xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 1f9f6a78)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	trace_seq_puts(s, "# compressed entry header\n");
38 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40 	trace_seq_puts(s, "\tarray       :   32 bits\n");
41 	trace_seq_putc(s, '\n');
42 	trace_seq_printf(s, "\tpadding     : type == %d\n",
43 			 RINGBUF_TYPE_PADDING);
44 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 			 RINGBUF_TYPE_TIME_EXTEND);
46 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
47 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
48 
49 	return !trace_seq_has_overflowed(s);
50 }
51 
52 /*
53  * The ring buffer is made up of a list of pages. A separate list of pages is
54  * allocated for each CPU. A writer may only write to a buffer that is
55  * associated with the CPU it is currently executing on.  A reader may read
56  * from any per cpu buffer.
57  *
58  * The reader is special. For each per cpu buffer, the reader has its own
59  * reader page. When a reader has read the entire reader page, this reader
60  * page is swapped with another page in the ring buffer.
61  *
62  * Now, as long as the writer is off the reader page, the reader can do what
63  * ever it wants with that page. The writer will never write to that page
64  * again (as long as it is out of the ring buffer).
65  *
66  * Here's some silly ASCII art.
67  *
68  *   +------+
69  *   |reader|          RING BUFFER
70  *   |page  |
71  *   +------+        +---+   +---+   +---+
72  *                   |   |-->|   |-->|   |
73  *                   +---+   +---+   +---+
74  *                     ^               |
75  *                     |               |
76  *                     +---------------+
77  *
78  *
79  *   +------+
80  *   |reader|          RING BUFFER
81  *   |page  |------------------v
82  *   +------+        +---+   +---+   +---+
83  *                   |   |-->|   |-->|   |
84  *                   +---+   +---+   +---+
85  *                     ^               |
86  *                     |               |
87  *                     +---------------+
88  *
89  *
90  *   +------+
91  *   |reader|          RING BUFFER
92  *   |page  |------------------v
93  *   +------+        +---+   +---+   +---+
94  *      ^            |   |-->|   |-->|   |
95  *      |            +---+   +---+   +---+
96  *      |                              |
97  *      |                              |
98  *      +------------------------------+
99  *
100  *
101  *   +------+
102  *   |buffer|          RING BUFFER
103  *   |page  |------------------v
104  *   +------+        +---+   +---+   +---+
105  *      ^            |   |   |   |-->|   |
106  *      |   New      +---+   +---+   +---+
107  *      |  Reader------^               |
108  *      |   page                       |
109  *      +------------------------------+
110  *
111  *
112  * After we make this swap, the reader can hand this page off to the splice
113  * code and be done with it. It can even allocate a new page if it needs to
114  * and swap that into the ring buffer.
115  *
116  * We will be using cmpxchg soon to make all this lockless.
117  *
118  */
119 
120 /*
121  * A fast way to enable or disable all ring buffers is to
122  * call tracing_on or tracing_off. Turning off the ring buffers
123  * prevents all ring buffers from being recorded to.
124  * Turning this switch on, makes it OK to write to the
125  * ring buffer, if the ring buffer is enabled itself.
126  *
127  * There's three layers that must be on in order to write
128  * to the ring buffer.
129  *
130  * 1) This global flag must be set.
131  * 2) The ring buffer must be enabled for recording.
132  * 3) The per cpu buffer must be enabled for recording.
133  *
134  * In case of an anomaly, this global flag has a bit set that
135  * will permantly disable all ring buffers.
136  */
137 
138 /*
139  * Global flag to disable all recording to ring buffers
140  *  This has two bits: ON, DISABLED
141  *
142  *  ON   DISABLED
143  * ---- ----------
144  *   0      0        : ring buffers are off
145  *   1      0        : ring buffers are on
146  *   X      1        : ring buffers are permanently disabled
147  */
148 
149 enum {
150 	RB_BUFFERS_ON_BIT	= 0,
151 	RB_BUFFERS_DISABLED_BIT	= 1,
152 };
153 
154 enum {
155 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
156 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
157 };
158 
159 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
160 
161 /* Used for individual buffers (after the counter) */
162 #define RB_BUFFER_OFF		(1 << 20)
163 
164 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165 
166 /**
167  * tracing_off_permanent - permanently disable ring buffers
168  *
169  * This function, once called, will disable all ring buffers
170  * permanently.
171  */
172 void tracing_off_permanent(void)
173 {
174 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
175 }
176 
177 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
178 #define RB_ALIGNMENT		4U
179 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
180 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
181 
182 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
183 # define RB_FORCE_8BYTE_ALIGNMENT	0
184 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
185 #else
186 # define RB_FORCE_8BYTE_ALIGNMENT	1
187 # define RB_ARCH_ALIGNMENT		8U
188 #endif
189 
190 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
191 
192 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
193 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
194 
195 enum {
196 	RB_LEN_TIME_EXTEND = 8,
197 	RB_LEN_TIME_STAMP = 16,
198 };
199 
200 #define skip_time_extend(event) \
201 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
202 
203 static inline int rb_null_event(struct ring_buffer_event *event)
204 {
205 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
206 }
207 
208 static void rb_event_set_padding(struct ring_buffer_event *event)
209 {
210 	/* padding has a NULL time_delta */
211 	event->type_len = RINGBUF_TYPE_PADDING;
212 	event->time_delta = 0;
213 }
214 
215 static unsigned
216 rb_event_data_length(struct ring_buffer_event *event)
217 {
218 	unsigned length;
219 
220 	if (event->type_len)
221 		length = event->type_len * RB_ALIGNMENT;
222 	else
223 		length = event->array[0];
224 	return length + RB_EVNT_HDR_SIZE;
225 }
226 
227 /*
228  * Return the length of the given event. Will return
229  * the length of the time extend if the event is a
230  * time extend.
231  */
232 static inline unsigned
233 rb_event_length(struct ring_buffer_event *event)
234 {
235 	switch (event->type_len) {
236 	case RINGBUF_TYPE_PADDING:
237 		if (rb_null_event(event))
238 			/* undefined */
239 			return -1;
240 		return  event->array[0] + RB_EVNT_HDR_SIZE;
241 
242 	case RINGBUF_TYPE_TIME_EXTEND:
243 		return RB_LEN_TIME_EXTEND;
244 
245 	case RINGBUF_TYPE_TIME_STAMP:
246 		return RB_LEN_TIME_STAMP;
247 
248 	case RINGBUF_TYPE_DATA:
249 		return rb_event_data_length(event);
250 	default:
251 		BUG();
252 	}
253 	/* not hit */
254 	return 0;
255 }
256 
257 /*
258  * Return total length of time extend and data,
259  *   or just the event length for all other events.
260  */
261 static inline unsigned
262 rb_event_ts_length(struct ring_buffer_event *event)
263 {
264 	unsigned len = 0;
265 
266 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
267 		/* time extends include the data event after it */
268 		len = RB_LEN_TIME_EXTEND;
269 		event = skip_time_extend(event);
270 	}
271 	return len + rb_event_length(event);
272 }
273 
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  *
278  * Returns the size of the data load of a data event.
279  * If the event is something other than a data event, it
280  * returns the size of the event itself. With the exception
281  * of a TIME EXTEND, where it still returns the size of the
282  * data load of the data event after it.
283  */
284 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
285 {
286 	unsigned length;
287 
288 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
289 		event = skip_time_extend(event);
290 
291 	length = rb_event_length(event);
292 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
293 		return length;
294 	length -= RB_EVNT_HDR_SIZE;
295 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
296                 length -= sizeof(event->array[0]);
297 	return length;
298 }
299 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
300 
301 /* inline for ring buffer fast paths */
302 static void *
303 rb_event_data(struct ring_buffer_event *event)
304 {
305 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
306 		event = skip_time_extend(event);
307 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
308 	/* If length is in len field, then array[0] has the data */
309 	if (event->type_len)
310 		return (void *)&event->array[0];
311 	/* Otherwise length is in array[0] and array[1] has the data */
312 	return (void *)&event->array[1];
313 }
314 
315 /**
316  * ring_buffer_event_data - return the data of the event
317  * @event: the event to get the data from
318  */
319 void *ring_buffer_event_data(struct ring_buffer_event *event)
320 {
321 	return rb_event_data(event);
322 }
323 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
324 
325 #define for_each_buffer_cpu(buffer, cpu)		\
326 	for_each_cpu(cpu, buffer->cpumask)
327 
328 #define TS_SHIFT	27
329 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
330 #define TS_DELTA_TEST	(~TS_MASK)
331 
332 /* Flag when events were overwritten */
333 #define RB_MISSED_EVENTS	(1 << 31)
334 /* Missed count stored at end */
335 #define RB_MISSED_STORED	(1 << 30)
336 
337 struct buffer_data_page {
338 	u64		 time_stamp;	/* page time stamp */
339 	local_t		 commit;	/* write committed index */
340 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
341 };
342 
343 /*
344  * Note, the buffer_page list must be first. The buffer pages
345  * are allocated in cache lines, which means that each buffer
346  * page will be at the beginning of a cache line, and thus
347  * the least significant bits will be zero. We use this to
348  * add flags in the list struct pointers, to make the ring buffer
349  * lockless.
350  */
351 struct buffer_page {
352 	struct list_head list;		/* list of buffer pages */
353 	local_t		 write;		/* index for next write */
354 	unsigned	 read;		/* index for next read */
355 	local_t		 entries;	/* entries on this page */
356 	unsigned long	 real_end;	/* real end of data */
357 	struct buffer_data_page *page;	/* Actual data page */
358 };
359 
360 /*
361  * The buffer page counters, write and entries, must be reset
362  * atomically when crossing page boundaries. To synchronize this
363  * update, two counters are inserted into the number. One is
364  * the actual counter for the write position or count on the page.
365  *
366  * The other is a counter of updaters. Before an update happens
367  * the update partition of the counter is incremented. This will
368  * allow the updater to update the counter atomically.
369  *
370  * The counter is 20 bits, and the state data is 12.
371  */
372 #define RB_WRITE_MASK		0xfffff
373 #define RB_WRITE_INTCNT		(1 << 20)
374 
375 static void rb_init_page(struct buffer_data_page *bpage)
376 {
377 	local_set(&bpage->commit, 0);
378 }
379 
380 /**
381  * ring_buffer_page_len - the size of data on the page.
382  * @page: The page to read
383  *
384  * Returns the amount of data on the page, including buffer page header.
385  */
386 size_t ring_buffer_page_len(void *page)
387 {
388 	return local_read(&((struct buffer_data_page *)page)->commit)
389 		+ BUF_PAGE_HDR_SIZE;
390 }
391 
392 /*
393  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
394  * this issue out.
395  */
396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 	free_page((unsigned long)bpage->page);
399 	kfree(bpage);
400 }
401 
402 /*
403  * We need to fit the time_stamp delta into 27 bits.
404  */
405 static inline int test_time_stamp(u64 delta)
406 {
407 	if (delta & TS_DELTA_TEST)
408 		return 1;
409 	return 0;
410 }
411 
412 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
413 
414 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
415 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
416 
417 int ring_buffer_print_page_header(struct trace_seq *s)
418 {
419 	struct buffer_data_page field;
420 
421 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
422 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
423 			 (unsigned int)sizeof(field.time_stamp),
424 			 (unsigned int)is_signed_type(u64));
425 
426 	trace_seq_printf(s, "\tfield: local_t commit;\t"
427 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 			 (unsigned int)offsetof(typeof(field), commit),
429 			 (unsigned int)sizeof(field.commit),
430 			 (unsigned int)is_signed_type(long));
431 
432 	trace_seq_printf(s, "\tfield: int overwrite;\t"
433 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 			 (unsigned int)offsetof(typeof(field), commit),
435 			 1,
436 			 (unsigned int)is_signed_type(long));
437 
438 	trace_seq_printf(s, "\tfield: char data;\t"
439 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
440 			 (unsigned int)offsetof(typeof(field), data),
441 			 (unsigned int)BUF_PAGE_SIZE,
442 			 (unsigned int)is_signed_type(char));
443 
444 	return !trace_seq_has_overflowed(s);
445 }
446 
447 struct rb_irq_work {
448 	struct irq_work			work;
449 	wait_queue_head_t		waiters;
450 	bool				waiters_pending;
451 };
452 
453 /*
454  * head_page == tail_page && head == tail then buffer is empty.
455  */
456 struct ring_buffer_per_cpu {
457 	int				cpu;
458 	atomic_t			record_disabled;
459 	struct ring_buffer		*buffer;
460 	raw_spinlock_t			reader_lock;	/* serialize readers */
461 	arch_spinlock_t			lock;
462 	struct lock_class_key		lock_key;
463 	unsigned int			nr_pages;
464 	struct list_head		*pages;
465 	struct buffer_page		*head_page;	/* read from head */
466 	struct buffer_page		*tail_page;	/* write to tail */
467 	struct buffer_page		*commit_page;	/* committed pages */
468 	struct buffer_page		*reader_page;
469 	unsigned long			lost_events;
470 	unsigned long			last_overrun;
471 	local_t				entries_bytes;
472 	local_t				entries;
473 	local_t				overrun;
474 	local_t				commit_overrun;
475 	local_t				dropped_events;
476 	local_t				committing;
477 	local_t				commits;
478 	unsigned long			read;
479 	unsigned long			read_bytes;
480 	u64				write_stamp;
481 	u64				read_stamp;
482 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
483 	int				nr_pages_to_update;
484 	struct list_head		new_pages; /* new pages to add */
485 	struct work_struct		update_pages_work;
486 	struct completion		update_done;
487 
488 	struct rb_irq_work		irq_work;
489 };
490 
491 struct ring_buffer {
492 	unsigned			flags;
493 	int				cpus;
494 	atomic_t			record_disabled;
495 	atomic_t			resize_disabled;
496 	cpumask_var_t			cpumask;
497 
498 	struct lock_class_key		*reader_lock_key;
499 
500 	struct mutex			mutex;
501 
502 	struct ring_buffer_per_cpu	**buffers;
503 
504 #ifdef CONFIG_HOTPLUG_CPU
505 	struct notifier_block		cpu_notify;
506 #endif
507 	u64				(*clock)(void);
508 
509 	struct rb_irq_work		irq_work;
510 };
511 
512 struct ring_buffer_iter {
513 	struct ring_buffer_per_cpu	*cpu_buffer;
514 	unsigned long			head;
515 	struct buffer_page		*head_page;
516 	struct buffer_page		*cache_reader_page;
517 	unsigned long			cache_read;
518 	u64				read_stamp;
519 };
520 
521 /*
522  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
523  *
524  * Schedules a delayed work to wake up any task that is blocked on the
525  * ring buffer waiters queue.
526  */
527 static void rb_wake_up_waiters(struct irq_work *work)
528 {
529 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
530 
531 	wake_up_all(&rbwork->waiters);
532 }
533 
534 /**
535  * ring_buffer_wait - wait for input to the ring buffer
536  * @buffer: buffer to wait on
537  * @cpu: the cpu buffer to wait on
538  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
539  *
540  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
541  * as data is added to any of the @buffer's cpu buffers. Otherwise
542  * it will wait for data to be added to a specific cpu buffer.
543  */
544 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
545 {
546 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
547 	DEFINE_WAIT(wait);
548 	struct rb_irq_work *work;
549 	int ret = 0;
550 
551 	/*
552 	 * Depending on what the caller is waiting for, either any
553 	 * data in any cpu buffer, or a specific buffer, put the
554 	 * caller on the appropriate wait queue.
555 	 */
556 	if (cpu == RING_BUFFER_ALL_CPUS)
557 		work = &buffer->irq_work;
558 	else {
559 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
560 			return -ENODEV;
561 		cpu_buffer = buffer->buffers[cpu];
562 		work = &cpu_buffer->irq_work;
563 	}
564 
565 
566 	while (true) {
567 		prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568 
569 		/*
570 		 * The events can happen in critical sections where
571 		 * checking a work queue can cause deadlocks.
572 		 * After adding a task to the queue, this flag is set
573 		 * only to notify events to try to wake up the queue
574 		 * using irq_work.
575 		 *
576 		 * We don't clear it even if the buffer is no longer
577 		 * empty. The flag only causes the next event to run
578 		 * irq_work to do the work queue wake up. The worse
579 		 * that can happen if we race with !trace_empty() is that
580 		 * an event will cause an irq_work to try to wake up
581 		 * an empty queue.
582 		 *
583 		 * There's no reason to protect this flag either, as
584 		 * the work queue and irq_work logic will do the necessary
585 		 * synchronization for the wake ups. The only thing
586 		 * that is necessary is that the wake up happens after
587 		 * a task has been queued. It's OK for spurious wake ups.
588 		 */
589 		work->waiters_pending = true;
590 
591 		if (signal_pending(current)) {
592 			ret = -EINTR;
593 			break;
594 		}
595 
596 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
597 			break;
598 
599 		if (cpu != RING_BUFFER_ALL_CPUS &&
600 		    !ring_buffer_empty_cpu(buffer, cpu)) {
601 			unsigned long flags;
602 			bool pagebusy;
603 
604 			if (!full)
605 				break;
606 
607 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
608 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
609 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
610 
611 			if (!pagebusy)
612 				break;
613 		}
614 
615 		schedule();
616 	}
617 
618 	finish_wait(&work->waiters, &wait);
619 
620 	return ret;
621 }
622 
623 /**
624  * ring_buffer_poll_wait - poll on buffer input
625  * @buffer: buffer to wait on
626  * @cpu: the cpu buffer to wait on
627  * @filp: the file descriptor
628  * @poll_table: The poll descriptor
629  *
630  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
631  * as data is added to any of the @buffer's cpu buffers. Otherwise
632  * it will wait for data to be added to a specific cpu buffer.
633  *
634  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
635  * zero otherwise.
636  */
637 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
638 			  struct file *filp, poll_table *poll_table)
639 {
640 	struct ring_buffer_per_cpu *cpu_buffer;
641 	struct rb_irq_work *work;
642 
643 	if (cpu == RING_BUFFER_ALL_CPUS)
644 		work = &buffer->irq_work;
645 	else {
646 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
647 			return -EINVAL;
648 
649 		cpu_buffer = buffer->buffers[cpu];
650 		work = &cpu_buffer->irq_work;
651 	}
652 
653 	poll_wait(filp, &work->waiters, poll_table);
654 	work->waiters_pending = true;
655 	/*
656 	 * There's a tight race between setting the waiters_pending and
657 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
658 	 * is set, the next event will wake the task up, but we can get stuck
659 	 * if there's only a single event in.
660 	 *
661 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
662 	 * but adding a memory barrier to all events will cause too much of a
663 	 * performance hit in the fast path.  We only need a memory barrier when
664 	 * the buffer goes from empty to having content.  But as this race is
665 	 * extremely small, and it's not a problem if another event comes in, we
666 	 * will fix it later.
