1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 49 50 #define FTRACE_WARN_ON(cond) \ 51 ({ \ 52 int ___r = cond; \ 53 if (WARN_ON(___r)) \ 54 ftrace_kill(); \ 55 ___r; \ 56 }) 57 58 #define FTRACE_WARN_ON_ONCE(cond) \ 59 ({ \ 60 int ___r = cond; \ 61 if (WARN_ON_ONCE(___r)) \ 62 ftrace_kill(); \ 63 ___r; \ 64 }) 65 66 /* hash bits for specific function selection */ 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int __maybe_unused last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL || tr->function_no_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct ftrace_regs *fregs); 127 128 static inline void ftrace_ops_init(struct ftrace_ops *ops) 129 { 130 #ifdef CONFIG_DYNAMIC_FTRACE 131 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 132 mutex_init(&ops->local_hash.regex_lock); 133 ops->func_hash = &ops->local_hash; 134 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 135 } 136 #endif 137 } 138 139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 140 struct ftrace_ops *op, struct ftrace_regs *fregs) 141 { 142 struct trace_array *tr = op->private; 143 int pid; 144 145 if (tr) { 146 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 147 if (pid == FTRACE_PID_IGNORE) 148 return; 149 if (pid != FTRACE_PID_TRACE && 150 pid != current->pid) 151 return; 152 } 153 154 op->saved_func(ip, parent_ip, op, fregs); 155 } 156 157 static void ftrace_sync_ipi(void *data) 158 { 159 /* Probably not needed, but do it anyway */ 160 smp_rmb(); 161 } 162 163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 164 { 165 /* 166 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 167 * then it needs to call the list anyway. 168 */ 169 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 170 FTRACE_FORCE_LIST_FUNC) 171 return ftrace_ops_list_func; 172 173 return ftrace_ops_get_func(ops); 174 } 175 176 static void update_ftrace_function(void) 177 { 178 ftrace_func_t func; 179 180 /* 181 * Prepare the ftrace_ops that the arch callback will use. 182 * If there's only one ftrace_ops registered, the ftrace_ops_list 183 * will point to the ops we want. 184 */ 185 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 186 lockdep_is_held(&ftrace_lock)); 187 188 /* If there's no ftrace_ops registered, just call the stub function */ 189 if (set_function_trace_op == &ftrace_list_end) { 190 func = ftrace_stub; 191 192 /* 193 * If we are at the end of the list and this ops is 194 * recursion safe and not dynamic and the arch supports passing ops, 195 * then have the mcount trampoline call the function directly. 196 */ 197 } else if (rcu_dereference_protected(ftrace_ops_list->next, 198 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 199 func = ftrace_ops_get_list_func(ftrace_ops_list); 200 201 } else { 202 /* Just use the default ftrace_ops */ 203 set_function_trace_op = &ftrace_list_end; 204 func = ftrace_ops_list_func; 205 } 206 207 update_function_graph_func(); 208 209 /* If there's no change, then do nothing more here */ 210 if (ftrace_trace_function == func) 211 return; 212 213 /* 214 * If we are using the list function, it doesn't care 215 * about the function_trace_ops. 216 */ 217 if (func == ftrace_ops_list_func) { 218 ftrace_trace_function = func; 219 /* 220 * Don't even bother setting function_trace_ops, 221 * it would be racy to do so anyway. 222 */ 223 return; 224 } 225 226 #ifndef CONFIG_DYNAMIC_FTRACE 227 /* 228 * For static tracing, we need to be a bit more careful. 229 * The function change takes affect immediately. Thus, 230 * we need to coordinate the setting of the function_trace_ops 231 * with the setting of the ftrace_trace_function. 232 * 233 * Set the function to the list ops, which will call the 234 * function we want, albeit indirectly, but it handles the 235 * ftrace_ops and doesn't depend on function_trace_op. 236 */ 237 ftrace_trace_function = ftrace_ops_list_func; 238 /* 239 * Make sure all CPUs see this. Yes this is slow, but static 240 * tracing is slow and nasty to have enabled. 241 */ 242 synchronize_rcu_tasks_rude(); 243 /* Now all cpus are using the list ops. */ 244 function_trace_op = set_function_trace_op; 245 /* Make sure the function_trace_op is visible on all CPUs */ 246 smp_wmb(); 247 /* Nasty way to force a rmb on all cpus */ 248 smp_call_function(ftrace_sync_ipi, NULL, 1); 249 /* OK, we are all set to update the ftrace_trace_function now! */ 250 #endif /* !CONFIG_DYNAMIC_FTRACE */ 251 252 ftrace_trace_function = func; 253 } 254 255 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 256 struct ftrace_ops *ops) 257 { 258 rcu_assign_pointer(ops->next, *list); 259 260 /* 261 * We are entering ops into the list but another 262 * CPU might be walking that list. We need to make sure 263 * the ops->next pointer is valid before another CPU sees 264 * the ops pointer included into the list. 265 */ 266 rcu_assign_pointer(*list, ops); 267 } 268 269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 270 struct ftrace_ops *ops) 271 { 272 struct ftrace_ops **p; 273 274 /* 275 * If we are removing the last function, then simply point 276 * to the ftrace_stub. 277 */ 278 if (rcu_dereference_protected(*list, 279 lockdep_is_held(&ftrace_lock)) == ops && 280 rcu_dereference_protected(ops->next, 281 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 282 *list = &ftrace_list_end; 283 return 0; 284 } 285 286 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 287 if (*p == ops) 288 break; 289 290 if (*p != ops) 291 return -1; 292 293 *p = (*p)->next; 294 return 0; 295 } 296 297 static void ftrace_update_trampoline(struct ftrace_ops *ops); 298 299 int __register_ftrace_function(struct ftrace_ops *ops) 300 { 301 if (ops->flags & FTRACE_OPS_FL_DELETED) 302 return -EINVAL; 303 304 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 305 return -EBUSY; 306 307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 308 /* 309 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 310 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 311 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 312 */ 313 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 314 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 315 return -EINVAL; 316 317 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 318 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 319 #endif 320 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 321 return -EBUSY; 322 323 if (!is_kernel_core_data((unsigned long)ops)) 324 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 325 326 add_ftrace_ops(&ftrace_ops_list, ops); 327 328 /* Always save the function, and reset at unregistering */ 329 ops->saved_func = ops->func; 330 331 if (ftrace_pids_enabled(ops)) 332 ops->func = ftrace_pid_func; 333 334 ftrace_update_trampoline(ops); 335 336 if (ftrace_enabled) 337 update_ftrace_function(); 338 339 return 0; 340 } 341 342 int __unregister_ftrace_function(struct ftrace_ops *ops) 343 { 344 int ret; 345 346 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 347 return -EBUSY; 348 349 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 350 351 if (ret < 0) 352 return ret; 353 354 if (ftrace_enabled) 355 update_ftrace_function(); 356 357 ops->func = ops->saved_func; 358 359 return 0; 360 } 361 362 static void ftrace_update_pid_func(void) 363 { 364 struct ftrace_ops *op; 365 366 /* Only do something if we are tracing something */ 367 if (ftrace_trace_function == ftrace_stub) 368 return; 369 370 do_for_each_ftrace_op(op, ftrace_ops_list) { 371 if (op->flags & FTRACE_OPS_FL_PID) { 372 op->func = ftrace_pids_enabled(op) ? 373 ftrace_pid_func : op->saved_func; 374 ftrace_update_trampoline(op); 375 } 376 } while_for_each_ftrace_op(op); 377 378 update_ftrace_function(); 379 } 380 381 #ifdef CONFIG_FUNCTION_PROFILER 382 struct ftrace_profile { 383 struct hlist_node node; 384 unsigned long ip; 385 unsigned long counter; 386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 387 unsigned long long time; 388 unsigned long long time_squared; 389 #endif 390 }; 391 392 struct ftrace_profile_page { 393 struct ftrace_profile_page *next; 394 unsigned long index; 395 struct ftrace_profile records[]; 396 }; 397 398 struct ftrace_profile_stat { 399 atomic_t disabled; 400 struct hlist_head *hash; 401 struct ftrace_profile_page *pages; 402 struct ftrace_profile_page *start; 403 struct tracer_stat stat; 404 }; 405 406 #define PROFILE_RECORDS_SIZE \ 407 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 408 409 #define PROFILES_PER_PAGE \ 410 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 411 412 static int ftrace_profile_enabled __read_mostly; 413 414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 415 static DEFINE_MUTEX(ftrace_profile_lock); 416 417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 418 419 #define FTRACE_PROFILE_HASH_BITS 10 420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 421 422 static void * 423 function_stat_next(void *v, int idx) 424 { 425 struct ftrace_profile *rec = v; 426 struct ftrace_profile_page *pg; 427 428 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 429 430 again: 431 if (idx != 0) 432 rec++; 433 434 if ((void *)rec >= (void *)&pg->records[pg->index]) { 435 pg = pg->next; 436 if (!pg) 437 return NULL; 438 rec = &pg->records[0]; 439 if (!rec->counter) 440 goto again; 441 } 442 443 return rec; 444 } 445 446 static void *function_stat_start(struct tracer_stat *trace) 447 { 448 struct ftrace_profile_stat *stat = 449 container_of(trace, struct ftrace_profile_stat, stat); 450 451 if (!stat || !stat->start) 452 return NULL; 453 454 return function_stat_next(&stat->start->records[0], 0); 455 } 456 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 /* function graph compares on total time */ 459 static int function_stat_cmp(const void *p1, const void *p2) 460 { 461 const struct ftrace_profile *a = p1; 462 const struct ftrace_profile *b = p2; 463 464 if (a->time < b->time) 465 return -1; 466 if (a->time > b->time) 467 return 1; 468 else 469 return 0; 470 } 471 #else 472 /* not function graph compares against hits */ 473 static int function_stat_cmp(const void *p1, const void *p2) 474 { 475 const struct ftrace_profile *a = p1; 476 const struct ftrace_profile *b = p2; 477 478 if (a->counter < b->counter) 479 return -1; 480 if (a->counter > b->counter) 481 return 1; 482 else 483 return 0; 484 } 485 #endif 486 487 static int function_stat_headers(struct seq_file *m) 488 { 489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 490 seq_puts(m, " Function " 491 "Hit Time Avg s^2\n" 492 " -------- " 493 "--- ---- --- ---\n"); 494 #else 495 seq_puts(m, " Function Hit\n" 496 " -------- ---\n"); 497 #endif 498 return 0; 499 } 500 501 static int function_stat_show(struct seq_file *m, void *v) 502 { 503 struct ftrace_profile *rec = v; 504 char str[KSYM_SYMBOL_LEN]; 505 int ret = 0; 506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 507 static struct trace_seq s; 508 unsigned long long avg; 509 unsigned long long stddev; 510 #endif 511 mutex_lock(&ftrace_profile_lock); 512 513 /* we raced with function_profile_reset() */ 514 if (unlikely(rec->counter == 0)) { 515 ret = -EBUSY; 516 goto out; 517 } 518 519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 520 avg = div64_ul(rec->time, rec->counter); 521 if (tracing_thresh && (avg < tracing_thresh)) 522 goto out; 523 #endif 524 525 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 526 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 seq_puts(m, " "); 530 531 /* Sample standard deviation (s^2) */ 532 if (rec->counter <= 1) 533 stddev = 0; 534 else { 535 /* 536 * Apply Welford's method: 537 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 538 */ 539 stddev = rec->counter * rec->time_squared - 540 rec->time * rec->time; 541 542 /* 543 * Divide only 1000 for ns^2 -> us^2 conversion. 544 * trace_print_graph_duration will divide 1000 again. 545 */ 546 stddev = div64_ul(stddev, 547 rec->counter * (rec->counter - 1) * 1000); 548 } 549 550 trace_seq_init(&s); 551 trace_print_graph_duration(rec->time, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(avg, &s); 554 trace_seq_puts(&s, " "); 555 trace_print_graph_duration(stddev, &s); 556 trace_print_seq(m, &s); 557 #endif 558 seq_putc(m, '\n'); 559 out: 560 mutex_unlock(&ftrace_profile_lock); 561 562 return ret; 563 } 564 565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 566 { 567 struct ftrace_profile_page *pg; 568 569 pg = stat->pages = stat->start; 570 571 while (pg) { 572 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 573 pg->index = 0; 574 pg = pg->next; 575 } 576 577 memset(stat->hash, 0, 578 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 579 } 580 581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 582 { 583 struct ftrace_profile_page *pg; 584 int functions; 585 int pages; 586 int i; 587 588 /* If we already allocated, do nothing */ 589 if (stat->pages) 590 return 0; 591 592 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!stat->pages) 594 return -ENOMEM; 595 596 #ifdef CONFIG_DYNAMIC_FTRACE 597 functions = ftrace_update_tot_cnt; 598 #else 599 /* 600 * We do not know the number of functions that exist because 601 * dynamic tracing is what counts them. With past experience 602 * we have around 20K functions. That should be more than enough. 603 * It is highly unlikely we will execute every function in 604 * the kernel. 605 */ 606 functions = 20000; 607 #endif 608 609 pg = stat->start = stat->pages; 610 611 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 612 613 for (i = 1; i < pages; i++) { 614 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 615 if (!pg->next) 616 goto out_free; 617 pg = pg->next; 618 } 619 620 return 0; 621 622 out_free: 623 pg = stat->start; 624 while (pg) { 625 unsigned long tmp = (unsigned long)pg; 626 627 pg = pg->next; 628 free_page(tmp); 629 } 630 631 stat->pages = NULL; 632 stat->start = NULL; 633 634 return -ENOMEM; 635 } 636 637 static int ftrace_profile_init_cpu(int cpu) 638 { 639 struct ftrace_profile_stat *stat; 640 int size; 641 642 stat = &per_cpu(ftrace_profile_stats, cpu); 643 644 if (stat->hash) { 645 /* If the profile is already created, simply reset it */ 646 ftrace_profile_reset(stat); 647 return 0; 648 } 649 650 /* 651 * We are profiling all functions, but usually only a few thousand 652 * functions are hit. We'll make a hash of 1024 items. 653 */ 654 size = FTRACE_PROFILE_HASH_SIZE; 655 656 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 657 658 if (!stat->hash) 659 return -ENOMEM; 660 661 /* Preallocate the function profiling pages */ 662 if (ftrace_profile_pages_init(stat) < 0) { 663 kfree(stat->hash); 664 stat->hash = NULL; 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static int ftrace_profile_init(void) 672 { 673 int cpu; 674 int ret = 0; 675 676 for_each_possible_cpu(cpu) { 677 ret = ftrace_profile_init_cpu(cpu); 678 if (ret) 679 break; 680 } 681 682 return ret; 683 } 684 685 /* interrupts must be disabled */ 686 static struct ftrace_profile * 687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 688 { 689 struct ftrace_profile *rec; 690 struct hlist_head *hhd; 691 unsigned long key; 692 693 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 694 hhd = &stat->hash[key]; 695 696 if (hlist_empty(hhd)) 697 return NULL; 698 699 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 700 if (rec->ip == ip) 701 return rec; 702 } 703 704 return NULL; 705 } 706 707 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 708 struct ftrace_profile *rec) 709 { 710 unsigned long key; 711 712 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 713 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 714 } 715 716 /* 717 * The memory is already allocated, this simply finds a new record to use. 718 */ 719 static struct ftrace_profile * 720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 721 { 722 struct ftrace_profile *rec = NULL; 723 724 /* prevent recursion (from NMIs) */ 725 if (atomic_inc_return(&stat->disabled) != 1) 726 goto out; 727 728 /* 729 * Try to find the function again since an NMI 730 * could have added it 731 */ 732 rec = ftrace_find_profiled_func(stat, ip); 733 if (rec) 734 goto out; 735 736 if (stat->pages->index == PROFILES_PER_PAGE) { 737 if (!stat->pages->next) 738 goto out; 739 stat->pages = stat->pages->next; 740 } 741 742 rec = &stat->pages->records[stat->pages->index++]; 743 rec->ip = ip; 744 ftrace_add_profile(stat, rec); 745 746 out: 747 atomic_dec(&stat->disabled); 748 749 return rec; 750 } 751 752 static void 753 function_profile_call(unsigned long ip, unsigned long parent_ip, 754 struct ftrace_ops *ops, struct ftrace_regs *fregs) 755 { 756 struct ftrace_profile_stat *stat; 757 struct ftrace_profile *rec; 758 unsigned long flags; 759 760 if (!ftrace_profile_enabled) 761 return; 762 763 local_irq_save(flags); 764 765 stat = this_cpu_ptr(&ftrace_profile_stats); 766 if (!stat->hash || !ftrace_profile_enabled) 767 goto out; 768 769 rec = ftrace_find_profiled_func(stat, ip); 770 if (!rec) { 771 rec = ftrace_profile_alloc(stat, ip); 772 if (!rec) 773 goto out; 774 } 775 776 rec->counter++; 777 out: 778 local_irq_restore(flags); 779 } 780 781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 782 static bool fgraph_graph_time = true; 783 784 void ftrace_graph_graph_time_control(bool enable) 785 { 786 fgraph_graph_time = enable; 787 } 788 789 static int profile_graph_entry(struct ftrace_graph_ent *trace) 790 { 791 struct ftrace_ret_stack *ret_stack; 792 793 function_profile_call(trace->func, 0, NULL, NULL); 794 795 /* If function graph is shutting down, ret_stack can be NULL */ 796 if (!current->ret_stack) 797 return 0; 798 799 ret_stack = ftrace_graph_get_ret_stack(current, 0); 800 if (ret_stack) 801 ret_stack->subtime = 0; 802 803 return 1; 804 } 805 806 static void profile_graph_return(struct ftrace_graph_ret *trace) 807 { 808 struct ftrace_ret_stack *ret_stack; 809 struct ftrace_profile_stat *stat; 810 unsigned long long calltime; 811 struct ftrace_profile *rec; 812 unsigned long flags; 813 814 local_irq_save(flags); 815 stat = this_cpu_ptr(&ftrace_profile_stats); 816 if (!stat->hash || !ftrace_profile_enabled) 817 goto out; 818 819 /* If the calltime was zero'd ignore it */ 820 if (!trace->calltime) 821 goto out; 822 823 calltime = trace->rettime - trace->calltime; 824 825 if (!fgraph_graph_time) { 826 827 /* Append this call time to the parent time to subtract */ 828 ret_stack = ftrace_graph_get_ret_stack(current, 1); 829 if (ret_stack) 830 ret_stack->subtime += calltime; 831 832 ret_stack = ftrace_graph_get_ret_stack(current, 0); 833 if (ret_stack && ret_stack->subtime < calltime) 834 calltime -= ret_stack->subtime; 835 else 836 calltime = 0; 837 } 838 839 rec = ftrace_find_profiled_func(stat, trace->func); 840 if (rec) { 841 rec->time += calltime; 842 rec->time_squared += calltime * calltime; 843 } 844 845 out: 846 local_irq_restore(flags); 847 } 848 849 static struct fgraph_ops fprofiler_ops = { 850 .entryfunc = &profile_graph_entry, 851 .retfunc = &profile_graph_return, 852 }; 853 854 static int register_ftrace_profiler(void) 855 { 856 return register_ftrace_graph(&fprofiler_ops); 857 } 858 859 static void unregister_ftrace_profiler(void) 860 { 861 unregister_ftrace_graph(&fprofiler_ops); 862 } 863 #else 864 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 865 .func = function_profile_call, 866 .flags = FTRACE_OPS_FL_INITIALIZED, 867 INIT_OPS_HASH(ftrace_profile_ops) 868 }; 869 870 static int register_ftrace_profiler(void) 871 { 872 return register_ftrace_function(&ftrace_profile_ops); 873 } 874 875 static void unregister_ftrace_profiler(void) 876 { 877 unregister_ftrace_function(&ftrace_profile_ops); 878 } 879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 880 881 static ssize_t 882 ftrace_profile_write(struct file *filp, const char __user *ubuf, 883 size_t cnt, loff_t *ppos) 884 { 885 unsigned long val; 886 int ret; 887 888 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 889 if (ret) 890 return ret; 891 892 val = !!val; 893 894 mutex_lock(&ftrace_profile_lock); 895 if (ftrace_profile_enabled ^ val) { 896 if (val) { 897 ret = ftrace_profile_init(); 898 if (ret < 0) { 899 cnt = ret; 900 goto out; 901 } 902 903 ret = register_ftrace_profiler(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 ftrace_profile_enabled = 1; 909 } else { 910 ftrace_profile_enabled = 0; 911 /* 912 * unregister_ftrace_profiler calls stop_machine 913 * so this acts like an synchronize_rcu. 914 */ 915 unregister_ftrace_profiler(); 916 } 917 } 918 out: 919 mutex_unlock(&ftrace_profile_lock); 920 921 *ppos += cnt; 922 923 return cnt; 924 } 925 926 static ssize_t 927 ftrace_profile_read(struct file *filp, char __user *ubuf, 928 size_t cnt, loff_t *ppos) 929 { 930 char buf[64]; /* big enough to hold a number */ 931 int r; 932 933 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 934 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 935 } 936 937 static const struct file_operations ftrace_profile_fops = { 938 .open = tracing_open_generic, 939 .read = ftrace_profile_read, 940 .write = ftrace_profile_write, 941 .llseek = default_llseek, 942 }; 943 944 /* used to initialize the real stat files */ 945 static struct tracer_stat function_stats __initdata = { 946 .name = "functions", 947 .stat_start = function_stat_start, 948 .stat_next = function_stat_next, 949 .stat_cmp = function_stat_cmp, 950 .stat_headers = function_stat_headers, 951 .stat_show = function_stat_show 952 }; 953 954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 955 { 956 struct ftrace_profile_stat *stat; 957 char *name; 958 int ret; 959 int cpu; 960 961 for_each_possible_cpu(cpu) { 962 stat = &per_cpu(ftrace_profile_stats, cpu); 963 964 name = kasprintf(GFP_KERNEL, "function%d", cpu); 965 if (!name) { 966 /* 967 * The files created are permanent, if something happens 968 * we still do not free memory. 969 */ 970 WARN(1, 971 "Could not allocate stat file for cpu %d\n", 972 cpu); 973 return; 974 } 975 stat->stat = function_stats; 976 stat->stat.name = name; 977 ret = register_stat_tracer(&stat->stat); 978 if (ret) { 979 WARN(1, 980 "Could not register function stat for cpu %d\n", 981 cpu); 982 kfree(name); 983 return; 984 } 985 } 986 987 trace_create_file("function_profile_enabled", 988 TRACE_MODE_WRITE, d_tracer, NULL, 989 &ftrace_profile_fops); 990 } 991 992 #else /* CONFIG_FUNCTION_PROFILER */ 993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 994 { 995 } 996 #endif /* CONFIG_FUNCTION_PROFILER */ 997 998 #ifdef CONFIG_DYNAMIC_FTRACE 999 1000 static struct ftrace_ops *removed_ops; 1001 1002 /* 1003 * Set when doing a global update, like enabling all recs or disabling them. 1004 * It is not set when just updating a single ftrace_ops. 1005 */ 1006 static bool update_all_ops; 1007 1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1009 # error Dynamic ftrace depends on MCOUNT_RECORD 1010 #endif 1011 1012 struct ftrace_func_probe { 1013 struct ftrace_probe_ops *probe_ops; 1014 struct ftrace_ops ops; 1015 struct trace_array *tr; 1016 struct list_head list; 1017 void *data; 1018 int ref; 1019 }; 1020 1021 /* 1022 * We make these constant because no one should touch them, 1023 * but they are used as the default "empty hash", to avoid allocating 1024 * it all the time. These are in a read only section such that if 1025 * anyone does try to modify it, it will cause an exception. 1026 */ 1027 static const struct hlist_head empty_buckets[1]; 1028 static const struct ftrace_hash empty_hash = { 1029 .buckets = (struct hlist_head *)empty_buckets, 1030 }; 1031 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1032 1033 struct ftrace_ops global_ops = { 1034 .func = ftrace_stub, 1035 .local_hash.notrace_hash = EMPTY_HASH, 1036 .local_hash.filter_hash = EMPTY_HASH, 1037 INIT_OPS_HASH(global_ops) 1038 .flags = FTRACE_OPS_FL_INITIALIZED | 1039 FTRACE_OPS_FL_PID, 1040 }; 1041 1042 /* 1043 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1044 */ 1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1046 { 1047 struct ftrace_ops *op = NULL; 1048 1049 /* 1050 * Some of the ops may be dynamically allocated, 1051 * they are freed after a synchronize_rcu(). 1052 */ 1053 preempt_disable_notrace(); 1054 1055 do_for_each_ftrace_op(op, ftrace_ops_list) { 1056 /* 1057 * This is to check for dynamically allocated trampolines. 1058 * Trampolines that are in kernel text will have 1059 * core_kernel_text() return true. 1060 */ 1061 if (op->trampoline && op->trampoline_size) 1062 if (addr >= op->trampoline && 1063 addr < op->trampoline + op->trampoline_size) { 1064 preempt_enable_notrace(); 1065 return op; 1066 } 1067 } while_for_each_ftrace_op(op); 1068 preempt_enable_notrace(); 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * This is used by __kernel_text_address() to return true if the 1075 * address is on a dynamically allocated trampoline that would 1076 * not return true for either core_kernel_text() or 1077 * is_module_text_address(). 1078 */ 1079 bool is_ftrace_trampoline(unsigned long addr) 1080 { 1081 return ftrace_ops_trampoline(addr) != NULL; 1082 } 1083 1084 struct ftrace_page { 1085 struct ftrace_page *next; 1086 struct dyn_ftrace *records; 1087 int index; 1088 int order; 1089 }; 1090 1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1093 1094 static struct ftrace_page *ftrace_pages_start; 1095 static struct ftrace_page *ftrace_pages; 1096 1097 static __always_inline unsigned long 1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1099 { 1100 if (hash->size_bits > 0) 1101 return hash_long(ip, hash->size_bits); 1102 1103 return 0; 1104 } 1105 1106 /* Only use this function if ftrace_hash_empty() has already been tested */ 1107 static __always_inline struct ftrace_func_entry * 1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 unsigned long key; 1111 struct ftrace_func_entry *entry; 1112 struct hlist_head *hhd; 1113 1114 key = ftrace_hash_key(hash, ip); 1115 hhd = &hash->buckets[key]; 1116 1117 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1118 if (entry->ip == ip) 1119 return entry; 1120 } 1121 return NULL; 1122 } 1123 1124 /** 1125 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1126 * @hash: The hash to look at 1127 * @ip: The instruction pointer to test 1128 * 1129 * Search a given @hash to see if a given instruction pointer (@ip) 1130 * exists in it. 1131 * 1132 * Returns the entry that holds the @ip if found. NULL otherwise. 