xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 2634682f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 #define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
133 
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136 
137 enum {
138 	RB_LEN_TIME_EXTEND = 8,
139 	RB_LEN_TIME_STAMP =  8,
140 };
141 
142 #define skip_time_extend(event) \
143 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144 
145 #define extended_time(event) \
146 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147 
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152 
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155 	/* padding has a NULL time_delta */
156 	event->type_len = RINGBUF_TYPE_PADDING;
157 	event->time_delta = 0;
158 }
159 
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163 	unsigned length;
164 
165 	if (event->type_len)
166 		length = event->type_len * RB_ALIGNMENT;
167 	else
168 		length = event->array[0];
169 	return length + RB_EVNT_HDR_SIZE;
170 }
171 
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180 	switch (event->type_len) {
181 	case RINGBUF_TYPE_PADDING:
182 		if (rb_null_event(event))
183 			/* undefined */
184 			return -1;
185 		return  event->array[0] + RB_EVNT_HDR_SIZE;
186 
187 	case RINGBUF_TYPE_TIME_EXTEND:
188 		return RB_LEN_TIME_EXTEND;
189 
190 	case RINGBUF_TYPE_TIME_STAMP:
191 		return RB_LEN_TIME_STAMP;
192 
193 	case RINGBUF_TYPE_DATA:
194 		return rb_event_data_length(event);
195 	default:
196 		WARN_ON_ONCE(1);
197 	}
198 	/* not hit */
199 	return 0;
200 }
201 
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209 	unsigned len = 0;
210 
211 	if (extended_time(event)) {
212 		/* time extends include the data event after it */
213 		len = RB_LEN_TIME_EXTEND;
214 		event = skip_time_extend(event);
215 	}
216 	return len + rb_event_length(event);
217 }
218 
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231 	unsigned length;
232 
233 	if (extended_time(event))
234 		event = skip_time_extend(event);
235 
236 	length = rb_event_length(event);
237 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238 		return length;
239 	length -= RB_EVNT_HDR_SIZE;
240 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242 	return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245 
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250 	if (extended_time(event))
251 		event = skip_time_extend(event);
252 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253 	/* If length is in len field, then array[0] has the data */
254 	if (event->type_len)
255 		return (void *)&event->array[0];
256 	/* Otherwise length is in array[0] and array[1] has the data */
257 	return (void *)&event->array[1];
258 }
259 
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266 	return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269 
270 #define for_each_buffer_cpu(buffer, cpu)		\
271 	for_each_cpu(cpu, buffer->cpumask)
272 
273 #define for_each_online_buffer_cpu(buffer, cpu)		\
274 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
275 
276 #define TS_SHIFT	27
277 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
278 #define TS_DELTA_TEST	(~TS_MASK)
279 
280 /**
281  * ring_buffer_event_time_stamp - return the event's extended timestamp
282  * @event: the event to get the timestamp of
283  *
284  * Returns the extended timestamp associated with a data event.
285  * An extended time_stamp is a 64-bit timestamp represented
286  * internally in a special way that makes the best use of space
287  * contained within a ring buffer event.  This function decodes
288  * it and maps it to a straight u64 value.
289  */
290 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
291 {
292 	u64 ts;
293 
294 	ts = event->array[0];
295 	ts <<= TS_SHIFT;
296 	ts += event->time_delta;
297 
298 	return ts;
299 }
300 
301 /* Flag when events were overwritten */
302 #define RB_MISSED_EVENTS	(1 << 31)
303 /* Missed count stored at end */
304 #define RB_MISSED_STORED	(1 << 30)
305 
306 struct buffer_data_page {
307 	u64		 time_stamp;	/* page time stamp */
308 	local_t		 commit;	/* write committed index */
309 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
310 };
311 
312 /*
313  * Note, the buffer_page list must be first. The buffer pages
314  * are allocated in cache lines, which means that each buffer
315  * page will be at the beginning of a cache line, and thus
316  * the least significant bits will be zero. We use this to
317  * add flags in the list struct pointers, to make the ring buffer
318  * lockless.
319  */
320 struct buffer_page {
321 	struct list_head list;		/* list of buffer pages */
322 	local_t		 write;		/* index for next write */
323 	unsigned	 read;		/* index for next read */
324 	local_t		 entries;	/* entries on this page */
325 	unsigned long	 real_end;	/* real end of data */
326 	struct buffer_data_page *page;	/* Actual data page */
327 };
328 
329 /*
330  * The buffer page counters, write and entries, must be reset
331  * atomically when crossing page boundaries. To synchronize this
332  * update, two counters are inserted into the number. One is
333  * the actual counter for the write position or count on the page.
334  *
335  * The other is a counter of updaters. Before an update happens
336  * the update partition of the counter is incremented. This will
337  * allow the updater to update the counter atomically.
338  *
339  * The counter is 20 bits, and the state data is 12.
340  */
341 #define RB_WRITE_MASK		0xfffff
342 #define RB_WRITE_INTCNT		(1 << 20)
343 
344 static void rb_init_page(struct buffer_data_page *bpage)
345 {
346 	local_set(&bpage->commit, 0);
347 }
348 
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355 	free_page((unsigned long)bpage->page);
356 	kfree(bpage);
357 }
358 
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
362 static inline int test_time_stamp(u64 delta)
363 {
364 	if (delta & TS_DELTA_TEST)
365 		return 1;
366 	return 0;
367 }
368 
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370 
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373 
374 int ring_buffer_print_page_header(struct trace_seq *s)
375 {
376 	struct buffer_data_page field;
377 
378 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 			 (unsigned int)sizeof(field.time_stamp),
381 			 (unsigned int)is_signed_type(u64));
382 
383 	trace_seq_printf(s, "\tfield: local_t commit;\t"
384 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 			 (unsigned int)offsetof(typeof(field), commit),
386 			 (unsigned int)sizeof(field.commit),
387 			 (unsigned int)is_signed_type(long));
388 
389 	trace_seq_printf(s, "\tfield: int overwrite;\t"
390 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 			 (unsigned int)offsetof(typeof(field), commit),
392 			 1,
393 			 (unsigned int)is_signed_type(long));
394 
395 	trace_seq_printf(s, "\tfield: char data;\t"
396 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 			 (unsigned int)offsetof(typeof(field), data),
398 			 (unsigned int)BUF_PAGE_SIZE,
399 			 (unsigned int)is_signed_type(char));
400 
401 	return !trace_seq_has_overflowed(s);
402 }
403 
404 struct rb_irq_work {
405 	struct irq_work			work;
406 	wait_queue_head_t		waiters;
407 	wait_queue_head_t		full_waiters;
408 	bool				waiters_pending;
409 	bool				full_waiters_pending;
410 	bool				wakeup_full;
411 };
412 
413 /*
414  * Structure to hold event state and handle nested events.
415  */
416 struct rb_event_info {
417 	u64			ts;
418 	u64			delta;
419 	u64			before;
420 	u64			after;
421 	unsigned long		length;
422 	struct buffer_page	*tail_page;
423 	int			add_timestamp;
424 };
425 
426 /*
427  * Used for the add_timestamp
428  *  NONE
429  *  EXTEND - wants a time extend
430  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
431  *  FORCE - force a full time stamp.
432  */
433 enum {
434 	RB_ADD_STAMP_NONE		= 0,
435 	RB_ADD_STAMP_EXTEND		= BIT(1),
436 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
437 	RB_ADD_STAMP_FORCE		= BIT(3)
438 };
439 /*
440  * Used for which event context the event is in.
441  *  NMI     = 0
442  *  IRQ     = 1
443  *  SOFTIRQ = 2
444  *  NORMAL  = 3
445  *
446  * See trace_recursive_lock() comment below for more details.
447  */
448 enum {
449 	RB_CTX_NMI,
450 	RB_CTX_IRQ,
451 	RB_CTX_SOFTIRQ,
452 	RB_CTX_NORMAL,
453 	RB_CTX_MAX
454 };
455 
456 #if BITS_PER_LONG == 32
457 #define RB_TIME_32
458 #endif
459 
460 /* To test on 64 bit machines */
461 //#define RB_TIME_32
462 
463 #ifdef RB_TIME_32
464 
465 struct rb_time_struct {
466 	local_t		cnt;
467 	local_t		top;
468 	local_t		bottom;
469 };
470 #else
471 #include <asm/local64.h>
472 struct rb_time_struct {
473 	local64_t	time;
474 };
475 #endif
476 typedef struct rb_time_struct rb_time_t;
477 
478 /*
479  * head_page == tail_page && head == tail then buffer is empty.
480  */
481 struct ring_buffer_per_cpu {
482 	int				cpu;
483 	atomic_t			record_disabled;
484 	atomic_t			resize_disabled;
485 	struct trace_buffer	*buffer;
486 	raw_spinlock_t			reader_lock;	/* serialize readers */
487 	arch_spinlock_t			lock;
488 	struct lock_class_key		lock_key;
489 	struct buffer_data_page		*free_page;
490 	unsigned long			nr_pages;
491 	unsigned int			current_context;
492 	struct list_head		*pages;
493 	struct buffer_page		*head_page;	/* read from head */
494 	struct buffer_page		*tail_page;	/* write to tail */
495 	struct buffer_page		*commit_page;	/* committed pages */
496 	struct buffer_page		*reader_page;
497 	unsigned long			lost_events;
498 	unsigned long			last_overrun;
499 	unsigned long			nest;
500 	local_t				entries_bytes;
501 	local_t				entries;
502 	local_t				overrun;
503 	local_t				commit_overrun;
504 	local_t				dropped_events;
505 	local_t				committing;
506 	local_t				commits;
507 	local_t				pages_touched;
508 	local_t				pages_read;
509 	long				last_pages_touch;
510 	size_t				shortest_full;
511 	unsigned long			read;
512 	unsigned long			read_bytes;
513 	rb_time_t			write_stamp;
514 	rb_time_t			before_stamp;
515 	u64				read_stamp;
516 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
517 	long				nr_pages_to_update;
518 	struct list_head		new_pages; /* new pages to add */
519 	struct work_struct		update_pages_work;
520 	struct completion		update_done;
521 
522 	struct rb_irq_work		irq_work;
523 };
524 
525 struct trace_buffer {
526 	unsigned			flags;
527 	int				cpus;
528 	atomic_t			record_disabled;
529 	cpumask_var_t			cpumask;
530 
531 	struct lock_class_key		*reader_lock_key;
532 
533 	struct mutex			mutex;
534 
535 	struct ring_buffer_per_cpu	**buffers;
536 
537 	struct hlist_node		node;
538 	u64				(*clock)(void);
539 
540 	struct rb_irq_work		irq_work;
541 	bool				time_stamp_abs;
542 };
543 
544 struct ring_buffer_iter {
545 	struct ring_buffer_per_cpu	*cpu_buffer;
546 	unsigned long			head;
547 	unsigned long			next_event;
548 	struct buffer_page		*head_page;
549 	struct buffer_page		*cache_reader_page;
550 	unsigned long			cache_read;
551 	u64				read_stamp;
552 	u64				page_stamp;
553 	struct ring_buffer_event	*event;
554 	int				missed_events;
555 };
556 
557 #ifdef RB_TIME_32
558 
559 /*
560  * On 32 bit machines, local64_t is very expensive. As the ring
561  * buffer doesn't need all the features of a true 64 bit atomic,
562  * on 32 bit, it uses these functions (64 still uses local64_t).
563  *
564  * For the ring buffer, 64 bit required operations for the time is
565  * the following:
566  *
567  *  - Only need 59 bits (uses 60 to make it even).
568  *  - Reads may fail if it interrupted a modification of the time stamp.
569  *      It will succeed if it did not interrupt another write even if
570  *      the read itself is interrupted by a write.
571  *      It returns whether it was successful or not.
572  *
573  *  - Writes always succeed and will overwrite other writes and writes
574  *      that were done by events interrupting the current write.
575  *
576  *  - A write followed by a read of the same time stamp will always succeed,
577  *      but may not contain the same value.
578  *
579  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
580  *      Other than that, it acts like a normal cmpxchg.
581  *
582  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
583  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
584  *
585  * The two most significant bits of each half holds a 2 bit counter (0-3).
586  * Each update will increment this counter by one.
587  * When reading the top and bottom, if the two counter bits match then the
588  *  top and bottom together make a valid 60 bit number.
589  */
590 #define RB_TIME_SHIFT	30
591 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
592 
593 static inline int rb_time_cnt(unsigned long val)
594 {
595 	return (val >> RB_TIME_SHIFT) & 3;
596 }
597 
598 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
599 {
600 	u64 val;
601 
602 	val = top & RB_TIME_VAL_MASK;
603 	val <<= RB_TIME_SHIFT;
604 	val |= bottom & RB_TIME_VAL_MASK;
605 
606 	return val;
607 }
608 
609 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
610 {
611 	unsigned long top, bottom;
612 	unsigned long c;
613 
614 	/*
615 	 * If the read is interrupted by a write, then the cnt will
616 	 * be different. Loop until both top and bottom have been read
617 	 * without interruption.
618 	 */
619 	do {
620 		c = local_read(&t->cnt);
621 		top = local_read(&t->top);
622 		bottom = local_read(&t->bottom);
623 	} while (c != local_read(&t->cnt));
624 
625 	*cnt = rb_time_cnt(top);
626 
627 	/* If top and bottom counts don't match, this interrupted a write */
628 	if (*cnt != rb_time_cnt(bottom))
629 		return false;
630 
631 	*ret = rb_time_val(top, bottom);
632 	return true;
633 }
634 
635 static bool rb_time_read(rb_time_t *t, u64 *ret)
636 {
637 	unsigned long cnt;
638 
639 	return __rb_time_read(t, ret, &cnt);
640 }
641 
642 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
643 {
644 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
645 }
646 
647 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
648 {
649 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
650 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
651 }
652 
653 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
654 {
655 	val = rb_time_val_cnt(val, cnt);
656 	local_set(t, val);
657 }
658 
659 static void rb_time_set(rb_time_t *t, u64 val)
660 {
661 	unsigned long cnt, top, bottom;
662 
663 	rb_time_split(val, &top, &bottom);
664 
665 	/* Writes always succeed with a valid number even if it gets interrupted. */
666 	do {
667 		cnt = local_inc_return(&t->cnt);
668 		rb_time_val_set(&t->top, top, cnt);
669 		rb_time_val_set(&t->bottom, bottom, cnt);
670 	} while (cnt != local_read(&t->cnt));
671 }
672 
673 static inline bool
674 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
675 {
676 	unsigned long ret;
677 
678 	ret = local_cmpxchg(l, expect, set);
679 	return ret == expect;
680 }
681 
682 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
683 {
684 	unsigned long cnt, top, bottom;
685 	unsigned long cnt2, top2, bottom2;
686 	u64 val;
687 
688 	/* The cmpxchg always fails if it interrupted an update */
689 	 if (!__rb_time_read(t, &val, &cnt2))
690 		 return false;
691 
692 	 if (val != expect)
693 		 return false;
694 
695 	 cnt = local_read(&t->cnt);
696 	 if ((cnt & 3) != cnt2)
697 		 return false;
698 
699 	 cnt2 = cnt + 1;
700 
701 	 rb_time_split(val, &top, &bottom);
702 	 top = rb_time_val_cnt(top, cnt);
703 	 bottom = rb_time_val_cnt(bottom, cnt);
704 
705 	 rb_time_split(set, &top2, &bottom2);
706 	 top2 = rb_time_val_cnt(top2, cnt2);
707 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
708 
709 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
710 		return false;
711 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
712 		return false;
713 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
714 		return false;
715 	return true;
716 }
717 
718 #else /* 64 bits */
719 
720 /* local64_t always succeeds */
721 
722 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
723 {
724 	*ret = local64_read(&t->time);
725 	return true;
726 }
727 static void rb_time_set(rb_time_t *t, u64 val)
728 {
729 	local64_set(&t->time, val);
730 }
731 
732 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
733 {
734 	u64 val;
735 	val = local64_cmpxchg(&t->time, expect, set);
736 	return val == expect;
737 }
738 #endif
739 
740 /**
741  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
742  * @buffer: The ring_buffer to get the number of pages from
743  * @cpu: The cpu of the ring_buffer to get the number of pages from
744  *
745  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
746  */
747 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
748 {
749 	return buffer->buffers[cpu]->nr_pages;
750 }
751 
752 /**
753  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
754  * @buffer: The ring_buffer to get the number of pages from
755  * @cpu: The cpu of the ring_buffer to get the number of pages from
756  *
757  * Returns the number of pages that have content in the ring buffer.
758  */
759 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
760 {
761 	size_t read;
762 	size_t cnt;
763 
764 	read = local_read(&buffer->buffers[cpu]->pages_read);
765 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
766 	/* The reader can read an empty page, but not more than that */
767 	if (cnt < read) {
768 		WARN_ON_ONCE(read > cnt + 1);
769 		return 0;
770 	}
771 
772 	return cnt - read;
773 }
774 
775 /*
776  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
777  *
778  * Schedules a delayed work to wake up any task that is blocked on the
779  * ring buffer waiters queue.
780  */
781 static void rb_wake_up_waiters(struct irq_work *work)
782 {
783 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
784 
785 	wake_up_all(&rbwork->waiters);
786 	if (rbwork->wakeup_full) {
787 		rbwork->wakeup_full = false;
788 		wake_up_all(&rbwork->full_waiters);
789 	}
790 }
791 
792 /**
793  * ring_buffer_wait - wait for input to the ring buffer
794  * @buffer: buffer to wait on
795  * @cpu: the cpu buffer to wait on
796  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
797  *
798  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
799  * as data is added to any of the @buffer's cpu buffers. Otherwise
800  * it will wait for data to be added to a specific cpu buffer.
801  */
802 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
803 {
804 	struct ring_buffer_per_cpu *cpu_buffer;
805 	DEFINE_WAIT(wait);
806 	struct rb_irq_work *work;
807 	int ret = 0;
808 
809 	/*
810 	 * Depending on what the caller is waiting for, either any
811 	 * data in any cpu buffer, or a specific buffer, put the
812 	 * caller on the appropriate wait queue.
813 	 */
814 	if (cpu == RING_BUFFER_ALL_CPUS) {
815 		work = &buffer->irq_work;
816 		/* Full only makes sense on per cpu reads */
817 		full = 0;
818 	} else {
819 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
820 			return -ENODEV;
821 		cpu_buffer = buffer->buffers[cpu];
822 		work = &cpu_buffer->irq_work;
823 	}
824 
825 
826 	while (true) {
827 		if (full)
828 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
829 		else
830 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
831 
832 		/*
833 		 * The events can happen in critical sections where
834 		 * checking a work queue can cause deadlocks.
835 		 * After adding a task to the queue, this flag is set
836 		 * only to notify events to try to wake up the queue
837 		 * using irq_work.
838 		 *
839 		 * We don't clear it even if the buffer is no longer
840 		 * empty. The flag only causes the next event to run
841 		 * irq_work to do the work queue wake up. The worse
842 		 * that can happen if we race with !trace_empty() is that
843 		 * an event will cause an irq_work to try to wake up
844 		 * an empty queue.
845 		 *
846 		 * There's no reason to protect this flag either, as
847 		 * the work queue and irq_work logic will do the necessary
848 		 * synchronization for the wake ups. The only thing
849 		 * that is necessary is that the wake up happens after
850 		 * a task has been queued. It's OK for spurious wake ups.
851 		 */
852 		if (full)
853 			work->full_waiters_pending = true;
854 		else
855 			work->waiters_pending = true;
856 
857 		if (signal_pending(current)) {
858 			ret = -EINTR;
859 			break;
860 		}
861 
862 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
863 			break;
864 
865 		if (cpu != RING_BUFFER_ALL_CPUS &&
866 		    !ring_buffer_empty_cpu(buffer, cpu)) {
867 			unsigned long flags;
868 			bool pagebusy;
869 			size_t nr_pages;
870 			size_t dirty;
871 
872 			if (!full)
873 				break;
874 
875 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
876 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
877 			nr_pages = cpu_buffer->nr_pages;
878 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
879 			if (!cpu_buffer->shortest_full ||
880 			    cpu_buffer->shortest_full < full)
881 				cpu_buffer->shortest_full = full;
882 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
883 			if (!pagebusy &&
884 			    (!nr_pages || (dirty * 100) > full * nr_pages))
885 				break;
886 		}
887 
888 		schedule();
889 	}
890 
891 	if (full)
892 		finish_wait(&work->full_waiters, &wait);
893 	else
894 		finish_wait(&work->waiters, &wait);
895 
896 	return ret;
897 }
898 
899 /**
900  * ring_buffer_poll_wait - poll on buffer input
901  * @buffer: buffer to wait on
902  * @cpu: the cpu buffer to wait on
903  * @filp: the file descriptor
904  * @poll_table: The poll descriptor
905  *
906  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
907  * as data is added to any of the @buffer's cpu buffers. Otherwise
908  * it will wait for data to be added to a specific cpu buffer.
909  *
910  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
911  * zero otherwise.
