1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 49 50 #define FTRACE_WARN_ON(cond) \ 51 ({ \ 52 int ___r = cond; \ 53 if (WARN_ON(___r)) \ 54 ftrace_kill(); \ 55 ___r; \ 56 }) 57 58 #define FTRACE_WARN_ON_ONCE(cond) \ 59 ({ \ 60 int ___r = cond; \ 61 if (WARN_ON_ONCE(___r)) \ 62 ftrace_kill(); \ 63 ___r; \ 64 }) 65 66 /* hash bits for specific function selection */ 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int __maybe_unused last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL || tr->function_no_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct ftrace_regs *fregs); 127 128 static inline void ftrace_ops_init(struct ftrace_ops *ops) 129 { 130 #ifdef CONFIG_DYNAMIC_FTRACE 131 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 132 mutex_init(&ops->local_hash.regex_lock); 133 ops->func_hash = &ops->local_hash; 134 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 135 } 136 #endif 137 } 138 139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 140 struct ftrace_ops *op, struct ftrace_regs *fregs) 141 { 142 struct trace_array *tr = op->private; 143 int pid; 144 145 if (tr) { 146 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 147 if (pid == FTRACE_PID_IGNORE) 148 return; 149 if (pid != FTRACE_PID_TRACE && 150 pid != current->pid) 151 return; 152 } 153 154 op->saved_func(ip, parent_ip, op, fregs); 155 } 156 157 static void ftrace_sync_ipi(void *data) 158 { 159 /* Probably not needed, but do it anyway */ 160 smp_rmb(); 161 } 162 163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 164 { 165 /* 166 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 167 * then it needs to call the list anyway. 168 */ 169 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 170 FTRACE_FORCE_LIST_FUNC) 171 return ftrace_ops_list_func; 172 173 return ftrace_ops_get_func(ops); 174 } 175 176 static void update_ftrace_function(void) 177 { 178 ftrace_func_t func; 179 180 /* 181 * Prepare the ftrace_ops that the arch callback will use. 182 * If there's only one ftrace_ops registered, the ftrace_ops_list 183 * will point to the ops we want. 184 */ 185 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 186 lockdep_is_held(&ftrace_lock)); 187 188 /* If there's no ftrace_ops registered, just call the stub function */ 189 if (set_function_trace_op == &ftrace_list_end) { 190 func = ftrace_stub; 191 192 /* 193 * If we are at the end of the list and this ops is 194 * recursion safe and not dynamic and the arch supports passing ops, 195 * then have the mcount trampoline call the function directly. 196 */ 197 } else if (rcu_dereference_protected(ftrace_ops_list->next, 198 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 199 func = ftrace_ops_get_list_func(ftrace_ops_list); 200 201 } else { 202 /* Just use the default ftrace_ops */ 203 set_function_trace_op = &ftrace_list_end; 204 func = ftrace_ops_list_func; 205 } 206 207 update_function_graph_func(); 208 209 /* If there's no change, then do nothing more here */ 210 if (ftrace_trace_function == func) 211 return; 212 213 /* 214 * If we are using the list function, it doesn't care 215 * about the function_trace_ops. 216 */ 217 if (func == ftrace_ops_list_func) { 218 ftrace_trace_function = func; 219 /* 220 * Don't even bother setting function_trace_ops, 221 * it would be racy to do so anyway. 222 */ 223 return; 224 } 225 226 #ifndef CONFIG_DYNAMIC_FTRACE 227 /* 228 * For static tracing, we need to be a bit more careful. 229 * The function change takes affect immediately. Thus, 230 * we need to coordinate the setting of the function_trace_ops 231 * with the setting of the ftrace_trace_function. 232 * 233 * Set the function to the list ops, which will call the 234 * function we want, albeit indirectly, but it handles the 235 * ftrace_ops and doesn't depend on function_trace_op. 236 */ 237 ftrace_trace_function = ftrace_ops_list_func; 238 /* 239 * Make sure all CPUs see this. Yes this is slow, but static 240 * tracing is slow and nasty to have enabled. 