667 	 */
668 	smp_mb();
669 
670 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
671 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
672 		return POLLIN | POLLRDNORM;
673 	return 0;
674 }
675 
676 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
677 #define RB_WARN_ON(b, cond)						\
678 	({								\
679 		int _____ret = unlikely(cond);				\
680 		if (_____ret) {						\
681 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
682 				struct ring_buffer_per_cpu *__b =	\
683 					(void *)b;			\
684 				atomic_inc(&__b->buffer->record_disabled); \
685 			} else						\
686 				atomic_inc(&b->record_disabled);	\
687 			WARN_ON(1);					\
688 		}							\
689 		_____ret;						\
690 	})
691 
692 /* Up this if you want to test the TIME_EXTENTS and normalization */
693 #define DEBUG_SHIFT 0
694 
695 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
696 {
697 	/* shift to debug/test normalization and TIME_EXTENTS */
698 	return buffer->clock() << DEBUG_SHIFT;
699 }
700 
701 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
702 {
703 	u64 time;
704 
705 	preempt_disable_notrace();
706 	time = rb_time_stamp(buffer);
707 	preempt_enable_no_resched_notrace();
708 
709 	return time;
710 }
711 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
712 
713 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
714 				      int cpu, u64 *ts)
715 {
716 	/* Just stupid testing the normalize function and deltas */
717 	*ts >>= DEBUG_SHIFT;
718 }
719 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
720 
721 /*
722  * Making the ring buffer lockless makes things tricky.
723  * Although writes only happen on the CPU that they are on,
724  * and they only need to worry about interrupts. Reads can
725  * happen on any CPU.
726  *
727  * The reader page is always off the ring buffer, but when the
728  * reader finishes with a page, it needs to swap its page with
729  * a new one from the buffer. The reader needs to take from
730  * the head (writes go to the tail). But if a writer is in overwrite
731  * mode and wraps, it must push the head page forward.
732  *
733  * Here lies the problem.
734  *
735  * The reader must be careful to replace only the head page, and
736  * not another one. As described at the top of the file in the
737  * ASCII art, the reader sets its old page to point to the next
738  * page after head. It then sets the page after head to point to
739  * the old reader page. But if the writer moves the head page
740  * during this operation, the reader could end up with the tail.
741  *
742  * We use cmpxchg to help prevent this race. We also do something
743  * special with the page before head. We set the LSB to 1.
744  *
745  * When the writer must push the page forward, it will clear the
746  * bit that points to the head page, move the head, and then set
747  * the bit that points to the new head page.
748  *
749  * We also don't want an interrupt coming in and moving the head
750  * page on another writer. Thus we use the second LSB to catch
751  * that too. Thus:
752  *
753  * head->list->prev->next        bit 1          bit 0
754  *                              -------        -------
755  * Normal page                     0              0
756  * Points to head page             0              1
757  * New head page                   1              0
758  *
759  * Note we can not trust the prev pointer of the head page, because:
760  *
761  * +----+       +-----+        +-----+
762  * |    |------>|  T  |---X--->|  N  |
763  * |    |<------|     |        |     |
764  * +----+       +-----+        +-----+
765  *   ^                           ^ |
766  *   |          +-----+          | |
767  *   +----------|  R  |----------+ |
768  *              |     |<-----------+
769  *              +-----+
770  *
771  * Key:  ---X-->  HEAD flag set in pointer
772  *         T      Tail page
773  *         R      Reader page
774  *         N      Next page
775  *
776  * (see __rb_reserve_next() to see where this happens)
777  *
778  *  What the above shows is that the reader just swapped out
779  *  the reader page with a page in the buffer, but before it
780  *  could make the new header point back to the new page added
781  *  it was preempted by a writer. The writer moved forward onto
782  *  the new page added by the reader and is about to move forward
783  *  again.
784  *
785  *  You can see, it is legitimate for the previous pointer of
786  *  the head (or any page) not to point back to itself. But only
787  *  temporarially.
788  */
789 
790 #define RB_PAGE_NORMAL		0UL
791 #define RB_PAGE_HEAD		1UL
792 #define RB_PAGE_UPDATE		2UL
793 
794 
795 #define RB_FLAG_MASK		3UL
796 
797 /* PAGE_MOVED is not part of the mask */
798 #define RB_PAGE_MOVED		4UL
799 
800 /*
801  * rb_list_head - remove any bit
802  */
803 static struct list_head *rb_list_head(struct list_head *list)
804 {
805 	unsigned long val = (unsigned long)list;
806 
807 	return (struct list_head *)(val & ~RB_FLAG_MASK);
808 }
809 
810 /*
811  * rb_is_head_page - test if the given page is the head page
812  *
813  * Because the reader may move the head_page pointer, we can
814  * not trust what the head page is (it may be pointing to
815  * the reader page). But if the next page is a header page,
816  * its flags will be non zero.
817  */
818 static inline int
819 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
820 		struct buffer_page *page, struct list_head *list)
821 {
822 	unsigned long val;
823 
824 	val = (unsigned long)list->next;
825 
826 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
827 		return RB_PAGE_MOVED;
828 
829 	return val & RB_FLAG_MASK;
830 }
831 
832 /*
833  * rb_is_reader_page
834  *
835  * The unique thing about the reader page, is that, if the
836  * writer is ever on it, the previous pointer never points
837  * back to the reader page.
838  */
839 static int rb_is_reader_page(struct buffer_page *page)
840 {
841 	struct list_head *list = page->list.prev;
842 
843 	return rb_list_head(list->next) != &page->list;
844 }
845 
846 /*
847  * rb_set_list_to_head - set a list_head to be pointing to head.
848  */
849 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
850 				struct list_head *list)
851 {
852 	unsigned long *ptr;
853 
854 	ptr = (unsigned long *)&list->next;
855 	*ptr |= RB_PAGE_HEAD;
856 	*ptr &= ~RB_PAGE_UPDATE;
857 }
858 
859 /*
860  * rb_head_page_activate - sets up head page
861  */
862 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
863 {
864 	struct buffer_page *head;
865 
866 	head = cpu_buffer->head_page;
867 	if (!head)
868 		return;
869 
870 	/*
871 	 * Set the previous list pointer to have the HEAD flag.
872 	 */
873 	rb_set_list_to_head(cpu_buffer, head->list.prev);
874 }
875 
876 static void rb_list_head_clear(struct list_head *list)
877 {
878 	unsigned long *ptr = (unsigned long *)&list->next;
879 
880 	*ptr &= ~RB_FLAG_MASK;
881 }
882 
883 /*
884  * rb_head_page_dactivate - clears head page ptr (for free list)
885  */
886 static void
887 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
888 {
889 	struct list_head *hd;
890 
891 	/* Go through the whole list and clear any pointers found. */
892 	rb_list_head_clear(cpu_buffer->pages);
893 
894 	list_for_each(hd, cpu_buffer->pages)
895 		rb_list_head_clear(hd);
896 }
897 
898 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
899 			    struct buffer_page *head,
900 			    struct buffer_page *prev,
901 			    int old_flag, int new_flag)
902 {
903 	struct list_head *list;
904 	unsigned long val = (unsigned long)&head->list;
905 	unsigned long ret;
906 
907 	list = &prev->list;
908 
909 	val &= ~RB_FLAG_MASK;
910 
911 	ret = cmpxchg((unsigned long *)&list->next,
912 		      val | old_flag, val | new_flag);
913 
914 	/* check if the reader took the page */
915 	if ((ret & ~RB_FLAG_MASK) != val)
916 		return RB_PAGE_MOVED;
917 
918 	return ret & RB_FLAG_MASK;
919 }
920 
921 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
922 				   struct buffer_page *head,
923 				   struct buffer_page *prev,
924 				   int old_flag)
925 {
926 	return rb_head_page_set(cpu_buffer, head, prev,
927 				old_flag, RB_PAGE_UPDATE);
928 }
929 
930 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
931 				 struct buffer_page *head,
932 				 struct buffer_page *prev,
933 				 int old_flag)
934 {
935 	return rb_head_page_set(cpu_buffer, head, prev,
936 				old_flag, RB_PAGE_HEAD);
937 }
938 
939 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
940 				   struct buffer_page *head,
941 				   struct buffer_page *prev,
942 				   int old_flag)
943 {
944 	return rb_head_page_set(cpu_buffer, head, prev,
945 				old_flag, RB_PAGE_NORMAL);
946 }
947 
948 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
949 			       struct buffer_page **bpage)
950 {
951 	struct list_head *p = rb_list_head((*bpage)->list.next);
952 
953 	*bpage = list_entry(p, struct buffer_page, list);
954 }
955 
956 static struct buffer_page *
957 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
958 {
959 	struct buffer_page *head;
960 	struct buffer_page *page;
961 	struct list_head *list;
962 	int i;
963 
964 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
965 		return NULL;
966 
967 	/* sanity check */
968 	list = cpu_buffer->pages;
969 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
970 		return NULL;
971 
972 	page = head = cpu_buffer->head_page;
973 	/*
974 	 * It is possible that the writer moves the header behind
975 	 * where we started, and we miss in one loop.
976 	 * A second loop should grab the header, but we'll do
977 	 * three loops just because I'm paranoid.
978 	 */
979 	for (i = 0; i < 3; i++) {
980 		do {
981 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
982 				cpu_buffer->head_page = page;
983 				return page;
984 			}
985 			rb_inc_page(cpu_buffer, &page);
986 		} while (page != head);
987 	}
988 
989 	RB_WARN_ON(cpu_buffer, 1);
990 
991 	return NULL;
992 }
993 
994 static int rb_head_page_replace(struct buffer_page *old,
995 				struct buffer_page *new)
996 {
997 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
998 	unsigned long val;
999 	unsigned long ret;
1000 
1001 	val = *ptr & ~RB_FLAG_MASK;
1002 	val |= RB_PAGE_HEAD;
1003 
1004 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1005 
1006 	return ret == val;
1007 }
1008 
1009 /*
1010  * rb_tail_page_update - move the tail page forward
1011  *
1012  * Returns 1 if moved tail page, 0 if someone else did.
1013  */
1014 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1015 			       struct buffer_page *tail_page,
1016 			       struct buffer_page *next_page)
1017 {
1018 	struct buffer_page *old_tail;
1019 	unsigned long old_entries;
1020 	unsigned long old_write;
1021 	int ret = 0;
1022 
1023 	/*
1024 	 * The tail page now needs to be moved forward.
1025 	 *
1026 	 * We need to reset the tail page, but without messing
1027 	 * with possible erasing of data brought in by interrupts
1028 	 * that have moved the tail page and are currently on it.
1029 	 *
1030 	 * We add a counter to the write field to denote this.
1031 	 */
1032 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1033 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1034 
1035 	/*
1036 	 * Just make sure we have seen our old_write and synchronize
1037 	 * with any interrupts that come in.
1038 	 */
1039 	barrier();
1040 
1041 	/*
1042 	 * If the tail page is still the same as what we think
1043 	 * it is, then it is up to us to update the tail
1044 	 * pointer.
1045 	 */
1046 	if (tail_page == cpu_buffer->tail_page) {
1047 		/* Zero the write counter */
1048 		unsigned long val = old_write & ~RB_WRITE_MASK;
1049 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1050 
1051 		/*
1052 		 * This will only succeed if an interrupt did
1053 		 * not come in and change it. In which case, we
1054 		 * do not want to modify it.
1055 		 *
1056 		 * We add (void) to let the compiler know that we do not care
1057 		 * about the return value of these functions. We use the
1058 		 * cmpxchg to only update if an interrupt did not already
1059 		 * do it for us. If the cmpxchg fails, we don't care.
1060 		 */
1061 		(void)local_cmpxchg(&next_page->write, old_write, val);
1062 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1063 
1064 		/*
1065 		 * No need to worry about races with clearing out the commit.
1066 		 * it only can increment when a commit takes place. But that
1067 		 * only happens in the outer most nested commit.
1068 		 */
1069 		local_set(&next_page->page->commit, 0);
1070 
1071 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1072 				   tail_page, next_page);
1073 
1074 		if (old_tail == tail_page)
1075 			ret = 1;
1076 	}
1077 
1078 	return ret;
1079 }
1080 
1081 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1082 			  struct buffer_page *bpage)
1083 {
1084 	unsigned long val = (unsigned long)bpage;
1085 
1086 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1087 		return 1;
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  * rb_check_list - make sure a pointer to a list has the last bits zero
1094  */
1095 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1096 			 struct list_head *list)
1097 {
1098 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1099 		return 1;
1100 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1101 		return 1;
1102 	return 0;
1103 }
1104 
1105 /**
1106  * rb_check_pages - integrity check of buffer pages
1107  * @cpu_buffer: CPU buffer with pages to test
1108  *
1109  * As a safety measure we check to make sure the data pages have not
1110  * been corrupted.
1111  */
1112 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1113 {
1114 	struct list_head *head = cpu_buffer->pages;
1115 	struct buffer_page *bpage, *tmp;
1116 
1117 	/* Reset the head page if it exists */
1118 	if (cpu_buffer->head_page)
1119 		rb_set_head_page(cpu_buffer);
1120 
1121 	rb_head_page_deactivate(cpu_buffer);
1122 
1123 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1124 		return -1;
1125 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1126 		return -1;
1127 
1128 	if (rb_check_list(cpu_buffer, head))
1129 		return -1;
1130 
1131 	list_for_each_entry_safe(bpage, tmp, head, list) {
1132 		if (RB_WARN_ON(cpu_buffer,
1133 			       bpage->list.next->prev != &bpage->list))
1134 			return -1;
1135 		if (RB_WARN_ON(cpu_buffer,
1136 			       bpage->list.prev->next != &bpage->list))
1137 			return -1;
1138 		if (rb_check_list(cpu_buffer, &bpage->list))
1139 			return -1;
1140 	}
1141 
1142 	rb_head_page_activate(cpu_buffer);
1143 
1144 	return 0;
1145 }
1146 
1147 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1148 {
1149 	int i;
1150 	struct buffer_page *bpage, *tmp;
1151 
1152 	for (i = 0; i < nr_pages; i++) {
1153 		struct page *page;
1154 		/*
1155 		 * __GFP_NORETRY flag makes sure that the allocation fails
1156 		 * gracefully without invoking oom-killer and the system is
1157 		 * not destabilized.
1158 		 */
1159 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1160 				    GFP_KERNEL | __GFP_NORETRY,
1161 				    cpu_to_node(cpu));
1162 		if (!bpage)
1163 			goto free_pages;
1164 
1165 		list_add(&bpage->list, pages);
1166 
1167 		page = alloc_pages_node(cpu_to_node(cpu),
1168 					GFP_KERNEL | __GFP_NORETRY, 0);
1169 		if (!page)
1170 			goto free_pages;
1171 		bpage->page = page_address(page);
1172 		rb_init_page(bpage->page);
1173 	}
1174 
1175 	return 0;
1176 
1177 free_pages:
1178 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1179 		list_del_init(&bpage->list);
1180 		free_buffer_page(bpage);
1181 	}
1182 
1183 	return -ENOMEM;
1184 }
1185 
1186 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1187 			     unsigned nr_pages)
1188 {
1189 	LIST_HEAD(pages);
1190 
1191 	WARN_ON(!nr_pages);
1192 
1193 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1194 		return -ENOMEM;
1195 
1196 	/*
1197 	 * The ring buffer page list is a circular list that does not
1198 	 * start and end with a list head. All page list items point to
1199 	 * other pages.
1200 	 */
1201 	cpu_buffer->pages = pages.next;
1202 	list_del(&pages);
1203 
1204 	cpu_buffer->nr_pages = nr_pages;
1205 
1206 	rb_check_pages(cpu_buffer);
1207 
1208 	return 0;
1209 }
1210 
1211 static struct ring_buffer_per_cpu *
1212 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1213 {
1214 	struct ring_buffer_per_cpu *cpu_buffer;
1215 	struct buffer_page *bpage;
1216 	struct page *page;
1217 	int ret;
1218 
1219 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1220 				  GFP_KERNEL, cpu_to_node(cpu));
1221 	if (!cpu_buffer)
1222 		return NULL;
1223 
1224 	cpu_buffer->cpu = cpu;
1225 	cpu_buffer->buffer = buffer;
1226 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1227 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1228 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1229 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1230 	init_completion(&cpu_buffer->update_done);
1231 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1232 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1233 
1234 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1235 			    GFP_KERNEL, cpu_to_node(cpu));
1236 	if (!bpage)
1237 		goto fail_free_buffer;
1238 
1239 	rb_check_bpage(cpu_buffer, bpage);
1240 
1241 	cpu_buffer->reader_page = bpage;
1242 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1243 	if (!page)
1244 		goto fail_free_reader;
1245 	bpage->page = page_address(page);
1246 	rb_init_page(bpage->page);
1247 
1248 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1249 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1250 
1251 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1252 	if (ret < 0)
1253 		goto fail_free_reader;
1254 
1255 	cpu_buffer->head_page
1256 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1257 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1258 
1259 	rb_head_page_activate(cpu_buffer);
1260 
1261 	return cpu_buffer;
1262 
1263  fail_free_reader:
1264 	free_buffer_page(cpu_buffer->reader_page);
1265 
1266  fail_free_buffer:
1267 	kfree(cpu_buffer);
1268 	return NULL;
1269 }
1270 
1271 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1272 {
1273 	struct list_head *head = cpu_buffer->pages;
1274 	struct buffer_page *bpage, *tmp;
1275 
1276 	free_buffer_page(cpu_buffer->reader_page);
1277 
1278 	rb_head_page_deactivate(cpu_buffer);
1279 
1280 	if (head) {
1281 		list_for_each_entry_safe(bpage, tmp, head, list) {
1282 			list_del_init(&bpage->list);
1283 			free_buffer_page(bpage);
1284 		}
1285 		bpage = list_entry(head, struct buffer_page, list);
1286 		free_buffer_page(bpage);
1287 	}
1288 
1289 	kfree(cpu_buffer);
1290 }
1291 
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 static int rb_cpu_notify(struct notifier_block *self,
1294 			 unsigned long action, void *hcpu);
1295 #endif
1296 
1297 /**
1298  * __ring_buffer_alloc - allocate a new ring_buffer
1299  * @size: the size in bytes per cpu that is needed.
1300  * @flags: attributes to set for the ring buffer.
1301  *
1302  * Currently the only flag that is available is the RB_FL_OVERWRITE
1303  * flag. This flag means that the buffer will overwrite old data
1304  * when the buffer wraps. If this flag is not set, the buffer will
1305  * drop data when the tail hits the head.
1306  */
1307 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1308 					struct lock_class_key *key)
1309 {
1310 	struct ring_buffer *buffer;
1311 	int bsize;
1312 	int cpu, nr_pages;
1313 
1314 	/* keep it in its own cache line */
1315 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1316 			 GFP_KERNEL);
1317 	if (!buffer)
1318 		return NULL;
1319 
1320 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1321 		goto fail_free_buffer;
1322 
1323 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1324 	buffer->flags = flags;
1325 	buffer->clock = trace_clock_local;
1326 	buffer->reader_lock_key = key;
1327 
1328 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1329 	init_waitqueue_head(&buffer->irq_work.waiters);
1330 
1331 	/* need at least two pages */
1332 	if (nr_pages < 2)
1333 		nr_pages = 2;
1334 
1335 	/*
1336 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1337 	 * in early initcall, it will not be notified of secondary cpus.
