1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/uaccess.h> 15 #include <linux/hardirq.h> 16 #include <linux/kthread.h> /* for self test */ 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/oom.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 trace_seq_puts(s, "# compressed entry header\n"); 38 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 39 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 40 trace_seq_puts(s, "\tarray : 32 bits\n"); 41 trace_seq_putc(s, '\n'); 42 trace_seq_printf(s, "\tpadding : type == %d\n", 43 RINGBUF_TYPE_PADDING); 44 trace_seq_printf(s, "\ttime_extend : type == %d\n", 45 RINGBUF_TYPE_TIME_EXTEND); 46 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 47 RINGBUF_TYPE_TIME_STAMP); 48 trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return !trace_seq_has_overflowed(s); 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* Used for individual buffers (after the counter) */ 123 #define RB_BUFFER_OFF (1 << 20) 124 125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 126 127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 128 #define RB_ALIGNMENT 4U 129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 131 132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 133 # define RB_FORCE_8BYTE_ALIGNMENT 0 134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 135 #else 136 # define RB_FORCE_8BYTE_ALIGNMENT 1 137 # define RB_ARCH_ALIGNMENT 8U 138 #endif 139 140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 141 142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 144 145 enum { 146 RB_LEN_TIME_EXTEND = 8, 147 RB_LEN_TIME_STAMP = 8, 148 }; 149 150 #define skip_time_extend(event) \ 151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 152 153 #define extended_time(event) \ 154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 155 156 static inline int rb_null_event(struct ring_buffer_event *event) 157 { 158 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 159 } 160 161 static void rb_event_set_padding(struct ring_buffer_event *event) 162 { 163 /* padding has a NULL time_delta */ 164 event->type_len = RINGBUF_TYPE_PADDING; 165 event->time_delta = 0; 166 } 167 168 static unsigned 169 rb_event_data_length(struct ring_buffer_event *event) 170 { 171 unsigned length; 172 173 if (event->type_len) 174 length = event->type_len * RB_ALIGNMENT; 175 else 176 length = event->array[0]; 177 return length + RB_EVNT_HDR_SIZE; 178 } 179 180 /* 181 * Return the length of the given event. Will return 182 * the length of the time extend if the event is a 183 * time extend. 184 */ 185 static inline unsigned 186 rb_event_length(struct ring_buffer_event *event) 187 { 188 switch (event->type_len) { 189 case RINGBUF_TYPE_PADDING: 190 if (rb_null_event(event)) 191 /* undefined */ 192 return -1; 193 return event->array[0] + RB_EVNT_HDR_SIZE; 194 195 case RINGBUF_TYPE_TIME_EXTEND: 196 return RB_LEN_TIME_EXTEND; 197 198 case RINGBUF_TYPE_TIME_STAMP: 199 return RB_LEN_TIME_STAMP; 200 201 case RINGBUF_TYPE_DATA: 202 return rb_event_data_length(event); 203 default: 204 BUG(); 205 } 206 /* not hit */ 207 return 0; 208 } 209 210 /* 211 * Return total length of time extend and data, 212 * or just the event length for all other events. 213 */ 214 static inline unsigned 215 rb_event_ts_length(struct ring_buffer_event *event) 216 { 217 unsigned len = 0; 218 219 if (extended_time(event)) { 220 /* time extends include the data event after it */ 221 len = RB_LEN_TIME_EXTEND; 222 event = skip_time_extend(event); 223 } 224 return len + rb_event_length(event); 225 } 226 227 /** 228 * ring_buffer_event_length - return the length of the event 229 * @event: the event to get the length of 230 * 231 * Returns the size of the data load of a data event. 232 * If the event is something other than a data event, it 233 * returns the size of the event itself. With the exception 234 * of a TIME EXTEND, where it still returns the size of the 235 * data load of the data event after it. 236 */ 237 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 238 { 239 unsigned length; 240 241 if (extended_time(event)) 242 event = skip_time_extend(event); 243 244 length = rb_event_length(event); 245 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 246 return length; 247 length -= RB_EVNT_HDR_SIZE; 248 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 249 length -= sizeof(event->array[0]); 250 return length; 251 } 252 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 253 254 /* inline for ring buffer fast paths */ 255 static __always_inline void * 256 rb_event_data(struct ring_buffer_event *event) 257 { 258 if (extended_time(event)) 259 event = skip_time_extend(event); 260 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 261 /* If length is in len field, then array[0] has the data */ 262 if (event->type_len) 263 return (void *)&event->array[0]; 264 /* Otherwise length is in array[0] and array[1] has the data */ 265 return (void *)&event->array[1]; 266 } 267 268 /** 269 * ring_buffer_event_data - return the data of the event 270 * @event: the event to get the data from 271 */ 272 void *ring_buffer_event_data(struct ring_buffer_event *event) 273 { 274 return rb_event_data(event); 275 } 276 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 277 278 #define for_each_buffer_cpu(buffer, cpu) \ 279 for_each_cpu(cpu, buffer->cpumask) 280 281 #define TS_SHIFT 27 282 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 283 #define TS_DELTA_TEST (~TS_MASK) 284 285 /** 286 * ring_buffer_event_time_stamp - return the event's extended timestamp 287 * @event: the event to get the timestamp of 288 * 289 * Returns the extended timestamp associated with a data event. 290 * An extended time_stamp is a 64-bit timestamp represented 291 * internally in a special way that makes the best use of space 292 * contained within a ring buffer event. This function decodes 293 * it and maps it to a straight u64 value. 294 */ 295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 296 { 297 u64 ts; 298 299 ts = event->array[0]; 300 ts <<= TS_SHIFT; 301 ts += event->time_delta; 302 303 return ts; 304 } 305 306 /* Flag when events were overwritten */ 307 #define RB_MISSED_EVENTS (1 << 31) 308 /* Missed count stored at end */ 309 #define RB_MISSED_STORED (1 << 30) 310 311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED) 312 313 struct buffer_data_page { 314 u64 time_stamp; /* page time stamp */ 315 local_t commit; /* write committed index */ 316 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 317 }; 318 319 /* 320 * Note, the buffer_page list must be first. The buffer pages 321 * are allocated in cache lines, which means that each buffer 322 * page will be at the beginning of a cache line, and thus 323 * the least significant bits will be zero. We use this to 324 * add flags in the list struct pointers, to make the ring buffer 325 * lockless. 326 */ 327 struct buffer_page { 328 struct list_head list; /* list of buffer pages */ 329 local_t write; /* index for next write */ 330 unsigned read; /* index for next read */ 331 local_t entries; /* entries on this page */ 332 unsigned long real_end; /* real end of data */ 333 struct buffer_data_page *page; /* Actual data page */ 334 }; 335 336 /* 337 * The buffer page counters, write and entries, must be reset 338 * atomically when crossing page boundaries. To synchronize this 339 * update, two counters are inserted into the number. One is 340 * the actual counter for the write position or count on the page. 341 * 342 * The other is a counter of updaters. Before an update happens 343 * the update partition of the counter is incremented. This will 344 * allow the updater to update the counter atomically. 345 * 346 * The counter is 20 bits, and the state data is 12. 347 */ 348 #define RB_WRITE_MASK 0xfffff 349 #define RB_WRITE_INTCNT (1 << 20) 350 351 static void rb_init_page(struct buffer_data_page *bpage) 352 { 353 local_set(&bpage->commit, 0); 354 } 355 356 /** 357 * ring_buffer_page_len - the size of data on the page. 358 * @page: The page to read 359 * 360 * Returns the amount of data on the page, including buffer page header. 361 */ 362 size_t ring_buffer_page_len(void *page) 363 { 364 struct buffer_data_page *bpage = page; 365 366 return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS) 367 + BUF_PAGE_HDR_SIZE; 368 } 369 370 /* 371 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 372 * this issue out. 373 */ 374 static void free_buffer_page(struct buffer_page *bpage) 375 { 376 free_page((unsigned long)bpage->page); 377 kfree(bpage); 378 } 379 380 /* 381 * We need to fit the time_stamp delta into 27 bits. 382 */ 383 static inline int test_time_stamp(u64 delta) 384 { 385 if (delta & TS_DELTA_TEST) 386 return 1; 387 return 0; 388 } 389 390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 391 392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 394 395 int ring_buffer_print_page_header(struct trace_seq *s) 396 { 397 struct buffer_data_page field; 398 399 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)sizeof(field.time_stamp), 402 (unsigned int)is_signed_type(u64)); 403 404 trace_seq_printf(s, "\tfield: local_t commit;\t" 405 "offset:%u;\tsize:%u;\tsigned:%u;\n", 406 (unsigned int)offsetof(typeof(field), commit), 407 (unsigned int)sizeof(field.commit), 408 (unsigned int)is_signed_type(long)); 409 410 trace_seq_printf(s, "\tfield: int overwrite;\t" 411 "offset:%u;\tsize:%u;\tsigned:%u;\n", 412 (unsigned int)offsetof(typeof(field), commit), 413 1, 414 (unsigned int)is_signed_type(long)); 415 416 trace_seq_printf(s, "\tfield: char data;\t" 417 "offset:%u;\tsize:%u;\tsigned:%u;\n", 418 (unsigned int)offsetof(typeof(field), data), 419 (unsigned int)BUF_PAGE_SIZE, 420 (unsigned int)is_signed_type(char)); 421 422 return !trace_seq_has_overflowed(s); 423 } 424 425 struct rb_irq_work { 426 struct irq_work work; 427 wait_queue_head_t waiters; 428 wait_queue_head_t full_waiters; 429 bool waiters_pending; 430 bool full_waiters_pending; 431 bool wakeup_full; 432 }; 433 434 /* 435 * Structure to hold event state and handle nested events. 436 */ 437 struct rb_event_info { 438 u64 ts; 439 u64 delta; 440 unsigned long length; 441 struct buffer_page *tail_page; 442 int add_timestamp; 443 }; 444 445 /* 446 * Used for which event context the event is in. 447 * NMI = 0 448 * IRQ = 1 449 * SOFTIRQ = 2 450 * NORMAL = 3 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_NMI, 456 RB_CTX_IRQ, 457 RB_CTX_SOFTIRQ, 458 RB_CTX_NORMAL, 459 RB_CTX_MAX 460 }; 461 462 /* 463 * head_page == tail_page && head == tail then buffer is empty. 464 */ 465 struct ring_buffer_per_cpu { 466 int cpu; 467 atomic_t record_disabled; 468 struct ring_buffer *buffer; 469 raw_spinlock_t reader_lock; /* serialize readers */ 470 arch_spinlock_t lock; 471 struct lock_class_key lock_key; 472 struct buffer_data_page *free_page; 473 unsigned long nr_pages; 474 unsigned int current_context; 475 struct list_head *pages; 476 struct buffer_page *head_page; /* read from head */ 477 struct buffer_page *tail_page; /* write to tail */ 478 struct buffer_page *commit_page; /* committed pages */ 479 struct buffer_page *reader_page; 480 unsigned long lost_events; 481 unsigned long last_overrun; 482 unsigned long nest; 483 local_t entries_bytes; 484 local_t entries; 485 local_t overrun; 486 local_t commit_overrun; 487 local_t dropped_events; 488 local_t committing; 489 local_t commits; 490 unsigned long read; 491 unsigned long read_bytes; 492 u64 write_stamp; 493 u64 read_stamp; 494 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 495 long nr_pages_to_update; 496 struct list_head new_pages; /* new pages to add */ 497 struct work_struct update_pages_work; 498 struct completion update_done; 499 500 struct rb_irq_work irq_work; 501 }; 502 503 struct ring_buffer { 504 unsigned flags; 505 int cpus; 506 atomic_t record_disabled; 507 atomic_t resize_disabled; 508 cpumask_var_t cpumask; 509 510 struct lock_class_key *reader_lock_key; 511 512 struct mutex mutex; 513 514 struct ring_buffer_per_cpu **buffers; 515 516 struct hlist_node node; 517 u64 (*clock)(void); 518 519 struct rb_irq_work irq_work; 520 bool time_stamp_abs; 521 }; 522 523 struct ring_buffer_iter { 524 struct ring_buffer_per_cpu *cpu_buffer; 525 unsigned long head; 526 struct buffer_page *head_page; 527 struct buffer_page *cache_reader_page; 528 unsigned long cache_read; 529 u64 read_stamp; 530 }; 531 532 /* 533 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 534 * 535 * Schedules a delayed work to wake up any task that is blocked on the 536 * ring buffer waiters queue. 537 */ 538 static void rb_wake_up_waiters(struct irq_work *work) 539 { 540 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 541 542 wake_up_all(&rbwork->waiters); 543 if (rbwork->wakeup_full) { 544 rbwork->wakeup_full = false; 545 wake_up_all(&rbwork->full_waiters); 546 } 547 } 548 549 /** 550 * ring_buffer_wait - wait for input to the ring buffer 551 * @buffer: buffer to wait on 552 * @cpu: the cpu buffer to wait on 553 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 554 * 555 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 556 * as data is added to any of the @buffer's cpu buffers. Otherwise 557 * it will wait for data to be added to a specific cpu buffer. 558 */ 559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full) 560 { 561 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 562 DEFINE_WAIT(wait); 563 struct rb_irq_work *work; 564 int ret = 0; 565 566 /* 567 * Depending on what the caller is waiting for, either any 568 * data in any cpu buffer, or a specific buffer, put the 569 * caller on the appropriate wait queue. 570 */ 571 if (cpu == RING_BUFFER_ALL_CPUS) { 572 work = &buffer->irq_work; 573 /* Full only makes sense on per cpu reads */ 574 full = false; 575 } else { 576 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 577 return -ENODEV; 578 cpu_buffer = buffer->buffers[cpu]; 579 work = &cpu_buffer->irq_work; 580 } 581 582 583 while (true) { 584 if (full) 585 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 586 else 587 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 588 589 /* 590 * The events can happen in critical sections where 591 * checking a work queue can cause deadlocks. 592 * After adding a task to the queue, this flag is set 593 * only to notify events to try to wake up the queue 594 * using irq_work. 595 * 596 * We don't clear it even if the buffer is no longer 597 * empty. The flag only causes the next event to run 598 * irq_work to do the work queue wake up. The worse 599 * that can happen if we race with !trace_empty() is that 600 * an event will cause an irq_work to try to wake up 601 * an empty queue. 602 * 603 * There's no reason to protect this flag either, as 604 * the work queue and irq_work logic will do the necessary 605 * synchronization for the wake ups. The only thing 606 * that is necessary is that the wake up happens after 607 * a task has been queued. It's OK for spurious wake ups. 608 */ 609 if (full) 610 work->full_waiters_pending = true; 611 else 612 work->waiters_pending = true; 613 614 if (signal_pending(current)) { 615 ret = -EINTR; 616 break; 617 } 618 619 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 620 break; 621 622 if (cpu != RING_BUFFER_ALL_CPUS && 623 !ring_buffer_empty_cpu(buffer, cpu)) { 624 unsigned long flags; 625 bool pagebusy; 626 627 if (!full) 628 break; 629 630 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 631 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 632 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 633 634 if (!pagebusy) 635 break; 636 } 637 638 schedule(); 639 } 640 641 if (full) 642 finish_wait(&work->full_waiters, &wait); 643 else 644 finish_wait(&work->waiters, &wait); 645 646 return ret; 647 } 648 649 /** 650 * ring_buffer_poll_wait - poll on buffer input 651 * @buffer: buffer to wait on 652 * @cpu: the cpu buffer to wait on 653 * @filp: the file descriptor 654 * @poll_table: The poll descriptor 655 * 656 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 657 * as data is added to any of the @buffer's cpu buffers. Otherwise 658 * it will wait for data to be added to a specific cpu buffer. 659 * 660 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 661 * zero otherwise. 662 */ 663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 664 struct file *filp, poll_table *poll_table) 665 { 666 struct ring_buffer_per_cpu *cpu_buffer; 667 struct rb_irq_work *work; 668 669 if (cpu == RING_BUFFER_ALL_CPUS) 670 work = &buffer->irq_work; 671 else { 672 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 673 return -EINVAL; 674 675 cpu_buffer = buffer->buffers[cpu]; 676 work = &cpu_buffer->irq_work; 677 } 678 679 poll_wait(filp, &work->waiters, poll_table); 680 work->waiters_pending = true; 681 /* 682 * There's a tight race between setting the waiters_pending and 683 * checking if the ring buffer is empty. Once the waiters_pending bit 684 * is set, the next event will wake the task up, but we can get stuck 685 * if there's only a single event in. 686 * 687 * FIXME: Ideally, we need a memory barrier on the writer side as well, 688 * but adding a memory barrier to all events will cause too much of a 689 * performance hit in the fast path. We only need a memory barrier when 690 * the buffer goes from empty to having content. But as this race is 691 * extremely small, and it's not a problem if another event comes in, we 692 * will fix it later. 693 */ 694 smp_mb(); 695 696 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 697 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 698 return EPOLLIN | EPOLLRDNORM; 699 return 0; 700 } 701 702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 703 #define RB_WARN_ON(b, cond) \ 704 ({ \ 705 int _____ret = unlikely(cond); \ 706 if (_____ret) { \ 707 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 708 struct ring_buffer_per_cpu *__b = \ 709 (void *)b; \ 710 atomic_inc(&__b->buffer->record_disabled); \ 711 } else \ 712 atomic_inc(&b->record_disabled); \ 713 WARN_ON(1); \ 714 } \ 715 _____ret; \ 716 }) 717 718 /* Up this if you want to test the TIME_EXTENTS and normalization */ 719 #define DEBUG_SHIFT 0 720 721 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 722 { 723 /* shift to debug/test normalization and TIME_EXTENTS */ 724 return buffer->clock() << DEBUG_SHIFT; 725 } 726 727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 728 { 729 u64 time; 730 731 preempt_disable_notrace(); 732 time = rb_time_stamp(buffer); 733 preempt_enable_no_resched_notrace(); 734 735 return time; 736 } 737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 738 739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 740 int cpu, u64 *ts) 741 { 742 /* Just stupid testing the normalize function and deltas */ 743 *ts >>= DEBUG_SHIFT; 744 } 745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 746 747 /* 748 * Making the ring buffer lockless makes things tricky. 