241 */ 242 synchronize_rcu_tasks_rude(); 243 /* Now all cpus are using the list ops. */ 244 function_trace_op = set_function_trace_op; 245 /* Make sure the function_trace_op is visible on all CPUs */ 246 smp_wmb(); 247 /* Nasty way to force a rmb on all cpus */ 248 smp_call_function(ftrace_sync_ipi, NULL, 1); 249 /* OK, we are all set to update the ftrace_trace_function now! */ 250 #endif /* !CONFIG_DYNAMIC_FTRACE */ 251 252 ftrace_trace_function = func; 253 } 254 255 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 256 struct ftrace_ops *ops) 257 { 258 rcu_assign_pointer(ops->next, *list); 259 260 /* 261 * We are entering ops into the list but another 262 * CPU might be walking that list. We need to make sure 263 * the ops->next pointer is valid before another CPU sees 264 * the ops pointer included into the list. 265 */ 266 rcu_assign_pointer(*list, ops); 267 } 268 269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 270 struct ftrace_ops *ops) 271 { 272 struct ftrace_ops **p; 273 274 /* 275 * If we are removing the last function, then simply point 276 * to the ftrace_stub. 277 */ 278 if (rcu_dereference_protected(*list, 279 lockdep_is_held(&ftrace_lock)) == ops && 280 rcu_dereference_protected(ops->next, 281 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 282 *list = &ftrace_list_end; 283 return 0; 284 } 285 286 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 287 if (*p == ops) 288 break; 289 290 if (*p != ops) 291 return -1; 292 293 *p = (*p)->next; 294 return 0; 295 } 296 297 static void ftrace_update_trampoline(struct ftrace_ops *ops); 298 299 int __register_ftrace_function(struct ftrace_ops *ops) 300 { 301 if (ops->flags & FTRACE_OPS_FL_DELETED) 302 return -EINVAL; 303 304 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 305 return -EBUSY; 306 307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 308 /* 309 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 310 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 311 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 312 */ 313 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 314 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 315 return -EINVAL; 316 317 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 318 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 319 #endif 320 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 321 return -EBUSY; 322 323 if (!is_kernel_core_data((unsigned long)ops)) 324 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 325 326 add_ftrace_ops(&ftrace_ops_list, ops); 327 328 /* Always save the function, and reset at unregistering */ 329 ops->saved_func = ops->func; 330 331 if (ftrace_pids_enabled(ops)) 332 ops->func = ftrace_pid_func; 333 334 ftrace_update_trampoline(ops); 335 336 if (ftrace_enabled) 337 update_ftrace_function(); 338 339 return 0; 340 } 341 342 int __unregister_ftrace_function(struct ftrace_ops *ops) 343 { 344 int ret; 345 346 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 347 return -EBUSY; 348 349 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 350 351 if (ret < 0) 352 return ret; 353 354 if (ftrace_enabled) 355 update_ftrace_function(); 356 357 ops->func = ops->saved_func; 358 359 return 0; 360 } 361 362 static void ftrace_update_pid_func(void) 363 { 364 struct ftrace_ops *op; 365 366 /* Only do something if we are tracing something */ 367 if (ftrace_trace_function == ftrace_stub) 368 return; 369 370 do_for_each_ftrace_op(op, ftrace_ops_list) { 371 if (op->flags & FTRACE_OPS_FL_PID) { 372 op->func = ftrace_pids_enabled(op) ? 373 ftrace_pid_func : op->saved_func; 374 ftrace_update_trampoline(op); 375 } 376 } while_for_each_ftrace_op(op); 377 378 update_ftrace_function(); 379 } 380 381 #ifdef CONFIG_FUNCTION_PROFILER 382 struct ftrace_profile { 383 struct hlist_node node; 384 unsigned long ip; 385 unsigned long counter; 386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 387 unsigned long long time; 388 unsigned long long time_squared; 389 #endif 390 }; 391 392 struct ftrace_profile_page { 393 struct ftrace_profile_page *next; 394 unsigned long index; 395 struct ftrace_profile records[]; 396 }; 397 398 struct ftrace_profile_stat { 399 atomic_t disabled; 400 struct hlist_head *hash; 401 struct ftrace_profile_page *pages; 402 struct ftrace_profile_page *start; 403 struct tracer_stat stat; 404 }; 405 406 #define PROFILE_RECORDS_SIZE \ 407 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 408 409 #define PROFILES_PER_PAGE \ 410 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 411 412 static int ftrace_profile_enabled __read_mostly; 413 414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 415 