xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 0c874100)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>	/* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	trace_seq_puts(s, "# compressed entry header\n");
38 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40 	trace_seq_puts(s, "\tarray       :   32 bits\n");
41 	trace_seq_putc(s, '\n');
42 	trace_seq_printf(s, "\tpadding     : type == %d\n",
43 			 RINGBUF_TYPE_PADDING);
44 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 			 RINGBUF_TYPE_TIME_EXTEND);
46 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 			 RINGBUF_TYPE_TIME_STAMP);
48 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return !trace_seq_has_overflowed(s);
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF		(1 << 20)
124 
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126 
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT		4U
129 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
131 
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT	0
134 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT	1
137 # define RB_ARCH_ALIGNMENT		8U
138 #endif
139 
140 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
141 
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144 
145 enum {
146 	RB_LEN_TIME_EXTEND = 8,
147 	RB_LEN_TIME_STAMP =  8,
148 };
149 
150 #define skip_time_extend(event) \
151 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152 
153 #define extended_time(event) \
154 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155 
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160 
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163 	/* padding has a NULL time_delta */
164 	event->type_len = RINGBUF_TYPE_PADDING;
165 	event->time_delta = 0;
166 }
167 
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171 	unsigned length;
172 
173 	if (event->type_len)
174 		length = event->type_len * RB_ALIGNMENT;
175 	else
176 		length = event->array[0];
177 	return length + RB_EVNT_HDR_SIZE;
178 }
179 
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188 	switch (event->type_len) {
189 	case RINGBUF_TYPE_PADDING:
190 		if (rb_null_event(event))
191 			/* undefined */
192 			return -1;
193 		return  event->array[0] + RB_EVNT_HDR_SIZE;
194 
195 	case RINGBUF_TYPE_TIME_EXTEND:
196 		return RB_LEN_TIME_EXTEND;
197 
198 	case RINGBUF_TYPE_TIME_STAMP:
199 		return RB_LEN_TIME_STAMP;
200 
201 	case RINGBUF_TYPE_DATA:
202 		return rb_event_data_length(event);
203 	default:
204 		BUG();
205 	}
206 	/* not hit */
207 	return 0;
208 }
209 
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217 	unsigned len = 0;
218 
219 	if (extended_time(event)) {
220 		/* time extends include the data event after it */
221 		len = RB_LEN_TIME_EXTEND;
222 		event = skip_time_extend(event);
223 	}
224 	return len + rb_event_length(event);
225 }
226 
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239 	unsigned length;
240 
241 	if (extended_time(event))
242 		event = skip_time_extend(event);
243 
244 	length = rb_event_length(event);
245 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246 		return length;
247 	length -= RB_EVNT_HDR_SIZE;
248 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250 	return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253 
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258 	if (extended_time(event))
259 		event = skip_time_extend(event);
260 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261 	/* If length is in len field, then array[0] has the data */
262 	if (event->type_len)
263 		return (void *)&event->array[0];
264 	/* Otherwise length is in array[0] and array[1] has the data */
265 	return (void *)&event->array[1];
266 }
267 
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274 	return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277 
278 #define for_each_buffer_cpu(buffer, cpu)		\
279 	for_each_cpu(cpu, buffer->cpumask)
280 
281 #define TS_SHIFT	27
282 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST	(~TS_MASK)
284 
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297 	u64 ts;
298 
299 	ts = event->array[0];
300 	ts <<= TS_SHIFT;
301 	ts += event->time_delta;
302 
303 	return ts;
304 }
305 
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS	(1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED	(1 << 30)
310 
311 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
312 
313 struct buffer_data_page {
314 	u64		 time_stamp;	/* page time stamp */
315 	local_t		 commit;	/* write committed index */
316 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
317 };
318 
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328 	struct list_head list;		/* list of buffer pages */
329 	local_t		 write;		/* index for next write */
330 	unsigned	 read;		/* index for next read */
331 	local_t		 entries;	/* entries on this page */
332 	unsigned long	 real_end;	/* real end of data */
333 	struct buffer_data_page *page;	/* Actual data page */
334 };
335 
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK		0xfffff
349 #define RB_WRITE_INTCNT		(1 << 20)
350 
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353 	local_set(&bpage->commit, 0);
354 }
355 
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364 	struct buffer_data_page *bpage = page;
365 
366 	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367 		+ BUF_PAGE_HDR_SIZE;
368 }
369 
370 /*
371  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372  * this issue out.
373  */
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376 	free_page((unsigned long)bpage->page);
377 	kfree(bpage);
378 }
379 
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline int test_time_stamp(u64 delta)
384 {
385 	if (delta & TS_DELTA_TEST)
386 		return 1;
387 	return 0;
388 }
389 
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391 
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394 
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397 	struct buffer_data_page field;
398 
399 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)sizeof(field.time_stamp),
402 			 (unsigned int)is_signed_type(u64));
403 
404 	trace_seq_printf(s, "\tfield: local_t commit;\t"
405 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			 (unsigned int)offsetof(typeof(field), commit),
407 			 (unsigned int)sizeof(field.commit),
408 			 (unsigned int)is_signed_type(long));
409 
410 	trace_seq_printf(s, "\tfield: int overwrite;\t"
411 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 			 (unsigned int)offsetof(typeof(field), commit),
413 			 1,
414 			 (unsigned int)is_signed_type(long));
415 
416 	trace_seq_printf(s, "\tfield: char data;\t"
417 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
418 			 (unsigned int)offsetof(typeof(field), data),
419 			 (unsigned int)BUF_PAGE_SIZE,
420 			 (unsigned int)is_signed_type(char));
421 
422 	return !trace_seq_has_overflowed(s);
423 }
424 
425 struct rb_irq_work {
426 	struct irq_work			work;
427 	wait_queue_head_t		waiters;
428 	wait_queue_head_t		full_waiters;
429 	bool				waiters_pending;
430 	bool				full_waiters_pending;
431 	bool				wakeup_full;
432 };
433 
434 /*
435  * Structure to hold event state and handle nested events.
436  */
437 struct rb_event_info {
438 	u64			ts;
439 	u64			delta;
440 	unsigned long		length;
441 	struct buffer_page	*tail_page;
442 	int			add_timestamp;
443 };
444 
445 /*
446  * Used for which event context the event is in.
447  *  NMI     = 0
448  *  IRQ     = 1
449  *  SOFTIRQ = 2
450  *  NORMAL  = 3
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_NMI,
456 	RB_CTX_IRQ,
457 	RB_CTX_SOFTIRQ,
458 	RB_CTX_NORMAL,
459 	RB_CTX_MAX
460 };
461 
462 /*
463  * head_page == tail_page && head == tail then buffer is empty.
464  */
465 struct ring_buffer_per_cpu {
466 	int				cpu;
467 	atomic_t			record_disabled;
468 	struct ring_buffer		*buffer;
469 	raw_spinlock_t			reader_lock;	/* serialize readers */
470 	arch_spinlock_t			lock;
471 	struct lock_class_key		lock_key;
472 	struct buffer_data_page		*free_page;
473 	unsigned long			nr_pages;
474 	unsigned int			current_context;
475 	struct list_head		*pages;
476 	struct buffer_page		*head_page;	/* read from head */
477 	struct buffer_page		*tail_page;	/* write to tail */
478 	struct buffer_page		*commit_page;	/* committed pages */
479 	struct buffer_page		*reader_page;
480 	unsigned long			lost_events;
481 	unsigned long			last_overrun;
482 	unsigned long			nest;
483 	local_t				entries_bytes;
484 	local_t				entries;
485 	local_t				overrun;
486 	local_t				commit_overrun;
487 	local_t				dropped_events;
488 	local_t				committing;
489 	local_t				commits;
490 	unsigned long			read;
491 	unsigned long			read_bytes;
492 	u64				write_stamp;
493 	u64				read_stamp;
494 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
495 	long				nr_pages_to_update;
496 	struct list_head		new_pages; /* new pages to add */
497 	struct work_struct		update_pages_work;
498 	struct completion		update_done;
499 
500 	struct rb_irq_work		irq_work;
501 };
502 
503 struct ring_buffer {
504 	unsigned			flags;
505 	int				cpus;
506 	atomic_t			record_disabled;
507 	atomic_t			resize_disabled;
508 	cpumask_var_t			cpumask;
509 
510 	struct lock_class_key		*reader_lock_key;
511 
512 	struct mutex			mutex;
513 
514 	struct ring_buffer_per_cpu	**buffers;
515 
516 	struct hlist_node		node;
517 	u64				(*clock)(void);
518 
519 	struct rb_irq_work		irq_work;
520 	bool				time_stamp_abs;
521 };
522 
523 struct ring_buffer_iter {
524 	struct ring_buffer_per_cpu	*cpu_buffer;
525 	unsigned long			head;
526 	struct buffer_page		*head_page;
527 	struct buffer_page		*cache_reader_page;
528 	unsigned long			cache_read;
529 	u64				read_stamp;
530 };
531 
532 /*
533  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534  *
535  * Schedules a delayed work to wake up any task that is blocked on the
536  * ring buffer waiters queue.
537  */
538 static void rb_wake_up_waiters(struct irq_work *work)
539 {
540 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
541 
542 	wake_up_all(&rbwork->waiters);
543 	if (rbwork->wakeup_full) {
544 		rbwork->wakeup_full = false;
545 		wake_up_all(&rbwork->full_waiters);
546 	}
547 }
548 
549 /**
550  * ring_buffer_wait - wait for input to the ring buffer
551  * @buffer: buffer to wait on
552  * @cpu: the cpu buffer to wait on
553  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
554  *
555  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556  * as data is added to any of the @buffer's cpu buffers. Otherwise
557  * it will wait for data to be added to a specific cpu buffer.
558  */
559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
560 {
561 	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
562 	DEFINE_WAIT(wait);
563 	struct rb_irq_work *work;
564 	int ret = 0;
565 
566 	/*
567 	 * Depending on what the caller is waiting for, either any
568 	 * data in any cpu buffer, or a specific buffer, put the
569 	 * caller on the appropriate wait queue.
570 	 */
571 	if (cpu == RING_BUFFER_ALL_CPUS) {
572 		work = &buffer->irq_work;
573 		/* Full only makes sense on per cpu reads */
574 		full = false;
575 	} else {
576 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
577 			return -ENODEV;
578 		cpu_buffer = buffer->buffers[cpu];
579 		work = &cpu_buffer->irq_work;
580 	}
581 
582 
583 	while (true) {
584 		if (full)
585 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
586 		else
587 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
588 
589 		/*
590 		 * The events can happen in critical sections where
591 		 * checking a work queue can cause deadlocks.
592 		 * After adding a task to the queue, this flag is set
593 		 * only to notify events to try to wake up the queue
594 		 * using irq_work.
595 		 *
596 		 * We don't clear it even if the buffer is no longer
597 		 * empty. The flag only causes the next event to run
598 		 * irq_work to do the work queue wake up. The worse
599 		 * that can happen if we race with !trace_empty() is that
600 		 * an event will cause an irq_work to try to wake up
601 		 * an empty queue.
602 		 *
603 		 * There's no reason to protect this flag either, as
604 		 * the work queue and irq_work logic will do the necessary
605 		 * synchronization for the wake ups. The only thing
606 		 * that is necessary is that the wake up happens after
607 		 * a task has been queued. It's OK for spurious wake ups.
608 		 */
609 		if (full)
610 			work->full_waiters_pending = true;
611 		else
612 			work->waiters_pending = true;
613 
614 		if (signal_pending(current)) {
615 			ret = -EINTR;
616 			break;
617 		}
618 
619 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
620 			break;
621 
622 		if (cpu != RING_BUFFER_ALL_CPUS &&
623 		    !ring_buffer_empty_cpu(buffer, cpu)) {
624 			unsigned long flags;
625 			bool pagebusy;
626 
627 			if (!full)
628 				break;
629 
630 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
631 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
632 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
633 
634 			if (!pagebusy)
635 				break;
636 		}
637 
638 		schedule();
639 	}
640 
641 	if (full)
642 		finish_wait(&work->full_waiters, &wait);
643 	else
644 		finish_wait(&work->waiters, &wait);
645 
646 	return ret;
647 }
648 
649 /**
650  * ring_buffer_poll_wait - poll on buffer input
651  * @buffer: buffer to wait on
652  * @cpu: the cpu buffer to wait on
653  * @filp: the file descriptor
654  * @poll_table: The poll descriptor
655  *
656  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657  * as data is added to any of the @buffer's cpu buffers. Otherwise
658  * it will wait for data to be added to a specific cpu buffer.
659  *
660  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
661  * zero otherwise.
662  */
663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
664 			  struct file *filp, poll_table *poll_table)
665 {
666 	struct ring_buffer_per_cpu *cpu_buffer;
667 	struct rb_irq_work *work;
668 
669 	if (cpu == RING_BUFFER_ALL_CPUS)
670 		work = &buffer->irq_work;
671 	else {
672 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
673 			return -EINVAL;
674 
675 		cpu_buffer = buffer->buffers[cpu];
676 		work = &cpu_buffer->irq_work;
677 	}
678 
679 	poll_wait(filp, &work->waiters, poll_table);
680 	work->waiters_pending = true;
681 	/*
682 	 * There's a tight race between setting the waiters_pending and
683 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
684 	 * is set, the next event will wake the task up, but we can get stuck
685 	 * if there's only a single event in.
686 	 *
687 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
688 	 * but adding a memory barrier to all events will cause too much of a
689 	 * performance hit in the fast path.  We only need a memory barrier when
690 	 * the buffer goes from empty to having content.  But as this race is
691 	 * extremely small, and it's not a problem if another event comes in, we
692 	 * will fix it later.
693 	 */
694 	smp_mb();
695 
696 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
697 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
698 		return EPOLLIN | EPOLLRDNORM;
699 	return 0;
700 }
701 
702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
703 #define RB_WARN_ON(b, cond)						\
704 	({								\
705 		int _____ret = unlikely(cond);				\
706 		if (_____ret) {						\
707 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708 				struct ring_buffer_per_cpu *__b =	\
709 					(void *)b;			\
710 				atomic_inc(&__b->buffer->record_disabled); \
711 			} else						\
712 				atomic_inc(&b->record_disabled);	\
713 			WARN_ON(1);					\
714 		}							\
715 		_____ret;						\
716 	})
717 
718 /* Up this if you want to test the TIME_EXTENTS and normalization */
719 #define DEBUG_SHIFT 0
720 
721 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
722 {
723 	/* shift to debug/test normalization and TIME_EXTENTS */
724 	return buffer->clock() << DEBUG_SHIFT;
725 }
726 
727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
728 {
729 	u64 time;
730 
731 	preempt_disable_notrace();
732 	time = rb_time_stamp(buffer);
733 	preempt_enable_no_resched_notrace();
734 
735 	return time;
736 }
737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
738 
739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
740 				      int cpu, u64 *ts)
741 {
742 	/* Just stupid testing the normalize function and deltas */
743 	*ts >>= DEBUG_SHIFT;
744 }
745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
746 
747 /*
748  * Making the ring buffer lockless makes things tricky.
749  * Although writes only happen on the CPU that they are on,
750  * and they only need to worry about interrupts. Reads can
751  * happen on any CPU.
752  *
753  * The reader page is always off the ring buffer, but when the
754  * reader finishes with a page, it needs to swap its page with
755  * a new one from the buffer. The reader needs to take from
756  * the head (writes go to the tail). But if a writer is in overwrite
757  * mode and wraps, it must push the head page forward.
758  *
759  * Here lies the problem.
760  *
761  * The reader must be careful to replace only the head page, and
762  * not another one. As described at the top of the file in the
763  * ASCII art, the reader sets its old page to point to the next
764  * page after head. It then sets the page after head to point to
765  * the old reader page. But if the writer moves the head page
766  * during this operation, the reader could end up with the tail.
767  *
768  * We use cmpxchg to help prevent this race. We also do something
769  * special with the page before head. We set the LSB to 1.
770  *
771  * When the writer must push the page forward, it will clear the
772  * bit that points to the head page, move the head, and then set
773  * the bit that points to the new head page.
774  *
775  * We also don't want an interrupt coming in and moving the head
776  * page on another writer. Thus we use the second LSB to catch
777  * that too. Thus:
778  *
779  * head->list->prev->next        bit 1          bit 0
780  *                              -------        -------
781  * Normal page                     0              0
782  * Points to head page             0              1
783  * New head page                   1              0
784  *
785  * Note we can not trust the prev pointer of the head page, because:
786  *
787  * +----+       +-----+        +-----+
788  * |    |------>|  T  |---X--->|  N  |
789  * |    |<------|     |        |     |
790  * +----+       +-----+        +-----+
791  *   ^                           ^ |
792  *   |          +-----+          | |
793  *   +----------|  R  |----------+ |
794  *              |     |<-----------+
795  *              +-----+
796  *
797  * Key:  ---X-->  HEAD flag set in pointer
798  *         T      Tail page
799  *         R      Reader page
800  *         N      Next page
801  *
802  * (see __rb_reserve_next() to see where this happens)
803  *
804  *  What the above shows is that the reader just swapped out
805  *  the reader page with a page in the buffer, but before it
806  *  could make the new header point back to the new page added
807  *  it was preempted by a writer. The writer moved forward onto
808  *  the new page added by the reader and is about to move forward
809  *  again.
810  *
811  *  You can see, it is legitimate for the previous pointer of
812  *  the head (or any page) not to point back to itself. But only
813  *  temporarily.
814  */
815 
816 #define RB_PAGE_NORMAL		0UL
817 #define RB_PAGE_HEAD		1UL
818 #define RB_PAGE_UPDATE		2UL
819 
820 
821 #define RB_FLAG_MASK		3UL
822 
823 /* PAGE_MOVED is not part of the mask */
824 #define RB_PAGE_MOVED		4UL
825 
826 /*
827  * rb_list_head - remove any bit
828  */
829 static struct list_head *rb_list_head(struct list_head *list)
830 {
831 	unsigned long val = (unsigned long)list;
832 
833 	return (struct list_head *)(val & ~RB_FLAG_MASK);
834 }
835 
836 /*
837  * rb_is_head_page - test if the given page is the head page
838  *
839  * Because the reader may move the head_page pointer, we can
840  * not trust what the head page is (it may be pointing to
841  * the reader page). But if the next page is a header page,
842  * its flags will be non zero.
843  */
844 static inline int
845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
846 		struct buffer_page *page, struct list_head *list)
847 {
848 	unsigned long val;
849 
850 	val = (unsigned long)list->next;
851 
852 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
853 		return RB_PAGE_MOVED;
854 
855 	return val & RB_FLAG_MASK;
856 }
857 
858 /*
859  * rb_is_reader_page
860  *
861  * The unique thing about the reader page, is that, if the
862  * writer is ever on it, the previous pointer never points
863  * back to the reader page.