1338 	 * In that off case, we need to allocate for all possible cpus.
1339 	 */
1340 #ifdef CONFIG_HOTPLUG_CPU
1341 	cpu_notifier_register_begin();
1342 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1343 #else
1344 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1345 #endif
1346 	buffer->cpus = nr_cpu_ids;
1347 
1348 	bsize = sizeof(void *) * nr_cpu_ids;
1349 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1350 				  GFP_KERNEL);
1351 	if (!buffer->buffers)
1352 		goto fail_free_cpumask;
1353 
1354 	for_each_buffer_cpu(buffer, cpu) {
1355 		buffer->buffers[cpu] =
1356 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1357 		if (!buffer->buffers[cpu])
1358 			goto fail_free_buffers;
1359 	}
1360 
1361 #ifdef CONFIG_HOTPLUG_CPU
1362 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1363 	buffer->cpu_notify.priority = 0;
1364 	__register_cpu_notifier(&buffer->cpu_notify);
1365 	cpu_notifier_register_done();
1366 #endif
1367 
1368 	mutex_init(&buffer->mutex);
1369 
1370 	return buffer;
1371 
1372  fail_free_buffers:
1373 	for_each_buffer_cpu(buffer, cpu) {
1374 		if (buffer->buffers[cpu])
1375 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1376 	}
1377 	kfree(buffer->buffers);
1378 
1379  fail_free_cpumask:
1380 	free_cpumask_var(buffer->cpumask);
1381 #ifdef CONFIG_HOTPLUG_CPU
1382 	cpu_notifier_register_done();
1383 #endif
1384 
1385  fail_free_buffer:
1386 	kfree(buffer);
1387 	return NULL;
1388 }
1389 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1390 
1391 /**
1392  * ring_buffer_free - free a ring buffer.
1393  * @buffer: the buffer to free.
1394  */
1395 void
1396 ring_buffer_free(struct ring_buffer *buffer)
1397 {
1398 	int cpu;
1399 
1400 #ifdef CONFIG_HOTPLUG_CPU
1401 	cpu_notifier_register_begin();
1402 	__unregister_cpu_notifier(&buffer->cpu_notify);
1403 #endif
1404 
1405 	for_each_buffer_cpu(buffer, cpu)
1406 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1407 
1408 #ifdef CONFIG_HOTPLUG_CPU
1409 	cpu_notifier_register_done();
1410 #endif
1411 
1412 	kfree(buffer->buffers);
1413 	free_cpumask_var(buffer->cpumask);
1414 
1415 	kfree(buffer);
1416 }
1417 EXPORT_SYMBOL_GPL(ring_buffer_free);
1418 
1419 void ring_buffer_set_clock(struct ring_buffer *buffer,
1420 			   u64 (*clock)(void))
1421 {
1422 	buffer->clock = clock;
1423 }
1424 
1425 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1426 
1427 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1428 {
1429 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1430 }
1431 
1432 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1433 {
1434 	return local_read(&bpage->write) & RB_WRITE_MASK;
1435 }
1436 
1437 static int
1438 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1439 {
1440 	struct list_head *tail_page, *to_remove, *next_page;
1441 	struct buffer_page *to_remove_page, *tmp_iter_page;
1442 	struct buffer_page *last_page, *first_page;
1443 	unsigned int nr_removed;
1444 	unsigned long head_bit;
1445 	int page_entries;
1446 
1447 	head_bit = 0;
1448 
1449 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1450 	atomic_inc(&cpu_buffer->record_disabled);
1451 	/*
1452 	 * We don't race with the readers since we have acquired the reader
1453 	 * lock. We also don't race with writers after disabling recording.
1454 	 * This makes it easy to figure out the first and the last page to be
1455 	 * removed from the list. We unlink all the pages in between including
1456 	 * the first and last pages. This is done in a busy loop so that we
1457 	 * lose the least number of traces.
1458 	 * The pages are freed after we restart recording and unlock readers.
1459 	 */
1460 	tail_page = &cpu_buffer->tail_page->list;
1461 
1462 	/*
1463 	 * tail page might be on reader page, we remove the next page
1464 	 * from the ring buffer
1465 	 */
1466 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1467 		tail_page = rb_list_head(tail_page->next);
1468 	to_remove = tail_page;
1469 
1470 	/* start of pages to remove */
1471 	first_page = list_entry(rb_list_head(to_remove->next),
1472 				struct buffer_page, list);
1473 
1474 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1475 		to_remove = rb_list_head(to_remove)->next;
1476 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1477 	}
1478 
1479 	next_page = rb_list_head(to_remove)->next;
1480 
1481 	/*
1482 	 * Now we remove all pages between tail_page and next_page.
1483 	 * Make sure that we have head_bit value preserved for the
1484 	 * next page
1485 	 */
1486 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1487 						head_bit);
1488 	next_page = rb_list_head(next_page);
1489 	next_page->prev = tail_page;
1490 
1491 	/* make sure pages points to a valid page in the ring buffer */
1492 	cpu_buffer->pages = next_page;
1493 
1494 	/* update head page */
1495 	if (head_bit)
1496 		cpu_buffer->head_page = list_entry(next_page,
1497 						struct buffer_page, list);
1498 
1499 	/*
1500 	 * change read pointer to make sure any read iterators reset
1501 	 * themselves
1502 	 */
1503 	cpu_buffer->read = 0;
1504 
1505 	/* pages are removed, resume tracing and then free the pages */
1506 	atomic_dec(&cpu_buffer->record_disabled);
1507 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1508 
1509 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1510 
1511 	/* last buffer page to remove */
1512 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1513 				list);
1514 	tmp_iter_page = first_page;
1515 
1516 	do {
1517 		to_remove_page = tmp_iter_page;
1518 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1519 
1520 		/* update the counters */
1521 		page_entries = rb_page_entries(to_remove_page);
1522 		if (page_entries) {
1523 			/*
1524 			 * If something was added to this page, it was full
1525 			 * since it is not the tail page. So we deduct the
1526 			 * bytes consumed in ring buffer from here.
1527 			 * Increment overrun to account for the lost events.
1528 			 */
1529 			local_add(page_entries, &cpu_buffer->overrun);
1530 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1531 		}
1532 
1533 		/*
1534 		 * We have already removed references to this list item, just
1535 		 * free up the buffer_page and its page
1536 		 */
1537 		free_buffer_page(to_remove_page);
1538 		nr_removed--;
1539 
1540 	} while (to_remove_page != last_page);
1541 
1542 	RB_WARN_ON(cpu_buffer, nr_removed);
1543 
1544 	return nr_removed == 0;
1545 }
1546 
1547 static int
1548 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1549 {
1550 	struct list_head *pages = &cpu_buffer->new_pages;
1551 	int retries, success;
1552 
1553 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1554 	/*
1555 	 * We are holding the reader lock, so the reader page won't be swapped
1556 	 * in the ring buffer. Now we are racing with the writer trying to
1557 	 * move head page and the tail page.
1558 	 * We are going to adapt the reader page update process where:
1559 	 * 1. We first splice the start and end of list of new pages between
1560 	 *    the head page and its previous page.
1561 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1562 	 *    start of new pages list.
1563 	 * 3. Finally, we update the head->prev to the end of new list.
1564 	 *
1565 	 * We will try this process 10 times, to make sure that we don't keep
1566 	 * spinning.
1567 	 */
1568 	retries = 10;
1569 	success = 0;
1570 	while (retries--) {
1571 		struct list_head *head_page, *prev_page, *r;
1572 		struct list_head *last_page, *first_page;
1573 		struct list_head *head_page_with_bit;
1574 
1575 		head_page = &rb_set_head_page(cpu_buffer)->list;
1576 		if (!head_page)
1577 			break;
1578 		prev_page = head_page->prev;
1579 
1580 		first_page = pages->next;
1581 		last_page  = pages->prev;
1582 
1583 		head_page_with_bit = (struct list_head *)
1584 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1585 
1586 		last_page->next = head_page_with_bit;
1587 		first_page->prev = prev_page;
1588 
1589 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1590 
1591 		if (r == head_page_with_bit) {
1592 			/*
1593 			 * yay, we replaced the page pointer to our new list,
1594 			 * now, we just have to update to head page's prev
1595 			 * pointer to point to end of list
1596 			 */
1597 			head_page->prev = last_page;
1598 			success = 1;
1599 			break;
1600 		}
1601 	}
1602 
1603 	if (success)
1604 		INIT_LIST_HEAD(pages);
1605 	/*
1606 	 * If we weren't successful in adding in new pages, warn and stop
1607 	 * tracing
1608 	 */
1609 	RB_WARN_ON(cpu_buffer, !success);
1610 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1611 
1612 	/* free pages if they weren't inserted */
1613 	if (!success) {
1614 		struct buffer_page *bpage, *tmp;
1615 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1616 					 list) {
1617 			list_del_init(&bpage->list);
1618 			free_buffer_page(bpage);
1619 		}
1620 	}
1621 	return success;
1622 }
1623 
1624 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1625 {
1626 	int success;
1627 
1628 	if (cpu_buffer->nr_pages_to_update > 0)
1629 		success = rb_insert_pages(cpu_buffer);
1630 	else
1631 		success = rb_remove_pages(cpu_buffer,
1632 					-cpu_buffer->nr_pages_to_update);
1633 
1634 	if (success)
1635 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1636 }
1637 
1638 static void update_pages_handler(struct work_struct *work)
1639 {
1640 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1641 			struct ring_buffer_per_cpu, update_pages_work);
1642 	rb_update_pages(cpu_buffer);
1643 	complete(&cpu_buffer->update_done);
1644 }
1645 
1646 /**
1647  * ring_buffer_resize - resize the ring buffer
1648  * @buffer: the buffer to resize.
1649  * @size: the new size.
1650  * @cpu_id: the cpu buffer to resize
1651  *
1652  * Minimum size is 2 * BUF_PAGE_SIZE.
1653  *
1654  * Returns 0 on success and < 0 on failure.
1655  */
1656 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657 			int cpu_id)
1658 {
1659 	struct ring_buffer_per_cpu *cpu_buffer;
1660 	unsigned nr_pages;
1661 	int cpu, err = 0;
1662 
1663 	/*
1664 	 * Always succeed at resizing a non-existent buffer:
1665 	 */
1666 	if (!buffer)
1667 		return size;
1668 
1669 	/* Make sure the requested buffer exists */
1670 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672 		return size;
1673 
1674 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675 	size *= BUF_PAGE_SIZE;
1676 
1677 	/* we need a minimum of two pages */
1678 	if (size < BUF_PAGE_SIZE * 2)
1679 		size = BUF_PAGE_SIZE * 2;
1680 
1681 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1682 
1683 	/*
1684 	 * Don't succeed if resizing is disabled, as a reader might be
1685 	 * manipulating the ring buffer and is expecting a sane state while
1686 	 * this is true.
1687 	 */
1688 	if (atomic_read(&buffer->resize_disabled))
1689 		return -EBUSY;
1690 
1691 	/* prevent another thread from changing buffer sizes */
1692 	mutex_lock(&buffer->mutex);
1693 
1694 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 		/* calculate the pages to update */
1696 		for_each_buffer_cpu(buffer, cpu) {
1697 			cpu_buffer = buffer->buffers[cpu];
1698 
1699 			cpu_buffer->nr_pages_to_update = nr_pages -
1700 							cpu_buffer->nr_pages;
1701 			/*
1702 			 * nothing more to do for removing pages or no update
1703 			 */
1704 			if (cpu_buffer->nr_pages_to_update <= 0)
1705 				continue;
1706 			/*
1707 			 * to add pages, make sure all new pages can be
1708 			 * allocated without receiving ENOMEM
1709 			 */
1710 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1712 						&cpu_buffer->new_pages, cpu)) {
1713 				/* not enough memory for new pages */
1714 				err = -ENOMEM;
1715 				goto out_err;
1716 			}
1717 		}
1718 
1719 		get_online_cpus();
1720 		/*
1721 		 * Fire off all the required work handlers
1722 		 * We can't schedule on offline CPUs, but it's not necessary
1723 		 * since we can change their buffer sizes without any race.
1724 		 */
1725 		for_each_buffer_cpu(buffer, cpu) {
1726 			cpu_buffer = buffer->buffers[cpu];
1727 			if (!cpu_buffer->nr_pages_to_update)
1728 				continue;
1729 
1730 			/* Can't run something on an offline CPU. */
1731 			if (!cpu_online(cpu)) {
1732 				rb_update_pages(cpu_buffer);
1733 				cpu_buffer->nr_pages_to_update = 0;
1734 			} else {
1735 				schedule_work_on(cpu,
1736 						&cpu_buffer->update_pages_work);
1737 			}
1738 		}
1739 
1740 		/* wait for all the updates to complete */
1741 		for_each_buffer_cpu(buffer, cpu) {
1742 			cpu_buffer = buffer->buffers[cpu];
1743 			if (!cpu_buffer->nr_pages_to_update)
1744 				continue;
1745 
1746 			if (cpu_online(cpu))
1747 				wait_for_completion(&cpu_buffer->update_done);
1748 			cpu_buffer->nr_pages_to_update = 0;
1749 		}
1750 
1751 		put_online_cpus();
1752 	} else {
1753 		/* Make sure this CPU has been intitialized */
1754 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1755 			goto out;
1756 
1757 		cpu_buffer = buffer->buffers[cpu_id];
1758 
1759 		if (nr_pages == cpu_buffer->nr_pages)
1760 			goto out;
1761 
1762 		cpu_buffer->nr_pages_to_update = nr_pages -
1763 						cpu_buffer->nr_pages;
1764 
1765 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1766 		if (cpu_buffer->nr_pages_to_update > 0 &&
1767 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1768 					    &cpu_buffer->new_pages, cpu_id)) {
1769 			err = -ENOMEM;
1770 			goto out_err;
1771 		}
1772 
1773 		get_online_cpus();
1774 
1775 		/* Can't run something on an offline CPU. */
1776 		if (!cpu_online(cpu_id))
1777 			rb_update_pages(cpu_buffer);
1778 		else {
1779 			schedule_work_on(cpu_id,
1780 					 &cpu_buffer->update_pages_work);
1781 			wait_for_completion(&cpu_buffer->update_done);
1782 		}
1783 
1784 		cpu_buffer->nr_pages_to_update = 0;
1785 		put_online_cpus();
1786 	}
1787 
1788  out:
1789 	/*
1790 	 * The ring buffer resize can happen with the ring buffer
1791 	 * enabled, so that the update disturbs the tracing as little
1792 	 * as possible. But if the buffer is disabled, we do not need
1793 	 * to worry about that, and we can take the time to verify
1794 	 * that the buffer is not corrupt.
1795 	 */
1796 	if (atomic_read(&buffer->record_disabled)) {
1797 		atomic_inc(&buffer->record_disabled);
1798 		/*
1799 		 * Even though the buffer was disabled, we must make sure
1800 		 * that it is truly disabled before calling rb_check_pages.
1801 		 * There could have been a race between checking
1802 		 * record_disable and incrementing it.
1803 		 */
1804 		synchronize_sched();
1805 		for_each_buffer_cpu(buffer, cpu) {
1806 			cpu_buffer = buffer->buffers[cpu];
1807 			rb_check_pages(cpu_buffer);
1808 		}
1809 		atomic_dec(&buffer->record_disabled);
1810 	}
1811 
1812 	mutex_unlock(&buffer->mutex);
1813 	return size;
1814 
1815  out_err:
1816 	for_each_buffer_cpu(buffer, cpu) {
1817 		struct buffer_page *bpage, *tmp;
1818 
1819 		cpu_buffer = buffer->buffers[cpu];
1820 		cpu_buffer->nr_pages_to_update = 0;
1821 
1822 		if (list_empty(&cpu_buffer->new_pages))
1823 			continue;
1824 
1825 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1826 					list) {
1827 			list_del_init(&bpage->list);
1828 			free_buffer_page(bpage);
1829 		}
1830 	}
1831 	mutex_unlock(&buffer->mutex);
1832 	return err;
1833 }
1834 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1835 
1836 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1837 {
1838 	mutex_lock(&buffer->mutex);
1839 	if (val)
1840 		buffer->flags |= RB_FL_OVERWRITE;
1841 	else
1842 		buffer->flags &= ~RB_FL_OVERWRITE;
1843 	mutex_unlock(&buffer->mutex);
1844 }
1845 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1846 
1847 static inline void *
1848 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1849 {
1850 	return bpage->data + index;
1851 }
1852 
1853 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1854 {
1855 	return bpage->page->data + index;
1856 }
1857 
1858 static inline struct ring_buffer_event *
1859 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861 	return __rb_page_index(cpu_buffer->reader_page,
1862 			       cpu_buffer->reader_page->read);
1863 }
1864 
1865 static inline struct ring_buffer_event *
1866 rb_iter_head_event(struct ring_buffer_iter *iter)
1867 {
1868 	return __rb_page_index(iter->head_page, iter->head);
1869 }
1870 
1871 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1872 {
1873 	return local_read(&bpage->page->commit);
1874 }
1875 
1876 /* Size is determined by what has been committed */
1877 static inline unsigned rb_page_size(struct buffer_page *bpage)
1878 {
1879 	return rb_page_commit(bpage);
1880 }
1881 
1882 static inline unsigned
1883 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1884 {
1885 	return rb_page_commit(cpu_buffer->commit_page);
1886 }
1887 
1888 static inline unsigned
1889 rb_event_index(struct ring_buffer_event *event)
1890 {
1891 	unsigned long addr = (unsigned long)event;
1892 
1893 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1894 }
1895 
1896 static inline int
1897 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1898 		   struct ring_buffer_event *event)
1899 {
1900 	unsigned long addr = (unsigned long)event;
1901 	unsigned long index;
1902 
1903 	index = rb_event_index(event);
1904 	addr &= PAGE_MASK;
1905 
1906 	return cpu_buffer->commit_page->page == (void *)addr &&
1907 		rb_commit_index(cpu_buffer) == index;
1908 }
1909 
1910 static void
1911 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1912 {
1913 	unsigned long max_count;
1914 
1915 	/*
1916 	 * We only race with interrupts and NMIs on this CPU.
1917 	 * If we own the commit event, then we can commit
1918 	 * all others that interrupted us, since the interruptions
1919 	 * are in stack format (they finish before they come
1920 	 * back to us). This allows us to do a simple loop to
1921 	 * assign the commit to the tail.
