kfree(buffer);
1381 	return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1384 
1385 /**
1386  * ring_buffer_free - free a ring buffer.
1387  * @buffer: the buffer to free.
1388  */
1389 void
1390 ring_buffer_free(struct ring_buffer *buffer)
1391 {
1392 	int cpu;
1393 
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 	cpu_notifier_register_begin();
1396 	__unregister_cpu_notifier(&buffer->cpu_notify);
1397 #endif
1398 
1399 	for_each_buffer_cpu(buffer, cpu)
1400 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1401 
1402 #ifdef CONFIG_HOTPLUG_CPU
1403 	cpu_notifier_register_done();
1404 #endif
1405 
1406 	kfree(buffer->buffers);
1407 	free_cpumask_var(buffer->cpumask);
1408 
1409 	kfree(buffer);
1410 }
1411 EXPORT_SYMBOL_GPL(ring_buffer_free);
1412 
1413 void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 			   u64 (*clock)(void))
1415 {
1416 	buffer->clock = clock;
1417 }
1418 
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420 
1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422 {
1423 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1424 }
1425 
1426 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427 {
1428 	return local_read(&bpage->write) & RB_WRITE_MASK;
1429 }
1430 
1431 static int
1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1433 {
1434 	struct list_head *tail_page, *to_remove, *next_page;
1435 	struct buffer_page *to_remove_page, *tmp_iter_page;
1436 	struct buffer_page *last_page, *first_page;
1437 	unsigned int nr_removed;
1438 	unsigned long head_bit;
1439 	int page_entries;
1440 
1441 	head_bit = 0;
1442 
1443 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1444 	atomic_inc(&cpu_buffer->record_disabled);
1445 	/*
1446 	 * We don't race with the readers since we have acquired the reader
1447 	 * lock. We also don't race with writers after disabling recording.
1448 	 * This makes it easy to figure out the first and the last page to be
1449 	 * removed from the list. We unlink all the pages in between including
1450 	 * the first and last pages. This is done in a busy loop so that we
1451 	 * lose the least number of traces.
1452 	 * The pages are freed after we restart recording and unlock readers.
1453 	 */
1454 	tail_page = &cpu_buffer->tail_page->list;
1455 
1456 	/*
1457 	 * tail page might be on reader page, we remove the next page
1458 	 * from the ring buffer
1459 	 */
1460 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 		tail_page = rb_list_head(tail_page->next);
1462 	to_remove = tail_page;
1463 
1464 	/* start of pages to remove */
1465 	first_page = list_entry(rb_list_head(to_remove->next),
1466 				struct buffer_page, list);
1467 
1468 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 		to_remove = rb_list_head(to_remove)->next;
1470 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1471 	}
1472 
1473 	next_page = rb_list_head(to_remove)->next;
1474 
1475 	/*
1476 	 * Now we remove all pages between tail_page and next_page.
1477 	 * Make sure that we have head_bit value preserved for the
1478 	 * next page
1479 	 */
1480 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 						head_bit);
1482 	next_page = rb_list_head(next_page);
1483 	next_page->prev = tail_page;
1484 
1485 	/* make sure pages points to a valid page in the ring buffer */
1486 	cpu_buffer->pages = next_page;
1487 
1488 	/* update head page */
1489 	if (head_bit)
1490 		cpu_buffer->head_page = list_entry(next_page,
1491 						struct buffer_page, list);
1492 
1493 	/*
1494 	 * change read pointer to make sure any read iterators reset
1495 	 * themselves
1496 	 */
1497 	cpu_buffer->read = 0;
1498 
1499 	/* pages are removed, resume tracing and then free the pages */
1500 	atomic_dec(&cpu_buffer->record_disabled);
1501 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1502 
1503 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504 
1505 	/* last buffer page to remove */
1506 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 				list);
1508 	tmp_iter_page = first_page;
1509 
1510 	do {
1511 		to_remove_page = tmp_iter_page;
1512 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1513 
1514 		/* update the counters */
1515 		page_entries = rb_page_entries(to_remove_page);
1516 		if (page_entries) {
1517 			/*
1518 			 * If something was added to this page, it was full
1519 			 * since it is not the tail page. So we deduct the
1520 			 * bytes consumed in ring buffer from here.
1521 			 * Increment overrun to account for the lost events.
1522 			 */
1523 			local_add(page_entries, &cpu_buffer->overrun);
1524 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 		}
1526 
1527 		/*
1528 		 * We have already removed references to this list item, just
1529 		 * free up the buffer_page and its page
1530 		 */
1531 		free_buffer_page(to_remove_page);
1532 		nr_removed--;
1533 
1534 	} while (to_remove_page != last_page);
1535 
1536 	RB_WARN_ON(cpu_buffer, nr_removed);
1537 
1538 	return nr_removed == 0;
1539 }
1540 
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544 	struct list_head *pages = &cpu_buffer->new_pages;
1545 	int retries, success;
1546 
1547 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548 	/*
1549 	 * We are holding the reader lock, so the reader page won't be swapped
1550 	 * in the ring buffer. Now we are racing with the writer trying to
1551 	 * move head page and the tail page.
1552 	 * We are going to adapt the reader page update process where:
1553 	 * 1. We first splice the start and end of list of new pages between
1554 	 *    the head page and its previous page.
1555 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 	 *    start of new pages list.
1557 	 * 3. Finally, we update the head->prev to the end of new list.
1558 	 *
1559 	 * We will try this process 10 times, to make sure that we don't keep
1560 	 * spinning.
1561 	 */
1562 	retries = 10;
1563 	success = 0;
1564 	while (retries--) {
1565 		struct list_head *head_page, *prev_page, *r;
1566 		struct list_head *last_page, *first_page;
1567 		struct list_head *head_page_with_bit;
1568 
1569 		head_page = &rb_set_head_page(cpu_buffer)->list;
1570 		if (!head_page)
1571 			break;
1572 		prev_page = head_page->prev;
1573 
1574 		first_page = pages->next;
1575 		last_page  = pages->prev;
1576 
1577 		head_page_with_bit = (struct list_head *)
1578 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1579 
1580 		last_page->next = head_page_with_bit;
1581 		first_page->prev = prev_page;
1582 
1583 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584 
1585 		if (r == head_page_with_bit) {
1586 			/*
1587 			 * yay, we replaced the page pointer to our new list,
1588 			 * now, we just have to update to head page's prev
1589 			 * pointer to point to end of list
1590 			 */
1591 			head_page->prev = last_page;
1592 			success = 1;
1593 			break;
1594 		}
1595 	}
1596 
1597 	if (success)
1598 		INIT_LIST_HEAD(pages);
1599 	/*
1600 	 * If we weren't successful in adding in new pages, warn and stop
1601 	 * tracing
1602 	 */
1603 	RB_WARN_ON(cpu_buffer, !success);
1604 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605 
1606 	/* free pages if they weren't inserted */
1607 	if (!success) {
1608 		struct buffer_page *bpage, *tmp;
1609 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 					 list) {
1611 			list_del_init(&bpage->list);
1612 			free_buffer_page(bpage);
1613 		}
1614 	}
1615 	return success;
1616 }
1617 
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620 	int success;
1621 
1622 	if (cpu_buffer->nr_pages_to_update > 0)
1623 		success = rb_insert_pages(cpu_buffer);
1624 	else
1625 		success = rb_remove_pages(cpu_buffer,
1626 					-cpu_buffer->nr_pages_to_update);
1627 
1628 	if (success)
1629 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631 
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 			struct ring_buffer_per_cpu, update_pages_work);
1636 	rb_update_pages(cpu_buffer);
1637 	complete(&cpu_buffer->update_done);
1638 }
1639 
1640 /**
1641  * ring_buffer_resize - resize the ring buffer
1642  * @buffer: the buffer to resize.
1643  * @size: the new size.
1644  * @cpu_id: the cpu buffer to resize
1645  *
1646  * Minimum size is 2 * BUF_PAGE_SIZE.
1647  *
1648  * Returns 0 on success and < 0 on failure.
1649  */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 			int cpu_id)
1652 {
1653 	struct ring_buffer_per_cpu *cpu_buffer;
1654 	unsigned nr_pages;
1655 	int cpu, err = 0;
1656 
1657 	/*
1658 	 * Always succeed at resizing a non-existent buffer:
1659 	 */
1660 	if (!buffer)
1661 		return size;
1662 
1663 	/* Make sure the requested buffer exists */
1664 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 		return size;
1667 
1668 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 	size *= BUF_PAGE_SIZE;
1670 
1671 	/* we need a minimum of two pages */
1672 	if (size < BUF_PAGE_SIZE * 2)
1673 		size = BUF_PAGE_SIZE * 2;
1674 
1675 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1676 
1677 	/*
1678 	 * Don't succeed if resizing is disabled, as a reader might be
1679 	 * manipulating the ring buffer and is expecting a sane state while
1680 	 * this is true.
1681 	 */
1682 	if (atomic_read(&buffer->resize_disabled))
1683 		return -EBUSY;
1684 
1685 	/* prevent another thread from changing buffer sizes */
1686 	mutex_lock(&buffer->mutex);
1687 
1688 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 		/* calculate the pages to update */
1690 		for_each_buffer_cpu(buffer, cpu) {
1691 			cpu_buffer = buffer->buffers[cpu];
1692 
1693 			cpu_buffer->nr_pages_to_update = nr_pages -
1694 							cpu_buffer->nr_pages;
1695 			/*
1696 			 * nothing more to do for removing pages or no update
1697 			 */
1698 			if (cpu_buffer->nr_pages_to_update <= 0)
1699 				continue;
1700 			/*
1701 			 * to add pages, make sure all new pages can be
1702 			 * allocated without receiving ENOMEM
1703 			 */
1704 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1706 						&cpu_buffer->new_pages, cpu)) {
1707 				/* not enough memory for new pages */
1708 				err = -ENOMEM;
1709 				goto out_err;
1710 			}
1711 		}
1712 
1713 		get_online_cpus();
1714 		/*
1715 		 * Fire off all the required work handlers
1716 		 * We can't schedule on offline CPUs, but it's not necessary
1717 		 * since we can change their buffer sizes without any race.
1718 		 */
1719 		for_each_buffer_cpu(buffer, cpu) {
1720 			cpu_buffer = buffer->buffers[cpu];
1721 			if (!cpu_buffer->nr_pages_to_update)
1722 				continue;
1723 
1724 			/* Can't run something on an offline CPU. */
1725 			if (!cpu_online(cpu)) {
1726 				rb_update_pages(cpu_buffer);
1727 				cpu_buffer->nr_pages_to_update = 0;
1728 			} else {
1729 				schedule_work_on(cpu,
1730 						&cpu_buffer->update_pages_work);
1731 			}
1732 		}
1733 
1734 		/* wait for all the updates to complete */
1735 		for_each_buffer_cpu(buffer, cpu) {
1736 			cpu_buffer = buffer->buffers[cpu];
1737 			if (!cpu_buffer->nr_pages_to_update)
1738 				continue;
1739 
1740 			if (cpu_online(cpu))
1741 				wait_for_completion(&cpu_buffer->update_done);
1742 			cpu_buffer->nr_pages_to_update = 0;
1743 		}
1744 
1745 		put_online_cpus();
1746 	} else {
1747 		/* Make sure this CPU has been intitialized */
1748 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 			goto out;
1750 
1751 		cpu_buffer = buffer->buffers[cpu_id];
1752 
1753 		if (nr_pages == cpu_buffer->nr_pages)
1754 			goto out;
1755 
1756 		cpu_buffer->nr_pages_to_update = nr_pages -
1757 						cpu_buffer->nr_pages;
1758 
1759 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 		if (cpu_buffer->nr_pages_to_update > 0 &&
1761 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1762 					    &cpu_buffer->new_pages, cpu_id)) {
1763 			err = -ENOMEM;
1764 			goto out_err;
1765 		}
1766 
1767 		get_online_cpus();
1768 
1769 		/* Can't run something on an offline CPU. */
1770 		if (!cpu_online(cpu_id))
1771 			rb_update_pages(cpu_buffer);
1772 		else {
1773 			schedule_work_on(cpu_id,
1774 					 &cpu_buffer->update_pages_work);
1775 			wait_for_completion(&cpu_buffer->update_done);
1776 		}
1777 
1778 		cpu_buffer->nr_pages_to_update = 0;
1779 		put_online_cpus();
1780 	}
1781 
1782  out:
1783 	/*
1784 	 * The ring buffer resize can happen with the ring buffer
1785 	 * enabled, so that the update disturbs the tracing as little
1786 	 * as possible. But if the buffer is disabled, we do not need
1787 	 * to worry about that, and we can take the time to verify
1788 	 * that the buffer is not corrupt.
1789 	 */
1790 	if (atomic_read(&buffer->record_disabled)) {
1791 		atomic_inc(&buffer->record_disabled);
1792 		/*
1793 		 * Even though the buffer was disabled, we must make sure
1794 		 * that it is truly disabled before calling rb_check_pages.
1795 		 * There could have been a race between checking
1796 		 * record_disable and incrementing it.
