1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/security.h> 15 #include <linux/uaccess.h> 16 #include <linux/hardirq.h> 17 #include <linux/kthread.h> /* for self test */ 18 #include <linux/module.h> 19 #include <linux/percpu.h> 20 #include <linux/mutex.h> 21 #include <linux/delay.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/list.h> 26 #include <linux/cpu.h> 27 #include <linux/oom.h> 28 29 #include <asm/local.h> 30 31 static void update_pages_handler(struct work_struct *work); 32 33 /* 34 * The ring buffer header is special. We must manually up keep it. 35 */ 36 int ring_buffer_print_entry_header(struct trace_seq *s) 37 { 38 trace_seq_puts(s, "# compressed entry header\n"); 39 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 40 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 41 trace_seq_puts(s, "\tarray : 32 bits\n"); 42 trace_seq_putc(s, '\n'); 43 trace_seq_printf(s, "\tpadding : type == %d\n", 44 RINGBUF_TYPE_PADDING); 45 trace_seq_printf(s, "\ttime_extend : type == %d\n", 46 RINGBUF_TYPE_TIME_EXTEND); 47 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 48 RINGBUF_TYPE_TIME_STAMP); 49 trace_seq_printf(s, "\tdata max type_len == %d\n", 50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 51 52 return !trace_seq_has_overflowed(s); 53 } 54 55 /* 56 * The ring buffer is made up of a list of pages. A separate list of pages is 57 * allocated for each CPU. A writer may only write to a buffer that is 58 * associated with the CPU it is currently executing on. A reader may read 59 * from any per cpu buffer. 60 * 61 * The reader is special. For each per cpu buffer, the reader has its own 62 * reader page. When a reader has read the entire reader page, this reader 63 * page is swapped with another page in the ring buffer. 64 * 65 * Now, as long as the writer is off the reader page, the reader can do what 66 * ever it wants with that page. The writer will never write to that page 67 * again (as long as it is out of the ring buffer). 68 * 69 * Here's some silly ASCII art. 70 * 71 * +------+ 72 * |reader| RING BUFFER 73 * |page | 74 * +------+ +---+ +---+ +---+ 75 * | |-->| |-->| | 76 * +---+ +---+ +---+ 77 * ^ | 78 * | | 79 * +---------------+ 80 * 81 * 82 * +------+ 83 * |reader| RING BUFFER 84 * |page |------------------v 85 * +------+ +---+ +---+ +---+ 86 * | |-->| |-->| | 87 * +---+ +---+ +---+ 88 * ^ | 89 * | | 90 * +---------------+ 91 * 92 * 93 * +------+ 94 * |reader| RING BUFFER 95 * |page |------------------v 96 * +------+ +---+ +---+ +---+ 97 * ^ | |-->| |-->| | 98 * | +---+ +---+ +---+ 99 * | | 100 * | | 101 * +------------------------------+ 102 * 103 * 104 * +------+ 105 * |buffer| RING BUFFER 106 * |page |------------------v 107 * +------+ +---+ +---+ +---+ 108 * ^ | | | |-->| | 109 * | New +---+ +---+ +---+ 110 * | Reader------^ | 111 * | page | 112 * +------------------------------+ 113 * 114 * 115 * After we make this swap, the reader can hand this page off to the splice 116 * code and be done with it. It can even allocate a new page if it needs to 117 * and swap that into the ring buffer. 118 * 119 * We will be using cmpxchg soon to make all this lockless. 120 * 121 */ 122 123 /* Used for individual buffers (after the counter) */ 124 #define RB_BUFFER_OFF (1 << 20) 125 126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 127 128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 129 #define RB_ALIGNMENT 4U 130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT) 133 134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 136 137 enum { 138 RB_LEN_TIME_EXTEND = 8, 139 RB_LEN_TIME_STAMP = 8, 140 }; 141 142 #define skip_time_extend(event) \ 143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 144 145 #define extended_time(event) \ 146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 147 148 static inline int rb_null_event(struct ring_buffer_event *event) 149 { 150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 151 } 152 153 static void rb_event_set_padding(struct ring_buffer_event *event) 154 { 155 /* padding has a NULL time_delta */ 156 event->type_len = RINGBUF_TYPE_PADDING; 157 event->time_delta = 0; 158 } 159 160 static unsigned 161 rb_event_data_length(struct ring_buffer_event *event) 162 { 163 unsigned length; 164 165 if (event->type_len) 166 length = event->type_len * RB_ALIGNMENT; 167 else 168 length = event->array[0]; 169 return length + RB_EVNT_HDR_SIZE; 170 } 171 172 /* 173 * Return the length of the given event. Will return 174 * the length of the time extend if the event is a 175 * time extend. 176 */ 177 static inline unsigned 178 rb_event_length(struct ring_buffer_event *event) 179 { 180 switch (event->type_len) { 181 case RINGBUF_TYPE_PADDING: 182 if (rb_null_event(event)) 183 /* undefined */ 184 return -1; 185 return event->array[0] + RB_EVNT_HDR_SIZE; 186 187 case RINGBUF_TYPE_TIME_EXTEND: 188 return RB_LEN_TIME_EXTEND; 189 190 case RINGBUF_TYPE_TIME_STAMP: 191 return RB_LEN_TIME_STAMP; 192 193 case RINGBUF_TYPE_DATA: 194 return rb_event_data_length(event); 195 default: 196 BUG(); 197 } 198 /* not hit */ 199 return 0; 200 } 201 202 /* 203 * Return total length of time extend and data, 204 * or just the event length for all other events. 205 */ 206 static inline unsigned 207 rb_event_ts_length(struct ring_buffer_event *event) 208 { 209 unsigned len = 0; 210 211 if (extended_time(event)) { 212 /* time extends include the data event after it */ 213 len = RB_LEN_TIME_EXTEND; 214 event = skip_time_extend(event); 215 } 216 return len + rb_event_length(event); 217 } 218 219 /** 220 * ring_buffer_event_length - return the length of the event 221 * @event: the event to get the length of 222 * 223 * Returns the size of the data load of a data event. 224 * If the event is something other than a data event, it 225 * returns the size of the event itself. With the exception 226 * of a TIME EXTEND, where it still returns the size of the 227 * data load of the data event after it. 228 */ 229 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 230 { 231 unsigned length; 232 233 if (extended_time(event)) 234 event = skip_time_extend(event); 235 236 length = rb_event_length(event); 237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 238 return length; 239 length -= RB_EVNT_HDR_SIZE; 240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 241 length -= sizeof(event->array[0]); 242 return length; 243 } 244 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 245 246 /* inline for ring buffer fast paths */ 247 static __always_inline void * 248 rb_event_data(struct ring_buffer_event *event) 249 { 250 if (extended_time(event)) 251 event = skip_time_extend(event); 252 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 253 /* If length is in len field, then array[0] has the data */ 254 if (event->type_len) 255 return (void *)&event->array[0]; 256 /* Otherwise length is in array[0] and array[1] has the data */ 257 return (void *)&event->array[1]; 258 } 259 260 /** 261 * ring_buffer_event_data - return the data of the event 262 * @event: the event to get the data from 263 */ 264 void *ring_buffer_event_data(struct ring_buffer_event *event) 265 { 266 return rb_event_data(event); 267 } 268 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 269 270 #define for_each_buffer_cpu(buffer, cpu) \ 271 for_each_cpu(cpu, buffer->cpumask) 272 273 #define TS_SHIFT 27 274 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 275 #define TS_DELTA_TEST (~TS_MASK) 276 277 /** 278 * ring_buffer_event_time_stamp - return the event's extended timestamp 279 * @event: the event to get the timestamp of 280 * 281 * Returns the extended timestamp associated with a data event. 282 * An extended time_stamp is a 64-bit timestamp represented 283 * internally in a special way that makes the best use of space 284 * contained within a ring buffer event. This function decodes 285 * it and maps it to a straight u64 value. 286 */ 287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 288 { 289 u64 ts; 290 291 ts = event->array[0]; 292 ts <<= TS_SHIFT; 293 ts += event->time_delta; 294 295 return ts; 296 } 297 298 /* Flag when events were overwritten */ 299 #define RB_MISSED_EVENTS (1 << 31) 300 /* Missed count stored at end */ 301 #define RB_MISSED_STORED (1 << 30) 302 303 struct buffer_data_page { 304 u64 time_stamp; /* page time stamp */ 305 local_t commit; /* write committed index */ 306 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 307 }; 308 309 /* 310 * Note, the buffer_page list must be first. The buffer pages 311 * are allocated in cache lines, which means that each buffer 312 * page will be at the beginning of a cache line, and thus 313 * the least significant bits will be zero. We use this to 314 * add flags in the list struct pointers, to make the ring buffer 315 * lockless. 316 */ 317 struct buffer_page { 318 struct list_head list; /* list of buffer pages */ 319 local_t write; /* index for next write */ 320 unsigned read; /* index for next read */ 321 local_t entries; /* entries on this page */ 322 unsigned long real_end; /* real end of data */ 323 struct buffer_data_page *page; /* Actual data page */ 324 }; 325 326 /* 327 * The buffer page counters, write and entries, must be reset 328 * atomically when crossing page boundaries. To synchronize this 329 * update, two counters are inserted into the number. One is 330 * the actual counter for the write position or count on the page. 331 * 332 * The other is a counter of updaters. Before an update happens 333 * the update partition of the counter is incremented. This will 334 * allow the updater to update the counter atomically. 335 * 336 * The counter is 20 bits, and the state data is 12. 337 */ 338 #define RB_WRITE_MASK 0xfffff 339 #define RB_WRITE_INTCNT (1 << 20) 340 341 static void rb_init_page(struct buffer_data_page *bpage) 342 { 343 local_set(&bpage->commit, 0); 344 } 345 346 /* 347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 348 * this issue out. 349 */ 350 static void free_buffer_page(struct buffer_page *bpage) 351 { 352 free_page((unsigned long)bpage->page); 353 kfree(bpage); 354 } 355 356 /* 357 * We need to fit the time_stamp delta into 27 bits. 358 */ 359 static inline int test_time_stamp(u64 delta) 360 { 361 if (delta & TS_DELTA_TEST) 362 return 1; 363 return 0; 364 } 365 366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 367 368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 370 371 int ring_buffer_print_page_header(struct trace_seq *s) 372 { 373 struct buffer_data_page field; 374 375 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 376 "offset:0;\tsize:%u;\tsigned:%u;\n", 377 (unsigned int)sizeof(field.time_stamp), 378 (unsigned int)is_signed_type(u64)); 379 380 trace_seq_printf(s, "\tfield: local_t commit;\t" 381 "offset:%u;\tsize:%u;\tsigned:%u;\n", 382 (unsigned int)offsetof(typeof(field), commit), 383 (unsigned int)sizeof(field.commit), 384 (unsigned int)is_signed_type(long)); 385 386 trace_seq_printf(s, "\tfield: int overwrite;\t" 387 "offset:%u;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)offsetof(typeof(field), commit), 389 1, 390 (unsigned int)is_signed_type(long)); 391 392 trace_seq_printf(s, "\tfield: char data;\t" 393 "offset:%u;\tsize:%u;\tsigned:%u;\n", 394 (unsigned int)offsetof(typeof(field), data), 395 (unsigned int)BUF_PAGE_SIZE, 396 (unsigned int)is_signed_type(char)); 397 398 return !trace_seq_has_overflowed(s); 399 } 400 401 struct rb_irq_work { 402 struct irq_work work; 403 wait_queue_head_t waiters; 404 wait_queue_head_t full_waiters; 405 bool waiters_pending; 406 bool full_waiters_pending; 407 bool wakeup_full; 408 }; 409 410 /* 411 * Structure to hold event state and handle nested events. 412 */ 413 struct rb_event_info { 414 u64 ts; 415 u64 delta; 416 unsigned long length; 417 struct buffer_page *tail_page; 418 int add_timestamp; 419 }; 420 421 /* 422 * Used for which event context the event is in. 423 * NMI = 0 424 * IRQ = 1 425 * SOFTIRQ = 2 426 * NORMAL = 3 427 * 428 * See trace_recursive_lock() comment below for more details. 429 */ 430 enum { 431 RB_CTX_NMI, 432 RB_CTX_IRQ, 433 RB_CTX_SOFTIRQ, 434 RB_CTX_NORMAL, 435 RB_CTX_MAX 436 }; 437 438 /* 439 * head_page == tail_page && head == tail then buffer is empty. 440 */ 441 struct ring_buffer_per_cpu { 442 int cpu; 443 atomic_t record_disabled; 444 atomic_t resize_disabled; 445 struct trace_buffer *buffer; 446 raw_spinlock_t reader_lock; /* serialize readers */ 447 arch_spinlock_t lock; 448 struct lock_class_key lock_key; 449 struct buffer_data_page *free_page; 450 unsigned long nr_pages; 451 unsigned int current_context; 452 struct list_head *pages; 453 struct buffer_page *head_page; /* read from head */ 454 struct buffer_page *tail_page; /* write to tail */ 455 struct buffer_page *commit_page; /* committed pages */ 456 struct buffer_page *reader_page; 457 unsigned long lost_events; 458 unsigned long last_overrun; 459 unsigned long nest; 460 local_t entries_bytes; 461 local_t entries; 462 local_t overrun; 463 local_t commit_overrun; 464 local_t dropped_events; 465 local_t committing; 466 local_t commits; 467 local_t pages_touched; 468 local_t pages_read; 469 long last_pages_touch; 470 size_t shortest_full; 471 unsigned long read; 472 unsigned long read_bytes; 473 u64 write_stamp; 474 u64 read_stamp; 475 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 476 long nr_pages_to_update; 477 struct list_head new_pages; /* new pages to add */ 478 struct work_struct update_pages_work; 479 struct completion update_done; 480 481 struct rb_irq_work irq_work; 482 }; 483 484 struct trace_buffer { 485 unsigned flags; 486 int cpus; 487 atomic_t record_disabled; 488 cpumask_var_t cpumask; 489 490 struct lock_class_key *reader_lock_key; 491 492 struct mutex mutex; 493 494 struct ring_buffer_per_cpu **buffers; 495 496 struct hlist_node node; 497 u64 (*clock)(void); 498 499 struct rb_irq_work irq_work; 500 bool time_stamp_abs; 501 }; 502 503 struct ring_buffer_iter { 504 struct ring_buffer_per_cpu *cpu_buffer; 505 unsigned long head; 506 unsigned long next_event; 507 struct buffer_page *head_page; 508 struct buffer_page *cache_reader_page; 509 unsigned long cache_read; 510 u64 read_stamp; 511 u64 page_stamp; 512 struct ring_buffer_event *event; 513 int missed_events; 514 }; 515 516 /** 517 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 518 * @buffer: The ring_buffer to get the number of pages from 519 * @cpu: The cpu of the ring_buffer to get the number of pages from 520 * 521 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 522 */ 523 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 524 { 525 return buffer->buffers[cpu]->nr_pages; 526 } 527 528 /** 529 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 530 * @buffer: The ring_buffer to get the number of pages from 531 * @cpu: The cpu of the ring_buffer to get the number of pages from 532 * 533 * Returns the number of pages that have content in the ring buffer. 534 */ 535 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 536 { 537 size_t read; 538 size_t cnt; 539 540 read = local_read(&buffer->buffers[cpu]->pages_read); 541 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 542 /* The reader can read an empty page, but not more than that */ 543 if (cnt < read) { 544 WARN_ON_ONCE(read > cnt + 1); 545 return 0; 546 } 547 548 return cnt - read; 549 } 550 551 /* 552 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 553 * 554 * Schedules a delayed work to wake up any task that is blocked on the 555 * ring buffer waiters queue. 556 */ 557 static void rb_wake_up_waiters(struct irq_work *work) 558 { 559 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 560 561 wake_up_all(&rbwork->waiters); 562 if (rbwork->wakeup_full) { 563 rbwork->wakeup_full = false; 564 wake_up_all(&rbwork->full_waiters); 565 } 566 } 567 568 /** 569 * ring_buffer_wait - wait for input to the ring buffer 570 * @buffer: buffer to wait on 571 * @cpu: the cpu buffer to wait on 572 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 573 * 574 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 575 * as data is added to any of the @buffer's cpu buffers. Otherwise 576 * it will wait for data to be added to a specific cpu buffer. 577 */ 578 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 579 { 580 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 581 DEFINE_WAIT(wait); 582 struct rb_irq_work *work; 583 int ret = 0; 584 585 /* 586 * Depending on what the caller is waiting for, either any 587 * data in any cpu buffer, or a specific buffer, put the 588 * caller on the appropriate wait queue. 589 */ 590 if (cpu == RING_BUFFER_ALL_CPUS) { 591 work = &buffer->irq_work; 592 /* Full only makes sense on per cpu reads */ 593 full = 0; 594 } else { 595 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 596 return -ENODEV; 597 cpu_buffer = buffer->buffers[cpu]; 598 work = &cpu_buffer->irq_work; 599 } 600 601 602 while (true) { 603 if (full) 604 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 605 else 606 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 607 608 /* 609 * The events can happen in critical sections where 610 * checking a work queue can cause deadlocks. 611 * After adding a task to the queue, this flag is set 612 * only to notify events to try to wake up the queue 613 * using irq_work. 614 * 615 * We don't clear it even if the buffer is no longer 616 * empty. The flag only causes the next event to run 617 * irq_work to do the work queue wake up. The worse 618 * that can happen if we race with !trace_empty() is that 619 * an event will cause an irq_work to try to wake up 620 * an empty queue. 621 * 622 * There's no reason to protect this flag either, as 623 * the work queue and irq_work logic will do the necessary 624 * synchronization for the wake ups. The only thing 625 * that is necessary is that the wake up happens after 626 * a task has been queued. It's OK for spurious wake ups. 627 */ 628 if (full) 629 work->full_waiters_pending = true; 630 else 631 work->waiters_pending = true; 632 633 if (signal_pending(current)) { 634 ret = -EINTR; 635 break; 636 } 637 638 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 639 break; 640 641 if (cpu != RING_BUFFER_ALL_CPUS && 642 !ring_buffer_empty_cpu(buffer, cpu)) { 643 unsigned long flags; 644 bool pagebusy; 645 size_t nr_pages; 646 size_t dirty; 647 648 if (!full) 649 break; 650 651 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 652 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 653 nr_pages = cpu_buffer->nr_pages; 654 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 655 if (!cpu_buffer->shortest_full || 656 cpu_buffer->shortest_full < full) 657 cpu_buffer->shortest_full = full; 658 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 659 if (!pagebusy && 660 (!nr_pages || (dirty * 100) > full * nr_pages)) 661 break; 662 } 663 664 schedule(); 665 } 666 667 if (full) 668 finish_wait(&work->full_waiters, &wait); 669 else 670 finish_wait(&work->waiters, &wait); 671 672 return ret; 673 } 674 675 /** 676 * ring_buffer_poll_wait - poll on buffer input 677 * @buffer: buffer to wait on 678 * @cpu: the cpu buffer to wait on 679 * @filp: the file descriptor 680 * @poll_table: The poll descriptor 681 * 682 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 683 * as data is added to any of the @buffer's cpu buffers. Otherwise 684 * it will wait for data to be added to a specific cpu buffer. 685 * 686 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 687 * zero otherwise. 