864  */
865 static bool rb_is_reader_page(struct buffer_page *page)
866 {
867 	struct list_head *list = page->list.prev;
868 
869 	return rb_list_head(list->next) != &page->list;
870 }
871 
872 /*
873  * rb_set_list_to_head - set a list_head to be pointing to head.
874  */
875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
876 				struct list_head *list)
877 {
878 	unsigned long *ptr;
879 
880 	ptr = (unsigned long *)&list->next;
881 	*ptr |= RB_PAGE_HEAD;
882 	*ptr &= ~RB_PAGE_UPDATE;
883 }
884 
885 /*
886  * rb_head_page_activate - sets up head page
887  */
888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
889 {
890 	struct buffer_page *head;
891 
892 	head = cpu_buffer->head_page;
893 	if (!head)
894 		return;
895 
896 	/*
897 	 * Set the previous list pointer to have the HEAD flag.
898 	 */
899 	rb_set_list_to_head(cpu_buffer, head->list.prev);
900 }
901 
902 static void rb_list_head_clear(struct list_head *list)
903 {
904 	unsigned long *ptr = (unsigned long *)&list->next;
905 
906 	*ptr &= ~RB_FLAG_MASK;
907 }
908 
909 /*
910  * rb_head_page_deactivate - clears head page ptr (for free list)
911  */
912 static void
913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
914 {
915 	struct list_head *hd;
916 
917 	/* Go through the whole list and clear any pointers found. */
918 	rb_list_head_clear(cpu_buffer->pages);
919 
920 	list_for_each(hd, cpu_buffer->pages)
921 		rb_list_head_clear(hd);
922 }
923 
924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
925 			    struct buffer_page *head,
926 			    struct buffer_page *prev,
927 			    int old_flag, int new_flag)
928 {
929 	struct list_head *list;
930 	unsigned long val = (unsigned long)&head->list;
931 	unsigned long ret;
932 
933 	list = &prev->list;
934 
935 	val &= ~RB_FLAG_MASK;
936 
937 	ret = cmpxchg((unsigned long *)&list->next,
938 		      val | old_flag, val | new_flag);
939 
940 	/* check if the reader took the page */
941 	if ((ret & ~RB_FLAG_MASK) != val)
942 		return RB_PAGE_MOVED;
943 
944 	return ret & RB_FLAG_MASK;
945 }
946 
947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
948 				   struct buffer_page *head,
949 				   struct buffer_page *prev,
950 				   int old_flag)
951 {
952 	return rb_head_page_set(cpu_buffer, head, prev,
953 				old_flag, RB_PAGE_UPDATE);
954 }
955 
956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
957 				 struct buffer_page *head,
958 				 struct buffer_page *prev,
959 				 int old_flag)
960 {
961 	return rb_head_page_set(cpu_buffer, head, prev,
962 				old_flag, RB_PAGE_HEAD);
963 }
964 
965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
966 				   struct buffer_page *head,
967 				   struct buffer_page *prev,
968 				   int old_flag)
969 {
970 	return rb_head_page_set(cpu_buffer, head, prev,
971 				old_flag, RB_PAGE_NORMAL);
972 }
973 
974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
975 			       struct buffer_page **bpage)
976 {
977 	struct list_head *p = rb_list_head((*bpage)->list.next);
978 
979 	*bpage = list_entry(p, struct buffer_page, list);
980 }
981 
982 static struct buffer_page *
983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
984 {
985 	struct buffer_page *head;
986 	struct buffer_page *page;
987 	struct list_head *list;
988 	int i;
989 
990 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
991 		return NULL;
992 
993 	/* sanity check */
994 	list = cpu_buffer->pages;
995 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
996 		return NULL;
997 
998 	page = head = cpu_buffer->head_page;
999 	/*
1000 	 * It is possible that the writer moves the header behind
1001 	 * where we started, and we miss in one loop.
1002 	 * A second loop should grab the header, but we'll do
1003 	 * three loops just because I'm paranoid.
1004 	 */
1005 	for (i = 0; i < 3; i++) {
1006 		do {
1007 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008 				cpu_buffer->head_page = page;
1009 				return page;
1010 			}
1011 			rb_inc_page(cpu_buffer, &page);
1012 		} while (page != head);
1013 	}
1014 
1015 	RB_WARN_ON(cpu_buffer, 1);
1016 
1017 	return NULL;
1018 }
1019 
1020 static int rb_head_page_replace(struct buffer_page *old,
1021 				struct buffer_page *new)
1022 {
1023 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024 	unsigned long val;
1025 	unsigned long ret;
1026 
1027 	val = *ptr & ~RB_FLAG_MASK;
1028 	val |= RB_PAGE_HEAD;
1029 
1030 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1031 
1032 	return ret == val;
1033 }
1034 
1035 /*
1036  * rb_tail_page_update - move the tail page forward
1037  */
1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1039 			       struct buffer_page *tail_page,
1040 			       struct buffer_page *next_page)
1041 {
1042 	unsigned long old_entries;
1043 	unsigned long old_write;
1044 
1045 	/*
1046 	 * The tail page now needs to be moved forward.
1047 	 *
1048 	 * We need to reset the tail page, but without messing
1049 	 * with possible erasing of data brought in by interrupts
1050 	 * that have moved the tail page and are currently on it.
1051 	 *
1052 	 * We add a counter to the write field to denote this.
1053 	 */
1054 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056 
1057 	/*
1058 	 * Just make sure we have seen our old_write and synchronize
1059 	 * with any interrupts that come in.
1060 	 */
1061 	barrier();
1062 
1063 	/*
1064 	 * If the tail page is still the same as what we think
1065 	 * it is, then it is up to us to update the tail
1066 	 * pointer.
1067 	 */
1068 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1069 		/* Zero the write counter */
1070 		unsigned long val = old_write & ~RB_WRITE_MASK;
1071 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072 
1073 		/*
1074 		 * This will only succeed if an interrupt did
1075 		 * not come in and change it. In which case, we
1076 		 * do not want to modify it.
1077 		 *
1078 		 * We add (void) to let the compiler know that we do not care
1079 		 * about the return value of these functions. We use the
1080 		 * cmpxchg to only update if an interrupt did not already
1081 		 * do it for us. If the cmpxchg fails, we don't care.
1082 		 */
1083 		(void)local_cmpxchg(&next_page->write, old_write, val);
1084 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1085 
1086 		/*
1087 		 * No need to worry about races with clearing out the commit.
1088 		 * it only can increment when a commit takes place. But that
1089 		 * only happens in the outer most nested commit.
1090 		 */
1091 		local_set(&next_page->page->commit, 0);
1092 
1093 		/* Again, either we update tail_page or an interrupt does */
1094 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1095 	}
1096 }
1097 
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099 			  struct buffer_page *bpage)
1100 {
1101 	unsigned long val = (unsigned long)bpage;
1102 
1103 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104 		return 1;
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113 			 struct list_head *list)
1114 {
1115 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116 		return 1;
1117 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118 		return 1;
1119 	return 0;
1120 }
1121 
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131 	struct list_head *head = cpu_buffer->pages;
1132 	struct buffer_page *bpage, *tmp;
1133 
1134 	/* Reset the head page if it exists */
1135 	if (cpu_buffer->head_page)
1136 		rb_set_head_page(cpu_buffer);
1137 
1138 	rb_head_page_deactivate(cpu_buffer);
1139 
1140 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141 		return -1;
1142 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143 		return -1;
1144 
1145 	if (rb_check_list(cpu_buffer, head))
1146 		return -1;
1147 
1148 	list_for_each_entry_safe(bpage, tmp, head, list) {
1149 		if (RB_WARN_ON(cpu_buffer,
1150 			       bpage->list.next->prev != &bpage->list))
1151 			return -1;
1152 		if (RB_WARN_ON(cpu_buffer,
1153 			       bpage->list.prev->next != &bpage->list))
1154 			return -1;
1155 		if (rb_check_list(cpu_buffer, &bpage->list))
1156 			return -1;
1157 	}
1158 
1159 	rb_head_page_activate(cpu_buffer);
1160 
1161 	return 0;
1162 }
1163 
1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166 	struct buffer_page *bpage, *tmp;
1167 	bool user_thread = current->mm != NULL;
1168 	gfp_t mflags;
1169 	long i;
1170 
1171 	/*
1172 	 * Check if the available memory is there first.
1173 	 * Note, si_mem_available() only gives us a rough estimate of available
1174 	 * memory. It may not be accurate. But we don't care, we just want
1175 	 * to prevent doing any allocation when it is obvious that it is
1176 	 * not going to succeed.
1177 	 */
1178 	i = si_mem_available();
1179 	if (i < nr_pages)
1180 		return -ENOMEM;
1181 
1182 	/*
1183 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184 	 * gracefully without invoking oom-killer and the system is not
1185 	 * destabilized.
1186 	 */
1187 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188 
1189 	/*
1190 	 * If a user thread allocates too much, and si_mem_available()
1191 	 * reports there's enough memory, even though there is not.
1192 	 * Make sure the OOM killer kills this thread. This can happen
1193 	 * even with RETRY_MAYFAIL because another task may be doing
1194 	 * an allocation after this task has taken all memory.
1195 	 * This is the task the OOM killer needs to take out during this
1196 	 * loop, even if it was triggered by an allocation somewhere else.
1197 	 */
1198 	if (user_thread)
1199 		set_current_oom_origin();
1200 	for (i = 0; i < nr_pages; i++) {
1201 		struct page *page;
1202 
1203 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1204 				    mflags, cpu_to_node(cpu));
1205 		if (!bpage)
1206 			goto free_pages;
1207 
1208 		list_add(&bpage->list, pages);
1209 
1210 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1211 		if (!page)
1212 			goto free_pages;
1213 		bpage->page = page_address(page);
1214 		rb_init_page(bpage->page);
1215 
1216 		if (user_thread && fatal_signal_pending(current))
1217 			goto free_pages;
1218 	}
1219 	if (user_thread)
1220 		clear_current_oom_origin();
1221 
1222 	return 0;
1223 
1224 free_pages:
1225 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1226 		list_del_init(&bpage->list);
1227 		free_buffer_page(bpage);
1228 	}
1229 	if (user_thread)
1230 		clear_current_oom_origin();
1231 
1232 	return -ENOMEM;
1233 }
1234 
1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1236 			     unsigned long nr_pages)
1237 {
1238 	LIST_HEAD(pages);
1239 
1240 	WARN_ON(!nr_pages);
1241 
1242 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243 		return -ENOMEM;
1244 
1245 	/*
1246 	 * The ring buffer page list is a circular list that does not
1247 	 * start and end with a list head. All page list items point to
1248 	 * other pages.
1249 	 */
1250 	cpu_buffer->pages = pages.next;
1251 	list_del(&pages);
1252 
1253 	cpu_buffer->nr_pages = nr_pages;
1254 
1255 	rb_check_pages(cpu_buffer);
1256 
1257 	return 0;
1258 }
1259 
1260 static struct ring_buffer_per_cpu *
1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1262 {
1263 	struct ring_buffer_per_cpu *cpu_buffer;
1264 	struct buffer_page *bpage;
1265 	struct page *page;
1266 	int ret;
1267 
1268 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269 				  GFP_KERNEL, cpu_to_node(cpu));
1270 	if (!cpu_buffer)
1271 		return NULL;
1272 
1273 	cpu_buffer->cpu = cpu;
1274 	cpu_buffer->buffer = buffer;
1275 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1276 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1277 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1278 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1279 	init_completion(&cpu_buffer->update_done);
1280 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1281 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1282 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1283 
1284 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1285 			    GFP_KERNEL, cpu_to_node(cpu));
1286 	if (!bpage)
1287 		goto fail_free_buffer;
1288 
1289 	rb_check_bpage(cpu_buffer, bpage);
1290 
1291 	cpu_buffer->reader_page = bpage;
1292 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293 	if (!page)
1294 		goto fail_free_reader;
1295 	bpage->page = page_address(page);
1296 	rb_init_page(bpage->page);
1297 
1298 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1299 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1300 
1301 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1302 	if (ret < 0)
1303 		goto fail_free_reader;
1304 
1305 	cpu_buffer->head_page
1306 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1307 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1308 
1309 	rb_head_page_activate(cpu_buffer);
1310 
1311 	return cpu_buffer;
1312 
1313  fail_free_reader:
1314 	free_buffer_page(cpu_buffer->reader_page);
1315 
1316  fail_free_buffer:
1317 	kfree(cpu_buffer);
1318 	return NULL;
1319 }
1320 
1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323 	struct list_head *head = cpu_buffer->pages;
1324 	struct buffer_page *bpage, *tmp;
1325 
1326 	free_buffer_page(cpu_buffer->reader_page);
1327 
1328 	rb_head_page_deactivate(cpu_buffer);
1329 
1330 	if (head) {
1331 		list_for_each_entry_safe(bpage, tmp, head, list) {
1332 			list_del_init(&bpage->list);
1333 			free_buffer_page(bpage);
1334 		}
1335 		bpage = list_entry(head, struct buffer_page, list);
1336 		free_buffer_page(bpage);
1337 	}
1338 
1339 	kfree(cpu_buffer);
1340 }
1341 
1342 /**
1343  * __ring_buffer_alloc - allocate a new ring_buffer
1344  * @size: the size in bytes per cpu that is needed.
1345  * @flags: attributes to set for the ring buffer.
1346  *
1347  * Currently the only flag that is available is the RB_FL_OVERWRITE
1348  * flag. This flag means that the buffer will overwrite old data
1349  * when the buffer wraps. If this flag is not set, the buffer will
1350  * drop data when the tail hits the head.
1351  */
1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353 					struct lock_class_key *key)
1354 {
1355 	struct ring_buffer *buffer;
1356 	long nr_pages;
1357 	int bsize;
1358 	int cpu;
1359 	int ret;
1360 
1361 	/* keep it in its own cache line */
1362 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363 			 GFP_KERNEL);
1364 	if (!buffer)
1365 		return NULL;
1366 
1367 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1368 		goto fail_free_buffer;
1369 
1370 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1371 	buffer->flags = flags;
1372 	buffer->clock = trace_clock_local;
1373 	buffer->reader_lock_key = key;
1374 
1375 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1376 	init_waitqueue_head(&buffer->irq_work.waiters);
1377 
1378 	/* need at least two pages */
1379 	if (nr_pages < 2)
1380 		nr_pages = 2;
1381 
1382 	buffer->cpus = nr_cpu_ids;
1383 
1384 	bsize = sizeof(void *) * nr_cpu_ids;
1385 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386 				  GFP_KERNEL);
1387 	if (!buffer->buffers)
1388 		goto fail_free_cpumask;
1389 
1390 	cpu = raw_smp_processor_id();
1391 	cpumask_set_cpu(cpu, buffer->cpumask);
1392 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393 	if (!buffer->buffers[cpu])
1394 		goto fail_free_buffers;
1395 
1396 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397 	if (ret < 0)
1398 		goto fail_free_buffers;
1399 
1400 	mutex_init(&buffer->mutex);
1401 
1402 	return buffer;
1403 
1404  fail_free_buffers:
1405 	for_each_buffer_cpu(buffer, cpu) {
1406 		if (buffer->buffers[cpu])
1407 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1408 	}
1409 	kfree(buffer->buffers);
1410 
1411  fail_free_cpumask:
1412 	free_cpumask_var(buffer->cpumask);
1413 
1414  fail_free_buffer:
1415 	kfree(buffer);
1416 	return NULL;
1417 }
1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1419 
1420 /**
1421  * ring_buffer_free - free a ring buffer.
1422  * @buffer: the buffer to free.
1423  */
1424 void
1425 ring_buffer_free(struct ring_buffer *buffer)
1426 {
1427 	int cpu;
1428 
1429 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430 
1431 	for_each_buffer_cpu(buffer, cpu)
1432 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1433 
1434 	kfree(buffer->buffers);
1435 	free_cpumask_var(buffer->cpumask);
1436 
1437 	kfree(buffer);
1438 }
1439 EXPORT_SYMBOL_GPL(ring_buffer_free);
1440 
1441 void ring_buffer_set_clock(struct ring_buffer *buffer,
1442 			   u64 (*clock)(void))
1443 {
1444 	buffer->clock = clock;
1445 }
1446 
1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448 {
1449 	buffer->time_stamp_abs = abs;
1450 }
1451 
1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453 {
1454 	return buffer->time_stamp_abs;
1455 }
1456 
1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458 
1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460 {
1461 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1462 }
1463 
1464 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465 {
1466 	return local_read(&bpage->write) & RB_WRITE_MASK;
1467 }
1468 
1469 static int
1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1471 {
1472 	struct list_head *tail_page, *to_remove, *next_page;
1473 	struct buffer_page *to_remove_page, *tmp_iter_page;
1474 	struct buffer_page *last_page, *first_page;
1475 	unsigned long nr_removed;
1476 	unsigned long head_bit;
1477 	int page_entries;
1478 
1479 	head_bit = 0;
1480 
1481 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1482 	atomic_inc(&cpu_buffer->record_disabled);
1483 	/*
1484 	 * We don't race with the readers since we have acquired the reader
1485 	 * lock. We also don't race with writers after disabling recording.
1486 	 * This makes it easy to figure out the first and the last page to be
1487 	 * removed from the list. We unlink all the pages in between including
1488 	 * the first and last pages. This is done in a busy loop so that we
1489 	 * lose the least number of traces.
1490 	 * The pages are freed after we restart recording and unlock readers.
1491 	 */
1492 	tail_page = &cpu_buffer->tail_page->list;
1493 
1494 	/*
1495 	 * tail page might be on reader page, we remove the next page
1496 	 * from the ring buffer
1497 	 */
1498 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499 		tail_page = rb_list_head(tail_page->next);
1500 	to_remove = tail_page;
1501 
1502 	/* start of pages to remove */
1503 	first_page = list_entry(rb_list_head(to_remove->next),
1504 				struct buffer_page, list);
1505 
1506 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507 		to_remove = rb_list_head(to_remove)->next;
1508 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1509 	}
1510 
1511 	next_page = rb_list_head(to_remove)->next;
1512 
1513 	/*
1514 	 * Now we remove all pages between tail_page and next_page.
1515 	 * Make sure that we have head_bit value preserved for the
1516 	 * next page
1517 	 */
1518 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1519 						head_bit);
1520 	next_page = rb_list_head(next_page);
1521 	next_page->prev = tail_page;
1522 
1523 	/* make sure pages points to a valid page in the ring buffer */
1524 	cpu_buffer->pages = next_page;
1525 
1526 	/* update head page */
1527 	if (head_bit)
1528 		cpu_buffer->head_page = list_entry(next_page,
1529 						struct buffer_page, list);
1530 
1531 	/*
1532 	 * change read pointer to make sure any read iterators reset
1533 	 * themselves
1534 	 */
1535 	cpu_buffer->read = 0;
1536 
1537 	/* pages are removed, resume tracing and then free the pages */
1538 	atomic_dec(&cpu_buffer->record_disabled);
1539 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1540 
1541 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542 
1543 	/* last buffer page to remove */
1544 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545 				list);
1546 	tmp_iter_page = first_page;
1547 
1548 	do {
1549 		cond_resched();
1550 
1551 		to_remove_page = tmp_iter_page;
1552 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1553 
1554 		/* update the counters */
1555 		page_entries = rb_page_entries(to_remove_page);
1556 		if (page_entries) {
1557 			/*
1558 			 * If something was added to this page, it was full
1559 			 * since it is not the tail page. So we deduct the
1560 			 * bytes consumed in ring buffer from here.