912  */
913 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
914 			  struct file *filp, poll_table *poll_table)
915 {
916 	struct ring_buffer_per_cpu *cpu_buffer;
917 	struct rb_irq_work *work;
918 
919 	if (cpu == RING_BUFFER_ALL_CPUS)
920 		work = &buffer->irq_work;
921 	else {
922 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
923 			return -EINVAL;
924 
925 		cpu_buffer = buffer->buffers[cpu];
926 		work = &cpu_buffer->irq_work;
927 	}
928 
929 	poll_wait(filp, &work->waiters, poll_table);
930 	work->waiters_pending = true;
931 	/*
932 	 * There's a tight race between setting the waiters_pending and
933 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
934 	 * is set, the next event will wake the task up, but we can get stuck
935 	 * if there's only a single event in.
936 	 *
937 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
938 	 * but adding a memory barrier to all events will cause too much of a
939 	 * performance hit in the fast path.  We only need a memory barrier when
940 	 * the buffer goes from empty to having content.  But as this race is
941 	 * extremely small, and it's not a problem if another event comes in, we
942 	 * will fix it later.
943 	 */
944 	smp_mb();
945 
946 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
947 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
948 		return EPOLLIN | EPOLLRDNORM;
949 	return 0;
950 }
951 
952 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
953 #define RB_WARN_ON(b, cond)						\
954 	({								\
955 		int _____ret = unlikely(cond);				\
956 		if (_____ret) {						\
957 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
958 				struct ring_buffer_per_cpu *__b =	\
959 					(void *)b;			\
960 				atomic_inc(&__b->buffer->record_disabled); \
961 			} else						\
962 				atomic_inc(&b->record_disabled);	\
963 			WARN_ON(1);					\
964 		}							\
965 		_____ret;						\
966 	})
967 
968 /* Up this if you want to test the TIME_EXTENTS and normalization */
969 #define DEBUG_SHIFT 0
970 
971 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
972 {
973 	u64 ts;
974 
975 	/* Skip retpolines :-( */
976 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
977 		ts = trace_clock_local();
978 	else
979 		ts = buffer->clock();
980 
981 	/* shift to debug/test normalization and TIME_EXTENTS */
982 	return ts << DEBUG_SHIFT;
983 }
984 
985 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
986 {
987 	u64 time;
988 
989 	preempt_disable_notrace();
990 	time = rb_time_stamp(buffer);
991 	preempt_enable_notrace();
992 
993 	return time;
994 }
995 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
996 
997 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
998 				      int cpu, u64 *ts)
999 {
1000 	/* Just stupid testing the normalize function and deltas */
1001 	*ts >>= DEBUG_SHIFT;
1002 }
1003 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004 
1005 /*
1006  * Making the ring buffer lockless makes things tricky.
1007  * Although writes only happen on the CPU that they are on,
1008  * and they only need to worry about interrupts. Reads can
1009  * happen on any CPU.
1010  *
1011  * The reader page is always off the ring buffer, but when the
1012  * reader finishes with a page, it needs to swap its page with
1013  * a new one from the buffer. The reader needs to take from
1014  * the head (writes go to the tail). But if a writer is in overwrite
1015  * mode and wraps, it must push the head page forward.
1016  *
1017  * Here lies the problem.
1018  *
1019  * The reader must be careful to replace only the head page, and
1020  * not another one. As described at the top of the file in the
1021  * ASCII art, the reader sets its old page to point to the next
1022  * page after head. It then sets the page after head to point to
1023  * the old reader page. But if the writer moves the head page
1024  * during this operation, the reader could end up with the tail.
1025  *
1026  * We use cmpxchg to help prevent this race. We also do something
1027  * special with the page before head. We set the LSB to 1.
1028  *
1029  * When the writer must push the page forward, it will clear the
1030  * bit that points to the head page, move the head, and then set
1031  * the bit that points to the new head page.
1032  *
1033  * We also don't want an interrupt coming in and moving the head
1034  * page on another writer. Thus we use the second LSB to catch
1035  * that too. Thus:
1036  *
1037  * head->list->prev->next        bit 1          bit 0
1038  *                              -------        -------
1039  * Normal page                     0              0
1040  * Points to head page             0              1
1041  * New head page                   1              0
1042  *
1043  * Note we can not trust the prev pointer of the head page, because:
1044  *
1045  * +----+       +-----+        +-----+
1046  * |    |------>|  T  |---X--->|  N  |
1047  * |    |<------|     |        |     |
1048  * +----+       +-----+        +-----+
1049  *   ^                           ^ |
1050  *   |          +-----+          | |
1051  *   +----------|  R  |----------+ |
1052  *              |     |<-----------+
1053  *              +-----+
1054  *
1055  * Key:  ---X-->  HEAD flag set in pointer
1056  *         T      Tail page
1057  *         R      Reader page
1058  *         N      Next page
1059  *
1060  * (see __rb_reserve_next() to see where this happens)
1061  *
1062  *  What the above shows is that the reader just swapped out
1063  *  the reader page with a page in the buffer, but before it
1064  *  could make the new header point back to the new page added
1065  *  it was preempted by a writer. The writer moved forward onto
1066  *  the new page added by the reader and is about to move forward
1067  *  again.
1068  *
1069  *  You can see, it is legitimate for the previous pointer of
1070  *  the head (or any page) not to point back to itself. But only
1071  *  temporarily.
1072  */
1073 
1074 #define RB_PAGE_NORMAL		0UL
1075 #define RB_PAGE_HEAD		1UL
1076 #define RB_PAGE_UPDATE		2UL
1077 
1078 
1079 #define RB_FLAG_MASK		3UL
1080 
1081 /* PAGE_MOVED is not part of the mask */
1082 #define RB_PAGE_MOVED		4UL
1083 
1084 /*
1085  * rb_list_head - remove any bit
1086  */
1087 static struct list_head *rb_list_head(struct list_head *list)
1088 {
1089 	unsigned long val = (unsigned long)list;
1090 
1091 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1092 }
1093 
1094 /*
1095  * rb_is_head_page - test if the given page is the head page
1096  *
1097  * Because the reader may move the head_page pointer, we can
1098  * not trust what the head page is (it may be pointing to
1099  * the reader page). But if the next page is a header page,
1100  * its flags will be non zero.
1101  */
1102 static inline int
1103 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104 		struct buffer_page *page, struct list_head *list)
1105 {
1106 	unsigned long val;
1107 
1108 	val = (unsigned long)list->next;
1109 
1110 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111 		return RB_PAGE_MOVED;
1112 
1113 	return val & RB_FLAG_MASK;
1114 }
1115 
1116 /*
1117  * rb_is_reader_page
1118  *
1119  * The unique thing about the reader page, is that, if the
1120  * writer is ever on it, the previous pointer never points
1121  * back to the reader page.
1122  */
1123 static bool rb_is_reader_page(struct buffer_page *page)
1124 {
1125 	struct list_head *list = page->list.prev;
1126 
1127 	return rb_list_head(list->next) != &page->list;
1128 }
1129 
1130 /*
1131  * rb_set_list_to_head - set a list_head to be pointing to head.
1132  */
1133 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134 				struct list_head *list)
1135 {
1136 	unsigned long *ptr;
1137 
1138 	ptr = (unsigned long *)&list->next;
1139 	*ptr |= RB_PAGE_HEAD;
1140 	*ptr &= ~RB_PAGE_UPDATE;
1141 }
1142 
1143 /*
1144  * rb_head_page_activate - sets up head page
1145  */
1146 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147 {
1148 	struct buffer_page *head;
1149 
1150 	head = cpu_buffer->head_page;
1151 	if (!head)
1152 		return;
1153 
1154 	/*
1155 	 * Set the previous list pointer to have the HEAD flag.
1156 	 */
1157 	rb_set_list_to_head(cpu_buffer, head->list.prev);
1158 }
1159 
1160 static void rb_list_head_clear(struct list_head *list)
1161 {
1162 	unsigned long *ptr = (unsigned long *)&list->next;
1163 
1164 	*ptr &= ~RB_FLAG_MASK;
1165 }
1166 
1167 /*
1168  * rb_head_page_deactivate - clears head page ptr (for free list)
1169  */
1170 static void
1171 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172 {
1173 	struct list_head *hd;
1174 
1175 	/* Go through the whole list and clear any pointers found. */
1176 	rb_list_head_clear(cpu_buffer->pages);
1177 
1178 	list_for_each(hd, cpu_buffer->pages)
1179 		rb_list_head_clear(hd);
1180 }
1181 
1182 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183 			    struct buffer_page *head,
1184 			    struct buffer_page *prev,
1185 			    int old_flag, int new_flag)
1186 {
1187 	struct list_head *list;
1188 	unsigned long val = (unsigned long)&head->list;
1189 	unsigned long ret;
1190 
1191 	list = &prev->list;
1192 
1193 	val &= ~RB_FLAG_MASK;
1194 
1195 	ret = cmpxchg((unsigned long *)&list->next,
1196 		      val | old_flag, val | new_flag);
1197 
1198 	/* check if the reader took the page */
1199 	if ((ret & ~RB_FLAG_MASK) != val)
1200 		return RB_PAGE_MOVED;
1201 
1202 	return ret & RB_FLAG_MASK;
1203 }
1204 
1205 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206 				   struct buffer_page *head,
1207 				   struct buffer_page *prev,
1208 				   int old_flag)
1209 {
1210 	return rb_head_page_set(cpu_buffer, head, prev,
1211 				old_flag, RB_PAGE_UPDATE);
1212 }
1213 
1214 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215 				 struct buffer_page *head,
1216 				 struct buffer_page *prev,
1217 				 int old_flag)
1218 {
1219 	return rb_head_page_set(cpu_buffer, head, prev,
1220 				old_flag, RB_PAGE_HEAD);
1221 }
1222 
1223 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224 				   struct buffer_page *head,
1225 				   struct buffer_page *prev,
1226 				   int old_flag)
1227 {
1228 	return rb_head_page_set(cpu_buffer, head, prev,
1229 				old_flag, RB_PAGE_NORMAL);
1230 }
1231 
1232 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233 			       struct buffer_page **bpage)
1234 {
1235 	struct list_head *p = rb_list_head((*bpage)->list.next);
1236 
1237 	*bpage = list_entry(p, struct buffer_page, list);
1238 }
1239 
1240 static struct buffer_page *
1241 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242 {
1243 	struct buffer_page *head;
1244 	struct buffer_page *page;
1245 	struct list_head *list;
1246 	int i;
1247 
1248 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249 		return NULL;
1250 
1251 	/* sanity check */
1252 	list = cpu_buffer->pages;
1253 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254 		return NULL;
1255 
1256 	page = head = cpu_buffer->head_page;
1257 	/*
1258 	 * It is possible that the writer moves the header behind
1259 	 * where we started, and we miss in one loop.
1260 	 * A second loop should grab the header, but we'll do
1261 	 * three loops just because I'm paranoid.
1262 	 */
1263 	for (i = 0; i < 3; i++) {
1264 		do {
1265 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266 				cpu_buffer->head_page = page;
1267 				return page;
1268 			}
1269 			rb_inc_page(cpu_buffer, &page);
1270 		} while (page != head);
1271 	}
1272 
1273 	RB_WARN_ON(cpu_buffer, 1);
1274 
1275 	return NULL;
1276 }
1277 
1278 static int rb_head_page_replace(struct buffer_page *old,
1279 				struct buffer_page *new)
1280 {
1281 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282 	unsigned long val;
1283 	unsigned long ret;
1284 
1285 	val = *ptr & ~RB_FLAG_MASK;
1286 	val |= RB_PAGE_HEAD;
1287 
1288 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1289 
1290 	return ret == val;
1291 }
1292 
1293 /*
1294  * rb_tail_page_update - move the tail page forward
1295  */
1296 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1297 			       struct buffer_page *tail_page,
1298 			       struct buffer_page *next_page)
1299 {
1300 	unsigned long old_entries;
1301 	unsigned long old_write;
1302 
1303 	/*
1304 	 * The tail page now needs to be moved forward.
1305 	 *
1306 	 * We need to reset the tail page, but without messing
1307 	 * with possible erasing of data brought in by interrupts
1308 	 * that have moved the tail page and are currently on it.
1309 	 *
1310 	 * We add a counter to the write field to denote this.
1311 	 */
1312 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314 
1315 	local_inc(&cpu_buffer->pages_touched);
1316 	/*
1317 	 * Just make sure we have seen our old_write and synchronize
1318 	 * with any interrupts that come in.
1319 	 */
1320 	barrier();
1321 
1322 	/*
1323 	 * If the tail page is still the same as what we think
1324 	 * it is, then it is up to us to update the tail
1325 	 * pointer.
1326 	 */
1327 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1328 		/* Zero the write counter */
1329 		unsigned long val = old_write & ~RB_WRITE_MASK;
1330 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331 
1332 		/*
1333 		 * This will only succeed if an interrupt did
1334 		 * not come in and change it. In which case, we
1335 		 * do not want to modify it.
1336 		 *
1337 		 * We add (void) to let the compiler know that we do not care
1338 		 * about the return value of these functions. We use the
1339 		 * cmpxchg to only update if an interrupt did not already
1340 		 * do it for us. If the cmpxchg fails, we don't care.
1341 		 */
1342 		(void)local_cmpxchg(&next_page->write, old_write, val);
1343 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1344 
1345 		/*
1346 		 * No need to worry about races with clearing out the commit.
1347 		 * it only can increment when a commit takes place. But that
1348 		 * only happens in the outer most nested commit.
1349 		 */
1350 		local_set(&next_page->page->commit, 0);
1351 
1352 		/* Again, either we update tail_page or an interrupt does */
1353 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1354 	}
1355 }
1356 
1357 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358 			  struct buffer_page *bpage)
1359 {
1360 	unsigned long val = (unsigned long)bpage;
1361 
1362 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363 		return 1;
1364 
1365 	return 0;
1366 }
1367 
1368 /**
1369  * rb_check_list - make sure a pointer to a list has the last bits zero
1370  */
1371 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372 			 struct list_head *list)
1373 {
1374 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375 		return 1;
1376 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377 		return 1;
1378 	return 0;
1379 }
1380 
1381 /**
1382  * rb_check_pages - integrity check of buffer pages
1383  * @cpu_buffer: CPU buffer with pages to test
1384  *
1385  * As a safety measure we check to make sure the data pages have not
1386  * been corrupted.
1387  */
1388 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389 {
1390 	struct list_head *head = cpu_buffer->pages;
1391 	struct buffer_page *bpage, *tmp;
1392 
1393 	/* Reset the head page if it exists */
1394 	if (cpu_buffer->head_page)
1395 		rb_set_head_page(cpu_buffer);
1396 
1397 	rb_head_page_deactivate(cpu_buffer);
1398 
1399 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400 		return -1;
1401 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402 		return -1;
1403 
1404 	if (rb_check_list(cpu_buffer, head))
1405 		return -1;
1406 
1407 	list_for_each_entry_safe(bpage, tmp, head, list) {
1408 		if (RB_WARN_ON(cpu_buffer,
1409 			       bpage->list.next->prev != &bpage->list))
1410 			return -1;
1411 		if (RB_WARN_ON(cpu_buffer,
1412 			       bpage->list.prev->next != &bpage->list))
1413 			return -1;
1414 		if (rb_check_list(cpu_buffer, &bpage->list))
1415 			return -1;
1416 	}
1417 
1418 	rb_head_page_activate(cpu_buffer);
1419 
1420 	return 0;
1421 }
1422 
1423 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1424 {
1425 	struct buffer_page *bpage, *tmp;
1426 	bool user_thread = current->mm != NULL;
1427 	gfp_t mflags;
1428 	long i;
1429 
1430 	/*
1431 	 * Check if the available memory is there first.
1432 	 * Note, si_mem_available() only gives us a rough estimate of available
1433 	 * memory. It may not be accurate. But we don't care, we just want
1434 	 * to prevent doing any allocation when it is obvious that it is
1435 	 * not going to succeed.
1436 	 */
1437 	i = si_mem_available();
1438 	if (i < nr_pages)
1439 		return -ENOMEM;
1440 
1441 	/*
1442 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443 	 * gracefully without invoking oom-killer and the system is not
1444 	 * destabilized.
1445 	 */
1446 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447 
1448 	/*
1449 	 * If a user thread allocates too much, and si_mem_available()
1450 	 * reports there's enough memory, even though there is not.
1451 	 * Make sure the OOM killer kills this thread. This can happen
1452 	 * even with RETRY_MAYFAIL because another task may be doing
1453 	 * an allocation after this task has taken all memory.
1454 	 * This is the task the OOM killer needs to take out during this
1455 	 * loop, even if it was triggered by an allocation somewhere else.
1456 	 */
1457 	if (user_thread)
1458 		set_current_oom_origin();
1459 	for (i = 0; i < nr_pages; i++) {
1460 		struct page *page;
1461 
1462 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1463 				    mflags, cpu_to_node(cpu));
1464 		if (!bpage)
1465 			goto free_pages;
1466 
1467 		list_add(&bpage->list, pages);
1468 
1469 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1470 		if (!page)
1471 			goto free_pages;
1472 		bpage->page = page_address(page);
1473 		rb_init_page(bpage->page);
1474 
1475 		if (user_thread && fatal_signal_pending(current))
1476 			goto free_pages;
1477 	}
1478 	if (user_thread)
1479 		clear_current_oom_origin();
1480 
1481 	return 0;
1482 
1483 free_pages:
1484 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1485 		list_del_init(&bpage->list);
1486 		free_buffer_page(bpage);
1487 	}
1488 	if (user_thread)
1489 		clear_current_oom_origin();
1490 
1491 	return -ENOMEM;
1492 }
1493 
1494 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1495 			     unsigned long nr_pages)
1496 {
1497 	LIST_HEAD(pages);
1498 
1499 	WARN_ON(!nr_pages);
1500 
1501 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502 		return -ENOMEM;
1503 
1504 	/*
1505 	 * The ring buffer page list is a circular list that does not
1506 	 * start and end with a list head. All page list items point to
1507 	 * other pages.
1508 	 */
1509 	cpu_buffer->pages = pages.next;
1510 	list_del(&pages);
1511 
1512 	cpu_buffer->nr_pages = nr_pages;
1513 
1514 	rb_check_pages(cpu_buffer);
1515 
1516 	return 0;
1517 }
1518 
1519 static struct ring_buffer_per_cpu *
1520 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1521 {
1522 	struct ring_buffer_per_cpu *cpu_buffer;
1523 	struct buffer_page *bpage;
1524 	struct page *page;
1525 	int ret;
1526 
1527 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528 				  GFP_KERNEL, cpu_to_node(cpu));
1529 	if (!cpu_buffer)
1530 		return NULL;
1531 
1532 	cpu_buffer->cpu = cpu;
1533 	cpu_buffer->buffer = buffer;
1534 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1535 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1536 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1537 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1538 	init_completion(&cpu_buffer->update_done);
1539 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1540 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1541 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1542 
1543 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1544 			    GFP_KERNEL, cpu_to_node(cpu));
1545 	if (!bpage)
1546 		goto fail_free_buffer;
1547 
1548 	rb_check_bpage(cpu_buffer, bpage);
1549 
1550 	cpu_buffer->reader_page = bpage;
1551 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552 	if (!page)
1553 		goto fail_free_reader;
1554 	bpage->page = page_address(page);
1555 	rb_init_page(bpage->page);
1556 
1557 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1558 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1559 
1560 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1561 	if (ret < 0)
1562 		goto fail_free_reader;
1563 
1564 	cpu_buffer->head_page
1565 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1566 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1567 
1568 	rb_head_page_activate(cpu_buffer);
1569 
1570 	return cpu_buffer;
1571 
1572  fail_free_reader:
1573 	free_buffer_page(cpu_buffer->reader_page);
1574 
1575  fail_free_buffer:
1576 	kfree(cpu_buffer);
1577 	return NULL;
1578 }
1579 
1580 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582 	struct list_head *head = cpu_buffer->pages;
1583 	struct buffer_page *bpage, *tmp;
1584 
1585 	free_buffer_page(cpu_buffer->reader_page);
1586 
1587 	rb_head_page_deactivate(cpu_buffer);
1588 
1589 	if (head) {
1590 		list_for_each_entry_safe(bpage, tmp, head, list) {
1591 			list_del_init(&bpage->list);
1592 			free_buffer_page(bpage);
1593 		}
1594 		bpage = list_entry(head, struct buffer_page, list);
1595 		free_buffer_page(bpage);
1596 	}
1597 
1598 	kfree(cpu_buffer);
1599 }
1600 
1601 /**
1602  * __ring_buffer_alloc - allocate a new ring_buffer
1603  * @size: the size in bytes per cpu that is needed.
1604  * @flags: attributes to set for the ring buffer.
1605  * @key: ring buffer reader_lock_key.
1606  *
1607  * Currently the only flag that is available is the RB_FL_OVERWRITE
1608  * flag. This flag means that the buffer will overwrite old data
1609  * when the buffer wraps. If this flag is not set, the buffer will
1610  * drop data when the tail hits the head.