static DEFINE_MUTEX(ftrace_profile_lock); 416 417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 418 419 #define FTRACE_PROFILE_HASH_BITS 10 420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 421 422 static void * 423 function_stat_next(void *v, int idx) 424 { 425 struct ftrace_profile *rec = v; 426 struct ftrace_profile_page *pg; 427 428 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 429 430 again: 431 if (idx != 0) 432 rec++; 433 434 if ((void *)rec >= (void *)&pg->records[pg->index]) { 435 pg = pg->next; 436 if (!pg) 437 return NULL; 438 rec = &pg->records[0]; 439 if (!rec->counter) 440 goto again; 441 } 442 443 return rec; 444 } 445 446 static void *function_stat_start(struct tracer_stat *trace) 447 { 448 struct ftrace_profile_stat *stat = 449 container_of(trace, struct ftrace_profile_stat, stat); 450 451 if (!stat || !stat->start) 452 return NULL; 453 454 return function_stat_next(&stat->start->records[0], 0); 455 } 456 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 /* function graph compares on total time */ 459 static int function_stat_cmp(const void *p1, const void *p2) 460 { 461 const struct ftrace_profile *a = p1; 462 const struct ftrace_profile *b = p2; 463 464 if (a->time < b->time) 465 return -1; 466 if (a->time > b->time) 467 return 1; 468 else 469 return 0; 470 } 471 #else 472 /* not function graph compares against hits */ 473 static int function_stat_cmp(const void *p1, const void *p2) 474 { 475 const struct ftrace_profile *a = p1; 476 const struct ftrace_profile *b = p2; 477 478 if (a->counter < b->counter) 479 return -1; 480 if (a->counter > b->counter) 481 return 1; 482 else 483 return 0; 484 } 485 #endif 486 487 static int function_stat_headers(struct seq_file *m) 488 { 489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 490 seq_puts(m, " Function " 491 "Hit Time Avg s^2\n" 492 " -------- " 493 "--- ---- --- ---\n"); 494 #else 495 seq_puts(m, " Function Hit\n" 496 " -------- ---\n"); 497 #endif 498 return 0; 499 } 500 501 static int function_stat_show(struct seq_file *m, void *v) 502 { 503 struct ftrace_profile *rec = v; 504 char str[KSYM_SYMBOL_LEN]; 505 int ret = 0; 506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 507 static struct trace_seq s; 508 unsigned long long avg; 509 unsigned long long stddev; 510 #endif 511 mutex_lock(&ftrace_profile_lock); 512 513 /* we raced with function_profile_reset() */ 514 if (unlikely(rec->counter == 0)) { 515 ret = -EBUSY; 516 goto out; 517 } 518 519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 520 avg = div64_ul(rec->time, rec->counter); 521 if (tracing_thresh && (avg < tracing_thresh)) 522 goto out; 523 #endif 524 525 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 526 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 seq_puts(m, " "); 530 531 /* Sample standard deviation (s^2) */ 532 if (rec->counter <= 1) 533 stddev = 0; 534 else { 535 /* 536 * Apply Welford's method: 537 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 538 */ 539 stddev = rec->counter * rec->time_squared - 540 rec->time * rec->time; 541 542 /* 543 * Divide only 1000 for ns^2 -> us^2 conversion. 544 * trace_print_graph_duration will divide 1000 again. 545 */ 546 stddev = div64_ul(stddev, 547 rec->counter * (rec->counter - 1) * 1000); 548 } 549 550 trace_seq_init(&s); 551 trace_print_graph_duration(rec->time, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(avg, &s); 554 trace_seq_puts(&s, " "); 555 trace_print_graph_duration(stddev, &s); 556 trace_print_seq(m, &s); 557 #endif 558 seq_putc(m, '\n'); 559 out: 560 mutex_unlock(&ftrace_profile_lock); 561 562 return ret; 563 } 564 565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 566 { 567 struct ftrace_profile_page *pg; 568 569 pg = stat->pages = stat->start; 570 571 while (pg) { 572 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 573 pg->index = 0; 574 pg = pg->next; 575 } 576 577 memset(stat->hash, 0, 578 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 579 } 580 581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 582 { 583 struct ftrace_profile_page *pg; 584 int functions; 585 int pages; 586 int i; 587 588 /* If we already allocated, do nothing */ 589 if (stat->pages) 590 return 0; 591 592 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!stat->pages) 594 return -ENOMEM; 595 596 #ifdef CONFIG_DYNAMIC_FTRACE 597 functions = ftrace_update_tot_cnt; 598 #else 599 /* 600 * We do not know the number of functions that exist because 601 * dynamic tracing is what counts them. With past experience 602 * we have around 20K functions. That should be more than enough. 