749 * Although writes only happen on the CPU that they are on, 750 * and they only need to worry about interrupts. Reads can 751 * happen on any CPU. 752 * 753 * The reader page is always off the ring buffer, but when the 754 * reader finishes with a page, it needs to swap its page with 755 * a new one from the buffer. The reader needs to take from 756 * the head (writes go to the tail). But if a writer is in overwrite 757 * mode and wraps, it must push the head page forward. 758 * 759 * Here lies the problem. 760 * 761 * The reader must be careful to replace only the head page, and 762 * not another one. As described at the top of the file in the 763 * ASCII art, the reader sets its old page to point to the next 764 * page after head. It then sets the page after head to point to 765 * the old reader page. But if the writer moves the head page 766 * during this operation, the reader could end up with the tail. 767 * 768 * We use cmpxchg to help prevent this race. We also do something 769 * special with the page before head. We set the LSB to 1. 770 * 771 * When the writer must push the page forward, it will clear the 772 * bit that points to the head page, move the head, and then set 773 * the bit that points to the new head page. 774 * 775 * We also don't want an interrupt coming in and moving the head 776 * page on another writer. Thus we use the second LSB to catch 777 * that too. Thus: 778 * 779 * head->list->prev->next bit 1 bit 0 780 * ------- ------- 781 * Normal page 0 0 782 * Points to head page 0 1 783 * New head page 1 0 784 * 785 * Note we can not trust the prev pointer of the head page, because: 786 * 787 * +----+ +-----+ +-----+ 788 * | |------>| T |---X--->| N | 789 * | |<------| | | | 790 * +----+ +-----+ +-----+ 791 * ^ ^ | 792 * | +-----+ | | 793 * +----------| R |----------+ | 794 * | |<-----------+ 795 * +-----+ 796 * 797 * Key: ---X--> HEAD flag set in pointer 798 * T Tail page 799 * R Reader page 800 * N Next page 801 * 802 * (see __rb_reserve_next() to see where this happens) 803 * 804 * What the above shows is that the reader just swapped out 805 * the reader page with a page in the buffer, but before it 806 * could make the new header point back to the new page added 807 * it was preempted by a writer. The writer moved forward onto 808 * the new page added by the reader and is about to move forward 809 * again. 810 * 811 * You can see, it is legitimate for the previous pointer of 812 * the head (or any page) not to point back to itself. But only 813 * temporarily. 814 */ 815 816 #define RB_PAGE_NORMAL 0UL 817 #define RB_PAGE_HEAD 1UL 818 #define RB_PAGE_UPDATE 2UL 819 820 821 #define RB_FLAG_MASK 3UL 822 823 /* PAGE_MOVED is not part of the mask */ 824 #define RB_PAGE_MOVED 4UL 825 826 /* 827 * rb_list_head - remove any bit 828 */ 829 static struct list_head *rb_list_head(struct list_head *list) 830 { 831 unsigned long val = (unsigned long)list; 832 833 return (struct list_head *)(val & ~RB_FLAG_MASK); 834 } 835 836 /* 837 * rb_is_head_page - test if the given page is the head page 838 * 839 * Because the reader may move the head_page pointer, we can 840 * not trust what the head page is (it may be pointing to 841 * the reader page). But if the next page is a header page, 842 * its flags will be non zero. 843 */ 844 static inline int 845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 846 struct buffer_page *page, struct list_head *list) 847 { 848 unsigned long val; 849 850 val = (unsigned long)list->next; 851 852 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 853 return RB_PAGE_MOVED; 854 855 return val & RB_FLAG_MASK; 856 } 857 858 /* 859 * rb_is_reader_page 860 * 861 * The unique thing about the reader page, is that, if the 862 * writer is ever on it, the previous pointer never points 863 * back to the reader page. 864 */ 865 static bool rb_is_reader_page(struct buffer_page *page) 866 { 867 struct list_head *list = page->list.prev; 868 869 return rb_list_head(list->next) != &page->list; 870 } 871 872 /* 873 * rb_set_list_to_head - set a list_head to be pointing to head. 874 */ 875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 876 struct list_head *list) 877 { 878 unsigned long *ptr; 879 880 ptr = (unsigned long *)&list->next; 881 *ptr |= RB_PAGE_HEAD; 882 *ptr &= ~RB_PAGE_UPDATE; 883 } 884 885 /* 886 * rb_head_page_activate - sets up head page 887 */ 888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 889 { 890 struct buffer_page *head; 891 892 head = cpu_buffer->head_page; 893 if (!head) 894 return; 895 896 /* 897 * Set the previous list pointer to have the HEAD flag. 898 */ 899 rb_set_list_to_head(cpu_buffer, head->list.prev); 900 } 901 902 static void rb_list_head_clear(struct list_head *list) 903 { 904 unsigned long *ptr = (unsigned long *)&list->next; 905 906 *ptr &= ~RB_FLAG_MASK; 907 } 908 909 /* 910 * rb_head_page_deactivate - clears head page ptr (for free list) 911 */ 912 static void 913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 914 { 915 struct list_head *hd; 916 917 /* Go through the whole list and clear any pointers found. */ 918 rb_list_head_clear(cpu_buffer->pages); 919 920 list_for_each(hd, cpu_buffer->pages) 921 rb_list_head_clear(hd); 922 } 923 924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 925 struct buffer_page *head, 926 struct buffer_page *prev, 927 int old_flag, int new_flag) 928 { 929 struct list_head *list; 930 unsigned long val = (unsigned long)&head->list; 931 unsigned long ret; 932 933 list = &prev->list; 934 935 val &= ~RB_FLAG_MASK; 936 937 ret = cmpxchg((unsigned long *)&list->next, 938 val | old_flag, val | new_flag); 939 940 /* check if the reader took the page */ 941 if ((ret & ~RB_FLAG_MASK) != val) 942 return RB_PAGE_MOVED; 943 944 return ret & RB_FLAG_MASK; 945 } 946 947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 948 struct buffer_page *head, 949 struct buffer_page *prev, 950 int old_flag) 951 { 952 return rb_head_page_set(cpu_buffer, head, prev, 953 old_flag, RB_PAGE_UPDATE); 954 } 955 956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 957 struct buffer_page *head, 958 struct buffer_page *prev, 959 int old_flag) 960 { 961 return rb_head_page_set(cpu_buffer, head, prev, 962 old_flag, RB_PAGE_HEAD); 963 } 964 965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 966 struct buffer_page *head, 967 struct buffer_page *prev, 968 int old_flag) 969 { 970 return rb_head_page_set(cpu_buffer, head, prev, 971 old_flag, RB_PAGE_NORMAL); 972 } 973 974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 975 struct buffer_page **bpage) 976 { 977 struct list_head *p = rb_list_head((*bpage)->list.next); 978 979 *bpage = list_entry(p, struct buffer_page, list); 980 } 981 982 static struct buffer_page * 983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 984 { 985 struct buffer_page *head; 986 struct buffer_page *page; 987 struct list_head *list; 988 int i; 989 990 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 991 return NULL; 992 993 /* sanity check */ 994 list = cpu_buffer->pages; 995 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 996 return NULL; 997 998 page = head = cpu_buffer->head_page; 999 /* 1000 * It is possible that the writer moves the header behind 1001 * where we started, and we miss in one loop. 1002 * A second loop should grab the header, but we'll do 1003 * three loops just because I'm paranoid. 1004 */ 1005 for (i = 0; i < 3; i++) { 1006 do { 1007 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1008 cpu_buffer->head_page = page; 1009 return page; 1010 } 1011 rb_inc_page(cpu_buffer, &page); 1012 } while (page != head); 1013 } 1014 1015 RB_WARN_ON(cpu_buffer, 1); 1016 1017 return NULL; 1018 } 1019 1020 static int rb_head_page_replace(struct buffer_page *old, 1021 struct buffer_page *new) 1022 { 1023 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1024 unsigned long val; 1025 unsigned long ret; 1026 1027 val = *ptr & ~RB_FLAG_MASK; 1028 val |= RB_PAGE_HEAD; 1029 1030 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1031 1032 return ret == val; 1033 } 1034 1035 /* 1036 * rb_tail_page_update - move the tail page forward 1037 */ 1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1039 struct buffer_page *tail_page, 1040 struct buffer_page *next_page) 1041 { 1042 unsigned long old_entries; 1043 unsigned long old_write; 1044 1045 /* 1046 * The tail page now needs to be moved forward. 1047 * 1048 * We need to reset the tail page, but without messing 1049 * with possible erasing of data brought in by interrupts 1050 * that have moved the tail page and are currently on it. 1051 * 1052 * We add a counter to the write field to denote this. 1053 */ 1054 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1055 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1056 1057 /* 1058 * Just make sure we have seen our old_write and synchronize 1059 * with any interrupts that come in. 1060 */ 1061 barrier(); 1062 1063 /* 1064 * If the tail page is still the same as what we think 1065 * it is, then it is up to us to update the tail 1066 * pointer. 1067 */ 1068 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1069 /* Zero the write counter */ 1070 unsigned long val = old_write & ~RB_WRITE_MASK; 1071 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1072 1073 /* 1074 * This will only succeed if an interrupt did 1075 * not come in and change it. In which case, we 1076 * do not want to modify it. 1077 * 1078 * We add (void) to let the compiler know that we do not care 1079 * about the return value of these functions. We use the 1080 * cmpxchg to only update if an interrupt did not already 1081 * do it for us. If the cmpxchg fails, we don't care. 1082 */ 1083 (void)local_cmpxchg(&next_page->write, old_write, val); 1084 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1085 1086 /* 1087 * No need to worry about races with clearing out the commit. 1088 * it only can increment when a commit takes place. But that 1089 * only happens in the outer most nested commit. 1090 */ 1091 local_set(&next_page->page->commit, 0); 1092 1093 /* Again, either we update tail_page or an interrupt does */ 1094 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1095 } 1096 } 1097 1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1099 struct buffer_page *bpage) 1100 { 1101 unsigned long val = (unsigned long)bpage; 1102 1103 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1104 return 1; 1105 1106 return 0; 1107 } 1108 1109 /** 1110 * rb_check_list - make sure a pointer to a list has the last bits zero 1111 */ 1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1113 struct list_head *list) 1114 { 1115 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1116 return 1; 1117 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1118 return 1; 1119 return 0; 1120 } 1121 1122 /** 1123 * rb_check_pages - integrity check of buffer pages 1124 * @cpu_buffer: CPU buffer with pages to test 1125 * 1126 * As a safety measure we check to make sure the data pages have not 1127 * been corrupted. 1128 */ 1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1130 { 1131 struct list_head *head = cpu_buffer->pages; 1132 struct buffer_page *bpage, *tmp; 1133 1134 /* Reset the head page if it exists */ 1135 if (cpu_buffer->head_page) 1136 rb_set_head_page(cpu_buffer); 1137 1138 rb_head_page_deactivate(cpu_buffer); 1139 1140 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1141 return -1; 1142 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1143 return -1; 1144 1145 if (rb_check_list(cpu_buffer, head)) 1146 return -1; 1147 1148 list_for_each_entry_safe(bpage, tmp, head, list) { 1149 if (RB_WARN_ON(cpu_buffer, 1150 bpage->list.next->prev != &bpage->list)) 1151 return -1; 1152 if (RB_WARN_ON(cpu_buffer, 1153 bpage->list.prev->next != &bpage->list)) 1154 return -1; 1155 if (rb_check_list(cpu_buffer, &bpage->list)) 1156 return -1; 1157 } 1158 1159 rb_head_page_activate(cpu_buffer); 1160 1161 return 0; 1162 } 1163 1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1165 { 1166 struct buffer_page *bpage, *tmp; 1167 bool user_thread = current->mm != NULL; 1168 gfp_t mflags; 1169 long i; 1170 1171 /* 1172 * Check if the available memory is there first. 1173 * Note, si_mem_available() only gives us a rough estimate of available 1174 * memory. It may not be accurate. But we don't care, we just want 1175 * to prevent doing any allocation when it is obvious that it is 1176 * not going to succeed. 1177 */ 1178 i = si_mem_available(); 1179 if (i < nr_pages) 1180 return -ENOMEM; 1181 1182 /* 1183 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1184 * gracefully without invoking oom-killer and the system is not 1185 * destabilized. 1186 */ 1187 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1188 1189 /* 1190 * If a user thread allocates too much, and si_mem_available() 1191 * reports there's enough memory, even though there is not. 1192 * Make sure the OOM killer kills this thread. This can happen 1193 * even with RETRY_MAYFAIL because another task may be doing 1194 * an allocation after this task has taken all memory. 1195 * This is the task the OOM killer needs to take out during this 1196 * loop, even if it was triggered by an allocation somewhere else. 1197 */ 1198 if (user_thread) 1199 set_current_oom_origin(); 1200 for (i = 0; i < nr_pages; i++) { 1201 struct page *page; 1202 1203 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1204 mflags, cpu_to_node(cpu)); 1205 if (!bpage) 1206 goto free_pages; 1207 1208 list_add(&bpage->list, pages); 1209 1210 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1211 if (!page) 1212 goto free_pages; 1213 bpage->page = page_address(page); 1214 rb_init_page(bpage->page); 1215 1216 if (user_thread && fatal_signal_pending(current)) 1217 goto free_pages; 1218 } 1219 if (user_thread) 1220 clear_current_oom_origin(); 1221 1222 return 0; 1223 1224 free_pages: 1225 list_for_each_entry_safe(bpage, tmp, pages, list) { 1226 list_del_init(&bpage->list); 1227 free_buffer_page(bpage); 1228 } 1229 if (user_thread) 1230 clear_current_oom_origin(); 1231 1232 return -ENOMEM; 1233 } 1234 1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1236 unsigned long nr_pages) 1237 { 1238 LIST_HEAD(pages); 1239 1240 WARN_ON(!nr_pages); 1241 1242 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1243 return -ENOMEM; 1244 1245 /* 1246 * The ring buffer page list is a circular list that does not 1247 * start and end with a list head. All page list items point to 1248 * other pages. 1249 */ 1250 cpu_buffer->pages = pages.next; 1251 list_del(&pages); 1252 1253 cpu_buffer->nr_pages = nr_pages; 1254 1255 rb_check_pages(cpu_buffer); 1256 1257 return 0; 1258 } 1259 1260 static struct ring_buffer_per_cpu * 1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu) 1262 { 1263 struct ring_buffer_per_cpu *cpu_buffer; 1264 struct buffer_page *bpage; 1265 struct page *page; 1266 int ret; 1267 1268 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1269 GFP_KERNEL, cpu_to_node(cpu)); 1270 if (!cpu_buffer) 1271 return NULL; 1272 1273 cpu_buffer->cpu = cpu; 1274 cpu_buffer->buffer = buffer; 1275 raw_spin_lock_init(&cpu_buffer->reader_lock); 1276 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1277 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1278 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1279 init_completion(&cpu_buffer->update_done); 1280 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1281 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1282 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1283 1284 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1285 GFP_KERNEL, cpu_to_node(cpu)); 1286 if (!bpage) 1287 goto fail_free_buffer; 1288 1289 rb_check_bpage(cpu_buffer, bpage); 1290 1291 cpu_buffer->reader_page = bpage; 1292 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1293 if (!page) 1294 goto fail_free_reader; 1295 bpage->page = page_address(page); 1296 rb_init_page(bpage->page); 1297 1298 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1299 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1300 1301 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1302 if (ret < 0) 1303 goto fail_free_reader; 1304 1305 cpu_buffer->head_page 1306 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1307 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1308 1309 rb_head_page_activate(cpu_buffer); 1310 1311 return cpu_buffer; 1312 1313 fail_free_reader: 1314 free_buffer_page(cpu_buffer->reader_page); 1315 1316 fail_free_buffer: 1317 kfree(cpu_buffer); 1318 return NULL; 1319 } 1320 1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1322 { 1323 struct list_head *head = cpu_buffer->pages; 1324 struct buffer_page *bpage, *tmp; 1325 1326 free_buffer_page(cpu_buffer->reader_page); 1327 1328 rb_head_page_deactivate(cpu_buffer); 1329 1330 if (head) { 1331 list_for_each_entry_safe(bpage, tmp, head, list) { 1332 list_del_init(&bpage->list); 1333 free_buffer_page(bpage); 1334 } 1335 bpage = list_entry(head, struct buffer_page, list); 1336 free_buffer_page(bpage); 1337 } 1338 1339 kfree(cpu_buffer); 1340 } 1341 1342 /** 1343 * __ring_buffer_alloc - allocate a new ring_buffer 1344 * @size: the size in bytes per cpu that is needed. 1345 * @flags: attributes to set for the ring buffer. 1346 * 1347 * Currently the only flag that is available is the RB_FL_OVERWRITE 1348 * flag. This flag means that the buffer will overwrite old data 1349 * when the buffer wraps. If this flag is not set, the buffer will 1350 * drop data when the tail hits the head. 1351 */ 1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1353 struct lock_class_key *key) 1354 { 1355 struct ring_buffer *buffer; 1356 long nr_pages; 1357 int bsize; 1358 int cpu; 1359 int ret; 1360 1361 /* keep it in its own cache line */ 1362 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1363 GFP_KERNEL); 1364 if (!buffer) 1365 return NULL; 1366 1367 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1368 goto fail_free_buffer; 1369 1370 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1371 buffer->flags = flags; 1372 buffer->clock = trace_clock_local; 1373 buffer->reader_lock_key = key; 1374 1375 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1376 init_waitqueue_head(&buffer->irq_work.waiters); 1377 1378 /* need at least two pages */ 1379 if (nr_pages < 2) 1380 nr_pages = 2; 1381 1382 buffer->cpus = nr_cpu_ids; 1383 1384 bsize = sizeof(void *) * nr_cpu_ids; 1385 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1386 GFP_KERNEL); 1387 if (!buffer->buffers) 1388 goto fail_free_cpumask; 1389 1390 cpu = raw_smp_processor_id(); 1391 cpumask_set_cpu(cpu, buffer->cpumask); 1392 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1393 if (!buffer->buffers[cpu]) 1394 goto fail_free_buffers; 1395 1396 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1397 if (ret < 0) 1398 goto fail_free_buffers; 1399 1400 mutex_init(&buffer->mutex); 1401 1402 return buffer; 1403 1404 fail_free_buffers: 1405 for_each_buffer_cpu(buffer, cpu) { 1406 if (buffer->buffers[cpu]) 1407 rb_free_cpu_buffer(buffer->buffers[cpu]); 1408 } 1409 kfree(buffer->buffers); 1410 1411 fail_free_cpumask: 1412 free_cpumask_var(buffer->cpumask); 1413 1414 fail_free_buffer: 1415 kfree(buffer); 1416 return NULL; 1417 } 1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1419 1420 /** 1421 * ring_buffer_free - free a ring buffer. 