1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/trace_seq.h> 13 #include <linux/spinlock.h> 14 #include <linux/irq_work.h> 15 #include <linux/security.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kthread.h> /* for self test */ 19 #include <linux/module.h> 20 #include <linux/percpu.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/list.h> 27 #include <linux/cpu.h> 28 #include <linux/oom.h> 29 30 #include <asm/local.h> 31 32 /* 33 * The "absolute" timestamp in the buffer is only 59 bits. 34 * If a clock has the 5 MSBs set, it needs to be saved and 35 * reinserted. 36 */ 37 #define TS_MSB (0xf8ULL << 56) 38 #define ABS_TS_MASK (~TS_MSB) 39 40 static void update_pages_handler(struct work_struct *work); 41 42 /* 43 * The ring buffer header is special. We must manually up keep it. 44 */ 45 int ring_buffer_print_entry_header(struct trace_seq *s) 46 { 47 trace_seq_puts(s, "# compressed entry header\n"); 48 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 49 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 50 trace_seq_puts(s, "\tarray : 32 bits\n"); 51 trace_seq_putc(s, '\n'); 52 trace_seq_printf(s, "\tpadding : type == %d\n", 53 RINGBUF_TYPE_PADDING); 54 trace_seq_printf(s, "\ttime_extend : type == %d\n", 55 RINGBUF_TYPE_TIME_EXTEND); 56 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 57 RINGBUF_TYPE_TIME_STAMP); 58 trace_seq_printf(s, "\tdata max type_len == %d\n", 59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 60 61 return !trace_seq_has_overflowed(s); 62 } 63 64 /* 65 * The ring buffer is made up of a list of pages. A separate list of pages is 66 * allocated for each CPU. A writer may only write to a buffer that is 67 * associated with the CPU it is currently executing on. A reader may read 68 * from any per cpu buffer. 69 * 70 * The reader is special. For each per cpu buffer, the reader has its own 71 * reader page. When a reader has read the entire reader page, this reader 72 * page is swapped with another page in the ring buffer. 73 * 74 * Now, as long as the writer is off the reader page, the reader can do what 75 * ever it wants with that page. The writer will never write to that page 76 * again (as long as it is out of the ring buffer). 77 * 78 * Here's some silly ASCII art. 79 * 80 * +------+ 81 * |reader| RING BUFFER 82 * |page | 83 * +------+ +---+ +---+ +---+ 84 * | |-->| |-->| | 85 * +---+ +---+ +---+ 86 * ^ | 87 * | | 88 * +---------------+ 89 * 90 * 91 * +------+ 92 * |reader| RING BUFFER 93 * |page |------------------v 94 * +------+ +---+ +---+ +---+ 95 * | |-->| |-->| | 96 * +---+ +---+ +---+ 97 * ^ | 98 * | | 99 * +---------------+ 100 * 101 * 102 * +------+ 103 * |reader| RING BUFFER 104 * |page |------------------v 105 * +------+ +---+ +---+ +---+ 106 * ^ | |-->| |-->| | 107 * | +---+ +---+ +---+ 108 * | | 109 * | | 110 * +------------------------------+ 111 * 112 * 113 * +------+ 114 * |buffer| RING BUFFER 115 * |page |------------------v 116 * +------+ +---+ +---+ +---+ 117 * ^ | | | |-->| | 118 * | New +---+ +---+ +---+ 119 * | Reader------^ | 120 * | page | 121 * +------------------------------+ 122 * 123 * 124 * After we make this swap, the reader can hand this page off to the splice 125 * code and be done with it. It can even allocate a new page if it needs to 126 * and swap that into the ring buffer. 127 * 128 * We will be using cmpxchg soon to make all this lockless. 129 * 130 */ 131 132 /* Used for individual buffers (after the counter) */ 133 #define RB_BUFFER_OFF (1 << 20) 134 135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 136 137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 138 #define RB_ALIGNMENT 4U 139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 141 142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 143 # define RB_FORCE_8BYTE_ALIGNMENT 0 144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 145 #else 146 # define RB_FORCE_8BYTE_ALIGNMENT 1 147 # define RB_ARCH_ALIGNMENT 8U 148 #endif 149 150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 151 152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 154 155 enum { 156 RB_LEN_TIME_EXTEND = 8, 157 RB_LEN_TIME_STAMP = 8, 158 }; 159 160 #define skip_time_extend(event) \ 161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 162 163 #define extended_time(event) \ 164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 165 166 static inline bool rb_null_event(struct ring_buffer_event *event) 167 { 168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 169 } 170 171 static void rb_event_set_padding(struct ring_buffer_event *event) 172 { 173 /* padding has a NULL time_delta */ 174 event->type_len = RINGBUF_TYPE_PADDING; 175 event->time_delta = 0; 176 } 177 178 static unsigned 179 rb_event_data_length(struct ring_buffer_event *event) 180 { 181 unsigned length; 182 183 if (event->type_len) 184 length = event->type_len * RB_ALIGNMENT; 185 else 186 length = event->array[0]; 187 return length + RB_EVNT_HDR_SIZE; 188 } 189 190 /* 191 * Return the length of the given event. Will return 192 * the length of the time extend if the event is a 193 * time extend. 194 */ 195 static inline unsigned 196 rb_event_length(struct ring_buffer_event *event) 197 { 198 switch (event->type_len) { 199 case RINGBUF_TYPE_PADDING: 200 if (rb_null_event(event)) 201 /* undefined */ 202 return -1; 203 return event->array[0] + RB_EVNT_HDR_SIZE; 204 205 case RINGBUF_TYPE_TIME_EXTEND: 206 return RB_LEN_TIME_EXTEND; 207 208 case RINGBUF_TYPE_TIME_STAMP: 209 return RB_LEN_TIME_STAMP; 210 211 case RINGBUF_TYPE_DATA: 212 return rb_event_data_length(event); 213 default: 214 WARN_ON_ONCE(1); 215 } 216 /* not hit */ 217 return 0; 218 } 219 220 /* 221 * Return total length of time extend and data, 222 * or just the event length for all other events. 223 */ 224 static inline unsigned 225 rb_event_ts_length(struct ring_buffer_event *event) 226 { 227 unsigned len = 0; 228 229 if (extended_time(event)) { 230 /* time extends include the data event after it */ 231 len = RB_LEN_TIME_EXTEND; 232 event = skip_time_extend(event); 233 } 234 return len + rb_event_length(event); 235 } 236 237 /** 238 * ring_buffer_event_length - return the length of the event 239 * @event: the event to get the length of 240 * 241 * Returns the size of the data load of a data event. 242 * If the event is something other than a data event, it 243 * returns the size of the event itself. With the exception 244 * of a TIME EXTEND, where it still returns the size of the 245 * data load of the data event after it. 246 */ 247 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 248 { 249 unsigned length; 250 251 if (extended_time(event)) 252 event = skip_time_extend(event); 253 254 length = rb_event_length(event); 255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 256 return length; 257 length -= RB_EVNT_HDR_SIZE; 258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 259 length -= sizeof(event->array[0]); 260 return length; 261 } 262 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 263 264 /* inline for ring buffer fast paths */ 265 static __always_inline void * 266 rb_event_data(struct ring_buffer_event *event) 267 { 268 if (extended_time(event)) 269 event = skip_time_extend(event); 270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 271 /* If length is in len field, then array[0] has the data */ 272 if (event->type_len) 273 return (void *)&event->array[0]; 274 /* Otherwise length is in array[0] and array[1] has the data */ 275 return (void *)&event->array[1]; 276 } 277 278 /** 279 * ring_buffer_event_data - return the data of the event 280 * @event: the event to get the data from 281 */ 282 void *ring_buffer_event_data(struct ring_buffer_event *event) 283 { 284 return rb_event_data(event); 285 } 286 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 287 288 #define for_each_buffer_cpu(buffer, cpu) \ 289 for_each_cpu(cpu, buffer->cpumask) 290 291 #define for_each_online_buffer_cpu(buffer, cpu) \ 292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 293 294 #define TS_SHIFT 27 295 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 296 #define TS_DELTA_TEST (~TS_MASK) 297 298 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 299 { 300 u64 ts; 301 302 ts = event->array[0]; 303 ts <<= TS_SHIFT; 304 ts += event->time_delta; 305 306 return ts; 307 } 308 309 /* Flag when events were overwritten */ 310 #define RB_MISSED_EVENTS (1 << 31) 311 /* Missed count stored at end */ 312 #define RB_MISSED_STORED (1 << 30) 313 314 struct buffer_data_page { 315 u64 time_stamp; /* page time stamp */ 316 local_t commit; /* write committed index */ 317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 318 }; 319 320 /* 321 * Note, the buffer_page list must be first. The buffer pages 322 * are allocated in cache lines, which means that each buffer 323 * page will be at the beginning of a cache line, and thus 324 * the least significant bits will be zero. We use this to 325 * add flags in the list struct pointers, to make the ring buffer 326 * lockless. 327 */ 328 struct buffer_page { 329 struct list_head list; /* list of buffer pages */ 330 local_t write; /* index for next write */ 331 unsigned read; /* index for next read */ 332 local_t entries; /* entries on this page */ 333 unsigned long real_end; /* real end of data */ 334 struct buffer_data_page *page; /* Actual data page */ 335 }; 336 337 /* 338 * The buffer page counters, write and entries, must be reset 339 * atomically when crossing page boundaries. To synchronize this 340 * update, two counters are inserted into the number. One is 341 * the actual counter for the write position or count on the page. 342 * 343 * The other is a counter of updaters. Before an update happens 344 * the update partition of the counter is incremented. This will 345 * allow the updater to update the counter atomically. 346 * 347 * The counter is 20 bits, and the state data is 12. 348 */ 349 #define RB_WRITE_MASK 0xfffff 350 #define RB_WRITE_INTCNT (1 << 20) 351 352 static void rb_init_page(struct buffer_data_page *bpage) 353 { 354 local_set(&bpage->commit, 0); 355 } 356 357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 358 { 359 return local_read(&bpage->page->commit); 360 } 361 362 static void free_buffer_page(struct buffer_page *bpage) 363 { 364 free_page((unsigned long)bpage->page); 365 kfree(bpage); 366 } 367 368 /* 369 * We need to fit the time_stamp delta into 27 bits. 370 */ 371 static inline bool test_time_stamp(u64 delta) 372 { 373 return !!(delta & TS_DELTA_TEST); 374 } 375 376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 377 378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 380 381 int ring_buffer_print_page_header(struct trace_seq *s) 382 { 383 struct buffer_data_page field; 384 385 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 386 "offset:0;\tsize:%u;\tsigned:%u;\n", 387 (unsigned int)sizeof(field.time_stamp), 388 (unsigned int)is_signed_type(u64)); 389 390 trace_seq_printf(s, "\tfield: local_t commit;\t" 391 "offset:%u;\tsize:%u;\tsigned:%u;\n", 392 (unsigned int)offsetof(typeof(field), commit), 393 (unsigned int)sizeof(field.commit), 394 (unsigned int)is_signed_type(long)); 395 396 trace_seq_printf(s, "\tfield: int overwrite;\t" 397 "offset:%u;\tsize:%u;\tsigned:%u;\n", 398 (unsigned int)offsetof(typeof(field), commit), 399 1, 400 (unsigned int)is_signed_type(long)); 401 402 trace_seq_printf(s, "\tfield: char data;\t" 403 "offset:%u;\tsize:%u;\tsigned:%u;\n", 404 (unsigned int)offsetof(typeof(field), data), 405 (unsigned int)BUF_PAGE_SIZE, 406 (unsigned int)is_signed_type(char)); 407 408 return !trace_seq_has_overflowed(s); 409 } 410 411 struct rb_irq_work { 412 struct irq_work work; 413 wait_queue_head_t waiters; 414 wait_queue_head_t full_waiters; 415 long wait_index; 416 bool waiters_pending; 417 bool full_waiters_pending; 418 bool wakeup_full; 419 }; 420 421 /* 422 * Structure to hold event state and handle nested events. 423 */ 424 struct rb_event_info { 425 u64 ts; 426 u64 delta; 427 u64 before; 428 u64 after; 429 unsigned long length; 430 struct buffer_page *tail_page; 431 int add_timestamp; 432 }; 433 434 /* 435 * Used for the add_timestamp 436 * NONE 437 * EXTEND - wants a time extend 438 * ABSOLUTE - the buffer requests all events to have absolute time stamps 439 * FORCE - force a full time stamp. 440 */ 441 enum { 442 RB_ADD_STAMP_NONE = 0, 443 RB_ADD_STAMP_EXTEND = BIT(1), 444 RB_ADD_STAMP_ABSOLUTE = BIT(2), 445 RB_ADD_STAMP_FORCE = BIT(3) 446 }; 447 /* 448 * Used for which event context the event is in. 449 * TRANSITION = 0 450 * NMI = 1 451 * IRQ = 2 452 * SOFTIRQ = 3 453 * NORMAL = 4 454 * 455 * See trace_recursive_lock() comment below for more details. 456 */ 457 enum { 458 RB_CTX_TRANSITION, 459 RB_CTX_NMI, 460 RB_CTX_IRQ, 461 RB_CTX_SOFTIRQ, 462 RB_CTX_NORMAL, 463 RB_CTX_MAX 464 }; 465 466 #if BITS_PER_LONG == 32 467 #define RB_TIME_32 468 #endif 469 470 /* To test on 64 bit machines */ 471 //#define RB_TIME_32 472 473 #ifdef RB_TIME_32 474 475 struct rb_time_struct { 476 local_t cnt; 477 local_t top; 478 local_t bottom; 479 local_t msb; 480 }; 481 #else 482 #include <asm/local64.h> 483 struct rb_time_struct { 484 local64_t time; 485 }; 486 #endif 487 typedef struct rb_time_struct rb_time_t; 488 489 #define MAX_NEST 5 490 491 /* 492 * head_page == tail_page && head == tail then buffer is empty. 493 */ 494 struct ring_buffer_per_cpu { 495 int cpu; 496 atomic_t record_disabled; 497 atomic_t resize_disabled; 498 struct trace_buffer *buffer; 499 raw_spinlock_t reader_lock; /* serialize readers */ 500 arch_spinlock_t lock; 501 struct lock_class_key lock_key; 502 struct buffer_data_page *free_page; 503 unsigned long nr_pages; 504 unsigned int current_context; 505 struct list_head *pages; 506 struct buffer_page *head_page; /* read from head */ 507 struct buffer_page *tail_page; /* write to tail */ 508 struct buffer_page *commit_page; /* committed pages */ 509 struct buffer_page *reader_page; 510 unsigned long lost_events; 511 unsigned long last_overrun; 512 unsigned long nest; 513 local_t entries_bytes; 514 local_t entries; 515 local_t overrun; 516 local_t commit_overrun; 517 local_t dropped_events; 518 local_t committing; 519 local_t commits; 520 local_t pages_touched; 521 local_t pages_lost; 522 local_t pages_read; 523 long last_pages_touch; 524 size_t shortest_full; 525 unsigned long read; 526 unsigned long read_bytes; 527 rb_time_t write_stamp; 528 rb_time_t before_stamp; 529 u64 event_stamp[MAX_NEST]; 530 u64 read_stamp; 531 /* pages removed since last reset */ 532 unsigned long pages_removed; 533 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 534 long nr_pages_to_update; 535 struct list_head new_pages; /* new pages to add */ 536 struct work_struct update_pages_work; 537 struct completion update_done; 538 539 struct rb_irq_work irq_work; 540 }; 541 542 struct trace_buffer { 543 unsigned flags; 544 int cpus; 545 atomic_t record_disabled; 546 atomic_t resizing; 547 cpumask_var_t cpumask; 548 549 struct lock_class_key *reader_lock_key; 550 551 struct mutex mutex; 552 553 struct ring_buffer_per_cpu **buffers; 554 555 struct hlist_node node; 556 u64 (*clock)(void); 557 558 struct rb_irq_work irq_work; 559 bool time_stamp_abs; 560 }; 561 562 struct ring_buffer_iter { 563 struct ring_buffer_per_cpu *cpu_buffer; 564 unsigned long head; 565 unsigned long next_event; 566 struct buffer_page *head_page; 567 struct buffer_page *cache_reader_page; 568 unsigned long cache_read; 569 unsigned long cache_pages_removed; 570 u64 read_stamp; 571 u64 page_stamp; 572 struct ring_buffer_event *event; 573 int missed_events; 574 }; 575 576 #ifdef RB_TIME_32 577 578 /* 579 * On 32 bit machines, local64_t is very expensive. As the ring 580 * buffer doesn't need all the features of a true 64 bit atomic, 581 * on 32 bit, it uses these functions (64 still uses local64_t). 582 * 583 * For the ring buffer, 64 bit required operations for the time is 584 * the following: 585 * 586 * - Reads may fail if it interrupted a modification of the time stamp. 587 * It will succeed if it did not interrupt another write even if 588 * the read itself is interrupted by a write. 589 * It returns whether it was successful or not. 590 * 591 * - Writes always succeed and will overwrite other writes and writes 592 * that were done by events interrupting the current write. 593 * 594 * - A write followed by a read of the same time stamp will always succeed, 595 * but may not contain the same value. 596 * 597 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 598 * Other than that, it acts like a normal cmpxchg. 599 * 600 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 601 * (bottom being the least significant 30 bits of the 60 bit time stamp). 602 * 603 * The two most significant bits of each half holds a 2 bit counter (0-3). 604 * Each update will increment this counter by one. 605 * When reading the top and bottom, if the two counter bits match then the 606 * top and bottom together make a valid 60 bit number. 607 */ 608 #define RB_TIME_SHIFT 30 609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 610 #define RB_TIME_MSB_SHIFT 60 611 612 static inline int rb_time_cnt(unsigned long val) 613 { 614 return (val >> RB_TIME_SHIFT) & 3; 615 } 616 617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 618 { 619 u64 val; 620 621 val = top & RB_TIME_VAL_MASK; 622 val <<= RB_TIME_SHIFT; 623 val |= bottom & RB_TIME_VAL_MASK; 624 625 return val; 626 } 627 628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 629 { 630 unsigned long top, bottom, msb; 631 unsigned long c; 632 633 /* 634 * If the read is interrupted by a write, then the cnt will 635 * be different. Loop until both top and bottom have been read 636 * without interruption. 637 */ 638 do { 639 c = local_read(&t->cnt); 640 top = local_read(&t->top); 641 bottom = local_read(&t->bottom); 642 msb = local_read(&t->msb); 643 } while (c != local_read(&t->cnt)); 644 645 *cnt = rb_time_cnt(top); 646 647 /* If top, msb or bottom counts don't match, this interrupted a write */ 648 if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom)) 649 return false; 650 651 /* The shift to msb will lose its cnt bits */ 652 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT); 653 return true; 654 } 655 656 static bool rb_time_read(rb_time_t *t, u64 *ret) 657 { 658 unsigned long cnt; 659 660 return __rb_time_read(t, ret, &cnt); 661 } 662 663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 664 { 665 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 666 } 667 668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom, 669 unsigned long *msb) 670 { 671 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 672 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 673 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT); 674 } 675 676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 677 { 678 val = rb_time_val_cnt(val, cnt); 679 local_set(t, val); 680 } 681 682 static void rb_time_set(rb_time_t *t, u64 val) 683 { 684 unsigned long cnt, top, bottom, msb; 685 686 rb_time_split(val, &top, &bottom, &msb); 687 688 /* Writes always succeed with a valid number even if it gets interrupted. */ 689 do { 690 cnt = local_inc_return(&t->cnt); 691 rb_time_val_set(&t->top, top, cnt); 692 rb_time_val_set(&t->bottom, bottom, cnt); 693 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt); 694 } while (cnt != local_read(&t->cnt)); 695 } 696 697 static inline bool 698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 699 { 700 return local_try_cmpxchg(l, &expect, set); 701 } 702 703 #else /* 64 bits */ 704 705 /* local64_t always succeeds */ 706 707 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 708 { 709 *ret = local64_read(&t->time); 710 return true; 711 } 712 static void rb_time_set(rb_time_t *t, u64 val) 713 { 714 local64_set(&t->time, val); 715 } 716 #endif 717 718 /* 719 * Enable this to make sure that the event passed to 720 * ring_buffer_event_time_stamp() is not committed and also 721 * is on the buffer that it passed in. 722 */ 723 //#define RB_VERIFY_EVENT 724 #ifdef RB_VERIFY_EVENT 725 static struct list_head *rb_list_head(struct list_head *list); 726 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 727 void *event) 728 { 729 struct buffer_page *page = cpu_buffer->commit_page; 730 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 731 struct list_head *next; 732 long commit, write; 733 unsigned long addr = (unsigned long)event; 734 bool done = false; 735 int stop = 0; 736 737 /* Make sure the event exists and is not committed yet */ 738 do { 739 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 740 done = true; 741 commit = local_read(&page->page->commit); 742 write = local_read(&page->write); 743 if (addr >= (unsigned long)&page->page->data[commit] && 744 addr < (unsigned long)&page->page->data[write]) 745 return; 746 747 next = rb_list_head(page->list.next); 748 page = list_entry(next, struct buffer_page, list); 749 } while (!done); 750 WARN_ON_ONCE(1); 751 } 752 #else 753 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 754 void *event) 755 { 756 } 757 #endif 758 759 /* 760 * The absolute time stamp drops the 5 MSBs and some clocks may 761 * require them. The rb_fix_abs_ts() will take a previous full 762 * time stamp, and add the 5 MSB of that time stamp on to the 763 * saved absolute time stamp. Then they are compared in case of 764 * the unlikely event that the latest time stamp incremented 765 * the 5 MSB. 766 */ 767 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 768 { 769 if (save_ts & TS_MSB) { 770 abs |= save_ts & TS_MSB; 771 /* Check for overflow */ 772 if (unlikely(abs < save_ts)) 773 abs += 1ULL << 59; 774 } 775 return abs; 776 } 777 778 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 779 780 /** 781 * ring_buffer_event_time_stamp - return the event's current time stamp 782 * @buffer: The buffer that the event is on 783 * @event: the event to get the time stamp of 784 * 785 * Note, this must be called after @event is reserved, and before it is 786 * committed to the ring buffer. And must be called from the same 787 * context where the event was reserved (normal, softirq, irq, etc). 788 * 789 * Returns the time stamp associated with the current event. 790 * If the event has an extended time stamp, then that is used as 791 * the time stamp to return. 792 * In the highly unlikely case that the event was nested more than 793 * the max nesting, then the write_stamp of the buffer is returned, 794 * otherwise current time is returned, but that really neither of 795 * the last two cases should ever happen. 