1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/trace_events.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/uaccess.h> 13 #include <linux/hardirq.h> 14 #include <linux/kthread.h> /* for self test */ 15 #include <linux/kmemcheck.h> 16 #include <linux/module.h> 17 #include <linux/percpu.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/hash.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 26 #include <asm/local.h> 27 28 static void update_pages_handler(struct work_struct *work); 29 30 /* 31 * The ring buffer header is special. We must manually up keep it. 32 */ 33 int ring_buffer_print_entry_header(struct trace_seq *s) 34 { 35 trace_seq_puts(s, "# compressed entry header\n"); 36 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 37 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 38 trace_seq_puts(s, "\tarray : 32 bits\n"); 39 trace_seq_putc(s, '\n'); 40 trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return !trace_seq_has_overflowed(s); 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* Used for individual buffers (after the counter) */ 119 #define RB_BUFFER_OFF (1 << 20) 120 121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 122 123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 124 #define RB_ALIGNMENT 4U 125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 127 128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 129 # define RB_FORCE_8BYTE_ALIGNMENT 0 130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 131 #else 132 # define RB_FORCE_8BYTE_ALIGNMENT 1 133 # define RB_ARCH_ALIGNMENT 8U 134 #endif 135 136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 137 138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 140 141 enum { 142 RB_LEN_TIME_EXTEND = 8, 143 RB_LEN_TIME_STAMP = 16, 144 }; 145 146 #define skip_time_extend(event) \ 147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 148 149 static inline int rb_null_event(struct ring_buffer_event *event) 150 { 151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 152 } 153 154 static void rb_event_set_padding(struct ring_buffer_event *event) 155 { 156 /* padding has a NULL time_delta */ 157 event->type_len = RINGBUF_TYPE_PADDING; 158 event->time_delta = 0; 159 } 160 161 static unsigned 162 rb_event_data_length(struct ring_buffer_event *event) 163 { 164 unsigned length; 165 166 if (event->type_len) 167 length = event->type_len * RB_ALIGNMENT; 168 else 169 length = event->array[0]; 170 return length + RB_EVNT_HDR_SIZE; 171 } 172 173 /* 174 * Return the length of the given event. Will return 175 * the length of the time extend if the event is a 176 * time extend. 177 */ 178 static inline unsigned 179 rb_event_length(struct ring_buffer_event *event) 180 { 181 switch (event->type_len) { 182 case RINGBUF_TYPE_PADDING: 183 if (rb_null_event(event)) 184 /* undefined */ 185 return -1; 186 return event->array[0] + RB_EVNT_HDR_SIZE; 187 188 case RINGBUF_TYPE_TIME_EXTEND: 189 return RB_LEN_TIME_EXTEND; 190 191 case RINGBUF_TYPE_TIME_STAMP: 192 return RB_LEN_TIME_STAMP; 193 194 case RINGBUF_TYPE_DATA: 195 return rb_event_data_length(event); 196 default: 197 BUG(); 198 } 199 /* not hit */ 200 return 0; 201 } 202 203 /* 204 * Return total length of time extend and data, 205 * or just the event length for all other events. 206 */ 207 static inline unsigned 208 rb_event_ts_length(struct ring_buffer_event *event) 209 { 210 unsigned len = 0; 211 212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 213 /* time extends include the data event after it */ 214 len = RB_LEN_TIME_EXTEND; 215 event = skip_time_extend(event); 216 } 217 return len + rb_event_length(event); 218 } 219 220 /** 221 * ring_buffer_event_length - return the length of the event 222 * @event: the event to get the length of 223 * 224 * Returns the size of the data load of a data event. 225 * If the event is something other than a data event, it 226 * returns the size of the event itself. With the exception 227 * of a TIME EXTEND, where it still returns the size of the 228 * data load of the data event after it. 229 */ 230 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 235 event = skip_time_extend(event); 236 237 length = rb_event_length(event); 238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 239 return length; 240 length -= RB_EVNT_HDR_SIZE; 241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 242 length -= sizeof(event->array[0]); 243 return length; 244 } 245 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 246 247 /* inline for ring buffer fast paths */ 248 static void * 249 rb_event_data(struct ring_buffer_event *event) 250 { 251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 252 event = skip_time_extend(event); 253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 254 /* If length is in len field, then array[0] has the data */ 255 if (event->type_len) 256 return (void *)&event->array[0]; 257 /* Otherwise length is in array[0] and array[1] has the data */ 258 return (void *)&event->array[1]; 259 } 260 261 /** 262 * ring_buffer_event_data - return the data of the event 263 * @event: the event to get the data from 264 */ 265 void *ring_buffer_event_data(struct ring_buffer_event *event) 266 { 267 return rb_event_data(event); 268 } 269 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 270 271 #define for_each_buffer_cpu(buffer, cpu) \ 272 for_each_cpu(cpu, buffer->cpumask) 273 274 #define TS_SHIFT 27 275 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 276 #define TS_DELTA_TEST (~TS_MASK) 277 278 /* Flag when events were overwritten */ 279 #define RB_MISSED_EVENTS (1 << 31) 280 /* Missed count stored at end */ 281 #define RB_MISSED_STORED (1 << 30) 282 283 struct buffer_data_page { 284 u64 time_stamp; /* page time stamp */ 285 local_t commit; /* write committed index */ 286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 287 }; 288 289 /* 290 * Note, the buffer_page list must be first. The buffer pages 291 * are allocated in cache lines, which means that each buffer 292 * page will be at the beginning of a cache line, and thus 293 * the least significant bits will be zero. We use this to 294 * add flags in the list struct pointers, to make the ring buffer 295 * lockless. 296 */ 297 struct buffer_page { 298 struct list_head list; /* list of buffer pages */ 299 local_t write; /* index for next write */ 300 unsigned read; /* index for next read */ 301 local_t entries; /* entries on this page */ 302 unsigned long real_end; /* real end of data */ 303 struct buffer_data_page *page; /* Actual data page */ 304 }; 305 306 /* 307 * The buffer page counters, write and entries, must be reset 308 * atomically when crossing page boundaries. To synchronize this 309 * update, two counters are inserted into the number. One is 310 * the actual counter for the write position or count on the page. 311 * 312 * The other is a counter of updaters. Before an update happens 313 * the update partition of the counter is incremented. This will 314 * allow the updater to update the counter atomically. 315 * 316 * The counter is 20 bits, and the state data is 12. 317 */ 318 #define RB_WRITE_MASK 0xfffff 319 #define RB_WRITE_INTCNT (1 << 20) 320 321 static void rb_init_page(struct buffer_data_page *bpage) 322 { 323 local_set(&bpage->commit, 0); 324 } 325 326 /** 327 * ring_buffer_page_len - the size of data on the page. 328 * @page: The page to read 329 * 330 * Returns the amount of data on the page, including buffer page header. 331 */ 332 size_t ring_buffer_page_len(void *page) 333 { 334 return local_read(&((struct buffer_data_page *)page)->commit) 335 + BUF_PAGE_HDR_SIZE; 336 } 337 338 /* 339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 340 * this issue out. 341 */ 342 static void free_buffer_page(struct buffer_page *bpage) 343 { 344 free_page((unsigned long)bpage->page); 345 kfree(bpage); 346 } 347 348 /* 349 * We need to fit the time_stamp delta into 27 bits. 350 */ 351 static inline int test_time_stamp(u64 delta) 352 { 353 if (delta & TS_DELTA_TEST) 354 return 1; 355 return 0; 356 } 357 358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 359 360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 362 363 int ring_buffer_print_page_header(struct trace_seq *s) 364 { 365 struct buffer_data_page field; 366 367 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 368 "offset:0;\tsize:%u;\tsigned:%u;\n", 369 (unsigned int)sizeof(field.time_stamp), 370 (unsigned int)is_signed_type(u64)); 371 372 trace_seq_printf(s, "\tfield: local_t commit;\t" 373 "offset:%u;\tsize:%u;\tsigned:%u;\n", 374 (unsigned int)offsetof(typeof(field), commit), 375 (unsigned int)sizeof(field.commit), 376 (unsigned int)is_signed_type(long)); 377 378 trace_seq_printf(s, "\tfield: int overwrite;\t" 379 "offset:%u;\tsize:%u;\tsigned:%u;\n", 380 (unsigned int)offsetof(typeof(field), commit), 381 1, 382 (unsigned int)is_signed_type(long)); 383 384 trace_seq_printf(s, "\tfield: char data;\t" 385 "offset:%u;\tsize:%u;\tsigned:%u;\n", 386 (unsigned int)offsetof(typeof(field), data), 387 (unsigned int)BUF_PAGE_SIZE, 388 (unsigned int)is_signed_type(char)); 389 390 return !trace_seq_has_overflowed(s); 391 } 392 393 struct rb_irq_work { 394 struct irq_work work; 395 wait_queue_head_t waiters; 396 wait_queue_head_t full_waiters; 397 bool waiters_pending; 398 bool full_waiters_pending; 399 bool wakeup_full; 400 }; 401 402 /* 403 * Structure to hold event state and handle nested events. 404 */ 405 struct rb_event_info { 406 u64 ts; 407 u64 delta; 408 unsigned long length; 409 struct buffer_page *tail_page; 410 int add_timestamp; 411 }; 412 413 /* 414 * Used for which event context the event is in. 415 * NMI = 0 416 * IRQ = 1 417 * SOFTIRQ = 2 418 * NORMAL = 3 419 * 420 * See trace_recursive_lock() comment below for more details. 421 */ 422 enum { 423 RB_CTX_NMI, 424 RB_CTX_IRQ, 425 RB_CTX_SOFTIRQ, 426 RB_CTX_NORMAL, 427 RB_CTX_MAX 428 }; 429 430 /* 431 * head_page == tail_page && head == tail then buffer is empty. 432 */ 433 struct ring_buffer_per_cpu { 434 int cpu; 435 atomic_t record_disabled; 436 struct ring_buffer *buffer; 437 raw_spinlock_t reader_lock; /* serialize readers */ 438 arch_spinlock_t lock; 439 struct lock_class_key lock_key; 440 unsigned int nr_pages; 441 unsigned int current_context; 442 struct list_head *pages; 443 struct buffer_page *head_page; /* read from head */ 444 struct buffer_page *tail_page; /* write to tail */ 445 struct buffer_page *commit_page; /* committed pages */ 446 struct buffer_page *reader_page; 447 unsigned long lost_events; 448 unsigned long last_overrun; 449 local_t entries_bytes; 450 local_t entries; 451 local_t overrun; 452 local_t commit_overrun; 453 local_t dropped_events; 454 local_t committing; 455 local_t commits; 456 unsigned long read; 457 unsigned long read_bytes; 458 u64 write_stamp; 459 u64 read_stamp; 460 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 461 int nr_pages_to_update; 462 struct list_head new_pages; /* new pages to add */ 463 struct work_struct update_pages_work; 464 struct completion update_done; 465 466 struct rb_irq_work irq_work; 467 }; 468 469 struct ring_buffer { 470 unsigned flags; 471 int cpus; 472 atomic_t record_disabled; 473 atomic_t resize_disabled; 474 cpumask_var_t cpumask; 475 476 struct lock_class_key *reader_lock_key; 477 478 struct mutex mutex; 479 480 struct ring_buffer_per_cpu **buffers; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 struct notifier_block cpu_notify; 484 #endif 485 u64 (*clock)(void); 486 487 struct rb_irq_work irq_work; 488 }; 489 490 struct ring_buffer_iter { 491 struct ring_buffer_per_cpu *cpu_buffer; 492 unsigned long head; 493 struct buffer_page *head_page; 494 struct buffer_page *cache_reader_page; 495 unsigned long cache_read; 496 u64 read_stamp; 497 }; 498 499 /* 500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 501 * 502 * Schedules a delayed work to wake up any task that is blocked on the 503 * ring buffer waiters queue. 504 */ 505 static void rb_wake_up_waiters(struct irq_work *work) 506 { 507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 508 509 wake_up_all(&rbwork->waiters); 510 if (rbwork->wakeup_full) { 511 rbwork->wakeup_full = false; 512 wake_up_all(&rbwork->full_waiters); 513 } 514 } 515 516 /** 517 * ring_buffer_wait - wait for input to the ring buffer 518 * @buffer: buffer to wait on 519 * @cpu: the cpu buffer to wait on 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 521 * 522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 523 * as data is added to any of the @buffer's cpu buffers. Otherwise 524 * it will wait for data to be added to a specific cpu buffer. 525 */ 526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 527 { 528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 529 DEFINE_WAIT(wait); 530 struct rb_irq_work *work; 531 int ret = 0; 532 533 /* 534 * Depending on what the caller is waiting for, either any 535 * data in any cpu buffer, or a specific buffer, put the 536 * caller on the appropriate wait queue. 537 */ 538 if (cpu == RING_BUFFER_ALL_CPUS) { 539 work = &buffer->irq_work; 540 /* Full only makes sense on per cpu reads */ 541 full = false; 542 } else { 543 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 544 return -ENODEV; 545 cpu_buffer = buffer->buffers[cpu]; 546 work = &cpu_buffer->irq_work; 547 } 548 549 550 while (true) { 551 if (full) 552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 553 else 554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 555 556 /* 557 * The events can happen in critical sections where 558 * checking a work queue can cause deadlocks. 559 * After adding a task to the queue, this flag is set 560 * only to notify events to try to wake up the queue 561 * using irq_work. 562 * 563 * We don't clear it even if the buffer is no longer 564 * empty. The flag only causes the next event to run 565 * irq_work to do the work queue wake up. The worse 566 * that can happen if we race with !trace_empty() is that 567 * an event will cause an irq_work to try to wake up 568 * an empty queue. 569 * 570 * There's no reason to protect this flag either, as 571 * the work queue and irq_work logic will do the necessary 572 * synchronization for the wake ups. The only thing 573 * that is necessary is that the wake up happens after 574 * a task has been queued. It's OK for spurious wake ups. 575 */ 576 if (full) 577 work->full_waiters_pending = true; 578 else 579 work->waiters_pending = true; 580 581 if (signal_pending(current)) { 582 ret = -EINTR; 583 break; 584 } 585 586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 587 break; 588 589 if (cpu != RING_BUFFER_ALL_CPUS && 590 !ring_buffer_empty_cpu(buffer, cpu)) { 591 unsigned long flags; 592 bool pagebusy; 593 594 if (!full) 595 break; 596 597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 600 601 if (!pagebusy) 602 break; 603 } 604 605 schedule(); 606 } 607 608 if (full) 609 finish_wait(&work->full_waiters, &wait); 610 else 611 finish_wait(&work->waiters, &wait); 612 613 return ret; 614 } 615 616 /** 617 * ring_buffer_poll_wait - poll on buffer input 618 * @buffer: buffer to wait on 619 * @cpu: the cpu buffer to wait on 620 * @filp: the file descriptor 621 * @poll_table: The poll descriptor 622 * 623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 624 * as data is added to any of the @buffer's cpu buffers. Otherwise 625 * it will wait for data to be added to a specific cpu buffer. 626 * 627 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 628 * zero otherwise. 629 */ 630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 631 struct file *filp, poll_table *poll_table) 632 { 633 struct ring_buffer_per_cpu *cpu_buffer; 634 struct rb_irq_work *work; 635 636 if (cpu == RING_BUFFER_ALL_CPUS) 637 work = &buffer->irq_work; 638 else { 639 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 640 return -EINVAL; 641 642 cpu_buffer = buffer->buffers[cpu]; 643 work = &cpu_buffer->irq_work; 644 } 645 646 poll_wait(filp, &work->waiters, poll_table); 647 work->waiters_pending = true; 648 /* 649 * There's a tight race between setting the waiters_pending and 650 * checking if the ring buffer is empty. Once the waiters_pending bit 651 * is set, the next event will wake the task up, but we can get stuck 652 * if there's only a single event in. 653 * 654 * FIXME: Ideally, we need a memory barrier on the writer side as well, 655 * but adding a memory barrier to all events will cause too much of a 656 * performance hit in the fast path. We only need a memory barrier when 657 * the buffer goes from empty to having content. But as this race is 658 * extremely small, and it's not a problem if another event comes in, we 659 * will fix it later. 660 */ 661 smp_mb(); 662 663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 665 return POLLIN | POLLRDNORM; 666 return 0; 667 } 668 669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 670 #define RB_WARN_ON(b, cond) \ 671 ({ \ 672 int _____ret = unlikely(cond); \ 673 if (_____ret) { \ 674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 675 struct ring_buffer_per_cpu *__b = \ 676 (void *)b; \ 677 atomic_inc(&__b->buffer->record_disabled); \ 678 } else \ 679 atomic_inc(&b->record_disabled); \ 680 WARN_ON(1); \ 681 } \ 682 _____ret; \ 683 }) 684 685 /* Up this if you want to test the TIME_EXTENTS and normalization */ 686 #define DEBUG_SHIFT 0 687 688 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 689 { 690 /* shift to debug/test normalization and TIME_EXTENTS */ 691 return buffer->clock() << DEBUG_SHIFT; 692 } 693 694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 695 { 696 u64 time; 697 698 preempt_disable_notrace(); 699 time = rb_time_stamp(buffer); 700 preempt_enable_no_resched_notrace(); 701 702 return time; 703 } 704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 705 706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 707 int cpu, u64 *ts) 708 { 709 /* Just stupid testing the normalize function and deltas */ 710 *ts >>= DEBUG_SHIFT; 711 } 712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 713 714 /* 715 * Making the ring buffer lockless makes things tricky. 