1797 		 */
1798 		synchronize_sched();
1799 		for_each_buffer_cpu(buffer, cpu) {
1800 			cpu_buffer = buffer->buffers[cpu];
1801 			rb_check_pages(cpu_buffer);
1802 		}
1803 		atomic_dec(&buffer->record_disabled);
1804 	}
1805 
1806 	mutex_unlock(&buffer->mutex);
1807 	return size;
1808 
1809  out_err:
1810 	for_each_buffer_cpu(buffer, cpu) {
1811 		struct buffer_page *bpage, *tmp;
1812 
1813 		cpu_buffer = buffer->buffers[cpu];
1814 		cpu_buffer->nr_pages_to_update = 0;
1815 
1816 		if (list_empty(&cpu_buffer->new_pages))
1817 			continue;
1818 
1819 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 					list) {
1821 			list_del_init(&bpage->list);
1822 			free_buffer_page(bpage);
1823 		}
1824 	}
1825 	mutex_unlock(&buffer->mutex);
1826 	return err;
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1829 
1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831 {
1832 	mutex_lock(&buffer->mutex);
1833 	if (val)
1834 		buffer->flags |= RB_FL_OVERWRITE;
1835 	else
1836 		buffer->flags &= ~RB_FL_OVERWRITE;
1837 	mutex_unlock(&buffer->mutex);
1838 }
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840 
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1843 {
1844 	return bpage->data + index;
1845 }
1846 
1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1848 {
1849 	return bpage->page->data + index;
1850 }
1851 
1852 static inline struct ring_buffer_event *
1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855 	return __rb_page_index(cpu_buffer->reader_page,
1856 			       cpu_buffer->reader_page->read);
1857 }
1858 
1859 static inline struct ring_buffer_event *
1860 rb_iter_head_event(struct ring_buffer_iter *iter)
1861 {
1862 	return __rb_page_index(iter->head_page, iter->head);
1863 }
1864 
1865 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866 {
1867 	return local_read(&bpage->page->commit);
1868 }
1869 
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page *bpage)
1872 {
1873 	return rb_page_commit(bpage);
1874 }
1875 
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 	return rb_page_commit(cpu_buffer->commit_page);
1880 }
1881 
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event *event)
1884 {
1885 	unsigned long addr = (unsigned long)event;
1886 
1887 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1888 }
1889 
1890 static void rb_inc_iter(struct ring_buffer_iter *iter)
1891 {
1892 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1893 
1894 	/*
1895 	 * The iterator could be on the reader page (it starts there).
1896 	 * But the head could have moved, since the reader was
1897 	 * found. Check for this case and assign the iterator
1898 	 * to the head page instead of next.
1899 	 */
1900 	if (iter->head_page == cpu_buffer->reader_page)
1901 		iter->head_page = rb_set_head_page(cpu_buffer);
1902 	else
1903 		rb_inc_page(cpu_buffer, &iter->head_page);
1904 
1905 	iter->read_stamp = iter->head_page->page->time_stamp;
1906 	iter->head = 0;
1907 }
1908 
1909 /*
1910  * rb_handle_head_page - writer hit the head page
1911  *
1912  * Returns: +1 to retry page
1913  *           0 to continue
1914  *          -1 on error
1915  */
1916 static int
1917 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1918 		    struct buffer_page *tail_page,
1919 		    struct buffer_page *next_page)
1920 {
1921 	struct buffer_page *new_head;
1922 	int entries;
1923 	int type;
1924 	int ret;
1925 
1926 	entries = rb_page_entries(next_page);
1927 
1928 	/*
1929 	 * The hard part is here. We need to move the head
1930 	 * forward, and protect against both readers on
1931 	 * other CPUs and writers coming in via interrupts.
1932 	 */
1933 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1934 				       RB_PAGE_HEAD);
1935 
1936 	/*
1937 	 * type can be one of four:
1938 	 *  NORMAL - an interrupt already moved it for us
1939 	 *  HEAD   - we are the first to get here.
1940 	 *  UPDATE - we are the interrupt interrupting
1941 	 *           a current move.
1942 	 *  MOVED  - a reader on another CPU moved the next
1943 	 *           pointer to its reader page. Give up
1944 	 *           and try again.
1945 	 */
1946 
1947 	switch (type) {
1948 	case RB_PAGE_HEAD:
1949 		/*
1950 		 * We changed the head to UPDATE, thus
1951 		 * it is our responsibility to update
1952 		 * the counters.
1953 		 */
1954 		local_add(entries, &cpu_buffer->overrun);
1955 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1956 
1957 		/*
1958 		 * The entries will be zeroed out when we move the
1959 		 * tail page.
1960 		 */
1961 
1962 		/* still more to do */
1963 		break;
1964 
1965 	case RB_PAGE_UPDATE:
1966 		/*
1967 		 * This is an interrupt that interrupt the
1968 		 * previous update. Still more to do.
1969 		 */
1970 		break;
1971 	case RB_PAGE_NORMAL:
1972 		/*
1973 		 * An interrupt came in before the update
1974 		 * and processed this for us.
1975 		 * Nothing left to do.
1976 		 */
1977 		return 1;
1978 	case RB_PAGE_MOVED:
1979 		/*
1980 		 * The reader is on another CPU and just did
1981 		 * a swap with our next_page.
1982 		 * Try again.
1983 		 */
1984 		return 1;
1985 	default:
1986 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1987 		return -1;
1988 	}
1989 
1990 	/*
1991 	 * Now that we are here, the old head pointer is
1992 	 * set to UPDATE. This will keep the reader from
1993 	 * swapping the head page with the reader page.
1994 	 * The reader (on another CPU) will spin till
1995 	 * we are finished.
1996 	 *
1997 	 * We just need to protect against interrupts
1998 	 * doing the job. We will set the next pointer
1999 	 * to HEAD. After that, we set the old pointer
2000 	 * to NORMAL, but only if it was HEAD before.
2001 	 * otherwise we are an interrupt, and only
2002 	 * want the outer most commit to reset it.
2003 	 */
2004 	new_head = next_page;
2005 	rb_inc_page(cpu_buffer, &new_head);
2006 
2007 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2008 				    RB_PAGE_NORMAL);
2009 
2010 	/*
2011 	 * Valid returns are:
2012 	 *  HEAD   - an interrupt came in and already set it.
2013 	 *  NORMAL - One of two things:
2014 	 *            1) We really set it.
2015 	 *            2) A bunch of interrupts came in and moved
2016 	 *               the page forward again.
2017 	 */
2018 	switch (ret) {
2019 	case RB_PAGE_HEAD:
2020 	case RB_PAGE_NORMAL:
2021 		/* OK */
2022 		break;
2023 	default:
2024 		RB_WARN_ON(cpu_buffer, 1);
2025 		return -1;
2026 	}
2027 
2028 	/*
2029 	 * It is possible that an interrupt came in,
2030 	 * set the head up, then more interrupts came in
2031 	 * and moved it again. When we get back here,
2032 	 * the page would have been set to NORMAL but we
2033 	 * just set it back to HEAD.
2034 	 *
2035 	 * How do you detect this? Well, if that happened
2036 	 * the tail page would have moved.
2037 	 */
2038 	if (ret == RB_PAGE_NORMAL) {
2039 		/*
2040 		 * If the tail had moved passed next, then we need
2041 		 * to reset the pointer.
2042 		 */
2043 		if (cpu_buffer->tail_page != tail_page &&
2044 		    cpu_buffer->tail_page != next_page)
2045 			rb_head_page_set_normal(cpu_buffer, new_head,
2046 						next_page,
2047 						RB_PAGE_HEAD);
2048 	}
2049 
2050 	/*
2051 	 * If this was the outer most commit (the one that
2052 	 * changed the original pointer from HEAD to UPDATE),
2053 	 * then it is up to us to reset it to NORMAL.
2054 	 */
2055 	if (type == RB_PAGE_HEAD) {
2056 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2057 					      tail_page,
2058 					      RB_PAGE_UPDATE);
2059 		if (RB_WARN_ON(cpu_buffer,
2060 			       ret != RB_PAGE_UPDATE))
2061 			return -1;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static inline void
2068 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2069 	      unsigned long tail, struct rb_event_info *info)
2070 {
2071 	struct buffer_page *tail_page = info->tail_page;
2072 	struct ring_buffer_event *event;
2073 	unsigned long length = info->length;
2074 
2075 	/*
2076 	 * Only the event that crossed the page boundary
2077 	 * must fill the old tail_page with padding.
2078 	 */
2079 	if (tail >= BUF_PAGE_SIZE) {
2080 		/*
2081 		 * If the page was filled, then we still need
2082 		 * to update the real_end. Reset it to zero
2083 		 * and the reader will ignore it.
2084 		 */
2085 		if (tail == BUF_PAGE_SIZE)
2086 			tail_page->real_end = 0;
2087 
2088 		local_sub(length, &tail_page->write);
2089 		return;
2090 	}
2091 
2092 	event = __rb_page_index(tail_page, tail);
2093 	kmemcheck_annotate_bitfield(event, bitfield);
2094 
2095 	/* account for padding bytes */
2096 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2097 
2098 	/*
2099 	 * Save the original length to the meta data.
2100 	 * This will be used by the reader to add lost event
2101 	 * counter.
2102 	 */
2103 	tail_page->real_end = tail;
2104 
2105 	/*
2106 	 * If this event is bigger than the minimum size, then
2107 	 * we need to be careful that we don't subtract the
2108 	 * write counter enough to allow another writer to slip
2109 	 * in on this page.
2110 	 * We put in a discarded commit instead, to make sure
2111 	 * that this space is not used again.
2112 	 *
2113 	 * If we are less than the minimum size, we don't need to
2114 	 * worry about it.
2115 	 */
2116 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2117 		/* No room for any events */
2118 
2119 		/* Mark the rest of the page with padding */
2120 		rb_event_set_padding(event);
2121 
2122 		/* Set the write back to the previous setting */
2123 		local_sub(length, &tail_page->write);
2124 		return;
2125 	}
2126 
2127 	/* Put in a discarded event */
2128 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2129 	event->type_len = RINGBUF_TYPE_PADDING;
2130 	/* time delta must be non zero */
2131 	event->time_delta = 1;
2132 
2133 	/* Set write to end of buffer */
2134 	length = (tail + length) - BUF_PAGE_SIZE;
2135 	local_sub(length, &tail_page->write);
2136 }
2137 
2138 /*
2139  * This is the slow path, force gcc not to inline it.
2140  */
2141 static noinline struct ring_buffer_event *
2142 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2143 	     unsigned long tail, struct rb_event_info *info)
2144 {
2145 	struct buffer_page *tail_page = info->tail_page;
2146 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2147 	struct ring_buffer *buffer = cpu_buffer->buffer;
2148 	struct buffer_page *next_page;
2149 	int ret;
2150 	u64 ts;
2151 
2152 	next_page = tail_page;
2153 
2154 	rb_inc_page(cpu_buffer, &next_page);
2155 
2156 	/*
2157 	 * If for some reason, we had an interrupt storm that made
2158 	 * it all the way around the buffer, bail, and warn
2159 	 * about it.
2160 	 */
2161 	if (unlikely(next_page == commit_page)) {
2162 		local_inc(&cpu_buffer->commit_overrun);
2163 		goto out_reset;
2164 	}
2165 
2166 	/*
2167 	 * This is where the fun begins!
2168 	 *
2169 	 * We are fighting against races between a reader that
2170 	 * could be on another CPU trying to swap its reader
2171 	 * page with the buffer head.
2172 	 *
2173 	 * We are also fighting against interrupts coming in and
2174 	 * moving the head or tail on us as well.
2175 	 *
2176 	 * If the next page is the head page then we have filled
2177 	 * the buffer, unless the commit page is still on the
2178 	 * reader page.
2179 	 */
2180 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2181 
2182 		/*
2183 		 * If the commit is not on the reader page, then
2184 		 * move the header page.
2185 		 */
2186 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2187 			/*
2188 			 * If we are not in overwrite mode,
2189 			 * this is easy, just stop here.
2190 			 */
2191 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2192 				local_inc(&cpu_buffer->dropped_events);
2193 				goto out_reset;
2194 			}
2195 
2196 			ret = rb_handle_head_page(cpu_buffer,
2197 						  tail_page,
2198 						  next_page);
2199 			if (ret < 0)
2200 				goto out_reset;
2201 			if (ret)
2202 				goto out_again;
2203 		} else {
2204 			/*
2205 			 * We need to be careful here too. The
2206 			 * commit page could still be on the reader
2207 			 * page. We could have a small buffer, and
2208 			 * have filled up the buffer with events
2209 			 * from interrupts and such, and wrapped.
2210 			 *
2211 			 * Note, if the tail page is also the on the
2212 			 * reader_page, we let it move out.
2213 			 */
2214 			if (unlikely((cpu_buffer->commit_page !=
2215 				      cpu_buffer->tail_page) &&
2216 				     (cpu_buffer->commit_page ==
2217 				      cpu_buffer->reader_page))) {
2218 				local_inc(&cpu_buffer->commit_overrun);
2219 				goto out_reset;
2220 			}
2221 		}
2222 	}
2223 
2224 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2225 	if (ret) {
2226 		/*
2227 		 * Nested commits always have zero deltas, so
2228 		 * just reread the time stamp
2229 		 */
2230 		ts = rb_time_stamp(buffer);
2231 		next_page->page->time_stamp = ts;
2232 	}
2233 
2234  out_again:
2235 
2236 	rb_reset_tail(cpu_buffer, tail, info);
2237 
2238 	/* fail and let the caller try again */
2239 	return ERR_PTR(-EAGAIN);
2240 
2241  out_reset:
2242 	/* reset write */
2243 	rb_reset_tail(cpu_buffer, tail, info);
2244 
2245 	return NULL;
2246 }
2247 
2248 /* Slow path, do not inline */
2249 static noinline struct ring_buffer_event *
2250 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2251 {
2252 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2253 
2254 	/* Not the first event on the page? */
2255 	if (rb_event_index(event)) {
2256 		event->time_delta = delta & TS_MASK;
2257 		event->array[0] = delta >> TS_SHIFT;
2258 	} else {
2259 		/* nope, just zero it */
2260 		event->time_delta = 0;
2261 		event->array[0] = 0;
2262 	}
2263 
2264 	return skip_time_extend(event);
2265 }
2266 
2267 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2268 				     struct ring_buffer_event *event);
2269 
2270 /**
2271  * rb_update_event - update event type and data
2272  * @event: the event to update
2273  * @type: the type of event
2274  * @length: the size of the event field in the ring buffer
2275  *
2276  * Update the type and data fields of the event. The length
2277  * is the actual size that is written to the ring buffer,
2278  * and with this, we can determine what to place into the
2279  * data field.
2280  */
2281 static void
2282 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2283 		struct ring_buffer_event *event,
2284 		struct rb_event_info *info)
2285 {
2286 	unsigned length = info->length;
2287 	u64 delta = info->delta;
2288 
2289 	/* Only a commit updates the timestamp */
2290 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2291 		delta = 0;
2292 
2293 	/*
2294 	 * If we need to add a timestamp, then we
2295 	 * add it to the start of the resevered space.