796 */ 797 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 798 struct ring_buffer_event *event) 799 { 800 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 801 unsigned int nest; 802 u64 ts; 803 804 /* If the event includes an absolute time, then just use that */ 805 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 806 ts = rb_event_time_stamp(event); 807 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 808 } 809 810 nest = local_read(&cpu_buffer->committing); 811 verify_event(cpu_buffer, event); 812 if (WARN_ON_ONCE(!nest)) 813 goto fail; 814 815 /* Read the current saved nesting level time stamp */ 816 if (likely(--nest < MAX_NEST)) 817 return cpu_buffer->event_stamp[nest]; 818 819 /* Shouldn't happen, warn if it does */ 820 WARN_ONCE(1, "nest (%d) greater than max", nest); 821 822 fail: 823 /* Can only fail on 32 bit */ 824 if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) 825 /* Screw it, just read the current time */ 826 ts = rb_time_stamp(cpu_buffer->buffer); 827 828 return ts; 829 } 830 831 /** 832 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 833 * @buffer: The ring_buffer to get the number of pages from 834 * @cpu: The cpu of the ring_buffer to get the number of pages from 835 * 836 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 837 */ 838 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 839 { 840 return buffer->buffers[cpu]->nr_pages; 841 } 842 843 /** 844 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 845 * @buffer: The ring_buffer to get the number of pages from 846 * @cpu: The cpu of the ring_buffer to get the number of pages from 847 * 848 * Returns the number of pages that have content in the ring buffer. 849 */ 850 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 851 { 852 size_t read; 853 size_t lost; 854 size_t cnt; 855 856 read = local_read(&buffer->buffers[cpu]->pages_read); 857 lost = local_read(&buffer->buffers[cpu]->pages_lost); 858 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 859 860 if (WARN_ON_ONCE(cnt < lost)) 861 return 0; 862 863 cnt -= lost; 864 865 /* The reader can read an empty page, but not more than that */ 866 if (cnt < read) { 867 WARN_ON_ONCE(read > cnt + 1); 868 return 0; 869 } 870 871 return cnt - read; 872 } 873 874 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 875 { 876 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 877 size_t nr_pages; 878 size_t dirty; 879 880 nr_pages = cpu_buffer->nr_pages; 881 if (!nr_pages || !full) 882 return true; 883 884 /* 885 * Add one as dirty will never equal nr_pages, as the sub-buffer 886 * that the writer is on is not counted as dirty. 887 * This is needed if "buffer_percent" is set to 100. 888 */ 889 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 890 891 return (dirty * 100) >= (full * nr_pages); 892 } 893 894 /* 895 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 896 * 897 * Schedules a delayed work to wake up any task that is blocked on the 898 * ring buffer waiters queue. 899 */ 900 static void rb_wake_up_waiters(struct irq_work *work) 901 { 902 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 903 904 wake_up_all(&rbwork->waiters); 905 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 906 rbwork->wakeup_full = false; 907 rbwork->full_waiters_pending = false; 908 wake_up_all(&rbwork->full_waiters); 909 } 910 } 911 912 /** 913 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 914 * @buffer: The ring buffer to wake waiters on 915 * @cpu: The CPU buffer to wake waiters on 916 * 917 * In the case of a file that represents a ring buffer is closing, 918 * it is prudent to wake up any waiters that are on this. 919 */ 920 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 921 { 922 struct ring_buffer_per_cpu *cpu_buffer; 923 struct rb_irq_work *rbwork; 924 925 if (!buffer) 926 return; 927 928 if (cpu == RING_BUFFER_ALL_CPUS) { 929 930 /* Wake up individual ones too. One level recursion */ 931 for_each_buffer_cpu(buffer, cpu) 932 ring_buffer_wake_waiters(buffer, cpu); 933 934 rbwork = &buffer->irq_work; 935 } else { 936 if (WARN_ON_ONCE(!buffer->buffers)) 937 return; 938 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 939 return; 940 941 cpu_buffer = buffer->buffers[cpu]; 942 /* The CPU buffer may not have been initialized yet */ 943 if (!cpu_buffer) 944 return; 945 rbwork = &cpu_buffer->irq_work; 946 } 947 948 rbwork->wait_index++; 949 /* make sure the waiters see the new index */ 950 smp_wmb(); 951 952 /* This can be called in any context */ 953 irq_work_queue(&rbwork->work); 954 } 955 956 /** 957 * ring_buffer_wait - wait for input to the ring buffer 958 * @buffer: buffer to wait on 959 * @cpu: the cpu buffer to wait on 960 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 961 * 962 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 963 * as data is added to any of the @buffer's cpu buffers. Otherwise 964 * it will wait for data to be added to a specific cpu buffer. 965 */ 966 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 967 { 968 struct ring_buffer_per_cpu *cpu_buffer; 969 DEFINE_WAIT(wait); 970 struct rb_irq_work *work; 971 long wait_index; 972 int ret = 0; 973 974 /* 975 * Depending on what the caller is waiting for, either any 976 * data in any cpu buffer, or a specific buffer, put the 977 * caller on the appropriate wait queue. 978 */ 979 if (cpu == RING_BUFFER_ALL_CPUS) { 980 work = &buffer->irq_work; 981 /* Full only makes sense on per cpu reads */ 982 full = 0; 983 } else { 984 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 985 return -ENODEV; 986 cpu_buffer = buffer->buffers[cpu]; 987 work = &cpu_buffer->irq_work; 988 } 989 990 wait_index = READ_ONCE(work->wait_index); 991 992 while (true) { 993 if (full) 994 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 995 else 996 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 997 998 /* 999 * The events can happen in critical sections where 1000 * checking a work queue can cause deadlocks. 1001 * After adding a task to the queue, this flag is set 1002 * only to notify events to try to wake up the queue 1003 * using irq_work. 1004 * 1005 * We don't clear it even if the buffer is no longer 1006 * empty. The flag only causes the next event to run 1007 * irq_work to do the work queue wake up. The worse 1008 * that can happen if we race with !trace_empty() is that 1009 * an event will cause an irq_work to try to wake up 1010 * an empty queue. 1011 * 1012 * There's no reason to protect this flag either, as 1013 * the work queue and irq_work logic will do the necessary 1014 * synchronization for the wake ups. The only thing 1015 * that is necessary is that the wake up happens after 1016 * a task has been queued. It's OK for spurious wake ups. 1017 */ 1018 if (full) 1019 work->full_waiters_pending = true; 1020 else 1021 work->waiters_pending = true; 1022 1023 if (signal_pending(current)) { 1024 ret = -EINTR; 1025 break; 1026 } 1027 1028 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 1029 break; 1030 1031 if (cpu != RING_BUFFER_ALL_CPUS && 1032 !ring_buffer_empty_cpu(buffer, cpu)) { 1033 unsigned long flags; 1034 bool pagebusy; 1035 bool done; 1036 1037 if (!full) 1038 break; 1039 1040 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1041 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 1042 done = !pagebusy && full_hit(buffer, cpu, full); 1043 1044 if (!cpu_buffer->shortest_full || 1045 cpu_buffer->shortest_full > full) 1046 cpu_buffer->shortest_full = full; 1047 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1048 if (done) 1049 break; 1050 } 1051 1052 schedule(); 1053 1054 /* Make sure to see the new wait index */ 1055 smp_rmb(); 1056 if (wait_index != work->wait_index) 1057 break; 1058 } 1059 1060 if (full) 1061 finish_wait(&work->full_waiters, &wait); 1062 else 1063 finish_wait(&work->waiters, &wait); 1064 1065 return ret; 1066 } 1067 1068 /** 1069 * ring_buffer_poll_wait - poll on buffer input 1070 * @buffer: buffer to wait on 1071 * @cpu: the cpu buffer to wait on 1072 * @filp: the file descriptor 1073 * @poll_table: The poll descriptor 1074 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1075 * 1076 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1077 * as data is added to any of the @buffer's cpu buffers. Otherwise 1078 * it will wait for data to be added to a specific cpu buffer. 1079 * 1080 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1081 * zero otherwise. 1082 */ 1083 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1084 struct file *filp, poll_table *poll_table, int full) 1085 { 1086 struct ring_buffer_per_cpu *cpu_buffer; 1087 struct rb_irq_work *work; 1088 1089 if (cpu == RING_BUFFER_ALL_CPUS) { 1090 work = &buffer->irq_work; 1091 full = 0; 1092 } else { 1093 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1094 return -EINVAL; 1095 1096 cpu_buffer = buffer->buffers[cpu]; 1097 work = &cpu_buffer->irq_work; 1098 } 1099 1100 if (full) { 1101 poll_wait(filp, &work->full_waiters, poll_table); 1102 work->full_waiters_pending = true; 1103 if (!cpu_buffer->shortest_full || 1104 cpu_buffer->shortest_full > full) 1105 cpu_buffer->shortest_full = full; 1106 } else { 1107 poll_wait(filp, &work->waiters, poll_table); 1108 work->waiters_pending = true; 1109 } 1110 1111 /* 1112 * There's a tight race between setting the waiters_pending and 1113 * checking if the ring buffer is empty. Once the waiters_pending bit 1114 * is set, the next event will wake the task up, but we can get stuck 1115 * if there's only a single event in. 1116 * 1117 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1118 * but adding a memory barrier to all events will cause too much of a 1119 * performance hit in the fast path. We only need a memory barrier when 1120 * the buffer goes from empty to having content. But as this race is 1121 * extremely small, and it's not a problem if another event comes in, we 1122 * will fix it later. 1123 */ 1124 smp_mb(); 1125 1126 if (full) 1127 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0; 1128 1129 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1130 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1131 return EPOLLIN | EPOLLRDNORM; 1132 return 0; 1133 } 1134 1135 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1136 #define RB_WARN_ON(b, cond) \ 1137 ({ \ 1138 int _____ret = unlikely(cond); \ 1139 if (_____ret) { \ 1140 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1141 struct ring_buffer_per_cpu *__b = \ 1142 (void *)b; \ 1143 atomic_inc(&__b->buffer->record_disabled); \ 1144 } else \ 1145 atomic_inc(&b->record_disabled); \ 1146 WARN_ON(1); \ 1147 } \ 1148 _____ret; \ 1149 }) 1150 1151 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1152 #define DEBUG_SHIFT 0 1153 1154 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1155 { 1156 u64 ts; 1157 1158 /* Skip retpolines :-( */ 1159 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1160 ts = trace_clock_local(); 1161 else 1162 ts = buffer->clock(); 1163 1164 /* shift to debug/test normalization and TIME_EXTENTS */ 1165 return ts << DEBUG_SHIFT; 1166 } 1167 1168 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1169 { 1170 u64 time; 1171 1172 preempt_disable_notrace(); 1173 time = rb_time_stamp(buffer); 1174 preempt_enable_notrace(); 1175 1176 return time; 1177 } 1178 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1179 1180 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1181 int cpu, u64 *ts) 1182 { 1183 /* Just stupid testing the normalize function and deltas */ 1184 *ts >>= DEBUG_SHIFT; 1185 } 1186 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1187 1188 /* 1189 * Making the ring buffer lockless makes things tricky. 1190 * Although writes only happen on the CPU that they are on, 1191 * and they only need to worry about interrupts. Reads can 1192 * happen on any CPU. 1193 * 1194 * The reader page is always off the ring buffer, but when the 1195 * reader finishes with a page, it needs to swap its page with 1196 * a new one from the buffer. The reader needs to take from 1197 * the head (writes go to the tail). But if a writer is in overwrite 1198 * mode and wraps, it must push the head page forward. 1199 * 1200 * Here lies the problem. 1201 * 1202 * The reader must be careful to replace only the head page, and 1203 * not another one. As described at the top of the file in the 1204 * ASCII art, the reader sets its old page to point to the next 1205 * page after head. It then sets the page after head to point to 1206 * the old reader page. But if the writer moves the head page 1207 * during this operation, the reader could end up with the tail. 1208 * 1209 * We use cmpxchg to help prevent this race. We also do something 1210 * special with the page before head. We set the LSB to 1. 1211 * 1212 * When the writer must push the page forward, it will clear the 1213 * bit that points to the head page, move the head, and then set 1214 * the bit that points to the new head page. 1215 * 1216 * We also don't want an interrupt coming in and moving the head 1217 * page on another writer. Thus we use the second LSB to catch 1218 * that too. Thus: 1219 * 1220 * head->list->prev->next bit 1 bit 0 1221 * ------- ------- 1222 * Normal page 0 0 1223 * Points to head page 0 1 1224 * New head page 1 0 1225 * 1226 * Note we can not trust the prev pointer of the head page, because: 1227 * 1228 * +----+ +-----+ +-----+ 1229 * | |------>| T |---X--->| N | 1230 * | |<------| | | | 1231 * +----+ +-----+ +-----+ 1232 * ^ ^ | 1233 * | +-----+ | | 1234 * +----------| R |----------+ | 1235 * | |<-----------+ 1236 * +-----+ 1237 * 1238 * Key: ---X--> HEAD flag set in pointer 1239 * T Tail page 1240 * R Reader page 1241 * N Next page 1242 * 1243 * (see __rb_reserve_next() to see where this happens) 1244 * 1245 * What the above shows is that the reader just swapped out 1246 * the reader page with a page in the buffer, but before it 1247 * could make the new header point back to the new page added 1248 * it was preempted by a writer. The writer moved forward onto 1249 * the new page added by the reader and is about to move forward 1250 * again. 1251 * 1252 * You can see, it is legitimate for the previous pointer of 1253 * the head (or any page) not to point back to itself. But only 1254 * temporarily. 1255 */ 1256 1257 #define RB_PAGE_NORMAL 0UL 1258 #define RB_PAGE_HEAD 1UL 1259 #define RB_PAGE_UPDATE 2UL 1260 1261 1262 #define RB_FLAG_MASK 3UL 1263 1264 /* PAGE_MOVED is not part of the mask */ 1265 #define RB_PAGE_MOVED 4UL 1266 1267 /* 1268 * rb_list_head - remove any bit 1269 */ 1270 static struct list_head *rb_list_head(struct list_head *list) 1271 { 1272 unsigned long val = (unsigned long)list; 1273 1274 return (struct list_head *)(val & ~RB_FLAG_MASK); 1275 } 1276 1277 /* 1278 * rb_is_head_page - test if the given page is the head page 1279 * 1280 * Because the reader may move the head_page pointer, we can 1281 * not trust what the head page is (it may be pointing to 1282 * the reader page). But if the next page is a header page, 1283 * its flags will be non zero. 1284 */ 1285 static inline int 1286 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1287 { 1288 unsigned long val; 1289 1290 val = (unsigned long)list->next; 1291 1292 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1293 return RB_PAGE_MOVED; 1294 1295 return val & RB_FLAG_MASK; 1296 } 1297 1298 /* 1299 * rb_is_reader_page 1300 * 1301 * The unique thing about the reader page, is that, if the 1302 * writer is ever on it, the previous pointer never points 1303 * back to the reader page. 1304 */ 1305 static bool rb_is_reader_page(struct buffer_page *page) 1306 { 1307 struct list_head *list = page->list.prev; 1308 1309 return rb_list_head(list->next) != &page->list; 1310 } 1311 1312 /* 1313 * rb_set_list_to_head - set a list_head to be pointing to head. 1314 */ 1315 static void rb_set_list_to_head(struct list_head *list) 1316 { 1317 unsigned long *ptr; 1318 1319 ptr = (unsigned long *)&list->next; 1320 *ptr |= RB_PAGE_HEAD; 1321 *ptr &= ~RB_PAGE_UPDATE; 1322 } 1323 1324 /* 1325 * rb_head_page_activate - sets up head page 1326 */ 1327 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1328 { 1329 struct buffer_page *head; 1330 1331 head = cpu_buffer->head_page; 1332 if (!head) 1333 return; 1334 1335 /* 1336 * Set the previous list pointer to have the HEAD flag. 1337 */ 1338 rb_set_list_to_head(head->list.prev); 1339 } 1340 1341 static void rb_list_head_clear(struct list_head *list) 1342 { 1343 unsigned long *ptr = (unsigned long *)&list->next; 1344 1345 *ptr &= ~RB_FLAG_MASK; 1346 } 1347 1348 /* 1349 * rb_head_page_deactivate - clears head page ptr (for free list) 1350 */ 1351 static void 1352 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1353 { 1354 struct list_head *hd; 1355 1356 /* Go through the whole list and clear any pointers found. */ 1357 rb_list_head_clear(cpu_buffer->pages); 1358 1359 list_for_each(hd, cpu_buffer->pages) 1360 rb_list_head_clear(hd); 1361 } 1362 1363 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1364 struct buffer_page *head, 1365 struct buffer_page *prev, 1366 int old_flag, int new_flag) 1367 { 1368 struct list_head *list; 1369 unsigned long val = (unsigned long)&head->list; 1370 unsigned long ret; 1371 1372 list = &prev->list; 1373 1374 val &= ~RB_FLAG_MASK; 1375 1376 ret = cmpxchg((unsigned long *)&list->next, 1377 val | old_flag, val | new_flag); 1378 1379 /* check if the reader took the page */ 1380 if ((ret & ~RB_FLAG_MASK) != val) 1381 return RB_PAGE_MOVED; 1382 1383 return ret & RB_FLAG_MASK; 1384 } 1385 1386 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1387 struct buffer_page *head, 1388 struct buffer_page *prev, 1389 int old_flag) 1390 { 1391 return rb_head_page_set(cpu_buffer, head, prev, 1392 old_flag, RB_PAGE_UPDATE); 1393 } 1394 1395 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1396 struct buffer_page *head, 1397 struct buffer_page *prev, 1398 int old_flag) 1399 { 1400 return rb_head_page_set(cpu_buffer, head, prev, 1401 old_flag, RB_PAGE_HEAD); 1402 } 1403 1404 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1405 struct buffer_page *head, 1406 struct buffer_page *prev, 1407 int old_flag) 1408 { 1409 return rb_head_page_set(cpu_buffer, head, prev, 1410 old_flag, RB_PAGE_NORMAL); 1411 } 1412 1413 static inline void rb_inc_page(struct buffer_page **bpage) 1414 { 1415 struct list_head *p = rb_list_head((*bpage)->list.next); 1416 1417 *bpage = list_entry(p, struct buffer_page, list); 1418 } 1419 1420 static struct buffer_page * 1421 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1422 { 1423 struct buffer_page *head; 1424 struct buffer_page *page; 1425 struct list_head *list; 1426 int i; 1427 1428 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1429 return NULL; 1430 1431 /* sanity check */ 1432 list = cpu_buffer->pages; 1433 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1434 return NULL; 1435 1436 page = head = cpu_buffer->head_page; 1437 /* 1438 * It is possible that the writer moves the header behind 1439 * where we started, and we miss in one loop. 1440 * A second loop should grab the header, but we'll do 1441 * three loops just because I'm paranoid. 1442 */ 1443 for (i = 0; i < 3; i++) { 1444 do { 1445 if (rb_is_head_page(page, page->list.prev)) { 1446 cpu_buffer->head_page = page; 1447 return page; 1448 } 1449 rb_inc_page(&page); 1450 } while (page != head); 1451 } 1452 1453 RB_WARN_ON(cpu_buffer, 1); 1454 1455 return NULL; 1456 } 1457 1458 static bool rb_head_page_replace(struct buffer_page *old, 1459 struct buffer_page *new) 1460 { 1461 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1462 unsigned long val; 1463 1464 val = *ptr & ~RB_FLAG_MASK; 1465 val |= RB_PAGE_HEAD; 1466 1467 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1468 } 1469 1470 /* 1471 * rb_tail_page_update - move the tail page forward 1472 */ 1473 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1474 struct buffer_page *tail_page, 1475 struct buffer_page *next_page) 1476 { 1477 unsigned long old_entries; 1478 unsigned long old_write; 1479 1480 /* 1481 * The tail page now needs to be moved forward. 1482 * 1483 * We need to reset the tail page, but without messing 1484 * with possible erasing of data brought in by interrupts 1485 * that have moved the tail page and are currently on it. 1486 * 1487 * We add a counter to the write field to denote this. 1488 */ 1489 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1490 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1491 1492 local_inc(&cpu_buffer->pages_touched); 1493 /* 1494 * Just make sure we have seen our old_write and synchronize 1495 * with any interrupts that come in. 1496 */ 1497 barrier(); 1498 1499 /* 1500 * If the tail page is still the same as what we think 1501 * it is, then it is up to us to update the tail 1502 * pointer. 1503 */ 1504 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1505 /* Zero the write counter */ 1506 unsigned long val = old_write & ~RB_WRITE_MASK; 1507 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1508 1509 /* 1510 * This will only succeed if an interrupt did 1511 * not come in and change it. In which case, we 1512 * do not want to modify it. 1513 * 1514 * We add (void) to let the compiler know that we do not care 1515 * about the return value of these functions. We use the 1516 * cmpxchg to only update if an interrupt did not already 1517 * do it for us. If the cmpxchg fails, we don't care. 1518 */ 1519 (void)local_cmpxchg(&next_page->write, old_write, val); 1520 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1521 1522 /* 1523 * No need to worry about races with clearing out the commit. 1524 * it only can increment when a commit takes place. But that 1525 * only happens in the outer most nested commit. 1526 */ 1527 local_set(&next_page->page->commit, 0); 1528 1529 /* Again, either we update tail_page or an interrupt does */ 1530 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1531 } 1532 } 1533 1534 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1535 struct buffer_page *bpage) 1536 { 1537 unsigned long val = (unsigned long)bpage; 1538 1539 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1540 } 1541 1542 /** 1543 * rb_check_pages - integrity check of buffer pages 1544 * @cpu_buffer: CPU buffer with pages to test 1545 * 1546 * As a safety measure we check to make sure the data pages have not 1547 * been corrupted. 1548 */ 1549 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1550 { 1551 struct list_head *head = rb_list_head(cpu_buffer->pages); 1552 struct list_head *tmp; 1553 1554 if (RB_WARN_ON(cpu_buffer, 1555 rb_list_head(rb_list_head(head->next)->prev) != head)) 1556 return; 1557 1558 if (RB_WARN_ON(cpu_buffer, 1559 rb_list_head(rb_list_head(head->prev)->next) != head)) 1560 return; 1561 1562 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { 1563 if (RB_WARN_ON(cpu_buffer, 1564 rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) 1565 return; 1566 1567 if (RB_WARN_ON(cpu_buffer, 1568 rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) 1569 return; 1570 } 1571 } 1572 1573 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1574 long nr_pages, struct list_head *pages) 1575 { 1576 struct buffer_page *bpage, *tmp; 1577 bool user_thread = current->mm != NULL; 1578 gfp_t mflags; 1579 long i; 1580 1581 /* 1582 * Check if the available memory is there first. 1583 * Note, si_mem_available() only gives us a rough estimate of available 1584 * memory. It may not be accurate. But we don't care, we just want 1585 * to prevent doing any allocation when it is obvious that it is 1586 * not going to succeed. 