1611  */
1612 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1613 					struct lock_class_key *key)
1614 {
1615 	struct trace_buffer *buffer;
1616 	long nr_pages;
1617 	int bsize;
1618 	int cpu;
1619 	int ret;
1620 
1621 	/* keep it in its own cache line */
1622 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623 			 GFP_KERNEL);
1624 	if (!buffer)
1625 		return NULL;
1626 
1627 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1628 		goto fail_free_buffer;
1629 
1630 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631 	buffer->flags = flags;
1632 	buffer->clock = trace_clock_local;
1633 	buffer->reader_lock_key = key;
1634 
1635 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1636 	init_waitqueue_head(&buffer->irq_work.waiters);
1637 
1638 	/* need at least two pages */
1639 	if (nr_pages < 2)
1640 		nr_pages = 2;
1641 
1642 	buffer->cpus = nr_cpu_ids;
1643 
1644 	bsize = sizeof(void *) * nr_cpu_ids;
1645 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646 				  GFP_KERNEL);
1647 	if (!buffer->buffers)
1648 		goto fail_free_cpumask;
1649 
1650 	cpu = raw_smp_processor_id();
1651 	cpumask_set_cpu(cpu, buffer->cpumask);
1652 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653 	if (!buffer->buffers[cpu])
1654 		goto fail_free_buffers;
1655 
1656 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657 	if (ret < 0)
1658 		goto fail_free_buffers;
1659 
1660 	mutex_init(&buffer->mutex);
1661 
1662 	return buffer;
1663 
1664  fail_free_buffers:
1665 	for_each_buffer_cpu(buffer, cpu) {
1666 		if (buffer->buffers[cpu])
1667 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1668 	}
1669 	kfree(buffer->buffers);
1670 
1671  fail_free_cpumask:
1672 	free_cpumask_var(buffer->cpumask);
1673 
1674  fail_free_buffer:
1675 	kfree(buffer);
1676 	return NULL;
1677 }
1678 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1679 
1680 /**
1681  * ring_buffer_free - free a ring buffer.
1682  * @buffer: the buffer to free.
1683  */
1684 void
1685 ring_buffer_free(struct trace_buffer *buffer)
1686 {
1687 	int cpu;
1688 
1689 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690 
1691 	for_each_buffer_cpu(buffer, cpu)
1692 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1693 
1694 	kfree(buffer->buffers);
1695 	free_cpumask_var(buffer->cpumask);
1696 
1697 	kfree(buffer);
1698 }
1699 EXPORT_SYMBOL_GPL(ring_buffer_free);
1700 
1701 void ring_buffer_set_clock(struct trace_buffer *buffer,
1702 			   u64 (*clock)(void))
1703 {
1704 	buffer->clock = clock;
1705 }
1706 
1707 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1708 {
1709 	buffer->time_stamp_abs = abs;
1710 }
1711 
1712 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1713 {
1714 	return buffer->time_stamp_abs;
1715 }
1716 
1717 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718 
1719 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720 {
1721 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1722 }
1723 
1724 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725 {
1726 	return local_read(&bpage->write) & RB_WRITE_MASK;
1727 }
1728 
1729 static int
1730 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1731 {
1732 	struct list_head *tail_page, *to_remove, *next_page;
1733 	struct buffer_page *to_remove_page, *tmp_iter_page;
1734 	struct buffer_page *last_page, *first_page;
1735 	unsigned long nr_removed;
1736 	unsigned long head_bit;
1737 	int page_entries;
1738 
1739 	head_bit = 0;
1740 
1741 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1742 	atomic_inc(&cpu_buffer->record_disabled);
1743 	/*
1744 	 * We don't race with the readers since we have acquired the reader
1745 	 * lock. We also don't race with writers after disabling recording.
1746 	 * This makes it easy to figure out the first and the last page to be
1747 	 * removed from the list. We unlink all the pages in between including
1748 	 * the first and last pages. This is done in a busy loop so that we
1749 	 * lose the least number of traces.
1750 	 * The pages are freed after we restart recording and unlock readers.
1751 	 */
1752 	tail_page = &cpu_buffer->tail_page->list;
1753 
1754 	/*
1755 	 * tail page might be on reader page, we remove the next page
1756 	 * from the ring buffer
1757 	 */
1758 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759 		tail_page = rb_list_head(tail_page->next);
1760 	to_remove = tail_page;
1761 
1762 	/* start of pages to remove */
1763 	first_page = list_entry(rb_list_head(to_remove->next),
1764 				struct buffer_page, list);
1765 
1766 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767 		to_remove = rb_list_head(to_remove)->next;
1768 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1769 	}
1770 
1771 	next_page = rb_list_head(to_remove)->next;
1772 
1773 	/*
1774 	 * Now we remove all pages between tail_page and next_page.
1775 	 * Make sure that we have head_bit value preserved for the
1776 	 * next page
1777 	 */
1778 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1779 						head_bit);
1780 	next_page = rb_list_head(next_page);
1781 	next_page->prev = tail_page;
1782 
1783 	/* make sure pages points to a valid page in the ring buffer */
1784 	cpu_buffer->pages = next_page;
1785 
1786 	/* update head page */
1787 	if (head_bit)
1788 		cpu_buffer->head_page = list_entry(next_page,
1789 						struct buffer_page, list);
1790 
1791 	/*
1792 	 * change read pointer to make sure any read iterators reset
1793 	 * themselves
1794 	 */
1795 	cpu_buffer->read = 0;
1796 
1797 	/* pages are removed, resume tracing and then free the pages */
1798 	atomic_dec(&cpu_buffer->record_disabled);
1799 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1800 
1801 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802 
1803 	/* last buffer page to remove */
1804 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805 				list);
1806 	tmp_iter_page = first_page;
1807 
1808 	do {
1809 		cond_resched();
1810 
1811 		to_remove_page = tmp_iter_page;
1812 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1813 
1814 		/* update the counters */
1815 		page_entries = rb_page_entries(to_remove_page);
1816 		if (page_entries) {
1817 			/*
1818 			 * If something was added to this page, it was full
1819 			 * since it is not the tail page. So we deduct the
1820 			 * bytes consumed in ring buffer from here.
1821 			 * Increment overrun to account for the lost events.
1822 			 */
1823 			local_add(page_entries, &cpu_buffer->overrun);
1824 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1825 		}
1826 
1827 		/*
1828 		 * We have already removed references to this list item, just
1829 		 * free up the buffer_page and its page
1830 		 */
1831 		free_buffer_page(to_remove_page);
1832 		nr_removed--;
1833 
1834 	} while (to_remove_page != last_page);
1835 
1836 	RB_WARN_ON(cpu_buffer, nr_removed);
1837 
1838 	return nr_removed == 0;
1839 }
1840 
1841 static int
1842 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1843 {
1844 	struct list_head *pages = &cpu_buffer->new_pages;
1845 	int retries, success;
1846 
1847 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1848 	/*
1849 	 * We are holding the reader lock, so the reader page won't be swapped
1850 	 * in the ring buffer. Now we are racing with the writer trying to
1851 	 * move head page and the tail page.
1852 	 * We are going to adapt the reader page update process where:
1853 	 * 1. We first splice the start and end of list of new pages between
1854 	 *    the head page and its previous page.
1855 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1856 	 *    start of new pages list.
1857 	 * 3. Finally, we update the head->prev to the end of new list.
1858 	 *
1859 	 * We will try this process 10 times, to make sure that we don't keep
1860 	 * spinning.
1861 	 */
1862 	retries = 10;
1863 	success = 0;
1864 	while (retries--) {
1865 		struct list_head *head_page, *prev_page, *r;
1866 		struct list_head *last_page, *first_page;
1867 		struct list_head *head_page_with_bit;
1868 
1869 		head_page = &rb_set_head_page(cpu_buffer)->list;
1870 		if (!head_page)
1871 			break;
1872 		prev_page = head_page->prev;
1873 
1874 		first_page = pages->next;
1875 		last_page  = pages->prev;
1876 
1877 		head_page_with_bit = (struct list_head *)
1878 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1879 
1880 		last_page->next = head_page_with_bit;
1881 		first_page->prev = prev_page;
1882 
1883 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884 
1885 		if (r == head_page_with_bit) {
1886 			/*
1887 			 * yay, we replaced the page pointer to our new list,
1888 			 * now, we just have to update to head page's prev
1889 			 * pointer to point to end of list
1890 			 */
1891 			head_page->prev = last_page;
1892 			success = 1;
1893 			break;
1894 		}
1895 	}
1896 
1897 	if (success)
1898 		INIT_LIST_HEAD(pages);
1899 	/*
1900 	 * If we weren't successful in adding in new pages, warn and stop
1901 	 * tracing
1902 	 */
1903 	RB_WARN_ON(cpu_buffer, !success);
1904 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1905 
1906 	/* free pages if they weren't inserted */
1907 	if (!success) {
1908 		struct buffer_page *bpage, *tmp;
1909 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910 					 list) {
1911 			list_del_init(&bpage->list);
1912 			free_buffer_page(bpage);
1913 		}
1914 	}
1915 	return success;
1916 }
1917 
1918 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1919 {
1920 	int success;
1921 
1922 	if (cpu_buffer->nr_pages_to_update > 0)
1923 		success = rb_insert_pages(cpu_buffer);
1924 	else
1925 		success = rb_remove_pages(cpu_buffer,
1926 					-cpu_buffer->nr_pages_to_update);
1927 
1928 	if (success)
1929 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1930 }
1931 
1932 static void update_pages_handler(struct work_struct *work)
1933 {
1934 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935 			struct ring_buffer_per_cpu, update_pages_work);
1936 	rb_update_pages(cpu_buffer);
1937 	complete(&cpu_buffer->update_done);
1938 }
1939 
1940 /**
1941  * ring_buffer_resize - resize the ring buffer
1942  * @buffer: the buffer to resize.
1943  * @size: the new size.
1944  * @cpu_id: the cpu buffer to resize
1945  *
1946  * Minimum size is 2 * BUF_PAGE_SIZE.
1947  *
1948  * Returns 0 on success and < 0 on failure.
1949  */
1950 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1951 			int cpu_id)
1952 {
1953 	struct ring_buffer_per_cpu *cpu_buffer;
1954 	unsigned long nr_pages;
1955 	int cpu, err = 0;
1956 
1957 	/*
1958 	 * Always succeed at resizing a non-existent buffer:
1959 	 */
1960 	if (!buffer)
1961 		return size;
1962 
1963 	/* Make sure the requested buffer exists */
1964 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966 		return size;
1967 
1968 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1969 
1970 	/* we need a minimum of two pages */
1971 	if (nr_pages < 2)
1972 		nr_pages = 2;
1973 
1974 	size = nr_pages * BUF_PAGE_SIZE;
1975 
1976 	/* prevent another thread from changing buffer sizes */
1977 	mutex_lock(&buffer->mutex);
1978 
1979 
1980 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1981 		/*
1982 		 * Don't succeed if resizing is disabled, as a reader might be
1983 		 * manipulating the ring buffer and is expecting a sane state while
1984 		 * this is true.
1985 		 */
1986 		for_each_buffer_cpu(buffer, cpu) {
1987 			cpu_buffer = buffer->buffers[cpu];
1988 			if (atomic_read(&cpu_buffer->resize_disabled)) {
1989 				err = -EBUSY;
1990 				goto out_err_unlock;
1991 			}
1992 		}
1993 
1994 		/* calculate the pages to update */
1995 		for_each_buffer_cpu(buffer, cpu) {
1996 			cpu_buffer = buffer->buffers[cpu];
1997 
1998 			cpu_buffer->nr_pages_to_update = nr_pages -
1999 							cpu_buffer->nr_pages;
2000 			/*
2001 			 * nothing more to do for removing pages or no update
2002 			 */
2003 			if (cpu_buffer->nr_pages_to_update <= 0)
2004 				continue;
2005 			/*
2006 			 * to add pages, make sure all new pages can be
2007 			 * allocated without receiving ENOMEM
2008 			 */
2009 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2011 						&cpu_buffer->new_pages, cpu)) {
2012 				/* not enough memory for new pages */
2013 				err = -ENOMEM;
2014 				goto out_err;
2015 			}
2016 		}
2017 
2018 		get_online_cpus();
2019 		/*
2020 		 * Fire off all the required work handlers
2021 		 * We can't schedule on offline CPUs, but it's not necessary
2022 		 * since we can change their buffer sizes without any race.
2023 		 */
2024 		for_each_buffer_cpu(buffer, cpu) {
2025 			cpu_buffer = buffer->buffers[cpu];
2026 			if (!cpu_buffer->nr_pages_to_update)
2027 				continue;
2028 
2029 			/* Can't run something on an offline CPU. */
2030 			if (!cpu_online(cpu)) {
2031 				rb_update_pages(cpu_buffer);
2032 				cpu_buffer->nr_pages_to_update = 0;
2033 			} else {
2034 				schedule_work_on(cpu,
2035 						&cpu_buffer->update_pages_work);
2036 			}
2037 		}
2038 
2039 		/* wait for all the updates to complete */
2040 		for_each_buffer_cpu(buffer, cpu) {
2041 			cpu_buffer = buffer->buffers[cpu];
2042 			if (!cpu_buffer->nr_pages_to_update)
2043 				continue;
2044 
2045 			if (cpu_online(cpu))
2046 				wait_for_completion(&cpu_buffer->update_done);
2047 			cpu_buffer->nr_pages_to_update = 0;
2048 		}
2049 
2050 		put_online_cpus();
2051 	} else {
2052 		/* Make sure this CPU has been initialized */
2053 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054 			goto out;
2055 
2056 		cpu_buffer = buffer->buffers[cpu_id];
2057 
2058 		if (nr_pages == cpu_buffer->nr_pages)
2059 			goto out;
2060 
2061 		/*
2062 		 * Don't succeed if resizing is disabled, as a reader might be
2063 		 * manipulating the ring buffer and is expecting a sane state while
2064 		 * this is true.
2065 		 */
2066 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2067 			err = -EBUSY;
2068 			goto out_err_unlock;
2069 		}
2070 
2071 		cpu_buffer->nr_pages_to_update = nr_pages -
2072 						cpu_buffer->nr_pages;
2073 
2074 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075 		if (cpu_buffer->nr_pages_to_update > 0 &&
2076 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2077 					    &cpu_buffer->new_pages, cpu_id)) {
2078 			err = -ENOMEM;
2079 			goto out_err;
2080 		}
2081 
2082 		get_online_cpus();
2083 
2084 		/* Can't run something on an offline CPU. */
2085 		if (!cpu_online(cpu_id))
2086 			rb_update_pages(cpu_buffer);
2087 		else {
2088 			schedule_work_on(cpu_id,
2089 					 &cpu_buffer->update_pages_work);
2090 			wait_for_completion(&cpu_buffer->update_done);
2091 		}
2092 
2093 		cpu_buffer->nr_pages_to_update = 0;
2094 		put_online_cpus();
2095 	}
2096 
2097  out:
2098 	/*
2099 	 * The ring buffer resize can happen with the ring buffer
2100 	 * enabled, so that the update disturbs the tracing as little
2101 	 * as possible. But if the buffer is disabled, we do not need
2102 	 * to worry about that, and we can take the time to verify
2103 	 * that the buffer is not corrupt.
2104 	 */
2105 	if (atomic_read(&buffer->record_disabled)) {
2106 		atomic_inc(&buffer->record_disabled);
2107 		/*
2108 		 * Even though the buffer was disabled, we must make sure
2109 		 * that it is truly disabled before calling rb_check_pages.
2110 		 * There could have been a race between checking
2111 		 * record_disable and incrementing it.
2112 		 */
2113 		synchronize_rcu();
2114 		for_each_buffer_cpu(buffer, cpu) {
2115 			cpu_buffer = buffer->buffers[cpu];
2116 			rb_check_pages(cpu_buffer);
2117 		}
2118 		atomic_dec(&buffer->record_disabled);
2119 	}
2120 
2121 	mutex_unlock(&buffer->mutex);
2122 	return size;
2123 
2124  out_err:
2125 	for_each_buffer_cpu(buffer, cpu) {
2126 		struct buffer_page *bpage, *tmp;
2127 
2128 		cpu_buffer = buffer->buffers[cpu];
2129 		cpu_buffer->nr_pages_to_update = 0;
2130 
2131 		if (list_empty(&cpu_buffer->new_pages))
2132 			continue;
2133 
2134 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135 					list) {
2136 			list_del_init(&bpage->list);
2137 			free_buffer_page(bpage);
2138 		}
2139 	}
2140  out_err_unlock:
2141 	mutex_unlock(&buffer->mutex);
2142 	return err;
2143 }
2144 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2145 
2146 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2147 {
2148 	mutex_lock(&buffer->mutex);
2149 	if (val)
2150 		buffer->flags |= RB_FL_OVERWRITE;
2151 	else
2152 		buffer->flags &= ~RB_FL_OVERWRITE;
2153 	mutex_unlock(&buffer->mutex);
2154 }
2155 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156 
2157 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2158 {
2159 	return bpage->page->data + index;
2160 }
2161 
2162 static __always_inline struct ring_buffer_event *
2163 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2164 {
2165 	return __rb_page_index(cpu_buffer->reader_page,
2166 			       cpu_buffer->reader_page->read);
2167 }
2168 
2169 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2170 {
2171 	return local_read(&bpage->page->commit);
2172 }
2173 
2174 static struct ring_buffer_event *
2175 rb_iter_head_event(struct ring_buffer_iter *iter)
2176 {
2177 	struct ring_buffer_event *event;
2178 	struct buffer_page *iter_head_page = iter->head_page;
2179 	unsigned long commit;
2180 	unsigned length;
2181 
2182 	if (iter->head != iter->next_event)
2183 		return iter->event;
2184 
2185 	/*
2186 	 * When the writer goes across pages, it issues a cmpxchg which
2187 	 * is a mb(), which will synchronize with the rmb here.
2188 	 * (see rb_tail_page_update() and __rb_reserve_next())
2189 	 */
2190 	commit = rb_page_commit(iter_head_page);
2191 	smp_rmb();
2192 	event = __rb_page_index(iter_head_page, iter->head);
2193 	length = rb_event_length(event);
2194 
2195 	/*
2196 	 * READ_ONCE() doesn't work on functions and we don't want the
2197 	 * compiler doing any crazy optimizations with length.
2198 	 */
2199 	barrier();
2200 
2201 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202 		/* Writer corrupted the read? */
2203 		goto reset;
2204 
2205 	memcpy(iter->event, event, length);
2206 	/*
2207 	 * If the page stamp is still the same after this rmb() then the
2208 	 * event was safely copied without the writer entering the page.
2209 	 */
2210 	smp_rmb();
2211 
2212 	/* Make sure the page didn't change since we read this */
2213 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214 	    commit > rb_page_commit(iter_head_page))
2215 		goto reset;
2216 
2217 	iter->next_event = iter->head + length;
2218 	return iter->event;
2219  reset:
2220 	/* Reset to the beginning */
2221 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222 	iter->head = 0;
2223 	iter->next_event = 0;
2224 	iter->missed_events = 1;
2225 	return NULL;
2226 }
2227 
2228 /* Size is determined by what has been committed */
2229 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2230 {
2231 	return rb_page_commit(bpage);
2232 }
2233 
2234 static __always_inline unsigned
2235 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236 {
2237 	return rb_page_commit(cpu_buffer->commit_page);
2238 }
2239 
2240 static __always_inline unsigned
2241 rb_event_index(struct ring_buffer_event *event)
2242 {
2243 	unsigned long addr = (unsigned long)event;
2244 
2245 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2246 }
2247 
2248 static void rb_inc_iter(struct ring_buffer_iter *iter)
2249 {
2250 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251 
2252 	/*
2253 	 * The iterator could be on the reader page (it starts there).
2254 	 * But the head could have moved, since the reader was
2255 	 * found. Check for this case and assign the iterator
2256 	 * to the head page instead of next.
2257 	 */
2258 	if (iter->head_page == cpu_buffer->reader_page)
2259 		iter->head_page = rb_set_head_page(cpu_buffer);
2260 	else
2261 		rb_inc_page(cpu_buffer, &iter->head_page);
2262 
2263 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2264 	iter->head = 0;
2265 	iter->next_event = 0;
2266 }
2267 
2268 /*
2269  * rb_handle_head_page - writer hit the head page
2270  *
2271  * Returns: +1 to retry page
2272  *           0 to continue
2273  *          -1 on error
2274  */
2275 static int
2276 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277 		    struct buffer_page *tail_page,
2278 		    struct buffer_page *next_page)
2279 {
2280 	struct buffer_page *new_head;
2281 	int entries;
2282 	int type;
2283 	int ret;
2284 
2285 	entries = rb_page_entries(next_page);
2286 
2287 	/*
2288 	 * The hard part is here. We need to move the head
2289 	 * forward, and protect against both readers on
2290 	 * other CPUs and writers coming in via interrupts.
2291 	 */
2292 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293 				       RB_PAGE_HEAD);
2294 
2295 	/*
2296 	 * type can be one of four:
2297 	 *  NORMAL - an interrupt already moved it for us
2298 	 *  HEAD   - we are the first to get here.
2299 	 *  UPDATE - we are the interrupt interrupting
2300 	 *           a current move.
2301 	 *  MOVED  - a reader on another CPU moved the next
2302 	 *           pointer to its reader page. Give up
2303 	 *           and try again.
2304 	 */
2305 
2306 	switch (type) {
2307 	case RB_PAGE_HEAD:
2308 		/*
2309 		 * We changed the head to UPDATE, thus
2310 		 * it is our responsibility to update
2311 		 * the counters.