1133 */ 1134 struct ftrace_func_entry * 1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (ftrace_hash_empty(hash)) 1138 return NULL; 1139 1140 return __ftrace_lookup_ip(hash, ip); 1141 } 1142 1143 static void __add_hash_entry(struct ftrace_hash *hash, 1144 struct ftrace_func_entry *entry) 1145 { 1146 struct hlist_head *hhd; 1147 unsigned long key; 1148 1149 key = ftrace_hash_key(hash, entry->ip); 1150 hhd = &hash->buckets[key]; 1151 hlist_add_head(&entry->hlist, hhd); 1152 hash->count++; 1153 } 1154 1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1156 { 1157 struct ftrace_func_entry *entry; 1158 1159 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1160 if (!entry) 1161 return -ENOMEM; 1162 1163 entry->ip = ip; 1164 __add_hash_entry(hash, entry); 1165 1166 return 0; 1167 } 1168 1169 static void 1170 free_hash_entry(struct ftrace_hash *hash, 1171 struct ftrace_func_entry *entry) 1172 { 1173 hlist_del(&entry->hlist); 1174 kfree(entry); 1175 hash->count--; 1176 } 1177 1178 static void 1179 remove_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del_rcu(&entry->hlist); 1183 hash->count--; 1184 } 1185 1186 static void ftrace_hash_clear(struct ftrace_hash *hash) 1187 { 1188 struct hlist_head *hhd; 1189 struct hlist_node *tn; 1190 struct ftrace_func_entry *entry; 1191 int size = 1 << hash->size_bits; 1192 int i; 1193 1194 if (!hash->count) 1195 return; 1196 1197 for (i = 0; i < size; i++) { 1198 hhd = &hash->buckets[i]; 1199 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1200 free_hash_entry(hash, entry); 1201 } 1202 FTRACE_WARN_ON(hash->count); 1203 } 1204 1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1206 { 1207 list_del(&ftrace_mod->list); 1208 kfree(ftrace_mod->module); 1209 kfree(ftrace_mod->func); 1210 kfree(ftrace_mod); 1211 } 1212 1213 static void clear_ftrace_mod_list(struct list_head *head) 1214 { 1215 struct ftrace_mod_load *p, *n; 1216 1217 /* stack tracer isn't supported yet */ 1218 if (!head) 1219 return; 1220 1221 mutex_lock(&ftrace_lock); 1222 list_for_each_entry_safe(p, n, head, list) 1223 free_ftrace_mod(p); 1224 mutex_unlock(&ftrace_lock); 1225 } 1226 1227 static void free_ftrace_hash(struct ftrace_hash *hash) 1228 { 1229 if (!hash || hash == EMPTY_HASH) 1230 return; 1231 ftrace_hash_clear(hash); 1232 kfree(hash->buckets); 1233 kfree(hash); 1234 } 1235 1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1237 { 1238 struct ftrace_hash *hash; 1239 1240 hash = container_of(rcu, struct ftrace_hash, rcu); 1241 free_ftrace_hash(hash); 1242 } 1243 1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1245 { 1246 if (!hash || hash == EMPTY_HASH) 1247 return; 1248 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1249 } 1250 1251 void ftrace_free_filter(struct ftrace_ops *ops) 1252 { 1253 ftrace_ops_init(ops); 1254 free_ftrace_hash(ops->func_hash->filter_hash); 1255 free_ftrace_hash(ops->func_hash->notrace_hash); 1256 } 1257 1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1259 { 1260 struct ftrace_hash *hash; 1261 int size; 1262 1263 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1264 if (!hash) 1265 return NULL; 1266 1267 size = 1 << size_bits; 1268 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1269 1270 if (!hash->buckets) { 1271 kfree(hash); 1272 return NULL; 1273 } 1274 1275 hash->size_bits = size_bits; 1276 1277 return hash; 1278 } 1279 1280 1281 static int ftrace_add_mod(struct trace_array *tr, 1282 const char *func, const char *module, 1283 int enable) 1284 { 1285 struct ftrace_mod_load *ftrace_mod; 1286 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1287 1288 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1289 if (!ftrace_mod) 1290 return -ENOMEM; 1291 1292 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1293 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1294 ftrace_mod->enable = enable; 1295 1296 if (!ftrace_mod->func || !ftrace_mod->module) 1297 goto out_free; 1298 1299 list_add(&ftrace_mod->list, mod_head); 1300 1301 return 0; 1302 1303 out_free: 1304 free_ftrace_mod(ftrace_mod); 1305 1306 return -ENOMEM; 1307 } 1308 1309 static struct ftrace_hash * 1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1311 { 1312 struct ftrace_func_entry *entry; 1313 struct ftrace_hash *new_hash; 1314 int size; 1315 int ret; 1316 int i; 1317 1318 new_hash = alloc_ftrace_hash(size_bits); 1319 if (!new_hash) 1320 return NULL; 1321 1322 if (hash) 1323 new_hash->flags = hash->flags; 1324 1325 /* Empty hash? */ 1326 if (ftrace_hash_empty(hash)) 1327 return new_hash; 1328 1329 size = 1 << hash->size_bits; 1330 for (i = 0; i < size; i++) { 1331 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1332 ret = add_hash_entry(new_hash, entry->ip); 1333 if (ret < 0) 1334 goto free_hash; 1335 } 1336 } 1337 1338 FTRACE_WARN_ON(new_hash->count != hash->count); 1339 1340 return new_hash; 1341 1342 free_hash: 1343 free_ftrace_hash(new_hash); 1344 return NULL; 1345 } 1346 1347 static void 1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1349 static void 1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1351 1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1353 struct ftrace_hash *new_hash); 1354 1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1356 { 1357 struct ftrace_func_entry *entry; 1358 struct ftrace_hash *new_hash; 1359 struct hlist_head *hhd; 1360 struct hlist_node *tn; 1361 int bits = 0; 1362 int i; 1363 1364 /* 1365 * Use around half the size (max bit of it), but 1366 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1367 */ 1368 bits = fls(size / 2); 1369 1370 /* Don't allocate too much */ 1371 if (bits > FTRACE_HASH_MAX_BITS) 1372 bits = FTRACE_HASH_MAX_BITS; 1373 1374 new_hash = alloc_ftrace_hash(bits); 1375 if (!new_hash) 1376 return NULL; 1377 1378 new_hash->flags = src->flags; 1379 1380 size = 1 << src->size_bits; 1381 for (i = 0; i < size; i++) { 1382 hhd = &src->buckets[i]; 1383 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1384 remove_hash_entry(src, entry); 1385 __add_hash_entry(new_hash, entry); 1386 } 1387 } 1388 return new_hash; 1389 } 1390 1391 static struct ftrace_hash * 1392 __ftrace_hash_move(struct ftrace_hash *src) 1393 { 1394 int size = src->count; 1395 1396 /* 1397 * If the new source is empty, just return the empty_hash. 1398 */ 1399 if (ftrace_hash_empty(src)) 1400 return EMPTY_HASH; 1401 1402 return dup_hash(src, size); 1403 } 1404 1405 static int 1406 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1407 struct ftrace_hash **dst, struct ftrace_hash *src) 1408 { 1409 struct ftrace_hash *new_hash; 1410 int ret; 1411 1412 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1413 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1414 return -EINVAL; 1415 1416 new_hash = __ftrace_hash_move(src); 1417 if (!new_hash) 1418 return -ENOMEM; 1419 1420 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1421 if (enable) { 1422 /* IPMODIFY should be updated only when filter_hash updating */ 1423 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1424 if (ret < 0) { 1425 free_ftrace_hash(new_hash); 1426 return ret; 1427 } 1428 } 1429 1430 /* 1431 * Remove the current set, update the hash and add 1432 * them back. 1433 */ 1434 ftrace_hash_rec_disable_modify(ops, enable); 1435 1436 rcu_assign_pointer(*dst, new_hash); 1437 1438 ftrace_hash_rec_enable_modify(ops, enable); 1439 1440 return 0; 1441 } 1442 1443 static bool hash_contains_ip(unsigned long ip, 1444 struct ftrace_ops_hash *hash) 1445 { 1446 /* 1447 * The function record is a match if it exists in the filter 1448 * hash and not in the notrace hash. Note, an empty hash is 1449 * considered a match for the filter hash, but an empty 1450 * notrace hash is considered not in the notrace hash. 1451 */ 1452 return (ftrace_hash_empty(hash->filter_hash) || 1453 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1454 (ftrace_hash_empty(hash->notrace_hash) || 1455 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1456 } 1457 1458 /* 1459 * Test the hashes for this ops to see if we want to call 1460 * the ops->func or not. 1461 * 1462 * It's a match if the ip is in the ops->filter_hash or 1463 * the filter_hash does not exist or is empty, 1464 * AND 1465 * the ip is not in the ops->notrace_hash. 1466 * 1467 * This needs to be called with preemption disabled as 1468 * the hashes are freed with call_rcu(). 1469 */ 1470 int 1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1472 { 1473 struct ftrace_ops_hash hash; 1474 int ret; 1475 1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1477 /* 1478 * There's a small race when adding ops that the ftrace handler 1479 * that wants regs, may be called without them. We can not 1480 * allow that handler to be called if regs is NULL. 1481 */ 1482 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1483 return 0; 1484 #endif 1485 1486 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1487 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1488 1489 if (hash_contains_ip(ip, &hash)) 1490 ret = 1; 1491 else 1492 ret = 0; 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * This is a double for. Do not use 'break' to break out of the loop, 1499 * you must use a goto. 1500 */ 1501 #define do_for_each_ftrace_rec(pg, rec) \ 1502 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1503 int _____i; \ 1504 for (_____i = 0; _____i < pg->index; _____i++) { \ 1505 rec = &pg->records[_____i]; 1506 1507 #define while_for_each_ftrace_rec() \ 1508 } \ 1509 } 1510 1511 1512 static int ftrace_cmp_recs(const void *a, const void *b) 1513 { 1514 const struct dyn_ftrace *key = a; 1515 const struct dyn_ftrace *rec = b; 1516 1517 if (key->flags < rec->ip) 1518 return -1; 1519 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1520 return 1; 1521 return 0; 1522 } 1523 1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1525 { 1526 struct ftrace_page *pg; 1527 struct dyn_ftrace *rec = NULL; 1528 struct dyn_ftrace key; 1529 1530 key.ip = start; 1531 key.flags = end; /* overload flags, as it is unsigned long */ 1532 1533 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1534 if (end < pg->records[0].ip || 1535 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1536 continue; 1537 rec = bsearch(&key, pg->records, pg->index, 1538 sizeof(struct dyn_ftrace), 1539 ftrace_cmp_recs); 1540 if (rec) 1541 break; 1542 } 1543 return rec; 1544 } 1545 1546 /** 1547 * ftrace_location_range - return the first address of a traced location 1548 * if it touches the given ip range 1549 * @start: start of range to search. 1550 * @end: end of range to search (inclusive). @end points to the last byte 1551 * to check. 1552 * 1553 * Returns rec->ip if the related ftrace location is a least partly within 1554 * the given address range. That is, the first address of the instruction 1555 * that is either a NOP or call to the function tracer. It checks the ftrace 1556 * internal tables to determine if the address belongs or not. 1557 */ 1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1559 { 1560 struct dyn_ftrace *rec; 1561 1562 rec = lookup_rec(start, end); 1563 if (rec) 1564 return rec->ip; 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * ftrace_location - return the ftrace location 1571 * @ip: the instruction pointer to check 1572 * 1573 * If @ip matches the ftrace location, return @ip. 1574 * If @ip matches sym+0, return sym's ftrace location. 1575 * Otherwise, return 0. 1576 */ 1577 unsigned long ftrace_location(unsigned long ip) 1578 { 1579 struct dyn_ftrace *rec; 1580 unsigned long offset; 1581 unsigned long size; 1582 1583 rec = lookup_rec(ip, ip); 1584 if (!rec) { 1585 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1586 goto out; 1587 1588 /* map sym+0 to __fentry__ */ 1589 if (!offset) 1590 rec = lookup_rec(ip, ip + size - 1); 1591 } 1592 1593 if (rec) 1594 return rec->ip; 1595 1596 out: 1597 return 0; 1598 } 1599 1600 /** 1601 * ftrace_text_reserved - return true if range contains an ftrace location 1602 * @start: start of range to search 1603 * @end: end of range to search (inclusive). @end points to the last byte to check. 1604 * 1605 * Returns 1 if @start and @end contains a ftrace location. 1606 * That is, the instruction that is either a NOP or call to 1607 * the function tracer. It checks the ftrace internal tables to 1608 * determine if the address belongs or not. 1609 */ 1610 int ftrace_text_reserved(const void *start, const void *end) 1611 { 1612 unsigned long ret; 1613 1614 ret = ftrace_location_range((unsigned long)start, 1615 (unsigned long)end); 1616 1617 return (int)!!ret; 1618 } 1619 1620 /* Test if ops registered to this rec needs regs */ 1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1622 { 1623 struct ftrace_ops *ops; 1624 bool keep_regs = false; 1625 1626 for (ops = ftrace_ops_list; 1627 ops != &ftrace_list_end; ops = ops->next) { 1628 /* pass rec in as regs to have non-NULL val */ 1629 if (ftrace_ops_test(ops, rec->ip, rec)) { 1630 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1631 keep_regs = true; 1632 break; 1633 } 1634 } 1635 } 1636 1637 return keep_regs; 1638 } 1639 1640 static struct ftrace_ops * 1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1642 static struct ftrace_ops * 1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1644 static struct ftrace_ops * 1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1646 1647 static bool skip_record(struct dyn_ftrace *rec) 1648 { 1649 /* 1650 * At boot up, weak functions are set to disable. Function tracing 1651 * can be enabled before they are, and they still need to be disabled now. 1652 * If the record is disabled, still continue if it is marked as already 1653 * enabled (this is needed to keep the accounting working). 1654 */ 1655 return rec->flags & FTRACE_FL_DISABLED && 1656 !(rec->flags & FTRACE_FL_ENABLED); 1657 } 1658 1659 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1660 int filter_hash, 1661 bool inc) 1662 { 1663 struct ftrace_hash *hash; 1664 struct ftrace_hash *other_hash; 1665 struct ftrace_page *pg; 1666 struct dyn_ftrace *rec; 1667 bool update = false; 1668 int count = 0; 1669 int all = false; 1670 1671 /* Only update if the ops has been registered */ 1672 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1673 return false; 1674 1675 /* 1676 * In the filter_hash case: 1677 * If the count is zero, we update all records. 1678 * Otherwise we just update the items in the hash. 1679 * 1680 * In the notrace_hash case: 1681 * We enable the update in the hash. 1682 * As disabling notrace means enabling the tracing, 1683 * and enabling notrace means disabling, the inc variable 1684 * gets inversed. 1685 */ 1686 if (filter_hash) { 1687 hash = ops->func_hash->filter_hash; 1688 other_hash = ops->func_hash->notrace_hash; 1689 if (ftrace_hash_empty(hash)) 1690 all = true; 1691 } else { 1692 inc = !inc; 1693 hash = ops->func_hash->notrace_hash; 1694 other_hash = ops->func_hash->filter_hash; 1695 /* 1696 * If the notrace hash has no items, 1697 * then there's nothing to do. 1698 */ 1699 if (ftrace_hash_empty(hash)) 1700 return false; 1701 } 1702 1703 do_for_each_ftrace_rec(pg, rec) { 1704 int in_other_hash = 0; 1705 int in_hash = 0; 1706 int match = 0; 1707 1708 if (skip_record(rec)) 1709 continue; 1710 1711 if (all) { 1712 /* 1713 * Only the filter_hash affects all records. 1714 * Update if the record is not in the notrace hash. 1715 */ 1716 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1717 match = 1; 1718 } else { 1719 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1720 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1721 1722 /* 1723 * If filter_hash is set, we want to match all functions 1724 * that are in the hash but not in the other hash. 1725 * 1726 * If filter_hash is not set, then we are decrementing. 1727 * That means we match anything that is in the hash 1728 * and also in the other_hash. That is, we need to turn 1729 * off functions in the other hash because they are disabled 1730 * by this hash. 1731 */ 1732 if (filter_hash && in_hash && !in_other_hash) 1733 match = 1; 1734 else if (!filter_hash && in_hash && 1735 (in_other_hash || ftrace_hash_empty(other_hash))) 1736 match = 1; 1737 } 1738 if (!match) 1739 continue; 1740 1741 if (inc) { 1742 rec->flags++; 1743 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1744 return false; 1745 1746 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1747 rec->flags |= FTRACE_FL_DIRECT; 1748 1749 /* 1750 * If there's only a single callback registered to a 1751 * function, and the ops has a trampoline registered 1752 * for it, then we can call it directly. 1753 */ 1754 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1755 rec->flags |= FTRACE_FL_TRAMP; 1756 else 1757 /* 1758 * If we are adding another function callback 1759 * to this function, and the previous had a 1760 * custom trampoline in use, then we need to go 1761 * back to the default trampoline. 1762 */ 1763 rec->flags &= ~FTRACE_FL_TRAMP; 1764 1765 /* 1766 * If any ops wants regs saved for this function 1767 * then all ops will get saved regs. 1768 */ 1769 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1770 rec->flags |= FTRACE_FL_REGS; 1771 } else { 1772 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1773 return false; 1774 rec->flags--; 1775 1776 /* 1777 * Only the internal direct_ops should have the 1778 * DIRECT flag set. Thus, if it is removing a 1779 * function, then that function should no longer 1780 * be direct. 1781 */ 1782 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1783 rec->flags &= ~FTRACE_FL_DIRECT; 1784 1785 /* 1786 * If the rec had REGS enabled and the ops that is 1787 * being removed had REGS set, then see if there is 1788 * still any ops for this record that wants regs. 1789 * If not, we can stop recording them. 1790 */ 1791 if (ftrace_rec_count(rec) > 0 && 1792 rec->flags & FTRACE_FL_REGS && 1793 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1794 if (!test_rec_ops_needs_regs(rec)) 1795 rec->flags &= ~FTRACE_FL_REGS; 1796 } 1797 1798 /* 1799 * The TRAMP needs to be set only if rec count 1800 * is decremented to one, and the ops that is 1801 * left has a trampoline. As TRAMP can only be 1802 * enabled if there is only a single ops attached 1803 * to it. 1804 */ 1805 if (ftrace_rec_count(rec) == 1 && 1806 ftrace_find_tramp_ops_any_other(rec, ops)) 1807 rec->flags |= FTRACE_FL_TRAMP; 1808 else 1809 rec->flags &= ~FTRACE_FL_TRAMP; 1810 1811 /* 1812 * flags will be cleared in ftrace_check_record() 1813 * if rec count is zero. 1814 */ 1815 } 1816 count++; 1817 1818 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1819 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1820 1821 /* Shortcut, if we handled all records, we are done. */ 1822 if (!all && count == hash->count) 1823 return update; 1824 } while_for_each_ftrace_rec(); 1825 1826 return update; 1827 } 1828 1829 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1830 int filter_hash) 1831 { 1832 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1833 } 1834 1835 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1836 int filter_hash) 1837 { 1838 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1839 } 1840 1841 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1842 int filter_hash, int inc) 1843 { 1844 struct ftrace_ops *op; 1845 1846 __ftrace_hash_rec_update(ops, filter_hash, inc); 1847 1848 if (ops->func_hash != &global_ops.local_hash) 1849 return; 1850 1851 /* 1852 * If the ops shares the global_ops hash, then we need to update 1853 * all ops that are enabled and use this hash. 1854 */ 1855 do_for_each_ftrace_op(op, ftrace_ops_list) { 1856 /* Already done */ 1857 if (op == ops) 1858 continue; 1859 if (op->func_hash == &global_ops.local_hash) 1860 __ftrace_hash_rec_update(op, filter_hash, inc); 1861 } while_for_each_ftrace_op(op); 1862 } 1863 1864 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1865 int filter_hash) 1866 { 1867 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1868 } 1869 1870 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1871 int filter_hash) 1872 { 1873 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1874 } 1875 1876 /* 1877 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1878 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1879 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1880 * Note that old_hash and new_hash has below meanings 1881 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1882 * - If the hash is EMPTY_HASH, it hits nothing 1883 * - Anything else hits the recs which match the hash entries. 1884 * 1885 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1886 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1887 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1888 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1889 * the return value to the caller and eventually to the owner of the DIRECT 1890 * ops. 1891 */ 1892 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1893 struct ftrace_hash *old_hash, 1894 struct ftrace_hash *new_hash) 1895 { 1896 struct ftrace_page *pg; 1897 struct dyn_ftrace *rec, *end = NULL; 1898 int in_old, in_new; 1899 bool is_ipmodify, is_direct; 1900 1901 /* Only update if the ops has been registered */ 1902 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1903 return 0; 1904 1905 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1906 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1907 1908 /* neither IPMODIFY nor DIRECT, skip */ 1909 if (!is_ipmodify && !is_direct) 1910 return 0; 1911 1912 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1913 return 0; 1914 1915 /* 1916 * Since the IPMODIFY and DIRECT are very address sensitive 1917 * actions, we do not allow ftrace_ops to set all functions to new 1918 * hash. 1919 */ 1920 if (!new_hash || !old_hash) 1921 return -EINVAL; 1922 1923 /* Update rec->flags */ 1924 do_for_each_ftrace_rec(pg, rec) { 1925 1926 if (rec->flags & FTRACE_FL_DISABLED) 1927 continue; 1928 1929 /* We need to update only differences of filter_hash */ 1930 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1931 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1932 if (in_old == in_new) 1933 continue; 1934 1935 if (in_new) { 1936 if (rec->flags & FTRACE_FL_IPMODIFY) { 1937 int ret; 1938 1939 /* Cannot have two ipmodify on same rec */ 1940 if (is_ipmodify) 1941 goto rollback; 1942 1943 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 1944 1945 /* 1946 * Another ops with IPMODIFY is already 1947 * attached. We are now attaching a direct 1948 * ops. Run SHARE_IPMODIFY_SELF, to check 1949 * whether sharing is supported. 1950 */ 1951 if (!ops->ops_func) 1952 return -EBUSY; 1953 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 1954 if (ret) 1955 return ret; 1956 } else if (is_ipmodify) { 1957 rec->flags |= FTRACE_FL_IPMODIFY; 1958 } 1959 } else if (is_ipmodify) { 1960 rec->flags &= ~FTRACE_FL_IPMODIFY; 1961 } 1962 } while_for_each_ftrace_rec(); 1963 1964 return 0; 1965 1966 rollback: 1967 end = rec; 1968 1969 /* Roll back what we did above */ 1970 do_for_each_ftrace_rec(pg, rec) { 1971 1972 if (rec->flags & FTRACE_FL_DISABLED) 1973 continue; 1974 1975 if (rec == end) 1976 goto err_out; 1977 1978 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1979 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1980 if (in_old == in_new) 1981 continue; 1982 1983 if (in_new) 1984 rec->flags &= ~FTRACE_FL_IPMODIFY; 1985 else 1986 rec->flags |= FTRACE_FL_IPMODIFY; 1987 } while_for_each_ftrace_rec(); 1988 1989 err_out: 1990 return -EBUSY; 1991 } 1992 1993 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1994 { 1995 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1996 1997 if (ftrace_hash_empty(hash)) 1998 hash = NULL; 1999 2000 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2001 } 2002 2003 /* Disabling always succeeds */ 2004 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2005 { 2006 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2007 2008 if (ftrace_hash_empty(hash)) 2009 hash = NULL; 2010 2011 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2012 } 2013 2014 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2015 struct ftrace_hash *new_hash) 2016 { 2017 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2018 2019 if (ftrace_hash_empty(old_hash)) 2020 old_hash = NULL; 2021 2022 if (ftrace_hash_empty(new_hash)) 2023 new_hash = NULL; 2024 2025 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2026 } 2027 2028 static void print_ip_ins(const char *fmt, const unsigned char *p) 2029 { 2030 char ins[MCOUNT_INSN_SIZE]; 2031 2032 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2033 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2034 return; 2035 } 2036 2037 printk(KERN_CONT "%s", fmt); 2038 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2039 } 2040 2041 enum ftrace_bug_type ftrace_bug_type; 2042 const void *ftrace_expected; 2043 2044 static void print_bug_type(void) 2045 { 2046 switch (ftrace_bug_type) { 2047 case FTRACE_BUG_UNKNOWN: 2048 break; 2049 case FTRACE_BUG_INIT: 2050 pr_info("Initializing ftrace call sites\n"); 2051 break; 2052 case FTRACE_BUG_NOP: 2053 pr_info("Setting ftrace call site to NOP\n"); 2054 break; 2055 case FTRACE_BUG_CALL: 2056 pr_info("Setting ftrace call site to call ftrace function\n"); 2057 break; 2058 case FTRACE_BUG_UPDATE: 2059 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2060 break; 2061 } 2062 } 2063 2064 /** 2065 * ftrace_bug - report and shutdown function tracer 2066 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2067 * @rec: The record that failed 2068 * 2069 * The arch code that enables or disables the function tracing 2070 * can call ftrace_bug() when it has detected a problem in 2071 * modifying the code. @failed should be one of either: 2072 * EFAULT - if the problem happens on reading the @ip address 2073 * EINVAL - if what is read at @ip is not what was expected 2074 * EPERM - if the problem happens on writing to the @ip address 2075 */ 2076 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2077 { 2078 unsigned long ip = rec ? rec->ip : 0; 2079 2080 pr_info("------------[ ftrace bug ]------------\n"); 2081 2082 switch (failed) { 2083 case -EFAULT: 2084 pr_info("ftrace faulted on modifying "); 2085 print_ip_sym(KERN_INFO, ip); 2086 break; 2087 case -EINVAL: 2088 pr_info("ftrace failed to modify "); 2089 print_ip_sym(KERN_INFO, ip); 2090 print_ip_ins(" actual: ", (unsigned char *)ip); 2091 pr_cont("\n"); 2092 if (ftrace_expected) { 2093 print_ip_ins(" expected: ", ftrace_expected); 2094 pr_cont("\n"); 2095 } 2096 break; 2097 case -EPERM: 2098 pr_info("ftrace faulted on writing "); 2099 print_ip_sym(KERN_INFO, ip); 2100 break; 2101 default: 2102 pr_info("ftrace faulted on unknown error "); 2103 print_ip_sym(KERN_INFO, ip); 2104 } 2105 print_bug_type(); 2106 if (rec) { 2107 struct ftrace_ops *ops = NULL; 2108 2109 pr_info("ftrace record flags: %lx\n", rec->flags); 2110 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2111 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2112 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2113 ops = ftrace_find_tramp_ops_any(rec); 2114 if (ops) { 2115 do { 2116 pr_cont("\ttramp: %pS (%pS)", 2117 (void *)ops->trampoline, 2118 (void *)ops->func); 2119 ops = ftrace_find_tramp_ops_next(rec, ops); 2120 } while (ops); 2121 } else 2122 pr_cont("\ttramp: ERROR!"); 2123 2124 } 2125 ip = ftrace_get_addr_curr(rec); 2126 pr_cont("\n expected tramp: %lx\n", ip); 2127 } 2128 2129 FTRACE_WARN_ON_ONCE(1); 2130 } 2131 2132 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2133 { 2134 unsigned long flag = 0UL; 2135 2136 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2137 2138 if (skip_record(rec)) 2139 return FTRACE_UPDATE_IGNORE; 2140 2141 /* 2142 * If we are updating calls: 2143 * 2144 * If the record has a ref count, then we need to enable it 2145 * because someone is using it. 2146 * 2147 * Otherwise we make sure its disabled. 2148 * 2149 * If we are disabling calls, then disable all records that 2150 * are enabled. 2151 */ 2152 if (enable && ftrace_rec_count(rec)) 2153 flag = FTRACE_FL_ENABLED; 2154 2155 /* 2156 * If enabling and the REGS flag does not match the REGS_EN, or 2157 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2158 * this record. Set flags to fail the compare against ENABLED. 2159 * Same for direct calls. 2160 */ 2161 if (flag) { 2162 if (!(rec->flags & FTRACE_FL_REGS) != 2163 !(rec->flags & FTRACE_FL_REGS_EN)) 2164 flag |= FTRACE_FL_REGS; 2165 2166 if (!(rec->flags & FTRACE_FL_TRAMP) != 2167 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2168 flag |= FTRACE_FL_TRAMP; 2169 2170 /* 2171 * Direct calls are special, as count matters. 2172 * We must test the record for direct, if the 2173 * DIRECT and DIRECT_EN do not match, but only 2174 * if the count is 1. That's because, if the 2175 * count is something other than one, we do not 2176 * want the direct enabled (it will be done via the 2177 * direct helper). But if DIRECT_EN is set, and 2178 * the count is not one, we need to clear it. 2179 */ 2180 if (ftrace_rec_count(rec) == 1) { 2181 if (!(rec->flags & FTRACE_FL_DIRECT) != 2182 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2183 flag |= FTRACE_FL_DIRECT; 2184 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2185 flag |= FTRACE_FL_DIRECT; 2186 } 2187 } 2188 2189 /* If the state of this record hasn't changed, then do nothing */ 2190 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2191 return FTRACE_UPDATE_IGNORE; 2192 2193 if (flag) { 2194 /* Save off if rec is being enabled (for return value) */ 2195 flag ^= rec->flags & FTRACE_FL_ENABLED; 2196 2197 if (update) { 2198 rec->flags |= FTRACE_FL_ENABLED; 2199 if (flag & FTRACE_FL_REGS) { 2200 if (rec->flags & FTRACE_FL_REGS) 2201 rec->flags |= FTRACE_FL_REGS_EN; 2202 else 2203 rec->flags &= ~FTRACE_FL_REGS_EN; 2204 } 2205 if (flag & FTRACE_FL_TRAMP) { 2206 if (rec->flags & FTRACE_FL_TRAMP) 2207 rec->flags |= FTRACE_FL_TRAMP_EN; 2208 else 2209 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2210 } 2211 2212 if (flag & FTRACE_FL_DIRECT) { 2213 /* 2214 * If there's only one user (direct_ops helper) 2215 * then we can call the direct function 2216 * directly (no ftrace trampoline). 2217 */ 2218 if (ftrace_rec_count(rec) == 1) { 2219 if (rec->flags & FTRACE_FL_DIRECT) 2220 rec->flags |= FTRACE_FL_DIRECT_EN; 2221 else 2222 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2223 } else { 2224 /* 2225 * Can only call directly if there's 2226 * only one callback to the function. 