1587 */ 1588 i = si_mem_available(); 1589 if (i < nr_pages) 1590 return -ENOMEM; 1591 1592 /* 1593 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1594 * gracefully without invoking oom-killer and the system is not 1595 * destabilized. 1596 */ 1597 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1598 1599 /* 1600 * If a user thread allocates too much, and si_mem_available() 1601 * reports there's enough memory, even though there is not. 1602 * Make sure the OOM killer kills this thread. This can happen 1603 * even with RETRY_MAYFAIL because another task may be doing 1604 * an allocation after this task has taken all memory. 1605 * This is the task the OOM killer needs to take out during this 1606 * loop, even if it was triggered by an allocation somewhere else. 1607 */ 1608 if (user_thread) 1609 set_current_oom_origin(); 1610 for (i = 0; i < nr_pages; i++) { 1611 struct page *page; 1612 1613 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1614 mflags, cpu_to_node(cpu_buffer->cpu)); 1615 if (!bpage) 1616 goto free_pages; 1617 1618 rb_check_bpage(cpu_buffer, bpage); 1619 1620 list_add(&bpage->list, pages); 1621 1622 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); 1623 if (!page) 1624 goto free_pages; 1625 bpage->page = page_address(page); 1626 rb_init_page(bpage->page); 1627 1628 if (user_thread && fatal_signal_pending(current)) 1629 goto free_pages; 1630 } 1631 if (user_thread) 1632 clear_current_oom_origin(); 1633 1634 return 0; 1635 1636 free_pages: 1637 list_for_each_entry_safe(bpage, tmp, pages, list) { 1638 list_del_init(&bpage->list); 1639 free_buffer_page(bpage); 1640 } 1641 if (user_thread) 1642 clear_current_oom_origin(); 1643 1644 return -ENOMEM; 1645 } 1646 1647 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1648 unsigned long nr_pages) 1649 { 1650 LIST_HEAD(pages); 1651 1652 WARN_ON(!nr_pages); 1653 1654 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 1655 return -ENOMEM; 1656 1657 /* 1658 * The ring buffer page list is a circular list that does not 1659 * start and end with a list head. All page list items point to 1660 * other pages. 1661 */ 1662 cpu_buffer->pages = pages.next; 1663 list_del(&pages); 1664 1665 cpu_buffer->nr_pages = nr_pages; 1666 1667 rb_check_pages(cpu_buffer); 1668 1669 return 0; 1670 } 1671 1672 static struct ring_buffer_per_cpu * 1673 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1674 { 1675 struct ring_buffer_per_cpu *cpu_buffer; 1676 struct buffer_page *bpage; 1677 struct page *page; 1678 int ret; 1679 1680 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1681 GFP_KERNEL, cpu_to_node(cpu)); 1682 if (!cpu_buffer) 1683 return NULL; 1684 1685 cpu_buffer->cpu = cpu; 1686 cpu_buffer->buffer = buffer; 1687 raw_spin_lock_init(&cpu_buffer->reader_lock); 1688 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1689 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1690 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1691 init_completion(&cpu_buffer->update_done); 1692 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1693 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1694 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1695 1696 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1697 GFP_KERNEL, cpu_to_node(cpu)); 1698 if (!bpage) 1699 goto fail_free_buffer; 1700 1701 rb_check_bpage(cpu_buffer, bpage); 1702 1703 cpu_buffer->reader_page = bpage; 1704 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1705 if (!page) 1706 goto fail_free_reader; 1707 bpage->page = page_address(page); 1708 rb_init_page(bpage->page); 1709 1710 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1711 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1712 1713 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1714 if (ret < 0) 1715 goto fail_free_reader; 1716 1717 cpu_buffer->head_page 1718 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1719 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1720 1721 rb_head_page_activate(cpu_buffer); 1722 1723 return cpu_buffer; 1724 1725 fail_free_reader: 1726 free_buffer_page(cpu_buffer->reader_page); 1727 1728 fail_free_buffer: 1729 kfree(cpu_buffer); 1730 return NULL; 1731 } 1732 1733 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1734 { 1735 struct list_head *head = cpu_buffer->pages; 1736 struct buffer_page *bpage, *tmp; 1737 1738 irq_work_sync(&cpu_buffer->irq_work.work); 1739 1740 free_buffer_page(cpu_buffer->reader_page); 1741 1742 if (head) { 1743 rb_head_page_deactivate(cpu_buffer); 1744 1745 list_for_each_entry_safe(bpage, tmp, head, list) { 1746 list_del_init(&bpage->list); 1747 free_buffer_page(bpage); 1748 } 1749 bpage = list_entry(head, struct buffer_page, list); 1750 free_buffer_page(bpage); 1751 } 1752 1753 free_page((unsigned long)cpu_buffer->free_page); 1754 1755 kfree(cpu_buffer); 1756 } 1757 1758 /** 1759 * __ring_buffer_alloc - allocate a new ring_buffer 1760 * @size: the size in bytes per cpu that is needed. 1761 * @flags: attributes to set for the ring buffer. 1762 * @key: ring buffer reader_lock_key. 1763 * 1764 * Currently the only flag that is available is the RB_FL_OVERWRITE 1765 * flag. This flag means that the buffer will overwrite old data 1766 * when the buffer wraps. If this flag is not set, the buffer will 1767 * drop data when the tail hits the head. 1768 */ 1769 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1770 struct lock_class_key *key) 1771 { 1772 struct trace_buffer *buffer; 1773 long nr_pages; 1774 int bsize; 1775 int cpu; 1776 int ret; 1777 1778 /* keep it in its own cache line */ 1779 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1780 GFP_KERNEL); 1781 if (!buffer) 1782 return NULL; 1783 1784 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1785 goto fail_free_buffer; 1786 1787 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1788 buffer->flags = flags; 1789 buffer->clock = trace_clock_local; 1790 buffer->reader_lock_key = key; 1791 1792 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1793 init_waitqueue_head(&buffer->irq_work.waiters); 1794 1795 /* need at least two pages */ 1796 if (nr_pages < 2) 1797 nr_pages = 2; 1798 1799 buffer->cpus = nr_cpu_ids; 1800 1801 bsize = sizeof(void *) * nr_cpu_ids; 1802 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1803 GFP_KERNEL); 1804 if (!buffer->buffers) 1805 goto fail_free_cpumask; 1806 1807 cpu = raw_smp_processor_id(); 1808 cpumask_set_cpu(cpu, buffer->cpumask); 1809 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1810 if (!buffer->buffers[cpu]) 1811 goto fail_free_buffers; 1812 1813 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1814 if (ret < 0) 1815 goto fail_free_buffers; 1816 1817 mutex_init(&buffer->mutex); 1818 1819 return buffer; 1820 1821 fail_free_buffers: 1822 for_each_buffer_cpu(buffer, cpu) { 1823 if (buffer->buffers[cpu]) 1824 rb_free_cpu_buffer(buffer->buffers[cpu]); 1825 } 1826 kfree(buffer->buffers); 1827 1828 fail_free_cpumask: 1829 free_cpumask_var(buffer->cpumask); 1830 1831 fail_free_buffer: 1832 kfree(buffer); 1833 return NULL; 1834 } 1835 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1836 1837 /** 1838 * ring_buffer_free - free a ring buffer. 1839 * @buffer: the buffer to free. 1840 */ 1841 void 1842 ring_buffer_free(struct trace_buffer *buffer) 1843 { 1844 int cpu; 1845 1846 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1847 1848 irq_work_sync(&buffer->irq_work.work); 1849 1850 for_each_buffer_cpu(buffer, cpu) 1851 rb_free_cpu_buffer(buffer->buffers[cpu]); 1852 1853 kfree(buffer->buffers); 1854 free_cpumask_var(buffer->cpumask); 1855 1856 kfree(buffer); 1857 } 1858 EXPORT_SYMBOL_GPL(ring_buffer_free); 1859 1860 void ring_buffer_set_clock(struct trace_buffer *buffer, 1861 u64 (*clock)(void)) 1862 { 1863 buffer->clock = clock; 1864 } 1865 1866 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1867 { 1868 buffer->time_stamp_abs = abs; 1869 } 1870 1871 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1872 { 1873 return buffer->time_stamp_abs; 1874 } 1875 1876 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1877 1878 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1879 { 1880 return local_read(&bpage->entries) & RB_WRITE_MASK; 1881 } 1882 1883 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1884 { 1885 return local_read(&bpage->write) & RB_WRITE_MASK; 1886 } 1887 1888 static bool 1889 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1890 { 1891 struct list_head *tail_page, *to_remove, *next_page; 1892 struct buffer_page *to_remove_page, *tmp_iter_page; 1893 struct buffer_page *last_page, *first_page; 1894 unsigned long nr_removed; 1895 unsigned long head_bit; 1896 int page_entries; 1897 1898 head_bit = 0; 1899 1900 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1901 atomic_inc(&cpu_buffer->record_disabled); 1902 /* 1903 * We don't race with the readers since we have acquired the reader 1904 * lock. We also don't race with writers after disabling recording. 1905 * This makes it easy to figure out the first and the last page to be 1906 * removed from the list. We unlink all the pages in between including 1907 * the first and last pages. This is done in a busy loop so that we 1908 * lose the least number of traces. 1909 * The pages are freed after we restart recording and unlock readers. 1910 */ 1911 tail_page = &cpu_buffer->tail_page->list; 1912 1913 /* 1914 * tail page might be on reader page, we remove the next page 1915 * from the ring buffer 1916 */ 1917 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1918 tail_page = rb_list_head(tail_page->next); 1919 to_remove = tail_page; 1920 1921 /* start of pages to remove */ 1922 first_page = list_entry(rb_list_head(to_remove->next), 1923 struct buffer_page, list); 1924 1925 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1926 to_remove = rb_list_head(to_remove)->next; 1927 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1928 } 1929 /* Read iterators need to reset themselves when some pages removed */ 1930 cpu_buffer->pages_removed += nr_removed; 1931 1932 next_page = rb_list_head(to_remove)->next; 1933 1934 /* 1935 * Now we remove all pages between tail_page and next_page. 1936 * Make sure that we have head_bit value preserved for the 1937 * next page 1938 */ 1939 tail_page->next = (struct list_head *)((unsigned long)next_page | 1940 head_bit); 1941 next_page = rb_list_head(next_page); 1942 next_page->prev = tail_page; 1943 1944 /* make sure pages points to a valid page in the ring buffer */ 1945 cpu_buffer->pages = next_page; 1946 1947 /* update head page */ 1948 if (head_bit) 1949 cpu_buffer->head_page = list_entry(next_page, 1950 struct buffer_page, list); 1951 1952 /* pages are removed, resume tracing and then free the pages */ 1953 atomic_dec(&cpu_buffer->record_disabled); 1954 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1955 1956 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1957 1958 /* last buffer page to remove */ 1959 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1960 list); 1961 tmp_iter_page = first_page; 1962 1963 do { 1964 cond_resched(); 1965 1966 to_remove_page = tmp_iter_page; 1967 rb_inc_page(&tmp_iter_page); 1968 1969 /* update the counters */ 1970 page_entries = rb_page_entries(to_remove_page); 1971 if (page_entries) { 1972 /* 1973 * If something was added to this page, it was full 1974 * since it is not the tail page. So we deduct the 1975 * bytes consumed in ring buffer from here. 1976 * Increment overrun to account for the lost events. 1977 */ 1978 local_add(page_entries, &cpu_buffer->overrun); 1979 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 1980 local_inc(&cpu_buffer->pages_lost); 1981 } 1982 1983 /* 1984 * We have already removed references to this list item, just 1985 * free up the buffer_page and its page 1986 */ 1987 free_buffer_page(to_remove_page); 1988 nr_removed--; 1989 1990 } while (to_remove_page != last_page); 1991 1992 RB_WARN_ON(cpu_buffer, nr_removed); 1993 1994 return nr_removed == 0; 1995 } 1996 1997 static bool 1998 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1999 { 2000 struct list_head *pages = &cpu_buffer->new_pages; 2001 unsigned long flags; 2002 bool success; 2003 int retries; 2004 2005 /* Can be called at early boot up, where interrupts must not been enabled */ 2006 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2007 /* 2008 * We are holding the reader lock, so the reader page won't be swapped 2009 * in the ring buffer. Now we are racing with the writer trying to 2010 * move head page and the tail page. 2011 * We are going to adapt the reader page update process where: 2012 * 1. We first splice the start and end of list of new pages between 2013 * the head page and its previous page. 2014 * 2. We cmpxchg the prev_page->next to point from head page to the 2015 * start of new pages list. 2016 * 3. Finally, we update the head->prev to the end of new list. 2017 * 2018 * We will try this process 10 times, to make sure that we don't keep 2019 * spinning. 2020 */ 2021 retries = 10; 2022 success = false; 2023 while (retries--) { 2024 struct list_head *head_page, *prev_page, *r; 2025 struct list_head *last_page, *first_page; 2026 struct list_head *head_page_with_bit; 2027 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2028 2029 if (!hpage) 2030 break; 2031 head_page = &hpage->list; 2032 prev_page = head_page->prev; 2033 2034 first_page = pages->next; 2035 last_page = pages->prev; 2036 2037 head_page_with_bit = (struct list_head *) 2038 ((unsigned long)head_page | RB_PAGE_HEAD); 2039 2040 last_page->next = head_page_with_bit; 2041 first_page->prev = prev_page; 2042 2043 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 2044 2045 if (r == head_page_with_bit) { 2046 /* 2047 * yay, we replaced the page pointer to our new list, 2048 * now, we just have to update to head page's prev 2049 * pointer to point to end of list 2050 */ 2051 head_page->prev = last_page; 2052 success = true; 2053 break; 2054 } 2055 } 2056 2057 if (success) 2058 INIT_LIST_HEAD(pages); 2059 /* 2060 * If we weren't successful in adding in new pages, warn and stop 2061 * tracing 2062 */ 2063 RB_WARN_ON(cpu_buffer, !success); 2064 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2065 2066 /* free pages if they weren't inserted */ 2067 if (!success) { 2068 struct buffer_page *bpage, *tmp; 2069 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2070 list) { 2071 list_del_init(&bpage->list); 2072 free_buffer_page(bpage); 2073 } 2074 } 2075 return success; 2076 } 2077 2078 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2079 { 2080 bool success; 2081 2082 if (cpu_buffer->nr_pages_to_update > 0) 2083 success = rb_insert_pages(cpu_buffer); 2084 else 2085 success = rb_remove_pages(cpu_buffer, 2086 -cpu_buffer->nr_pages_to_update); 2087 2088 if (success) 2089 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2090 } 2091 2092 static void update_pages_handler(struct work_struct *work) 2093 { 2094 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2095 struct ring_buffer_per_cpu, update_pages_work); 2096 rb_update_pages(cpu_buffer); 2097 complete(&cpu_buffer->update_done); 2098 } 2099 2100 /** 2101 * ring_buffer_resize - resize the ring buffer 2102 * @buffer: the buffer to resize. 2103 * @size: the new size. 2104 * @cpu_id: the cpu buffer to resize 2105 * 2106 * Minimum size is 2 * BUF_PAGE_SIZE. 2107 * 2108 * Returns 0 on success and < 0 on failure. 2109 */ 2110 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2111 int cpu_id) 2112 { 2113 struct ring_buffer_per_cpu *cpu_buffer; 2114 unsigned long nr_pages; 2115 int cpu, err; 2116 2117 /* 2118 * Always succeed at resizing a non-existent buffer: 2119 */ 2120 if (!buffer) 2121 return 0; 2122 2123 /* Make sure the requested buffer exists */ 2124 if (cpu_id != RING_BUFFER_ALL_CPUS && 2125 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2126 return 0; 2127 2128 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 2129 2130 /* we need a minimum of two pages */ 2131 if (nr_pages < 2) 2132 nr_pages = 2; 2133 2134 /* prevent another thread from changing buffer sizes */ 2135 mutex_lock(&buffer->mutex); 2136 atomic_inc(&buffer->resizing); 2137 2138 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2139 /* 2140 * Don't succeed if resizing is disabled, as a reader might be 2141 * manipulating the ring buffer and is expecting a sane state while 2142 * this is true. 2143 */ 2144 for_each_buffer_cpu(buffer, cpu) { 2145 cpu_buffer = buffer->buffers[cpu]; 2146 if (atomic_read(&cpu_buffer->resize_disabled)) { 2147 err = -EBUSY; 2148 goto out_err_unlock; 2149 } 2150 } 2151 2152 /* calculate the pages to update */ 2153 for_each_buffer_cpu(buffer, cpu) { 2154 cpu_buffer = buffer->buffers[cpu]; 2155 2156 cpu_buffer->nr_pages_to_update = nr_pages - 2157 cpu_buffer->nr_pages; 2158 /* 2159 * nothing more to do for removing pages or no update 2160 */ 2161 if (cpu_buffer->nr_pages_to_update <= 0) 2162 continue; 2163 /* 2164 * to add pages, make sure all new pages can be 2165 * allocated without receiving ENOMEM 2166 */ 2167 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2168 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2169 &cpu_buffer->new_pages)) { 2170 /* not enough memory for new pages */ 2171 err = -ENOMEM; 2172 goto out_err; 2173 } 2174 2175 cond_resched(); 2176 } 2177 2178 cpus_read_lock(); 2179 /* 2180 * Fire off all the required work handlers 2181 * We can't schedule on offline CPUs, but it's not necessary 2182 * since we can change their buffer sizes without any race. 2183 */ 2184 for_each_buffer_cpu(buffer, cpu) { 2185 cpu_buffer = buffer->buffers[cpu]; 2186 if (!cpu_buffer->nr_pages_to_update) 2187 continue; 2188 2189 /* Can't run something on an offline CPU. */ 2190 if (!cpu_online(cpu)) { 2191 rb_update_pages(cpu_buffer); 2192 cpu_buffer->nr_pages_to_update = 0; 2193 } else { 2194 /* Run directly if possible. */ 2195 migrate_disable(); 2196 if (cpu != smp_processor_id()) { 2197 migrate_enable(); 2198 schedule_work_on(cpu, 2199 &cpu_buffer->update_pages_work); 2200 } else { 2201 update_pages_handler(&cpu_buffer->update_pages_work); 2202 migrate_enable(); 2203 } 2204 } 2205 } 2206 2207 /* wait for all the updates to complete */ 2208 for_each_buffer_cpu(buffer, cpu) { 2209 cpu_buffer = buffer->buffers[cpu]; 2210 if (!cpu_buffer->nr_pages_to_update) 2211 continue; 2212 2213 if (cpu_online(cpu)) 2214 wait_for_completion(&cpu_buffer->update_done); 2215 cpu_buffer->nr_pages_to_update = 0; 2216 } 2217 2218 cpus_read_unlock(); 2219 } else { 2220 cpu_buffer = buffer->buffers[cpu_id]; 2221 2222 if (nr_pages == cpu_buffer->nr_pages) 2223 goto out; 2224 2225 /* 2226 * Don't succeed if resizing is disabled, as a reader might be 2227 * manipulating the ring buffer and is expecting a sane state while 2228 * this is true. 2229 */ 2230 if (atomic_read(&cpu_buffer->resize_disabled)) { 2231 err = -EBUSY; 2232 goto out_err_unlock; 2233 } 2234 2235 cpu_buffer->nr_pages_to_update = nr_pages - 2236 cpu_buffer->nr_pages; 2237 2238 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2239 if (cpu_buffer->nr_pages_to_update > 0 && 2240 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2241 &cpu_buffer->new_pages)) { 2242 err = -ENOMEM; 2243 goto out_err; 2244 } 2245 2246 cpus_read_lock(); 2247 2248 /* Can't run something on an offline CPU. */ 2249 if (!cpu_online(cpu_id)) 2250 rb_update_pages(cpu_buffer); 2251 else { 2252 /* Run directly if possible. */ 2253 migrate_disable(); 2254 if (cpu_id == smp_processor_id()) { 2255 rb_update_pages(cpu_buffer); 2256 migrate_enable(); 2257 } else { 2258 migrate_enable(); 2259 schedule_work_on(cpu_id, 2260 &cpu_buffer->update_pages_work); 2261 wait_for_completion(&cpu_buffer->update_done); 2262 } 2263 } 2264 2265 cpu_buffer->nr_pages_to_update = 0; 2266 cpus_read_unlock(); 2267 } 2268 2269 out: 2270 /* 2271 * The ring buffer resize can happen with the ring buffer 2272 * enabled, so that the update disturbs the tracing as little 2273 * as possible. But if the buffer is disabled, we do not need 2274 * to worry about that, and we can take the time to verify 2275 * that the buffer is not corrupt. 2276 */ 2277 if (atomic_read(&buffer->record_disabled)) { 2278 atomic_inc(&buffer->record_disabled); 2279 /* 2280 * Even though the buffer was disabled, we must make sure 2281 * that it is truly disabled before calling rb_check_pages. 2282 * There could have been a race between checking 2283 * record_disable and incrementing it. 2284 */ 2285 synchronize_rcu(); 2286 for_each_buffer_cpu(buffer, cpu) { 2287 cpu_buffer = buffer->buffers[cpu]; 2288 rb_check_pages(cpu_buffer); 2289 } 2290 atomic_dec(&buffer->record_disabled); 2291 } 2292 2293 atomic_dec(&buffer->resizing); 2294 mutex_unlock(&buffer->mutex); 2295 return 0; 2296 2297 out_err: 2298 for_each_buffer_cpu(buffer, cpu) { 2299 struct buffer_page *bpage, *tmp; 2300 2301 cpu_buffer = buffer->buffers[cpu]; 2302 cpu_buffer->nr_pages_to_update = 0; 2303 2304 if (list_empty(&cpu_buffer->new_pages)) 2305 continue; 2306 2307 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2308 list) { 2309 list_del_init(&bpage->list); 2310 free_buffer_page(bpage); 2311 } 2312 } 2313 out_err_unlock: 2314 atomic_dec(&buffer->resizing); 2315 mutex_unlock(&buffer->mutex); 2316 return err; 2317 } 2318 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2319 2320 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2321 { 2322 mutex_lock(&buffer->mutex); 2323 if (val) 2324 buffer->flags |= RB_FL_OVERWRITE; 2325 else 2326 buffer->flags &= ~RB_FL_OVERWRITE; 2327 mutex_unlock(&buffer->mutex); 2328 } 2329 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2330 2331 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2332 { 2333 return bpage->page->data + index; 2334 } 2335 2336 static __always_inline struct ring_buffer_event * 2337 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2338 { 2339 return __rb_page_index(cpu_buffer->reader_page, 2340 cpu_buffer->reader_page->read); 2341 } 2342 2343 static struct ring_buffer_event * 2344 rb_iter_head_event(struct ring_buffer_iter *iter) 2345 { 2346 struct ring_buffer_event *event; 2347 struct buffer_page *iter_head_page = iter->head_page; 2348 unsigned long commit; 2349 unsigned length; 2350 2351 if (iter->head != iter->next_event) 2352 return iter->event; 2353 2354 /* 2355 * When the writer goes across pages, it issues a cmpxchg which 2356 * is a mb(), which will synchronize with the rmb here. 2357 * (see rb_tail_page_update() and __rb_reserve_next()) 2358 */ 2359 commit = rb_page_commit(iter_head_page); 2360 smp_rmb(); 2361 2362 /* An event needs to be at least 8 bytes in size */ 2363 if (iter->head > commit - 8) 2364 goto reset; 2365 2366 event = __rb_page_index(iter_head_page, iter->head); 2367 length = rb_event_length(event); 2368 2369 /* 2370 * READ_ONCE() doesn't work on functions and we don't want the 2371 * compiler doing any crazy optimizations with length. 