1422 * @buffer: the buffer to free. 1423 */ 1424 void 1425 ring_buffer_free(struct ring_buffer *buffer) 1426 { 1427 int cpu; 1428 1429 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1430 1431 for_each_buffer_cpu(buffer, cpu) 1432 rb_free_cpu_buffer(buffer->buffers[cpu]); 1433 1434 kfree(buffer->buffers); 1435 free_cpumask_var(buffer->cpumask); 1436 1437 kfree(buffer); 1438 } 1439 EXPORT_SYMBOL_GPL(ring_buffer_free); 1440 1441 void ring_buffer_set_clock(struct ring_buffer *buffer, 1442 u64 (*clock)(void)) 1443 { 1444 buffer->clock = clock; 1445 } 1446 1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs) 1448 { 1449 buffer->time_stamp_abs = abs; 1450 } 1451 1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer) 1453 { 1454 return buffer->time_stamp_abs; 1455 } 1456 1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1458 1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1460 { 1461 return local_read(&bpage->entries) & RB_WRITE_MASK; 1462 } 1463 1464 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1465 { 1466 return local_read(&bpage->write) & RB_WRITE_MASK; 1467 } 1468 1469 static int 1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1471 { 1472 struct list_head *tail_page, *to_remove, *next_page; 1473 struct buffer_page *to_remove_page, *tmp_iter_page; 1474 struct buffer_page *last_page, *first_page; 1475 unsigned long nr_removed; 1476 unsigned long head_bit; 1477 int page_entries; 1478 1479 head_bit = 0; 1480 1481 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1482 atomic_inc(&cpu_buffer->record_disabled); 1483 /* 1484 * We don't race with the readers since we have acquired the reader 1485 * lock. We also don't race with writers after disabling recording. 1486 * This makes it easy to figure out the first and the last page to be 1487 * removed from the list. We unlink all the pages in between including 1488 * the first and last pages. This is done in a busy loop so that we 1489 * lose the least number of traces. 1490 * The pages are freed after we restart recording and unlock readers. 1491 */ 1492 tail_page = &cpu_buffer->tail_page->list; 1493 1494 /* 1495 * tail page might be on reader page, we remove the next page 1496 * from the ring buffer 1497 */ 1498 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1499 tail_page = rb_list_head(tail_page->next); 1500 to_remove = tail_page; 1501 1502 /* start of pages to remove */ 1503 first_page = list_entry(rb_list_head(to_remove->next), 1504 struct buffer_page, list); 1505 1506 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1507 to_remove = rb_list_head(to_remove)->next; 1508 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1509 } 1510 1511 next_page = rb_list_head(to_remove)->next; 1512 1513 /* 1514 * Now we remove all pages between tail_page and next_page. 1515 * Make sure that we have head_bit value preserved for the 1516 * next page 1517 */ 1518 tail_page->next = (struct list_head *)((unsigned long)next_page | 1519 head_bit); 1520 next_page = rb_list_head(next_page); 1521 next_page->prev = tail_page; 1522 1523 /* make sure pages points to a valid page in the ring buffer */ 1524 cpu_buffer->pages = next_page; 1525 1526 /* update head page */ 1527 if (head_bit) 1528 cpu_buffer->head_page = list_entry(next_page, 1529 struct buffer_page, list); 1530 1531 /* 1532 * change read pointer to make sure any read iterators reset 1533 * themselves 1534 */ 1535 cpu_buffer->read = 0; 1536 1537 /* pages are removed, resume tracing and then free the pages */ 1538 atomic_dec(&cpu_buffer->record_disabled); 1539 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1540 1541 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1542 1543 /* last buffer page to remove */ 1544 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1545 list); 1546 tmp_iter_page = first_page; 1547 1548 do { 1549 cond_resched(); 1550 1551 to_remove_page = tmp_iter_page; 1552 rb_inc_page(cpu_buffer, &tmp_iter_page); 1553 1554 /* update the counters */ 1555 page_entries = rb_page_entries(to_remove_page); 1556 if (page_entries) { 1557 /* 1558 * If something was added to this page, it was full 1559 * since it is not the tail page. So we deduct the 1560 * bytes consumed in ring buffer from here. 1561 * Increment overrun to account for the lost events. 1562 */ 1563 local_add(page_entries, &cpu_buffer->overrun); 1564 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1565 } 1566 1567 /* 1568 * We have already removed references to this list item, just 1569 * free up the buffer_page and its page 1570 */ 1571 free_buffer_page(to_remove_page); 1572 nr_removed--; 1573 1574 } while (to_remove_page != last_page); 1575 1576 RB_WARN_ON(cpu_buffer, nr_removed); 1577 1578 return nr_removed == 0; 1579 } 1580 1581 static int 1582 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1583 { 1584 struct list_head *pages = &cpu_buffer->new_pages; 1585 int retries, success; 1586 1587 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1588 /* 1589 * We are holding the reader lock, so the reader page won't be swapped 1590 * in the ring buffer. Now we are racing with the writer trying to 1591 * move head page and the tail page. 1592 * We are going to adapt the reader page update process where: 1593 * 1. We first splice the start and end of list of new pages between 1594 * the head page and its previous page. 1595 * 2. We cmpxchg the prev_page->next to point from head page to the 1596 * start of new pages list. 1597 * 3. Finally, we update the head->prev to the end of new list. 1598 * 1599 * We will try this process 10 times, to make sure that we don't keep 1600 * spinning. 1601 */ 1602 retries = 10; 1603 success = 0; 1604 while (retries--) { 1605 struct list_head *head_page, *prev_page, *r; 1606 struct list_head *last_page, *first_page; 1607 struct list_head *head_page_with_bit; 1608 1609 head_page = &rb_set_head_page(cpu_buffer)->list; 1610 if (!head_page) 1611 break; 1612 prev_page = head_page->prev; 1613 1614 first_page = pages->next; 1615 last_page = pages->prev; 1616 1617 head_page_with_bit = (struct list_head *) 1618 ((unsigned long)head_page | RB_PAGE_HEAD); 1619 1620 last_page->next = head_page_with_bit; 1621 first_page->prev = prev_page; 1622 1623 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1624 1625 if (r == head_page_with_bit) { 1626 /* 1627 * yay, we replaced the page pointer to our new list, 1628 * now, we just have to update to head page's prev 1629 * pointer to point to end of list 1630 */ 1631 head_page->prev = last_page; 1632 success = 1; 1633 break; 1634 } 1635 } 1636 1637 if (success) 1638 INIT_LIST_HEAD(pages); 1639 /* 1640 * If we weren't successful in adding in new pages, warn and stop 1641 * tracing 1642 */ 1643 RB_WARN_ON(cpu_buffer, !success); 1644 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1645 1646 /* free pages if they weren't inserted */ 1647 if (!success) { 1648 struct buffer_page *bpage, *tmp; 1649 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1650 list) { 1651 list_del_init(&bpage->list); 1652 free_buffer_page(bpage); 1653 } 1654 } 1655 return success; 1656 } 1657 1658 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1659 { 1660 int success; 1661 1662 if (cpu_buffer->nr_pages_to_update > 0) 1663 success = rb_insert_pages(cpu_buffer); 1664 else 1665 success = rb_remove_pages(cpu_buffer, 1666 -cpu_buffer->nr_pages_to_update); 1667 1668 if (success) 1669 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1670 } 1671 1672 static void update_pages_handler(struct work_struct *work) 1673 { 1674 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1675 struct ring_buffer_per_cpu, update_pages_work); 1676 rb_update_pages(cpu_buffer); 1677 complete(&cpu_buffer->update_done); 1678 } 1679 1680 /** 1681 * ring_buffer_resize - resize the ring buffer 1682 * @buffer: the buffer to resize. 1683 * @size: the new size. 1684 * @cpu_id: the cpu buffer to resize 1685 * 1686 * Minimum size is 2 * BUF_PAGE_SIZE. 1687 * 1688 * Returns 0 on success and < 0 on failure. 1689 */ 1690 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1691 int cpu_id) 1692 { 1693 struct ring_buffer_per_cpu *cpu_buffer; 1694 unsigned long nr_pages; 1695 int cpu, err = 0; 1696 1697 /* 1698 * Always succeed at resizing a non-existent buffer: 1699 */ 1700 if (!buffer) 1701 return size; 1702 1703 /* Make sure the requested buffer exists */ 1704 if (cpu_id != RING_BUFFER_ALL_CPUS && 1705 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1706 return size; 1707 1708 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1709 1710 /* we need a minimum of two pages */ 1711 if (nr_pages < 2) 1712 nr_pages = 2; 1713 1714 size = nr_pages * BUF_PAGE_SIZE; 1715 1716 /* 1717 * Don't succeed if resizing is disabled, as a reader might be 1718 * manipulating the ring buffer and is expecting a sane state while 1719 * this is true. 1720 */ 1721 if (atomic_read(&buffer->resize_disabled)) 1722 return -EBUSY; 1723 1724 /* prevent another thread from changing buffer sizes */ 1725 mutex_lock(&buffer->mutex); 1726 1727 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1728 /* calculate the pages to update */ 1729 for_each_buffer_cpu(buffer, cpu) { 1730 cpu_buffer = buffer->buffers[cpu]; 1731 1732 cpu_buffer->nr_pages_to_update = nr_pages - 1733 cpu_buffer->nr_pages; 1734 /* 1735 * nothing more to do for removing pages or no update 1736 */ 1737 if (cpu_buffer->nr_pages_to_update <= 0) 1738 continue; 1739 /* 1740 * to add pages, make sure all new pages can be 1741 * allocated without receiving ENOMEM 1742 */ 1743 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1744 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1745 &cpu_buffer->new_pages, cpu)) { 1746 /* not enough memory for new pages */ 1747 err = -ENOMEM; 1748 goto out_err; 1749 } 1750 } 1751 1752 get_online_cpus(); 1753 /* 1754 * Fire off all the required work handlers 1755 * We can't schedule on offline CPUs, but it's not necessary 1756 * since we can change their buffer sizes without any race. 1757 */ 1758 for_each_buffer_cpu(buffer, cpu) { 1759 cpu_buffer = buffer->buffers[cpu]; 1760 if (!cpu_buffer->nr_pages_to_update) 1761 continue; 1762 1763 /* Can't run something on an offline CPU. */ 1764 if (!cpu_online(cpu)) { 1765 rb_update_pages(cpu_buffer); 1766 cpu_buffer->nr_pages_to_update = 0; 1767 } else { 1768 schedule_work_on(cpu, 1769 &cpu_buffer->update_pages_work); 1770 } 1771 } 1772 1773 /* wait for all the updates to complete */ 1774 for_each_buffer_cpu(buffer, cpu) { 1775 cpu_buffer = buffer->buffers[cpu]; 1776 if (!cpu_buffer->nr_pages_to_update) 1777 continue; 1778 1779 if (cpu_online(cpu)) 1780 wait_for_completion(&cpu_buffer->update_done); 1781 cpu_buffer->nr_pages_to_update = 0; 1782 } 1783 1784 put_online_cpus(); 1785 } else { 1786 /* Make sure this CPU has been initialized */ 1787 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1788 goto out; 1789 1790 cpu_buffer = buffer->buffers[cpu_id]; 1791 1792 if (nr_pages == cpu_buffer->nr_pages) 1793 goto out; 1794 1795 cpu_buffer->nr_pages_to_update = nr_pages - 1796 cpu_buffer->nr_pages; 1797 1798 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1799 if (cpu_buffer->nr_pages_to_update > 0 && 1800 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1801 &cpu_buffer->new_pages, cpu_id)) { 1802 err = -ENOMEM; 1803 goto out_err; 1804 } 1805 1806 get_online_cpus(); 1807 1808 /* Can't run something on an offline CPU. */ 1809 if (!cpu_online(cpu_id)) 1810 rb_update_pages(cpu_buffer); 1811 else { 1812 schedule_work_on(cpu_id, 1813 &cpu_buffer->update_pages_work); 1814 wait_for_completion(&cpu_buffer->update_done); 1815 } 1816 1817 cpu_buffer->nr_pages_to_update = 0; 1818 put_online_cpus(); 1819 } 1820 1821 out: 1822 /* 1823 * The ring buffer resize can happen with the ring buffer 1824 * enabled, so that the update disturbs the tracing as little 1825 * as possible. But if the buffer is disabled, we do not need 1826 * to worry about that, and we can take the time to verify 1827 * that the buffer is not corrupt. 1828 */ 1829 if (atomic_read(&buffer->record_disabled)) { 1830 atomic_inc(&buffer->record_disabled); 1831 /* 1832 * Even though the buffer was disabled, we must make sure 1833 * that it is truly disabled before calling rb_check_pages. 1834 * There could have been a race between checking 1835 * record_disable and incrementing it. 1836 */ 1837 synchronize_sched(); 1838 for_each_buffer_cpu(buffer, cpu) { 1839 cpu_buffer = buffer->buffers[cpu]; 1840 rb_check_pages(cpu_buffer); 1841 } 1842 atomic_dec(&buffer->record_disabled); 1843 } 1844 1845 mutex_unlock(&buffer->mutex); 1846 return size; 1847 1848 out_err: 1849 for_each_buffer_cpu(buffer, cpu) { 1850 struct buffer_page *bpage, *tmp; 1851 1852 cpu_buffer = buffer->buffers[cpu]; 1853 cpu_buffer->nr_pages_to_update = 0; 1854 1855 if (list_empty(&cpu_buffer->new_pages)) 1856 continue; 1857 1858 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1859 list) { 1860 list_del_init(&bpage->list); 1861 free_buffer_page(bpage); 1862 } 1863 } 1864 mutex_unlock(&buffer->mutex); 1865 return err; 1866 } 1867 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1868 1869 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1870 { 1871 mutex_lock(&buffer->mutex); 1872 if (val) 1873 buffer->flags |= RB_FL_OVERWRITE; 1874 else 1875 buffer->flags &= ~RB_FL_OVERWRITE; 1876 mutex_unlock(&buffer->mutex); 1877 } 1878 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1879 1880 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1881 { 1882 return bpage->page->data + index; 1883 } 1884 1885 static __always_inline struct ring_buffer_event * 1886 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1887 { 1888 return __rb_page_index(cpu_buffer->reader_page, 1889 cpu_buffer->reader_page->read); 1890 } 1891 1892 static __always_inline struct ring_buffer_event * 1893 rb_iter_head_event(struct ring_buffer_iter *iter) 1894 { 1895 return __rb_page_index(iter->head_page, iter->head); 1896 } 1897 1898 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 1899 { 1900 return local_read(&bpage->page->commit); 1901 } 1902 1903 /* Size is determined by what has been committed */ 1904 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 1905 { 1906 return rb_page_commit(bpage); 1907 } 1908 1909 static __always_inline unsigned 1910 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1911 { 1912 return rb_page_commit(cpu_buffer->commit_page); 1913 } 1914 1915 static __always_inline unsigned 1916 rb_event_index(struct ring_buffer_event *event) 1917 { 1918 unsigned long addr = (unsigned long)event; 1919 1920 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1921 } 1922 1923 static void rb_inc_iter(struct ring_buffer_iter *iter) 1924 { 1925 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1926 1927 /* 1928 * The iterator could be on the reader page (it starts there). 1929 * But the head could have moved, since the reader was 1930 * found. Check for this case and assign the iterator 1931 * to the head page instead of next. 1932 */ 1933 if (iter->head_page == cpu_buffer->reader_page) 1934 iter->head_page = rb_set_head_page(cpu_buffer); 1935 else 1936 rb_inc_page(cpu_buffer, &iter->head_page); 1937 1938 iter->read_stamp = iter->head_page->page->time_stamp; 1939 iter->head = 0; 1940 } 1941 1942 /* 1943 * rb_handle_head_page - writer hit the head page 1944 * 1945 * Returns: +1 to retry page 1946 * 0 to continue 1947 * -1 on error 1948 */ 1949 static int 1950 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1951 struct buffer_page *tail_page, 1952 struct buffer_page *next_page) 1953 { 1954 struct buffer_page *new_head; 1955 int entries; 1956 int type; 1957 int ret; 1958 1959 entries = rb_page_entries(next_page); 1960 1961 /* 1962 * The hard part is here. We need to move the head 1963 * forward, and protect against both readers on 1964 * other CPUs and writers coming in via interrupts. 1965 */ 1966 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1967 RB_PAGE_HEAD); 1968 1969 /* 1970 * type can be one of four: 1971 * NORMAL - an interrupt already moved it for us 1972 * HEAD - we are the first to get here. 1973 * UPDATE - we are the interrupt interrupting 1974 * a current move. 1975 * MOVED - a reader on another CPU moved the next 1976 * pointer to its reader page. Give up 1977 * and try again. 1978 */ 1979 1980 switch (type) { 1981 case RB_PAGE_HEAD: 1982 /* 1983 * We changed the head to UPDATE, thus 1984 * it is our responsibility to update 1985 * the counters. 1986 */ 1987 local_add(entries, &cpu_buffer->overrun); 1988 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1989 1990 /* 1991 * The entries will be zeroed out when we move the 1992 * tail page. 1993 */ 1994 1995 /* still more to do */ 1996 break; 1997 1998 case RB_PAGE_UPDATE: 1999 /* 2000 * This is an interrupt that interrupt the 2001 * previous update. Still more to do. 2002 */ 2003 break; 2004 case RB_PAGE_NORMAL: 2005 /* 2006 * An interrupt came in before the update 2007 * and processed this for us. 2008 * Nothing left to do. 2009 */ 2010 return 1; 2011 case RB_PAGE_MOVED: 2012 /* 2013 * The reader is on another CPU and just did 2014 * a swap with our next_page. 2015 * Try again. 2016 */ 2017 return 1; 2018 default: 2019 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2020 return -1; 2021 } 2022 2023 /* 2024 * Now that we are here, the old head pointer is 2025 * set to UPDATE. This will keep the reader from 2026 * swapping the head page with the reader page. 2027 * The reader (on another CPU) will spin till 2028 * we are finished. 2029 * 2030 * We just need to protect against interrupts 2031 * doing the job. We will set the next pointer 2032 * to HEAD. After that, we set the old pointer 2033 * to NORMAL, but only if it was HEAD before. 2034 * otherwise we are an interrupt, and only 2035 * want the outer most commit to reset it. 2036 */ 2037 new_head = next_page; 2038 rb_inc_page(cpu_buffer, &new_head); 2039 2040 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2041 RB_PAGE_NORMAL); 2042 2043 /* 2044 * Valid returns are: 2045 * HEAD - an interrupt came in and already set it. 2046 * NORMAL - One of two things: 2047 * 1) We really set it. 2048 * 2) A bunch of interrupts came in and moved 2049 * the page forward again. 