1922 	 */
1923  again:
1924 	max_count = cpu_buffer->nr_pages * 100;
1925 
1926 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1927 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1928 			return;
1929 		if (RB_WARN_ON(cpu_buffer,
1930 			       rb_is_reader_page(cpu_buffer->tail_page)))
1931 			return;
1932 		local_set(&cpu_buffer->commit_page->page->commit,
1933 			  rb_page_write(cpu_buffer->commit_page));
1934 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1935 		cpu_buffer->write_stamp =
1936 			cpu_buffer->commit_page->page->time_stamp;
1937 		/* add barrier to keep gcc from optimizing too much */
1938 		barrier();
1939 	}
1940 	while (rb_commit_index(cpu_buffer) !=
1941 	       rb_page_write(cpu_buffer->commit_page)) {
1942 
1943 		local_set(&cpu_buffer->commit_page->page->commit,
1944 			  rb_page_write(cpu_buffer->commit_page));
1945 		RB_WARN_ON(cpu_buffer,
1946 			   local_read(&cpu_buffer->commit_page->page->commit) &
1947 			   ~RB_WRITE_MASK);
1948 		barrier();
1949 	}
1950 
1951 	/* again, keep gcc from optimizing */
1952 	barrier();
1953 
1954 	/*
1955 	 * If an interrupt came in just after the first while loop
1956 	 * and pushed the tail page forward, we will be left with
1957 	 * a dangling commit that will never go forward.
1958 	 */
1959 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1960 		goto again;
1961 }
1962 
1963 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1964 {
1965 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1966 	cpu_buffer->reader_page->read = 0;
1967 }
1968 
1969 static void rb_inc_iter(struct ring_buffer_iter *iter)
1970 {
1971 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1972 
1973 	/*
1974 	 * The iterator could be on the reader page (it starts there).
1975 	 * But the head could have moved, since the reader was
1976 	 * found. Check for this case and assign the iterator
1977 	 * to the head page instead of next.
1978 	 */
1979 	if (iter->head_page == cpu_buffer->reader_page)
1980 		iter->head_page = rb_set_head_page(cpu_buffer);
1981 	else
1982 		rb_inc_page(cpu_buffer, &iter->head_page);
1983 
1984 	iter->read_stamp = iter->head_page->page->time_stamp;
1985 	iter->head = 0;
1986 }
1987 
1988 /* Slow path, do not inline */
1989 static noinline struct ring_buffer_event *
1990 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1991 {
1992 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1993 
1994 	/* Not the first event on the page? */
1995 	if (rb_event_index(event)) {
1996 		event->time_delta = delta & TS_MASK;
1997 		event->array[0] = delta >> TS_SHIFT;
1998 	} else {
1999 		/* nope, just zero it */
2000 		event->time_delta = 0;
2001 		event->array[0] = 0;
2002 	}
2003 
2004 	return skip_time_extend(event);
2005 }
2006 
2007 /**
2008  * rb_update_event - update event type and data
2009  * @event: the event to update
2010  * @type: the type of event
2011  * @length: the size of the event field in the ring buffer
2012  *
2013  * Update the type and data fields of the event. The length
2014  * is the actual size that is written to the ring buffer,
2015  * and with this, we can determine what to place into the
2016  * data field.
2017  */
2018 static void
2019 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2020 		struct ring_buffer_event *event, unsigned length,
2021 		int add_timestamp, u64 delta)
2022 {
2023 	/* Only a commit updates the timestamp */
2024 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2025 		delta = 0;
2026 
2027 	/*
2028 	 * If we need to add a timestamp, then we
2029 	 * add it to the start of the resevered space.
2030 	 */
2031 	if (unlikely(add_timestamp)) {
2032 		event = rb_add_time_stamp(event, delta);
2033 		length -= RB_LEN_TIME_EXTEND;
2034 		delta = 0;
2035 	}
2036 
2037 	event->time_delta = delta;
2038 	length -= RB_EVNT_HDR_SIZE;
2039 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2040 		event->type_len = 0;
2041 		event->array[0] = length;
2042 	} else
2043 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2044 }
2045 
2046 /*
2047  * rb_handle_head_page - writer hit the head page
2048  *
2049  * Returns: +1 to retry page
2050  *           0 to continue
2051  *          -1 on error
2052  */
2053 static int
2054 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2055 		    struct buffer_page *tail_page,
2056 		    struct buffer_page *next_page)
2057 {
2058 	struct buffer_page *new_head;
2059 	int entries;
2060 	int type;
2061 	int ret;
2062 
2063 	entries = rb_page_entries(next_page);
2064 
2065 	/*
2066 	 * The hard part is here. We need to move the head
2067 	 * forward, and protect against both readers on
2068 	 * other CPUs and writers coming in via interrupts.
2069 	 */
2070 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2071 				       RB_PAGE_HEAD);
2072 
2073 	/*
2074 	 * type can be one of four:
2075 	 *  NORMAL - an interrupt already moved it for us
2076 	 *  HEAD   - we are the first to get here.
2077 	 *  UPDATE - we are the interrupt interrupting
2078 	 *           a current move.
2079 	 *  MOVED  - a reader on another CPU moved the next
2080 	 *           pointer to its reader page. Give up
2081 	 *           and try again.
2082 	 */
2083 
2084 	switch (type) {
2085 	case RB_PAGE_HEAD:
2086 		/*
2087 		 * We changed the head to UPDATE, thus
2088 		 * it is our responsibility to update
2089 		 * the counters.
2090 		 */
2091 		local_add(entries, &cpu_buffer->overrun);
2092 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2093 
2094 		/*
2095 		 * The entries will be zeroed out when we move the
2096 		 * tail page.
2097 		 */
2098 
2099 		/* still more to do */
2100 		break;
2101 
2102 	case RB_PAGE_UPDATE:
2103 		/*
2104 		 * This is an interrupt that interrupt the
2105 		 * previous update. Still more to do.
2106 		 */
2107 		break;
2108 	case RB_PAGE_NORMAL:
2109 		/*
2110 		 * An interrupt came in before the update
2111 		 * and processed this for us.
2112 		 * Nothing left to do.
2113 		 */
2114 		return 1;
2115 	case RB_PAGE_MOVED:
2116 		/*
2117 		 * The reader is on another CPU and just did
2118 		 * a swap with our next_page.
2119 		 * Try again.
2120 		 */
2121 		return 1;
2122 	default:
2123 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2124 		return -1;
2125 	}
2126 
2127 	/*
2128 	 * Now that we are here, the old head pointer is
2129 	 * set to UPDATE. This will keep the reader from
2130 	 * swapping the head page with the reader page.
2131 	 * The reader (on another CPU) will spin till
2132 	 * we are finished.
2133 	 *
2134 	 * We just need to protect against interrupts
2135 	 * doing the job. We will set the next pointer
2136 	 * to HEAD. After that, we set the old pointer
2137 	 * to NORMAL, but only if it was HEAD before.
2138 	 * otherwise we are an interrupt, and only
2139 	 * want the outer most commit to reset it.
2140 	 */
2141 	new_head = next_page;
2142 	rb_inc_page(cpu_buffer, &new_head);
2143 
2144 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2145 				    RB_PAGE_NORMAL);
2146 
2147 	/*
2148 	 * Valid returns are:
2149 	 *  HEAD   - an interrupt came in and already set it.
2150 	 *  NORMAL - One of two things:
2151 	 *            1) We really set it.
2152 	 *            2) A bunch of interrupts came in and moved
2153 	 *               the page forward again.
2154 	 */
2155 	switch (ret) {
2156 	case RB_PAGE_HEAD:
2157 	case RB_PAGE_NORMAL:
2158 		/* OK */
2159 		break;
2160 	default:
2161 		RB_WARN_ON(cpu_buffer, 1);
2162 		return -1;
2163 	}
2164 
2165 	/*
2166 	 * It is possible that an interrupt came in,
2167 	 * set the head up, then more interrupts came in
2168 	 * and moved it again. When we get back here,
2169 	 * the page would have been set to NORMAL but we
2170 	 * just set it back to HEAD.
2171 	 *
2172 	 * How do you detect this? Well, if that happened
2173 	 * the tail page would have moved.
2174 	 */
2175 	if (ret == RB_PAGE_NORMAL) {
2176 		/*
2177 		 * If the tail had moved passed next, then we need
2178 		 * to reset the pointer.
2179 		 */
2180 		if (cpu_buffer->tail_page != tail_page &&
2181 		    cpu_buffer->tail_page != next_page)
2182 			rb_head_page_set_normal(cpu_buffer, new_head,
2183 						next_page,
2184 						RB_PAGE_HEAD);
2185 	}
2186 
2187 	/*
2188 	 * If this was the outer most commit (the one that
2189 	 * changed the original pointer from HEAD to UPDATE),
2190 	 * then it is up to us to reset it to NORMAL.
2191 	 */
2192 	if (type == RB_PAGE_HEAD) {
2193 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2194 					      tail_page,
2195 					      RB_PAGE_UPDATE);
2196 		if (RB_WARN_ON(cpu_buffer,
2197 			       ret != RB_PAGE_UPDATE))
2198 			return -1;
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static unsigned rb_calculate_event_length(unsigned length)
2205 {
2206 	struct ring_buffer_event event; /* Used only for sizeof array */
2207 
2208 	/* zero length can cause confusions */
2209 	if (!length)
2210 		length = 1;
2211 
2212 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2213 		length += sizeof(event.array[0]);
2214 
2215 	length += RB_EVNT_HDR_SIZE;
2216 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2217 
2218 	return length;
2219 }
2220 
2221 static inline void
2222 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2223 	      struct buffer_page *tail_page,
2224 	      unsigned long tail, unsigned long length)
2225 {
2226 	struct ring_buffer_event *event;
2227 
2228 	/*
2229 	 * Only the event that crossed the page boundary
2230 	 * must fill the old tail_page with padding.
2231 	 */
2232 	if (tail >= BUF_PAGE_SIZE) {
2233 		/*
2234 		 * If the page was filled, then we still need
2235 		 * to update the real_end. Reset it to zero
2236 		 * and the reader will ignore it.
2237 		 */
2238 		if (tail == BUF_PAGE_SIZE)
2239 			tail_page->real_end = 0;
2240 
2241 		local_sub(length, &tail_page->write);
2242 		return;
2243 	}
2244 
2245 	event = __rb_page_index(tail_page, tail);
2246 	kmemcheck_annotate_bitfield(event, bitfield);
2247 
2248 	/* account for padding bytes */
2249 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2250 
2251 	/*
2252 	 * Save the original length to the meta data.
2253 	 * This will be used by the reader to add lost event
2254 	 * counter.
2255 	 */
2256 	tail_page->real_end = tail;
2257 
2258 	/*
2259 	 * If this event is bigger than the minimum size, then
2260 	 * we need to be careful that we don't subtract the
2261 	 * write counter enough to allow another writer to slip
2262 	 * in on this page.
2263 	 * We put in a discarded commit instead, to make sure
2264 	 * that this space is not used again.
2265 	 *
2266 	 * If we are less than the minimum size, we don't need to
2267 	 * worry about it.
2268 	 */
2269 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2270 		/* No room for any events */
2271 
2272 		/* Mark the rest of the page with padding */
2273 		rb_event_set_padding(event);
2274 
2275 		/* Set the write back to the previous setting */
2276 		local_sub(length, &tail_page->write);
2277 		return;
2278 	}
2279 
2280 	/* Put in a discarded event */
2281 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2282 	event->type_len = RINGBUF_TYPE_PADDING;
2283 	/* time delta must be non zero */
2284 	event->time_delta = 1;
2285 
2286 	/* Set write to end of buffer */
2287 	length = (tail + length) - BUF_PAGE_SIZE;
2288 	local_sub(length, &tail_page->write);
2289 }
2290 
2291 /*
2292  * This is the slow path, force gcc not to inline it.
2293  */
2294 static noinline struct ring_buffer_event *
2295 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2296 	     unsigned long length, unsigned long tail,
2297 	     struct buffer_page *tail_page, u64 ts)
2298 {
2299 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2300 	struct ring_buffer *buffer = cpu_buffer->buffer;
2301 	struct buffer_page *next_page;
2302 	int ret;
2303 
2304 	next_page = tail_page;
2305 
2306 	rb_inc_page(cpu_buffer, &next_page);
2307 
2308 	/*
2309 	 * If for some reason, we had an interrupt storm that made
2310 	 * it all the way around the buffer, bail, and warn
2311 	 * about it.
2312 	 */
2313 	if (unlikely(next_page == commit_page)) {
2314 		local_inc(&cpu_buffer->commit_overrun);
2315 		goto out_reset;
2316 	}
2317 
2318 	/*
2319 	 * This is where the fun begins!
2320 	 *
2321 	 * We are fighting against races between a reader that
2322 	 * could be on another CPU trying to swap its reader
2323 	 * page with the buffer head.
2324 	 *
2325 	 * We are also fighting against interrupts coming in and
2326 	 * moving the head or tail on us as well.
2327 	 *
2328 	 * If the next page is the head page then we have filled
2329 	 * the buffer, unless the commit page is still on the
2330 	 * reader page.
2331 	 */
2332 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2333 
2334 		/*
2335 		 * If the commit is not on the reader page, then
2336 		 * move the header page.
2337 		 */
2338 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2339 			/*
2340 			 * If we are not in overwrite mode,
2341 			 * this is easy, just stop here.
2342 			 */
2343 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2344 				local_inc(&cpu_buffer->dropped_events);
2345 				goto out_reset;
2346 			}
2347 
2348 			ret = rb_handle_head_page(cpu_buffer,
2349 						  tail_page,
2350 						  next_page);
2351 			if (ret < 0)
2352 				goto out_reset;
2353 			if (ret)
2354 				goto out_again;
2355 		} else {
2356 			/*
2357 			 * We need to be careful here too. The
2358 			 * commit page could still be on the reader
2359 			 * page. We could have a small buffer, and
2360 			 * have filled up the buffer with events
2361 			 * from interrupts and such, and wrapped.
2362 			 *
2363 			 * Note, if the tail page is also the on the
2364 			 * reader_page, we let it move out.
2365 			 */
2366 			if (unlikely((cpu_buffer->commit_page !=
2367 				      cpu_buffer->tail_page) &&
2368 				     (cpu_buffer->commit_page ==
2369 				      cpu_buffer->reader_page))) {
2370 				local_inc(&cpu_buffer->commit_overrun);
2371 				goto out_reset;
2372 			}
2373 		}
2374 	}
2375 
2376 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2377 	if (ret) {
2378 		/*
2379 		 * Nested commits always have zero deltas, so
2380 		 * just reread the time stamp
2381 		 */
2382 		ts = rb_time_stamp(buffer);
2383 		next_page->page->time_stamp = ts;
2384 	}
2385 
2386  out_again:
2387 
2388 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2389 
2390 	/* fail and let the caller try again */
2391 	return ERR_PTR(-EAGAIN);
2392 
2393  out_reset:
2394 	/* reset write */
2395 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2396 
2397 	return NULL;
2398 }
2399 
2400 static struct ring_buffer_event *
2401 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2402 		  unsigned long length, u64 ts,
2403 		  u64 delta, int add_timestamp)
2404 {
2405 	struct buffer_page *tail_page;
2406 	struct ring_buffer_event *event;
2407 	unsigned long tail, write;
2408 
2409 	/*
2410 	 * If the time delta since the last event is too big to
2411 	 * hold in the time field of the event, then we append a
2412 	 * TIME EXTEND event ahead of the data event.
2413 	 */
2414 	if (unlikely(add_timestamp))
2415 		length += RB_LEN_TIME_EXTEND;
2416 
2417 	tail_page = cpu_buffer->tail_page;
2418 	write = local_add_return(length, &tail_page->write);
2419 
2420 	/* set write to only the index of the write */
2421 	write &= RB_WRITE_MASK;
2422 	tail = write - length;
2423 
2424 	/*
2425 	 * If this is the first commit on the page, then it has the same
2426 	 * timestamp as the page itself.
2427 	 */
2428 	if (!tail)
2429 		delta = 0;
2430 
2431 	/* See if we shot pass the end of this buffer page */
2432 	if (unlikely(write > BUF_PAGE_SIZE))
2433 		return rb_move_tail(cpu_buffer, length, tail,
2434 				    tail_page, ts);
2435 
2436 	/* We reserved something on the buffer */
2437 
2438 	event = __rb_page_index(tail_page, tail);
2439 	kmemcheck_annotate_bitfield(event, bitfield);
2440 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2441 
2442 	local_inc(&tail_page->entries);
2443 
2444 	/*
2445 	 * If this is the first commit on the page, then update
2446 	 * its timestamp.
2447 	 */
2448 	if (!tail)
2449 		tail_page->page->time_stamp = ts;
2450 
2451 	/* account for these added bytes */
2452 	local_add(length, &cpu_buffer->entries_bytes);
2453 
2454 	return event;
2455 }
2456 
2457 static inline int
2458 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2459 		  struct ring_buffer_event *event)
2460 {
2461 	unsigned long new_index, old_index;
2462 	struct buffer_page *bpage;
2463 	unsigned long index;
2464 	unsigned long addr;
2465 
2466 	new_index = rb_event_index(event);
2467 	old_index = new_index + rb_event_ts_length(event);
2468 	addr = (unsigned long)event;
2469 	addr &= PAGE_MASK;
2470 
2471 	bpage = cpu_buffer->tail_page;
2472 
2473 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2474 		unsigned long write_mask =
2475 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2476 		unsigned long event_length = rb_event_length(event);
2477 		/*
2478 		 * This is on the tail page. It is possible that
2479 		 * a write could come in and move the tail page
2480 		 * and write to the next page. That is fine
2481 		 * because we just shorten what is on this page.
2482 		 */
2483 		old_index += write_mask;
2484 		new_index += write_mask;
2485 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2486 		if (index == old_index) {
2487 			/* update counters */
2488 			local_sub(event_length, &cpu_buffer->entries_bytes);
2489 			return 1;
2490 		}
2491 	}
2492 
2493 	/* could not discard */
2494 	return 0;
2495 }
2496 
2497 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2498 {
2499 	local_inc(&cpu_buffer->committing);
2500 	local_inc(&cpu_buffer->commits);
2501 }
2502 
2503 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2504 {
2505 	unsigned long commits;
2506 
2507 	if (RB_WARN_ON(cpu_buffer,
2508 		       !local_read(&cpu_buffer->committing)))
2509 		return;
2510 
2511  again:
2512 	commits = local_read(&cpu_buffer->commits);
2513 	/* synchronize with interrupts */
2514 	barrier();
2515 	if (local_read(&cpu_buffer->committing) == 1)
2516 		rb_set_commit_to_write(cpu_buffer);
2517 
2518 	local_dec(&cpu_buffer->committing);
2519 
2520 	/* synchronize with interrupts */
2521 	barrier();
2522 
2523 	/*
2524 	 * Need to account for interrupts coming in between the
2525 	 * updating of the commit page and the clearing of the
2526 	 * committing counter.