2372 */ 2373 barrier(); 2374 2375 if ((iter->head + length) > commit || length > BUF_PAGE_SIZE) 2376 /* Writer corrupted the read? */ 2377 goto reset; 2378 2379 memcpy(iter->event, event, length); 2380 /* 2381 * If the page stamp is still the same after this rmb() then the 2382 * event was safely copied without the writer entering the page. 2383 */ 2384 smp_rmb(); 2385 2386 /* Make sure the page didn't change since we read this */ 2387 if (iter->page_stamp != iter_head_page->page->time_stamp || 2388 commit > rb_page_commit(iter_head_page)) 2389 goto reset; 2390 2391 iter->next_event = iter->head + length; 2392 return iter->event; 2393 reset: 2394 /* Reset to the beginning */ 2395 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2396 iter->head = 0; 2397 iter->next_event = 0; 2398 iter->missed_events = 1; 2399 return NULL; 2400 } 2401 2402 /* Size is determined by what has been committed */ 2403 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2404 { 2405 return rb_page_commit(bpage); 2406 } 2407 2408 static __always_inline unsigned 2409 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2410 { 2411 return rb_page_commit(cpu_buffer->commit_page); 2412 } 2413 2414 static __always_inline unsigned 2415 rb_event_index(struct ring_buffer_event *event) 2416 { 2417 unsigned long addr = (unsigned long)event; 2418 2419 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2420 } 2421 2422 static void rb_inc_iter(struct ring_buffer_iter *iter) 2423 { 2424 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2425 2426 /* 2427 * The iterator could be on the reader page (it starts there). 2428 * But the head could have moved, since the reader was 2429 * found. Check for this case and assign the iterator 2430 * to the head page instead of next. 2431 */ 2432 if (iter->head_page == cpu_buffer->reader_page) 2433 iter->head_page = rb_set_head_page(cpu_buffer); 2434 else 2435 rb_inc_page(&iter->head_page); 2436 2437 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2438 iter->head = 0; 2439 iter->next_event = 0; 2440 } 2441 2442 /* 2443 * rb_handle_head_page - writer hit the head page 2444 * 2445 * Returns: +1 to retry page 2446 * 0 to continue 2447 * -1 on error 2448 */ 2449 static int 2450 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2451 struct buffer_page *tail_page, 2452 struct buffer_page *next_page) 2453 { 2454 struct buffer_page *new_head; 2455 int entries; 2456 int type; 2457 int ret; 2458 2459 entries = rb_page_entries(next_page); 2460 2461 /* 2462 * The hard part is here. We need to move the head 2463 * forward, and protect against both readers on 2464 * other CPUs and writers coming in via interrupts. 2465 */ 2466 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2467 RB_PAGE_HEAD); 2468 2469 /* 2470 * type can be one of four: 2471 * NORMAL - an interrupt already moved it for us 2472 * HEAD - we are the first to get here. 2473 * UPDATE - we are the interrupt interrupting 2474 * a current move. 2475 * MOVED - a reader on another CPU moved the next 2476 * pointer to its reader page. Give up 2477 * and try again. 2478 */ 2479 2480 switch (type) { 2481 case RB_PAGE_HEAD: 2482 /* 2483 * We changed the head to UPDATE, thus 2484 * it is our responsibility to update 2485 * the counters. 2486 */ 2487 local_add(entries, &cpu_buffer->overrun); 2488 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 2489 local_inc(&cpu_buffer->pages_lost); 2490 2491 /* 2492 * The entries will be zeroed out when we move the 2493 * tail page. 2494 */ 2495 2496 /* still more to do */ 2497 break; 2498 2499 case RB_PAGE_UPDATE: 2500 /* 2501 * This is an interrupt that interrupt the 2502 * previous update. Still more to do. 2503 */ 2504 break; 2505 case RB_PAGE_NORMAL: 2506 /* 2507 * An interrupt came in before the update 2508 * and processed this for us. 2509 * Nothing left to do. 2510 */ 2511 return 1; 2512 case RB_PAGE_MOVED: 2513 /* 2514 * The reader is on another CPU and just did 2515 * a swap with our next_page. 2516 * Try again. 2517 */ 2518 return 1; 2519 default: 2520 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2521 return -1; 2522 } 2523 2524 /* 2525 * Now that we are here, the old head pointer is 2526 * set to UPDATE. This will keep the reader from 2527 * swapping the head page with the reader page. 2528 * The reader (on another CPU) will spin till 2529 * we are finished. 2530 * 2531 * We just need to protect against interrupts 2532 * doing the job. We will set the next pointer 2533 * to HEAD. After that, we set the old pointer 2534 * to NORMAL, but only if it was HEAD before. 2535 * otherwise we are an interrupt, and only 2536 * want the outer most commit to reset it. 2537 */ 2538 new_head = next_page; 2539 rb_inc_page(&new_head); 2540 2541 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2542 RB_PAGE_NORMAL); 2543 2544 /* 2545 * Valid returns are: 2546 * HEAD - an interrupt came in and already set it. 2547 * NORMAL - One of two things: 2548 * 1) We really set it. 2549 * 2) A bunch of interrupts came in and moved 2550 * the page forward again. 2551 */ 2552 switch (ret) { 2553 case RB_PAGE_HEAD: 2554 case RB_PAGE_NORMAL: 2555 /* OK */ 2556 break; 2557 default: 2558 RB_WARN_ON(cpu_buffer, 1); 2559 return -1; 2560 } 2561 2562 /* 2563 * It is possible that an interrupt came in, 2564 * set the head up, then more interrupts came in 2565 * and moved it again. When we get back here, 2566 * the page would have been set to NORMAL but we 2567 * just set it back to HEAD. 2568 * 2569 * How do you detect this? Well, if that happened 2570 * the tail page would have moved. 2571 */ 2572 if (ret == RB_PAGE_NORMAL) { 2573 struct buffer_page *buffer_tail_page; 2574 2575 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2576 /* 2577 * If the tail had moved passed next, then we need 2578 * to reset the pointer. 2579 */ 2580 if (buffer_tail_page != tail_page && 2581 buffer_tail_page != next_page) 2582 rb_head_page_set_normal(cpu_buffer, new_head, 2583 next_page, 2584 RB_PAGE_HEAD); 2585 } 2586 2587 /* 2588 * If this was the outer most commit (the one that 2589 * changed the original pointer from HEAD to UPDATE), 2590 * then it is up to us to reset it to NORMAL. 2591 */ 2592 if (type == RB_PAGE_HEAD) { 2593 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2594 tail_page, 2595 RB_PAGE_UPDATE); 2596 if (RB_WARN_ON(cpu_buffer, 2597 ret != RB_PAGE_UPDATE)) 2598 return -1; 2599 } 2600 2601 return 0; 2602 } 2603 2604 static inline void 2605 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2606 unsigned long tail, struct rb_event_info *info) 2607 { 2608 struct buffer_page *tail_page = info->tail_page; 2609 struct ring_buffer_event *event; 2610 unsigned long length = info->length; 2611 2612 /* 2613 * Only the event that crossed the page boundary 2614 * must fill the old tail_page with padding. 2615 */ 2616 if (tail >= BUF_PAGE_SIZE) { 2617 /* 2618 * If the page was filled, then we still need 2619 * to update the real_end. Reset it to zero 2620 * and the reader will ignore it. 2621 */ 2622 if (tail == BUF_PAGE_SIZE) 2623 tail_page->real_end = 0; 2624 2625 local_sub(length, &tail_page->write); 2626 return; 2627 } 2628 2629 event = __rb_page_index(tail_page, tail); 2630 2631 /* 2632 * Save the original length to the meta data. 2633 * This will be used by the reader to add lost event 2634 * counter. 2635 */ 2636 tail_page->real_end = tail; 2637 2638 /* 2639 * If this event is bigger than the minimum size, then 2640 * we need to be careful that we don't subtract the 2641 * write counter enough to allow another writer to slip 2642 * in on this page. 2643 * We put in a discarded commit instead, to make sure 2644 * that this space is not used again, and this space will 2645 * not be accounted into 'entries_bytes'. 2646 * 2647 * If we are less than the minimum size, we don't need to 2648 * worry about it. 2649 */ 2650 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2651 /* No room for any events */ 2652 2653 /* Mark the rest of the page with padding */ 2654 rb_event_set_padding(event); 2655 2656 /* Make sure the padding is visible before the write update */ 2657 smp_wmb(); 2658 2659 /* Set the write back to the previous setting */ 2660 local_sub(length, &tail_page->write); 2661 return; 2662 } 2663 2664 /* Put in a discarded event */ 2665 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2666 event->type_len = RINGBUF_TYPE_PADDING; 2667 /* time delta must be non zero */ 2668 event->time_delta = 1; 2669 2670 /* account for padding bytes */ 2671 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2672 2673 /* Make sure the padding is visible before the tail_page->write update */ 2674 smp_wmb(); 2675 2676 /* Set write to end of buffer */ 2677 length = (tail + length) - BUF_PAGE_SIZE; 2678 local_sub(length, &tail_page->write); 2679 } 2680 2681 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2682 2683 /* 2684 * This is the slow path, force gcc not to inline it. 2685 */ 2686 static noinline struct ring_buffer_event * 2687 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2688 unsigned long tail, struct rb_event_info *info) 2689 { 2690 struct buffer_page *tail_page = info->tail_page; 2691 struct buffer_page *commit_page = cpu_buffer->commit_page; 2692 struct trace_buffer *buffer = cpu_buffer->buffer; 2693 struct buffer_page *next_page; 2694 int ret; 2695 2696 next_page = tail_page; 2697 2698 rb_inc_page(&next_page); 2699 2700 /* 2701 * If for some reason, we had an interrupt storm that made 2702 * it all the way around the buffer, bail, and warn 2703 * about it. 2704 */ 2705 if (unlikely(next_page == commit_page)) { 2706 local_inc(&cpu_buffer->commit_overrun); 2707 goto out_reset; 2708 } 2709 2710 /* 2711 * This is where the fun begins! 2712 * 2713 * We are fighting against races between a reader that 2714 * could be on another CPU trying to swap its reader 2715 * page with the buffer head. 2716 * 2717 * We are also fighting against interrupts coming in and 2718 * moving the head or tail on us as well. 2719 * 2720 * If the next page is the head page then we have filled 2721 * the buffer, unless the commit page is still on the 2722 * reader page. 2723 */ 2724 if (rb_is_head_page(next_page, &tail_page->list)) { 2725 2726 /* 2727 * If the commit is not on the reader page, then 2728 * move the header page. 2729 */ 2730 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2731 /* 2732 * If we are not in overwrite mode, 2733 * this is easy, just stop here. 2734 */ 2735 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2736 local_inc(&cpu_buffer->dropped_events); 2737 goto out_reset; 2738 } 2739 2740 ret = rb_handle_head_page(cpu_buffer, 2741 tail_page, 2742 next_page); 2743 if (ret < 0) 2744 goto out_reset; 2745 if (ret) 2746 goto out_again; 2747 } else { 2748 /* 2749 * We need to be careful here too. The 2750 * commit page could still be on the reader 2751 * page. We could have a small buffer, and 2752 * have filled up the buffer with events 2753 * from interrupts and such, and wrapped. 2754 * 2755 * Note, if the tail page is also on the 2756 * reader_page, we let it move out. 2757 */ 2758 if (unlikely((cpu_buffer->commit_page != 2759 cpu_buffer->tail_page) && 2760 (cpu_buffer->commit_page == 2761 cpu_buffer->reader_page))) { 2762 local_inc(&cpu_buffer->commit_overrun); 2763 goto out_reset; 2764 } 2765 } 2766 } 2767 2768 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2769 2770 out_again: 2771 2772 rb_reset_tail(cpu_buffer, tail, info); 2773 2774 /* Commit what we have for now. */ 2775 rb_end_commit(cpu_buffer); 2776 /* rb_end_commit() decs committing */ 2777 local_inc(&cpu_buffer->committing); 2778 2779 /* fail and let the caller try again */ 2780 return ERR_PTR(-EAGAIN); 2781 2782 out_reset: 2783 /* reset write */ 2784 rb_reset_tail(cpu_buffer, tail, info); 2785 2786 return NULL; 2787 } 2788 2789 /* Slow path */ 2790 static struct ring_buffer_event * 2791 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2792 { 2793 if (abs) 2794 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2795 else 2796 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2797 2798 /* Not the first event on the page, or not delta? */ 2799 if (abs || rb_event_index(event)) { 2800 event->time_delta = delta & TS_MASK; 2801 event->array[0] = delta >> TS_SHIFT; 2802 } else { 2803 /* nope, just zero it */ 2804 event->time_delta = 0; 2805 event->array[0] = 0; 2806 } 2807 2808 return skip_time_extend(event); 2809 } 2810 2811 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2812 static inline bool sched_clock_stable(void) 2813 { 2814 return true; 2815 } 2816 #endif 2817 2818 static void 2819 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2820 struct rb_event_info *info) 2821 { 2822 u64 write_stamp; 2823 2824 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 2825 (unsigned long long)info->delta, 2826 (unsigned long long)info->ts, 2827 (unsigned long long)info->before, 2828 (unsigned long long)info->after, 2829 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 2830 sched_clock_stable() ? "" : 2831 "If you just came from a suspend/resume,\n" 2832 "please switch to the trace global clock:\n" 2833 " echo global > /sys/kernel/tracing/trace_clock\n" 2834 "or add trace_clock=global to the kernel command line\n"); 2835 } 2836 2837 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2838 struct ring_buffer_event **event, 2839 struct rb_event_info *info, 2840 u64 *delta, 2841 unsigned int *length) 2842 { 2843 bool abs = info->add_timestamp & 2844 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2845 2846 if (unlikely(info->delta > (1ULL << 59))) { 2847 /* 2848 * Some timers can use more than 59 bits, and when a timestamp 2849 * is added to the buffer, it will lose those bits. 2850 */ 2851 if (abs && (info->ts & TS_MSB)) { 2852 info->delta &= ABS_TS_MASK; 2853 2854 /* did the clock go backwards */ 2855 } else if (info->before == info->after && info->before > info->ts) { 2856 /* not interrupted */ 2857 static int once; 2858 2859 /* 2860 * This is possible with a recalibrating of the TSC. 2861 * Do not produce a call stack, but just report it. 2862 */ 2863 if (!once) { 2864 once++; 2865 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 2866 info->before, info->ts); 2867 } 2868 } else 2869 rb_check_timestamp(cpu_buffer, info); 2870 if (!abs) 2871 info->delta = 0; 2872 } 2873 *event = rb_add_time_stamp(*event, info->delta, abs); 2874 *length -= RB_LEN_TIME_EXTEND; 2875 *delta = 0; 2876 } 2877 2878 /** 2879 * rb_update_event - update event type and data 2880 * @cpu_buffer: The per cpu buffer of the @event 2881 * @event: the event to update 2882 * @info: The info to update the @event with (contains length and delta) 2883 * 2884 * Update the type and data fields of the @event. The length 2885 * is the actual size that is written to the ring buffer, 2886 * and with this, we can determine what to place into the 2887 * data field. 2888 */ 2889 static void 2890 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2891 struct ring_buffer_event *event, 2892 struct rb_event_info *info) 2893 { 2894 unsigned length = info->length; 2895 u64 delta = info->delta; 2896 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 2897 2898 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 2899 cpu_buffer->event_stamp[nest] = info->ts; 2900 2901 /* 2902 * If we need to add a timestamp, then we 2903 * add it to the start of the reserved space. 2904 */ 2905 if (unlikely(info->add_timestamp)) 2906 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 2907 2908 event->time_delta = delta; 2909 length -= RB_EVNT_HDR_SIZE; 2910 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2911 event->type_len = 0; 2912 event->array[0] = length; 2913 } else 2914 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2915 } 2916 2917 static unsigned rb_calculate_event_length(unsigned length) 2918 { 2919 struct ring_buffer_event event; /* Used only for sizeof array */ 2920 2921 /* zero length can cause confusions */ 2922 if (!length) 2923 length++; 2924 2925 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2926 length += sizeof(event.array[0]); 2927 2928 length += RB_EVNT_HDR_SIZE; 2929 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2930 2931 /* 2932 * In case the time delta is larger than the 27 bits for it 2933 * in the header, we need to add a timestamp. If another 2934 * event comes in when trying to discard this one to increase 2935 * the length, then the timestamp will be added in the allocated 2936 * space of this event. If length is bigger than the size needed 2937 * for the TIME_EXTEND, then padding has to be used. The events 2938 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2939 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2940 * As length is a multiple of 4, we only need to worry if it 2941 * is 12 (RB_LEN_TIME_EXTEND + 4). 2942 */ 2943 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2944 length += RB_ALIGNMENT; 2945 2946 return length; 2947 } 2948 2949 static inline bool 2950 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2951 struct ring_buffer_event *event) 2952 { 2953 unsigned long new_index, old_index; 2954 struct buffer_page *bpage; 2955 unsigned long addr; 2956 2957 new_index = rb_event_index(event); 2958 old_index = new_index + rb_event_ts_length(event); 2959 addr = (unsigned long)event; 2960 addr &= PAGE_MASK; 2961 2962 bpage = READ_ONCE(cpu_buffer->tail_page); 2963 2964 /* 2965 * Make sure the tail_page is still the same and 2966 * the next write location is the end of this event 2967 */ 2968 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2969 unsigned long write_mask = 2970 local_read(&bpage->write) & ~RB_WRITE_MASK; 2971 unsigned long event_length = rb_event_length(event); 2972 2973 /* 2974 * For the before_stamp to be different than the write_stamp 2975 * to make sure that the next event adds an absolute 2976 * value and does not rely on the saved write stamp, which 2977 * is now going to be bogus. 2978 * 2979 * By setting the before_stamp to zero, the next event 2980 * is not going to use the write_stamp and will instead 2981 * create an absolute timestamp. This means there's no 2982 * reason to update the wirte_stamp! 2983 */ 2984 rb_time_set(&cpu_buffer->before_stamp, 0); 2985 2986 /* 2987 * If an event were to come in now, it would see that the 2988 * write_stamp and the before_stamp are different, and assume 2989 * that this event just added itself before updating 2990 * the write stamp. The interrupting event will fix the 2991 * write stamp for us, and use an absolute timestamp. 2992 */ 2993 2994 /* 2995 * This is on the tail page. It is possible that 2996 * a write could come in and move the tail page 2997 * and write to the next page. That is fine 2998 * because we just shorten what is on this page. 2999 */ 3000 old_index += write_mask; 3001 new_index += write_mask; 3002 3003 /* caution: old_index gets updated on cmpxchg failure */ 3004 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3005 /* update counters */ 3006 local_sub(event_length, &cpu_buffer->entries_bytes); 3007 return true; 3008 } 3009 } 3010 3011 /* could not discard */ 3012 return false; 3013 } 3014 3015 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3016 { 3017 local_inc(&cpu_buffer->committing); 3018 local_inc(&cpu_buffer->commits); 3019 } 3020 3021 static __always_inline void 3022 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3023 { 3024 unsigned long max_count; 3025 3026 /* 3027 * We only race with interrupts and NMIs on this CPU. 3028 * If we own the commit event, then we can commit 3029 * all others that interrupted us, since the interruptions 3030 * are in stack format (they finish before they come 3031 * back to us). This allows us to do a simple loop to 3032 * assign the commit to the tail. 3033 */ 3034 again: 3035 max_count = cpu_buffer->nr_pages * 100; 3036 3037 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3038 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3039 return; 3040 if (RB_WARN_ON(cpu_buffer, 3041 rb_is_reader_page(cpu_buffer->tail_page))) 3042 return; 3043 /* 3044 * No need for a memory barrier here, as the update 3045 * of the tail_page did it for this page. 3046 */ 3047 local_set(&cpu_buffer->commit_page->page->commit, 3048 rb_page_write(cpu_buffer->commit_page)); 3049 rb_inc_page(&cpu_buffer->commit_page); 3050 /* add barrier to keep gcc from optimizing too much */ 3051 barrier(); 3052 } 3053 while (rb_commit_index(cpu_buffer) != 3054 rb_page_write(cpu_buffer->commit_page)) { 3055 3056 /* Make sure the readers see the content of what is committed. */ 3057 smp_wmb(); 3058 local_set(&cpu_buffer->commit_page->page->commit, 3059 rb_page_write(cpu_buffer->commit_page)); 3060 RB_WARN_ON(cpu_buffer, 3061 local_read(&cpu_buffer->commit_page->page->commit) & 3062 ~RB_WRITE_MASK); 3063 barrier(); 3064 } 3065 3066 /* again, keep gcc from optimizing */ 3067 barrier(); 3068 3069 /* 3070 * If an interrupt came in just after the first while loop 3071 * and pushed the tail page forward, we will be left with 3072 * a dangling commit that will never go forward. 3073 */ 3074 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3075 goto again; 3076 } 3077 3078 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3079 { 3080 unsigned long commits; 3081 3082 if (RB_WARN_ON(cpu_buffer, 3083 !local_read(&cpu_buffer->committing))) 3084 return; 3085 3086 again: 3087 commits = local_read(&cpu_buffer->commits); 3088 /* synchronize with interrupts */ 3089 barrier(); 3090 if (local_read(&cpu_buffer->committing) == 1) 3091 rb_set_commit_to_write(cpu_buffer); 3092 3093 local_dec(&cpu_buffer->committing); 3094 3095 /* synchronize with interrupts */ 3096 barrier(); 3097 3098 /* 3099 * Need to account for interrupts coming in between the 3100 * updating of the commit page and the clearing of the 3101 * committing counter. 3102 */ 3103 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3104 !local_read(&cpu_buffer->committing)) { 3105 local_inc(&cpu_buffer->committing); 3106 goto again; 3107 } 3108 } 3109 3110 static inline void rb_event_discard(struct ring_buffer_event *event) 3111 { 3112 if (extended_time(event)) 3113 event = skip_time_extend(event); 3114 3115 /* array[0] holds the actual length for the discarded event */ 3116 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3117 event->type_len = RINGBUF_TYPE_PADDING; 3118 /* time delta must be non zero */ 3119 if (!event->time_delta) 3120 event->time_delta = 1; 3121 } 3122 3123 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3124 { 3125 local_inc(&cpu_buffer->entries); 3126 rb_end_commit(cpu_buffer); 3127 } 3128 3129 static __always_inline void 3130 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3131 { 3132 if (buffer->irq_work.waiters_pending) { 3133 buffer->irq_work.waiters_pending = false; 3134 /* irq_work_queue() supplies it's own memory barriers */ 3135 irq_work_queue(&buffer->irq_work.work); 3136 } 3137 3138 if (cpu_buffer->irq_work.waiters_pending) { 3139 cpu_buffer->irq_work.waiters_pending = false; 3140 /* irq_work_queue() supplies it's own memory barriers */ 3141 irq_work_queue(&cpu_buffer->irq_work.work); 3142 } 3143 3144 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3145 return; 3146 3147 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3148 return; 3149 3150 if (!cpu_buffer->irq_work.full_waiters_pending) 3151 return; 3152 3153 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3154 3155 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3156 return; 3157 3158 cpu_buffer->irq_work.wakeup_full = true; 3159 cpu_buffer->irq_work.full_waiters_pending = false; 3160 /* irq_work_queue() supplies it's own memory barriers */ 3161 irq_work_queue(&cpu_buffer->irq_work.work); 3162 } 3163 3164 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3165 # define do_ring_buffer_record_recursion() \ 3166 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3167 #else 3168 # define do_ring_buffer_record_recursion() do { } while (0) 3169 #endif 3170 3171 /* 3172 * The lock and unlock are done within a preempt disable section. 