2312 		 */
2313 		local_add(entries, &cpu_buffer->overrun);
2314 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2315 
2316 		/*
2317 		 * The entries will be zeroed out when we move the
2318 		 * tail page.
2319 		 */
2320 
2321 		/* still more to do */
2322 		break;
2323 
2324 	case RB_PAGE_UPDATE:
2325 		/*
2326 		 * This is an interrupt that interrupt the
2327 		 * previous update. Still more to do.
2328 		 */
2329 		break;
2330 	case RB_PAGE_NORMAL:
2331 		/*
2332 		 * An interrupt came in before the update
2333 		 * and processed this for us.
2334 		 * Nothing left to do.
2335 		 */
2336 		return 1;
2337 	case RB_PAGE_MOVED:
2338 		/*
2339 		 * The reader is on another CPU and just did
2340 		 * a swap with our next_page.
2341 		 * Try again.
2342 		 */
2343 		return 1;
2344 	default:
2345 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346 		return -1;
2347 	}
2348 
2349 	/*
2350 	 * Now that we are here, the old head pointer is
2351 	 * set to UPDATE. This will keep the reader from
2352 	 * swapping the head page with the reader page.
2353 	 * The reader (on another CPU) will spin till
2354 	 * we are finished.
2355 	 *
2356 	 * We just need to protect against interrupts
2357 	 * doing the job. We will set the next pointer
2358 	 * to HEAD. After that, we set the old pointer
2359 	 * to NORMAL, but only if it was HEAD before.
2360 	 * otherwise we are an interrupt, and only
2361 	 * want the outer most commit to reset it.
2362 	 */
2363 	new_head = next_page;
2364 	rb_inc_page(cpu_buffer, &new_head);
2365 
2366 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367 				    RB_PAGE_NORMAL);
2368 
2369 	/*
2370 	 * Valid returns are:
2371 	 *  HEAD   - an interrupt came in and already set it.
2372 	 *  NORMAL - One of two things:
2373 	 *            1) We really set it.
2374 	 *            2) A bunch of interrupts came in and moved
2375 	 *               the page forward again.
2376 	 */
2377 	switch (ret) {
2378 	case RB_PAGE_HEAD:
2379 	case RB_PAGE_NORMAL:
2380 		/* OK */
2381 		break;
2382 	default:
2383 		RB_WARN_ON(cpu_buffer, 1);
2384 		return -1;
2385 	}
2386 
2387 	/*
2388 	 * It is possible that an interrupt came in,
2389 	 * set the head up, then more interrupts came in
2390 	 * and moved it again. When we get back here,
2391 	 * the page would have been set to NORMAL but we
2392 	 * just set it back to HEAD.
2393 	 *
2394 	 * How do you detect this? Well, if that happened
2395 	 * the tail page would have moved.
2396 	 */
2397 	if (ret == RB_PAGE_NORMAL) {
2398 		struct buffer_page *buffer_tail_page;
2399 
2400 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2401 		/*
2402 		 * If the tail had moved passed next, then we need
2403 		 * to reset the pointer.
2404 		 */
2405 		if (buffer_tail_page != tail_page &&
2406 		    buffer_tail_page != next_page)
2407 			rb_head_page_set_normal(cpu_buffer, new_head,
2408 						next_page,
2409 						RB_PAGE_HEAD);
2410 	}
2411 
2412 	/*
2413 	 * If this was the outer most commit (the one that
2414 	 * changed the original pointer from HEAD to UPDATE),
2415 	 * then it is up to us to reset it to NORMAL.
2416 	 */
2417 	if (type == RB_PAGE_HEAD) {
2418 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419 					      tail_page,
2420 					      RB_PAGE_UPDATE);
2421 		if (RB_WARN_ON(cpu_buffer,
2422 			       ret != RB_PAGE_UPDATE))
2423 			return -1;
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 static inline void
2430 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2431 	      unsigned long tail, struct rb_event_info *info)
2432 {
2433 	struct buffer_page *tail_page = info->tail_page;
2434 	struct ring_buffer_event *event;
2435 	unsigned long length = info->length;
2436 
2437 	/*
2438 	 * Only the event that crossed the page boundary
2439 	 * must fill the old tail_page with padding.
2440 	 */
2441 	if (tail >= BUF_PAGE_SIZE) {
2442 		/*
2443 		 * If the page was filled, then we still need
2444 		 * to update the real_end. Reset it to zero
2445 		 * and the reader will ignore it.
2446 		 */
2447 		if (tail == BUF_PAGE_SIZE)
2448 			tail_page->real_end = 0;
2449 
2450 		local_sub(length, &tail_page->write);
2451 		return;
2452 	}
2453 
2454 	event = __rb_page_index(tail_page, tail);
2455 
2456 	/* account for padding bytes */
2457 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458 
2459 	/*
2460 	 * Save the original length to the meta data.
2461 	 * This will be used by the reader to add lost event
2462 	 * counter.
2463 	 */
2464 	tail_page->real_end = tail;
2465 
2466 	/*
2467 	 * If this event is bigger than the minimum size, then
2468 	 * we need to be careful that we don't subtract the
2469 	 * write counter enough to allow another writer to slip
2470 	 * in on this page.
2471 	 * We put in a discarded commit instead, to make sure
2472 	 * that this space is not used again.
2473 	 *
2474 	 * If we are less than the minimum size, we don't need to
2475 	 * worry about it.
2476 	 */
2477 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478 		/* No room for any events */
2479 
2480 		/* Mark the rest of the page with padding */
2481 		rb_event_set_padding(event);
2482 
2483 		/* Set the write back to the previous setting */
2484 		local_sub(length, &tail_page->write);
2485 		return;
2486 	}
2487 
2488 	/* Put in a discarded event */
2489 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490 	event->type_len = RINGBUF_TYPE_PADDING;
2491 	/* time delta must be non zero */
2492 	event->time_delta = 1;
2493 
2494 	/* Set write to end of buffer */
2495 	length = (tail + length) - BUF_PAGE_SIZE;
2496 	local_sub(length, &tail_page->write);
2497 }
2498 
2499 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500 
2501 /*
2502  * This is the slow path, force gcc not to inline it.
2503  */
2504 static noinline struct ring_buffer_event *
2505 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2506 	     unsigned long tail, struct rb_event_info *info)
2507 {
2508 	struct buffer_page *tail_page = info->tail_page;
2509 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2510 	struct trace_buffer *buffer = cpu_buffer->buffer;
2511 	struct buffer_page *next_page;
2512 	int ret;
2513 
2514 	next_page = tail_page;
2515 
2516 	rb_inc_page(cpu_buffer, &next_page);
2517 
2518 	/*
2519 	 * If for some reason, we had an interrupt storm that made
2520 	 * it all the way around the buffer, bail, and warn
2521 	 * about it.
2522 	 */
2523 	if (unlikely(next_page == commit_page)) {
2524 		local_inc(&cpu_buffer->commit_overrun);
2525 		goto out_reset;
2526 	}
2527 
2528 	/*
2529 	 * This is where the fun begins!
2530 	 *
2531 	 * We are fighting against races between a reader that
2532 	 * could be on another CPU trying to swap its reader
2533 	 * page with the buffer head.
2534 	 *
2535 	 * We are also fighting against interrupts coming in and
2536 	 * moving the head or tail on us as well.
2537 	 *
2538 	 * If the next page is the head page then we have filled
2539 	 * the buffer, unless the commit page is still on the
2540 	 * reader page.
2541 	 */
2542 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2543 
2544 		/*
2545 		 * If the commit is not on the reader page, then
2546 		 * move the header page.
2547 		 */
2548 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549 			/*
2550 			 * If we are not in overwrite mode,
2551 			 * this is easy, just stop here.
2552 			 */
2553 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554 				local_inc(&cpu_buffer->dropped_events);
2555 				goto out_reset;
2556 			}
2557 
2558 			ret = rb_handle_head_page(cpu_buffer,
2559 						  tail_page,
2560 						  next_page);
2561 			if (ret < 0)
2562 				goto out_reset;
2563 			if (ret)
2564 				goto out_again;
2565 		} else {
2566 			/*
2567 			 * We need to be careful here too. The
2568 			 * commit page could still be on the reader
2569 			 * page. We could have a small buffer, and
2570 			 * have filled up the buffer with events
2571 			 * from interrupts and such, and wrapped.
2572 			 *
2573 			 * Note, if the tail page is also the on the
2574 			 * reader_page, we let it move out.
2575 			 */
2576 			if (unlikely((cpu_buffer->commit_page !=
2577 				      cpu_buffer->tail_page) &&
2578 				     (cpu_buffer->commit_page ==
2579 				      cpu_buffer->reader_page))) {
2580 				local_inc(&cpu_buffer->commit_overrun);
2581 				goto out_reset;
2582 			}
2583 		}
2584 	}
2585 
2586 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2587 
2588  out_again:
2589 
2590 	rb_reset_tail(cpu_buffer, tail, info);
2591 
2592 	/* Commit what we have for now. */
2593 	rb_end_commit(cpu_buffer);
2594 	/* rb_end_commit() decs committing */
2595 	local_inc(&cpu_buffer->committing);
2596 
2597 	/* fail and let the caller try again */
2598 	return ERR_PTR(-EAGAIN);
2599 
2600  out_reset:
2601 	/* reset write */
2602 	rb_reset_tail(cpu_buffer, tail, info);
2603 
2604 	return NULL;
2605 }
2606 
2607 /* Slow path */
2608 static struct ring_buffer_event *
2609 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2610 {
2611 	if (abs)
2612 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613 	else
2614 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2615 
2616 	/* Not the first event on the page, or not delta? */
2617 	if (abs || rb_event_index(event)) {
2618 		event->time_delta = delta & TS_MASK;
2619 		event->array[0] = delta >> TS_SHIFT;
2620 	} else {
2621 		/* nope, just zero it */
2622 		event->time_delta = 0;
2623 		event->array[0] = 0;
2624 	}
2625 
2626 	return skip_time_extend(event);
2627 }
2628 
2629 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2630 				     struct ring_buffer_event *event);
2631 
2632 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633 static inline bool sched_clock_stable(void)
2634 {
2635 	return true;
2636 }
2637 #endif
2638 
2639 static void
2640 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641 		   struct rb_event_info *info)
2642 {
2643 	u64 write_stamp;
2644 
2645 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2646 		  (unsigned long long)info->delta,
2647 		  (unsigned long long)info->ts,
2648 		  (unsigned long long)info->before,
2649 		  (unsigned long long)info->after,
2650 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651 		  sched_clock_stable() ? "" :
2652 		  "If you just came from a suspend/resume,\n"
2653 		  "please switch to the trace global clock:\n"
2654 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655 		  "or add trace_clock=global to the kernel command line\n");
2656 }
2657 
2658 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659 				      struct ring_buffer_event **event,
2660 				      struct rb_event_info *info,
2661 				      u64 *delta,
2662 				      unsigned int *length)
2663 {
2664 	bool abs = info->add_timestamp &
2665 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666 
2667 	if (unlikely(info->delta > (1ULL << 59))) {
2668 		/* did the clock go backwards */
2669 		if (info->before == info->after && info->before > info->ts) {
2670 			/* not interrupted */
2671 			static int once;
2672 
2673 			/*
2674 			 * This is possible with a recalibrating of the TSC.
2675 			 * Do not produce a call stack, but just report it.
2676 			 */
2677 			if (!once) {
2678 				once++;
2679 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680 					info->before, info->ts);
2681 			}
2682 		} else
2683 			rb_check_timestamp(cpu_buffer, info);
2684 		if (!abs)
2685 			info->delta = 0;
2686 	}
2687 	*event = rb_add_time_stamp(*event, info->delta, abs);
2688 	*length -= RB_LEN_TIME_EXTEND;
2689 	*delta = 0;
2690 }
2691 
2692 /**
2693  * rb_update_event - update event type and data
2694  * @cpu_buffer: The per cpu buffer of the @event
2695  * @event: the event to update
2696  * @info: The info to update the @event with (contains length and delta)
2697  *
2698  * Update the type and data fields of the @event. The length
2699  * is the actual size that is written to the ring buffer,
2700  * and with this, we can determine what to place into the
2701  * data field.
2702  */
2703 static void
2704 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705 		struct ring_buffer_event *event,
2706 		struct rb_event_info *info)
2707 {
2708 	unsigned length = info->length;
2709 	u64 delta = info->delta;
2710 
2711 	/*
2712 	 * If we need to add a timestamp, then we
2713 	 * add it to the start of the reserved space.
2714 	 */
2715 	if (unlikely(info->add_timestamp))
2716 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2717 
2718 	event->time_delta = delta;
2719 	length -= RB_EVNT_HDR_SIZE;
2720 	if (length > RB_MAX_SMALL_DATA) {
2721 		event->type_len = 0;
2722 		event->array[0] = length;
2723 	} else
2724 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725 }
2726 
2727 static unsigned rb_calculate_event_length(unsigned length)
2728 {
2729 	struct ring_buffer_event event; /* Used only for sizeof array */
2730 
2731 	/* zero length can cause confusions */
2732 	if (!length)
2733 		length++;
2734 
2735 	if (length > RB_MAX_SMALL_DATA)
2736 		length += sizeof(event.array[0]);
2737 
2738 	length += RB_EVNT_HDR_SIZE;
2739 	length = ALIGN(length, RB_ALIGNMENT);
2740 
2741 	/*
2742 	 * In case the time delta is larger than the 27 bits for it
2743 	 * in the header, we need to add a timestamp. If another
2744 	 * event comes in when trying to discard this one to increase
2745 	 * the length, then the timestamp will be added in the allocated
2746 	 * space of this event. If length is bigger than the size needed
2747 	 * for the TIME_EXTEND, then padding has to be used. The events
2748 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750 	 * As length is a multiple of 4, we only need to worry if it
2751 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2752 	 */
2753 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754 		length += RB_ALIGNMENT;
2755 
2756 	return length;
2757 }
2758 
2759 static __always_inline bool
2760 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761 		   struct ring_buffer_event *event)
2762 {
2763 	unsigned long addr = (unsigned long)event;
2764 	unsigned long index;
2765 
2766 	index = rb_event_index(event);
2767 	addr &= PAGE_MASK;
2768 
2769 	return cpu_buffer->commit_page->page == (void *)addr &&
2770 		rb_commit_index(cpu_buffer) == index;
2771 }
2772 
2773 static u64 rb_time_delta(struct ring_buffer_event *event)
2774 {
2775 	switch (event->type_len) {
2776 	case RINGBUF_TYPE_PADDING:
2777 		return 0;
2778 
2779 	case RINGBUF_TYPE_TIME_EXTEND:
2780 		return ring_buffer_event_time_stamp(event);
2781 
2782 	case RINGBUF_TYPE_TIME_STAMP:
2783 		return 0;
2784 
2785 	case RINGBUF_TYPE_DATA:
2786 		return event->time_delta;
2787 	default:
2788 		return 0;
2789 	}
2790 }
2791 
2792 static inline int
2793 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794 		  struct ring_buffer_event *event)
2795 {
2796 	unsigned long new_index, old_index;
2797 	struct buffer_page *bpage;
2798 	unsigned long index;
2799 	unsigned long addr;
2800 	u64 write_stamp;
2801 	u64 delta;
2802 
2803 	new_index = rb_event_index(event);
2804 	old_index = new_index + rb_event_ts_length(event);
2805 	addr = (unsigned long)event;
2806 	addr &= PAGE_MASK;
2807 
2808 	bpage = READ_ONCE(cpu_buffer->tail_page);
2809 
2810 	delta = rb_time_delta(event);
2811 
2812 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813 		return 0;
2814 
2815 	/* Make sure the write stamp is read before testing the location */
2816 	barrier();
2817 
2818 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819 		unsigned long write_mask =
2820 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2821 		unsigned long event_length = rb_event_length(event);
2822 
2823 		/* Something came in, can't discard */
2824 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825 				       write_stamp, write_stamp - delta))
2826 			return 0;
2827 
2828 		/*
2829 		 * If an event were to come in now, it would see that the
2830 		 * write_stamp and the before_stamp are different, and assume
2831 		 * that this event just added itself before updating
2832 		 * the write stamp. The interrupting event will fix the
2833 		 * write stamp for us, and use the before stamp as its delta.
2834 		 */
2835 
2836 		/*
2837 		 * This is on the tail page. It is possible that
2838 		 * a write could come in and move the tail page
2839 		 * and write to the next page. That is fine
2840 		 * because we just shorten what is on this page.
2841 		 */
2842 		old_index += write_mask;
2843 		new_index += write_mask;
2844 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2845 		if (index == old_index) {
2846 			/* update counters */
2847 			local_sub(event_length, &cpu_buffer->entries_bytes);
2848 			return 1;
2849 		}
2850 	}
2851 
2852 	/* could not discard */
2853 	return 0;
2854 }
2855 
2856 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857 {
2858 	local_inc(&cpu_buffer->committing);
2859 	local_inc(&cpu_buffer->commits);
2860 }
2861 
2862 static __always_inline void
2863 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864 {
2865 	unsigned long max_count;
2866 
2867 	/*
2868 	 * We only race with interrupts and NMIs on this CPU.
2869 	 * If we own the commit event, then we can commit
2870 	 * all others that interrupted us, since the interruptions
2871 	 * are in stack format (they finish before they come
2872 	 * back to us). This allows us to do a simple loop to
2873 	 * assign the commit to the tail.
2874 	 */
2875  again:
2876 	max_count = cpu_buffer->nr_pages * 100;
2877 
2878 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880 			return;
2881 		if (RB_WARN_ON(cpu_buffer,
2882 			       rb_is_reader_page(cpu_buffer->tail_page)))
2883 			return;
2884 		local_set(&cpu_buffer->commit_page->page->commit,
2885 			  rb_page_write(cpu_buffer->commit_page));
2886 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2887 		/* add barrier to keep gcc from optimizing too much */
2888 		barrier();
2889 	}
2890 	while (rb_commit_index(cpu_buffer) !=
2891 	       rb_page_write(cpu_buffer->commit_page)) {
2892 
2893 		local_set(&cpu_buffer->commit_page->page->commit,
2894 			  rb_page_write(cpu_buffer->commit_page));
2895 		RB_WARN_ON(cpu_buffer,
2896 			   local_read(&cpu_buffer->commit_page->page->commit) &
2897 			   ~RB_WRITE_MASK);
2898 		barrier();
2899 	}
2900 
2901 	/* again, keep gcc from optimizing */
2902 	barrier();
2903 
2904 	/*
2905 	 * If an interrupt came in just after the first while loop
2906 	 * and pushed the tail page forward, we will be left with
2907 	 * a dangling commit that will never go forward.
2908 	 */
2909 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910 		goto again;
2911 }
2912 
2913 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914 {
2915 	unsigned long commits;
2916 
2917 	if (RB_WARN_ON(cpu_buffer,
2918 		       !local_read(&cpu_buffer->committing)))
2919 		return;
2920 
2921  again:
2922 	commits = local_read(&cpu_buffer->commits);
2923 	/* synchronize with interrupts */
2924 	barrier();
2925 	if (local_read(&cpu_buffer->committing) == 1)
2926 		rb_set_commit_to_write(cpu_buffer);
2927 
2928 	local_dec(&cpu_buffer->committing);
2929 
2930 	/* synchronize with interrupts */
2931 	barrier();
2932 
2933 	/*
2934 	 * Need to account for interrupts coming in between the
2935 	 * updating of the commit page and the clearing of the
2936 	 * committing counter.
2937 	 */
2938 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939 	    !local_read(&cpu_buffer->committing)) {
2940 		local_inc(&cpu_buffer->committing);
2941 		goto again;
2942 	}
2943 }
2944 
2945 static inline void rb_event_discard(struct ring_buffer_event *event)
2946 {
2947 	if (extended_time(event))
2948 		event = skip_time_extend(event);
2949 
2950 	/* array[0] holds the actual length for the discarded event */
2951 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952 	event->type_len = RINGBUF_TYPE_PADDING;
2953 	/* time delta must be non zero */
2954 	if (!event->time_delta)
2955 		event->time_delta = 1;
2956 }
2957 
2958 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959 		      struct ring_buffer_event *event)
2960 {
2961 	local_inc(&cpu_buffer->entries);
2962 	rb_end_commit(cpu_buffer);
2963 }
2964 
2965 static __always_inline void
2966 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967 {
2968 	size_t nr_pages;
2969 	size_t dirty;
2970 	size_t full;
2971 
2972 	if (buffer->irq_work.waiters_pending) {
2973 		buffer->irq_work.waiters_pending = false;
2974 		/* irq_work_queue() supplies it's own memory barriers */
2975 		irq_work_queue(&buffer->irq_work.work);
2976 	}
2977 
2978 	if (cpu_buffer->irq_work.waiters_pending) {
2979 		cpu_buffer->irq_work.waiters_pending = false;
2980 		/* irq_work_queue() supplies it's own memory barriers */
2981 		irq_work_queue(&cpu_buffer->irq_work.work);
2982 	}
2983 
2984 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985 		return;
2986 
2987 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988 		return;
2989 
2990 	if (!cpu_buffer->irq_work.full_waiters_pending)
2991 		return;
2992 
2993 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994 
2995 	full = cpu_buffer->shortest_full;
2996 	nr_pages = cpu_buffer->nr_pages;
2997 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999 		return;
3000 
3001 	cpu_buffer->irq_work.wakeup_full = true;
3002 	cpu_buffer->irq_work.full_waiters_pending = false;
3003 	/* irq_work_queue() supplies it's own memory barriers */
3004 	irq_work_queue(&cpu_buffer->irq_work.work);
3005 }
3006 
3007 /*
3008  * The lock and unlock are done within a preempt disable section.