716 * Although writes only happen on the CPU that they are on, 717 * and they only need to worry about interrupts. Reads can 718 * happen on any CPU. 719 * 720 * The reader page is always off the ring buffer, but when the 721 * reader finishes with a page, it needs to swap its page with 722 * a new one from the buffer. The reader needs to take from 723 * the head (writes go to the tail). But if a writer is in overwrite 724 * mode and wraps, it must push the head page forward. 725 * 726 * Here lies the problem. 727 * 728 * The reader must be careful to replace only the head page, and 729 * not another one. As described at the top of the file in the 730 * ASCII art, the reader sets its old page to point to the next 731 * page after head. It then sets the page after head to point to 732 * the old reader page. But if the writer moves the head page 733 * during this operation, the reader could end up with the tail. 734 * 735 * We use cmpxchg to help prevent this race. We also do something 736 * special with the page before head. We set the LSB to 1. 737 * 738 * When the writer must push the page forward, it will clear the 739 * bit that points to the head page, move the head, and then set 740 * the bit that points to the new head page. 741 * 742 * We also don't want an interrupt coming in and moving the head 743 * page on another writer. Thus we use the second LSB to catch 744 * that too. Thus: 745 * 746 * head->list->prev->next bit 1 bit 0 747 * ------- ------- 748 * Normal page 0 0 749 * Points to head page 0 1 750 * New head page 1 0 751 * 752 * Note we can not trust the prev pointer of the head page, because: 753 * 754 * +----+ +-----+ +-----+ 755 * | |------>| T |---X--->| N | 756 * | |<------| | | | 757 * +----+ +-----+ +-----+ 758 * ^ ^ | 759 * | +-----+ | | 760 * +----------| R |----------+ | 761 * | |<-----------+ 762 * +-----+ 763 * 764 * Key: ---X--> HEAD flag set in pointer 765 * T Tail page 766 * R Reader page 767 * N Next page 768 * 769 * (see __rb_reserve_next() to see where this happens) 770 * 771 * What the above shows is that the reader just swapped out 772 * the reader page with a page in the buffer, but before it 773 * could make the new header point back to the new page added 774 * it was preempted by a writer. The writer moved forward onto 775 * the new page added by the reader and is about to move forward 776 * again. 777 * 778 * You can see, it is legitimate for the previous pointer of 779 * the head (or any page) not to point back to itself. But only 780 * temporarially. 781 */ 782 783 #define RB_PAGE_NORMAL 0UL 784 #define RB_PAGE_HEAD 1UL 785 #define RB_PAGE_UPDATE 2UL 786 787 788 #define RB_FLAG_MASK 3UL 789 790 /* PAGE_MOVED is not part of the mask */ 791 #define RB_PAGE_MOVED 4UL 792 793 /* 794 * rb_list_head - remove any bit 795 */ 796 static struct list_head *rb_list_head(struct list_head *list) 797 { 798 unsigned long val = (unsigned long)list; 799 800 return (struct list_head *)(val & ~RB_FLAG_MASK); 801 } 802 803 /* 804 * rb_is_head_page - test if the given page is the head page 805 * 806 * Because the reader may move the head_page pointer, we can 807 * not trust what the head page is (it may be pointing to 808 * the reader page). But if the next page is a header page, 809 * its flags will be non zero. 810 */ 811 static inline int 812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 813 struct buffer_page *page, struct list_head *list) 814 { 815 unsigned long val; 816 817 val = (unsigned long)list->next; 818 819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 820 return RB_PAGE_MOVED; 821 822 return val & RB_FLAG_MASK; 823 } 824 825 /* 826 * rb_is_reader_page 827 * 828 * The unique thing about the reader page, is that, if the 829 * writer is ever on it, the previous pointer never points 830 * back to the reader page. 831 */ 832 static bool rb_is_reader_page(struct buffer_page *page) 833 { 834 struct list_head *list = page->list.prev; 835 836 return rb_list_head(list->next) != &page->list; 837 } 838 839 /* 840 * rb_set_list_to_head - set a list_head to be pointing to head. 841 */ 842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 843 struct list_head *list) 844 { 845 unsigned long *ptr; 846 847 ptr = (unsigned long *)&list->next; 848 *ptr |= RB_PAGE_HEAD; 849 *ptr &= ~RB_PAGE_UPDATE; 850 } 851 852 /* 853 * rb_head_page_activate - sets up head page 854 */ 855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 856 { 857 struct buffer_page *head; 858 859 head = cpu_buffer->head_page; 860 if (!head) 861 return; 862 863 /* 864 * Set the previous list pointer to have the HEAD flag. 865 */ 866 rb_set_list_to_head(cpu_buffer, head->list.prev); 867 } 868 869 static void rb_list_head_clear(struct list_head *list) 870 { 871 unsigned long *ptr = (unsigned long *)&list->next; 872 873 *ptr &= ~RB_FLAG_MASK; 874 } 875 876 /* 877 * rb_head_page_dactivate - clears head page ptr (for free list) 878 */ 879 static void 880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 881 { 882 struct list_head *hd; 883 884 /* Go through the whole list and clear any pointers found. */ 885 rb_list_head_clear(cpu_buffer->pages); 886 887 list_for_each(hd, cpu_buffer->pages) 888 rb_list_head_clear(hd); 889 } 890 891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 892 struct buffer_page *head, 893 struct buffer_page *prev, 894 int old_flag, int new_flag) 895 { 896 struct list_head *list; 897 unsigned long val = (unsigned long)&head->list; 898 unsigned long ret; 899 900 list = &prev->list; 901 902 val &= ~RB_FLAG_MASK; 903 904 ret = cmpxchg((unsigned long *)&list->next, 905 val | old_flag, val | new_flag); 906 907 /* check if the reader took the page */ 908 if ((ret & ~RB_FLAG_MASK) != val) 909 return RB_PAGE_MOVED; 910 911 return ret & RB_FLAG_MASK; 912 } 913 914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 915 struct buffer_page *head, 916 struct buffer_page *prev, 917 int old_flag) 918 { 919 return rb_head_page_set(cpu_buffer, head, prev, 920 old_flag, RB_PAGE_UPDATE); 921 } 922 923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 924 struct buffer_page *head, 925 struct buffer_page *prev, 926 int old_flag) 927 { 928 return rb_head_page_set(cpu_buffer, head, prev, 929 old_flag, RB_PAGE_HEAD); 930 } 931 932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 933 struct buffer_page *head, 934 struct buffer_page *prev, 935 int old_flag) 936 { 937 return rb_head_page_set(cpu_buffer, head, prev, 938 old_flag, RB_PAGE_NORMAL); 939 } 940 941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 942 struct buffer_page **bpage) 943 { 944 struct list_head *p = rb_list_head((*bpage)->list.next); 945 946 *bpage = list_entry(p, struct buffer_page, list); 947 } 948 949 static struct buffer_page * 950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 951 { 952 struct buffer_page *head; 953 struct buffer_page *page; 954 struct list_head *list; 955 int i; 956 957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 958 return NULL; 959 960 /* sanity check */ 961 list = cpu_buffer->pages; 962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 963 return NULL; 964 965 page = head = cpu_buffer->head_page; 966 /* 967 * It is possible that the writer moves the header behind 968 * where we started, and we miss in one loop. 969 * A second loop should grab the header, but we'll do 970 * three loops just because I'm paranoid. 971 */ 972 for (i = 0; i < 3; i++) { 973 do { 974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 975 cpu_buffer->head_page = page; 976 return page; 977 } 978 rb_inc_page(cpu_buffer, &page); 979 } while (page != head); 980 } 981 982 RB_WARN_ON(cpu_buffer, 1); 983 984 return NULL; 985 } 986 987 static int rb_head_page_replace(struct buffer_page *old, 988 struct buffer_page *new) 989 { 990 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 991 unsigned long val; 992 unsigned long ret; 993 994 val = *ptr & ~RB_FLAG_MASK; 995 val |= RB_PAGE_HEAD; 996 997 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 998 999 return ret == val; 1000 } 1001 1002 /* 1003 * rb_tail_page_update - move the tail page forward 1004 * 1005 * Returns 1 if moved tail page, 0 if someone else did. 1006 */ 1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1008 struct buffer_page *tail_page, 1009 struct buffer_page *next_page) 1010 { 1011 struct buffer_page *old_tail; 1012 unsigned long old_entries; 1013 unsigned long old_write; 1014 int ret = 0; 1015 1016 /* 1017 * The tail page now needs to be moved forward. 1018 * 1019 * We need to reset the tail page, but without messing 1020 * with possible erasing of data brought in by interrupts 1021 * that have moved the tail page and are currently on it. 1022 * 1023 * We add a counter to the write field to denote this. 1024 */ 1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1027 1028 /* 1029 * Just make sure we have seen our old_write and synchronize 1030 * with any interrupts that come in. 1031 */ 1032 barrier(); 1033 1034 /* 1035 * If the tail page is still the same as what we think 1036 * it is, then it is up to us to update the tail 1037 * pointer. 1038 */ 1039 if (tail_page == cpu_buffer->tail_page) { 1040 /* Zero the write counter */ 1041 unsigned long val = old_write & ~RB_WRITE_MASK; 1042 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1043 1044 /* 1045 * This will only succeed if an interrupt did 1046 * not come in and change it. In which case, we 1047 * do not want to modify it. 1048 * 1049 * We add (void) to let the compiler know that we do not care 1050 * about the return value of these functions. We use the 1051 * cmpxchg to only update if an interrupt did not already 1052 * do it for us. If the cmpxchg fails, we don't care. 1053 */ 1054 (void)local_cmpxchg(&next_page->write, old_write, val); 1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1056 1057 /* 1058 * No need to worry about races with clearing out the commit. 1059 * it only can increment when a commit takes place. But that 1060 * only happens in the outer most nested commit. 1061 */ 1062 local_set(&next_page->page->commit, 0); 1063 1064 old_tail = cmpxchg(&cpu_buffer->tail_page, 1065 tail_page, next_page); 1066 1067 if (old_tail == tail_page) 1068 ret = 1; 1069 } 1070 1071 return ret; 1072 } 1073 1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1075 struct buffer_page *bpage) 1076 { 1077 unsigned long val = (unsigned long)bpage; 1078 1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1080 return 1; 1081 1082 return 0; 1083 } 1084 1085 /** 1086 * rb_check_list - make sure a pointer to a list has the last bits zero 1087 */ 1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1089 struct list_head *list) 1090 { 1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1092 return 1; 1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1094 return 1; 1095 return 0; 1096 } 1097 1098 /** 1099 * rb_check_pages - integrity check of buffer pages 1100 * @cpu_buffer: CPU buffer with pages to test 1101 * 1102 * As a safety measure we check to make sure the data pages have not 1103 * been corrupted. 1104 */ 1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1106 { 1107 struct list_head *head = cpu_buffer->pages; 1108 struct buffer_page *bpage, *tmp; 1109 1110 /* Reset the head page if it exists */ 1111 if (cpu_buffer->head_page) 1112 rb_set_head_page(cpu_buffer); 1113 1114 rb_head_page_deactivate(cpu_buffer); 1115 1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1117 return -1; 1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1119 return -1; 1120 1121 if (rb_check_list(cpu_buffer, head)) 1122 return -1; 1123 1124 list_for_each_entry_safe(bpage, tmp, head, list) { 1125 if (RB_WARN_ON(cpu_buffer, 1126 bpage->list.next->prev != &bpage->list)) 1127 return -1; 1128 if (RB_WARN_ON(cpu_buffer, 1129 bpage->list.prev->next != &bpage->list)) 1130 return -1; 1131 if (rb_check_list(cpu_buffer, &bpage->list)) 1132 return -1; 1133 } 1134 1135 rb_head_page_activate(cpu_buffer); 1136 1137 return 0; 1138 } 1139 1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1141 { 1142 int i; 1143 struct buffer_page *bpage, *tmp; 1144 1145 for (i = 0; i < nr_pages; i++) { 1146 struct page *page; 1147 /* 1148 * __GFP_NORETRY flag makes sure that the allocation fails 1149 * gracefully without invoking oom-killer and the system is 1150 * not destabilized. 1151 */ 1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1153 GFP_KERNEL | __GFP_NORETRY, 1154 cpu_to_node(cpu)); 1155 if (!bpage) 1156 goto free_pages; 1157 1158 list_add(&bpage->list, pages); 1159 1160 page = alloc_pages_node(cpu_to_node(cpu), 1161 GFP_KERNEL | __GFP_NORETRY, 0); 1162 if (!page) 1163 goto free_pages; 1164 bpage->page = page_address(page); 1165 rb_init_page(bpage->page); 1166 } 1167 1168 return 0; 1169 1170 free_pages: 1171 list_for_each_entry_safe(bpage, tmp, pages, list) { 1172 list_del_init(&bpage->list); 1173 free_buffer_page(bpage); 1174 } 1175 1176 return -ENOMEM; 1177 } 1178 1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1180 unsigned nr_pages) 1181 { 1182 LIST_HEAD(pages); 1183 1184 WARN_ON(!nr_pages); 1185 1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1187 return -ENOMEM; 1188 1189 /* 1190 * The ring buffer page list is a circular list that does not 1191 * start and end with a list head. All page list items point to 1192 * other pages. 1193 */ 1194 cpu_buffer->pages = pages.next; 1195 list_del(&pages); 1196 1197 cpu_buffer->nr_pages = nr_pages; 1198 1199 rb_check_pages(cpu_buffer); 1200 1201 return 0; 1202 } 1203 1204 static struct ring_buffer_per_cpu * 1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1206 { 1207 struct ring_buffer_per_cpu *cpu_buffer; 1208 struct buffer_page *bpage; 1209 struct page *page; 1210 int ret; 1211 1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1213 GFP_KERNEL, cpu_to_node(cpu)); 1214 if (!cpu_buffer) 1215 return NULL; 1216 1217 cpu_buffer->cpu = cpu; 1218 cpu_buffer->buffer = buffer; 1219 raw_spin_lock_init(&cpu_buffer->reader_lock); 1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1223 init_completion(&cpu_buffer->update_done); 1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1227 1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1229 GFP_KERNEL, cpu_to_node(cpu)); 1230 if (!bpage) 1231 goto fail_free_buffer; 1232 1233 rb_check_bpage(cpu_buffer, bpage); 1234 1235 cpu_buffer->reader_page = bpage; 1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1237 if (!page) 1238 goto fail_free_reader; 1239 bpage->page = page_address(page); 1240 rb_init_page(bpage->page); 1241 1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1243 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1244 1245 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1246 if (ret < 0) 1247 goto fail_free_reader; 1248 1249 cpu_buffer->head_page 1250 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1252 1253 rb_head_page_activate(cpu_buffer); 1254 1255 return cpu_buffer; 1256 1257 fail_free_reader: 1258 free_buffer_page(cpu_buffer->reader_page); 1259 1260 fail_free_buffer: 1261 kfree(cpu_buffer); 1262 return NULL; 1263 } 1264 1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1266 { 1267 struct list_head *head = cpu_buffer->pages; 1268 struct buffer_page *bpage, *tmp; 1269 1270 free_buffer_page(cpu_buffer->reader_page); 1271 1272 rb_head_page_deactivate(cpu_buffer); 1273 1274 if (head) { 1275 list_for_each_entry_safe(bpage, tmp, head, list) { 1276 list_del_init(&bpage->list); 1277 free_buffer_page(bpage); 1278 } 1279 bpage = list_entry(head, struct buffer_page, list); 1280 free_buffer_page(bpage); 1281 } 1282 1283 kfree(cpu_buffer); 1284 } 1285 1286 #ifdef CONFIG_HOTPLUG_CPU 1287 static int rb_cpu_notify(struct notifier_block *self, 1288 unsigned long action, void *hcpu); 1289 #endif 1290 1291 /** 1292 * __ring_buffer_alloc - allocate a new ring_buffer 1293 * @size: the size in bytes per cpu that is needed. 1294 * @flags: attributes to set for the ring buffer. 1295 * 1296 * Currently the only flag that is available is the RB_FL_OVERWRITE 1297 * flag. This flag means that the buffer will overwrite old data 1298 * when the buffer wraps. If this flag is not set, the buffer will 1299 * drop data when the tail hits the head. 1300 */ 1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1302 struct lock_class_key *key) 1303 { 1304 struct ring_buffer *buffer; 1305 int bsize; 1306 int cpu, nr_pages; 1307 1308 /* keep it in its own cache line */ 1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1310 GFP_KERNEL); 1311 if (!buffer) 1312 return NULL; 1313 1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1315 goto fail_free_buffer; 1316 1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1318 buffer->flags = flags; 1319 buffer->clock = trace_clock_local; 1320 buffer->reader_lock_key = key; 1321 1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1323 init_waitqueue_head(&buffer->irq_work.waiters); 1324 1325 /* need at least two pages */ 1326 if (nr_pages < 2) 1327 nr_pages = 2; 1328 1329 /* 1330 * In case of non-hotplug cpu, if the ring-buffer is allocated 1331 * in early initcall, it will not be notified of secondary cpus. 1332 * In that off case, we need to allocate for all possible cpus. 1333 */ 1334 #ifdef CONFIG_HOTPLUG_CPU 1335 cpu_notifier_register_begin(); 1336 cpumask_copy(buffer->cpumask, cpu_online_mask); 1337 #else 1338 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1339 #endif 1340 buffer->cpus = nr_cpu_ids; 1341 1342 bsize = sizeof(void *) * nr_cpu_ids; 1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1344 GFP_KERNEL); 1345 if (!buffer->buffers) 1346 goto fail_free_cpumask; 1347 1348 for_each_buffer_cpu(buffer, cpu) { 1349 buffer->buffers[cpu] = 1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1351 if (!buffer->buffers[cpu]) 1352 goto fail_free_buffers; 1353 } 1354 1355 #ifdef CONFIG_HOTPLUG_CPU 1356 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1357 buffer->cpu_notify.priority = 0; 1358 __register_cpu_notifier(&buffer->cpu_notify); 1359 cpu_notifier_register_done(); 1360 #endif 1361 1362 mutex_init(&buffer->mutex); 1363 1364 return buffer; 1365 1366 fail_free_buffers: 1367 for_each_buffer_cpu(buffer, cpu) { 1368 if (buffer->buffers[cpu]) 1369 rb_free_cpu_buffer(buffer->buffers[cpu]); 1370 } 1371 kfree(buffer->buffers); 1372 1373 fail_free_cpumask: 1374 free_cpumask_var(buffer->cpumask); 1375 #ifdef CONFIG_HOTPLUG_CPU 1376 cpu_notifier_register_done(); 1377 #endif 1378 1379 fail_free_buffer: 1380 kfree(buffer); 1381 return NULL; 1382 } 1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1384 1385 /** 1386 * ring_buffer_free - free a ring buffer. 