3173 * The current_context per_cpu variable can only be modified 3174 * by the current task between lock and unlock. But it can 3175 * be modified more than once via an interrupt. To pass this 3176 * information from the lock to the unlock without having to 3177 * access the 'in_interrupt()' functions again (which do show 3178 * a bit of overhead in something as critical as function tracing, 3179 * we use a bitmask trick. 3180 * 3181 * bit 1 = NMI context 3182 * bit 2 = IRQ context 3183 * bit 3 = SoftIRQ context 3184 * bit 4 = normal context. 3185 * 3186 * This works because this is the order of contexts that can 3187 * preempt other contexts. A SoftIRQ never preempts an IRQ 3188 * context. 3189 * 3190 * When the context is determined, the corresponding bit is 3191 * checked and set (if it was set, then a recursion of that context 3192 * happened). 3193 * 3194 * On unlock, we need to clear this bit. To do so, just subtract 3195 * 1 from the current_context and AND it to itself. 3196 * 3197 * (binary) 3198 * 101 - 1 = 100 3199 * 101 & 100 = 100 (clearing bit zero) 3200 * 3201 * 1010 - 1 = 1001 3202 * 1010 & 1001 = 1000 (clearing bit 1) 3203 * 3204 * The least significant bit can be cleared this way, and it 3205 * just so happens that it is the same bit corresponding to 3206 * the current context. 3207 * 3208 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3209 * is set when a recursion is detected at the current context, and if 3210 * the TRANSITION bit is already set, it will fail the recursion. 3211 * This is needed because there's a lag between the changing of 3212 * interrupt context and updating the preempt count. In this case, 3213 * a false positive will be found. To handle this, one extra recursion 3214 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3215 * bit is already set, then it is considered a recursion and the function 3216 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3217 * 3218 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3219 * to be cleared. Even if it wasn't the context that set it. That is, 3220 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3221 * is called before preempt_count() is updated, since the check will 3222 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3223 * NMI then comes in, it will set the NMI bit, but when the NMI code 3224 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3225 * and leave the NMI bit set. But this is fine, because the interrupt 3226 * code that set the TRANSITION bit will then clear the NMI bit when it 3227 * calls trace_recursive_unlock(). If another NMI comes in, it will 3228 * set the TRANSITION bit and continue. 3229 * 3230 * Note: The TRANSITION bit only handles a single transition between context. 3231 */ 3232 3233 static __always_inline bool 3234 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3235 { 3236 unsigned int val = cpu_buffer->current_context; 3237 int bit = interrupt_context_level(); 3238 3239 bit = RB_CTX_NORMAL - bit; 3240 3241 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3242 /* 3243 * It is possible that this was called by transitioning 3244 * between interrupt context, and preempt_count() has not 3245 * been updated yet. In this case, use the TRANSITION bit. 3246 */ 3247 bit = RB_CTX_TRANSITION; 3248 if (val & (1 << (bit + cpu_buffer->nest))) { 3249 do_ring_buffer_record_recursion(); 3250 return true; 3251 } 3252 } 3253 3254 val |= (1 << (bit + cpu_buffer->nest)); 3255 cpu_buffer->current_context = val; 3256 3257 return false; 3258 } 3259 3260 static __always_inline void 3261 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3262 { 3263 cpu_buffer->current_context &= 3264 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3265 } 3266 3267 /* The recursive locking above uses 5 bits */ 3268 #define NESTED_BITS 5 3269 3270 /** 3271 * ring_buffer_nest_start - Allow to trace while nested 3272 * @buffer: The ring buffer to modify 3273 * 3274 * The ring buffer has a safety mechanism to prevent recursion. 3275 * But there may be a case where a trace needs to be done while 3276 * tracing something else. In this case, calling this function 3277 * will allow this function to nest within a currently active 3278 * ring_buffer_lock_reserve(). 3279 * 3280 * Call this function before calling another ring_buffer_lock_reserve() and 3281 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3282 */ 3283 void ring_buffer_nest_start(struct trace_buffer *buffer) 3284 { 3285 struct ring_buffer_per_cpu *cpu_buffer; 3286 int cpu; 3287 3288 /* Enabled by ring_buffer_nest_end() */ 3289 preempt_disable_notrace(); 3290 cpu = raw_smp_processor_id(); 3291 cpu_buffer = buffer->buffers[cpu]; 3292 /* This is the shift value for the above recursive locking */ 3293 cpu_buffer->nest += NESTED_BITS; 3294 } 3295 3296 /** 3297 * ring_buffer_nest_end - Allow to trace while nested 3298 * @buffer: The ring buffer to modify 3299 * 3300 * Must be called after ring_buffer_nest_start() and after the 3301 * ring_buffer_unlock_commit(). 3302 */ 3303 void ring_buffer_nest_end(struct trace_buffer *buffer) 3304 { 3305 struct ring_buffer_per_cpu *cpu_buffer; 3306 int cpu; 3307 3308 /* disabled by ring_buffer_nest_start() */ 3309 cpu = raw_smp_processor_id(); 3310 cpu_buffer = buffer->buffers[cpu]; 3311 /* This is the shift value for the above recursive locking */ 3312 cpu_buffer->nest -= NESTED_BITS; 3313 preempt_enable_notrace(); 3314 } 3315 3316 /** 3317 * ring_buffer_unlock_commit - commit a reserved 3318 * @buffer: The buffer to commit to 3319 * 3320 * This commits the data to the ring buffer, and releases any locks held. 3321 * 3322 * Must be paired with ring_buffer_lock_reserve. 3323 */ 3324 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 3325 { 3326 struct ring_buffer_per_cpu *cpu_buffer; 3327 int cpu = raw_smp_processor_id(); 3328 3329 cpu_buffer = buffer->buffers[cpu]; 3330 3331 rb_commit(cpu_buffer); 3332 3333 rb_wakeups(buffer, cpu_buffer); 3334 3335 trace_recursive_unlock(cpu_buffer); 3336 3337 preempt_enable_notrace(); 3338 3339 return 0; 3340 } 3341 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3342 3343 /* Special value to validate all deltas on a page. */ 3344 #define CHECK_FULL_PAGE 1L 3345 3346 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 3347 static void dump_buffer_page(struct buffer_data_page *bpage, 3348 struct rb_event_info *info, 3349 unsigned long tail) 3350 { 3351 struct ring_buffer_event *event; 3352 u64 ts, delta; 3353 int e; 3354 3355 ts = bpage->time_stamp; 3356 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 3357 3358 for (e = 0; e < tail; e += rb_event_length(event)) { 3359 3360 event = (struct ring_buffer_event *)(bpage->data + e); 3361 3362 switch (event->type_len) { 3363 3364 case RINGBUF_TYPE_TIME_EXTEND: 3365 delta = rb_event_time_stamp(event); 3366 ts += delta; 3367 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); 3368 break; 3369 3370 case RINGBUF_TYPE_TIME_STAMP: 3371 delta = rb_event_time_stamp(event); 3372 ts = rb_fix_abs_ts(delta, ts); 3373 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); 3374 break; 3375 3376 case RINGBUF_TYPE_PADDING: 3377 ts += event->time_delta; 3378 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); 3379 break; 3380 3381 case RINGBUF_TYPE_DATA: 3382 ts += event->time_delta; 3383 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); 3384 break; 3385 3386 default: 3387 break; 3388 } 3389 } 3390 } 3391 3392 static DEFINE_PER_CPU(atomic_t, checking); 3393 static atomic_t ts_dump; 3394 3395 /* 3396 * Check if the current event time stamp matches the deltas on 3397 * the buffer page. 3398 */ 3399 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3400 struct rb_event_info *info, 3401 unsigned long tail) 3402 { 3403 struct ring_buffer_event *event; 3404 struct buffer_data_page *bpage; 3405 u64 ts, delta; 3406 bool full = false; 3407 int e; 3408 3409 bpage = info->tail_page->page; 3410 3411 if (tail == CHECK_FULL_PAGE) { 3412 full = true; 3413 tail = local_read(&bpage->commit); 3414 } else if (info->add_timestamp & 3415 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 3416 /* Ignore events with absolute time stamps */ 3417 return; 3418 } 3419 3420 /* 3421 * Do not check the first event (skip possible extends too). 3422 * Also do not check if previous events have not been committed. 3423 */ 3424 if (tail <= 8 || tail > local_read(&bpage->commit)) 3425 return; 3426 3427 /* 3428 * If this interrupted another event, 3429 */ 3430 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 3431 goto out; 3432 3433 ts = bpage->time_stamp; 3434 3435 for (e = 0; e < tail; e += rb_event_length(event)) { 3436 3437 event = (struct ring_buffer_event *)(bpage->data + e); 3438 3439 switch (event->type_len) { 3440 3441 case RINGBUF_TYPE_TIME_EXTEND: 3442 delta = rb_event_time_stamp(event); 3443 ts += delta; 3444 break; 3445 3446 case RINGBUF_TYPE_TIME_STAMP: 3447 delta = rb_event_time_stamp(event); 3448 ts = rb_fix_abs_ts(delta, ts); 3449 break; 3450 3451 case RINGBUF_TYPE_PADDING: 3452 if (event->time_delta == 1) 3453 break; 3454 fallthrough; 3455 case RINGBUF_TYPE_DATA: 3456 ts += event->time_delta; 3457 break; 3458 3459 default: 3460 RB_WARN_ON(cpu_buffer, 1); 3461 } 3462 } 3463 if ((full && ts > info->ts) || 3464 (!full && ts + info->delta != info->ts)) { 3465 /* If another report is happening, ignore this one */ 3466 if (atomic_inc_return(&ts_dump) != 1) { 3467 atomic_dec(&ts_dump); 3468 goto out; 3469 } 3470 atomic_inc(&cpu_buffer->record_disabled); 3471 /* There's some cases in boot up that this can happen */ 3472 WARN_ON_ONCE(system_state != SYSTEM_BOOTING); 3473 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", 3474 cpu_buffer->cpu, 3475 ts + info->delta, info->ts, info->delta, 3476 info->before, info->after, 3477 full ? " (full)" : ""); 3478 dump_buffer_page(bpage, info, tail); 3479 atomic_dec(&ts_dump); 3480 /* Do not re-enable checking */ 3481 return; 3482 } 3483 out: 3484 atomic_dec(this_cpu_ptr(&checking)); 3485 } 3486 #else 3487 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 3488 struct rb_event_info *info, 3489 unsigned long tail) 3490 { 3491 } 3492 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 3493 3494 static struct ring_buffer_event * 3495 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3496 struct rb_event_info *info) 3497 { 3498 struct ring_buffer_event *event; 3499 struct buffer_page *tail_page; 3500 unsigned long tail, write, w; 3501 bool a_ok; 3502 bool b_ok; 3503 3504 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3505 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3506 3507 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3508 barrier(); 3509 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3510 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3511 barrier(); 3512 info->ts = rb_time_stamp(cpu_buffer->buffer); 3513 3514 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 3515 info->delta = info->ts; 3516 } else { 3517 /* 3518 * If interrupting an event time update, we may need an 3519 * absolute timestamp. 3520 * Don't bother if this is the start of a new page (w == 0). 3521 */ 3522 if (!w) { 3523 /* Use the sub-buffer timestamp */ 3524 info->delta = 0; 3525 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) { 3526 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3527 info->length += RB_LEN_TIME_EXTEND; 3528 } else { 3529 info->delta = info->ts - info->after; 3530 if (unlikely(test_time_stamp(info->delta))) { 3531 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3532 info->length += RB_LEN_TIME_EXTEND; 3533 } 3534 } 3535 } 3536 3537 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3538 3539 /*C*/ write = local_add_return(info->length, &tail_page->write); 3540 3541 /* set write to only the index of the write */ 3542 write &= RB_WRITE_MASK; 3543 3544 tail = write - info->length; 3545 3546 /* See if we shot pass the end of this buffer page */ 3547 if (unlikely(write > BUF_PAGE_SIZE)) { 3548 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 3549 return rb_move_tail(cpu_buffer, tail, info); 3550 } 3551 3552 if (likely(tail == w)) { 3553 /* Nothing interrupted us between A and C */ 3554 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3555 /* 3556 * If something came in between C and D, the write stamp 3557 * may now not be in sync. But that's fine as the before_stamp 3558 * will be different and then next event will just be forced 3559 * to use an absolute timestamp. 3560 */ 3561 if (likely(!(info->add_timestamp & 3562 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3563 /* This did not interrupt any time update */ 3564 info->delta = info->ts - info->after; 3565 else 3566 /* Just use full timestamp for interrupting event */ 3567 info->delta = info->ts; 3568 check_buffer(cpu_buffer, info, tail); 3569 } else { 3570 u64 ts; 3571 /* SLOW PATH - Interrupted between A and C */ 3572 3573 /* Save the old before_stamp */ 3574 a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); 3575 RB_WARN_ON(cpu_buffer, !a_ok); 3576 3577 /* 3578 * Read a new timestamp and update the before_stamp to make 3579 * the next event after this one force using an absolute 3580 * timestamp. This is in case an interrupt were to come in 3581 * between E and F. 3582 */ 3583 ts = rb_time_stamp(cpu_buffer->buffer); 3584 rb_time_set(&cpu_buffer->before_stamp, ts); 3585 3586 barrier(); 3587 /*E*/ a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); 3588 /* Was interrupted before here, write_stamp must be valid */ 3589 RB_WARN_ON(cpu_buffer, !a_ok); 3590 barrier(); 3591 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3592 info->after == info->before && info->after < ts) { 3593 /* 3594 * Nothing came after this event between C and F, it is 3595 * safe to use info->after for the delta as it 3596 * matched info->before and is still valid. 3597 */ 3598 info->delta = ts - info->after; 3599 } else { 3600 /* 3601 * Interrupted between C and F: 3602 * Lost the previous events time stamp. Just set the 3603 * delta to zero, and this will be the same time as 3604 * the event this event interrupted. And the events that 3605 * came after this will still be correct (as they would 3606 * have built their delta on the previous event. 3607 */ 3608 info->delta = 0; 3609 } 3610 info->ts = ts; 3611 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3612 } 3613 3614 /* 3615 * If this is the first commit on the page, then it has the same 3616 * timestamp as the page itself. 3617 */ 3618 if (unlikely(!tail && !(info->add_timestamp & 3619 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3620 info->delta = 0; 3621 3622 /* We reserved something on the buffer */ 3623 3624 event = __rb_page_index(tail_page, tail); 3625 rb_update_event(cpu_buffer, event, info); 3626 3627 local_inc(&tail_page->entries); 3628 3629 /* 3630 * If this is the first commit on the page, then update 3631 * its timestamp. 3632 */ 3633 if (unlikely(!tail)) 3634 tail_page->page->time_stamp = info->ts; 3635 3636 /* account for these added bytes */ 3637 local_add(info->length, &cpu_buffer->entries_bytes); 3638 3639 return event; 3640 } 3641 3642 static __always_inline struct ring_buffer_event * 3643 rb_reserve_next_event(struct trace_buffer *buffer, 3644 struct ring_buffer_per_cpu *cpu_buffer, 3645 unsigned long length) 3646 { 3647 struct ring_buffer_event *event; 3648 struct rb_event_info info; 3649 int nr_loops = 0; 3650 int add_ts_default; 3651 3652 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 3653 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 3654 (unlikely(in_nmi()))) { 3655 return NULL; 3656 } 3657 3658 rb_start_commit(cpu_buffer); 3659 /* The commit page can not change after this */ 3660 3661 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3662 /* 3663 * Due to the ability to swap a cpu buffer from a buffer 3664 * it is possible it was swapped before we committed. 3665 * (committing stops a swap). We check for it here and 3666 * if it happened, we have to fail the write. 3667 */ 3668 barrier(); 3669 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3670 local_dec(&cpu_buffer->committing); 3671 local_dec(&cpu_buffer->commits); 3672 return NULL; 3673 } 3674 #endif 3675 3676 info.length = rb_calculate_event_length(length); 3677 3678 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3679 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 3680 info.length += RB_LEN_TIME_EXTEND; 3681 if (info.length > BUF_MAX_DATA_SIZE) 3682 goto out_fail; 3683 } else { 3684 add_ts_default = RB_ADD_STAMP_NONE; 3685 } 3686 3687 again: 3688 info.add_timestamp = add_ts_default; 3689 info.delta = 0; 3690 3691 /* 3692 * We allow for interrupts to reenter here and do a trace. 3693 * If one does, it will cause this original code to loop 3694 * back here. Even with heavy interrupts happening, this 3695 * should only happen a few times in a row. If this happens 3696 * 1000 times in a row, there must be either an interrupt 3697 * storm or we have something buggy. 3698 * Bail! 3699 */ 3700 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3701 goto out_fail; 3702 3703 event = __rb_reserve_next(cpu_buffer, &info); 3704 3705 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3706 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 3707 info.length -= RB_LEN_TIME_EXTEND; 3708 goto again; 3709 } 3710 3711 if (likely(event)) 3712 return event; 3713 out_fail: 3714 rb_end_commit(cpu_buffer); 3715 return NULL; 3716 } 3717 3718 /** 3719 * ring_buffer_lock_reserve - reserve a part of the buffer 3720 * @buffer: the ring buffer to reserve from 3721 * @length: the length of the data to reserve (excluding event header) 3722 * 3723 * Returns a reserved event on the ring buffer to copy directly to. 3724 * The user of this interface will need to get the body to write into 3725 * and can use the ring_buffer_event_data() interface. 3726 * 3727 * The length is the length of the data needed, not the event length 3728 * which also includes the event header. 3729 * 3730 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3731 * If NULL is returned, then nothing has been allocated or locked. 3732 */ 3733 struct ring_buffer_event * 3734 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3735 { 3736 struct ring_buffer_per_cpu *cpu_buffer; 3737 struct ring_buffer_event *event; 3738 int cpu; 3739 3740 /* If we are tracing schedule, we don't want to recurse */ 3741 preempt_disable_notrace(); 3742 3743 if (unlikely(atomic_read(&buffer->record_disabled))) 3744 goto out; 3745 3746 cpu = raw_smp_processor_id(); 3747 3748 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3749 goto out; 3750 3751 cpu_buffer = buffer->buffers[cpu]; 3752 3753 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3754 goto out; 3755 3756 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3757 goto out; 3758 3759 if (unlikely(trace_recursive_lock(cpu_buffer))) 3760 goto out; 3761 3762 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3763 if (!event) 3764 goto out_unlock; 3765 3766 return event; 3767 3768 out_unlock: 3769 trace_recursive_unlock(cpu_buffer); 3770 out: 3771 preempt_enable_notrace(); 3772 return NULL; 3773 } 3774 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3775 3776 /* 3777 * Decrement the entries to the page that an event is on. 3778 * The event does not even need to exist, only the pointer 3779 * to the page it is on. This may only be called before the commit 3780 * takes place. 3781 */ 3782 static inline void 3783 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3784 struct ring_buffer_event *event) 3785 { 3786 unsigned long addr = (unsigned long)event; 3787 struct buffer_page *bpage = cpu_buffer->commit_page; 3788 struct buffer_page *start; 3789 3790 addr &= PAGE_MASK; 3791 3792 /* Do the likely case first */ 3793 if (likely(bpage->page == (void *)addr)) { 3794 local_dec(&bpage->entries); 3795 return; 3796 } 3797 3798 /* 3799 * Because the commit page may be on the reader page we 3800 * start with the next page and check the end loop there. 3801 */ 3802 rb_inc_page(&bpage); 3803 start = bpage; 3804 do { 3805 if (bpage->page == (void *)addr) { 3806 local_dec(&bpage->entries); 3807 return; 3808 } 3809 rb_inc_page(&bpage); 3810 } while (bpage != start); 3811 3812 /* commit not part of this buffer?? */ 3813 RB_WARN_ON(cpu_buffer, 1); 3814 } 3815 3816 /** 3817 * ring_buffer_discard_commit - discard an event that has not been committed 3818 * @buffer: the ring buffer 3819 * @event: non committed event to discard 3820 * 3821 * Sometimes an event that is in the ring buffer needs to be ignored. 3822 * This function lets the user discard an event in the ring buffer 3823 * and then that event will not be read later. 3824 * 3825 * This function only works if it is called before the item has been 3826 * committed. It will try to free the event from the ring buffer 3827 * if another event has not been added behind it. 3828 * 3829 * If another event has been added behind it, it will set the event 3830 * up as discarded, and perform the commit. 3831 * 3832 * If this function is called, do not call ring_buffer_unlock_commit on 3833 * the event. 3834 */ 3835 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3836 struct ring_buffer_event *event) 3837 { 3838 struct ring_buffer_per_cpu *cpu_buffer; 3839 int cpu; 3840 3841 /* The event is discarded regardless */ 3842 rb_event_discard(event); 3843 3844 cpu = smp_processor_id(); 3845 cpu_buffer = buffer->buffers[cpu]; 3846 3847 /* 3848 * This must only be called if the event has not been 3849 * committed yet. Thus we can assume that preemption 3850 * is still disabled. 3851 */ 3852 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3853 3854 rb_decrement_entry(cpu_buffer, event); 3855 if (rb_try_to_discard(cpu_buffer, event)) 3856 goto out; 3857 3858 out: 3859 rb_end_commit(cpu_buffer); 3860 3861 trace_recursive_unlock(cpu_buffer); 3862 3863 preempt_enable_notrace(); 3864 3865 } 3866 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3867 3868 /** 3869 * ring_buffer_write - write data to the buffer without reserving 3870 * @buffer: The ring buffer to write to. 3871 * @length: The length of the data being written (excluding the event header) 3872 * @data: The data to write to the buffer. 