2296 	 */
2297 	if (unlikely(info->add_timestamp)) {
2298 		event = rb_add_time_stamp(event, delta);
2299 		length -= RB_LEN_TIME_EXTEND;
2300 		delta = 0;
2301 	}
2302 
2303 	event->time_delta = delta;
2304 	length -= RB_EVNT_HDR_SIZE;
2305 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2306 		event->type_len = 0;
2307 		event->array[0] = length;
2308 	} else
2309 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2310 }
2311 
2312 static unsigned rb_calculate_event_length(unsigned length)
2313 {
2314 	struct ring_buffer_event event; /* Used only for sizeof array */
2315 
2316 	/* zero length can cause confusions */
2317 	if (!length)
2318 		length++;
2319 
2320 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2321 		length += sizeof(event.array[0]);
2322 
2323 	length += RB_EVNT_HDR_SIZE;
2324 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2325 
2326 	/*
2327 	 * In case the time delta is larger than the 27 bits for it
2328 	 * in the header, we need to add a timestamp. If another
2329 	 * event comes in when trying to discard this one to increase
2330 	 * the length, then the timestamp will be added in the allocated
2331 	 * space of this event. If length is bigger than the size needed
2332 	 * for the TIME_EXTEND, then padding has to be used. The events
2333 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2334 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2335 	 * As length is a multiple of 4, we only need to worry if it
2336 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2337 	 */
2338 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2339 		length += RB_ALIGNMENT;
2340 
2341 	return length;
2342 }
2343 
2344 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2345 static inline bool sched_clock_stable(void)
2346 {
2347 	return true;
2348 }
2349 #endif
2350 
2351 static inline int
2352 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2353 		  struct ring_buffer_event *event)
2354 {
2355 	unsigned long new_index, old_index;
2356 	struct buffer_page *bpage;
2357 	unsigned long index;
2358 	unsigned long addr;
2359 
2360 	new_index = rb_event_index(event);
2361 	old_index = new_index + rb_event_ts_length(event);
2362 	addr = (unsigned long)event;
2363 	addr &= PAGE_MASK;
2364 
2365 	bpage = cpu_buffer->tail_page;
2366 
2367 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2368 		unsigned long write_mask =
2369 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2370 		unsigned long event_length = rb_event_length(event);
2371 		/*
2372 		 * This is on the tail page. It is possible that
2373 		 * a write could come in and move the tail page
2374 		 * and write to the next page. That is fine
2375 		 * because we just shorten what is on this page.
2376 		 */
2377 		old_index += write_mask;
2378 		new_index += write_mask;
2379 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2380 		if (index == old_index) {
2381 			/* update counters */
2382 			local_sub(event_length, &cpu_buffer->entries_bytes);
2383 			return 1;
2384 		}
2385 	}
2386 
2387 	/* could not discard */
2388 	return 0;
2389 }
2390 
2391 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2392 {
2393 	local_inc(&cpu_buffer->committing);
2394 	local_inc(&cpu_buffer->commits);
2395 }
2396 
2397 static void
2398 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2399 {
2400 	unsigned long max_count;
2401 
2402 	/*
2403 	 * We only race with interrupts and NMIs on this CPU.
2404 	 * If we own the commit event, then we can commit
2405 	 * all others that interrupted us, since the interruptions
2406 	 * are in stack format (they finish before they come
2407 	 * back to us). This allows us to do a simple loop to
2408 	 * assign the commit to the tail.
2409 	 */
2410  again:
2411 	max_count = cpu_buffer->nr_pages * 100;
2412 
2413 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2414 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2415 			return;
2416 		if (RB_WARN_ON(cpu_buffer,
2417 			       rb_is_reader_page(cpu_buffer->tail_page)))
2418 			return;
2419 		local_set(&cpu_buffer->commit_page->page->commit,
2420 			  rb_page_write(cpu_buffer->commit_page));
2421 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2422 		cpu_buffer->write_stamp =
2423 			cpu_buffer->commit_page->page->time_stamp;
2424 		/* add barrier to keep gcc from optimizing too much */
2425 		barrier();
2426 	}
2427 	while (rb_commit_index(cpu_buffer) !=
2428 	       rb_page_write(cpu_buffer->commit_page)) {
2429 
2430 		local_set(&cpu_buffer->commit_page->page->commit,
2431 			  rb_page_write(cpu_buffer->commit_page));
2432 		RB_WARN_ON(cpu_buffer,
2433 			   local_read(&cpu_buffer->commit_page->page->commit) &
2434 			   ~RB_WRITE_MASK);
2435 		barrier();
2436 	}
2437 
2438 	/* again, keep gcc from optimizing */
2439 	barrier();
2440 
2441 	/*
2442 	 * If an interrupt came in just after the first while loop
2443 	 * and pushed the tail page forward, we will be left with
2444 	 * a dangling commit that will never go forward.
2445 	 */
2446 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2447 		goto again;
2448 }
2449 
2450 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2451 {
2452 	unsigned long commits;
2453 
2454 	if (RB_WARN_ON(cpu_buffer,
2455 		       !local_read(&cpu_buffer->committing)))
2456 		return;
2457 
2458  again:
2459 	commits = local_read(&cpu_buffer->commits);
2460 	/* synchronize with interrupts */
2461 	barrier();
2462 	if (local_read(&cpu_buffer->committing) == 1)
2463 		rb_set_commit_to_write(cpu_buffer);
2464 
2465 	local_dec(&cpu_buffer->committing);
2466 
2467 	/* synchronize with interrupts */
2468 	barrier();
2469 
2470 	/*
2471 	 * Need to account for interrupts coming in between the
2472 	 * updating of the commit page and the clearing of the
2473 	 * committing counter.
2474 	 */
2475 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2476 	    !local_read(&cpu_buffer->committing)) {
2477 		local_inc(&cpu_buffer->committing);
2478 		goto again;
2479 	}
2480 }
2481 
2482 static inline void rb_event_discard(struct ring_buffer_event *event)
2483 {
2484 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2485 		event = skip_time_extend(event);
2486 
2487 	/* array[0] holds the actual length for the discarded event */
2488 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2489 	event->type_len = RINGBUF_TYPE_PADDING;
2490 	/* time delta must be non zero */
2491 	if (!event->time_delta)
2492 		event->time_delta = 1;
2493 }
2494 
2495 static inline bool
2496 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2497 		   struct ring_buffer_event *event)
2498 {
2499 	unsigned long addr = (unsigned long)event;
2500 	unsigned long index;
2501 
2502 	index = rb_event_index(event);
2503 	addr &= PAGE_MASK;
2504 
2505 	return cpu_buffer->commit_page->page == (void *)addr &&
2506 		rb_commit_index(cpu_buffer) == index;
2507 }
2508 
2509 static void
2510 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2511 		      struct ring_buffer_event *event)
2512 {
2513 	u64 delta;
2514 
2515 	/*
2516 	 * The event first in the commit queue updates the
2517 	 * time stamp.
2518 	 */
2519 	if (rb_event_is_commit(cpu_buffer, event)) {
2520 		/*
2521 		 * A commit event that is first on a page
2522 		 * updates the write timestamp with the page stamp
2523 		 */
2524 		if (!rb_event_index(event))
2525 			cpu_buffer->write_stamp =
2526 				cpu_buffer->commit_page->page->time_stamp;
2527 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2528 			delta = event->array[0];
2529 			delta <<= TS_SHIFT;
2530 			delta += event->time_delta;
2531 			cpu_buffer->write_stamp += delta;
2532 		} else
2533 			cpu_buffer->write_stamp += event->time_delta;
2534 	}
2535 }
2536 
2537 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2538 		      struct ring_buffer_event *event)
2539 {
2540 	local_inc(&cpu_buffer->entries);
2541 	rb_update_write_stamp(cpu_buffer, event);
2542 	rb_end_commit(cpu_buffer);
2543 }
2544 
2545 static __always_inline void
2546 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2547 {
2548 	bool pagebusy;
2549 
2550 	if (buffer->irq_work.waiters_pending) {
2551 		buffer->irq_work.waiters_pending = false;
2552 		/* irq_work_queue() supplies it's own memory barriers */
2553 		irq_work_queue(&buffer->irq_work.work);
2554 	}
2555 
2556 	if (cpu_buffer->irq_work.waiters_pending) {
2557 		cpu_buffer->irq_work.waiters_pending = false;
2558 		/* irq_work_queue() supplies it's own memory barriers */
2559 		irq_work_queue(&cpu_buffer->irq_work.work);
2560 	}
2561 
2562 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2563 
2564 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2565 		cpu_buffer->irq_work.wakeup_full = true;
2566 		cpu_buffer->irq_work.full_waiters_pending = false;
2567 		/* irq_work_queue() supplies it's own memory barriers */
2568 		irq_work_queue(&cpu_buffer->irq_work.work);
2569 	}
2570 }
2571 
2572 /*
2573  * The lock and unlock are done within a preempt disable section.
2574  * The current_context per_cpu variable can only be modified
2575  * by the current task between lock and unlock. But it can
2576  * be modified more than once via an interrupt. To pass this
2577  * information from the lock to the unlock without having to
2578  * access the 'in_interrupt()' functions again (which do show
2579  * a bit of overhead in something as critical as function tracing,
2580  * we use a bitmask trick.
2581  *
2582  *  bit 0 =  NMI context
2583  *  bit 1 =  IRQ context
2584  *  bit 2 =  SoftIRQ context
2585  *  bit 3 =  normal context.
2586  *
2587  * This works because this is the order of contexts that can
2588  * preempt other contexts. A SoftIRQ never preempts an IRQ
2589  * context.
2590  *
2591  * When the context is determined, the corresponding bit is
2592  * checked and set (if it was set, then a recursion of that context
2593  * happened).
2594  *
2595  * On unlock, we need to clear this bit. To do so, just subtract
2596  * 1 from the current_context and AND it to itself.
2597  *
2598  * (binary)
2599  *  101 - 1 = 100
2600  *  101 & 100 = 100 (clearing bit zero)
2601  *
2602  *  1010 - 1 = 1001
2603  *  1010 & 1001 = 1000 (clearing bit 1)
2604  *
2605  * The least significant bit can be cleared this way, and it
2606  * just so happens that it is the same bit corresponding to
2607  * the current context.
2608  */
2609 
2610 static __always_inline int
2611 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2612 {
2613 	unsigned int val = cpu_buffer->current_context;
2614 	int bit;
2615 
2616 	if (in_interrupt()) {
2617 		if (in_nmi())
2618 			bit = RB_CTX_NMI;
2619 		else if (in_irq())
2620 			bit = RB_CTX_IRQ;
2621 		else
2622 			bit = RB_CTX_SOFTIRQ;
2623 	} else
2624 		bit = RB_CTX_NORMAL;
2625 
2626 	if (unlikely(val & (1 << bit)))
2627 		return 1;
2628 
2629 	val |= (1 << bit);
2630 	cpu_buffer->current_context = val;
2631 
2632 	return 0;
2633 }
2634 
2635 static __always_inline void
2636 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2637 {
2638 	cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2639 }
2640 
2641 /**
2642  * ring_buffer_unlock_commit - commit a reserved
2643  * @buffer: The buffer to commit to
2644  * @event: The event pointer to commit.
2645  *
2646  * This commits the data to the ring buffer, and releases any locks held.
2647  *
2648  * Must be paired with ring_buffer_lock_reserve.
2649  */
2650 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2651 			      struct ring_buffer_event *event)
2652 {
2653 	struct ring_buffer_per_cpu *cpu_buffer;
2654 	int cpu = raw_smp_processor_id();
2655 
2656 	cpu_buffer = buffer->buffers[cpu];
2657 
2658 	rb_commit(cpu_buffer, event);
2659 
2660 	rb_wakeups(buffer, cpu_buffer);
2661 
2662 	trace_recursive_unlock(cpu_buffer);
2663 
2664 	preempt_enable_notrace();
2665 
2666 	return 0;
2667 }
2668 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2669 
2670 static noinline void
2671 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2672 		    struct rb_event_info *info)
2673 {
2674 	WARN_ONCE(info->delta > (1ULL << 59),
2675 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2676 		  (unsigned long long)info->delta,
2677 		  (unsigned long long)info->ts,
2678 		  (unsigned long long)cpu_buffer->write_stamp,
2679 		  sched_clock_stable() ? "" :
2680 		  "If you just came from a suspend/resume,\n"
2681 		  "please switch to the trace global clock:\n"
2682 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2683 	info->add_timestamp = 1;
2684 }
2685 
2686 static struct ring_buffer_event *
2687 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2688 		  struct rb_event_info *info)
2689 {
2690 	struct ring_buffer_event *event;
2691 	struct buffer_page *tail_page;
2692 	unsigned long tail, write;
2693 
2694 	/*
2695 	 * If the time delta since the last event is too big to
2696 	 * hold in the time field of the event, then we append a
2697 	 * TIME EXTEND event ahead of the data event.
2698 	 */
2699 	if (unlikely(info->add_timestamp))
2700 		info->length += RB_LEN_TIME_EXTEND;
2701 
2702 	tail_page = info->tail_page = cpu_buffer->tail_page;
2703 	write = local_add_return(info->length, &tail_page->write);
2704 
2705 	/* set write to only the index of the write */
2706 	write &= RB_WRITE_MASK;
2707 	tail = write - info->length;
2708 
2709 	/*
2710 	 * If this is the first commit on the page, then it has the same
2711 	 * timestamp as the page itself.
2712 	 */
2713 	if (!tail)
2714 		info->delta = 0;
2715 
2716 	/* See if we shot pass the end of this buffer page */
2717 	if (unlikely(write > BUF_PAGE_SIZE))
2718 		return rb_move_tail(cpu_buffer, tail, info);
2719 
2720 	/* We reserved something on the buffer */
2721 
2722 	event = __rb_page_index(tail_page, tail);
2723 	kmemcheck_annotate_bitfield(event, bitfield);
2724 	rb_update_event(cpu_buffer, event, info);
2725 
2726 	local_inc(&tail_page->entries);
2727 
2728 	/*
2729 	 * If this is the first commit on the page, then update
2730 	 * its timestamp.