1561 			 * Increment overrun to account for the lost events.
1562 			 */
1563 			local_add(page_entries, &cpu_buffer->overrun);
1564 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1565 		}
1566 
1567 		/*
1568 		 * We have already removed references to this list item, just
1569 		 * free up the buffer_page and its page
1570 		 */
1571 		free_buffer_page(to_remove_page);
1572 		nr_removed--;
1573 
1574 	} while (to_remove_page != last_page);
1575 
1576 	RB_WARN_ON(cpu_buffer, nr_removed);
1577 
1578 	return nr_removed == 0;
1579 }
1580 
1581 static int
1582 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1583 {
1584 	struct list_head *pages = &cpu_buffer->new_pages;
1585 	int retries, success;
1586 
1587 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1588 	/*
1589 	 * We are holding the reader lock, so the reader page won't be swapped
1590 	 * in the ring buffer. Now we are racing with the writer trying to
1591 	 * move head page and the tail page.
1592 	 * We are going to adapt the reader page update process where:
1593 	 * 1. We first splice the start and end of list of new pages between
1594 	 *    the head page and its previous page.
1595 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1596 	 *    start of new pages list.
1597 	 * 3. Finally, we update the head->prev to the end of new list.
1598 	 *
1599 	 * We will try this process 10 times, to make sure that we don't keep
1600 	 * spinning.
1601 	 */
1602 	retries = 10;
1603 	success = 0;
1604 	while (retries--) {
1605 		struct list_head *head_page, *prev_page, *r;
1606 		struct list_head *last_page, *first_page;
1607 		struct list_head *head_page_with_bit;
1608 
1609 		head_page = &rb_set_head_page(cpu_buffer)->list;
1610 		if (!head_page)
1611 			break;
1612 		prev_page = head_page->prev;
1613 
1614 		first_page = pages->next;
1615 		last_page  = pages->prev;
1616 
1617 		head_page_with_bit = (struct list_head *)
1618 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1619 
1620 		last_page->next = head_page_with_bit;
1621 		first_page->prev = prev_page;
1622 
1623 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1624 
1625 		if (r == head_page_with_bit) {
1626 			/*
1627 			 * yay, we replaced the page pointer to our new list,
1628 			 * now, we just have to update to head page's prev
1629 			 * pointer to point to end of list
1630 			 */
1631 			head_page->prev = last_page;
1632 			success = 1;
1633 			break;
1634 		}
1635 	}
1636 
1637 	if (success)
1638 		INIT_LIST_HEAD(pages);
1639 	/*
1640 	 * If we weren't successful in adding in new pages, warn and stop
1641 	 * tracing
1642 	 */
1643 	RB_WARN_ON(cpu_buffer, !success);
1644 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1645 
1646 	/* free pages if they weren't inserted */
1647 	if (!success) {
1648 		struct buffer_page *bpage, *tmp;
1649 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1650 					 list) {
1651 			list_del_init(&bpage->list);
1652 			free_buffer_page(bpage);
1653 		}
1654 	}
1655 	return success;
1656 }
1657 
1658 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1659 {
1660 	int success;
1661 
1662 	if (cpu_buffer->nr_pages_to_update > 0)
1663 		success = rb_insert_pages(cpu_buffer);
1664 	else
1665 		success = rb_remove_pages(cpu_buffer,
1666 					-cpu_buffer->nr_pages_to_update);
1667 
1668 	if (success)
1669 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1670 }
1671 
1672 static void update_pages_handler(struct work_struct *work)
1673 {
1674 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1675 			struct ring_buffer_per_cpu, update_pages_work);
1676 	rb_update_pages(cpu_buffer);
1677 	complete(&cpu_buffer->update_done);
1678 }
1679 
1680 /**
1681  * ring_buffer_resize - resize the ring buffer
1682  * @buffer: the buffer to resize.
1683  * @size: the new size.
1684  * @cpu_id: the cpu buffer to resize
1685  *
1686  * Minimum size is 2 * BUF_PAGE_SIZE.
1687  *
1688  * Returns 0 on success and < 0 on failure.
1689  */
1690 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1691 			int cpu_id)
1692 {
1693 	struct ring_buffer_per_cpu *cpu_buffer;
1694 	unsigned long nr_pages;
1695 	int cpu, err = 0;
1696 
1697 	/*
1698 	 * Always succeed at resizing a non-existent buffer:
1699 	 */
1700 	if (!buffer)
1701 		return size;
1702 
1703 	/* Make sure the requested buffer exists */
1704 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1705 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1706 		return size;
1707 
1708 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1709 
1710 	/* we need a minimum of two pages */
1711 	if (nr_pages < 2)
1712 		nr_pages = 2;
1713 
1714 	size = nr_pages * BUF_PAGE_SIZE;
1715 
1716 	/*
1717 	 * Don't succeed if resizing is disabled, as a reader might be
1718 	 * manipulating the ring buffer and is expecting a sane state while
1719 	 * this is true.
1720 	 */
1721 	if (atomic_read(&buffer->resize_disabled))
1722 		return -EBUSY;
1723 
1724 	/* prevent another thread from changing buffer sizes */
1725 	mutex_lock(&buffer->mutex);
1726 
1727 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1728 		/* calculate the pages to update */
1729 		for_each_buffer_cpu(buffer, cpu) {
1730 			cpu_buffer = buffer->buffers[cpu];
1731 
1732 			cpu_buffer->nr_pages_to_update = nr_pages -
1733 							cpu_buffer->nr_pages;
1734 			/*
1735 			 * nothing more to do for removing pages or no update
1736 			 */
1737 			if (cpu_buffer->nr_pages_to_update <= 0)
1738 				continue;
1739 			/*
1740 			 * to add pages, make sure all new pages can be
1741 			 * allocated without receiving ENOMEM
1742 			 */
1743 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1745 						&cpu_buffer->new_pages, cpu)) {
1746 				/* not enough memory for new pages */
1747 				err = -ENOMEM;
1748 				goto out_err;
1749 			}
1750 		}
1751 
1752 		get_online_cpus();
1753 		/*
1754 		 * Fire off all the required work handlers
1755 		 * We can't schedule on offline CPUs, but it's not necessary
1756 		 * since we can change their buffer sizes without any race.
1757 		 */
1758 		for_each_buffer_cpu(buffer, cpu) {
1759 			cpu_buffer = buffer->buffers[cpu];
1760 			if (!cpu_buffer->nr_pages_to_update)
1761 				continue;
1762 
1763 			/* Can't run something on an offline CPU. */
1764 			if (!cpu_online(cpu)) {
1765 				rb_update_pages(cpu_buffer);
1766 				cpu_buffer->nr_pages_to_update = 0;
1767 			} else {
1768 				schedule_work_on(cpu,
1769 						&cpu_buffer->update_pages_work);
1770 			}
1771 		}
1772 
1773 		/* wait for all the updates to complete */
1774 		for_each_buffer_cpu(buffer, cpu) {
1775 			cpu_buffer = buffer->buffers[cpu];
1776 			if (!cpu_buffer->nr_pages_to_update)
1777 				continue;
1778 
1779 			if (cpu_online(cpu))
1780 				wait_for_completion(&cpu_buffer->update_done);
1781 			cpu_buffer->nr_pages_to_update = 0;
1782 		}
1783 
1784 		put_online_cpus();
1785 	} else {
1786 		/* Make sure this CPU has been initialized */
1787 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1788 			goto out;
1789 
1790 		cpu_buffer = buffer->buffers[cpu_id];
1791 
1792 		if (nr_pages == cpu_buffer->nr_pages)
1793 			goto out;
1794 
1795 		cpu_buffer->nr_pages_to_update = nr_pages -
1796 						cpu_buffer->nr_pages;
1797 
1798 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1799 		if (cpu_buffer->nr_pages_to_update > 0 &&
1800 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1801 					    &cpu_buffer->new_pages, cpu_id)) {
1802 			err = -ENOMEM;
1803 			goto out_err;
1804 		}
1805 
1806 		get_online_cpus();
1807 
1808 		/* Can't run something on an offline CPU. */
1809 		if (!cpu_online(cpu_id))
1810 			rb_update_pages(cpu_buffer);
1811 		else {
1812 			schedule_work_on(cpu_id,
1813 					 &cpu_buffer->update_pages_work);
1814 			wait_for_completion(&cpu_buffer->update_done);
1815 		}
1816 
1817 		cpu_buffer->nr_pages_to_update = 0;
1818 		put_online_cpus();
1819 	}
1820 
1821  out:
1822 	/*
1823 	 * The ring buffer resize can happen with the ring buffer
1824 	 * enabled, so that the update disturbs the tracing as little
1825 	 * as possible. But if the buffer is disabled, we do not need
1826 	 * to worry about that, and we can take the time to verify
1827 	 * that the buffer is not corrupt.
1828 	 */
1829 	if (atomic_read(&buffer->record_disabled)) {
1830 		atomic_inc(&buffer->record_disabled);
1831 		/*
1832 		 * Even though the buffer was disabled, we must make sure
1833 		 * that it is truly disabled before calling rb_check_pages.
1834 		 * There could have been a race between checking
1835 		 * record_disable and incrementing it.
1836 		 */
1837 		synchronize_sched();
1838 		for_each_buffer_cpu(buffer, cpu) {
1839 			cpu_buffer = buffer->buffers[cpu];
1840 			rb_check_pages(cpu_buffer);
1841 		}
1842 		atomic_dec(&buffer->record_disabled);
1843 	}
1844 
1845 	mutex_unlock(&buffer->mutex);
1846 	return size;
1847 
1848  out_err:
1849 	for_each_buffer_cpu(buffer, cpu) {
1850 		struct buffer_page *bpage, *tmp;
1851 
1852 		cpu_buffer = buffer->buffers[cpu];
1853 		cpu_buffer->nr_pages_to_update = 0;
1854 
1855 		if (list_empty(&cpu_buffer->new_pages))
1856 			continue;
1857 
1858 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1859 					list) {
1860 			list_del_init(&bpage->list);
1861 			free_buffer_page(bpage);
1862 		}
1863 	}
1864 	mutex_unlock(&buffer->mutex);
1865 	return err;
1866 }
1867 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1868 
1869 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1870 {
1871 	mutex_lock(&buffer->mutex);
1872 	if (val)
1873 		buffer->flags |= RB_FL_OVERWRITE;
1874 	else
1875 		buffer->flags &= ~RB_FL_OVERWRITE;
1876 	mutex_unlock(&buffer->mutex);
1877 }
1878 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1879 
1880 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1881 {
1882 	return bpage->page->data + index;
1883 }
1884 
1885 static __always_inline struct ring_buffer_event *
1886 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888 	return __rb_page_index(cpu_buffer->reader_page,
1889 			       cpu_buffer->reader_page->read);
1890 }
1891 
1892 static __always_inline struct ring_buffer_event *
1893 rb_iter_head_event(struct ring_buffer_iter *iter)
1894 {
1895 	return __rb_page_index(iter->head_page, iter->head);
1896 }
1897 
1898 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1899 {
1900 	return local_read(&bpage->page->commit);
1901 }
1902 
1903 /* Size is determined by what has been committed */
1904 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1905 {
1906 	return rb_page_commit(bpage);
1907 }
1908 
1909 static __always_inline unsigned
1910 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1911 {
1912 	return rb_page_commit(cpu_buffer->commit_page);
1913 }
1914 
1915 static __always_inline unsigned
1916 rb_event_index(struct ring_buffer_event *event)
1917 {
1918 	unsigned long addr = (unsigned long)event;
1919 
1920 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1921 }
1922 
1923 static void rb_inc_iter(struct ring_buffer_iter *iter)
1924 {
1925 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1926 
1927 	/*
1928 	 * The iterator could be on the reader page (it starts there).
1929 	 * But the head could have moved, since the reader was
1930 	 * found. Check for this case and assign the iterator
1931 	 * to the head page instead of next.
1932 	 */
1933 	if (iter->head_page == cpu_buffer->reader_page)
1934 		iter->head_page = rb_set_head_page(cpu_buffer);
1935 	else
1936 		rb_inc_page(cpu_buffer, &iter->head_page);
1937 
1938 	iter->read_stamp = iter->head_page->page->time_stamp;
1939 	iter->head = 0;
1940 }
1941 
1942 /*
1943  * rb_handle_head_page - writer hit the head page
1944  *
1945  * Returns: +1 to retry page
1946  *           0 to continue
1947  *          -1 on error
1948  */
1949 static int
1950 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1951 		    struct buffer_page *tail_page,
1952 		    struct buffer_page *next_page)
1953 {
1954 	struct buffer_page *new_head;
1955 	int entries;
1956 	int type;
1957 	int ret;
1958 
1959 	entries = rb_page_entries(next_page);
1960 
1961 	/*
1962 	 * The hard part is here. We need to move the head
1963 	 * forward, and protect against both readers on
1964 	 * other CPUs and writers coming in via interrupts.
1965 	 */
1966 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1967 				       RB_PAGE_HEAD);
1968 
1969 	/*
1970 	 * type can be one of four:
1971 	 *  NORMAL - an interrupt already moved it for us
1972 	 *  HEAD   - we are the first to get here.
1973 	 *  UPDATE - we are the interrupt interrupting
1974 	 *           a current move.
1975 	 *  MOVED  - a reader on another CPU moved the next
1976 	 *           pointer to its reader page. Give up
1977 	 *           and try again.
1978 	 */
1979 
1980 	switch (type) {
1981 	case RB_PAGE_HEAD:
1982 		/*
1983 		 * We changed the head to UPDATE, thus
1984 		 * it is our responsibility to update
1985 		 * the counters.
1986 		 */
1987 		local_add(entries, &cpu_buffer->overrun);
1988 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1989 
1990 		/*
1991 		 * The entries will be zeroed out when we move the
1992 		 * tail page.
1993 		 */
1994 
1995 		/* still more to do */
1996 		break;
1997 
1998 	case RB_PAGE_UPDATE:
1999 		/*
2000 		 * This is an interrupt that interrupt the
2001 		 * previous update. Still more to do.
2002 		 */
2003 		break;
2004 	case RB_PAGE_NORMAL:
2005 		/*
2006 		 * An interrupt came in before the update
2007 		 * and processed this for us.
2008 		 * Nothing left to do.
2009 		 */
2010 		return 1;
2011 	case RB_PAGE_MOVED:
2012 		/*
2013 		 * The reader is on another CPU and just did
2014 		 * a swap with our next_page.
2015 		 * Try again.
2016 		 */
2017 		return 1;
2018 	default:
2019 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2020 		return -1;
2021 	}
2022 
2023 	/*
2024 	 * Now that we are here, the old head pointer is
2025 	 * set to UPDATE. This will keep the reader from
2026 	 * swapping the head page with the reader page.
2027 	 * The reader (on another CPU) will spin till
2028 	 * we are finished.
2029 	 *
2030 	 * We just need to protect against interrupts
2031 	 * doing the job. We will set the next pointer
2032 	 * to HEAD. After that, we set the old pointer
2033 	 * to NORMAL, but only if it was HEAD before.
2034 	 * otherwise we are an interrupt, and only
2035 	 * want the outer most commit to reset it.
2036 	 */
2037 	new_head = next_page;
2038 	rb_inc_page(cpu_buffer, &new_head);
2039 
2040 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2041 				    RB_PAGE_NORMAL);
2042 
2043 	/*
2044 	 * Valid returns are:
2045 	 *  HEAD   - an interrupt came in and already set it.
2046 	 *  NORMAL - One of two things:
2047 	 *            1) We really set it.
2048 	 *            2) A bunch of interrupts came in and moved
2049 	 *               the page forward again.
2050 	 */
2051 	switch (ret) {
2052 	case RB_PAGE_HEAD:
2053 	case RB_PAGE_NORMAL:
2054 		/* OK */
2055 		break;
2056 	default:
2057 		RB_WARN_ON(cpu_buffer, 1);
2058 		return -1;
2059 	}
2060 
2061 	/*
2062 	 * It is possible that an interrupt came in,
2063 	 * set the head up, then more interrupts came in
2064 	 * and moved it again. When we get back here,
2065 	 * the page would have been set to NORMAL but we
2066 	 * just set it back to HEAD.
2067 	 *
2068 	 * How do you detect this? Well, if that happened
2069 	 * the tail page would have moved.
2070 	 */
2071 	if (ret == RB_PAGE_NORMAL) {
2072 		struct buffer_page *buffer_tail_page;
2073 
2074 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2075 		/*
2076 		 * If the tail had moved passed next, then we need
2077 		 * to reset the pointer.
2078 		 */
2079 		if (buffer_tail_page != tail_page &&
2080 		    buffer_tail_page != next_page)
2081 			rb_head_page_set_normal(cpu_buffer, new_head,
2082 						next_page,
2083 						RB_PAGE_HEAD);
2084 	}
2085 
2086 	/*
2087 	 * If this was the outer most commit (the one that
2088 	 * changed the original pointer from HEAD to UPDATE),
2089 	 * then it is up to us to reset it to NORMAL.
2090 	 */
2091 	if (type == RB_PAGE_HEAD) {
2092 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2093 					      tail_page,
2094 					      RB_PAGE_UPDATE);
2095 		if (RB_WARN_ON(cpu_buffer,
2096 			       ret != RB_PAGE_UPDATE))
2097 			return -1;
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 static inline void
2104 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2105 	      unsigned long tail, struct rb_event_info *info)
2106 {
2107 	struct buffer_page *tail_page = info->tail_page;
2108 	struct ring_buffer_event *event;
2109 	unsigned long length = info->length;
2110 
2111 	/*
2112 	 * Only the event that crossed the page boundary
2113 	 * must fill the old tail_page with padding.
2114 	 */
2115 	if (tail >= BUF_PAGE_SIZE) {
2116 		/*
2117 		 * If the page was filled, then we still need
2118 		 * to update the real_end. Reset it to zero
2119 		 * and the reader will ignore it.
2120 		 */
2121 		if (tail == BUF_PAGE_SIZE)
2122 			tail_page->real_end = 0;
2123 
2124 		local_sub(length, &tail_page->write);
2125 		return;
2126 	}
2127 
2128 	event = __rb_page_index(tail_page, tail);
2129 
2130 	/* account for padding bytes */
2131 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2132 
2133 	/*
2134 	 * Save the original length to the meta data.
2135 	 * This will be used by the reader to add lost event
2136 	 * counter.