2227 */ 2228 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2229 } 2230 } 2231 } 2232 2233 /* 2234 * If this record is being updated from a nop, then 2235 * return UPDATE_MAKE_CALL. 2236 * Otherwise, 2237 * return UPDATE_MODIFY_CALL to tell the caller to convert 2238 * from the save regs, to a non-save regs function or 2239 * vice versa, or from a trampoline call. 2240 */ 2241 if (flag & FTRACE_FL_ENABLED) { 2242 ftrace_bug_type = FTRACE_BUG_CALL; 2243 return FTRACE_UPDATE_MAKE_CALL; 2244 } 2245 2246 ftrace_bug_type = FTRACE_BUG_UPDATE; 2247 return FTRACE_UPDATE_MODIFY_CALL; 2248 } 2249 2250 if (update) { 2251 /* If there's no more users, clear all flags */ 2252 if (!ftrace_rec_count(rec)) 2253 rec->flags &= FTRACE_FL_DISABLED; 2254 else 2255 /* 2256 * Just disable the record, but keep the ops TRAMP 2257 * and REGS states. The _EN flags must be disabled though. 2258 */ 2259 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2260 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2261 } 2262 2263 ftrace_bug_type = FTRACE_BUG_NOP; 2264 return FTRACE_UPDATE_MAKE_NOP; 2265 } 2266 2267 /** 2268 * ftrace_update_record - set a record that now is tracing or not 2269 * @rec: the record to update 2270 * @enable: set to true if the record is tracing, false to force disable 2271 * 2272 * The records that represent all functions that can be traced need 2273 * to be updated when tracing has been enabled. 2274 */ 2275 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2276 { 2277 return ftrace_check_record(rec, enable, true); 2278 } 2279 2280 /** 2281 * ftrace_test_record - check if the record has been enabled or not 2282 * @rec: the record to test 2283 * @enable: set to true to check if enabled, false if it is disabled 2284 * 2285 * The arch code may need to test if a record is already set to 2286 * tracing to determine how to modify the function code that it 2287 * represents. 2288 */ 2289 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2290 { 2291 return ftrace_check_record(rec, enable, false); 2292 } 2293 2294 static struct ftrace_ops * 2295 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2296 { 2297 struct ftrace_ops *op; 2298 unsigned long ip = rec->ip; 2299 2300 do_for_each_ftrace_op(op, ftrace_ops_list) { 2301 2302 if (!op->trampoline) 2303 continue; 2304 2305 if (hash_contains_ip(ip, op->func_hash)) 2306 return op; 2307 } while_for_each_ftrace_op(op); 2308 2309 return NULL; 2310 } 2311 2312 static struct ftrace_ops * 2313 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2314 { 2315 struct ftrace_ops *op; 2316 unsigned long ip = rec->ip; 2317 2318 do_for_each_ftrace_op(op, ftrace_ops_list) { 2319 2320 if (op == op_exclude || !op->trampoline) 2321 continue; 2322 2323 if (hash_contains_ip(ip, op->func_hash)) 2324 return op; 2325 } while_for_each_ftrace_op(op); 2326 2327 return NULL; 2328 } 2329 2330 static struct ftrace_ops * 2331 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2332 struct ftrace_ops *op) 2333 { 2334 unsigned long ip = rec->ip; 2335 2336 while_for_each_ftrace_op(op) { 2337 2338 if (!op->trampoline) 2339 continue; 2340 2341 if (hash_contains_ip(ip, op->func_hash)) 2342 return op; 2343 } 2344 2345 return NULL; 2346 } 2347 2348 static struct ftrace_ops * 2349 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2350 { 2351 struct ftrace_ops *op; 2352 unsigned long ip = rec->ip; 2353 2354 /* 2355 * Need to check removed ops first. 2356 * If they are being removed, and this rec has a tramp, 2357 * and this rec is in the ops list, then it would be the 2358 * one with the tramp. 2359 */ 2360 if (removed_ops) { 2361 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2362 return removed_ops; 2363 } 2364 2365 /* 2366 * Need to find the current trampoline for a rec. 2367 * Now, a trampoline is only attached to a rec if there 2368 * was a single 'ops' attached to it. But this can be called 2369 * when we are adding another op to the rec or removing the 2370 * current one. Thus, if the op is being added, we can 2371 * ignore it because it hasn't attached itself to the rec 2372 * yet. 2373 * 2374 * If an ops is being modified (hooking to different functions) 2375 * then we don't care about the new functions that are being 2376 * added, just the old ones (that are probably being removed). 2377 * 2378 * If we are adding an ops to a function that already is using 2379 * a trampoline, it needs to be removed (trampolines are only 2380 * for single ops connected), then an ops that is not being 2381 * modified also needs to be checked. 2382 */ 2383 do_for_each_ftrace_op(op, ftrace_ops_list) { 2384 2385 if (!op->trampoline) 2386 continue; 2387 2388 /* 2389 * If the ops is being added, it hasn't gotten to 2390 * the point to be removed from this tree yet. 2391 */ 2392 if (op->flags & FTRACE_OPS_FL_ADDING) 2393 continue; 2394 2395 2396 /* 2397 * If the ops is being modified and is in the old 2398 * hash, then it is probably being removed from this 2399 * function. 2400 */ 2401 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2402 hash_contains_ip(ip, &op->old_hash)) 2403 return op; 2404 /* 2405 * If the ops is not being added or modified, and it's 2406 * in its normal filter hash, then this must be the one 2407 * we want! 2408 */ 2409 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2410 hash_contains_ip(ip, op->func_hash)) 2411 return op; 2412 2413 } while_for_each_ftrace_op(op); 2414 2415 return NULL; 2416 } 2417 2418 static struct ftrace_ops * 2419 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2420 { 2421 struct ftrace_ops *op; 2422 unsigned long ip = rec->ip; 2423 2424 do_for_each_ftrace_op(op, ftrace_ops_list) { 2425 /* pass rec in as regs to have non-NULL val */ 2426 if (hash_contains_ip(ip, op->func_hash)) 2427 return op; 2428 } while_for_each_ftrace_op(op); 2429 2430 return NULL; 2431 } 2432 2433 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2434 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2435 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2436 static DEFINE_MUTEX(direct_mutex); 2437 int ftrace_direct_func_count; 2438 2439 /* 2440 * Search the direct_functions hash to see if the given instruction pointer 2441 * has a direct caller attached to it. 2442 */ 2443 unsigned long ftrace_find_rec_direct(unsigned long ip) 2444 { 2445 struct ftrace_func_entry *entry; 2446 2447 entry = __ftrace_lookup_ip(direct_functions, ip); 2448 if (!entry) 2449 return 0; 2450 2451 return entry->direct; 2452 } 2453 2454 static struct ftrace_func_entry* 2455 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2456 struct ftrace_hash **free_hash) 2457 { 2458 struct ftrace_func_entry *entry; 2459 2460 if (ftrace_hash_empty(direct_functions) || 2461 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2462 struct ftrace_hash *new_hash; 2463 int size = ftrace_hash_empty(direct_functions) ? 0 : 2464 direct_functions->count + 1; 2465 2466 if (size < 32) 2467 size = 32; 2468 2469 new_hash = dup_hash(direct_functions, size); 2470 if (!new_hash) 2471 return NULL; 2472 2473 *free_hash = direct_functions; 2474 direct_functions = new_hash; 2475 } 2476 2477 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2478 if (!entry) 2479 return NULL; 2480 2481 entry->ip = ip; 2482 entry->direct = addr; 2483 __add_hash_entry(direct_functions, entry); 2484 return entry; 2485 } 2486 2487 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2488 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2489 { 2490 struct pt_regs *regs = ftrace_get_regs(fregs); 2491 unsigned long addr; 2492 2493 addr = ftrace_find_rec_direct(ip); 2494 if (!addr) 2495 return; 2496 2497 arch_ftrace_set_direct_caller(regs, addr); 2498 } 2499 2500 struct ftrace_ops direct_ops = { 2501 .func = call_direct_funcs, 2502 .flags = FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2503 | FTRACE_OPS_FL_PERMANENT, 2504 /* 2505 * By declaring the main trampoline as this trampoline 2506 * it will never have one allocated for it. Allocated 2507 * trampolines should not call direct functions. 2508 * The direct_ops should only be called by the builtin 2509 * ftrace_regs_caller trampoline. 2510 */ 2511 .trampoline = FTRACE_REGS_ADDR, 2512 }; 2513 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2514 2515 /** 2516 * ftrace_get_addr_new - Get the call address to set to 2517 * @rec: The ftrace record descriptor 2518 * 2519 * If the record has the FTRACE_FL_REGS set, that means that it 2520 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2521 * is not set, then it wants to convert to the normal callback. 2522 * 2523 * Returns the address of the trampoline to set to 2524 */ 2525 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2526 { 2527 struct ftrace_ops *ops; 2528 unsigned long addr; 2529 2530 if ((rec->flags & FTRACE_FL_DIRECT) && 2531 (ftrace_rec_count(rec) == 1)) { 2532 addr = ftrace_find_rec_direct(rec->ip); 2533 if (addr) 2534 return addr; 2535 WARN_ON_ONCE(1); 2536 } 2537 2538 /* Trampolines take precedence over regs */ 2539 if (rec->flags & FTRACE_FL_TRAMP) { 2540 ops = ftrace_find_tramp_ops_new(rec); 2541 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2542 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2543 (void *)rec->ip, (void *)rec->ip, rec->flags); 2544 /* Ftrace is shutting down, return anything */ 2545 return (unsigned long)FTRACE_ADDR; 2546 } 2547 return ops->trampoline; 2548 } 2549 2550 if (rec->flags & FTRACE_FL_REGS) 2551 return (unsigned long)FTRACE_REGS_ADDR; 2552 else 2553 return (unsigned long)FTRACE_ADDR; 2554 } 2555 2556 /** 2557 * ftrace_get_addr_curr - Get the call address that is already there 2558 * @rec: The ftrace record descriptor 2559 * 2560 * The FTRACE_FL_REGS_EN is set when the record already points to 2561 * a function that saves all the regs. Basically the '_EN' version 2562 * represents the current state of the function. 2563 * 2564 * Returns the address of the trampoline that is currently being called 2565 */ 2566 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2567 { 2568 struct ftrace_ops *ops; 2569 unsigned long addr; 2570 2571 /* Direct calls take precedence over trampolines */ 2572 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2573 addr = ftrace_find_rec_direct(rec->ip); 2574 if (addr) 2575 return addr; 2576 WARN_ON_ONCE(1); 2577 } 2578 2579 /* Trampolines take precedence over regs */ 2580 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2581 ops = ftrace_find_tramp_ops_curr(rec); 2582 if (FTRACE_WARN_ON(!ops)) { 2583 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2584 (void *)rec->ip, (void *)rec->ip); 2585 /* Ftrace is shutting down, return anything */ 2586 return (unsigned long)FTRACE_ADDR; 2587 } 2588 return ops->trampoline; 2589 } 2590 2591 if (rec->flags & FTRACE_FL_REGS_EN) 2592 return (unsigned long)FTRACE_REGS_ADDR; 2593 else 2594 return (unsigned long)FTRACE_ADDR; 2595 } 2596 2597 static int 2598 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2599 { 2600 unsigned long ftrace_old_addr; 2601 unsigned long ftrace_addr; 2602 int ret; 2603 2604 ftrace_addr = ftrace_get_addr_new(rec); 2605 2606 /* This needs to be done before we call ftrace_update_record */ 2607 ftrace_old_addr = ftrace_get_addr_curr(rec); 2608 2609 ret = ftrace_update_record(rec, enable); 2610 2611 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2612 2613 switch (ret) { 2614 case FTRACE_UPDATE_IGNORE: 2615 return 0; 2616 2617 case FTRACE_UPDATE_MAKE_CALL: 2618 ftrace_bug_type = FTRACE_BUG_CALL; 2619 return ftrace_make_call(rec, ftrace_addr); 2620 2621 case FTRACE_UPDATE_MAKE_NOP: 2622 ftrace_bug_type = FTRACE_BUG_NOP; 2623 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2624 2625 case FTRACE_UPDATE_MODIFY_CALL: 2626 ftrace_bug_type = FTRACE_BUG_UPDATE; 2627 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2628 } 2629 2630 return -1; /* unknown ftrace bug */ 2631 } 2632 2633 void __weak ftrace_replace_code(int mod_flags) 2634 { 2635 struct dyn_ftrace *rec; 2636 struct ftrace_page *pg; 2637 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2638 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2639 int failed; 2640 2641 if (unlikely(ftrace_disabled)) 2642 return; 2643 2644 do_for_each_ftrace_rec(pg, rec) { 2645 2646 if (skip_record(rec)) 2647 continue; 2648 2649 failed = __ftrace_replace_code(rec, enable); 2650 if (failed) { 2651 ftrace_bug(failed, rec); 2652 /* Stop processing */ 2653 return; 2654 } 2655 if (schedulable) 2656 cond_resched(); 2657 } while_for_each_ftrace_rec(); 2658 } 2659 2660 struct ftrace_rec_iter { 2661 struct ftrace_page *pg; 2662 int index; 2663 }; 2664 2665 /** 2666 * ftrace_rec_iter_start - start up iterating over traced functions 2667 * 2668 * Returns an iterator handle that is used to iterate over all 2669 * the records that represent address locations where functions 2670 * are traced. 2671 * 2672 * May return NULL if no records are available. 2673 */ 2674 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2675 { 2676 /* 2677 * We only use a single iterator. 2678 * Protected by the ftrace_lock mutex. 2679 */ 2680 static struct ftrace_rec_iter ftrace_rec_iter; 2681 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2682 2683 iter->pg = ftrace_pages_start; 2684 iter->index = 0; 2685 2686 /* Could have empty pages */ 2687 while (iter->pg && !iter->pg->index) 2688 iter->pg = iter->pg->next; 2689 2690 if (!iter->pg) 2691 return NULL; 2692 2693 return iter; 2694 } 2695 2696 /** 2697 * ftrace_rec_iter_next - get the next record to process. 2698 * @iter: The handle to the iterator. 2699 * 2700 * Returns the next iterator after the given iterator @iter. 2701 */ 2702 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2703 { 2704 iter->index++; 2705 2706 if (iter->index >= iter->pg->index) { 2707 iter->pg = iter->pg->next; 2708 iter->index = 0; 2709 2710 /* Could have empty pages */ 2711 while (iter->pg && !iter->pg->index) 2712 iter->pg = iter->pg->next; 2713 } 2714 2715 if (!iter->pg) 2716 return NULL; 2717 2718 return iter; 2719 } 2720 2721 /** 2722 * ftrace_rec_iter_record - get the record at the iterator location 2723 * @iter: The current iterator location 2724 * 2725 * Returns the record that the current @iter is at. 2726 */ 2727 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2728 { 2729 return &iter->pg->records[iter->index]; 2730 } 2731 2732 static int 2733 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2734 { 2735 int ret; 2736 2737 if (unlikely(ftrace_disabled)) 2738 return 0; 2739 2740 ret = ftrace_init_nop(mod, rec); 2741 if (ret) { 2742 ftrace_bug_type = FTRACE_BUG_INIT; 2743 ftrace_bug(ret, rec); 2744 return 0; 2745 } 2746 return 1; 2747 } 2748 2749 /* 2750 * archs can override this function if they must do something 2751 * before the modifying code is performed. 2752 */ 2753 void __weak ftrace_arch_code_modify_prepare(void) 2754 { 2755 } 2756 2757 /* 2758 * archs can override this function if they must do something 2759 * after the modifying code is performed. 2760 */ 2761 void __weak ftrace_arch_code_modify_post_process(void) 2762 { 2763 } 2764 2765 void ftrace_modify_all_code(int command) 2766 { 2767 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2768 int mod_flags = 0; 2769 int err = 0; 2770 2771 if (command & FTRACE_MAY_SLEEP) 2772 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2773 2774 /* 2775 * If the ftrace_caller calls a ftrace_ops func directly, 2776 * we need to make sure that it only traces functions it 2777 * expects to trace. When doing the switch of functions, 2778 * we need to update to the ftrace_ops_list_func first 2779 * before the transition between old and new calls are set, 2780 * as the ftrace_ops_list_func will check the ops hashes 2781 * to make sure the ops are having the right functions 2782 * traced. 2783 */ 2784 if (update) { 2785 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2786 if (FTRACE_WARN_ON(err)) 2787 return; 2788 } 2789 2790 if (command & FTRACE_UPDATE_CALLS) 2791 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2792 else if (command & FTRACE_DISABLE_CALLS) 2793 ftrace_replace_code(mod_flags); 2794 2795 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2796 function_trace_op = set_function_trace_op; 2797 smp_wmb(); 2798 /* If irqs are disabled, we are in stop machine */ 2799 if (!irqs_disabled()) 2800 smp_call_function(ftrace_sync_ipi, NULL, 1); 2801 err = ftrace_update_ftrace_func(ftrace_trace_function); 2802 if (FTRACE_WARN_ON(err)) 2803 return; 2804 } 2805 2806 if (command & FTRACE_START_FUNC_RET) 2807 err = ftrace_enable_ftrace_graph_caller(); 2808 else if (command & FTRACE_STOP_FUNC_RET) 2809 err = ftrace_disable_ftrace_graph_caller(); 2810 FTRACE_WARN_ON(err); 2811 } 2812 2813 static int __ftrace_modify_code(void *data) 2814 { 2815 int *command = data; 2816 2817 ftrace_modify_all_code(*command); 2818 2819 return 0; 2820 } 2821 2822 /** 2823 * ftrace_run_stop_machine - go back to the stop machine method 2824 * @command: The command to tell ftrace what to do 2825 * 2826 * If an arch needs to fall back to the stop machine method, the 2827 * it can call this function. 2828 */ 2829 void ftrace_run_stop_machine(int command) 2830 { 2831 stop_machine(__ftrace_modify_code, &command, NULL); 2832 } 2833 2834 /** 2835 * arch_ftrace_update_code - modify the code to trace or not trace 2836 * @command: The command that needs to be done 2837 * 2838 * Archs can override this function if it does not need to 2839 * run stop_machine() to modify code. 2840 */ 2841 void __weak arch_ftrace_update_code(int command) 2842 { 2843 ftrace_run_stop_machine(command); 2844 } 2845 2846 static void ftrace_run_update_code(int command) 2847 { 2848 ftrace_arch_code_modify_prepare(); 2849 2850 /* 2851 * By default we use stop_machine() to modify the code. 2852 * But archs can do what ever they want as long as it 2853 * is safe. The stop_machine() is the safest, but also 2854 * produces the most overhead. 2855 */ 2856 arch_ftrace_update_code(command); 2857 2858 ftrace_arch_code_modify_post_process(); 2859 } 2860 2861 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2862 struct ftrace_ops_hash *old_hash) 2863 { 2864 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2865 ops->old_hash.filter_hash = old_hash->filter_hash; 2866 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2867 ftrace_run_update_code(command); 2868 ops->old_hash.filter_hash = NULL; 2869 ops->old_hash.notrace_hash = NULL; 2870 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2871 } 2872 2873 static ftrace_func_t saved_ftrace_func; 2874 static int ftrace_start_up; 2875 2876 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2877 { 2878 } 2879 2880 /* List of trace_ops that have allocated trampolines */ 2881 static LIST_HEAD(ftrace_ops_trampoline_list); 2882 2883 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2884 { 2885 lockdep_assert_held(&ftrace_lock); 2886 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2887 } 2888 2889 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2890 { 2891 lockdep_assert_held(&ftrace_lock); 2892 list_del_rcu(&ops->list); 2893 synchronize_rcu(); 2894 } 2895 2896 /* 2897 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2898 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2899 * not a module. 2900 */ 2901 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2902 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2903 2904 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2905 { 2906 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2907 ops->trampoline) { 2908 /* 2909 * Record the text poke event before the ksymbol unregister 2910 * event. 2911 */ 2912 perf_event_text_poke((void *)ops->trampoline, 2913 (void *)ops->trampoline, 2914 ops->trampoline_size, NULL, 0); 2915 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2916 ops->trampoline, ops->trampoline_size, 2917 true, FTRACE_TRAMPOLINE_SYM); 2918 /* Remove from kallsyms after the perf events */ 2919 ftrace_remove_trampoline_from_kallsyms(ops); 2920 } 2921 2922 arch_ftrace_trampoline_free(ops); 2923 } 2924 2925 static void ftrace_startup_enable(int command) 2926 { 2927 if (saved_ftrace_func != ftrace_trace_function) { 2928 saved_ftrace_func = ftrace_trace_function; 2929 command |= FTRACE_UPDATE_TRACE_FUNC; 2930 } 2931 2932 if (!command || !ftrace_enabled) 2933 return; 2934 2935 ftrace_run_update_code(command); 2936 } 2937 2938 static void ftrace_startup_all(int command) 2939 { 2940 update_all_ops = true; 2941 ftrace_startup_enable(command); 2942 update_all_ops = false; 2943 } 2944 2945 int ftrace_startup(struct ftrace_ops *ops, int command) 2946 { 2947 int ret; 2948 2949 if (unlikely(ftrace_disabled)) 2950 return -ENODEV; 2951 2952 ret = __register_ftrace_function(ops); 2953 if (ret) 2954 return ret; 2955 2956 ftrace_start_up++; 2957 2958 /* 2959 * Note that ftrace probes uses this to start up 2960 * and modify functions it will probe. But we still 2961 * set the ADDING flag for modification, as probes 2962 * do not have trampolines. If they add them in the 2963 * future, then the probes will need to distinguish 2964 * between adding and updating probes. 2965 */ 2966 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2967 2968 ret = ftrace_hash_ipmodify_enable(ops); 2969 if (ret < 0) { 2970 /* Rollback registration process */ 2971 __unregister_ftrace_function(ops); 2972 ftrace_start_up--; 2973 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2974 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2975 ftrace_trampoline_free(ops); 2976 return ret; 2977 } 2978 2979 if (ftrace_hash_rec_enable(ops, 1)) 2980 command |= FTRACE_UPDATE_CALLS; 2981 2982 ftrace_startup_enable(command); 2983 2984 /* 2985 * If ftrace is in an undefined state, we just remove ops from list 2986 * to prevent the NULL pointer, instead of totally rolling it back and 2987 * free trampoline, because those actions could cause further damage. 2988 */ 2989 if (unlikely(ftrace_disabled)) { 2990 __unregister_ftrace_function(ops); 2991 return -ENODEV; 2992 } 2993 2994 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2995 2996 return 0; 2997 } 2998 2999 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3000 { 3001 int ret; 3002 3003 if (unlikely(ftrace_disabled)) 3004 return -ENODEV; 3005 3006 ret = __unregister_ftrace_function(ops); 3007 if (ret) 3008 return ret; 3009 3010 ftrace_start_up--; 3011 /* 3012 * Just warn in case of unbalance, no need to kill ftrace, it's not 3013 * critical but the ftrace_call callers may be never nopped again after 3014 * further ftrace uses. 3015 */ 3016 WARN_ON_ONCE(ftrace_start_up < 0); 3017 3018 /* Disabling ipmodify never fails */ 3019 ftrace_hash_ipmodify_disable(ops); 3020 3021 if (ftrace_hash_rec_disable(ops, 1)) 3022 command |= FTRACE_UPDATE_CALLS; 3023 3024 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3025 3026 if (saved_ftrace_func != ftrace_trace_function) { 3027 saved_ftrace_func = ftrace_trace_function; 3028 command |= FTRACE_UPDATE_TRACE_FUNC; 3029 } 3030 3031 if (!command || !ftrace_enabled) 3032 goto out; 3033 3034 /* 3035 * If the ops uses a trampoline, then it needs to be 3036 * tested first on update. 3037 */ 3038 ops->flags |= FTRACE_OPS_FL_REMOVING; 3039 removed_ops = ops; 3040 3041 /* The trampoline logic checks the old hashes */ 3042 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3043 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3044 3045 ftrace_run_update_code(command); 3046 3047 /* 3048 * If there's no more ops registered with ftrace, run a 3049 * sanity check to make sure all rec flags are cleared. 3050 */ 3051 if (rcu_dereference_protected(ftrace_ops_list, 3052 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3053 struct ftrace_page *pg; 3054 struct dyn_ftrace *rec; 3055 3056 do_for_each_ftrace_rec(pg, rec) { 3057 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3058 pr_warn(" %pS flags:%lx\n", 3059 (void *)rec->ip, rec->flags); 3060 } while_for_each_ftrace_rec(); 3061 } 3062 3063 ops->old_hash.filter_hash = NULL; 3064 ops->old_hash.notrace_hash = NULL; 3065 3066 removed_ops = NULL; 3067 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3068 3069 out: 3070 /* 3071 * Dynamic ops may be freed, we must make sure that all 3072 * callers are done before leaving this function. 3073 * The same goes for freeing the per_cpu data of the per_cpu 3074 * ops. 3075 */ 3076 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3077 /* 3078 * We need to do a hard force of sched synchronization. 3079 * This is because we use preempt_disable() to do RCU, but 3080 * the function tracers can be called where RCU is not watching 3081 * (like before user_exit()). We can not rely on the RCU 3082 * infrastructure to do the synchronization, thus we must do it 3083 * ourselves. 3084 */ 3085 synchronize_rcu_tasks_rude(); 3086 3087 /* 3088 * When the kernel is preemptive, tasks can be preempted 3089 * while on a ftrace trampoline. Just scheduling a task on 3090 * a CPU is not good enough to flush them. Calling 3091 * synchronize_rcu_tasks() will wait for those tasks to 3092 * execute and either schedule voluntarily or enter user space. 3093 */ 3094 if (IS_ENABLED(CONFIG_PREEMPTION)) 3095 synchronize_rcu_tasks(); 3096 3097 ftrace_trampoline_free(ops); 3098 } 3099 3100 return 0; 3101 } 3102 3103 static u64 ftrace_update_time; 3104 unsigned long ftrace_update_tot_cnt; 3105 unsigned long ftrace_number_of_pages; 3106 unsigned long ftrace_number_of_groups; 3107 3108 static inline int ops_traces_mod(struct ftrace_ops *ops) 3109 { 3110 /* 3111 * Filter_hash being empty will default to trace module. 3112 * But notrace hash requires a test of individual module functions. 3113 */ 3114 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3115 ftrace_hash_empty(ops->func_hash->notrace_hash); 3116 } 3117 3118 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3119 { 3120 bool init_nop = ftrace_need_init_nop(); 3121 struct ftrace_page *pg; 3122 struct dyn_ftrace *p; 3123 u64 start, stop; 3124 unsigned long update_cnt = 0; 3125 unsigned long rec_flags = 0; 3126 int i; 3127 3128 start = ftrace_now(raw_smp_processor_id()); 3129 3130 /* 3131 * When a module is loaded, this function is called to convert 3132 * the calls to mcount in its text to nops, and also to create 3133 * an entry in the ftrace data. Now, if ftrace is activated 3134 * after this call, but before the module sets its text to 3135 * read-only, the modification of enabling ftrace can fail if 3136 * the read-only is done while ftrace is converting the calls. 3137 * To prevent this, the module's records are set as disabled 3138 * and will be enabled after the call to set the module's text 3139 * to read-only. 3140 */ 3141 if (mod) 3142 rec_flags |= FTRACE_FL_DISABLED; 3143 3144 for (pg = new_pgs; pg; pg = pg->next) { 3145 3146 for (i = 0; i < pg->index; i++) { 3147 3148 /* If something went wrong, bail without enabling anything */ 3149 if (unlikely(ftrace_disabled)) 3150 return -1; 3151 3152 p = &pg->records[i]; 3153 p->flags = rec_flags; 3154 3155 /* 3156 * Do the initial record conversion from mcount jump 3157 * to the NOP instructions. 3158 */ 3159 if (init_nop && !ftrace_nop_initialize(mod, p)) 3160 break; 3161 3162 update_cnt++; 3163 } 3164 } 3165 3166 stop = ftrace_now(raw_smp_processor_id()); 3167 ftrace_update_time = stop - start; 3168 ftrace_update_tot_cnt += update_cnt; 3169 3170 return 0; 3171 } 3172 3173 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3174 { 3175 int order; 3176 int pages; 3177 int cnt; 3178 3179 if (WARN_ON(!count)) 3180 return -EINVAL; 3181 3182 /* We want to fill as much as possible, with no empty pages */ 3183 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3184 order = fls(pages) - 1; 3185 3186 again: 3187 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3188 3189 if (!pg->records) { 3190 /* if we can't allocate this size, try something smaller */ 3191 if (!order) 3192 return -ENOMEM; 3193 order >>= 1; 3194 goto again; 3195 } 3196 3197 ftrace_number_of_pages += 1 << order; 3198 ftrace_number_of_groups++; 3199 3200 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3201 pg->order = order; 3202 3203 if (cnt > count) 3204 cnt = count; 3205 3206 return cnt; 3207 } 3208 3209 static struct ftrace_page * 3210 ftrace_allocate_pages(unsigned long num_to_init) 3211 { 3212 struct ftrace_page *start_pg; 3213 struct ftrace_page *pg; 3214 int cnt; 3215 3216 if (!num_to_init) 3217 return NULL; 3218 3219 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3220 if (!pg) 3221 return NULL; 3222 3223 /* 3224 * Try to allocate as much as possible in one continues 3225 * location that fills in all of the space. We want to 3226 * waste as little space as possible. 