3009  * The current_context per_cpu variable can only be modified
3010  * by the current task between lock and unlock. But it can
3011  * be modified more than once via an interrupt. To pass this
3012  * information from the lock to the unlock without having to
3013  * access the 'in_interrupt()' functions again (which do show
3014  * a bit of overhead in something as critical as function tracing,
3015  * we use a bitmask trick.
3016  *
3017  *  bit 0 =  NMI context
3018  *  bit 1 =  IRQ context
3019  *  bit 2 =  SoftIRQ context
3020  *  bit 3 =  normal context.
3021  *
3022  * This works because this is the order of contexts that can
3023  * preempt other contexts. A SoftIRQ never preempts an IRQ
3024  * context.
3025  *
3026  * When the context is determined, the corresponding bit is
3027  * checked and set (if it was set, then a recursion of that context
3028  * happened).
3029  *
3030  * On unlock, we need to clear this bit. To do so, just subtract
3031  * 1 from the current_context and AND it to itself.
3032  *
3033  * (binary)
3034  *  101 - 1 = 100
3035  *  101 & 100 = 100 (clearing bit zero)
3036  *
3037  *  1010 - 1 = 1001
3038  *  1010 & 1001 = 1000 (clearing bit 1)
3039  *
3040  * The least significant bit can be cleared this way, and it
3041  * just so happens that it is the same bit corresponding to
3042  * the current context.
3043  */
3044 
3045 static __always_inline int
3046 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047 {
3048 	unsigned int val = cpu_buffer->current_context;
3049 	unsigned long pc = preempt_count();
3050 	int bit;
3051 
3052 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053 		bit = RB_CTX_NORMAL;
3054 	else
3055 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3056 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3057 
3058 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
3059 		return 1;
3060 
3061 	val |= (1 << (bit + cpu_buffer->nest));
3062 	cpu_buffer->current_context = val;
3063 
3064 	return 0;
3065 }
3066 
3067 static __always_inline void
3068 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069 {
3070 	cpu_buffer->current_context &=
3071 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3072 }
3073 
3074 /* The recursive locking above uses 4 bits */
3075 #define NESTED_BITS 4
3076 
3077 /**
3078  * ring_buffer_nest_start - Allow to trace while nested
3079  * @buffer: The ring buffer to modify
3080  *
3081  * The ring buffer has a safety mechanism to prevent recursion.
3082  * But there may be a case where a trace needs to be done while
3083  * tracing something else. In this case, calling this function
3084  * will allow this function to nest within a currently active
3085  * ring_buffer_lock_reserve().
3086  *
3087  * Call this function before calling another ring_buffer_lock_reserve() and
3088  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089  */
3090 void ring_buffer_nest_start(struct trace_buffer *buffer)
3091 {
3092 	struct ring_buffer_per_cpu *cpu_buffer;
3093 	int cpu;
3094 
3095 	/* Enabled by ring_buffer_nest_end() */
3096 	preempt_disable_notrace();
3097 	cpu = raw_smp_processor_id();
3098 	cpu_buffer = buffer->buffers[cpu];
3099 	/* This is the shift value for the above recursive locking */
3100 	cpu_buffer->nest += NESTED_BITS;
3101 }
3102 
3103 /**
3104  * ring_buffer_nest_end - Allow to trace while nested
3105  * @buffer: The ring buffer to modify
3106  *
3107  * Must be called after ring_buffer_nest_start() and after the
3108  * ring_buffer_unlock_commit().
3109  */
3110 void ring_buffer_nest_end(struct trace_buffer *buffer)
3111 {
3112 	struct ring_buffer_per_cpu *cpu_buffer;
3113 	int cpu;
3114 
3115 	/* disabled by ring_buffer_nest_start() */
3116 	cpu = raw_smp_processor_id();
3117 	cpu_buffer = buffer->buffers[cpu];
3118 	/* This is the shift value for the above recursive locking */
3119 	cpu_buffer->nest -= NESTED_BITS;
3120 	preempt_enable_notrace();
3121 }
3122 
3123 /**
3124  * ring_buffer_unlock_commit - commit a reserved
3125  * @buffer: The buffer to commit to
3126  * @event: The event pointer to commit.
3127  *
3128  * This commits the data to the ring buffer, and releases any locks held.
3129  *
3130  * Must be paired with ring_buffer_lock_reserve.
3131  */
3132 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3133 			      struct ring_buffer_event *event)
3134 {
3135 	struct ring_buffer_per_cpu *cpu_buffer;
3136 	int cpu = raw_smp_processor_id();
3137 
3138 	cpu_buffer = buffer->buffers[cpu];
3139 
3140 	rb_commit(cpu_buffer, event);
3141 
3142 	rb_wakeups(buffer, cpu_buffer);
3143 
3144 	trace_recursive_unlock(cpu_buffer);
3145 
3146 	preempt_enable_notrace();
3147 
3148 	return 0;
3149 }
3150 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151 
3152 static struct ring_buffer_event *
3153 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3154 		  struct rb_event_info *info)
3155 {
3156 	struct ring_buffer_event *event;
3157 	struct buffer_page *tail_page;
3158 	unsigned long tail, write, w;
3159 	bool a_ok;
3160 	bool b_ok;
3161 
3162 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3163 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3164 
3165  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166 	barrier();
3167 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3169 	barrier();
3170 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3171 
3172 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3173 		info->delta = info->ts;
3174 	} else {
3175 		/*
3176 		 * If interrupting an event time update, we may need an
3177 		 * absolute timestamp.
3178 		 * Don't bother if this is the start of a new page (w == 0).
3179 		 */
3180 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182 			info->length += RB_LEN_TIME_EXTEND;
3183 		} else {
3184 			info->delta = info->ts - info->after;
3185 			if (unlikely(test_time_stamp(info->delta))) {
3186 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187 				info->length += RB_LEN_TIME_EXTEND;
3188 			}
3189 		}
3190 	}
3191 
3192  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3193 
3194  /*C*/	write = local_add_return(info->length, &tail_page->write);
3195 
3196 	/* set write to only the index of the write */
3197 	write &= RB_WRITE_MASK;
3198 
3199 	tail = write - info->length;
3200 
3201 	/* See if we shot pass the end of this buffer page */
3202 	if (unlikely(write > BUF_PAGE_SIZE)) {
3203 		if (tail != w) {
3204 			/* before and after may now different, fix it up*/
3205 			b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207 			if (a_ok && b_ok && info->before != info->after)
3208 				(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209 						      info->before, info->after);
3210 		}
3211 		return rb_move_tail(cpu_buffer, tail, info);
3212 	}
3213 
3214 	if (likely(tail == w)) {
3215 		u64 save_before;
3216 		bool s_ok;
3217 
3218 		/* Nothing interrupted us between A and C */
3219  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3220 		barrier();
3221  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222 		RB_WARN_ON(cpu_buffer, !s_ok);
3223 		if (likely(!(info->add_timestamp &
3224 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3225 			/* This did not interrupt any time update */
3226 			info->delta = info->ts - info->after;
3227 		else
3228 			/* Just use full timestamp for inerrupting event */
3229 			info->delta = info->ts;
3230 		barrier();
3231 		if (unlikely(info->ts != save_before)) {
3232 			/* SLOW PATH - Interrupted between C and E */
3233 
3234 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3235 			RB_WARN_ON(cpu_buffer, !a_ok);
3236 
3237 			/* Write stamp must only go forward */
3238 			if (save_before > info->after) {
3239 				/*
3240 				 * We do not care about the result, only that
3241 				 * it gets updated atomically.
3242 				 */
3243 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244 						      info->after, save_before);
3245 			}
3246 		}
3247 	} else {
3248 		u64 ts;
3249 		/* SLOW PATH - Interrupted between A and C */
3250 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3251 		/* Was interrupted before here, write_stamp must be valid */
3252 		RB_WARN_ON(cpu_buffer, !a_ok);
3253 		ts = rb_time_stamp(cpu_buffer->buffer);
3254 		barrier();
3255  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3256 		    info->after < ts) {
3257 			/* Nothing came after this event between C and E */
3258 			info->delta = ts - info->after;
3259 			(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260 					      info->after, info->ts);
3261 			info->ts = ts;
3262 		} else {
3263 			/*
3264 			 * Interrupted beween C and E:
3265 			 * Lost the previous events time stamp. Just set the
3266 			 * delta to zero, and this will be the same time as
3267 			 * the event this event interrupted. And the events that
3268 			 * came after this will still be correct (as they would
3269 			 * have built their delta on the previous event.
3270 			 */
3271 			info->delta = 0;
3272 		}
3273 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3274 	}
3275 
3276 	/*
3277 	 * If this is the first commit on the page, then it has the same
3278 	 * timestamp as the page itself.
3279 	 */
3280 	if (unlikely(!tail && !(info->add_timestamp &
3281 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3282 		info->delta = 0;
3283 
3284 	/* We reserved something on the buffer */
3285 
3286 	event = __rb_page_index(tail_page, tail);
3287 	rb_update_event(cpu_buffer, event, info);
3288 
3289 	local_inc(&tail_page->entries);
3290 
3291 	/*
3292 	 * If this is the first commit on the page, then update
3293 	 * its timestamp.
3294 	 */
3295 	if (unlikely(!tail))
3296 		tail_page->page->time_stamp = info->ts;
3297 
3298 	/* account for these added bytes */
3299 	local_add(info->length, &cpu_buffer->entries_bytes);
3300 
3301 	return event;
3302 }
3303 
3304 static __always_inline struct ring_buffer_event *
3305 rb_reserve_next_event(struct trace_buffer *buffer,
3306 		      struct ring_buffer_per_cpu *cpu_buffer,
3307 		      unsigned long length)
3308 {
3309 	struct ring_buffer_event *event;
3310 	struct rb_event_info info;
3311 	int nr_loops = 0;
3312 	int add_ts_default;
3313 
3314 	rb_start_commit(cpu_buffer);
3315 	/* The commit page can not change after this */
3316 
3317 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3318 	/*
3319 	 * Due to the ability to swap a cpu buffer from a buffer
3320 	 * it is possible it was swapped before we committed.
3321 	 * (committing stops a swap). We check for it here and
3322 	 * if it happened, we have to fail the write.
3323 	 */
3324 	barrier();
3325 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3326 		local_dec(&cpu_buffer->committing);
3327 		local_dec(&cpu_buffer->commits);
3328 		return NULL;
3329 	}
3330 #endif
3331 
3332 	info.length = rb_calculate_event_length(length);
3333 
3334 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336 		info.length += RB_LEN_TIME_EXTEND;
3337 	} else {
3338 		add_ts_default = RB_ADD_STAMP_NONE;
3339 	}
3340 
3341  again:
3342 	info.add_timestamp = add_ts_default;
3343 	info.delta = 0;
3344 
3345 	/*
3346 	 * We allow for interrupts to reenter here and do a trace.
3347 	 * If one does, it will cause this original code to loop
3348 	 * back here. Even with heavy interrupts happening, this
3349 	 * should only happen a few times in a row. If this happens
3350 	 * 1000 times in a row, there must be either an interrupt
3351 	 * storm or we have something buggy.
3352 	 * Bail!
3353 	 */
3354 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3355 		goto out_fail;
3356 
3357 	event = __rb_reserve_next(cpu_buffer, &info);
3358 
3359 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3360 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3361 			info.length -= RB_LEN_TIME_EXTEND;
3362 		goto again;
3363 	}
3364 
3365 	if (likely(event))
3366 		return event;
3367  out_fail:
3368 	rb_end_commit(cpu_buffer);
3369 	return NULL;
3370 }
3371 
3372 /**
3373  * ring_buffer_lock_reserve - reserve a part of the buffer
3374  * @buffer: the ring buffer to reserve from
3375  * @length: the length of the data to reserve (excluding event header)
3376  *
3377  * Returns a reserved event on the ring buffer to copy directly to.
3378  * The user of this interface will need to get the body to write into
3379  * and can use the ring_buffer_event_data() interface.
3380  *
3381  * The length is the length of the data needed, not the event length
3382  * which also includes the event header.
3383  *
3384  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385  * If NULL is returned, then nothing has been allocated or locked.
3386  */
3387 struct ring_buffer_event *
3388 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3389 {
3390 	struct ring_buffer_per_cpu *cpu_buffer;
3391 	struct ring_buffer_event *event;
3392 	int cpu;
3393 
3394 	/* If we are tracing schedule, we don't want to recurse */
3395 	preempt_disable_notrace();
3396 
3397 	if (unlikely(atomic_read(&buffer->record_disabled)))
3398 		goto out;
3399 
3400 	cpu = raw_smp_processor_id();
3401 
3402 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3403 		goto out;
3404 
3405 	cpu_buffer = buffer->buffers[cpu];
3406 
3407 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3408 		goto out;
3409 
3410 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3411 		goto out;
3412 
3413 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3414 		goto out;
3415 
3416 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3417 	if (!event)
3418 		goto out_unlock;
3419 
3420 	return event;
3421 
3422  out_unlock:
3423 	trace_recursive_unlock(cpu_buffer);
3424  out:
3425 	preempt_enable_notrace();
3426 	return NULL;
3427 }
3428 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3429 
3430 /*
3431  * Decrement the entries to the page that an event is on.
3432  * The event does not even need to exist, only the pointer
3433  * to the page it is on. This may only be called before the commit
3434  * takes place.
3435  */
3436 static inline void
3437 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438 		   struct ring_buffer_event *event)
3439 {
3440 	unsigned long addr = (unsigned long)event;
3441 	struct buffer_page *bpage = cpu_buffer->commit_page;
3442 	struct buffer_page *start;
3443 
3444 	addr &= PAGE_MASK;
3445 
3446 	/* Do the likely case first */
3447 	if (likely(bpage->page == (void *)addr)) {
3448 		local_dec(&bpage->entries);
3449 		return;
3450 	}
3451 
3452 	/*
3453 	 * Because the commit page may be on the reader page we
3454 	 * start with the next page and check the end loop there.
3455 	 */
3456 	rb_inc_page(cpu_buffer, &bpage);
3457 	start = bpage;
3458 	do {
3459 		if (bpage->page == (void *)addr) {
3460 			local_dec(&bpage->entries);
3461 			return;
3462 		}
3463 		rb_inc_page(cpu_buffer, &bpage);
3464 	} while (bpage != start);
3465 
3466 	/* commit not part of this buffer?? */
3467 	RB_WARN_ON(cpu_buffer, 1);
3468 }
3469 
3470 /**
3471  * ring_buffer_commit_discard - discard an event that has not been committed
3472  * @buffer: the ring buffer
3473  * @event: non committed event to discard
3474  *
3475  * Sometimes an event that is in the ring buffer needs to be ignored.
3476  * This function lets the user discard an event in the ring buffer
3477  * and then that event will not be read later.
3478  *
3479  * This function only works if it is called before the item has been
3480  * committed. It will try to free the event from the ring buffer
3481  * if another event has not been added behind it.
3482  *
3483  * If another event has been added behind it, it will set the event
3484  * up as discarded, and perform the commit.
3485  *
3486  * If this function is called, do not call ring_buffer_unlock_commit on
3487  * the event.
3488  */
3489 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3490 				struct ring_buffer_event *event)
3491 {
3492 	struct ring_buffer_per_cpu *cpu_buffer;
3493 	int cpu;
3494 
3495 	/* The event is discarded regardless */
3496 	rb_event_discard(event);
3497 
3498 	cpu = smp_processor_id();
3499 	cpu_buffer = buffer->buffers[cpu];
3500 
3501 	/*
3502 	 * This must only be called if the event has not been
3503 	 * committed yet. Thus we can assume that preemption
3504 	 * is still disabled.
3505 	 */
3506 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3507 
3508 	rb_decrement_entry(cpu_buffer, event);
3509 	if (rb_try_to_discard(cpu_buffer, event))
3510 		goto out;
3511 
3512  out:
3513 	rb_end_commit(cpu_buffer);
3514 
3515 	trace_recursive_unlock(cpu_buffer);
3516 
3517 	preempt_enable_notrace();
3518 
3519 }
3520 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521 
3522 /**
3523  * ring_buffer_write - write data to the buffer without reserving
3524  * @buffer: The ring buffer to write to.
3525  * @length: The length of the data being written (excluding the event header)
3526  * @data: The data to write to the buffer.
3527  *
3528  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529  * one function. If you already have the data to write to the buffer, it
3530  * may be easier to simply call this function.
3531  *
3532  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533  * and not the length of the event which would hold the header.
3534  */
3535 int ring_buffer_write(struct trace_buffer *buffer,
3536 		      unsigned long length,
3537 		      void *data)
3538 {
3539 	struct ring_buffer_per_cpu *cpu_buffer;
3540 	struct ring_buffer_event *event;
3541 	void *body;
3542 	int ret = -EBUSY;
3543 	int cpu;
3544 
3545 	preempt_disable_notrace();
3546 
3547 	if (atomic_read(&buffer->record_disabled))
3548 		goto out;
3549 
3550 	cpu = raw_smp_processor_id();
3551 
3552 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3553 		goto out;
3554 
3555 	cpu_buffer = buffer->buffers[cpu];
3556 
3557 	if (atomic_read(&cpu_buffer->record_disabled))
3558 		goto out;
3559 
3560 	if (length > BUF_MAX_DATA_SIZE)
3561 		goto out;
3562 
3563 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3564 		goto out;
3565 
3566 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567 	if (!event)
3568 		goto out_unlock;
3569 
3570 	body = rb_event_data(event);
3571 
3572 	memcpy(body, data, length);
3573 
3574 	rb_commit(cpu_buffer, event);
3575 
3576 	rb_wakeups(buffer, cpu_buffer);
3577 
3578 	ret = 0;
3579 
3580  out_unlock:
3581 	trace_recursive_unlock(cpu_buffer);
3582 
3583  out:
3584 	preempt_enable_notrace();
3585 
3586 	return ret;
3587 }
3588 EXPORT_SYMBOL_GPL(ring_buffer_write);
3589 
3590 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3591 {
3592 	struct buffer_page *reader = cpu_buffer->reader_page;
3593 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3594 	struct buffer_page *commit = cpu_buffer->commit_page;
3595 
3596 	/* In case of error, head will be NULL */
3597 	if (unlikely(!head))
3598 		return true;
3599 
3600 	return reader->read == rb_page_commit(reader) &&
3601 		(commit == reader ||
3602 		 (commit == head &&
3603 		  head->read == rb_page_commit(commit)));
3604 }
3605 
3606 /**
3607  * ring_buffer_record_disable - stop all writes into the buffer
3608  * @buffer: The ring buffer to stop writes to.
3609  *
3610  * This prevents all writes to the buffer. Any attempt to write
3611  * to the buffer after this will fail and return NULL.
3612  *
3613  * The caller should call synchronize_rcu() after this.
3614  */
3615 void ring_buffer_record_disable(struct trace_buffer *buffer)
3616 {
3617 	atomic_inc(&buffer->record_disabled);
3618 }
3619 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3620 
3621 /**
3622  * ring_buffer_record_enable - enable writes to the buffer
3623  * @buffer: The ring buffer to enable writes
3624  *
3625  * Note, multiple disables will need the same number of enables
3626  * to truly enable the writing (much like preempt_disable).
3627  */
3628 void ring_buffer_record_enable(struct trace_buffer *buffer)
3629 {
3630 	atomic_dec(&buffer->record_disabled);
3631 }
3632 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3633 
3634 /**
3635  * ring_buffer_record_off - stop all writes into the buffer
3636  * @buffer: The ring buffer to stop writes to.
3637  *
3638  * This prevents all writes to the buffer. Any attempt to write
3639  * to the buffer after this will fail and return NULL.
3640  *
3641  * This is different than ring_buffer_record_disable() as
3642  * it works like an on/off switch, where as the disable() version
3643  * must be paired with a enable().
3644  */
3645 void ring_buffer_record_off(struct trace_buffer *buffer)
3646 {
3647 	unsigned int rd;
3648 	unsigned int new_rd;
3649 
3650 	do {
3651 		rd = atomic_read(&buffer->record_disabled);
3652 		new_rd = rd | RB_BUFFER_OFF;
3653 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654 }
3655 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656 
3657 /**
3658  * ring_buffer_record_on - restart writes into the buffer
3659  * @buffer: The ring buffer to start writes to.
3660  *
3661  * This enables all writes to the buffer that was disabled by
3662  * ring_buffer_record_off().
3663  *
3664  * This is different than ring_buffer_record_enable() as
3665  * it works like an on/off switch, where as the enable() version
3666  * must be paired with a disable().