2137 	 */
2138 	tail_page->real_end = tail;
2139 
2140 	/*
2141 	 * If this event is bigger than the minimum size, then
2142 	 * we need to be careful that we don't subtract the
2143 	 * write counter enough to allow another writer to slip
2144 	 * in on this page.
2145 	 * We put in a discarded commit instead, to make sure
2146 	 * that this space is not used again.
2147 	 *
2148 	 * If we are less than the minimum size, we don't need to
2149 	 * worry about it.
2150 	 */
2151 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2152 		/* No room for any events */
2153 
2154 		/* Mark the rest of the page with padding */
2155 		rb_event_set_padding(event);
2156 
2157 		/* Set the write back to the previous setting */
2158 		local_sub(length, &tail_page->write);
2159 		return;
2160 	}
2161 
2162 	/* Put in a discarded event */
2163 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2164 	event->type_len = RINGBUF_TYPE_PADDING;
2165 	/* time delta must be non zero */
2166 	event->time_delta = 1;
2167 
2168 	/* Set write to end of buffer */
2169 	length = (tail + length) - BUF_PAGE_SIZE;
2170 	local_sub(length, &tail_page->write);
2171 }
2172 
2173 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2174 
2175 /*
2176  * This is the slow path, force gcc not to inline it.
2177  */
2178 static noinline struct ring_buffer_event *
2179 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2180 	     unsigned long tail, struct rb_event_info *info)
2181 {
2182 	struct buffer_page *tail_page = info->tail_page;
2183 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2184 	struct ring_buffer *buffer = cpu_buffer->buffer;
2185 	struct buffer_page *next_page;
2186 	int ret;
2187 
2188 	next_page = tail_page;
2189 
2190 	rb_inc_page(cpu_buffer, &next_page);
2191 
2192 	/*
2193 	 * If for some reason, we had an interrupt storm that made
2194 	 * it all the way around the buffer, bail, and warn
2195 	 * about it.
2196 	 */
2197 	if (unlikely(next_page == commit_page)) {
2198 		local_inc(&cpu_buffer->commit_overrun);
2199 		goto out_reset;
2200 	}
2201 
2202 	/*
2203 	 * This is where the fun begins!
2204 	 *
2205 	 * We are fighting against races between a reader that
2206 	 * could be on another CPU trying to swap its reader
2207 	 * page with the buffer head.
2208 	 *
2209 	 * We are also fighting against interrupts coming in and
2210 	 * moving the head or tail on us as well.
2211 	 *
2212 	 * If the next page is the head page then we have filled
2213 	 * the buffer, unless the commit page is still on the
2214 	 * reader page.
2215 	 */
2216 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2217 
2218 		/*
2219 		 * If the commit is not on the reader page, then
2220 		 * move the header page.
2221 		 */
2222 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2223 			/*
2224 			 * If we are not in overwrite mode,
2225 			 * this is easy, just stop here.
2226 			 */
2227 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2228 				local_inc(&cpu_buffer->dropped_events);
2229 				goto out_reset;
2230 			}
2231 
2232 			ret = rb_handle_head_page(cpu_buffer,
2233 						  tail_page,
2234 						  next_page);
2235 			if (ret < 0)
2236 				goto out_reset;
2237 			if (ret)
2238 				goto out_again;
2239 		} else {
2240 			/*
2241 			 * We need to be careful here too. The
2242 			 * commit page could still be on the reader
2243 			 * page. We could have a small buffer, and
2244 			 * have filled up the buffer with events
2245 			 * from interrupts and such, and wrapped.
2246 			 *
2247 			 * Note, if the tail page is also the on the
2248 			 * reader_page, we let it move out.
2249 			 */
2250 			if (unlikely((cpu_buffer->commit_page !=
2251 				      cpu_buffer->tail_page) &&
2252 				     (cpu_buffer->commit_page ==
2253 				      cpu_buffer->reader_page))) {
2254 				local_inc(&cpu_buffer->commit_overrun);
2255 				goto out_reset;
2256 			}
2257 		}
2258 	}
2259 
2260 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2261 
2262  out_again:
2263 
2264 	rb_reset_tail(cpu_buffer, tail, info);
2265 
2266 	/* Commit what we have for now. */
2267 	rb_end_commit(cpu_buffer);
2268 	/* rb_end_commit() decs committing */
2269 	local_inc(&cpu_buffer->committing);
2270 
2271 	/* fail and let the caller try again */
2272 	return ERR_PTR(-EAGAIN);
2273 
2274  out_reset:
2275 	/* reset write */
2276 	rb_reset_tail(cpu_buffer, tail, info);
2277 
2278 	return NULL;
2279 }
2280 
2281 /* Slow path, do not inline */
2282 static noinline struct ring_buffer_event *
2283 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2284 {
2285 	if (abs)
2286 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2287 	else
2288 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2289 
2290 	/* Not the first event on the page, or not delta? */
2291 	if (abs || rb_event_index(event)) {
2292 		event->time_delta = delta & TS_MASK;
2293 		event->array[0] = delta >> TS_SHIFT;
2294 	} else {
2295 		/* nope, just zero it */
2296 		event->time_delta = 0;
2297 		event->array[0] = 0;
2298 	}
2299 
2300 	return skip_time_extend(event);
2301 }
2302 
2303 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2304 				     struct ring_buffer_event *event);
2305 
2306 /**
2307  * rb_update_event - update event type and data
2308  * @event: the event to update
2309  * @type: the type of event
2310  * @length: the size of the event field in the ring buffer
2311  *
2312  * Update the type and data fields of the event. The length
2313  * is the actual size that is written to the ring buffer,
2314  * and with this, we can determine what to place into the
2315  * data field.
2316  */
2317 static void
2318 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2319 		struct ring_buffer_event *event,
2320 		struct rb_event_info *info)
2321 {
2322 	unsigned length = info->length;
2323 	u64 delta = info->delta;
2324 
2325 	/* Only a commit updates the timestamp */
2326 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2327 		delta = 0;
2328 
2329 	/*
2330 	 * If we need to add a timestamp, then we
2331 	 * add it to the start of the reserved space.
2332 	 */
2333 	if (unlikely(info->add_timestamp)) {
2334 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2335 
2336 		event = rb_add_time_stamp(event, info->delta, abs);
2337 		length -= RB_LEN_TIME_EXTEND;
2338 		delta = 0;
2339 	}
2340 
2341 	event->time_delta = delta;
2342 	length -= RB_EVNT_HDR_SIZE;
2343 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2344 		event->type_len = 0;
2345 		event->array[0] = length;
2346 	} else
2347 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2348 }
2349 
2350 static unsigned rb_calculate_event_length(unsigned length)
2351 {
2352 	struct ring_buffer_event event; /* Used only for sizeof array */
2353 
2354 	/* zero length can cause confusions */
2355 	if (!length)
2356 		length++;
2357 
2358 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2359 		length += sizeof(event.array[0]);
2360 
2361 	length += RB_EVNT_HDR_SIZE;
2362 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2363 
2364 	/*
2365 	 * In case the time delta is larger than the 27 bits for it
2366 	 * in the header, we need to add a timestamp. If another
2367 	 * event comes in when trying to discard this one to increase
2368 	 * the length, then the timestamp will be added in the allocated
2369 	 * space of this event. If length is bigger than the size needed
2370 	 * for the TIME_EXTEND, then padding has to be used. The events
2371 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2372 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2373 	 * As length is a multiple of 4, we only need to worry if it
2374 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2375 	 */
2376 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2377 		length += RB_ALIGNMENT;
2378 
2379 	return length;
2380 }
2381 
2382 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2383 static inline bool sched_clock_stable(void)
2384 {
2385 	return true;
2386 }
2387 #endif
2388 
2389 static inline int
2390 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2391 		  struct ring_buffer_event *event)
2392 {
2393 	unsigned long new_index, old_index;
2394 	struct buffer_page *bpage;
2395 	unsigned long index;
2396 	unsigned long addr;
2397 
2398 	new_index = rb_event_index(event);
2399 	old_index = new_index + rb_event_ts_length(event);
2400 	addr = (unsigned long)event;
2401 	addr &= PAGE_MASK;
2402 
2403 	bpage = READ_ONCE(cpu_buffer->tail_page);
2404 
2405 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2406 		unsigned long write_mask =
2407 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2408 		unsigned long event_length = rb_event_length(event);
2409 		/*
2410 		 * This is on the tail page. It is possible that
2411 		 * a write could come in and move the tail page
2412 		 * and write to the next page. That is fine
2413 		 * because we just shorten what is on this page.
2414 		 */
2415 		old_index += write_mask;
2416 		new_index += write_mask;
2417 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2418 		if (index == old_index) {
2419 			/* update counters */
2420 			local_sub(event_length, &cpu_buffer->entries_bytes);
2421 			return 1;
2422 		}
2423 	}
2424 
2425 	/* could not discard */
2426 	return 0;
2427 }
2428 
2429 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2430 {
2431 	local_inc(&cpu_buffer->committing);
2432 	local_inc(&cpu_buffer->commits);
2433 }
2434 
2435 static __always_inline void
2436 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2437 {
2438 	unsigned long max_count;
2439 
2440 	/*
2441 	 * We only race with interrupts and NMIs on this CPU.
2442 	 * If we own the commit event, then we can commit
2443 	 * all others that interrupted us, since the interruptions
2444 	 * are in stack format (they finish before they come
2445 	 * back to us). This allows us to do a simple loop to
2446 	 * assign the commit to the tail.
2447 	 */
2448  again:
2449 	max_count = cpu_buffer->nr_pages * 100;
2450 
2451 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2452 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2453 			return;
2454 		if (RB_WARN_ON(cpu_buffer,
2455 			       rb_is_reader_page(cpu_buffer->tail_page)))
2456 			return;
2457 		local_set(&cpu_buffer->commit_page->page->commit,
2458 			  rb_page_write(cpu_buffer->commit_page));
2459 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2460 		/* Only update the write stamp if the page has an event */
2461 		if (rb_page_write(cpu_buffer->commit_page))
2462 			cpu_buffer->write_stamp =
2463 				cpu_buffer->commit_page->page->time_stamp;
2464 		/* add barrier to keep gcc from optimizing too much */
2465 		barrier();
2466 	}
2467 	while (rb_commit_index(cpu_buffer) !=
2468 	       rb_page_write(cpu_buffer->commit_page)) {
2469 
2470 		local_set(&cpu_buffer->commit_page->page->commit,
2471 			  rb_page_write(cpu_buffer->commit_page));
2472 		RB_WARN_ON(cpu_buffer,
2473 			   local_read(&cpu_buffer->commit_page->page->commit) &
2474 			   ~RB_WRITE_MASK);
2475 		barrier();
2476 	}
2477 
2478 	/* again, keep gcc from optimizing */
2479 	barrier();
2480 
2481 	/*
2482 	 * If an interrupt came in just after the first while loop
2483 	 * and pushed the tail page forward, we will be left with
2484 	 * a dangling commit that will never go forward.
2485 	 */
2486 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2487 		goto again;
2488 }
2489 
2490 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2491 {
2492 	unsigned long commits;
2493 
2494 	if (RB_WARN_ON(cpu_buffer,
2495 		       !local_read(&cpu_buffer->committing)))
2496 		return;
2497 
2498  again:
2499 	commits = local_read(&cpu_buffer->commits);
2500 	/* synchronize with interrupts */
2501 	barrier();
2502 	if (local_read(&cpu_buffer->committing) == 1)
2503 		rb_set_commit_to_write(cpu_buffer);
2504 
2505 	local_dec(&cpu_buffer->committing);
2506 
2507 	/* synchronize with interrupts */
2508 	barrier();
2509 
2510 	/*
2511 	 * Need to account for interrupts coming in between the
2512 	 * updating of the commit page and the clearing of the
2513 	 * committing counter.
2514 	 */
2515 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2516 	    !local_read(&cpu_buffer->committing)) {
2517 		local_inc(&cpu_buffer->committing);
2518 		goto again;
2519 	}
2520 }
2521 
2522 static inline void rb_event_discard(struct ring_buffer_event *event)
2523 {
2524 	if (extended_time(event))
2525 		event = skip_time_extend(event);
2526 
2527 	/* array[0] holds the actual length for the discarded event */
2528 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2529 	event->type_len = RINGBUF_TYPE_PADDING;
2530 	/* time delta must be non zero */
2531 	if (!event->time_delta)
2532 		event->time_delta = 1;
2533 }
2534 
2535 static __always_inline bool
2536 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2537 		   struct ring_buffer_event *event)
2538 {
2539 	unsigned long addr = (unsigned long)event;
2540 	unsigned long index;
2541 
2542 	index = rb_event_index(event);
2543 	addr &= PAGE_MASK;
2544 
2545 	return cpu_buffer->commit_page->page == (void *)addr &&
2546 		rb_commit_index(cpu_buffer) == index;
2547 }
2548 
2549 static __always_inline void
2550 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2551 		      struct ring_buffer_event *event)
2552 {
2553 	u64 delta;
2554 
2555 	/*
2556 	 * The event first in the commit queue updates the
2557 	 * time stamp.
2558 	 */
2559 	if (rb_event_is_commit(cpu_buffer, event)) {
2560 		/*
2561 		 * A commit event that is first on a page
2562 		 * updates the write timestamp with the page stamp
2563 		 */
2564 		if (!rb_event_index(event))
2565 			cpu_buffer->write_stamp =
2566 				cpu_buffer->commit_page->page->time_stamp;
2567 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2568 			delta = ring_buffer_event_time_stamp(event);
2569 			cpu_buffer->write_stamp += delta;
2570 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2571 			delta = ring_buffer_event_time_stamp(event);
2572 			cpu_buffer->write_stamp = delta;
2573 		} else
2574 			cpu_buffer->write_stamp += event->time_delta;
2575 	}
2576 }
2577 
2578 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2579 		      struct ring_buffer_event *event)
2580 {
2581 	local_inc(&cpu_buffer->entries);
2582 	rb_update_write_stamp(cpu_buffer, event);
2583 	rb_end_commit(cpu_buffer);
2584 }
2585 
2586 static __always_inline void
2587 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2588 {
2589 	bool pagebusy;
2590 
2591 	if (buffer->irq_work.waiters_pending) {
2592 		buffer->irq_work.waiters_pending = false;
2593 		/* irq_work_queue() supplies it's own memory barriers */
2594 		irq_work_queue(&buffer->irq_work.work);
2595 	}
2596 
2597 	if (cpu_buffer->irq_work.waiters_pending) {
2598 		cpu_buffer->irq_work.waiters_pending = false;
2599 		/* irq_work_queue() supplies it's own memory barriers */
2600 		irq_work_queue(&cpu_buffer->irq_work.work);
2601 	}
2602 
2603 	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2604 
2605 	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2606 		cpu_buffer->irq_work.wakeup_full = true;
2607 		cpu_buffer->irq_work.full_waiters_pending = false;
2608 		/* irq_work_queue() supplies it's own memory barriers */
2609 		irq_work_queue(&cpu_buffer->irq_work.work);
2610 	}
2611 }
2612 
2613 /*
2614  * The lock and unlock are done within a preempt disable section.
2615  * The current_context per_cpu variable can only be modified
2616  * by the current task between lock and unlock. But it can
2617  * be modified more than once via an interrupt. To pass this
2618  * information from the lock to the unlock without having to
2619  * access the 'in_interrupt()' functions again (which do show
2620  * a bit of overhead in something as critical as function tracing,
2621  * we use a bitmask trick.
2622  *
2623  *  bit 0 =  NMI context
2624  *  bit 1 =  IRQ context
2625  *  bit 2 =  SoftIRQ context
2626  *  bit 3 =  normal context.
2627  *
2628  * This works because this is the order of contexts that can
2629  * preempt other contexts. A SoftIRQ never preempts an IRQ
2630  * context.
2631  *
2632  * When the context is determined, the corresponding bit is
2633  * checked and set (if it was set, then a recursion of that context
2634  * happened).
2635  *
2636  * On unlock, we need to clear this bit. To do so, just subtract
2637  * 1 from the current_context and AND it to itself.
2638  *
2639  * (binary)
2640  *  101 - 1 = 100
2641  *  101 & 100 = 100 (clearing bit zero)
2642  *
2643  *  1010 - 1 = 1001
2644  *  1010 & 1001 = 1000 (clearing bit 1)
2645  *
2646  * The least significant bit can be cleared this way, and it
2647  * just so happens that it is the same bit corresponding to
2648  * the current context.
2649  */
2650 
2651 static __always_inline int
2652 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2653 {
2654 	unsigned int val = cpu_buffer->current_context;
2655 	unsigned long pc = preempt_count();
2656 	int bit;
2657 
2658 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2659 		bit = RB_CTX_NORMAL;
2660 	else
2661 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2662 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2663 
2664 	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2665 		return 1;
2666 
2667 	val |= (1 << (bit + cpu_buffer->nest));
2668 	cpu_buffer->current_context = val;
2669 
2670 	return 0;
2671 }
2672 
2673 static __always_inline void
2674 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2675 {
2676 	cpu_buffer->current_context &=
2677 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2678 }
2679 
2680 /* The recursive locking above uses 4 bits */
2681 #define NESTED_BITS 4
2682 
2683 /**
2684  * ring_buffer_nest_start - Allow to trace while nested
2685  * @buffer: The ring buffer to modify
2686  *
2687  * The ring buffer has a safety mechanism to prevent recursion.
2688  * But there may be a case where a trace needs to be done while
2689  * tracing something else. In this case, calling this function
2690  * will allow this function to nest within a currently active
2691  * ring_buffer_lock_reserve().
2692  *
2693  * Call this function before calling another ring_buffer_lock_reserve() and
2694  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2695  */
2696 void ring_buffer_nest_start(struct ring_buffer *buffer)
2697 {
2698 	struct ring_buffer_per_cpu *cpu_buffer;
2699 	int cpu;
2700 
2701 	/* Enabled by ring_buffer_nest_end() */
2702 	preempt_disable_notrace();
2703 	cpu = raw_smp_processor_id();
2704 	cpu_buffer = buffer->buffers[cpu];
2705 	/* This is the shift value for the above recursive locking */
2706 	cpu_buffer->nest += NESTED_BITS;
2707 }
2708 
2709 /**
2710  * ring_buffer_nest_end - Allow to trace while nested
2711  * @buffer: The ring buffer to modify
2712  *
2713  * Must be called after ring_buffer_nest_start() and after the
2714  * ring_buffer_unlock_commit().
2715  */
2716 void ring_buffer_nest_end(struct ring_buffer *buffer)
2717 {
2718 	struct ring_buffer_per_cpu *cpu_buffer;
2719 	int cpu;
2720 
2721 	/* disabled by ring_buffer_nest_start() */
2722 	cpu = raw_smp_processor_id();
2723 	cpu_buffer = buffer->buffers[cpu];
2724 	/* This is the shift value for the above recursive locking */
2725 	cpu_buffer->nest -= NESTED_BITS;
2726 	preempt_enable_notrace();
2727 }
2728 
2729 /**
2730  * ring_buffer_unlock_commit - commit a reserved
2731  * @buffer: The buffer to commit to
2732  * @event: The event pointer to commit.