2527 	 */
2528 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2529 	    !local_read(&cpu_buffer->committing)) {
2530 		local_inc(&cpu_buffer->committing);
2531 		goto again;
2532 	}
2533 }
2534 
2535 static struct ring_buffer_event *
2536 rb_reserve_next_event(struct ring_buffer *buffer,
2537 		      struct ring_buffer_per_cpu *cpu_buffer,
2538 		      unsigned long length)
2539 {
2540 	struct ring_buffer_event *event;
2541 	u64 ts, delta;
2542 	int nr_loops = 0;
2543 	int add_timestamp;
2544 	u64 diff;
2545 
2546 	rb_start_commit(cpu_buffer);
2547 
2548 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2549 	/*
2550 	 * Due to the ability to swap a cpu buffer from a buffer
2551 	 * it is possible it was swapped before we committed.
2552 	 * (committing stops a swap). We check for it here and
2553 	 * if it happened, we have to fail the write.
2554 	 */
2555 	barrier();
2556 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2557 		local_dec(&cpu_buffer->committing);
2558 		local_dec(&cpu_buffer->commits);
2559 		return NULL;
2560 	}
2561 #endif
2562 
2563 	length = rb_calculate_event_length(length);
2564  again:
2565 	add_timestamp = 0;
2566 	delta = 0;
2567 
2568 	/*
2569 	 * We allow for interrupts to reenter here and do a trace.
2570 	 * If one does, it will cause this original code to loop
2571 	 * back here. Even with heavy interrupts happening, this
2572 	 * should only happen a few times in a row. If this happens
2573 	 * 1000 times in a row, there must be either an interrupt
2574 	 * storm or we have something buggy.
2575 	 * Bail!
2576 	 */
2577 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2578 		goto out_fail;
2579 
2580 	ts = rb_time_stamp(cpu_buffer->buffer);
2581 	diff = ts - cpu_buffer->write_stamp;
2582 
2583 	/* make sure this diff is calculated here */
2584 	barrier();
2585 
2586 	/* Did the write stamp get updated already? */
2587 	if (likely(ts >= cpu_buffer->write_stamp)) {
2588 		delta = diff;
2589 		if (unlikely(test_time_stamp(delta))) {
2590 			int local_clock_stable = 1;
2591 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2592 			local_clock_stable = sched_clock_stable();
2593 #endif
2594 			WARN_ONCE(delta > (1ULL << 59),
2595 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2596 				  (unsigned long long)delta,
2597 				  (unsigned long long)ts,
2598 				  (unsigned long long)cpu_buffer->write_stamp,
2599 				  local_clock_stable ? "" :
2600 				  "If you just came from a suspend/resume,\n"
2601 				  "please switch to the trace global clock:\n"
2602 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2603 			add_timestamp = 1;
2604 		}
2605 	}
2606 
2607 	event = __rb_reserve_next(cpu_buffer, length, ts,
2608 				  delta, add_timestamp);
2609 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2610 		goto again;
2611 
2612 	if (!event)
2613 		goto out_fail;
2614 
2615 	return event;
2616 
2617  out_fail:
2618 	rb_end_commit(cpu_buffer);
2619 	return NULL;
2620 }
2621 
2622 #ifdef CONFIG_TRACING
2623 
2624 /*
2625  * The lock and unlock are done within a preempt disable section.
2626  * The current_context per_cpu variable can only be modified
2627  * by the current task between lock and unlock. But it can
2628  * be modified more than once via an interrupt. To pass this
2629  * information from the lock to the unlock without having to
2630  * access the 'in_interrupt()' functions again (which do show
2631  * a bit of overhead in something as critical as function tracing,
2632  * we use a bitmask trick.
2633  *
2634  *  bit 0 =  NMI context
2635  *  bit 1 =  IRQ context
2636  *  bit 2 =  SoftIRQ context
2637  *  bit 3 =  normal context.
2638  *
2639  * This works because this is the order of contexts that can
2640  * preempt other contexts. A SoftIRQ never preempts an IRQ
2641  * context.
2642  *
2643  * When the context is determined, the corresponding bit is
2644  * checked and set (if it was set, then a recursion of that context
2645  * happened).
2646  *
2647  * On unlock, we need to clear this bit. To do so, just subtract
2648  * 1 from the current_context and AND it to itself.
2649  *
2650  * (binary)
2651  *  101 - 1 = 100
2652  *  101 & 100 = 100 (clearing bit zero)
2653  *
2654  *  1010 - 1 = 1001
2655  *  1010 & 1001 = 1000 (clearing bit 1)
2656  *
2657  * The least significant bit can be cleared this way, and it
2658  * just so happens that it is the same bit corresponding to
2659  * the current context.
2660  */
2661 static DEFINE_PER_CPU(unsigned int, current_context);
2662 
2663 static __always_inline int trace_recursive_lock(void)
2664 {
2665 	unsigned int val = this_cpu_read(current_context);
2666 	int bit;
2667 
2668 	if (in_interrupt()) {
2669 		if (in_nmi())
2670 			bit = 0;
2671 		else if (in_irq())
2672 			bit = 1;
2673 		else
2674 			bit = 2;
2675 	} else
2676 		bit = 3;
2677 
2678 	if (unlikely(val & (1 << bit)))
2679 		return 1;
2680 
2681 	val |= (1 << bit);
2682 	this_cpu_write(current_context, val);
2683 
2684 	return 0;
2685 }
2686 
2687 static __always_inline void trace_recursive_unlock(void)
2688 {
2689 	unsigned int val = this_cpu_read(current_context);
2690 
2691 	val--;
2692 	val &= this_cpu_read(current_context);
2693 	this_cpu_write(current_context, val);
2694 }
2695 
2696 #else
2697 
2698 #define trace_recursive_lock()		(0)
2699 #define trace_recursive_unlock()	do { } while (0)
2700 
2701 #endif
2702 
2703 /**
2704  * ring_buffer_lock_reserve - reserve a part of the buffer
2705  * @buffer: the ring buffer to reserve from
2706  * @length: the length of the data to reserve (excluding event header)
2707  *
2708  * Returns a reseverd event on the ring buffer to copy directly to.
2709  * The user of this interface will need to get the body to write into
2710  * and can use the ring_buffer_event_data() interface.
2711  *
2712  * The length is the length of the data needed, not the event length
2713  * which also includes the event header.
2714  *
2715  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2716  * If NULL is returned, then nothing has been allocated or locked.
2717  */
2718 struct ring_buffer_event *
2719 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2720 {
2721 	struct ring_buffer_per_cpu *cpu_buffer;
2722 	struct ring_buffer_event *event;
2723 	int cpu;
2724 
2725 	if (ring_buffer_flags != RB_BUFFERS_ON)
2726 		return NULL;
2727 
2728 	/* If we are tracing schedule, we don't want to recurse */
2729 	preempt_disable_notrace();
2730 
2731 	if (atomic_read(&buffer->record_disabled))
2732 		goto out_nocheck;
2733 
2734 	if (trace_recursive_lock())
2735 		goto out_nocheck;
2736 
2737 	cpu = raw_smp_processor_id();
2738 
2739 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2740 		goto out;
2741 
2742 	cpu_buffer = buffer->buffers[cpu];
2743 
2744 	if (atomic_read(&cpu_buffer->record_disabled))
2745 		goto out;
2746 
2747 	if (length > BUF_MAX_DATA_SIZE)
2748 		goto out;
2749 
2750 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2751 	if (!event)
2752 		goto out;
2753 
2754 	return event;
2755 
2756  out:
2757 	trace_recursive_unlock();
2758 
2759  out_nocheck:
2760 	preempt_enable_notrace();
2761 	return NULL;
2762 }
2763 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2764 
2765 static void
2766 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2767 		      struct ring_buffer_event *event)
2768 {
2769 	u64 delta;
2770 
2771 	/*
2772 	 * The event first in the commit queue updates the
2773 	 * time stamp.
2774 	 */
2775 	if (rb_event_is_commit(cpu_buffer, event)) {
2776 		/*
2777 		 * A commit event that is first on a page
2778 		 * updates the write timestamp with the page stamp
2779 		 */
2780 		if (!rb_event_index(event))
2781 			cpu_buffer->write_stamp =
2782 				cpu_buffer->commit_page->page->time_stamp;
2783 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2784 			delta = event->array[0];
2785 			delta <<= TS_SHIFT;
2786 			delta += event->time_delta;
2787 			cpu_buffer->write_stamp += delta;
2788 		} else
2789 			cpu_buffer->write_stamp += event->time_delta;
2790 	}
2791 }
2792 
2793 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2794 		      struct ring_buffer_event *event)
2795 {
2796 	local_inc(&cpu_buffer->entries);
2797 	rb_update_write_stamp(cpu_buffer, event);
2798 	rb_end_commit(cpu_buffer);
2799 }
2800 
2801 static __always_inline void
2802 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2803 {
2804 	if (buffer->irq_work.waiters_pending) {
2805 		buffer->irq_work.waiters_pending = false;
2806 		/* irq_work_queue() supplies it's own memory barriers */
2807 		irq_work_queue(&buffer->irq_work.work);
2808 	}
2809 
2810 	if (cpu_buffer->irq_work.waiters_pending) {
2811 		cpu_buffer->irq_work.waiters_pending = false;
2812 		/* irq_work_queue() supplies it's own memory barriers */
2813 		irq_work_queue(&cpu_buffer->irq_work.work);
2814 	}
2815 }
2816 
2817 /**
2818  * ring_buffer_unlock_commit - commit a reserved
2819  * @buffer: The buffer to commit to
2820  * @event: The event pointer to commit.
2821  *
2822  * This commits the data to the ring buffer, and releases any locks held.
2823  *
2824  * Must be paired with ring_buffer_lock_reserve.
2825  */
2826 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2827 			      struct ring_buffer_event *event)
2828 {
2829 	struct ring_buffer_per_cpu *cpu_buffer;
2830 	int cpu = raw_smp_processor_id();
2831 
2832 	cpu_buffer = buffer->buffers[cpu];
2833 
2834 	rb_commit(cpu_buffer, event);
2835 
2836 	rb_wakeups(buffer, cpu_buffer);
2837 
2838 	trace_recursive_unlock();
2839 
2840 	preempt_enable_notrace();
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2845 
2846 static inline void rb_event_discard(struct ring_buffer_event *event)
2847 {
2848 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2849 		event = skip_time_extend(event);
2850 
2851 	/* array[0] holds the actual length for the discarded event */
2852 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2853 	event->type_len = RINGBUF_TYPE_PADDING;
2854 	/* time delta must be non zero */
2855 	if (!event->time_delta)
2856 		event->time_delta = 1;
2857 }
2858 
2859 /*
2860  * Decrement the entries to the page that an event is on.
2861  * The event does not even need to exist, only the pointer
2862  * to the page it is on. This may only be called before the commit
2863  * takes place.
2864  */
2865 static inline void
2866 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2867 		   struct ring_buffer_event *event)
2868 {
2869 	unsigned long addr = (unsigned long)event;
2870 	struct buffer_page *bpage = cpu_buffer->commit_page;
2871 	struct buffer_page *start;
2872 
2873 	addr &= PAGE_MASK;
2874 
2875 	/* Do the likely case first */
2876 	if (likely(bpage->page == (void *)addr)) {
2877 		local_dec(&bpage->entries);
2878 		return;
2879 	}
2880 
2881 	/*
2882 	 * Because the commit page may be on the reader page we
2883 	 * start with the next page and check the end loop there.
2884 	 */
2885 	rb_inc_page(cpu_buffer, &bpage);
2886 	start = bpage;
2887 	do {
2888 		if (bpage->page == (void *)addr) {
2889 			local_dec(&bpage->entries);
2890 			return;
2891 		}
2892 		rb_inc_page(cpu_buffer, &bpage);
2893 	} while (bpage != start);
2894 
2895 	/* commit not part of this buffer?? */
2896 	RB_WARN_ON(cpu_buffer, 1);
2897 }
2898 
2899 /**
2900  * ring_buffer_commit_discard - discard an event that has not been committed
2901  * @buffer: the ring buffer
2902  * @event: non committed event to discard
2903  *
2904  * Sometimes an event that is in the ring buffer needs to be ignored.
2905  * This function lets the user discard an event in the ring buffer
2906  * and then that event will not be read later.
2907  *
2908  * This function only works if it is called before the the item has been
2909  * committed. It will try to free the event from the ring buffer
2910  * if another event has not been added behind it.
2911  *
2912  * If another event has been added behind it, it will set the event
2913  * up as discarded, and perform the commit.
2914  *
2915  * If this function is called, do not call ring_buffer_unlock_commit on
2916  * the event.
2917  */
2918 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2919 				struct ring_buffer_event *event)
2920 {
2921 	struct ring_buffer_per_cpu *cpu_buffer;
2922 	int cpu;
2923 
2924 	/* The event is discarded regardless */
2925 	rb_event_discard(event);
2926 
2927 	cpu = smp_processor_id();
2928 	cpu_buffer = buffer->buffers[cpu];
2929 
2930 	/*
2931 	 * This must only be called if the event has not been
2932 	 * committed yet. Thus we can assume that preemption
2933 	 * is still disabled.
2934 	 */
2935 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2936 
2937 	rb_decrement_entry(cpu_buffer, event);
2938 	if (rb_try_to_discard(cpu_buffer, event))
2939 		goto out;
2940 
2941 	/*
2942 	 * The commit is still visible by the reader, so we
2943 	 * must still update the timestamp.
2944 	 */
2945 	rb_update_write_stamp(cpu_buffer, event);
2946  out:
2947 	rb_end_commit(cpu_buffer);
2948 
2949 	trace_recursive_unlock();
2950 
2951 	preempt_enable_notrace();
2952 
2953 }
2954 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2955 
2956 /**
2957  * ring_buffer_write - write data to the buffer without reserving
2958  * @buffer: The ring buffer to write to.
2959  * @length: The length of the data being written (excluding the event header)
2960  * @data: The data to write to the buffer.
2961  *
2962  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2963  * one function. If you already have the data to write to the buffer, it
2964  * may be easier to simply call this function.
2965  *
2966  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2967  * and not the length of the event which would hold the header.
2968  */
2969 int ring_buffer_write(struct ring_buffer *buffer,
2970 		      unsigned long length,
2971 		      void *data)
2972 {
2973 	struct ring_buffer_per_cpu *cpu_buffer;
2974 	struct ring_buffer_event *event;
2975 	void *body;
2976 	int ret = -EBUSY;
2977 	int cpu;
2978 
2979 	if (ring_buffer_flags != RB_BUFFERS_ON)
2980 		return -EBUSY;
2981 
2982 	preempt_disable_notrace();
2983 
2984 	if (atomic_read(&buffer->record_disabled))
2985 		goto out;
2986 
2987 	cpu = raw_smp_processor_id();
2988 
2989 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2990 		goto out;
2991 
2992 	cpu_buffer = buffer->buffers[cpu];
2993 
2994 	if (atomic_read(&cpu_buffer->record_disabled))
2995 		goto out;
2996 
2997 	if (length > BUF_MAX_DATA_SIZE)
2998 		goto out;
2999 
3000 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3001 	if (!event)
3002 		goto out;
3003 
3004 	body = rb_event_data(event);
3005 
3006 	memcpy(body, data, length);
3007 
3008 	rb_commit(cpu_buffer, event);
3009 
3010 	rb_wakeups(buffer, cpu_buffer);
3011 
3012 	ret = 0;
3013  out:
3014 	preempt_enable_notrace();
3015 
3016 	return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(ring_buffer_write);
3019 
3020 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3021 {
3022 	struct buffer_page *reader = cpu_buffer->reader_page;
3023 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3024 	struct buffer_page *commit = cpu_buffer->commit_page;
3025 
3026 	/* In case of error, head will be NULL */
3027 	if (unlikely(!head))
3028 		return 1;
3029 
3030 	return reader->read == rb_page_commit(reader) &&
3031 		(commit == reader ||
3032 		 (commit == head &&
3033 		  head->read == rb_page_commit(commit)));
3034 }
3035 
3036 /**
3037  * ring_buffer_record_disable - stop all writes into the buffer
3038  * @buffer: The ring buffer to stop writes to.
3039  *
3040  * This prevents all writes to the buffer. Any attempt to write
3041  * to the buffer after this will fail and return NULL.
3042  *
3043  * The caller should call synchronize_sched() after this.
3044  */
3045 void ring_buffer_record_disable(struct ring_buffer *buffer)
3046 {
3047 	atomic_inc(&buffer->record_disabled);
3048 }
3049 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3050 
3051 /**
3052  * ring_buffer_record_enable - enable writes to the buffer
3053  * @buffer: The ring buffer to enable writes
3054  *
3055  * Note, multiple disables will need the same number of enables
3056  * to truly enable the writing (much like preempt_disable).
3057  */
3058 void ring_buffer_record_enable(struct ring_buffer *buffer)
3059 {
3060 	atomic_dec(&buffer->record_disabled);
3061 }
3062 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3063 
3064 /**
3065  * ring_buffer_record_off - stop all writes into the buffer
3066  * @buffer: The ring buffer to stop writes to.
3067  *
3068  * This prevents all writes to the buffer. Any attempt to write
3069  * to the buffer after this will fail and return NULL.
3070  *
3071  * This is different than ring_buffer_record_disable() as
3072  * it works like an on/off switch, where as the disable() version
3073  * must be paired with a enable().
3074  */
3075 void ring_buffer_record_off(struct ring_buffer *buffer)
3076 {
3077 	unsigned int rd;
3078 	unsigned int new_rd;
3079 
3080 	do {
3081 		rd = atomic_read(&buffer->record_disabled);
3082 		new_rd = rd | RB_BUFFER_OFF;
3083 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3086 
3087 /**
3088  * ring_buffer_record_on - restart writes into the buffer
3089  * @buffer: The ring buffer to start writes to.
3090  *
3091  * This enables all writes to the buffer that was disabled by
3092  * ring_buffer_record_off().
3093  *
3094  * This is different than ring_buffer_record_enable() as
3095  * it works like an on/off switch, where as the enable() version
3096  * must be paired with a disable().
3097  */
3098 void ring_buffer_record_on(struct ring_buffer *buffer)
3099 {
3100 	unsigned int rd;
3101 	unsigned int new_rd;
3102 
3103 	do {
3104 		rd = atomic_read(&buffer->record_disabled);
3105 		new_rd = rd & ~RB_BUFFER_OFF;
3106 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3109 
3110 /**
3111  * ring_buffer_record_is_on - return true if the ring buffer can write
3112  * @buffer: The ring buffer to see if write is enabled
3113  *
3114  * Returns true if the ring buffer is in a state that it accepts writes.
3115  */
3116 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3117 {
3118 	return !atomic_read(&buffer->record_disabled);
3119 }
3120 
3121 /**
3122  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3123  * @buffer: The ring buffer to stop writes to.
3124  * @cpu: The CPU buffer to stop
3125  *
3126  * This prevents all writes to the buffer. Any attempt to write
3127  * to the buffer after this will fail and return NULL.