2731 	 */
2732 	if (!tail)
2733 		tail_page->page->time_stamp = info->ts;
2734 
2735 	/* account for these added bytes */
2736 	local_add(info->length, &cpu_buffer->entries_bytes);
2737 
2738 	return event;
2739 }
2740 
2741 static struct ring_buffer_event *
2742 rb_reserve_next_event(struct ring_buffer *buffer,
2743 		      struct ring_buffer_per_cpu *cpu_buffer,
2744 		      unsigned long length)
2745 {
2746 	struct ring_buffer_event *event;
2747 	struct rb_event_info info;
2748 	int nr_loops = 0;
2749 	u64 diff;
2750 
2751 	rb_start_commit(cpu_buffer);
2752 
2753 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2754 	/*
2755 	 * Due to the ability to swap a cpu buffer from a buffer
2756 	 * it is possible it was swapped before we committed.
2757 	 * (committing stops a swap). We check for it here and
2758 	 * if it happened, we have to fail the write.
2759 	 */
2760 	barrier();
2761 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2762 		local_dec(&cpu_buffer->committing);
2763 		local_dec(&cpu_buffer->commits);
2764 		return NULL;
2765 	}
2766 #endif
2767 
2768 	info.length = rb_calculate_event_length(length);
2769  again:
2770 	info.add_timestamp = 0;
2771 	info.delta = 0;
2772 
2773 	/*
2774 	 * We allow for interrupts to reenter here and do a trace.
2775 	 * If one does, it will cause this original code to loop
2776 	 * back here. Even with heavy interrupts happening, this
2777 	 * should only happen a few times in a row. If this happens
2778 	 * 1000 times in a row, there must be either an interrupt
2779 	 * storm or we have something buggy.
2780 	 * Bail!
2781 	 */
2782 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2783 		goto out_fail;
2784 
2785 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2786 	diff = info.ts - cpu_buffer->write_stamp;
2787 
2788 	/* make sure this diff is calculated here */
2789 	barrier();
2790 
2791 	/* Did the write stamp get updated already? */
2792 	if (likely(info.ts >= cpu_buffer->write_stamp)) {
2793 		info.delta = diff;
2794 		if (unlikely(test_time_stamp(info.delta)))
2795 			rb_handle_timestamp(cpu_buffer, &info);
2796 	}
2797 
2798 	event = __rb_reserve_next(cpu_buffer, &info);
2799 
2800 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2801 		if (info.add_timestamp)
2802 			info.length -= RB_LEN_TIME_EXTEND;
2803 		goto again;
2804 	}
2805 
2806 	if (!event)
2807 		goto out_fail;
2808 
2809 	return event;
2810 
2811  out_fail:
2812 	rb_end_commit(cpu_buffer);
2813 	return NULL;
2814 }
2815 
2816 /**
2817  * ring_buffer_lock_reserve - reserve a part of the buffer
2818  * @buffer: the ring buffer to reserve from
2819  * @length: the length of the data to reserve (excluding event header)
2820  *
2821  * Returns a reseverd event on the ring buffer to copy directly to.
2822  * The user of this interface will need to get the body to write into
2823  * and can use the ring_buffer_event_data() interface.
2824  *
2825  * The length is the length of the data needed, not the event length
2826  * which also includes the event header.
2827  *
2828  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2829  * If NULL is returned, then nothing has been allocated or locked.
2830  */
2831 struct ring_buffer_event *
2832 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2833 {
2834 	struct ring_buffer_per_cpu *cpu_buffer;
2835 	struct ring_buffer_event *event;
2836 	int cpu;
2837 
2838 	/* If we are tracing schedule, we don't want to recurse */
2839 	preempt_disable_notrace();
2840 
2841 	if (unlikely(atomic_read(&buffer->record_disabled)))
2842 		goto out;
2843 
2844 	cpu = raw_smp_processor_id();
2845 
2846 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2847 		goto out;
2848 
2849 	cpu_buffer = buffer->buffers[cpu];
2850 
2851 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2852 		goto out;
2853 
2854 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2855 		goto out;
2856 
2857 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2858 		goto out;
2859 
2860 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2861 	if (!event)
2862 		goto out_unlock;
2863 
2864 	return event;
2865 
2866  out_unlock:
2867 	trace_recursive_unlock(cpu_buffer);
2868  out:
2869 	preempt_enable_notrace();
2870 	return NULL;
2871 }
2872 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2873 
2874 /*
2875  * Decrement the entries to the page that an event is on.
2876  * The event does not even need to exist, only the pointer
2877  * to the page it is on. This may only be called before the commit
2878  * takes place.
2879  */
2880 static inline void
2881 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2882 		   struct ring_buffer_event *event)
2883 {
2884 	unsigned long addr = (unsigned long)event;
2885 	struct buffer_page *bpage = cpu_buffer->commit_page;
2886 	struct buffer_page *start;
2887 
2888 	addr &= PAGE_MASK;
2889 
2890 	/* Do the likely case first */
2891 	if (likely(bpage->page == (void *)addr)) {
2892 		local_dec(&bpage->entries);
2893 		return;
2894 	}
2895 
2896 	/*
2897 	 * Because the commit page may be on the reader page we
2898 	 * start with the next page and check the end loop there.
2899 	 */
2900 	rb_inc_page(cpu_buffer, &bpage);
2901 	start = bpage;
2902 	do {
2903 		if (bpage->page == (void *)addr) {
2904 			local_dec(&bpage->entries);
2905 			return;
2906 		}
2907 		rb_inc_page(cpu_buffer, &bpage);
2908 	} while (bpage != start);
2909 
2910 	/* commit not part of this buffer?? */
2911 	RB_WARN_ON(cpu_buffer, 1);
2912 }
2913 
2914 /**
2915  * ring_buffer_commit_discard - discard an event that has not been committed
2916  * @buffer: the ring buffer
2917  * @event: non committed event to discard
2918  *
2919  * Sometimes an event that is in the ring buffer needs to be ignored.
2920  * This function lets the user discard an event in the ring buffer
2921  * and then that event will not be read later.
2922  *
2923  * This function only works if it is called before the the item has been
2924  * committed. It will try to free the event from the ring buffer
2925  * if another event has not been added behind it.
2926  *
2927  * If another event has been added behind it, it will set the event
2928  * up as discarded, and perform the commit.
2929  *
2930  * If this function is called, do not call ring_buffer_unlock_commit on
2931  * the event.
2932  */
2933 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2934 				struct ring_buffer_event *event)
2935 {
2936 	struct ring_buffer_per_cpu *cpu_buffer;
2937 	int cpu;
2938 
2939 	/* The event is discarded regardless */
2940 	rb_event_discard(event);
2941 
2942 	cpu = smp_processor_id();
2943 	cpu_buffer = buffer->buffers[cpu];
2944 
2945 	/*
2946 	 * This must only be called if the event has not been
2947 	 * committed yet. Thus we can assume that preemption
2948 	 * is still disabled.
2949 	 */
2950 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2951 
2952 	rb_decrement_entry(cpu_buffer, event);
2953 	if (rb_try_to_discard(cpu_buffer, event))
2954 		goto out;
2955 
2956 	/*
2957 	 * The commit is still visible by the reader, so we
2958 	 * must still update the timestamp.
2959 	 */
2960 	rb_update_write_stamp(cpu_buffer, event);
2961  out:
2962 	rb_end_commit(cpu_buffer);
2963 
2964 	trace_recursive_unlock(cpu_buffer);
2965 
2966 	preempt_enable_notrace();
2967 
2968 }
2969 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2970 
2971 /**
2972  * ring_buffer_write - write data to the buffer without reserving
2973  * @buffer: The ring buffer to write to.
2974  * @length: The length of the data being written (excluding the event header)
2975  * @data: The data to write to the buffer.
2976  *
2977  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2978  * one function. If you already have the data to write to the buffer, it
2979  * may be easier to simply call this function.
2980  *
2981  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2982  * and not the length of the event which would hold the header.
2983  */
2984 int ring_buffer_write(struct ring_buffer *buffer,
2985 		      unsigned long length,
2986 		      void *data)
2987 {
2988 	struct ring_buffer_per_cpu *cpu_buffer;
2989 	struct ring_buffer_event *event;
2990 	void *body;
2991 	int ret = -EBUSY;
2992 	int cpu;
2993 
2994 	preempt_disable_notrace();
2995 
2996 	if (atomic_read(&buffer->record_disabled))
2997 		goto out;
2998 
2999 	cpu = raw_smp_processor_id();
3000 
3001 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3002 		goto out;
3003 
3004 	cpu_buffer = buffer->buffers[cpu];
3005 
3006 	if (atomic_read(&cpu_buffer->record_disabled))
3007 		goto out;
3008 
3009 	if (length > BUF_MAX_DATA_SIZE)
3010 		goto out;
3011 
3012 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3013 		goto out;
3014 
3015 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3016 	if (!event)
3017 		goto out_unlock;
3018 
3019 	body = rb_event_data(event);
3020 
3021 	memcpy(body, data, length);
3022 
3023 	rb_commit(cpu_buffer, event);
3024 
3025 	rb_wakeups(buffer, cpu_buffer);
3026 
3027 	ret = 0;
3028 
3029  out_unlock:
3030 	trace_recursive_unlock(cpu_buffer);
3031 
3032  out:
3033 	preempt_enable_notrace();
3034 
3035 	return ret;
3036 }
3037 EXPORT_SYMBOL_GPL(ring_buffer_write);
3038 
3039 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3040 {
3041 	struct buffer_page *reader = cpu_buffer->reader_page;
3042 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3043 	struct buffer_page *commit = cpu_buffer->commit_page;
3044 
3045 	/* In case of error, head will be NULL */
3046 	if (unlikely(!head))
3047 		return true;
3048 
3049 	return reader->read == rb_page_commit(reader) &&
3050 		(commit == reader ||
3051 		 (commit == head &&
3052 		  head->read == rb_page_commit(commit)));
3053 }
3054 
3055 /**
3056  * ring_buffer_record_disable - stop all writes into the buffer
3057  * @buffer: The ring buffer to stop writes to.
3058  *
3059  * This prevents all writes to the buffer. Any attempt to write
3060  * to the buffer after this will fail and return NULL.
3061  *
3062  * The caller should call synchronize_sched() after this.
3063  */
3064 void ring_buffer_record_disable(struct ring_buffer *buffer)
3065 {
3066 	atomic_inc(&buffer->record_disabled);
3067 }
3068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3069 
3070 /**
3071  * ring_buffer_record_enable - enable writes to the buffer
3072  * @buffer: The ring buffer to enable writes
3073  *
3074  * Note, multiple disables will need the same number of enables
3075  * to truly enable the writing (much like preempt_disable).
3076  */
3077 void ring_buffer_record_enable(struct ring_buffer *buffer)
3078 {
3079 	atomic_dec(&buffer->record_disabled);
3080 }
3081 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3082 
3083 /**
3084  * ring_buffer_record_off - stop all writes into the buffer
3085  * @buffer: The ring buffer to stop writes to.
3086  *
3087  * This prevents all writes to the buffer. Any attempt to write
3088  * to the buffer after this will fail and return NULL.
3089  *
3090  * This is different than ring_buffer_record_disable() as
3091  * it works like an on/off switch, where as the disable() version
3092  * must be paired with a enable().
3093  */
3094 void ring_buffer_record_off(struct ring_buffer *buffer)
3095 {
3096 	unsigned int rd;
3097 	unsigned int new_rd;
3098 
3099 	do {
3100 		rd = atomic_read(&buffer->record_disabled);
3101 		new_rd = rd | RB_BUFFER_OFF;
3102 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3103 }
3104 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3105 
3106 /**
3107  * ring_buffer_record_on - restart writes into the buffer
3108  * @buffer: The ring buffer to start writes to.
3109  *
3110  * This enables all writes to the buffer that was disabled by
3111  * ring_buffer_record_off().
3112  *
3113  * This is different than ring_buffer_record_enable() as
3114  * it works like an on/off switch, where as the enable() version
3115  * must be paired with a disable().
3116  */
3117 void ring_buffer_record_on(struct ring_buffer *buffer)
3118 {
3119 	unsigned int rd;
3120 	unsigned int new_rd;
3121 
3122 	do {
3123 		rd = atomic_read(&buffer->record_disabled);
3124 		new_rd = rd & ~RB_BUFFER_OFF;
3125 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3126 }
3127 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3128 
3129 /**
3130  * ring_buffer_record_is_on - return true if the ring buffer can write
3131  * @buffer: The ring buffer to see if write is enabled
3132  *
3133  * Returns true if the ring buffer is in a state that it accepts writes.
3134  */
3135 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3136 {
3137 	return !atomic_read(&buffer->record_disabled);
3138 }
3139 
3140 /**
3141  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3142  * @buffer: The ring buffer to stop writes to.
3143  * @cpu: The CPU buffer to stop
3144  *
3145  * This prevents all writes to the buffer. Any attempt to write
3146  * to the buffer after this will fail and return NULL.
3147  *
3148  * The caller should call synchronize_sched() after this.
3149  */
3150 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3151 {
3152 	struct ring_buffer_per_cpu *cpu_buffer;
3153 
3154 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3155 		return;
3156 
3157 	cpu_buffer = buffer->buffers[cpu];
3158 	atomic_inc(&cpu_buffer->record_disabled);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3161 
3162 /**
3163  * ring_buffer_record_enable_cpu - enable writes to the buffer
3164  * @buffer: The ring buffer to enable writes
3165  * @cpu: The CPU to enable.
3166  *
3167  * Note, multiple disables will need the same number of enables
3168  * to truly enable the writing (much like preempt_disable).