3667  */
3668 void ring_buffer_record_on(struct trace_buffer *buffer)
3669 {
3670 	unsigned int rd;
3671 	unsigned int new_rd;
3672 
3673 	do {
3674 		rd = atomic_read(&buffer->record_disabled);
3675 		new_rd = rd & ~RB_BUFFER_OFF;
3676 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677 }
3678 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679 
3680 /**
3681  * ring_buffer_record_is_on - return true if the ring buffer can write
3682  * @buffer: The ring buffer to see if write is enabled
3683  *
3684  * Returns true if the ring buffer is in a state that it accepts writes.
3685  */
3686 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3687 {
3688 	return !atomic_read(&buffer->record_disabled);
3689 }
3690 
3691 /**
3692  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693  * @buffer: The ring buffer to see if write is set enabled
3694  *
3695  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696  * Note that this does NOT mean it is in a writable state.
3697  *
3698  * It may return true when the ring buffer has been disabled by
3699  * ring_buffer_record_disable(), as that is a temporary disabling of
3700  * the ring buffer.
3701  */
3702 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3703 {
3704 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705 }
3706 
3707 /**
3708  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709  * @buffer: The ring buffer to stop writes to.
3710  * @cpu: The CPU buffer to stop
3711  *
3712  * This prevents all writes to the buffer. Any attempt to write
3713  * to the buffer after this will fail and return NULL.
3714  *
3715  * The caller should call synchronize_rcu() after this.
3716  */
3717 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3718 {
3719 	struct ring_buffer_per_cpu *cpu_buffer;
3720 
3721 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3722 		return;
3723 
3724 	cpu_buffer = buffer->buffers[cpu];
3725 	atomic_inc(&cpu_buffer->record_disabled);
3726 }
3727 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3728 
3729 /**
3730  * ring_buffer_record_enable_cpu - enable writes to the buffer
3731  * @buffer: The ring buffer to enable writes
3732  * @cpu: The CPU to enable.
3733  *
3734  * Note, multiple disables will need the same number of enables
3735  * to truly enable the writing (much like preempt_disable).
3736  */
3737 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3738 {
3739 	struct ring_buffer_per_cpu *cpu_buffer;
3740 
3741 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742 		return;
3743 
3744 	cpu_buffer = buffer->buffers[cpu];
3745 	atomic_dec(&cpu_buffer->record_disabled);
3746 }
3747 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3748 
3749 /*
3750  * The total entries in the ring buffer is the running counter
3751  * of entries entered into the ring buffer, minus the sum of
3752  * the entries read from the ring buffer and the number of
3753  * entries that were overwritten.
3754  */
3755 static inline unsigned long
3756 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757 {
3758 	return local_read(&cpu_buffer->entries) -
3759 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760 }
3761 
3762 /**
3763  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764  * @buffer: The ring buffer
3765  * @cpu: The per CPU buffer to read from.
3766  */
3767 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3768 {
3769 	unsigned long flags;
3770 	struct ring_buffer_per_cpu *cpu_buffer;
3771 	struct buffer_page *bpage;
3772 	u64 ret = 0;
3773 
3774 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775 		return 0;
3776 
3777 	cpu_buffer = buffer->buffers[cpu];
3778 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3779 	/*
3780 	 * if the tail is on reader_page, oldest time stamp is on the reader
3781 	 * page
3782 	 */
3783 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784 		bpage = cpu_buffer->reader_page;
3785 	else
3786 		bpage = rb_set_head_page(cpu_buffer);
3787 	if (bpage)
3788 		ret = bpage->page->time_stamp;
3789 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3790 
3791 	return ret;
3792 }
3793 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794 
3795 /**
3796  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797  * @buffer: The ring buffer
3798  * @cpu: The per CPU buffer to read from.
3799  */
3800 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3801 {
3802 	struct ring_buffer_per_cpu *cpu_buffer;
3803 	unsigned long ret;
3804 
3805 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806 		return 0;
3807 
3808 	cpu_buffer = buffer->buffers[cpu];
3809 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810 
3811 	return ret;
3812 }
3813 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814 
3815 /**
3816  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817  * @buffer: The ring buffer
3818  * @cpu: The per CPU buffer to get the entries from.
3819  */
3820 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3821 {
3822 	struct ring_buffer_per_cpu *cpu_buffer;
3823 
3824 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825 		return 0;
3826 
3827 	cpu_buffer = buffer->buffers[cpu];
3828 
3829 	return rb_num_of_entries(cpu_buffer);
3830 }
3831 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3832 
3833 /**
3834  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3836  * @buffer: The ring buffer
3837  * @cpu: The per CPU buffer to get the number of overruns from
3838  */
3839 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3840 {
3841 	struct ring_buffer_per_cpu *cpu_buffer;
3842 	unsigned long ret;
3843 
3844 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845 		return 0;
3846 
3847 	cpu_buffer = buffer->buffers[cpu];
3848 	ret = local_read(&cpu_buffer->overrun);
3849 
3850 	return ret;
3851 }
3852 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3853 
3854 /**
3855  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856  * commits failing due to the buffer wrapping around while there are uncommitted
3857  * events, such as during an interrupt storm.
3858  * @buffer: The ring buffer
3859  * @cpu: The per CPU buffer to get the number of overruns from
3860  */
3861 unsigned long
3862 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3863 {
3864 	struct ring_buffer_per_cpu *cpu_buffer;
3865 	unsigned long ret;
3866 
3867 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868 		return 0;
3869 
3870 	cpu_buffer = buffer->buffers[cpu];
3871 	ret = local_read(&cpu_buffer->commit_overrun);
3872 
3873 	return ret;
3874 }
3875 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876 
3877 /**
3878  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880  * @buffer: The ring buffer
3881  * @cpu: The per CPU buffer to get the number of overruns from
3882  */
3883 unsigned long
3884 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3885 {
3886 	struct ring_buffer_per_cpu *cpu_buffer;
3887 	unsigned long ret;
3888 
3889 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890 		return 0;
3891 
3892 	cpu_buffer = buffer->buffers[cpu];
3893 	ret = local_read(&cpu_buffer->dropped_events);
3894 
3895 	return ret;
3896 }
3897 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898 
3899 /**
3900  * ring_buffer_read_events_cpu - get the number of events successfully read
3901  * @buffer: The ring buffer
3902  * @cpu: The per CPU buffer to get the number of events read
3903  */
3904 unsigned long
3905 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3906 {
3907 	struct ring_buffer_per_cpu *cpu_buffer;
3908 
3909 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910 		return 0;
3911 
3912 	cpu_buffer = buffer->buffers[cpu];
3913 	return cpu_buffer->read;
3914 }
3915 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916 
3917 /**
3918  * ring_buffer_entries - get the number of entries in a buffer
3919  * @buffer: The ring buffer
3920  *
3921  * Returns the total number of entries in the ring buffer
3922  * (all CPU entries)
3923  */
3924 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3925 {
3926 	struct ring_buffer_per_cpu *cpu_buffer;
3927 	unsigned long entries = 0;
3928 	int cpu;
3929 
3930 	/* if you care about this being correct, lock the buffer */
3931 	for_each_buffer_cpu(buffer, cpu) {
3932 		cpu_buffer = buffer->buffers[cpu];
3933 		entries += rb_num_of_entries(cpu_buffer);
3934 	}
3935 
3936 	return entries;
3937 }
3938 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3939 
3940 /**
3941  * ring_buffer_overruns - get the number of overruns in buffer
3942  * @buffer: The ring buffer
3943  *
3944  * Returns the total number of overruns in the ring buffer
3945  * (all CPU entries)
3946  */
3947 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3948 {
3949 	struct ring_buffer_per_cpu *cpu_buffer;
3950 	unsigned long overruns = 0;
3951 	int cpu;
3952 
3953 	/* if you care about this being correct, lock the buffer */
3954 	for_each_buffer_cpu(buffer, cpu) {
3955 		cpu_buffer = buffer->buffers[cpu];
3956 		overruns += local_read(&cpu_buffer->overrun);
3957 	}
3958 
3959 	return overruns;
3960 }
3961 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3962 
3963 static void rb_iter_reset(struct ring_buffer_iter *iter)
3964 {
3965 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966 
3967 	/* Iterator usage is expected to have record disabled */
3968 	iter->head_page = cpu_buffer->reader_page;
3969 	iter->head = cpu_buffer->reader_page->read;
3970 	iter->next_event = iter->head;
3971 
3972 	iter->cache_reader_page = iter->head_page;
3973 	iter->cache_read = cpu_buffer->read;
3974 
3975 	if (iter->head) {
3976 		iter->read_stamp = cpu_buffer->read_stamp;
3977 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978 	} else {
3979 		iter->read_stamp = iter->head_page->page->time_stamp;
3980 		iter->page_stamp = iter->read_stamp;
3981 	}
3982 }
3983 
3984 /**
3985  * ring_buffer_iter_reset - reset an iterator
3986  * @iter: The iterator to reset
3987  *
3988  * Resets the iterator, so that it will start from the beginning
3989  * again.
3990  */
3991 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992 {
3993 	struct ring_buffer_per_cpu *cpu_buffer;
3994 	unsigned long flags;
3995 
3996 	if (!iter)
3997 		return;
3998 
3999 	cpu_buffer = iter->cpu_buffer;
4000 
4001 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4002 	rb_iter_reset(iter);
4003 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4004 }
4005 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4006 
4007 /**
4008  * ring_buffer_iter_empty - check if an iterator has no more to read
4009  * @iter: The iterator to check
4010  */
4011 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012 {
4013 	struct ring_buffer_per_cpu *cpu_buffer;
4014 	struct buffer_page *reader;
4015 	struct buffer_page *head_page;
4016 	struct buffer_page *commit_page;
4017 	struct buffer_page *curr_commit_page;
4018 	unsigned commit;
4019 	u64 curr_commit_ts;
4020 	u64 commit_ts;
4021 
4022 	cpu_buffer = iter->cpu_buffer;
4023 	reader = cpu_buffer->reader_page;
4024 	head_page = cpu_buffer->head_page;
4025 	commit_page = cpu_buffer->commit_page;
4026 	commit_ts = commit_page->page->time_stamp;
4027 
4028 	/*
4029 	 * When the writer goes across pages, it issues a cmpxchg which
4030 	 * is a mb(), which will synchronize with the rmb here.
4031 	 * (see rb_tail_page_update())
4032 	 */
4033 	smp_rmb();
4034 	commit = rb_page_commit(commit_page);
4035 	/* We want to make sure that the commit page doesn't change */
4036 	smp_rmb();
4037 
4038 	/* Make sure commit page didn't change */
4039 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041 
4042 	/* If the commit page changed, then there's more data */
4043 	if (curr_commit_page != commit_page ||
4044 	    curr_commit_ts != commit_ts)
4045 		return 0;
4046 
4047 	/* Still racy, as it may return a false positive, but that's OK */
4048 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4049 		(iter->head_page == reader && commit_page == head_page &&
4050 		 head_page->read == commit &&
4051 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4054 
4055 static void
4056 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057 		     struct ring_buffer_event *event)
4058 {
4059 	u64 delta;
4060 
4061 	switch (event->type_len) {
4062 	case RINGBUF_TYPE_PADDING:
4063 		return;
4064 
4065 	case RINGBUF_TYPE_TIME_EXTEND:
4066 		delta = ring_buffer_event_time_stamp(event);
4067 		cpu_buffer->read_stamp += delta;
4068 		return;
4069 
4070 	case RINGBUF_TYPE_TIME_STAMP:
4071 		delta = ring_buffer_event_time_stamp(event);
4072 		cpu_buffer->read_stamp = delta;
4073 		return;
4074 
4075 	case RINGBUF_TYPE_DATA:
4076 		cpu_buffer->read_stamp += event->time_delta;
4077 		return;
4078 
4079 	default:
4080 		RB_WARN_ON(cpu_buffer, 1);
4081 	}
4082 	return;
4083 }
4084 
4085 static void
4086 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087 			  struct ring_buffer_event *event)
4088 {
4089 	u64 delta;
4090 
4091 	switch (event->type_len) {
4092 	case RINGBUF_TYPE_PADDING:
4093 		return;
4094 
4095 	case RINGBUF_TYPE_TIME_EXTEND:
4096 		delta = ring_buffer_event_time_stamp(event);
4097 		iter->read_stamp += delta;
4098 		return;
4099 
4100 	case RINGBUF_TYPE_TIME_STAMP:
4101 		delta = ring_buffer_event_time_stamp(event);
4102 		iter->read_stamp = delta;
4103 		return;
4104 
4105 	case RINGBUF_TYPE_DATA:
4106 		iter->read_stamp += event->time_delta;
4107 		return;
4108 
4109 	default:
4110 		RB_WARN_ON(iter->cpu_buffer, 1);
4111 	}
4112 	return;
4113 }
4114 
4115 static struct buffer_page *
4116 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4117 {
4118 	struct buffer_page *reader = NULL;
4119 	unsigned long overwrite;
4120 	unsigned long flags;
4121 	int nr_loops = 0;
4122 	int ret;
4123 
4124 	local_irq_save(flags);
4125 	arch_spin_lock(&cpu_buffer->lock);
4126 
4127  again:
4128 	/*
4129 	 * This should normally only loop twice. But because the
4130 	 * start of the reader inserts an empty page, it causes
4131 	 * a case where we will loop three times. There should be no
4132 	 * reason to loop four times (that I know of).
4133 	 */
4134 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4135 		reader = NULL;
4136 		goto out;
4137 	}
4138 
4139 	reader = cpu_buffer->reader_page;
4140 
4141 	/* If there's more to read, return this page */
4142 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4143 		goto out;
4144 
4145 	/* Never should we have an index greater than the size */
4146 	if (RB_WARN_ON(cpu_buffer,
4147 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4148 		goto out;
4149 
4150 	/* check if we caught up to the tail */
4151 	reader = NULL;
4152 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4153 		goto out;
4154 
4155 	/* Don't bother swapping if the ring buffer is empty */
4156 	if (rb_num_of_entries(cpu_buffer) == 0)
4157 		goto out;
4158 
4159 	/*
4160 	 * Reset the reader page to size zero.
4161 	 */
4162 	local_set(&cpu_buffer->reader_page->write, 0);
4163 	local_set(&cpu_buffer->reader_page->entries, 0);
4164 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4165 	cpu_buffer->reader_page->real_end = 0;
4166 
4167  spin:
4168 	/*
4169 	 * Splice the empty reader page into the list around the head.
4170 	 */
4171 	reader = rb_set_head_page(cpu_buffer);
4172 	if (!reader)
4173 		goto out;
4174 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4175 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4176 
4177 	/*
4178 	 * cpu_buffer->pages just needs to point to the buffer, it
4179 	 *  has no specific buffer page to point to. Lets move it out
4180 	 *  of our way so we don't accidentally swap it.
4181 	 */
4182 	cpu_buffer->pages = reader->list.prev;
4183 
4184 	/* The reader page will be pointing to the new head */
4185 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4186 
4187 	/*
4188 	 * We want to make sure we read the overruns after we set up our
4189 	 * pointers to the next object. The writer side does a
4190 	 * cmpxchg to cross pages which acts as the mb on the writer
4191 	 * side. Note, the reader will constantly fail the swap
4192 	 * while the writer is updating the pointers, so this
4193 	 * guarantees that the overwrite recorded here is the one we
4194 	 * want to compare with the last_overrun.
4195 	 */
4196 	smp_mb();
4197 	overwrite = local_read(&(cpu_buffer->overrun));
4198 
4199 	/*
4200 	 * Here's the tricky part.
4201 	 *
4202 	 * We need to move the pointer past the header page.
4203 	 * But we can only do that if a writer is not currently
4204 	 * moving it. The page before the header page has the
4205 	 * flag bit '1' set if it is pointing to the page we want.
4206 	 * but if the writer is in the process of moving it
4207 	 * than it will be '2' or already moved '0'.
4208 	 */
4209 
4210 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4211 
4212 	/*
4213 	 * If we did not convert it, then we must try again.
4214 	 */
4215 	if (!ret)
4216 		goto spin;
4217 
4218 	/*
4219 	 * Yay! We succeeded in replacing the page.
4220 	 *
4221 	 * Now make the new head point back to the reader page.
4222 	 */
4223 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4224 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4225 
4226 	local_inc(&cpu_buffer->pages_read);
4227 
4228 	/* Finally update the reader page to the new head */
4229 	cpu_buffer->reader_page = reader;
4230 	cpu_buffer->reader_page->read = 0;
4231 
4232 	if (overwrite != cpu_buffer->last_overrun) {
4233 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234 		cpu_buffer->last_overrun = overwrite;
4235 	}
4236 
4237 	goto again;
4238 
4239  out:
4240 	/* Update the read_stamp on the first event */
4241 	if (reader && reader->read == 0)
4242 		cpu_buffer->read_stamp = reader->page->time_stamp;
4243 
4244 	arch_spin_unlock(&cpu_buffer->lock);
4245 	local_irq_restore(flags);
4246 
4247 	return reader;
4248 }
4249 
4250 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251 {
4252 	struct ring_buffer_event *event;
4253 	struct buffer_page *reader;
4254 	unsigned length;
4255 
4256 	reader = rb_get_reader_page(cpu_buffer);
4257 
4258 	/* This function should not be called when buffer is empty */
4259 	if (RB_WARN_ON(cpu_buffer, !reader))
4260 		return;
4261 
4262 	event = rb_reader_event(cpu_buffer);
4263 
4264 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4265 		cpu_buffer->read++;
4266 
4267 	rb_update_read_stamp(cpu_buffer, event);
4268 
4269 	length = rb_event_length(event);
4270 	cpu_buffer->reader_page->read += length;
4271 }
4272 
4273 static void rb_advance_iter(struct ring_buffer_iter *iter)
4274 {
4275 	struct ring_buffer_per_cpu *cpu_buffer;
4276 
4277 	cpu_buffer = iter->cpu_buffer;
4278 
4279 	/* If head == next_event then we need to jump to the next event */
4280 	if (iter->head == iter->next_event) {
4281 		/* If the event gets overwritten again, there's nothing to do */
4282 		if (rb_iter_head_event(iter) == NULL)
4283 			return;
4284 	}
4285 
4286 	iter->head = iter->next_event;
4287 
4288 	/*
4289 	 * Check if we are at the end of the buffer.
4290 	 */
4291 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4292 		/* discarded commits can make the page empty */
4293 		if (iter->head_page == cpu_buffer->commit_page)
4294 			return;
4295 		rb_inc_iter(iter);
4296 		return;
4297 	}
4298 
4299 	rb_update_iter_read_stamp(iter, iter->event);
4300 }
4301 
4302 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303 {
4304 	return cpu_buffer->lost_events;
4305 }
4306 
4307 static struct ring_buffer_event *
4308 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309 	       unsigned long *lost_events)
4310 {
4311 	struct ring_buffer_event *event;
4312 	struct buffer_page *reader;
4313 	int nr_loops = 0;
4314 
4315 	if (ts)
4316 		*ts = 0;
4317  again:
4318 	/*
4319 	 * We repeat when a time extend is encountered.
4320 	 * Since the time extend is always attached to a data event,
4321 	 * we should never loop more than once.
4322 	 * (We never hit the following condition more than twice).
4323 	 */
4324 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4325 		return NULL;
4326 
4327 	reader = rb_get_reader_page(cpu_buffer);
4328 	if (!reader)
4329 		return NULL;
4330 
4331 	event = rb_reader_event(cpu_buffer);
4332 
4333 	switch (event->type_len) {
4334 	case RINGBUF_TYPE_PADDING:
4335 		if (rb_null_event(event))
4336 			RB_WARN_ON(cpu_buffer, 1);
4337 		/*
4338 		 * Because the writer could be discarding every
4339 		 * event it creates (which would probably be bad)
4340 		 * if we were to go back to "again" then we may never
4341 		 * catch up, and will trigger the warn on, or lock
4342 		 * the box. Return the padding, and we will release
4343 		 * the current locks, and try again.
4344 		 */
4345 		return event;
4346 
4347 	case RINGBUF_TYPE_TIME_EXTEND:
4348 		/* Internal data, OK to advance */
4349 		rb_advance_reader(cpu_buffer);
4350 		goto again;
4351 
4352 	case RINGBUF_TYPE_TIME_STAMP:
4353 		if (ts) {
4354 			*ts = ring_buffer_event_time_stamp(event);
4355 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356 							 cpu_buffer->cpu, ts);
4357 		}
4358 		/* Internal data, OK to advance */
4359 		rb_advance_reader(cpu_buffer);
4360 		goto again;
4361 
4362 	case RINGBUF_TYPE_DATA:
4363 		if (ts && !(*ts)) {
4364 			*ts = cpu_buffer->read_stamp + event->time_delta;
4365 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4366 							 cpu_buffer->cpu, ts);
4367 		}
4368 		if (lost_events)
4369 			*lost_events = rb_lost_events(cpu_buffer);
4370 		return event;
4371 
4372 	default:
4373 		RB_WARN_ON(cpu_buffer, 1);
4374 	}
4375 
4376 	return NULL;
4377 }
4378 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4379 
4380 static struct ring_buffer_event *
4381 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4382 {
4383 	struct trace_buffer *buffer;
4384 	struct ring_buffer_per_cpu *cpu_buffer;
4385 	struct ring_buffer_event *event;
4386 	int nr_loops = 0;
4387 
4388 	if (ts)
4389 		*ts = 0;
4390 
4391 	cpu_buffer = iter->cpu_buffer;
4392 	buffer = cpu_buffer->buffer;
4393 
4394 	/*
4395 	 * Check if someone performed a consuming read to
4396 	 * the buffer. A consuming read invalidates the iterator
4397 	 * and we need to reset the iterator in this case.