688 */ 689 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 690 struct file *filp, poll_table *poll_table) 691 { 692 struct ring_buffer_per_cpu *cpu_buffer; 693 struct rb_irq_work *work; 694 695 if (cpu == RING_BUFFER_ALL_CPUS) 696 work = &buffer->irq_work; 697 else { 698 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 699 return -EINVAL; 700 701 cpu_buffer = buffer->buffers[cpu]; 702 work = &cpu_buffer->irq_work; 703 } 704 705 poll_wait(filp, &work->waiters, poll_table); 706 work->waiters_pending = true; 707 /* 708 * There's a tight race between setting the waiters_pending and 709 * checking if the ring buffer is empty. Once the waiters_pending bit 710 * is set, the next event will wake the task up, but we can get stuck 711 * if there's only a single event in. 712 * 713 * FIXME: Ideally, we need a memory barrier on the writer side as well, 714 * but adding a memory barrier to all events will cause too much of a 715 * performance hit in the fast path. We only need a memory barrier when 716 * the buffer goes from empty to having content. But as this race is 717 * extremely small, and it's not a problem if another event comes in, we 718 * will fix it later. 719 */ 720 smp_mb(); 721 722 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 723 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 724 return EPOLLIN | EPOLLRDNORM; 725 return 0; 726 } 727 728 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 729 #define RB_WARN_ON(b, cond) \ 730 ({ \ 731 int _____ret = unlikely(cond); \ 732 if (_____ret) { \ 733 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 734 struct ring_buffer_per_cpu *__b = \ 735 (void *)b; \ 736 atomic_inc(&__b->buffer->record_disabled); \ 737 } else \ 738 atomic_inc(&b->record_disabled); \ 739 WARN_ON(1); \ 740 } \ 741 _____ret; \ 742 }) 743 744 /* Up this if you want to test the TIME_EXTENTS and normalization */ 745 #define DEBUG_SHIFT 0 746 747 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 748 { 749 /* shift to debug/test normalization and TIME_EXTENTS */ 750 return buffer->clock() << DEBUG_SHIFT; 751 } 752 753 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 754 { 755 u64 time; 756 757 preempt_disable_notrace(); 758 time = rb_time_stamp(buffer); 759 preempt_enable_notrace(); 760 761 return time; 762 } 763 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 764 765 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 766 int cpu, u64 *ts) 767 { 768 /* Just stupid testing the normalize function and deltas */ 769 *ts >>= DEBUG_SHIFT; 770 } 771 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 772 773 /* 774 * Making the ring buffer lockless makes things tricky. 775 * Although writes only happen on the CPU that they are on, 776 * and they only need to worry about interrupts. Reads can 777 * happen on any CPU. 778 * 779 * The reader page is always off the ring buffer, but when the 780 * reader finishes with a page, it needs to swap its page with 781 * a new one from the buffer. The reader needs to take from 782 * the head (writes go to the tail). But if a writer is in overwrite 783 * mode and wraps, it must push the head page forward. 784 * 785 * Here lies the problem. 786 * 787 * The reader must be careful to replace only the head page, and 788 * not another one. As described at the top of the file in the 789 * ASCII art, the reader sets its old page to point to the next 790 * page after head. It then sets the page after head to point to 791 * the old reader page. But if the writer moves the head page 792 * during this operation, the reader could end up with the tail. 793 * 794 * We use cmpxchg to help prevent this race. We also do something 795 * special with the page before head. We set the LSB to 1. 796 * 797 * When the writer must push the page forward, it will clear the 798 * bit that points to the head page, move the head, and then set 799 * the bit that points to the new head page. 800 * 801 * We also don't want an interrupt coming in and moving the head 802 * page on another writer. Thus we use the second LSB to catch 803 * that too. Thus: 804 * 805 * head->list->prev->next bit 1 bit 0 806 * ------- ------- 807 * Normal page 0 0 808 * Points to head page 0 1 809 * New head page 1 0 810 * 811 * Note we can not trust the prev pointer of the head page, because: 812 * 813 * +----+ +-----+ +-----+ 814 * | |------>| T |---X--->| N | 815 * | |<------| | | | 816 * +----+ +-----+ +-----+ 817 * ^ ^ | 818 * | +-----+ | | 819 * +----------| R |----------+ | 820 * | |<-----------+ 821 * +-----+ 822 * 823 * Key: ---X--> HEAD flag set in pointer 824 * T Tail page 825 * R Reader page 826 * N Next page 827 * 828 * (see __rb_reserve_next() to see where this happens) 829 * 830 * What the above shows is that the reader just swapped out 831 * the reader page with a page in the buffer, but before it 832 * could make the new header point back to the new page added 833 * it was preempted by a writer. The writer moved forward onto 834 * the new page added by the reader and is about to move forward 835 * again. 836 * 837 * You can see, it is legitimate for the previous pointer of 838 * the head (or any page) not to point back to itself. But only 839 * temporarily. 840 */ 841 842 #define RB_PAGE_NORMAL 0UL 843 #define RB_PAGE_HEAD 1UL 844 #define RB_PAGE_UPDATE 2UL 845 846 847 #define RB_FLAG_MASK 3UL 848 849 /* PAGE_MOVED is not part of the mask */ 850 #define RB_PAGE_MOVED 4UL 851 852 /* 853 * rb_list_head - remove any bit 854 */ 855 static struct list_head *rb_list_head(struct list_head *list) 856 { 857 unsigned long val = (unsigned long)list; 858 859 return (struct list_head *)(val & ~RB_FLAG_MASK); 860 } 861 862 /* 863 * rb_is_head_page - test if the given page is the head page 864 * 865 * Because the reader may move the head_page pointer, we can 866 * not trust what the head page is (it may be pointing to 867 * the reader page). But if the next page is a header page, 868 * its flags will be non zero. 869 */ 870 static inline int 871 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 872 struct buffer_page *page, struct list_head *list) 873 { 874 unsigned long val; 875 876 val = (unsigned long)list->next; 877 878 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 879 return RB_PAGE_MOVED; 880 881 return val & RB_FLAG_MASK; 882 } 883 884 /* 885 * rb_is_reader_page 886 * 887 * The unique thing about the reader page, is that, if the 888 * writer is ever on it, the previous pointer never points 889 * back to the reader page. 890 */ 891 static bool rb_is_reader_page(struct buffer_page *page) 892 { 893 struct list_head *list = page->list.prev; 894 895 return rb_list_head(list->next) != &page->list; 896 } 897 898 /* 899 * rb_set_list_to_head - set a list_head to be pointing to head. 900 */ 901 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 902 struct list_head *list) 903 { 904 unsigned long *ptr; 905 906 ptr = (unsigned long *)&list->next; 907 *ptr |= RB_PAGE_HEAD; 908 *ptr &= ~RB_PAGE_UPDATE; 909 } 910 911 /* 912 * rb_head_page_activate - sets up head page 913 */ 914 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 915 { 916 struct buffer_page *head; 917 918 head = cpu_buffer->head_page; 919 if (!head) 920 return; 921 922 /* 923 * Set the previous list pointer to have the HEAD flag. 924 */ 925 rb_set_list_to_head(cpu_buffer, head->list.prev); 926 } 927 928 static void rb_list_head_clear(struct list_head *list) 929 { 930 unsigned long *ptr = (unsigned long *)&list->next; 931 932 *ptr &= ~RB_FLAG_MASK; 933 } 934 935 /* 936 * rb_head_page_deactivate - clears head page ptr (for free list) 937 */ 938 static void 939 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 940 { 941 struct list_head *hd; 942 943 /* Go through the whole list and clear any pointers found. */ 944 rb_list_head_clear(cpu_buffer->pages); 945 946 list_for_each(hd, cpu_buffer->pages) 947 rb_list_head_clear(hd); 948 } 949 950 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 951 struct buffer_page *head, 952 struct buffer_page *prev, 953 int old_flag, int new_flag) 954 { 955 struct list_head *list; 956 unsigned long val = (unsigned long)&head->list; 957 unsigned long ret; 958 959 list = &prev->list; 960 961 val &= ~RB_FLAG_MASK; 962 963 ret = cmpxchg((unsigned long *)&list->next, 964 val | old_flag, val | new_flag); 965 966 /* check if the reader took the page */ 967 if ((ret & ~RB_FLAG_MASK) != val) 968 return RB_PAGE_MOVED; 969 970 return ret & RB_FLAG_MASK; 971 } 972 973 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 974 struct buffer_page *head, 975 struct buffer_page *prev, 976 int old_flag) 977 { 978 return rb_head_page_set(cpu_buffer, head, prev, 979 old_flag, RB_PAGE_UPDATE); 980 } 981 982 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 983 struct buffer_page *head, 984 struct buffer_page *prev, 985 int old_flag) 986 { 987 return rb_head_page_set(cpu_buffer, head, prev, 988 old_flag, RB_PAGE_HEAD); 989 } 990 991 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 992 struct buffer_page *head, 993 struct buffer_page *prev, 994 int old_flag) 995 { 996 return rb_head_page_set(cpu_buffer, head, prev, 997 old_flag, RB_PAGE_NORMAL); 998 } 999 1000 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 1001 struct buffer_page **bpage) 1002 { 1003 struct list_head *p = rb_list_head((*bpage)->list.next); 1004 1005 *bpage = list_entry(p, struct buffer_page, list); 1006 } 1007 1008 static struct buffer_page * 1009 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1010 { 1011 struct buffer_page *head; 1012 struct buffer_page *page; 1013 struct list_head *list; 1014 int i; 1015 1016 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1017 return NULL; 1018 1019 /* sanity check */ 1020 list = cpu_buffer->pages; 1021 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1022 return NULL; 1023 1024 page = head = cpu_buffer->head_page; 1025 /* 1026 * It is possible that the writer moves the header behind 1027 * where we started, and we miss in one loop. 1028 * A second loop should grab the header, but we'll do 1029 * three loops just because I'm paranoid. 1030 */ 1031 for (i = 0; i < 3; i++) { 1032 do { 1033 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1034 cpu_buffer->head_page = page; 1035 return page; 1036 } 1037 rb_inc_page(cpu_buffer, &page); 1038 } while (page != head); 1039 } 1040 1041 RB_WARN_ON(cpu_buffer, 1); 1042 1043 return NULL; 1044 } 1045 1046 static int rb_head_page_replace(struct buffer_page *old, 1047 struct buffer_page *new) 1048 { 1049 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1050 unsigned long val; 1051 unsigned long ret; 1052 1053 val = *ptr & ~RB_FLAG_MASK; 1054 val |= RB_PAGE_HEAD; 1055 1056 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1057 1058 return ret == val; 1059 } 1060 1061 /* 1062 * rb_tail_page_update - move the tail page forward 1063 */ 1064 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1065 struct buffer_page *tail_page, 1066 struct buffer_page *next_page) 1067 { 1068 unsigned long old_entries; 1069 unsigned long old_write; 1070 1071 /* 1072 * The tail page now needs to be moved forward. 1073 * 1074 * We need to reset the tail page, but without messing 1075 * with possible erasing of data brought in by interrupts 1076 * that have moved the tail page and are currently on it. 1077 * 1078 * We add a counter to the write field to denote this. 1079 */ 1080 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1081 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1082 1083 local_inc(&cpu_buffer->pages_touched); 1084 /* 1085 * Just make sure we have seen our old_write and synchronize 1086 * with any interrupts that come in. 1087 */ 1088 barrier(); 1089 1090 /* 1091 * If the tail page is still the same as what we think 1092 * it is, then it is up to us to update the tail 1093 * pointer. 1094 */ 1095 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1096 /* Zero the write counter */ 1097 unsigned long val = old_write & ~RB_WRITE_MASK; 1098 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1099 1100 /* 1101 * This will only succeed if an interrupt did 1102 * not come in and change it. In which case, we 1103 * do not want to modify it. 1104 * 1105 * We add (void) to let the compiler know that we do not care 1106 * about the return value of these functions. We use the 1107 * cmpxchg to only update if an interrupt did not already 1108 * do it for us. If the cmpxchg fails, we don't care. 1109 */ 1110 (void)local_cmpxchg(&next_page->write, old_write, val); 1111 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1112 1113 /* 1114 * No need to worry about races with clearing out the commit. 1115 * it only can increment when a commit takes place. But that 1116 * only happens in the outer most nested commit. 1117 */ 1118 local_set(&next_page->page->commit, 0); 1119 1120 /* Again, either we update tail_page or an interrupt does */ 1121 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1122 } 1123 } 1124 1125 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1126 struct buffer_page *bpage) 1127 { 1128 unsigned long val = (unsigned long)bpage; 1129 1130 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1131 return 1; 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * rb_check_list - make sure a pointer to a list has the last bits zero 1138 */ 1139 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1140 struct list_head *list) 1141 { 1142 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1143 return 1; 1144 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1145 return 1; 1146 return 0; 1147 } 1148 1149 /** 1150 * rb_check_pages - integrity check of buffer pages 1151 * @cpu_buffer: CPU buffer with pages to test 1152 * 1153 * As a safety measure we check to make sure the data pages have not 1154 * been corrupted. 1155 */ 1156 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1157 { 1158 struct list_head *head = cpu_buffer->pages; 1159 struct buffer_page *bpage, *tmp; 1160 1161 /* Reset the head page if it exists */ 1162 if (cpu_buffer->head_page) 1163 rb_set_head_page(cpu_buffer); 1164 1165 rb_head_page_deactivate(cpu_buffer); 1166 1167 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1168 return -1; 1169 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1170 return -1; 1171 1172 if (rb_check_list(cpu_buffer, head)) 1173 return -1; 1174 1175 list_for_each_entry_safe(bpage, tmp, head, list) { 1176 if (RB_WARN_ON(cpu_buffer, 1177 bpage->list.next->prev != &bpage->list)) 1178 return -1; 1179 if (RB_WARN_ON(cpu_buffer, 1180 bpage->list.prev->next != &bpage->list)) 1181 return -1; 1182 if (rb_check_list(cpu_buffer, &bpage->list)) 1183 return -1; 1184 } 1185 1186 rb_head_page_activate(cpu_buffer); 1187 1188 return 0; 1189 } 1190 1191 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1192 { 1193 struct buffer_page *bpage, *tmp; 1194 bool user_thread = current->mm != NULL; 1195 gfp_t mflags; 1196 long i; 1197 1198 /* 1199 * Check if the available memory is there first. 1200 * Note, si_mem_available() only gives us a rough estimate of available 1201 * memory. It may not be accurate. But we don't care, we just want 1202 * to prevent doing any allocation when it is obvious that it is 1203 * not going to succeed. 1204 */ 1205 i = si_mem_available(); 1206 if (i < nr_pages) 1207 return -ENOMEM; 1208 1209 /* 1210 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1211 * gracefully without invoking oom-killer and the system is not 1212 * destabilized. 1213 */ 1214 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1215 1216 /* 1217 * If a user thread allocates too much, and si_mem_available() 1218 * reports there's enough memory, even though there is not. 1219 * Make sure the OOM killer kills this thread. This can happen 1220 * even with RETRY_MAYFAIL because another task may be doing 1221 * an allocation after this task has taken all memory. 1222 * This is the task the OOM killer needs to take out during this 1223 * loop, even if it was triggered by an allocation somewhere else. 1224 */ 1225 if (user_thread) 1226 set_current_oom_origin(); 1227 for (i = 0; i < nr_pages; i++) { 1228 struct page *page; 1229 1230 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1231 mflags, cpu_to_node(cpu)); 1232 if (!bpage) 1233 goto free_pages; 1234 1235 list_add(&bpage->list, pages); 1236 1237 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1238 if (!page) 1239 goto free_pages; 1240 bpage->page = page_address(page); 1241 rb_init_page(bpage->page); 1242 1243 if (user_thread && fatal_signal_pending(current)) 1244 goto free_pages; 1245 } 1246 if (user_thread) 1247 clear_current_oom_origin(); 1248 1249 return 0; 1250 1251 free_pages: 1252 list_for_each_entry_safe(bpage, tmp, pages, list) { 1253 list_del_init(&bpage->list); 1254 free_buffer_page(bpage); 1255 } 1256 if (user_thread) 1257 clear_current_oom_origin(); 1258 1259 return -ENOMEM; 1260 } 1261 1262 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1263 unsigned long nr_pages) 1264 { 1265 LIST_HEAD(pages); 1266 1267 WARN_ON(!nr_pages); 1268 1269 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1270 return -ENOMEM; 1271 1272 /* 1273 * The ring buffer page list is a circular list that does not 1274 * start and end with a list head. All page list items point to 1275 * other pages. 1276 */ 1277 cpu_buffer->pages = pages.next; 1278 list_del(&pages); 1279 1280 cpu_buffer->nr_pages = nr_pages; 1281 1282 rb_check_pages(cpu_buffer); 1283 1284 return 0; 1285 } 1286 1287 static struct ring_buffer_per_cpu * 1288 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1289 { 1290 struct ring_buffer_per_cpu *cpu_buffer; 1291 struct buffer_page *bpage; 1292 struct page *page; 1293 int ret; 1294 1295 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1296 GFP_KERNEL, cpu_to_node(cpu)); 1297 if (!cpu_buffer) 1298 return NULL; 1299 1300 cpu_buffer->cpu = cpu; 1301 cpu_buffer->buffer = buffer; 1302 raw_spin_lock_init(&cpu_buffer->reader_lock); 1303 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1304 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1305 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1306 init_completion(&cpu_buffer->update_done); 1307 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1308 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1309 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1310 1311 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1312 GFP_KERNEL, cpu_to_node(cpu)); 1313 if (!bpage) 1314 goto fail_free_buffer; 1315 1316 rb_check_bpage(cpu_buffer, bpage); 1317 1318 cpu_buffer->reader_page = bpage; 1319 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1320 if (!page) 1321 goto fail_free_reader; 1322 bpage->page = page_address(page); 1323 rb_init_page(bpage->page); 1324 1325 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1326 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1327 1328 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1329 if (ret < 0) 1330 goto fail_free_reader; 1331 1332 cpu_buffer->head_page 1333 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1334 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1335 1336 rb_head_page_activate(cpu_buffer); 1337 1338 return cpu_buffer; 1339 1340 fail_free_reader: 1341 free_buffer_page(cpu_buffer->reader_page); 1342 1343 fail_free_buffer: 1344 kfree(cpu_buffer); 1345 return NULL; 1346 } 1347 1348 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1349 { 1350 struct list_head *head = cpu_buffer->pages; 1351 struct buffer_page *bpage, *tmp; 1352 1353 free_buffer_page(cpu_buffer->reader_page); 1354 1355 rb_head_page_deactivate(cpu_buffer); 1356 1357 if (head) { 1358 list_for_each_entry_safe(bpage, tmp, head, list) { 1359 list_del_init(&bpage->list); 1360 free_buffer_page(bpage); 1361 } 1362 bpage = list_entry(head, struct buffer_page, list); 1363 free_buffer_page(bpage); 1364 } 1365 1366 kfree(cpu_buffer); 1367 } 1368 1369 /** 1370 * __ring_buffer_alloc - allocate a new ring_buffer 1371 * @size: the size in bytes per cpu that is needed. 