3873 * 3874 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3875 * one function. If you already have the data to write to the buffer, it 3876 * may be easier to simply call this function. 3877 * 3878 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3879 * and not the length of the event which would hold the header. 3880 */ 3881 int ring_buffer_write(struct trace_buffer *buffer, 3882 unsigned long length, 3883 void *data) 3884 { 3885 struct ring_buffer_per_cpu *cpu_buffer; 3886 struct ring_buffer_event *event; 3887 void *body; 3888 int ret = -EBUSY; 3889 int cpu; 3890 3891 preempt_disable_notrace(); 3892 3893 if (atomic_read(&buffer->record_disabled)) 3894 goto out; 3895 3896 cpu = raw_smp_processor_id(); 3897 3898 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3899 goto out; 3900 3901 cpu_buffer = buffer->buffers[cpu]; 3902 3903 if (atomic_read(&cpu_buffer->record_disabled)) 3904 goto out; 3905 3906 if (length > BUF_MAX_DATA_SIZE) 3907 goto out; 3908 3909 if (unlikely(trace_recursive_lock(cpu_buffer))) 3910 goto out; 3911 3912 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3913 if (!event) 3914 goto out_unlock; 3915 3916 body = rb_event_data(event); 3917 3918 memcpy(body, data, length); 3919 3920 rb_commit(cpu_buffer); 3921 3922 rb_wakeups(buffer, cpu_buffer); 3923 3924 ret = 0; 3925 3926 out_unlock: 3927 trace_recursive_unlock(cpu_buffer); 3928 3929 out: 3930 preempt_enable_notrace(); 3931 3932 return ret; 3933 } 3934 EXPORT_SYMBOL_GPL(ring_buffer_write); 3935 3936 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3937 { 3938 struct buffer_page *reader = cpu_buffer->reader_page; 3939 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3940 struct buffer_page *commit = cpu_buffer->commit_page; 3941 3942 /* In case of error, head will be NULL */ 3943 if (unlikely(!head)) 3944 return true; 3945 3946 /* Reader should exhaust content in reader page */ 3947 if (reader->read != rb_page_commit(reader)) 3948 return false; 3949 3950 /* 3951 * If writers are committing on the reader page, knowing all 3952 * committed content has been read, the ring buffer is empty. 3953 */ 3954 if (commit == reader) 3955 return true; 3956 3957 /* 3958 * If writers are committing on a page other than reader page 3959 * and head page, there should always be content to read. 3960 */ 3961 if (commit != head) 3962 return false; 3963 3964 /* 3965 * Writers are committing on the head page, we just need 3966 * to care about there're committed data, and the reader will 3967 * swap reader page with head page when it is to read data. 3968 */ 3969 return rb_page_commit(commit) == 0; 3970 } 3971 3972 /** 3973 * ring_buffer_record_disable - stop all writes into the buffer 3974 * @buffer: The ring buffer to stop writes to. 3975 * 3976 * This prevents all writes to the buffer. Any attempt to write 3977 * to the buffer after this will fail and return NULL. 3978 * 3979 * The caller should call synchronize_rcu() after this. 3980 */ 3981 void ring_buffer_record_disable(struct trace_buffer *buffer) 3982 { 3983 atomic_inc(&buffer->record_disabled); 3984 } 3985 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3986 3987 /** 3988 * ring_buffer_record_enable - enable writes to the buffer 3989 * @buffer: The ring buffer to enable writes 3990 * 3991 * Note, multiple disables will need the same number of enables 3992 * to truly enable the writing (much like preempt_disable). 3993 */ 3994 void ring_buffer_record_enable(struct trace_buffer *buffer) 3995 { 3996 atomic_dec(&buffer->record_disabled); 3997 } 3998 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3999 4000 /** 4001 * ring_buffer_record_off - stop all writes into the buffer 4002 * @buffer: The ring buffer to stop writes to. 4003 * 4004 * This prevents all writes to the buffer. Any attempt to write 4005 * to the buffer after this will fail and return NULL. 4006 * 4007 * This is different than ring_buffer_record_disable() as 4008 * it works like an on/off switch, where as the disable() version 4009 * must be paired with a enable(). 4010 */ 4011 void ring_buffer_record_off(struct trace_buffer *buffer) 4012 { 4013 unsigned int rd; 4014 unsigned int new_rd; 4015 4016 rd = atomic_read(&buffer->record_disabled); 4017 do { 4018 new_rd = rd | RB_BUFFER_OFF; 4019 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4020 } 4021 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4022 4023 /** 4024 * ring_buffer_record_on - restart writes into the buffer 4025 * @buffer: The ring buffer to start writes to. 4026 * 4027 * This enables all writes to the buffer that was disabled by 4028 * ring_buffer_record_off(). 4029 * 4030 * This is different than ring_buffer_record_enable() as 4031 * it works like an on/off switch, where as the enable() version 4032 * must be paired with a disable(). 4033 */ 4034 void ring_buffer_record_on(struct trace_buffer *buffer) 4035 { 4036 unsigned int rd; 4037 unsigned int new_rd; 4038 4039 rd = atomic_read(&buffer->record_disabled); 4040 do { 4041 new_rd = rd & ~RB_BUFFER_OFF; 4042 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4043 } 4044 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4045 4046 /** 4047 * ring_buffer_record_is_on - return true if the ring buffer can write 4048 * @buffer: The ring buffer to see if write is enabled 4049 * 4050 * Returns true if the ring buffer is in a state that it accepts writes. 4051 */ 4052 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4053 { 4054 return !atomic_read(&buffer->record_disabled); 4055 } 4056 4057 /** 4058 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4059 * @buffer: The ring buffer to see if write is set enabled 4060 * 4061 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4062 * Note that this does NOT mean it is in a writable state. 4063 * 4064 * It may return true when the ring buffer has been disabled by 4065 * ring_buffer_record_disable(), as that is a temporary disabling of 4066 * the ring buffer. 4067 */ 4068 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4069 { 4070 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4071 } 4072 4073 /** 4074 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4075 * @buffer: The ring buffer to stop writes to. 4076 * @cpu: The CPU buffer to stop 4077 * 4078 * This prevents all writes to the buffer. Any attempt to write 4079 * to the buffer after this will fail and return NULL. 4080 * 4081 * The caller should call synchronize_rcu() after this. 4082 */ 4083 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4084 { 4085 struct ring_buffer_per_cpu *cpu_buffer; 4086 4087 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4088 return; 4089 4090 cpu_buffer = buffer->buffers[cpu]; 4091 atomic_inc(&cpu_buffer->record_disabled); 4092 } 4093 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4094 4095 /** 4096 * ring_buffer_record_enable_cpu - enable writes to the buffer 4097 * @buffer: The ring buffer to enable writes 4098 * @cpu: The CPU to enable. 4099 * 4100 * Note, multiple disables will need the same number of enables 4101 * to truly enable the writing (much like preempt_disable). 4102 */ 4103 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4104 { 4105 struct ring_buffer_per_cpu *cpu_buffer; 4106 4107 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4108 return; 4109 4110 cpu_buffer = buffer->buffers[cpu]; 4111 atomic_dec(&cpu_buffer->record_disabled); 4112 } 4113 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4114 4115 /* 4116 * The total entries in the ring buffer is the running counter 4117 * of entries entered into the ring buffer, minus the sum of 4118 * the entries read from the ring buffer and the number of 4119 * entries that were overwritten. 4120 */ 4121 static inline unsigned long 4122 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4123 { 4124 return local_read(&cpu_buffer->entries) - 4125 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4126 } 4127 4128 /** 4129 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4130 * @buffer: The ring buffer 4131 * @cpu: The per CPU buffer to read from. 4132 */ 4133 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4134 { 4135 unsigned long flags; 4136 struct ring_buffer_per_cpu *cpu_buffer; 4137 struct buffer_page *bpage; 4138 u64 ret = 0; 4139 4140 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4141 return 0; 4142 4143 cpu_buffer = buffer->buffers[cpu]; 4144 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4145 /* 4146 * if the tail is on reader_page, oldest time stamp is on the reader 4147 * page 4148 */ 4149 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4150 bpage = cpu_buffer->reader_page; 4151 else 4152 bpage = rb_set_head_page(cpu_buffer); 4153 if (bpage) 4154 ret = bpage->page->time_stamp; 4155 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4156 4157 return ret; 4158 } 4159 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4160 4161 /** 4162 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4163 * @buffer: The ring buffer 4164 * @cpu: The per CPU buffer to read from. 4165 */ 4166 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4167 { 4168 struct ring_buffer_per_cpu *cpu_buffer; 4169 unsigned long ret; 4170 4171 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4172 return 0; 4173 4174 cpu_buffer = buffer->buffers[cpu]; 4175 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4176 4177 return ret; 4178 } 4179 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4180 4181 /** 4182 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4183 * @buffer: The ring buffer 4184 * @cpu: The per CPU buffer to get the entries from. 4185 */ 4186 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4187 { 4188 struct ring_buffer_per_cpu *cpu_buffer; 4189 4190 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4191 return 0; 4192 4193 cpu_buffer = buffer->buffers[cpu]; 4194 4195 return rb_num_of_entries(cpu_buffer); 4196 } 4197 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4198 4199 /** 4200 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4201 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4202 * @buffer: The ring buffer 4203 * @cpu: The per CPU buffer to get the number of overruns from 4204 */ 4205 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4206 { 4207 struct ring_buffer_per_cpu *cpu_buffer; 4208 unsigned long ret; 4209 4210 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4211 return 0; 4212 4213 cpu_buffer = buffer->buffers[cpu]; 4214 ret = local_read(&cpu_buffer->overrun); 4215 4216 return ret; 4217 } 4218 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4219 4220 /** 4221 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4222 * commits failing due to the buffer wrapping around while there are uncommitted 4223 * events, such as during an interrupt storm. 4224 * @buffer: The ring buffer 4225 * @cpu: The per CPU buffer to get the number of overruns from 4226 */ 4227 unsigned long 4228 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4229 { 4230 struct ring_buffer_per_cpu *cpu_buffer; 4231 unsigned long ret; 4232 4233 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4234 return 0; 4235 4236 cpu_buffer = buffer->buffers[cpu]; 4237 ret = local_read(&cpu_buffer->commit_overrun); 4238 4239 return ret; 4240 } 4241 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4242 4243 /** 4244 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4245 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4246 * @buffer: The ring buffer 4247 * @cpu: The per CPU buffer to get the number of overruns from 4248 */ 4249 unsigned long 4250 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 4251 { 4252 struct ring_buffer_per_cpu *cpu_buffer; 4253 unsigned long ret; 4254 4255 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4256 return 0; 4257 4258 cpu_buffer = buffer->buffers[cpu]; 4259 ret = local_read(&cpu_buffer->dropped_events); 4260 4261 return ret; 4262 } 4263 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 4264 4265 /** 4266 * ring_buffer_read_events_cpu - get the number of events successfully read 4267 * @buffer: The ring buffer 4268 * @cpu: The per CPU buffer to get the number of events read 4269 */ 4270 unsigned long 4271 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 4272 { 4273 struct ring_buffer_per_cpu *cpu_buffer; 4274 4275 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4276 return 0; 4277 4278 cpu_buffer = buffer->buffers[cpu]; 4279 return cpu_buffer->read; 4280 } 4281 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 4282 4283 /** 4284 * ring_buffer_entries - get the number of entries in a buffer 4285 * @buffer: The ring buffer 4286 * 4287 * Returns the total number of entries in the ring buffer 4288 * (all CPU entries) 4289 */ 4290 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 4291 { 4292 struct ring_buffer_per_cpu *cpu_buffer; 4293 unsigned long entries = 0; 4294 int cpu; 4295 4296 /* if you care about this being correct, lock the buffer */ 4297 for_each_buffer_cpu(buffer, cpu) { 4298 cpu_buffer = buffer->buffers[cpu]; 4299 entries += rb_num_of_entries(cpu_buffer); 4300 } 4301 4302 return entries; 4303 } 4304 EXPORT_SYMBOL_GPL(ring_buffer_entries); 4305 4306 /** 4307 * ring_buffer_overruns - get the number of overruns in buffer 4308 * @buffer: The ring buffer 4309 * 4310 * Returns the total number of overruns in the ring buffer 4311 * (all CPU entries) 4312 */ 4313 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 4314 { 4315 struct ring_buffer_per_cpu *cpu_buffer; 4316 unsigned long overruns = 0; 4317 int cpu; 4318 4319 /* if you care about this being correct, lock the buffer */ 4320 for_each_buffer_cpu(buffer, cpu) { 4321 cpu_buffer = buffer->buffers[cpu]; 4322 overruns += local_read(&cpu_buffer->overrun); 4323 } 4324 4325 return overruns; 4326 } 4327 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 4328 4329 static void rb_iter_reset(struct ring_buffer_iter *iter) 4330 { 4331 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4332 4333 /* Iterator usage is expected to have record disabled */ 4334 iter->head_page = cpu_buffer->reader_page; 4335 iter->head = cpu_buffer->reader_page->read; 4336 iter->next_event = iter->head; 4337 4338 iter->cache_reader_page = iter->head_page; 4339 iter->cache_read = cpu_buffer->read; 4340 iter->cache_pages_removed = cpu_buffer->pages_removed; 4341 4342 if (iter->head) { 4343 iter->read_stamp = cpu_buffer->read_stamp; 4344 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 4345 } else { 4346 iter->read_stamp = iter->head_page->page->time_stamp; 4347 iter->page_stamp = iter->read_stamp; 4348 } 4349 } 4350 4351 /** 4352 * ring_buffer_iter_reset - reset an iterator 4353 * @iter: The iterator to reset 4354 * 4355 * Resets the iterator, so that it will start from the beginning 4356 * again. 4357 */ 4358 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 4359 { 4360 struct ring_buffer_per_cpu *cpu_buffer; 4361 unsigned long flags; 4362 4363 if (!iter) 4364 return; 4365 4366 cpu_buffer = iter->cpu_buffer; 4367 4368 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4369 rb_iter_reset(iter); 4370 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4371 } 4372 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 4373 4374 /** 4375 * ring_buffer_iter_empty - check if an iterator has no more to read 4376 * @iter: The iterator to check 4377 */ 4378 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 4379 { 4380 struct ring_buffer_per_cpu *cpu_buffer; 4381 struct buffer_page *reader; 4382 struct buffer_page *head_page; 4383 struct buffer_page *commit_page; 4384 struct buffer_page *curr_commit_page; 4385 unsigned commit; 4386 u64 curr_commit_ts; 4387 u64 commit_ts; 4388 4389 cpu_buffer = iter->cpu_buffer; 4390 reader = cpu_buffer->reader_page; 4391 head_page = cpu_buffer->head_page; 4392 commit_page = cpu_buffer->commit_page; 4393 commit_ts = commit_page->page->time_stamp; 4394 4395 /* 4396 * When the writer goes across pages, it issues a cmpxchg which 4397 * is a mb(), which will synchronize with the rmb here. 4398 * (see rb_tail_page_update()) 4399 */ 4400 smp_rmb(); 4401 commit = rb_page_commit(commit_page); 4402 /* We want to make sure that the commit page doesn't change */ 4403 smp_rmb(); 4404 4405 /* Make sure commit page didn't change */ 4406 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 4407 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 4408 4409 /* If the commit page changed, then there's more data */ 4410 if (curr_commit_page != commit_page || 4411 curr_commit_ts != commit_ts) 4412 return 0; 4413 4414 /* Still racy, as it may return a false positive, but that's OK */ 4415 return ((iter->head_page == commit_page && iter->head >= commit) || 4416 (iter->head_page == reader && commit_page == head_page && 4417 head_page->read == commit && 4418 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4419 } 4420 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4421 4422 static void 4423 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4424 struct ring_buffer_event *event) 4425 { 4426 u64 delta; 4427 4428 switch (event->type_len) { 4429 case RINGBUF_TYPE_PADDING: 4430 return; 4431 4432 case RINGBUF_TYPE_TIME_EXTEND: 4433 delta = rb_event_time_stamp(event); 4434 cpu_buffer->read_stamp += delta; 4435 return; 4436 4437 case RINGBUF_TYPE_TIME_STAMP: 4438 delta = rb_event_time_stamp(event); 4439 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 4440 cpu_buffer->read_stamp = delta; 4441 return; 4442 4443 case RINGBUF_TYPE_DATA: 4444 cpu_buffer->read_stamp += event->time_delta; 4445 return; 4446 4447 default: 4448 RB_WARN_ON(cpu_buffer, 1); 4449 } 4450 } 4451 4452 static void 4453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4454 struct ring_buffer_event *event) 4455 { 4456 u64 delta; 4457 4458 switch (event->type_len) { 4459 case RINGBUF_TYPE_PADDING: 4460 return; 4461 4462 case RINGBUF_TYPE_TIME_EXTEND: 4463 delta = rb_event_time_stamp(event); 4464 iter->read_stamp += delta; 4465 return; 4466 4467 case RINGBUF_TYPE_TIME_STAMP: 4468 delta = rb_event_time_stamp(event); 4469 delta = rb_fix_abs_ts(delta, iter->read_stamp); 4470 iter->read_stamp = delta; 4471 return; 4472 4473 case RINGBUF_TYPE_DATA: 4474 iter->read_stamp += event->time_delta; 4475 return; 4476 4477 default: 4478 RB_WARN_ON(iter->cpu_buffer, 1); 4479 } 4480 } 4481 4482 static struct buffer_page * 4483 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4484 { 4485 struct buffer_page *reader = NULL; 4486 unsigned long overwrite; 4487 unsigned long flags; 4488 int nr_loops = 0; 4489 bool ret; 4490 4491 local_irq_save(flags); 4492 arch_spin_lock(&cpu_buffer->lock); 4493 4494 again: 4495 /* 4496 * This should normally only loop twice. But because the 4497 * start of the reader inserts an empty page, it causes 4498 * a case where we will loop three times. There should be no 4499 * reason to loop four times (that I know of). 4500 */ 4501 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4502 reader = NULL; 4503 goto out; 4504 } 4505 4506 reader = cpu_buffer->reader_page; 4507 4508 /* If there's more to read, return this page */ 4509 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4510 goto out; 4511 4512 /* Never should we have an index greater than the size */ 4513 if (RB_WARN_ON(cpu_buffer, 4514 cpu_buffer->reader_page->read > rb_page_size(reader))) 4515 goto out; 4516 4517 /* check if we caught up to the tail */ 4518 reader = NULL; 4519 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4520 goto out; 4521 4522 /* Don't bother swapping if the ring buffer is empty */ 4523 if (rb_num_of_entries(cpu_buffer) == 0) 4524 goto out; 4525 4526 /* 4527 * Reset the reader page to size zero. 4528 */ 4529 local_set(&cpu_buffer->reader_page->write, 0); 4530 local_set(&cpu_buffer->reader_page->entries, 0); 4531 local_set(&cpu_buffer->reader_page->page->commit, 0); 4532 cpu_buffer->reader_page->real_end = 0; 4533 4534 spin: 4535 /* 4536 * Splice the empty reader page into the list around the head. 4537 */ 4538 reader = rb_set_head_page(cpu_buffer); 4539 if (!reader) 4540 goto out; 4541 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4542 cpu_buffer->reader_page->list.prev = reader->list.prev; 4543 4544 /* 4545 * cpu_buffer->pages just needs to point to the buffer, it 4546 * has no specific buffer page to point to. Lets move it out 4547 * of our way so we don't accidentally swap it. 4548 */ 4549 cpu_buffer->pages = reader->list.prev; 4550 4551 /* The reader page will be pointing to the new head */ 4552 rb_set_list_to_head(&cpu_buffer->reader_page->list); 4553 4554 /* 4555 * We want to make sure we read the overruns after we set up our 4556 * pointers to the next object. The writer side does a 4557 * cmpxchg to cross pages which acts as the mb on the writer 4558 * side. Note, the reader will constantly fail the swap 4559 * while the writer is updating the pointers, so this 4560 * guarantees that the overwrite recorded here is the one we 4561 * want to compare with the last_overrun. 4562 */ 4563 smp_mb(); 4564 overwrite = local_read(&(cpu_buffer->overrun)); 4565 4566 /* 4567 * Here's the tricky part. 4568 * 4569 * We need to move the pointer past the header page. 4570 * But we can only do that if a writer is not currently 4571 * moving it. The page before the header page has the 4572 * flag bit '1' set if it is pointing to the page we want. 4573 * but if the writer is in the process of moving it 4574 * than it will be '2' or already moved '0'. 4575 */ 4576 4577 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4578 4579 /* 4580 * If we did not convert it, then we must try again. 4581 */ 4582 if (!ret) 4583 goto spin; 4584 4585 /* 4586 * Yay! We succeeded in replacing the page. 4587 * 4588 * Now make the new head point back to the reader page. 4589 */ 4590 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4591 rb_inc_page(&cpu_buffer->head_page); 4592 4593 local_inc(&cpu_buffer->pages_read); 4594 4595 /* Finally update the reader page to the new head */ 4596 cpu_buffer->reader_page = reader; 4597 cpu_buffer->reader_page->read = 0; 4598 4599 if (overwrite != cpu_buffer->last_overrun) { 4600 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4601 cpu_buffer->last_overrun = overwrite; 4602 } 4603 4604 goto again; 4605 4606 out: 4607 /* Update the read_stamp on the first event */ 4608 if (reader && reader->read == 0) 4609 cpu_buffer->read_stamp = reader->page->time_stamp; 4610 4611 arch_spin_unlock(&cpu_buffer->lock); 4612 local_irq_restore(flags); 4613 4614 /* 4615 * The writer has preempt disable, wait for it. But not forever 4616 * Although, 1 second is pretty much "forever" 4617 */ 4618 #define USECS_WAIT 1000000 4619 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 4620 /* If the write is past the end of page, a writer is still updating it */ 4621 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) 4622 break; 4623 4624 udelay(1); 4625 4626 /* Get the latest version of the reader write value */ 4627 smp_rmb(); 4628 } 4629 4630 /* The writer is not moving forward? Something is wrong */ 4631 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 4632 reader = NULL; 4633 4634 /* 4635 * Make sure we see any padding after the write update 4636 * (see rb_reset_tail()). 