2050 */ 2051 switch (ret) { 2052 case RB_PAGE_HEAD: 2053 case RB_PAGE_NORMAL: 2054 /* OK */ 2055 break; 2056 default: 2057 RB_WARN_ON(cpu_buffer, 1); 2058 return -1; 2059 } 2060 2061 /* 2062 * It is possible that an interrupt came in, 2063 * set the head up, then more interrupts came in 2064 * and moved it again. When we get back here, 2065 * the page would have been set to NORMAL but we 2066 * just set it back to HEAD. 2067 * 2068 * How do you detect this? Well, if that happened 2069 * the tail page would have moved. 2070 */ 2071 if (ret == RB_PAGE_NORMAL) { 2072 struct buffer_page *buffer_tail_page; 2073 2074 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2075 /* 2076 * If the tail had moved passed next, then we need 2077 * to reset the pointer. 2078 */ 2079 if (buffer_tail_page != tail_page && 2080 buffer_tail_page != next_page) 2081 rb_head_page_set_normal(cpu_buffer, new_head, 2082 next_page, 2083 RB_PAGE_HEAD); 2084 } 2085 2086 /* 2087 * If this was the outer most commit (the one that 2088 * changed the original pointer from HEAD to UPDATE), 2089 * then it is up to us to reset it to NORMAL. 2090 */ 2091 if (type == RB_PAGE_HEAD) { 2092 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2093 tail_page, 2094 RB_PAGE_UPDATE); 2095 if (RB_WARN_ON(cpu_buffer, 2096 ret != RB_PAGE_UPDATE)) 2097 return -1; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static inline void 2104 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2105 unsigned long tail, struct rb_event_info *info) 2106 { 2107 struct buffer_page *tail_page = info->tail_page; 2108 struct ring_buffer_event *event; 2109 unsigned long length = info->length; 2110 2111 /* 2112 * Only the event that crossed the page boundary 2113 * must fill the old tail_page with padding. 2114 */ 2115 if (tail >= BUF_PAGE_SIZE) { 2116 /* 2117 * If the page was filled, then we still need 2118 * to update the real_end. Reset it to zero 2119 * and the reader will ignore it. 2120 */ 2121 if (tail == BUF_PAGE_SIZE) 2122 tail_page->real_end = 0; 2123 2124 local_sub(length, &tail_page->write); 2125 return; 2126 } 2127 2128 event = __rb_page_index(tail_page, tail); 2129 2130 /* account for padding bytes */ 2131 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2132 2133 /* 2134 * Save the original length to the meta data. 2135 * This will be used by the reader to add lost event 2136 * counter. 2137 */ 2138 tail_page->real_end = tail; 2139 2140 /* 2141 * If this event is bigger than the minimum size, then 2142 * we need to be careful that we don't subtract the 2143 * write counter enough to allow another writer to slip 2144 * in on this page. 2145 * We put in a discarded commit instead, to make sure 2146 * that this space is not used again. 2147 * 2148 * If we are less than the minimum size, we don't need to 2149 * worry about it. 2150 */ 2151 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2152 /* No room for any events */ 2153 2154 /* Mark the rest of the page with padding */ 2155 rb_event_set_padding(event); 2156 2157 /* Set the write back to the previous setting */ 2158 local_sub(length, &tail_page->write); 2159 return; 2160 } 2161 2162 /* Put in a discarded event */ 2163 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2164 event->type_len = RINGBUF_TYPE_PADDING; 2165 /* time delta must be non zero */ 2166 event->time_delta = 1; 2167 2168 /* Set write to end of buffer */ 2169 length = (tail + length) - BUF_PAGE_SIZE; 2170 local_sub(length, &tail_page->write); 2171 } 2172 2173 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2174 2175 /* 2176 * This is the slow path, force gcc not to inline it. 2177 */ 2178 static noinline struct ring_buffer_event * 2179 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2180 unsigned long tail, struct rb_event_info *info) 2181 { 2182 struct buffer_page *tail_page = info->tail_page; 2183 struct buffer_page *commit_page = cpu_buffer->commit_page; 2184 struct ring_buffer *buffer = cpu_buffer->buffer; 2185 struct buffer_page *next_page; 2186 int ret; 2187 2188 next_page = tail_page; 2189 2190 rb_inc_page(cpu_buffer, &next_page); 2191 2192 /* 2193 * If for some reason, we had an interrupt storm that made 2194 * it all the way around the buffer, bail, and warn 2195 * about it. 2196 */ 2197 if (unlikely(next_page == commit_page)) { 2198 local_inc(&cpu_buffer->commit_overrun); 2199 goto out_reset; 2200 } 2201 2202 /* 2203 * This is where the fun begins! 2204 * 2205 * We are fighting against races between a reader that 2206 * could be on another CPU trying to swap its reader 2207 * page with the buffer head. 2208 * 2209 * We are also fighting against interrupts coming in and 2210 * moving the head or tail on us as well. 2211 * 2212 * If the next page is the head page then we have filled 2213 * the buffer, unless the commit page is still on the 2214 * reader page. 2215 */ 2216 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2217 2218 /* 2219 * If the commit is not on the reader page, then 2220 * move the header page. 2221 */ 2222 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2223 /* 2224 * If we are not in overwrite mode, 2225 * this is easy, just stop here. 2226 */ 2227 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2228 local_inc(&cpu_buffer->dropped_events); 2229 goto out_reset; 2230 } 2231 2232 ret = rb_handle_head_page(cpu_buffer, 2233 tail_page, 2234 next_page); 2235 if (ret < 0) 2236 goto out_reset; 2237 if (ret) 2238 goto out_again; 2239 } else { 2240 /* 2241 * We need to be careful here too. The 2242 * commit page could still be on the reader 2243 * page. We could have a small buffer, and 2244 * have filled up the buffer with events 2245 * from interrupts and such, and wrapped. 2246 * 2247 * Note, if the tail page is also the on the 2248 * reader_page, we let it move out. 2249 */ 2250 if (unlikely((cpu_buffer->commit_page != 2251 cpu_buffer->tail_page) && 2252 (cpu_buffer->commit_page == 2253 cpu_buffer->reader_page))) { 2254 local_inc(&cpu_buffer->commit_overrun); 2255 goto out_reset; 2256 } 2257 } 2258 } 2259 2260 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2261 2262 out_again: 2263 2264 rb_reset_tail(cpu_buffer, tail, info); 2265 2266 /* Commit what we have for now. */ 2267 rb_end_commit(cpu_buffer); 2268 /* rb_end_commit() decs committing */ 2269 local_inc(&cpu_buffer->committing); 2270 2271 /* fail and let the caller try again */ 2272 return ERR_PTR(-EAGAIN); 2273 2274 out_reset: 2275 /* reset write */ 2276 rb_reset_tail(cpu_buffer, tail, info); 2277 2278 return NULL; 2279 } 2280 2281 /* Slow path, do not inline */ 2282 static noinline struct ring_buffer_event * 2283 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2284 { 2285 if (abs) 2286 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2287 else 2288 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2289 2290 /* Not the first event on the page, or not delta? */ 2291 if (abs || rb_event_index(event)) { 2292 event->time_delta = delta & TS_MASK; 2293 event->array[0] = delta >> TS_SHIFT; 2294 } else { 2295 /* nope, just zero it */ 2296 event->time_delta = 0; 2297 event->array[0] = 0; 2298 } 2299 2300 return skip_time_extend(event); 2301 } 2302 2303 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2304 struct ring_buffer_event *event); 2305 2306 /** 2307 * rb_update_event - update event type and data 2308 * @event: the event to update 2309 * @type: the type of event 2310 * @length: the size of the event field in the ring buffer 2311 * 2312 * Update the type and data fields of the event. The length 2313 * is the actual size that is written to the ring buffer, 2314 * and with this, we can determine what to place into the 2315 * data field. 2316 */ 2317 static void 2318 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2319 struct ring_buffer_event *event, 2320 struct rb_event_info *info) 2321 { 2322 unsigned length = info->length; 2323 u64 delta = info->delta; 2324 2325 /* Only a commit updates the timestamp */ 2326 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2327 delta = 0; 2328 2329 /* 2330 * If we need to add a timestamp, then we 2331 * add it to the start of the reserved space. 2332 */ 2333 if (unlikely(info->add_timestamp)) { 2334 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer); 2335 2336 event = rb_add_time_stamp(event, info->delta, abs); 2337 length -= RB_LEN_TIME_EXTEND; 2338 delta = 0; 2339 } 2340 2341 event->time_delta = delta; 2342 length -= RB_EVNT_HDR_SIZE; 2343 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2344 event->type_len = 0; 2345 event->array[0] = length; 2346 } else 2347 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2348 } 2349 2350 static unsigned rb_calculate_event_length(unsigned length) 2351 { 2352 struct ring_buffer_event event; /* Used only for sizeof array */ 2353 2354 /* zero length can cause confusions */ 2355 if (!length) 2356 length++; 2357 2358 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2359 length += sizeof(event.array[0]); 2360 2361 length += RB_EVNT_HDR_SIZE; 2362 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2363 2364 /* 2365 * In case the time delta is larger than the 27 bits for it 2366 * in the header, we need to add a timestamp. If another 2367 * event comes in when trying to discard this one to increase 2368 * the length, then the timestamp will be added in the allocated 2369 * space of this event. If length is bigger than the size needed 2370 * for the TIME_EXTEND, then padding has to be used. The events 2371 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2372 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2373 * As length is a multiple of 4, we only need to worry if it 2374 * is 12 (RB_LEN_TIME_EXTEND + 4). 2375 */ 2376 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2377 length += RB_ALIGNMENT; 2378 2379 return length; 2380 } 2381 2382 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2383 static inline bool sched_clock_stable(void) 2384 { 2385 return true; 2386 } 2387 #endif 2388 2389 static inline int 2390 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2391 struct ring_buffer_event *event) 2392 { 2393 unsigned long new_index, old_index; 2394 struct buffer_page *bpage; 2395 unsigned long index; 2396 unsigned long addr; 2397 2398 new_index = rb_event_index(event); 2399 old_index = new_index + rb_event_ts_length(event); 2400 addr = (unsigned long)event; 2401 addr &= PAGE_MASK; 2402 2403 bpage = READ_ONCE(cpu_buffer->tail_page); 2404 2405 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2406 unsigned long write_mask = 2407 local_read(&bpage->write) & ~RB_WRITE_MASK; 2408 unsigned long event_length = rb_event_length(event); 2409 /* 2410 * This is on the tail page. It is possible that 2411 * a write could come in and move the tail page 2412 * and write to the next page. That is fine 2413 * because we just shorten what is on this page. 2414 */ 2415 old_index += write_mask; 2416 new_index += write_mask; 2417 index = local_cmpxchg(&bpage->write, old_index, new_index); 2418 if (index == old_index) { 2419 /* update counters */ 2420 local_sub(event_length, &cpu_buffer->entries_bytes); 2421 return 1; 2422 } 2423 } 2424 2425 /* could not discard */ 2426 return 0; 2427 } 2428 2429 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2430 { 2431 local_inc(&cpu_buffer->committing); 2432 local_inc(&cpu_buffer->commits); 2433 } 2434 2435 static __always_inline void 2436 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2437 { 2438 unsigned long max_count; 2439 2440 /* 2441 * We only race with interrupts and NMIs on this CPU. 2442 * If we own the commit event, then we can commit 2443 * all others that interrupted us, since the interruptions 2444 * are in stack format (they finish before they come 2445 * back to us). This allows us to do a simple loop to 2446 * assign the commit to the tail. 2447 */ 2448 again: 2449 max_count = cpu_buffer->nr_pages * 100; 2450 2451 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2452 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2453 return; 2454 if (RB_WARN_ON(cpu_buffer, 2455 rb_is_reader_page(cpu_buffer->tail_page))) 2456 return; 2457 local_set(&cpu_buffer->commit_page->page->commit, 2458 rb_page_write(cpu_buffer->commit_page)); 2459 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2460 /* Only update the write stamp if the page has an event */ 2461 if (rb_page_write(cpu_buffer->commit_page)) 2462 cpu_buffer->write_stamp = 2463 cpu_buffer->commit_page->page->time_stamp; 2464 /* add barrier to keep gcc from optimizing too much */ 2465 barrier(); 2466 } 2467 while (rb_commit_index(cpu_buffer) != 2468 rb_page_write(cpu_buffer->commit_page)) { 2469 2470 local_set(&cpu_buffer->commit_page->page->commit, 2471 rb_page_write(cpu_buffer->commit_page)); 2472 RB_WARN_ON(cpu_buffer, 2473 local_read(&cpu_buffer->commit_page->page->commit) & 2474 ~RB_WRITE_MASK); 2475 barrier(); 2476 } 2477 2478 /* again, keep gcc from optimizing */ 2479 barrier(); 2480 2481 /* 2482 * If an interrupt came in just after the first while loop 2483 * and pushed the tail page forward, we will be left with 2484 * a dangling commit that will never go forward. 2485 */ 2486 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2487 goto again; 2488 } 2489 2490 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2491 { 2492 unsigned long commits; 2493 2494 if (RB_WARN_ON(cpu_buffer, 2495 !local_read(&cpu_buffer->committing))) 2496 return; 2497 2498 again: 2499 commits = local_read(&cpu_buffer->commits); 2500 /* synchronize with interrupts */ 2501 barrier(); 2502 if (local_read(&cpu_buffer->committing) == 1) 2503 rb_set_commit_to_write(cpu_buffer); 2504 2505 local_dec(&cpu_buffer->committing); 2506 2507 /* synchronize with interrupts */ 2508 barrier(); 2509 2510 /* 2511 * Need to account for interrupts coming in between the 2512 * updating of the commit page and the clearing of the 2513 * committing counter. 2514 */ 2515 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2516 !local_read(&cpu_buffer->committing)) { 2517 local_inc(&cpu_buffer->committing); 2518 goto again; 2519 } 2520 } 2521 2522 static inline void rb_event_discard(struct ring_buffer_event *event) 2523 { 2524 if (extended_time(event)) 2525 event = skip_time_extend(event); 2526 2527 /* array[0] holds the actual length for the discarded event */ 2528 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2529 event->type_len = RINGBUF_TYPE_PADDING; 2530 /* time delta must be non zero */ 2531 if (!event->time_delta) 2532 event->time_delta = 1; 2533 } 2534 2535 static __always_inline bool 2536 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2537 struct ring_buffer_event *event) 2538 { 2539 unsigned long addr = (unsigned long)event; 2540 unsigned long index; 2541 2542 index = rb_event_index(event); 2543 addr &= PAGE_MASK; 2544 2545 return cpu_buffer->commit_page->page == (void *)addr && 2546 rb_commit_index(cpu_buffer) == index; 2547 } 2548 2549 static __always_inline void 2550 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2551 struct ring_buffer_event *event) 2552 { 2553 u64 delta; 2554 2555 /* 2556 * The event first in the commit queue updates the 2557 * time stamp. 2558 */ 2559 if (rb_event_is_commit(cpu_buffer, event)) { 2560 /* 2561 * A commit event that is first on a page 2562 * updates the write timestamp with the page stamp 2563 */ 2564 if (!rb_event_index(event)) 2565 cpu_buffer->write_stamp = 2566 cpu_buffer->commit_page->page->time_stamp; 2567 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2568 delta = ring_buffer_event_time_stamp(event); 2569 cpu_buffer->write_stamp += delta; 2570 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 2571 delta = ring_buffer_event_time_stamp(event); 2572 cpu_buffer->write_stamp = delta; 2573 } else 2574 cpu_buffer->write_stamp += event->time_delta; 2575 } 2576 } 2577 2578 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2579 struct ring_buffer_event *event) 2580 { 2581 local_inc(&cpu_buffer->entries); 2582 rb_update_write_stamp(cpu_buffer, event); 2583 rb_end_commit(cpu_buffer); 2584 } 2585 2586 static __always_inline void 2587 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2588 { 2589 bool pagebusy; 2590 2591 if (buffer->irq_work.waiters_pending) { 2592 buffer->irq_work.waiters_pending = false; 2593 /* irq_work_queue() supplies it's own memory barriers */ 2594 irq_work_queue(&buffer->irq_work.work); 2595 } 2596 2597 if (cpu_buffer->irq_work.waiters_pending) { 2598 cpu_buffer->irq_work.waiters_pending = false; 2599 /* irq_work_queue() supplies it's own memory barriers */ 2600 irq_work_queue(&cpu_buffer->irq_work.work); 2601 } 2602 2603 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 2604 2605 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) { 2606 cpu_buffer->irq_work.wakeup_full = true; 2607 cpu_buffer->irq_work.full_waiters_pending = false; 2608 /* irq_work_queue() supplies it's own memory barriers */ 2609 irq_work_queue(&cpu_buffer->irq_work.work); 2610 } 2611 } 2612 2613 /* 2614 * The lock and unlock are done within a preempt disable section. 2615 * The current_context per_cpu variable can only be modified 2616 * by the current task between lock and unlock. But it can 2617 * be modified more than once via an interrupt. To pass this 2618 * information from the lock to the unlock without having to 2619 * access the 'in_interrupt()' functions again (which do show 2620 * a bit of overhead in something as critical as function tracing, 2621 * we use a bitmask trick. 2622 * 2623 * bit 0 = NMI context 2624 * bit 1 = IRQ context 2625 * bit 2 = SoftIRQ context 2626 * bit 3 = normal context. 2627 * 2628 * This works because this is the order of contexts that can 2629 * preempt other contexts. A SoftIRQ never preempts an IRQ 2630 * context. 2631 * 2632 * When the context is determined, the corresponding bit is 2633 * checked and set (if it was set, then a recursion of that context 2634 * happened). 2635 * 2636 * On unlock, we need to clear this bit. To do so, just subtract 2637 * 1 from the current_context and AND it to itself. 2638 * 2639 * (binary) 2640 * 101 - 1 = 100 2641 * 101 & 100 = 100 (clearing bit zero) 2642 * 2643 * 1010 - 1 = 1001 2644 * 1010 & 1001 = 1000 (clearing bit 1) 2645 * 2646 * The least significant bit can be cleared this way, and it 2647 * just so happens that it is the same bit corresponding to 2648 * the current context. 