2733  *
2734  * This commits the data to the ring buffer, and releases any locks held.
2735  *
2736  * Must be paired with ring_buffer_lock_reserve.
2737  */
2738 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2739 			      struct ring_buffer_event *event)
2740 {
2741 	struct ring_buffer_per_cpu *cpu_buffer;
2742 	int cpu = raw_smp_processor_id();
2743 
2744 	cpu_buffer = buffer->buffers[cpu];
2745 
2746 	rb_commit(cpu_buffer, event);
2747 
2748 	rb_wakeups(buffer, cpu_buffer);
2749 
2750 	trace_recursive_unlock(cpu_buffer);
2751 
2752 	preempt_enable_notrace();
2753 
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2757 
2758 static noinline void
2759 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2760 		    struct rb_event_info *info)
2761 {
2762 	WARN_ONCE(info->delta > (1ULL << 59),
2763 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2764 		  (unsigned long long)info->delta,
2765 		  (unsigned long long)info->ts,
2766 		  (unsigned long long)cpu_buffer->write_stamp,
2767 		  sched_clock_stable() ? "" :
2768 		  "If you just came from a suspend/resume,\n"
2769 		  "please switch to the trace global clock:\n"
2770 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2771 		  "or add trace_clock=global to the kernel command line\n");
2772 	info->add_timestamp = 1;
2773 }
2774 
2775 static struct ring_buffer_event *
2776 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2777 		  struct rb_event_info *info)
2778 {
2779 	struct ring_buffer_event *event;
2780 	struct buffer_page *tail_page;
2781 	unsigned long tail, write;
2782 
2783 	/*
2784 	 * If the time delta since the last event is too big to
2785 	 * hold in the time field of the event, then we append a
2786 	 * TIME EXTEND event ahead of the data event.
2787 	 */
2788 	if (unlikely(info->add_timestamp))
2789 		info->length += RB_LEN_TIME_EXTEND;
2790 
2791 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2792 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2793 	write = local_add_return(info->length, &tail_page->write);
2794 
2795 	/* set write to only the index of the write */
2796 	write &= RB_WRITE_MASK;
2797 	tail = write - info->length;
2798 
2799 	/*
2800 	 * If this is the first commit on the page, then it has the same
2801 	 * timestamp as the page itself.
2802 	 */
2803 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2804 		info->delta = 0;
2805 
2806 	/* See if we shot pass the end of this buffer page */
2807 	if (unlikely(write > BUF_PAGE_SIZE))
2808 		return rb_move_tail(cpu_buffer, tail, info);
2809 
2810 	/* We reserved something on the buffer */
2811 
2812 	event = __rb_page_index(tail_page, tail);
2813 	rb_update_event(cpu_buffer, event, info);
2814 
2815 	local_inc(&tail_page->entries);
2816 
2817 	/*
2818 	 * If this is the first commit on the page, then update
2819 	 * its timestamp.
2820 	 */
2821 	if (!tail)
2822 		tail_page->page->time_stamp = info->ts;
2823 
2824 	/* account for these added bytes */
2825 	local_add(info->length, &cpu_buffer->entries_bytes);
2826 
2827 	return event;
2828 }
2829 
2830 static __always_inline struct ring_buffer_event *
2831 rb_reserve_next_event(struct ring_buffer *buffer,
2832 		      struct ring_buffer_per_cpu *cpu_buffer,
2833 		      unsigned long length)
2834 {
2835 	struct ring_buffer_event *event;
2836 	struct rb_event_info info;
2837 	int nr_loops = 0;
2838 	u64 diff;
2839 
2840 	rb_start_commit(cpu_buffer);
2841 
2842 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2843 	/*
2844 	 * Due to the ability to swap a cpu buffer from a buffer
2845 	 * it is possible it was swapped before we committed.
2846 	 * (committing stops a swap). We check for it here and
2847 	 * if it happened, we have to fail the write.
2848 	 */
2849 	barrier();
2850 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2851 		local_dec(&cpu_buffer->committing);
2852 		local_dec(&cpu_buffer->commits);
2853 		return NULL;
2854 	}
2855 #endif
2856 
2857 	info.length = rb_calculate_event_length(length);
2858  again:
2859 	info.add_timestamp = 0;
2860 	info.delta = 0;
2861 
2862 	/*
2863 	 * We allow for interrupts to reenter here and do a trace.
2864 	 * If one does, it will cause this original code to loop
2865 	 * back here. Even with heavy interrupts happening, this
2866 	 * should only happen a few times in a row. If this happens
2867 	 * 1000 times in a row, there must be either an interrupt
2868 	 * storm or we have something buggy.
2869 	 * Bail!
2870 	 */
2871 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2872 		goto out_fail;
2873 
2874 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2875 	diff = info.ts - cpu_buffer->write_stamp;
2876 
2877 	/* make sure this diff is calculated here */
2878 	barrier();
2879 
2880 	if (ring_buffer_time_stamp_abs(buffer)) {
2881 		info.delta = info.ts;
2882 		rb_handle_timestamp(cpu_buffer, &info);
2883 	} else /* Did the write stamp get updated already? */
2884 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2885 		info.delta = diff;
2886 		if (unlikely(test_time_stamp(info.delta)))
2887 			rb_handle_timestamp(cpu_buffer, &info);
2888 	}
2889 
2890 	event = __rb_reserve_next(cpu_buffer, &info);
2891 
2892 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2893 		if (info.add_timestamp)
2894 			info.length -= RB_LEN_TIME_EXTEND;
2895 		goto again;
2896 	}
2897 
2898 	if (!event)
2899 		goto out_fail;
2900 
2901 	return event;
2902 
2903  out_fail:
2904 	rb_end_commit(cpu_buffer);
2905 	return NULL;
2906 }
2907 
2908 /**
2909  * ring_buffer_lock_reserve - reserve a part of the buffer
2910  * @buffer: the ring buffer to reserve from
2911  * @length: the length of the data to reserve (excluding event header)
2912  *
2913  * Returns a reserved event on the ring buffer to copy directly to.
2914  * The user of this interface will need to get the body to write into
2915  * and can use the ring_buffer_event_data() interface.
2916  *
2917  * The length is the length of the data needed, not the event length
2918  * which also includes the event header.
2919  *
2920  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2921  * If NULL is returned, then nothing has been allocated or locked.
2922  */
2923 struct ring_buffer_event *
2924 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2925 {
2926 	struct ring_buffer_per_cpu *cpu_buffer;
2927 	struct ring_buffer_event *event;
2928 	int cpu;
2929 
2930 	/* If we are tracing schedule, we don't want to recurse */
2931 	preempt_disable_notrace();
2932 
2933 	if (unlikely(atomic_read(&buffer->record_disabled)))
2934 		goto out;
2935 
2936 	cpu = raw_smp_processor_id();
2937 
2938 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2939 		goto out;
2940 
2941 	cpu_buffer = buffer->buffers[cpu];
2942 
2943 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2944 		goto out;
2945 
2946 	if (unlikely(length > BUF_MAX_DATA_SIZE))
2947 		goto out;
2948 
2949 	if (unlikely(trace_recursive_lock(cpu_buffer)))
2950 		goto out;
2951 
2952 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2953 	if (!event)
2954 		goto out_unlock;
2955 
2956 	return event;
2957 
2958  out_unlock:
2959 	trace_recursive_unlock(cpu_buffer);
2960  out:
2961 	preempt_enable_notrace();
2962 	return NULL;
2963 }
2964 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2965 
2966 /*
2967  * Decrement the entries to the page that an event is on.
2968  * The event does not even need to exist, only the pointer
2969  * to the page it is on. This may only be called before the commit
2970  * takes place.
2971  */
2972 static inline void
2973 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2974 		   struct ring_buffer_event *event)
2975 {
2976 	unsigned long addr = (unsigned long)event;
2977 	struct buffer_page *bpage = cpu_buffer->commit_page;
2978 	struct buffer_page *start;
2979 
2980 	addr &= PAGE_MASK;
2981 
2982 	/* Do the likely case first */
2983 	if (likely(bpage->page == (void *)addr)) {
2984 		local_dec(&bpage->entries);
2985 		return;
2986 	}
2987 
2988 	/*
2989 	 * Because the commit page may be on the reader page we
2990 	 * start with the next page and check the end loop there.
2991 	 */
2992 	rb_inc_page(cpu_buffer, &bpage);
2993 	start = bpage;
2994 	do {
2995 		if (bpage->page == (void *)addr) {
2996 			local_dec(&bpage->entries);
2997 			return;
2998 		}
2999 		rb_inc_page(cpu_buffer, &bpage);
3000 	} while (bpage != start);
3001 
3002 	/* commit not part of this buffer?? */
3003 	RB_WARN_ON(cpu_buffer, 1);
3004 }
3005 
3006 /**
3007  * ring_buffer_commit_discard - discard an event that has not been committed
3008  * @buffer: the ring buffer
3009  * @event: non committed event to discard
3010  *
3011  * Sometimes an event that is in the ring buffer needs to be ignored.
3012  * This function lets the user discard an event in the ring buffer
3013  * and then that event will not be read later.
3014  *
3015  * This function only works if it is called before the item has been
3016  * committed. It will try to free the event from the ring buffer
3017  * if another event has not been added behind it.
3018  *
3019  * If another event has been added behind it, it will set the event
3020  * up as discarded, and perform the commit.
3021  *
3022  * If this function is called, do not call ring_buffer_unlock_commit on
3023  * the event.
3024  */
3025 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3026 				struct ring_buffer_event *event)
3027 {
3028 	struct ring_buffer_per_cpu *cpu_buffer;
3029 	int cpu;
3030 
3031 	/* The event is discarded regardless */
3032 	rb_event_discard(event);
3033 
3034 	cpu = smp_processor_id();
3035 	cpu_buffer = buffer->buffers[cpu];
3036 
3037 	/*
3038 	 * This must only be called if the event has not been
3039 	 * committed yet. Thus we can assume that preemption
3040 	 * is still disabled.
3041 	 */
3042 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3043 
3044 	rb_decrement_entry(cpu_buffer, event);
3045 	if (rb_try_to_discard(cpu_buffer, event))
3046 		goto out;
3047 
3048 	/*
3049 	 * The commit is still visible by the reader, so we
3050 	 * must still update the timestamp.
3051 	 */
3052 	rb_update_write_stamp(cpu_buffer, event);
3053  out:
3054 	rb_end_commit(cpu_buffer);
3055 
3056 	trace_recursive_unlock(cpu_buffer);
3057 
3058 	preempt_enable_notrace();
3059 
3060 }
3061 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3062 
3063 /**
3064  * ring_buffer_write - write data to the buffer without reserving
3065  * @buffer: The ring buffer to write to.
3066  * @length: The length of the data being written (excluding the event header)
3067  * @data: The data to write to the buffer.
3068  *
3069  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3070  * one function. If you already have the data to write to the buffer, it
3071  * may be easier to simply call this function.
3072  *
3073  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3074  * and not the length of the event which would hold the header.
3075  */
3076 int ring_buffer_write(struct ring_buffer *buffer,
3077 		      unsigned long length,
3078 		      void *data)
3079 {
3080 	struct ring_buffer_per_cpu *cpu_buffer;
3081 	struct ring_buffer_event *event;
3082 	void *body;
3083 	int ret = -EBUSY;
3084 	int cpu;
3085 
3086 	preempt_disable_notrace();
3087 
3088 	if (atomic_read(&buffer->record_disabled))
3089 		goto out;
3090 
3091 	cpu = raw_smp_processor_id();
3092 
3093 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3094 		goto out;
3095 
3096 	cpu_buffer = buffer->buffers[cpu];
3097 
3098 	if (atomic_read(&cpu_buffer->record_disabled))
3099 		goto out;
3100 
3101 	if (length > BUF_MAX_DATA_SIZE)
3102 		goto out;
3103 
3104 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3105 		goto out;
3106 
3107 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3108 	if (!event)
3109 		goto out_unlock;
3110 
3111 	body = rb_event_data(event);
3112 
3113 	memcpy(body, data, length);
3114 
3115 	rb_commit(cpu_buffer, event);
3116 
3117 	rb_wakeups(buffer, cpu_buffer);
3118 
3119 	ret = 0;
3120 
3121  out_unlock:
3122 	trace_recursive_unlock(cpu_buffer);
3123 
3124  out:
3125 	preempt_enable_notrace();
3126 
3127 	return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_write);
3130 
3131 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3132 {
3133 	struct buffer_page *reader = cpu_buffer->reader_page;
3134 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3135 	struct buffer_page *commit = cpu_buffer->commit_page;
3136 
3137 	/* In case of error, head will be NULL */
3138 	if (unlikely(!head))
3139 		return true;
3140 
3141 	return reader->read == rb_page_commit(reader) &&
3142 		(commit == reader ||
3143 		 (commit == head &&
3144 		  head->read == rb_page_commit(commit)));
3145 }
3146 
3147 /**
3148  * ring_buffer_record_disable - stop all writes into the buffer
3149  * @buffer: The ring buffer to stop writes to.
3150  *
3151  * This prevents all writes to the buffer. Any attempt to write
3152  * to the buffer after this will fail and return NULL.
3153  *
3154  * The caller should call synchronize_sched() after this.
3155  */
3156 void ring_buffer_record_disable(struct ring_buffer *buffer)
3157 {
3158 	atomic_inc(&buffer->record_disabled);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3161 
3162 /**
3163  * ring_buffer_record_enable - enable writes to the buffer
3164  * @buffer: The ring buffer to enable writes
3165  *
3166  * Note, multiple disables will need the same number of enables
3167  * to truly enable the writing (much like preempt_disable).
3168  */
3169 void ring_buffer_record_enable(struct ring_buffer *buffer)
3170 {
3171 	atomic_dec(&buffer->record_disabled);
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3174 
3175 /**
3176  * ring_buffer_record_off - stop all writes into the buffer
3177  * @buffer: The ring buffer to stop writes to.
3178  *
3179  * This prevents all writes to the buffer. Any attempt to write
3180  * to the buffer after this will fail and return NULL.
3181  *
3182  * This is different than ring_buffer_record_disable() as
3183  * it works like an on/off switch, where as the disable() version
3184  * must be paired with a enable().
3185  */
3186 void ring_buffer_record_off(struct ring_buffer *buffer)
3187 {
3188 	unsigned int rd;
3189 	unsigned int new_rd;
3190 
3191 	do {
3192 		rd = atomic_read(&buffer->record_disabled);
3193 		new_rd = rd | RB_BUFFER_OFF;
3194 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3195 }
3196 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3197 
3198 /**
3199  * ring_buffer_record_on - restart writes into the buffer
3200  * @buffer: The ring buffer to start writes to.
3201  *
3202  * This enables all writes to the buffer that was disabled by
3203  * ring_buffer_record_off().
3204  *
3205  * This is different than ring_buffer_record_enable() as
3206  * it works like an on/off switch, where as the enable() version
3207  * must be paired with a disable().
3208  */
3209 void ring_buffer_record_on(struct ring_buffer *buffer)
3210 {
3211 	unsigned int rd;
3212 	unsigned int new_rd;
3213 
3214 	do {
3215 		rd = atomic_read(&buffer->record_disabled);
3216 		new_rd = rd & ~RB_BUFFER_OFF;
3217 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3218 }
3219 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3220 
3221 /**
3222  * ring_buffer_record_is_on - return true if the ring buffer can write
3223  * @buffer: The ring buffer to see if write is enabled
3224  *
3225  * Returns true if the ring buffer is in a state that it accepts writes.
3226  */
3227 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3228 {
3229 	return !atomic_read(&buffer->record_disabled);
3230 }
3231 
3232 /**
3233  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3234  * @buffer: The ring buffer to see if write is set enabled
3235  *
3236  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3237  * Note that this does NOT mean it is in a writable state.
3238  *
3239  * It may return true when the ring buffer has been disabled by
3240  * ring_buffer_record_disable(), as that is a temporary disabling of
3241  * the ring buffer.
3242  */
3243 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3244 {
3245 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3246 }
3247 
3248 /**
3249  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3250  * @buffer: The ring buffer to stop writes to.
3251  * @cpu: The CPU buffer to stop
3252  *
3253  * This prevents all writes to the buffer. Any attempt to write
3254  * to the buffer after this will fail and return NULL.
3255  *
3256  * The caller should call synchronize_sched() after this.
3257  */
3258 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260 	struct ring_buffer_per_cpu *cpu_buffer;
3261 
3262 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263 		return;
3264 
3265 	cpu_buffer = buffer->buffers[cpu];
3266 	atomic_inc(&cpu_buffer->record_disabled);
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3269 
3270 /**
3271  * ring_buffer_record_enable_cpu - enable writes to the buffer
3272  * @buffer: The ring buffer to enable writes
3273  * @cpu: The CPU to enable.
3274  *
3275  * Note, multiple disables will need the same number of enables
3276  * to truly enable the writing (much like preempt_disable).
3277  */
3278 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3279 {
3280 	struct ring_buffer_per_cpu *cpu_buffer;
3281 
3282 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283 		return;
3284 
3285 	cpu_buffer = buffer->buffers[cpu];
3286 	atomic_dec(&cpu_buffer->record_disabled);
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3289 
3290 /*
3291  * The total entries in the ring buffer is the running counter
3292  * of entries entered into the ring buffer, minus the sum of
3293  * the entries read from the ring buffer and the number of
3294  * entries that were overwritten.
3295  */
3296 static inline unsigned long
3297 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3298 {
3299 	return local_read(&cpu_buffer->entries) -
3300 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3301 }
3302 
3303 /**
3304  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3305  * @buffer: The ring buffer
3306  * @cpu: The per CPU buffer to read from.
3307  */
3308 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3309 {
3310 	unsigned long flags;
3311 	struct ring_buffer_per_cpu *cpu_buffer;
3312 	struct buffer_page *bpage;
3313 	u64 ret = 0;
3314 
3315 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3316 		return 0;
3317 
3318 	cpu_buffer = buffer->buffers[cpu];
3319 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3320 	/*
3321 	 * if the tail is on reader_page, oldest time stamp is on the reader
3322 	 * page
3323 	 */
3324 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3325 		bpage = cpu_buffer->reader_page;
3326 	else
3327 		bpage = rb_set_head_page(cpu_buffer);
3328 	if (bpage)
3329 		ret = bpage->page->time_stamp;
3330 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3331 
3332 	return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3335 
3336 /**
3337  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3338  * @buffer: The ring buffer
3339  * @cpu: The per CPU buffer to read from.