3169  */
3170 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3171 {
3172 	struct ring_buffer_per_cpu *cpu_buffer;
3173 
3174 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3175 		return;
3176 
3177 	cpu_buffer = buffer->buffers[cpu];
3178 	atomic_dec(&cpu_buffer->record_disabled);
3179 }
3180 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3181 
3182 /*
3183  * The total entries in the ring buffer is the running counter
3184  * of entries entered into the ring buffer, minus the sum of
3185  * the entries read from the ring buffer and the number of
3186  * entries that were overwritten.
3187  */
3188 static inline unsigned long
3189 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3190 {
3191 	return local_read(&cpu_buffer->entries) -
3192 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3193 }
3194 
3195 /**
3196  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3197  * @buffer: The ring buffer
3198  * @cpu: The per CPU buffer to read from.
3199  */
3200 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3201 {
3202 	unsigned long flags;
3203 	struct ring_buffer_per_cpu *cpu_buffer;
3204 	struct buffer_page *bpage;
3205 	u64 ret = 0;
3206 
3207 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3208 		return 0;
3209 
3210 	cpu_buffer = buffer->buffers[cpu];
3211 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3212 	/*
3213 	 * if the tail is on reader_page, oldest time stamp is on the reader
3214 	 * page
3215 	 */
3216 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3217 		bpage = cpu_buffer->reader_page;
3218 	else
3219 		bpage = rb_set_head_page(cpu_buffer);
3220 	if (bpage)
3221 		ret = bpage->page->time_stamp;
3222 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3223 
3224 	return ret;
3225 }
3226 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3227 
3228 /**
3229  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3230  * @buffer: The ring buffer
3231  * @cpu: The per CPU buffer to read from.
3232  */
3233 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3234 {
3235 	struct ring_buffer_per_cpu *cpu_buffer;
3236 	unsigned long ret;
3237 
3238 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239 		return 0;
3240 
3241 	cpu_buffer = buffer->buffers[cpu];
3242 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3243 
3244 	return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3247 
3248 /**
3249  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to get the entries from.
3252  */
3253 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255 	struct ring_buffer_per_cpu *cpu_buffer;
3256 
3257 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3258 		return 0;
3259 
3260 	cpu_buffer = buffer->buffers[cpu];
3261 
3262 	return rb_num_of_entries(cpu_buffer);
3263 }
3264 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3265 
3266 /**
3267  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3268  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3269  * @buffer: The ring buffer
3270  * @cpu: The per CPU buffer to get the number of overruns from
3271  */
3272 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3273 {
3274 	struct ring_buffer_per_cpu *cpu_buffer;
3275 	unsigned long ret;
3276 
3277 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278 		return 0;
3279 
3280 	cpu_buffer = buffer->buffers[cpu];
3281 	ret = local_read(&cpu_buffer->overrun);
3282 
3283 	return ret;
3284 }
3285 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3286 
3287 /**
3288  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3289  * commits failing due to the buffer wrapping around while there are uncommitted
3290  * events, such as during an interrupt storm.
3291  * @buffer: The ring buffer
3292  * @cpu: The per CPU buffer to get the number of overruns from
3293  */
3294 unsigned long
3295 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3296 {
3297 	struct ring_buffer_per_cpu *cpu_buffer;
3298 	unsigned long ret;
3299 
3300 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301 		return 0;
3302 
3303 	cpu_buffer = buffer->buffers[cpu];
3304 	ret = local_read(&cpu_buffer->commit_overrun);
3305 
3306 	return ret;
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3309 
3310 /**
3311  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3312  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3313  * @buffer: The ring buffer
3314  * @cpu: The per CPU buffer to get the number of overruns from
3315  */
3316 unsigned long
3317 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3318 {
3319 	struct ring_buffer_per_cpu *cpu_buffer;
3320 	unsigned long ret;
3321 
3322 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3323 		return 0;
3324 
3325 	cpu_buffer = buffer->buffers[cpu];
3326 	ret = local_read(&cpu_buffer->dropped_events);
3327 
3328 	return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3331 
3332 /**
3333  * ring_buffer_read_events_cpu - get the number of events successfully read
3334  * @buffer: The ring buffer
3335  * @cpu: The per CPU buffer to get the number of events read
3336  */
3337 unsigned long
3338 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3339 {
3340 	struct ring_buffer_per_cpu *cpu_buffer;
3341 
3342 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3343 		return 0;
3344 
3345 	cpu_buffer = buffer->buffers[cpu];
3346 	return cpu_buffer->read;
3347 }
3348 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3349 
3350 /**
3351  * ring_buffer_entries - get the number of entries in a buffer
3352  * @buffer: The ring buffer
3353  *
3354  * Returns the total number of entries in the ring buffer
3355  * (all CPU entries)
3356  */
3357 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3358 {
3359 	struct ring_buffer_per_cpu *cpu_buffer;
3360 	unsigned long entries = 0;
3361 	int cpu;
3362 
3363 	/* if you care about this being correct, lock the buffer */
3364 	for_each_buffer_cpu(buffer, cpu) {
3365 		cpu_buffer = buffer->buffers[cpu];
3366 		entries += rb_num_of_entries(cpu_buffer);
3367 	}
3368 
3369 	return entries;
3370 }
3371 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3372 
3373 /**
3374  * ring_buffer_overruns - get the number of overruns in buffer
3375  * @buffer: The ring buffer
3376  *
3377  * Returns the total number of overruns in the ring buffer
3378  * (all CPU entries)
3379  */
3380 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3381 {
3382 	struct ring_buffer_per_cpu *cpu_buffer;
3383 	unsigned long overruns = 0;
3384 	int cpu;
3385 
3386 	/* if you care about this being correct, lock the buffer */
3387 	for_each_buffer_cpu(buffer, cpu) {
3388 		cpu_buffer = buffer->buffers[cpu];
3389 		overruns += local_read(&cpu_buffer->overrun);
3390 	}
3391 
3392 	return overruns;
3393 }
3394 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3395 
3396 static void rb_iter_reset(struct ring_buffer_iter *iter)
3397 {
3398 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3399 
3400 	/* Iterator usage is expected to have record disabled */
3401 	iter->head_page = cpu_buffer->reader_page;
3402 	iter->head = cpu_buffer->reader_page->read;
3403 
3404 	iter->cache_reader_page = iter->head_page;
3405 	iter->cache_read = cpu_buffer->read;
3406 
3407 	if (iter->head)
3408 		iter->read_stamp = cpu_buffer->read_stamp;
3409 	else
3410 		iter->read_stamp = iter->head_page->page->time_stamp;
3411 }
3412 
3413 /**
3414  * ring_buffer_iter_reset - reset an iterator
3415  * @iter: The iterator to reset
3416  *
3417  * Resets the iterator, so that it will start from the beginning
3418  * again.
3419  */
3420 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3421 {
3422 	struct ring_buffer_per_cpu *cpu_buffer;
3423 	unsigned long flags;
3424 
3425 	if (!iter)
3426 		return;
3427 
3428 	cpu_buffer = iter->cpu_buffer;
3429 
3430 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3431 	rb_iter_reset(iter);
3432 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3433 }
3434 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3435 
3436 /**
3437  * ring_buffer_iter_empty - check if an iterator has no more to read
3438  * @iter: The iterator to check
3439  */
3440 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3441 {
3442 	struct ring_buffer_per_cpu *cpu_buffer;
3443 
3444 	cpu_buffer = iter->cpu_buffer;
3445 
3446 	return iter->head_page == cpu_buffer->commit_page &&
3447 		iter->head == rb_commit_index(cpu_buffer);
3448 }
3449 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3450 
3451 static void
3452 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3453 		     struct ring_buffer_event *event)
3454 {
3455 	u64 delta;
3456 
3457 	switch (event->type_len) {
3458 	case RINGBUF_TYPE_PADDING:
3459 		return;
3460 
3461 	case RINGBUF_TYPE_TIME_EXTEND:
3462 		delta = event->array[0];
3463 		delta <<= TS_SHIFT;
3464 		delta += event->time_delta;
3465 		cpu_buffer->read_stamp += delta;
3466 		return;
3467 
3468 	case RINGBUF_TYPE_TIME_STAMP:
3469 		/* FIXME: not implemented */
3470 		return;
3471 
3472 	case RINGBUF_TYPE_DATA:
3473 		cpu_buffer->read_stamp += event->time_delta;
3474 		return;
3475 
3476 	default:
3477 		BUG();
3478 	}
3479 	return;
3480 }
3481 
3482 static void
3483 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3484 			  struct ring_buffer_event *event)
3485 {
3486 	u64 delta;
3487 
3488 	switch (event->type_len) {
3489 	case RINGBUF_TYPE_PADDING:
3490 		return;
3491 
3492 	case RINGBUF_TYPE_TIME_EXTEND:
3493 		delta = event->array[0];
3494 		delta <<= TS_SHIFT;
3495 		delta += event->time_delta;
3496 		iter->read_stamp += delta;
3497 		return;
3498 
3499 	case RINGBUF_TYPE_TIME_STAMP:
3500 		/* FIXME: not implemented */
3501 		return;
3502 
3503 	case RINGBUF_TYPE_DATA:
3504 		iter->read_stamp += event->time_delta;
3505 		return;
3506 
3507 	default:
3508 		BUG();
3509 	}
3510 	return;
3511 }
3512 
3513 static struct buffer_page *
3514 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3515 {
3516 	struct buffer_page *reader = NULL;
3517 	unsigned long overwrite;
3518 	unsigned long flags;
3519 	int nr_loops = 0;
3520 	int ret;
3521 
3522 	local_irq_save(flags);
3523 	arch_spin_lock(&cpu_buffer->lock);
3524 
3525  again:
3526 	/*
3527 	 * This should normally only loop twice. But because the
3528 	 * start of the reader inserts an empty page, it causes
3529 	 * a case where we will loop three times. There should be no
3530 	 * reason to loop four times (that I know of).
3531 	 */
3532 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3533 		reader = NULL;
3534 		goto out;
3535 	}
3536 
3537 	reader = cpu_buffer->reader_page;
3538 
3539 	/* If there's more to read, return this page */
3540 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3541 		goto out;
3542 
3543 	/* Never should we have an index greater than the size */
3544 	if (RB_WARN_ON(cpu_buffer,
3545 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3546 		goto out;
3547 
3548 	/* check if we caught up to the tail */
3549 	reader = NULL;
3550 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3551 		goto out;
3552 
3553 	/* Don't bother swapping if the ring buffer is empty */
3554 	if (rb_num_of_entries(cpu_buffer) == 0)
3555 		goto out;
3556 
3557 	/*
3558 	 * Reset the reader page to size zero.
3559 	 */
3560 	local_set(&cpu_buffer->reader_page->write, 0);
3561 	local_set(&cpu_buffer->reader_page->entries, 0);
3562 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3563 	cpu_buffer->reader_page->real_end = 0;
3564 
3565  spin:
3566 	/*
3567 	 * Splice the empty reader page into the list around the head.
3568 	 */
3569 	reader = rb_set_head_page(cpu_buffer);
3570 	if (!reader)
3571 		goto out;
3572 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3573 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3574 
3575 	/*
3576 	 * cpu_buffer->pages just needs to point to the buffer, it
3577 	 *  has no specific buffer page to point to. Lets move it out
3578 	 *  of our way so we don't accidentally swap it.
3579 	 */
3580 	cpu_buffer->pages = reader->list.prev;
3581 
3582 	/* The reader page will be pointing to the new head */
3583 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3584 
3585 	/*
3586 	 * We want to make sure we read the overruns after we set up our
3587 	 * pointers to the next object. The writer side does a
3588 	 * cmpxchg to cross pages which acts as the mb on the writer
3589 	 * side. Note, the reader will constantly fail the swap
3590 	 * while the writer is updating the pointers, so this
3591 	 * guarantees that the overwrite recorded here is the one we
3592 	 * want to compare with the last_overrun.
3593 	 */
3594 	smp_mb();
3595 	overwrite = local_read(&(cpu_buffer->overrun));
3596 
3597 	/*
3598 	 * Here's the tricky part.
3599 	 *
3600 	 * We need to move the pointer past the header page.
3601 	 * But we can only do that if a writer is not currently
3602 	 * moving it. The page before the header page has the
3603 	 * flag bit '1' set if it is pointing to the page we want.
3604 	 * but if the writer is in the process of moving it
3605 	 * than it will be '2' or already moved '0'.
3606 	 */
3607 
3608 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3609 
3610 	/*
3611 	 * If we did not convert it, then we must try again.
3612 	 */
3613 	if (!ret)
3614 		goto spin;
3615 
3616 	/*
3617 	 * Yeah! We succeeded in replacing the page.
3618 	 *
3619 	 * Now make the new head point back to the reader page.
3620 	 */
3621 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3622 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3623 
3624 	/* Finally update the reader page to the new head */
3625 	cpu_buffer->reader_page = reader;
3626 	cpu_buffer->reader_page->read = 0;
3627 
3628 	if (overwrite != cpu_buffer->last_overrun) {
3629 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3630 		cpu_buffer->last_overrun = overwrite;
3631 	}
3632 
3633 	goto again;
3634 
3635  out:
3636 	/* Update the read_stamp on the first event */
3637 	if (reader && reader->read == 0)
3638 		cpu_buffer->read_stamp = reader->page->time_stamp;
3639 
3640 	arch_spin_unlock(&cpu_buffer->lock);
3641 	local_irq_restore(flags);
3642 
3643 	return reader;
3644 }
3645 
3646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3647 {
3648 	struct ring_buffer_event *event;
3649 	struct buffer_page *reader;
3650 	unsigned length;
3651 
3652 	reader = rb_get_reader_page(cpu_buffer);
3653 
3654 	/* This function should not be called when buffer is empty */
3655 	if (RB_WARN_ON(cpu_buffer, !reader))
3656 		return;
3657 
3658 	event = rb_reader_event(cpu_buffer);
3659 
3660 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3661 		cpu_buffer->read++;
3662 
3663 	rb_update_read_stamp(cpu_buffer, event);
3664 
3665 	length = rb_event_length(event);
3666 	cpu_buffer->reader_page->read += length;
3667 }
3668 
3669 static void rb_advance_iter(struct ring_buffer_iter *iter)
3670 {
3671 	struct ring_buffer_per_cpu *cpu_buffer;
3672 	struct ring_buffer_event *event;
3673 	unsigned length;
3674 
3675 	cpu_buffer = iter->cpu_buffer;
3676 
3677 	/*
3678 	 * Check if we are at the end of the buffer.