4398 	 */
4399 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4400 		     iter->cache_reader_page != cpu_buffer->reader_page))
4401 		rb_iter_reset(iter);
4402 
4403  again:
4404 	if (ring_buffer_iter_empty(iter))
4405 		return NULL;
4406 
4407 	/*
4408 	 * As the writer can mess with what the iterator is trying
4409 	 * to read, just give up if we fail to get an event after
4410 	 * three tries. The iterator is not as reliable when reading
4411 	 * the ring buffer with an active write as the consumer is.
4412 	 * Do not warn if the three failures is reached.
4413 	 */
4414 	if (++nr_loops > 3)
4415 		return NULL;
4416 
4417 	if (rb_per_cpu_empty(cpu_buffer))
4418 		return NULL;
4419 
4420 	if (iter->head >= rb_page_size(iter->head_page)) {
4421 		rb_inc_iter(iter);
4422 		goto again;
4423 	}
4424 
4425 	event = rb_iter_head_event(iter);
4426 	if (!event)
4427 		goto again;
4428 
4429 	switch (event->type_len) {
4430 	case RINGBUF_TYPE_PADDING:
4431 		if (rb_null_event(event)) {
4432 			rb_inc_iter(iter);
4433 			goto again;
4434 		}
4435 		rb_advance_iter(iter);
4436 		return event;
4437 
4438 	case RINGBUF_TYPE_TIME_EXTEND:
4439 		/* Internal data, OK to advance */
4440 		rb_advance_iter(iter);
4441 		goto again;
4442 
4443 	case RINGBUF_TYPE_TIME_STAMP:
4444 		if (ts) {
4445 			*ts = ring_buffer_event_time_stamp(event);
4446 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447 							 cpu_buffer->cpu, ts);
4448 		}
4449 		/* Internal data, OK to advance */
4450 		rb_advance_iter(iter);
4451 		goto again;
4452 
4453 	case RINGBUF_TYPE_DATA:
4454 		if (ts && !(*ts)) {
4455 			*ts = iter->read_stamp + event->time_delta;
4456 			ring_buffer_normalize_time_stamp(buffer,
4457 							 cpu_buffer->cpu, ts);
4458 		}
4459 		return event;
4460 
4461 	default:
4462 		RB_WARN_ON(cpu_buffer, 1);
4463 	}
4464 
4465 	return NULL;
4466 }
4467 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4468 
4469 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4470 {
4471 	if (likely(!in_nmi())) {
4472 		raw_spin_lock(&cpu_buffer->reader_lock);
4473 		return true;
4474 	}
4475 
4476 	/*
4477 	 * If an NMI die dumps out the content of the ring buffer
4478 	 * trylock must be used to prevent a deadlock if the NMI
4479 	 * preempted a task that holds the ring buffer locks. If
4480 	 * we get the lock then all is fine, if not, then continue
4481 	 * to do the read, but this can corrupt the ring buffer,
4482 	 * so it must be permanently disabled from future writes.
4483 	 * Reading from NMI is a oneshot deal.
4484 	 */
4485 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486 		return true;
4487 
4488 	/* Continue without locking, but disable the ring buffer */
4489 	atomic_inc(&cpu_buffer->record_disabled);
4490 	return false;
4491 }
4492 
4493 static inline void
4494 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495 {
4496 	if (likely(locked))
4497 		raw_spin_unlock(&cpu_buffer->reader_lock);
4498 	return;
4499 }
4500 
4501 /**
4502  * ring_buffer_peek - peek at the next event to be read
4503  * @buffer: The ring buffer to read
4504  * @cpu: The cpu to peak at
4505  * @ts: The timestamp counter of this event.
4506  * @lost_events: a variable to store if events were lost (may be NULL)
4507  *
4508  * This will return the event that will be read next, but does
4509  * not consume the data.
4510  */
4511 struct ring_buffer_event *
4512 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4513 		 unsigned long *lost_events)
4514 {
4515 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4516 	struct ring_buffer_event *event;
4517 	unsigned long flags;
4518 	bool dolock;
4519 
4520 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4521 		return NULL;
4522 
4523  again:
4524 	local_irq_save(flags);
4525 	dolock = rb_reader_lock(cpu_buffer);
4526 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4527 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528 		rb_advance_reader(cpu_buffer);
4529 	rb_reader_unlock(cpu_buffer, dolock);
4530 	local_irq_restore(flags);
4531 
4532 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4533 		goto again;
4534 
4535 	return event;
4536 }
4537 
4538 /** ring_buffer_iter_dropped - report if there are dropped events
4539  * @iter: The ring buffer iterator
4540  *
4541  * Returns true if there was dropped events since the last peek.
4542  */
4543 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544 {
4545 	bool ret = iter->missed_events != 0;
4546 
4547 	iter->missed_events = 0;
4548 	return ret;
4549 }
4550 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551 
4552 /**
4553  * ring_buffer_iter_peek - peek at the next event to be read
4554  * @iter: The ring buffer iterator
4555  * @ts: The timestamp counter of this event.
4556  *
4557  * This will return the event that will be read next, but does
4558  * not increment the iterator.
4559  */
4560 struct ring_buffer_event *
4561 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562 {
4563 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564 	struct ring_buffer_event *event;
4565 	unsigned long flags;
4566 
4567  again:
4568 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4569 	event = rb_iter_peek(iter, ts);
4570 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4571 
4572 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4573 		goto again;
4574 
4575 	return event;
4576 }
4577 
4578 /**
4579  * ring_buffer_consume - return an event and consume it
4580  * @buffer: The ring buffer to get the next event from
4581  * @cpu: the cpu to read the buffer from
4582  * @ts: a variable to store the timestamp (may be NULL)
4583  * @lost_events: a variable to store if events were lost (may be NULL)
4584  *
4585  * Returns the next event in the ring buffer, and that event is consumed.
4586  * Meaning, that sequential reads will keep returning a different event,
4587  * and eventually empty the ring buffer if the producer is slower.
4588  */
4589 struct ring_buffer_event *
4590 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4591 		    unsigned long *lost_events)
4592 {
4593 	struct ring_buffer_per_cpu *cpu_buffer;
4594 	struct ring_buffer_event *event = NULL;
4595 	unsigned long flags;
4596 	bool dolock;
4597 
4598  again:
4599 	/* might be called in atomic */
4600 	preempt_disable();
4601 
4602 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4603 		goto out;
4604 
4605 	cpu_buffer = buffer->buffers[cpu];
4606 	local_irq_save(flags);
4607 	dolock = rb_reader_lock(cpu_buffer);
4608 
4609 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610 	if (event) {
4611 		cpu_buffer->lost_events = 0;
4612 		rb_advance_reader(cpu_buffer);
4613 	}
4614 
4615 	rb_reader_unlock(cpu_buffer, dolock);
4616 	local_irq_restore(flags);
4617 
4618  out:
4619 	preempt_enable();
4620 
4621 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4622 		goto again;
4623 
4624 	return event;
4625 }
4626 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4627 
4628 /**
4629  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4630  * @buffer: The ring buffer to read from
4631  * @cpu: The cpu buffer to iterate over
4632  * @flags: gfp flags to use for memory allocation
4633  *
4634  * This performs the initial preparations necessary to iterate
4635  * through the buffer.  Memory is allocated, buffer recording
4636  * is disabled, and the iterator pointer is returned to the caller.
4637  *
4638  * Disabling buffer recording prevents the reading from being
4639  * corrupted. This is not a consuming read, so a producer is not
4640  * expected.
4641  *
4642  * After a sequence of ring_buffer_read_prepare calls, the user is
4643  * expected to make at least one call to ring_buffer_read_prepare_sync.
4644  * Afterwards, ring_buffer_read_start is invoked to get things going
4645  * for real.
4646  *
4647  * This overall must be paired with ring_buffer_read_finish.
4648  */
4649 struct ring_buffer_iter *
4650 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4651 {
4652 	struct ring_buffer_per_cpu *cpu_buffer;
4653 	struct ring_buffer_iter *iter;
4654 
4655 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4656 		return NULL;
4657 
4658 	iter = kzalloc(sizeof(*iter), flags);
4659 	if (!iter)
4660 		return NULL;
4661 
4662 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663 	if (!iter->event) {
4664 		kfree(iter);
4665 		return NULL;
4666 	}
4667 
4668 	cpu_buffer = buffer->buffers[cpu];
4669 
4670 	iter->cpu_buffer = cpu_buffer;
4671 
4672 	atomic_inc(&cpu_buffer->resize_disabled);
4673 
4674 	return iter;
4675 }
4676 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677 
4678 /**
4679  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680  *
4681  * All previously invoked ring_buffer_read_prepare calls to prepare
4682  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4683  * calls on those iterators are allowed.
4684  */
4685 void
4686 ring_buffer_read_prepare_sync(void)
4687 {
4688 	synchronize_rcu();
4689 }
4690 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691 
4692 /**
4693  * ring_buffer_read_start - start a non consuming read of the buffer
4694  * @iter: The iterator returned by ring_buffer_read_prepare
4695  *
4696  * This finalizes the startup of an iteration through the buffer.
4697  * The iterator comes from a call to ring_buffer_read_prepare and
4698  * an intervening ring_buffer_read_prepare_sync must have been
4699  * performed.
4700  *
4701  * Must be paired with ring_buffer_read_finish.
4702  */
4703 void
4704 ring_buffer_read_start(struct ring_buffer_iter *iter)
4705 {
4706 	struct ring_buffer_per_cpu *cpu_buffer;
4707 	unsigned long flags;
4708 
4709 	if (!iter)
4710 		return;
4711 
4712 	cpu_buffer = iter->cpu_buffer;
4713 
4714 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4715 	arch_spin_lock(&cpu_buffer->lock);
4716 	rb_iter_reset(iter);
4717 	arch_spin_unlock(&cpu_buffer->lock);
4718 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4719 }
4720 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4721 
4722 /**
4723  * ring_buffer_read_finish - finish reading the iterator of the buffer
4724  * @iter: The iterator retrieved by ring_buffer_start
4725  *
4726  * This re-enables the recording to the buffer, and frees the
4727  * iterator.
4728  */
4729 void
4730 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731 {
4732 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4733 	unsigned long flags;
4734 
4735 	/*
4736 	 * Ring buffer is disabled from recording, here's a good place
4737 	 * to check the integrity of the ring buffer.
4738 	 * Must prevent readers from trying to read, as the check
4739 	 * clears the HEAD page and readers require it.
4740 	 */
4741 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742 	rb_check_pages(cpu_buffer);
4743 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744 
4745 	atomic_dec(&cpu_buffer->resize_disabled);
4746 	kfree(iter->event);
4747 	kfree(iter);
4748 }
4749 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4750 
4751 /**
4752  * ring_buffer_iter_advance - advance the iterator to the next location
4753  * @iter: The ring buffer iterator
4754  *
4755  * Move the location of the iterator such that the next read will
4756  * be the next location of the iterator.
4757  */
4758 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4759 {
4760 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761 	unsigned long flags;
4762 
4763 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4764 
4765 	rb_advance_iter(iter);
4766 
4767 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4768 }
4769 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4770 
4771 /**
4772  * ring_buffer_size - return the size of the ring buffer (in bytes)
4773  * @buffer: The ring buffer.
4774  * @cpu: The CPU to get ring buffer size from.
4775  */
4776 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4777 {
4778 	/*
4779 	 * Earlier, this method returned
4780 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4781 	 * Since the nr_pages field is now removed, we have converted this to
4782 	 * return the per cpu buffer value.
4783 	 */
4784 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785 		return 0;
4786 
4787 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4788 }
4789 EXPORT_SYMBOL_GPL(ring_buffer_size);
4790 
4791 static void
4792 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793 {
4794 	rb_head_page_deactivate(cpu_buffer);
4795 
4796 	cpu_buffer->head_page
4797 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4798 	local_set(&cpu_buffer->head_page->write, 0);
4799 	local_set(&cpu_buffer->head_page->entries, 0);
4800 	local_set(&cpu_buffer->head_page->page->commit, 0);
4801 
4802 	cpu_buffer->head_page->read = 0;
4803 
4804 	cpu_buffer->tail_page = cpu_buffer->head_page;
4805 	cpu_buffer->commit_page = cpu_buffer->head_page;
4806 
4807 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4808 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4809 	local_set(&cpu_buffer->reader_page->write, 0);
4810 	local_set(&cpu_buffer->reader_page->entries, 0);
4811 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4812 	cpu_buffer->reader_page->read = 0;
4813 
4814 	local_set(&cpu_buffer->entries_bytes, 0);
4815 	local_set(&cpu_buffer->overrun, 0);
4816 	local_set(&cpu_buffer->commit_overrun, 0);
4817 	local_set(&cpu_buffer->dropped_events, 0);
4818 	local_set(&cpu_buffer->entries, 0);
4819 	local_set(&cpu_buffer->committing, 0);
4820 	local_set(&cpu_buffer->commits, 0);
4821 	local_set(&cpu_buffer->pages_touched, 0);
4822 	local_set(&cpu_buffer->pages_read, 0);
4823 	cpu_buffer->last_pages_touch = 0;
4824 	cpu_buffer->shortest_full = 0;
4825 	cpu_buffer->read = 0;
4826 	cpu_buffer->read_bytes = 0;
4827 
4828 	rb_time_set(&cpu_buffer->write_stamp, 0);
4829 	rb_time_set(&cpu_buffer->before_stamp, 0);
4830 
4831 	cpu_buffer->lost_events = 0;
4832 	cpu_buffer->last_overrun = 0;
4833 
4834 	rb_head_page_activate(cpu_buffer);
4835 }
4836 
4837 /* Must have disabled the cpu buffer then done a synchronize_rcu */
4838 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839 {
4840 	unsigned long flags;
4841 
4842 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843 
4844 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845 		goto out;
4846 
4847 	arch_spin_lock(&cpu_buffer->lock);
4848 
4849 	rb_reset_cpu(cpu_buffer);
4850 
4851 	arch_spin_unlock(&cpu_buffer->lock);
4852 
4853  out:
4854 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855 }
4856 
4857 /**
4858  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859  * @buffer: The ring buffer to reset a per cpu buffer of
4860  * @cpu: The CPU buffer to be reset
4861  */
4862 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4863 {
4864 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4865 
4866 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867 		return;
4868 
4869 	atomic_inc(&cpu_buffer->resize_disabled);
4870 	atomic_inc(&cpu_buffer->record_disabled);
4871 
4872 	/* Make sure all commits have finished */
4873 	synchronize_rcu();
4874 
4875 	reset_disabled_cpu_buffer(cpu_buffer);
4876 
4877 	atomic_dec(&cpu_buffer->record_disabled);
4878 	atomic_dec(&cpu_buffer->resize_disabled);
4879 }
4880 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4881 
4882 /**
4883  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4884  * @buffer: The ring buffer to reset a per cpu buffer of
4885  * @cpu: The CPU buffer to be reset
4886  */
4887 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4888 {
4889 	struct ring_buffer_per_cpu *cpu_buffer;
4890 	int cpu;
4891 
4892 	for_each_online_buffer_cpu(buffer, cpu) {
4893 		cpu_buffer = buffer->buffers[cpu];
4894 
4895 		atomic_inc(&cpu_buffer->resize_disabled);
4896 		atomic_inc(&cpu_buffer->record_disabled);
4897 	}
4898 
4899 	/* Make sure all commits have finished */
4900 	synchronize_rcu();
4901 
4902 	for_each_online_buffer_cpu(buffer, cpu) {
4903 		cpu_buffer = buffer->buffers[cpu];
4904 
4905 		reset_disabled_cpu_buffer(cpu_buffer);
4906 
4907 		atomic_dec(&cpu_buffer->record_disabled);
4908 		atomic_dec(&cpu_buffer->resize_disabled);
4909 	}
4910 }
4911 
4912 /**
4913  * ring_buffer_reset - reset a ring buffer
4914  * @buffer: The ring buffer to reset all cpu buffers
4915  */
4916 void ring_buffer_reset(struct trace_buffer *buffer)
4917 {
4918 	struct ring_buffer_per_cpu *cpu_buffer;
4919 	int cpu;
4920 
4921 	for_each_buffer_cpu(buffer, cpu) {
4922 		cpu_buffer = buffer->buffers[cpu];
4923 
4924 		atomic_inc(&cpu_buffer->resize_disabled);
4925 		atomic_inc(&cpu_buffer->record_disabled);
4926 	}
4927 
4928 	/* Make sure all commits have finished */
4929 	synchronize_rcu();
4930 
4931 	for_each_buffer_cpu(buffer, cpu) {
4932 		cpu_buffer = buffer->buffers[cpu];
4933 
4934 		reset_disabled_cpu_buffer(cpu_buffer);
4935 
4936 		atomic_dec(&cpu_buffer->record_disabled);
4937 		atomic_dec(&cpu_buffer->resize_disabled);
4938 	}
4939 }
4940 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4941 
4942 /**
4943  * rind_buffer_empty - is the ring buffer empty?
4944  * @buffer: The ring buffer to test
4945  */
4946 bool ring_buffer_empty(struct trace_buffer *buffer)
4947 {
4948 	struct ring_buffer_per_cpu *cpu_buffer;
4949 	unsigned long flags;
4950 	bool dolock;
4951 	int cpu;
4952 	int ret;
4953 
4954 	/* yes this is racy, but if you don't like the race, lock the buffer */
4955 	for_each_buffer_cpu(buffer, cpu) {
4956 		cpu_buffer = buffer->buffers[cpu];
4957 		local_irq_save(flags);
4958 		dolock = rb_reader_lock(cpu_buffer);
4959 		ret = rb_per_cpu_empty(cpu_buffer);
4960 		rb_reader_unlock(cpu_buffer, dolock);
4961 		local_irq_restore(flags);
4962 
4963 		if (!ret)
4964 			return false;
4965 	}
4966 
4967 	return true;
4968 }
4969 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4970 
4971 /**
4972  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4973  * @buffer: The ring buffer
4974  * @cpu: The CPU buffer to test
4975  */
4976 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4977 {
4978 	struct ring_buffer_per_cpu *cpu_buffer;
4979 	unsigned long flags;
4980 	bool dolock;
4981 	int ret;
4982 
4983 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4984 		return true;
4985 
4986 	cpu_buffer = buffer->buffers[cpu];
4987 	local_irq_save(flags);
4988 	dolock = rb_reader_lock(cpu_buffer);
4989 	ret = rb_per_cpu_empty(cpu_buffer);
4990 	rb_reader_unlock(cpu_buffer, dolock);
4991 	local_irq_restore(flags);
4992 
4993 	return ret;
4994 }
4995 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4996 
4997 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4998 /**
4999  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5000  * @buffer_a: One buffer to swap with
5001  * @buffer_b: The other buffer to swap with
5002  * @cpu: the CPU of the buffers to swap
5003  *
5004  * This function is useful for tracers that want to take a "snapshot"
5005  * of a CPU buffer and has another back up buffer lying around.
5006  * it is expected that the tracer handles the cpu buffer not being
5007  * used at the moment.
5008  */
5009 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5010 			 struct trace_buffer *buffer_b, int cpu)
5011 {
5012 	struct ring_buffer_per_cpu *cpu_buffer_a;
5013 	struct ring_buffer_per_cpu *cpu_buffer_b;
5014 	int ret = -EINVAL;
5015 
5016 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5017 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5018 		goto out;
5019 
5020 	cpu_buffer_a = buffer_a->buffers[cpu];
5021 	cpu_buffer_b = buffer_b->buffers[cpu];
5022 
5023 	/* At least make sure the two buffers are somewhat the same */
5024 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5025 		goto out;
5026 
5027 	ret = -EAGAIN;
5028 
5029 	if (atomic_read(&buffer_a->record_disabled))
5030 		goto out;
5031 
5032 	if (atomic_read(&buffer_b->record_disabled))
5033 		goto out;
5034 
5035 	if (atomic_read(&cpu_buffer_a->record_disabled))
5036 		goto out;
5037 
5038 	if (atomic_read(&cpu_buffer_b->record_disabled))
5039 		goto out;
5040 
5041 	/*
5042 	 * We can't do a synchronize_rcu here because this
5043 	 * function can be called in atomic context.
5044 	 * Normally this will be called from the same CPU as cpu.
5045 	 * If not it's up to the caller to protect this.
5046 	 */
5047 	atomic_inc(&cpu_buffer_a->record_disabled);
5048 	atomic_inc(&cpu_buffer_b->record_disabled);
5049 
5050 	ret = -EBUSY;
5051 	if (local_read(&cpu_buffer_a->committing))
5052 		goto out_dec;
5053 	if (local_read(&cpu_buffer_b->committing))
5054 		goto out_dec;
5055 
5056 	buffer_a->buffers[cpu] = cpu_buffer_b;
5057 	buffer_b->buffers[cpu] = cpu_buffer_a;
5058 
5059 	cpu_buffer_b->buffer = buffer_a;
5060 	cpu_buffer_a->buffer = buffer_b;
5061 
5062 	ret = 0;
5063 
5064 out_dec:
5065 	atomic_dec(&cpu_buffer_a->record_disabled);
5066 	atomic_dec(&cpu_buffer_b->record_disabled);
5067 out:
5068 	return ret;
5069 }
5070 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5071 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5072 
5073 /**
5074  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5075  * @buffer: the buffer to allocate for.