1372 * @flags: attributes to set for the ring buffer. 1373 * @key: ring buffer reader_lock_key. 1374 * 1375 * Currently the only flag that is available is the RB_FL_OVERWRITE 1376 * flag. This flag means that the buffer will overwrite old data 1377 * when the buffer wraps. If this flag is not set, the buffer will 1378 * drop data when the tail hits the head. 1379 */ 1380 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1381 struct lock_class_key *key) 1382 { 1383 struct trace_buffer *buffer; 1384 long nr_pages; 1385 int bsize; 1386 int cpu; 1387 int ret; 1388 1389 /* keep it in its own cache line */ 1390 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1391 GFP_KERNEL); 1392 if (!buffer) 1393 return NULL; 1394 1395 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1396 goto fail_free_buffer; 1397 1398 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1399 buffer->flags = flags; 1400 buffer->clock = trace_clock_local; 1401 buffer->reader_lock_key = key; 1402 1403 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1404 init_waitqueue_head(&buffer->irq_work.waiters); 1405 1406 /* need at least two pages */ 1407 if (nr_pages < 2) 1408 nr_pages = 2; 1409 1410 buffer->cpus = nr_cpu_ids; 1411 1412 bsize = sizeof(void *) * nr_cpu_ids; 1413 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1414 GFP_KERNEL); 1415 if (!buffer->buffers) 1416 goto fail_free_cpumask; 1417 1418 cpu = raw_smp_processor_id(); 1419 cpumask_set_cpu(cpu, buffer->cpumask); 1420 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1421 if (!buffer->buffers[cpu]) 1422 goto fail_free_buffers; 1423 1424 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1425 if (ret < 0) 1426 goto fail_free_buffers; 1427 1428 mutex_init(&buffer->mutex); 1429 1430 return buffer; 1431 1432 fail_free_buffers: 1433 for_each_buffer_cpu(buffer, cpu) { 1434 if (buffer->buffers[cpu]) 1435 rb_free_cpu_buffer(buffer->buffers[cpu]); 1436 } 1437 kfree(buffer->buffers); 1438 1439 fail_free_cpumask: 1440 free_cpumask_var(buffer->cpumask); 1441 1442 fail_free_buffer: 1443 kfree(buffer); 1444 return NULL; 1445 } 1446 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1447 1448 /** 1449 * ring_buffer_free - free a ring buffer. 1450 * @buffer: the buffer to free. 1451 */ 1452 void 1453 ring_buffer_free(struct trace_buffer *buffer) 1454 { 1455 int cpu; 1456 1457 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1458 1459 for_each_buffer_cpu(buffer, cpu) 1460 rb_free_cpu_buffer(buffer->buffers[cpu]); 1461 1462 kfree(buffer->buffers); 1463 free_cpumask_var(buffer->cpumask); 1464 1465 kfree(buffer); 1466 } 1467 EXPORT_SYMBOL_GPL(ring_buffer_free); 1468 1469 void ring_buffer_set_clock(struct trace_buffer *buffer, 1470 u64 (*clock)(void)) 1471 { 1472 buffer->clock = clock; 1473 } 1474 1475 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1476 { 1477 buffer->time_stamp_abs = abs; 1478 } 1479 1480 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1481 { 1482 return buffer->time_stamp_abs; 1483 } 1484 1485 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1486 1487 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1488 { 1489 return local_read(&bpage->entries) & RB_WRITE_MASK; 1490 } 1491 1492 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1493 { 1494 return local_read(&bpage->write) & RB_WRITE_MASK; 1495 } 1496 1497 static int 1498 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1499 { 1500 struct list_head *tail_page, *to_remove, *next_page; 1501 struct buffer_page *to_remove_page, *tmp_iter_page; 1502 struct buffer_page *last_page, *first_page; 1503 unsigned long nr_removed; 1504 unsigned long head_bit; 1505 int page_entries; 1506 1507 head_bit = 0; 1508 1509 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1510 atomic_inc(&cpu_buffer->record_disabled); 1511 /* 1512 * We don't race with the readers since we have acquired the reader 1513 * lock. We also don't race with writers after disabling recording. 1514 * This makes it easy to figure out the first and the last page to be 1515 * removed from the list. We unlink all the pages in between including 1516 * the first and last pages. This is done in a busy loop so that we 1517 * lose the least number of traces. 1518 * The pages are freed after we restart recording and unlock readers. 1519 */ 1520 tail_page = &cpu_buffer->tail_page->list; 1521 1522 /* 1523 * tail page might be on reader page, we remove the next page 1524 * from the ring buffer 1525 */ 1526 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1527 tail_page = rb_list_head(tail_page->next); 1528 to_remove = tail_page; 1529 1530 /* start of pages to remove */ 1531 first_page = list_entry(rb_list_head(to_remove->next), 1532 struct buffer_page, list); 1533 1534 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1535 to_remove = rb_list_head(to_remove)->next; 1536 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1537 } 1538 1539 next_page = rb_list_head(to_remove)->next; 1540 1541 /* 1542 * Now we remove all pages between tail_page and next_page. 1543 * Make sure that we have head_bit value preserved for the 1544 * next page 1545 */ 1546 tail_page->next = (struct list_head *)((unsigned long)next_page | 1547 head_bit); 1548 next_page = rb_list_head(next_page); 1549 next_page->prev = tail_page; 1550 1551 /* make sure pages points to a valid page in the ring buffer */ 1552 cpu_buffer->pages = next_page; 1553 1554 /* update head page */ 1555 if (head_bit) 1556 cpu_buffer->head_page = list_entry(next_page, 1557 struct buffer_page, list); 1558 1559 /* 1560 * change read pointer to make sure any read iterators reset 1561 * themselves 1562 */ 1563 cpu_buffer->read = 0; 1564 1565 /* pages are removed, resume tracing and then free the pages */ 1566 atomic_dec(&cpu_buffer->record_disabled); 1567 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1568 1569 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1570 1571 /* last buffer page to remove */ 1572 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1573 list); 1574 tmp_iter_page = first_page; 1575 1576 do { 1577 cond_resched(); 1578 1579 to_remove_page = tmp_iter_page; 1580 rb_inc_page(cpu_buffer, &tmp_iter_page); 1581 1582 /* update the counters */ 1583 page_entries = rb_page_entries(to_remove_page); 1584 if (page_entries) { 1585 /* 1586 * If something was added to this page, it was full 1587 * since it is not the tail page. So we deduct the 1588 * bytes consumed in ring buffer from here. 1589 * Increment overrun to account for the lost events. 1590 */ 1591 local_add(page_entries, &cpu_buffer->overrun); 1592 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1593 } 1594 1595 /* 1596 * We have already removed references to this list item, just 1597 * free up the buffer_page and its page 1598 */ 1599 free_buffer_page(to_remove_page); 1600 nr_removed--; 1601 1602 } while (to_remove_page != last_page); 1603 1604 RB_WARN_ON(cpu_buffer, nr_removed); 1605 1606 return nr_removed == 0; 1607 } 1608 1609 static int 1610 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1611 { 1612 struct list_head *pages = &cpu_buffer->new_pages; 1613 int retries, success; 1614 1615 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1616 /* 1617 * We are holding the reader lock, so the reader page won't be swapped 1618 * in the ring buffer. Now we are racing with the writer trying to 1619 * move head page and the tail page. 1620 * We are going to adapt the reader page update process where: 1621 * 1. We first splice the start and end of list of new pages between 1622 * the head page and its previous page. 1623 * 2. We cmpxchg the prev_page->next to point from head page to the 1624 * start of new pages list. 1625 * 3. Finally, we update the head->prev to the end of new list. 1626 * 1627 * We will try this process 10 times, to make sure that we don't keep 1628 * spinning. 1629 */ 1630 retries = 10; 1631 success = 0; 1632 while (retries--) { 1633 struct list_head *head_page, *prev_page, *r; 1634 struct list_head *last_page, *first_page; 1635 struct list_head *head_page_with_bit; 1636 1637 head_page = &rb_set_head_page(cpu_buffer)->list; 1638 if (!head_page) 1639 break; 1640 prev_page = head_page->prev; 1641 1642 first_page = pages->next; 1643 last_page = pages->prev; 1644 1645 head_page_with_bit = (struct list_head *) 1646 ((unsigned long)head_page | RB_PAGE_HEAD); 1647 1648 last_page->next = head_page_with_bit; 1649 first_page->prev = prev_page; 1650 1651 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1652 1653 if (r == head_page_with_bit) { 1654 /* 1655 * yay, we replaced the page pointer to our new list, 1656 * now, we just have to update to head page's prev 1657 * pointer to point to end of list 1658 */ 1659 head_page->prev = last_page; 1660 success = 1; 1661 break; 1662 } 1663 } 1664 1665 if (success) 1666 INIT_LIST_HEAD(pages); 1667 /* 1668 * If we weren't successful in adding in new pages, warn and stop 1669 * tracing 1670 */ 1671 RB_WARN_ON(cpu_buffer, !success); 1672 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1673 1674 /* free pages if they weren't inserted */ 1675 if (!success) { 1676 struct buffer_page *bpage, *tmp; 1677 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1678 list) { 1679 list_del_init(&bpage->list); 1680 free_buffer_page(bpage); 1681 } 1682 } 1683 return success; 1684 } 1685 1686 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1687 { 1688 int success; 1689 1690 if (cpu_buffer->nr_pages_to_update > 0) 1691 success = rb_insert_pages(cpu_buffer); 1692 else 1693 success = rb_remove_pages(cpu_buffer, 1694 -cpu_buffer->nr_pages_to_update); 1695 1696 if (success) 1697 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1698 } 1699 1700 static void update_pages_handler(struct work_struct *work) 1701 { 1702 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1703 struct ring_buffer_per_cpu, update_pages_work); 1704 rb_update_pages(cpu_buffer); 1705 complete(&cpu_buffer->update_done); 1706 } 1707 1708 /** 1709 * ring_buffer_resize - resize the ring buffer 1710 * @buffer: the buffer to resize. 1711 * @size: the new size. 1712 * @cpu_id: the cpu buffer to resize 1713 * 1714 * Minimum size is 2 * BUF_PAGE_SIZE. 1715 * 1716 * Returns 0 on success and < 0 on failure. 1717 */ 1718 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1719 int cpu_id) 1720 { 1721 struct ring_buffer_per_cpu *cpu_buffer; 1722 unsigned long nr_pages; 1723 int cpu, err = 0; 1724 1725 /* 1726 * Always succeed at resizing a non-existent buffer: 1727 */ 1728 if (!buffer) 1729 return size; 1730 1731 /* Make sure the requested buffer exists */ 1732 if (cpu_id != RING_BUFFER_ALL_CPUS && 1733 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1734 return size; 1735 1736 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1737 1738 /* we need a minimum of two pages */ 1739 if (nr_pages < 2) 1740 nr_pages = 2; 1741 1742 size = nr_pages * BUF_PAGE_SIZE; 1743 1744 /* prevent another thread from changing buffer sizes */ 1745 mutex_lock(&buffer->mutex); 1746 1747 1748 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1749 /* 1750 * Don't succeed if resizing is disabled, as a reader might be 1751 * manipulating the ring buffer and is expecting a sane state while 1752 * this is true. 1753 */ 1754 for_each_buffer_cpu(buffer, cpu) { 1755 cpu_buffer = buffer->buffers[cpu]; 1756 if (atomic_read(&cpu_buffer->resize_disabled)) { 1757 err = -EBUSY; 1758 goto out_err_unlock; 1759 } 1760 } 1761 1762 /* calculate the pages to update */ 1763 for_each_buffer_cpu(buffer, cpu) { 1764 cpu_buffer = buffer->buffers[cpu]; 1765 1766 cpu_buffer->nr_pages_to_update = nr_pages - 1767 cpu_buffer->nr_pages; 1768 /* 1769 * nothing more to do for removing pages or no update 1770 */ 1771 if (cpu_buffer->nr_pages_to_update <= 0) 1772 continue; 1773 /* 1774 * to add pages, make sure all new pages can be 1775 * allocated without receiving ENOMEM 1776 */ 1777 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1778 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1779 &cpu_buffer->new_pages, cpu)) { 1780 /* not enough memory for new pages */ 1781 err = -ENOMEM; 1782 goto out_err; 1783 } 1784 } 1785 1786 get_online_cpus(); 1787 /* 1788 * Fire off all the required work handlers 1789 * We can't schedule on offline CPUs, but it's not necessary 1790 * since we can change their buffer sizes without any race. 1791 */ 1792 for_each_buffer_cpu(buffer, cpu) { 1793 cpu_buffer = buffer->buffers[cpu]; 1794 if (!cpu_buffer->nr_pages_to_update) 1795 continue; 1796 1797 /* Can't run something on an offline CPU. */ 1798 if (!cpu_online(cpu)) { 1799 rb_update_pages(cpu_buffer); 1800 cpu_buffer->nr_pages_to_update = 0; 1801 } else { 1802 schedule_work_on(cpu, 1803 &cpu_buffer->update_pages_work); 1804 } 1805 } 1806 1807 /* wait for all the updates to complete */ 1808 for_each_buffer_cpu(buffer, cpu) { 1809 cpu_buffer = buffer->buffers[cpu]; 1810 if (!cpu_buffer->nr_pages_to_update) 1811 continue; 1812 1813 if (cpu_online(cpu)) 1814 wait_for_completion(&cpu_buffer->update_done); 1815 cpu_buffer->nr_pages_to_update = 0; 1816 } 1817 1818 put_online_cpus(); 1819 } else { 1820 /* Make sure this CPU has been initialized */ 1821 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1822 goto out; 1823 1824 cpu_buffer = buffer->buffers[cpu_id]; 1825 1826 if (nr_pages == cpu_buffer->nr_pages) 1827 goto out; 1828 1829 /* 1830 * Don't succeed if resizing is disabled, as a reader might be 1831 * manipulating the ring buffer and is expecting a sane state while 1832 * this is true. 1833 */ 1834 if (atomic_read(&cpu_buffer->resize_disabled)) { 1835 err = -EBUSY; 1836 goto out_err_unlock; 1837 } 1838 1839 cpu_buffer->nr_pages_to_update = nr_pages - 1840 cpu_buffer->nr_pages; 1841 1842 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1843 if (cpu_buffer->nr_pages_to_update > 0 && 1844 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1845 &cpu_buffer->new_pages, cpu_id)) { 1846 err = -ENOMEM; 1847 goto out_err; 1848 } 1849 1850 get_online_cpus(); 1851 1852 /* Can't run something on an offline CPU. */ 1853 if (!cpu_online(cpu_id)) 1854 rb_update_pages(cpu_buffer); 1855 else { 1856 schedule_work_on(cpu_id, 1857 &cpu_buffer->update_pages_work); 1858 wait_for_completion(&cpu_buffer->update_done); 1859 } 1860 1861 cpu_buffer->nr_pages_to_update = 0; 1862 put_online_cpus(); 1863 } 1864 1865 out: 1866 /* 1867 * The ring buffer resize can happen with the ring buffer 1868 * enabled, so that the update disturbs the tracing as little 1869 * as possible. But if the buffer is disabled, we do not need 1870 * to worry about that, and we can take the time to verify 1871 * that the buffer is not corrupt. 1872 */ 1873 if (atomic_read(&buffer->record_disabled)) { 1874 atomic_inc(&buffer->record_disabled); 1875 /* 1876 * Even though the buffer was disabled, we must make sure 1877 * that it is truly disabled before calling rb_check_pages. 1878 * There could have been a race between checking 1879 * record_disable and incrementing it. 1880 */ 1881 synchronize_rcu(); 1882 for_each_buffer_cpu(buffer, cpu) { 1883 cpu_buffer = buffer->buffers[cpu]; 1884 rb_check_pages(cpu_buffer); 1885 } 1886 atomic_dec(&buffer->record_disabled); 1887 } 1888 1889 mutex_unlock(&buffer->mutex); 1890 return size; 1891 1892 out_err: 1893 for_each_buffer_cpu(buffer, cpu) { 1894 struct buffer_page *bpage, *tmp; 1895 1896 cpu_buffer = buffer->buffers[cpu]; 1897 cpu_buffer->nr_pages_to_update = 0; 1898 1899 if (list_empty(&cpu_buffer->new_pages)) 1900 continue; 1901 1902 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1903 list) { 1904 list_del_init(&bpage->list); 1905 free_buffer_page(bpage); 1906 } 1907 } 1908 out_err_unlock: 1909 mutex_unlock(&buffer->mutex); 1910 return err; 1911 } 1912 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1913 1914 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 1915 { 1916 mutex_lock(&buffer->mutex); 1917 if (val) 1918 buffer->flags |= RB_FL_OVERWRITE; 1919 else 1920 buffer->flags &= ~RB_FL_OVERWRITE; 1921 mutex_unlock(&buffer->mutex); 1922 } 1923 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1924 1925 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1926 { 1927 return bpage->page->data + index; 1928 } 1929 1930 static __always_inline struct ring_buffer_event * 1931 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1932 { 1933 return __rb_page_index(cpu_buffer->reader_page, 1934 cpu_buffer->reader_page->read); 1935 } 1936 1937 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1938 { 1939 return local_read(&bpage->page->commit); 1940 } 1941 1942 static struct ring_buffer_event * 1943 rb_iter_head_event(struct ring_buffer_iter *iter) 1944 { 1945 struct ring_buffer_event *event; 1946 struct buffer_page *iter_head_page = iter->head_page; 1947 unsigned long commit; 1948 unsigned length; 1949 1950 if (iter->head != iter->next_event) 1951 return iter->event; 1952 1953 /* 1954 * When the writer goes across pages, it issues a cmpxchg which 1955 * is a mb(), which will synchronize with the rmb here. 1956 * (see rb_tail_page_update() and __rb_reserve_next()) 1957 */ 1958 commit = rb_page_commit(iter_head_page); 1959 smp_rmb(); 1960 event = __rb_page_index(iter_head_page, iter->head); 1961 length = rb_event_length(event); 1962 1963 /* 1964 * READ_ONCE() doesn't work on functions and we don't want the 1965 * compiler doing any crazy optimizations with length. 1966 */ 1967 barrier(); 1968 1969 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 1970 /* Writer corrupted the read? */ 1971 goto reset; 1972 1973 memcpy(iter->event, event, length); 1974 /* 1975 * If the page stamp is still the same after this rmb() then the 1976 * event was safely copied without the writer entering the page. 1977 */ 1978 smp_rmb(); 1979 1980 /* Make sure the page didn't change since we read this */ 1981 if (iter->page_stamp != iter_head_page->page->time_stamp || 1982 commit > rb_page_commit(iter_head_page)) 1983 goto reset; 1984 1985 iter->next_event = iter->head + length; 1986 return iter->event; 1987 reset: 1988 /* Reset to the beginning */ 1989 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 1990 iter->head = 0; 1991 iter->next_event = 0; 1992 iter->missed_events = 1; 1993 return NULL; 1994 } 1995 1996 /* Size is determined by what has been committed */ 1997 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1998 { 1999 return rb_page_commit(bpage); 2000 } 2001 2002 static __always_inline unsigned 2003 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2004 { 2005 return rb_page_commit(cpu_buffer->commit_page); 2006 } 2007 2008 static __always_inline unsigned 2009 rb_event_index(struct ring_buffer_event *event) 2010 { 2011 unsigned long addr = (unsigned long)event; 2012 2013 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2014 } 2015 2016 static void rb_inc_iter(struct ring_buffer_iter *iter) 2017 { 2018 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2019 2020 /* 2021 * The iterator could be on the reader page (it starts there). 2022 * But the head could have moved, since the reader was 2023 * found. Check for this case and assign the iterator 2024 * to the head page instead of next. 2025 */ 2026 if (iter->head_page == cpu_buffer->reader_page) 2027 iter->head_page = rb_set_head_page(cpu_buffer); 2028 else 2029 rb_inc_page(cpu_buffer, &iter->head_page); 2030 2031 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2032 iter->head = 0; 2033 iter->next_event = 0; 2034 } 2035 2036 /* 2037 * rb_handle_head_page - writer hit the head page 2038 * 2039 * Returns: +1 to retry page 2040 * 0 to continue 2041 * -1 on error 2042 */ 2043 static int 2044 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2045 struct buffer_page *tail_page, 2046 struct buffer_page *next_page) 2047 { 2048 struct buffer_page *new_head; 2049 int entries; 2050 int type; 2051 int ret; 2052 2053 entries = rb_page_entries(next_page); 2054 2055 /* 2056 * The hard part is here. We need to move the head 2057 * forward, and protect against both readers on 2058 * other CPUs and writers coming in via interrupts. 