3128  *
3129  * The caller should call synchronize_sched() after this.
3130  */
3131 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3132 {
3133 	struct ring_buffer_per_cpu *cpu_buffer;
3134 
3135 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3136 		return;
3137 
3138 	cpu_buffer = buffer->buffers[cpu];
3139 	atomic_inc(&cpu_buffer->record_disabled);
3140 }
3141 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3142 
3143 /**
3144  * ring_buffer_record_enable_cpu - enable writes to the buffer
3145  * @buffer: The ring buffer to enable writes
3146  * @cpu: The CPU to enable.
3147  *
3148  * Note, multiple disables will need the same number of enables
3149  * to truly enable the writing (much like preempt_disable).
3150  */
3151 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3152 {
3153 	struct ring_buffer_per_cpu *cpu_buffer;
3154 
3155 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156 		return;
3157 
3158 	cpu_buffer = buffer->buffers[cpu];
3159 	atomic_dec(&cpu_buffer->record_disabled);
3160 }
3161 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3162 
3163 /*
3164  * The total entries in the ring buffer is the running counter
3165  * of entries entered into the ring buffer, minus the sum of
3166  * the entries read from the ring buffer and the number of
3167  * entries that were overwritten.
3168  */
3169 static inline unsigned long
3170 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172 	return local_read(&cpu_buffer->entries) -
3173 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3174 }
3175 
3176 /**
3177  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3178  * @buffer: The ring buffer
3179  * @cpu: The per CPU buffer to read from.
3180  */
3181 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3182 {
3183 	unsigned long flags;
3184 	struct ring_buffer_per_cpu *cpu_buffer;
3185 	struct buffer_page *bpage;
3186 	u64 ret = 0;
3187 
3188 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189 		return 0;
3190 
3191 	cpu_buffer = buffer->buffers[cpu];
3192 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3193 	/*
3194 	 * if the tail is on reader_page, oldest time stamp is on the reader
3195 	 * page
3196 	 */
3197 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3198 		bpage = cpu_buffer->reader_page;
3199 	else
3200 		bpage = rb_set_head_page(cpu_buffer);
3201 	if (bpage)
3202 		ret = bpage->page->time_stamp;
3203 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3204 
3205 	return ret;
3206 }
3207 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3208 
3209 /**
3210  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3211  * @buffer: The ring buffer
3212  * @cpu: The per CPU buffer to read from.
3213  */
3214 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3215 {
3216 	struct ring_buffer_per_cpu *cpu_buffer;
3217 	unsigned long ret;
3218 
3219 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220 		return 0;
3221 
3222 	cpu_buffer = buffer->buffers[cpu];
3223 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3224 
3225 	return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3228 
3229 /**
3230  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3231  * @buffer: The ring buffer
3232  * @cpu: The per CPU buffer to get the entries from.
3233  */
3234 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3235 {
3236 	struct ring_buffer_per_cpu *cpu_buffer;
3237 
3238 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239 		return 0;
3240 
3241 	cpu_buffer = buffer->buffers[cpu];
3242 
3243 	return rb_num_of_entries(cpu_buffer);
3244 }
3245 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3246 
3247 /**
3248  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3249  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to get the number of overruns from
3252  */
3253 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255 	struct ring_buffer_per_cpu *cpu_buffer;
3256 	unsigned long ret;
3257 
3258 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259 		return 0;
3260 
3261 	cpu_buffer = buffer->buffers[cpu];
3262 	ret = local_read(&cpu_buffer->overrun);
3263 
3264 	return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3267 
3268 /**
3269  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3270  * commits failing due to the buffer wrapping around while there are uncommitted
3271  * events, such as during an interrupt storm.
3272  * @buffer: The ring buffer
3273  * @cpu: The per CPU buffer to get the number of overruns from
3274  */
3275 unsigned long
3276 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 	struct ring_buffer_per_cpu *cpu_buffer;
3279 	unsigned long ret;
3280 
3281 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 		return 0;
3283 
3284 	cpu_buffer = buffer->buffers[cpu];
3285 	ret = local_read(&cpu_buffer->commit_overrun);
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3290 
3291 /**
3292  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3293  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3294  * @buffer: The ring buffer
3295  * @cpu: The per CPU buffer to get the number of overruns from
3296  */
3297 unsigned long
3298 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300 	struct ring_buffer_per_cpu *cpu_buffer;
3301 	unsigned long ret;
3302 
3303 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304 		return 0;
3305 
3306 	cpu_buffer = buffer->buffers[cpu];
3307 	ret = local_read(&cpu_buffer->dropped_events);
3308 
3309 	return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3312 
3313 /**
3314  * ring_buffer_read_events_cpu - get the number of events successfully read
3315  * @buffer: The ring buffer
3316  * @cpu: The per CPU buffer to get the number of events read
3317  */
3318 unsigned long
3319 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3320 {
3321 	struct ring_buffer_per_cpu *cpu_buffer;
3322 
3323 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3324 		return 0;
3325 
3326 	cpu_buffer = buffer->buffers[cpu];
3327 	return cpu_buffer->read;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3330 
3331 /**
3332  * ring_buffer_entries - get the number of entries in a buffer
3333  * @buffer: The ring buffer
3334  *
3335  * Returns the total number of entries in the ring buffer
3336  * (all CPU entries)
3337  */
3338 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3339 {
3340 	struct ring_buffer_per_cpu *cpu_buffer;
3341 	unsigned long entries = 0;
3342 	int cpu;
3343 
3344 	/* if you care about this being correct, lock the buffer */
3345 	for_each_buffer_cpu(buffer, cpu) {
3346 		cpu_buffer = buffer->buffers[cpu];
3347 		entries += rb_num_of_entries(cpu_buffer);
3348 	}
3349 
3350 	return entries;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3353 
3354 /**
3355  * ring_buffer_overruns - get the number of overruns in buffer
3356  * @buffer: The ring buffer
3357  *
3358  * Returns the total number of overruns in the ring buffer
3359  * (all CPU entries)
3360  */
3361 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3362 {
3363 	struct ring_buffer_per_cpu *cpu_buffer;
3364 	unsigned long overruns = 0;
3365 	int cpu;
3366 
3367 	/* if you care about this being correct, lock the buffer */
3368 	for_each_buffer_cpu(buffer, cpu) {
3369 		cpu_buffer = buffer->buffers[cpu];
3370 		overruns += local_read(&cpu_buffer->overrun);
3371 	}
3372 
3373 	return overruns;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3376 
3377 static void rb_iter_reset(struct ring_buffer_iter *iter)
3378 {
3379 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3380 
3381 	/* Iterator usage is expected to have record disabled */
3382 	iter->head_page = cpu_buffer->reader_page;
3383 	iter->head = cpu_buffer->reader_page->read;
3384 
3385 	iter->cache_reader_page = iter->head_page;
3386 	iter->cache_read = cpu_buffer->read;
3387 
3388 	if (iter->head)
3389 		iter->read_stamp = cpu_buffer->read_stamp;
3390 	else
3391 		iter->read_stamp = iter->head_page->page->time_stamp;
3392 }
3393 
3394 /**
3395  * ring_buffer_iter_reset - reset an iterator
3396  * @iter: The iterator to reset
3397  *
3398  * Resets the iterator, so that it will start from the beginning
3399  * again.
3400  */
3401 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3402 {
3403 	struct ring_buffer_per_cpu *cpu_buffer;
3404 	unsigned long flags;
3405 
3406 	if (!iter)
3407 		return;
3408 
3409 	cpu_buffer = iter->cpu_buffer;
3410 
3411 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3412 	rb_iter_reset(iter);
3413 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3416 
3417 /**
3418  * ring_buffer_iter_empty - check if an iterator has no more to read
3419  * @iter: The iterator to check
3420  */
3421 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3422 {
3423 	struct ring_buffer_per_cpu *cpu_buffer;
3424 
3425 	cpu_buffer = iter->cpu_buffer;
3426 
3427 	return iter->head_page == cpu_buffer->commit_page &&
3428 		iter->head == rb_commit_index(cpu_buffer);
3429 }
3430 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3431 
3432 static void
3433 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3434 		     struct ring_buffer_event *event)
3435 {
3436 	u64 delta;
3437 
3438 	switch (event->type_len) {
3439 	case RINGBUF_TYPE_PADDING:
3440 		return;
3441 
3442 	case RINGBUF_TYPE_TIME_EXTEND:
3443 		delta = event->array[0];
3444 		delta <<= TS_SHIFT;
3445 		delta += event->time_delta;
3446 		cpu_buffer->read_stamp += delta;
3447 		return;
3448 
3449 	case RINGBUF_TYPE_TIME_STAMP:
3450 		/* FIXME: not implemented */
3451 		return;
3452 
3453 	case RINGBUF_TYPE_DATA:
3454 		cpu_buffer->read_stamp += event->time_delta;
3455 		return;
3456 
3457 	default:
3458 		BUG();
3459 	}
3460 	return;
3461 }
3462 
3463 static void
3464 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3465 			  struct ring_buffer_event *event)
3466 {
3467 	u64 delta;
3468 
3469 	switch (event->type_len) {
3470 	case RINGBUF_TYPE_PADDING:
3471 		return;
3472 
3473 	case RINGBUF_TYPE_TIME_EXTEND:
3474 		delta = event->array[0];
3475 		delta <<= TS_SHIFT;
3476 		delta += event->time_delta;
3477 		iter->read_stamp += delta;
3478 		return;
3479 
3480 	case RINGBUF_TYPE_TIME_STAMP:
3481 		/* FIXME: not implemented */
3482 		return;
3483 
3484 	case RINGBUF_TYPE_DATA:
3485 		iter->read_stamp += event->time_delta;
3486 		return;
3487 
3488 	default:
3489 		BUG();
3490 	}
3491 	return;
3492 }
3493 
3494 static struct buffer_page *
3495 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3496 {
3497 	struct buffer_page *reader = NULL;
3498 	unsigned long overwrite;
3499 	unsigned long flags;
3500 	int nr_loops = 0;
3501 	int ret;
3502 
3503 	local_irq_save(flags);
3504 	arch_spin_lock(&cpu_buffer->lock);
3505 
3506  again:
3507 	/*
3508 	 * This should normally only loop twice. But because the
3509 	 * start of the reader inserts an empty page, it causes
3510 	 * a case where we will loop three times. There should be no
3511 	 * reason to loop four times (that I know of).
3512 	 */
3513 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3514 		reader = NULL;
3515 		goto out;
3516 	}
3517 
3518 	reader = cpu_buffer->reader_page;
3519 
3520 	/* If there's more to read, return this page */
3521 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3522 		goto out;
3523 
3524 	/* Never should we have an index greater than the size */
3525 	if (RB_WARN_ON(cpu_buffer,
3526 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3527 		goto out;
3528 
3529 	/* check if we caught up to the tail */
3530 	reader = NULL;
3531 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3532 		goto out;
3533 
3534 	/* Don't bother swapping if the ring buffer is empty */
3535 	if (rb_num_of_entries(cpu_buffer) == 0)
3536 		goto out;
3537 
3538 	/*
3539 	 * Reset the reader page to size zero.
3540 	 */
3541 	local_set(&cpu_buffer->reader_page->write, 0);
3542 	local_set(&cpu_buffer->reader_page->entries, 0);
3543 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3544 	cpu_buffer->reader_page->real_end = 0;
3545 
3546  spin:
3547 	/*
3548 	 * Splice the empty reader page into the list around the head.
3549 	 */
3550 	reader = rb_set_head_page(cpu_buffer);
3551 	if (!reader)
3552 		goto out;
3553 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3554 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3555 
3556 	/*
3557 	 * cpu_buffer->pages just needs to point to the buffer, it
3558 	 *  has no specific buffer page to point to. Lets move it out
3559 	 *  of our way so we don't accidentally swap it.
3560 	 */
3561 	cpu_buffer->pages = reader->list.prev;
3562 
3563 	/* The reader page will be pointing to the new head */
3564 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3565 
3566 	/*
3567 	 * We want to make sure we read the overruns after we set up our
3568 	 * pointers to the next object. The writer side does a
3569 	 * cmpxchg to cross pages which acts as the mb on the writer
3570 	 * side. Note, the reader will constantly fail the swap
3571 	 * while the writer is updating the pointers, so this
3572 	 * guarantees that the overwrite recorded here is the one we
3573 	 * want to compare with the last_overrun.
3574 	 */
3575 	smp_mb();
3576 	overwrite = local_read(&(cpu_buffer->overrun));
3577 
3578 	/*
3579 	 * Here's the tricky part.
3580 	 *
3581 	 * We need to move the pointer past the header page.
3582 	 * But we can only do that if a writer is not currently
3583 	 * moving it. The page before the header page has the
3584 	 * flag bit '1' set if it is pointing to the page we want.
3585 	 * but if the writer is in the process of moving it
3586 	 * than it will be '2' or already moved '0'.
3587 	 */
3588 
3589 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3590 
3591 	/*
3592 	 * If we did not convert it, then we must try again.
3593 	 */
3594 	if (!ret)
3595 		goto spin;
3596 
3597 	/*
3598 	 * Yeah! We succeeded in replacing the page.
3599 	 *
3600 	 * Now make the new head point back to the reader page.
3601 	 */
3602 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3603 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3604 
3605 	/* Finally update the reader page to the new head */
3606 	cpu_buffer->reader_page = reader;
3607 	rb_reset_reader_page(cpu_buffer);
3608 
3609 	if (overwrite != cpu_buffer->last_overrun) {
3610 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3611 		cpu_buffer->last_overrun = overwrite;
3612 	}
3613 
3614 	goto again;
3615 
3616  out:
3617 	arch_spin_unlock(&cpu_buffer->lock);
3618 	local_irq_restore(flags);
3619 
3620 	return reader;
3621 }
3622 
3623 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3624 {
3625 	struct ring_buffer_event *event;
3626 	struct buffer_page *reader;
3627 	unsigned length;
3628 
3629 	reader = rb_get_reader_page(cpu_buffer);
3630 
3631 	/* This function should not be called when buffer is empty */
3632 	if (RB_WARN_ON(cpu_buffer, !reader))
3633 		return;
3634 
3635 	event = rb_reader_event(cpu_buffer);
3636 
3637 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3638 		cpu_buffer->read++;
3639 
3640 	rb_update_read_stamp(cpu_buffer, event);
3641 
3642 	length = rb_event_length(event);
3643 	cpu_buffer->reader_page->read += length;
3644 }
3645 
3646 static void rb_advance_iter(struct ring_buffer_iter *iter)
3647 {
3648 	struct ring_buffer_per_cpu *cpu_buffer;
3649 	struct ring_buffer_event *event;
3650 	unsigned length;
3651 
3652 	cpu_buffer = iter->cpu_buffer;
3653 
3654 	/*
3655 	 * Check if we are at the end of the buffer.
3656 	 */
3657 	if (iter->head >= rb_page_size(iter->head_page)) {
3658 		/* discarded commits can make the page empty */
3659 		if (iter->head_page == cpu_buffer->commit_page)
3660 			return;
3661 		rb_inc_iter(iter);
3662 		return;
3663 	}
3664 
3665 	event = rb_iter_head_event(iter);
3666 
3667 	length = rb_event_length(event);
3668 
3669 	/*
3670 	 * This should not be called to advance the header if we are
3671 	 * at the tail of the buffer.
3672 	 */
3673 	if (RB_WARN_ON(cpu_buffer,
3674 		       (iter->head_page == cpu_buffer->commit_page) &&
3675 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3676 		return;
3677 
3678 	rb_update_iter_read_stamp(iter, event);
3679 
3680 	iter->head += length;
3681 
3682 	/* check for end of page padding */
3683 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3684 	    (iter->head_page != cpu_buffer->commit_page))
3685 		rb_inc_iter(iter);
3686 }
3687 
3688 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3689 {
3690 	return cpu_buffer->lost_events;
3691 }
3692 
3693 static struct ring_buffer_event *
3694 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3695 	       unsigned long *lost_events)
3696 {
3697 	struct ring_buffer_event *event;
3698 	struct buffer_page *reader;
3699 	int nr_loops = 0;
3700 
3701  again:
3702 	/*
3703 	 * We repeat when a time extend is encountered.
3704 	 * Since the time extend is always attached to a data event,
3705 	 * we should never loop more than once.
3706 	 * (We never hit the following condition more than twice).
3707 	 */
3708 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3709 		return NULL;
3710 
3711 	reader = rb_get_reader_page(cpu_buffer);
3712 	if (!reader)
3713 		return NULL;
3714 
3715 	event = rb_reader_event(cpu_buffer);
3716 
3717 	switch (event->type_len) {
3718 	case RINGBUF_TYPE_PADDING:
3719 		if (rb_null_event(event))
3720 			RB_WARN_ON(cpu_buffer, 1);
3721 		/*
3722 		 * Because the writer could be discarding every
3723 		 * event it creates (which would probably be bad)
3724 		 * if we were to go back to "again" then we may never
3725 		 * catch up, and will trigger the warn on, or lock
3726 		 * the box. Return the padding, and we will release
3727 		 * the current locks, and try again.
3728 		 */
3729 		return event;
3730 
3731 	case RINGBUF_TYPE_TIME_EXTEND:
3732 		/* Internal data, OK to advance */
3733 		rb_advance_reader(cpu_buffer);
3734 		goto again;
3735 
3736 	case RINGBUF_TYPE_TIME_STAMP:
3737 		/* FIXME: not implemented */
3738 		rb_advance_reader(cpu_buffer);
3739 		goto again;
3740 
3741 	case RINGBUF_TYPE_DATA:
3742 		if (ts) {
3743 			*ts = cpu_buffer->read_stamp + event->time_delta;
3744 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3745 							 cpu_buffer->cpu, ts);
3746 		}
3747 		if (lost_events)
3748 			*lost_events = rb_lost_events(cpu_buffer);
3749 		return event;
3750 
3751 	default:
3752 		BUG();
3753 	}
3754 
3755 	return NULL;
3756 }
3757 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3758 
3759 static struct ring_buffer_event *
3760 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3761 {
3762 	struct ring_buffer *buffer;
3763 	struct ring_buffer_per_cpu *cpu_buffer;
3764 	struct ring_buffer_event *event;
3765 	int nr_loops = 0;
3766 
3767 	cpu_buffer = iter->cpu_buffer;
3768 	buffer = cpu_buffer->buffer;
3769 
3770 	/*
3771 	 * Check if someone performed a consuming read to
3772 	 * the buffer. A consuming read invalidates the iterator
3773 	 * and we need to reset the iterator in this case.
3774 	 */
3775 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3776 		     iter->cache_reader_page != cpu_buffer->reader_page))
3777 		rb_iter_reset(iter);
3778 
3779  again:
3780 	if (ring_buffer_iter_empty(iter))
3781 		return NULL;
3782 
3783 	/*
3784 	 * We repeat when a time extend is encountered or we hit
3785 	 * the end of the page. Since the time extend is always attached
3786 	 * to a data event, we should never loop more than three times.