5076  * @cpu: the cpu buffer to allocate.
5077  *
5078  * This function is used in conjunction with ring_buffer_read_page.
5079  * When reading a full page from the ring buffer, these functions
5080  * can be used to speed up the process. The calling function should
5081  * allocate a few pages first with this function. Then when it
5082  * needs to get pages from the ring buffer, it passes the result
5083  * of this function into ring_buffer_read_page, which will swap
5084  * the page that was allocated, with the read page of the buffer.
5085  *
5086  * Returns:
5087  *  The page allocated, or ERR_PTR
5088  */
5089 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5090 {
5091 	struct ring_buffer_per_cpu *cpu_buffer;
5092 	struct buffer_data_page *bpage = NULL;
5093 	unsigned long flags;
5094 	struct page *page;
5095 
5096 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097 		return ERR_PTR(-ENODEV);
5098 
5099 	cpu_buffer = buffer->buffers[cpu];
5100 	local_irq_save(flags);
5101 	arch_spin_lock(&cpu_buffer->lock);
5102 
5103 	if (cpu_buffer->free_page) {
5104 		bpage = cpu_buffer->free_page;
5105 		cpu_buffer->free_page = NULL;
5106 	}
5107 
5108 	arch_spin_unlock(&cpu_buffer->lock);
5109 	local_irq_restore(flags);
5110 
5111 	if (bpage)
5112 		goto out;
5113 
5114 	page = alloc_pages_node(cpu_to_node(cpu),
5115 				GFP_KERNEL | __GFP_NORETRY, 0);
5116 	if (!page)
5117 		return ERR_PTR(-ENOMEM);
5118 
5119 	bpage = page_address(page);
5120 
5121  out:
5122 	rb_init_page(bpage);
5123 
5124 	return bpage;
5125 }
5126 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5127 
5128 /**
5129  * ring_buffer_free_read_page - free an allocated read page
5130  * @buffer: the buffer the page was allocate for
5131  * @cpu: the cpu buffer the page came from
5132  * @data: the page to free
5133  *
5134  * Free a page allocated from ring_buffer_alloc_read_page.
5135  */
5136 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5137 {
5138 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5139 	struct buffer_data_page *bpage = data;
5140 	struct page *page = virt_to_page(bpage);
5141 	unsigned long flags;
5142 
5143 	/* If the page is still in use someplace else, we can't reuse it */
5144 	if (page_ref_count(page) > 1)
5145 		goto out;
5146 
5147 	local_irq_save(flags);
5148 	arch_spin_lock(&cpu_buffer->lock);
5149 
5150 	if (!cpu_buffer->free_page) {
5151 		cpu_buffer->free_page = bpage;
5152 		bpage = NULL;
5153 	}
5154 
5155 	arch_spin_unlock(&cpu_buffer->lock);
5156 	local_irq_restore(flags);
5157 
5158  out:
5159 	free_page((unsigned long)bpage);
5160 }
5161 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5162 
5163 /**
5164  * ring_buffer_read_page - extract a page from the ring buffer
5165  * @buffer: buffer to extract from
5166  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5167  * @len: amount to extract
5168  * @cpu: the cpu of the buffer to extract
5169  * @full: should the extraction only happen when the page is full.
5170  *
5171  * This function will pull out a page from the ring buffer and consume it.
5172  * @data_page must be the address of the variable that was returned
5173  * from ring_buffer_alloc_read_page. This is because the page might be used
5174  * to swap with a page in the ring buffer.
5175  *
5176  * for example:
5177  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5178  *	if (IS_ERR(rpage))
5179  *		return PTR_ERR(rpage);
5180  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5181  *	if (ret >= 0)
5182  *		process_page(rpage, ret);
5183  *
5184  * When @full is set, the function will not return true unless
5185  * the writer is off the reader page.
5186  *
5187  * Note: it is up to the calling functions to handle sleeps and wakeups.
5188  *  The ring buffer can be used anywhere in the kernel and can not
5189  *  blindly call wake_up. The layer that uses the ring buffer must be
5190  *  responsible for that.
5191  *
5192  * Returns:
5193  *  >=0 if data has been transferred, returns the offset of consumed data.
5194  *  <0 if no data has been transferred.
5195  */
5196 int ring_buffer_read_page(struct trace_buffer *buffer,
5197 			  void **data_page, size_t len, int cpu, int full)
5198 {
5199 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5200 	struct ring_buffer_event *event;
5201 	struct buffer_data_page *bpage;
5202 	struct buffer_page *reader;
5203 	unsigned long missed_events;
5204 	unsigned long flags;
5205 	unsigned int commit;
5206 	unsigned int read;
5207 	u64 save_timestamp;
5208 	int ret = -1;
5209 
5210 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5211 		goto out;
5212 
5213 	/*
5214 	 * If len is not big enough to hold the page header, then
5215 	 * we can not copy anything.
5216 	 */
5217 	if (len <= BUF_PAGE_HDR_SIZE)
5218 		goto out;
5219 
5220 	len -= BUF_PAGE_HDR_SIZE;
5221 
5222 	if (!data_page)
5223 		goto out;
5224 
5225 	bpage = *data_page;
5226 	if (!bpage)
5227 		goto out;
5228 
5229 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5230 
5231 	reader = rb_get_reader_page(cpu_buffer);
5232 	if (!reader)
5233 		goto out_unlock;
5234 
5235 	event = rb_reader_event(cpu_buffer);
5236 
5237 	read = reader->read;
5238 	commit = rb_page_commit(reader);
5239 
5240 	/* Check if any events were dropped */
5241 	missed_events = cpu_buffer->lost_events;
5242 
5243 	/*
5244 	 * If this page has been partially read or
5245 	 * if len is not big enough to read the rest of the page or
5246 	 * a writer is still on the page, then
5247 	 * we must copy the data from the page to the buffer.
5248 	 * Otherwise, we can simply swap the page with the one passed in.
5249 	 */
5250 	if (read || (len < (commit - read)) ||
5251 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5252 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5253 		unsigned int rpos = read;
5254 		unsigned int pos = 0;
5255 		unsigned int size;
5256 
5257 		if (full)
5258 			goto out_unlock;
5259 
5260 		if (len > (commit - read))
5261 			len = (commit - read);
5262 
5263 		/* Always keep the time extend and data together */
5264 		size = rb_event_ts_length(event);
5265 
5266 		if (len < size)
5267 			goto out_unlock;
5268 
5269 		/* save the current timestamp, since the user will need it */
5270 		save_timestamp = cpu_buffer->read_stamp;
5271 
5272 		/* Need to copy one event at a time */
5273 		do {
5274 			/* We need the size of one event, because
5275 			 * rb_advance_reader only advances by one event,
5276 			 * whereas rb_event_ts_length may include the size of
5277 			 * one or two events.
5278 			 * We have already ensured there's enough space if this
5279 			 * is a time extend. */
5280 			size = rb_event_length(event);
5281 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5282 
5283 			len -= size;
5284 
5285 			rb_advance_reader(cpu_buffer);
5286 			rpos = reader->read;
5287 			pos += size;
5288 
5289 			if (rpos >= commit)
5290 				break;
5291 
5292 			event = rb_reader_event(cpu_buffer);
5293 			/* Always keep the time extend and data together */
5294 			size = rb_event_ts_length(event);
5295 		} while (len >= size);
5296 
5297 		/* update bpage */
5298 		local_set(&bpage->commit, pos);
5299 		bpage->time_stamp = save_timestamp;
5300 
5301 		/* we copied everything to the beginning */
5302 		read = 0;
5303 	} else {
5304 		/* update the entry counter */
5305 		cpu_buffer->read += rb_page_entries(reader);
5306 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5307 
5308 		/* swap the pages */
5309 		rb_init_page(bpage);
5310 		bpage = reader->page;
5311 		reader->page = *data_page;
5312 		local_set(&reader->write, 0);
5313 		local_set(&reader->entries, 0);
5314 		reader->read = 0;
5315 		*data_page = bpage;
5316 
5317 		/*
5318 		 * Use the real_end for the data size,
5319 		 * This gives us a chance to store the lost events
5320 		 * on the page.
5321 		 */
5322 		if (reader->real_end)
5323 			local_set(&bpage->commit, reader->real_end);
5324 	}
5325 	ret = read;
5326 
5327 	cpu_buffer->lost_events = 0;
5328 
5329 	commit = local_read(&bpage->commit);
5330 	/*
5331 	 * Set a flag in the commit field if we lost events
5332 	 */
5333 	if (missed_events) {
5334 		/* If there is room at the end of the page to save the
5335 		 * missed events, then record it there.
5336 		 */
5337 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5338 			memcpy(&bpage->data[commit], &missed_events,
5339 			       sizeof(missed_events));
5340 			local_add(RB_MISSED_STORED, &bpage->commit);
5341 			commit += sizeof(missed_events);
5342 		}
5343 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5344 	}
5345 
5346 	/*
5347 	 * This page may be off to user land. Zero it out here.
5348 	 */
5349 	if (commit < BUF_PAGE_SIZE)
5350 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5351 
5352  out_unlock:
5353 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5354 
5355  out:
5356 	return ret;
5357 }
5358 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5359 
5360 /*
5361  * We only allocate new buffers, never free them if the CPU goes down.
5362  * If we were to free the buffer, then the user would lose any trace that was in
5363  * the buffer.
5364  */
5365 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5366 {
5367 	struct trace_buffer *buffer;
5368 	long nr_pages_same;
5369 	int cpu_i;
5370 	unsigned long nr_pages;
5371 
5372 	buffer = container_of(node, struct trace_buffer, node);
5373 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5374 		return 0;
5375 
5376 	nr_pages = 0;
5377 	nr_pages_same = 1;
5378 	/* check if all cpu sizes are same */
5379 	for_each_buffer_cpu(buffer, cpu_i) {
5380 		/* fill in the size from first enabled cpu */
5381 		if (nr_pages == 0)
5382 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5383 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5384 			nr_pages_same = 0;
5385 			break;
5386 		}
5387 	}
5388 	/* allocate minimum pages, user can later expand it */
5389 	if (!nr_pages_same)
5390 		nr_pages = 2;
5391 	buffer->buffers[cpu] =
5392 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5393 	if (!buffer->buffers[cpu]) {
5394 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5395 		     cpu);
5396 		return -ENOMEM;
5397 	}
5398 	smp_wmb();
5399 	cpumask_set_cpu(cpu, buffer->cpumask);
5400 	return 0;
5401 }
5402 
5403 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5404 /*
5405  * This is a basic integrity check of the ring buffer.
5406  * Late in the boot cycle this test will run when configured in.
5407  * It will kick off a thread per CPU that will go into a loop
5408  * writing to the per cpu ring buffer various sizes of data.
5409  * Some of the data will be large items, some small.
5410  *
5411  * Another thread is created that goes into a spin, sending out
5412  * IPIs to the other CPUs to also write into the ring buffer.
5413  * this is to test the nesting ability of the buffer.
5414  *
5415  * Basic stats are recorded and reported. If something in the
5416  * ring buffer should happen that's not expected, a big warning
5417  * is displayed and all ring buffers are disabled.
5418  */
5419 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5420 
5421 struct rb_test_data {
5422 	struct trace_buffer *buffer;
5423 	unsigned long		events;
5424 	unsigned long		bytes_written;
5425 	unsigned long		bytes_alloc;
5426 	unsigned long		bytes_dropped;
5427 	unsigned long		events_nested;
5428 	unsigned long		bytes_written_nested;
5429 	unsigned long		bytes_alloc_nested;
5430 	unsigned long		bytes_dropped_nested;
5431 	int			min_size_nested;
5432 	int			max_size_nested;
5433 	int			max_size;
5434 	int			min_size;
5435 	int			cpu;
5436 	int			cnt;
5437 };
5438 
5439 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5440 
5441 /* 1 meg per cpu */
5442 #define RB_TEST_BUFFER_SIZE	1048576
5443 
5444 static char rb_string[] __initdata =
5445 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5446 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5447 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5448 
5449 static bool rb_test_started __initdata;
5450 
5451 struct rb_item {
5452 	int size;
5453 	char str[];
5454 };
5455 
5456 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5457 {
5458 	struct ring_buffer_event *event;
5459 	struct rb_item *item;
5460 	bool started;
5461 	int event_len;
5462 	int size;
5463 	int len;
5464 	int cnt;
5465 
5466 	/* Have nested writes different that what is written */
5467 	cnt = data->cnt + (nested ? 27 : 0);
5468 
5469 	/* Multiply cnt by ~e, to make some unique increment */
5470 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5471 
5472 	len = size + sizeof(struct rb_item);
5473 
5474 	started = rb_test_started;
5475 	/* read rb_test_started before checking buffer enabled */
5476 	smp_rmb();
5477 
5478 	event = ring_buffer_lock_reserve(data->buffer, len);
5479 	if (!event) {
5480 		/* Ignore dropped events before test starts. */
5481 		if (started) {
5482 			if (nested)
5483 				data->bytes_dropped += len;
5484 			else
5485 				data->bytes_dropped_nested += len;
5486 		}
5487 		return len;
5488 	}
5489 
5490 	event_len = ring_buffer_event_length(event);
5491 
5492 	if (RB_WARN_ON(data->buffer, event_len < len))
5493 		goto out;
5494 
5495 	item = ring_buffer_event_data(event);
5496 	item->size = size;
5497 	memcpy(item->str, rb_string, size);
5498 
5499 	if (nested) {
5500 		data->bytes_alloc_nested += event_len;
5501 		data->bytes_written_nested += len;
5502 		data->events_nested++;
5503 		if (!data->min_size_nested || len < data->min_size_nested)
5504 			data->min_size_nested = len;
5505 		if (len > data->max_size_nested)
5506 			data->max_size_nested = len;
5507 	} else {
5508 		data->bytes_alloc += event_len;
5509 		data->bytes_written += len;
5510 		data->events++;
5511 		if (!data->min_size || len < data->min_size)
5512 			data->max_size = len;
5513 		if (len > data->max_size)
5514 			data->max_size = len;
5515 	}
5516 
5517  out:
5518 	ring_buffer_unlock_commit(data->buffer, event);
5519 
5520 	return 0;
5521 }
5522 
5523 static __init int rb_test(void *arg)
5524 {
5525 	struct rb_test_data *data = arg;
5526 
5527 	while (!kthread_should_stop()) {
5528 		rb_write_something(data, false);
5529 		data->cnt++;
5530 
5531 		set_current_state(TASK_INTERRUPTIBLE);
5532 		/* Now sleep between a min of 100-300us and a max of 1ms */
5533 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5534 	}
5535 
5536 	return 0;
5537 }
5538 
5539 static __init void rb_ipi(void *ignore)
5540 {
5541 	struct rb_test_data *data;
5542 	int cpu = smp_processor_id();
5543 
5544 	data = &rb_data[cpu];
5545 	rb_write_something(data, true);
5546 }
5547 
5548 static __init int rb_hammer_test(void *arg)
5549 {
5550 	while (!kthread_should_stop()) {
5551 
5552 		/* Send an IPI to all cpus to write data! */
5553 		smp_call_function(rb_ipi, NULL, 1);
5554 		/* No sleep, but for non preempt, let others run */
5555 		schedule();
5556 	}
5557 
5558 	return 0;
5559 }
5560 
5561 static __init int test_ringbuffer(void)
5562 {
5563 	struct task_struct *rb_hammer;
5564 	struct trace_buffer *buffer;
5565 	int cpu;
5566 	int ret = 0;
5567 
5568 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5569 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5570 		return 0;
5571 	}
5572 
5573 	pr_info("Running ring buffer tests...\n");
5574 
5575 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5576 	if (WARN_ON(!buffer))
5577 		return 0;
5578 
5579 	/* Disable buffer so that threads can't write to it yet */
5580 	ring_buffer_record_off(buffer);
5581 
5582 	for_each_online_cpu(cpu) {
5583 		rb_data[cpu].buffer = buffer;
5584 		rb_data[cpu].cpu = cpu;
5585 		rb_data[cpu].cnt = cpu;
5586 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5587 						 "rbtester/%d", cpu);
5588 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5589 			pr_cont("FAILED\n");
5590 			ret = PTR_ERR(rb_threads[cpu]);
5591 			goto out_free;
5592 		}
5593 
5594 		kthread_bind(rb_threads[cpu], cpu);
5595  		wake_up_process(rb_threads[cpu]);
5596 	}
5597 
5598 	/* Now create the rb hammer! */
5599 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5600 	if (WARN_ON(IS_ERR(rb_hammer))) {
5601 		pr_cont("FAILED\n");
5602 		ret = PTR_ERR(rb_hammer);
5603 		goto out_free;
5604 	}
5605 
5606 	ring_buffer_record_on(buffer);
5607 	/*
5608 	 * Show buffer is enabled before setting rb_test_started.
5609 	 * Yes there's a small race window where events could be
5610 	 * dropped and the thread wont catch it. But when a ring
5611 	 * buffer gets enabled, there will always be some kind of
5612 	 * delay before other CPUs see it. Thus, we don't care about
5613 	 * those dropped events. We care about events dropped after
5614 	 * the threads see that the buffer is active.
5615 	 */
5616 	smp_wmb();
5617 	rb_test_started = true;
5618 
5619 	set_current_state(TASK_INTERRUPTIBLE);
5620 	/* Just run for 10 seconds */;
5621 	schedule_timeout(10 * HZ);
5622 
5623 	kthread_stop(rb_hammer);
5624 
5625  out_free:
5626 	for_each_online_cpu(cpu) {
5627 		if (!rb_threads[cpu])
5628 			break;
5629 		kthread_stop(rb_threads[cpu]);
5630 	}
5631 	if (ret) {
5632 		ring_buffer_free(buffer);
5633 		return ret;
5634 	}
5635 
5636 	/* Report! */
5637 	pr_info("finished\n");
5638 	for_each_online_cpu(cpu) {
5639 		struct ring_buffer_event *event;
5640 		struct rb_test_data *data = &rb_data[cpu];
5641 		struct rb_item *item;
5642 		unsigned long total_events;
5643 		unsigned long total_dropped;
5644 		unsigned long total_written;
5645 		unsigned long total_alloc;
5646 		unsigned long total_read = 0;
5647 		unsigned long total_size = 0;
5648 		unsigned long total_len = 0;
5649 		unsigned long total_lost = 0;
5650 		unsigned long lost;
5651 		int big_event_size;
5652 		int small_event_size;
5653 
5654 		ret = -1;
5655 
5656 		total_events = data->events + data->events_nested;
5657 		total_written = data->bytes_written + data->bytes_written_nested;
5658 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5659 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5660 
5661 		big_event_size = data->max_size + data->max_size_nested;
5662 		small_event_size = data->min_size + data->min_size_nested;
5663 
5664 		pr_info("CPU %d:\n", cpu);
5665 		pr_info("              events:    %ld\n", total_events);
5666 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5667 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5668 		pr_info("       written bytes:    %ld\n", total_written);
5669 		pr_info("       biggest event:    %d\n", big_event_size);
5670 		pr_info("      smallest event:    %d\n", small_event_size);
5671 
5672 		if (RB_WARN_ON(buffer, total_dropped))
5673 			break;
5674 
5675 		ret = 0;
5676 
5677 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5678 			total_lost += lost;
5679 			item = ring_buffer_event_data(event);
5680 			total_len += ring_buffer_event_length(event);
5681 			total_size += item->size + sizeof(struct rb_item);
5682 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5683 				pr_info("FAILED!\n");
5684 				pr_info("buffer had: %.*s\n", item->size, item->str);
5685 				pr_info("expected:   %.*s\n", item->size, rb_string);
5686 				RB_WARN_ON(buffer, 1);
5687 				ret = -1;
5688 				break;
5689 			}
5690 			total_read++;
5691 		}
5692 		if (ret)
5693 			break;
5694 
5695 		ret = -1;
5696 
5697 		pr_info("         read events:   %ld\n", total_read);
5698 		pr_info("         lost events:   %ld\n", total_lost);
5699 		pr_info("        total events:   %ld\n", total_lost + total_read);
5700 		pr_info("  recorded len bytes:   %ld\n", total_len);
5701 		pr_info(" recorded size bytes:   %ld\n", total_size);
5702 		if (total_lost)
5703 			pr_info(" With dropped events, record len and size may not match\n"
5704 				" alloced and written from above\n");
5705 		if (!total_lost) {
5706 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5707 				       total_size != total_written))
5708 				break;
5709 		}
5710 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5711 			break;
5712 
5713 		ret = 0;
5714 	}
5715 	if (!ret)
5716 		pr_info("Ring buffer PASSED!\n");
5717 
5718 	ring_buffer_free(buffer);
5719 	return 0;
5720 }
5721 
5722 late_initcall(test_ringbuffer);
5723 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5724