1387 * @buffer: the buffer to free. 1388 */ 1389 void 1390 ring_buffer_free(struct ring_buffer *buffer) 1391 { 1392 int cpu; 1393 1394 #ifdef CONFIG_HOTPLUG_CPU 1395 cpu_notifier_register_begin(); 1396 __unregister_cpu_notifier(&buffer->cpu_notify); 1397 #endif 1398 1399 for_each_buffer_cpu(buffer, cpu) 1400 rb_free_cpu_buffer(buffer->buffers[cpu]); 1401 1402 #ifdef CONFIG_HOTPLUG_CPU 1403 cpu_notifier_register_done(); 1404 #endif 1405 1406 kfree(buffer->buffers); 1407 free_cpumask_var(buffer->cpumask); 1408 1409 kfree(buffer); 1410 } 1411 EXPORT_SYMBOL_GPL(ring_buffer_free); 1412 1413 void ring_buffer_set_clock(struct ring_buffer *buffer, 1414 u64 (*clock)(void)) 1415 { 1416 buffer->clock = clock; 1417 } 1418 1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1420 1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1422 { 1423 return local_read(&bpage->entries) & RB_WRITE_MASK; 1424 } 1425 1426 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1427 { 1428 return local_read(&bpage->write) & RB_WRITE_MASK; 1429 } 1430 1431 static int 1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1433 { 1434 struct list_head *tail_page, *to_remove, *next_page; 1435 struct buffer_page *to_remove_page, *tmp_iter_page; 1436 struct buffer_page *last_page, *first_page; 1437 unsigned int nr_removed; 1438 unsigned long head_bit; 1439 int page_entries; 1440 1441 head_bit = 0; 1442 1443 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1444 atomic_inc(&cpu_buffer->record_disabled); 1445 /* 1446 * We don't race with the readers since we have acquired the reader 1447 * lock. We also don't race with writers after disabling recording. 1448 * This makes it easy to figure out the first and the last page to be 1449 * removed from the list. We unlink all the pages in between including 1450 * the first and last pages. This is done in a busy loop so that we 1451 * lose the least number of traces. 1452 * The pages are freed after we restart recording and unlock readers. 1453 */ 1454 tail_page = &cpu_buffer->tail_page->list; 1455 1456 /* 1457 * tail page might be on reader page, we remove the next page 1458 * from the ring buffer 1459 */ 1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1461 tail_page = rb_list_head(tail_page->next); 1462 to_remove = tail_page; 1463 1464 /* start of pages to remove */ 1465 first_page = list_entry(rb_list_head(to_remove->next), 1466 struct buffer_page, list); 1467 1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1469 to_remove = rb_list_head(to_remove)->next; 1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1471 } 1472 1473 next_page = rb_list_head(to_remove)->next; 1474 1475 /* 1476 * Now we remove all pages between tail_page and next_page. 1477 * Make sure that we have head_bit value preserved for the 1478 * next page 1479 */ 1480 tail_page->next = (struct list_head *)((unsigned long)next_page | 1481 head_bit); 1482 next_page = rb_list_head(next_page); 1483 next_page->prev = tail_page; 1484 1485 /* make sure pages points to a valid page in the ring buffer */ 1486 cpu_buffer->pages = next_page; 1487 1488 /* update head page */ 1489 if (head_bit) 1490 cpu_buffer->head_page = list_entry(next_page, 1491 struct buffer_page, list); 1492 1493 /* 1494 * change read pointer to make sure any read iterators reset 1495 * themselves 1496 */ 1497 cpu_buffer->read = 0; 1498 1499 /* pages are removed, resume tracing and then free the pages */ 1500 atomic_dec(&cpu_buffer->record_disabled); 1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1502 1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1504 1505 /* last buffer page to remove */ 1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1507 list); 1508 tmp_iter_page = first_page; 1509 1510 do { 1511 to_remove_page = tmp_iter_page; 1512 rb_inc_page(cpu_buffer, &tmp_iter_page); 1513 1514 /* update the counters */ 1515 page_entries = rb_page_entries(to_remove_page); 1516 if (page_entries) { 1517 /* 1518 * If something was added to this page, it was full 1519 * since it is not the tail page. So we deduct the 1520 * bytes consumed in ring buffer from here. 1521 * Increment overrun to account for the lost events. 1522 */ 1523 local_add(page_entries, &cpu_buffer->overrun); 1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1525 } 1526 1527 /* 1528 * We have already removed references to this list item, just 1529 * free up the buffer_page and its page 1530 */ 1531 free_buffer_page(to_remove_page); 1532 nr_removed--; 1533 1534 } while (to_remove_page != last_page); 1535 1536 RB_WARN_ON(cpu_buffer, nr_removed); 1537 1538 return nr_removed == 0; 1539 } 1540 1541 static int 1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1543 { 1544 struct list_head *pages = &cpu_buffer->new_pages; 1545 int retries, success; 1546 1547 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1548 /* 1549 * We are holding the reader lock, so the reader page won't be swapped 1550 * in the ring buffer. Now we are racing with the writer trying to 1551 * move head page and the tail page. 1552 * We are going to adapt the reader page update process where: 1553 * 1. We first splice the start and end of list of new pages between 1554 * the head page and its previous page. 1555 * 2. We cmpxchg the prev_page->next to point from head page to the 1556 * start of new pages list. 1557 * 3. Finally, we update the head->prev to the end of new list. 1558 * 1559 * We will try this process 10 times, to make sure that we don't keep 1560 * spinning. 1561 */ 1562 retries = 10; 1563 success = 0; 1564 while (retries--) { 1565 struct list_head *head_page, *prev_page, *r; 1566 struct list_head *last_page, *first_page; 1567 struct list_head *head_page_with_bit; 1568 1569 head_page = &rb_set_head_page(cpu_buffer)->list; 1570 if (!head_page) 1571 break; 1572 prev_page = head_page->prev; 1573 1574 first_page = pages->next; 1575 last_page = pages->prev; 1576 1577 head_page_with_bit = (struct list_head *) 1578 ((unsigned long)head_page | RB_PAGE_HEAD); 1579 1580 last_page->next = head_page_with_bit; 1581 first_page->prev = prev_page; 1582 1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1584 1585 if (r == head_page_with_bit) { 1586 /* 1587 * yay, we replaced the page pointer to our new list, 1588 * now, we just have to update to head page's prev 1589 * pointer to point to end of list 1590 */ 1591 head_page->prev = last_page; 1592 success = 1; 1593 break; 1594 } 1595 } 1596 1597 if (success) 1598 INIT_LIST_HEAD(pages); 1599 /* 1600 * If we weren't successful in adding in new pages, warn and stop 1601 * tracing 1602 */ 1603 RB_WARN_ON(cpu_buffer, !success); 1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1605 1606 /* free pages if they weren't inserted */ 1607 if (!success) { 1608 struct buffer_page *bpage, *tmp; 1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1610 list) { 1611 list_del_init(&bpage->list); 1612 free_buffer_page(bpage); 1613 } 1614 } 1615 return success; 1616 } 1617 1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1619 { 1620 int success; 1621 1622 if (cpu_buffer->nr_pages_to_update > 0) 1623 success = rb_insert_pages(cpu_buffer); 1624 else 1625 success = rb_remove_pages(cpu_buffer, 1626 -cpu_buffer->nr_pages_to_update); 1627 1628 if (success) 1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1630 } 1631 1632 static void update_pages_handler(struct work_struct *work) 1633 { 1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1635 struct ring_buffer_per_cpu, update_pages_work); 1636 rb_update_pages(cpu_buffer); 1637 complete(&cpu_buffer->update_done); 1638 } 1639 1640 /** 1641 * ring_buffer_resize - resize the ring buffer 1642 * @buffer: the buffer to resize. 1643 * @size: the new size. 1644 * @cpu_id: the cpu buffer to resize 1645 * 1646 * Minimum size is 2 * BUF_PAGE_SIZE. 1647 * 1648 * Returns 0 on success and < 0 on failure. 1649 */ 1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1651 int cpu_id) 1652 { 1653 struct ring_buffer_per_cpu *cpu_buffer; 1654 unsigned nr_pages; 1655 int cpu, err = 0; 1656 1657 /* 1658 * Always succeed at resizing a non-existent buffer: 1659 */ 1660 if (!buffer) 1661 return size; 1662 1663 /* Make sure the requested buffer exists */ 1664 if (cpu_id != RING_BUFFER_ALL_CPUS && 1665 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1666 return size; 1667 1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1669 size *= BUF_PAGE_SIZE; 1670 1671 /* we need a minimum of two pages */ 1672 if (size < BUF_PAGE_SIZE * 2) 1673 size = BUF_PAGE_SIZE * 2; 1674 1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1676 1677 /* 1678 * Don't succeed if resizing is disabled, as a reader might be 1679 * manipulating the ring buffer and is expecting a sane state while 1680 * this is true. 1681 */ 1682 if (atomic_read(&buffer->resize_disabled)) 1683 return -EBUSY; 1684 1685 /* prevent another thread from changing buffer sizes */ 1686 mutex_lock(&buffer->mutex); 1687 1688 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1689 /* calculate the pages to update */ 1690 for_each_buffer_cpu(buffer, cpu) { 1691 cpu_buffer = buffer->buffers[cpu]; 1692 1693 cpu_buffer->nr_pages_to_update = nr_pages - 1694 cpu_buffer->nr_pages; 1695 /* 1696 * nothing more to do for removing pages or no update 1697 */ 1698 if (cpu_buffer->nr_pages_to_update <= 0) 1699 continue; 1700 /* 1701 * to add pages, make sure all new pages can be 1702 * allocated without receiving ENOMEM 1703 */ 1704 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1706 &cpu_buffer->new_pages, cpu)) { 1707 /* not enough memory for new pages */ 1708 err = -ENOMEM; 1709 goto out_err; 1710 } 1711 } 1712 1713 get_online_cpus(); 1714 /* 1715 * Fire off all the required work handlers 1716 * We can't schedule on offline CPUs, but it's not necessary 1717 * since we can change their buffer sizes without any race. 1718 */ 1719 for_each_buffer_cpu(buffer, cpu) { 1720 cpu_buffer = buffer->buffers[cpu]; 1721 if (!cpu_buffer->nr_pages_to_update) 1722 continue; 1723 1724 /* Can't run something on an offline CPU. */ 1725 if (!cpu_online(cpu)) { 1726 rb_update_pages(cpu_buffer); 1727 cpu_buffer->nr_pages_to_update = 0; 1728 } else { 1729 schedule_work_on(cpu, 1730 &cpu_buffer->update_pages_work); 1731 } 1732 } 1733 1734 /* wait for all the updates to complete */ 1735 for_each_buffer_cpu(buffer, cpu) { 1736 cpu_buffer = buffer->buffers[cpu]; 1737 if (!cpu_buffer->nr_pages_to_update) 1738 continue; 1739 1740 if (cpu_online(cpu)) 1741 wait_for_completion(&cpu_buffer->update_done); 1742 cpu_buffer->nr_pages_to_update = 0; 1743 } 1744 1745 put_online_cpus(); 1746 } else { 1747 /* Make sure this CPU has been intitialized */ 1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1749 goto out; 1750 1751 cpu_buffer = buffer->buffers[cpu_id]; 1752 1753 if (nr_pages == cpu_buffer->nr_pages) 1754 goto out; 1755 1756 cpu_buffer->nr_pages_to_update = nr_pages - 1757 cpu_buffer->nr_pages; 1758 1759 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1760 if (cpu_buffer->nr_pages_to_update > 0 && 1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1762 &cpu_buffer->new_pages, cpu_id)) { 1763 err = -ENOMEM; 1764 goto out_err; 1765 } 1766 1767 get_online_cpus(); 1768 1769 /* Can't run something on an offline CPU. */ 1770 if (!cpu_online(cpu_id)) 1771 rb_update_pages(cpu_buffer); 1772 else { 1773 schedule_work_on(cpu_id, 1774 &cpu_buffer->update_pages_work); 1775 wait_for_completion(&cpu_buffer->update_done); 1776 } 1777 1778 cpu_buffer->nr_pages_to_update = 0; 1779 put_online_cpus(); 1780 } 1781 1782 out: 1783 /* 1784 * The ring buffer resize can happen with the ring buffer 1785 * enabled, so that the update disturbs the tracing as little 1786 * as possible. But if the buffer is disabled, we do not need 1787 * to worry about that, and we can take the time to verify 1788 * that the buffer is not corrupt. 1789 */ 1790 if (atomic_read(&buffer->record_disabled)) { 1791 atomic_inc(&buffer->record_disabled); 1792 /* 1793 * Even though the buffer was disabled, we must make sure 1794 * that it is truly disabled before calling rb_check_pages. 1795 * There could have been a race between checking 1796 * record_disable and incrementing it. 1797 */ 1798 synchronize_sched(); 1799 for_each_buffer_cpu(buffer, cpu) { 1800 cpu_buffer = buffer->buffers[cpu]; 1801 rb_check_pages(cpu_buffer); 1802 } 1803 atomic_dec(&buffer->record_disabled); 1804 } 1805 1806 mutex_unlock(&buffer->mutex); 1807 return size; 1808 1809 out_err: 1810 for_each_buffer_cpu(buffer, cpu) { 1811 struct buffer_page *bpage, *tmp; 1812 1813 cpu_buffer = buffer->buffers[cpu]; 1814 cpu_buffer->nr_pages_to_update = 0; 1815 1816 if (list_empty(&cpu_buffer->new_pages)) 1817 continue; 1818 1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1820 list) { 1821 list_del_init(&bpage->list); 1822 free_buffer_page(bpage); 1823 } 1824 } 1825 mutex_unlock(&buffer->mutex); 1826 return err; 1827 } 1828 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1829 1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1831 { 1832 mutex_lock(&buffer->mutex); 1833 if (val) 1834 buffer->flags |= RB_FL_OVERWRITE; 1835 else 1836 buffer->flags &= ~RB_FL_OVERWRITE; 1837 mutex_unlock(&buffer->mutex); 1838 } 1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1840 1841 static inline void * 1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1843 { 1844 return bpage->data + index; 1845 } 1846 1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1848 { 1849 return bpage->page->data + index; 1850 } 1851 1852 static inline struct ring_buffer_event * 1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1854 { 1855 return __rb_page_index(cpu_buffer->reader_page, 1856 cpu_buffer->reader_page->read); 1857 } 1858 1859 static inline struct ring_buffer_event * 1860 rb_iter_head_event(struct ring_buffer_iter *iter) 1861 { 1862 return __rb_page_index(iter->head_page, iter->head); 1863 } 1864 1865 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1866 { 1867 return local_read(&bpage->page->commit); 1868 } 1869 1870 /* Size is determined by what has been committed */ 1871 static inline unsigned rb_page_size(struct buffer_page *bpage) 1872 { 1873 return rb_page_commit(bpage); 1874 } 1875 1876 static inline unsigned 1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1878 { 1879 return rb_page_commit(cpu_buffer->commit_page); 1880 } 1881 1882 static inline unsigned 1883 rb_event_index(struct ring_buffer_event *event) 1884 { 1885 unsigned long addr = (unsigned long)event; 1886 1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1888 } 1889 1890 static void rb_inc_iter(struct ring_buffer_iter *iter) 1891 { 1892 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1893 1894 /* 1895 * The iterator could be on the reader page (it starts there). 1896 * But the head could have moved, since the reader was 1897 * found. Check for this case and assign the iterator 1898 * to the head page instead of next. 1899 */ 1900 if (iter->head_page == cpu_buffer->reader_page) 1901 iter->head_page = rb_set_head_page(cpu_buffer); 1902 else 1903 rb_inc_page(cpu_buffer, &iter->head_page); 1904 1905 iter->read_stamp = iter->head_page->page->time_stamp; 1906 iter->head = 0; 1907 } 1908 1909 /* 1910 * rb_handle_head_page - writer hit the head page 1911 * 1912 * Returns: +1 to retry page 1913 * 0 to continue 1914 * -1 on error 1915 */ 1916 static int 1917 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1918 struct buffer_page *tail_page, 1919 struct buffer_page *next_page) 1920 { 1921 struct buffer_page *new_head; 1922 int entries; 1923 int type; 1924 int ret; 1925 1926 entries = rb_page_entries(next_page); 1927 1928 /* 1929 * The hard part is here. We need to move the head 1930 * forward, and protect against both readers on 1931 * other CPUs and writers coming in via interrupts. 1932 */ 1933 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1934 RB_PAGE_HEAD); 1935 1936 /* 1937 * type can be one of four: 1938 * NORMAL - an interrupt already moved it for us 1939 * HEAD - we are the first to get here. 1940 * UPDATE - we are the interrupt interrupting 1941 * a current move. 1942 * MOVED - a reader on another CPU moved the next 1943 * pointer to its reader page. Give up 1944 * and try again. 1945 */ 1946 1947 switch (type) { 1948 case RB_PAGE_HEAD: 1949 /* 1950 * We changed the head to UPDATE, thus 1951 * it is our responsibility to update 1952 * the counters. 1953 */ 1954 local_add(entries, &cpu_buffer->overrun); 1955 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1956 1957 /* 1958 * The entries will be zeroed out when we move the 1959 * tail page. 1960 */ 1961 1962 /* still more to do */ 1963 break; 1964 1965 case RB_PAGE_UPDATE: 1966 /* 1967 * This is an interrupt that interrupt the 1968 * previous update. Still more to do. 1969 */ 1970 break; 1971 case RB_PAGE_NORMAL: 1972 /* 1973 * An interrupt came in before the update 1974 * and processed this for us. 1975 * Nothing left to do. 1976 */ 1977 return 1; 1978 case RB_PAGE_MOVED: 1979 /* 1980 * The reader is on another CPU and just did 1981 * a swap with our next_page. 1982 * Try again. 1983 */ 1984 return 1; 1985 default: 1986 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1987 return -1; 1988 } 1989 1990 /* 1991 * Now that we are here, the old head pointer is 1992 * set to UPDATE. This will keep the reader from 1993 * swapping the head page with the reader page. 1994 * The reader (on another CPU) will spin till 1995 * we are finished. 