2649 */ 2650 2651 static __always_inline int 2652 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2653 { 2654 unsigned int val = cpu_buffer->current_context; 2655 unsigned long pc = preempt_count(); 2656 int bit; 2657 2658 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2659 bit = RB_CTX_NORMAL; 2660 else 2661 bit = pc & NMI_MASK ? RB_CTX_NMI : 2662 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2663 2664 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2665 return 1; 2666 2667 val |= (1 << (bit + cpu_buffer->nest)); 2668 cpu_buffer->current_context = val; 2669 2670 return 0; 2671 } 2672 2673 static __always_inline void 2674 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 2675 { 2676 cpu_buffer->current_context &= 2677 cpu_buffer->current_context - (1 << cpu_buffer->nest); 2678 } 2679 2680 /* The recursive locking above uses 4 bits */ 2681 #define NESTED_BITS 4 2682 2683 /** 2684 * ring_buffer_nest_start - Allow to trace while nested 2685 * @buffer: The ring buffer to modify 2686 * 2687 * The ring buffer has a safety mechanism to prevent recursion. 2688 * But there may be a case where a trace needs to be done while 2689 * tracing something else. In this case, calling this function 2690 * will allow this function to nest within a currently active 2691 * ring_buffer_lock_reserve(). 2692 * 2693 * Call this function before calling another ring_buffer_lock_reserve() and 2694 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 2695 */ 2696 void ring_buffer_nest_start(struct ring_buffer *buffer) 2697 { 2698 struct ring_buffer_per_cpu *cpu_buffer; 2699 int cpu; 2700 2701 /* Enabled by ring_buffer_nest_end() */ 2702 preempt_disable_notrace(); 2703 cpu = raw_smp_processor_id(); 2704 cpu_buffer = buffer->buffers[cpu]; 2705 /* This is the shift value for the above recursive locking */ 2706 cpu_buffer->nest += NESTED_BITS; 2707 } 2708 2709 /** 2710 * ring_buffer_nest_end - Allow to trace while nested 2711 * @buffer: The ring buffer to modify 2712 * 2713 * Must be called after ring_buffer_nest_start() and after the 2714 * ring_buffer_unlock_commit(). 2715 */ 2716 void ring_buffer_nest_end(struct ring_buffer *buffer) 2717 { 2718 struct ring_buffer_per_cpu *cpu_buffer; 2719 int cpu; 2720 2721 /* disabled by ring_buffer_nest_start() */ 2722 cpu = raw_smp_processor_id(); 2723 cpu_buffer = buffer->buffers[cpu]; 2724 /* This is the shift value for the above recursive locking */ 2725 cpu_buffer->nest -= NESTED_BITS; 2726 preempt_enable_notrace(); 2727 } 2728 2729 /** 2730 * ring_buffer_unlock_commit - commit a reserved 2731 * @buffer: The buffer to commit to 2732 * @event: The event pointer to commit. 2733 * 2734 * This commits the data to the ring buffer, and releases any locks held. 2735 * 2736 * Must be paired with ring_buffer_lock_reserve. 2737 */ 2738 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2739 struct ring_buffer_event *event) 2740 { 2741 struct ring_buffer_per_cpu *cpu_buffer; 2742 int cpu = raw_smp_processor_id(); 2743 2744 cpu_buffer = buffer->buffers[cpu]; 2745 2746 rb_commit(cpu_buffer, event); 2747 2748 rb_wakeups(buffer, cpu_buffer); 2749 2750 trace_recursive_unlock(cpu_buffer); 2751 2752 preempt_enable_notrace(); 2753 2754 return 0; 2755 } 2756 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2757 2758 static noinline void 2759 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 2760 struct rb_event_info *info) 2761 { 2762 WARN_ONCE(info->delta > (1ULL << 59), 2763 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2764 (unsigned long long)info->delta, 2765 (unsigned long long)info->ts, 2766 (unsigned long long)cpu_buffer->write_stamp, 2767 sched_clock_stable() ? "" : 2768 "If you just came from a suspend/resume,\n" 2769 "please switch to the trace global clock:\n" 2770 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 2771 "or add trace_clock=global to the kernel command line\n"); 2772 info->add_timestamp = 1; 2773 } 2774 2775 static struct ring_buffer_event * 2776 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2777 struct rb_event_info *info) 2778 { 2779 struct ring_buffer_event *event; 2780 struct buffer_page *tail_page; 2781 unsigned long tail, write; 2782 2783 /* 2784 * If the time delta since the last event is too big to 2785 * hold in the time field of the event, then we append a 2786 * TIME EXTEND event ahead of the data event. 2787 */ 2788 if (unlikely(info->add_timestamp)) 2789 info->length += RB_LEN_TIME_EXTEND; 2790 2791 /* Don't let the compiler play games with cpu_buffer->tail_page */ 2792 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 2793 write = local_add_return(info->length, &tail_page->write); 2794 2795 /* set write to only the index of the write */ 2796 write &= RB_WRITE_MASK; 2797 tail = write - info->length; 2798 2799 /* 2800 * If this is the first commit on the page, then it has the same 2801 * timestamp as the page itself. 2802 */ 2803 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer)) 2804 info->delta = 0; 2805 2806 /* See if we shot pass the end of this buffer page */ 2807 if (unlikely(write > BUF_PAGE_SIZE)) 2808 return rb_move_tail(cpu_buffer, tail, info); 2809 2810 /* We reserved something on the buffer */ 2811 2812 event = __rb_page_index(tail_page, tail); 2813 rb_update_event(cpu_buffer, event, info); 2814 2815 local_inc(&tail_page->entries); 2816 2817 /* 2818 * If this is the first commit on the page, then update 2819 * its timestamp. 2820 */ 2821 if (!tail) 2822 tail_page->page->time_stamp = info->ts; 2823 2824 /* account for these added bytes */ 2825 local_add(info->length, &cpu_buffer->entries_bytes); 2826 2827 return event; 2828 } 2829 2830 static __always_inline struct ring_buffer_event * 2831 rb_reserve_next_event(struct ring_buffer *buffer, 2832 struct ring_buffer_per_cpu *cpu_buffer, 2833 unsigned long length) 2834 { 2835 struct ring_buffer_event *event; 2836 struct rb_event_info info; 2837 int nr_loops = 0; 2838 u64 diff; 2839 2840 rb_start_commit(cpu_buffer); 2841 2842 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2843 /* 2844 * Due to the ability to swap a cpu buffer from a buffer 2845 * it is possible it was swapped before we committed. 2846 * (committing stops a swap). We check for it here and 2847 * if it happened, we have to fail the write. 2848 */ 2849 barrier(); 2850 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 2851 local_dec(&cpu_buffer->committing); 2852 local_dec(&cpu_buffer->commits); 2853 return NULL; 2854 } 2855 #endif 2856 2857 info.length = rb_calculate_event_length(length); 2858 again: 2859 info.add_timestamp = 0; 2860 info.delta = 0; 2861 2862 /* 2863 * We allow for interrupts to reenter here and do a trace. 2864 * If one does, it will cause this original code to loop 2865 * back here. Even with heavy interrupts happening, this 2866 * should only happen a few times in a row. If this happens 2867 * 1000 times in a row, there must be either an interrupt 2868 * storm or we have something buggy. 2869 * Bail! 2870 */ 2871 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2872 goto out_fail; 2873 2874 info.ts = rb_time_stamp(cpu_buffer->buffer); 2875 diff = info.ts - cpu_buffer->write_stamp; 2876 2877 /* make sure this diff is calculated here */ 2878 barrier(); 2879 2880 if (ring_buffer_time_stamp_abs(buffer)) { 2881 info.delta = info.ts; 2882 rb_handle_timestamp(cpu_buffer, &info); 2883 } else /* Did the write stamp get updated already? */ 2884 if (likely(info.ts >= cpu_buffer->write_stamp)) { 2885 info.delta = diff; 2886 if (unlikely(test_time_stamp(info.delta))) 2887 rb_handle_timestamp(cpu_buffer, &info); 2888 } 2889 2890 event = __rb_reserve_next(cpu_buffer, &info); 2891 2892 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 2893 if (info.add_timestamp) 2894 info.length -= RB_LEN_TIME_EXTEND; 2895 goto again; 2896 } 2897 2898 if (!event) 2899 goto out_fail; 2900 2901 return event; 2902 2903 out_fail: 2904 rb_end_commit(cpu_buffer); 2905 return NULL; 2906 } 2907 2908 /** 2909 * ring_buffer_lock_reserve - reserve a part of the buffer 2910 * @buffer: the ring buffer to reserve from 2911 * @length: the length of the data to reserve (excluding event header) 2912 * 2913 * Returns a reserved event on the ring buffer to copy directly to. 2914 * The user of this interface will need to get the body to write into 2915 * and can use the ring_buffer_event_data() interface. 2916 * 2917 * The length is the length of the data needed, not the event length 2918 * which also includes the event header. 2919 * 2920 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2921 * If NULL is returned, then nothing has been allocated or locked. 2922 */ 2923 struct ring_buffer_event * 2924 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2925 { 2926 struct ring_buffer_per_cpu *cpu_buffer; 2927 struct ring_buffer_event *event; 2928 int cpu; 2929 2930 /* If we are tracing schedule, we don't want to recurse */ 2931 preempt_disable_notrace(); 2932 2933 if (unlikely(atomic_read(&buffer->record_disabled))) 2934 goto out; 2935 2936 cpu = raw_smp_processor_id(); 2937 2938 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 2939 goto out; 2940 2941 cpu_buffer = buffer->buffers[cpu]; 2942 2943 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 2944 goto out; 2945 2946 if (unlikely(length > BUF_MAX_DATA_SIZE)) 2947 goto out; 2948 2949 if (unlikely(trace_recursive_lock(cpu_buffer))) 2950 goto out; 2951 2952 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2953 if (!event) 2954 goto out_unlock; 2955 2956 return event; 2957 2958 out_unlock: 2959 trace_recursive_unlock(cpu_buffer); 2960 out: 2961 preempt_enable_notrace(); 2962 return NULL; 2963 } 2964 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2965 2966 /* 2967 * Decrement the entries to the page that an event is on. 2968 * The event does not even need to exist, only the pointer 2969 * to the page it is on. This may only be called before the commit 2970 * takes place. 2971 */ 2972 static inline void 2973 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2974 struct ring_buffer_event *event) 2975 { 2976 unsigned long addr = (unsigned long)event; 2977 struct buffer_page *bpage = cpu_buffer->commit_page; 2978 struct buffer_page *start; 2979 2980 addr &= PAGE_MASK; 2981 2982 /* Do the likely case first */ 2983 if (likely(bpage->page == (void *)addr)) { 2984 local_dec(&bpage->entries); 2985 return; 2986 } 2987 2988 /* 2989 * Because the commit page may be on the reader page we 2990 * start with the next page and check the end loop there. 2991 */ 2992 rb_inc_page(cpu_buffer, &bpage); 2993 start = bpage; 2994 do { 2995 if (bpage->page == (void *)addr) { 2996 local_dec(&bpage->entries); 2997 return; 2998 } 2999 rb_inc_page(cpu_buffer, &bpage); 3000 } while (bpage != start); 3001 3002 /* commit not part of this buffer?? */ 3003 RB_WARN_ON(cpu_buffer, 1); 3004 } 3005 3006 /** 3007 * ring_buffer_commit_discard - discard an event that has not been committed 3008 * @buffer: the ring buffer 3009 * @event: non committed event to discard 3010 * 3011 * Sometimes an event that is in the ring buffer needs to be ignored. 3012 * This function lets the user discard an event in the ring buffer 3013 * and then that event will not be read later. 3014 * 3015 * This function only works if it is called before the item has been 3016 * committed. It will try to free the event from the ring buffer 3017 * if another event has not been added behind it. 3018 * 3019 * If another event has been added behind it, it will set the event 3020 * up as discarded, and perform the commit. 3021 * 3022 * If this function is called, do not call ring_buffer_unlock_commit on 3023 * the event. 3024 */ 3025 void ring_buffer_discard_commit(struct ring_buffer *buffer, 3026 struct ring_buffer_event *event) 3027 { 3028 struct ring_buffer_per_cpu *cpu_buffer; 3029 int cpu; 3030 3031 /* The event is discarded regardless */ 3032 rb_event_discard(event); 3033 3034 cpu = smp_processor_id(); 3035 cpu_buffer = buffer->buffers[cpu]; 3036 3037 /* 3038 * This must only be called if the event has not been 3039 * committed yet. Thus we can assume that preemption 3040 * is still disabled. 3041 */ 3042 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3043 3044 rb_decrement_entry(cpu_buffer, event); 3045 if (rb_try_to_discard(cpu_buffer, event)) 3046 goto out; 3047 3048 /* 3049 * The commit is still visible by the reader, so we 3050 * must still update the timestamp. 3051 */ 3052 rb_update_write_stamp(cpu_buffer, event); 3053 out: 3054 rb_end_commit(cpu_buffer); 3055 3056 trace_recursive_unlock(cpu_buffer); 3057 3058 preempt_enable_notrace(); 3059 3060 } 3061 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3062 3063 /** 3064 * ring_buffer_write - write data to the buffer without reserving 3065 * @buffer: The ring buffer to write to. 3066 * @length: The length of the data being written (excluding the event header) 3067 * @data: The data to write to the buffer. 3068 * 3069 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3070 * one function. If you already have the data to write to the buffer, it 3071 * may be easier to simply call this function. 3072 * 3073 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3074 * and not the length of the event which would hold the header. 3075 */ 3076 int ring_buffer_write(struct ring_buffer *buffer, 3077 unsigned long length, 3078 void *data) 3079 { 3080 struct ring_buffer_per_cpu *cpu_buffer; 3081 struct ring_buffer_event *event; 3082 void *body; 3083 int ret = -EBUSY; 3084 int cpu; 3085 3086 preempt_disable_notrace(); 3087 3088 if (atomic_read(&buffer->record_disabled)) 3089 goto out; 3090 3091 cpu = raw_smp_processor_id(); 3092 3093 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3094 goto out; 3095 3096 cpu_buffer = buffer->buffers[cpu]; 3097 3098 if (atomic_read(&cpu_buffer->record_disabled)) 3099 goto out; 3100 3101 if (length > BUF_MAX_DATA_SIZE) 3102 goto out; 3103 3104 if (unlikely(trace_recursive_lock(cpu_buffer))) 3105 goto out; 3106 3107 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3108 if (!event) 3109 goto out_unlock; 3110 3111 body = rb_event_data(event); 3112 3113 memcpy(body, data, length); 3114 3115 rb_commit(cpu_buffer, event); 3116 3117 rb_wakeups(buffer, cpu_buffer); 3118 3119 ret = 0; 3120 3121 out_unlock: 3122 trace_recursive_unlock(cpu_buffer); 3123 3124 out: 3125 preempt_enable_notrace(); 3126 3127 return ret; 3128 } 3129 EXPORT_SYMBOL_GPL(ring_buffer_write); 3130 3131 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3132 { 3133 struct buffer_page *reader = cpu_buffer->reader_page; 3134 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3135 struct buffer_page *commit = cpu_buffer->commit_page; 3136 3137 /* In case of error, head will be NULL */ 3138 if (unlikely(!head)) 3139 return true; 3140 3141 return reader->read == rb_page_commit(reader) && 3142 (commit == reader || 3143 (commit == head && 3144 head->read == rb_page_commit(commit))); 3145 } 3146 3147 /** 3148 * ring_buffer_record_disable - stop all writes into the buffer 3149 * @buffer: The ring buffer to stop writes to. 3150 * 3151 * This prevents all writes to the buffer. Any attempt to write 3152 * to the buffer after this will fail and return NULL. 3153 * 3154 * The caller should call synchronize_sched() after this. 3155 */ 3156 void ring_buffer_record_disable(struct ring_buffer *buffer) 3157 { 3158 atomic_inc(&buffer->record_disabled); 3159 } 3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3161 3162 /** 3163 * ring_buffer_record_enable - enable writes to the buffer 3164 * @buffer: The ring buffer to enable writes 3165 * 3166 * Note, multiple disables will need the same number of enables 3167 * to truly enable the writing (much like preempt_disable). 3168 */ 3169 void ring_buffer_record_enable(struct ring_buffer *buffer) 3170 { 3171 atomic_dec(&buffer->record_disabled); 3172 } 3173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3174 3175 /** 3176 * ring_buffer_record_off - stop all writes into the buffer 3177 * @buffer: The ring buffer to stop writes to. 3178 * 3179 * This prevents all writes to the buffer. Any attempt to write 3180 * to the buffer after this will fail and return NULL. 3181 * 3182 * This is different than ring_buffer_record_disable() as 3183 * it works like an on/off switch, where as the disable() version 3184 * must be paired with a enable(). 3185 */ 3186 void ring_buffer_record_off(struct ring_buffer *buffer) 3187 { 3188 unsigned int rd; 3189 unsigned int new_rd; 3190 3191 do { 3192 rd = atomic_read(&buffer->record_disabled); 3193 new_rd = rd | RB_BUFFER_OFF; 3194 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3195 } 3196 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3197 3198 /** 3199 * ring_buffer_record_on - restart writes into the buffer 3200 * @buffer: The ring buffer to start writes to. 3201 * 3202 * This enables all writes to the buffer that was disabled by 3203 * ring_buffer_record_off(). 3204 * 3205 * This is different than ring_buffer_record_enable() as 3206 * it works like an on/off switch, where as the enable() version 3207 * must be paired with a disable(). 3208 */ 3209 void ring_buffer_record_on(struct ring_buffer *buffer) 3210 { 3211 unsigned int rd; 3212 unsigned int new_rd; 3213 3214 do { 3215 rd = atomic_read(&buffer->record_disabled); 3216 new_rd = rd & ~RB_BUFFER_OFF; 3217 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3218 } 3219 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3220 3221 /** 3222 * ring_buffer_record_is_on - return true if the ring buffer can write 3223 * @buffer: The ring buffer to see if write is enabled 3224 * 3225 * Returns true if the ring buffer is in a state that it accepts writes. 3226 */ 3227 bool ring_buffer_record_is_on(struct ring_buffer *buffer) 3228 { 3229 return !atomic_read(&buffer->record_disabled); 3230 } 3231 3232 /** 3233 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3234 * @buffer: The ring buffer to see if write is set enabled 3235 * 3236 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3237 * Note that this does NOT mean it is in a writable state. 3238 * 3239 * It may return true when the ring buffer has been disabled by 3240 * ring_buffer_record_disable(), as that is a temporary disabling of 3241 * the ring buffer. 3242 */ 3243 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer) 3244 { 3245 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3246 } 3247 3248 /** 3249 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3250 * @buffer: The ring buffer to stop writes to. 3251 * @cpu: The CPU buffer to stop 3252 * 3253 * This prevents all writes to the buffer. Any attempt to write 3254 * to the buffer after this will fail and return NULL. 3255 * 3256 * The caller should call synchronize_sched() after this. 3257 */ 3258 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3259 { 3260 struct ring_buffer_per_cpu *cpu_buffer; 3261 3262 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3263 return; 3264 3265 cpu_buffer = buffer->buffers[cpu]; 3266 atomic_inc(&cpu_buffer->record_disabled); 3267 } 3268 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3269 3270 /** 3271 * ring_buffer_record_enable_cpu - enable writes to the buffer 3272 * @buffer: The ring buffer to enable writes 3273 * @cpu: The CPU to enable. 