3340  */
3341 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3342 {
3343 	struct ring_buffer_per_cpu *cpu_buffer;
3344 	unsigned long ret;
3345 
3346 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347 		return 0;
3348 
3349 	cpu_buffer = buffer->buffers[cpu];
3350 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3351 
3352 	return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3355 
3356 /**
3357  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3358  * @buffer: The ring buffer
3359  * @cpu: The per CPU buffer to get the entries from.
3360  */
3361 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3362 {
3363 	struct ring_buffer_per_cpu *cpu_buffer;
3364 
3365 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3366 		return 0;
3367 
3368 	cpu_buffer = buffer->buffers[cpu];
3369 
3370 	return rb_num_of_entries(cpu_buffer);
3371 }
3372 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3373 
3374 /**
3375  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3376  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3377  * @buffer: The ring buffer
3378  * @cpu: The per CPU buffer to get the number of overruns from
3379  */
3380 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3381 {
3382 	struct ring_buffer_per_cpu *cpu_buffer;
3383 	unsigned long ret;
3384 
3385 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386 		return 0;
3387 
3388 	cpu_buffer = buffer->buffers[cpu];
3389 	ret = local_read(&cpu_buffer->overrun);
3390 
3391 	return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3394 
3395 /**
3396  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3397  * commits failing due to the buffer wrapping around while there are uncommitted
3398  * events, such as during an interrupt storm.
3399  * @buffer: The ring buffer
3400  * @cpu: The per CPU buffer to get the number of overruns from
3401  */
3402 unsigned long
3403 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3404 {
3405 	struct ring_buffer_per_cpu *cpu_buffer;
3406 	unsigned long ret;
3407 
3408 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3409 		return 0;
3410 
3411 	cpu_buffer = buffer->buffers[cpu];
3412 	ret = local_read(&cpu_buffer->commit_overrun);
3413 
3414 	return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3417 
3418 /**
3419  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3420  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3421  * @buffer: The ring buffer
3422  * @cpu: The per CPU buffer to get the number of overruns from
3423  */
3424 unsigned long
3425 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3426 {
3427 	struct ring_buffer_per_cpu *cpu_buffer;
3428 	unsigned long ret;
3429 
3430 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3431 		return 0;
3432 
3433 	cpu_buffer = buffer->buffers[cpu];
3434 	ret = local_read(&cpu_buffer->dropped_events);
3435 
3436 	return ret;
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3439 
3440 /**
3441  * ring_buffer_read_events_cpu - get the number of events successfully read
3442  * @buffer: The ring buffer
3443  * @cpu: The per CPU buffer to get the number of events read
3444  */
3445 unsigned long
3446 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3447 {
3448 	struct ring_buffer_per_cpu *cpu_buffer;
3449 
3450 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3451 		return 0;
3452 
3453 	cpu_buffer = buffer->buffers[cpu];
3454 	return cpu_buffer->read;
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3457 
3458 /**
3459  * ring_buffer_entries - get the number of entries in a buffer
3460  * @buffer: The ring buffer
3461  *
3462  * Returns the total number of entries in the ring buffer
3463  * (all CPU entries)
3464  */
3465 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3466 {
3467 	struct ring_buffer_per_cpu *cpu_buffer;
3468 	unsigned long entries = 0;
3469 	int cpu;
3470 
3471 	/* if you care about this being correct, lock the buffer */
3472 	for_each_buffer_cpu(buffer, cpu) {
3473 		cpu_buffer = buffer->buffers[cpu];
3474 		entries += rb_num_of_entries(cpu_buffer);
3475 	}
3476 
3477 	return entries;
3478 }
3479 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3480 
3481 /**
3482  * ring_buffer_overruns - get the number of overruns in buffer
3483  * @buffer: The ring buffer
3484  *
3485  * Returns the total number of overruns in the ring buffer
3486  * (all CPU entries)
3487  */
3488 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3489 {
3490 	struct ring_buffer_per_cpu *cpu_buffer;
3491 	unsigned long overruns = 0;
3492 	int cpu;
3493 
3494 	/* if you care about this being correct, lock the buffer */
3495 	for_each_buffer_cpu(buffer, cpu) {
3496 		cpu_buffer = buffer->buffers[cpu];
3497 		overruns += local_read(&cpu_buffer->overrun);
3498 	}
3499 
3500 	return overruns;
3501 }
3502 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3503 
3504 static void rb_iter_reset(struct ring_buffer_iter *iter)
3505 {
3506 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3507 
3508 	/* Iterator usage is expected to have record disabled */
3509 	iter->head_page = cpu_buffer->reader_page;
3510 	iter->head = cpu_buffer->reader_page->read;
3511 
3512 	iter->cache_reader_page = iter->head_page;
3513 	iter->cache_read = cpu_buffer->read;
3514 
3515 	if (iter->head)
3516 		iter->read_stamp = cpu_buffer->read_stamp;
3517 	else
3518 		iter->read_stamp = iter->head_page->page->time_stamp;
3519 }
3520 
3521 /**
3522  * ring_buffer_iter_reset - reset an iterator
3523  * @iter: The iterator to reset
3524  *
3525  * Resets the iterator, so that it will start from the beginning
3526  * again.
3527  */
3528 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3529 {
3530 	struct ring_buffer_per_cpu *cpu_buffer;
3531 	unsigned long flags;
3532 
3533 	if (!iter)
3534 		return;
3535 
3536 	cpu_buffer = iter->cpu_buffer;
3537 
3538 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3539 	rb_iter_reset(iter);
3540 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3541 }
3542 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3543 
3544 /**
3545  * ring_buffer_iter_empty - check if an iterator has no more to read
3546  * @iter: The iterator to check
3547  */
3548 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3549 {
3550 	struct ring_buffer_per_cpu *cpu_buffer;
3551 	struct buffer_page *reader;
3552 	struct buffer_page *head_page;
3553 	struct buffer_page *commit_page;
3554 	unsigned commit;
3555 
3556 	cpu_buffer = iter->cpu_buffer;
3557 
3558 	/* Remember, trace recording is off when iterator is in use */
3559 	reader = cpu_buffer->reader_page;
3560 	head_page = cpu_buffer->head_page;
3561 	commit_page = cpu_buffer->commit_page;
3562 	commit = rb_page_commit(commit_page);
3563 
3564 	return ((iter->head_page == commit_page && iter->head == commit) ||
3565 		(iter->head_page == reader && commit_page == head_page &&
3566 		 head_page->read == commit &&
3567 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3568 }
3569 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3570 
3571 static void
3572 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3573 		     struct ring_buffer_event *event)
3574 {
3575 	u64 delta;
3576 
3577 	switch (event->type_len) {
3578 	case RINGBUF_TYPE_PADDING:
3579 		return;
3580 
3581 	case RINGBUF_TYPE_TIME_EXTEND:
3582 		delta = ring_buffer_event_time_stamp(event);
3583 		cpu_buffer->read_stamp += delta;
3584 		return;
3585 
3586 	case RINGBUF_TYPE_TIME_STAMP:
3587 		delta = ring_buffer_event_time_stamp(event);
3588 		cpu_buffer->read_stamp = delta;
3589 		return;
3590 
3591 	case RINGBUF_TYPE_DATA:
3592 		cpu_buffer->read_stamp += event->time_delta;
3593 		return;
3594 
3595 	default:
3596 		BUG();
3597 	}
3598 	return;
3599 }
3600 
3601 static void
3602 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3603 			  struct ring_buffer_event *event)
3604 {
3605 	u64 delta;
3606 
3607 	switch (event->type_len) {
3608 	case RINGBUF_TYPE_PADDING:
3609 		return;
3610 
3611 	case RINGBUF_TYPE_TIME_EXTEND:
3612 		delta = ring_buffer_event_time_stamp(event);
3613 		iter->read_stamp += delta;
3614 		return;
3615 
3616 	case RINGBUF_TYPE_TIME_STAMP:
3617 		delta = ring_buffer_event_time_stamp(event);
3618 		iter->read_stamp = delta;
3619 		return;
3620 
3621 	case RINGBUF_TYPE_DATA:
3622 		iter->read_stamp += event->time_delta;
3623 		return;
3624 
3625 	default:
3626 		BUG();
3627 	}
3628 	return;
3629 }
3630 
3631 static struct buffer_page *
3632 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3633 {
3634 	struct buffer_page *reader = NULL;
3635 	unsigned long overwrite;
3636 	unsigned long flags;
3637 	int nr_loops = 0;
3638 	int ret;
3639 
3640 	local_irq_save(flags);
3641 	arch_spin_lock(&cpu_buffer->lock);
3642 
3643  again:
3644 	/*
3645 	 * This should normally only loop twice. But because the
3646 	 * start of the reader inserts an empty page, it causes
3647 	 * a case where we will loop three times. There should be no
3648 	 * reason to loop four times (that I know of).
3649 	 */
3650 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3651 		reader = NULL;
3652 		goto out;
3653 	}
3654 
3655 	reader = cpu_buffer->reader_page;
3656 
3657 	/* If there's more to read, return this page */
3658 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3659 		goto out;
3660 
3661 	/* Never should we have an index greater than the size */
3662 	if (RB_WARN_ON(cpu_buffer,
3663 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3664 		goto out;
3665 
3666 	/* check if we caught up to the tail */
3667 	reader = NULL;
3668 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3669 		goto out;
3670 
3671 	/* Don't bother swapping if the ring buffer is empty */
3672 	if (rb_num_of_entries(cpu_buffer) == 0)
3673 		goto out;
3674 
3675 	/*
3676 	 * Reset the reader page to size zero.
3677 	 */
3678 	local_set(&cpu_buffer->reader_page->write, 0);
3679 	local_set(&cpu_buffer->reader_page->entries, 0);
3680 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3681 	cpu_buffer->reader_page->real_end = 0;
3682 
3683  spin:
3684 	/*
3685 	 * Splice the empty reader page into the list around the head.
3686 	 */
3687 	reader = rb_set_head_page(cpu_buffer);
3688 	if (!reader)
3689 		goto out;
3690 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3691 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3692 
3693 	/*
3694 	 * cpu_buffer->pages just needs to point to the buffer, it
3695 	 *  has no specific buffer page to point to. Lets move it out
3696 	 *  of our way so we don't accidentally swap it.
3697 	 */
3698 	cpu_buffer->pages = reader->list.prev;
3699 
3700 	/* The reader page will be pointing to the new head */
3701 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3702 
3703 	/*
3704 	 * We want to make sure we read the overruns after we set up our
3705 	 * pointers to the next object. The writer side does a
3706 	 * cmpxchg to cross pages which acts as the mb on the writer
3707 	 * side. Note, the reader will constantly fail the swap
3708 	 * while the writer is updating the pointers, so this
3709 	 * guarantees that the overwrite recorded here is the one we
3710 	 * want to compare with the last_overrun.
3711 	 */
3712 	smp_mb();
3713 	overwrite = local_read(&(cpu_buffer->overrun));
3714 
3715 	/*
3716 	 * Here's the tricky part.
3717 	 *
3718 	 * We need to move the pointer past the header page.
3719 	 * But we can only do that if a writer is not currently
3720 	 * moving it. The page before the header page has the
3721 	 * flag bit '1' set if it is pointing to the page we want.
3722 	 * but if the writer is in the process of moving it
3723 	 * than it will be '2' or already moved '0'.
3724 	 */
3725 
3726 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3727 
3728 	/*
3729 	 * If we did not convert it, then we must try again.
3730 	 */
3731 	if (!ret)
3732 		goto spin;
3733 
3734 	/*
3735 	 * Yeah! We succeeded in replacing the page.
3736 	 *
3737 	 * Now make the new head point back to the reader page.
3738 	 */
3739 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3740 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3741 
3742 	/* Finally update the reader page to the new head */
3743 	cpu_buffer->reader_page = reader;
3744 	cpu_buffer->reader_page->read = 0;
3745 
3746 	if (overwrite != cpu_buffer->last_overrun) {
3747 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3748 		cpu_buffer->last_overrun = overwrite;
3749 	}
3750 
3751 	goto again;
3752 
3753  out:
3754 	/* Update the read_stamp on the first event */
3755 	if (reader && reader->read == 0)
3756 		cpu_buffer->read_stamp = reader->page->time_stamp;
3757 
3758 	arch_spin_unlock(&cpu_buffer->lock);
3759 	local_irq_restore(flags);
3760 
3761 	return reader;
3762 }
3763 
3764 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3765 {
3766 	struct ring_buffer_event *event;
3767 	struct buffer_page *reader;
3768 	unsigned length;
3769 
3770 	reader = rb_get_reader_page(cpu_buffer);
3771 
3772 	/* This function should not be called when buffer is empty */
3773 	if (RB_WARN_ON(cpu_buffer, !reader))
3774 		return;
3775 
3776 	event = rb_reader_event(cpu_buffer);
3777 
3778 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3779 		cpu_buffer->read++;
3780 
3781 	rb_update_read_stamp(cpu_buffer, event);
3782 
3783 	length = rb_event_length(event);
3784 	cpu_buffer->reader_page->read += length;
3785 }
3786 
3787 static void rb_advance_iter(struct ring_buffer_iter *iter)
3788 {
3789 	struct ring_buffer_per_cpu *cpu_buffer;
3790 	struct ring_buffer_event *event;
3791 	unsigned length;
3792 
3793 	cpu_buffer = iter->cpu_buffer;
3794 
3795 	/*
3796 	 * Check if we are at the end of the buffer.
3797 	 */
3798 	if (iter->head >= rb_page_size(iter->head_page)) {
3799 		/* discarded commits can make the page empty */
3800 		if (iter->head_page == cpu_buffer->commit_page)
3801 			return;
3802 		rb_inc_iter(iter);
3803 		return;
3804 	}
3805 
3806 	event = rb_iter_head_event(iter);
3807 
3808 	length = rb_event_length(event);
3809 
3810 	/*
3811 	 * This should not be called to advance the header if we are
3812 	 * at the tail of the buffer.
3813 	 */
3814 	if (RB_WARN_ON(cpu_buffer,
3815 		       (iter->head_page == cpu_buffer->commit_page) &&
3816 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3817 		return;
3818 
3819 	rb_update_iter_read_stamp(iter, event);
3820 
3821 	iter->head += length;
3822 
3823 	/* check for end of page padding */
3824 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3825 	    (iter->head_page != cpu_buffer->commit_page))
3826 		rb_inc_iter(iter);
3827 }
3828 
3829 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3830 {
3831 	return cpu_buffer->lost_events;
3832 }
3833 
3834 static struct ring_buffer_event *
3835 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3836 	       unsigned long *lost_events)
3837 {
3838 	struct ring_buffer_event *event;
3839 	struct buffer_page *reader;
3840 	int nr_loops = 0;
3841 
3842 	if (ts)
3843 		*ts = 0;
3844  again:
3845 	/*
3846 	 * We repeat when a time extend is encountered.
3847 	 * Since the time extend is always attached to a data event,
3848 	 * we should never loop more than once.
3849 	 * (We never hit the following condition more than twice).
3850 	 */
3851 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3852 		return NULL;
3853 
3854 	reader = rb_get_reader_page(cpu_buffer);
3855 	if (!reader)
3856 		return NULL;
3857 
3858 	event = rb_reader_event(cpu_buffer);
3859 
3860 	switch (event->type_len) {
3861 	case RINGBUF_TYPE_PADDING:
3862 		if (rb_null_event(event))
3863 			RB_WARN_ON(cpu_buffer, 1);
3864 		/*
3865 		 * Because the writer could be discarding every
3866 		 * event it creates (which would probably be bad)
3867 		 * if we were to go back to "again" then we may never
3868 		 * catch up, and will trigger the warn on, or lock
3869 		 * the box. Return the padding, and we will release
3870 		 * the current locks, and try again.
3871 		 */
3872 		return event;
3873 
3874 	case RINGBUF_TYPE_TIME_EXTEND:
3875 		/* Internal data, OK to advance */
3876 		rb_advance_reader(cpu_buffer);
3877 		goto again;
3878 
3879 	case RINGBUF_TYPE_TIME_STAMP:
3880 		if (ts) {
3881 			*ts = ring_buffer_event_time_stamp(event);
3882 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3883 							 cpu_buffer->cpu, ts);
3884 		}
3885 		/* Internal data, OK to advance */
3886 		rb_advance_reader(cpu_buffer);
3887 		goto again;
3888 
3889 	case RINGBUF_TYPE_DATA:
3890 		if (ts && !(*ts)) {
3891 			*ts = cpu_buffer->read_stamp + event->time_delta;
3892 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3893 							 cpu_buffer->cpu, ts);
3894 		}
3895 		if (lost_events)
3896 			*lost_events = rb_lost_events(cpu_buffer);
3897 		return event;
3898 
3899 	default:
3900 		BUG();
3901 	}
3902 
3903 	return NULL;
3904 }
3905 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3906 
3907 static struct ring_buffer_event *
3908 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3909 {
3910 	struct ring_buffer *buffer;
3911 	struct ring_buffer_per_cpu *cpu_buffer;
3912 	struct ring_buffer_event *event;
3913 	int nr_loops = 0;
3914 
3915 	if (ts)
3916 		*ts = 0;
3917 
3918 	cpu_buffer = iter->cpu_buffer;
3919 	buffer = cpu_buffer->buffer;
3920 
3921 	/*
3922 	 * Check if someone performed a consuming read to
3923 	 * the buffer. A consuming read invalidates the iterator
3924 	 * and we need to reset the iterator in this case.
3925 	 */
3926 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3927 		     iter->cache_reader_page != cpu_buffer->reader_page))
3928 		rb_iter_reset(iter);
3929 
3930  again:
3931 	if (ring_buffer_iter_empty(iter))
3932 		return NULL;
3933 
3934 	/*
3935 	 * We repeat when a time extend is encountered or we hit
3936 	 * the end of the page. Since the time extend is always attached
3937 	 * to a data event, we should never loop more than three times.
3938 	 * Once for going to next page, once on time extend, and
3939 	 * finally once to get the event.
3940 	 * (We never hit the following condition more than thrice).