1996 * 1997 * We just need to protect against interrupts 1998 * doing the job. We will set the next pointer 1999 * to HEAD. After that, we set the old pointer 2000 * to NORMAL, but only if it was HEAD before. 2001 * otherwise we are an interrupt, and only 2002 * want the outer most commit to reset it. 2003 */ 2004 new_head = next_page; 2005 rb_inc_page(cpu_buffer, &new_head); 2006 2007 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2008 RB_PAGE_NORMAL); 2009 2010 /* 2011 * Valid returns are: 2012 * HEAD - an interrupt came in and already set it. 2013 * NORMAL - One of two things: 2014 * 1) We really set it. 2015 * 2) A bunch of interrupts came in and moved 2016 * the page forward again. 2017 */ 2018 switch (ret) { 2019 case RB_PAGE_HEAD: 2020 case RB_PAGE_NORMAL: 2021 /* OK */ 2022 break; 2023 default: 2024 RB_WARN_ON(cpu_buffer, 1); 2025 return -1; 2026 } 2027 2028 /* 2029 * It is possible that an interrupt came in, 2030 * set the head up, then more interrupts came in 2031 * and moved it again. When we get back here, 2032 * the page would have been set to NORMAL but we 2033 * just set it back to HEAD. 2034 * 2035 * How do you detect this? Well, if that happened 2036 * the tail page would have moved. 2037 */ 2038 if (ret == RB_PAGE_NORMAL) { 2039 /* 2040 * If the tail had moved passed next, then we need 2041 * to reset the pointer. 2042 */ 2043 if (cpu_buffer->tail_page != tail_page && 2044 cpu_buffer->tail_page != next_page) 2045 rb_head_page_set_normal(cpu_buffer, new_head, 2046 next_page, 2047 RB_PAGE_HEAD); 2048 } 2049 2050 /* 2051 * If this was the outer most commit (the one that 2052 * changed the original pointer from HEAD to UPDATE), 2053 * then it is up to us to reset it to NORMAL. 2054 */ 2055 if (type == RB_PAGE_HEAD) { 2056 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2057 tail_page, 2058 RB_PAGE_UPDATE); 2059 if (RB_WARN_ON(cpu_buffer, 2060 ret != RB_PAGE_UPDATE)) 2061 return -1; 2062 } 2063 2064 return 0; 2065 } 2066 2067 static inline void 2068 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2069 unsigned long tail, struct rb_event_info *info) 2070 { 2071 struct buffer_page *tail_page = info->tail_page; 2072 struct ring_buffer_event *event; 2073 unsigned long length = info->length; 2074 2075 /* 2076 * Only the event that crossed the page boundary 2077 * must fill the old tail_page with padding. 2078 */ 2079 if (tail >= BUF_PAGE_SIZE) { 2080 /* 2081 * If the page was filled, then we still need 2082 * to update the real_end. Reset it to zero 2083 * and the reader will ignore it. 2084 */ 2085 if (tail == BUF_PAGE_SIZE) 2086 tail_page->real_end = 0; 2087 2088 local_sub(length, &tail_page->write); 2089 return; 2090 } 2091 2092 event = __rb_page_index(tail_page, tail); 2093 kmemcheck_annotate_bitfield(event, bitfield); 2094 2095 /* account for padding bytes */ 2096 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2097 2098 /* 2099 * Save the original length to the meta data. 2100 * This will be used by the reader to add lost event 2101 * counter. 2102 */ 2103 tail_page->real_end = tail; 2104 2105 /* 2106 * If this event is bigger than the minimum size, then 2107 * we need to be careful that we don't subtract the 2108 * write counter enough to allow another writer to slip 2109 * in on this page. 2110 * We put in a discarded commit instead, to make sure 2111 * that this space is not used again. 2112 * 2113 * If we are less than the minimum size, we don't need to 2114 * worry about it. 2115 */ 2116 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2117 /* No room for any events */ 2118 2119 /* Mark the rest of the page with padding */ 2120 rb_event_set_padding(event); 2121 2122 /* Set the write back to the previous setting */ 2123 local_sub(length, &tail_page->write); 2124 return; 2125 } 2126 2127 /* Put in a discarded event */ 2128 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2129 event->type_len = RINGBUF_TYPE_PADDING; 2130 /* time delta must be non zero */ 2131 event->time_delta = 1; 2132 2133 /* Set write to end of buffer */ 2134 length = (tail + length) - BUF_PAGE_SIZE; 2135 local_sub(length, &tail_page->write); 2136 } 2137 2138 /* 2139 * This is the slow path, force gcc not to inline it. 2140 */ 2141 static noinline struct ring_buffer_event * 2142 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2143 unsigned long tail, struct rb_event_info *info) 2144 { 2145 struct buffer_page *tail_page = info->tail_page; 2146 struct buffer_page *commit_page = cpu_buffer->commit_page; 2147 struct ring_buffer *buffer = cpu_buffer->buffer; 2148 struct buffer_page *next_page; 2149 int ret; 2150 u64 ts; 2151 2152 next_page = tail_page; 2153 2154 rb_inc_page(cpu_buffer, &next_page); 2155 2156 /* 2157 * If for some reason, we had an interrupt storm that made 2158 * it all the way around the buffer, bail, and warn 2159 * about it. 2160 */ 2161 if (unlikely(next_page == commit_page)) { 2162 local_inc(&cpu_buffer->commit_overrun); 2163 goto out_reset; 2164 } 2165 2166 /* 2167 * This is where the fun begins! 2168 * 2169 * We are fighting against races between a reader that 2170 * could be on another CPU trying to swap its reader 2171 * page with the buffer head. 2172 * 2173 * We are also fighting against interrupts coming in and 2174 * moving the head or tail on us as well. 2175 * 2176 * If the next page is the head page then we have filled 2177 * the buffer, unless the commit page is still on the 2178 * reader page. 2179 */ 2180 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2181 2182 /* 2183 * If the commit is not on the reader page, then 2184 * move the header page. 2185 */ 2186 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2187 /* 2188 * If we are not in overwrite mode, 2189 * this is easy, just stop here. 2190 */ 2191 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2192 local_inc(&cpu_buffer->dropped_events); 2193 goto out_reset; 2194 } 2195 2196 ret = rb_handle_head_page(cpu_buffer, 2197 tail_page, 2198 next_page); 2199 if (ret < 0) 2200 goto out_reset; 2201 if (ret) 2202 goto out_again; 2203 } else { 2204 /* 2205 * We need to be careful here too. The 2206 * commit page could still be on the reader 2207 * page. We could have a small buffer, and 2208 * have filled up the buffer with events 2209 * from interrupts and such, and wrapped. 2210 * 2211 * Note, if the tail page is also the on the 2212 * reader_page, we let it move out. 2213 */ 2214 if (unlikely((cpu_buffer->commit_page != 2215 cpu_buffer->tail_page) && 2216 (cpu_buffer->commit_page == 2217 cpu_buffer->reader_page))) { 2218 local_inc(&cpu_buffer->commit_overrun); 2219 goto out_reset; 2220 } 2221 } 2222 } 2223 2224 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2225 if (ret) { 2226 /* 2227 * Nested commits always have zero deltas, so 2228 * just reread the time stamp 2229 */ 2230 ts = rb_time_stamp(buffer); 2231 next_page->page->time_stamp = ts; 2232 } 2233 2234 out_again: 2235 2236 rb_reset_tail(cpu_buffer, tail, info); 2237 2238 /* fail and let the caller try again */ 2239 return ERR_PTR(-EAGAIN); 2240 2241 out_reset: 2242 /* reset write */ 2243 rb_reset_tail(cpu_buffer, tail, info); 2244 2245 return NULL; 2246 } 2247 2248 /* Slow path, do not inline */ 2249 static noinline struct ring_buffer_event * 2250 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 2251 { 2252 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2253 2254 /* Not the first event on the page? */ 2255 if (rb_event_index(event)) { 2256 event->time_delta = delta & TS_MASK; 2257 event->array[0] = delta >> TS_SHIFT; 2258 } else { 2259 /* nope, just zero it */ 2260 event->time_delta = 0; 2261 event->array[0] = 0; 2262 } 2263 2264 return skip_time_extend(event); 2265 } 2266 2267 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2268 struct ring_buffer_event *event); 2269 2270 /** 2271 * rb_update_event - update event type and data 2272 * @event: the event to update 2273 * @type: the type of event 2274 * @length: the size of the event field in the ring buffer 2275 * 2276 * Update the type and data fields of the event. The length 2277 * is the actual size that is written to the ring buffer, 2278 * and with this, we can determine what to place into the 2279 * data field. 2280 */ 2281 static void 2282 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2283 struct ring_buffer_event *event, 2284 struct rb_event_info *info) 2285 { 2286 unsigned length = info->length; 2287 u64 delta = info->delta; 2288 2289 /* Only a commit updates the timestamp */ 2290 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2291 delta = 0; 2292 2293 /* 2294 * If we need to add a timestamp, then we 2295 * add it to the start of the resevered space. 2296 */ 2297 if (unlikely(info->add_timestamp)) { 2298 event = rb_add_time_stamp(event, delta); 2299 length -= RB_LEN_TIME_EXTEND; 2300 delta = 0; 2301 } 2302 2303 event->time_delta = delta; 2304 length -= RB_EVNT_HDR_SIZE; 2305 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2306 event->type_len = 0; 2307 event->array[0] = length; 2308 } else 2309 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2310 } 2311 2312 static unsigned rb_calculate_event_length(unsigned length) 2313 { 2314 struct ring_buffer_event event; /* Used only for sizeof array */ 2315 2316 /* zero length can cause confusions */ 2317 if (!length) 2318 length++; 2319 2320 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2321 length += sizeof(event.array[0]); 2322 2323 length += RB_EVNT_HDR_SIZE; 2324 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2325 2326 /* 2327 * In case the time delta is larger than the 27 bits for it 2328 * in the header, we need to add a timestamp. If another 2329 * event comes in when trying to discard this one to increase 2330 * the length, then the timestamp will be added in the allocated 2331 * space of this event. If length is bigger than the size needed 2332 * for the TIME_EXTEND, then padding has to be used. The events 2333 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2334 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2335 * As length is a multiple of 4, we only need to worry if it 2336 * is 12 (RB_LEN_TIME_EXTEND + 4). 2337 */ 2338 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2339 length += RB_ALIGNMENT; 2340 2341 return length; 2342 } 2343 2344 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2345 static inline bool sched_clock_stable(void) 2346 { 2347 return true; 2348 } 2349 #endif 2350 2351 static inline int 2352 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2353 struct ring_buffer_event *event) 2354 { 2355 unsigned long new_index, old_index; 2356 struct buffer_page *bpage; 2357 unsigned long index; 2358 unsigned long addr; 2359 2360 new_index = rb_event_index(event); 2361 old_index = new_index + rb_event_ts_length(event); 2362 addr = (unsigned long)event; 2363 addr &= PAGE_MASK; 2364 2365 bpage = cpu_buffer->tail_page; 2366 2367 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2368 unsigned long write_mask = 2369 local_read(&bpage->write) & ~RB_WRITE_MASK; 2370 unsigned long event_length = rb_event_length(event); 2371 /* 2372 * This is on the tail page. It is possible that 2373 * a write could come in and move the tail page 2374 * and write to the next page. That is fine 2375 * because we just shorten what is on this page. 2376 */ 2377 old_index += write_mask; 2378 new_index += write_mask; 2379 index = local_cmpxchg(&bpage->write, old_index, new_index); 2380 if (index == old_index) { 2381 /* update counters */ 2382 local_sub(event_length, &cpu_buffer->entries_bytes); 2383 return 1; 2384 } 2385 } 2386 2387 /* could not discard */ 2388 return 0; 2389 } 2390 2391 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2392 { 2393 local_inc(&cpu_buffer->committing); 2394 local_inc(&cpu_buffer->commits); 2395 } 2396 2397 static void 2398 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2399 { 2400 unsigned long max_count; 2401 2402 /* 2403 * We only race with interrupts and NMIs on this CPU. 2404 * If we own the commit event, then we can commit 2405 * all others that interrupted us, since the interruptions 2406 * are in stack format (they finish before they come 2407 * back to us). This allows us to do a simple loop to 2408 * assign the commit to the tail. 2409 */ 2410 again: 2411 max_count = cpu_buffer->nr_pages * 100; 2412 2413 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 2414 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2415 return; 2416 if (RB_WARN_ON(cpu_buffer, 2417 rb_is_reader_page(cpu_buffer->tail_page))) 2418 return; 2419 local_set(&cpu_buffer->commit_page->page->commit, 2420 rb_page_write(cpu_buffer->commit_page)); 2421 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2422 cpu_buffer->write_stamp = 2423 cpu_buffer->commit_page->page->time_stamp; 2424 /* add barrier to keep gcc from optimizing too much */ 2425 barrier(); 2426 } 2427 while (rb_commit_index(cpu_buffer) != 2428 rb_page_write(cpu_buffer->commit_page)) { 2429 2430 local_set(&cpu_buffer->commit_page->page->commit, 2431 rb_page_write(cpu_buffer->commit_page)); 2432 RB_WARN_ON(cpu_buffer, 2433 local_read(&cpu_buffer->commit_page->page->commit) & 2434 ~RB_WRITE_MASK); 2435 barrier(); 2436 } 2437 2438 /* again, keep gcc from optimizing */ 2439 barrier(); 2440 2441 /* 2442 * If an interrupt came in just after the first while loop 2443 * and pushed the tail page forward, we will be left with 2444 * a dangling commit that will never go forward. 2445 */ 2446 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 2447 goto again; 2448 } 2449 2450 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2451 { 2452 unsigned long commits; 2453 2454 if (RB_WARN_ON(cpu_buffer, 2455 !local_read(&cpu_buffer->committing))) 2456 return; 2457 2458 again: 2459 commits = local_read(&cpu_buffer->commits); 2460 /* synchronize with interrupts */ 2461 barrier(); 2462 if (local_read(&cpu_buffer->committing) == 1) 2463 rb_set_commit_to_write(cpu_buffer); 2464 2465 local_dec(&cpu_buffer->committing); 2466 2467 /* synchronize with interrupts */ 2468 barrier(); 2469 2470 /* 2471 * Need to account for interrupts coming in between the 2472 * updating of the commit page and the clearing of the 2473 * committing counter. 2474 */ 2475 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2476 !local_read(&cpu_buffer->committing)) { 2477 local_inc(&cpu_buffer->committing); 2478 goto again; 2479 } 2480 } 2481 2482 static inline void rb_event_discard(struct ring_buffer_event *event) 2483 { 2484 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2485 event = skip_time_extend(event); 2486 2487 /* array[0] holds the actual length for the discarded event */ 2488 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2489 event->type_len = RINGBUF_TYPE_PADDING; 2490 /* time delta must be non zero */ 2491 if (!event->time_delta) 2492 event->time_delta = 1; 2493 } 2494 2495 static inline bool 2496 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2497 struct ring_buffer_event *event) 2498 { 2499 unsigned long addr = (unsigned long)event; 2500 unsigned long index; 2501 2502 index = rb_event_index(event); 2503 addr &= PAGE_MASK; 2504 2505 return cpu_buffer->commit_page->page == (void *)addr && 2506 rb_commit_index(cpu_buffer) == index; 2507 } 2508 2509 static void 2510 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2511 struct ring_buffer_event *event) 2512 { 2513 u64 delta; 2514 2515 /* 2516 * The event first in the commit queue updates the 2517 * time stamp. 2518 */ 2519 if (rb_event_is_commit(cpu_buffer, event)) { 2520 /* 2521 * A commit event that is first on a page 2522 * updates the write timestamp with the page stamp 2523 */ 2524 if (!rb_event_index(event)) 2525 cpu_buffer->write_stamp = 2526 cpu_buffer->commit_page->page->time_stamp; 2527 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2528 delta = event->array[0]; 2529 delta <<= TS_SHIFT; 2530 delta += event->time_delta; 2531 cpu_buffer->write_stamp += delta; 2532 } else 2533 cpu_buffer->write_stamp += event->time_delta; 2534 } 2535 } 2536 2537 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2538 struct ring_buffer_event *event) 2539 { 2540 local_inc(&cpu_buffer->entries); 2541 rb_update_write_stamp(cpu_buffer, event); 2542 rb_end_commit(cpu_buffer); 2543 } 2544 2545 static __always_inline void 2546 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2547 { 2548 bool pagebusy; 2549 2550 if (buffer->irq_work.waiters_pending) { 2551 buffer->irq_work.waiters_pending = false; 2552 /* irq_work_queue() supplies it's own memory barriers */ 2553 irq_work_queue(&buffer->irq_work.work); 2554 } 2555 2556 if (cpu_buffer->irq_work.waiters_pending) { 2557 cpu_buffer->irq_work.waiters_pending = false; 2558 /* irq_work_queue() supplies it's own memory barriers */ 2559 irq_work_queue(&cpu_buffer->irq_work.work); 2560 } 2561 2562 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2563 2564 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2565 cpu_buffer->irq_work.wakeup_full = true; 2566 cpu_buffer->irq_work.full_waiters_pending = false; 2567 /* irq_work_queue() supplies it's own memory barriers */ 2568 irq_work_queue(&cpu_buffer->irq_work.work); 2569 } 2570 } 2571 2572 /* 2573 * The lock and unlock are done within a preempt disable section. 2574 * The current_context per_cpu variable can only be modified 2575 * by the current task between lock and unlock. But it can 2576 * be modified more than once via an interrupt. To pass this 2577 * information from the lock to the unlock without having to 2578 * access the 'in_interrupt()' functions again (which do show 2579 * a bit of overhead in something as critical as function tracing, 2580 * we use a bitmask trick. 2581 * 2582 * bit 0 = NMI context 2583 * bit 1 = IRQ context 2584 * bit 2 = SoftIRQ context 2585 * bit 3 = normal context. 