4637 * 4638 * In addition, a writer may be writing on the reader page 4639 * if the page has not been fully filled, so the read barrier 4640 * is also needed to make sure we see the content of what is 4641 * committed by the writer (see rb_set_commit_to_write()). 4642 */ 4643 smp_rmb(); 4644 4645 4646 return reader; 4647 } 4648 4649 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4650 { 4651 struct ring_buffer_event *event; 4652 struct buffer_page *reader; 4653 unsigned length; 4654 4655 reader = rb_get_reader_page(cpu_buffer); 4656 4657 /* This function should not be called when buffer is empty */ 4658 if (RB_WARN_ON(cpu_buffer, !reader)) 4659 return; 4660 4661 event = rb_reader_event(cpu_buffer); 4662 4663 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4664 cpu_buffer->read++; 4665 4666 rb_update_read_stamp(cpu_buffer, event); 4667 4668 length = rb_event_length(event); 4669 cpu_buffer->reader_page->read += length; 4670 cpu_buffer->read_bytes += length; 4671 } 4672 4673 static void rb_advance_iter(struct ring_buffer_iter *iter) 4674 { 4675 struct ring_buffer_per_cpu *cpu_buffer; 4676 4677 cpu_buffer = iter->cpu_buffer; 4678 4679 /* If head == next_event then we need to jump to the next event */ 4680 if (iter->head == iter->next_event) { 4681 /* If the event gets overwritten again, there's nothing to do */ 4682 if (rb_iter_head_event(iter) == NULL) 4683 return; 4684 } 4685 4686 iter->head = iter->next_event; 4687 4688 /* 4689 * Check if we are at the end of the buffer. 4690 */ 4691 if (iter->next_event >= rb_page_size(iter->head_page)) { 4692 /* discarded commits can make the page empty */ 4693 if (iter->head_page == cpu_buffer->commit_page) 4694 return; 4695 rb_inc_iter(iter); 4696 return; 4697 } 4698 4699 rb_update_iter_read_stamp(iter, iter->event); 4700 } 4701 4702 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4703 { 4704 return cpu_buffer->lost_events; 4705 } 4706 4707 static struct ring_buffer_event * 4708 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4709 unsigned long *lost_events) 4710 { 4711 struct ring_buffer_event *event; 4712 struct buffer_page *reader; 4713 int nr_loops = 0; 4714 4715 if (ts) 4716 *ts = 0; 4717 again: 4718 /* 4719 * We repeat when a time extend is encountered. 4720 * Since the time extend is always attached to a data event, 4721 * we should never loop more than once. 4722 * (We never hit the following condition more than twice). 4723 */ 4724 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4725 return NULL; 4726 4727 reader = rb_get_reader_page(cpu_buffer); 4728 if (!reader) 4729 return NULL; 4730 4731 event = rb_reader_event(cpu_buffer); 4732 4733 switch (event->type_len) { 4734 case RINGBUF_TYPE_PADDING: 4735 if (rb_null_event(event)) 4736 RB_WARN_ON(cpu_buffer, 1); 4737 /* 4738 * Because the writer could be discarding every 4739 * event it creates (which would probably be bad) 4740 * if we were to go back to "again" then we may never 4741 * catch up, and will trigger the warn on, or lock 4742 * the box. Return the padding, and we will release 4743 * the current locks, and try again. 4744 */ 4745 return event; 4746 4747 case RINGBUF_TYPE_TIME_EXTEND: 4748 /* Internal data, OK to advance */ 4749 rb_advance_reader(cpu_buffer); 4750 goto again; 4751 4752 case RINGBUF_TYPE_TIME_STAMP: 4753 if (ts) { 4754 *ts = rb_event_time_stamp(event); 4755 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 4756 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4757 cpu_buffer->cpu, ts); 4758 } 4759 /* Internal data, OK to advance */ 4760 rb_advance_reader(cpu_buffer); 4761 goto again; 4762 4763 case RINGBUF_TYPE_DATA: 4764 if (ts && !(*ts)) { 4765 *ts = cpu_buffer->read_stamp + event->time_delta; 4766 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4767 cpu_buffer->cpu, ts); 4768 } 4769 if (lost_events) 4770 *lost_events = rb_lost_events(cpu_buffer); 4771 return event; 4772 4773 default: 4774 RB_WARN_ON(cpu_buffer, 1); 4775 } 4776 4777 return NULL; 4778 } 4779 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4780 4781 static struct ring_buffer_event * 4782 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4783 { 4784 struct trace_buffer *buffer; 4785 struct ring_buffer_per_cpu *cpu_buffer; 4786 struct ring_buffer_event *event; 4787 int nr_loops = 0; 4788 4789 if (ts) 4790 *ts = 0; 4791 4792 cpu_buffer = iter->cpu_buffer; 4793 buffer = cpu_buffer->buffer; 4794 4795 /* 4796 * Check if someone performed a consuming read to the buffer 4797 * or removed some pages from the buffer. In these cases, 4798 * iterator was invalidated and we need to reset it. 4799 */ 4800 if (unlikely(iter->cache_read != cpu_buffer->read || 4801 iter->cache_reader_page != cpu_buffer->reader_page || 4802 iter->cache_pages_removed != cpu_buffer->pages_removed)) 4803 rb_iter_reset(iter); 4804 4805 again: 4806 if (ring_buffer_iter_empty(iter)) 4807 return NULL; 4808 4809 /* 4810 * As the writer can mess with what the iterator is trying 4811 * to read, just give up if we fail to get an event after 4812 * three tries. The iterator is not as reliable when reading 4813 * the ring buffer with an active write as the consumer is. 4814 * Do not warn if the three failures is reached. 4815 */ 4816 if (++nr_loops > 3) 4817 return NULL; 4818 4819 if (rb_per_cpu_empty(cpu_buffer)) 4820 return NULL; 4821 4822 if (iter->head >= rb_page_size(iter->head_page)) { 4823 rb_inc_iter(iter); 4824 goto again; 4825 } 4826 4827 event = rb_iter_head_event(iter); 4828 if (!event) 4829 goto again; 4830 4831 switch (event->type_len) { 4832 case RINGBUF_TYPE_PADDING: 4833 if (rb_null_event(event)) { 4834 rb_inc_iter(iter); 4835 goto again; 4836 } 4837 rb_advance_iter(iter); 4838 return event; 4839 4840 case RINGBUF_TYPE_TIME_EXTEND: 4841 /* Internal data, OK to advance */ 4842 rb_advance_iter(iter); 4843 goto again; 4844 4845 case RINGBUF_TYPE_TIME_STAMP: 4846 if (ts) { 4847 *ts = rb_event_time_stamp(event); 4848 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 4849 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4850 cpu_buffer->cpu, ts); 4851 } 4852 /* Internal data, OK to advance */ 4853 rb_advance_iter(iter); 4854 goto again; 4855 4856 case RINGBUF_TYPE_DATA: 4857 if (ts && !(*ts)) { 4858 *ts = iter->read_stamp + event->time_delta; 4859 ring_buffer_normalize_time_stamp(buffer, 4860 cpu_buffer->cpu, ts); 4861 } 4862 return event; 4863 4864 default: 4865 RB_WARN_ON(cpu_buffer, 1); 4866 } 4867 4868 return NULL; 4869 } 4870 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4871 4872 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4873 { 4874 if (likely(!in_nmi())) { 4875 raw_spin_lock(&cpu_buffer->reader_lock); 4876 return true; 4877 } 4878 4879 /* 4880 * If an NMI die dumps out the content of the ring buffer 4881 * trylock must be used to prevent a deadlock if the NMI 4882 * preempted a task that holds the ring buffer locks. If 4883 * we get the lock then all is fine, if not, then continue 4884 * to do the read, but this can corrupt the ring buffer, 4885 * so it must be permanently disabled from future writes. 4886 * Reading from NMI is a oneshot deal. 4887 */ 4888 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4889 return true; 4890 4891 /* Continue without locking, but disable the ring buffer */ 4892 atomic_inc(&cpu_buffer->record_disabled); 4893 return false; 4894 } 4895 4896 static inline void 4897 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4898 { 4899 if (likely(locked)) 4900 raw_spin_unlock(&cpu_buffer->reader_lock); 4901 } 4902 4903 /** 4904 * ring_buffer_peek - peek at the next event to be read 4905 * @buffer: The ring buffer to read 4906 * @cpu: The cpu to peak at 4907 * @ts: The timestamp counter of this event. 4908 * @lost_events: a variable to store if events were lost (may be NULL) 4909 * 4910 * This will return the event that will be read next, but does 4911 * not consume the data. 4912 */ 4913 struct ring_buffer_event * 4914 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4915 unsigned long *lost_events) 4916 { 4917 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4918 struct ring_buffer_event *event; 4919 unsigned long flags; 4920 bool dolock; 4921 4922 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4923 return NULL; 4924 4925 again: 4926 local_irq_save(flags); 4927 dolock = rb_reader_lock(cpu_buffer); 4928 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4929 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4930 rb_advance_reader(cpu_buffer); 4931 rb_reader_unlock(cpu_buffer, dolock); 4932 local_irq_restore(flags); 4933 4934 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4935 goto again; 4936 4937 return event; 4938 } 4939 4940 /** ring_buffer_iter_dropped - report if there are dropped events 4941 * @iter: The ring buffer iterator 4942 * 4943 * Returns true if there was dropped events since the last peek. 4944 */ 4945 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4946 { 4947 bool ret = iter->missed_events != 0; 4948 4949 iter->missed_events = 0; 4950 return ret; 4951 } 4952 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4953 4954 /** 4955 * ring_buffer_iter_peek - peek at the next event to be read 4956 * @iter: The ring buffer iterator 4957 * @ts: The timestamp counter of this event. 4958 * 4959 * This will return the event that will be read next, but does 4960 * not increment the iterator. 4961 */ 4962 struct ring_buffer_event * 4963 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4964 { 4965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4966 struct ring_buffer_event *event; 4967 unsigned long flags; 4968 4969 again: 4970 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4971 event = rb_iter_peek(iter, ts); 4972 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4973 4974 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4975 goto again; 4976 4977 return event; 4978 } 4979 4980 /** 4981 * ring_buffer_consume - return an event and consume it 4982 * @buffer: The ring buffer to get the next event from 4983 * @cpu: the cpu to read the buffer from 4984 * @ts: a variable to store the timestamp (may be NULL) 4985 * @lost_events: a variable to store if events were lost (may be NULL) 4986 * 4987 * Returns the next event in the ring buffer, and that event is consumed. 4988 * Meaning, that sequential reads will keep returning a different event, 4989 * and eventually empty the ring buffer if the producer is slower. 4990 */ 4991 struct ring_buffer_event * 4992 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4993 unsigned long *lost_events) 4994 { 4995 struct ring_buffer_per_cpu *cpu_buffer; 4996 struct ring_buffer_event *event = NULL; 4997 unsigned long flags; 4998 bool dolock; 4999 5000 again: 5001 /* might be called in atomic */ 5002 preempt_disable(); 5003 5004 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5005 goto out; 5006 5007 cpu_buffer = buffer->buffers[cpu]; 5008 local_irq_save(flags); 5009 dolock = rb_reader_lock(cpu_buffer); 5010 5011 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5012 if (event) { 5013 cpu_buffer->lost_events = 0; 5014 rb_advance_reader(cpu_buffer); 5015 } 5016 5017 rb_reader_unlock(cpu_buffer, dolock); 5018 local_irq_restore(flags); 5019 5020 out: 5021 preempt_enable(); 5022 5023 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5024 goto again; 5025 5026 return event; 5027 } 5028 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5029 5030 /** 5031 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5032 * @buffer: The ring buffer to read from 5033 * @cpu: The cpu buffer to iterate over 5034 * @flags: gfp flags to use for memory allocation 5035 * 5036 * This performs the initial preparations necessary to iterate 5037 * through the buffer. Memory is allocated, buffer recording 5038 * is disabled, and the iterator pointer is returned to the caller. 5039 * 5040 * Disabling buffer recording prevents the reading from being 5041 * corrupted. This is not a consuming read, so a producer is not 5042 * expected. 5043 * 5044 * After a sequence of ring_buffer_read_prepare calls, the user is 5045 * expected to make at least one call to ring_buffer_read_prepare_sync. 5046 * Afterwards, ring_buffer_read_start is invoked to get things going 5047 * for real. 5048 * 5049 * This overall must be paired with ring_buffer_read_finish. 5050 */ 5051 struct ring_buffer_iter * 5052 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5053 { 5054 struct ring_buffer_per_cpu *cpu_buffer; 5055 struct ring_buffer_iter *iter; 5056 5057 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5058 return NULL; 5059 5060 iter = kzalloc(sizeof(*iter), flags); 5061 if (!iter) 5062 return NULL; 5063 5064 /* Holds the entire event: data and meta data */ 5065 iter->event = kmalloc(BUF_PAGE_SIZE, flags); 5066 if (!iter->event) { 5067 kfree(iter); 5068 return NULL; 5069 } 5070 5071 cpu_buffer = buffer->buffers[cpu]; 5072 5073 iter->cpu_buffer = cpu_buffer; 5074 5075 atomic_inc(&cpu_buffer->resize_disabled); 5076 5077 return iter; 5078 } 5079 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5080 5081 /** 5082 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5083 * 5084 * All previously invoked ring_buffer_read_prepare calls to prepare 5085 * iterators will be synchronized. Afterwards, read_buffer_read_start 5086 * calls on those iterators are allowed. 5087 */ 5088 void 5089 ring_buffer_read_prepare_sync(void) 5090 { 5091 synchronize_rcu(); 5092 } 5093 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5094 5095 /** 5096 * ring_buffer_read_start - start a non consuming read of the buffer 5097 * @iter: The iterator returned by ring_buffer_read_prepare 5098 * 5099 * This finalizes the startup of an iteration through the buffer. 5100 * The iterator comes from a call to ring_buffer_read_prepare and 5101 * an intervening ring_buffer_read_prepare_sync must have been 5102 * performed. 5103 * 5104 * Must be paired with ring_buffer_read_finish. 5105 */ 5106 void 5107 ring_buffer_read_start(struct ring_buffer_iter *iter) 5108 { 5109 struct ring_buffer_per_cpu *cpu_buffer; 5110 unsigned long flags; 5111 5112 if (!iter) 5113 return; 5114 5115 cpu_buffer = iter->cpu_buffer; 5116 5117 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5118 arch_spin_lock(&cpu_buffer->lock); 5119 rb_iter_reset(iter); 5120 arch_spin_unlock(&cpu_buffer->lock); 5121 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5122 } 5123 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5124 5125 /** 5126 * ring_buffer_read_finish - finish reading the iterator of the buffer 5127 * @iter: The iterator retrieved by ring_buffer_start 5128 * 5129 * This re-enables the recording to the buffer, and frees the 5130 * iterator. 5131 */ 5132 void 5133 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5134 { 5135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5136 unsigned long flags; 5137 5138 /* 5139 * Ring buffer is disabled from recording, here's a good place 5140 * to check the integrity of the ring buffer. 5141 * Must prevent readers from trying to read, as the check 5142 * clears the HEAD page and readers require it. 5143 */ 5144 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5145 rb_check_pages(cpu_buffer); 5146 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5147 5148 atomic_dec(&cpu_buffer->resize_disabled); 5149 kfree(iter->event); 5150 kfree(iter); 5151 } 5152 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5153 5154 /** 5155 * ring_buffer_iter_advance - advance the iterator to the next location 5156 * @iter: The ring buffer iterator 5157 * 5158 * Move the location of the iterator such that the next read will 5159 * be the next location of the iterator. 5160 */ 5161 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5162 { 5163 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5164 unsigned long flags; 5165 5166 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5167 5168 rb_advance_iter(iter); 5169 5170 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5171 } 5172 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5173 5174 /** 5175 * ring_buffer_size - return the size of the ring buffer (in bytes) 5176 * @buffer: The ring buffer. 5177 * @cpu: The CPU to get ring buffer size from. 5178 */ 5179 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5180 { 5181 /* 5182 * Earlier, this method returned 5183 * BUF_PAGE_SIZE * buffer->nr_pages 5184 * Since the nr_pages field is now removed, we have converted this to 5185 * return the per cpu buffer value. 5186 */ 5187 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5188 return 0; 5189 5190 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 5191 } 5192 EXPORT_SYMBOL_GPL(ring_buffer_size); 5193 5194 static void rb_clear_buffer_page(struct buffer_page *page) 5195 { 5196 local_set(&page->write, 0); 5197 local_set(&page->entries, 0); 5198 rb_init_page(page->page); 5199 page->read = 0; 5200 } 5201 5202 static void 5203 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5204 { 5205 struct buffer_page *page; 5206 5207 rb_head_page_deactivate(cpu_buffer); 5208 5209 cpu_buffer->head_page 5210 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5211 rb_clear_buffer_page(cpu_buffer->head_page); 5212 list_for_each_entry(page, cpu_buffer->pages, list) { 5213 rb_clear_buffer_page(page); 5214 } 5215 5216 cpu_buffer->tail_page = cpu_buffer->head_page; 5217 cpu_buffer->commit_page = cpu_buffer->head_page; 5218 5219 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5220 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5221 rb_clear_buffer_page(cpu_buffer->reader_page); 5222 5223 local_set(&cpu_buffer->entries_bytes, 0); 5224 local_set(&cpu_buffer->overrun, 0); 5225 local_set(&cpu_buffer->commit_overrun, 0); 5226 local_set(&cpu_buffer->dropped_events, 0); 5227 local_set(&cpu_buffer->entries, 0); 5228 local_set(&cpu_buffer->committing, 0); 5229 local_set(&cpu_buffer->commits, 0); 5230 local_set(&cpu_buffer->pages_touched, 0); 5231 local_set(&cpu_buffer->pages_lost, 0); 5232 local_set(&cpu_buffer->pages_read, 0); 5233 cpu_buffer->last_pages_touch = 0; 5234 cpu_buffer->shortest_full = 0; 5235 cpu_buffer->read = 0; 5236 cpu_buffer->read_bytes = 0; 5237 5238 rb_time_set(&cpu_buffer->write_stamp, 0); 5239 rb_time_set(&cpu_buffer->before_stamp, 0); 5240 5241 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 5242 5243 cpu_buffer->lost_events = 0; 5244 cpu_buffer->last_overrun = 0; 5245 5246 rb_head_page_activate(cpu_buffer); 5247 cpu_buffer->pages_removed = 0; 5248 } 5249 5250 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 5251 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 5252 { 5253 unsigned long flags; 5254 5255 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5256 5257 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 5258 goto out; 5259 5260 arch_spin_lock(&cpu_buffer->lock); 5261 5262 rb_reset_cpu(cpu_buffer); 5263 5264 arch_spin_unlock(&cpu_buffer->lock); 5265 5266 out: 5267 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5268 } 5269 5270 /** 5271 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 5272 * @buffer: The ring buffer to reset a per cpu buffer of 5273 * @cpu: The CPU buffer to be reset 5274 */ 5275 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 5276 { 5277 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5278 5279 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5280 return; 5281 5282 /* prevent another thread from changing buffer sizes */ 5283 mutex_lock(&buffer->mutex); 5284 5285 atomic_inc(&cpu_buffer->resize_disabled); 5286 atomic_inc(&cpu_buffer->record_disabled); 5287 5288 /* Make sure all commits have finished */ 5289 synchronize_rcu(); 5290 5291 reset_disabled_cpu_buffer(cpu_buffer); 5292 5293 atomic_dec(&cpu_buffer->record_disabled); 5294 atomic_dec(&cpu_buffer->resize_disabled); 5295 5296 mutex_unlock(&buffer->mutex); 5297 } 5298 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 5299 5300 /* Flag to ensure proper resetting of atomic variables */ 5301 #define RESET_BIT (1 << 30) 5302 5303 /** 5304 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 5305 * @buffer: The ring buffer to reset a per cpu buffer of 5306 */ 5307 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 5308 { 5309 struct ring_buffer_per_cpu *cpu_buffer; 5310 int cpu; 5311 5312 /* prevent another thread from changing buffer sizes */ 5313 mutex_lock(&buffer->mutex); 5314 5315 for_each_online_buffer_cpu(buffer, cpu) { 5316 cpu_buffer = buffer->buffers[cpu]; 5317 5318 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 5319 atomic_inc(&cpu_buffer->record_disabled); 5320 } 5321 5322 /* Make sure all commits have finished */ 5323 synchronize_rcu(); 5324 5325 for_each_buffer_cpu(buffer, cpu) { 5326 cpu_buffer = buffer->buffers[cpu]; 5327 5328 /* 5329 * If a CPU came online during the synchronize_rcu(), then 5330 * ignore it. 5331 */ 5332 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 5333 continue; 5334 5335 reset_disabled_cpu_buffer(cpu_buffer); 5336 5337 atomic_dec(&cpu_buffer->record_disabled); 5338 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 5339 } 5340 5341 mutex_unlock(&buffer->mutex); 5342 } 5343 5344 /** 5345 * ring_buffer_reset - reset a ring buffer 5346 * @buffer: The ring buffer to reset all cpu buffers 5347 */ 5348 void ring_buffer_reset(struct trace_buffer *buffer) 5349 { 5350 struct ring_buffer_per_cpu *cpu_buffer; 5351 int cpu; 5352 5353 /* prevent another thread from changing buffer sizes */ 5354 mutex_lock(&buffer->mutex); 5355 5356 for_each_buffer_cpu(buffer, cpu) { 5357 cpu_buffer = buffer->buffers[cpu]; 5358 5359 atomic_inc(&cpu_buffer->resize_disabled); 5360 atomic_inc(&cpu_buffer->record_disabled); 5361 } 5362 5363 /* Make sure all commits have finished */ 5364 synchronize_rcu(); 5365 5366 for_each_buffer_cpu(buffer, cpu) { 5367 cpu_buffer = buffer->buffers[cpu]; 5368 5369 reset_disabled_cpu_buffer(cpu_buffer); 5370 5371 atomic_dec(&cpu_buffer->record_disabled); 5372 atomic_dec(&cpu_buffer->resize_disabled); 5373 } 5374 5375 mutex_unlock(&buffer->mutex); 5376 } 5377 EXPORT_SYMBOL_GPL(ring_buffer_reset); 5378 5379 /** 5380 * ring_buffer_empty - is the ring buffer empty? 