3941 	 */
3942 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3943 		return NULL;
3944 
3945 	if (rb_per_cpu_empty(cpu_buffer))
3946 		return NULL;
3947 
3948 	if (iter->head >= rb_page_size(iter->head_page)) {
3949 		rb_inc_iter(iter);
3950 		goto again;
3951 	}
3952 
3953 	event = rb_iter_head_event(iter);
3954 
3955 	switch (event->type_len) {
3956 	case RINGBUF_TYPE_PADDING:
3957 		if (rb_null_event(event)) {
3958 			rb_inc_iter(iter);
3959 			goto again;
3960 		}
3961 		rb_advance_iter(iter);
3962 		return event;
3963 
3964 	case RINGBUF_TYPE_TIME_EXTEND:
3965 		/* Internal data, OK to advance */
3966 		rb_advance_iter(iter);
3967 		goto again;
3968 
3969 	case RINGBUF_TYPE_TIME_STAMP:
3970 		if (ts) {
3971 			*ts = ring_buffer_event_time_stamp(event);
3972 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3973 							 cpu_buffer->cpu, ts);
3974 		}
3975 		/* Internal data, OK to advance */
3976 		rb_advance_iter(iter);
3977 		goto again;
3978 
3979 	case RINGBUF_TYPE_DATA:
3980 		if (ts && !(*ts)) {
3981 			*ts = iter->read_stamp + event->time_delta;
3982 			ring_buffer_normalize_time_stamp(buffer,
3983 							 cpu_buffer->cpu, ts);
3984 		}
3985 		return event;
3986 
3987 	default:
3988 		BUG();
3989 	}
3990 
3991 	return NULL;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3994 
3995 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3996 {
3997 	if (likely(!in_nmi())) {
3998 		raw_spin_lock(&cpu_buffer->reader_lock);
3999 		return true;
4000 	}
4001 
4002 	/*
4003 	 * If an NMI die dumps out the content of the ring buffer
4004 	 * trylock must be used to prevent a deadlock if the NMI
4005 	 * preempted a task that holds the ring buffer locks. If
4006 	 * we get the lock then all is fine, if not, then continue
4007 	 * to do the read, but this can corrupt the ring buffer,
4008 	 * so it must be permanently disabled from future writes.
4009 	 * Reading from NMI is a oneshot deal.
4010 	 */
4011 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4012 		return true;
4013 
4014 	/* Continue without locking, but disable the ring buffer */
4015 	atomic_inc(&cpu_buffer->record_disabled);
4016 	return false;
4017 }
4018 
4019 static inline void
4020 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4021 {
4022 	if (likely(locked))
4023 		raw_spin_unlock(&cpu_buffer->reader_lock);
4024 	return;
4025 }
4026 
4027 /**
4028  * ring_buffer_peek - peek at the next event to be read
4029  * @buffer: The ring buffer to read
4030  * @cpu: The cpu to peak at
4031  * @ts: The timestamp counter of this event.
4032  * @lost_events: a variable to store if events were lost (may be NULL)
4033  *
4034  * This will return the event that will be read next, but does
4035  * not consume the data.
4036  */
4037 struct ring_buffer_event *
4038 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4039 		 unsigned long *lost_events)
4040 {
4041 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4042 	struct ring_buffer_event *event;
4043 	unsigned long flags;
4044 	bool dolock;
4045 
4046 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4047 		return NULL;
4048 
4049  again:
4050 	local_irq_save(flags);
4051 	dolock = rb_reader_lock(cpu_buffer);
4052 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4053 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4054 		rb_advance_reader(cpu_buffer);
4055 	rb_reader_unlock(cpu_buffer, dolock);
4056 	local_irq_restore(flags);
4057 
4058 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4059 		goto again;
4060 
4061 	return event;
4062 }
4063 
4064 /**
4065  * ring_buffer_iter_peek - peek at the next event to be read
4066  * @iter: The ring buffer iterator
4067  * @ts: The timestamp counter of this event.
4068  *
4069  * This will return the event that will be read next, but does
4070  * not increment the iterator.
4071  */
4072 struct ring_buffer_event *
4073 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4074 {
4075 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076 	struct ring_buffer_event *event;
4077 	unsigned long flags;
4078 
4079  again:
4080 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4081 	event = rb_iter_peek(iter, ts);
4082 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083 
4084 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4085 		goto again;
4086 
4087 	return event;
4088 }
4089 
4090 /**
4091  * ring_buffer_consume - return an event and consume it
4092  * @buffer: The ring buffer to get the next event from
4093  * @cpu: the cpu to read the buffer from
4094  * @ts: a variable to store the timestamp (may be NULL)
4095  * @lost_events: a variable to store if events were lost (may be NULL)
4096  *
4097  * Returns the next event in the ring buffer, and that event is consumed.
4098  * Meaning, that sequential reads will keep returning a different event,
4099  * and eventually empty the ring buffer if the producer is slower.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4103 		    unsigned long *lost_events)
4104 {
4105 	struct ring_buffer_per_cpu *cpu_buffer;
4106 	struct ring_buffer_event *event = NULL;
4107 	unsigned long flags;
4108 	bool dolock;
4109 
4110  again:
4111 	/* might be called in atomic */
4112 	preempt_disable();
4113 
4114 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4115 		goto out;
4116 
4117 	cpu_buffer = buffer->buffers[cpu];
4118 	local_irq_save(flags);
4119 	dolock = rb_reader_lock(cpu_buffer);
4120 
4121 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4122 	if (event) {
4123 		cpu_buffer->lost_events = 0;
4124 		rb_advance_reader(cpu_buffer);
4125 	}
4126 
4127 	rb_reader_unlock(cpu_buffer, dolock);
4128 	local_irq_restore(flags);
4129 
4130  out:
4131 	preempt_enable();
4132 
4133 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4134 		goto again;
4135 
4136 	return event;
4137 }
4138 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4139 
4140 /**
4141  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4142  * @buffer: The ring buffer to read from
4143  * @cpu: The cpu buffer to iterate over
4144  *
4145  * This performs the initial preparations necessary to iterate
4146  * through the buffer.  Memory is allocated, buffer recording
4147  * is disabled, and the iterator pointer is returned to the caller.
4148  *
4149  * Disabling buffer recording prevents the reading from being
4150  * corrupted. This is not a consuming read, so a producer is not
4151  * expected.
4152  *
4153  * After a sequence of ring_buffer_read_prepare calls, the user is
4154  * expected to make at least one call to ring_buffer_read_prepare_sync.
4155  * Afterwards, ring_buffer_read_start is invoked to get things going
4156  * for real.
4157  *
4158  * This overall must be paired with ring_buffer_read_finish.
4159  */
4160 struct ring_buffer_iter *
4161 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4162 {
4163 	struct ring_buffer_per_cpu *cpu_buffer;
4164 	struct ring_buffer_iter *iter;
4165 
4166 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167 		return NULL;
4168 
4169 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4170 	if (!iter)
4171 		return NULL;
4172 
4173 	cpu_buffer = buffer->buffers[cpu];
4174 
4175 	iter->cpu_buffer = cpu_buffer;
4176 
4177 	atomic_inc(&buffer->resize_disabled);
4178 	atomic_inc(&cpu_buffer->record_disabled);
4179 
4180 	return iter;
4181 }
4182 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4183 
4184 /**
4185  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4186  *
4187  * All previously invoked ring_buffer_read_prepare calls to prepare
4188  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4189  * calls on those iterators are allowed.
4190  */
4191 void
4192 ring_buffer_read_prepare_sync(void)
4193 {
4194 	synchronize_sched();
4195 }
4196 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4197 
4198 /**
4199  * ring_buffer_read_start - start a non consuming read of the buffer
4200  * @iter: The iterator returned by ring_buffer_read_prepare
4201  *
4202  * This finalizes the startup of an iteration through the buffer.
4203  * The iterator comes from a call to ring_buffer_read_prepare and
4204  * an intervening ring_buffer_read_prepare_sync must have been
4205  * performed.
4206  *
4207  * Must be paired with ring_buffer_read_finish.
4208  */
4209 void
4210 ring_buffer_read_start(struct ring_buffer_iter *iter)
4211 {
4212 	struct ring_buffer_per_cpu *cpu_buffer;
4213 	unsigned long flags;
4214 
4215 	if (!iter)
4216 		return;
4217 
4218 	cpu_buffer = iter->cpu_buffer;
4219 
4220 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221 	arch_spin_lock(&cpu_buffer->lock);
4222 	rb_iter_reset(iter);
4223 	arch_spin_unlock(&cpu_buffer->lock);
4224 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4225 }
4226 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4227 
4228 /**
4229  * ring_buffer_read_finish - finish reading the iterator of the buffer
4230  * @iter: The iterator retrieved by ring_buffer_start
4231  *
4232  * This re-enables the recording to the buffer, and frees the
4233  * iterator.
4234  */
4235 void
4236 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4237 {
4238 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4239 	unsigned long flags;
4240 
4241 	/*
4242 	 * Ring buffer is disabled from recording, here's a good place
4243 	 * to check the integrity of the ring buffer.
4244 	 * Must prevent readers from trying to read, as the check
4245 	 * clears the HEAD page and readers require it.
4246 	 */
4247 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4248 	rb_check_pages(cpu_buffer);
4249 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4250 
4251 	atomic_dec(&cpu_buffer->record_disabled);
4252 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4253 	kfree(iter);
4254 }
4255 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4256 
4257 /**
4258  * ring_buffer_read - read the next item in the ring buffer by the iterator
4259  * @iter: The ring buffer iterator
4260  * @ts: The time stamp of the event read.
4261  *
4262  * This reads the next event in the ring buffer and increments the iterator.
4263  */
4264 struct ring_buffer_event *
4265 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4266 {
4267 	struct ring_buffer_event *event;
4268 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4269 	unsigned long flags;
4270 
4271 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4272  again:
4273 	event = rb_iter_peek(iter, ts);
4274 	if (!event)
4275 		goto out;
4276 
4277 	if (event->type_len == RINGBUF_TYPE_PADDING)
4278 		goto again;
4279 
4280 	rb_advance_iter(iter);
4281  out:
4282 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4283 
4284 	return event;
4285 }
4286 EXPORT_SYMBOL_GPL(ring_buffer_read);
4287 
4288 /**
4289  * ring_buffer_size - return the size of the ring buffer (in bytes)
4290  * @buffer: The ring buffer.
4291  */
4292 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4293 {
4294 	/*
4295 	 * Earlier, this method returned
4296 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4297 	 * Since the nr_pages field is now removed, we have converted this to
4298 	 * return the per cpu buffer value.
4299 	 */
4300 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4301 		return 0;
4302 
4303 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_size);
4306 
4307 static void
4308 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4309 {
4310 	rb_head_page_deactivate(cpu_buffer);
4311 
4312 	cpu_buffer->head_page
4313 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4314 	local_set(&cpu_buffer->head_page->write, 0);
4315 	local_set(&cpu_buffer->head_page->entries, 0);
4316 	local_set(&cpu_buffer->head_page->page->commit, 0);
4317 
4318 	cpu_buffer->head_page->read = 0;
4319 
4320 	cpu_buffer->tail_page = cpu_buffer->head_page;
4321 	cpu_buffer->commit_page = cpu_buffer->head_page;
4322 
4323 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4324 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4325 	local_set(&cpu_buffer->reader_page->write, 0);
4326 	local_set(&cpu_buffer->reader_page->entries, 0);
4327 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4328 	cpu_buffer->reader_page->read = 0;
4329 
4330 	local_set(&cpu_buffer->entries_bytes, 0);
4331 	local_set(&cpu_buffer->overrun, 0);
4332 	local_set(&cpu_buffer->commit_overrun, 0);
4333 	local_set(&cpu_buffer->dropped_events, 0);
4334 	local_set(&cpu_buffer->entries, 0);
4335 	local_set(&cpu_buffer->committing, 0);
4336 	local_set(&cpu_buffer->commits, 0);
4337 	cpu_buffer->read = 0;
4338 	cpu_buffer->read_bytes = 0;
4339 
4340 	cpu_buffer->write_stamp = 0;
4341 	cpu_buffer->read_stamp = 0;
4342 
4343 	cpu_buffer->lost_events = 0;
4344 	cpu_buffer->last_overrun = 0;
4345 
4346 	rb_head_page_activate(cpu_buffer);
4347 }
4348 
4349 /**
4350  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4351  * @buffer: The ring buffer to reset a per cpu buffer of
4352  * @cpu: The CPU buffer to be reset
4353  */
4354 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4355 {
4356 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4357 	unsigned long flags;
4358 
4359 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4360 		return;
4361 
4362 	atomic_inc(&buffer->resize_disabled);
4363 	atomic_inc(&cpu_buffer->record_disabled);
4364 
4365 	/* Make sure all commits have finished */
4366 	synchronize_sched();
4367 
4368 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4369 
4370 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4371 		goto out;
4372 
4373 	arch_spin_lock(&cpu_buffer->lock);
4374 
4375 	rb_reset_cpu(cpu_buffer);
4376 
4377 	arch_spin_unlock(&cpu_buffer->lock);
4378 
4379  out:
4380 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4381 
4382 	atomic_dec(&cpu_buffer->record_disabled);
4383 	atomic_dec(&buffer->resize_disabled);
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4386 
4387 /**
4388  * ring_buffer_reset - reset a ring buffer
4389  * @buffer: The ring buffer to reset all cpu buffers
4390  */
4391 void ring_buffer_reset(struct ring_buffer *buffer)
4392 {
4393 	int cpu;
4394 
4395 	for_each_buffer_cpu(buffer, cpu)
4396 		ring_buffer_reset_cpu(buffer, cpu);
4397 }
4398 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4399 
4400 /**
4401  * rind_buffer_empty - is the ring buffer empty?
4402  * @buffer: The ring buffer to test
4403  */
4404 bool ring_buffer_empty(struct ring_buffer *buffer)
4405 {
4406 	struct ring_buffer_per_cpu *cpu_buffer;
4407 	unsigned long flags;
4408 	bool dolock;
4409 	int cpu;
4410 	int ret;
4411 
4412 	/* yes this is racy, but if you don't like the race, lock the buffer */
4413 	for_each_buffer_cpu(buffer, cpu) {
4414 		cpu_buffer = buffer->buffers[cpu];
4415 		local_irq_save(flags);
4416 		dolock = rb_reader_lock(cpu_buffer);
4417 		ret = rb_per_cpu_empty(cpu_buffer);
4418 		rb_reader_unlock(cpu_buffer, dolock);
4419 		local_irq_restore(flags);
4420 
4421 		if (!ret)
4422 			return false;
4423 	}
4424 
4425 	return true;
4426 }
4427 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4428 
4429 /**
4430  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4431  * @buffer: The ring buffer
4432  * @cpu: The CPU buffer to test
4433  */
4434 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4435 {
4436 	struct ring_buffer_per_cpu *cpu_buffer;
4437 	unsigned long flags;
4438 	bool dolock;
4439 	int ret;
4440 
4441 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442 		return true;
4443 
4444 	cpu_buffer = buffer->buffers[cpu];
4445 	local_irq_save(flags);
4446 	dolock = rb_reader_lock(cpu_buffer);
4447 	ret = rb_per_cpu_empty(cpu_buffer);
4448 	rb_reader_unlock(cpu_buffer, dolock);
4449 	local_irq_restore(flags);
4450 
4451 	return ret;
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4454 
4455 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4456 /**
4457  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4458  * @buffer_a: One buffer to swap with
4459  * @buffer_b: The other buffer to swap with
4460  *
4461  * This function is useful for tracers that want to take a "snapshot"
4462  * of a CPU buffer and has another back up buffer lying around.
4463  * it is expected that the tracer handles the cpu buffer not being
4464  * used at the moment.
4465  */
4466 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4467 			 struct ring_buffer *buffer_b, int cpu)
4468 {
4469 	struct ring_buffer_per_cpu *cpu_buffer_a;
4470 	struct ring_buffer_per_cpu *cpu_buffer_b;
4471 	int ret = -EINVAL;
4472 
4473 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4474 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4475 		goto out;
4476 
4477 	cpu_buffer_a = buffer_a->buffers[cpu];
4478 	cpu_buffer_b = buffer_b->buffers[cpu];
4479 
4480 	/* At least make sure the two buffers are somewhat the same */
4481 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4482 		goto out;
4483 
4484 	ret = -EAGAIN;
4485 
4486 	if (atomic_read(&buffer_a->record_disabled))
4487 		goto out;
4488 
4489 	if (atomic_read(&buffer_b->record_disabled))
4490 		goto out;
4491 
4492 	if (atomic_read(&cpu_buffer_a->record_disabled))
4493 		goto out;
4494 
4495 	if (atomic_read(&cpu_buffer_b->record_disabled))
4496 		goto out;
4497 
4498 	/*
4499 	 * We can't do a synchronize_sched here because this
4500 	 * function can be called in atomic context.
4501 	 * Normally this will be called from the same CPU as cpu.
4502 	 * If not it's up to the caller to protect this.
4503 	 */
4504 	atomic_inc(&cpu_buffer_a->record_disabled);
4505 	atomic_inc(&cpu_buffer_b->record_disabled);
4506 
4507 	ret = -EBUSY;
4508 	if (local_read(&cpu_buffer_a->committing))
4509 		goto out_dec;
4510 	if (local_read(&cpu_buffer_b->committing))
4511 		goto out_dec;
4512 
4513 	buffer_a->buffers[cpu] = cpu_buffer_b;
4514 	buffer_b->buffers[cpu] = cpu_buffer_a;
4515 
4516 	cpu_buffer_b->buffer = buffer_a;
4517 	cpu_buffer_a->buffer = buffer_b;
4518 
4519 	ret = 0;
4520 
4521 out_dec:
4522 	atomic_dec(&cpu_buffer_a->record_disabled);
4523 	atomic_dec(&cpu_buffer_b->record_disabled);
4524 out:
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4528 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4529 
4530 /**
4531  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4532  * @buffer: the buffer to allocate for.
4533  * @cpu: the cpu buffer to allocate.
4534  *
4535  * This function is used in conjunction with ring_buffer_read_page.
4536  * When reading a full page from the ring buffer, these functions
4537  * can be used to speed up the process. The calling function should
4538  * allocate a few pages first with this function. Then when it
4539  * needs to get pages from the ring buffer, it passes the result
4540  * of this function into ring_buffer_read_page, which will swap
4541  * the page that was allocated, with the read page of the buffer.
4542  *
4543  * Returns:
4544  *  The page allocated, or ERR_PTR
4545  */
4546 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4547 {
4548 	struct ring_buffer_per_cpu *cpu_buffer;
4549 	struct buffer_data_page *bpage = NULL;
4550 	unsigned long flags;
4551 	struct page *page;
4552 
4553 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4554 		return ERR_PTR(-ENODEV);
4555 
4556 	cpu_buffer = buffer->buffers[cpu];
4557 	local_irq_save(flags);
4558 	arch_spin_lock(&cpu_buffer->lock);
4559 
4560 	if (cpu_buffer->free_page) {
4561 		bpage = cpu_buffer->free_page;
4562 		cpu_buffer->free_page = NULL;
4563 	}
4564 
4565 	arch_spin_unlock(&cpu_buffer->lock);
4566 	local_irq_restore(flags);
4567 
4568 	if (bpage)
4569 		goto out;
4570 
4571 	page = alloc_pages_node(cpu_to_node(cpu),
4572 				GFP_KERNEL | __GFP_NORETRY, 0);
4573 	if (!page)
4574 		return ERR_PTR(-ENOMEM);
4575 
4576 	bpage = page_address(page);
4577 
4578  out:
4579 	rb_init_page(bpage);
4580 
4581 	return bpage;
4582 }
4583 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4584 
4585 /**
4586  * ring_buffer_free_read_page - free an allocated read page
4587  * @buffer: the buffer the page was allocate for
4588  * @cpu: the cpu buffer the page came from
4589  * @data: the page to free
4590  *
4591  * Free a page allocated from ring_buffer_alloc_read_page.