2586 * 2587 * This works because this is the order of contexts that can 2588 * preempt other contexts. A SoftIRQ never preempts an IRQ 2589 * context. 2590 * 2591 * When the context is determined, the corresponding bit is 2592 * checked and set (if it was set, then a recursion of that context 2593 * happened). 2594 * 2595 * On unlock, we need to clear this bit. To do so, just subtract 2596 * 1 from the current_context and AND it to itself. 2597 * 2598 * (binary) 2599 * 101 - 1 = 100 2600 * 101 & 100 = 100 (clearing bit zero) 2601 * 2602 * 1010 - 1 = 1001 2603 * 1010 & 1001 = 1000 (clearing bit 1) 2604 * 2605 * The least significant bit can be cleared this way, and it 2606 * just so happens that it is the same bit corresponding to 2607 * the current context. 2608 */ 2609 2610 static __always_inline int 2611 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2612 { 2613 unsigned int val = cpu_buffer->current_context; 2614 int bit; 2615 2616 if (in_interrupt()) { 2617 if (in_nmi()) 2618 bit = RB_CTX_NMI; 2619 else if (in_irq()) 2620 bit = RB_CTX_IRQ; 2621 else 2622 bit = RB_CTX_SOFTIRQ; 2623 } else 2624 bit = RB_CTX_NORMAL; 2625 2626 if (unlikely(val & (1 << bit))) 2627 return 1; 2628 2629 val |= (1 << bit); 2630 cpu_buffer->current_context = val; 2631 2632 return 0; 2633 } 2634 2635 static __always_inline void 2636 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2637 { 2638 cpu_buffer->current_context &= cpu_buffer->current_context - 1; 2639 } 2640 2641 /** 2642 * ring_buffer_unlock_commit - commit a reserved 2643 * @buffer: The buffer to commit to 2644 * @event: The event pointer to commit. 2645 * 2646 * This commits the data to the ring buffer, and releases any locks held. 2647 * 2648 * Must be paired with ring_buffer_lock_reserve. 2649 */ 2650 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2651 struct ring_buffer_event *event) 2652 { 2653 struct ring_buffer_per_cpu *cpu_buffer; 2654 int cpu = raw_smp_processor_id(); 2655 2656 cpu_buffer = buffer->buffers[cpu]; 2657 2658 rb_commit(cpu_buffer, event); 2659 2660 rb_wakeups(buffer, cpu_buffer); 2661 2662 trace_recursive_unlock(cpu_buffer); 2663 2664 preempt_enable_notrace(); 2665 2666 return 0; 2667 } 2668 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2669 2670 static noinline void 2671 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2672 struct rb_event_info *info) 2673 { 2674 WARN_ONCE(info->delta > (1ULL << 59), 2675 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2676 (unsigned long long)info->delta, 2677 (unsigned long long)info->ts, 2678 (unsigned long long)cpu_buffer->write_stamp, 2679 sched_clock_stable() ? "" : 2680 "If you just came from a suspend/resume,\n" 2681 "please switch to the trace global clock:\n" 2682 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2683 info->add_timestamp = 1; 2684 } 2685 2686 static struct ring_buffer_event * 2687 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2688 struct rb_event_info *info) 2689 { 2690 struct ring_buffer_event *event; 2691 struct buffer_page *tail_page; 2692 unsigned long tail, write; 2693 2694 /* 2695 * If the time delta since the last event is too big to 2696 * hold in the time field of the event, then we append a 2697 * TIME EXTEND event ahead of the data event. 2698 */ 2699 if (unlikely(info->add_timestamp)) 2700 info->length += RB_LEN_TIME_EXTEND; 2701 2702 tail_page = info->tail_page = cpu_buffer->tail_page; 2703 write = local_add_return(info->length, &tail_page->write); 2704 2705 /* set write to only the index of the write */ 2706 write &= RB_WRITE_MASK; 2707 tail = write - info->length; 2708 2709 /* 2710 * If this is the first commit on the page, then it has the same 2711 * timestamp as the page itself. 2712 */ 2713 if (!tail) 2714 info->delta = 0; 2715 2716 /* See if we shot pass the end of this buffer page */ 2717 if (unlikely(write > BUF_PAGE_SIZE)) 2718 return rb_move_tail(cpu_buffer, tail, info); 2719 2720 /* We reserved something on the buffer */ 2721 2722 event = __rb_page_index(tail_page, tail); 2723 kmemcheck_annotate_bitfield(event, bitfield); 2724 rb_update_event(cpu_buffer, event, info); 2725 2726 local_inc(&tail_page->entries); 2727 2728 /* 2729 * If this is the first commit on the page, then update 2730 * its timestamp. 2731 */ 2732 if (!tail) 2733 tail_page->page->time_stamp = info->ts; 2734 2735 /* account for these added bytes */ 2736 local_add(info->length, &cpu_buffer->entries_bytes); 2737 2738 return event; 2739 } 2740 2741 static struct ring_buffer_event * 2742 rb_reserve_next_event(struct ring_buffer *buffer, 2743 struct ring_buffer_per_cpu *cpu_buffer, 2744 unsigned long length) 2745 { 2746 struct ring_buffer_event *event; 2747 struct rb_event_info info; 2748 int nr_loops = 0; 2749 u64 diff; 2750 2751 rb_start_commit(cpu_buffer); 2752 2753 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2754 /* 2755 * Due to the ability to swap a cpu buffer from a buffer 2756 * it is possible it was swapped before we committed. 2757 * (committing stops a swap). We check for it here and 2758 * if it happened, we have to fail the write. 2759 */ 2760 barrier(); 2761 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2762 local_dec(&cpu_buffer->committing); 2763 local_dec(&cpu_buffer->commits); 2764 return NULL; 2765 } 2766 #endif 2767 2768 info.length = rb_calculate_event_length(length); 2769 again: 2770 info.add_timestamp = 0; 2771 info.delta = 0; 2772 2773 /* 2774 * We allow for interrupts to reenter here and do a trace. 2775 * If one does, it will cause this original code to loop 2776 * back here. Even with heavy interrupts happening, this 2777 * should only happen a few times in a row. If this happens 2778 * 1000 times in a row, there must be either an interrupt 2779 * storm or we have something buggy. 2780 * Bail! 2781 */ 2782 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2783 goto out_fail; 2784 2785 info.ts = rb_time_stamp(cpu_buffer->buffer); 2786 diff = info.ts - cpu_buffer->write_stamp; 2787 2788 /* make sure this diff is calculated here */ 2789 barrier(); 2790 2791 /* Did the write stamp get updated already? */ 2792 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2793 info.delta = diff; 2794 if (unlikely(test_time_stamp(info.delta))) 2795 rb_handle_timestamp(cpu_buffer, &info); 2796 } 2797 2798 event = __rb_reserve_next(cpu_buffer, &info); 2799 2800 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2801 if (info.add_timestamp) 2802 info.length -= RB_LEN_TIME_EXTEND; 2803 goto again; 2804 } 2805 2806 if (!event) 2807 goto out_fail; 2808 2809 return event; 2810 2811 out_fail: 2812 rb_end_commit(cpu_buffer); 2813 return NULL; 2814 } 2815 2816 /** 2817 * ring_buffer_lock_reserve - reserve a part of the buffer 2818 * @buffer: the ring buffer to reserve from 2819 * @length: the length of the data to reserve (excluding event header) 2820 * 2821 * Returns a reseverd event on the ring buffer to copy directly to. 2822 * The user of this interface will need to get the body to write into 2823 * and can use the ring_buffer_event_data() interface. 2824 * 2825 * The length is the length of the data needed, not the event length 2826 * which also includes the event header. 2827 * 2828 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2829 * If NULL is returned, then nothing has been allocated or locked. 2830 */ 2831 struct ring_buffer_event * 2832 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2833 { 2834 struct ring_buffer_per_cpu *cpu_buffer; 2835 struct ring_buffer_event *event; 2836 int cpu; 2837 2838 /* If we are tracing schedule, we don't want to recurse */ 2839 preempt_disable_notrace(); 2840 2841 if (unlikely(atomic_read(&buffer->record_disabled))) 2842 goto out; 2843 2844 cpu = raw_smp_processor_id(); 2845 2846 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2847 goto out; 2848 2849 cpu_buffer = buffer->buffers[cpu]; 2850 2851 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2852 goto out; 2853 2854 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2855 goto out; 2856 2857 if (unlikely(trace_recursive_lock(cpu_buffer))) 2858 goto out; 2859 2860 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2861 if (!event) 2862 goto out_unlock; 2863 2864 return event; 2865 2866 out_unlock: 2867 trace_recursive_unlock(cpu_buffer); 2868 out: 2869 preempt_enable_notrace(); 2870 return NULL; 2871 } 2872 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2873 2874 /* 2875 * Decrement the entries to the page that an event is on. 2876 * The event does not even need to exist, only the pointer 2877 * to the page it is on. This may only be called before the commit 2878 * takes place. 2879 */ 2880 static inline void 2881 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2882 struct ring_buffer_event *event) 2883 { 2884 unsigned long addr = (unsigned long)event; 2885 struct buffer_page *bpage = cpu_buffer->commit_page; 2886 struct buffer_page *start; 2887 2888 addr &= PAGE_MASK; 2889 2890 /* Do the likely case first */ 2891 if (likely(bpage->page == (void *)addr)) { 2892 local_dec(&bpage->entries); 2893 return; 2894 } 2895 2896 /* 2897 * Because the commit page may be on the reader page we 2898 * start with the next page and check the end loop there. 2899 */ 2900 rb_inc_page(cpu_buffer, &bpage); 2901 start = bpage; 2902 do { 2903 if (bpage->page == (void *)addr) { 2904 local_dec(&bpage->entries); 2905 return; 2906 } 2907 rb_inc_page(cpu_buffer, &bpage); 2908 } while (bpage != start); 2909 2910 /* commit not part of this buffer?? */ 2911 RB_WARN_ON(cpu_buffer, 1); 2912 } 2913 2914 /** 2915 * ring_buffer_commit_discard - discard an event that has not been committed 2916 * @buffer: the ring buffer 2917 * @event: non committed event to discard 2918 * 2919 * Sometimes an event that is in the ring buffer needs to be ignored. 2920 * This function lets the user discard an event in the ring buffer 2921 * and then that event will not be read later. 2922 * 2923 * This function only works if it is called before the the item has been 2924 * committed. It will try to free the event from the ring buffer 2925 * if another event has not been added behind it. 2926 * 2927 * If another event has been added behind it, it will set the event 2928 * up as discarded, and perform the commit. 2929 * 2930 * If this function is called, do not call ring_buffer_unlock_commit on 2931 * the event. 2932 */ 2933 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2934 struct ring_buffer_event *event) 2935 { 2936 struct ring_buffer_per_cpu *cpu_buffer; 2937 int cpu; 2938 2939 /* The event is discarded regardless */ 2940 rb_event_discard(event); 2941 2942 cpu = smp_processor_id(); 2943 cpu_buffer = buffer->buffers[cpu]; 2944 2945 /* 2946 * This must only be called if the event has not been 2947 * committed yet. Thus we can assume that preemption 2948 * is still disabled. 2949 */ 2950 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2951 2952 rb_decrement_entry(cpu_buffer, event); 2953 if (rb_try_to_discard(cpu_buffer, event)) 2954 goto out; 2955 2956 /* 2957 * The commit is still visible by the reader, so we 2958 * must still update the timestamp. 2959 */ 2960 rb_update_write_stamp(cpu_buffer, event); 2961 out: 2962 rb_end_commit(cpu_buffer); 2963 2964 trace_recursive_unlock(cpu_buffer); 2965 2966 preempt_enable_notrace(); 2967 2968 } 2969 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2970 2971 /** 2972 * ring_buffer_write - write data to the buffer without reserving 2973 * @buffer: The ring buffer to write to. 2974 * @length: The length of the data being written (excluding the event header) 2975 * @data: The data to write to the buffer. 2976 * 2977 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2978 * one function. If you already have the data to write to the buffer, it 2979 * may be easier to simply call this function. 2980 * 2981 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2982 * and not the length of the event which would hold the header. 2983 */ 2984 int ring_buffer_write(struct ring_buffer *buffer, 2985 unsigned long length, 2986 void *data) 2987 { 2988 struct ring_buffer_per_cpu *cpu_buffer; 2989 struct ring_buffer_event *event; 2990 void *body; 2991 int ret = -EBUSY; 2992 int cpu; 2993 2994 preempt_disable_notrace(); 2995 2996 if (atomic_read(&buffer->record_disabled)) 2997 goto out; 2998 2999 cpu = raw_smp_processor_id(); 3000 3001 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3002 goto out; 3003 3004 cpu_buffer = buffer->buffers[cpu]; 3005 3006 if (atomic_read(&cpu_buffer->record_disabled)) 3007 goto out; 3008 3009 if (length > BUF_MAX_DATA_SIZE) 3010 goto out; 3011 3012 if (unlikely(trace_recursive_lock(cpu_buffer))) 3013 goto out; 3014 3015 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3016 if (!event) 3017 goto out_unlock; 3018 3019 body = rb_event_data(event); 3020 3021 memcpy(body, data, length); 3022 3023 rb_commit(cpu_buffer, event); 3024 3025 rb_wakeups(buffer, cpu_buffer); 3026 3027 ret = 0; 3028 3029 out_unlock: 3030 trace_recursive_unlock(cpu_buffer); 3031 3032 out: 3033 preempt_enable_notrace(); 3034 3035 return ret; 3036 } 3037 EXPORT_SYMBOL_GPL(ring_buffer_write); 3038 3039 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3040 { 3041 struct buffer_page *reader = cpu_buffer->reader_page; 3042 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3043 struct buffer_page *commit = cpu_buffer->commit_page; 3044 3045 /* In case of error, head will be NULL */ 3046 if (unlikely(!head)) 3047 return true; 3048 3049 return reader->read == rb_page_commit(reader) && 3050 (commit == reader || 3051 (commit == head && 3052 head->read == rb_page_commit(commit))); 3053 } 3054 3055 /** 3056 * ring_buffer_record_disable - stop all writes into the buffer 3057 * @buffer: The ring buffer to stop writes to. 3058 * 3059 * This prevents all writes to the buffer. Any attempt to write 3060 * to the buffer after this will fail and return NULL. 3061 * 3062 * The caller should call synchronize_sched() after this. 3063 */ 3064 void ring_buffer_record_disable(struct ring_buffer *buffer) 3065 { 3066 atomic_inc(&buffer->record_disabled); 3067 } 3068 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3069 3070 /** 3071 * ring_buffer_record_enable - enable writes to the buffer 3072 * @buffer: The ring buffer to enable writes 3073 * 3074 * Note, multiple disables will need the same number of enables 3075 * to truly enable the writing (much like preempt_disable). 3076 */ 3077 void ring_buffer_record_enable(struct ring_buffer *buffer) 3078 { 3079 atomic_dec(&buffer->record_disabled); 3080 } 3081 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3082 3083 /** 3084 * ring_buffer_record_off - stop all writes into the buffer 3085 * @buffer: The ring buffer to stop writes to. 3086 * 3087 * This prevents all writes to the buffer. Any attempt to write 3088 * to the buffer after this will fail and return NULL. 3089 * 3090 * This is different than ring_buffer_record_disable() as 3091 * it works like an on/off switch, where as the disable() version 3092 * must be paired with a enable(). 3093 */ 3094 void ring_buffer_record_off(struct ring_buffer *buffer) 3095 { 3096 unsigned int rd; 3097 unsigned int new_rd; 3098 3099 do { 3100 rd = atomic_read(&buffer->record_disabled); 3101 new_rd = rd | RB_BUFFER_OFF; 3102 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3103 } 3104 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3105 3106 /** 3107 * ring_buffer_record_on - restart writes into the buffer 3108 * @buffer: The ring buffer to start writes to. 3109 * 3110 * This enables all writes to the buffer that was disabled by 3111 * ring_buffer_record_off(). 3112 * 3113 * This is different than ring_buffer_record_enable() as 3114 * it works like an on/off switch, where as the enable() version 3115 * must be paired with a disable(). 3116 */ 3117 void ring_buffer_record_on(struct ring_buffer *buffer) 3118 { 3119 unsigned int rd; 3120 unsigned int new_rd; 3121 3122 do { 3123 rd = atomic_read(&buffer->record_disabled); 3124 new_rd = rd & ~RB_BUFFER_OFF; 3125 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3126 } 3127 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3128 3129 /** 3130 * ring_buffer_record_is_on - return true if the ring buffer can write 3131 * @buffer: The ring buffer to see if write is enabled 3132 * 3133 * Returns true if the ring buffer is in a state that it accepts writes. 3134 */ 3135 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3136 { 3137 return !atomic_read(&buffer->record_disabled); 3138 } 3139 3140 /** 3141 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3142 * @buffer: The ring buffer to stop writes to. 3143 * @cpu: The CPU buffer to stop 3144 * 3145 * This prevents all writes to the buffer. Any attempt to write 3146 * to the buffer after this will fail and return NULL. 3147 * 3148 * The caller should call synchronize_sched() after this. 3149 */ 3150 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3151 { 3152 struct ring_buffer_per_cpu *cpu_buffer; 3153 3154 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3155 return; 3156 3157 cpu_buffer = buffer->buffers[cpu]; 3158 atomic_inc(&cpu_buffer->record_disabled); 3159 } 3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3161 3162 /** 3163 * ring_buffer_record_enable_cpu - enable writes to the buffer 3164 * @buffer: The ring buffer to enable writes 3165 * @cpu: The CPU to enable. 3166 * 3167 * Note, multiple disables will need the same number of enables 3168 * to truly enable the writing (much like preempt_disable). 3169 */ 3170 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3171 { 3172 struct ring_buffer_per_cpu *cpu_buffer; 3173 3174 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3175 return; 3176 3177 cpu_buffer = buffer->buffers[cpu]; 3178 atomic_dec(&cpu_buffer->record_disabled); 3179 } 3180 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3181 3182 /* 3183 * The total entries in the ring buffer is the running counter 3184 * of entries entered into the ring buffer, minus the sum of 3185 * the entries read from the ring buffer and the number of 3186 * entries that were overwritten. 