3679 	 */
3680 	if (iter->head >= rb_page_size(iter->head_page)) {
3681 		/* discarded commits can make the page empty */
3682 		if (iter->head_page == cpu_buffer->commit_page)
3683 			return;
3684 		rb_inc_iter(iter);
3685 		return;
3686 	}
3687 
3688 	event = rb_iter_head_event(iter);
3689 
3690 	length = rb_event_length(event);
3691 
3692 	/*
3693 	 * This should not be called to advance the header if we are
3694 	 * at the tail of the buffer.
3695 	 */
3696 	if (RB_WARN_ON(cpu_buffer,
3697 		       (iter->head_page == cpu_buffer->commit_page) &&
3698 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3699 		return;
3700 
3701 	rb_update_iter_read_stamp(iter, event);
3702 
3703 	iter->head += length;
3704 
3705 	/* check for end of page padding */
3706 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3707 	    (iter->head_page != cpu_buffer->commit_page))
3708 		rb_inc_iter(iter);
3709 }
3710 
3711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3712 {
3713 	return cpu_buffer->lost_events;
3714 }
3715 
3716 static struct ring_buffer_event *
3717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3718 	       unsigned long *lost_events)
3719 {
3720 	struct ring_buffer_event *event;
3721 	struct buffer_page *reader;
3722 	int nr_loops = 0;
3723 
3724  again:
3725 	/*
3726 	 * We repeat when a time extend is encountered.
3727 	 * Since the time extend is always attached to a data event,
3728 	 * we should never loop more than once.
3729 	 * (We never hit the following condition more than twice).
3730 	 */
3731 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3732 		return NULL;
3733 
3734 	reader = rb_get_reader_page(cpu_buffer);
3735 	if (!reader)
3736 		return NULL;
3737 
3738 	event = rb_reader_event(cpu_buffer);
3739 
3740 	switch (event->type_len) {
3741 	case RINGBUF_TYPE_PADDING:
3742 		if (rb_null_event(event))
3743 			RB_WARN_ON(cpu_buffer, 1);
3744 		/*
3745 		 * Because the writer could be discarding every
3746 		 * event it creates (which would probably be bad)
3747 		 * if we were to go back to "again" then we may never
3748 		 * catch up, and will trigger the warn on, or lock
3749 		 * the box. Return the padding, and we will release
3750 		 * the current locks, and try again.
3751 		 */
3752 		return event;
3753 
3754 	case RINGBUF_TYPE_TIME_EXTEND:
3755 		/* Internal data, OK to advance */
3756 		rb_advance_reader(cpu_buffer);
3757 		goto again;
3758 
3759 	case RINGBUF_TYPE_TIME_STAMP:
3760 		/* FIXME: not implemented */
3761 		rb_advance_reader(cpu_buffer);
3762 		goto again;
3763 
3764 	case RINGBUF_TYPE_DATA:
3765 		if (ts) {
3766 			*ts = cpu_buffer->read_stamp + event->time_delta;
3767 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3768 							 cpu_buffer->cpu, ts);
3769 		}
3770 		if (lost_events)
3771 			*lost_events = rb_lost_events(cpu_buffer);
3772 		return event;
3773 
3774 	default:
3775 		BUG();
3776 	}
3777 
3778 	return NULL;
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3781 
3782 static struct ring_buffer_event *
3783 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3784 {
3785 	struct ring_buffer *buffer;
3786 	struct ring_buffer_per_cpu *cpu_buffer;
3787 	struct ring_buffer_event *event;
3788 	int nr_loops = 0;
3789 
3790 	cpu_buffer = iter->cpu_buffer;
3791 	buffer = cpu_buffer->buffer;
3792 
3793 	/*
3794 	 * Check if someone performed a consuming read to
3795 	 * the buffer. A consuming read invalidates the iterator
3796 	 * and we need to reset the iterator in this case.
3797 	 */
3798 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3799 		     iter->cache_reader_page != cpu_buffer->reader_page))
3800 		rb_iter_reset(iter);
3801 
3802  again:
3803 	if (ring_buffer_iter_empty(iter))
3804 		return NULL;
3805 
3806 	/*
3807 	 * We repeat when a time extend is encountered or we hit
3808 	 * the end of the page. Since the time extend is always attached
3809 	 * to a data event, we should never loop more than three times.
3810 	 * Once for going to next page, once on time extend, and
3811 	 * finally once to get the event.
3812 	 * (We never hit the following condition more than thrice).
3813 	 */
3814 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3815 		return NULL;
3816 
3817 	if (rb_per_cpu_empty(cpu_buffer))
3818 		return NULL;
3819 
3820 	if (iter->head >= rb_page_size(iter->head_page)) {
3821 		rb_inc_iter(iter);
3822 		goto again;
3823 	}
3824 
3825 	event = rb_iter_head_event(iter);
3826 
3827 	switch (event->type_len) {
3828 	case RINGBUF_TYPE_PADDING:
3829 		if (rb_null_event(event)) {
3830 			rb_inc_iter(iter);
3831 			goto again;
3832 		}
3833 		rb_advance_iter(iter);
3834 		return event;
3835 
3836 	case RINGBUF_TYPE_TIME_EXTEND:
3837 		/* Internal data, OK to advance */
3838 		rb_advance_iter(iter);
3839 		goto again;
3840 
3841 	case RINGBUF_TYPE_TIME_STAMP:
3842 		/* FIXME: not implemented */
3843 		rb_advance_iter(iter);
3844 		goto again;
3845 
3846 	case RINGBUF_TYPE_DATA:
3847 		if (ts) {
3848 			*ts = iter->read_stamp + event->time_delta;
3849 			ring_buffer_normalize_time_stamp(buffer,
3850 							 cpu_buffer->cpu, ts);
3851 		}
3852 		return event;
3853 
3854 	default:
3855 		BUG();
3856 	}
3857 
3858 	return NULL;
3859 }
3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3861 
3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3863 {
3864 	if (likely(!in_nmi())) {
3865 		raw_spin_lock(&cpu_buffer->reader_lock);
3866 		return true;
3867 	}
3868 
3869 	/*
3870 	 * If an NMI die dumps out the content of the ring buffer
3871 	 * trylock must be used to prevent a deadlock if the NMI
3872 	 * preempted a task that holds the ring buffer locks. If
3873 	 * we get the lock then all is fine, if not, then continue
3874 	 * to do the read, but this can corrupt the ring buffer,
3875 	 * so it must be permanently disabled from future writes.
3876 	 * Reading from NMI is a oneshot deal.
3877 	 */
3878 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3879 		return true;
3880 
3881 	/* Continue without locking, but disable the ring buffer */
3882 	atomic_inc(&cpu_buffer->record_disabled);
3883 	return false;
3884 }
3885 
3886 static inline void
3887 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3888 {
3889 	if (likely(locked))
3890 		raw_spin_unlock(&cpu_buffer->reader_lock);
3891 	return;
3892 }
3893 
3894 /**
3895  * ring_buffer_peek - peek at the next event to be read
3896  * @buffer: The ring buffer to read
3897  * @cpu: The cpu to peak at
3898  * @ts: The timestamp counter of this event.
3899  * @lost_events: a variable to store if events were lost (may be NULL)
3900  *
3901  * This will return the event that will be read next, but does
3902  * not consume the data.
3903  */
3904 struct ring_buffer_event *
3905 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3906 		 unsigned long *lost_events)
3907 {
3908 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3909 	struct ring_buffer_event *event;
3910 	unsigned long flags;
3911 	bool dolock;
3912 
3913 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3914 		return NULL;
3915 
3916  again:
3917 	local_irq_save(flags);
3918 	dolock = rb_reader_lock(cpu_buffer);
3919 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3920 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3921 		rb_advance_reader(cpu_buffer);
3922 	rb_reader_unlock(cpu_buffer, dolock);
3923 	local_irq_restore(flags);
3924 
3925 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3926 		goto again;
3927 
3928 	return event;
3929 }
3930 
3931 /**
3932  * ring_buffer_iter_peek - peek at the next event to be read
3933  * @iter: The ring buffer iterator
3934  * @ts: The timestamp counter of this event.
3935  *
3936  * This will return the event that will be read next, but does
3937  * not increment the iterator.
3938  */
3939 struct ring_buffer_event *
3940 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3941 {
3942 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3943 	struct ring_buffer_event *event;
3944 	unsigned long flags;
3945 
3946  again:
3947 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3948 	event = rb_iter_peek(iter, ts);
3949 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3950 
3951 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3952 		goto again;
3953 
3954 	return event;
3955 }
3956 
3957 /**
3958  * ring_buffer_consume - return an event and consume it
3959  * @buffer: The ring buffer to get the next event from
3960  * @cpu: the cpu to read the buffer from
3961  * @ts: a variable to store the timestamp (may be NULL)
3962  * @lost_events: a variable to store if events were lost (may be NULL)
3963  *
3964  * Returns the next event in the ring buffer, and that event is consumed.
3965  * Meaning, that sequential reads will keep returning a different event,
3966  * and eventually empty the ring buffer if the producer is slower.
3967  */
3968 struct ring_buffer_event *
3969 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3970 		    unsigned long *lost_events)
3971 {
3972 	struct ring_buffer_per_cpu *cpu_buffer;
3973 	struct ring_buffer_event *event = NULL;
3974 	unsigned long flags;
3975 	bool dolock;
3976 
3977  again:
3978 	/* might be called in atomic */
3979 	preempt_disable();
3980 
3981 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 		goto out;
3983 
3984 	cpu_buffer = buffer->buffers[cpu];
3985 	local_irq_save(flags);
3986 	dolock = rb_reader_lock(cpu_buffer);
3987 
3988 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3989 	if (event) {
3990 		cpu_buffer->lost_events = 0;
3991 		rb_advance_reader(cpu_buffer);
3992 	}
3993 
3994 	rb_reader_unlock(cpu_buffer, dolock);
3995 	local_irq_restore(flags);
3996 
3997  out:
3998 	preempt_enable();
3999 
4000 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4001 		goto again;
4002 
4003 	return event;
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4006 
4007 /**
4008  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4009  * @buffer: The ring buffer to read from
4010  * @cpu: The cpu buffer to iterate over
4011  *
4012  * This performs the initial preparations necessary to iterate
4013  * through the buffer.  Memory is allocated, buffer recording
4014  * is disabled, and the iterator pointer is returned to the caller.
4015  *
4016  * Disabling buffer recordng prevents the reading from being
4017  * corrupted. This is not a consuming read, so a producer is not
4018  * expected.
4019  *
4020  * After a sequence of ring_buffer_read_prepare calls, the user is
4021  * expected to make at least one call to ring_buffer_read_prepare_sync.
4022  * Afterwards, ring_buffer_read_start is invoked to get things going
4023  * for real.
4024  *
4025  * This overall must be paired with ring_buffer_read_finish.
4026  */
4027 struct ring_buffer_iter *
4028 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4029 {
4030 	struct ring_buffer_per_cpu *cpu_buffer;
4031 	struct ring_buffer_iter *iter;
4032 
4033 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4034 		return NULL;
4035 
4036 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4037 	if (!iter)
4038 		return NULL;
4039 
4040 	cpu_buffer = buffer->buffers[cpu];
4041 
4042 	iter->cpu_buffer = cpu_buffer;
4043 
4044 	atomic_inc(&buffer->resize_disabled);
4045 	atomic_inc(&cpu_buffer->record_disabled);
4046 
4047 	return iter;
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4050 
4051 /**
4052  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4053  *
4054  * All previously invoked ring_buffer_read_prepare calls to prepare
4055  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4056  * calls on those iterators are allowed.
4057  */
4058 void
4059 ring_buffer_read_prepare_sync(void)
4060 {
4061 	synchronize_sched();
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4064 
4065 /**
4066  * ring_buffer_read_start - start a non consuming read of the buffer
4067  * @iter: The iterator returned by ring_buffer_read_prepare
4068  *
4069  * This finalizes the startup of an iteration through the buffer.
4070  * The iterator comes from a call to ring_buffer_read_prepare and
4071  * an intervening ring_buffer_read_prepare_sync must have been
4072  * performed.
4073  *
4074  * Must be paired with ring_buffer_read_finish.
4075  */
4076 void
4077 ring_buffer_read_start(struct ring_buffer_iter *iter)
4078 {
4079 	struct ring_buffer_per_cpu *cpu_buffer;
4080 	unsigned long flags;
4081 
4082 	if (!iter)
4083 		return;
4084 
4085 	cpu_buffer = iter->cpu_buffer;
4086 
4087 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088 	arch_spin_lock(&cpu_buffer->lock);
4089 	rb_iter_reset(iter);
4090 	arch_spin_unlock(&cpu_buffer->lock);
4091 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4094 
4095 /**
4096  * ring_buffer_read_finish - finish reading the iterator of the buffer
4097  * @iter: The iterator retrieved by ring_buffer_start
4098  *
4099  * This re-enables the recording to the buffer, and frees the
4100  * iterator.
4101  */
4102 void
4103 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4104 {
4105 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 	unsigned long flags;
4107 
4108 	/*
4109 	 * Ring buffer is disabled from recording, here's a good place
4110 	 * to check the integrity of the ring buffer.
4111 	 * Must prevent readers from trying to read, as the check
4112 	 * clears the HEAD page and readers require it.
4113 	 */
4114 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4115 	rb_check_pages(cpu_buffer);
4116 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117 
4118 	atomic_dec(&cpu_buffer->record_disabled);
4119 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4120 	kfree(iter);
4121 }
4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4123 
4124 /**
4125  * ring_buffer_read - read the next item in the ring buffer by the iterator
4126  * @iter: The ring buffer iterator
4127  * @ts: The time stamp of the event read.
4128  *
4129  * This reads the next event in the ring buffer and increments the iterator.