2059 */ 2060 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2061 RB_PAGE_HEAD); 2062 2063 /* 2064 * type can be one of four: 2065 * NORMAL - an interrupt already moved it for us 2066 * HEAD - we are the first to get here. 2067 * UPDATE - we are the interrupt interrupting 2068 * a current move. 2069 * MOVED - a reader on another CPU moved the next 2070 * pointer to its reader page. Give up 2071 * and try again. 2072 */ 2073 2074 switch (type) { 2075 case RB_PAGE_HEAD: 2076 /* 2077 * We changed the head to UPDATE, thus 2078 * it is our responsibility to update 2079 * the counters. 2080 */ 2081 local_add(entries, &cpu_buffer->overrun); 2082 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2083 2084 /* 2085 * The entries will be zeroed out when we move the 2086 * tail page. 2087 */ 2088 2089 /* still more to do */ 2090 break; 2091 2092 case RB_PAGE_UPDATE: 2093 /* 2094 * This is an interrupt that interrupt the 2095 * previous update. Still more to do. 2096 */ 2097 break; 2098 case RB_PAGE_NORMAL: 2099 /* 2100 * An interrupt came in before the update 2101 * and processed this for us. 2102 * Nothing left to do. 2103 */ 2104 return 1; 2105 case RB_PAGE_MOVED: 2106 /* 2107 * The reader is on another CPU and just did 2108 * a swap with our next_page. 2109 * Try again. 2110 */ 2111 return 1; 2112 default: 2113 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2114 return -1; 2115 } 2116 2117 /* 2118 * Now that we are here, the old head pointer is 2119 * set to UPDATE. This will keep the reader from 2120 * swapping the head page with the reader page. 2121 * The reader (on another CPU) will spin till 2122 * we are finished. 2123 * 2124 * We just need to protect against interrupts 2125 * doing the job. We will set the next pointer 2126 * to HEAD. After that, we set the old pointer 2127 * to NORMAL, but only if it was HEAD before. 2128 * otherwise we are an interrupt, and only 2129 * want the outer most commit to reset it. 2130 */ 2131 new_head = next_page; 2132 rb_inc_page(cpu_buffer, &new_head); 2133 2134 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2135 RB_PAGE_NORMAL); 2136 2137 /* 2138 * Valid returns are: 2139 * HEAD - an interrupt came in and already set it. 2140 * NORMAL - One of two things: 2141 * 1) We really set it. 2142 * 2) A bunch of interrupts came in and moved 2143 * the page forward again. 2144 */ 2145 switch (ret) { 2146 case RB_PAGE_HEAD: 2147 case RB_PAGE_NORMAL: 2148 /* OK */ 2149 break; 2150 default: 2151 RB_WARN_ON(cpu_buffer, 1); 2152 return -1; 2153 } 2154 2155 /* 2156 * It is possible that an interrupt came in, 2157 * set the head up, then more interrupts came in 2158 * and moved it again. When we get back here, 2159 * the page would have been set to NORMAL but we 2160 * just set it back to HEAD. 2161 * 2162 * How do you detect this? Well, if that happened 2163 * the tail page would have moved. 2164 */ 2165 if (ret == RB_PAGE_NORMAL) { 2166 struct buffer_page *buffer_tail_page; 2167 2168 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2169 /* 2170 * If the tail had moved passed next, then we need 2171 * to reset the pointer. 2172 */ 2173 if (buffer_tail_page != tail_page && 2174 buffer_tail_page != next_page) 2175 rb_head_page_set_normal(cpu_buffer, new_head, 2176 next_page, 2177 RB_PAGE_HEAD); 2178 } 2179 2180 /* 2181 * If this was the outer most commit (the one that 2182 * changed the original pointer from HEAD to UPDATE), 2183 * then it is up to us to reset it to NORMAL. 2184 */ 2185 if (type == RB_PAGE_HEAD) { 2186 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2187 tail_page, 2188 RB_PAGE_UPDATE); 2189 if (RB_WARN_ON(cpu_buffer, 2190 ret != RB_PAGE_UPDATE)) 2191 return -1; 2192 } 2193 2194 return 0; 2195 } 2196 2197 static inline void 2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2199 unsigned long tail, struct rb_event_info *info) 2200 { 2201 struct buffer_page *tail_page = info->tail_page; 2202 struct ring_buffer_event *event; 2203 unsigned long length = info->length; 2204 2205 /* 2206 * Only the event that crossed the page boundary 2207 * must fill the old tail_page with padding. 2208 */ 2209 if (tail >= BUF_PAGE_SIZE) { 2210 /* 2211 * If the page was filled, then we still need 2212 * to update the real_end. Reset it to zero 2213 * and the reader will ignore it. 2214 */ 2215 if (tail == BUF_PAGE_SIZE) 2216 tail_page->real_end = 0; 2217 2218 local_sub(length, &tail_page->write); 2219 return; 2220 } 2221 2222 event = __rb_page_index(tail_page, tail); 2223 2224 /* account for padding bytes */ 2225 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2226 2227 /* 2228 * Save the original length to the meta data. 2229 * This will be used by the reader to add lost event 2230 * counter. 2231 */ 2232 tail_page->real_end = tail; 2233 2234 /* 2235 * If this event is bigger than the minimum size, then 2236 * we need to be careful that we don't subtract the 2237 * write counter enough to allow another writer to slip 2238 * in on this page. 2239 * We put in a discarded commit instead, to make sure 2240 * that this space is not used again. 2241 * 2242 * If we are less than the minimum size, we don't need to 2243 * worry about it. 2244 */ 2245 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2246 /* No room for any events */ 2247 2248 /* Mark the rest of the page with padding */ 2249 rb_event_set_padding(event); 2250 2251 /* Set the write back to the previous setting */ 2252 local_sub(length, &tail_page->write); 2253 return; 2254 } 2255 2256 /* Put in a discarded event */ 2257 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2258 event->type_len = RINGBUF_TYPE_PADDING; 2259 /* time delta must be non zero */ 2260 event->time_delta = 1; 2261 2262 /* Set write to end of buffer */ 2263 length = (tail + length) - BUF_PAGE_SIZE; 2264 local_sub(length, &tail_page->write); 2265 } 2266 2267 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2268 2269 /* 2270 * This is the slow path, force gcc not to inline it. 2271 */ 2272 static noinline struct ring_buffer_event * 2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2274 unsigned long tail, struct rb_event_info *info) 2275 { 2276 struct buffer_page *tail_page = info->tail_page; 2277 struct buffer_page *commit_page = cpu_buffer->commit_page; 2278 struct trace_buffer *buffer = cpu_buffer->buffer; 2279 struct buffer_page *next_page; 2280 int ret; 2281 2282 next_page = tail_page; 2283 2284 rb_inc_page(cpu_buffer, &next_page); 2285 2286 /* 2287 * If for some reason, we had an interrupt storm that made 2288 * it all the way around the buffer, bail, and warn 2289 * about it. 2290 */ 2291 if (unlikely(next_page == commit_page)) { 2292 local_inc(&cpu_buffer->commit_overrun); 2293 goto out_reset; 2294 } 2295 2296 /* 2297 * This is where the fun begins! 2298 * 2299 * We are fighting against races between a reader that 2300 * could be on another CPU trying to swap its reader 2301 * page with the buffer head. 2302 * 2303 * We are also fighting against interrupts coming in and 2304 * moving the head or tail on us as well. 2305 * 2306 * If the next page is the head page then we have filled 2307 * the buffer, unless the commit page is still on the 2308 * reader page. 2309 */ 2310 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2311 2312 /* 2313 * If the commit is not on the reader page, then 2314 * move the header page. 2315 */ 2316 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2317 /* 2318 * If we are not in overwrite mode, 2319 * this is easy, just stop here. 2320 */ 2321 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2322 local_inc(&cpu_buffer->dropped_events); 2323 goto out_reset; 2324 } 2325 2326 ret = rb_handle_head_page(cpu_buffer, 2327 tail_page, 2328 next_page); 2329 if (ret < 0) 2330 goto out_reset; 2331 if (ret) 2332 goto out_again; 2333 } else { 2334 /* 2335 * We need to be careful here too. The 2336 * commit page could still be on the reader 2337 * page. We could have a small buffer, and 2338 * have filled up the buffer with events 2339 * from interrupts and such, and wrapped. 2340 * 2341 * Note, if the tail page is also the on the 2342 * reader_page, we let it move out. 2343 */ 2344 if (unlikely((cpu_buffer->commit_page != 2345 cpu_buffer->tail_page) && 2346 (cpu_buffer->commit_page == 2347 cpu_buffer->reader_page))) { 2348 local_inc(&cpu_buffer->commit_overrun); 2349 goto out_reset; 2350 } 2351 } 2352 } 2353 2354 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2355 2356 out_again: 2357 2358 rb_reset_tail(cpu_buffer, tail, info); 2359 2360 /* Commit what we have for now. */ 2361 rb_end_commit(cpu_buffer); 2362 /* rb_end_commit() decs committing */ 2363 local_inc(&cpu_buffer->committing); 2364 2365 /* fail and let the caller try again */ 2366 return ERR_PTR(-EAGAIN); 2367 2368 out_reset: 2369 /* reset write */ 2370 rb_reset_tail(cpu_buffer, tail, info); 2371 2372 return NULL; 2373 } 2374 2375 /* Slow path, do not inline */ 2376 static noinline struct ring_buffer_event * 2377 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2378 { 2379 if (abs) 2380 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2381 else 2382 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2383 2384 /* Not the first event on the page, or not delta? */ 2385 if (abs || rb_event_index(event)) { 2386 event->time_delta = delta & TS_MASK; 2387 event->array[0] = delta >> TS_SHIFT; 2388 } else { 2389 /* nope, just zero it */ 2390 event->time_delta = 0; 2391 event->array[0] = 0; 2392 } 2393 2394 return skip_time_extend(event); 2395 } 2396 2397 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2398 struct ring_buffer_event *event); 2399 2400 /** 2401 * rb_update_event - update event type and data 2402 * @cpu_buffer: The per cpu buffer of the @event 2403 * @event: the event to update 2404 * @info: The info to update the @event with (contains length and delta) 2405 * 2406 * Update the type and data fields of the @event. The length 2407 * is the actual size that is written to the ring buffer, 2408 * and with this, we can determine what to place into the 2409 * data field. 2410 */ 2411 static void 2412 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2413 struct ring_buffer_event *event, 2414 struct rb_event_info *info) 2415 { 2416 unsigned length = info->length; 2417 u64 delta = info->delta; 2418 2419 /* Only a commit updates the timestamp */ 2420 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2421 delta = 0; 2422 2423 /* 2424 * If we need to add a timestamp, then we 2425 * add it to the start of the reserved space. 2426 */ 2427 if (unlikely(info->add_timestamp)) { 2428 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2429 2430 event = rb_add_time_stamp(event, info->delta, abs); 2431 length -= RB_LEN_TIME_EXTEND; 2432 delta = 0; 2433 } 2434 2435 event->time_delta = delta; 2436 length -= RB_EVNT_HDR_SIZE; 2437 if (length > RB_MAX_SMALL_DATA) { 2438 event->type_len = 0; 2439 event->array[0] = length; 2440 } else 2441 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2442 } 2443 2444 static unsigned rb_calculate_event_length(unsigned length) 2445 { 2446 struct ring_buffer_event event; /* Used only for sizeof array */ 2447 2448 /* zero length can cause confusions */ 2449 if (!length) 2450 length++; 2451 2452 if (length > RB_MAX_SMALL_DATA) 2453 length += sizeof(event.array[0]); 2454 2455 length += RB_EVNT_HDR_SIZE; 2456 length = ALIGN(length, RB_ALIGNMENT); 2457 2458 /* 2459 * In case the time delta is larger than the 27 bits for it 2460 * in the header, we need to add a timestamp. If another 2461 * event comes in when trying to discard this one to increase 2462 * the length, then the timestamp will be added in the allocated 2463 * space of this event. If length is bigger than the size needed 2464 * for the TIME_EXTEND, then padding has to be used. The events 2465 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2466 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2467 * As length is a multiple of 4, we only need to worry if it 2468 * is 12 (RB_LEN_TIME_EXTEND + 4). 2469 */ 2470 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2471 length += RB_ALIGNMENT; 2472 2473 return length; 2474 } 2475 2476 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2477 static inline bool sched_clock_stable(void) 2478 { 2479 return true; 2480 } 2481 #endif 2482 2483 static inline int 2484 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2485 struct ring_buffer_event *event) 2486 { 2487 unsigned long new_index, old_index; 2488 struct buffer_page *bpage; 2489 unsigned long index; 2490 unsigned long addr; 2491 2492 new_index = rb_event_index(event); 2493 old_index = new_index + rb_event_ts_length(event); 2494 addr = (unsigned long)event; 2495 addr &= PAGE_MASK; 2496 2497 bpage = READ_ONCE(cpu_buffer->tail_page); 2498 2499 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2500 unsigned long write_mask = 2501 local_read(&bpage->write) & ~RB_WRITE_MASK; 2502 unsigned long event_length = rb_event_length(event); 2503 /* 2504 * This is on the tail page. It is possible that 2505 * a write could come in and move the tail page 2506 * and write to the next page. That is fine 2507 * because we just shorten what is on this page. 2508 */ 2509 old_index += write_mask; 2510 new_index += write_mask; 2511 index = local_cmpxchg(&bpage->write, old_index, new_index); 2512 if (index == old_index) { 2513 /* update counters */ 2514 local_sub(event_length, &cpu_buffer->entries_bytes); 2515 return 1; 2516 } 2517 } 2518 2519 /* could not discard */ 2520 return 0; 2521 } 2522 2523 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2524 { 2525 local_inc(&cpu_buffer->committing); 2526 local_inc(&cpu_buffer->commits); 2527 } 2528 2529 static __always_inline void 2530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2531 { 2532 unsigned long max_count; 2533 2534 /* 2535 * We only race with interrupts and NMIs on this CPU. 2536 * If we own the commit event, then we can commit 2537 * all others that interrupted us, since the interruptions 2538 * are in stack format (they finish before they come 2539 * back to us). This allows us to do a simple loop to 2540 * assign the commit to the tail. 2541 */ 2542 again: 2543 max_count = cpu_buffer->nr_pages * 100; 2544 2545 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2546 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2547 return; 2548 if (RB_WARN_ON(cpu_buffer, 2549 rb_is_reader_page(cpu_buffer->tail_page))) 2550 return; 2551 local_set(&cpu_buffer->commit_page->page->commit, 2552 rb_page_write(cpu_buffer->commit_page)); 2553 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2554 /* Only update the write stamp if the page has an event */ 2555 if (rb_page_write(cpu_buffer->commit_page)) 2556 cpu_buffer->write_stamp = 2557 cpu_buffer->commit_page->page->time_stamp; 2558 /* add barrier to keep gcc from optimizing too much */ 2559 barrier(); 2560 } 2561 while (rb_commit_index(cpu_buffer) != 2562 rb_page_write(cpu_buffer->commit_page)) { 2563 2564 local_set(&cpu_buffer->commit_page->page->commit, 2565 rb_page_write(cpu_buffer->commit_page)); 2566 RB_WARN_ON(cpu_buffer, 2567 local_read(&cpu_buffer->commit_page->page->commit) & 2568 ~RB_WRITE_MASK); 2569 barrier(); 2570 } 2571 2572 /* again, keep gcc from optimizing */ 2573 barrier(); 2574 2575 /* 2576 * If an interrupt came in just after the first while loop 2577 * and pushed the tail page forward, we will be left with 2578 * a dangling commit that will never go forward. 2579 */ 2580 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2581 goto again; 2582 } 2583 2584 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2585 { 2586 unsigned long commits; 2587 2588 if (RB_WARN_ON(cpu_buffer, 2589 !local_read(&cpu_buffer->committing))) 2590 return; 2591 2592 again: 2593 commits = local_read(&cpu_buffer->commits); 2594 /* synchronize with interrupts */ 2595 barrier(); 2596 if (local_read(&cpu_buffer->committing) == 1) 2597 rb_set_commit_to_write(cpu_buffer); 2598 2599 local_dec(&cpu_buffer->committing); 2600 2601 /* synchronize with interrupts */ 2602 barrier(); 2603 2604 /* 2605 * Need to account for interrupts coming in between the 2606 * updating of the commit page and the clearing of the 2607 * committing counter. 2608 */ 2609 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2610 !local_read(&cpu_buffer->committing)) { 2611 local_inc(&cpu_buffer->committing); 2612 goto again; 2613 } 2614 } 2615 2616 static inline void rb_event_discard(struct ring_buffer_event *event) 2617 { 2618 if (extended_time(event)) 2619 event = skip_time_extend(event); 2620 2621 /* array[0] holds the actual length for the discarded event */ 2622 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2623 event->type_len = RINGBUF_TYPE_PADDING; 2624 /* time delta must be non zero */ 2625 if (!event->time_delta) 2626 event->time_delta = 1; 2627 } 2628 2629 static __always_inline bool 2630 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2631 struct ring_buffer_event *event) 2632 { 2633 unsigned long addr = (unsigned long)event; 2634 unsigned long index; 2635 2636 index = rb_event_index(event); 2637 addr &= PAGE_MASK; 2638 2639 return cpu_buffer->commit_page->page == (void *)addr && 2640 rb_commit_index(cpu_buffer) == index; 2641 } 2642 2643 static __always_inline void 2644 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2645 struct ring_buffer_event *event) 2646 { 2647 u64 delta; 2648 2649 /* 2650 * The event first in the commit queue updates the 2651 * time stamp. 2652 */ 2653 if (rb_event_is_commit(cpu_buffer, event)) { 2654 /* 2655 * A commit event that is first on a page 2656 * updates the write timestamp with the page stamp 2657 */ 2658 if (!rb_event_index(event)) 2659 cpu_buffer->write_stamp = 2660 cpu_buffer->commit_page->page->time_stamp; 2661 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2662 delta = ring_buffer_event_time_stamp(event); 2663 cpu_buffer->write_stamp += delta; 2664 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2665 delta = ring_buffer_event_time_stamp(event); 2666 cpu_buffer->write_stamp = delta; 2667 } else 2668 cpu_buffer->write_stamp += event->time_delta; 2669 } 2670 } 2671 2672 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2673 struct ring_buffer_event *event) 2674 { 2675 local_inc(&cpu_buffer->entries); 2676 rb_update_write_stamp(cpu_buffer, event); 2677 rb_end_commit(cpu_buffer); 2678 } 2679 2680 static __always_inline void 2681 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2682 { 2683 size_t nr_pages; 2684 size_t dirty; 2685 size_t full; 2686 2687 if (buffer->irq_work.waiters_pending) { 2688 buffer->irq_work.waiters_pending = false; 2689 /* irq_work_queue() supplies it's own memory barriers */ 2690 irq_work_queue(&buffer->irq_work.work); 2691 } 2692 2693 if (cpu_buffer->irq_work.waiters_pending) { 2694 cpu_buffer->irq_work.waiters_pending = false; 2695 /* irq_work_queue() supplies it's own memory barriers */ 2696 irq_work_queue(&cpu_buffer->irq_work.work); 2697 } 2698 2699 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2700 return; 2701 2702 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2703 return; 2704 2705 if (!cpu_buffer->irq_work.full_waiters_pending) 2706 return; 2707 2708 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2709 2710 full = cpu_buffer->shortest_full; 2711 nr_pages = cpu_buffer->nr_pages; 2712 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2713 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2714 return; 2715 2716 cpu_buffer->irq_work.wakeup_full = true; 2717 cpu_buffer->irq_work.full_waiters_pending = false; 2718 /* irq_work_queue() supplies it's own memory barriers */ 2719 irq_work_queue(&cpu_buffer->irq_work.work); 2720 } 2721 2722 /* 2723 * The lock and unlock are done within a preempt disable section. 