3187 */ 3188 static inline unsigned long 3189 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3190 { 3191 return local_read(&cpu_buffer->entries) - 3192 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3193 } 3194 3195 /** 3196 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3197 * @buffer: The ring buffer 3198 * @cpu: The per CPU buffer to read from. 3199 */ 3200 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3201 { 3202 unsigned long flags; 3203 struct ring_buffer_per_cpu *cpu_buffer; 3204 struct buffer_page *bpage; 3205 u64 ret = 0; 3206 3207 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3208 return 0; 3209 3210 cpu_buffer = buffer->buffers[cpu]; 3211 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3212 /* 3213 * if the tail is on reader_page, oldest time stamp is on the reader 3214 * page 3215 */ 3216 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3217 bpage = cpu_buffer->reader_page; 3218 else 3219 bpage = rb_set_head_page(cpu_buffer); 3220 if (bpage) 3221 ret = bpage->page->time_stamp; 3222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3223 3224 return ret; 3225 } 3226 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3227 3228 /** 3229 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3230 * @buffer: The ring buffer 3231 * @cpu: The per CPU buffer to read from. 3232 */ 3233 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3234 { 3235 struct ring_buffer_per_cpu *cpu_buffer; 3236 unsigned long ret; 3237 3238 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3239 return 0; 3240 3241 cpu_buffer = buffer->buffers[cpu]; 3242 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3243 3244 return ret; 3245 } 3246 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3247 3248 /** 3249 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3250 * @buffer: The ring buffer 3251 * @cpu: The per CPU buffer to get the entries from. 3252 */ 3253 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3254 { 3255 struct ring_buffer_per_cpu *cpu_buffer; 3256 3257 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3258 return 0; 3259 3260 cpu_buffer = buffer->buffers[cpu]; 3261 3262 return rb_num_of_entries(cpu_buffer); 3263 } 3264 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3265 3266 /** 3267 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3268 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3269 * @buffer: The ring buffer 3270 * @cpu: The per CPU buffer to get the number of overruns from 3271 */ 3272 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3273 { 3274 struct ring_buffer_per_cpu *cpu_buffer; 3275 unsigned long ret; 3276 3277 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3278 return 0; 3279 3280 cpu_buffer = buffer->buffers[cpu]; 3281 ret = local_read(&cpu_buffer->overrun); 3282 3283 return ret; 3284 } 3285 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3286 3287 /** 3288 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3289 * commits failing due to the buffer wrapping around while there are uncommitted 3290 * events, such as during an interrupt storm. 3291 * @buffer: The ring buffer 3292 * @cpu: The per CPU buffer to get the number of overruns from 3293 */ 3294 unsigned long 3295 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3296 { 3297 struct ring_buffer_per_cpu *cpu_buffer; 3298 unsigned long ret; 3299 3300 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3301 return 0; 3302 3303 cpu_buffer = buffer->buffers[cpu]; 3304 ret = local_read(&cpu_buffer->commit_overrun); 3305 3306 return ret; 3307 } 3308 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3309 3310 /** 3311 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3312 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3313 * @buffer: The ring buffer 3314 * @cpu: The per CPU buffer to get the number of overruns from 3315 */ 3316 unsigned long 3317 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3318 { 3319 struct ring_buffer_per_cpu *cpu_buffer; 3320 unsigned long ret; 3321 3322 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3323 return 0; 3324 3325 cpu_buffer = buffer->buffers[cpu]; 3326 ret = local_read(&cpu_buffer->dropped_events); 3327 3328 return ret; 3329 } 3330 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3331 3332 /** 3333 * ring_buffer_read_events_cpu - get the number of events successfully read 3334 * @buffer: The ring buffer 3335 * @cpu: The per CPU buffer to get the number of events read 3336 */ 3337 unsigned long 3338 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3339 { 3340 struct ring_buffer_per_cpu *cpu_buffer; 3341 3342 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3343 return 0; 3344 3345 cpu_buffer = buffer->buffers[cpu]; 3346 return cpu_buffer->read; 3347 } 3348 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3349 3350 /** 3351 * ring_buffer_entries - get the number of entries in a buffer 3352 * @buffer: The ring buffer 3353 * 3354 * Returns the total number of entries in the ring buffer 3355 * (all CPU entries) 3356 */ 3357 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3358 { 3359 struct ring_buffer_per_cpu *cpu_buffer; 3360 unsigned long entries = 0; 3361 int cpu; 3362 3363 /* if you care about this being correct, lock the buffer */ 3364 for_each_buffer_cpu(buffer, cpu) { 3365 cpu_buffer = buffer->buffers[cpu]; 3366 entries += rb_num_of_entries(cpu_buffer); 3367 } 3368 3369 return entries; 3370 } 3371 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3372 3373 /** 3374 * ring_buffer_overruns - get the number of overruns in buffer 3375 * @buffer: The ring buffer 3376 * 3377 * Returns the total number of overruns in the ring buffer 3378 * (all CPU entries) 3379 */ 3380 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3381 { 3382 struct ring_buffer_per_cpu *cpu_buffer; 3383 unsigned long overruns = 0; 3384 int cpu; 3385 3386 /* if you care about this being correct, lock the buffer */ 3387 for_each_buffer_cpu(buffer, cpu) { 3388 cpu_buffer = buffer->buffers[cpu]; 3389 overruns += local_read(&cpu_buffer->overrun); 3390 } 3391 3392 return overruns; 3393 } 3394 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3395 3396 static void rb_iter_reset(struct ring_buffer_iter *iter) 3397 { 3398 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3399 3400 /* Iterator usage is expected to have record disabled */ 3401 iter->head_page = cpu_buffer->reader_page; 3402 iter->head = cpu_buffer->reader_page->read; 3403 3404 iter->cache_reader_page = iter->head_page; 3405 iter->cache_read = cpu_buffer->read; 3406 3407 if (iter->head) 3408 iter->read_stamp = cpu_buffer->read_stamp; 3409 else 3410 iter->read_stamp = iter->head_page->page->time_stamp; 3411 } 3412 3413 /** 3414 * ring_buffer_iter_reset - reset an iterator 3415 * @iter: The iterator to reset 3416 * 3417 * Resets the iterator, so that it will start from the beginning 3418 * again. 3419 */ 3420 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3421 { 3422 struct ring_buffer_per_cpu *cpu_buffer; 3423 unsigned long flags; 3424 3425 if (!iter) 3426 return; 3427 3428 cpu_buffer = iter->cpu_buffer; 3429 3430 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3431 rb_iter_reset(iter); 3432 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3433 } 3434 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3435 3436 /** 3437 * ring_buffer_iter_empty - check if an iterator has no more to read 3438 * @iter: The iterator to check 3439 */ 3440 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3441 { 3442 struct ring_buffer_per_cpu *cpu_buffer; 3443 3444 cpu_buffer = iter->cpu_buffer; 3445 3446 return iter->head_page == cpu_buffer->commit_page && 3447 iter->head == rb_commit_index(cpu_buffer); 3448 } 3449 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3450 3451 static void 3452 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3453 struct ring_buffer_event *event) 3454 { 3455 u64 delta; 3456 3457 switch (event->type_len) { 3458 case RINGBUF_TYPE_PADDING: 3459 return; 3460 3461 case RINGBUF_TYPE_TIME_EXTEND: 3462 delta = event->array[0]; 3463 delta <<= TS_SHIFT; 3464 delta += event->time_delta; 3465 cpu_buffer->read_stamp += delta; 3466 return; 3467 3468 case RINGBUF_TYPE_TIME_STAMP: 3469 /* FIXME: not implemented */ 3470 return; 3471 3472 case RINGBUF_TYPE_DATA: 3473 cpu_buffer->read_stamp += event->time_delta; 3474 return; 3475 3476 default: 3477 BUG(); 3478 } 3479 return; 3480 } 3481 3482 static void 3483 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3484 struct ring_buffer_event *event) 3485 { 3486 u64 delta; 3487 3488 switch (event->type_len) { 3489 case RINGBUF_TYPE_PADDING: 3490 return; 3491 3492 case RINGBUF_TYPE_TIME_EXTEND: 3493 delta = event->array[0]; 3494 delta <<= TS_SHIFT; 3495 delta += event->time_delta; 3496 iter->read_stamp += delta; 3497 return; 3498 3499 case RINGBUF_TYPE_TIME_STAMP: 3500 /* FIXME: not implemented */ 3501 return; 3502 3503 case RINGBUF_TYPE_DATA: 3504 iter->read_stamp += event->time_delta; 3505 return; 3506 3507 default: 3508 BUG(); 3509 } 3510 return; 3511 } 3512 3513 static struct buffer_page * 3514 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3515 { 3516 struct buffer_page *reader = NULL; 3517 unsigned long overwrite; 3518 unsigned long flags; 3519 int nr_loops = 0; 3520 int ret; 3521 3522 local_irq_save(flags); 3523 arch_spin_lock(&cpu_buffer->lock); 3524 3525 again: 3526 /* 3527 * This should normally only loop twice. But because the 3528 * start of the reader inserts an empty page, it causes 3529 * a case where we will loop three times. There should be no 3530 * reason to loop four times (that I know of). 3531 */ 3532 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3533 reader = NULL; 3534 goto out; 3535 } 3536 3537 reader = cpu_buffer->reader_page; 3538 3539 /* If there's more to read, return this page */ 3540 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3541 goto out; 3542 3543 /* Never should we have an index greater than the size */ 3544 if (RB_WARN_ON(cpu_buffer, 3545 cpu_buffer->reader_page->read > rb_page_size(reader))) 3546 goto out; 3547 3548 /* check if we caught up to the tail */ 3549 reader = NULL; 3550 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3551 goto out; 3552 3553 /* Don't bother swapping if the ring buffer is empty */ 3554 if (rb_num_of_entries(cpu_buffer) == 0) 3555 goto out; 3556 3557 /* 3558 * Reset the reader page to size zero. 3559 */ 3560 local_set(&cpu_buffer->reader_page->write, 0); 3561 local_set(&cpu_buffer->reader_page->entries, 0); 3562 local_set(&cpu_buffer->reader_page->page->commit, 0); 3563 cpu_buffer->reader_page->real_end = 0; 3564 3565 spin: 3566 /* 3567 * Splice the empty reader page into the list around the head. 3568 */ 3569 reader = rb_set_head_page(cpu_buffer); 3570 if (!reader) 3571 goto out; 3572 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3573 cpu_buffer->reader_page->list.prev = reader->list.prev; 3574 3575 /* 3576 * cpu_buffer->pages just needs to point to the buffer, it 3577 * has no specific buffer page to point to. Lets move it out 3578 * of our way so we don't accidentally swap it. 3579 */ 3580 cpu_buffer->pages = reader->list.prev; 3581 3582 /* The reader page will be pointing to the new head */ 3583 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3584 3585 /* 3586 * We want to make sure we read the overruns after we set up our 3587 * pointers to the next object. The writer side does a 3588 * cmpxchg to cross pages which acts as the mb on the writer 3589 * side. Note, the reader will constantly fail the swap 3590 * while the writer is updating the pointers, so this 3591 * guarantees that the overwrite recorded here is the one we 3592 * want to compare with the last_overrun. 3593 */ 3594 smp_mb(); 3595 overwrite = local_read(&(cpu_buffer->overrun)); 3596 3597 /* 3598 * Here's the tricky part. 3599 * 3600 * We need to move the pointer past the header page. 3601 * But we can only do that if a writer is not currently 3602 * moving it. The page before the header page has the 3603 * flag bit '1' set if it is pointing to the page we want. 3604 * but if the writer is in the process of moving it 3605 * than it will be '2' or already moved '0'. 3606 */ 3607 3608 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3609 3610 /* 3611 * If we did not convert it, then we must try again. 3612 */ 3613 if (!ret) 3614 goto spin; 3615 3616 /* 3617 * Yeah! We succeeded in replacing the page. 3618 * 3619 * Now make the new head point back to the reader page. 3620 */ 3621 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3622 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3623 3624 /* Finally update the reader page to the new head */ 3625 cpu_buffer->reader_page = reader; 3626 cpu_buffer->reader_page->read = 0; 3627 3628 if (overwrite != cpu_buffer->last_overrun) { 3629 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3630 cpu_buffer->last_overrun = overwrite; 3631 } 3632 3633 goto again; 3634 3635 out: 3636 /* Update the read_stamp on the first event */ 3637 if (reader && reader->read == 0) 3638 cpu_buffer->read_stamp = reader->page->time_stamp; 3639 3640 arch_spin_unlock(&cpu_buffer->lock); 3641 local_irq_restore(flags); 3642 3643 return reader; 3644 } 3645 3646 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3647 { 3648 struct ring_buffer_event *event; 3649 struct buffer_page *reader; 3650 unsigned length; 3651 3652 reader = rb_get_reader_page(cpu_buffer); 3653 3654 /* This function should not be called when buffer is empty */ 3655 if (RB_WARN_ON(cpu_buffer, !reader)) 3656 return; 3657 3658 event = rb_reader_event(cpu_buffer); 3659 3660 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3661 cpu_buffer->read++; 3662 3663 rb_update_read_stamp(cpu_buffer, event); 3664 3665 length = rb_event_length(event); 3666 cpu_buffer->reader_page->read += length; 3667 } 3668 3669 static void rb_advance_iter(struct ring_buffer_iter *iter) 3670 { 3671 struct ring_buffer_per_cpu *cpu_buffer; 3672 struct ring_buffer_event *event; 3673 unsigned length; 3674 3675 cpu_buffer = iter->cpu_buffer; 3676 3677 /* 3678 * Check if we are at the end of the buffer. 3679 */ 3680 if (iter->head >= rb_page_size(iter->head_page)) { 3681 /* discarded commits can make the page empty */ 3682 if (iter->head_page == cpu_buffer->commit_page) 3683 return; 3684 rb_inc_iter(iter); 3685 return; 3686 } 3687 3688 event = rb_iter_head_event(iter); 3689 3690 length = rb_event_length(event); 3691 3692 /* 3693 * This should not be called to advance the header if we are 3694 * at the tail of the buffer. 3695 */ 3696 if (RB_WARN_ON(cpu_buffer, 3697 (iter->head_page == cpu_buffer->commit_page) && 3698 (iter->head + length > rb_commit_index(cpu_buffer)))) 3699 return; 3700 3701 rb_update_iter_read_stamp(iter, event); 3702 3703 iter->head += length; 3704 3705 /* check for end of page padding */ 3706 if ((iter->head >= rb_page_size(iter->head_page)) && 3707 (iter->head_page != cpu_buffer->commit_page)) 3708 rb_inc_iter(iter); 3709 } 3710 3711 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3712 { 3713 return cpu_buffer->lost_events; 3714 } 3715 3716 static struct ring_buffer_event * 3717 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3718 unsigned long *lost_events) 3719 { 3720 struct ring_buffer_event *event; 3721 struct buffer_page *reader; 3722 int nr_loops = 0; 3723 3724 again: 3725 /* 3726 * We repeat when a time extend is encountered. 3727 * Since the time extend is always attached to a data event, 3728 * we should never loop more than once. 3729 * (We never hit the following condition more than twice). 3730 */ 3731 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3732 return NULL; 3733 3734 reader = rb_get_reader_page(cpu_buffer); 3735 if (!reader) 3736 return NULL; 3737 3738 event = rb_reader_event(cpu_buffer); 3739 3740 switch (event->type_len) { 3741 case RINGBUF_TYPE_PADDING: 3742 if (rb_null_event(event)) 3743 RB_WARN_ON(cpu_buffer, 1); 3744 /* 3745 * Because the writer could be discarding every 3746 * event it creates (which would probably be bad) 3747 * if we were to go back to "again" then we may never 3748 * catch up, and will trigger the warn on, or lock 3749 * the box. Return the padding, and we will release 3750 * the current locks, and try again. 3751 */ 3752 return event; 3753 3754 case RINGBUF_TYPE_TIME_EXTEND: 3755 /* Internal data, OK to advance */ 3756 rb_advance_reader(cpu_buffer); 3757 goto again; 3758 3759 case RINGBUF_TYPE_TIME_STAMP: 3760 /* FIXME: not implemented */ 3761 rb_advance_reader(cpu_buffer); 3762 goto again; 3763 3764 case RINGBUF_TYPE_DATA: 3765 if (ts) { 3766 *ts = cpu_buffer->read_stamp + event->time_delta; 3767 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3768 cpu_buffer->cpu, ts); 3769 } 3770 if (lost_events) 3771 *lost_events = rb_lost_events(cpu_buffer); 3772 return event; 3773 3774 default: 3775 BUG(); 3776 } 3777 3778 return NULL; 3779 } 3780 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3781 3782 static struct ring_buffer_event * 3783 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3784 { 3785 struct ring_buffer *buffer; 3786 struct ring_buffer_per_cpu *cpu_buffer; 3787 struct ring_buffer_event *event; 3788 int nr_loops = 0; 3789 3790 cpu_buffer = iter->cpu_buffer; 3791 buffer = cpu_buffer->buffer; 3792 3793 /* 3794 * Check if someone performed a consuming read to 3795 * the buffer. A consuming read invalidates the iterator 3796 * and we need to reset the iterator in this case. 3797 */ 3798 if (unlikely(iter->cache_read != cpu_buffer->read || 3799 iter->cache_reader_page != cpu_buffer->reader_page)) 3800 rb_iter_reset(iter); 3801 3802 again: 3803 if (ring_buffer_iter_empty(iter)) 3804 return NULL; 3805 3806 /* 3807 * We repeat when a time extend is encountered or we hit 3808 * the end of the page. Since the time extend is always attached 3809 * to a data event, we should never loop more than three times. 