3274 * 3275 * Note, multiple disables will need the same number of enables 3276 * to truly enable the writing (much like preempt_disable). 3277 */ 3278 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3279 { 3280 struct ring_buffer_per_cpu *cpu_buffer; 3281 3282 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3283 return; 3284 3285 cpu_buffer = buffer->buffers[cpu]; 3286 atomic_dec(&cpu_buffer->record_disabled); 3287 } 3288 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3289 3290 /* 3291 * The total entries in the ring buffer is the running counter 3292 * of entries entered into the ring buffer, minus the sum of 3293 * the entries read from the ring buffer and the number of 3294 * entries that were overwritten. 3295 */ 3296 static inline unsigned long 3297 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3298 { 3299 return local_read(&cpu_buffer->entries) - 3300 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3301 } 3302 3303 /** 3304 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3305 * @buffer: The ring buffer 3306 * @cpu: The per CPU buffer to read from. 3307 */ 3308 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3309 { 3310 unsigned long flags; 3311 struct ring_buffer_per_cpu *cpu_buffer; 3312 struct buffer_page *bpage; 3313 u64 ret = 0; 3314 3315 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3316 return 0; 3317 3318 cpu_buffer = buffer->buffers[cpu]; 3319 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3320 /* 3321 * if the tail is on reader_page, oldest time stamp is on the reader 3322 * page 3323 */ 3324 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3325 bpage = cpu_buffer->reader_page; 3326 else 3327 bpage = rb_set_head_page(cpu_buffer); 3328 if (bpage) 3329 ret = bpage->page->time_stamp; 3330 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3331 3332 return ret; 3333 } 3334 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3335 3336 /** 3337 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3338 * @buffer: The ring buffer 3339 * @cpu: The per CPU buffer to read from. 3340 */ 3341 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3342 { 3343 struct ring_buffer_per_cpu *cpu_buffer; 3344 unsigned long ret; 3345 3346 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3347 return 0; 3348 3349 cpu_buffer = buffer->buffers[cpu]; 3350 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3351 3352 return ret; 3353 } 3354 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3355 3356 /** 3357 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3358 * @buffer: The ring buffer 3359 * @cpu: The per CPU buffer to get the entries from. 3360 */ 3361 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3362 { 3363 struct ring_buffer_per_cpu *cpu_buffer; 3364 3365 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3366 return 0; 3367 3368 cpu_buffer = buffer->buffers[cpu]; 3369 3370 return rb_num_of_entries(cpu_buffer); 3371 } 3372 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3373 3374 /** 3375 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3376 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3377 * @buffer: The ring buffer 3378 * @cpu: The per CPU buffer to get the number of overruns from 3379 */ 3380 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3381 { 3382 struct ring_buffer_per_cpu *cpu_buffer; 3383 unsigned long ret; 3384 3385 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3386 return 0; 3387 3388 cpu_buffer = buffer->buffers[cpu]; 3389 ret = local_read(&cpu_buffer->overrun); 3390 3391 return ret; 3392 } 3393 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3394 3395 /** 3396 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3397 * commits failing due to the buffer wrapping around while there are uncommitted 3398 * events, such as during an interrupt storm. 3399 * @buffer: The ring buffer 3400 * @cpu: The per CPU buffer to get the number of overruns from 3401 */ 3402 unsigned long 3403 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3404 { 3405 struct ring_buffer_per_cpu *cpu_buffer; 3406 unsigned long ret; 3407 3408 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3409 return 0; 3410 3411 cpu_buffer = buffer->buffers[cpu]; 3412 ret = local_read(&cpu_buffer->commit_overrun); 3413 3414 return ret; 3415 } 3416 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3417 3418 /** 3419 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3420 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3421 * @buffer: The ring buffer 3422 * @cpu: The per CPU buffer to get the number of overruns from 3423 */ 3424 unsigned long 3425 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3426 { 3427 struct ring_buffer_per_cpu *cpu_buffer; 3428 unsigned long ret; 3429 3430 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3431 return 0; 3432 3433 cpu_buffer = buffer->buffers[cpu]; 3434 ret = local_read(&cpu_buffer->dropped_events); 3435 3436 return ret; 3437 } 3438 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3439 3440 /** 3441 * ring_buffer_read_events_cpu - get the number of events successfully read 3442 * @buffer: The ring buffer 3443 * @cpu: The per CPU buffer to get the number of events read 3444 */ 3445 unsigned long 3446 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3447 { 3448 struct ring_buffer_per_cpu *cpu_buffer; 3449 3450 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3451 return 0; 3452 3453 cpu_buffer = buffer->buffers[cpu]; 3454 return cpu_buffer->read; 3455 } 3456 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3457 3458 /** 3459 * ring_buffer_entries - get the number of entries in a buffer 3460 * @buffer: The ring buffer 3461 * 3462 * Returns the total number of entries in the ring buffer 3463 * (all CPU entries) 3464 */ 3465 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3466 { 3467 struct ring_buffer_per_cpu *cpu_buffer; 3468 unsigned long entries = 0; 3469 int cpu; 3470 3471 /* if you care about this being correct, lock the buffer */ 3472 for_each_buffer_cpu(buffer, cpu) { 3473 cpu_buffer = buffer->buffers[cpu]; 3474 entries += rb_num_of_entries(cpu_buffer); 3475 } 3476 3477 return entries; 3478 } 3479 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3480 3481 /** 3482 * ring_buffer_overruns - get the number of overruns in buffer 3483 * @buffer: The ring buffer 3484 * 3485 * Returns the total number of overruns in the ring buffer 3486 * (all CPU entries) 3487 */ 3488 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3489 { 3490 struct ring_buffer_per_cpu *cpu_buffer; 3491 unsigned long overruns = 0; 3492 int cpu; 3493 3494 /* if you care about this being correct, lock the buffer */ 3495 for_each_buffer_cpu(buffer, cpu) { 3496 cpu_buffer = buffer->buffers[cpu]; 3497 overruns += local_read(&cpu_buffer->overrun); 3498 } 3499 3500 return overruns; 3501 } 3502 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3503 3504 static void rb_iter_reset(struct ring_buffer_iter *iter) 3505 { 3506 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3507 3508 /* Iterator usage is expected to have record disabled */ 3509 iter->head_page = cpu_buffer->reader_page; 3510 iter->head = cpu_buffer->reader_page->read; 3511 3512 iter->cache_reader_page = iter->head_page; 3513 iter->cache_read = cpu_buffer->read; 3514 3515 if (iter->head) 3516 iter->read_stamp = cpu_buffer->read_stamp; 3517 else 3518 iter->read_stamp = iter->head_page->page->time_stamp; 3519 } 3520 3521 /** 3522 * ring_buffer_iter_reset - reset an iterator 3523 * @iter: The iterator to reset 3524 * 3525 * Resets the iterator, so that it will start from the beginning 3526 * again. 3527 */ 3528 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3529 { 3530 struct ring_buffer_per_cpu *cpu_buffer; 3531 unsigned long flags; 3532 3533 if (!iter) 3534 return; 3535 3536 cpu_buffer = iter->cpu_buffer; 3537 3538 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3539 rb_iter_reset(iter); 3540 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3541 } 3542 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3543 3544 /** 3545 * ring_buffer_iter_empty - check if an iterator has no more to read 3546 * @iter: The iterator to check 3547 */ 3548 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3549 { 3550 struct ring_buffer_per_cpu *cpu_buffer; 3551 struct buffer_page *reader; 3552 struct buffer_page *head_page; 3553 struct buffer_page *commit_page; 3554 unsigned commit; 3555 3556 cpu_buffer = iter->cpu_buffer; 3557 3558 /* Remember, trace recording is off when iterator is in use */ 3559 reader = cpu_buffer->reader_page; 3560 head_page = cpu_buffer->head_page; 3561 commit_page = cpu_buffer->commit_page; 3562 commit = rb_page_commit(commit_page); 3563 3564 return ((iter->head_page == commit_page && iter->head == commit) || 3565 (iter->head_page == reader && commit_page == head_page && 3566 head_page->read == commit && 3567 iter->head == rb_page_commit(cpu_buffer->reader_page))); 3568 } 3569 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3570 3571 static void 3572 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3573 struct ring_buffer_event *event) 3574 { 3575 u64 delta; 3576 3577 switch (event->type_len) { 3578 case RINGBUF_TYPE_PADDING: 3579 return; 3580 3581 case RINGBUF_TYPE_TIME_EXTEND: 3582 delta = ring_buffer_event_time_stamp(event); 3583 cpu_buffer->read_stamp += delta; 3584 return; 3585 3586 case RINGBUF_TYPE_TIME_STAMP: 3587 delta = ring_buffer_event_time_stamp(event); 3588 cpu_buffer->read_stamp = delta; 3589 return; 3590 3591 case RINGBUF_TYPE_DATA: 3592 cpu_buffer->read_stamp += event->time_delta; 3593 return; 3594 3595 default: 3596 BUG(); 3597 } 3598 return; 3599 } 3600 3601 static void 3602 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3603 struct ring_buffer_event *event) 3604 { 3605 u64 delta; 3606 3607 switch (event->type_len) { 3608 case RINGBUF_TYPE_PADDING: 3609 return; 3610 3611 case RINGBUF_TYPE_TIME_EXTEND: 3612 delta = ring_buffer_event_time_stamp(event); 3613 iter->read_stamp += delta; 3614 return; 3615 3616 case RINGBUF_TYPE_TIME_STAMP: 3617 delta = ring_buffer_event_time_stamp(event); 3618 iter->read_stamp = delta; 3619 return; 3620 3621 case RINGBUF_TYPE_DATA: 3622 iter->read_stamp += event->time_delta; 3623 return; 3624 3625 default: 3626 BUG(); 3627 } 3628 return; 3629 } 3630 3631 static struct buffer_page * 3632 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3633 { 3634 struct buffer_page *reader = NULL; 3635 unsigned long overwrite; 3636 unsigned long flags; 3637 int nr_loops = 0; 3638 int ret; 3639 3640 local_irq_save(flags); 3641 arch_spin_lock(&cpu_buffer->lock); 3642 3643 again: 3644 /* 3645 * This should normally only loop twice. But because the 3646 * start of the reader inserts an empty page, it causes 3647 * a case where we will loop three times. There should be no 3648 * reason to loop four times (that I know of). 3649 */ 3650 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3651 reader = NULL; 3652 goto out; 3653 } 3654 3655 reader = cpu_buffer->reader_page; 3656 3657 /* If there's more to read, return this page */ 3658 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3659 goto out; 3660 3661 /* Never should we have an index greater than the size */ 3662 if (RB_WARN_ON(cpu_buffer, 3663 cpu_buffer->reader_page->read > rb_page_size(reader))) 3664 goto out; 3665 3666 /* check if we caught up to the tail */ 3667 reader = NULL; 3668 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3669 goto out; 3670 3671 /* Don't bother swapping if the ring buffer is empty */ 3672 if (rb_num_of_entries(cpu_buffer) == 0) 3673 goto out; 3674 3675 /* 3676 * Reset the reader page to size zero. 3677 */ 3678 local_set(&cpu_buffer->reader_page->write, 0); 3679 local_set(&cpu_buffer->reader_page->entries, 0); 3680 local_set(&cpu_buffer->reader_page->page->commit, 0); 3681 cpu_buffer->reader_page->real_end = 0; 3682 3683 spin: 3684 /* 3685 * Splice the empty reader page into the list around the head. 3686 */ 3687 reader = rb_set_head_page(cpu_buffer); 3688 if (!reader) 3689 goto out; 3690 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3691 cpu_buffer->reader_page->list.prev = reader->list.prev; 3692 3693 /* 3694 * cpu_buffer->pages just needs to point to the buffer, it 3695 * has no specific buffer page to point to. Lets move it out 3696 * of our way so we don't accidentally swap it. 3697 */ 3698 cpu_buffer->pages = reader->list.prev; 3699 3700 /* The reader page will be pointing to the new head */ 3701 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3702 3703 /* 3704 * We want to make sure we read the overruns after we set up our 3705 * pointers to the next object. The writer side does a 3706 * cmpxchg to cross pages which acts as the mb on the writer 3707 * side. Note, the reader will constantly fail the swap 3708 * while the writer is updating the pointers, so this 3709 * guarantees that the overwrite recorded here is the one we 3710 * want to compare with the last_overrun. 3711 */ 3712 smp_mb(); 3713 overwrite = local_read(&(cpu_buffer->overrun)); 3714 3715 /* 3716 * Here's the tricky part. 3717 * 3718 * We need to move the pointer past the header page. 3719 * But we can only do that if a writer is not currently 3720 * moving it. The page before the header page has the 3721 * flag bit '1' set if it is pointing to the page we want. 3722 * but if the writer is in the process of moving it 3723 * than it will be '2' or already moved '0'. 3724 */ 3725 3726 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3727 3728 /* 3729 * If we did not convert it, then we must try again. 3730 */ 3731 if (!ret) 3732 goto spin; 3733 3734 /* 3735 * Yeah! We succeeded in replacing the page. 3736 * 3737 * Now make the new head point back to the reader page. 3738 */ 3739 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3740 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3741 3742 /* Finally update the reader page to the new head */ 3743 cpu_buffer->reader_page = reader; 3744 cpu_buffer->reader_page->read = 0; 3745 3746 if (overwrite != cpu_buffer->last_overrun) { 3747 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3748 cpu_buffer->last_overrun = overwrite; 3749 } 3750 3751 goto again; 3752 3753 out: 3754 /* Update the read_stamp on the first event */ 3755 if (reader && reader->read == 0) 3756 cpu_buffer->read_stamp = reader->page->time_stamp; 3757 3758 arch_spin_unlock(&cpu_buffer->lock); 3759 local_irq_restore(flags); 3760 3761 return reader; 3762 } 3763 3764 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3765 { 3766 struct ring_buffer_event *event; 3767 struct buffer_page *reader; 3768 unsigned length; 3769 3770 reader = rb_get_reader_page(cpu_buffer); 3771 3772 /* This function should not be called when buffer is empty */ 3773 if (RB_WARN_ON(cpu_buffer, !reader)) 3774 return; 3775 3776 event = rb_reader_event(cpu_buffer); 3777 3778 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3779 cpu_buffer->read++; 3780 3781 rb_update_read_stamp(cpu_buffer, event); 3782 3783 length = rb_event_length(event); 3784 cpu_buffer->reader_page->read += length; 3785 } 3786 3787 static void rb_advance_iter(struct ring_buffer_iter *iter) 3788 { 3789 struct ring_buffer_per_cpu *cpu_buffer; 3790 struct ring_buffer_event *event; 3791 unsigned length; 3792 3793 cpu_buffer = iter->cpu_buffer; 3794 3795 /* 3796 * Check if we are at the end of the buffer. 3797 */ 3798 if (iter->head >= rb_page_size(iter->head_page)) { 3799 /* discarded commits can make the page empty */ 3800 if (iter->head_page == cpu_buffer->commit_page) 3801 return; 3802 rb_inc_iter(iter); 3803 return; 3804 } 3805 3806 event = rb_iter_head_event(iter); 3807 3808 length = rb_event_length(event); 3809 3810 /* 3811 * This should not be called to advance the header if we are 3812 * at the tail of the buffer. 3813 */ 3814 if (RB_WARN_ON(cpu_buffer, 3815 (iter->head_page == cpu_buffer->commit_page) && 3816 (iter->head + length > rb_commit_index(cpu_buffer)))) 3817 return; 3818 3819 rb_update_iter_read_stamp(iter, event); 3820 3821 iter->head += length; 3822 3823 /* check for end of page padding */ 3824 if ((iter->head >= rb_page_size(iter->head_page)) && 3825 (iter->head_page != cpu_buffer->commit_page)) 3826 rb_inc_iter(iter); 3827 } 3828 3829 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3830 { 3831 return cpu_buffer->lost_events; 3832 } 3833 3834 static struct ring_buffer_event * 3835 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3836 unsigned long *lost_events) 3837 { 3838 struct ring_buffer_event *event; 3839 struct buffer_page *reader; 3840 int nr_loops = 0; 3841 3842 if (ts) 3843 *ts = 0; 3844 again: 3845 /* 3846 * We repeat when a time extend is encountered. 3847 * Since the time extend is always attached to a data event, 3848 * we should never loop more than once. 3849 * (We never hit the following condition more than twice). 3850 */ 3851 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3852 return NULL; 3853 3854 reader = rb_get_reader_page(cpu_buffer); 3855 if (!reader) 3856 return NULL; 3857 3858 event = rb_reader_event(cpu_buffer); 3859 3860 switch (event->type_len) { 3861 case RINGBUF_TYPE_PADDING: 3862 if (rb_null_event(event)) 3863 RB_WARN_ON(cpu_buffer, 1); 3864 /* 3865 * Because the writer could be discarding every 3866 * event it creates (which would probably be bad) 3867 * if we were to go back to "again" then we may never 3868 * catch up, and will trigger the warn on, or lock 3869 * the box. Return the padding, and we will release 3870 * the current locks, and try again. 3871 */ 3872 return event; 3873 3874 case RINGBUF_TYPE_TIME_EXTEND: 3875 /* Internal data, OK to advance */ 3876 rb_advance_reader(cpu_buffer); 3877 goto again; 3878 3879 case RINGBUF_TYPE_TIME_STAMP: 3880 if (ts) { 3881 *ts = ring_buffer_event_time_stamp(event); 3882 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3883 cpu_buffer->cpu, ts); 3884 } 3885 /* Internal data, OK to advance */ 3886 rb_advance_reader(cpu_buffer); 3887 goto again; 3888 3889 case RINGBUF_TYPE_DATA: 3890 if (ts && !(*ts)) { 3891 *ts = cpu_buffer->read_stamp + event->time_delta; 3892 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3893 cpu_buffer->cpu, ts); 3894 } 3895 if (lost_events) 3896 *lost_events = rb_lost_events(cpu_buffer); 3897 return event; 3898 3899 default: 3900 BUG(); 3901 } 3902 3903 return NULL; 3904 } 3905 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3906 3907 static struct ring_buffer_event * 3908 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3909 { 3910 struct ring_buffer *buffer; 3911 struct ring_buffer_per_cpu *cpu_buffer; 3912 struct ring_buffer_event *event; 3913 int nr_loops = 0; 3914 3915 if (ts) 3916 *ts = 0; 3917 3918 cpu_buffer = iter->cpu_buffer; 3919 buffer = cpu_buffer->buffer; 3920 3921 /* 3922 * Check if someone performed a consuming read to 3923 * the buffer. A consuming read invalidates the iterator 3924 * and we need to reset the iterator in this case. 3925 */ 3926 if (unlikely(iter->cache_read != cpu_buffer->read || 3927 iter->cache_reader_page != cpu_buffer->reader_page)) 3928 rb_iter_reset(iter); 3929 3930 again: 3931 if (ring_buffer_iter_empty(iter)) 3932 return NULL; 3933 3934 /* 3935 * We repeat when a time extend is encountered or we hit 3936 * the end of the page. Since the time extend is always attached 3937 * to a data event, we should never loop more than three times. 