3227 */ 3228 for (;;) { 3229 cnt = ftrace_allocate_records(pg, num_to_init); 3230 if (cnt < 0) 3231 goto free_pages; 3232 3233 num_to_init -= cnt; 3234 if (!num_to_init) 3235 break; 3236 3237 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3238 if (!pg->next) 3239 goto free_pages; 3240 3241 pg = pg->next; 3242 } 3243 3244 return start_pg; 3245 3246 free_pages: 3247 pg = start_pg; 3248 while (pg) { 3249 if (pg->records) { 3250 free_pages((unsigned long)pg->records, pg->order); 3251 ftrace_number_of_pages -= 1 << pg->order; 3252 } 3253 start_pg = pg->next; 3254 kfree(pg); 3255 pg = start_pg; 3256 ftrace_number_of_groups--; 3257 } 3258 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3259 return NULL; 3260 } 3261 3262 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3263 3264 struct ftrace_iterator { 3265 loff_t pos; 3266 loff_t func_pos; 3267 loff_t mod_pos; 3268 struct ftrace_page *pg; 3269 struct dyn_ftrace *func; 3270 struct ftrace_func_probe *probe; 3271 struct ftrace_func_entry *probe_entry; 3272 struct trace_parser parser; 3273 struct ftrace_hash *hash; 3274 struct ftrace_ops *ops; 3275 struct trace_array *tr; 3276 struct list_head *mod_list; 3277 int pidx; 3278 int idx; 3279 unsigned flags; 3280 }; 3281 3282 static void * 3283 t_probe_next(struct seq_file *m, loff_t *pos) 3284 { 3285 struct ftrace_iterator *iter = m->private; 3286 struct trace_array *tr = iter->ops->private; 3287 struct list_head *func_probes; 3288 struct ftrace_hash *hash; 3289 struct list_head *next; 3290 struct hlist_node *hnd = NULL; 3291 struct hlist_head *hhd; 3292 int size; 3293 3294 (*pos)++; 3295 iter->pos = *pos; 3296 3297 if (!tr) 3298 return NULL; 3299 3300 func_probes = &tr->func_probes; 3301 if (list_empty(func_probes)) 3302 return NULL; 3303 3304 if (!iter->probe) { 3305 next = func_probes->next; 3306 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3307 } 3308 3309 if (iter->probe_entry) 3310 hnd = &iter->probe_entry->hlist; 3311 3312 hash = iter->probe->ops.func_hash->filter_hash; 3313 3314 /* 3315 * A probe being registered may temporarily have an empty hash 3316 * and it's at the end of the func_probes list. 3317 */ 3318 if (!hash || hash == EMPTY_HASH) 3319 return NULL; 3320 3321 size = 1 << hash->size_bits; 3322 3323 retry: 3324 if (iter->pidx >= size) { 3325 if (iter->probe->list.next == func_probes) 3326 return NULL; 3327 next = iter->probe->list.next; 3328 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3329 hash = iter->probe->ops.func_hash->filter_hash; 3330 size = 1 << hash->size_bits; 3331 iter->pidx = 0; 3332 } 3333 3334 hhd = &hash->buckets[iter->pidx]; 3335 3336 if (hlist_empty(hhd)) { 3337 iter->pidx++; 3338 hnd = NULL; 3339 goto retry; 3340 } 3341 3342 if (!hnd) 3343 hnd = hhd->first; 3344 else { 3345 hnd = hnd->next; 3346 if (!hnd) { 3347 iter->pidx++; 3348 goto retry; 3349 } 3350 } 3351 3352 if (WARN_ON_ONCE(!hnd)) 3353 return NULL; 3354 3355 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3356 3357 return iter; 3358 } 3359 3360 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3361 { 3362 struct ftrace_iterator *iter = m->private; 3363 void *p = NULL; 3364 loff_t l; 3365 3366 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3367 return NULL; 3368 3369 if (iter->mod_pos > *pos) 3370 return NULL; 3371 3372 iter->probe = NULL; 3373 iter->probe_entry = NULL; 3374 iter->pidx = 0; 3375 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3376 p = t_probe_next(m, &l); 3377 if (!p) 3378 break; 3379 } 3380 if (!p) 3381 return NULL; 3382 3383 /* Only set this if we have an item */ 3384 iter->flags |= FTRACE_ITER_PROBE; 3385 3386 return iter; 3387 } 3388 3389 static int 3390 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3391 { 3392 struct ftrace_func_entry *probe_entry; 3393 struct ftrace_probe_ops *probe_ops; 3394 struct ftrace_func_probe *probe; 3395 3396 probe = iter->probe; 3397 probe_entry = iter->probe_entry; 3398 3399 if (WARN_ON_ONCE(!probe || !probe_entry)) 3400 return -EIO; 3401 3402 probe_ops = probe->probe_ops; 3403 3404 if (probe_ops->print) 3405 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3406 3407 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3408 (void *)probe_ops->func); 3409 3410 return 0; 3411 } 3412 3413 static void * 3414 t_mod_next(struct seq_file *m, loff_t *pos) 3415 { 3416 struct ftrace_iterator *iter = m->private; 3417 struct trace_array *tr = iter->tr; 3418 3419 (*pos)++; 3420 iter->pos = *pos; 3421 3422 iter->mod_list = iter->mod_list->next; 3423 3424 if (iter->mod_list == &tr->mod_trace || 3425 iter->mod_list == &tr->mod_notrace) { 3426 iter->flags &= ~FTRACE_ITER_MOD; 3427 return NULL; 3428 } 3429 3430 iter->mod_pos = *pos; 3431 3432 return iter; 3433 } 3434 3435 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3436 { 3437 struct ftrace_iterator *iter = m->private; 3438 void *p = NULL; 3439 loff_t l; 3440 3441 if (iter->func_pos > *pos) 3442 return NULL; 3443 3444 iter->mod_pos = iter->func_pos; 3445 3446 /* probes are only available if tr is set */ 3447 if (!iter->tr) 3448 return NULL; 3449 3450 for (l = 0; l <= (*pos - iter->func_pos); ) { 3451 p = t_mod_next(m, &l); 3452 if (!p) 3453 break; 3454 } 3455 if (!p) { 3456 iter->flags &= ~FTRACE_ITER_MOD; 3457 return t_probe_start(m, pos); 3458 } 3459 3460 /* Only set this if we have an item */ 3461 iter->flags |= FTRACE_ITER_MOD; 3462 3463 return iter; 3464 } 3465 3466 static int 3467 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3468 { 3469 struct ftrace_mod_load *ftrace_mod; 3470 struct trace_array *tr = iter->tr; 3471 3472 if (WARN_ON_ONCE(!iter->mod_list) || 3473 iter->mod_list == &tr->mod_trace || 3474 iter->mod_list == &tr->mod_notrace) 3475 return -EIO; 3476 3477 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3478 3479 if (ftrace_mod->func) 3480 seq_printf(m, "%s", ftrace_mod->func); 3481 else 3482 seq_putc(m, '*'); 3483 3484 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3485 3486 return 0; 3487 } 3488 3489 static void * 3490 t_func_next(struct seq_file *m, loff_t *pos) 3491 { 3492 struct ftrace_iterator *iter = m->private; 3493 struct dyn_ftrace *rec = NULL; 3494 3495 (*pos)++; 3496 3497 retry: 3498 if (iter->idx >= iter->pg->index) { 3499 if (iter->pg->next) { 3500 iter->pg = iter->pg->next; 3501 iter->idx = 0; 3502 goto retry; 3503 } 3504 } else { 3505 rec = &iter->pg->records[iter->idx++]; 3506 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3507 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3508 3509 ((iter->flags & FTRACE_ITER_ENABLED) && 3510 !(rec->flags & FTRACE_FL_ENABLED))) { 3511 3512 rec = NULL; 3513 goto retry; 3514 } 3515 } 3516 3517 if (!rec) 3518 return NULL; 3519 3520 iter->pos = iter->func_pos = *pos; 3521 iter->func = rec; 3522 3523 return iter; 3524 } 3525 3526 static void * 3527 t_next(struct seq_file *m, void *v, loff_t *pos) 3528 { 3529 struct ftrace_iterator *iter = m->private; 3530 loff_t l = *pos; /* t_probe_start() must use original pos */ 3531 void *ret; 3532 3533 if (unlikely(ftrace_disabled)) 3534 return NULL; 3535 3536 if (iter->flags & FTRACE_ITER_PROBE) 3537 return t_probe_next(m, pos); 3538 3539 if (iter->flags & FTRACE_ITER_MOD) 3540 return t_mod_next(m, pos); 3541 3542 if (iter->flags & FTRACE_ITER_PRINTALL) { 3543 /* next must increment pos, and t_probe_start does not */ 3544 (*pos)++; 3545 return t_mod_start(m, &l); 3546 } 3547 3548 ret = t_func_next(m, pos); 3549 3550 if (!ret) 3551 return t_mod_start(m, &l); 3552 3553 return ret; 3554 } 3555 3556 static void reset_iter_read(struct ftrace_iterator *iter) 3557 { 3558 iter->pos = 0; 3559 iter->func_pos = 0; 3560 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3561 } 3562 3563 static void *t_start(struct seq_file *m, loff_t *pos) 3564 { 3565 struct ftrace_iterator *iter = m->private; 3566 void *p = NULL; 3567 loff_t l; 3568 3569 mutex_lock(&ftrace_lock); 3570 3571 if (unlikely(ftrace_disabled)) 3572 return NULL; 3573 3574 /* 3575 * If an lseek was done, then reset and start from beginning. 3576 */ 3577 if (*pos < iter->pos) 3578 reset_iter_read(iter); 3579 3580 /* 3581 * For set_ftrace_filter reading, if we have the filter 3582 * off, we can short cut and just print out that all 3583 * functions are enabled. 3584 */ 3585 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3586 ftrace_hash_empty(iter->hash)) { 3587 iter->func_pos = 1; /* Account for the message */ 3588 if (*pos > 0) 3589 return t_mod_start(m, pos); 3590 iter->flags |= FTRACE_ITER_PRINTALL; 3591 /* reset in case of seek/pread */ 3592 iter->flags &= ~FTRACE_ITER_PROBE; 3593 return iter; 3594 } 3595 3596 if (iter->flags & FTRACE_ITER_MOD) 3597 return t_mod_start(m, pos); 3598 3599 /* 3600 * Unfortunately, we need to restart at ftrace_pages_start 3601 * every time we let go of the ftrace_mutex. This is because 3602 * those pointers can change without the lock. 3603 */ 3604 iter->pg = ftrace_pages_start; 3605 iter->idx = 0; 3606 for (l = 0; l <= *pos; ) { 3607 p = t_func_next(m, &l); 3608 if (!p) 3609 break; 3610 } 3611 3612 if (!p) 3613 return t_mod_start(m, pos); 3614 3615 return iter; 3616 } 3617 3618 static void t_stop(struct seq_file *m, void *p) 3619 { 3620 mutex_unlock(&ftrace_lock); 3621 } 3622 3623 void * __weak 3624 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3625 { 3626 return NULL; 3627 } 3628 3629 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3630 struct dyn_ftrace *rec) 3631 { 3632 void *ptr; 3633 3634 ptr = arch_ftrace_trampoline_func(ops, rec); 3635 if (ptr) 3636 seq_printf(m, " ->%pS", ptr); 3637 } 3638 3639 #ifdef FTRACE_MCOUNT_MAX_OFFSET 3640 /* 3641 * Weak functions can still have an mcount/fentry that is saved in 3642 * the __mcount_loc section. These can be detected by having a 3643 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 3644 * symbol found by kallsyms is not the function that the mcount/fentry 3645 * is part of. The offset is much greater in these cases. 3646 * 3647 * Test the record to make sure that the ip points to a valid kallsyms 3648 * and if not, mark it disabled. 3649 */ 3650 static int test_for_valid_rec(struct dyn_ftrace *rec) 3651 { 3652 char str[KSYM_SYMBOL_LEN]; 3653 unsigned long offset; 3654 const char *ret; 3655 3656 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 3657 3658 /* Weak functions can cause invalid addresses */ 3659 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3660 rec->flags |= FTRACE_FL_DISABLED; 3661 return 0; 3662 } 3663 return 1; 3664 } 3665 3666 static struct workqueue_struct *ftrace_check_wq __initdata; 3667 static struct work_struct ftrace_check_work __initdata; 3668 3669 /* 3670 * Scan all the mcount/fentry entries to make sure they are valid. 3671 */ 3672 static __init void ftrace_check_work_func(struct work_struct *work) 3673 { 3674 struct ftrace_page *pg; 3675 struct dyn_ftrace *rec; 3676 3677 mutex_lock(&ftrace_lock); 3678 do_for_each_ftrace_rec(pg, rec) { 3679 test_for_valid_rec(rec); 3680 } while_for_each_ftrace_rec(); 3681 mutex_unlock(&ftrace_lock); 3682 } 3683 3684 static int __init ftrace_check_for_weak_functions(void) 3685 { 3686 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 3687 3688 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 3689 3690 queue_work(ftrace_check_wq, &ftrace_check_work); 3691 return 0; 3692 } 3693 3694 static int __init ftrace_check_sync(void) 3695 { 3696 /* Make sure the ftrace_check updates are finished */ 3697 if (ftrace_check_wq) 3698 destroy_workqueue(ftrace_check_wq); 3699 return 0; 3700 } 3701 3702 late_initcall_sync(ftrace_check_sync); 3703 subsys_initcall(ftrace_check_for_weak_functions); 3704 3705 static int print_rec(struct seq_file *m, unsigned long ip) 3706 { 3707 unsigned long offset; 3708 char str[KSYM_SYMBOL_LEN]; 3709 char *modname; 3710 const char *ret; 3711 3712 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 3713 /* Weak functions can cause invalid addresses */ 3714 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3715 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 3716 FTRACE_INVALID_FUNCTION, offset); 3717 ret = NULL; 3718 } 3719 3720 seq_puts(m, str); 3721 if (modname) 3722 seq_printf(m, " [%s]", modname); 3723 return ret == NULL ? -1 : 0; 3724 } 3725 #else 3726 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 3727 { 3728 return 1; 3729 } 3730 3731 static inline int print_rec(struct seq_file *m, unsigned long ip) 3732 { 3733 seq_printf(m, "%ps", (void *)ip); 3734 return 0; 3735 } 3736 #endif 3737 3738 static int t_show(struct seq_file *m, void *v) 3739 { 3740 struct ftrace_iterator *iter = m->private; 3741 struct dyn_ftrace *rec; 3742 3743 if (iter->flags & FTRACE_ITER_PROBE) 3744 return t_probe_show(m, iter); 3745 3746 if (iter->flags & FTRACE_ITER_MOD) 3747 return t_mod_show(m, iter); 3748 3749 if (iter->flags & FTRACE_ITER_PRINTALL) { 3750 if (iter->flags & FTRACE_ITER_NOTRACE) 3751 seq_puts(m, "#### no functions disabled ####\n"); 3752 else 3753 seq_puts(m, "#### all functions enabled ####\n"); 3754 return 0; 3755 } 3756 3757 rec = iter->func; 3758 3759 if (!rec) 3760 return 0; 3761 3762 if (print_rec(m, rec->ip)) { 3763 /* This should only happen when a rec is disabled */ 3764 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 3765 seq_putc(m, '\n'); 3766 return 0; 3767 } 3768 3769 if (iter->flags & FTRACE_ITER_ENABLED) { 3770 struct ftrace_ops *ops; 3771 3772 seq_printf(m, " (%ld)%s%s%s", 3773 ftrace_rec_count(rec), 3774 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3775 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3776 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3777 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3778 ops = ftrace_find_tramp_ops_any(rec); 3779 if (ops) { 3780 do { 3781 seq_printf(m, "\ttramp: %pS (%pS)", 3782 (void *)ops->trampoline, 3783 (void *)ops->func); 3784 add_trampoline_func(m, ops, rec); 3785 ops = ftrace_find_tramp_ops_next(rec, ops); 3786 } while (ops); 3787 } else 3788 seq_puts(m, "\ttramp: ERROR!"); 3789 } else { 3790 add_trampoline_func(m, NULL, rec); 3791 } 3792 if (rec->flags & FTRACE_FL_DIRECT) { 3793 unsigned long direct; 3794 3795 direct = ftrace_find_rec_direct(rec->ip); 3796 if (direct) 3797 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3798 } 3799 } 3800 3801 seq_putc(m, '\n'); 3802 3803 return 0; 3804 } 3805 3806 static const struct seq_operations show_ftrace_seq_ops = { 3807 .start = t_start, 3808 .next = t_next, 3809 .stop = t_stop, 3810 .show = t_show, 3811 }; 3812 3813 static int 3814 ftrace_avail_open(struct inode *inode, struct file *file) 3815 { 3816 struct ftrace_iterator *iter; 3817 int ret; 3818 3819 ret = security_locked_down(LOCKDOWN_TRACEFS); 3820 if (ret) 3821 return ret; 3822 3823 if (unlikely(ftrace_disabled)) 3824 return -ENODEV; 3825 3826 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3827 if (!iter) 3828 return -ENOMEM; 3829 3830 iter->pg = ftrace_pages_start; 3831 iter->ops = &global_ops; 3832 3833 return 0; 3834 } 3835 3836 static int 3837 ftrace_enabled_open(struct inode *inode, struct file *file) 3838 { 3839 struct ftrace_iterator *iter; 3840 3841 /* 3842 * This shows us what functions are currently being 3843 * traced and by what. Not sure if we want lockdown 3844 * to hide such critical information for an admin. 3845 * Although, perhaps it can show information we don't 3846 * want people to see, but if something is tracing 3847 * something, we probably want to know about it. 3848 */ 3849 3850 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3851 if (!iter) 3852 return -ENOMEM; 3853 3854 iter->pg = ftrace_pages_start; 3855 iter->flags = FTRACE_ITER_ENABLED; 3856 iter->ops = &global_ops; 3857 3858 return 0; 3859 } 3860 3861 /** 3862 * ftrace_regex_open - initialize function tracer filter files 3863 * @ops: The ftrace_ops that hold the hash filters 3864 * @flag: The type of filter to process 3865 * @inode: The inode, usually passed in to your open routine 3866 * @file: The file, usually passed in to your open routine 3867 * 3868 * ftrace_regex_open() initializes the filter files for the 3869 * @ops. Depending on @flag it may process the filter hash or 3870 * the notrace hash of @ops. With this called from the open 3871 * routine, you can use ftrace_filter_write() for the write 3872 * routine if @flag has FTRACE_ITER_FILTER set, or 3873 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3874 * tracing_lseek() should be used as the lseek routine, and 3875 * release must call ftrace_regex_release(). 3876 */ 3877 int 3878 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3879 struct inode *inode, struct file *file) 3880 { 3881 struct ftrace_iterator *iter; 3882 struct ftrace_hash *hash; 3883 struct list_head *mod_head; 3884 struct trace_array *tr = ops->private; 3885 int ret = -ENOMEM; 3886 3887 ftrace_ops_init(ops); 3888 3889 if (unlikely(ftrace_disabled)) 3890 return -ENODEV; 3891 3892 if (tracing_check_open_get_tr(tr)) 3893 return -ENODEV; 3894 3895 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3896 if (!iter) 3897 goto out; 3898 3899 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3900 goto out; 3901 3902 iter->ops = ops; 3903 iter->flags = flag; 3904 iter->tr = tr; 3905 3906 mutex_lock(&ops->func_hash->regex_lock); 3907 3908 if (flag & FTRACE_ITER_NOTRACE) { 3909 hash = ops->func_hash->notrace_hash; 3910 mod_head = tr ? &tr->mod_notrace : NULL; 3911 } else { 3912 hash = ops->func_hash->filter_hash; 3913 mod_head = tr ? &tr->mod_trace : NULL; 3914 } 3915 3916 iter->mod_list = mod_head; 3917 3918 if (file->f_mode & FMODE_WRITE) { 3919 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3920 3921 if (file->f_flags & O_TRUNC) { 3922 iter->hash = alloc_ftrace_hash(size_bits); 3923 clear_ftrace_mod_list(mod_head); 3924 } else { 3925 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3926 } 3927 3928 if (!iter->hash) { 3929 trace_parser_put(&iter->parser); 3930 goto out_unlock; 3931 } 3932 } else 3933 iter->hash = hash; 3934 3935 ret = 0; 3936 3937 if (file->f_mode & FMODE_READ) { 3938 iter->pg = ftrace_pages_start; 3939 3940 ret = seq_open(file, &show_ftrace_seq_ops); 3941 if (!ret) { 3942 struct seq_file *m = file->private_data; 3943 m->private = iter; 3944 } else { 3945 /* Failed */ 3946 free_ftrace_hash(iter->hash); 3947 trace_parser_put(&iter->parser); 3948 } 3949 } else 3950 file->private_data = iter; 3951 3952 out_unlock: 3953 mutex_unlock(&ops->func_hash->regex_lock); 3954 3955 out: 3956 if (ret) { 3957 kfree(iter); 3958 if (tr) 3959 trace_array_put(tr); 3960 } 3961 3962 return ret; 3963 } 3964 3965 static int 3966 ftrace_filter_open(struct inode *inode, struct file *file) 3967 { 3968 struct ftrace_ops *ops = inode->i_private; 3969 3970 /* Checks for tracefs lockdown */ 3971 return ftrace_regex_open(ops, 3972 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3973 inode, file); 3974 } 3975 3976 static int 3977 ftrace_notrace_open(struct inode *inode, struct file *file) 3978 { 3979 struct ftrace_ops *ops = inode->i_private; 3980 3981 /* Checks for tracefs lockdown */ 3982 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3983 inode, file); 3984 } 3985 3986 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3987 struct ftrace_glob { 3988 char *search; 3989 unsigned len; 3990 int type; 3991 }; 3992 3993 /* 3994 * If symbols in an architecture don't correspond exactly to the user-visible 3995 * name of what they represent, it is possible to define this function to 3996 * perform the necessary adjustments. 3997 */ 3998 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3999 { 4000 return str; 4001 } 4002 4003 static int ftrace_match(char *str, struct ftrace_glob *g) 4004 { 4005 int matched = 0; 4006 int slen; 4007 4008 str = arch_ftrace_match_adjust(str, g->search); 4009 4010 switch (g->type) { 4011 case MATCH_FULL: 4012 if (strcmp(str, g->search) == 0) 4013 matched = 1; 4014 break; 4015 case MATCH_FRONT_ONLY: 4016 if (strncmp(str, g->search, g->len) == 0) 4017 matched = 1; 4018 break; 4019 case MATCH_MIDDLE_ONLY: 4020 if (strstr(str, g->search)) 4021 matched = 1; 4022 break; 4023 case MATCH_END_ONLY: 4024 slen = strlen(str); 4025 if (slen >= g->len && 4026 memcmp(str + slen - g->len, g->search, g->len) == 0) 4027 matched = 1; 4028 break; 4029 case MATCH_GLOB: 4030 if (glob_match(g->search, str)) 4031 matched = 1; 4032 break; 4033 } 4034 4035 return matched; 4036 } 4037 4038 static int 4039 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4040 { 4041 struct ftrace_func_entry *entry; 4042 int ret = 0; 4043 4044 entry = ftrace_lookup_ip(hash, rec->ip); 4045 if (clear_filter) { 4046 /* Do nothing if it doesn't exist */ 4047 if (!entry) 4048 return 0; 4049 4050 free_hash_entry(hash, entry); 4051 } else { 4052 /* Do nothing if it exists */ 4053 if (entry) 4054 return 0; 4055 4056 ret = add_hash_entry(hash, rec->ip); 4057 } 4058 return ret; 4059 } 4060 4061 static int 4062 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4063 int clear_filter) 4064 { 4065 long index = simple_strtoul(func_g->search, NULL, 0); 4066 struct ftrace_page *pg; 4067 struct dyn_ftrace *rec; 4068 4069 /* The index starts at 1 */ 4070 if (--index < 0) 4071 return 0; 4072 4073 do_for_each_ftrace_rec(pg, rec) { 4074 if (pg->index <= index) { 4075 index -= pg->index; 4076 /* this is a double loop, break goes to the next page */ 4077 break; 4078 } 4079 rec = &pg->records[index]; 4080 enter_record(hash, rec, clear_filter); 4081 return 1; 4082 } while_for_each_ftrace_rec(); 4083 return 0; 4084 } 4085 4086 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4087 static int lookup_ip(unsigned long ip, char **modname, char *str) 4088 { 4089 unsigned long offset; 4090 4091 kallsyms_lookup(ip, NULL, &offset, modname, str); 4092 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4093 return -1; 4094 return 0; 4095 } 4096 #else 4097 static int lookup_ip(unsigned long ip, char **modname, char *str) 4098 { 4099 kallsyms_lookup(ip, NULL, NULL, modname, str); 4100 return 0; 4101 } 4102 #endif 4103 4104 static int 4105 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4106 struct ftrace_glob *mod_g, int exclude_mod) 4107 { 4108 char str[KSYM_SYMBOL_LEN]; 4109 char *modname; 4110 4111 if (lookup_ip(rec->ip, &modname, str)) { 4112 /* This should only happen when a rec is disabled */ 4113 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4114 !(rec->flags & FTRACE_FL_DISABLED)); 4115 return 0; 4116 } 4117 4118 if (mod_g) { 4119 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4120 4121 /* blank module name to match all modules */ 4122 if (!mod_g->len) { 4123 /* blank module globbing: modname xor exclude_mod */ 4124 if (!exclude_mod != !modname) 4125 goto func_match; 4126 return 0; 4127 } 4128 4129 /* 4130 * exclude_mod is set to trace everything but the given 4131 * module. If it is set and the module matches, then 4132 * return 0. If it is not set, and the module doesn't match 4133 * also return 0. Otherwise, check the function to see if 4134 * that matches. 4135 */ 4136 if (!mod_matches == !exclude_mod) 4137 return 0; 4138 func_match: 4139 /* blank search means to match all funcs in the mod */ 4140 if (!func_g->len) 4141 return 1; 4142 } 4143 4144 return ftrace_match(str, func_g); 4145 } 4146 4147 static int 4148 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4149 { 4150 struct ftrace_page *pg; 4151 struct dyn_ftrace *rec; 4152 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4153 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4154 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4155 int exclude_mod = 0; 4156 int found = 0; 4157 int ret; 4158 int clear_filter = 0; 4159 4160 if (func) { 4161 func_g.type = filter_parse_regex(func, len, &func_g.search, 4162 &clear_filter); 4163 func_g.len = strlen(func_g.search); 4164 } 4165 4166 if (mod) { 4167 mod_g.type = filter_parse_regex(mod, strlen(mod), 4168 &mod_g.search, &exclude_mod); 4169 mod_g.len = strlen(mod_g.search); 4170 } 4171 4172 mutex_lock(&ftrace_lock); 4173 4174 if (unlikely(ftrace_disabled)) 4175 goto out_unlock; 4176 4177 if (func_g.type == MATCH_INDEX) { 4178 found = add_rec_by_index(hash, &func_g, clear_filter); 4179 goto out_unlock; 4180 } 4181 4182 do_for_each_ftrace_rec(pg, rec) { 4183 4184 if (rec->flags & FTRACE_FL_DISABLED) 4185 continue; 4186 4187 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4188 ret = enter_record(hash, rec, clear_filter); 4189 if (ret < 0) { 4190 found = ret; 4191 goto out_unlock; 4192 } 4193 found = 1; 4194 } 4195 } while_for_each_ftrace_rec(); 4196 out_unlock: 4197 mutex_unlock(&ftrace_lock); 4198 4199 return found; 4200 } 4201 4202 static int 4203 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4204 { 4205 return match_records(hash, buff, len, NULL); 4206 } 4207 4208 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4209 struct ftrace_ops_hash *old_hash) 4210 { 4211 struct ftrace_ops *op; 4212 4213 if (!ftrace_enabled) 4214 return; 4215 4216 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4217 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4218 return; 4219 } 4220 4221 /* 4222 * If this is the shared global_ops filter, then we need to 4223 * check if there is another ops that shares it, is enabled. 