4130  */
4131 struct ring_buffer_event *
4132 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4133 {
4134 	struct ring_buffer_event *event;
4135 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4136 	unsigned long flags;
4137 
4138 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4139  again:
4140 	event = rb_iter_peek(iter, ts);
4141 	if (!event)
4142 		goto out;
4143 
4144 	if (event->type_len == RINGBUF_TYPE_PADDING)
4145 		goto again;
4146 
4147 	rb_advance_iter(iter);
4148  out:
4149 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4150 
4151 	return event;
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_read);
4154 
4155 /**
4156  * ring_buffer_size - return the size of the ring buffer (in bytes)
4157  * @buffer: The ring buffer.
4158  */
4159 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4160 {
4161 	/*
4162 	 * Earlier, this method returned
4163 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4164 	 * Since the nr_pages field is now removed, we have converted this to
4165 	 * return the per cpu buffer value.
4166 	 */
4167 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 		return 0;
4169 
4170 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4171 }
4172 EXPORT_SYMBOL_GPL(ring_buffer_size);
4173 
4174 static void
4175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4176 {
4177 	rb_head_page_deactivate(cpu_buffer);
4178 
4179 	cpu_buffer->head_page
4180 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4181 	local_set(&cpu_buffer->head_page->write, 0);
4182 	local_set(&cpu_buffer->head_page->entries, 0);
4183 	local_set(&cpu_buffer->head_page->page->commit, 0);
4184 
4185 	cpu_buffer->head_page->read = 0;
4186 
4187 	cpu_buffer->tail_page = cpu_buffer->head_page;
4188 	cpu_buffer->commit_page = cpu_buffer->head_page;
4189 
4190 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4191 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4192 	local_set(&cpu_buffer->reader_page->write, 0);
4193 	local_set(&cpu_buffer->reader_page->entries, 0);
4194 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4195 	cpu_buffer->reader_page->read = 0;
4196 
4197 	local_set(&cpu_buffer->entries_bytes, 0);
4198 	local_set(&cpu_buffer->overrun, 0);
4199 	local_set(&cpu_buffer->commit_overrun, 0);
4200 	local_set(&cpu_buffer->dropped_events, 0);
4201 	local_set(&cpu_buffer->entries, 0);
4202 	local_set(&cpu_buffer->committing, 0);
4203 	local_set(&cpu_buffer->commits, 0);
4204 	cpu_buffer->read = 0;
4205 	cpu_buffer->read_bytes = 0;
4206 
4207 	cpu_buffer->write_stamp = 0;
4208 	cpu_buffer->read_stamp = 0;
4209 
4210 	cpu_buffer->lost_events = 0;
4211 	cpu_buffer->last_overrun = 0;
4212 
4213 	rb_head_page_activate(cpu_buffer);
4214 }
4215 
4216 /**
4217  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4218  * @buffer: The ring buffer to reset a per cpu buffer of
4219  * @cpu: The CPU buffer to be reset
4220  */
4221 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4222 {
4223 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4224 	unsigned long flags;
4225 
4226 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227 		return;
4228 
4229 	atomic_inc(&buffer->resize_disabled);
4230 	atomic_inc(&cpu_buffer->record_disabled);
4231 
4232 	/* Make sure all commits have finished */
4233 	synchronize_sched();
4234 
4235 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4236 
4237 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4238 		goto out;
4239 
4240 	arch_spin_lock(&cpu_buffer->lock);
4241 
4242 	rb_reset_cpu(cpu_buffer);
4243 
4244 	arch_spin_unlock(&cpu_buffer->lock);
4245 
4246  out:
4247 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4248 
4249 	atomic_dec(&cpu_buffer->record_disabled);
4250 	atomic_dec(&buffer->resize_disabled);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4253 
4254 /**
4255  * ring_buffer_reset - reset a ring buffer
4256  * @buffer: The ring buffer to reset all cpu buffers
4257  */
4258 void ring_buffer_reset(struct ring_buffer *buffer)
4259 {
4260 	int cpu;
4261 
4262 	for_each_buffer_cpu(buffer, cpu)
4263 		ring_buffer_reset_cpu(buffer, cpu);
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4266 
4267 /**
4268  * rind_buffer_empty - is the ring buffer empty?
4269  * @buffer: The ring buffer to test
4270  */
4271 bool ring_buffer_empty(struct ring_buffer *buffer)
4272 {
4273 	struct ring_buffer_per_cpu *cpu_buffer;
4274 	unsigned long flags;
4275 	bool dolock;
4276 	int cpu;
4277 	int ret;
4278 
4279 	/* yes this is racy, but if you don't like the race, lock the buffer */
4280 	for_each_buffer_cpu(buffer, cpu) {
4281 		cpu_buffer = buffer->buffers[cpu];
4282 		local_irq_save(flags);
4283 		dolock = rb_reader_lock(cpu_buffer);
4284 		ret = rb_per_cpu_empty(cpu_buffer);
4285 		rb_reader_unlock(cpu_buffer, dolock);
4286 		local_irq_restore(flags);
4287 
4288 		if (!ret)
4289 			return false;
4290 	}
4291 
4292 	return true;
4293 }
4294 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4295 
4296 /**
4297  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4298  * @buffer: The ring buffer
4299  * @cpu: The CPU buffer to test
4300  */
4301 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4302 {
4303 	struct ring_buffer_per_cpu *cpu_buffer;
4304 	unsigned long flags;
4305 	bool dolock;
4306 	int ret;
4307 
4308 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4309 		return true;
4310 
4311 	cpu_buffer = buffer->buffers[cpu];
4312 	local_irq_save(flags);
4313 	dolock = rb_reader_lock(cpu_buffer);
4314 	ret = rb_per_cpu_empty(cpu_buffer);
4315 	rb_reader_unlock(cpu_buffer, dolock);
4316 	local_irq_restore(flags);
4317 
4318 	return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4321 
4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4323 /**
4324  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4325  * @buffer_a: One buffer to swap with
4326  * @buffer_b: The other buffer to swap with
4327  *
4328  * This function is useful for tracers that want to take a "snapshot"
4329  * of a CPU buffer and has another back up buffer lying around.
4330  * it is expected that the tracer handles the cpu buffer not being
4331  * used at the moment.
4332  */
4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4334 			 struct ring_buffer *buffer_b, int cpu)
4335 {
4336 	struct ring_buffer_per_cpu *cpu_buffer_a;
4337 	struct ring_buffer_per_cpu *cpu_buffer_b;
4338 	int ret = -EINVAL;
4339 
4340 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4341 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4342 		goto out;
4343 
4344 	cpu_buffer_a = buffer_a->buffers[cpu];
4345 	cpu_buffer_b = buffer_b->buffers[cpu];
4346 
4347 	/* At least make sure the two buffers are somewhat the same */
4348 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4349 		goto out;
4350 
4351 	ret = -EAGAIN;
4352 
4353 	if (atomic_read(&buffer_a->record_disabled))
4354 		goto out;
4355 
4356 	if (atomic_read(&buffer_b->record_disabled))
4357 		goto out;
4358 
4359 	if (atomic_read(&cpu_buffer_a->record_disabled))
4360 		goto out;
4361 
4362 	if (atomic_read(&cpu_buffer_b->record_disabled))
4363 		goto out;
4364 
4365 	/*
4366 	 * We can't do a synchronize_sched here because this
4367 	 * function can be called in atomic context.
4368 	 * Normally this will be called from the same CPU as cpu.
4369 	 * If not it's up to the caller to protect this.
4370 	 */
4371 	atomic_inc(&cpu_buffer_a->record_disabled);
4372 	atomic_inc(&cpu_buffer_b->record_disabled);
4373 
4374 	ret = -EBUSY;
4375 	if (local_read(&cpu_buffer_a->committing))
4376 		goto out_dec;
4377 	if (local_read(&cpu_buffer_b->committing))
4378 		goto out_dec;
4379 
4380 	buffer_a->buffers[cpu] = cpu_buffer_b;
4381 	buffer_b->buffers[cpu] = cpu_buffer_a;
4382 
4383 	cpu_buffer_b->buffer = buffer_a;
4384 	cpu_buffer_a->buffer = buffer_b;
4385 
4386 	ret = 0;
4387 
4388 out_dec:
4389 	atomic_dec(&cpu_buffer_a->record_disabled);
4390 	atomic_dec(&cpu_buffer_b->record_disabled);
4391 out:
4392 	return ret;
4393 }
4394 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4395 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4396 
4397 /**
4398  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4399  * @buffer: the buffer to allocate for.
4400  * @cpu: the cpu buffer to allocate.
4401  *
4402  * This function is used in conjunction with ring_buffer_read_page.
4403  * When reading a full page from the ring buffer, these functions
4404  * can be used to speed up the process. The calling function should
4405  * allocate a few pages first with this function. Then when it
4406  * needs to get pages from the ring buffer, it passes the result
4407  * of this function into ring_buffer_read_page, which will swap
4408  * the page that was allocated, with the read page of the buffer.
4409  *
4410  * Returns:
4411  *  The page allocated, or NULL on error.
4412  */
4413 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4414 {
4415 	struct buffer_data_page *bpage;
4416 	struct page *page;
4417 
4418 	page = alloc_pages_node(cpu_to_node(cpu),
4419 				GFP_KERNEL | __GFP_NORETRY, 0);
4420 	if (!page)
4421 		return NULL;
4422 
4423 	bpage = page_address(page);
4424 
4425 	rb_init_page(bpage);
4426 
4427 	return bpage;
4428 }
4429 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4430 
4431 /**
4432  * ring_buffer_free_read_page - free an allocated read page
4433  * @buffer: the buffer the page was allocate for
4434  * @data: the page to free
4435  *
4436  * Free a page allocated from ring_buffer_alloc_read_page.
4437  */
4438 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4439 {
4440 	free_page((unsigned long)data);
4441 }
4442 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4443 
4444 /**
4445  * ring_buffer_read_page - extract a page from the ring buffer
4446  * @buffer: buffer to extract from
4447  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4448  * @len: amount to extract
4449  * @cpu: the cpu of the buffer to extract
4450  * @full: should the extraction only happen when the page is full.
4451  *
4452  * This function will pull out a page from the ring buffer and consume it.
4453  * @data_page must be the address of the variable that was returned
4454  * from ring_buffer_alloc_read_page. This is because the page might be used
4455  * to swap with a page in the ring buffer.
4456  *
4457  * for example:
4458  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4459  *	if (!rpage)
4460  *		return error;
4461  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4462  *	if (ret >= 0)
4463  *		process_page(rpage, ret);
4464  *
4465  * When @full is set, the function will not return true unless
4466  * the writer is off the reader page.
4467  *
4468  * Note: it is up to the calling functions to handle sleeps and wakeups.
4469  *  The ring buffer can be used anywhere in the kernel and can not
4470  *  blindly call wake_up. The layer that uses the ring buffer must be
4471  *  responsible for that.
4472  *
4473  * Returns:
4474  *  >=0 if data has been transferred, returns the offset of consumed data.
4475  *  <0 if no data has been transferred.
4476  */
4477 int ring_buffer_read_page(struct ring_buffer *buffer,
4478 			  void **data_page, size_t len, int cpu, int full)
4479 {
4480 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4481 	struct ring_buffer_event *event;
4482 	struct buffer_data_page *bpage;
4483 	struct buffer_page *reader;
4484 	unsigned long missed_events;
4485 	unsigned long flags;
4486 	unsigned int commit;
4487 	unsigned int read;
4488 	u64 save_timestamp;
4489 	int ret = -1;
4490 
4491 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4492 		goto out;
4493 
4494 	/*
4495 	 * If len is not big enough to hold the page header, then
4496 	 * we can not copy anything.
4497 	 */
4498 	if (len <= BUF_PAGE_HDR_SIZE)
4499 		goto out;
4500 
4501 	len -= BUF_PAGE_HDR_SIZE;
4502 
4503 	if (!data_page)
4504 		goto out;
4505 
4506 	bpage = *data_page;
4507 	if (!bpage)
4508 		goto out;
4509 
4510 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4511 
4512 	reader = rb_get_reader_page(cpu_buffer);
4513 	if (!reader)
4514 		goto out_unlock;
4515 
4516 	event = rb_reader_event(cpu_buffer);
4517 
4518 	read = reader->read;
4519 	commit = rb_page_commit(reader);
4520 
4521 	/* Check if any events were dropped */
4522 	missed_events = cpu_buffer->lost_events;
4523 
4524 	/*
4525 	 * If this page has been partially read or
4526 	 * if len is not big enough to read the rest of the page or
4527 	 * a writer is still on the page, then
4528 	 * we must copy the data from the page to the buffer.
4529 	 * Otherwise, we can simply swap the page with the one passed in.
4530 	 */
4531 	if (read || (len < (commit - read)) ||
4532 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4533 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4534 		unsigned int rpos = read;
4535 		unsigned int pos = 0;
4536 		unsigned int size;
4537 
4538 		if (full)
4539 			goto out_unlock;
4540 
4541 		if (len > (commit - read))
4542 			len = (commit - read);
4543 
4544 		/* Always keep the time extend and data together */
4545 		size = rb_event_ts_length(event);
4546 
4547 		if (len < size)
4548 			goto out_unlock;
4549 
4550 		/* save the current timestamp, since the user will need it */
4551 		save_timestamp = cpu_buffer->read_stamp;
4552 
4553 		/* Need to copy one event at a time */
4554 		do {
4555 			/* We need the size of one event, because
4556 			 * rb_advance_reader only advances by one event,
4557 			 * whereas rb_event_ts_length may include the size of
4558 			 * one or two events.