4592  */
4593 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4594 {
4595 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4596 	struct buffer_data_page *bpage = data;
4597 	struct page *page = virt_to_page(bpage);
4598 	unsigned long flags;
4599 
4600 	/* If the page is still in use someplace else, we can't reuse it */
4601 	if (page_ref_count(page) > 1)
4602 		goto out;
4603 
4604 	local_irq_save(flags);
4605 	arch_spin_lock(&cpu_buffer->lock);
4606 
4607 	if (!cpu_buffer->free_page) {
4608 		cpu_buffer->free_page = bpage;
4609 		bpage = NULL;
4610 	}
4611 
4612 	arch_spin_unlock(&cpu_buffer->lock);
4613 	local_irq_restore(flags);
4614 
4615  out:
4616 	free_page((unsigned long)bpage);
4617 }
4618 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4619 
4620 /**
4621  * ring_buffer_read_page - extract a page from the ring buffer
4622  * @buffer: buffer to extract from
4623  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4624  * @len: amount to extract
4625  * @cpu: the cpu of the buffer to extract
4626  * @full: should the extraction only happen when the page is full.
4627  *
4628  * This function will pull out a page from the ring buffer and consume it.
4629  * @data_page must be the address of the variable that was returned
4630  * from ring_buffer_alloc_read_page. This is because the page might be used
4631  * to swap with a page in the ring buffer.
4632  *
4633  * for example:
4634  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4635  *	if (IS_ERR(rpage))
4636  *		return PTR_ERR(rpage);
4637  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4638  *	if (ret >= 0)
4639  *		process_page(rpage, ret);
4640  *
4641  * When @full is set, the function will not return true unless
4642  * the writer is off the reader page.
4643  *
4644  * Note: it is up to the calling functions to handle sleeps and wakeups.
4645  *  The ring buffer can be used anywhere in the kernel and can not
4646  *  blindly call wake_up. The layer that uses the ring buffer must be
4647  *  responsible for that.
4648  *
4649  * Returns:
4650  *  >=0 if data has been transferred, returns the offset of consumed data.
4651  *  <0 if no data has been transferred.
4652  */
4653 int ring_buffer_read_page(struct ring_buffer *buffer,
4654 			  void **data_page, size_t len, int cpu, int full)
4655 {
4656 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4657 	struct ring_buffer_event *event;
4658 	struct buffer_data_page *bpage;
4659 	struct buffer_page *reader;
4660 	unsigned long missed_events;
4661 	unsigned long flags;
4662 	unsigned int commit;
4663 	unsigned int read;
4664 	u64 save_timestamp;
4665 	int ret = -1;
4666 
4667 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4668 		goto out;
4669 
4670 	/*
4671 	 * If len is not big enough to hold the page header, then
4672 	 * we can not copy anything.
4673 	 */
4674 	if (len <= BUF_PAGE_HDR_SIZE)
4675 		goto out;
4676 
4677 	len -= BUF_PAGE_HDR_SIZE;
4678 
4679 	if (!data_page)
4680 		goto out;
4681 
4682 	bpage = *data_page;
4683 	if (!bpage)
4684 		goto out;
4685 
4686 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4687 
4688 	reader = rb_get_reader_page(cpu_buffer);
4689 	if (!reader)
4690 		goto out_unlock;
4691 
4692 	event = rb_reader_event(cpu_buffer);
4693 
4694 	read = reader->read;
4695 	commit = rb_page_commit(reader);
4696 
4697 	/* Check if any events were dropped */
4698 	missed_events = cpu_buffer->lost_events;
4699 
4700 	/*
4701 	 * If this page has been partially read or
4702 	 * if len is not big enough to read the rest of the page or
4703 	 * a writer is still on the page, then
4704 	 * we must copy the data from the page to the buffer.
4705 	 * Otherwise, we can simply swap the page with the one passed in.
4706 	 */
4707 	if (read || (len < (commit - read)) ||
4708 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4709 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4710 		unsigned int rpos = read;
4711 		unsigned int pos = 0;
4712 		unsigned int size;
4713 
4714 		if (full)
4715 			goto out_unlock;
4716 
4717 		if (len > (commit - read))
4718 			len = (commit - read);
4719 
4720 		/* Always keep the time extend and data together */
4721 		size = rb_event_ts_length(event);
4722 
4723 		if (len < size)
4724 			goto out_unlock;
4725 
4726 		/* save the current timestamp, since the user will need it */
4727 		save_timestamp = cpu_buffer->read_stamp;
4728 
4729 		/* Need to copy one event at a time */
4730 		do {
4731 			/* We need the size of one event, because
4732 			 * rb_advance_reader only advances by one event,
4733 			 * whereas rb_event_ts_length may include the size of
4734 			 * one or two events.
4735 			 * We have already ensured there's enough space if this
4736 			 * is a time extend. */
4737 			size = rb_event_length(event);
4738 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4739 
4740 			len -= size;
4741 
4742 			rb_advance_reader(cpu_buffer);
4743 			rpos = reader->read;
4744 			pos += size;
4745 
4746 			if (rpos >= commit)
4747 				break;
4748 
4749 			event = rb_reader_event(cpu_buffer);
4750 			/* Always keep the time extend and data together */
4751 			size = rb_event_ts_length(event);
4752 		} while (len >= size);
4753 
4754 		/* update bpage */
4755 		local_set(&bpage->commit, pos);
4756 		bpage->time_stamp = save_timestamp;
4757 
4758 		/* we copied everything to the beginning */
4759 		read = 0;
4760 	} else {
4761 		/* update the entry counter */
4762 		cpu_buffer->read += rb_page_entries(reader);
4763 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4764 
4765 		/* swap the pages */
4766 		rb_init_page(bpage);
4767 		bpage = reader->page;
4768 		reader->page = *data_page;
4769 		local_set(&reader->write, 0);
4770 		local_set(&reader->entries, 0);
4771 		reader->read = 0;
4772 		*data_page = bpage;
4773 
4774 		/*
4775 		 * Use the real_end for the data size,
4776 		 * This gives us a chance to store the lost events
4777 		 * on the page.
4778 		 */
4779 		if (reader->real_end)
4780 			local_set(&bpage->commit, reader->real_end);
4781 	}
4782 	ret = read;
4783 
4784 	cpu_buffer->lost_events = 0;
4785 
4786 	commit = local_read(&bpage->commit);
4787 	/*
4788 	 * Set a flag in the commit field if we lost events
4789 	 */
4790 	if (missed_events) {
4791 		/* If there is room at the end of the page to save the
4792 		 * missed events, then record it there.
4793 		 */
4794 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4795 			memcpy(&bpage->data[commit], &missed_events,
4796 			       sizeof(missed_events));
4797 			local_add(RB_MISSED_STORED, &bpage->commit);
4798 			commit += sizeof(missed_events);
4799 		}
4800 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4801 	}
4802 
4803 	/*
4804 	 * This page may be off to user land. Zero it out here.
4805 	 */
4806 	if (commit < BUF_PAGE_SIZE)
4807 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4808 
4809  out_unlock:
4810 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4811 
4812  out:
4813 	return ret;
4814 }
4815 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4816 
4817 /*
4818  * We only allocate new buffers, never free them if the CPU goes down.
4819  * If we were to free the buffer, then the user would lose any trace that was in
4820  * the buffer.
4821  */
4822 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4823 {
4824 	struct ring_buffer *buffer;
4825 	long nr_pages_same;
4826 	int cpu_i;
4827 	unsigned long nr_pages;
4828 
4829 	buffer = container_of(node, struct ring_buffer, node);
4830 	if (cpumask_test_cpu(cpu, buffer->cpumask))
4831 		return 0;
4832 
4833 	nr_pages = 0;
4834 	nr_pages_same = 1;
4835 	/* check if all cpu sizes are same */
4836 	for_each_buffer_cpu(buffer, cpu_i) {
4837 		/* fill in the size from first enabled cpu */
4838 		if (nr_pages == 0)
4839 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4840 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4841 			nr_pages_same = 0;
4842 			break;
4843 		}
4844 	}
4845 	/* allocate minimum pages, user can later expand it */
4846 	if (!nr_pages_same)
4847 		nr_pages = 2;
4848 	buffer->buffers[cpu] =
4849 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4850 	if (!buffer->buffers[cpu]) {
4851 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4852 		     cpu);
4853 		return -ENOMEM;
4854 	}
4855 	smp_wmb();
4856 	cpumask_set_cpu(cpu, buffer->cpumask);
4857 	return 0;
4858 }
4859 
4860 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4861 /*
4862  * This is a basic integrity check of the ring buffer.
4863  * Late in the boot cycle this test will run when configured in.
4864  * It will kick off a thread per CPU that will go into a loop
4865  * writing to the per cpu ring buffer various sizes of data.
4866  * Some of the data will be large items, some small.
4867  *
4868  * Another thread is created that goes into a spin, sending out
4869  * IPIs to the other CPUs to also write into the ring buffer.
4870  * this is to test the nesting ability of the buffer.
4871  *
4872  * Basic stats are recorded and reported. If something in the
4873  * ring buffer should happen that's not expected, a big warning
4874  * is displayed and all ring buffers are disabled.
4875  */
4876 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4877 
4878 struct rb_test_data {
4879 	struct ring_buffer	*buffer;
4880 	unsigned long		events;
4881 	unsigned long		bytes_written;
4882 	unsigned long		bytes_alloc;
4883 	unsigned long		bytes_dropped;
4884 	unsigned long		events_nested;
4885 	unsigned long		bytes_written_nested;
4886 	unsigned long		bytes_alloc_nested;
4887 	unsigned long		bytes_dropped_nested;
4888 	int			min_size_nested;
4889 	int			max_size_nested;
4890 	int			max_size;
4891 	int			min_size;
4892 	int			cpu;
4893 	int			cnt;
4894 };
4895 
4896 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4897 
4898 /* 1 meg per cpu */
4899 #define RB_TEST_BUFFER_SIZE	1048576
4900 
4901 static char rb_string[] __initdata =
4902 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4903 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4904 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4905 
4906 static bool rb_test_started __initdata;
4907 
4908 struct rb_item {
4909 	int size;
4910 	char str[];
4911 };
4912 
4913 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4914 {
4915 	struct ring_buffer_event *event;
4916 	struct rb_item *item;
4917 	bool started;
4918 	int event_len;
4919 	int size;
4920 	int len;
4921 	int cnt;
4922 
4923 	/* Have nested writes different that what is written */
4924 	cnt = data->cnt + (nested ? 27 : 0);
4925 
4926 	/* Multiply cnt by ~e, to make some unique increment */
4927 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4928 
4929 	len = size + sizeof(struct rb_item);
4930 
4931 	started = rb_test_started;
4932 	/* read rb_test_started before checking buffer enabled */
4933 	smp_rmb();
4934 
4935 	event = ring_buffer_lock_reserve(data->buffer, len);
4936 	if (!event) {
4937 		/* Ignore dropped events before test starts. */
4938 		if (started) {
4939 			if (nested)
4940 				data->bytes_dropped += len;
4941 			else
4942 				data->bytes_dropped_nested += len;
4943 		}
4944 		return len;
4945 	}
4946 
4947 	event_len = ring_buffer_event_length(event);
4948 
4949 	if (RB_WARN_ON(data->buffer, event_len < len))
4950 		goto out;
4951 
4952 	item = ring_buffer_event_data(event);
4953 	item->size = size;
4954 	memcpy(item->str, rb_string, size);
4955 
4956 	if (nested) {
4957 		data->bytes_alloc_nested += event_len;
4958 		data->bytes_written_nested += len;
4959 		data->events_nested++;
4960 		if (!data->min_size_nested || len < data->min_size_nested)
4961 			data->min_size_nested = len;
4962 		if (len > data->max_size_nested)
4963 			data->max_size_nested = len;
4964 	} else {
4965 		data->bytes_alloc += event_len;
4966 		data->bytes_written += len;
4967 		data->events++;
4968 		if (!data->min_size || len < data->min_size)
4969 			data->max_size = len;
4970 		if (len > data->max_size)
4971 			data->max_size = len;
4972 	}
4973 
4974  out:
4975 	ring_buffer_unlock_commit(data->buffer, event);
4976 
4977 	return 0;
4978 }
4979 
4980 static __init int rb_test(void *arg)
4981 {
4982 	struct rb_test_data *data = arg;
4983 
4984 	while (!kthread_should_stop()) {
4985 		rb_write_something(data, false);
4986 		data->cnt++;
4987 
4988 		set_current_state(TASK_INTERRUPTIBLE);
4989 		/* Now sleep between a min of 100-300us and a max of 1ms */
4990 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4991 	}
4992 
4993 	return 0;
4994 }
4995 
4996 static __init void rb_ipi(void *ignore)
4997 {
4998 	struct rb_test_data *data;
4999 	int cpu = smp_processor_id();
5000 
5001 	data = &rb_data[cpu];
5002 	rb_write_something(data, true);
5003 }
5004 
5005 static __init int rb_hammer_test(void *arg)
5006 {
5007 	while (!kthread_should_stop()) {
5008 
5009 		/* Send an IPI to all cpus to write data! */
5010 		smp_call_function(rb_ipi, NULL, 1);
5011 		/* No sleep, but for non preempt, let others run */
5012 		schedule();
5013 	}
5014 
5015 	return 0;
5016 }
5017 
5018 static __init int test_ringbuffer(void)
5019 {
5020 	struct task_struct *rb_hammer;
5021 	struct ring_buffer *buffer;
5022 	int cpu;
5023 	int ret = 0;
5024 
5025 	pr_info("Running ring buffer tests...\n");
5026 
5027 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5028 	if (WARN_ON(!buffer))
5029 		return 0;
5030 
5031 	/* Disable buffer so that threads can't write to it yet */
5032 	ring_buffer_record_off(buffer);
5033 
5034 	for_each_online_cpu(cpu) {
5035 		rb_data[cpu].buffer = buffer;
5036 		rb_data[cpu].cpu = cpu;
5037 		rb_data[cpu].cnt = cpu;
5038 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5039 						 "rbtester/%d", cpu);
5040 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5041 			pr_cont("FAILED\n");
5042 			ret = PTR_ERR(rb_threads[cpu]);
5043 			goto out_free;
5044 		}
5045 
5046 		kthread_bind(rb_threads[cpu], cpu);
5047  		wake_up_process(rb_threads[cpu]);
5048 	}
5049 
5050 	/* Now create the rb hammer! */
5051 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5052 	if (WARN_ON(IS_ERR(rb_hammer))) {
5053 		pr_cont("FAILED\n");
5054 		ret = PTR_ERR(rb_hammer);
5055 		goto out_free;
5056 	}
5057 
5058 	ring_buffer_record_on(buffer);
5059 	/*
5060 	 * Show buffer is enabled before setting rb_test_started.
5061 	 * Yes there's a small race window where events could be
5062 	 * dropped and the thread wont catch it. But when a ring
5063 	 * buffer gets enabled, there will always be some kind of
5064 	 * delay before other CPUs see it. Thus, we don't care about
5065 	 * those dropped events. We care about events dropped after
5066 	 * the threads see that the buffer is active.
5067 	 */
5068 	smp_wmb();
5069 	rb_test_started = true;
5070 
5071 	set_current_state(TASK_INTERRUPTIBLE);
5072 	/* Just run for 10 seconds */;
5073 	schedule_timeout(10 * HZ);
5074 
5075 	kthread_stop(rb_hammer);
5076 
5077  out_free:
5078 	for_each_online_cpu(cpu) {
5079 		if (!rb_threads[cpu])
5080 			break;
5081 		kthread_stop(rb_threads[cpu]);
5082 	}
5083 	if (ret) {
5084 		ring_buffer_free(buffer);
5085 		return ret;
5086 	}
5087 
5088 	/* Report! */
5089 	pr_info("finished\n");
5090 	for_each_online_cpu(cpu) {
5091 		struct ring_buffer_event *event;
5092 		struct rb_test_data *data = &rb_data[cpu];
5093 		struct rb_item *item;
5094 		unsigned long total_events;
5095 		unsigned long total_dropped;
5096 		unsigned long total_written;
5097 		unsigned long total_alloc;
5098 		unsigned long total_read = 0;
5099 		unsigned long total_size = 0;
5100 		unsigned long total_len = 0;
5101 		unsigned long total_lost = 0;
5102 		unsigned long lost;
5103 		int big_event_size;
5104 		int small_event_size;
5105 
5106 		ret = -1;
5107 
5108 		total_events = data->events + data->events_nested;
5109 		total_written = data->bytes_written + data->bytes_written_nested;
5110 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5111 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5112 
5113 		big_event_size = data->max_size + data->max_size_nested;
5114 		small_event_size = data->min_size + data->min_size_nested;
5115 
5116 		pr_info("CPU %d:\n", cpu);
5117 		pr_info("              events:    %ld\n", total_events);
5118 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5119 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5120 		pr_info("       written bytes:    %ld\n", total_written);
5121 		pr_info("       biggest event:    %d\n", big_event_size);
5122 		pr_info("      smallest event:    %d\n", small_event_size);
5123 
5124 		if (RB_WARN_ON(buffer, total_dropped))
5125 			break;
5126 
5127 		ret = 0;
5128 
5129 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5130 			total_lost += lost;
5131 			item = ring_buffer_event_data(event);
5132 			total_len += ring_buffer_event_length(event);
5133 			total_size += item->size + sizeof(struct rb_item);
5134 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5135 				pr_info("FAILED!\n");
5136 				pr_info("buffer had: %.*s\n", item->size, item->str);
5137 				pr_info("expected:   %.*s\n", item->size, rb_string);
5138 				RB_WARN_ON(buffer, 1);
5139 				ret = -1;
5140 				break;
5141 			}
5142 			total_read++;
5143 		}
5144 		if (ret)
5145 			break;
5146 
5147 		ret = -1;
5148 
5149 		pr_info("         read events:   %ld\n", total_read);
5150 		pr_info("         lost events:   %ld\n", total_lost);
5151 		pr_info("        total events:   %ld\n", total_lost + total_read);
5152 		pr_info("  recorded len bytes:   %ld\n", total_len);
5153 		pr_info(" recorded size bytes:   %ld\n", total_size);
5154 		if (total_lost)
5155 			pr_info(" With dropped events, record len and size may not match\n"
5156 				" alloced and written from above\n");
5157 		if (!total_lost) {
5158 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5159 				       total_size != total_written))
5160 				break;
5161 		}
5162 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5163 			break;
5164 
5165 		ret = 0;
5166 	}
5167 	if (!ret)
5168 		pr_info("Ring buffer PASSED!\n");
5169 
5170 	ring_buffer_free(buffer);
5171 	return 0;
5172 }
5173 
5174 late_initcall(test_ringbuffer);
5175 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5176