3938 * Once for going to next page, once on time extend, and 3939 * finally once to get the event. 3940 * (We never hit the following condition more than thrice). 3941 */ 3942 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3943 return NULL; 3944 3945 if (rb_per_cpu_empty(cpu_buffer)) 3946 return NULL; 3947 3948 if (iter->head >= rb_page_size(iter->head_page)) { 3949 rb_inc_iter(iter); 3950 goto again; 3951 } 3952 3953 event = rb_iter_head_event(iter); 3954 3955 switch (event->type_len) { 3956 case RINGBUF_TYPE_PADDING: 3957 if (rb_null_event(event)) { 3958 rb_inc_iter(iter); 3959 goto again; 3960 } 3961 rb_advance_iter(iter); 3962 return event; 3963 3964 case RINGBUF_TYPE_TIME_EXTEND: 3965 /* Internal data, OK to advance */ 3966 rb_advance_iter(iter); 3967 goto again; 3968 3969 case RINGBUF_TYPE_TIME_STAMP: 3970 if (ts) { 3971 *ts = ring_buffer_event_time_stamp(event); 3972 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3973 cpu_buffer->cpu, ts); 3974 } 3975 /* Internal data, OK to advance */ 3976 rb_advance_iter(iter); 3977 goto again; 3978 3979 case RINGBUF_TYPE_DATA: 3980 if (ts && !(*ts)) { 3981 *ts = iter->read_stamp + event->time_delta; 3982 ring_buffer_normalize_time_stamp(buffer, 3983 cpu_buffer->cpu, ts); 3984 } 3985 return event; 3986 3987 default: 3988 BUG(); 3989 } 3990 3991 return NULL; 3992 } 3993 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3994 3995 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 3996 { 3997 if (likely(!in_nmi())) { 3998 raw_spin_lock(&cpu_buffer->reader_lock); 3999 return true; 4000 } 4001 4002 /* 4003 * If an NMI die dumps out the content of the ring buffer 4004 * trylock must be used to prevent a deadlock if the NMI 4005 * preempted a task that holds the ring buffer locks. If 4006 * we get the lock then all is fine, if not, then continue 4007 * to do the read, but this can corrupt the ring buffer, 4008 * so it must be permanently disabled from future writes. 4009 * Reading from NMI is a oneshot deal. 4010 */ 4011 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4012 return true; 4013 4014 /* Continue without locking, but disable the ring buffer */ 4015 atomic_inc(&cpu_buffer->record_disabled); 4016 return false; 4017 } 4018 4019 static inline void 4020 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4021 { 4022 if (likely(locked)) 4023 raw_spin_unlock(&cpu_buffer->reader_lock); 4024 return; 4025 } 4026 4027 /** 4028 * ring_buffer_peek - peek at the next event to be read 4029 * @buffer: The ring buffer to read 4030 * @cpu: The cpu to peak at 4031 * @ts: The timestamp counter of this event. 4032 * @lost_events: a variable to store if events were lost (may be NULL) 4033 * 4034 * This will return the event that will be read next, but does 4035 * not consume the data. 4036 */ 4037 struct ring_buffer_event * 4038 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 4039 unsigned long *lost_events) 4040 { 4041 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4042 struct ring_buffer_event *event; 4043 unsigned long flags; 4044 bool dolock; 4045 4046 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4047 return NULL; 4048 4049 again: 4050 local_irq_save(flags); 4051 dolock = rb_reader_lock(cpu_buffer); 4052 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4053 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4054 rb_advance_reader(cpu_buffer); 4055 rb_reader_unlock(cpu_buffer, dolock); 4056 local_irq_restore(flags); 4057 4058 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4059 goto again; 4060 4061 return event; 4062 } 4063 4064 /** 4065 * ring_buffer_iter_peek - peek at the next event to be read 4066 * @iter: The ring buffer iterator 4067 * @ts: The timestamp counter of this event. 4068 * 4069 * This will return the event that will be read next, but does 4070 * not increment the iterator. 4071 */ 4072 struct ring_buffer_event * 4073 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4074 { 4075 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4076 struct ring_buffer_event *event; 4077 unsigned long flags; 4078 4079 again: 4080 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4081 event = rb_iter_peek(iter, ts); 4082 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4083 4084 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4085 goto again; 4086 4087 return event; 4088 } 4089 4090 /** 4091 * ring_buffer_consume - return an event and consume it 4092 * @buffer: The ring buffer to get the next event from 4093 * @cpu: the cpu to read the buffer from 4094 * @ts: a variable to store the timestamp (may be NULL) 4095 * @lost_events: a variable to store if events were lost (may be NULL) 4096 * 4097 * Returns the next event in the ring buffer, and that event is consumed. 4098 * Meaning, that sequential reads will keep returning a different event, 4099 * and eventually empty the ring buffer if the producer is slower. 4100 */ 4101 struct ring_buffer_event * 4102 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 4103 unsigned long *lost_events) 4104 { 4105 struct ring_buffer_per_cpu *cpu_buffer; 4106 struct ring_buffer_event *event = NULL; 4107 unsigned long flags; 4108 bool dolock; 4109 4110 again: 4111 /* might be called in atomic */ 4112 preempt_disable(); 4113 4114 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4115 goto out; 4116 4117 cpu_buffer = buffer->buffers[cpu]; 4118 local_irq_save(flags); 4119 dolock = rb_reader_lock(cpu_buffer); 4120 4121 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4122 if (event) { 4123 cpu_buffer->lost_events = 0; 4124 rb_advance_reader(cpu_buffer); 4125 } 4126 4127 rb_reader_unlock(cpu_buffer, dolock); 4128 local_irq_restore(flags); 4129 4130 out: 4131 preempt_enable(); 4132 4133 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4134 goto again; 4135 4136 return event; 4137 } 4138 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4139 4140 /** 4141 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4142 * @buffer: The ring buffer to read from 4143 * @cpu: The cpu buffer to iterate over 4144 * 4145 * This performs the initial preparations necessary to iterate 4146 * through the buffer. Memory is allocated, buffer recording 4147 * is disabled, and the iterator pointer is returned to the caller. 4148 * 4149 * Disabling buffer recording prevents the reading from being 4150 * corrupted. This is not a consuming read, so a producer is not 4151 * expected. 4152 * 4153 * After a sequence of ring_buffer_read_prepare calls, the user is 4154 * expected to make at least one call to ring_buffer_read_prepare_sync. 4155 * Afterwards, ring_buffer_read_start is invoked to get things going 4156 * for real. 4157 * 4158 * This overall must be paired with ring_buffer_read_finish. 4159 */ 4160 struct ring_buffer_iter * 4161 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 4162 { 4163 struct ring_buffer_per_cpu *cpu_buffer; 4164 struct ring_buffer_iter *iter; 4165 4166 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4167 return NULL; 4168 4169 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 4170 if (!iter) 4171 return NULL; 4172 4173 cpu_buffer = buffer->buffers[cpu]; 4174 4175 iter->cpu_buffer = cpu_buffer; 4176 4177 atomic_inc(&buffer->resize_disabled); 4178 atomic_inc(&cpu_buffer->record_disabled); 4179 4180 return iter; 4181 } 4182 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4183 4184 /** 4185 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4186 * 4187 * All previously invoked ring_buffer_read_prepare calls to prepare 4188 * iterators will be synchronized. Afterwards, read_buffer_read_start 4189 * calls on those iterators are allowed. 4190 */ 4191 void 4192 ring_buffer_read_prepare_sync(void) 4193 { 4194 synchronize_sched(); 4195 } 4196 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4197 4198 /** 4199 * ring_buffer_read_start - start a non consuming read of the buffer 4200 * @iter: The iterator returned by ring_buffer_read_prepare 4201 * 4202 * This finalizes the startup of an iteration through the buffer. 4203 * The iterator comes from a call to ring_buffer_read_prepare and 4204 * an intervening ring_buffer_read_prepare_sync must have been 4205 * performed. 4206 * 4207 * Must be paired with ring_buffer_read_finish. 4208 */ 4209 void 4210 ring_buffer_read_start(struct ring_buffer_iter *iter) 4211 { 4212 struct ring_buffer_per_cpu *cpu_buffer; 4213 unsigned long flags; 4214 4215 if (!iter) 4216 return; 4217 4218 cpu_buffer = iter->cpu_buffer; 4219 4220 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4221 arch_spin_lock(&cpu_buffer->lock); 4222 rb_iter_reset(iter); 4223 arch_spin_unlock(&cpu_buffer->lock); 4224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4225 } 4226 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4227 4228 /** 4229 * ring_buffer_read_finish - finish reading the iterator of the buffer 4230 * @iter: The iterator retrieved by ring_buffer_start 4231 * 4232 * This re-enables the recording to the buffer, and frees the 4233 * iterator. 4234 */ 4235 void 4236 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4237 { 4238 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4239 unsigned long flags; 4240 4241 /* 4242 * Ring buffer is disabled from recording, here's a good place 4243 * to check the integrity of the ring buffer. 4244 * Must prevent readers from trying to read, as the check 4245 * clears the HEAD page and readers require it. 4246 */ 4247 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4248 rb_check_pages(cpu_buffer); 4249 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4250 4251 atomic_dec(&cpu_buffer->record_disabled); 4252 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4253 kfree(iter); 4254 } 4255 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4256 4257 /** 4258 * ring_buffer_read - read the next item in the ring buffer by the iterator 4259 * @iter: The ring buffer iterator 4260 * @ts: The time stamp of the event read. 4261 * 4262 * This reads the next event in the ring buffer and increments the iterator. 4263 */ 4264 struct ring_buffer_event * 4265 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4266 { 4267 struct ring_buffer_event *event; 4268 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4269 unsigned long flags; 4270 4271 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4272 again: 4273 event = rb_iter_peek(iter, ts); 4274 if (!event) 4275 goto out; 4276 4277 if (event->type_len == RINGBUF_TYPE_PADDING) 4278 goto again; 4279 4280 rb_advance_iter(iter); 4281 out: 4282 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4283 4284 return event; 4285 } 4286 EXPORT_SYMBOL_GPL(ring_buffer_read); 4287 4288 /** 4289 * ring_buffer_size - return the size of the ring buffer (in bytes) 4290 * @buffer: The ring buffer. 4291 */ 4292 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4293 { 4294 /* 4295 * Earlier, this method returned 4296 * BUF_PAGE_SIZE * buffer->nr_pages 4297 * Since the nr_pages field is now removed, we have converted this to 4298 * return the per cpu buffer value. 4299 */ 4300 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4301 return 0; 4302 4303 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4304 } 4305 EXPORT_SYMBOL_GPL(ring_buffer_size); 4306 4307 static void 4308 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4309 { 4310 rb_head_page_deactivate(cpu_buffer); 4311 4312 cpu_buffer->head_page 4313 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4314 local_set(&cpu_buffer->head_page->write, 0); 4315 local_set(&cpu_buffer->head_page->entries, 0); 4316 local_set(&cpu_buffer->head_page->page->commit, 0); 4317 4318 cpu_buffer->head_page->read = 0; 4319 4320 cpu_buffer->tail_page = cpu_buffer->head_page; 4321 cpu_buffer->commit_page = cpu_buffer->head_page; 4322 4323 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4324 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4325 local_set(&cpu_buffer->reader_page->write, 0); 4326 local_set(&cpu_buffer->reader_page->entries, 0); 4327 local_set(&cpu_buffer->reader_page->page->commit, 0); 4328 cpu_buffer->reader_page->read = 0; 4329 4330 local_set(&cpu_buffer->entries_bytes, 0); 4331 local_set(&cpu_buffer->overrun, 0); 4332 local_set(&cpu_buffer->commit_overrun, 0); 4333 local_set(&cpu_buffer->dropped_events, 0); 4334 local_set(&cpu_buffer->entries, 0); 4335 local_set(&cpu_buffer->committing, 0); 4336 local_set(&cpu_buffer->commits, 0); 4337 cpu_buffer->read = 0; 4338 cpu_buffer->read_bytes = 0; 4339 4340 cpu_buffer->write_stamp = 0; 4341 cpu_buffer->read_stamp = 0; 4342 4343 cpu_buffer->lost_events = 0; 4344 cpu_buffer->last_overrun = 0; 4345 4346 rb_head_page_activate(cpu_buffer); 4347 } 4348 4349 /** 4350 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4351 * @buffer: The ring buffer to reset a per cpu buffer of 4352 * @cpu: The CPU buffer to be reset 4353 */ 4354 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4355 { 4356 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4357 unsigned long flags; 4358 4359 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4360 return; 4361 4362 atomic_inc(&buffer->resize_disabled); 4363 atomic_inc(&cpu_buffer->record_disabled); 4364 4365 /* Make sure all commits have finished */ 4366 synchronize_sched(); 4367 4368 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4369 4370 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4371 goto out; 4372 4373 arch_spin_lock(&cpu_buffer->lock); 4374 4375 rb_reset_cpu(cpu_buffer); 4376 4377 arch_spin_unlock(&cpu_buffer->lock); 4378 4379 out: 4380 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4381 4382 atomic_dec(&cpu_buffer->record_disabled); 4383 atomic_dec(&buffer->resize_disabled); 4384 } 4385 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4386 4387 /** 4388 * ring_buffer_reset - reset a ring buffer 4389 * @buffer: The ring buffer to reset all cpu buffers 4390 */ 4391 void ring_buffer_reset(struct ring_buffer *buffer) 4392 { 4393 int cpu; 4394 4395 for_each_buffer_cpu(buffer, cpu) 4396 ring_buffer_reset_cpu(buffer, cpu); 4397 } 4398 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4399 4400 /** 4401 * rind_buffer_empty - is the ring buffer empty? 4402 * @buffer: The ring buffer to test 4403 */ 4404 bool ring_buffer_empty(struct ring_buffer *buffer) 4405 { 4406 struct ring_buffer_per_cpu *cpu_buffer; 4407 unsigned long flags; 4408 bool dolock; 4409 int cpu; 4410 int ret; 4411 4412 /* yes this is racy, but if you don't like the race, lock the buffer */ 4413 for_each_buffer_cpu(buffer, cpu) { 4414 cpu_buffer = buffer->buffers[cpu]; 4415 local_irq_save(flags); 4416 dolock = rb_reader_lock(cpu_buffer); 4417 ret = rb_per_cpu_empty(cpu_buffer); 4418 rb_reader_unlock(cpu_buffer, dolock); 4419 local_irq_restore(flags); 4420 4421 if (!ret) 4422 return false; 4423 } 4424 4425 return true; 4426 } 4427 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4428 4429 /** 4430 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4431 * @buffer: The ring buffer 4432 * @cpu: The CPU buffer to test 4433 */ 4434 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4435 { 4436 struct ring_buffer_per_cpu *cpu_buffer; 4437 unsigned long flags; 4438 bool dolock; 4439 int ret; 4440 4441 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4442 return true; 4443 4444 cpu_buffer = buffer->buffers[cpu]; 4445 local_irq_save(flags); 4446 dolock = rb_reader_lock(cpu_buffer); 4447 ret = rb_per_cpu_empty(cpu_buffer); 4448 rb_reader_unlock(cpu_buffer, dolock); 4449 local_irq_restore(flags); 4450 4451 return ret; 4452 } 4453 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4454 4455 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4456 /** 4457 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4458 * @buffer_a: One buffer to swap with 4459 * @buffer_b: The other buffer to swap with 4460 * 4461 * This function is useful for tracers that want to take a "snapshot" 4462 * of a CPU buffer and has another back up buffer lying around. 4463 * it is expected that the tracer handles the cpu buffer not being 4464 * used at the moment. 4465 */ 4466 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4467 struct ring_buffer *buffer_b, int cpu) 4468 { 4469 struct ring_buffer_per_cpu *cpu_buffer_a; 4470 struct ring_buffer_per_cpu *cpu_buffer_b; 4471 int ret = -EINVAL; 4472 4473 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4474 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4475 goto out; 4476 4477 cpu_buffer_a = buffer_a->buffers[cpu]; 4478 cpu_buffer_b = buffer_b->buffers[cpu]; 4479 4480 /* At least make sure the two buffers are somewhat the same */ 4481 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4482 goto out; 4483 4484 ret = -EAGAIN; 4485 4486 if (atomic_read(&buffer_a->record_disabled)) 4487 goto out; 4488 4489 if (atomic_read(&buffer_b->record_disabled)) 4490 goto out; 4491 4492 if (atomic_read(&cpu_buffer_a->record_disabled)) 4493 goto out; 4494 4495 if (atomic_read(&cpu_buffer_b->record_disabled)) 4496 goto out; 4497 4498 /* 4499 * We can't do a synchronize_sched here because this 4500 * function can be called in atomic context. 4501 * Normally this will be called from the same CPU as cpu. 4502 * If not it's up to the caller to protect this. 4503 */ 4504 atomic_inc(&cpu_buffer_a->record_disabled); 4505 atomic_inc(&cpu_buffer_b->record_disabled); 4506 4507 ret = -EBUSY; 4508 if (local_read(&cpu_buffer_a->committing)) 4509 goto out_dec; 4510 if (local_read(&cpu_buffer_b->committing)) 4511 goto out_dec; 4512 4513 buffer_a->buffers[cpu] = cpu_buffer_b; 4514 buffer_b->buffers[cpu] = cpu_buffer_a; 4515 4516 cpu_buffer_b->buffer = buffer_a; 4517 cpu_buffer_a->buffer = buffer_b; 4518 4519 ret = 0; 4520 4521 out_dec: 4522 atomic_dec(&cpu_buffer_a->record_disabled); 4523 atomic_dec(&cpu_buffer_b->record_disabled); 4524 out: 4525 return ret; 4526 } 4527 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4528 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4529 4530 /** 4531 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4532 * @buffer: the buffer to allocate for. 4533 * @cpu: the cpu buffer to allocate. 