4224 * If so, we still need to run the modify code. 4225 */ 4226 if (ops->func_hash != &global_ops.local_hash) 4227 return; 4228 4229 do_for_each_ftrace_op(op, ftrace_ops_list) { 4230 if (op->func_hash == &global_ops.local_hash && 4231 op->flags & FTRACE_OPS_FL_ENABLED) { 4232 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4233 /* Only need to do this once */ 4234 return; 4235 } 4236 } while_for_each_ftrace_op(op); 4237 } 4238 4239 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4240 struct ftrace_hash **orig_hash, 4241 struct ftrace_hash *hash, 4242 int enable) 4243 { 4244 struct ftrace_ops_hash old_hash_ops; 4245 struct ftrace_hash *old_hash; 4246 int ret; 4247 4248 old_hash = *orig_hash; 4249 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4250 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4251 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4252 if (!ret) { 4253 ftrace_ops_update_code(ops, &old_hash_ops); 4254 free_ftrace_hash_rcu(old_hash); 4255 } 4256 return ret; 4257 } 4258 4259 static bool module_exists(const char *module) 4260 { 4261 /* All modules have the symbol __this_module */ 4262 static const char this_mod[] = "__this_module"; 4263 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4264 unsigned long val; 4265 int n; 4266 4267 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4268 4269 if (n > sizeof(modname) - 1) 4270 return false; 4271 4272 val = module_kallsyms_lookup_name(modname); 4273 return val != 0; 4274 } 4275 4276 static int cache_mod(struct trace_array *tr, 4277 const char *func, char *module, int enable) 4278 { 4279 struct ftrace_mod_load *ftrace_mod, *n; 4280 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4281 int ret; 4282 4283 mutex_lock(&ftrace_lock); 4284 4285 /* We do not cache inverse filters */ 4286 if (func[0] == '!') { 4287 func++; 4288 ret = -EINVAL; 4289 4290 /* Look to remove this hash */ 4291 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4292 if (strcmp(ftrace_mod->module, module) != 0) 4293 continue; 4294 4295 /* no func matches all */ 4296 if (strcmp(func, "*") == 0 || 4297 (ftrace_mod->func && 4298 strcmp(ftrace_mod->func, func) == 0)) { 4299 ret = 0; 4300 free_ftrace_mod(ftrace_mod); 4301 continue; 4302 } 4303 } 4304 goto out; 4305 } 4306 4307 ret = -EINVAL; 4308 /* We only care about modules that have not been loaded yet */ 4309 if (module_exists(module)) 4310 goto out; 4311 4312 /* Save this string off, and execute it when the module is loaded */ 4313 ret = ftrace_add_mod(tr, func, module, enable); 4314 out: 4315 mutex_unlock(&ftrace_lock); 4316 4317 return ret; 4318 } 4319 4320 static int 4321 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4322 int reset, int enable); 4323 4324 #ifdef CONFIG_MODULES 4325 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4326 char *mod, bool enable) 4327 { 4328 struct ftrace_mod_load *ftrace_mod, *n; 4329 struct ftrace_hash **orig_hash, *new_hash; 4330 LIST_HEAD(process_mods); 4331 char *func; 4332 4333 mutex_lock(&ops->func_hash->regex_lock); 4334 4335 if (enable) 4336 orig_hash = &ops->func_hash->filter_hash; 4337 else 4338 orig_hash = &ops->func_hash->notrace_hash; 4339 4340 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4341 *orig_hash); 4342 if (!new_hash) 4343 goto out; /* warn? */ 4344 4345 mutex_lock(&ftrace_lock); 4346 4347 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4348 4349 if (strcmp(ftrace_mod->module, mod) != 0) 4350 continue; 4351 4352 if (ftrace_mod->func) 4353 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4354 else 4355 func = kstrdup("*", GFP_KERNEL); 4356 4357 if (!func) /* warn? */ 4358 continue; 4359 4360 list_move(&ftrace_mod->list, &process_mods); 4361 4362 /* Use the newly allocated func, as it may be "*" */ 4363 kfree(ftrace_mod->func); 4364 ftrace_mod->func = func; 4365 } 4366 4367 mutex_unlock(&ftrace_lock); 4368 4369 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4370 4371 func = ftrace_mod->func; 4372 4373 /* Grabs ftrace_lock, which is why we have this extra step */ 4374 match_records(new_hash, func, strlen(func), mod); 4375 free_ftrace_mod(ftrace_mod); 4376 } 4377 4378 if (enable && list_empty(head)) 4379 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4380 4381 mutex_lock(&ftrace_lock); 4382 4383 ftrace_hash_move_and_update_ops(ops, orig_hash, 4384 new_hash, enable); 4385 mutex_unlock(&ftrace_lock); 4386 4387 out: 4388 mutex_unlock(&ops->func_hash->regex_lock); 4389 4390 free_ftrace_hash(new_hash); 4391 } 4392 4393 static void process_cached_mods(const char *mod_name) 4394 { 4395 struct trace_array *tr; 4396 char *mod; 4397 4398 mod = kstrdup(mod_name, GFP_KERNEL); 4399 if (!mod) 4400 return; 4401 4402 mutex_lock(&trace_types_lock); 4403 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4404 if (!list_empty(&tr->mod_trace)) 4405 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4406 if (!list_empty(&tr->mod_notrace)) 4407 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4408 } 4409 mutex_unlock(&trace_types_lock); 4410 4411 kfree(mod); 4412 } 4413 #endif 4414 4415 /* 4416 * We register the module command as a template to show others how 4417 * to register the a command as well. 4418 */ 4419 4420 static int 4421 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4422 char *func_orig, char *cmd, char *module, int enable) 4423 { 4424 char *func; 4425 int ret; 4426 4427 /* match_records() modifies func, and we need the original */ 4428 func = kstrdup(func_orig, GFP_KERNEL); 4429 if (!func) 4430 return -ENOMEM; 4431 4432 /* 4433 * cmd == 'mod' because we only registered this func 4434 * for the 'mod' ftrace_func_command. 4435 * But if you register one func with multiple commands, 4436 * you can tell which command was used by the cmd 4437 * parameter. 4438 */ 4439 ret = match_records(hash, func, strlen(func), module); 4440 kfree(func); 4441 4442 if (!ret) 4443 return cache_mod(tr, func_orig, module, enable); 4444 if (ret < 0) 4445 return ret; 4446 return 0; 4447 } 4448 4449 static struct ftrace_func_command ftrace_mod_cmd = { 4450 .name = "mod", 4451 .func = ftrace_mod_callback, 4452 }; 4453 4454 static int __init ftrace_mod_cmd_init(void) 4455 { 4456 return register_ftrace_command(&ftrace_mod_cmd); 4457 } 4458 core_initcall(ftrace_mod_cmd_init); 4459 4460 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4461 struct ftrace_ops *op, struct ftrace_regs *fregs) 4462 { 4463 struct ftrace_probe_ops *probe_ops; 4464 struct ftrace_func_probe *probe; 4465 4466 probe = container_of(op, struct ftrace_func_probe, ops); 4467 probe_ops = probe->probe_ops; 4468 4469 /* 4470 * Disable preemption for these calls to prevent a RCU grace 4471 * period. This syncs the hash iteration and freeing of items 4472 * on the hash. rcu_read_lock is too dangerous here. 4473 */ 4474 preempt_disable_notrace(); 4475 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4476 preempt_enable_notrace(); 4477 } 4478 4479 struct ftrace_func_map { 4480 struct ftrace_func_entry entry; 4481 void *data; 4482 }; 4483 4484 struct ftrace_func_mapper { 4485 struct ftrace_hash hash; 4486 }; 4487 4488 /** 4489 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4490 * 4491 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4492 */ 4493 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4494 { 4495 struct ftrace_hash *hash; 4496 4497 /* 4498 * The mapper is simply a ftrace_hash, but since the entries 4499 * in the hash are not ftrace_func_entry type, we define it 4500 * as a separate structure. 4501 */ 4502 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4503 return (struct ftrace_func_mapper *)hash; 4504 } 4505 4506 /** 4507 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4508 * @mapper: The mapper that has the ip maps 4509 * @ip: the instruction pointer to find the data for 4510 * 4511 * Returns the data mapped to @ip if found otherwise NULL. The return 4512 * is actually the address of the mapper data pointer. The address is 4513 * returned for use cases where the data is no bigger than a long, and 4514 * the user can use the data pointer as its data instead of having to 4515 * allocate more memory for the reference. 4516 */ 4517 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4518 unsigned long ip) 4519 { 4520 struct ftrace_func_entry *entry; 4521 struct ftrace_func_map *map; 4522 4523 entry = ftrace_lookup_ip(&mapper->hash, ip); 4524 if (!entry) 4525 return NULL; 4526 4527 map = (struct ftrace_func_map *)entry; 4528 return &map->data; 4529 } 4530 4531 /** 4532 * ftrace_func_mapper_add_ip - Map some data to an ip 4533 * @mapper: The mapper that has the ip maps 4534 * @ip: The instruction pointer address to map @data to 4535 * @data: The data to map to @ip 4536 * 4537 * Returns 0 on success otherwise an error. 4538 */ 4539 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4540 unsigned long ip, void *data) 4541 { 4542 struct ftrace_func_entry *entry; 4543 struct ftrace_func_map *map; 4544 4545 entry = ftrace_lookup_ip(&mapper->hash, ip); 4546 if (entry) 4547 return -EBUSY; 4548 4549 map = kmalloc(sizeof(*map), GFP_KERNEL); 4550 if (!map) 4551 return -ENOMEM; 4552 4553 map->entry.ip = ip; 4554 map->data = data; 4555 4556 __add_hash_entry(&mapper->hash, &map->entry); 4557 4558 return 0; 4559 } 4560 4561 /** 4562 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4563 * @mapper: The mapper that has the ip maps 4564 * @ip: The instruction pointer address to remove the data from 4565 * 4566 * Returns the data if it is found, otherwise NULL. 4567 * Note, if the data pointer is used as the data itself, (see 4568 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4569 * if the data pointer was set to zero. 4570 */ 4571 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4572 unsigned long ip) 4573 { 4574 struct ftrace_func_entry *entry; 4575 struct ftrace_func_map *map; 4576 void *data; 4577 4578 entry = ftrace_lookup_ip(&mapper->hash, ip); 4579 if (!entry) 4580 return NULL; 4581 4582 map = (struct ftrace_func_map *)entry; 4583 data = map->data; 4584 4585 remove_hash_entry(&mapper->hash, entry); 4586 kfree(entry); 4587 4588 return data; 4589 } 4590 4591 /** 4592 * free_ftrace_func_mapper - free a mapping of ips and data 4593 * @mapper: The mapper that has the ip maps 4594 * @free_func: A function to be called on each data item. 4595 * 4596 * This is used to free the function mapper. The @free_func is optional 4597 * and can be used if the data needs to be freed as well. 4598 */ 4599 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4600 ftrace_mapper_func free_func) 4601 { 4602 struct ftrace_func_entry *entry; 4603 struct ftrace_func_map *map; 4604 struct hlist_head *hhd; 4605 int size, i; 4606 4607 if (!mapper) 4608 return; 4609 4610 if (free_func && mapper->hash.count) { 4611 size = 1 << mapper->hash.size_bits; 4612 for (i = 0; i < size; i++) { 4613 hhd = &mapper->hash.buckets[i]; 4614 hlist_for_each_entry(entry, hhd, hlist) { 4615 map = (struct ftrace_func_map *)entry; 4616 free_func(map); 4617 } 4618 } 4619 } 4620 free_ftrace_hash(&mapper->hash); 4621 } 4622 4623 static void release_probe(struct ftrace_func_probe *probe) 4624 { 4625 struct ftrace_probe_ops *probe_ops; 4626 4627 mutex_lock(&ftrace_lock); 4628 4629 WARN_ON(probe->ref <= 0); 4630 4631 /* Subtract the ref that was used to protect this instance */ 4632 probe->ref--; 4633 4634 if (!probe->ref) { 4635 probe_ops = probe->probe_ops; 4636 /* 4637 * Sending zero as ip tells probe_ops to free 4638 * the probe->data itself 4639 */ 4640 if (probe_ops->free) 4641 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4642 list_del(&probe->list); 4643 kfree(probe); 4644 } 4645 mutex_unlock(&ftrace_lock); 4646 } 4647 4648 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4649 { 4650 /* 4651 * Add one ref to keep it from being freed when releasing the 4652 * ftrace_lock mutex. 4653 */ 4654 probe->ref++; 4655 } 4656 4657 int 4658 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4659 struct ftrace_probe_ops *probe_ops, 4660 void *data) 4661 { 4662 struct ftrace_func_probe *probe = NULL, *iter; 4663 struct ftrace_func_entry *entry; 4664 struct ftrace_hash **orig_hash; 4665 struct ftrace_hash *old_hash; 4666 struct ftrace_hash *hash; 4667 int count = 0; 4668 int size; 4669 int ret; 4670 int i; 4671 4672 if (WARN_ON(!tr)) 4673 return -EINVAL; 4674 4675 /* We do not support '!' for function probes */ 4676 if (WARN_ON(glob[0] == '!')) 4677 return -EINVAL; 4678 4679 4680 mutex_lock(&ftrace_lock); 4681 /* Check if the probe_ops is already registered */ 4682 list_for_each_entry(iter, &tr->func_probes, list) { 4683 if (iter->probe_ops == probe_ops) { 4684 probe = iter; 4685 break; 4686 } 4687 } 4688 if (!probe) { 4689 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4690 if (!probe) { 4691 mutex_unlock(&ftrace_lock); 4692 return -ENOMEM; 4693 } 4694 probe->probe_ops = probe_ops; 4695 probe->ops.func = function_trace_probe_call; 4696 probe->tr = tr; 4697 ftrace_ops_init(&probe->ops); 4698 list_add(&probe->list, &tr->func_probes); 4699 } 4700 4701 acquire_probe_locked(probe); 4702 4703 mutex_unlock(&ftrace_lock); 4704 4705 /* 4706 * Note, there's a small window here that the func_hash->filter_hash 4707 * may be NULL or empty. Need to be careful when reading the loop. 4708 */ 4709 mutex_lock(&probe->ops.func_hash->regex_lock); 4710 4711 orig_hash = &probe->ops.func_hash->filter_hash; 4712 old_hash = *orig_hash; 4713 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4714 4715 if (!hash) { 4716 ret = -ENOMEM; 4717 goto out; 4718 } 4719 4720 ret = ftrace_match_records(hash, glob, strlen(glob)); 4721 4722 /* Nothing found? */ 4723 if (!ret) 4724 ret = -EINVAL; 4725 4726 if (ret < 0) 4727 goto out; 4728 4729 size = 1 << hash->size_bits; 4730 for (i = 0; i < size; i++) { 4731 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4732 if (ftrace_lookup_ip(old_hash, entry->ip)) 4733 continue; 4734 /* 4735 * The caller might want to do something special 4736 * for each function we find. We call the callback 4737 * to give the caller an opportunity to do so. 4738 */ 4739 if (probe_ops->init) { 4740 ret = probe_ops->init(probe_ops, tr, 4741 entry->ip, data, 4742 &probe->data); 4743 if (ret < 0) { 4744 if (probe_ops->free && count) 4745 probe_ops->free(probe_ops, tr, 4746 0, probe->data); 4747 probe->data = NULL; 4748 goto out; 4749 } 4750 } 4751 count++; 4752 } 4753 } 4754 4755 mutex_lock(&ftrace_lock); 4756 4757 if (!count) { 4758 /* Nothing was added? */ 4759 ret = -EINVAL; 4760 goto out_unlock; 4761 } 4762 4763 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4764 hash, 1); 4765 if (ret < 0) 4766 goto err_unlock; 4767 4768 /* One ref for each new function traced */ 4769 probe->ref += count; 4770 4771 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4772 ret = ftrace_startup(&probe->ops, 0); 4773 4774 out_unlock: 4775 mutex_unlock(&ftrace_lock); 4776 4777 if (!ret) 4778 ret = count; 4779 out: 4780 mutex_unlock(&probe->ops.func_hash->regex_lock); 4781 free_ftrace_hash(hash); 4782 4783 release_probe(probe); 4784 4785 return ret; 4786 4787 err_unlock: 4788 if (!probe_ops->free || !count) 4789 goto out_unlock; 4790 4791 /* Failed to do the move, need to call the free functions */ 4792 for (i = 0; i < size; i++) { 4793 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4794 if (ftrace_lookup_ip(old_hash, entry->ip)) 4795 continue; 4796 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4797 } 4798 } 4799 goto out_unlock; 4800 } 4801 4802 int 4803 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4804 struct ftrace_probe_ops *probe_ops) 4805 { 4806 struct ftrace_func_probe *probe = NULL, *iter; 4807 struct ftrace_ops_hash old_hash_ops; 4808 struct ftrace_func_entry *entry; 4809 struct ftrace_glob func_g; 4810 struct ftrace_hash **orig_hash; 4811 struct ftrace_hash *old_hash; 4812 struct ftrace_hash *hash = NULL; 4813 struct hlist_node *tmp; 4814 struct hlist_head hhd; 4815 char str[KSYM_SYMBOL_LEN]; 4816 int count = 0; 4817 int i, ret = -ENODEV; 4818 int size; 4819 4820 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4821 func_g.search = NULL; 4822 else { 4823 int not; 4824 4825 func_g.type = filter_parse_regex(glob, strlen(glob), 4826 &func_g.search, ¬); 4827 func_g.len = strlen(func_g.search); 4828 4829 /* we do not support '!' for function probes */ 4830 if (WARN_ON(not)) 4831 return -EINVAL; 4832 } 4833 4834 mutex_lock(&ftrace_lock); 4835 /* Check if the probe_ops is already registered */ 4836 list_for_each_entry(iter, &tr->func_probes, list) { 4837 if (iter->probe_ops == probe_ops) { 4838 probe = iter; 4839 break; 4840 } 4841 } 4842 if (!probe) 4843 goto err_unlock_ftrace; 4844 4845 ret = -EINVAL; 4846 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4847 goto err_unlock_ftrace; 4848 4849 acquire_probe_locked(probe); 4850 4851 mutex_unlock(&ftrace_lock); 4852 4853 mutex_lock(&probe->ops.func_hash->regex_lock); 4854 4855 orig_hash = &probe->ops.func_hash->filter_hash; 4856 old_hash = *orig_hash; 4857 4858 if (ftrace_hash_empty(old_hash)) 4859 goto out_unlock; 4860 4861 old_hash_ops.filter_hash = old_hash; 4862 /* Probes only have filters */ 4863 old_hash_ops.notrace_hash = NULL; 4864 4865 ret = -ENOMEM; 4866 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4867 if (!hash) 4868 goto out_unlock; 4869 4870 INIT_HLIST_HEAD(&hhd); 4871 4872 size = 1 << hash->size_bits; 4873 for (i = 0; i < size; i++) { 4874 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4875 4876 if (func_g.search) { 4877 kallsyms_lookup(entry->ip, NULL, NULL, 4878 NULL, str); 4879 if (!ftrace_match(str, &func_g)) 4880 continue; 4881 } 4882 count++; 4883 remove_hash_entry(hash, entry); 4884 hlist_add_head(&entry->hlist, &hhd); 4885 } 4886 } 4887 4888 /* Nothing found? */ 4889 if (!count) { 4890 ret = -EINVAL; 4891 goto out_unlock; 4892 } 4893 4894 mutex_lock(&ftrace_lock); 4895 4896 WARN_ON(probe->ref < count); 4897 4898 probe->ref -= count; 4899 4900 if (ftrace_hash_empty(hash)) 4901 ftrace_shutdown(&probe->ops, 0); 4902 4903 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4904 hash, 1); 4905 4906 /* still need to update the function call sites */ 4907 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4908 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4909 &old_hash_ops); 4910 synchronize_rcu(); 4911 4912 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4913 hlist_del(&entry->hlist); 4914 if (probe_ops->free) 4915 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4916 kfree(entry); 4917 } 4918 mutex_unlock(&ftrace_lock); 4919 4920 out_unlock: 4921 mutex_unlock(&probe->ops.func_hash->regex_lock); 4922 free_ftrace_hash(hash); 4923 4924 release_probe(probe); 4925 4926 return ret; 4927 4928 err_unlock_ftrace: 4929 mutex_unlock(&ftrace_lock); 4930 return ret; 4931 } 4932 4933 void clear_ftrace_function_probes(struct trace_array *tr) 4934 { 4935 struct ftrace_func_probe *probe, *n; 4936 4937 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4938 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4939 } 4940 4941 static LIST_HEAD(ftrace_commands); 4942 static DEFINE_MUTEX(ftrace_cmd_mutex); 4943 4944 /* 4945 * Currently we only register ftrace commands from __init, so mark this 4946 * __init too. 4947 */ 4948 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4949 { 4950 struct ftrace_func_command *p; 4951 int ret = 0; 4952 4953 mutex_lock(&ftrace_cmd_mutex); 4954 list_for_each_entry(p, &ftrace_commands, list) { 4955 if (strcmp(cmd->name, p->name) == 0) { 4956 ret = -EBUSY; 4957 goto out_unlock; 4958 } 4959 } 4960 list_add(&cmd->list, &ftrace_commands); 4961 out_unlock: 4962 mutex_unlock(&ftrace_cmd_mutex); 4963 4964 return ret; 4965 } 4966 4967 /* 4968 * Currently we only unregister ftrace commands from __init, so mark 4969 * this __init too. 4970 */ 4971 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4972 { 4973 struct ftrace_func_command *p, *n; 4974 int ret = -ENODEV; 4975 4976 mutex_lock(&ftrace_cmd_mutex); 4977 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4978 if (strcmp(cmd->name, p->name) == 0) { 4979 ret = 0; 4980 list_del_init(&p->list); 4981 goto out_unlock; 4982 } 4983 } 4984 out_unlock: 4985 mutex_unlock(&ftrace_cmd_mutex); 4986 4987 return ret; 4988 } 4989 4990 static int ftrace_process_regex(struct ftrace_iterator *iter, 4991 char *buff, int len, int enable) 4992 { 4993 struct ftrace_hash *hash = iter->hash; 4994 struct trace_array *tr = iter->ops->private; 4995 char *func, *command, *next = buff; 4996 struct ftrace_func_command *p; 4997 int ret = -EINVAL; 4998 4999 func = strsep(&next, ":"); 5000 5001 if (!next) { 5002 ret = ftrace_match_records(hash, func, len); 5003 if (!ret) 5004 ret = -EINVAL; 5005 if (ret < 0) 5006 return ret; 5007 return 0; 5008 } 5009 5010 /* command found */ 5011 5012 command = strsep(&next, ":"); 5013 5014 mutex_lock(&ftrace_cmd_mutex); 5015 list_for_each_entry(p, &ftrace_commands, list) { 5016 if (strcmp(p->name, command) == 0) { 5017 ret = p->func(tr, hash, func, command, next, enable); 5018 goto out_unlock; 5019 } 5020 } 5021 out_unlock: 5022 mutex_unlock(&ftrace_cmd_mutex); 5023 5024 return ret; 5025 } 5026 5027 static ssize_t 5028 ftrace_regex_write(struct file *file, const char __user *ubuf, 5029 size_t cnt, loff_t *ppos, int enable) 5030 { 5031 struct ftrace_iterator *iter; 5032 struct trace_parser *parser; 5033 ssize_t ret, read; 5034 5035 if (!cnt) 5036 return 0; 5037 5038 if (file->f_mode & FMODE_READ) { 5039 struct seq_file *m = file->private_data; 5040 iter = m->private; 5041 } else 5042 iter = file->private_data; 5043 5044 if (unlikely(ftrace_disabled)) 5045 return -ENODEV; 5046 5047 /* iter->hash is a local copy, so we don't need regex_lock */ 5048 5049 parser = &iter->parser; 5050 read = trace_get_user(parser, ubuf, cnt, ppos); 5051 5052 if (read >= 0 && trace_parser_loaded(parser) && 5053 !trace_parser_cont(parser)) { 5054 ret = ftrace_process_regex(iter, parser->buffer, 5055 parser->idx, enable); 5056 trace_parser_clear(parser); 5057 if (ret < 0) 5058 goto out; 5059 } 5060 5061 ret = read; 5062 out: 5063 return ret; 5064 } 5065 5066 ssize_t 5067 ftrace_filter_write(struct file *file, const char __user *ubuf, 5068 size_t cnt, loff_t *ppos) 5069 { 5070 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5071 } 5072 5073 ssize_t 5074 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5075 size_t cnt, loff_t *ppos) 5076 { 5077 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5078 } 5079 5080 static int 5081 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5082 { 5083 struct ftrace_func_entry *entry; 5084 5085 ip = ftrace_location(ip); 5086 if (!ip) 5087 return -EINVAL; 5088 5089 if (remove) { 5090 entry = ftrace_lookup_ip(hash, ip); 5091 if (!entry) 5092 return -ENOENT; 5093 free_hash_entry(hash, entry); 5094 return 0; 5095 } 5096 5097 return add_hash_entry(hash, ip); 5098 } 5099 5100 static int 5101 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5102 unsigned int cnt, int remove) 5103 { 5104 unsigned int i; 5105 int err; 5106 5107 for (i = 0; i < cnt; i++) { 5108 err = __ftrace_match_addr(hash, ips[i], remove); 5109 if (err) { 5110 /* 5111 * This expects the @hash is a temporary hash and if this 5112 * fails the caller must free the @hash. 5113 */ 5114 return err; 5115 } 5116 } 5117 return 0; 5118 } 5119 5120 static int 5121 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5122 unsigned long *ips, unsigned int cnt, 5123 int remove, int reset, int enable) 5124 { 5125 struct ftrace_hash **orig_hash; 5126 struct ftrace_hash *hash; 5127 int ret; 5128 5129 if (unlikely(ftrace_disabled)) 5130 return -ENODEV; 5131 5132 mutex_lock(&ops->func_hash->regex_lock); 5133 5134 if (enable) 5135 orig_hash = &ops->func_hash->filter_hash; 5136 else 5137 orig_hash = &ops->func_hash->notrace_hash; 5138 5139 if (reset) 5140 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5141 else 5142 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5143 5144 if (!hash) { 5145 ret = -ENOMEM; 5146 goto out_regex_unlock; 5147 } 5148 5149 if (buf && !ftrace_match_records(hash, buf, len)) { 5150 ret = -EINVAL; 5151 goto out_regex_unlock; 5152 } 5153 if (ips) { 5154 ret = ftrace_match_addr(hash, ips, cnt, remove); 5155 if (ret < 0) 5156 goto out_regex_unlock; 5157 } 5158 5159 mutex_lock(&ftrace_lock); 5160 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5161 mutex_unlock(&ftrace_lock); 5162 5163 out_regex_unlock: 5164 mutex_unlock(&ops->func_hash->regex_lock); 5165 5166 free_ftrace_hash(hash); 5167 return ret; 5168 } 5169 5170 static int 5171 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5172 int remove, int reset, int enable) 5173 { 5174 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5175 } 5176 5177 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5178 5179 struct ftrace_direct_func { 5180 struct list_head next; 5181 unsigned long addr; 5182 int count; 5183 }; 5184 5185 static LIST_HEAD(ftrace_direct_funcs); 5186 5187 /** 5188 * ftrace_find_direct_func - test an address if it is a registered direct caller 5189 * @addr: The address of a registered direct caller 5190 * 5191 * This searches to see if a ftrace direct caller has been registered 5192 * at a specific address, and if so, it returns a descriptor for it. 5193 * 5194 * This can be used by architecture code to see if an address is 5195 * a direct caller (trampoline) attached to a fentry/mcount location. 5196 * This is useful for the function_graph tracer, as it may need to 5197 * do adjustments if it traced a location that also has a direct 5198 * trampoline attached to it. 5199 */ 5200 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5201 { 5202 struct ftrace_direct_func *entry; 5203 bool found = false; 5204 5205 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5206 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5207 if (entry->addr == addr) { 5208 found = true; 5209 break; 5210 } 5211 } 5212 if (found) 5213 return entry; 5214 5215 return NULL; 5216 } 5217 5218 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5219 { 5220 struct ftrace_direct_func *direct; 5221 5222 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5223 if (!direct) 5224 return NULL; 5225 direct->addr = addr; 5226 direct->count = 0; 5227 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5228 ftrace_direct_func_count++; 5229 return direct; 5230 } 5231 5232 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5233 5234 /** 5235 * register_ftrace_direct - Call a custom trampoline directly 5236 * @ip: The address of the nop at the beginning of a function 5237 * @addr: The address of the trampoline to call at @ip 5238 * 5239 * This is used to connect a direct call from the nop location (@ip) 5240 * at the start of ftrace traced functions. The location that it calls 5241 * (@addr) must be able to handle a direct call, and save the parameters 5242 * of the function being traced, and restore them (or inject new ones 5243 * if needed), before returning. 5244 * 5245 * Returns: 5246 * 0 on success 5247 * -EBUSY - Another direct function is already attached (there can be only one) 5248 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5249 * -ENOMEM - There was an allocation failure. 5250 */ 5251 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5252 { 5253 struct ftrace_direct_func *direct; 5254 struct ftrace_func_entry *entry; 5255 struct ftrace_hash *free_hash = NULL; 5256 struct dyn_ftrace *rec; 5257 int ret = -ENODEV; 5258 5259 mutex_lock(&direct_mutex); 5260 5261 ip = ftrace_location(ip); 5262 if (!ip) 5263 goto out_unlock; 5264 5265 /* See if there's a direct function at @ip already */ 5266 ret = -EBUSY; 5267 if (ftrace_find_rec_direct(ip)) 5268 goto out_unlock; 5269 5270 ret = -ENODEV; 5271 rec = lookup_rec(ip, ip); 5272 if (!rec) 5273 goto out_unlock; 5274 5275 /* 5276 * Check if the rec says it has a direct call but we didn't 5277 * find one earlier? 5278 */ 5279 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5280 goto out_unlock; 5281 5282 /* Make sure the ip points to the exact record */ 5283 if (ip != rec->ip) { 5284 ip = rec->ip; 5285 /* Need to check this ip for a direct. */ 5286 if (ftrace_find_rec_direct(ip)) 5287 goto out_unlock; 5288 } 5289 5290 ret = -ENOMEM; 5291 direct = ftrace_find_direct_func(addr); 5292 if (!direct) { 5293 direct = ftrace_alloc_direct_func(addr); 5294 if (!direct) 5295 goto out_unlock; 5296 } 5297 5298 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5299 if (!entry) 5300 goto out_unlock; 5301 5302 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5303 5304 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5305 ret = register_ftrace_function_nolock(&direct_ops); 5306 if (ret) 5307 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5308 } 5309 5310 if (ret) { 5311 remove_hash_entry(direct_functions, entry); 5312 kfree(entry); 5313 if (!direct->count) { 5314 list_del_rcu(&direct->next); 5315 synchronize_rcu_tasks(); 5316 kfree(direct); 5317 if (free_hash) 5318 free_ftrace_hash(free_hash); 5319 free_hash = NULL; 5320 ftrace_direct_func_count--; 5321 } 5322 } else { 5323 direct->count++; 5324 } 5325 out_unlock: 5326 mutex_unlock(&direct_mutex); 5327 5328 if (free_hash) { 5329 synchronize_rcu_tasks(); 5330 free_ftrace_hash(free_hash); 5331 } 5332 5333 return ret; 5334 } 5335 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5336 5337 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5338 struct dyn_ftrace **recp) 5339 { 5340 struct ftrace_func_entry *entry; 5341 struct dyn_ftrace *rec; 5342 5343 rec = lookup_rec(*ip, *ip); 5344 if (!rec) 5345 return NULL; 5346 5347 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5348 if (!entry) { 5349 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5350 return NULL; 5351 } 5352 5353 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5354 5355 /* Passed in ip just needs to be on the call site */ 5356 *ip = rec->ip; 5357 5358 if (recp) 5359 *recp = rec; 5360 5361 return entry; 5362 } 5363 5364 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5365 { 5366 struct ftrace_direct_func *direct; 5367 struct ftrace_func_entry *entry; 5368 struct ftrace_hash *hash; 5369 int ret = -ENODEV; 5370 5371 mutex_lock(&direct_mutex); 5372 5373 ip = ftrace_location(ip); 5374 if (!ip) 5375 goto out_unlock; 5376 5377 entry = find_direct_entry(&ip, NULL); 5378 if (!entry) 5379 goto out_unlock; 5380 5381 hash = direct_ops.func_hash->filter_hash; 5382 if (hash->count == 1) 5383 unregister_ftrace_function(&direct_ops); 5384 5385 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5386 5387 WARN_ON(ret); 5388 5389 remove_hash_entry(direct_functions, entry); 5390 5391 direct = ftrace_find_direct_func(addr); 5392 if (!WARN_ON(!direct)) { 5393 /* This is the good path (see the ! before WARN) */ 5394 direct->count--; 5395 WARN_ON(direct->count < 0); 5396 if (!direct->count) { 5397 list_del_rcu(&direct->next); 5398 synchronize_rcu_tasks(); 5399 kfree(direct); 5400 kfree(entry); 5401 ftrace_direct_func_count--; 5402 } 5403 } 5404 out_unlock: 5405 mutex_unlock(&direct_mutex); 5406 5407 return ret; 5408 } 5409 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5410 5411 static struct ftrace_ops stub_ops = { 5412 .func = ftrace_stub, 5413 }; 5414 5415 /** 5416 * ftrace_modify_direct_caller - modify ftrace nop directly 5417 * @entry: The ftrace hash entry of the direct helper for @rec 5418 * @rec: The record representing the function site to patch 5419 * @old_addr: The location that the site at @rec->ip currently calls 5420 * @new_addr: The location that the site at @rec->ip should call 5421 * 5422 * An architecture may overwrite this function to optimize the 5423 * changing of the direct callback on an ftrace nop location. 