4559 			 * We have already ensured there's enough space if this
4560 			 * is a time extend. */
4561 			size = rb_event_length(event);
4562 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4563 
4564 			len -= size;
4565 
4566 			rb_advance_reader(cpu_buffer);
4567 			rpos = reader->read;
4568 			pos += size;
4569 
4570 			if (rpos >= commit)
4571 				break;
4572 
4573 			event = rb_reader_event(cpu_buffer);
4574 			/* Always keep the time extend and data together */
4575 			size = rb_event_ts_length(event);
4576 		} while (len >= size);
4577 
4578 		/* update bpage */
4579 		local_set(&bpage->commit, pos);
4580 		bpage->time_stamp = save_timestamp;
4581 
4582 		/* we copied everything to the beginning */
4583 		read = 0;
4584 	} else {
4585 		/* update the entry counter */
4586 		cpu_buffer->read += rb_page_entries(reader);
4587 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4588 
4589 		/* swap the pages */
4590 		rb_init_page(bpage);
4591 		bpage = reader->page;
4592 		reader->page = *data_page;
4593 		local_set(&reader->write, 0);
4594 		local_set(&reader->entries, 0);
4595 		reader->read = 0;
4596 		*data_page = bpage;
4597 
4598 		/*
4599 		 * Use the real_end for the data size,
4600 		 * This gives us a chance to store the lost events
4601 		 * on the page.
4602 		 */
4603 		if (reader->real_end)
4604 			local_set(&bpage->commit, reader->real_end);
4605 	}
4606 	ret = read;
4607 
4608 	cpu_buffer->lost_events = 0;
4609 
4610 	commit = local_read(&bpage->commit);
4611 	/*
4612 	 * Set a flag in the commit field if we lost events
4613 	 */
4614 	if (missed_events) {
4615 		/* If there is room at the end of the page to save the
4616 		 * missed events, then record it there.
4617 		 */
4618 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4619 			memcpy(&bpage->data[commit], &missed_events,
4620 			       sizeof(missed_events));
4621 			local_add(RB_MISSED_STORED, &bpage->commit);
4622 			commit += sizeof(missed_events);
4623 		}
4624 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4625 	}
4626 
4627 	/*
4628 	 * This page may be off to user land. Zero it out here.
4629 	 */
4630 	if (commit < BUF_PAGE_SIZE)
4631 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4632 
4633  out_unlock:
4634 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4635 
4636  out:
4637 	return ret;
4638 }
4639 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4640 
4641 #ifdef CONFIG_HOTPLUG_CPU
4642 static int rb_cpu_notify(struct notifier_block *self,
4643 			 unsigned long action, void *hcpu)
4644 {
4645 	struct ring_buffer *buffer =
4646 		container_of(self, struct ring_buffer, cpu_notify);
4647 	long cpu = (long)hcpu;
4648 	int cpu_i, nr_pages_same;
4649 	unsigned int nr_pages;
4650 
4651 	switch (action) {
4652 	case CPU_UP_PREPARE:
4653 	case CPU_UP_PREPARE_FROZEN:
4654 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4655 			return NOTIFY_OK;
4656 
4657 		nr_pages = 0;
4658 		nr_pages_same = 1;
4659 		/* check if all cpu sizes are same */
4660 		for_each_buffer_cpu(buffer, cpu_i) {
4661 			/* fill in the size from first enabled cpu */
4662 			if (nr_pages == 0)
4663 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4664 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4665 				nr_pages_same = 0;
4666 				break;
4667 			}
4668 		}
4669 		/* allocate minimum pages, user can later expand it */
4670 		if (!nr_pages_same)
4671 			nr_pages = 2;
4672 		buffer->buffers[cpu] =
4673 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4674 		if (!buffer->buffers[cpu]) {
4675 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4676 			     cpu);
4677 			return NOTIFY_OK;
4678 		}
4679 		smp_wmb();
4680 		cpumask_set_cpu(cpu, buffer->cpumask);
4681 		break;
4682 	case CPU_DOWN_PREPARE:
4683 	case CPU_DOWN_PREPARE_FROZEN:
4684 		/*
4685 		 * Do nothing.
4686 		 *  If we were to free the buffer, then the user would
4687 		 *  lose any trace that was in the buffer.
4688 		 */
4689 		break;
4690 	default:
4691 		break;
4692 	}
4693 	return NOTIFY_OK;
4694 }
4695 #endif
4696 
4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4698 /*
4699  * This is a basic integrity check of the ring buffer.
4700  * Late in the boot cycle this test will run when configured in.
4701  * It will kick off a thread per CPU that will go into a loop
4702  * writing to the per cpu ring buffer various sizes of data.
4703  * Some of the data will be large items, some small.
4704  *
4705  * Another thread is created that goes into a spin, sending out
4706  * IPIs to the other CPUs to also write into the ring buffer.
4707  * this is to test the nesting ability of the buffer.
4708  *
4709  * Basic stats are recorded and reported. If something in the
4710  * ring buffer should happen that's not expected, a big warning
4711  * is displayed and all ring buffers are disabled.
4712  */
4713 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4714 
4715 struct rb_test_data {
4716 	struct ring_buffer	*buffer;
4717 	unsigned long		events;
4718 	unsigned long		bytes_written;
4719 	unsigned long		bytes_alloc;
4720 	unsigned long		bytes_dropped;
4721 	unsigned long		events_nested;
4722 	unsigned long		bytes_written_nested;
4723 	unsigned long		bytes_alloc_nested;
4724 	unsigned long		bytes_dropped_nested;
4725 	int			min_size_nested;
4726 	int			max_size_nested;
4727 	int			max_size;
4728 	int			min_size;
4729 	int			cpu;
4730 	int			cnt;
4731 };
4732 
4733 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4734 
4735 /* 1 meg per cpu */
4736 #define RB_TEST_BUFFER_SIZE	1048576
4737 
4738 static char rb_string[] __initdata =
4739 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4742 
4743 static bool rb_test_started __initdata;
4744 
4745 struct rb_item {
4746 	int size;
4747 	char str[];
4748 };
4749 
4750 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4751 {
4752 	struct ring_buffer_event *event;
4753 	struct rb_item *item;
4754 	bool started;
4755 	int event_len;
4756 	int size;
4757 	int len;
4758 	int cnt;
4759 
4760 	/* Have nested writes different that what is written */
4761 	cnt = data->cnt + (nested ? 27 : 0);
4762 
4763 	/* Multiply cnt by ~e, to make some unique increment */
4764 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4765 
4766 	len = size + sizeof(struct rb_item);
4767 
4768 	started = rb_test_started;
4769 	/* read rb_test_started before checking buffer enabled */
4770 	smp_rmb();
4771 
4772 	event = ring_buffer_lock_reserve(data->buffer, len);
4773 	if (!event) {
4774 		/* Ignore dropped events before test starts. */
4775 		if (started) {
4776 			if (nested)
4777 				data->bytes_dropped += len;
4778 			else
4779 				data->bytes_dropped_nested += len;
4780 		}
4781 		return len;
4782 	}
4783 
4784 	event_len = ring_buffer_event_length(event);
4785 
4786 	if (RB_WARN_ON(data->buffer, event_len < len))
4787 		goto out;
4788 
4789 	item = ring_buffer_event_data(event);
4790 	item->size = size;
4791 	memcpy(item->str, rb_string, size);
4792 
4793 	if (nested) {
4794 		data->bytes_alloc_nested += event_len;
4795 		data->bytes_written_nested += len;
4796 		data->events_nested++;
4797 		if (!data->min_size_nested || len < data->min_size_nested)
4798 			data->min_size_nested = len;
4799 		if (len > data->max_size_nested)
4800 			data->max_size_nested = len;
4801 	} else {
4802 		data->bytes_alloc += event_len;
4803 		data->bytes_written += len;
4804 		data->events++;
4805 		if (!data->min_size || len < data->min_size)
4806 			data->max_size = len;
4807 		if (len > data->max_size)
4808 			data->max_size = len;
4809 	}
4810 
4811  out:
4812 	ring_buffer_unlock_commit(data->buffer, event);
4813 
4814 	return 0;
4815 }
4816 
4817 static __init int rb_test(void *arg)
4818 {
4819 	struct rb_test_data *data = arg;
4820 
4821 	while (!kthread_should_stop()) {
4822 		rb_write_something(data, false);
4823 		data->cnt++;
4824 
4825 		set_current_state(TASK_INTERRUPTIBLE);
4826 		/* Now sleep between a min of 100-300us and a max of 1ms */
4827 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4828 	}
4829 
4830 	return 0;
4831 }
4832 
4833 static __init void rb_ipi(void *ignore)
4834 {
4835 	struct rb_test_data *data;
4836 	int cpu = smp_processor_id();
4837 
4838 	data = &rb_data[cpu];
4839 	rb_write_something(data, true);
4840 }
4841 
4842 static __init int rb_hammer_test(void *arg)
4843 {
4844 	while (!kthread_should_stop()) {
4845 
4846 		/* Send an IPI to all cpus to write data! */
4847 		smp_call_function(rb_ipi, NULL, 1);
4848 		/* No sleep, but for non preempt, let others run */
4849 		schedule();
4850 	}
4851 
4852 	return 0;
4853 }
4854 
4855 static __init int test_ringbuffer(void)
4856 {
4857 	struct task_struct *rb_hammer;
4858 	struct ring_buffer *buffer;
4859 	int cpu;
4860 	int ret = 0;
4861 
4862 	pr_info("Running ring buffer tests...\n");
4863 
4864 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865 	if (WARN_ON(!buffer))
4866 		return 0;
4867 
4868 	/* Disable buffer so that threads can't write to it yet */
4869 	ring_buffer_record_off(buffer);
4870 
4871 	for_each_online_cpu(cpu) {
4872 		rb_data[cpu].buffer = buffer;
4873 		rb_data[cpu].cpu = cpu;
4874 		rb_data[cpu].cnt = cpu;
4875 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876 						 "rbtester/%d", cpu);
4877 		if (WARN_ON(!rb_threads[cpu])) {
4878 			pr_cont("FAILED\n");
4879 			ret = -1;
4880 			goto out_free;
4881 		}
4882 
4883 		kthread_bind(rb_threads[cpu], cpu);
4884  		wake_up_process(rb_threads[cpu]);
4885 	}
4886 
4887 	/* Now create the rb hammer! */
4888 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889 	if (WARN_ON(!rb_hammer)) {
4890 		pr_cont("FAILED\n");
4891 		ret = -1;
4892 		goto out_free;
4893 	}
4894 
4895 	ring_buffer_record_on(buffer);
4896 	/*
4897 	 * Show buffer is enabled before setting rb_test_started.
4898 	 * Yes there's a small race window where events could be
4899 	 * dropped and the thread wont catch it. But when a ring
4900 	 * buffer gets enabled, there will always be some kind of
4901 	 * delay before other CPUs see it. Thus, we don't care about
4902 	 * those dropped events. We care about events dropped after
4903 	 * the threads see that the buffer is active.
4904 	 */
4905 	smp_wmb();
4906 	rb_test_started = true;
4907 
4908 	set_current_state(TASK_INTERRUPTIBLE);
4909 	/* Just run for 10 seconds */;
4910 	schedule_timeout(10 * HZ);
4911 
4912 	kthread_stop(rb_hammer);
4913 
4914  out_free:
4915 	for_each_online_cpu(cpu) {
4916 		if (!rb_threads[cpu])
4917 			break;
4918 		kthread_stop(rb_threads[cpu]);
4919 	}
4920 	if (ret) {
4921 		ring_buffer_free(buffer);
4922 		return ret;
4923 	}
4924 
4925 	/* Report! */
4926 	pr_info("finished\n");
4927 	for_each_online_cpu(cpu) {
4928 		struct ring_buffer_event *event;
4929 		struct rb_test_data *data = &rb_data[cpu];
4930 		struct rb_item *item;
4931 		unsigned long total_events;
4932 		unsigned long total_dropped;
4933 		unsigned long total_written;
4934 		unsigned long total_alloc;
4935 		unsigned long total_read = 0;
4936 		unsigned long total_size = 0;
4937 		unsigned long total_len = 0;
4938 		unsigned long total_lost = 0;
4939 		unsigned long lost;
4940 		int big_event_size;
4941 		int small_event_size;
4942 
4943 		ret = -1;
4944 
4945 		total_events = data->events + data->events_nested;
4946 		total_written = data->bytes_written + data->bytes_written_nested;
4947 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4949 
4950 		big_event_size = data->max_size + data->max_size_nested;
4951 		small_event_size = data->min_size + data->min_size_nested;
4952 
4953 		pr_info("CPU %d:\n", cpu);
4954 		pr_info("              events:    %ld\n", total_events);
4955 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4956 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4957 		pr_info("       written bytes:    %ld\n", total_written);
4958 		pr_info("       biggest event:    %d\n", big_event_size);
4959 		pr_info("      smallest event:    %d\n", small_event_size);
4960 
4961 		if (RB_WARN_ON(buffer, total_dropped))
4962 			break;
4963 
4964 		ret = 0;
4965 
4966 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967 			total_lost += lost;
4968 			item = ring_buffer_event_data(event);
4969 			total_len += ring_buffer_event_length(event);
4970 			total_size += item->size + sizeof(struct rb_item);
4971 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972 				pr_info("FAILED!\n");
4973 				pr_info("buffer had: %.*s\n", item->size, item->str);
4974 				pr_info("expected:   %.*s\n", item->size, rb_string);
4975 				RB_WARN_ON(buffer, 1);
4976 				ret = -1;
4977 				break;
4978 			}
4979 			total_read++;
4980 		}
4981 		if (ret)
4982 			break;
4983 
4984 		ret = -1;
4985 
4986 		pr_info("         read events:   %ld\n", total_read);
4987 		pr_info("         lost events:   %ld\n", total_lost);
4988 		pr_info("        total events:   %ld\n", total_lost + total_read);
4989 		pr_info("  recorded len bytes:   %ld\n", total_len);
4990 		pr_info(" recorded size bytes:   %ld\n", total_size);
4991 		if (total_lost)
4992 			pr_info(" With dropped events, record len and size may not match\n"
4993 				" alloced and written from above\n");
4994 		if (!total_lost) {
4995 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996 				       total_size != total_written))
4997 				break;
4998 		}
4999 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000 			break;
5001 
5002 		ret = 0;
5003 	}
5004 	if (!ret)
5005 		pr_info("Ring buffer PASSED!\n");
5006 
5007 	ring_buffer_free(buffer);
5008 	return 0;
5009 }
5010 
5011 late_initcall(test_ringbuffer);
5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5013