3810 * Once for going to next page, once on time extend, and 3811 * finally once to get the event. 3812 * (We never hit the following condition more than thrice). 3813 */ 3814 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3815 return NULL; 3816 3817 if (rb_per_cpu_empty(cpu_buffer)) 3818 return NULL; 3819 3820 if (iter->head >= rb_page_size(iter->head_page)) { 3821 rb_inc_iter(iter); 3822 goto again; 3823 } 3824 3825 event = rb_iter_head_event(iter); 3826 3827 switch (event->type_len) { 3828 case RINGBUF_TYPE_PADDING: 3829 if (rb_null_event(event)) { 3830 rb_inc_iter(iter); 3831 goto again; 3832 } 3833 rb_advance_iter(iter); 3834 return event; 3835 3836 case RINGBUF_TYPE_TIME_EXTEND: 3837 /* Internal data, OK to advance */ 3838 rb_advance_iter(iter); 3839 goto again; 3840 3841 case RINGBUF_TYPE_TIME_STAMP: 3842 /* FIXME: not implemented */ 3843 rb_advance_iter(iter); 3844 goto again; 3845 3846 case RINGBUF_TYPE_DATA: 3847 if (ts) { 3848 *ts = iter->read_stamp + event->time_delta; 3849 ring_buffer_normalize_time_stamp(buffer, 3850 cpu_buffer->cpu, ts); 3851 } 3852 return event; 3853 3854 default: 3855 BUG(); 3856 } 3857 3858 return NULL; 3859 } 3860 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3861 3862 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3863 { 3864 if (likely(!in_nmi())) { 3865 raw_spin_lock(&cpu_buffer->reader_lock); 3866 return true; 3867 } 3868 3869 /* 3870 * If an NMI die dumps out the content of the ring buffer 3871 * trylock must be used to prevent a deadlock if the NMI 3872 * preempted a task that holds the ring buffer locks. If 3873 * we get the lock then all is fine, if not, then continue 3874 * to do the read, but this can corrupt the ring buffer, 3875 * so it must be permanently disabled from future writes. 3876 * Reading from NMI is a oneshot deal. 3877 */ 3878 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 3879 return true; 3880 3881 /* Continue without locking, but disable the ring buffer */ 3882 atomic_inc(&cpu_buffer->record_disabled); 3883 return false; 3884 } 3885 3886 static inline void 3887 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 3888 { 3889 if (likely(locked)) 3890 raw_spin_unlock(&cpu_buffer->reader_lock); 3891 return; 3892 } 3893 3894 /** 3895 * ring_buffer_peek - peek at the next event to be read 3896 * @buffer: The ring buffer to read 3897 * @cpu: The cpu to peak at 3898 * @ts: The timestamp counter of this event. 3899 * @lost_events: a variable to store if events were lost (may be NULL) 3900 * 3901 * This will return the event that will be read next, but does 3902 * not consume the data. 3903 */ 3904 struct ring_buffer_event * 3905 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3906 unsigned long *lost_events) 3907 { 3908 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3909 struct ring_buffer_event *event; 3910 unsigned long flags; 3911 bool dolock; 3912 3913 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3914 return NULL; 3915 3916 again: 3917 local_irq_save(flags); 3918 dolock = rb_reader_lock(cpu_buffer); 3919 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3920 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3921 rb_advance_reader(cpu_buffer); 3922 rb_reader_unlock(cpu_buffer, dolock); 3923 local_irq_restore(flags); 3924 3925 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3926 goto again; 3927 3928 return event; 3929 } 3930 3931 /** 3932 * ring_buffer_iter_peek - peek at the next event to be read 3933 * @iter: The ring buffer iterator 3934 * @ts: The timestamp counter of this event. 3935 * 3936 * This will return the event that will be read next, but does 3937 * not increment the iterator. 3938 */ 3939 struct ring_buffer_event * 3940 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3941 { 3942 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3943 struct ring_buffer_event *event; 3944 unsigned long flags; 3945 3946 again: 3947 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3948 event = rb_iter_peek(iter, ts); 3949 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3950 3951 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3952 goto again; 3953 3954 return event; 3955 } 3956 3957 /** 3958 * ring_buffer_consume - return an event and consume it 3959 * @buffer: The ring buffer to get the next event from 3960 * @cpu: the cpu to read the buffer from 3961 * @ts: a variable to store the timestamp (may be NULL) 3962 * @lost_events: a variable to store if events were lost (may be NULL) 3963 * 3964 * Returns the next event in the ring buffer, and that event is consumed. 3965 * Meaning, that sequential reads will keep returning a different event, 3966 * and eventually empty the ring buffer if the producer is slower. 3967 */ 3968 struct ring_buffer_event * 3969 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3970 unsigned long *lost_events) 3971 { 3972 struct ring_buffer_per_cpu *cpu_buffer; 3973 struct ring_buffer_event *event = NULL; 3974 unsigned long flags; 3975 bool dolock; 3976 3977 again: 3978 /* might be called in atomic */ 3979 preempt_disable(); 3980 3981 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3982 goto out; 3983 3984 cpu_buffer = buffer->buffers[cpu]; 3985 local_irq_save(flags); 3986 dolock = rb_reader_lock(cpu_buffer); 3987 3988 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3989 if (event) { 3990 cpu_buffer->lost_events = 0; 3991 rb_advance_reader(cpu_buffer); 3992 } 3993 3994 rb_reader_unlock(cpu_buffer, dolock); 3995 local_irq_restore(flags); 3996 3997 out: 3998 preempt_enable(); 3999 4000 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4001 goto again; 4002 4003 return event; 4004 } 4005 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4006 4007 /** 4008 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4009 * @buffer: The ring buffer to read from 4010 * @cpu: The cpu buffer to iterate over 4011 * 4012 * This performs the initial preparations necessary to iterate 4013 * through the buffer. Memory is allocated, buffer recording 4014 * is disabled, and the iterator pointer is returned to the caller. 4015 * 4016 * Disabling buffer recordng prevents the reading from being 4017 * corrupted. This is not a consuming read, so a producer is not 4018 * expected. 4019 * 4020 * After a sequence of ring_buffer_read_prepare calls, the user is 4021 * expected to make at least one call to ring_buffer_read_prepare_sync. 4022 * Afterwards, ring_buffer_read_start is invoked to get things going 4023 * for real. 4024 * 4025 * This overall must be paired with ring_buffer_read_finish. 4026 */ 4027 struct ring_buffer_iter * 4028 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4029 { 4030 struct ring_buffer_per_cpu *cpu_buffer; 4031 struct ring_buffer_iter *iter; 4032 4033 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4034 return NULL; 4035 4036 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4037 if (!iter) 4038 return NULL; 4039 4040 cpu_buffer = buffer->buffers[cpu]; 4041 4042 iter->cpu_buffer = cpu_buffer; 4043 4044 atomic_inc(&buffer->resize_disabled); 4045 atomic_inc(&cpu_buffer->record_disabled); 4046 4047 return iter; 4048 } 4049 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4050 4051 /** 4052 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4053 * 4054 * All previously invoked ring_buffer_read_prepare calls to prepare 4055 * iterators will be synchronized. Afterwards, read_buffer_read_start 4056 * calls on those iterators are allowed. 4057 */ 4058 void 4059 ring_buffer_read_prepare_sync(void) 4060 { 4061 synchronize_sched(); 4062 } 4063 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4064 4065 /** 4066 * ring_buffer_read_start - start a non consuming read of the buffer 4067 * @iter: The iterator returned by ring_buffer_read_prepare 4068 * 4069 * This finalizes the startup of an iteration through the buffer. 4070 * The iterator comes from a call to ring_buffer_read_prepare and 4071 * an intervening ring_buffer_read_prepare_sync must have been 4072 * performed. 4073 * 4074 * Must be paired with ring_buffer_read_finish. 4075 */ 4076 void 4077 ring_buffer_read_start(struct ring_buffer_iter *iter) 4078 { 4079 struct ring_buffer_per_cpu *cpu_buffer; 4080 unsigned long flags; 4081 4082 if (!iter) 4083 return; 4084 4085 cpu_buffer = iter->cpu_buffer; 4086 4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4088 arch_spin_lock(&cpu_buffer->lock); 4089 rb_iter_reset(iter); 4090 arch_spin_unlock(&cpu_buffer->lock); 4091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4092 } 4093 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4094 4095 /** 4096 * ring_buffer_read_finish - finish reading the iterator of the buffer 4097 * @iter: The iterator retrieved by ring_buffer_start 4098 * 4099 * This re-enables the recording to the buffer, and frees the 4100 * iterator. 4101 */ 4102 void 4103 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4104 { 4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4106 unsigned long flags; 4107 4108 /* 4109 * Ring buffer is disabled from recording, here's a good place 4110 * to check the integrity of the ring buffer. 4111 * Must prevent readers from trying to read, as the check 4112 * clears the HEAD page and readers require it. 4113 */ 4114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4115 rb_check_pages(cpu_buffer); 4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4117 4118 atomic_dec(&cpu_buffer->record_disabled); 4119 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4120 kfree(iter); 4121 } 4122 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4123 4124 /** 4125 * ring_buffer_read - read the next item in the ring buffer by the iterator 4126 * @iter: The ring buffer iterator 4127 * @ts: The time stamp of the event read. 4128 * 4129 * This reads the next event in the ring buffer and increments the iterator. 4130 */ 4131 struct ring_buffer_event * 4132 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4133 { 4134 struct ring_buffer_event *event; 4135 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4136 unsigned long flags; 4137 4138 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4139 again: 4140 event = rb_iter_peek(iter, ts); 4141 if (!event) 4142 goto out; 4143 4144 if (event->type_len == RINGBUF_TYPE_PADDING) 4145 goto again; 4146 4147 rb_advance_iter(iter); 4148 out: 4149 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4150 4151 return event; 4152 } 4153 EXPORT_SYMBOL_GPL(ring_buffer_read); 4154 4155 /** 4156 * ring_buffer_size - return the size of the ring buffer (in bytes) 4157 * @buffer: The ring buffer. 4158 */ 4159 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4160 { 4161 /* 4162 * Earlier, this method returned 4163 * BUF_PAGE_SIZE * buffer->nr_pages 4164 * Since the nr_pages field is now removed, we have converted this to 4165 * return the per cpu buffer value. 4166 */ 4167 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4168 return 0; 4169 4170 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4171 } 4172 EXPORT_SYMBOL_GPL(ring_buffer_size); 4173 4174 static void 4175 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4176 { 4177 rb_head_page_deactivate(cpu_buffer); 4178 4179 cpu_buffer->head_page 4180 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4181 local_set(&cpu_buffer->head_page->write, 0); 4182 local_set(&cpu_buffer->head_page->entries, 0); 4183 local_set(&cpu_buffer->head_page->page->commit, 0); 4184 4185 cpu_buffer->head_page->read = 0; 4186 4187 cpu_buffer->tail_page = cpu_buffer->head_page; 4188 cpu_buffer->commit_page = cpu_buffer->head_page; 4189 4190 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4191 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4192 local_set(&cpu_buffer->reader_page->write, 0); 4193 local_set(&cpu_buffer->reader_page->entries, 0); 4194 local_set(&cpu_buffer->reader_page->page->commit, 0); 4195 cpu_buffer->reader_page->read = 0; 4196 4197 local_set(&cpu_buffer->entries_bytes, 0); 4198 local_set(&cpu_buffer->overrun, 0); 4199 local_set(&cpu_buffer->commit_overrun, 0); 4200 local_set(&cpu_buffer->dropped_events, 0); 4201 local_set(&cpu_buffer->entries, 0); 4202 local_set(&cpu_buffer->committing, 0); 4203 local_set(&cpu_buffer->commits, 0); 4204 cpu_buffer->read = 0; 4205 cpu_buffer->read_bytes = 0; 4206 4207 cpu_buffer->write_stamp = 0; 4208 cpu_buffer->read_stamp = 0; 4209 4210 cpu_buffer->lost_events = 0; 4211 cpu_buffer->last_overrun = 0; 4212 4213 rb_head_page_activate(cpu_buffer); 4214 } 4215 4216 /** 4217 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4218 * @buffer: The ring buffer to reset a per cpu buffer of 4219 * @cpu: The CPU buffer to be reset 4220 */ 4221 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4222 { 4223 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4224 unsigned long flags; 4225 4226 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4227 return; 4228 4229 atomic_inc(&buffer->resize_disabled); 4230 atomic_inc(&cpu_buffer->record_disabled); 4231 4232 /* Make sure all commits have finished */ 4233 synchronize_sched(); 4234 4235 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4236 4237 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4238 goto out; 4239 4240 arch_spin_lock(&cpu_buffer->lock); 4241 4242 rb_reset_cpu(cpu_buffer); 4243 4244 arch_spin_unlock(&cpu_buffer->lock); 4245 4246 out: 4247 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4248 4249 atomic_dec(&cpu_buffer->record_disabled); 4250 atomic_dec(&buffer->resize_disabled); 4251 } 4252 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4253 4254 /** 4255 * ring_buffer_reset - reset a ring buffer 4256 * @buffer: The ring buffer to reset all cpu buffers 4257 */ 4258 void ring_buffer_reset(struct ring_buffer *buffer) 4259 { 4260 int cpu; 4261 4262 for_each_buffer_cpu(buffer, cpu) 4263 ring_buffer_reset_cpu(buffer, cpu); 4264 } 4265 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4266 4267 /** 4268 * rind_buffer_empty - is the ring buffer empty? 4269 * @buffer: The ring buffer to test 4270 */ 4271 bool ring_buffer_empty(struct ring_buffer *buffer) 4272 { 4273 struct ring_buffer_per_cpu *cpu_buffer; 4274 unsigned long flags; 4275 bool dolock; 4276 int cpu; 4277 int ret; 4278 4279 /* yes this is racy, but if you don't like the race, lock the buffer */ 4280 for_each_buffer_cpu(buffer, cpu) { 4281 cpu_buffer = buffer->buffers[cpu]; 4282 local_irq_save(flags); 4283 dolock = rb_reader_lock(cpu_buffer); 4284 ret = rb_per_cpu_empty(cpu_buffer); 4285 rb_reader_unlock(cpu_buffer, dolock); 4286 local_irq_restore(flags); 4287 4288 if (!ret) 4289 return false; 4290 } 4291 4292 return true; 4293 } 4294 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4295 4296 /** 4297 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4298 * @buffer: The ring buffer 4299 * @cpu: The CPU buffer to test 4300 */ 4301 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4302 { 4303 struct ring_buffer_per_cpu *cpu_buffer; 4304 unsigned long flags; 4305 bool dolock; 4306 int ret; 4307 4308 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4309 return true; 4310 4311 cpu_buffer = buffer->buffers[cpu]; 4312 local_irq_save(flags); 4313 dolock = rb_reader_lock(cpu_buffer); 4314 ret = rb_per_cpu_empty(cpu_buffer); 4315 rb_reader_unlock(cpu_buffer, dolock); 4316 local_irq_restore(flags); 4317 4318 return ret; 4319 } 4320 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4321 4322 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4323 /** 4324 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4325 * @buffer_a: One buffer to swap with 4326 * @buffer_b: The other buffer to swap with 4327 * 4328 * This function is useful for tracers that want to take a "snapshot" 4329 * of a CPU buffer and has another back up buffer lying around. 4330 * it is expected that the tracer handles the cpu buffer not being 4331 * used at the moment. 4332 */ 4333 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4334 struct ring_buffer *buffer_b, int cpu) 4335 { 4336 struct ring_buffer_per_cpu *cpu_buffer_a; 4337 struct ring_buffer_per_cpu *cpu_buffer_b; 4338 int ret = -EINVAL; 4339 4340 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4341 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4342 goto out; 4343 4344 cpu_buffer_a = buffer_a->buffers[cpu]; 4345 cpu_buffer_b = buffer_b->buffers[cpu]; 4346 4347 /* At least make sure the two buffers are somewhat the same */ 4348 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4349 goto out; 4350 4351 ret = -EAGAIN; 4352 4353 if (atomic_read(&buffer_a->record_disabled)) 4354 goto out; 4355 4356 if (atomic_read(&buffer_b->record_disabled)) 4357 goto out; 4358 4359 if (atomic_read(&cpu_buffer_a->record_disabled)) 4360 goto out; 4361 4362 if (atomic_read(&cpu_buffer_b->record_disabled)) 4363 goto out; 4364 4365 /* 4366 * We can't do a synchronize_sched here because this 4367 * function can be called in atomic context. 4368 * Normally this will be called from the same CPU as cpu. 4369 * If not it's up to the caller to protect this. 4370 */ 4371 atomic_inc(&cpu_buffer_a->record_disabled); 4372 atomic_inc(&cpu_buffer_b->record_disabled); 4373 4374 ret = -EBUSY; 4375 if (local_read(&cpu_buffer_a->committing)) 4376 goto out_dec; 4377 if (local_read(&cpu_buffer_b->committing)) 4378 goto out_dec; 4379 4380 buffer_a->buffers[cpu] = cpu_buffer_b; 4381 buffer_b->buffers[cpu] = cpu_buffer_a; 4382 4383 cpu_buffer_b->buffer = buffer_a; 4384 cpu_buffer_a->buffer = buffer_b; 4385 4386 ret = 0; 4387 4388 out_dec: 4389 atomic_dec(&cpu_buffer_a->record_disabled); 4390 atomic_dec(&cpu_buffer_b->record_disabled); 4391 out: 4392 return ret; 4393 } 4394 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4395 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4396 4397 /** 4398 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4399 * @buffer: the buffer to allocate for. 4400 * @cpu: the cpu buffer to allocate. 