3787 	 * Once for going to next page, once on time extend, and
3788 	 * finally once to get the event.
3789 	 * (We never hit the following condition more than thrice).
3790 	 */
3791 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3792 		return NULL;
3793 
3794 	if (rb_per_cpu_empty(cpu_buffer))
3795 		return NULL;
3796 
3797 	if (iter->head >= rb_page_size(iter->head_page)) {
3798 		rb_inc_iter(iter);
3799 		goto again;
3800 	}
3801 
3802 	event = rb_iter_head_event(iter);
3803 
3804 	switch (event->type_len) {
3805 	case RINGBUF_TYPE_PADDING:
3806 		if (rb_null_event(event)) {
3807 			rb_inc_iter(iter);
3808 			goto again;
3809 		}
3810 		rb_advance_iter(iter);
3811 		return event;
3812 
3813 	case RINGBUF_TYPE_TIME_EXTEND:
3814 		/* Internal data, OK to advance */
3815 		rb_advance_iter(iter);
3816 		goto again;
3817 
3818 	case RINGBUF_TYPE_TIME_STAMP:
3819 		/* FIXME: not implemented */
3820 		rb_advance_iter(iter);
3821 		goto again;
3822 
3823 	case RINGBUF_TYPE_DATA:
3824 		if (ts) {
3825 			*ts = iter->read_stamp + event->time_delta;
3826 			ring_buffer_normalize_time_stamp(buffer,
3827 							 cpu_buffer->cpu, ts);
3828 		}
3829 		return event;
3830 
3831 	default:
3832 		BUG();
3833 	}
3834 
3835 	return NULL;
3836 }
3837 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3838 
3839 static inline int rb_ok_to_lock(void)
3840 {
3841 	/*
3842 	 * If an NMI die dumps out the content of the ring buffer
3843 	 * do not grab locks. We also permanently disable the ring
3844 	 * buffer too. A one time deal is all you get from reading
3845 	 * the ring buffer from an NMI.
3846 	 */
3847 	if (likely(!in_nmi()))
3848 		return 1;
3849 
3850 	tracing_off_permanent();
3851 	return 0;
3852 }
3853 
3854 /**
3855  * ring_buffer_peek - peek at the next event to be read
3856  * @buffer: The ring buffer to read
3857  * @cpu: The cpu to peak at
3858  * @ts: The timestamp counter of this event.
3859  * @lost_events: a variable to store if events were lost (may be NULL)
3860  *
3861  * This will return the event that will be read next, but does
3862  * not consume the data.
3863  */
3864 struct ring_buffer_event *
3865 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3866 		 unsigned long *lost_events)
3867 {
3868 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3869 	struct ring_buffer_event *event;
3870 	unsigned long flags;
3871 	int dolock;
3872 
3873 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3874 		return NULL;
3875 
3876 	dolock = rb_ok_to_lock();
3877  again:
3878 	local_irq_save(flags);
3879 	if (dolock)
3880 		raw_spin_lock(&cpu_buffer->reader_lock);
3881 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3882 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3883 		rb_advance_reader(cpu_buffer);
3884 	if (dolock)
3885 		raw_spin_unlock(&cpu_buffer->reader_lock);
3886 	local_irq_restore(flags);
3887 
3888 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3889 		goto again;
3890 
3891 	return event;
3892 }
3893 
3894 /**
3895  * ring_buffer_iter_peek - peek at the next event to be read
3896  * @iter: The ring buffer iterator
3897  * @ts: The timestamp counter of this event.
3898  *
3899  * This will return the event that will be read next, but does
3900  * not increment the iterator.
3901  */
3902 struct ring_buffer_event *
3903 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3904 {
3905 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3906 	struct ring_buffer_event *event;
3907 	unsigned long flags;
3908 
3909  again:
3910 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3911 	event = rb_iter_peek(iter, ts);
3912 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3913 
3914 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3915 		goto again;
3916 
3917 	return event;
3918 }
3919 
3920 /**
3921  * ring_buffer_consume - return an event and consume it
3922  * @buffer: The ring buffer to get the next event from
3923  * @cpu: the cpu to read the buffer from
3924  * @ts: a variable to store the timestamp (may be NULL)
3925  * @lost_events: a variable to store if events were lost (may be NULL)
3926  *
3927  * Returns the next event in the ring buffer, and that event is consumed.
3928  * Meaning, that sequential reads will keep returning a different event,
3929  * and eventually empty the ring buffer if the producer is slower.
3930  */
3931 struct ring_buffer_event *
3932 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3933 		    unsigned long *lost_events)
3934 {
3935 	struct ring_buffer_per_cpu *cpu_buffer;
3936 	struct ring_buffer_event *event = NULL;
3937 	unsigned long flags;
3938 	int dolock;
3939 
3940 	dolock = rb_ok_to_lock();
3941 
3942  again:
3943 	/* might be called in atomic */
3944 	preempt_disable();
3945 
3946 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3947 		goto out;
3948 
3949 	cpu_buffer = buffer->buffers[cpu];
3950 	local_irq_save(flags);
3951 	if (dolock)
3952 		raw_spin_lock(&cpu_buffer->reader_lock);
3953 
3954 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3955 	if (event) {
3956 		cpu_buffer->lost_events = 0;
3957 		rb_advance_reader(cpu_buffer);
3958 	}
3959 
3960 	if (dolock)
3961 		raw_spin_unlock(&cpu_buffer->reader_lock);
3962 	local_irq_restore(flags);
3963 
3964  out:
3965 	preempt_enable();
3966 
3967 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3968 		goto again;
3969 
3970 	return event;
3971 }
3972 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3973 
3974 /**
3975  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3976  * @buffer: The ring buffer to read from
3977  * @cpu: The cpu buffer to iterate over
3978  *
3979  * This performs the initial preparations necessary to iterate
3980  * through the buffer.  Memory is allocated, buffer recording
3981  * is disabled, and the iterator pointer is returned to the caller.
3982  *
3983  * Disabling buffer recordng prevents the reading from being
3984  * corrupted. This is not a consuming read, so a producer is not
3985  * expected.
3986  *
3987  * After a sequence of ring_buffer_read_prepare calls, the user is
3988  * expected to make at least one call to ring_buffer_read_prepare_sync.
3989  * Afterwards, ring_buffer_read_start is invoked to get things going
3990  * for real.
3991  *
3992  * This overall must be paired with ring_buffer_read_finish.
3993  */
3994 struct ring_buffer_iter *
3995 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3996 {
3997 	struct ring_buffer_per_cpu *cpu_buffer;
3998 	struct ring_buffer_iter *iter;
3999 
4000 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4001 		return NULL;
4002 
4003 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4004 	if (!iter)
4005 		return NULL;
4006 
4007 	cpu_buffer = buffer->buffers[cpu];
4008 
4009 	iter->cpu_buffer = cpu_buffer;
4010 
4011 	atomic_inc(&buffer->resize_disabled);
4012 	atomic_inc(&cpu_buffer->record_disabled);
4013 
4014 	return iter;
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4017 
4018 /**
4019  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4020  *
4021  * All previously invoked ring_buffer_read_prepare calls to prepare
4022  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4023  * calls on those iterators are allowed.
4024  */
4025 void
4026 ring_buffer_read_prepare_sync(void)
4027 {
4028 	synchronize_sched();
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4031 
4032 /**
4033  * ring_buffer_read_start - start a non consuming read of the buffer
4034  * @iter: The iterator returned by ring_buffer_read_prepare
4035  *
4036  * This finalizes the startup of an iteration through the buffer.
4037  * The iterator comes from a call to ring_buffer_read_prepare and
4038  * an intervening ring_buffer_read_prepare_sync must have been
4039  * performed.
4040  *
4041  * Must be paired with ring_buffer_read_finish.
4042  */
4043 void
4044 ring_buffer_read_start(struct ring_buffer_iter *iter)
4045 {
4046 	struct ring_buffer_per_cpu *cpu_buffer;
4047 	unsigned long flags;
4048 
4049 	if (!iter)
4050 		return;
4051 
4052 	cpu_buffer = iter->cpu_buffer;
4053 
4054 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4055 	arch_spin_lock(&cpu_buffer->lock);
4056 	rb_iter_reset(iter);
4057 	arch_spin_unlock(&cpu_buffer->lock);
4058 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4061 
4062 /**
4063  * ring_buffer_read_finish - finish reading the iterator of the buffer
4064  * @iter: The iterator retrieved by ring_buffer_start
4065  *
4066  * This re-enables the recording to the buffer, and frees the
4067  * iterator.
4068  */
4069 void
4070 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4071 {
4072 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4073 	unsigned long flags;
4074 
4075 	/*
4076 	 * Ring buffer is disabled from recording, here's a good place
4077 	 * to check the integrity of the ring buffer.
4078 	 * Must prevent readers from trying to read, as the check
4079 	 * clears the HEAD page and readers require it.
4080 	 */
4081 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082 	rb_check_pages(cpu_buffer);
4083 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4084 
4085 	atomic_dec(&cpu_buffer->record_disabled);
4086 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4087 	kfree(iter);
4088 }
4089 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4090 
4091 /**
4092  * ring_buffer_read - read the next item in the ring buffer by the iterator
4093  * @iter: The ring buffer iterator
4094  * @ts: The time stamp of the event read.
4095  *
4096  * This reads the next event in the ring buffer and increments the iterator.
4097  */
4098 struct ring_buffer_event *
4099 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4100 {
4101 	struct ring_buffer_event *event;
4102 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4103 	unsigned long flags;
4104 
4105 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106  again:
4107 	event = rb_iter_peek(iter, ts);
4108 	if (!event)
4109 		goto out;
4110 
4111 	if (event->type_len == RINGBUF_TYPE_PADDING)
4112 		goto again;
4113 
4114 	rb_advance_iter(iter);
4115  out:
4116 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117 
4118 	return event;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_read);
4121 
4122 /**
4123  * ring_buffer_size - return the size of the ring buffer (in bytes)
4124  * @buffer: The ring buffer.
4125  */
4126 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4127 {
4128 	/*
4129 	 * Earlier, this method returned
4130 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4131 	 * Since the nr_pages field is now removed, we have converted this to
4132 	 * return the per cpu buffer value.
4133 	 */
4134 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4135 		return 0;
4136 
4137 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4138 }
4139 EXPORT_SYMBOL_GPL(ring_buffer_size);
4140 
4141 static void
4142 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4143 {
4144 	rb_head_page_deactivate(cpu_buffer);
4145 
4146 	cpu_buffer->head_page
4147 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4148 	local_set(&cpu_buffer->head_page->write, 0);
4149 	local_set(&cpu_buffer->head_page->entries, 0);
4150 	local_set(&cpu_buffer->head_page->page->commit, 0);
4151 
4152 	cpu_buffer->head_page->read = 0;
4153 
4154 	cpu_buffer->tail_page = cpu_buffer->head_page;
4155 	cpu_buffer->commit_page = cpu_buffer->head_page;
4156 
4157 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4158 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4159 	local_set(&cpu_buffer->reader_page->write, 0);
4160 	local_set(&cpu_buffer->reader_page->entries, 0);
4161 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4162 	cpu_buffer->reader_page->read = 0;
4163 
4164 	local_set(&cpu_buffer->entries_bytes, 0);
4165 	local_set(&cpu_buffer->overrun, 0);
4166 	local_set(&cpu_buffer->commit_overrun, 0);
4167 	local_set(&cpu_buffer->dropped_events, 0);
4168 	local_set(&cpu_buffer->entries, 0);
4169 	local_set(&cpu_buffer->committing, 0);
4170 	local_set(&cpu_buffer->commits, 0);
4171 	cpu_buffer->read = 0;
4172 	cpu_buffer->read_bytes = 0;
4173 
4174 	cpu_buffer->write_stamp = 0;
4175 	cpu_buffer->read_stamp = 0;
4176 
4177 	cpu_buffer->lost_events = 0;
4178 	cpu_buffer->last_overrun = 0;
4179 
4180 	rb_head_page_activate(cpu_buffer);
4181 }
4182 
4183 /**
4184  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4185  * @buffer: The ring buffer to reset a per cpu buffer of
4186  * @cpu: The CPU buffer to be reset
4187  */
4188 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4189 {
4190 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4191 	unsigned long flags;
4192 
4193 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4194 		return;
4195 
4196 	atomic_inc(&buffer->resize_disabled);
4197 	atomic_inc(&cpu_buffer->record_disabled);
4198 
4199 	/* Make sure all commits have finished */
4200 	synchronize_sched();
4201 
4202 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4203 
4204 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4205 		goto out;
4206 
4207 	arch_spin_lock(&cpu_buffer->lock);
4208 
4209 	rb_reset_cpu(cpu_buffer);
4210 
4211 	arch_spin_unlock(&cpu_buffer->lock);
4212 
4213  out:
4214 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4215 
4216 	atomic_dec(&cpu_buffer->record_disabled);
4217 	atomic_dec(&buffer->resize_disabled);
4218 }
4219 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4220 
4221 /**
4222  * ring_buffer_reset - reset a ring buffer
4223  * @buffer: The ring buffer to reset all cpu buffers
4224  */
4225 void ring_buffer_reset(struct ring_buffer *buffer)
4226 {
4227 	int cpu;
4228 
4229 	for_each_buffer_cpu(buffer, cpu)
4230 		ring_buffer_reset_cpu(buffer, cpu);
4231 }
4232 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4233 
4234 /**
4235  * rind_buffer_empty - is the ring buffer empty?
4236  * @buffer: The ring buffer to test
4237  */
4238 int ring_buffer_empty(struct ring_buffer *buffer)
4239 {
4240 	struct ring_buffer_per_cpu *cpu_buffer;
4241 	unsigned long flags;
4242 	int dolock;
4243 	int cpu;
4244 	int ret;
4245 
4246 	dolock = rb_ok_to_lock();
4247 
4248 	/* yes this is racy, but if you don't like the race, lock the buffer */
4249 	for_each_buffer_cpu(buffer, cpu) {
4250 		cpu_buffer = buffer->buffers[cpu];
4251 		local_irq_save(flags);
4252 		if (dolock)
4253 			raw_spin_lock(&cpu_buffer->reader_lock);
4254 		ret = rb_per_cpu_empty(cpu_buffer);
4255 		if (dolock)
4256 			raw_spin_unlock(&cpu_buffer->reader_lock);
4257 		local_irq_restore(flags);
4258 
4259 		if (!ret)
4260 			return 0;
4261 	}
4262 
4263 	return 1;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4266 
4267 /**
4268  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4269  * @buffer: The ring buffer
4270  * @cpu: The CPU buffer to test
4271  */
4272 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4273 {
4274 	struct ring_buffer_per_cpu *cpu_buffer;
4275 	unsigned long flags;
4276 	int dolock;
4277 	int ret;
4278 
4279 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4280 		return 1;
4281 
4282 	dolock = rb_ok_to_lock();
4283 
4284 	cpu_buffer = buffer->buffers[cpu];
4285 	local_irq_save(flags);
4286 	if (dolock)
4287 		raw_spin_lock(&cpu_buffer->reader_lock);
4288 	ret = rb_per_cpu_empty(cpu_buffer);
4289 	if (dolock)
4290 		raw_spin_unlock(&cpu_buffer->reader_lock);
4291 	local_irq_restore(flags);
4292 
4293 	return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4296 
4297 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4298 /**
4299  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4300  * @buffer_a: One buffer to swap with
4301  * @buffer_b: The other buffer to swap with
4302  *
4303  * This function is useful for tracers that want to take a "snapshot"
4304  * of a CPU buffer and has another back up buffer lying around.
4305  * it is expected that the tracer handles the cpu buffer not being
4306  * used at the moment.
4307  */
4308 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4309 			 struct ring_buffer *buffer_b, int cpu)
4310 {
4311 	struct ring_buffer_per_cpu *cpu_buffer_a;
4312 	struct ring_buffer_per_cpu *cpu_buffer_b;
4313 	int ret = -EINVAL;
4314 
4315 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4316 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4317 		goto out;
4318 
4319 	cpu_buffer_a = buffer_a->buffers[cpu];
4320 	cpu_buffer_b = buffer_b->buffers[cpu];
4321 
4322 	/* At least make sure the two buffers are somewhat the same */
4323 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4324 		goto out;
4325 
4326 	ret = -EAGAIN;
4327 
4328 	if (ring_buffer_flags != RB_BUFFERS_ON)
4329 		goto out;
4330 
4331 	if (atomic_read(&buffer_a->record_disabled))
4332 		goto out;
4333 
4334 	if (atomic_read(&buffer_b->record_disabled))
4335 		goto out;
4336 
4337 	if (atomic_read(&cpu_buffer_a->record_disabled))
4338 		goto out;
4339 
4340 	if (atomic_read(&cpu_buffer_b->record_disabled))
4341 		goto out;
4342 
4343 	/*
4344 	 * We can't do a synchronize_sched here because this
4345 	 * function can be called in atomic context.
4346 	 * Normally this will be called from the same CPU as cpu.
4347 	 * If not it's up to the caller to protect this.
4348 	 */
4349 	atomic_inc(&cpu_buffer_a->record_disabled);
4350 	atomic_inc(&cpu_buffer_b->record_disabled);
4351 
4352 	ret = -EBUSY;
4353 	if (local_read(&cpu_buffer_a->committing))
4354 		goto out_dec;
4355 	if (local_read(&cpu_buffer_b->committing))
4356 		goto out_dec;
4357 
4358 	buffer_a->buffers[cpu] = cpu_buffer_b;
4359 	buffer_b->buffers[cpu] = cpu_buffer_a;
4360 
4361 	cpu_buffer_b->buffer = buffer_a;
4362 	cpu_buffer_a->buffer = buffer_b;
4363 
4364 	ret = 0;
4365 
4366 out_dec:
4367 	atomic_dec(&cpu_buffer_a->record_disabled);
4368 	atomic_dec(&cpu_buffer_b->record_disabled);
4369 out:
4370 	return ret;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4374 
4375 /**
4376  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377  * @buffer: the buffer to allocate for.
4378  * @cpu: the cpu buffer to allocate.
4379  *
4380  * This function is used in conjunction with ring_buffer_read_page.
4381  * When reading a full page from the ring buffer, these functions
4382  * can be used to speed up the process. The calling function should
4383  * allocate a few pages first with this function. Then when it
4384  * needs to get pages from the ring buffer, it passes the result
4385  * of this function into ring_buffer_read_page, which will swap
4386  * the page that was allocated, with the read page of the buffer.
4387  *
4388  * Returns:
4389  *  The page allocated, or NULL on error.