4534 * 4535 * This function is used in conjunction with ring_buffer_read_page. 4536 * When reading a full page from the ring buffer, these functions 4537 * can be used to speed up the process. The calling function should 4538 * allocate a few pages first with this function. Then when it 4539 * needs to get pages from the ring buffer, it passes the result 4540 * of this function into ring_buffer_read_page, which will swap 4541 * the page that was allocated, with the read page of the buffer. 4542 * 4543 * Returns: 4544 * The page allocated, or ERR_PTR 4545 */ 4546 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4547 { 4548 struct ring_buffer_per_cpu *cpu_buffer; 4549 struct buffer_data_page *bpage = NULL; 4550 unsigned long flags; 4551 struct page *page; 4552 4553 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4554 return ERR_PTR(-ENODEV); 4555 4556 cpu_buffer = buffer->buffers[cpu]; 4557 local_irq_save(flags); 4558 arch_spin_lock(&cpu_buffer->lock); 4559 4560 if (cpu_buffer->free_page) { 4561 bpage = cpu_buffer->free_page; 4562 cpu_buffer->free_page = NULL; 4563 } 4564 4565 arch_spin_unlock(&cpu_buffer->lock); 4566 local_irq_restore(flags); 4567 4568 if (bpage) 4569 goto out; 4570 4571 page = alloc_pages_node(cpu_to_node(cpu), 4572 GFP_KERNEL | __GFP_NORETRY, 0); 4573 if (!page) 4574 return ERR_PTR(-ENOMEM); 4575 4576 bpage = page_address(page); 4577 4578 out: 4579 rb_init_page(bpage); 4580 4581 return bpage; 4582 } 4583 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4584 4585 /** 4586 * ring_buffer_free_read_page - free an allocated read page 4587 * @buffer: the buffer the page was allocate for 4588 * @cpu: the cpu buffer the page came from 4589 * @data: the page to free 4590 * 4591 * Free a page allocated from ring_buffer_alloc_read_page. 4592 */ 4593 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data) 4594 { 4595 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4596 struct buffer_data_page *bpage = data; 4597 struct page *page = virt_to_page(bpage); 4598 unsigned long flags; 4599 4600 /* If the page is still in use someplace else, we can't reuse it */ 4601 if (page_ref_count(page) > 1) 4602 goto out; 4603 4604 local_irq_save(flags); 4605 arch_spin_lock(&cpu_buffer->lock); 4606 4607 if (!cpu_buffer->free_page) { 4608 cpu_buffer->free_page = bpage; 4609 bpage = NULL; 4610 } 4611 4612 arch_spin_unlock(&cpu_buffer->lock); 4613 local_irq_restore(flags); 4614 4615 out: 4616 free_page((unsigned long)bpage); 4617 } 4618 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4619 4620 /** 4621 * ring_buffer_read_page - extract a page from the ring buffer 4622 * @buffer: buffer to extract from 4623 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4624 * @len: amount to extract 4625 * @cpu: the cpu of the buffer to extract 4626 * @full: should the extraction only happen when the page is full. 4627 * 4628 * This function will pull out a page from the ring buffer and consume it. 4629 * @data_page must be the address of the variable that was returned 4630 * from ring_buffer_alloc_read_page. This is because the page might be used 4631 * to swap with a page in the ring buffer. 4632 * 4633 * for example: 4634 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4635 * if (IS_ERR(rpage)) 4636 * return PTR_ERR(rpage); 4637 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4638 * if (ret >= 0) 4639 * process_page(rpage, ret); 4640 * 4641 * When @full is set, the function will not return true unless 4642 * the writer is off the reader page. 4643 * 4644 * Note: it is up to the calling functions to handle sleeps and wakeups. 4645 * The ring buffer can be used anywhere in the kernel and can not 4646 * blindly call wake_up. The layer that uses the ring buffer must be 4647 * responsible for that. 4648 * 4649 * Returns: 4650 * >=0 if data has been transferred, returns the offset of consumed data. 4651 * <0 if no data has been transferred. 4652 */ 4653 int ring_buffer_read_page(struct ring_buffer *buffer, 4654 void **data_page, size_t len, int cpu, int full) 4655 { 4656 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4657 struct ring_buffer_event *event; 4658 struct buffer_data_page *bpage; 4659 struct buffer_page *reader; 4660 unsigned long missed_events; 4661 unsigned long flags; 4662 unsigned int commit; 4663 unsigned int read; 4664 u64 save_timestamp; 4665 int ret = -1; 4666 4667 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4668 goto out; 4669 4670 /* 4671 * If len is not big enough to hold the page header, then 4672 * we can not copy anything. 4673 */ 4674 if (len <= BUF_PAGE_HDR_SIZE) 4675 goto out; 4676 4677 len -= BUF_PAGE_HDR_SIZE; 4678 4679 if (!data_page) 4680 goto out; 4681 4682 bpage = *data_page; 4683 if (!bpage) 4684 goto out; 4685 4686 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4687 4688 reader = rb_get_reader_page(cpu_buffer); 4689 if (!reader) 4690 goto out_unlock; 4691 4692 event = rb_reader_event(cpu_buffer); 4693 4694 read = reader->read; 4695 commit = rb_page_commit(reader); 4696 4697 /* Check if any events were dropped */ 4698 missed_events = cpu_buffer->lost_events; 4699 4700 /* 4701 * If this page has been partially read or 4702 * if len is not big enough to read the rest of the page or 4703 * a writer is still on the page, then 4704 * we must copy the data from the page to the buffer. 4705 * Otherwise, we can simply swap the page with the one passed in. 4706 */ 4707 if (read || (len < (commit - read)) || 4708 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4709 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4710 unsigned int rpos = read; 4711 unsigned int pos = 0; 4712 unsigned int size; 4713 4714 if (full) 4715 goto out_unlock; 4716 4717 if (len > (commit - read)) 4718 len = (commit - read); 4719 4720 /* Always keep the time extend and data together */ 4721 size = rb_event_ts_length(event); 4722 4723 if (len < size) 4724 goto out_unlock; 4725 4726 /* save the current timestamp, since the user will need it */ 4727 save_timestamp = cpu_buffer->read_stamp; 4728 4729 /* Need to copy one event at a time */ 4730 do { 4731 /* We need the size of one event, because 4732 * rb_advance_reader only advances by one event, 4733 * whereas rb_event_ts_length may include the size of 4734 * one or two events. 4735 * We have already ensured there's enough space if this 4736 * is a time extend. */ 4737 size = rb_event_length(event); 4738 memcpy(bpage->data + pos, rpage->data + rpos, size); 4739 4740 len -= size; 4741 4742 rb_advance_reader(cpu_buffer); 4743 rpos = reader->read; 4744 pos += size; 4745 4746 if (rpos >= commit) 4747 break; 4748 4749 event = rb_reader_event(cpu_buffer); 4750 /* Always keep the time extend and data together */ 4751 size = rb_event_ts_length(event); 4752 } while (len >= size); 4753 4754 /* update bpage */ 4755 local_set(&bpage->commit, pos); 4756 bpage->time_stamp = save_timestamp; 4757 4758 /* we copied everything to the beginning */ 4759 read = 0; 4760 } else { 4761 /* update the entry counter */ 4762 cpu_buffer->read += rb_page_entries(reader); 4763 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4764 4765 /* swap the pages */ 4766 rb_init_page(bpage); 4767 bpage = reader->page; 4768 reader->page = *data_page; 4769 local_set(&reader->write, 0); 4770 local_set(&reader->entries, 0); 4771 reader->read = 0; 4772 *data_page = bpage; 4773 4774 /* 4775 * Use the real_end for the data size, 4776 * This gives us a chance to store the lost events 4777 * on the page. 4778 */ 4779 if (reader->real_end) 4780 local_set(&bpage->commit, reader->real_end); 4781 } 4782 ret = read; 4783 4784 cpu_buffer->lost_events = 0; 4785 4786 commit = local_read(&bpage->commit); 4787 /* 4788 * Set a flag in the commit field if we lost events 4789 */ 4790 if (missed_events) { 4791 /* If there is room at the end of the page to save the 4792 * missed events, then record it there. 4793 */ 4794 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4795 memcpy(&bpage->data[commit], &missed_events, 4796 sizeof(missed_events)); 4797 local_add(RB_MISSED_STORED, &bpage->commit); 4798 commit += sizeof(missed_events); 4799 } 4800 local_add(RB_MISSED_EVENTS, &bpage->commit); 4801 } 4802 4803 /* 4804 * This page may be off to user land. Zero it out here. 4805 */ 4806 if (commit < BUF_PAGE_SIZE) 4807 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4808 4809 out_unlock: 4810 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4811 4812 out: 4813 return ret; 4814 } 4815 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4816 4817 /* 4818 * We only allocate new buffers, never free them if the CPU goes down. 4819 * If we were to free the buffer, then the user would lose any trace that was in 4820 * the buffer. 4821 */ 4822 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 4823 { 4824 struct ring_buffer *buffer; 4825 long nr_pages_same; 4826 int cpu_i; 4827 unsigned long nr_pages; 4828 4829 buffer = container_of(node, struct ring_buffer, node); 4830 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4831 return 0; 4832 4833 nr_pages = 0; 4834 nr_pages_same = 1; 4835 /* check if all cpu sizes are same */ 4836 for_each_buffer_cpu(buffer, cpu_i) { 4837 /* fill in the size from first enabled cpu */ 4838 if (nr_pages == 0) 4839 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4840 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4841 nr_pages_same = 0; 4842 break; 4843 } 4844 } 4845 /* allocate minimum pages, user can later expand it */ 4846 if (!nr_pages_same) 4847 nr_pages = 2; 4848 buffer->buffers[cpu] = 4849 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4850 if (!buffer->buffers[cpu]) { 4851 WARN(1, "failed to allocate ring buffer on CPU %u\n", 4852 cpu); 4853 return -ENOMEM; 4854 } 4855 smp_wmb(); 4856 cpumask_set_cpu(cpu, buffer->cpumask); 4857 return 0; 4858 } 4859 4860 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4861 /* 4862 * This is a basic integrity check of the ring buffer. 4863 * Late in the boot cycle this test will run when configured in. 4864 * It will kick off a thread per CPU that will go into a loop 4865 * writing to the per cpu ring buffer various sizes of data. 4866 * Some of the data will be large items, some small. 4867 * 4868 * Another thread is created that goes into a spin, sending out 4869 * IPIs to the other CPUs to also write into the ring buffer. 4870 * this is to test the nesting ability of the buffer. 4871 * 4872 * Basic stats are recorded and reported. If something in the 4873 * ring buffer should happen that's not expected, a big warning 4874 * is displayed and all ring buffers are disabled. 4875 */ 4876 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4877 4878 struct rb_test_data { 4879 struct ring_buffer *buffer; 4880 unsigned long events; 4881 unsigned long bytes_written; 4882 unsigned long bytes_alloc; 4883 unsigned long bytes_dropped; 4884 unsigned long events_nested; 4885 unsigned long bytes_written_nested; 4886 unsigned long bytes_alloc_nested; 4887 unsigned long bytes_dropped_nested; 4888 int min_size_nested; 4889 int max_size_nested; 4890 int max_size; 4891 int min_size; 4892 int cpu; 4893 int cnt; 4894 }; 4895 4896 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4897 4898 /* 1 meg per cpu */ 4899 #define RB_TEST_BUFFER_SIZE 1048576 4900 4901 static char rb_string[] __initdata = 4902 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4903 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4904 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4905 4906 static bool rb_test_started __initdata; 4907 4908 struct rb_item { 4909 int size; 4910 char str[]; 4911 }; 4912 4913 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4914 { 4915 struct ring_buffer_event *event; 4916 struct rb_item *item; 4917 bool started; 4918 int event_len; 4919 int size; 4920 int len; 4921 int cnt; 4922 4923 /* Have nested writes different that what is written */ 4924 cnt = data->cnt + (nested ? 27 : 0); 4925 4926 /* Multiply cnt by ~e, to make some unique increment */ 4927 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4928 4929 len = size + sizeof(struct rb_item); 4930 4931 started = rb_test_started; 4932 /* read rb_test_started before checking buffer enabled */ 4933 smp_rmb(); 4934 4935 event = ring_buffer_lock_reserve(data->buffer, len); 4936 if (!event) { 4937 /* Ignore dropped events before test starts. */ 4938 if (started) { 4939 if (nested) 4940 data->bytes_dropped += len; 4941 else 4942 data->bytes_dropped_nested += len; 4943 } 4944 return len; 4945 } 4946 4947 event_len = ring_buffer_event_length(event); 4948 4949 if (RB_WARN_ON(data->buffer, event_len < len)) 4950 goto out; 4951 4952 item = ring_buffer_event_data(event); 4953 item->size = size; 4954 memcpy(item->str, rb_string, size); 4955 4956 if (nested) { 4957 data->bytes_alloc_nested += event_len; 4958 data->bytes_written_nested += len; 4959 data->events_nested++; 4960 if (!data->min_size_nested || len < data->min_size_nested) 4961 data->min_size_nested = len; 4962 if (len > data->max_size_nested) 4963 data->max_size_nested = len; 4964 } else { 4965 data->bytes_alloc += event_len; 4966 data->bytes_written += len; 4967 data->events++; 4968 if (!data->min_size || len < data->min_size) 4969 data->max_size = len; 4970 if (len > data->max_size) 4971 data->max_size = len; 4972 } 4973 4974 out: 4975 ring_buffer_unlock_commit(data->buffer, event); 4976 4977 return 0; 4978 } 4979 4980 static __init int rb_test(void *arg) 4981 { 4982 struct rb_test_data *data = arg; 4983 4984 while (!kthread_should_stop()) { 4985 rb_write_something(data, false); 4986 data->cnt++; 4987 4988 set_current_state(TASK_INTERRUPTIBLE); 4989 /* Now sleep between a min of 100-300us and a max of 1ms */ 4990 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4991 } 4992 4993 return 0; 4994 } 4995 4996 static __init void rb_ipi(void *ignore) 4997 { 4998 struct rb_test_data *data; 4999 int cpu = smp_processor_id(); 5000 5001 data = &rb_data[cpu]; 5002 rb_write_something(data, true); 5003 } 5004 5005 static __init int rb_hammer_test(void *arg) 5006 { 5007 while (!kthread_should_stop()) { 5008 5009 /* Send an IPI to all cpus to write data! */ 5010 smp_call_function(rb_ipi, NULL, 1); 5011 /* No sleep, but for non preempt, let others run */ 5012 schedule(); 5013 } 5014 5015 return 0; 5016 } 5017 5018 static __init int test_ringbuffer(void) 5019 { 5020 struct task_struct *rb_hammer; 5021 struct ring_buffer *buffer; 5022 int cpu; 5023 int ret = 0; 5024 5025 pr_info("Running ring buffer tests...\n"); 5026 5027 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5028 if (WARN_ON(!buffer)) 5029 return 0; 5030 5031 /* Disable buffer so that threads can't write to it yet */ 5032 ring_buffer_record_off(buffer); 5033 5034 for_each_online_cpu(cpu) { 5035 rb_data[cpu].buffer = buffer; 5036 rb_data[cpu].cpu = cpu; 5037 rb_data[cpu].cnt = cpu; 5038 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5039 "rbtester/%d", cpu); 5040 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5041 pr_cont("FAILED\n"); 5042 ret = PTR_ERR(rb_threads[cpu]); 5043 goto out_free; 5044 } 5045 5046 kthread_bind(rb_threads[cpu], cpu); 5047 wake_up_process(rb_threads[cpu]); 5048 } 5049 5050 /* Now create the rb hammer! */ 5051 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5052 if (WARN_ON(IS_ERR(rb_hammer))) { 5053 pr_cont("FAILED\n"); 5054 ret = PTR_ERR(rb_hammer); 5055 goto out_free; 5056 } 5057 5058 ring_buffer_record_on(buffer); 5059 /* 5060 * Show buffer is enabled before setting rb_test_started. 5061 * Yes there's a small race window where events could be 5062 * dropped and the thread wont catch it. But when a ring 5063 * buffer gets enabled, there will always be some kind of 5064 * delay before other CPUs see it. Thus, we don't care about 5065 * those dropped events. We care about events dropped after 5066 * the threads see that the buffer is active. 5067 */ 5068 smp_wmb(); 5069 rb_test_started = true; 5070 5071 set_current_state(TASK_INTERRUPTIBLE); 5072 /* Just run for 10 seconds */; 5073 schedule_timeout(10 * HZ); 5074 5075 kthread_stop(rb_hammer); 5076 5077 out_free: 5078 for_each_online_cpu(cpu) { 5079 if (!rb_threads[cpu]) 5080 break; 5081 kthread_stop(rb_threads[cpu]); 5082 } 5083 if (ret) { 5084 ring_buffer_free(buffer); 5085 return ret; 5086 } 5087 5088 /* Report! */ 5089 pr_info("finished\n"); 5090 for_each_online_cpu(cpu) { 5091 struct ring_buffer_event *event; 5092 struct rb_test_data *data = &rb_data[cpu]; 5093 struct rb_item *item; 5094 unsigned long total_events; 5095 unsigned long total_dropped; 5096 unsigned long total_written; 5097 unsigned long total_alloc; 5098 unsigned long total_read = 0; 5099 unsigned long total_size = 0; 5100 unsigned long total_len = 0; 5101 unsigned long total_lost = 0; 5102 unsigned long lost; 5103 int big_event_size; 5104 int small_event_size; 5105 5106 ret = -1; 5107 5108 total_events = data->events + data->events_nested; 5109 total_written = data->bytes_written + data->bytes_written_nested; 5110 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5111 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5112 5113 big_event_size = data->max_size + data->max_size_nested; 5114 small_event_size = data->min_size + data->min_size_nested; 5115 5116 pr_info("CPU %d:\n", cpu); 5117 pr_info(" events: %ld\n", total_events); 5118 pr_info(" dropped bytes: %ld\n", total_dropped); 5119 pr_info(" alloced bytes: %ld\n", total_alloc); 5120 pr_info(" written bytes: %ld\n", total_written); 5121 pr_info(" biggest event: %d\n", big_event_size); 5122 pr_info(" smallest event: %d\n", small_event_size); 5123 5124 if (RB_WARN_ON(buffer, total_dropped)) 5125 break; 5126 5127 ret = 0; 5128 5129 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5130 total_lost += lost; 5131 item = ring_buffer_event_data(event); 5132 total_len += ring_buffer_event_length(event); 5133 total_size += item->size + sizeof(struct rb_item); 5134 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5135 pr_info("FAILED!\n"); 5136 pr_info("buffer had: %.*s\n", item->size, item->str); 5137 pr_info("expected: %.*s\n", item->size, rb_string); 5138 RB_WARN_ON(buffer, 1); 5139 ret = -1; 5140 break; 5141 } 5142 total_read++; 5143 } 5144 if (ret) 5145 break; 5146 5147 ret = -1; 5148 5149 pr_info(" read events: %ld\n", total_read); 5150 pr_info(" lost events: %ld\n", total_lost); 5151 pr_info(" total events: %ld\n", total_lost + total_read); 5152 pr_info(" recorded len bytes: %ld\n", total_len); 5153 pr_info(" recorded size bytes: %ld\n", total_size); 5154 if (total_lost) 5155 pr_info(" With dropped events, record len and size may not match\n" 5156 " alloced and written from above\n"); 5157 if (!total_lost) { 5158 if (RB_WARN_ON(buffer, total_len != total_alloc || 5159 total_size != total_written)) 5160 break; 5161 } 5162 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5163 break; 5164 5165 ret = 0; 5166 } 5167 if (!ret) 5168 pr_info("Ring buffer PASSED!\n"); 5169 5170 ring_buffer_free(buffer); 5171 return 0; 5172 } 5173 5174 late_initcall(test_ringbuffer); 5175 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5176