5424 * This is called with the ftrace_lock mutex held, and no other 5425 * ftrace callbacks are on the associated record (@rec). Thus, 5426 * it is safe to modify the ftrace record, where it should be 5427 * currently calling @old_addr directly, to call @new_addr. 5428 * 5429 * This is called with direct_mutex locked. 5430 * 5431 * Safety checks should be made to make sure that the code at 5432 * @rec->ip is currently calling @old_addr. And this must 5433 * also update entry->direct to @new_addr. 5434 */ 5435 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5436 struct dyn_ftrace *rec, 5437 unsigned long old_addr, 5438 unsigned long new_addr) 5439 { 5440 unsigned long ip = rec->ip; 5441 int ret; 5442 5443 lockdep_assert_held(&direct_mutex); 5444 5445 /* 5446 * The ftrace_lock was used to determine if the record 5447 * had more than one registered user to it. If it did, 5448 * we needed to prevent that from changing to do the quick 5449 * switch. But if it did not (only a direct caller was attached) 5450 * then this function is called. But this function can deal 5451 * with attached callers to the rec that we care about, and 5452 * since this function uses standard ftrace calls that take 5453 * the ftrace_lock mutex, we need to release it. 5454 */ 5455 mutex_unlock(&ftrace_lock); 5456 5457 /* 5458 * By setting a stub function at the same address, we force 5459 * the code to call the iterator and the direct_ops helper. 5460 * This means that @ip does not call the direct call, and 5461 * we can simply modify it. 5462 */ 5463 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5464 if (ret) 5465 goto out_lock; 5466 5467 ret = register_ftrace_function_nolock(&stub_ops); 5468 if (ret) { 5469 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5470 goto out_lock; 5471 } 5472 5473 entry->direct = new_addr; 5474 5475 /* 5476 * By removing the stub, we put back the direct call, calling 5477 * the @new_addr. 5478 */ 5479 unregister_ftrace_function(&stub_ops); 5480 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5481 5482 out_lock: 5483 mutex_lock(&ftrace_lock); 5484 5485 return ret; 5486 } 5487 5488 /** 5489 * modify_ftrace_direct - Modify an existing direct call to call something else 5490 * @ip: The instruction pointer to modify 5491 * @old_addr: The address that the current @ip calls directly 5492 * @new_addr: The address that the @ip should call 5493 * 5494 * This modifies a ftrace direct caller at an instruction pointer without 5495 * having to disable it first. The direct call will switch over to the 5496 * @new_addr without missing anything. 5497 * 5498 * Returns: zero on success. Non zero on error, which includes: 5499 * -ENODEV : the @ip given has no direct caller attached 5500 * -EINVAL : the @old_addr does not match the current direct caller 5501 */ 5502 int modify_ftrace_direct(unsigned long ip, 5503 unsigned long old_addr, unsigned long new_addr) 5504 { 5505 struct ftrace_direct_func *direct, *new_direct = NULL; 5506 struct ftrace_func_entry *entry; 5507 struct dyn_ftrace *rec; 5508 int ret = -ENODEV; 5509 5510 mutex_lock(&direct_mutex); 5511 5512 mutex_lock(&ftrace_lock); 5513 5514 ip = ftrace_location(ip); 5515 if (!ip) 5516 goto out_unlock; 5517 5518 entry = find_direct_entry(&ip, &rec); 5519 if (!entry) 5520 goto out_unlock; 5521 5522 ret = -EINVAL; 5523 if (entry->direct != old_addr) 5524 goto out_unlock; 5525 5526 direct = ftrace_find_direct_func(old_addr); 5527 if (WARN_ON(!direct)) 5528 goto out_unlock; 5529 if (direct->count > 1) { 5530 ret = -ENOMEM; 5531 new_direct = ftrace_alloc_direct_func(new_addr); 5532 if (!new_direct) 5533 goto out_unlock; 5534 direct->count--; 5535 new_direct->count++; 5536 } else { 5537 direct->addr = new_addr; 5538 } 5539 5540 /* 5541 * If there's no other ftrace callback on the rec->ip location, 5542 * then it can be changed directly by the architecture. 5543 * If there is another caller, then we just need to change the 5544 * direct caller helper to point to @new_addr. 5545 */ 5546 if (ftrace_rec_count(rec) == 1) { 5547 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5548 } else { 5549 entry->direct = new_addr; 5550 ret = 0; 5551 } 5552 5553 if (unlikely(ret && new_direct)) { 5554 direct->count++; 5555 list_del_rcu(&new_direct->next); 5556 synchronize_rcu_tasks(); 5557 kfree(new_direct); 5558 ftrace_direct_func_count--; 5559 } 5560 5561 out_unlock: 5562 mutex_unlock(&ftrace_lock); 5563 mutex_unlock(&direct_mutex); 5564 return ret; 5565 } 5566 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5567 5568 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5569 5570 static int check_direct_multi(struct ftrace_ops *ops) 5571 { 5572 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5573 return -EINVAL; 5574 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5575 return -EINVAL; 5576 return 0; 5577 } 5578 5579 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5580 { 5581 struct ftrace_func_entry *entry, *del; 5582 int size, i; 5583 5584 size = 1 << hash->size_bits; 5585 for (i = 0; i < size; i++) { 5586 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5587 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5588 if (del && del->direct == addr) { 5589 remove_hash_entry(direct_functions, del); 5590 kfree(del); 5591 } 5592 } 5593 } 5594 } 5595 5596 /** 5597 * register_ftrace_direct_multi - Call a custom trampoline directly 5598 * for multiple functions registered in @ops 5599 * @ops: The address of the struct ftrace_ops object 5600 * @addr: The address of the trampoline to call at @ops functions 5601 * 5602 * This is used to connect a direct calls to @addr from the nop locations 5603 * of the functions registered in @ops (with by ftrace_set_filter_ip 5604 * function). 5605 * 5606 * The location that it calls (@addr) must be able to handle a direct call, 5607 * and save the parameters of the function being traced, and restore them 5608 * (or inject new ones if needed), before returning. 5609 * 5610 * Returns: 5611 * 0 on success 5612 * -EINVAL - The @ops object was already registered with this call or 5613 * when there are no functions in @ops object. 5614 * -EBUSY - Another direct function is already attached (there can be only one) 5615 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5616 * -ENOMEM - There was an allocation failure. 5617 */ 5618 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5619 { 5620 struct ftrace_hash *hash, *free_hash = NULL; 5621 struct ftrace_func_entry *entry, *new; 5622 int err = -EBUSY, size, i; 5623 5624 if (ops->func || ops->trampoline) 5625 return -EINVAL; 5626 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5627 return -EINVAL; 5628 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5629 return -EINVAL; 5630 5631 hash = ops->func_hash->filter_hash; 5632 if (ftrace_hash_empty(hash)) 5633 return -EINVAL; 5634 5635 mutex_lock(&direct_mutex); 5636 5637 /* Make sure requested entries are not already registered.. */ 5638 size = 1 << hash->size_bits; 5639 for (i = 0; i < size; i++) { 5640 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5641 if (ftrace_find_rec_direct(entry->ip)) 5642 goto out_unlock; 5643 } 5644 } 5645 5646 /* ... and insert them to direct_functions hash. */ 5647 err = -ENOMEM; 5648 for (i = 0; i < size; i++) { 5649 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5650 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5651 if (!new) 5652 goto out_remove; 5653 entry->direct = addr; 5654 } 5655 } 5656 5657 ops->func = call_direct_funcs; 5658 ops->flags = MULTI_FLAGS; 5659 ops->trampoline = FTRACE_REGS_ADDR; 5660 5661 err = register_ftrace_function_nolock(ops); 5662 5663 out_remove: 5664 if (err) 5665 remove_direct_functions_hash(hash, addr); 5666 5667 out_unlock: 5668 mutex_unlock(&direct_mutex); 5669 5670 if (free_hash) { 5671 synchronize_rcu_tasks(); 5672 free_ftrace_hash(free_hash); 5673 } 5674 return err; 5675 } 5676 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5677 5678 /** 5679 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5680 * previously registered by register_ftrace_direct_multi for @ops object. 5681 * @ops: The address of the struct ftrace_ops object 5682 * 5683 * This is used to remove a direct calls to @addr from the nop locations 5684 * of the functions registered in @ops (with by ftrace_set_filter_ip 5685 * function). 5686 * 5687 * Returns: 5688 * 0 on success 5689 * -EINVAL - The @ops object was not properly registered. 5690 */ 5691 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5692 { 5693 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5694 int err; 5695 5696 if (check_direct_multi(ops)) 5697 return -EINVAL; 5698 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5699 return -EINVAL; 5700 5701 mutex_lock(&direct_mutex); 5702 err = unregister_ftrace_function(ops); 5703 remove_direct_functions_hash(hash, addr); 5704 mutex_unlock(&direct_mutex); 5705 5706 /* cleanup for possible another register call */ 5707 ops->func = NULL; 5708 ops->trampoline = 0; 5709 return err; 5710 } 5711 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5712 5713 static int 5714 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5715 { 5716 struct ftrace_hash *hash; 5717 struct ftrace_func_entry *entry, *iter; 5718 static struct ftrace_ops tmp_ops = { 5719 .func = ftrace_stub, 5720 .flags = FTRACE_OPS_FL_STUB, 5721 }; 5722 int i, size; 5723 int err; 5724 5725 lockdep_assert_held_once(&direct_mutex); 5726 5727 /* Enable the tmp_ops to have the same functions as the direct ops */ 5728 ftrace_ops_init(&tmp_ops); 5729 tmp_ops.func_hash = ops->func_hash; 5730 5731 err = register_ftrace_function_nolock(&tmp_ops); 5732 if (err) 5733 return err; 5734 5735 /* 5736 * Now the ftrace_ops_list_func() is called to do the direct callers. 5737 * We can safely change the direct functions attached to each entry. 5738 */ 5739 mutex_lock(&ftrace_lock); 5740 5741 hash = ops->func_hash->filter_hash; 5742 size = 1 << hash->size_bits; 5743 for (i = 0; i < size; i++) { 5744 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5745 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5746 if (!entry) 5747 continue; 5748 entry->direct = addr; 5749 } 5750 } 5751 5752 mutex_unlock(&ftrace_lock); 5753 5754 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5755 unregister_ftrace_function(&tmp_ops); 5756 5757 return err; 5758 } 5759 5760 /** 5761 * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call 5762 * to call something else 5763 * @ops: The address of the struct ftrace_ops object 5764 * @addr: The address of the new trampoline to call at @ops functions 5765 * 5766 * This is used to unregister currently registered direct caller and 5767 * register new one @addr on functions registered in @ops object. 5768 * 5769 * Note there's window between ftrace_shutdown and ftrace_startup calls 5770 * where there will be no callbacks called. 5771 * 5772 * Caller should already have direct_mutex locked, so we don't lock 5773 * direct_mutex here. 5774 * 5775 * Returns: zero on success. Non zero on error, which includes: 5776 * -EINVAL - The @ops object was not properly registered. 5777 */ 5778 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr) 5779 { 5780 if (check_direct_multi(ops)) 5781 return -EINVAL; 5782 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5783 return -EINVAL; 5784 5785 return __modify_ftrace_direct_multi(ops, addr); 5786 } 5787 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock); 5788 5789 /** 5790 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5791 * to call something else 5792 * @ops: The address of the struct ftrace_ops object 5793 * @addr: The address of the new trampoline to call at @ops functions 5794 * 5795 * This is used to unregister currently registered direct caller and 5796 * register new one @addr on functions registered in @ops object. 5797 * 5798 * Note there's window between ftrace_shutdown and ftrace_startup calls 5799 * where there will be no callbacks called. 5800 * 5801 * Returns: zero on success. Non zero on error, which includes: 5802 * -EINVAL - The @ops object was not properly registered. 5803 */ 5804 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5805 { 5806 int err; 5807 5808 if (check_direct_multi(ops)) 5809 return -EINVAL; 5810 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5811 return -EINVAL; 5812 5813 mutex_lock(&direct_mutex); 5814 err = __modify_ftrace_direct_multi(ops, addr); 5815 mutex_unlock(&direct_mutex); 5816 return err; 5817 } 5818 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5819 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5820 5821 /** 5822 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5823 * @ops - the ops to set the filter with 5824 * @ip - the address to add to or remove from the filter. 5825 * @remove - non zero to remove the ip from the filter 5826 * @reset - non zero to reset all filters before applying this filter. 5827 * 5828 * Filters denote which functions should be enabled when tracing is enabled 5829 * If @ip is NULL, it fails to update filter. 5830 */ 5831 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5832 int remove, int reset) 5833 { 5834 ftrace_ops_init(ops); 5835 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5836 } 5837 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5838 5839 /** 5840 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5841 * @ops - the ops to set the filter with 5842 * @ips - the array of addresses to add to or remove from the filter. 5843 * @cnt - the number of addresses in @ips 5844 * @remove - non zero to remove ips from the filter 5845 * @reset - non zero to reset all filters before applying this filter. 5846 * 5847 * Filters denote which functions should be enabled when tracing is enabled 5848 * If @ips array or any ip specified within is NULL , it fails to update filter. 5849 */ 5850 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5851 unsigned int cnt, int remove, int reset) 5852 { 5853 ftrace_ops_init(ops); 5854 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5855 } 5856 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5857 5858 /** 5859 * ftrace_ops_set_global_filter - setup ops to use global filters 5860 * @ops - the ops which will use the global filters 5861 * 5862 * ftrace users who need global function trace filtering should call this. 5863 * It can set the global filter only if ops were not initialized before. 5864 */ 5865 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5866 { 5867 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5868 return; 5869 5870 ftrace_ops_init(ops); 5871 ops->func_hash = &global_ops.local_hash; 5872 } 5873 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5874 5875 static int 5876 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5877 int reset, int enable) 5878 { 5879 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5880 } 5881 5882 /** 5883 * ftrace_set_filter - set a function to filter on in ftrace 5884 * @ops - the ops to set the filter with 5885 * @buf - the string that holds the function filter text. 5886 * @len - the length of the string. 5887 * @reset - non zero to reset all filters before applying this filter. 5888 * 5889 * Filters denote which functions should be enabled when tracing is enabled. 5890 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5891 */ 5892 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5893 int len, int reset) 5894 { 5895 ftrace_ops_init(ops); 5896 return ftrace_set_regex(ops, buf, len, reset, 1); 5897 } 5898 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5899 5900 /** 5901 * ftrace_set_notrace - set a function to not trace in ftrace 5902 * @ops - the ops to set the notrace filter with 5903 * @buf - the string that holds the function notrace text. 5904 * @len - the length of the string. 5905 * @reset - non zero to reset all filters before applying this filter. 5906 * 5907 * Notrace Filters denote which functions should not be enabled when tracing 5908 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5909 * for tracing. 5910 */ 5911 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5912 int len, int reset) 5913 { 5914 ftrace_ops_init(ops); 5915 return ftrace_set_regex(ops, buf, len, reset, 0); 5916 } 5917 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5918 /** 5919 * ftrace_set_global_filter - set a function to filter on with global tracers 5920 * @buf - the string that holds the function filter text. 5921 * @len - the length of the string. 5922 * @reset - non zero to reset all filters before applying this filter. 5923 * 5924 * Filters denote which functions should be enabled when tracing is enabled. 5925 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5926 */ 5927 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5928 { 5929 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5930 } 5931 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5932 5933 /** 5934 * ftrace_set_global_notrace - set a function to not trace with global tracers 5935 * @buf - the string that holds the function notrace text. 5936 * @len - the length of the string. 5937 * @reset - non zero to reset all filters before applying this filter. 5938 * 5939 * Notrace Filters denote which functions should not be enabled when tracing 5940 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5941 * for tracing. 5942 */ 5943 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5944 { 5945 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5946 } 5947 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5948 5949 /* 5950 * command line interface to allow users to set filters on boot up. 5951 */ 5952 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5953 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5954 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5955 5956 /* Used by function selftest to not test if filter is set */ 5957 bool ftrace_filter_param __initdata; 5958 5959 static int __init set_ftrace_notrace(char *str) 5960 { 5961 ftrace_filter_param = true; 5962 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5963 return 1; 5964 } 5965 __setup("ftrace_notrace=", set_ftrace_notrace); 5966 5967 static int __init set_ftrace_filter(char *str) 5968 { 5969 ftrace_filter_param = true; 5970 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5971 return 1; 5972 } 5973 __setup("ftrace_filter=", set_ftrace_filter); 5974 5975 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5976 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5977 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5978 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5979 5980 static int __init set_graph_function(char *str) 5981 { 5982 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5983 return 1; 5984 } 5985 __setup("ftrace_graph_filter=", set_graph_function); 5986 5987 static int __init set_graph_notrace_function(char *str) 5988 { 5989 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5990 return 1; 5991 } 5992 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5993 5994 static int __init set_graph_max_depth_function(char *str) 5995 { 5996 if (!str) 5997 return 0; 5998 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5999 return 1; 6000 } 6001 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6002 6003 static void __init set_ftrace_early_graph(char *buf, int enable) 6004 { 6005 int ret; 6006 char *func; 6007 struct ftrace_hash *hash; 6008 6009 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6010 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6011 return; 6012 6013 while (buf) { 6014 func = strsep(&buf, ","); 6015 /* we allow only one expression at a time */ 6016 ret = ftrace_graph_set_hash(hash, func); 6017 if (ret) 6018 printk(KERN_DEBUG "ftrace: function %s not " 6019 "traceable\n", func); 6020 } 6021 6022 if (enable) 6023 ftrace_graph_hash = hash; 6024 else 6025 ftrace_graph_notrace_hash = hash; 6026 } 6027 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6028 6029 void __init 6030 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6031 { 6032 char *func; 6033 6034 ftrace_ops_init(ops); 6035 6036 while (buf) { 6037 func = strsep(&buf, ","); 6038 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6039 } 6040 } 6041 6042 static void __init set_ftrace_early_filters(void) 6043 { 6044 if (ftrace_filter_buf[0]) 6045 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6046 if (ftrace_notrace_buf[0]) 6047 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6048 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6049 if (ftrace_graph_buf[0]) 6050 set_ftrace_early_graph(ftrace_graph_buf, 1); 6051 if (ftrace_graph_notrace_buf[0]) 6052 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6053 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6054 } 6055 6056 int ftrace_regex_release(struct inode *inode, struct file *file) 6057 { 6058 struct seq_file *m = (struct seq_file *)file->private_data; 6059 struct ftrace_iterator *iter; 6060 struct ftrace_hash **orig_hash; 6061 struct trace_parser *parser; 6062 int filter_hash; 6063 6064 if (file->f_mode & FMODE_READ) { 6065 iter = m->private; 6066 seq_release(inode, file); 6067 } else 6068 iter = file->private_data; 6069 6070 parser = &iter->parser; 6071 if (trace_parser_loaded(parser)) { 6072 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6073 6074 ftrace_process_regex(iter, parser->buffer, 6075 parser->idx, enable); 6076 } 6077 6078 trace_parser_put(parser); 6079 6080 mutex_lock(&iter->ops->func_hash->regex_lock); 6081 6082 if (file->f_mode & FMODE_WRITE) { 6083 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6084 6085 if (filter_hash) { 6086 orig_hash = &iter->ops->func_hash->filter_hash; 6087 if (iter->tr) { 6088 if (list_empty(&iter->tr->mod_trace)) 6089 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6090 else 6091 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6092 } 6093 } else 6094 orig_hash = &iter->ops->func_hash->notrace_hash; 6095 6096 mutex_lock(&ftrace_lock); 6097 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6098 iter->hash, filter_hash); 6099 mutex_unlock(&ftrace_lock); 6100 } else { 6101 /* For read only, the hash is the ops hash */ 6102 iter->hash = NULL; 6103 } 6104 6105 mutex_unlock(&iter->ops->func_hash->regex_lock); 6106 free_ftrace_hash(iter->hash); 6107 if (iter->tr) 6108 trace_array_put(iter->tr); 6109 kfree(iter); 6110 6111 return 0; 6112 } 6113 6114 static const struct file_operations ftrace_avail_fops = { 6115 .open = ftrace_avail_open, 6116 .read = seq_read, 6117 .llseek = seq_lseek, 6118 .release = seq_release_private, 6119 }; 6120 6121 static const struct file_operations ftrace_enabled_fops = { 6122 .open = ftrace_enabled_open, 6123 .read = seq_read, 6124 .llseek = seq_lseek, 6125 .release = seq_release_private, 6126 }; 6127 6128 static const struct file_operations ftrace_filter_fops = { 6129 .open = ftrace_filter_open, 6130 .read = seq_read, 6131 .write = ftrace_filter_write, 6132 .llseek = tracing_lseek, 6133 .release = ftrace_regex_release, 6134 }; 6135 6136 static const struct file_operations ftrace_notrace_fops = { 6137 .open = ftrace_notrace_open, 6138 .read = seq_read, 6139 .write = ftrace_notrace_write, 6140 .llseek = tracing_lseek, 6141 .release = ftrace_regex_release, 6142 }; 6143 6144 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6145 6146 static DEFINE_MUTEX(graph_lock); 6147 6148 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6149 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6150 6151 enum graph_filter_type { 6152 GRAPH_FILTER_NOTRACE = 0, 6153 GRAPH_FILTER_FUNCTION, 6154 }; 6155 6156 #define FTRACE_GRAPH_EMPTY ((void *)1) 6157 6158 struct ftrace_graph_data { 6159 struct ftrace_hash *hash; 6160 struct ftrace_func_entry *entry; 6161 int idx; /* for hash table iteration */ 6162 enum graph_filter_type type; 6163 struct ftrace_hash *new_hash; 6164 const struct seq_operations *seq_ops; 6165 struct trace_parser parser; 6166 }; 6167 6168 static void * 6169 __g_next(struct seq_file *m, loff_t *pos) 6170 { 6171 struct ftrace_graph_data *fgd = m->private; 6172 struct ftrace_func_entry *entry = fgd->entry; 6173 struct hlist_head *head; 6174 int i, idx = fgd->idx; 6175 6176 if (*pos >= fgd->hash->count) 6177 return NULL; 6178 6179 if (entry) { 6180 hlist_for_each_entry_continue(entry, hlist) { 6181 fgd->entry = entry; 6182 return entry; 6183 } 6184 6185 idx++; 6186 } 6187 6188 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6189 head = &fgd->hash->buckets[i]; 6190 hlist_for_each_entry(entry, head, hlist) { 6191 fgd->entry = entry; 6192 fgd->idx = i; 6193 return entry; 6194 } 6195 } 6196 return NULL; 6197 } 6198 6199 static void * 6200 g_next(struct seq_file *m, void *v, loff_t *pos) 6201 { 6202 (*pos)++; 6203 return __g_next(m, pos); 6204 } 6205 6206 static void *g_start(struct seq_file *m, loff_t *pos) 6207 { 6208 struct ftrace_graph_data *fgd = m->private; 6209 6210 mutex_lock(&graph_lock); 6211 6212 if (fgd->type == GRAPH_FILTER_FUNCTION) 6213 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6214 lockdep_is_held(&graph_lock)); 6215 else 6216 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6217 lockdep_is_held(&graph_lock)); 6218 6219 /* Nothing, tell g_show to print all functions are enabled */ 6220 if (ftrace_hash_empty(fgd->hash) && !*pos) 6221 return FTRACE_GRAPH_EMPTY; 6222 6223 fgd->idx = 0; 6224 fgd->entry = NULL; 6225 return __g_next(m, pos); 6226 } 6227 6228 static void g_stop(struct seq_file *m, void *p) 6229 { 6230 mutex_unlock(&graph_lock); 6231 } 6232 6233 static int g_show(struct seq_file *m, void *v) 6234 { 6235 struct ftrace_func_entry *entry = v; 6236 6237 if (!entry) 6238 return 0; 6239 6240 if (entry == FTRACE_GRAPH_EMPTY) { 6241 struct ftrace_graph_data *fgd = m->private; 6242 6243 if (fgd->type == GRAPH_FILTER_FUNCTION) 6244 seq_puts(m, "#### all functions enabled ####\n"); 6245 else 6246 seq_puts(m, "#### no functions disabled ####\n"); 6247 return 0; 6248 } 6249 6250 seq_printf(m, "%ps\n", (void *)entry->ip); 6251 6252 return 0; 6253 } 6254 6255 static const struct seq_operations ftrace_graph_seq_ops = { 6256 .start = g_start, 6257 .next = g_next, 6258 .stop = g_stop, 6259 .show = g_show, 6260 }; 6261 6262 static int 6263 __ftrace_graph_open(struct inode *inode, struct file *file, 6264 struct ftrace_graph_data *fgd) 6265 { 6266 int ret; 6267 struct ftrace_hash *new_hash = NULL; 6268 6269 ret = security_locked_down(LOCKDOWN_TRACEFS); 6270 if (ret) 6271 return ret; 6272 6273 if (file->f_mode & FMODE_WRITE) { 6274 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6275 6276 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6277 return -ENOMEM; 6278 6279 if (file->f_flags & O_TRUNC) 6280 new_hash = alloc_ftrace_hash(size_bits); 6281 else 6282 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6283 fgd->hash); 6284 if (!new_hash) { 6285 ret = -ENOMEM; 6286 goto out; 6287 } 6288 } 6289 6290 if (file->f_mode & FMODE_READ) { 6291 ret = seq_open(file, &ftrace_graph_seq_ops); 6292 if (!ret) { 6293 struct seq_file *m = file->private_data; 6294 m->private = fgd; 6295 } else { 6296 /* Failed */ 6297 free_ftrace_hash(new_hash); 6298 new_hash = NULL; 6299 } 6300 } else 6301 file->private_data = fgd; 6302 6303 out: 6304 if (ret < 0 && file->f_mode & FMODE_WRITE) 6305 trace_parser_put(&fgd->parser); 6306 6307 fgd->new_hash = new_hash; 6308 6309 /* 6310 * All uses of fgd->hash must be taken with the graph_lock 6311 * held. The graph_lock is going to be released, so force 6312 * fgd->hash to be reinitialized when it is taken again. 