4390  */
4391 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4392 {
4393 	struct buffer_data_page *bpage;
4394 	struct page *page;
4395 
4396 	page = alloc_pages_node(cpu_to_node(cpu),
4397 				GFP_KERNEL | __GFP_NORETRY, 0);
4398 	if (!page)
4399 		return NULL;
4400 
4401 	bpage = page_address(page);
4402 
4403 	rb_init_page(bpage);
4404 
4405 	return bpage;
4406 }
4407 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4408 
4409 /**
4410  * ring_buffer_free_read_page - free an allocated read page
4411  * @buffer: the buffer the page was allocate for
4412  * @data: the page to free
4413  *
4414  * Free a page allocated from ring_buffer_alloc_read_page.
4415  */
4416 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4417 {
4418 	free_page((unsigned long)data);
4419 }
4420 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4421 
4422 /**
4423  * ring_buffer_read_page - extract a page from the ring buffer
4424  * @buffer: buffer to extract from
4425  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4426  * @len: amount to extract
4427  * @cpu: the cpu of the buffer to extract
4428  * @full: should the extraction only happen when the page is full.
4429  *
4430  * This function will pull out a page from the ring buffer and consume it.
4431  * @data_page must be the address of the variable that was returned
4432  * from ring_buffer_alloc_read_page. This is because the page might be used
4433  * to swap with a page in the ring buffer.
4434  *
4435  * for example:
4436  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4437  *	if (!rpage)
4438  *		return error;
4439  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4440  *	if (ret >= 0)
4441  *		process_page(rpage, ret);
4442  *
4443  * When @full is set, the function will not return true unless
4444  * the writer is off the reader page.
4445  *
4446  * Note: it is up to the calling functions to handle sleeps and wakeups.
4447  *  The ring buffer can be used anywhere in the kernel and can not
4448  *  blindly call wake_up. The layer that uses the ring buffer must be
4449  *  responsible for that.
4450  *
4451  * Returns:
4452  *  >=0 if data has been transferred, returns the offset of consumed data.
4453  *  <0 if no data has been transferred.
4454  */
4455 int ring_buffer_read_page(struct ring_buffer *buffer,
4456 			  void **data_page, size_t len, int cpu, int full)
4457 {
4458 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4459 	struct ring_buffer_event *event;
4460 	struct buffer_data_page *bpage;
4461 	struct buffer_page *reader;
4462 	unsigned long missed_events;
4463 	unsigned long flags;
4464 	unsigned int commit;
4465 	unsigned int read;
4466 	u64 save_timestamp;
4467 	int ret = -1;
4468 
4469 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4470 		goto out;
4471 
4472 	/*
4473 	 * If len is not big enough to hold the page header, then
4474 	 * we can not copy anything.
4475 	 */
4476 	if (len <= BUF_PAGE_HDR_SIZE)
4477 		goto out;
4478 
4479 	len -= BUF_PAGE_HDR_SIZE;
4480 
4481 	if (!data_page)
4482 		goto out;
4483 
4484 	bpage = *data_page;
4485 	if (!bpage)
4486 		goto out;
4487 
4488 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4489 
4490 	reader = rb_get_reader_page(cpu_buffer);
4491 	if (!reader)
4492 		goto out_unlock;
4493 
4494 	event = rb_reader_event(cpu_buffer);
4495 
4496 	read = reader->read;
4497 	commit = rb_page_commit(reader);
4498 
4499 	/* Check if any events were dropped */
4500 	missed_events = cpu_buffer->lost_events;
4501 
4502 	/*
4503 	 * If this page has been partially read or
4504 	 * if len is not big enough to read the rest of the page or
4505 	 * a writer is still on the page, then
4506 	 * we must copy the data from the page to the buffer.
4507 	 * Otherwise, we can simply swap the page with the one passed in.
4508 	 */
4509 	if (read || (len < (commit - read)) ||
4510 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4511 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4512 		unsigned int rpos = read;
4513 		unsigned int pos = 0;
4514 		unsigned int size;
4515 
4516 		if (full)
4517 			goto out_unlock;
4518 
4519 		if (len > (commit - read))
4520 			len = (commit - read);
4521 
4522 		/* Always keep the time extend and data together */
4523 		size = rb_event_ts_length(event);
4524 
4525 		if (len < size)
4526 			goto out_unlock;
4527 
4528 		/* save the current timestamp, since the user will need it */
4529 		save_timestamp = cpu_buffer->read_stamp;
4530 
4531 		/* Need to copy one event at a time */
4532 		do {
4533 			/* We need the size of one event, because
4534 			 * rb_advance_reader only advances by one event,
4535 			 * whereas rb_event_ts_length may include the size of
4536 			 * one or two events.
4537 			 * We have already ensured there's enough space if this
4538 			 * is a time extend. */
4539 			size = rb_event_length(event);
4540 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4541 
4542 			len -= size;
4543 
4544 			rb_advance_reader(cpu_buffer);
4545 			rpos = reader->read;
4546 			pos += size;
4547 
4548 			if (rpos >= commit)
4549 				break;
4550 
4551 			event = rb_reader_event(cpu_buffer);
4552 			/* Always keep the time extend and data together */
4553 			size = rb_event_ts_length(event);
4554 		} while (len >= size);
4555 
4556 		/* update bpage */
4557 		local_set(&bpage->commit, pos);
4558 		bpage->time_stamp = save_timestamp;
4559 
4560 		/* we copied everything to the beginning */
4561 		read = 0;
4562 	} else {
4563 		/* update the entry counter */
4564 		cpu_buffer->read += rb_page_entries(reader);
4565 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4566 
4567 		/* swap the pages */
4568 		rb_init_page(bpage);
4569 		bpage = reader->page;
4570 		reader->page = *data_page;
4571 		local_set(&reader->write, 0);
4572 		local_set(&reader->entries, 0);
4573 		reader->read = 0;
4574 		*data_page = bpage;
4575 
4576 		/*
4577 		 * Use the real_end for the data size,
4578 		 * This gives us a chance to store the lost events
4579 		 * on the page.
4580 		 */
4581 		if (reader->real_end)
4582 			local_set(&bpage->commit, reader->real_end);
4583 	}
4584 	ret = read;
4585 
4586 	cpu_buffer->lost_events = 0;
4587 
4588 	commit = local_read(&bpage->commit);
4589 	/*
4590 	 * Set a flag in the commit field if we lost events
4591 	 */
4592 	if (missed_events) {
4593 		/* If there is room at the end of the page to save the
4594 		 * missed events, then record it there.
4595 		 */
4596 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4597 			memcpy(&bpage->data[commit], &missed_events,
4598 			       sizeof(missed_events));
4599 			local_add(RB_MISSED_STORED, &bpage->commit);
4600 			commit += sizeof(missed_events);
4601 		}
4602 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4603 	}
4604 
4605 	/*
4606 	 * This page may be off to user land. Zero it out here.
4607 	 */
4608 	if (commit < BUF_PAGE_SIZE)
4609 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4610 
4611  out_unlock:
4612 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4613 
4614  out:
4615 	return ret;
4616 }
4617 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4618 
4619 #ifdef CONFIG_HOTPLUG_CPU
4620 static int rb_cpu_notify(struct notifier_block *self,
4621 			 unsigned long action, void *hcpu)
4622 {
4623 	struct ring_buffer *buffer =
4624 		container_of(self, struct ring_buffer, cpu_notify);
4625 	long cpu = (long)hcpu;
4626 	int cpu_i, nr_pages_same;
4627 	unsigned int nr_pages;
4628 
4629 	switch (action) {
4630 	case CPU_UP_PREPARE:
4631 	case CPU_UP_PREPARE_FROZEN:
4632 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4633 			return NOTIFY_OK;
4634 
4635 		nr_pages = 0;
4636 		nr_pages_same = 1;
4637 		/* check if all cpu sizes are same */
4638 		for_each_buffer_cpu(buffer, cpu_i) {
4639 			/* fill in the size from first enabled cpu */
4640 			if (nr_pages == 0)
4641 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4642 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4643 				nr_pages_same = 0;
4644 				break;
4645 			}
4646 		}
4647 		/* allocate minimum pages, user can later expand it */
4648 		if (!nr_pages_same)
4649 			nr_pages = 2;
4650 		buffer->buffers[cpu] =
4651 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4652 		if (!buffer->buffers[cpu]) {
4653 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4654 			     cpu);
4655 			return NOTIFY_OK;
4656 		}
4657 		smp_wmb();
4658 		cpumask_set_cpu(cpu, buffer->cpumask);
4659 		break;
4660 	case CPU_DOWN_PREPARE:
4661 	case CPU_DOWN_PREPARE_FROZEN:
4662 		/*
4663 		 * Do nothing.
4664 		 *  If we were to free the buffer, then the user would
4665 		 *  lose any trace that was in the buffer.
4666 		 */
4667 		break;
4668 	default:
4669 		break;
4670 	}
4671 	return NOTIFY_OK;
4672 }
4673 #endif
4674 
4675 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4676 /*
4677  * This is a basic integrity check of the ring buffer.
4678  * Late in the boot cycle this test will run when configured in.
4679  * It will kick off a thread per CPU that will go into a loop
4680  * writing to the per cpu ring buffer various sizes of data.
4681  * Some of the data will be large items, some small.
4682  *
4683  * Another thread is created that goes into a spin, sending out
4684  * IPIs to the other CPUs to also write into the ring buffer.
4685  * this is to test the nesting ability of the buffer.
4686  *
4687  * Basic stats are recorded and reported. If something in the
4688  * ring buffer should happen that's not expected, a big warning
4689  * is displayed and all ring buffers are disabled.
4690  */
4691 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4692 
4693 struct rb_test_data {
4694 	struct ring_buffer	*buffer;
4695 	unsigned long		events;
4696 	unsigned long		bytes_written;
4697 	unsigned long		bytes_alloc;
4698 	unsigned long		bytes_dropped;
4699 	unsigned long		events_nested;
4700 	unsigned long		bytes_written_nested;
4701 	unsigned long		bytes_alloc_nested;
4702 	unsigned long		bytes_dropped_nested;
4703 	int			min_size_nested;
4704 	int			max_size_nested;
4705 	int			max_size;
4706 	int			min_size;
4707 	int			cpu;
4708 	int			cnt;
4709 };
4710 
4711 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4712 
4713 /* 1 meg per cpu */
4714 #define RB_TEST_BUFFER_SIZE	1048576
4715 
4716 static char rb_string[] __initdata =
4717 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4718 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4719 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4720 
4721 static bool rb_test_started __initdata;
4722 
4723 struct rb_item {
4724 	int size;
4725 	char str[];
4726 };
4727 
4728 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4729 {
4730 	struct ring_buffer_event *event;
4731 	struct rb_item *item;
4732 	bool started;
4733 	int event_len;
4734 	int size;
4735 	int len;
4736 	int cnt;
4737 
4738 	/* Have nested writes different that what is written */
4739 	cnt = data->cnt + (nested ? 27 : 0);
4740 
4741 	/* Multiply cnt by ~e, to make some unique increment */
4742 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4743 
4744 	len = size + sizeof(struct rb_item);
4745 
4746 	started = rb_test_started;
4747 	/* read rb_test_started before checking buffer enabled */
4748 	smp_rmb();
4749 
4750 	event = ring_buffer_lock_reserve(data->buffer, len);
4751 	if (!event) {
4752 		/* Ignore dropped events before test starts. */
4753 		if (started) {
4754 			if (nested)
4755 				data->bytes_dropped += len;
4756 			else
4757 				data->bytes_dropped_nested += len;
4758 		}
4759 		return len;
4760 	}
4761 
4762 	event_len = ring_buffer_event_length(event);
4763 
4764 	if (RB_WARN_ON(data->buffer, event_len < len))
4765 		goto out;
4766 
4767 	item = ring_buffer_event_data(event);
4768 	item->size = size;
4769 	memcpy(item->str, rb_string, size);
4770 
4771 	if (nested) {
4772 		data->bytes_alloc_nested += event_len;
4773 		data->bytes_written_nested += len;
4774 		data->events_nested++;
4775 		if (!data->min_size_nested || len < data->min_size_nested)
4776 			data->min_size_nested = len;
4777 		if (len > data->max_size_nested)
4778 			data->max_size_nested = len;
4779 	} else {
4780 		data->bytes_alloc += event_len;
4781 		data->bytes_written += len;
4782 		data->events++;
4783 		if (!data->min_size || len < data->min_size)
4784 			data->max_size = len;
4785 		if (len > data->max_size)
4786 			data->max_size = len;
4787 	}
4788 
4789  out:
4790 	ring_buffer_unlock_commit(data->buffer, event);
4791 
4792 	return 0;
4793 }
4794 
4795 static __init int rb_test(void *arg)
4796 {
4797 	struct rb_test_data *data = arg;
4798 
4799 	while (!kthread_should_stop()) {
4800 		rb_write_something(data, false);
4801 		data->cnt++;
4802 
4803 		set_current_state(TASK_INTERRUPTIBLE);
4804 		/* Now sleep between a min of 100-300us and a max of 1ms */
4805 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4806 	}
4807 
4808 	return 0;
4809 }
4810 
4811 static __init void rb_ipi(void *ignore)
4812 {
4813 	struct rb_test_data *data;
4814 	int cpu = smp_processor_id();
4815 
4816 	data = &rb_data[cpu];
4817 	rb_write_something(data, true);
4818 }
4819 
4820 static __init int rb_hammer_test(void *arg)
4821 {
4822 	while (!kthread_should_stop()) {
4823 
4824 		/* Send an IPI to all cpus to write data! */
4825 		smp_call_function(rb_ipi, NULL, 1);
4826 		/* No sleep, but for non preempt, let others run */
4827 		schedule();
4828 	}
4829 
4830 	return 0;
4831 }
4832 
4833 static __init int test_ringbuffer(void)
4834 {
4835 	struct task_struct *rb_hammer;
4836 	struct ring_buffer *buffer;
4837 	int cpu;
4838 	int ret = 0;
4839 
4840 	pr_info("Running ring buffer tests...\n");
4841 
4842 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4843 	if (WARN_ON(!buffer))
4844 		return 0;
4845 
4846 	/* Disable buffer so that threads can't write to it yet */
4847 	ring_buffer_record_off(buffer);
4848 
4849 	for_each_online_cpu(cpu) {
4850 		rb_data[cpu].buffer = buffer;
4851 		rb_data[cpu].cpu = cpu;
4852 		rb_data[cpu].cnt = cpu;
4853 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4854 						 "rbtester/%d", cpu);
4855 		if (WARN_ON(!rb_threads[cpu])) {
4856 			pr_cont("FAILED\n");
4857 			ret = -1;
4858 			goto out_free;
4859 		}
4860 
4861 		kthread_bind(rb_threads[cpu], cpu);
4862  		wake_up_process(rb_threads[cpu]);
4863 	}
4864 
4865 	/* Now create the rb hammer! */
4866 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4867 	if (WARN_ON(!rb_hammer)) {
4868 		pr_cont("FAILED\n");
4869 		ret = -1;
4870 		goto out_free;
4871 	}
4872 
4873 	ring_buffer_record_on(buffer);
4874 	/*
4875 	 * Show buffer is enabled before setting rb_test_started.
4876 	 * Yes there's a small race window where events could be
4877 	 * dropped and the thread wont catch it. But when a ring
4878 	 * buffer gets enabled, there will always be some kind of
4879 	 * delay before other CPUs see it. Thus, we don't care about
4880 	 * those dropped events. We care about events dropped after
4881 	 * the threads see that the buffer is active.
4882 	 */
4883 	smp_wmb();
4884 	rb_test_started = true;
4885 
4886 	set_current_state(TASK_INTERRUPTIBLE);
4887 	/* Just run for 10 seconds */;
4888 	schedule_timeout(10 * HZ);
4889 
4890 	kthread_stop(rb_hammer);
4891 
4892  out_free:
4893 	for_each_online_cpu(cpu) {
4894 		if (!rb_threads[cpu])
4895 			break;
4896 		kthread_stop(rb_threads[cpu]);
4897 	}
4898 	if (ret) {
4899 		ring_buffer_free(buffer);
4900 		return ret;
4901 	}
4902 
4903 	/* Report! */
4904 	pr_info("finished\n");
4905 	for_each_online_cpu(cpu) {
4906 		struct ring_buffer_event *event;
4907 		struct rb_test_data *data = &rb_data[cpu];
4908 		struct rb_item *item;
4909 		unsigned long total_events;
4910 		unsigned long total_dropped;
4911 		unsigned long total_written;
4912 		unsigned long total_alloc;
4913 		unsigned long total_read = 0;
4914 		unsigned long total_size = 0;
4915 		unsigned long total_len = 0;
4916 		unsigned long total_lost = 0;
4917 		unsigned long lost;
4918 		int big_event_size;
4919 		int small_event_size;
4920 
4921 		ret = -1;
4922 
4923 		total_events = data->events + data->events_nested;
4924 		total_written = data->bytes_written + data->bytes_written_nested;
4925 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4926 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4927 
4928 		big_event_size = data->max_size + data->max_size_nested;
4929 		small_event_size = data->min_size + data->min_size_nested;
4930 
4931 		pr_info("CPU %d:\n", cpu);
4932 		pr_info("              events:    %ld\n", total_events);
4933 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4934 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4935 		pr_info("       written bytes:    %ld\n", total_written);
4936 		pr_info("       biggest event:    %d\n", big_event_size);
4937 		pr_info("      smallest event:    %d\n", small_event_size);
4938 
4939 		if (RB_WARN_ON(buffer, total_dropped))
4940 			break;
4941 
4942 		ret = 0;
4943 
4944 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4945 			total_lost += lost;
4946 			item = ring_buffer_event_data(event);
4947 			total_len += ring_buffer_event_length(event);
4948 			total_size += item->size + sizeof(struct rb_item);
4949 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4950 				pr_info("FAILED!\n");
4951 				pr_info("buffer had: %.*s\n", item->size, item->str);
4952 				pr_info("expected:   %.*s\n", item->size, rb_string);
4953 				RB_WARN_ON(buffer, 1);
4954 				ret = -1;
4955 				break;
4956 			}
4957 			total_read++;
4958 		}
4959 		if (ret)
4960 			break;
4961 
4962 		ret = -1;
4963 
4964 		pr_info("         read events:   %ld\n", total_read);
4965 		pr_info("         lost events:   %ld\n", total_lost);
4966 		pr_info("        total events:   %ld\n", total_lost + total_read);
4967 		pr_info("  recorded len bytes:   %ld\n", total_len);
4968 		pr_info(" recorded size bytes:   %ld\n", total_size);
4969 		if (total_lost)
4970 			pr_info(" With dropped events, record len and size may not match\n"
4971 				" alloced and written from above\n");
4972 		if (!total_lost) {
4973 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4974 				       total_size != total_written))
4975 				break;
4976 		}
4977 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4978 			break;
4979 
4980 		ret = 0;
4981 	}
4982 	if (!ret)
4983 		pr_info("Ring buffer PASSED!\n");
4984 
4985 	ring_buffer_free(buffer);
4986 	return 0;
4987 }
4988 
4989 late_initcall(test_ringbuffer);
4990 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4991