2724 * The current_context per_cpu variable can only be modified 2725 * by the current task between lock and unlock. But it can 2726 * be modified more than once via an interrupt. To pass this 2727 * information from the lock to the unlock without having to 2728 * access the 'in_interrupt()' functions again (which do show 2729 * a bit of overhead in something as critical as function tracing, 2730 * we use a bitmask trick. 2731 * 2732 * bit 0 = NMI context 2733 * bit 1 = IRQ context 2734 * bit 2 = SoftIRQ context 2735 * bit 3 = normal context. 2736 * 2737 * This works because this is the order of contexts that can 2738 * preempt other contexts. A SoftIRQ never preempts an IRQ 2739 * context. 2740 * 2741 * When the context is determined, the corresponding bit is 2742 * checked and set (if it was set, then a recursion of that context 2743 * happened). 2744 * 2745 * On unlock, we need to clear this bit. To do so, just subtract 2746 * 1 from the current_context and AND it to itself. 2747 * 2748 * (binary) 2749 * 101 - 1 = 100 2750 * 101 & 100 = 100 (clearing bit zero) 2751 * 2752 * 1010 - 1 = 1001 2753 * 1010 & 1001 = 1000 (clearing bit 1) 2754 * 2755 * The least significant bit can be cleared this way, and it 2756 * just so happens that it is the same bit corresponding to 2757 * the current context. 2758 */ 2759 2760 static __always_inline int 2761 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2762 { 2763 unsigned int val = cpu_buffer->current_context; 2764 unsigned long pc = preempt_count(); 2765 int bit; 2766 2767 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2768 bit = RB_CTX_NORMAL; 2769 else 2770 bit = pc & NMI_MASK ? RB_CTX_NMI : 2771 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2772 2773 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2774 return 1; 2775 2776 val |= (1 << (bit + cpu_buffer->nest)); 2777 cpu_buffer->current_context = val; 2778 2779 return 0; 2780 } 2781 2782 static __always_inline void 2783 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2784 { 2785 cpu_buffer->current_context &= 2786 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2787 } 2788 2789 /* The recursive locking above uses 4 bits */ 2790 #define NESTED_BITS 4 2791 2792 /** 2793 * ring_buffer_nest_start - Allow to trace while nested 2794 * @buffer: The ring buffer to modify 2795 * 2796 * The ring buffer has a safety mechanism to prevent recursion. 2797 * But there may be a case where a trace needs to be done while 2798 * tracing something else. In this case, calling this function 2799 * will allow this function to nest within a currently active 2800 * ring_buffer_lock_reserve(). 2801 * 2802 * Call this function before calling another ring_buffer_lock_reserve() and 2803 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2804 */ 2805 void ring_buffer_nest_start(struct trace_buffer *buffer) 2806 { 2807 struct ring_buffer_per_cpu *cpu_buffer; 2808 int cpu; 2809 2810 /* Enabled by ring_buffer_nest_end() */ 2811 preempt_disable_notrace(); 2812 cpu = raw_smp_processor_id(); 2813 cpu_buffer = buffer->buffers[cpu]; 2814 /* This is the shift value for the above recursive locking */ 2815 cpu_buffer->nest += NESTED_BITS; 2816 } 2817 2818 /** 2819 * ring_buffer_nest_end - Allow to trace while nested 2820 * @buffer: The ring buffer to modify 2821 * 2822 * Must be called after ring_buffer_nest_start() and after the 2823 * ring_buffer_unlock_commit(). 2824 */ 2825 void ring_buffer_nest_end(struct trace_buffer *buffer) 2826 { 2827 struct ring_buffer_per_cpu *cpu_buffer; 2828 int cpu; 2829 2830 /* disabled by ring_buffer_nest_start() */ 2831 cpu = raw_smp_processor_id(); 2832 cpu_buffer = buffer->buffers[cpu]; 2833 /* This is the shift value for the above recursive locking */ 2834 cpu_buffer->nest -= NESTED_BITS; 2835 preempt_enable_notrace(); 2836 } 2837 2838 /** 2839 * ring_buffer_unlock_commit - commit a reserved 2840 * @buffer: The buffer to commit to 2841 * @event: The event pointer to commit. 2842 * 2843 * This commits the data to the ring buffer, and releases any locks held. 2844 * 2845 * Must be paired with ring_buffer_lock_reserve. 2846 */ 2847 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 2848 struct ring_buffer_event *event) 2849 { 2850 struct ring_buffer_per_cpu *cpu_buffer; 2851 int cpu = raw_smp_processor_id(); 2852 2853 cpu_buffer = buffer->buffers[cpu]; 2854 2855 rb_commit(cpu_buffer, event); 2856 2857 rb_wakeups(buffer, cpu_buffer); 2858 2859 trace_recursive_unlock(cpu_buffer); 2860 2861 preempt_enable_notrace(); 2862 2863 return 0; 2864 } 2865 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2866 2867 static noinline void 2868 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2869 struct rb_event_info *info) 2870 { 2871 WARN_ONCE(info->delta > (1ULL << 59), 2872 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2873 (unsigned long long)info->delta, 2874 (unsigned long long)info->ts, 2875 (unsigned long long)cpu_buffer->write_stamp, 2876 sched_clock_stable() ? "" : 2877 "If you just came from a suspend/resume,\n" 2878 "please switch to the trace global clock:\n" 2879 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2880 "or add trace_clock=global to the kernel command line\n"); 2881 info->add_timestamp = 1; 2882 } 2883 2884 static struct ring_buffer_event * 2885 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2886 struct rb_event_info *info) 2887 { 2888 struct ring_buffer_event *event; 2889 struct buffer_page *tail_page; 2890 unsigned long tail, write; 2891 2892 /* 2893 * If the time delta since the last event is too big to 2894 * hold in the time field of the event, then we append a 2895 * TIME EXTEND event ahead of the data event. 2896 */ 2897 if (unlikely(info->add_timestamp)) 2898 info->length += RB_LEN_TIME_EXTEND; 2899 2900 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2901 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2902 write = local_add_return(info->length, &tail_page->write); 2903 2904 /* set write to only the index of the write */ 2905 write &= RB_WRITE_MASK; 2906 tail = write - info->length; 2907 2908 /* 2909 * If this is the first commit on the page, then it has the same 2910 * timestamp as the page itself. 2911 */ 2912 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2913 info->delta = 0; 2914 2915 /* See if we shot pass the end of this buffer page */ 2916 if (unlikely(write > BUF_PAGE_SIZE)) 2917 return rb_move_tail(cpu_buffer, tail, info); 2918 2919 /* We reserved something on the buffer */ 2920 2921 event = __rb_page_index(tail_page, tail); 2922 rb_update_event(cpu_buffer, event, info); 2923 2924 local_inc(&tail_page->entries); 2925 2926 /* 2927 * If this is the first commit on the page, then update 2928 * its timestamp. 2929 */ 2930 if (!tail) 2931 tail_page->page->time_stamp = info->ts; 2932 2933 /* account for these added bytes */ 2934 local_add(info->length, &cpu_buffer->entries_bytes); 2935 2936 return event; 2937 } 2938 2939 static __always_inline struct ring_buffer_event * 2940 rb_reserve_next_event(struct trace_buffer *buffer, 2941 struct ring_buffer_per_cpu *cpu_buffer, 2942 unsigned long length) 2943 { 2944 struct ring_buffer_event *event; 2945 struct rb_event_info info; 2946 int nr_loops = 0; 2947 u64 diff; 2948 2949 rb_start_commit(cpu_buffer); 2950 2951 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2952 /* 2953 * Due to the ability to swap a cpu buffer from a buffer 2954 * it is possible it was swapped before we committed. 2955 * (committing stops a swap). We check for it here and 2956 * if it happened, we have to fail the write. 2957 */ 2958 barrier(); 2959 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2960 local_dec(&cpu_buffer->committing); 2961 local_dec(&cpu_buffer->commits); 2962 return NULL; 2963 } 2964 #endif 2965 2966 info.length = rb_calculate_event_length(length); 2967 again: 2968 info.add_timestamp = 0; 2969 info.delta = 0; 2970 2971 /* 2972 * We allow for interrupts to reenter here and do a trace. 2973 * If one does, it will cause this original code to loop 2974 * back here. Even with heavy interrupts happening, this 2975 * should only happen a few times in a row. If this happens 2976 * 1000 times in a row, there must be either an interrupt 2977 * storm or we have something buggy. 2978 * Bail! 2979 */ 2980 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2981 goto out_fail; 2982 2983 info.ts = rb_time_stamp(cpu_buffer->buffer); 2984 diff = info.ts - cpu_buffer->write_stamp; 2985 2986 /* make sure this diff is calculated here */ 2987 barrier(); 2988 2989 if (ring_buffer_time_stamp_abs(buffer)) { 2990 info.delta = info.ts; 2991 rb_handle_timestamp(cpu_buffer, &info); 2992 } else /* Did the write stamp get updated already? */ 2993 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2994 info.delta = diff; 2995 if (unlikely(test_time_stamp(info.delta))) 2996 rb_handle_timestamp(cpu_buffer, &info); 2997 } 2998 2999 event = __rb_reserve_next(cpu_buffer, &info); 3000 3001 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3002 if (info.add_timestamp) 3003 info.length -= RB_LEN_TIME_EXTEND; 3004 goto again; 3005 } 3006 3007 if (!event) 3008 goto out_fail; 3009 3010 return event; 3011 3012 out_fail: 3013 rb_end_commit(cpu_buffer); 3014 return NULL; 3015 } 3016 3017 /** 3018 * ring_buffer_lock_reserve - reserve a part of the buffer 3019 * @buffer: the ring buffer to reserve from 3020 * @length: the length of the data to reserve (excluding event header) 3021 * 3022 * Returns a reserved event on the ring buffer to copy directly to. 3023 * The user of this interface will need to get the body to write into 3024 * and can use the ring_buffer_event_data() interface. 3025 * 3026 * The length is the length of the data needed, not the event length 3027 * which also includes the event header. 3028 * 3029 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3030 * If NULL is returned, then nothing has been allocated or locked. 3031 */ 3032 struct ring_buffer_event * 3033 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3034 { 3035 struct ring_buffer_per_cpu *cpu_buffer; 3036 struct ring_buffer_event *event; 3037 int cpu; 3038 3039 /* If we are tracing schedule, we don't want to recurse */ 3040 preempt_disable_notrace(); 3041 3042 if (unlikely(atomic_read(&buffer->record_disabled))) 3043 goto out; 3044 3045 cpu = raw_smp_processor_id(); 3046 3047 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3048 goto out; 3049 3050 cpu_buffer = buffer->buffers[cpu]; 3051 3052 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3053 goto out; 3054 3055 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3056 goto out; 3057 3058 if (unlikely(trace_recursive_lock(cpu_buffer))) 3059 goto out; 3060 3061 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3062 if (!event) 3063 goto out_unlock; 3064 3065 return event; 3066 3067 out_unlock: 3068 trace_recursive_unlock(cpu_buffer); 3069 out: 3070 preempt_enable_notrace(); 3071 return NULL; 3072 } 3073 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3074 3075 /* 3076 * Decrement the entries to the page that an event is on. 3077 * The event does not even need to exist, only the pointer 3078 * to the page it is on. This may only be called before the commit 3079 * takes place. 3080 */ 3081 static inline void 3082 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3083 struct ring_buffer_event *event) 3084 { 3085 unsigned long addr = (unsigned long)event; 3086 struct buffer_page *bpage = cpu_buffer->commit_page; 3087 struct buffer_page *start; 3088 3089 addr &= PAGE_MASK; 3090 3091 /* Do the likely case first */ 3092 if (likely(bpage->page == (void *)addr)) { 3093 local_dec(&bpage->entries); 3094 return; 3095 } 3096 3097 /* 3098 * Because the commit page may be on the reader page we 3099 * start with the next page and check the end loop there. 3100 */ 3101 rb_inc_page(cpu_buffer, &bpage); 3102 start = bpage; 3103 do { 3104 if (bpage->page == (void *)addr) { 3105 local_dec(&bpage->entries); 3106 return; 3107 } 3108 rb_inc_page(cpu_buffer, &bpage); 3109 } while (bpage != start); 3110 3111 /* commit not part of this buffer?? */ 3112 RB_WARN_ON(cpu_buffer, 1); 3113 } 3114 3115 /** 3116 * ring_buffer_commit_discard - discard an event that has not been committed 3117 * @buffer: the ring buffer 3118 * @event: non committed event to discard 3119 * 3120 * Sometimes an event that is in the ring buffer needs to be ignored. 3121 * This function lets the user discard an event in the ring buffer 3122 * and then that event will not be read later. 3123 * 3124 * This function only works if it is called before the item has been 3125 * committed. It will try to free the event from the ring buffer 3126 * if another event has not been added behind it. 3127 * 3128 * If another event has been added behind it, it will set the event 3129 * up as discarded, and perform the commit. 3130 * 3131 * If this function is called, do not call ring_buffer_unlock_commit on 3132 * the event. 3133 */ 3134 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3135 struct ring_buffer_event *event) 3136 { 3137 struct ring_buffer_per_cpu *cpu_buffer; 3138 int cpu; 3139 3140 /* The event is discarded regardless */ 3141 rb_event_discard(event); 3142 3143 cpu = smp_processor_id(); 3144 cpu_buffer = buffer->buffers[cpu]; 3145 3146 /* 3147 * This must only be called if the event has not been 3148 * committed yet. Thus we can assume that preemption 3149 * is still disabled. 3150 */ 3151 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3152 3153 rb_decrement_entry(cpu_buffer, event); 3154 if (rb_try_to_discard(cpu_buffer, event)) 3155 goto out; 3156 3157 /* 3158 * The commit is still visible by the reader, so we 3159 * must still update the timestamp. 3160 */ 3161 rb_update_write_stamp(cpu_buffer, event); 3162 out: 3163 rb_end_commit(cpu_buffer); 3164 3165 trace_recursive_unlock(cpu_buffer); 3166 3167 preempt_enable_notrace(); 3168 3169 } 3170 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3171 3172 /** 3173 * ring_buffer_write - write data to the buffer without reserving 3174 * @buffer: The ring buffer to write to. 3175 * @length: The length of the data being written (excluding the event header) 3176 * @data: The data to write to the buffer. 3177 * 3178 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3179 * one function. If you already have the data to write to the buffer, it 3180 * may be easier to simply call this function. 3181 * 3182 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3183 * and not the length of the event which would hold the header. 3184 */ 3185 int ring_buffer_write(struct trace_buffer *buffer, 3186 unsigned long length, 3187 void *data) 3188 { 3189 struct ring_buffer_per_cpu *cpu_buffer; 3190 struct ring_buffer_event *event; 3191 void *body; 3192 int ret = -EBUSY; 3193 int cpu; 3194 3195 preempt_disable_notrace(); 3196 3197 if (atomic_read(&buffer->record_disabled)) 3198 goto out; 3199 3200 cpu = raw_smp_processor_id(); 3201 3202 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3203 goto out; 3204 3205 cpu_buffer = buffer->buffers[cpu]; 3206 3207 if (atomic_read(&cpu_buffer->record_disabled)) 3208 goto out; 3209 3210 if (length > BUF_MAX_DATA_SIZE) 3211 goto out; 3212 3213 if (unlikely(trace_recursive_lock(cpu_buffer))) 3214 goto out; 3215 3216 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3217 if (!event) 3218 goto out_unlock; 3219 3220 body = rb_event_data(event); 3221 3222 memcpy(body, data, length); 3223 3224 rb_commit(cpu_buffer, event); 3225 3226 rb_wakeups(buffer, cpu_buffer); 3227 3228 ret = 0; 3229 3230 out_unlock: 3231 trace_recursive_unlock(cpu_buffer); 3232 3233 out: 3234 preempt_enable_notrace(); 3235 3236 return ret; 3237 } 3238 EXPORT_SYMBOL_GPL(ring_buffer_write); 3239 3240 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3241 { 3242 struct buffer_page *reader = cpu_buffer->reader_page; 3243 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3244 struct buffer_page *commit = cpu_buffer->commit_page; 3245 3246 /* In case of error, head will be NULL */ 3247 if (unlikely(!head)) 3248 return true; 3249 3250 return reader->read == rb_page_commit(reader) && 3251 (commit == reader || 3252 (commit == head && 3253 head->read == rb_page_commit(commit))); 3254 } 3255 3256 /** 3257 * ring_buffer_record_disable - stop all writes into the buffer 3258 * @buffer: The ring buffer to stop writes to. 3259 * 3260 * This prevents all writes to the buffer. Any attempt to write 3261 * to the buffer after this will fail and return NULL. 3262 * 3263 * The caller should call synchronize_rcu() after this. 3264 */ 3265 void ring_buffer_record_disable(struct trace_buffer *buffer) 3266 { 3267 atomic_inc(&buffer->record_disabled); 3268 } 3269 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3270 3271 /** 3272 * ring_buffer_record_enable - enable writes to the buffer 3273 * @buffer: The ring buffer to enable writes 3274 * 3275 * Note, multiple disables will need the same number of enables 3276 * to truly enable the writing (much like preempt_disable). 3277 */ 3278 void ring_buffer_record_enable(struct trace_buffer *buffer) 3279 { 3280 atomic_dec(&buffer->record_disabled); 3281 } 3282 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3283 3284 /** 3285 * ring_buffer_record_off - stop all writes into the buffer 3286 * @buffer: The ring buffer to stop writes to. 3287 * 3288 * This prevents all writes to the buffer. Any attempt to write 3289 * to the buffer after this will fail and return NULL. 3290 * 3291 * This is different than ring_buffer_record_disable() as 3292 * it works like an on/off switch, where as the disable() version 3293 * must be paired with a enable(). 3294 */ 3295 void ring_buffer_record_off(struct trace_buffer *buffer) 3296 { 3297 unsigned int rd; 3298 unsigned int new_rd; 3299 3300 do { 3301 rd = atomic_read(&buffer->record_disabled); 3302 new_rd = rd | RB_BUFFER_OFF; 3303 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3304 } 3305 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3306 3307 /** 3308 * ring_buffer_record_on - restart writes into the buffer 3309 * @buffer: The ring buffer to start writes to. 3310 * 3311 * This enables all writes to the buffer that was disabled by 3312 * ring_buffer_record_off(). 3313 * 3314 * This is different than ring_buffer_record_enable() as 3315 * it works like an on/off switch, where as the enable() version 3316 * must be paired with a disable(). 3317 */ 3318 void ring_buffer_record_on(struct trace_buffer *buffer) 3319 { 3320 unsigned int rd; 3321 unsigned int new_rd; 3322 3323 do { 3324 rd = atomic_read(&buffer->record_disabled); 3325 new_rd = rd & ~RB_BUFFER_OFF; 3326 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3327 } 3328 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3329 3330 /** 3331 * ring_buffer_record_is_on - return true if the ring buffer can write 3332 * @buffer: The ring buffer to see if write is enabled 3333 * 3334 * Returns true if the ring buffer is in a state that it accepts writes. 3335 */ 3336 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3337 { 3338 return !atomic_read(&buffer->record_disabled); 3339 } 3340 3341 /** 3342 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3343 * @buffer: The ring buffer to see if write is set enabled 3344 * 3345 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3346 * Note that this does NOT mean it is in a writable state. 