4401 * 4402 * This function is used in conjunction with ring_buffer_read_page. 4403 * When reading a full page from the ring buffer, these functions 4404 * can be used to speed up the process. The calling function should 4405 * allocate a few pages first with this function. Then when it 4406 * needs to get pages from the ring buffer, it passes the result 4407 * of this function into ring_buffer_read_page, which will swap 4408 * the page that was allocated, with the read page of the buffer. 4409 * 4410 * Returns: 4411 * The page allocated, or NULL on error. 4412 */ 4413 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4414 { 4415 struct buffer_data_page *bpage; 4416 struct page *page; 4417 4418 page = alloc_pages_node(cpu_to_node(cpu), 4419 GFP_KERNEL | __GFP_NORETRY, 0); 4420 if (!page) 4421 return NULL; 4422 4423 bpage = page_address(page); 4424 4425 rb_init_page(bpage); 4426 4427 return bpage; 4428 } 4429 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4430 4431 /** 4432 * ring_buffer_free_read_page - free an allocated read page 4433 * @buffer: the buffer the page was allocate for 4434 * @data: the page to free 4435 * 4436 * Free a page allocated from ring_buffer_alloc_read_page. 4437 */ 4438 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4439 { 4440 free_page((unsigned long)data); 4441 } 4442 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4443 4444 /** 4445 * ring_buffer_read_page - extract a page from the ring buffer 4446 * @buffer: buffer to extract from 4447 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4448 * @len: amount to extract 4449 * @cpu: the cpu of the buffer to extract 4450 * @full: should the extraction only happen when the page is full. 4451 * 4452 * This function will pull out a page from the ring buffer and consume it. 4453 * @data_page must be the address of the variable that was returned 4454 * from ring_buffer_alloc_read_page. This is because the page might be used 4455 * to swap with a page in the ring buffer. 4456 * 4457 * for example: 4458 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4459 * if (!rpage) 4460 * return error; 4461 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4462 * if (ret >= 0) 4463 * process_page(rpage, ret); 4464 * 4465 * When @full is set, the function will not return true unless 4466 * the writer is off the reader page. 4467 * 4468 * Note: it is up to the calling functions to handle sleeps and wakeups. 4469 * The ring buffer can be used anywhere in the kernel and can not 4470 * blindly call wake_up. The layer that uses the ring buffer must be 4471 * responsible for that. 4472 * 4473 * Returns: 4474 * >=0 if data has been transferred, returns the offset of consumed data. 4475 * <0 if no data has been transferred. 4476 */ 4477 int ring_buffer_read_page(struct ring_buffer *buffer, 4478 void **data_page, size_t len, int cpu, int full) 4479 { 4480 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4481 struct ring_buffer_event *event; 4482 struct buffer_data_page *bpage; 4483 struct buffer_page *reader; 4484 unsigned long missed_events; 4485 unsigned long flags; 4486 unsigned int commit; 4487 unsigned int read; 4488 u64 save_timestamp; 4489 int ret = -1; 4490 4491 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4492 goto out; 4493 4494 /* 4495 * If len is not big enough to hold the page header, then 4496 * we can not copy anything. 4497 */ 4498 if (len <= BUF_PAGE_HDR_SIZE) 4499 goto out; 4500 4501 len -= BUF_PAGE_HDR_SIZE; 4502 4503 if (!data_page) 4504 goto out; 4505 4506 bpage = *data_page; 4507 if (!bpage) 4508 goto out; 4509 4510 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4511 4512 reader = rb_get_reader_page(cpu_buffer); 4513 if (!reader) 4514 goto out_unlock; 4515 4516 event = rb_reader_event(cpu_buffer); 4517 4518 read = reader->read; 4519 commit = rb_page_commit(reader); 4520 4521 /* Check if any events were dropped */ 4522 missed_events = cpu_buffer->lost_events; 4523 4524 /* 4525 * If this page has been partially read or 4526 * if len is not big enough to read the rest of the page or 4527 * a writer is still on the page, then 4528 * we must copy the data from the page to the buffer. 4529 * Otherwise, we can simply swap the page with the one passed in. 4530 */ 4531 if (read || (len < (commit - read)) || 4532 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4533 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4534 unsigned int rpos = read; 4535 unsigned int pos = 0; 4536 unsigned int size; 4537 4538 if (full) 4539 goto out_unlock; 4540 4541 if (len > (commit - read)) 4542 len = (commit - read); 4543 4544 /* Always keep the time extend and data together */ 4545 size = rb_event_ts_length(event); 4546 4547 if (len < size) 4548 goto out_unlock; 4549 4550 /* save the current timestamp, since the user will need it */ 4551 save_timestamp = cpu_buffer->read_stamp; 4552 4553 /* Need to copy one event at a time */ 4554 do { 4555 /* We need the size of one event, because 4556 * rb_advance_reader only advances by one event, 4557 * whereas rb_event_ts_length may include the size of 4558 * one or two events. 4559 * We have already ensured there's enough space if this 4560 * is a time extend. */ 4561 size = rb_event_length(event); 4562 memcpy(bpage->data + pos, rpage->data + rpos, size); 4563 4564 len -= size; 4565 4566 rb_advance_reader(cpu_buffer); 4567 rpos = reader->read; 4568 pos += size; 4569 4570 if (rpos >= commit) 4571 break; 4572 4573 event = rb_reader_event(cpu_buffer); 4574 /* Always keep the time extend and data together */ 4575 size = rb_event_ts_length(event); 4576 } while (len >= size); 4577 4578 /* update bpage */ 4579 local_set(&bpage->commit, pos); 4580 bpage->time_stamp = save_timestamp; 4581 4582 /* we copied everything to the beginning */ 4583 read = 0; 4584 } else { 4585 /* update the entry counter */ 4586 cpu_buffer->read += rb_page_entries(reader); 4587 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4588 4589 /* swap the pages */ 4590 rb_init_page(bpage); 4591 bpage = reader->page; 4592 reader->page = *data_page; 4593 local_set(&reader->write, 0); 4594 local_set(&reader->entries, 0); 4595 reader->read = 0; 4596 *data_page = bpage; 4597 4598 /* 4599 * Use the real_end for the data size, 4600 * This gives us a chance to store the lost events 4601 * on the page. 4602 */ 4603 if (reader->real_end) 4604 local_set(&bpage->commit, reader->real_end); 4605 } 4606 ret = read; 4607 4608 cpu_buffer->lost_events = 0; 4609 4610 commit = local_read(&bpage->commit); 4611 /* 4612 * Set a flag in the commit field if we lost events 4613 */ 4614 if (missed_events) { 4615 /* If there is room at the end of the page to save the 4616 * missed events, then record it there. 4617 */ 4618 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4619 memcpy(&bpage->data[commit], &missed_events, 4620 sizeof(missed_events)); 4621 local_add(RB_MISSED_STORED, &bpage->commit); 4622 commit += sizeof(missed_events); 4623 } 4624 local_add(RB_MISSED_EVENTS, &bpage->commit); 4625 } 4626 4627 /* 4628 * This page may be off to user land. Zero it out here. 4629 */ 4630 if (commit < BUF_PAGE_SIZE) 4631 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4632 4633 out_unlock: 4634 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4635 4636 out: 4637 return ret; 4638 } 4639 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4640 4641 #ifdef CONFIG_HOTPLUG_CPU 4642 static int rb_cpu_notify(struct notifier_block *self, 4643 unsigned long action, void *hcpu) 4644 { 4645 struct ring_buffer *buffer = 4646 container_of(self, struct ring_buffer, cpu_notify); 4647 long cpu = (long)hcpu; 4648 int cpu_i, nr_pages_same; 4649 unsigned int nr_pages; 4650 4651 switch (action) { 4652 case CPU_UP_PREPARE: 4653 case CPU_UP_PREPARE_FROZEN: 4654 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4655 return NOTIFY_OK; 4656 4657 nr_pages = 0; 4658 nr_pages_same = 1; 4659 /* check if all cpu sizes are same */ 4660 for_each_buffer_cpu(buffer, cpu_i) { 4661 /* fill in the size from first enabled cpu */ 4662 if (nr_pages == 0) 4663 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4664 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4665 nr_pages_same = 0; 4666 break; 4667 } 4668 } 4669 /* allocate minimum pages, user can later expand it */ 4670 if (!nr_pages_same) 4671 nr_pages = 2; 4672 buffer->buffers[cpu] = 4673 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4674 if (!buffer->buffers[cpu]) { 4675 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4676 cpu); 4677 return NOTIFY_OK; 4678 } 4679 smp_wmb(); 4680 cpumask_set_cpu(cpu, buffer->cpumask); 4681 break; 4682 case CPU_DOWN_PREPARE: 4683 case CPU_DOWN_PREPARE_FROZEN: 4684 /* 4685 * Do nothing. 4686 * If we were to free the buffer, then the user would 4687 * lose any trace that was in the buffer. 4688 */ 4689 break; 4690 default: 4691 break; 4692 } 4693 return NOTIFY_OK; 4694 } 4695 #endif 4696 4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4698 /* 4699 * This is a basic integrity check of the ring buffer. 4700 * Late in the boot cycle this test will run when configured in. 4701 * It will kick off a thread per CPU that will go into a loop 4702 * writing to the per cpu ring buffer various sizes of data. 4703 * Some of the data will be large items, some small. 4704 * 4705 * Another thread is created that goes into a spin, sending out 4706 * IPIs to the other CPUs to also write into the ring buffer. 4707 * this is to test the nesting ability of the buffer. 4708 * 4709 * Basic stats are recorded and reported. If something in the 4710 * ring buffer should happen that's not expected, a big warning 4711 * is displayed and all ring buffers are disabled. 4712 */ 4713 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4714 4715 struct rb_test_data { 4716 struct ring_buffer *buffer; 4717 unsigned long events; 4718 unsigned long bytes_written; 4719 unsigned long bytes_alloc; 4720 unsigned long bytes_dropped; 4721 unsigned long events_nested; 4722 unsigned long bytes_written_nested; 4723 unsigned long bytes_alloc_nested; 4724 unsigned long bytes_dropped_nested; 4725 int min_size_nested; 4726 int max_size_nested; 4727 int max_size; 4728 int min_size; 4729 int cpu; 4730 int cnt; 4731 }; 4732 4733 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4734 4735 /* 1 meg per cpu */ 4736 #define RB_TEST_BUFFER_SIZE 1048576 4737 4738 static char rb_string[] __initdata = 4739 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4740 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4741 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4742 4743 static bool rb_test_started __initdata; 4744 4745 struct rb_item { 4746 int size; 4747 char str[]; 4748 }; 4749 4750 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4751 { 4752 struct ring_buffer_event *event; 4753 struct rb_item *item; 4754 bool started; 4755 int event_len; 4756 int size; 4757 int len; 4758 int cnt; 4759 4760 /* Have nested writes different that what is written */ 4761 cnt = data->cnt + (nested ? 27 : 0); 4762 4763 /* Multiply cnt by ~e, to make some unique increment */ 4764 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4765 4766 len = size + sizeof(struct rb_item); 4767 4768 started = rb_test_started; 4769 /* read rb_test_started before checking buffer enabled */ 4770 smp_rmb(); 4771 4772 event = ring_buffer_lock_reserve(data->buffer, len); 4773 if (!event) { 4774 /* Ignore dropped events before test starts. */ 4775 if (started) { 4776 if (nested) 4777 data->bytes_dropped += len; 4778 else 4779 data->bytes_dropped_nested += len; 4780 } 4781 return len; 4782 } 4783 4784 event_len = ring_buffer_event_length(event); 4785 4786 if (RB_WARN_ON(data->buffer, event_len < len)) 4787 goto out; 4788 4789 item = ring_buffer_event_data(event); 4790 item->size = size; 4791 memcpy(item->str, rb_string, size); 4792 4793 if (nested) { 4794 data->bytes_alloc_nested += event_len; 4795 data->bytes_written_nested += len; 4796 data->events_nested++; 4797 if (!data->min_size_nested || len < data->min_size_nested) 4798 data->min_size_nested = len; 4799 if (len > data->max_size_nested) 4800 data->max_size_nested = len; 4801 } else { 4802 data->bytes_alloc += event_len; 4803 data->bytes_written += len; 4804 data->events++; 4805 if (!data->min_size || len < data->min_size) 4806 data->max_size = len; 4807 if (len > data->max_size) 4808 data->max_size = len; 4809 } 4810 4811 out: 4812 ring_buffer_unlock_commit(data->buffer, event); 4813 4814 return 0; 4815 } 4816 4817 static __init int rb_test(void *arg) 4818 { 4819 struct rb_test_data *data = arg; 4820 4821 while (!kthread_should_stop()) { 4822 rb_write_something(data, false); 4823 data->cnt++; 4824 4825 set_current_state(TASK_INTERRUPTIBLE); 4826 /* Now sleep between a min of 100-300us and a max of 1ms */ 4827 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4828 } 4829 4830 return 0; 4831 } 4832 4833 static __init void rb_ipi(void *ignore) 4834 { 4835 struct rb_test_data *data; 4836 int cpu = smp_processor_id(); 4837 4838 data = &rb_data[cpu]; 4839 rb_write_something(data, true); 4840 } 4841 4842 static __init int rb_hammer_test(void *arg) 4843 { 4844 while (!kthread_should_stop()) { 4845 4846 /* Send an IPI to all cpus to write data! */ 4847 smp_call_function(rb_ipi, NULL, 1); 4848 /* No sleep, but for non preempt, let others run */ 4849 schedule(); 4850 } 4851 4852 return 0; 4853 } 4854 4855 static __init int test_ringbuffer(void) 4856 { 4857 struct task_struct *rb_hammer; 4858 struct ring_buffer *buffer; 4859 int cpu; 4860 int ret = 0; 4861 4862 pr_info("Running ring buffer tests...\n"); 4863 4864 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4865 if (WARN_ON(!buffer)) 4866 return 0; 4867 4868 /* Disable buffer so that threads can't write to it yet */ 4869 ring_buffer_record_off(buffer); 4870 4871 for_each_online_cpu(cpu) { 4872 rb_data[cpu].buffer = buffer; 4873 rb_data[cpu].cpu = cpu; 4874 rb_data[cpu].cnt = cpu; 4875 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4876 "rbtester/%d", cpu); 4877 if (WARN_ON(!rb_threads[cpu])) { 4878 pr_cont("FAILED\n"); 4879 ret = -1; 4880 goto out_free; 4881 } 4882 4883 kthread_bind(rb_threads[cpu], cpu); 4884 wake_up_process(rb_threads[cpu]); 4885 } 4886 4887 /* Now create the rb hammer! */ 4888 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4889 if (WARN_ON(!rb_hammer)) { 4890 pr_cont("FAILED\n"); 4891 ret = -1; 4892 goto out_free; 4893 } 4894 4895 ring_buffer_record_on(buffer); 4896 /* 4897 * Show buffer is enabled before setting rb_test_started. 4898 * Yes there's a small race window where events could be 4899 * dropped and the thread wont catch it. But when a ring 4900 * buffer gets enabled, there will always be some kind of 4901 * delay before other CPUs see it. Thus, we don't care about 4902 * those dropped events. We care about events dropped after 4903 * the threads see that the buffer is active. 4904 */ 4905 smp_wmb(); 4906 rb_test_started = true; 4907 4908 set_current_state(TASK_INTERRUPTIBLE); 4909 /* Just run for 10 seconds */; 4910 schedule_timeout(10 * HZ); 4911 4912 kthread_stop(rb_hammer); 4913 4914 out_free: 4915 for_each_online_cpu(cpu) { 4916 if (!rb_threads[cpu]) 4917 break; 4918 kthread_stop(rb_threads[cpu]); 4919 } 4920 if (ret) { 4921 ring_buffer_free(buffer); 4922 return ret; 4923 } 4924 4925 /* Report! */ 4926 pr_info("finished\n"); 4927 for_each_online_cpu(cpu) { 4928 struct ring_buffer_event *event; 4929 struct rb_test_data *data = &rb_data[cpu]; 4930 struct rb_item *item; 4931 unsigned long total_events; 4932 unsigned long total_dropped; 4933 unsigned long total_written; 4934 unsigned long total_alloc; 4935 unsigned long total_read = 0; 4936 unsigned long total_size = 0; 4937 unsigned long total_len = 0; 4938 unsigned long total_lost = 0; 4939 unsigned long lost; 4940 int big_event_size; 4941 int small_event_size; 4942 4943 ret = -1; 4944 4945 total_events = data->events + data->events_nested; 4946 total_written = data->bytes_written + data->bytes_written_nested; 4947 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4948 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4949 4950 big_event_size = data->max_size + data->max_size_nested; 4951 small_event_size = data->min_size + data->min_size_nested; 4952 4953 pr_info("CPU %d:\n", cpu); 4954 pr_info(" events: %ld\n", total_events); 4955 pr_info(" dropped bytes: %ld\n", total_dropped); 4956 pr_info(" alloced bytes: %ld\n", total_alloc); 4957 pr_info(" written bytes: %ld\n", total_written); 4958 pr_info(" biggest event: %d\n", big_event_size); 4959 pr_info(" smallest event: %d\n", small_event_size); 4960 4961 if (RB_WARN_ON(buffer, total_dropped)) 4962 break; 4963 4964 ret = 0; 4965 4966 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4967 total_lost += lost; 4968 item = ring_buffer_event_data(event); 4969 total_len += ring_buffer_event_length(event); 4970 total_size += item->size + sizeof(struct rb_item); 4971 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4972 pr_info("FAILED!\n"); 4973 pr_info("buffer had: %.*s\n", item->size, item->str); 4974 pr_info("expected: %.*s\n", item->size, rb_string); 4975 RB_WARN_ON(buffer, 1); 4976 ret = -1; 4977 break; 4978 } 4979 total_read++; 4980 } 4981 if (ret) 4982 break; 4983 4984 ret = -1; 4985 4986 pr_info(" read events: %ld\n", total_read); 4987 pr_info(" lost events: %ld\n", total_lost); 4988 pr_info(" total events: %ld\n", total_lost + total_read); 4989 pr_info(" recorded len bytes: %ld\n", total_len); 4990 pr_info(" recorded size bytes: %ld\n", total_size); 4991 if (total_lost) 4992 pr_info(" With dropped events, record len and size may not match\n" 4993 " alloced and written from above\n"); 4994 if (!total_lost) { 4995 if (RB_WARN_ON(buffer, total_len != total_alloc || 4996 total_size != total_written)) 4997 break; 4998 } 4999 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5000 break; 5001 5002 ret = 0; 5003 } 5004 if (!ret) 5005 pr_info("Ring buffer PASSED!\n"); 5006 5007 ring_buffer_free(buffer); 5008 return 0; 5009 } 5010 5011 late_initcall(test_ringbuffer); 5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5013