6313 */ 6314 fgd->hash = NULL; 6315 6316 return ret; 6317 } 6318 6319 static int 6320 ftrace_graph_open(struct inode *inode, struct file *file) 6321 { 6322 struct ftrace_graph_data *fgd; 6323 int ret; 6324 6325 if (unlikely(ftrace_disabled)) 6326 return -ENODEV; 6327 6328 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6329 if (fgd == NULL) 6330 return -ENOMEM; 6331 6332 mutex_lock(&graph_lock); 6333 6334 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6335 lockdep_is_held(&graph_lock)); 6336 fgd->type = GRAPH_FILTER_FUNCTION; 6337 fgd->seq_ops = &ftrace_graph_seq_ops; 6338 6339 ret = __ftrace_graph_open(inode, file, fgd); 6340 if (ret < 0) 6341 kfree(fgd); 6342 6343 mutex_unlock(&graph_lock); 6344 return ret; 6345 } 6346 6347 static int 6348 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6349 { 6350 struct ftrace_graph_data *fgd; 6351 int ret; 6352 6353 if (unlikely(ftrace_disabled)) 6354 return -ENODEV; 6355 6356 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6357 if (fgd == NULL) 6358 return -ENOMEM; 6359 6360 mutex_lock(&graph_lock); 6361 6362 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6363 lockdep_is_held(&graph_lock)); 6364 fgd->type = GRAPH_FILTER_NOTRACE; 6365 fgd->seq_ops = &ftrace_graph_seq_ops; 6366 6367 ret = __ftrace_graph_open(inode, file, fgd); 6368 if (ret < 0) 6369 kfree(fgd); 6370 6371 mutex_unlock(&graph_lock); 6372 return ret; 6373 } 6374 6375 static int 6376 ftrace_graph_release(struct inode *inode, struct file *file) 6377 { 6378 struct ftrace_graph_data *fgd; 6379 struct ftrace_hash *old_hash, *new_hash; 6380 struct trace_parser *parser; 6381 int ret = 0; 6382 6383 if (file->f_mode & FMODE_READ) { 6384 struct seq_file *m = file->private_data; 6385 6386 fgd = m->private; 6387 seq_release(inode, file); 6388 } else { 6389 fgd = file->private_data; 6390 } 6391 6392 6393 if (file->f_mode & FMODE_WRITE) { 6394 6395 parser = &fgd->parser; 6396 6397 if (trace_parser_loaded((parser))) { 6398 ret = ftrace_graph_set_hash(fgd->new_hash, 6399 parser->buffer); 6400 } 6401 6402 trace_parser_put(parser); 6403 6404 new_hash = __ftrace_hash_move(fgd->new_hash); 6405 if (!new_hash) { 6406 ret = -ENOMEM; 6407 goto out; 6408 } 6409 6410 mutex_lock(&graph_lock); 6411 6412 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6413 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6414 lockdep_is_held(&graph_lock)); 6415 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6416 } else { 6417 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6418 lockdep_is_held(&graph_lock)); 6419 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6420 } 6421 6422 mutex_unlock(&graph_lock); 6423 6424 /* 6425 * We need to do a hard force of sched synchronization. 6426 * This is because we use preempt_disable() to do RCU, but 6427 * the function tracers can be called where RCU is not watching 6428 * (like before user_exit()). We can not rely on the RCU 6429 * infrastructure to do the synchronization, thus we must do it 6430 * ourselves. 6431 */ 6432 if (old_hash != EMPTY_HASH) 6433 synchronize_rcu_tasks_rude(); 6434 6435 free_ftrace_hash(old_hash); 6436 } 6437 6438 out: 6439 free_ftrace_hash(fgd->new_hash); 6440 kfree(fgd); 6441 6442 return ret; 6443 } 6444 6445 static int 6446 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6447 { 6448 struct ftrace_glob func_g; 6449 struct dyn_ftrace *rec; 6450 struct ftrace_page *pg; 6451 struct ftrace_func_entry *entry; 6452 int fail = 1; 6453 int not; 6454 6455 /* decode regex */ 6456 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6457 &func_g.search, ¬); 6458 6459 func_g.len = strlen(func_g.search); 6460 6461 mutex_lock(&ftrace_lock); 6462 6463 if (unlikely(ftrace_disabled)) { 6464 mutex_unlock(&ftrace_lock); 6465 return -ENODEV; 6466 } 6467 6468 do_for_each_ftrace_rec(pg, rec) { 6469 6470 if (rec->flags & FTRACE_FL_DISABLED) 6471 continue; 6472 6473 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6474 entry = ftrace_lookup_ip(hash, rec->ip); 6475 6476 if (!not) { 6477 fail = 0; 6478 6479 if (entry) 6480 continue; 6481 if (add_hash_entry(hash, rec->ip) < 0) 6482 goto out; 6483 } else { 6484 if (entry) { 6485 free_hash_entry(hash, entry); 6486 fail = 0; 6487 } 6488 } 6489 } 6490 } while_for_each_ftrace_rec(); 6491 out: 6492 mutex_unlock(&ftrace_lock); 6493 6494 if (fail) 6495 return -EINVAL; 6496 6497 return 0; 6498 } 6499 6500 static ssize_t 6501 ftrace_graph_write(struct file *file, const char __user *ubuf, 6502 size_t cnt, loff_t *ppos) 6503 { 6504 ssize_t read, ret = 0; 6505 struct ftrace_graph_data *fgd = file->private_data; 6506 struct trace_parser *parser; 6507 6508 if (!cnt) 6509 return 0; 6510 6511 /* Read mode uses seq functions */ 6512 if (file->f_mode & FMODE_READ) { 6513 struct seq_file *m = file->private_data; 6514 fgd = m->private; 6515 } 6516 6517 parser = &fgd->parser; 6518 6519 read = trace_get_user(parser, ubuf, cnt, ppos); 6520 6521 if (read >= 0 && trace_parser_loaded(parser) && 6522 !trace_parser_cont(parser)) { 6523 6524 ret = ftrace_graph_set_hash(fgd->new_hash, 6525 parser->buffer); 6526 trace_parser_clear(parser); 6527 } 6528 6529 if (!ret) 6530 ret = read; 6531 6532 return ret; 6533 } 6534 6535 static const struct file_operations ftrace_graph_fops = { 6536 .open = ftrace_graph_open, 6537 .read = seq_read, 6538 .write = ftrace_graph_write, 6539 .llseek = tracing_lseek, 6540 .release = ftrace_graph_release, 6541 }; 6542 6543 static const struct file_operations ftrace_graph_notrace_fops = { 6544 .open = ftrace_graph_notrace_open, 6545 .read = seq_read, 6546 .write = ftrace_graph_write, 6547 .llseek = tracing_lseek, 6548 .release = ftrace_graph_release, 6549 }; 6550 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6551 6552 void ftrace_create_filter_files(struct ftrace_ops *ops, 6553 struct dentry *parent) 6554 { 6555 6556 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6557 ops, &ftrace_filter_fops); 6558 6559 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6560 ops, &ftrace_notrace_fops); 6561 } 6562 6563 /* 6564 * The name "destroy_filter_files" is really a misnomer. Although 6565 * in the future, it may actually delete the files, but this is 6566 * really intended to make sure the ops passed in are disabled 6567 * and that when this function returns, the caller is free to 6568 * free the ops. 6569 * 6570 * The "destroy" name is only to match the "create" name that this 6571 * should be paired with. 6572 */ 6573 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6574 { 6575 mutex_lock(&ftrace_lock); 6576 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6577 ftrace_shutdown(ops, 0); 6578 ops->flags |= FTRACE_OPS_FL_DELETED; 6579 ftrace_free_filter(ops); 6580 mutex_unlock(&ftrace_lock); 6581 } 6582 6583 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6584 { 6585 6586 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6587 d_tracer, NULL, &ftrace_avail_fops); 6588 6589 trace_create_file("enabled_functions", TRACE_MODE_READ, 6590 d_tracer, NULL, &ftrace_enabled_fops); 6591 6592 ftrace_create_filter_files(&global_ops, d_tracer); 6593 6594 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6595 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6596 NULL, 6597 &ftrace_graph_fops); 6598 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6599 NULL, 6600 &ftrace_graph_notrace_fops); 6601 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6602 6603 return 0; 6604 } 6605 6606 static int ftrace_cmp_ips(const void *a, const void *b) 6607 { 6608 const unsigned long *ipa = a; 6609 const unsigned long *ipb = b; 6610 6611 if (*ipa > *ipb) 6612 return 1; 6613 if (*ipa < *ipb) 6614 return -1; 6615 return 0; 6616 } 6617 6618 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6619 static void test_is_sorted(unsigned long *start, unsigned long count) 6620 { 6621 int i; 6622 6623 for (i = 1; i < count; i++) { 6624 if (WARN(start[i - 1] > start[i], 6625 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6626 (void *)start[i - 1], start[i - 1], 6627 (void *)start[i], start[i])) 6628 break; 6629 } 6630 if (i == count) 6631 pr_info("ftrace section at %px sorted properly\n", start); 6632 } 6633 #else 6634 static void test_is_sorted(unsigned long *start, unsigned long count) 6635 { 6636 } 6637 #endif 6638 6639 static int ftrace_process_locs(struct module *mod, 6640 unsigned long *start, 6641 unsigned long *end) 6642 { 6643 struct ftrace_page *start_pg; 6644 struct ftrace_page *pg; 6645 struct dyn_ftrace *rec; 6646 unsigned long count; 6647 unsigned long *p; 6648 unsigned long addr; 6649 unsigned long flags = 0; /* Shut up gcc */ 6650 int ret = -ENOMEM; 6651 6652 count = end - start; 6653 6654 if (!count) 6655 return 0; 6656 6657 /* 6658 * Sorting mcount in vmlinux at build time depend on 6659 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6660 * modules can not be sorted at build time. 6661 */ 6662 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6663 sort(start, count, sizeof(*start), 6664 ftrace_cmp_ips, NULL); 6665 } else { 6666 test_is_sorted(start, count); 6667 } 6668 6669 start_pg = ftrace_allocate_pages(count); 6670 if (!start_pg) 6671 return -ENOMEM; 6672 6673 mutex_lock(&ftrace_lock); 6674 6675 /* 6676 * Core and each module needs their own pages, as 6677 * modules will free them when they are removed. 6678 * Force a new page to be allocated for modules. 6679 */ 6680 if (!mod) { 6681 WARN_ON(ftrace_pages || ftrace_pages_start); 6682 /* First initialization */ 6683 ftrace_pages = ftrace_pages_start = start_pg; 6684 } else { 6685 if (!ftrace_pages) 6686 goto out; 6687 6688 if (WARN_ON(ftrace_pages->next)) { 6689 /* Hmm, we have free pages? */ 6690 while (ftrace_pages->next) 6691 ftrace_pages = ftrace_pages->next; 6692 } 6693 6694 ftrace_pages->next = start_pg; 6695 } 6696 6697 p = start; 6698 pg = start_pg; 6699 while (p < end) { 6700 unsigned long end_offset; 6701 addr = ftrace_call_adjust(*p++); 6702 /* 6703 * Some architecture linkers will pad between 6704 * the different mcount_loc sections of different 6705 * object files to satisfy alignments. 6706 * Skip any NULL pointers. 6707 */ 6708 if (!addr) 6709 continue; 6710 6711 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6712 if (end_offset > PAGE_SIZE << pg->order) { 6713 /* We should have allocated enough */ 6714 if (WARN_ON(!pg->next)) 6715 break; 6716 pg = pg->next; 6717 } 6718 6719 rec = &pg->records[pg->index++]; 6720 rec->ip = addr; 6721 } 6722 6723 /* We should have used all pages */ 6724 WARN_ON(pg->next); 6725 6726 /* Assign the last page to ftrace_pages */ 6727 ftrace_pages = pg; 6728 6729 /* 6730 * We only need to disable interrupts on start up 6731 * because we are modifying code that an interrupt 6732 * may execute, and the modification is not atomic. 6733 * But for modules, nothing runs the code we modify 6734 * until we are finished with it, and there's no 6735 * reason to cause large interrupt latencies while we do it. 6736 */ 6737 if (!mod) 6738 local_irq_save(flags); 6739 ftrace_update_code(mod, start_pg); 6740 if (!mod) 6741 local_irq_restore(flags); 6742 ret = 0; 6743 out: 6744 mutex_unlock(&ftrace_lock); 6745 6746 return ret; 6747 } 6748 6749 struct ftrace_mod_func { 6750 struct list_head list; 6751 char *name; 6752 unsigned long ip; 6753 unsigned int size; 6754 }; 6755 6756 struct ftrace_mod_map { 6757 struct rcu_head rcu; 6758 struct list_head list; 6759 struct module *mod; 6760 unsigned long start_addr; 6761 unsigned long end_addr; 6762 struct list_head funcs; 6763 unsigned int num_funcs; 6764 }; 6765 6766 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6767 unsigned long *value, char *type, 6768 char *name, char *module_name, 6769 int *exported) 6770 { 6771 struct ftrace_ops *op; 6772 6773 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6774 if (!op->trampoline || symnum--) 6775 continue; 6776 *value = op->trampoline; 6777 *type = 't'; 6778 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6779 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6780 *exported = 0; 6781 return 0; 6782 } 6783 6784 return -ERANGE; 6785 } 6786 6787 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 6788 /* 6789 * Check if the current ops references the given ip. 6790 * 6791 * If the ops traces all functions, then it was already accounted for. 6792 * If the ops does not trace the current record function, skip it. 6793 * If the ops ignores the function via notrace filter, skip it. 6794 */ 6795 static bool 6796 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 6797 { 6798 /* If ops isn't enabled, ignore it */ 6799 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6800 return false; 6801 6802 /* If ops traces all then it includes this function */ 6803 if (ops_traces_mod(ops)) 6804 return true; 6805 6806 /* The function must be in the filter */ 6807 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 6808 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 6809 return false; 6810 6811 /* If in notrace hash, we ignore it too */ 6812 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 6813 return false; 6814 6815 return true; 6816 } 6817 #endif 6818 6819 #ifdef CONFIG_MODULES 6820 6821 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6822 6823 static LIST_HEAD(ftrace_mod_maps); 6824 6825 static int referenced_filters(struct dyn_ftrace *rec) 6826 { 6827 struct ftrace_ops *ops; 6828 int cnt = 0; 6829 6830 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6831 if (ops_references_ip(ops, rec->ip)) { 6832 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6833 continue; 6834 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6835 continue; 6836 cnt++; 6837 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6838 rec->flags |= FTRACE_FL_REGS; 6839 if (cnt == 1 && ops->trampoline) 6840 rec->flags |= FTRACE_FL_TRAMP; 6841 else 6842 rec->flags &= ~FTRACE_FL_TRAMP; 6843 } 6844 } 6845 6846 return cnt; 6847 } 6848 6849 static void 6850 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6851 { 6852 struct ftrace_func_entry *entry; 6853 struct dyn_ftrace *rec; 6854 int i; 6855 6856 if (ftrace_hash_empty(hash)) 6857 return; 6858 6859 for (i = 0; i < pg->index; i++) { 6860 rec = &pg->records[i]; 6861 entry = __ftrace_lookup_ip(hash, rec->ip); 6862 /* 6863 * Do not allow this rec to match again. 6864 * Yeah, it may waste some memory, but will be removed 6865 * if/when the hash is modified again. 6866 */ 6867 if (entry) 6868 entry->ip = 0; 6869 } 6870 } 6871 6872 /* Clear any records from hashes */ 6873 static void clear_mod_from_hashes(struct ftrace_page *pg) 6874 { 6875 struct trace_array *tr; 6876 6877 mutex_lock(&trace_types_lock); 6878 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6879 if (!tr->ops || !tr->ops->func_hash) 6880 continue; 6881 mutex_lock(&tr->ops->func_hash->regex_lock); 6882 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6883 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6884 mutex_unlock(&tr->ops->func_hash->regex_lock); 6885 } 6886 mutex_unlock(&trace_types_lock); 6887 } 6888 6889 static void ftrace_free_mod_map(struct rcu_head *rcu) 6890 { 6891 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6892 struct ftrace_mod_func *mod_func; 6893 struct ftrace_mod_func *n; 6894 6895 /* All the contents of mod_map are now not visible to readers */ 6896 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6897 kfree(mod_func->name); 6898 list_del(&mod_func->list); 6899 kfree(mod_func); 6900 } 6901 6902 kfree(mod_map); 6903 } 6904 6905 void ftrace_release_mod(struct module *mod) 6906 { 6907 struct ftrace_mod_map *mod_map; 6908 struct ftrace_mod_map *n; 6909 struct dyn_ftrace *rec; 6910 struct ftrace_page **last_pg; 6911 struct ftrace_page *tmp_page = NULL; 6912 struct ftrace_page *pg; 6913 6914 mutex_lock(&ftrace_lock); 6915 6916 if (ftrace_disabled) 6917 goto out_unlock; 6918 6919 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6920 if (mod_map->mod == mod) { 6921 list_del_rcu(&mod_map->list); 6922 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6923 break; 6924 } 6925 } 6926 6927 /* 6928 * Each module has its own ftrace_pages, remove 6929 * them from the list. 6930 */ 6931 last_pg = &ftrace_pages_start; 6932 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6933 rec = &pg->records[0]; 6934 if (within_module_core(rec->ip, mod) || 6935 within_module_init(rec->ip, mod)) { 6936 /* 6937 * As core pages are first, the first 6938 * page should never be a module page. 6939 */ 6940 if (WARN_ON(pg == ftrace_pages_start)) 6941 goto out_unlock; 6942 6943 /* Check if we are deleting the last page */ 6944 if (pg == ftrace_pages) 6945 ftrace_pages = next_to_ftrace_page(last_pg); 6946 6947 ftrace_update_tot_cnt -= pg->index; 6948 *last_pg = pg->next; 6949 6950 pg->next = tmp_page; 6951 tmp_page = pg; 6952 } else 6953 last_pg = &pg->next; 6954 } 6955 out_unlock: 6956 mutex_unlock(&ftrace_lock); 6957 6958 for (pg = tmp_page; pg; pg = tmp_page) { 6959 6960 /* Needs to be called outside of ftrace_lock */ 6961 clear_mod_from_hashes(pg); 6962 6963 if (pg->records) { 6964 free_pages((unsigned long)pg->records, pg->order); 6965 ftrace_number_of_pages -= 1 << pg->order; 6966 } 6967 tmp_page = pg->next; 6968 kfree(pg); 6969 ftrace_number_of_groups--; 6970 } 6971 } 6972 6973 void ftrace_module_enable(struct module *mod) 6974 { 6975 struct dyn_ftrace *rec; 6976 struct ftrace_page *pg; 6977 6978 mutex_lock(&ftrace_lock); 6979 6980 if (ftrace_disabled) 6981 goto out_unlock; 6982 6983 /* 6984 * If the tracing is enabled, go ahead and enable the record. 6985 * 6986 * The reason not to enable the record immediately is the 6987 * inherent check of ftrace_make_nop/ftrace_make_call for 6988 * correct previous instructions. Making first the NOP 6989 * conversion puts the module to the correct state, thus 6990 * passing the ftrace_make_call check. 6991 * 6992 * We also delay this to after the module code already set the 6993 * text to read-only, as we now need to set it back to read-write 6994 * so that we can modify the text. 6995 */ 6996 if (ftrace_start_up) 6997 ftrace_arch_code_modify_prepare(); 6998 6999 do_for_each_ftrace_rec(pg, rec) { 7000 int cnt; 7001 /* 7002 * do_for_each_ftrace_rec() is a double loop. 7003 * module text shares the pg. If a record is 7004 * not part of this module, then skip this pg, 7005 * which the "break" will do. 7006 */ 7007 if (!within_module_core(rec->ip, mod) && 7008 !within_module_init(rec->ip, mod)) 7009 break; 7010 7011 /* Weak functions should still be ignored */ 7012 if (!test_for_valid_rec(rec)) { 7013 /* Clear all other flags. Should not be enabled anyway */ 7014 rec->flags = FTRACE_FL_DISABLED; 7015 continue; 7016 } 7017 7018 cnt = 0; 7019 7020 /* 7021 * When adding a module, we need to check if tracers are 7022 * currently enabled and if they are, and can trace this record, 7023 * we need to enable the module functions as well as update the 7024 * reference counts for those function records. 7025 */ 7026 if (ftrace_start_up) 7027 cnt += referenced_filters(rec); 7028 7029 rec->flags &= ~FTRACE_FL_DISABLED; 7030 rec->flags += cnt; 7031 7032 if (ftrace_start_up && cnt) { 7033 int failed = __ftrace_replace_code(rec, 1); 7034 if (failed) { 7035 ftrace_bug(failed, rec); 7036 goto out_loop; 7037 } 7038 } 7039 7040 } while_for_each_ftrace_rec(); 7041 7042 out_loop: 7043 if (ftrace_start_up) 7044 ftrace_arch_code_modify_post_process(); 7045 7046 out_unlock: 7047 mutex_unlock(&ftrace_lock); 7048 7049 process_cached_mods(mod->name); 7050 } 7051 7052 void ftrace_module_init(struct module *mod) 7053 { 7054 int ret; 7055 7056 if (ftrace_disabled || !mod->num_ftrace_callsites) 7057 return; 7058 7059 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7060 mod->ftrace_callsites + mod->num_ftrace_callsites); 7061 if (ret) 7062 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7063 mod->name); 7064 } 7065 7066 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7067 struct dyn_ftrace *rec) 7068 { 7069 struct ftrace_mod_func *mod_func; 7070 unsigned long symsize; 7071 unsigned long offset; 7072 char str[KSYM_SYMBOL_LEN]; 7073 char *modname; 7074 const char *ret; 7075 7076 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7077 if (!ret) 7078 return; 7079 7080 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7081 if (!mod_func) 7082 return; 7083 7084 mod_func->name = kstrdup(str, GFP_KERNEL); 7085 if (!mod_func->name) { 7086 kfree(mod_func); 7087 return; 7088 } 7089 7090 mod_func->ip = rec->ip - offset; 7091 mod_func->size = symsize; 7092 7093 mod_map->num_funcs++; 7094 7095 list_add_rcu(&mod_func->list, &mod_map->funcs); 7096 } 7097 7098 static struct ftrace_mod_map * 7099 allocate_ftrace_mod_map(struct module *mod, 7100 unsigned long start, unsigned long end) 7101 { 7102 struct ftrace_mod_map *mod_map; 7103 7104 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7105 if (!mod_map) 7106 return NULL; 7107 7108 mod_map->mod = mod; 7109 mod_map->start_addr = start; 7110 mod_map->end_addr = end; 7111 mod_map->num_funcs = 0; 7112 7113 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7114 7115 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7116 7117 return mod_map; 7118 } 7119 7120 static const char * 7121 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7122 unsigned long addr, unsigned long *size, 7123 unsigned long *off, char *sym) 7124 { 7125 struct ftrace_mod_func *found_func = NULL; 7126 struct ftrace_mod_func *mod_func; 7127 7128 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7129 if (addr >= mod_func->ip && 7130 addr < mod_func->ip + mod_func->size) { 7131 found_func = mod_func; 7132 break; 7133 } 7134 } 7135 7136 if (found_func) { 7137 if (size) 7138 *size = found_func->size; 7139 if (off) 7140 *off = addr - found_func->ip; 7141 if (sym) 7142 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 7143 7144 return found_func->name; 7145 } 7146 7147 return NULL; 7148 } 7149 7150 const char * 7151 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7152 unsigned long *off, char **modname, char *sym) 7153 { 7154 struct ftrace_mod_map *mod_map; 7155 const char *ret = NULL; 7156 7157 /* mod_map is freed via call_rcu() */ 7158 preempt_disable(); 7159 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7160 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7161 if (ret) { 7162 if (modname) 7163 *modname = mod_map->mod->name; 7164 break; 7165 } 7166 } 7167 preempt_enable(); 7168 7169 return ret; 7170 } 7171 7172 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7173 char *type, char *name, 7174 char *module_name, int *exported) 7175 { 7176 struct ftrace_mod_map *mod_map; 7177 struct ftrace_mod_func *mod_func; 7178 int ret; 7179 7180 preempt_disable(); 7181 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7182 7183 if (symnum >= mod_map->num_funcs) { 7184 symnum -= mod_map->num_funcs; 7185 continue; 7186 } 7187 7188 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7189 if (symnum > 1) { 7190 symnum--; 7191 continue; 7192 } 7193 7194 *value = mod_func->ip; 7195 *type = 'T'; 7196 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7197 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7198 *exported = 1; 7199 preempt_enable(); 7200 return 0; 7201 } 7202 WARN_ON(1); 7203 break; 7204 } 7205 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7206 module_name, exported); 7207 preempt_enable(); 7208 return ret; 7209 } 7210 7211 #else 7212 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7213 struct dyn_ftrace *rec) { } 7214 static inline struct ftrace_mod_map * 7215 allocate_ftrace_mod_map(struct module *mod, 7216 unsigned long start, unsigned long end) 7217 { 7218 return NULL; 7219 } 7220 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7221 char *type, char *name, char *module_name, 7222 int *exported) 7223 { 7224 int ret; 7225 7226 preempt_disable(); 7227 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7228 module_name, exported); 7229 preempt_enable(); 7230 return ret; 7231 } 7232 #endif /* CONFIG_MODULES */ 7233 7234 struct ftrace_init_func { 7235 struct list_head list; 7236 unsigned long ip; 7237 }; 7238 7239 /* Clear any init ips from hashes */ 7240 static void 7241 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7242 { 7243 struct ftrace_func_entry *entry; 7244 7245 entry = ftrace_lookup_ip(hash, func->ip); 7246 /* 7247 * Do not allow this rec to match again. 7248 * Yeah, it may waste some memory, but will be removed 7249 * if/when the hash is modified again. 7250 */ 7251 if (entry) 7252 entry->ip = 0; 7253 } 7254 7255 static void 7256 clear_func_from_hashes(struct ftrace_init_func *func) 7257 { 7258 struct trace_array *tr; 7259 7260 mutex_lock(&trace_types_lock); 7261 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7262 if (!tr->ops || !tr->ops->func_hash) 7263 continue; 7264 mutex_lock(&tr->ops->func_hash->regex_lock); 7265 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7266 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7267 mutex_unlock(&tr->ops->func_hash->regex_lock); 7268 } 7269 mutex_unlock(&trace_types_lock); 7270 } 7271 7272 static void add_to_clear_hash_list(struct list_head *clear_list, 7273 struct dyn_ftrace *rec) 7274 { 7275 struct ftrace_init_func *func; 7276 7277 func = kmalloc(sizeof(*func), GFP_KERNEL); 7278 if (!func) { 7279 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7280 return; 7281 } 7282 7283 func->ip = rec->ip; 7284 list_add(&func->list, clear_list); 7285 } 7286 7287 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7288 { 7289 unsigned long start = (unsigned long)(start_ptr); 7290 unsigned long end = (unsigned long)(end_ptr); 7291 struct ftrace_page **last_pg = &ftrace_pages_start; 7292 struct ftrace_page *pg; 7293 struct dyn_ftrace *rec; 7294 struct dyn_ftrace key; 7295 struct ftrace_mod_map *mod_map = NULL; 7296 struct ftrace_init_func *func, *func_next; 7297 struct list_head clear_hash; 7298 7299 INIT_LIST_HEAD(&clear_hash); 7300 7301 key.ip = start; 7302 key.flags = end; /* overload flags, as it is unsigned long */ 7303 7304 mutex_lock(&ftrace_lock); 7305 7306 /* 7307 * If we are freeing module init memory, then check if 7308 * any tracer is active. If so, we need to save a mapping of 7309 * the module functions being freed with the address. 7310 */ 7311 if (mod && ftrace_ops_list != &ftrace_list_end) 7312 mod_map = allocate_ftrace_mod_map(mod, start, end); 7313 7314 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7315 if (end < pg->records[0].ip || 7316 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7317 continue; 7318 again: 7319 rec = bsearch(&key, pg->records, pg->index, 7320 sizeof(struct dyn_ftrace), 7321 ftrace_cmp_recs); 7322 if (!rec) 7323 continue; 7324 7325 /* rec will be cleared from hashes after ftrace_lock unlock */ 7326 add_to_clear_hash_list(&clear_hash, rec); 7327 7328 if (mod_map) 7329 save_ftrace_mod_rec(mod_map, rec); 7330 7331 pg->index--; 7332 ftrace_update_tot_cnt--; 7333 if (!pg->index) { 7334 *last_pg = pg->next; 7335 if (pg->records) { 7336 free_pages((unsigned long)pg->records, pg->order); 7337 ftrace_number_of_pages -= 1 << pg->order; 7338 } 7339 ftrace_number_of_groups--; 7340 kfree(pg); 7341 pg = container_of(last_pg, struct ftrace_page, next); 7342 if (!(*last_pg)) 7343 ftrace_pages = pg; 7344 continue; 7345 } 7346 memmove(rec, rec + 1, 7347 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7348 /* More than one function may be in this block */ 7349 goto again; 7350 } 7351 mutex_unlock(&ftrace_lock); 7352 7353 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7354 clear_func_from_hashes(func); 7355 kfree(func); 7356 } 7357 } 7358 7359 void __init ftrace_free_init_mem(void) 7360 { 7361 void *start = (void *)(&__init_begin); 7362 void *end = (void *)(&__init_end); 7363 7364 ftrace_boot_snapshot(); 7365 7366 ftrace_free_mem(NULL, start, end); 7367 } 7368 7369 int __init __weak ftrace_dyn_arch_init(void) 7370 { 7371 return 0; 7372 } 7373 7374 void __init ftrace_init(void) 7375 { 7376 extern unsigned long __start_mcount_loc[]; 7377 extern unsigned long __stop_mcount_loc[]; 7378 unsigned long count, flags; 7379 int ret; 7380 7381 local_irq_save(flags); 7382 ret = ftrace_dyn_arch_init(); 7383 local_irq_restore(flags); 7384 if (ret) 7385 goto failed; 7386 7387 count = __stop_mcount_loc - __start_mcount_loc; 7388 if (!count) { 7389 pr_info("ftrace: No functions to be traced?