5381 * @buffer: The ring buffer to test 5382 */ 5383 bool ring_buffer_empty(struct trace_buffer *buffer) 5384 { 5385 struct ring_buffer_per_cpu *cpu_buffer; 5386 unsigned long flags; 5387 bool dolock; 5388 bool ret; 5389 int cpu; 5390 5391 /* yes this is racy, but if you don't like the race, lock the buffer */ 5392 for_each_buffer_cpu(buffer, cpu) { 5393 cpu_buffer = buffer->buffers[cpu]; 5394 local_irq_save(flags); 5395 dolock = rb_reader_lock(cpu_buffer); 5396 ret = rb_per_cpu_empty(cpu_buffer); 5397 rb_reader_unlock(cpu_buffer, dolock); 5398 local_irq_restore(flags); 5399 5400 if (!ret) 5401 return false; 5402 } 5403 5404 return true; 5405 } 5406 EXPORT_SYMBOL_GPL(ring_buffer_empty); 5407 5408 /** 5409 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 5410 * @buffer: The ring buffer 5411 * @cpu: The CPU buffer to test 5412 */ 5413 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 5414 { 5415 struct ring_buffer_per_cpu *cpu_buffer; 5416 unsigned long flags; 5417 bool dolock; 5418 bool ret; 5419 5420 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5421 return true; 5422 5423 cpu_buffer = buffer->buffers[cpu]; 5424 local_irq_save(flags); 5425 dolock = rb_reader_lock(cpu_buffer); 5426 ret = rb_per_cpu_empty(cpu_buffer); 5427 rb_reader_unlock(cpu_buffer, dolock); 5428 local_irq_restore(flags); 5429 5430 return ret; 5431 } 5432 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 5433 5434 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 5435 /** 5436 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 5437 * @buffer_a: One buffer to swap with 5438 * @buffer_b: The other buffer to swap with 5439 * @cpu: the CPU of the buffers to swap 5440 * 5441 * This function is useful for tracers that want to take a "snapshot" 5442 * of a CPU buffer and has another back up buffer lying around. 5443 * it is expected that the tracer handles the cpu buffer not being 5444 * used at the moment. 5445 */ 5446 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 5447 struct trace_buffer *buffer_b, int cpu) 5448 { 5449 struct ring_buffer_per_cpu *cpu_buffer_a; 5450 struct ring_buffer_per_cpu *cpu_buffer_b; 5451 int ret = -EINVAL; 5452 5453 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 5454 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 5455 goto out; 5456 5457 cpu_buffer_a = buffer_a->buffers[cpu]; 5458 cpu_buffer_b = buffer_b->buffers[cpu]; 5459 5460 /* At least make sure the two buffers are somewhat the same */ 5461 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 5462 goto out; 5463 5464 ret = -EAGAIN; 5465 5466 if (atomic_read(&buffer_a->record_disabled)) 5467 goto out; 5468 5469 if (atomic_read(&buffer_b->record_disabled)) 5470 goto out; 5471 5472 if (atomic_read(&cpu_buffer_a->record_disabled)) 5473 goto out; 5474 5475 if (atomic_read(&cpu_buffer_b->record_disabled)) 5476 goto out; 5477 5478 /* 5479 * We can't do a synchronize_rcu here because this 5480 * function can be called in atomic context. 5481 * Normally this will be called from the same CPU as cpu. 5482 * If not it's up to the caller to protect this. 5483 */ 5484 atomic_inc(&cpu_buffer_a->record_disabled); 5485 atomic_inc(&cpu_buffer_b->record_disabled); 5486 5487 ret = -EBUSY; 5488 if (local_read(&cpu_buffer_a->committing)) 5489 goto out_dec; 5490 if (local_read(&cpu_buffer_b->committing)) 5491 goto out_dec; 5492 5493 /* 5494 * When resize is in progress, we cannot swap it because 5495 * it will mess the state of the cpu buffer. 5496 */ 5497 if (atomic_read(&buffer_a->resizing)) 5498 goto out_dec; 5499 if (atomic_read(&buffer_b->resizing)) 5500 goto out_dec; 5501 5502 buffer_a->buffers[cpu] = cpu_buffer_b; 5503 buffer_b->buffers[cpu] = cpu_buffer_a; 5504 5505 cpu_buffer_b->buffer = buffer_a; 5506 cpu_buffer_a->buffer = buffer_b; 5507 5508 ret = 0; 5509 5510 out_dec: 5511 atomic_dec(&cpu_buffer_a->record_disabled); 5512 atomic_dec(&cpu_buffer_b->record_disabled); 5513 out: 5514 return ret; 5515 } 5516 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 5517 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 5518 5519 /** 5520 * ring_buffer_alloc_read_page - allocate a page to read from buffer 5521 * @buffer: the buffer to allocate for. 5522 * @cpu: the cpu buffer to allocate. 5523 * 5524 * This function is used in conjunction with ring_buffer_read_page. 5525 * When reading a full page from the ring buffer, these functions 5526 * can be used to speed up the process. The calling function should 5527 * allocate a few pages first with this function. Then when it 5528 * needs to get pages from the ring buffer, it passes the result 5529 * of this function into ring_buffer_read_page, which will swap 5530 * the page that was allocated, with the read page of the buffer. 5531 * 5532 * Returns: 5533 * The page allocated, or ERR_PTR 5534 */ 5535 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 5536 { 5537 struct ring_buffer_per_cpu *cpu_buffer; 5538 struct buffer_data_page *bpage = NULL; 5539 unsigned long flags; 5540 struct page *page; 5541 5542 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5543 return ERR_PTR(-ENODEV); 5544 5545 cpu_buffer = buffer->buffers[cpu]; 5546 local_irq_save(flags); 5547 arch_spin_lock(&cpu_buffer->lock); 5548 5549 if (cpu_buffer->free_page) { 5550 bpage = cpu_buffer->free_page; 5551 cpu_buffer->free_page = NULL; 5552 } 5553 5554 arch_spin_unlock(&cpu_buffer->lock); 5555 local_irq_restore(flags); 5556 5557 if (bpage) 5558 goto out; 5559 5560 page = alloc_pages_node(cpu_to_node(cpu), 5561 GFP_KERNEL | __GFP_NORETRY, 0); 5562 if (!page) 5563 return ERR_PTR(-ENOMEM); 5564 5565 bpage = page_address(page); 5566 5567 out: 5568 rb_init_page(bpage); 5569 5570 return bpage; 5571 } 5572 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5573 5574 /** 5575 * ring_buffer_free_read_page - free an allocated read page 5576 * @buffer: the buffer the page was allocate for 5577 * @cpu: the cpu buffer the page came from 5578 * @data: the page to free 5579 * 5580 * Free a page allocated from ring_buffer_alloc_read_page. 5581 */ 5582 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5583 { 5584 struct ring_buffer_per_cpu *cpu_buffer; 5585 struct buffer_data_page *bpage = data; 5586 struct page *page = virt_to_page(bpage); 5587 unsigned long flags; 5588 5589 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 5590 return; 5591 5592 cpu_buffer = buffer->buffers[cpu]; 5593 5594 /* If the page is still in use someplace else, we can't reuse it */ 5595 if (page_ref_count(page) > 1) 5596 goto out; 5597 5598 local_irq_save(flags); 5599 arch_spin_lock(&cpu_buffer->lock); 5600 5601 if (!cpu_buffer->free_page) { 5602 cpu_buffer->free_page = bpage; 5603 bpage = NULL; 5604 } 5605 5606 arch_spin_unlock(&cpu_buffer->lock); 5607 local_irq_restore(flags); 5608 5609 out: 5610 free_page((unsigned long)bpage); 5611 } 5612 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5613 5614 /** 5615 * ring_buffer_read_page - extract a page from the ring buffer 5616 * @buffer: buffer to extract from 5617 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5618 * @len: amount to extract 5619 * @cpu: the cpu of the buffer to extract 5620 * @full: should the extraction only happen when the page is full. 5621 * 5622 * This function will pull out a page from the ring buffer and consume it. 5623 * @data_page must be the address of the variable that was returned 5624 * from ring_buffer_alloc_read_page. This is because the page might be used 5625 * to swap with a page in the ring buffer. 5626 * 5627 * for example: 5628 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5629 * if (IS_ERR(rpage)) 5630 * return PTR_ERR(rpage); 5631 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5632 * if (ret >= 0) 5633 * process_page(rpage, ret); 5634 * 5635 * When @full is set, the function will not return true unless 5636 * the writer is off the reader page. 5637 * 5638 * Note: it is up to the calling functions to handle sleeps and wakeups. 5639 * The ring buffer can be used anywhere in the kernel and can not 5640 * blindly call wake_up. The layer that uses the ring buffer must be 5641 * responsible for that. 5642 * 5643 * Returns: 5644 * >=0 if data has been transferred, returns the offset of consumed data. 5645 * <0 if no data has been transferred. 5646 */ 5647 int ring_buffer_read_page(struct trace_buffer *buffer, 5648 void **data_page, size_t len, int cpu, int full) 5649 { 5650 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5651 struct ring_buffer_event *event; 5652 struct buffer_data_page *bpage; 5653 struct buffer_page *reader; 5654 unsigned long missed_events; 5655 unsigned long flags; 5656 unsigned int commit; 5657 unsigned int read; 5658 u64 save_timestamp; 5659 int ret = -1; 5660 5661 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5662 goto out; 5663 5664 /* 5665 * If len is not big enough to hold the page header, then 5666 * we can not copy anything. 5667 */ 5668 if (len <= BUF_PAGE_HDR_SIZE) 5669 goto out; 5670 5671 len -= BUF_PAGE_HDR_SIZE; 5672 5673 if (!data_page) 5674 goto out; 5675 5676 bpage = *data_page; 5677 if (!bpage) 5678 goto out; 5679 5680 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5681 5682 reader = rb_get_reader_page(cpu_buffer); 5683 if (!reader) 5684 goto out_unlock; 5685 5686 event = rb_reader_event(cpu_buffer); 5687 5688 read = reader->read; 5689 commit = rb_page_commit(reader); 5690 5691 /* Check if any events were dropped */ 5692 missed_events = cpu_buffer->lost_events; 5693 5694 /* 5695 * If this page has been partially read or 5696 * if len is not big enough to read the rest of the page or 5697 * a writer is still on the page, then 5698 * we must copy the data from the page to the buffer. 5699 * Otherwise, we can simply swap the page with the one passed in. 5700 */ 5701 if (read || (len < (commit - read)) || 5702 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5703 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5704 unsigned int rpos = read; 5705 unsigned int pos = 0; 5706 unsigned int size; 5707 5708 /* 5709 * If a full page is expected, this can still be returned 5710 * if there's been a previous partial read and the 5711 * rest of the page can be read and the commit page is off 5712 * the reader page. 5713 */ 5714 if (full && 5715 (!read || (len < (commit - read)) || 5716 cpu_buffer->reader_page == cpu_buffer->commit_page)) 5717 goto out_unlock; 5718 5719 if (len > (commit - read)) 5720 len = (commit - read); 5721 5722 /* Always keep the time extend and data together */ 5723 size = rb_event_ts_length(event); 5724 5725 if (len < size) 5726 goto out_unlock; 5727 5728 /* save the current timestamp, since the user will need it */ 5729 save_timestamp = cpu_buffer->read_stamp; 5730 5731 /* Need to copy one event at a time */ 5732 do { 5733 /* We need the size of one event, because 5734 * rb_advance_reader only advances by one event, 5735 * whereas rb_event_ts_length may include the size of 5736 * one or two events. 5737 * We have already ensured there's enough space if this 5738 * is a time extend. */ 5739 size = rb_event_length(event); 5740 memcpy(bpage->data + pos, rpage->data + rpos, size); 5741 5742 len -= size; 5743 5744 rb_advance_reader(cpu_buffer); 5745 rpos = reader->read; 5746 pos += size; 5747 5748 if (rpos >= commit) 5749 break; 5750 5751 event = rb_reader_event(cpu_buffer); 5752 /* Always keep the time extend and data together */ 5753 size = rb_event_ts_length(event); 5754 } while (len >= size); 5755 5756 /* update bpage */ 5757 local_set(&bpage->commit, pos); 5758 bpage->time_stamp = save_timestamp; 5759 5760 /* we copied everything to the beginning */ 5761 read = 0; 5762 } else { 5763 /* update the entry counter */ 5764 cpu_buffer->read += rb_page_entries(reader); 5765 cpu_buffer->read_bytes += rb_page_commit(reader); 5766 5767 /* swap the pages */ 5768 rb_init_page(bpage); 5769 bpage = reader->page; 5770 reader->page = *data_page; 5771 local_set(&reader->write, 0); 5772 local_set(&reader->entries, 0); 5773 reader->read = 0; 5774 *data_page = bpage; 5775 5776 /* 5777 * Use the real_end for the data size, 5778 * This gives us a chance to store the lost events 5779 * on the page. 5780 */ 5781 if (reader->real_end) 5782 local_set(&bpage->commit, reader->real_end); 5783 } 5784 ret = read; 5785 5786 cpu_buffer->lost_events = 0; 5787 5788 commit = local_read(&bpage->commit); 5789 /* 5790 * Set a flag in the commit field if we lost events 5791 */ 5792 if (missed_events) { 5793 /* If there is room at the end of the page to save the 5794 * missed events, then record it there. 5795 */ 5796 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5797 memcpy(&bpage->data[commit], &missed_events, 5798 sizeof(missed_events)); 5799 local_add(RB_MISSED_STORED, &bpage->commit); 5800 commit += sizeof(missed_events); 5801 } 5802 local_add(RB_MISSED_EVENTS, &bpage->commit); 5803 } 5804 5805 /* 5806 * This page may be off to user land. Zero it out here. 5807 */ 5808 if (commit < BUF_PAGE_SIZE) 5809 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5810 5811 out_unlock: 5812 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5813 5814 out: 5815 return ret; 5816 } 5817 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5818 5819 /* 5820 * We only allocate new buffers, never free them if the CPU goes down. 5821 * If we were to free the buffer, then the user would lose any trace that was in 5822 * the buffer. 5823 */ 5824 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5825 { 5826 struct trace_buffer *buffer; 5827 long nr_pages_same; 5828 int cpu_i; 5829 unsigned long nr_pages; 5830 5831 buffer = container_of(node, struct trace_buffer, node); 5832 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5833 return 0; 5834 5835 nr_pages = 0; 5836 nr_pages_same = 1; 5837 /* check if all cpu sizes are same */ 5838 for_each_buffer_cpu(buffer, cpu_i) { 5839 /* fill in the size from first enabled cpu */ 5840 if (nr_pages == 0) 5841 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5842 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5843 nr_pages_same = 0; 5844 break; 5845 } 5846 } 5847 /* allocate minimum pages, user can later expand it */ 5848 if (!nr_pages_same) 5849 nr_pages = 2; 5850 buffer->buffers[cpu] = 5851 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5852 if (!buffer->buffers[cpu]) { 5853 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5854 cpu); 5855 return -ENOMEM; 5856 } 5857 smp_wmb(); 5858 cpumask_set_cpu(cpu, buffer->cpumask); 5859 return 0; 5860 } 5861 5862 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5863 /* 5864 * This is a basic integrity check of the ring buffer. 5865 * Late in the boot cycle this test will run when configured in. 5866 * It will kick off a thread per CPU that will go into a loop 5867 * writing to the per cpu ring buffer various sizes of data. 5868 * Some of the data will be large items, some small. 5869 * 5870 * Another thread is created that goes into a spin, sending out 5871 * IPIs to the other CPUs to also write into the ring buffer. 5872 * this is to test the nesting ability of the buffer. 5873 * 5874 * Basic stats are recorded and reported. If something in the 5875 * ring buffer should happen that's not expected, a big warning 5876 * is displayed and all ring buffers are disabled. 5877 */ 5878 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5879 5880 struct rb_test_data { 5881 struct trace_buffer *buffer; 5882 unsigned long events; 5883 unsigned long bytes_written; 5884 unsigned long bytes_alloc; 5885 unsigned long bytes_dropped; 5886 unsigned long events_nested; 5887 unsigned long bytes_written_nested; 5888 unsigned long bytes_alloc_nested; 5889 unsigned long bytes_dropped_nested; 5890 int min_size_nested; 5891 int max_size_nested; 5892 int max_size; 5893 int min_size; 5894 int cpu; 5895 int cnt; 5896 }; 5897 5898 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5899 5900 /* 1 meg per cpu */ 5901 #define RB_TEST_BUFFER_SIZE 1048576 5902 5903 static char rb_string[] __initdata = 5904 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5905 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5906 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5907 5908 static bool rb_test_started __initdata; 5909 5910 struct rb_item { 5911 int size; 5912 char str[]; 5913 }; 5914 5915 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5916 { 5917 struct ring_buffer_event *event; 5918 struct rb_item *item; 5919 bool started; 5920 int event_len; 5921 int size; 5922 int len; 5923 int cnt; 5924 5925 /* Have nested writes different that what is written */ 5926 cnt = data->cnt + (nested ? 27 : 0); 5927 5928 /* Multiply cnt by ~e, to make some unique increment */ 5929 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5930 5931 len = size + sizeof(struct rb_item); 5932 5933 started = rb_test_started; 5934 /* read rb_test_started before checking buffer enabled */ 5935 smp_rmb(); 5936 5937 event = ring_buffer_lock_reserve(data->buffer, len); 5938 if (!event) { 5939 /* Ignore dropped events before test starts. */ 5940 if (started) { 5941 if (nested) 5942 data->bytes_dropped += len; 5943 else 5944 data->bytes_dropped_nested += len; 5945 } 5946 return len; 5947 } 5948 5949 event_len = ring_buffer_event_length(event); 5950 5951 if (RB_WARN_ON(data->buffer, event_len < len)) 5952 goto out; 5953 5954 item = ring_buffer_event_data(event); 5955 item->size = size; 5956 memcpy(item->str, rb_string, size); 5957 5958 if (nested) { 5959 data->bytes_alloc_nested += event_len; 5960 data->bytes_written_nested += len; 5961 data->events_nested++; 5962 if (!data->min_size_nested || len < data->min_size_nested) 5963 data->min_size_nested = len; 5964 if (len > data->max_size_nested) 5965 data->max_size_nested = len; 5966 } else { 5967 data->bytes_alloc += event_len; 5968 data->bytes_written += len; 5969 data->events++; 5970 if (!data->min_size || len < data->min_size) 5971 data->max_size = len; 5972 if (len > data->max_size) 5973 data->max_size = len; 5974 } 5975 5976 out: 5977 ring_buffer_unlock_commit(data->buffer); 5978 5979 return 0; 5980 } 5981 5982 static __init int rb_test(void *arg) 5983 { 5984 struct rb_test_data *data = arg; 5985 5986 while (!kthread_should_stop()) { 5987 rb_write_something(data, false); 5988 data->cnt++; 5989 5990 set_current_state(TASK_INTERRUPTIBLE); 5991 /* Now sleep between a min of 100-300us and a max of 1ms */ 5992 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5993 } 5994 5995 return 0; 5996 } 5997 5998 static __init void rb_ipi(void *ignore) 5999 { 6000 struct rb_test_data *data; 6001 int cpu = smp_processor_id(); 6002 6003 data = &rb_data[cpu]; 6004 rb_write_something(data, true); 6005 } 6006 6007 static __init int rb_hammer_test(void *arg) 6008 { 6009 while (!kthread_should_stop()) { 6010 6011 /* Send an IPI to all cpus to write data! */ 6012 smp_call_function(rb_ipi, NULL, 1); 6013 /* No sleep, but for non preempt, let others run */ 6014 schedule(); 6015 } 6016 6017 return 0; 6018 } 6019 6020 static __init int test_ringbuffer(void) 6021 { 6022 struct task_struct *rb_hammer; 6023 struct trace_buffer *buffer; 6024 int cpu; 6025 int ret = 0; 6026 6027 if (security_locked_down(LOCKDOWN_TRACEFS)) { 6028 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 6029 return 0; 6030 } 6031 6032 pr_info("Running ring buffer tests...\n"); 6033 6034 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 6035 if (WARN_ON(!buffer)) 6036 return 0; 6037 6038 /* Disable buffer so that threads can't write to it yet */ 6039 ring_buffer_record_off(buffer); 6040 6041 for_each_online_cpu(cpu) { 6042 rb_data[cpu].buffer = buffer; 6043 rb_data[cpu].cpu = cpu; 6044 rb_data[cpu].cnt = cpu; 6045 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 6046 cpu, "rbtester/%u"); 6047 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 6048 pr_cont("FAILED\n"); 6049 ret = PTR_ERR(rb_threads[cpu]); 6050 goto out_free; 6051 } 6052 } 6053 6054 /* Now create the rb hammer! */ 6055 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 6056 if (WARN_ON(IS_ERR(rb_hammer))) { 6057 pr_cont("FAILED\n"); 6058 ret = PTR_ERR(rb_hammer); 6059 goto out_free; 6060 } 6061 6062 ring_buffer_record_on(buffer); 6063 /* 6064 * Show buffer is enabled before setting rb_test_started. 6065 * Yes there's a small race window where events could be 6066 * dropped and the thread wont catch it. But when a ring 6067 * buffer gets enabled, there will always be some kind of 6068 * delay before other CPUs see it. Thus, we don't care about 6069 * those dropped events. We care about events dropped after 6070 * the threads see that the buffer is active. 6071 */ 6072 smp_wmb(); 6073 rb_test_started = true; 6074 6075 set_current_state(TASK_INTERRUPTIBLE); 6076 /* Just run for 10 seconds */; 6077 schedule_timeout(10 * HZ); 6078 6079 kthread_stop(rb_hammer); 6080 6081 out_free: 6082 for_each_online_cpu(cpu) { 6083 if (!rb_threads[cpu]) 6084 break; 6085 kthread_stop(rb_threads[cpu]); 6086 } 6087 if (ret) { 6088 ring_buffer_free(buffer); 6089 return ret; 6090 } 6091 6092 /* Report! */ 6093 pr_info("finished\n"); 6094 for_each_online_cpu(cpu) { 6095 struct ring_buffer_event *event; 6096 struct rb_test_data *data = &rb_data[cpu]; 6097 struct rb_item *item; 6098 unsigned long total_events; 6099 unsigned long total_dropped; 6100 unsigned long total_written; 6101 unsigned long total_alloc; 6102 unsigned long total_read = 0; 6103 unsigned long total_size = 0; 6104 unsigned long total_len = 0; 6105 unsigned long total_lost = 0; 6106 unsigned long lost; 6107 int big_event_size; 6108 int small_event_size; 6109 6110 ret = -1; 6111 6112 total_events = data->events + data->events_nested; 6113 total_written = data->bytes_written + data->bytes_written_nested; 6114 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 6115 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 6116 6117 big_event_size = data->max_size + data->max_size_nested; 6118 small_event_size = data->min_size + data->min_size_nested; 6119 6120 pr_info("CPU %d:\n", cpu); 6121 pr_info(" events: %ld\n", total_events); 6122 pr_info(" dropped bytes: %ld\n", total_dropped); 6123 pr_info(" alloced bytes: %ld\n", total_alloc); 6124 pr_info(" written bytes: %ld\n", total_written); 6125 pr_info(" biggest event: %d\n", big_event_size); 6126 pr_info(" smallest event: %d\n", small_event_size); 6127 6128 if (RB_WARN_ON(buffer, total_dropped)) 6129 break; 6130 6131 ret = 0; 6132 6133 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 6134 total_lost += lost; 6135 item = ring_buffer_event_data(event); 6136 total_len += ring_buffer_event_length(event); 6137 total_size += item->size + sizeof(struct rb_item); 6138 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 6139 pr_info("FAILED!\n"); 6140 pr_info("buffer had: %.*s\n", item->size, item->str); 6141 pr_info("expected: %.*s\n", item->size, rb_string); 6142 RB_WARN_ON(buffer, 1); 6143 ret = -1; 6144 break; 6145 } 6146 total_read++; 6147 } 6148 if (ret) 6149 break; 6150 6151 ret = -1; 6152 6153 pr_info(" read events: %ld\n", total_read); 6154 pr_info(" lost events: %ld\n", total_lost); 6155 pr_info(" total events: %ld\n", total_lost + total_read); 6156 pr_info(" recorded len bytes: %ld\n", total_len); 6157 pr_info(" recorded size bytes: %ld\n", total_size); 6158 if (total_lost) { 6159 pr_info(" With dropped events, record len and size may not match\n" 6160 " alloced and written from above\n"); 6161 } else { 6162 if (RB_WARN_ON(buffer, total_len != total_alloc || 6163 total_size != total_written)) 6164 break; 6165 } 6166 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 6167 break; 6168 6169 ret = 0; 6170 } 6171 if (!ret) 6172 pr_info("Ring buffer PASSED!\n"); 6173 6174 ring_buffer_free(buffer); 6175 return 0; 6176 } 6177 6178 late_initcall(test_ringbuffer); 6179 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 6180