3347 * 3348 * It may return true when the ring buffer has been disabled by 3349 * ring_buffer_record_disable(), as that is a temporary disabling of 3350 * the ring buffer. 3351 */ 3352 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3353 { 3354 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3355 } 3356 3357 /** 3358 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3359 * @buffer: The ring buffer to stop writes to. 3360 * @cpu: The CPU buffer to stop 3361 * 3362 * This prevents all writes to the buffer. Any attempt to write 3363 * to the buffer after this will fail and return NULL. 3364 * 3365 * The caller should call synchronize_rcu() after this. 3366 */ 3367 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3368 { 3369 struct ring_buffer_per_cpu *cpu_buffer; 3370 3371 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3372 return; 3373 3374 cpu_buffer = buffer->buffers[cpu]; 3375 atomic_inc(&cpu_buffer->record_disabled); 3376 } 3377 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3378 3379 /** 3380 * ring_buffer_record_enable_cpu - enable writes to the buffer 3381 * @buffer: The ring buffer to enable writes 3382 * @cpu: The CPU to enable. 3383 * 3384 * Note, multiple disables will need the same number of enables 3385 * to truly enable the writing (much like preempt_disable). 3386 */ 3387 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3388 { 3389 struct ring_buffer_per_cpu *cpu_buffer; 3390 3391 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3392 return; 3393 3394 cpu_buffer = buffer->buffers[cpu]; 3395 atomic_dec(&cpu_buffer->record_disabled); 3396 } 3397 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3398 3399 /* 3400 * The total entries in the ring buffer is the running counter 3401 * of entries entered into the ring buffer, minus the sum of 3402 * the entries read from the ring buffer and the number of 3403 * entries that were overwritten. 3404 */ 3405 static inline unsigned long 3406 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3407 { 3408 return local_read(&cpu_buffer->entries) - 3409 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3410 } 3411 3412 /** 3413 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3414 * @buffer: The ring buffer 3415 * @cpu: The per CPU buffer to read from. 3416 */ 3417 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3418 { 3419 unsigned long flags; 3420 struct ring_buffer_per_cpu *cpu_buffer; 3421 struct buffer_page *bpage; 3422 u64 ret = 0; 3423 3424 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3425 return 0; 3426 3427 cpu_buffer = buffer->buffers[cpu]; 3428 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3429 /* 3430 * if the tail is on reader_page, oldest time stamp is on the reader 3431 * page 3432 */ 3433 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3434 bpage = cpu_buffer->reader_page; 3435 else 3436 bpage = rb_set_head_page(cpu_buffer); 3437 if (bpage) 3438 ret = bpage->page->time_stamp; 3439 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3440 3441 return ret; 3442 } 3443 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3444 3445 /** 3446 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3447 * @buffer: The ring buffer 3448 * @cpu: The per CPU buffer to read from. 3449 */ 3450 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3451 { 3452 struct ring_buffer_per_cpu *cpu_buffer; 3453 unsigned long ret; 3454 3455 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3456 return 0; 3457 3458 cpu_buffer = buffer->buffers[cpu]; 3459 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3460 3461 return ret; 3462 } 3463 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3464 3465 /** 3466 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3467 * @buffer: The ring buffer 3468 * @cpu: The per CPU buffer to get the entries from. 3469 */ 3470 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 3471 { 3472 struct ring_buffer_per_cpu *cpu_buffer; 3473 3474 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3475 return 0; 3476 3477 cpu_buffer = buffer->buffers[cpu]; 3478 3479 return rb_num_of_entries(cpu_buffer); 3480 } 3481 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3482 3483 /** 3484 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3485 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3486 * @buffer: The ring buffer 3487 * @cpu: The per CPU buffer to get the number of overruns from 3488 */ 3489 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 3490 { 3491 struct ring_buffer_per_cpu *cpu_buffer; 3492 unsigned long ret; 3493 3494 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3495 return 0; 3496 3497 cpu_buffer = buffer->buffers[cpu]; 3498 ret = local_read(&cpu_buffer->overrun); 3499 3500 return ret; 3501 } 3502 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3503 3504 /** 3505 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3506 * commits failing due to the buffer wrapping around while there are uncommitted 3507 * events, such as during an interrupt storm. 3508 * @buffer: The ring buffer 3509 * @cpu: The per CPU buffer to get the number of overruns from 3510 */ 3511 unsigned long 3512 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 3513 { 3514 struct ring_buffer_per_cpu *cpu_buffer; 3515 unsigned long ret; 3516 3517 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3518 return 0; 3519 3520 cpu_buffer = buffer->buffers[cpu]; 3521 ret = local_read(&cpu_buffer->commit_overrun); 3522 3523 return ret; 3524 } 3525 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3526 3527 /** 3528 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3529 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3530 * @buffer: The ring buffer 3531 * @cpu: The per CPU buffer to get the number of overruns from 3532 */ 3533 unsigned long 3534 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 3535 { 3536 struct ring_buffer_per_cpu *cpu_buffer; 3537 unsigned long ret; 3538 3539 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3540 return 0; 3541 3542 cpu_buffer = buffer->buffers[cpu]; 3543 ret = local_read(&cpu_buffer->dropped_events); 3544 3545 return ret; 3546 } 3547 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3548 3549 /** 3550 * ring_buffer_read_events_cpu - get the number of events successfully read 3551 * @buffer: The ring buffer 3552 * @cpu: The per CPU buffer to get the number of events read 3553 */ 3554 unsigned long 3555 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 3556 { 3557 struct ring_buffer_per_cpu *cpu_buffer; 3558 3559 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3560 return 0; 3561 3562 cpu_buffer = buffer->buffers[cpu]; 3563 return cpu_buffer->read; 3564 } 3565 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3566 3567 /** 3568 * ring_buffer_entries - get the number of entries in a buffer 3569 * @buffer: The ring buffer 3570 * 3571 * Returns the total number of entries in the ring buffer 3572 * (all CPU entries) 3573 */ 3574 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 3575 { 3576 struct ring_buffer_per_cpu *cpu_buffer; 3577 unsigned long entries = 0; 3578 int cpu; 3579 3580 /* if you care about this being correct, lock the buffer */ 3581 for_each_buffer_cpu(buffer, cpu) { 3582 cpu_buffer = buffer->buffers[cpu]; 3583 entries += rb_num_of_entries(cpu_buffer); 3584 } 3585 3586 return entries; 3587 } 3588 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3589 3590 /** 3591 * ring_buffer_overruns - get the number of overruns in buffer 3592 * @buffer: The ring buffer 3593 * 3594 * Returns the total number of overruns in the ring buffer 3595 * (all CPU entries) 3596 */ 3597 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 3598 { 3599 struct ring_buffer_per_cpu *cpu_buffer; 3600 unsigned long overruns = 0; 3601 int cpu; 3602 3603 /* if you care about this being correct, lock the buffer */ 3604 for_each_buffer_cpu(buffer, cpu) { 3605 cpu_buffer = buffer->buffers[cpu]; 3606 overruns += local_read(&cpu_buffer->overrun); 3607 } 3608 3609 return overruns; 3610 } 3611 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3612 3613 static void rb_iter_reset(struct ring_buffer_iter *iter) 3614 { 3615 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3616 3617 /* Iterator usage is expected to have record disabled */ 3618 iter->head_page = cpu_buffer->reader_page; 3619 iter->head = cpu_buffer->reader_page->read; 3620 iter->next_event = iter->head; 3621 3622 iter->cache_reader_page = iter->head_page; 3623 iter->cache_read = cpu_buffer->read; 3624 3625 if (iter->head) { 3626 iter->read_stamp = cpu_buffer->read_stamp; 3627 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 3628 } else { 3629 iter->read_stamp = iter->head_page->page->time_stamp; 3630 iter->page_stamp = iter->read_stamp; 3631 } 3632 } 3633 3634 /** 3635 * ring_buffer_iter_reset - reset an iterator 3636 * @iter: The iterator to reset 3637 * 3638 * Resets the iterator, so that it will start from the beginning 3639 * again. 3640 */ 3641 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3642 { 3643 struct ring_buffer_per_cpu *cpu_buffer; 3644 unsigned long flags; 3645 3646 if (!iter) 3647 return; 3648 3649 cpu_buffer = iter->cpu_buffer; 3650 3651 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3652 rb_iter_reset(iter); 3653 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3654 } 3655 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3656 3657 /** 3658 * ring_buffer_iter_empty - check if an iterator has no more to read 3659 * @iter: The iterator to check 3660 */ 3661 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3662 { 3663 struct ring_buffer_per_cpu *cpu_buffer; 3664 struct buffer_page *reader; 3665 struct buffer_page *head_page; 3666 struct buffer_page *commit_page; 3667 struct buffer_page *curr_commit_page; 3668 unsigned commit; 3669 u64 curr_commit_ts; 3670 u64 commit_ts; 3671 3672 cpu_buffer = iter->cpu_buffer; 3673 reader = cpu_buffer->reader_page; 3674 head_page = cpu_buffer->head_page; 3675 commit_page = cpu_buffer->commit_page; 3676 commit_ts = commit_page->page->time_stamp; 3677 3678 /* 3679 * When the writer goes across pages, it issues a cmpxchg which 3680 * is a mb(), which will synchronize with the rmb here. 3681 * (see rb_tail_page_update()) 3682 */ 3683 smp_rmb(); 3684 commit = rb_page_commit(commit_page); 3685 /* We want to make sure that the commit page doesn't change */ 3686 smp_rmb(); 3687 3688 /* Make sure commit page didn't change */ 3689 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 3690 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 3691 3692 /* If the commit page changed, then there's more data */ 3693 if (curr_commit_page != commit_page || 3694 curr_commit_ts != commit_ts) 3695 return 0; 3696 3697 /* Still racy, as it may return a false positive, but that's OK */ 3698 return ((iter->head_page == commit_page && iter->head >= commit) || 3699 (iter->head_page == reader && commit_page == head_page && 3700 head_page->read == commit && 3701 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3702 } 3703 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3704 3705 static void 3706 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3707 struct ring_buffer_event *event) 3708 { 3709 u64 delta; 3710 3711 switch (event->type_len) { 3712 case RINGBUF_TYPE_PADDING: 3713 return; 3714 3715 case RINGBUF_TYPE_TIME_EXTEND: 3716 delta = ring_buffer_event_time_stamp(event); 3717 cpu_buffer->read_stamp += delta; 3718 return; 3719 3720 case RINGBUF_TYPE_TIME_STAMP: 3721 delta = ring_buffer_event_time_stamp(event); 3722 cpu_buffer->read_stamp = delta; 3723 return; 3724 3725 case RINGBUF_TYPE_DATA: 3726 cpu_buffer->read_stamp += event->time_delta; 3727 return; 3728 3729 default: 3730 BUG(); 3731 } 3732 return; 3733 } 3734 3735 static void 3736 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3737 struct ring_buffer_event *event) 3738 { 3739 u64 delta; 3740 3741 switch (event->type_len) { 3742 case RINGBUF_TYPE_PADDING: 3743 return; 3744 3745 case RINGBUF_TYPE_TIME_EXTEND: 3746 delta = ring_buffer_event_time_stamp(event); 3747 iter->read_stamp += delta; 3748 return; 3749 3750 case RINGBUF_TYPE_TIME_STAMP: 3751 delta = ring_buffer_event_time_stamp(event); 3752 iter->read_stamp = delta; 3753 return; 3754 3755 case RINGBUF_TYPE_DATA: 3756 iter->read_stamp += event->time_delta; 3757 return; 3758 3759 default: 3760 BUG(); 3761 } 3762 return; 3763 } 3764 3765 static struct buffer_page * 3766 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3767 { 3768 struct buffer_page *reader = NULL; 3769 unsigned long overwrite; 3770 unsigned long flags; 3771 int nr_loops = 0; 3772 int ret; 3773 3774 local_irq_save(flags); 3775 arch_spin_lock(&cpu_buffer->lock); 3776 3777 again: 3778 /* 3779 * This should normally only loop twice. But because the 3780 * start of the reader inserts an empty page, it causes 3781 * a case where we will loop three times. There should be no 3782 * reason to loop four times (that I know of). 3783 */ 3784 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3785 reader = NULL; 3786 goto out; 3787 } 3788 3789 reader = cpu_buffer->reader_page; 3790 3791 /* If there's more to read, return this page */ 3792 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3793 goto out; 3794 3795 /* Never should we have an index greater than the size */ 3796 if (RB_WARN_ON(cpu_buffer, 3797 cpu_buffer->reader_page->read > rb_page_size(reader))) 3798 goto out; 3799 3800 /* check if we caught up to the tail */ 3801 reader = NULL; 3802 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3803 goto out; 3804 3805 /* Don't bother swapping if the ring buffer is empty */ 3806 if (rb_num_of_entries(cpu_buffer) == 0) 3807 goto out; 3808 3809 /* 3810 * Reset the reader page to size zero. 3811 */ 3812 local_set(&cpu_buffer->reader_page->write, 0); 3813 local_set(&cpu_buffer->reader_page->entries, 0); 3814 local_set(&cpu_buffer->reader_page->page->commit, 0); 3815 cpu_buffer->reader_page->real_end = 0; 3816 3817 spin: 3818 /* 3819 * Splice the empty reader page into the list around the head. 3820 */ 3821 reader = rb_set_head_page(cpu_buffer); 3822 if (!reader) 3823 goto out; 3824 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3825 cpu_buffer->reader_page->list.prev = reader->list.prev; 3826 3827 /* 3828 * cpu_buffer->pages just needs to point to the buffer, it 3829 * has no specific buffer page to point to. Lets move it out 3830 * of our way so we don't accidentally swap it. 3831 */ 3832 cpu_buffer->pages = reader->list.prev; 3833 3834 /* The reader page will be pointing to the new head */ 3835 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3836 3837 /* 3838 * We want to make sure we read the overruns after we set up our 3839 * pointers to the next object. The writer side does a 3840 * cmpxchg to cross pages which acts as the mb on the writer 3841 * side. Note, the reader will constantly fail the swap 3842 * while the writer is updating the pointers, so this 3843 * guarantees that the overwrite recorded here is the one we 3844 * want to compare with the last_overrun. 3845 */ 3846 smp_mb(); 3847 overwrite = local_read(&(cpu_buffer->overrun)); 3848 3849 /* 3850 * Here's the tricky part. 3851 * 3852 * We need to move the pointer past the header page. 3853 * But we can only do that if a writer is not currently 3854 * moving it. The page before the header page has the 3855 * flag bit '1' set if it is pointing to the page we want. 3856 * but if the writer is in the process of moving it 3857 * than it will be '2' or already moved '0'. 3858 */ 3859 3860 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3861 3862 /* 3863 * If we did not convert it, then we must try again. 3864 */ 3865 if (!ret) 3866 goto spin; 3867 3868 /* 3869 * Yay! We succeeded in replacing the page. 3870 * 3871 * Now make the new head point back to the reader page. 3872 */ 3873 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3874 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3875 3876 local_inc(&cpu_buffer->pages_read); 3877 3878 /* Finally update the reader page to the new head */ 3879 cpu_buffer->reader_page = reader; 3880 cpu_buffer->reader_page->read = 0; 3881 3882 if (overwrite != cpu_buffer->last_overrun) { 3883 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3884 cpu_buffer->last_overrun = overwrite; 3885 } 3886 3887 goto again; 3888 3889 out: 3890 /* Update the read_stamp on the first event */ 3891 if (reader && reader->read == 0) 3892 cpu_buffer->read_stamp = reader->page->time_stamp; 3893 3894 arch_spin_unlock(&cpu_buffer->lock); 3895 local_irq_restore(flags); 3896 3897 return reader; 3898 } 3899 3900 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3901 { 3902 struct ring_buffer_event *event; 3903 struct buffer_page *reader; 3904 unsigned length; 3905 3906 reader = rb_get_reader_page(cpu_buffer); 3907 3908 /* This function should not be called when buffer is empty */ 3909 if (RB_WARN_ON(cpu_buffer, !reader)) 3910 return; 3911 3912 event = rb_reader_event(cpu_buffer); 3913 3914 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3915 cpu_buffer->read++; 3916 3917 rb_update_read_stamp(cpu_buffer, event); 3918 3919 length = rb_event_length(event); 3920 cpu_buffer->reader_page->read += length; 3921 } 3922 3923 static void rb_advance_iter(struct ring_buffer_iter *iter) 3924 { 3925 struct ring_buffer_per_cpu *cpu_buffer; 3926 3927 cpu_buffer = iter->cpu_buffer; 3928 3929 /* If head == next_event then we need to jump to the next event */ 3930 if (iter->head == iter->next_event) { 3931 /* If the event gets overwritten again, there's nothing to do */ 3932 if (rb_iter_head_event(iter) == NULL) 3933 return; 3934 } 3935 3936 iter->head = iter->next_event; 3937 3938 /* 3939 * Check if we are at the end of the buffer. 3940 */ 3941 if (iter->next_event >= rb_page_size(iter->head_page)) { 3942 /* discarded commits can make the page empty */ 3943 if (iter->head_page == cpu_buffer->commit_page) 3944 return; 3945 rb_inc_iter(iter); 3946 return; 3947 } 3948 3949 rb_update_iter_read_stamp(iter, iter->event); 3950 } 3951 3952 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3953 { 3954 return cpu_buffer->lost_events; 3955 } 3956 3957 static struct ring_buffer_event * 3958 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3959 unsigned long *lost_events) 3960 { 3961 struct ring_buffer_event *event; 3962 struct buffer_page *reader; 3963 int nr_loops = 0; 3964 3965 if (ts) 3966 *ts = 0; 3967 again: 3968 /* 3969 * We repeat when a time extend is encountered. 3970 * Since the time extend is always attached to a data event, 3971 * we should never loop more than once. 3972 * (We never hit the following condition more than twice). 3973 */ 3974 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3975 return NULL; 3976 3977 reader = rb_get_reader_page(cpu_buffer); 3978 if (!reader) 3979 return NULL; 3980 3981 event = rb_reader_event(cpu_buffer); 3982 3983 switch (event->type_len) { 3984 case RINGBUF_TYPE_PADDING: 3985 if (rb_null_event(event)) 3986 RB_WARN_ON(cpu_buffer, 1); 3987 /* 3988 * Because the writer could be discarding every 3989 * event it creates (which would probably be bad) 3990 * if we were to go back to "again" then we may never 3991 * catch up, and will trigger the warn on, or lock 3992 * the box. Return the padding, and we will release 3993 * the current locks, and try again. 3994 */ 3995 return event; 3996 3997 case RINGBUF_TYPE_TIME_EXTEND: 3998 /* Internal data, OK to advance */ 3999 rb_advance_reader(cpu_buffer); 4000 goto again; 4001 4002 case RINGBUF_TYPE_TIME_STAMP: 4003 if (ts) { 4004 *ts = ring_buffer_event_time_stamp(event); 4005 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4006 cpu_buffer->cpu, ts); 4007 } 4008 /* Internal data, OK to advance */ 4009 rb_advance_reader(cpu_buffer); 4010 goto again; 4011 4012 case RINGBUF_TYPE_DATA: 4013 if (ts && !