\n"); 7390 goto failed; 7391 } 7392 7393 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7394 count, count / ENTRIES_PER_PAGE + 1); 7395 7396 ret = ftrace_process_locs(NULL, 7397 __start_mcount_loc, 7398 __stop_mcount_loc); 7399 if (ret) { 7400 pr_warn("ftrace: failed to allocate entries for functions\n"); 7401 goto failed; 7402 } 7403 7404 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7405 ftrace_number_of_pages, ftrace_number_of_groups); 7406 7407 last_ftrace_enabled = ftrace_enabled = 1; 7408 7409 set_ftrace_early_filters(); 7410 7411 return; 7412 failed: 7413 ftrace_disabled = 1; 7414 } 7415 7416 /* Do nothing if arch does not support this */ 7417 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7418 { 7419 } 7420 7421 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7422 { 7423 unsigned long trampoline = ops->trampoline; 7424 7425 arch_ftrace_update_trampoline(ops); 7426 if (ops->trampoline && ops->trampoline != trampoline && 7427 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7428 /* Add to kallsyms before the perf events */ 7429 ftrace_add_trampoline_to_kallsyms(ops); 7430 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7431 ops->trampoline, ops->trampoline_size, false, 7432 FTRACE_TRAMPOLINE_SYM); 7433 /* 7434 * Record the perf text poke event after the ksymbol register 7435 * event. 7436 */ 7437 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7438 (void *)ops->trampoline, 7439 ops->trampoline_size); 7440 } 7441 } 7442 7443 void ftrace_init_trace_array(struct trace_array *tr) 7444 { 7445 INIT_LIST_HEAD(&tr->func_probes); 7446 INIT_LIST_HEAD(&tr->mod_trace); 7447 INIT_LIST_HEAD(&tr->mod_notrace); 7448 } 7449 #else 7450 7451 struct ftrace_ops global_ops = { 7452 .func = ftrace_stub, 7453 .flags = FTRACE_OPS_FL_INITIALIZED | 7454 FTRACE_OPS_FL_PID, 7455 }; 7456 7457 static int __init ftrace_nodyn_init(void) 7458 { 7459 ftrace_enabled = 1; 7460 return 0; 7461 } 7462 core_initcall(ftrace_nodyn_init); 7463 7464 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7465 static inline void ftrace_startup_all(int command) { } 7466 7467 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7468 { 7469 } 7470 7471 #endif /* CONFIG_DYNAMIC_FTRACE */ 7472 7473 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7474 { 7475 tr->ops = &global_ops; 7476 tr->ops->private = tr; 7477 ftrace_init_trace_array(tr); 7478 } 7479 7480 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7481 { 7482 /* If we filter on pids, update to use the pid function */ 7483 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7484 if (WARN_ON(tr->ops->func != ftrace_stub)) 7485 printk("ftrace ops had %pS for function\n", 7486 tr->ops->func); 7487 } 7488 tr->ops->func = func; 7489 tr->ops->private = tr; 7490 } 7491 7492 void ftrace_reset_array_ops(struct trace_array *tr) 7493 { 7494 tr->ops->func = ftrace_stub; 7495 } 7496 7497 static nokprobe_inline void 7498 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7499 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7500 { 7501 struct pt_regs *regs = ftrace_get_regs(fregs); 7502 struct ftrace_ops *op; 7503 int bit; 7504 7505 /* 7506 * The ftrace_test_and_set_recursion() will disable preemption, 7507 * which is required since some of the ops may be dynamically 7508 * allocated, they must be freed after a synchronize_rcu(). 7509 */ 7510 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7511 if (bit < 0) 7512 return; 7513 7514 do_for_each_ftrace_op(op, ftrace_ops_list) { 7515 /* Stub functions don't need to be called nor tested */ 7516 if (op->flags & FTRACE_OPS_FL_STUB) 7517 continue; 7518 /* 7519 * Check the following for each ops before calling their func: 7520 * if RCU flag is set, then rcu_is_watching() must be true 7521 * if PER_CPU is set, then ftrace_function_local_disable() 7522 * must be false 7523 * Otherwise test if the ip matches the ops filter 7524 * 7525 * If any of the above fails then the op->func() is not executed. 7526 */ 7527 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7528 ftrace_ops_test(op, ip, regs)) { 7529 if (FTRACE_WARN_ON(!op->func)) { 7530 pr_warn("op=%p %pS\n", op, op); 7531 goto out; 7532 } 7533 op->func(ip, parent_ip, op, fregs); 7534 } 7535 } while_for_each_ftrace_op(op); 7536 out: 7537 trace_clear_recursion(bit); 7538 } 7539 7540 /* 7541 * Some archs only support passing ip and parent_ip. Even though 7542 * the list function ignores the op parameter, we do not want any 7543 * C side effects, where a function is called without the caller 7544 * sending a third parameter. 7545 * Archs are to support both the regs and ftrace_ops at the same time. 7546 * If they support ftrace_ops, it is assumed they support regs. 7547 * If call backs want to use regs, they must either check for regs 7548 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7549 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7550 * An architecture can pass partial regs with ftrace_ops and still 7551 * set the ARCH_SUPPORTS_FTRACE_OPS. 7552 * 7553 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7554 * arch_ftrace_ops_list_func. 7555 */ 7556 #if ARCH_SUPPORTS_FTRACE_OPS 7557 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7558 struct ftrace_ops *op, struct ftrace_regs *fregs) 7559 { 7560 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7561 } 7562 #else 7563 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7564 { 7565 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7566 } 7567 #endif 7568 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7569 7570 /* 7571 * If there's only one function registered but it does not support 7572 * recursion, needs RCU protection and/or requires per cpu handling, then 7573 * this function will be called by the mcount trampoline. 7574 */ 7575 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7576 struct ftrace_ops *op, struct ftrace_regs *fregs) 7577 { 7578 int bit; 7579 7580 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7581 if (bit < 0) 7582 return; 7583 7584 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7585 op->func(ip, parent_ip, op, fregs); 7586 7587 trace_clear_recursion(bit); 7588 } 7589 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7590 7591 /** 7592 * ftrace_ops_get_func - get the function a trampoline should call 7593 * @ops: the ops to get the function for 7594 * 7595 * Normally the mcount trampoline will call the ops->func, but there 7596 * are times that it should not. For example, if the ops does not 7597 * have its own recursion protection, then it should call the 7598 * ftrace_ops_assist_func() instead. 7599 * 7600 * Returns the function that the trampoline should call for @ops. 7601 */ 7602 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7603 { 7604 /* 7605 * If the function does not handle recursion or needs to be RCU safe, 7606 * then we need to call the assist handler. 7607 */ 7608 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7609 FTRACE_OPS_FL_RCU)) 7610 return ftrace_ops_assist_func; 7611 7612 return ops->func; 7613 } 7614 7615 static void 7616 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7617 struct task_struct *prev, 7618 struct task_struct *next, 7619 unsigned int prev_state) 7620 { 7621 struct trace_array *tr = data; 7622 struct trace_pid_list *pid_list; 7623 struct trace_pid_list *no_pid_list; 7624 7625 pid_list = rcu_dereference_sched(tr->function_pids); 7626 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7627 7628 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7629 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7630 FTRACE_PID_IGNORE); 7631 else 7632 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7633 next->pid); 7634 } 7635 7636 static void 7637 ftrace_pid_follow_sched_process_fork(void *data, 7638 struct task_struct *self, 7639 struct task_struct *task) 7640 { 7641 struct trace_pid_list *pid_list; 7642 struct trace_array *tr = data; 7643 7644 pid_list = rcu_dereference_sched(tr->function_pids); 7645 trace_filter_add_remove_task(pid_list, self, task); 7646 7647 pid_list = rcu_dereference_sched(tr->function_no_pids); 7648 trace_filter_add_remove_task(pid_list, self, task); 7649 } 7650 7651 static void 7652 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7653 { 7654 struct trace_pid_list *pid_list; 7655 struct trace_array *tr = data; 7656 7657 pid_list = rcu_dereference_sched(tr->function_pids); 7658 trace_filter_add_remove_task(pid_list, NULL, task); 7659 7660 pid_list = rcu_dereference_sched(tr->function_no_pids); 7661 trace_filter_add_remove_task(pid_list, NULL, task); 7662 } 7663 7664 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7665 { 7666 if (enable) { 7667 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7668 tr); 7669 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7670 tr); 7671 } else { 7672 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7673 tr); 7674 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7675 tr); 7676 } 7677 } 7678 7679 static void clear_ftrace_pids(struct trace_array *tr, int type) 7680 { 7681 struct trace_pid_list *pid_list; 7682 struct trace_pid_list *no_pid_list; 7683 int cpu; 7684 7685 pid_list = rcu_dereference_protected(tr->function_pids, 7686 lockdep_is_held(&ftrace_lock)); 7687 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7688 lockdep_is_held(&ftrace_lock)); 7689 7690 /* Make sure there's something to do */ 7691 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7692 return; 7693 7694 /* See if the pids still need to be checked after this */ 7695 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7696 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7697 for_each_possible_cpu(cpu) 7698 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7699 } 7700 7701 if (type & TRACE_PIDS) 7702 rcu_assign_pointer(tr->function_pids, NULL); 7703 7704 if (type & TRACE_NO_PIDS) 7705 rcu_assign_pointer(tr->function_no_pids, NULL); 7706 7707 /* Wait till all users are no longer using pid filtering */ 7708 synchronize_rcu(); 7709 7710 if ((type & TRACE_PIDS) && pid_list) 7711 trace_pid_list_free(pid_list); 7712 7713 if ((type & TRACE_NO_PIDS) && no_pid_list) 7714 trace_pid_list_free(no_pid_list); 7715 } 7716 7717 void ftrace_clear_pids(struct trace_array *tr) 7718 { 7719 mutex_lock(&ftrace_lock); 7720 7721 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7722 7723 mutex_unlock(&ftrace_lock); 7724 } 7725 7726 static void ftrace_pid_reset(struct trace_array *tr, int type) 7727 { 7728 mutex_lock(&ftrace_lock); 7729 clear_ftrace_pids(tr, type); 7730 7731 ftrace_update_pid_func(); 7732 ftrace_startup_all(0); 7733 7734 mutex_unlock(&ftrace_lock); 7735 } 7736 7737 /* Greater than any max PID */ 7738 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7739 7740 static void *fpid_start(struct seq_file *m, loff_t *pos) 7741 __acquires(RCU) 7742 { 7743 struct trace_pid_list *pid_list; 7744 struct trace_array *tr = m->private; 7745 7746 mutex_lock(&ftrace_lock); 7747 rcu_read_lock_sched(); 7748 7749 pid_list = rcu_dereference_sched(tr->function_pids); 7750 7751 if (!pid_list) 7752 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7753 7754 return trace_pid_start(pid_list, pos); 7755 } 7756 7757 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7758 { 7759 struct trace_array *tr = m->private; 7760 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7761 7762 if (v == FTRACE_NO_PIDS) { 7763 (*pos)++; 7764 return NULL; 7765 } 7766 return trace_pid_next(pid_list, v, pos); 7767 } 7768 7769 static void fpid_stop(struct seq_file *m, void *p) 7770 __releases(RCU) 7771 { 7772 rcu_read_unlock_sched(); 7773 mutex_unlock(&ftrace_lock); 7774 } 7775 7776 static int fpid_show(struct seq_file *m, void *v) 7777 { 7778 if (v == FTRACE_NO_PIDS) { 7779 seq_puts(m, "no pid\n"); 7780 return 0; 7781 } 7782 7783 return trace_pid_show(m, v); 7784 } 7785 7786 static const struct seq_operations ftrace_pid_sops = { 7787 .start = fpid_start, 7788 .next = fpid_next, 7789 .stop = fpid_stop, 7790 .show = fpid_show, 7791 }; 7792 7793 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7794 __acquires(RCU) 7795 { 7796 struct trace_pid_list *pid_list; 7797 struct trace_array *tr = m->private; 7798 7799 mutex_lock(&ftrace_lock); 7800 rcu_read_lock_sched(); 7801 7802 pid_list = rcu_dereference_sched(tr->function_no_pids); 7803 7804 if (!pid_list) 7805 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7806 7807 return trace_pid_start(pid_list, pos); 7808 } 7809 7810 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7811 { 7812 struct trace_array *tr = m->private; 7813 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7814 7815 if (v == FTRACE_NO_PIDS) { 7816 (*pos)++; 7817 return NULL; 7818 } 7819 return trace_pid_next(pid_list, v, pos); 7820 } 7821 7822 static const struct seq_operations ftrace_no_pid_sops = { 7823 .start = fnpid_start, 7824 .next = fnpid_next, 7825 .stop = fpid_stop, 7826 .show = fpid_show, 7827 }; 7828 7829 static int pid_open(struct inode *inode, struct file *file, int type) 7830 { 7831 const struct seq_operations *seq_ops; 7832 struct trace_array *tr = inode->i_private; 7833 struct seq_file *m; 7834 int ret = 0; 7835 7836 ret = tracing_check_open_get_tr(tr); 7837 if (ret) 7838 return ret; 7839 7840 if ((file->f_mode & FMODE_WRITE) && 7841 (file->f_flags & O_TRUNC)) 7842 ftrace_pid_reset(tr, type); 7843 7844 switch (type) { 7845 case TRACE_PIDS: 7846 seq_ops = &ftrace_pid_sops; 7847 break; 7848 case TRACE_NO_PIDS: 7849 seq_ops = &ftrace_no_pid_sops; 7850 break; 7851 default: 7852 trace_array_put(tr); 7853 WARN_ON_ONCE(1); 7854 return -EINVAL; 7855 } 7856 7857 ret = seq_open(file, seq_ops); 7858 if (ret < 0) { 7859 trace_array_put(tr); 7860 } else { 7861 m = file->private_data; 7862 /* copy tr over to seq ops */ 7863 m->private = tr; 7864 } 7865 7866 return ret; 7867 } 7868 7869 static int 7870 ftrace_pid_open(struct inode *inode, struct file *file) 7871 { 7872 return pid_open(inode, file, TRACE_PIDS); 7873 } 7874 7875 static int 7876 ftrace_no_pid_open(struct inode *inode, struct file *file) 7877 { 7878 return pid_open(inode, file, TRACE_NO_PIDS); 7879 } 7880 7881 static void ignore_task_cpu(void *data) 7882 { 7883 struct trace_array *tr = data; 7884 struct trace_pid_list *pid_list; 7885 struct trace_pid_list *no_pid_list; 7886 7887 /* 7888 * This function is called by on_each_cpu() while the 7889 * event_mutex is held. 7890 */ 7891 pid_list = rcu_dereference_protected(tr->function_pids, 7892 mutex_is_locked(&ftrace_lock)); 7893 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7894 mutex_is_locked(&ftrace_lock)); 7895 7896 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7897 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7898 FTRACE_PID_IGNORE); 7899 else 7900 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7901 current->pid); 7902 } 7903 7904 static ssize_t 7905 pid_write(struct file *filp, const char __user *ubuf, 7906 size_t cnt, loff_t *ppos, int type) 7907 { 7908 struct seq_file *m = filp->private_data; 7909 struct trace_array *tr = m->private; 7910 struct trace_pid_list *filtered_pids; 7911 struct trace_pid_list *other_pids; 7912 struct trace_pid_list *pid_list; 7913 ssize_t ret; 7914 7915 if (!cnt) 7916 return 0; 7917 7918 mutex_lock(&ftrace_lock); 7919 7920 switch (type) { 7921 case TRACE_PIDS: 7922 filtered_pids = rcu_dereference_protected(tr->function_pids, 7923 lockdep_is_held(&ftrace_lock)); 7924 other_pids = rcu_dereference_protected(tr->function_no_pids, 7925 lockdep_is_held(&ftrace_lock)); 7926 break; 7927 case TRACE_NO_PIDS: 7928 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7929 lockdep_is_held(&ftrace_lock)); 7930 other_pids = rcu_dereference_protected(tr->function_pids, 7931 lockdep_is_held(&ftrace_lock)); 7932 break; 7933 default: 7934 ret = -EINVAL; 7935 WARN_ON_ONCE(1); 7936 goto out; 7937 } 7938 7939 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7940 if (ret < 0) 7941 goto out; 7942 7943 switch (type) { 7944 case TRACE_PIDS: 7945 rcu_assign_pointer(tr->function_pids, pid_list); 7946 break; 7947 case TRACE_NO_PIDS: 7948 rcu_assign_pointer(tr->function_no_pids, pid_list); 7949 break; 7950 } 7951 7952 7953 if (filtered_pids) { 7954 synchronize_rcu(); 7955 trace_pid_list_free(filtered_pids); 7956 } else if (pid_list && !other_pids) { 7957 /* Register a probe to set whether to ignore the tracing of a task */ 7958 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7959 } 7960 7961 /* 7962 * Ignoring of pids is done at task switch. But we have to 7963 * check for those tasks that are currently running. 7964 * Always do this in case a pid was appended or removed. 7965 */ 7966 on_each_cpu(ignore_task_cpu, tr, 1); 7967 7968 ftrace_update_pid_func(); 7969 ftrace_startup_all(0); 7970 out: 7971 mutex_unlock(&ftrace_lock); 7972 7973 if (ret > 0) 7974 *ppos += ret; 7975 7976 return ret; 7977 } 7978 7979 static ssize_t 7980 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7981 size_t cnt, loff_t *ppos) 7982 { 7983 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7984 } 7985 7986 static ssize_t 7987 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7988 size_t cnt, loff_t *ppos) 7989 { 7990 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7991 } 7992 7993 static int 7994 ftrace_pid_release(struct inode *inode, struct file *file) 7995 { 7996 struct trace_array *tr = inode->i_private; 7997 7998 trace_array_put(tr); 7999 8000 return seq_release(inode, file); 8001 } 8002 8003 static const struct file_operations ftrace_pid_fops = { 8004 .open = ftrace_pid_open, 8005 .write = ftrace_pid_write, 8006 .read = seq_read, 8007 .llseek = tracing_lseek, 8008 .release = ftrace_pid_release, 8009 }; 8010 8011 static const struct file_operations ftrace_no_pid_fops = { 8012 .open = ftrace_no_pid_open, 8013 .write = ftrace_no_pid_write, 8014 .read = seq_read, 8015 .llseek = tracing_lseek, 8016 .release = ftrace_pid_release, 8017 }; 8018 8019 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8020 { 8021 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8022 tr, &ftrace_pid_fops); 8023 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8024 d_tracer, tr, &ftrace_no_pid_fops); 8025 } 8026 8027 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8028 struct dentry *d_tracer) 8029 { 8030 /* Only the top level directory has the dyn_tracefs and profile */ 8031 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8032 8033 ftrace_init_dyn_tracefs(d_tracer); 8034 ftrace_profile_tracefs(d_tracer); 8035 } 8036 8037 /** 8038 * ftrace_kill - kill ftrace 8039 * 8040 * This function should be used by panic code. It stops ftrace 8041 * but in a not so nice way. If you need to simply kill ftrace 8042 * from a non-atomic section, use ftrace_kill. 8043 */ 8044 void ftrace_kill(void) 8045 { 8046 ftrace_disabled = 1; 8047 ftrace_enabled = 0; 8048 ftrace_trace_function = ftrace_stub; 8049 } 8050 8051 /** 8052 * ftrace_is_dead - Test if ftrace is dead or not. 8053 * 8054 * Returns 1 if ftrace is "dead", zero otherwise. 8055 */ 8056 int ftrace_is_dead(void) 8057 { 8058 return ftrace_disabled; 8059 } 8060 8061 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8062 /* 8063 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8064 * it doesn't conflict with any direct ftrace_ops. If there is existing 8065 * direct ftrace_ops on a kernel function being patched, call 8066 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8067 * 8068 * @ops: ftrace_ops being registered. 8069 * 8070 * Returns: 8071 * 0 on success; 8072 * Negative on failure. 8073 */ 8074 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8075 { 8076 struct ftrace_func_entry *entry; 8077 struct ftrace_hash *hash; 8078 struct ftrace_ops *op; 8079 int size, i, ret; 8080 8081 lockdep_assert_held_once(&direct_mutex); 8082 8083 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8084 return 0; 8085 8086 hash = ops->func_hash->filter_hash; 8087 size = 1 << hash->size_bits; 8088 for (i = 0; i < size; i++) { 8089 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8090 unsigned long ip = entry->ip; 8091 bool found_op = false; 8092 8093 mutex_lock(&ftrace_lock); 8094 do_for_each_ftrace_op(op, ftrace_ops_list) { 8095 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8096 continue; 8097 if (ops_references_ip(op, ip)) { 8098 found_op = true; 8099 break; 8100 } 8101 } while_for_each_ftrace_op(op); 8102 mutex_unlock(&ftrace_lock); 8103 8104 if (found_op) { 8105 if (!op->ops_func) 8106 return -EBUSY; 8107 8108 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8109 if (ret) 8110 return ret; 8111 } 8112 } 8113 } 8114 8115 return 0; 8116 } 8117 8118 /* 8119 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8120 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8121 * ops. 8122 */ 8123 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8124 { 8125 struct ftrace_func_entry *entry; 8126 struct ftrace_hash *hash; 8127 struct ftrace_ops *op; 8128 int size, i; 8129 8130 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8131 return; 8132 8133 mutex_lock(&direct_mutex); 8134 8135 hash = ops->func_hash->filter_hash; 8136 size = 1 << hash->size_bits; 8137 for (i = 0; i < size; i++) { 8138 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8139 unsigned long ip = entry->ip; 8140 bool found_op = false; 8141 8142 mutex_lock(&ftrace_lock); 8143 do_for_each_ftrace_op(op, ftrace_ops_list) { 8144 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8145 continue; 8146 if (ops_references_ip(op, ip)) { 8147 found_op = true; 8148 break; 8149 } 8150 } while_for_each_ftrace_op(op); 8151 mutex_unlock(&ftrace_lock); 8152 8153 /* The cleanup is optional, ignore any errors */ 8154 if (found_op && op->ops_func) 8155 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8156 } 8157 } 8158 mutex_unlock(&direct_mutex); 8159 } 8160 8161 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8162 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8163 8164 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8165 8166 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8167 { 8168 return 0; 8169 } 8170 8171 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8172 { 8173 } 8174 8175 #define lock_direct_mutex() do { } while (0) 8176 #define unlock_direct_mutex() do { } while (0) 8177 8178 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8179 8180 /* 8181 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8182 */ 8183 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8184 { 8185 int ret; 8186 8187 ftrace_ops_init(ops); 8188 8189 mutex_lock(&ftrace_lock); 8190 8191 ret = ftrace_startup(ops, 0); 8192 8193 mutex_unlock(&ftrace_lock); 8194 8195 return ret; 8196 } 8197 8198 /** 8199 * register_ftrace_function - register a function for profiling 8200 * @ops: ops structure that holds the function for profiling. 8201 * 8202 * Register a function to be called by all functions in the 8203 * kernel. 8204 * 8205 * Note: @ops->func and all the functions it calls must be labeled 8206 * with "notrace", otherwise it will go into a 8207 * recursive loop. 8208 */ 8209 int register_ftrace_function(struct ftrace_ops *ops) 8210 { 8211 int ret; 8212 8213 lock_direct_mutex(); 8214 ret = prepare_direct_functions_for_ipmodify(ops); 8215 if (ret < 0) 8216 goto out_unlock; 8217 8218 ret = register_ftrace_function_nolock(ops); 8219 8220 out_unlock: 8221 unlock_direct_mutex(); 8222 return ret; 8223 } 8224 EXPORT_SYMBOL_GPL(register_ftrace_function); 8225 8226 /** 8227 * unregister_ftrace_function - unregister a function for profiling. 8228 * @ops: ops structure that holds the function to unregister 8229 * 8230 * Unregister a function that was added to be called by ftrace profiling. 8231 */ 8232 int unregister_ftrace_function(struct ftrace_ops *ops) 8233 { 8234 int ret; 8235 8236 mutex_lock(&ftrace_lock); 8237 ret = ftrace_shutdown(ops, 0); 8238 mutex_unlock(&ftrace_lock); 8239 8240 cleanup_direct_functions_after_ipmodify(ops); 8241 return ret; 8242 } 8243 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8244 8245 static int symbols_cmp(const void *a, const void *b) 8246 { 8247 const char **str_a = (const char **) a; 8248 const char **str_b = (const char **) b; 8249 8250 return strcmp(*str_a, *str_b); 8251 } 8252 8253 struct kallsyms_data { 8254 unsigned long *addrs; 8255 const char **syms; 8256 size_t cnt; 8257 size_t found; 8258 }; 8259 8260 static int kallsyms_callback(void *data, const char *name, 8261 struct module *mod, unsigned long addr) 8262 { 8263 struct kallsyms_data *args = data; 8264 const char **sym; 8265 int idx; 8266 8267 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8268 if (!sym) 8269 return 0; 8270 8271 idx = sym - args->syms; 8272 if (args->addrs[idx]) 8273 return 0; 8274 8275 if (!ftrace_location(addr)) 8276 return 0; 8277 8278 args->addrs[idx] = addr; 8279 args->found++; 8280 return args->found == args->cnt ? 1 : 0; 8281 } 8282 8283 /** 8284 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8285 * 8286 * @sorted_syms: array of symbols pointers symbols to resolve, 8287 * must be alphabetically sorted 8288 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8289 * @addrs: array for storing resulting addresses 8290 * 8291 * This function looks up addresses for array of symbols provided in 8292 * @syms array (must be alphabetically sorted) and stores them in 8293 * @addrs array, which needs to be big enough to store at least @cnt 8294 * addresses. 8295 * 8296 * This function returns 0 if all provided symbols are found, 8297 * -ESRCH otherwise. 8298 */ 8299 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8300 { 8301 struct kallsyms_data args; 8302 int err; 8303 8304 memset(addrs, 0, sizeof(*addrs) * cnt); 8305 args.addrs = addrs; 8306 args.syms = sorted_syms; 8307 args.cnt = cnt; 8308 args.found = 0; 8309 err = kallsyms_on_each_symbol(kallsyms_callback, &args); 8310 if (err < 0) 8311 return err; 8312 return args.found == args.cnt ? 0 : -ESRCH; 8313 } 8314 8315 #ifdef CONFIG_SYSCTL 8316 8317 #ifdef CONFIG_DYNAMIC_FTRACE 8318 static void ftrace_startup_sysctl(void) 8319 { 8320 int command; 8321 8322 if (unlikely(ftrace_disabled)) 8323 return; 8324 8325 /* Force update next time */ 8326 saved_ftrace_func = NULL; 8327 /* ftrace_start_up is true if we want ftrace running */ 8328 if (ftrace_start_up) { 8329 command = FTRACE_UPDATE_CALLS; 8330 if (ftrace_graph_active) 8331 command |= FTRACE_START_FUNC_RET; 8332 ftrace_startup_enable(command); 8333 } 8334 } 8335 8336 static void ftrace_shutdown_sysctl(void) 8337 { 8338 int command; 8339 8340 if (unlikely(ftrace_disabled)) 8341 return; 8342 8343 /* ftrace_start_up is true if ftrace is running */ 8344 if (ftrace_start_up) { 8345 command = FTRACE_DISABLE_CALLS; 8346 if (ftrace_graph_active) 8347 command |= FTRACE_STOP_FUNC_RET; 8348 ftrace_run_update_code(command); 8349 } 8350 } 8351 #else 8352 # define ftrace_startup_sysctl() do { } while (0) 8353 # define ftrace_shutdown_sysctl() do { } while (0) 8354 #endif /* CONFIG_DYNAMIC_FTRACE */ 8355 8356 static bool is_permanent_ops_registered(void) 8357 { 8358 struct ftrace_ops *op; 8359 8360 do_for_each_ftrace_op(op, ftrace_ops_list) { 8361 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8362 return true; 8363 } while_for_each_ftrace_op(op); 8364 8365 return false; 8366 } 8367 8368 static int 8369 ftrace_enable_sysctl(struct ctl_table *table, int write, 8370 void *buffer, size_t *lenp, loff_t *ppos) 8371 { 8372 int ret = -ENODEV; 8373 8374 mutex_lock(&ftrace_lock); 8375 8376 if (unlikely(ftrace_disabled)) 8377 goto out; 8378 8379 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8380 8381 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8382 goto out; 8383 8384 if (ftrace_enabled) { 8385 8386 /* we are starting ftrace again */ 8387 if (rcu_dereference_protected(ftrace_ops_list, 8388 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8389 update_ftrace_function(); 8390 8391 ftrace_startup_sysctl(); 8392 8393 } else { 8394 if (is_permanent_ops_registered()) { 8395 ftrace_enabled = true; 8396 ret = -EBUSY; 8397 goto out; 8398 } 8399 8400 /* stopping ftrace calls (just send to ftrace_stub) */ 8401 ftrace_trace_function = ftrace_stub; 8402 8403 ftrace_shutdown_sysctl(); 8404 } 8405 8406 last_ftrace_enabled = !!ftrace_enabled; 8407 out: 8408 mutex_unlock(&ftrace_lock); 8409 return ret; 8410 } 8411 8412 static struct ctl_table ftrace_sysctls[] = { 8413 { 8414 .procname = "ftrace_enabled", 8415 .data = &ftrace_enabled, 8416 .maxlen = sizeof(int), 8417 .mode = 0644, 8418 .proc_handler = ftrace_enable_sysctl, 8419 }, 8420 {} 8421 }; 8422 8423 static int __init ftrace_sysctl_init(void) 8424 { 8425 register_sysctl_init("kernel", ftrace_sysctls); 8426 return 0; 8427 } 8428 late_initcall(ftrace_sysctl_init); 8429 #endif 8430