(*ts)) { 4014 *ts = cpu_buffer->read_stamp + event->time_delta; 4015 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4016 cpu_buffer->cpu, ts); 4017 } 4018 if (lost_events) 4019 *lost_events = rb_lost_events(cpu_buffer); 4020 return event; 4021 4022 default: 4023 BUG(); 4024 } 4025 4026 return NULL; 4027 } 4028 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4029 4030 static struct ring_buffer_event * 4031 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4032 { 4033 struct trace_buffer *buffer; 4034 struct ring_buffer_per_cpu *cpu_buffer; 4035 struct ring_buffer_event *event; 4036 int nr_loops = 0; 4037 bool failed = false; 4038 4039 if (ts) 4040 *ts = 0; 4041 4042 cpu_buffer = iter->cpu_buffer; 4043 buffer = cpu_buffer->buffer; 4044 4045 /* 4046 * Check if someone performed a consuming read to 4047 * the buffer. A consuming read invalidates the iterator 4048 * and we need to reset the iterator in this case. 4049 */ 4050 if (unlikely(iter->cache_read != cpu_buffer->read || 4051 iter->cache_reader_page != cpu_buffer->reader_page)) 4052 rb_iter_reset(iter); 4053 4054 again: 4055 if (ring_buffer_iter_empty(iter)) 4056 return NULL; 4057 4058 /* 4059 * We repeat when a time extend is encountered or we hit 4060 * the end of the page. Since the time extend is always attached 4061 * to a data event, we should never loop more than three times. 4062 * Once for going to next page, once on time extend, and 4063 * finally once to get the event. 4064 * We should never hit the following condition more than thrice, 4065 * unless the buffer is very small, and there's a writer 4066 * that is causing the reader to fail getting an event. 4067 */ 4068 if (++nr_loops > 3) { 4069 RB_WARN_ON(cpu_buffer, !failed); 4070 return NULL; 4071 } 4072 4073 if (rb_per_cpu_empty(cpu_buffer)) 4074 return NULL; 4075 4076 if (iter->head >= rb_page_size(iter->head_page)) { 4077 rb_inc_iter(iter); 4078 goto again; 4079 } 4080 4081 event = rb_iter_head_event(iter); 4082 if (!event) { 4083 failed = true; 4084 goto again; 4085 } 4086 4087 switch (event->type_len) { 4088 case RINGBUF_TYPE_PADDING: 4089 if (rb_null_event(event)) { 4090 rb_inc_iter(iter); 4091 goto again; 4092 } 4093 rb_advance_iter(iter); 4094 return event; 4095 4096 case RINGBUF_TYPE_TIME_EXTEND: 4097 /* Internal data, OK to advance */ 4098 rb_advance_iter(iter); 4099 goto again; 4100 4101 case RINGBUF_TYPE_TIME_STAMP: 4102 if (ts) { 4103 *ts = ring_buffer_event_time_stamp(event); 4104 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4105 cpu_buffer->cpu, ts); 4106 } 4107 /* Internal data, OK to advance */ 4108 rb_advance_iter(iter); 4109 goto again; 4110 4111 case RINGBUF_TYPE_DATA: 4112 if (ts && !(*ts)) { 4113 *ts = iter->read_stamp + event->time_delta; 4114 ring_buffer_normalize_time_stamp(buffer, 4115 cpu_buffer->cpu, ts); 4116 } 4117 return event; 4118 4119 default: 4120 BUG(); 4121 } 4122 4123 return NULL; 4124 } 4125 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4126 4127 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4128 { 4129 if (likely(!in_nmi())) { 4130 raw_spin_lock(&cpu_buffer->reader_lock); 4131 return true; 4132 } 4133 4134 /* 4135 * If an NMI die dumps out the content of the ring buffer 4136 * trylock must be used to prevent a deadlock if the NMI 4137 * preempted a task that holds the ring buffer locks. If 4138 * we get the lock then all is fine, if not, then continue 4139 * to do the read, but this can corrupt the ring buffer, 4140 * so it must be permanently disabled from future writes. 4141 * Reading from NMI is a oneshot deal. 4142 */ 4143 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4144 return true; 4145 4146 /* Continue without locking, but disable the ring buffer */ 4147 atomic_inc(&cpu_buffer->record_disabled); 4148 return false; 4149 } 4150 4151 static inline void 4152 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4153 { 4154 if (likely(locked)) 4155 raw_spin_unlock(&cpu_buffer->reader_lock); 4156 return; 4157 } 4158 4159 /** 4160 * ring_buffer_peek - peek at the next event to be read 4161 * @buffer: The ring buffer to read 4162 * @cpu: The cpu to peak at 4163 * @ts: The timestamp counter of this event. 4164 * @lost_events: a variable to store if events were lost (may be NULL) 4165 * 4166 * This will return the event that will be read next, but does 4167 * not consume the data. 4168 */ 4169 struct ring_buffer_event * 4170 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4171 unsigned long *lost_events) 4172 { 4173 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4174 struct ring_buffer_event *event; 4175 unsigned long flags; 4176 bool dolock; 4177 4178 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4179 return NULL; 4180 4181 again: 4182 local_irq_save(flags); 4183 dolock = rb_reader_lock(cpu_buffer); 4184 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4185 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4186 rb_advance_reader(cpu_buffer); 4187 rb_reader_unlock(cpu_buffer, dolock); 4188 local_irq_restore(flags); 4189 4190 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4191 goto again; 4192 4193 return event; 4194 } 4195 4196 /** ring_buffer_iter_dropped - report if there are dropped events 4197 * @iter: The ring buffer iterator 4198 * 4199 * Returns true if there was dropped events since the last peek. 4200 */ 4201 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4202 { 4203 bool ret = iter->missed_events != 0; 4204 4205 iter->missed_events = 0; 4206 return ret; 4207 } 4208 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4209 4210 /** 4211 * ring_buffer_iter_peek - peek at the next event to be read 4212 * @iter: The ring buffer iterator 4213 * @ts: The timestamp counter of this event. 4214 * 4215 * This will return the event that will be read next, but does 4216 * not increment the iterator. 4217 */ 4218 struct ring_buffer_event * 4219 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4220 { 4221 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4222 struct ring_buffer_event *event; 4223 unsigned long flags; 4224 4225 again: 4226 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4227 event = rb_iter_peek(iter, ts); 4228 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4229 4230 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4231 goto again; 4232 4233 return event; 4234 } 4235 4236 /** 4237 * ring_buffer_consume - return an event and consume it 4238 * @buffer: The ring buffer to get the next event from 4239 * @cpu: the cpu to read the buffer from 4240 * @ts: a variable to store the timestamp (may be NULL) 4241 * @lost_events: a variable to store if events were lost (may be NULL) 4242 * 4243 * Returns the next event in the ring buffer, and that event is consumed. 4244 * Meaning, that sequential reads will keep returning a different event, 4245 * and eventually empty the ring buffer if the producer is slower. 4246 */ 4247 struct ring_buffer_event * 4248 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4249 unsigned long *lost_events) 4250 { 4251 struct ring_buffer_per_cpu *cpu_buffer; 4252 struct ring_buffer_event *event = NULL; 4253 unsigned long flags; 4254 bool dolock; 4255 4256 again: 4257 /* might be called in atomic */ 4258 preempt_disable(); 4259 4260 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4261 goto out; 4262 4263 cpu_buffer = buffer->buffers[cpu]; 4264 local_irq_save(flags); 4265 dolock = rb_reader_lock(cpu_buffer); 4266 4267 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4268 if (event) { 4269 cpu_buffer->lost_events = 0; 4270 rb_advance_reader(cpu_buffer); 4271 } 4272 4273 rb_reader_unlock(cpu_buffer, dolock); 4274 local_irq_restore(flags); 4275 4276 out: 4277 preempt_enable(); 4278 4279 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4280 goto again; 4281 4282 return event; 4283 } 4284 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4285 4286 /** 4287 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4288 * @buffer: The ring buffer to read from 4289 * @cpu: The cpu buffer to iterate over 4290 * @flags: gfp flags to use for memory allocation 4291 * 4292 * This performs the initial preparations necessary to iterate 4293 * through the buffer. Memory is allocated, buffer recording 4294 * is disabled, and the iterator pointer is returned to the caller. 4295 * 4296 * Disabling buffer recording prevents the reading from being 4297 * corrupted. This is not a consuming read, so a producer is not 4298 * expected. 4299 * 4300 * After a sequence of ring_buffer_read_prepare calls, the user is 4301 * expected to make at least one call to ring_buffer_read_prepare_sync. 4302 * Afterwards, ring_buffer_read_start is invoked to get things going 4303 * for real. 4304 * 4305 * This overall must be paired with ring_buffer_read_finish. 4306 */ 4307 struct ring_buffer_iter * 4308 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4309 { 4310 struct ring_buffer_per_cpu *cpu_buffer; 4311 struct ring_buffer_iter *iter; 4312 4313 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4314 return NULL; 4315 4316 iter = kzalloc(sizeof(*iter), flags); 4317 if (!iter) 4318 return NULL; 4319 4320 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 4321 if (!iter->event) { 4322 kfree(iter); 4323 return NULL; 4324 } 4325 4326 cpu_buffer = buffer->buffers[cpu]; 4327 4328 iter->cpu_buffer = cpu_buffer; 4329 4330 atomic_inc(&cpu_buffer->resize_disabled); 4331 4332 return iter; 4333 } 4334 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4335 4336 /** 4337 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4338 * 4339 * All previously invoked ring_buffer_read_prepare calls to prepare 4340 * iterators will be synchronized. Afterwards, read_buffer_read_start 4341 * calls on those iterators are allowed. 4342 */ 4343 void 4344 ring_buffer_read_prepare_sync(void) 4345 { 4346 synchronize_rcu(); 4347 } 4348 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4349 4350 /** 4351 * ring_buffer_read_start - start a non consuming read of the buffer 4352 * @iter: The iterator returned by ring_buffer_read_prepare 4353 * 4354 * This finalizes the startup of an iteration through the buffer. 4355 * The iterator comes from a call to ring_buffer_read_prepare and 4356 * an intervening ring_buffer_read_prepare_sync must have been 4357 * performed. 4358 * 4359 * Must be paired with ring_buffer_read_finish. 4360 */ 4361 void 4362 ring_buffer_read_start(struct ring_buffer_iter *iter) 4363 { 4364 struct ring_buffer_per_cpu *cpu_buffer; 4365 unsigned long flags; 4366 4367 if (!iter) 4368 return; 4369 4370 cpu_buffer = iter->cpu_buffer; 4371 4372 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4373 arch_spin_lock(&cpu_buffer->lock); 4374 rb_iter_reset(iter); 4375 arch_spin_unlock(&cpu_buffer->lock); 4376 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4377 } 4378 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4379 4380 /** 4381 * ring_buffer_read_finish - finish reading the iterator of the buffer 4382 * @iter: The iterator retrieved by ring_buffer_start 4383 * 4384 * This re-enables the recording to the buffer, and frees the 4385 * iterator. 4386 */ 4387 void 4388 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4389 { 4390 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4391 unsigned long flags; 4392 4393 /* 4394 * Ring buffer is disabled from recording, here's a good place 4395 * to check the integrity of the ring buffer. 4396 * Must prevent readers from trying to read, as the check 4397 * clears the HEAD page and readers require it. 4398 */ 4399 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4400 rb_check_pages(cpu_buffer); 4401 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4402 4403 atomic_dec(&cpu_buffer->resize_disabled); 4404 kfree(iter->event); 4405 kfree(iter); 4406 } 4407 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4408 4409 /** 4410 * ring_buffer_iter_advance - advance the iterator to the next location 4411 * @iter: The ring buffer iterator 4412 * 4413 * Move the location of the iterator such that the next read will 4414 * be the next location of the iterator. 4415 */ 4416 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 4417 { 4418 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4419 unsigned long flags; 4420 4421 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4422 4423 rb_advance_iter(iter); 4424 4425 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4426 } 4427 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 4428 4429 /** 4430 * ring_buffer_size - return the size of the ring buffer (in bytes) 4431 * @buffer: The ring buffer. 4432 * @cpu: The CPU to get ring buffer size from. 4433 */ 4434 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4435 { 4436 /* 4437 * Earlier, this method returned 4438 * BUF_PAGE_SIZE * buffer->nr_pages 4439 * Since the nr_pages field is now removed, we have converted this to 4440 * return the per cpu buffer value. 4441 */ 4442 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4443 return 0; 4444 4445 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4446 } 4447 EXPORT_SYMBOL_GPL(ring_buffer_size); 4448 4449 static void 4450 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4451 { 4452 rb_head_page_deactivate(cpu_buffer); 4453 4454 cpu_buffer->head_page 4455 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4456 local_set(&cpu_buffer->head_page->write, 0); 4457 local_set(&cpu_buffer->head_page->entries, 0); 4458 local_set(&cpu_buffer->head_page->page->commit, 0); 4459 4460 cpu_buffer->head_page->read = 0; 4461 4462 cpu_buffer->tail_page = cpu_buffer->head_page; 4463 cpu_buffer->commit_page = cpu_buffer->head_page; 4464 4465 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4466 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4467 local_set(&cpu_buffer->reader_page->write, 0); 4468 local_set(&cpu_buffer->reader_page->entries, 0); 4469 local_set(&cpu_buffer->reader_page->page->commit, 0); 4470 cpu_buffer->reader_page->read = 0; 4471 4472 local_set(&cpu_buffer->entries_bytes, 0); 4473 local_set(&cpu_buffer->overrun, 0); 4474 local_set(&cpu_buffer->commit_overrun, 0); 4475 local_set(&cpu_buffer->dropped_events, 0); 4476 local_set(&cpu_buffer->entries, 0); 4477 local_set(&cpu_buffer->committing, 0); 4478 local_set(&cpu_buffer->commits, 0); 4479 local_set(&cpu_buffer->pages_touched, 0); 4480 local_set(&cpu_buffer->pages_read, 0); 4481 cpu_buffer->last_pages_touch = 0; 4482 cpu_buffer->shortest_full = 0; 4483 cpu_buffer->read = 0; 4484 cpu_buffer->read_bytes = 0; 4485 4486 cpu_buffer->write_stamp = 0; 4487 cpu_buffer->read_stamp = 0; 4488 4489 cpu_buffer->lost_events = 0; 4490 cpu_buffer->last_overrun = 0; 4491 4492 rb_head_page_activate(cpu_buffer); 4493 } 4494 4495 /** 4496 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4497 * @buffer: The ring buffer to reset a per cpu buffer of 4498 * @cpu: The CPU buffer to be reset 4499 */ 4500 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 4501 { 4502 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4503 unsigned long flags; 4504 4505 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4506 return; 4507 4508 atomic_inc(&cpu_buffer->resize_disabled); 4509 atomic_inc(&cpu_buffer->record_disabled); 4510 4511 /* Make sure all commits have finished */ 4512 synchronize_rcu(); 4513 4514 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4515 4516 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4517 goto out; 4518 4519 arch_spin_lock(&cpu_buffer->lock); 4520 4521 rb_reset_cpu(cpu_buffer); 4522 4523 arch_spin_unlock(&cpu_buffer->lock); 4524 4525 out: 4526 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4527 4528 atomic_dec(&cpu_buffer->record_disabled); 4529 atomic_dec(&cpu_buffer->resize_disabled); 4530 } 4531 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4532 4533 /** 4534 * ring_buffer_reset - reset a ring buffer 4535 * @buffer: The ring buffer to reset all cpu buffers 4536 */ 4537 void ring_buffer_reset(struct trace_buffer *buffer) 4538 { 4539 int cpu; 4540 4541 for_each_buffer_cpu(buffer, cpu) 4542 ring_buffer_reset_cpu(buffer, cpu); 4543 } 4544 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4545 4546 /** 4547 * rind_buffer_empty - is the ring buffer empty? 4548 * @buffer: The ring buffer to test 4549 */ 4550 bool ring_buffer_empty(struct trace_buffer *buffer) 4551 { 4552 struct ring_buffer_per_cpu *cpu_buffer; 4553 unsigned long flags; 4554 bool dolock; 4555 int cpu; 4556 int ret; 4557 4558 /* yes this is racy, but if you don't like the race, lock the buffer */ 4559 for_each_buffer_cpu(buffer, cpu) { 4560 cpu_buffer = buffer->buffers[cpu]; 4561 local_irq_save(flags); 4562 dolock = rb_reader_lock(cpu_buffer); 4563 ret = rb_per_cpu_empty(cpu_buffer); 4564 rb_reader_unlock(cpu_buffer, dolock); 4565 local_irq_restore(flags); 4566 4567 if (!ret) 4568 return false; 4569 } 4570 4571 return true; 4572 } 4573 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4574 4575 /** 4576 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4577 * @buffer: The ring buffer 4578 * @cpu: The CPU buffer to test 4579 */ 4580 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 4581 { 4582 struct ring_buffer_per_cpu *cpu_buffer; 4583 unsigned long flags; 4584 bool dolock; 4585 int ret; 4586 4587 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4588 return true; 4589 4590 cpu_buffer = buffer->buffers[cpu]; 4591 local_irq_save(flags); 4592 dolock = rb_reader_lock(cpu_buffer); 4593 ret = rb_per_cpu_empty(cpu_buffer); 4594 rb_reader_unlock(cpu_buffer, dolock); 4595 local_irq_restore(flags); 4596 4597 return ret; 4598 } 4599 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4600 4601 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4602 /** 4603 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4604 * @buffer_a: One buffer to swap with 4605 * @buffer_b: The other buffer to swap with 4606 * @cpu: the CPU of the buffers to swap 4607 * 4608 * This function is useful for tracers that want to take a "snapshot" 4609 * of a CPU buffer and has another back up buffer lying around. 4610 * it is expected that the tracer handles the cpu buffer not being 4611 * used at the moment. 4612 */ 4613 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 4614 struct trace_buffer *buffer_b, int cpu) 4615 { 4616 struct ring_buffer_per_cpu *cpu_buffer_a; 4617 struct ring_buffer_per_cpu *cpu_buffer_b; 4618 int ret = -EINVAL; 4619 4620 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4621 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4622 goto out; 4623 4624 cpu_buffer_a = buffer_a->buffers[cpu]; 4625 cpu_buffer_b = buffer_b->buffers[cpu]; 4626 4627 /* At least make sure the two buffers are somewhat the same */ 4628 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4629 goto out; 4630 4631 ret = -EAGAIN; 4632 4633 if (atomic_read(&buffer_a->record_disabled)) 4634 goto out; 4635 4636 if (atomic_read(&buffer_b->record_disabled)) 4637 goto out; 4638 4639 if (atomic_read(&cpu_buffer_a->record_disabled)) 4640 goto out; 4641 4642 if (atomic_read(&cpu_buffer_b->record_disabled)) 4643 goto out; 4644 4645 /* 4646 * We can't do a synchronize_rcu here because this 4647 * function can be called in atomic context. 4648 * Normally this will be called from the same CPU as cpu. 4649 * If not it's up to the caller to protect this. 4650 */ 4651 atomic_inc(&cpu_buffer_a->record_disabled); 4652 atomic_inc(&cpu_buffer_b->record_disabled); 4653 4654 ret = -EBUSY; 4655 if (local_read(&cpu_buffer_a->committing)) 4656 goto out_dec; 4657 if (local_read(&cpu_buffer_b->committing)) 4658 goto out_dec; 4659 4660 buffer_a->buffers[cpu] = cpu_buffer_b; 4661 buffer_b->buffers[cpu] = cpu_buffer_a; 4662 4663 cpu_buffer_b->buffer = buffer_a; 4664 cpu_buffer_a->buffer = buffer_b; 4665 4666 ret = 0; 4667 4668 out_dec: 4669 atomic_dec(&cpu_buffer_a->record_disabled); 4670 atomic_dec(&cpu_buffer_b->record_disabled); 4671 out: 4672 return ret; 4673 } 4674 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4675 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4676 4677 /** 4678 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4679 * @buffer: the buffer to allocate for. 4680 * @cpu: the cpu buffer to allocate. 4681 * 4682 * This function is used in conjunction with ring_buffer_read_page. 4683 * When reading a full page from the ring buffer, these functions 4684 * can be used to speed up the process. The calling function should 4685 * allocate a few pages first with this function. Then when it 4686 * needs to get pages from the ring buffer, it passes the result 4687 * of this function into ring_buffer_read_page, which will swap 4688 * the page that was allocated, with the read page of the buffer. 4689 * 4690 * Returns: 4691 * The page allocated, or ERR_PTR 4692 */ 4693 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 4694 { 4695 struct ring_buffer_per_cpu *cpu_buffer; 4696 struct buffer_data_page *bpage = NULL; 4697 unsigned long flags; 4698 struct page *page; 4699 4700 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4701 return ERR_PTR(-ENODEV); 4702 4703 cpu_buffer = buffer->buffers[cpu]; 4704 local_irq_save(flags); 4705 arch_spin_lock(&cpu_buffer->lock); 4706 4707 if (cpu_buffer->free_page) { 4708 bpage = cpu_buffer->free_page; 4709 cpu_buffer->free_page = NULL; 4710 } 4711 4712 arch_spin_unlock(&cpu_buffer->lock); 4713 local_irq_restore(flags); 4714 4715 if (bpage) 4716 goto out; 4717 4718 page = alloc_pages_node(cpu_to_node(cpu), 4719 GFP_KERNEL | __GFP_NORETRY, 0); 4720 if (!page) 4721 return ERR_PTR(-ENOMEM); 4722 4723 bpage = page_address(page); 4724 4725 out: 4726 rb_init_page(bpage); 4727 4728 return bpage; 4729 } 4730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4731 4732 /** 4733 * ring_buffer_free_read_page - free an allocated read page 4734 * @buffer: the buffer the page was allocate for 4735 * @cpu: the cpu buffer the page came from 4736 * @data: the page to free 4737 * 4738 * Free a page allocated from ring_buffer_alloc_read_page. 4739 */ 4740 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 4741 { 4742 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4743 struct buffer_data_page *bpage = data; 4744 struct page *page = virt_to_page(bpage); 4745 unsigned long flags; 4746 4747 /* If the page is still in use someplace else, we can't reuse it */ 4748 if (page_ref_count(page) > 1) 4749 goto out; 4750 4751 local_irq_save(flags); 4752 arch_spin_lock(&cpu_buffer->lock); 4753 4754 if (!cpu_buffer->free_page) { 4755 cpu_buffer->free_page = bpage; 4756 bpage = NULL; 4757 } 4758 4759 arch_spin_unlock(&cpu_buffer->lock); 4760 local_irq_restore(flags); 4761 4762 out: 4763 free_page((unsigned long)bpage); 4764 } 4765 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4766 4767 /** 4768 * ring_buffer_read_page - extract a page from the ring buffer 4769 * @buffer: buffer to extract from 4770 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4771 * @len: amount to extract 4772 * @cpu: the cpu of the buffer to extract 4773 * @full: should the extraction only happen when the page is full. 4774 * 4775 * This function will pull out a page from the ring buffer and consume it. 4776 * @data_page must be the address of the variable that was returned 4777 * from ring_buffer_alloc_read_page. This is because the page might be used 4778 * to swap with a page in the ring buffer. 4779 * 4780 * for example: 4781 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4782 * if (IS_ERR(rpage)) 4783 * return PTR_ERR(rpage); 4784 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4785 * if (ret >= 0) 4786 * process_page(rpage, ret); 4787 * 4788 * When @full is set, the function will not return true unless 4789 * the writer is off the reader page. 4790 * 4791 * Note: it is up to the calling functions to handle sleeps and wakeups. 4792 * The ring buffer can be used anywhere in the kernel and can not 4793 * blindly call wake_up. The layer that uses the ring buffer must be 4794 * responsible for that. 4795 * 4796 * Returns: 4797 * >=0 if data has been transferred, returns the offset of consumed data. 4798 * <0 if no data has been transferred. 4799 */ 4800 int ring_buffer_read_page(struct trace_buffer *buffer, 4801 void **data_page, size_t len, int cpu, int full) 4802 { 4803 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4804 struct ring_buffer_event *event; 4805 struct buffer_data_page *bpage; 4806 struct buffer_page *reader; 4807 unsigned long missed_events; 4808 unsigned long flags; 4809 unsigned int commit; 4810 unsigned int read; 4811 u64 save_timestamp; 4812 int ret = -1; 4813 4814 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4815 goto out; 4816 4817 /* 4818 * If len is not big enough to hold the page header, then 4819 * we can not copy anything. 4820 */ 4821 if (len <= BUF_PAGE_HDR_SIZE) 4822 goto out; 4823 4824 len -= BUF_PAGE_HDR_SIZE; 4825 4826 if (!data_page) 4827 goto out; 4828 4829 bpage = *data_page; 4830 if (!bpage) 4831 goto out; 4832 4833 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4834 4835 reader = rb_get_reader_page(cpu_buffer); 4836 if (!reader) 4837 goto out_unlock; 4838 4839 event = rb_reader_event(cpu_buffer); 4840 4841 read = reader->read; 4842 commit = rb_page_commit(reader); 4843 4844 /* Check if any events were dropped */ 4845 missed_events = cpu_buffer->lost_events; 4846 4847 /* 4848 * If this page has been partially read or 4849 * if len is not big enough to read the rest of the page or 4850 * a writer is still on the page, then 4851 * we must copy the data from the page to the buffer. 4852 * Otherwise, we can simply swap the page with the one passed in. 4853 */ 4854 if (read || (len < (commit - read)) || 4855 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4856 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4857 unsigned int rpos = read; 4858 unsigned int pos = 0; 4859 unsigned int size; 4860 4861 if (full) 4862 goto out_unlock; 4863 4864 if (len > (commit - read)) 4865 len = (commit - read); 4866 4867 /* Always keep the time extend and data together */ 4868 size = rb_event_ts_length(event); 4869 4870 if (len < size) 4871 goto out_unlock; 4872 4873 /* save the current timestamp, since the user will need it */ 4874 save_timestamp = cpu_buffer->read_stamp; 4875 4876 /* Need to copy one event at a time */ 4877 do { 4878 /* We need the size of one event, because 4879 * rb_advance_reader only advances by one event, 4880 * whereas rb_event_ts_length may include the size of 4881 * one or two events. 4882 * We have already ensured there's enough space if this 4883 * is a time extend. */ 4884 size = rb_event_length(event); 4885 memcpy(bpage->data + pos, rpage->data + rpos, size); 4886 4887 len -= size; 4888 4889 rb_advance_reader(cpu_buffer); 4890 rpos = reader->read; 4891 pos += size; 4892 4893 if (rpos >= commit) 4894 break; 4895 4896 event = rb_reader_event(cpu_buffer); 4897 /* Always keep the time extend and data together */ 4898 size = rb_event_ts_length(event); 4899 } while (len >= size); 4900 4901 /* update bpage */ 4902 local_set(&bpage->commit, pos); 4903 bpage->time_stamp = save_timestamp; 4904 4905 /* we copied everything to the beginning */ 4906 read = 0; 4907 } else { 4908 /* update the entry counter */ 4909 cpu_buffer->read += rb_page_entries(reader); 4910 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4911 4912 /* swap the pages */ 4913 rb_init_page(bpage); 4914 bpage = reader->page; 4915 reader->page = *data_page; 4916 local_set(&reader->write, 0); 4917 local_set(&reader->entries, 0); 4918 reader->read = 0; 4919 *data_page = bpage; 4920 4921 /* 4922 * Use the real_end for the data size, 4923 * This gives us a chance to store the lost events 4924 * on the page. 4925 */ 4926 if (reader->real_end) 4927 local_set(&bpage->commit, reader->real_end); 4928 } 4929 ret = read; 4930 4931 cpu_buffer->lost_events = 0; 4932 4933 commit = local_read(&bpage->commit); 4934 /* 4935 * Set a flag in the commit field if we lost events 4936 */ 4937 if (missed_events) { 4938 /* If there is room at the end of the page to save the 4939 * missed events, then record it there. 4940 */ 4941 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4942 memcpy(&bpage->data[commit], &missed_events, 4943 sizeof(missed_events)); 4944 local_add(RB_MISSED_STORED, &bpage->commit); 4945 commit += sizeof(missed_events); 4946 } 4947 local_add(RB_MISSED_EVENTS, &bpage->commit); 4948 } 4949 4950 /* 4951 * This page may be off to user land. Zero it out here. 4952 */ 4953 if (commit < BUF_PAGE_SIZE) 4954 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4955 4956 out_unlock: 4957 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4958 4959 out: 4960 return ret; 4961 } 4962 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4963 4964 /* 4965 * We only allocate new buffers, never free them if the CPU goes down. 4966 * If we were to free the buffer, then the user would lose any trace that was in 4967 * the buffer. 4968 */ 4969 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4970 { 4971 struct trace_buffer *buffer; 4972 long nr_pages_same; 4973 int cpu_i; 4974 unsigned long nr_pages; 4975 4976 buffer = container_of(node, struct trace_buffer, node); 4977 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4978 return 0; 4979 4980 nr_pages = 0; 4981 nr_pages_same = 1; 4982 /* check if all cpu sizes are same */ 4983 for_each_buffer_cpu(buffer, cpu_i) { 4984 /* fill in the size from first enabled cpu */ 4985 if (nr_pages == 0) 4986 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4987 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4988 nr_pages_same = 0; 4989 break; 4990 } 4991 } 4992 /* allocate minimum pages, user can later expand it */ 4993 if (!nr_pages_same) 4994 nr_pages = 2; 4995 buffer->buffers[cpu] = 4996 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4997 if (!buffer->buffers[cpu]) { 4998 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4999 cpu); 5000 return -ENOMEM; 5001 } 5002 smp_wmb(); 5003 cpumask_set_cpu(cpu, buffer->cpumask); 5004 return 0; 5005 } 5006 5007 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5008 /* 5009 * This is a basic integrity check of the ring buffer. 5010 * Late in the boot cycle this test will run when configured in. 5011 * It will kick off a thread per CPU that will go into a loop 5012 * writing to the per cpu ring buffer various sizes of data. 5013 * Some of the data will be large items, some small. 5014 * 5015 * Another thread is created that goes into a spin, sending out 5016 * IPIs to the other CPUs to also write into the ring buffer. 5017 * this is to test the nesting ability of the buffer. 5018 * 5019 * Basic stats are recorded and reported. If something in the 5020 * ring buffer should happen that's not expected, a big warning 5021 * is displayed and all ring buffers are disabled. 5022 */ 5023 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5024 5025 struct rb_test_data { 5026 struct trace_buffer *buffer; 5027 unsigned long events; 5028 unsigned long bytes_written; 5029 unsigned long bytes_alloc; 5030 unsigned long bytes_dropped; 5031 unsigned long events_nested; 5032 unsigned long bytes_written_nested; 5033 unsigned long bytes_alloc_nested; 5034 unsigned long bytes_dropped_nested; 5035 int min_size_nested; 5036 int max_size_nested; 5037 int max_size; 5038 int min_size; 5039 int cpu; 5040 int cnt; 5041 }; 5042 5043 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5044 5045 /* 1 meg per cpu */ 5046 #define RB_TEST_BUFFER_SIZE 1048576 5047 5048 static char rb_string[] __initdata = 5049 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5050 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5051 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5052 5053 static bool rb_test_started __initdata; 5054 5055 struct rb_item { 5056 int size; 5057 char str[]; 5058 }; 5059 5060 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5061 { 5062 struct ring_buffer_event *event; 5063 struct rb_item *item; 5064 bool started; 5065 int event_len; 5066 int size; 5067 int len; 5068 int cnt; 5069 5070 /* Have nested writes different that what is written */ 5071 cnt = data->cnt + (nested ? 27 : 0); 5072 5073 /* Multiply cnt by ~e, to make some unique increment */ 5074 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5075 5076 len = size + sizeof(struct rb_item); 5077 5078 started = rb_test_started; 5079 /* read rb_test_started before checking buffer enabled */ 5080 smp_rmb(); 5081 5082 event = ring_buffer_lock_reserve(data->buffer, len); 5083 if (!event) { 5084 /* Ignore dropped events before test starts. */ 5085 if (started) { 5086 if (nested) 5087 data->bytes_dropped += len; 5088 else 5089 data->bytes_dropped_nested += len; 5090 } 5091 return len; 5092 } 5093 5094 event_len = ring_buffer_event_length(event); 5095 5096 if (RB_WARN_ON(data->buffer, event_len < len)) 5097 goto out; 5098 5099 item = ring_buffer_event_data(event); 5100 item->size = size; 5101 memcpy(item->str, rb_string, size); 5102 5103 if (nested) { 5104 data->bytes_alloc_nested += event_len; 5105 data->bytes_written_nested += len; 5106 data->events_nested++; 5107 if (!data->min_size_nested || len < data->min_size_nested) 5108 data->min_size_nested = len; 5109 if (len > data->max_size_nested) 5110 data->max_size_nested = len; 5111 } else { 5112 data->bytes_alloc += event_len; 5113 data->bytes_written += len; 5114 data->events++; 5115 if (!data->min_size || len < data->min_size) 5116 data->max_size = len; 5117 if (len > data->max_size) 5118 data->max_size = len; 5119 } 5120 5121 out: 5122 ring_buffer_unlock_commit(data->buffer, event); 5123 5124 return 0; 5125 } 5126 5127 static __init int rb_test(void *arg) 5128 { 5129 struct rb_test_data *data = arg; 5130 5131 while (!kthread_should_stop()) { 5132 rb_write_something(data, false); 5133 data->cnt++; 5134 5135 set_current_state(TASK_INTERRUPTIBLE); 5136 /* Now sleep between a min of 100-300us and a max of 1ms */ 5137 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5138 } 5139 5140 return 0; 5141 } 5142 5143 static __init void rb_ipi(void *ignore) 5144 { 5145 struct rb_test_data *data; 5146 int cpu = smp_processor_id(); 5147 5148 data = &rb_data[cpu]; 5149 rb_write_something(data, true); 5150 } 5151 5152 static __init int rb_hammer_test(void *arg) 5153 { 5154 while (!kthread_should_stop()) { 5155 5156 /* Send an IPI to all cpus to write data! */ 5157 smp_call_function(rb_ipi, NULL, 1); 5158 /* No sleep, but for non preempt, let others run */ 5159 schedule(); 5160 } 5161 5162 return 0; 5163 } 5164 5165 static __init int test_ringbuffer(void) 5166 { 5167 struct task_struct *rb_hammer; 5168 struct trace_buffer *buffer; 5169 int cpu; 5170 int ret = 0; 5171 5172 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5173 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5174 return 0; 5175 } 5176 5177 pr_info("Running ring buffer tests...\n"); 5178 5179 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5180 if (WARN_ON(!buffer)) 5181 return 0; 5182 5183 /* Disable buffer so that threads can't write to it yet */ 5184 ring_buffer_record_off(buffer); 5185 5186 for_each_online_cpu(cpu) { 5187 rb_data[cpu].buffer = buffer; 5188 rb_data[cpu].cpu = cpu; 5189 rb_data[cpu].cnt = cpu; 5190 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5191 "rbtester/%d", cpu); 5192 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5193 pr_cont("FAILED\n"); 5194 ret = PTR_ERR(rb_threads[cpu]); 5195 goto out_free; 5196 } 5197 5198 kthread_bind(rb_threads[cpu], cpu); 5199 wake_up_process(rb_threads[cpu]); 5200 } 5201 5202 /* Now create the rb hammer! */ 5203 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5204 if (WARN_ON(IS_ERR(rb_hammer))) { 5205 pr_cont("FAILED\n"); 5206 ret = PTR_ERR(rb_hammer); 5207 goto out_free; 5208 } 5209 5210 ring_buffer_record_on(buffer); 5211 /* 5212 * Show buffer is enabled before setting rb_test_started. 5213 * Yes there's a small race window where events could be 5214 * dropped and the thread wont catch it. But when a ring 5215 * buffer gets enabled, there will always be some kind of 5216 * delay before other CPUs see it. Thus, we don't care about 5217 * those dropped events. We care about events dropped after 5218 * the threads see that the buffer is active. 5219 */ 5220 smp_wmb(); 5221 rb_test_started = true; 5222 5223 set_current_state(TASK_INTERRUPTIBLE); 5224 /* Just run for 10 seconds */; 5225 schedule_timeout(10 * HZ); 5226 5227 kthread_stop(rb_hammer); 5228 5229 out_free: 5230 for_each_online_cpu(cpu) { 5231 if (!rb_threads[cpu]) 5232 break; 5233 kthread_stop(rb_threads[cpu]); 5234 } 5235 if (ret) { 5236 ring_buffer_free(buffer); 5237 return ret; 5238 } 5239 5240 /* Report! */ 5241 pr_info("finished\n"); 5242 for_each_online_cpu(cpu) { 5243 struct ring_buffer_event *event; 5244 struct rb_test_data *data = &rb_data[cpu]; 5245 struct rb_item *item; 5246 unsigned long total_events; 5247 unsigned long total_dropped; 5248 unsigned long total_written; 5249 unsigned long total_alloc; 5250 unsigned long total_read = 0; 5251 unsigned long total_size = 0; 5252 unsigned long total_len = 0; 5253 unsigned long total_lost = 0; 5254 unsigned long lost; 5255 int big_event_size; 5256 int small_event_size; 5257 5258 ret = -1; 5259 5260 total_events = data->events + data->events_nested; 5261 total_written = data->bytes_written + data->bytes_written_nested; 5262 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5263 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5264 5265 big_event_size = data->max_size + data->max_size_nested; 5266 small_event_size = data->min_size + data->min_size_nested; 5267 5268 pr_info("CPU %d:\n", cpu); 5269 pr_info(" events: %ld\n", total_events); 5270 pr_info(" dropped bytes: %ld\n", total_dropped); 5271 pr_info(" alloced bytes: %ld\n", total_alloc); 5272 pr_info(" written bytes: %ld\n", total_written); 5273 pr_info(" biggest event: %d\n", big_event_size); 5274 pr_info(" smallest event: %d\n", small_event_size); 5275 5276 if (RB_WARN_ON(buffer, total_dropped)) 5277 break; 5278 5279 ret = 0; 5280 5281 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5282 total_lost += lost; 5283 item = ring_buffer_event_data(event); 5284 total_len += ring_buffer_event_length(event); 5285 total_size += item->size + sizeof(struct rb_item); 5286 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5287 pr_info("FAILED!\n"); 5288 pr_info("buffer had: %.*s\n", item->size, item->str); 5289 pr_info("expected: %.*s\n", item->size, rb_string); 5290 RB_WARN_ON(buffer, 1); 5291 ret = -1; 5292 break; 5293 } 5294 total_read++; 5295 } 5296 if (ret) 5297 break; 5298 5299 ret = -1; 5300 5301 pr_info(" read events: %ld\n", total_read); 5302 pr_info(" lost events: %ld\n", total_lost); 5303 pr_info(" total events: %ld\n", total_lost + total_read); 5304 pr_info(" recorded len bytes: %ld\n", total_len); 5305 pr_info(" recorded size bytes: %ld\n", total_size); 5306 if (total_lost) 5307 pr_info(" With dropped events, record len and size may not match\n" 5308 " alloced and written from above\n"); 5309 if (!total_lost) { 5310 if (RB_WARN_ON(buffer, total_len != total_alloc || 5311 total_size != total_written)) 5312 break; 5313 } 5314 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5315 break; 5316 5317 ret = 0; 5318 } 5319 if (!ret) 5320 pr_info("Ring buffer PASSED!\n"); 5321 5322 ring_buffer_free(buffer); 5323 return 0; 5324 } 5325 5326 late_initcall(test_ringbuffer); 5327 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5328