603 * It is highly unlikely we will execute every function in 604 * the kernel. 605 */ 606 functions = 20000; 607 #endif 608 609 pg = stat->start = stat->pages; 610 611 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 612 613 for (i = 1; i < pages; i++) { 614 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 615 if (!pg->next) 616 goto out_free; 617 pg = pg->next; 618 } 619 620 return 0; 621 622 out_free: 623 pg = stat->start; 624 while (pg) { 625 unsigned long tmp = (unsigned long)pg; 626 627 pg = pg->next; 628 free_page(tmp); 629 } 630 631 stat->pages = NULL; 632 stat->start = NULL; 633 634 return -ENOMEM; 635 } 636 637 static int ftrace_profile_init_cpu(int cpu) 638 { 639 struct ftrace_profile_stat *stat; 640 int size; 641 642 stat = &per_cpu(ftrace_profile_stats, cpu); 643 644 if (stat->hash) { 645 /* If the profile is already created, simply reset it */ 646 ftrace_profile_reset(stat); 647 return 0; 648 } 649 650 /* 651 * We are profiling all functions, but usually only a few thousand 652 * functions are hit. We'll make a hash of 1024 items. 653 */ 654 size = FTRACE_PROFILE_HASH_SIZE; 655 656 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 657 658 if (!stat->hash) 659 return -ENOMEM; 660 661 /* Preallocate the function profiling pages */ 662 if (ftrace_profile_pages_init(stat) < 0) { 663 kfree(stat->hash); 664 stat->hash = NULL; 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static int ftrace_profile_init(void) 672 { 673 int cpu; 674 int ret = 0; 675 676 for_each_possible_cpu(cpu) { 677 ret = ftrace_profile_init_cpu(cpu); 678 if (ret) 679 break; 680 } 681 682 return ret; 683 } 684 685 /* interrupts must be disabled */ 686 static struct ftrace_profile * 687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 688 { 689 struct ftrace_profile *rec; 690 struct hlist_head *hhd; 691 unsigned long key; 692 693 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 694 hhd = &stat->hash[key]; 695 696 if (hlist_empty(hhd)) 697 return NULL; 698 699 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 700 if (rec->ip == ip) 701 return rec; 702 } 703 704 return NULL; 705 } 706 707 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 708 struct ftrace_profile *rec) 709 { 710 unsigned long key; 711 712 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 713 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 714 } 715 716 /* 717 * The memory is already allocated, this simply finds a new record to use. 718 */ 719 static struct ftrace_profile * 720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 721 { 722 struct ftrace_profile *rec = NULL; 723 724 /* prevent recursion (from NMIs) */ 725 if (atomic_inc_return(&stat->disabled) != 1) 726 goto out; 727 728 /* 729 * Try to find the function again since an NMI 730 * could have added it 731 */ 732 rec = ftrace_find_profiled_func(stat, ip); 733 if (rec) 734 goto out; 735 736 if (stat->pages->index == PROFILES_PER_PAGE) { 737 if (!stat->pages->next) 738 goto out; 739 stat->pages = stat->pages->next; 740 } 741 742 rec = &stat->pages->records[stat->pages->index++]; 743 rec->ip = ip; 744 ftrace_add_profile(stat, rec); 745 746 out: 747 atomic_dec(&stat->disabled); 748 749 return rec; 750 } 751 752 static void 753 function_profile_call(unsigned long ip, unsigned long parent_ip, 754 struct ftrace_ops *ops, struct ftrace_regs *fregs) 755 { 756 struct ftrace_profile_stat *stat; 757 struct ftrace_profile *rec; 758 unsigned long flags; 759 760 if (!ftrace_profile_enabled) 761 return; 762 763 local_irq_save(flags); 764 765 stat = this_cpu_ptr(&ftrace_profile_stats); 766 if (!stat->hash || !ftrace_profile_enabled) 767 goto out; 768 769 rec = ftrace_find_profiled_func(stat, ip); 770 if (!rec) { 771 rec = ftrace_profile_alloc(stat, ip); 772 if (!rec) 773 goto out; 774 } 775 776 rec->counter++; 777 out: 778 local_irq_restore(flags); 779 } 780 781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 782 static bool fgraph_graph_time = true; 783 784 void ftrace_graph_graph_time_control(bool enable) 785 { 786 fgraph_graph_time = enable; 787 } 788 789 static int profile_graph_entry(struct ftrace_graph_ent *trace) 790 { 791 struct ftrace_ret_stack *ret_stack; 792 793 function_profile_call(trace->func, 0, NULL, NULL); 794 795 /* If function graph is shutting down, ret_stack can be NULL */ 796 if (!current->ret_stack) 797 return 0; 798 799 ret_stack = ftrace_graph_get_ret_stack(current, 0); 800 if (ret_stack) 801 ret_stack->subtime = 0; 802 803 return 1; 804 } 805 806 static void profile_graph_return(struct ftrace_graph_ret *trace) 807 { 808 struct ftrace_ret_stack *ret_stack; 809 struct ftrace_profile_stat *stat; 810 unsigned long long calltime; 811 struct ftrace_profile *rec; 812 unsigned long flags; 813 814 local_irq_save(flags); 815 stat = this_cpu_ptr(&ftrace_profile_stats); 816 if (!stat->hash || !ftrace_profile_enabled) 817 goto out; 818 819 /* If the calltime was zero'd ignore it */ 820 if (!trace->calltime) 821 goto out; 822 823 calltime = trace->rettime - trace->calltime; 824 825 if (!fgraph_graph_time) { 826 827 /* Append this call time to the parent time to subtract */ 828 ret_stack = ftrace_graph_get_ret_stack(current, 1); 829 if (ret_stack) 830 ret_stack->subtime += calltime; 831 832 ret_stack = ftrace_graph_get_ret_stack(current, 0); 833 if (ret_stack && ret_stack->subtime < calltime) 834 calltime -= ret_stack->subtime; 835 else 836 calltime = 0; 837 } 838 839 rec = ftrace_find_profiled_func(stat, trace->func); 840 if (rec) { 841 rec->time += calltime; 842 rec->time_squared += calltime * calltime; 843 } 844 845 out: 846 local_irq_restore(flags); 847 } 848 849 static struct fgraph_ops fprofiler_ops = { 850 .entryfunc = &profile_graph_entry, 851 .retfunc = &profile_graph_return, 852 }; 853 854 static int register_ftrace_profiler(void) 855 { 856 return register_ftrace_graph(&fprofiler_ops); 857 } 858 859 static void unregister_ftrace_profiler(void) 860 { 861 unregister_ftrace_graph(&fprofiler_ops); 862 } 863 #else 864 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 865 .func = function_profile_call, 866 .flags = FTRACE_OPS_FL_INITIALIZED, 867 INIT_OPS_HASH(ftrace_profile_ops) 868 }; 869 870 static int register_ftrace_profiler(void) 871 { 872 return register_ftrace_function(&ftrace_profile_ops); 873 } 874 875 static void unregister_ftrace_profiler(void) 876 { 877 unregister_ftrace_function(&ftrace_profile_ops); 878 } 879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 880 881 static ssize_t 882 ftrace_profile_write(struct file *filp, const char __user *ubuf, 883 size_t cnt, loff_t *ppos) 884 { 885 unsigned long val; 886 int ret; 887 888 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 889 if (ret) 890 return ret; 891 892 val = !!val; 893 894 mutex_lock(&ftrace_profile_lock); 895 if (ftrace_profile_enabled ^ val) { 896 if (val) { 897 ret = ftrace_profile_init(); 898 if (ret < 0) { 899 cnt = ret; 900 goto out; 901 } 902 903 ret = register_ftrace_profiler(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 ftrace_profile_enabled = 1; 909 } else { 910 ftrace_profile_enabled = 0; 911 /* 912 * unregister_ftrace_profiler calls stop_machine 913 * so this acts like an synchronize_rcu. 914 */ 915 unregister_ftrace_profiler(); 916 } 917 } 918 out: 919 mutex_unlock(&ftrace_profile_lock); 920 921 *ppos += cnt; 922 923 return cnt; 924 } 925 926 static ssize_t 927 ftrace_profile_read(struct file *filp, char __user *ubuf, 928 size_t cnt, loff_t *ppos) 929 { 930 char buf[64]; /* big enough to hold a number */ 931 int r; 932 933 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 934 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 935 } 936 937 static const struct file_operations ftrace_profile_fops = { 938 .open = tracing_open_generic, 939 .read = ftrace_profile_read, 940 .write = ftrace_profile_write, 941 .llseek = default_llseek, 942 }; 943 944 /* used to initialize the real stat files */ 945 static struct tracer_stat function_stats __initdata = { 946 .name = "functions", 947 .stat_start = function_stat_start, 948 .stat_next = function_stat_next, 949 .stat_cmp = function_stat_cmp, 950 .stat_headers = function_stat_headers, 951 .stat_show = function_stat_show 952 }; 953 954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 955 { 956 struct ftrace_profile_stat *stat; 957 char *name; 958 int ret; 959 int cpu; 960 961 for_each_possible_cpu(cpu) { 962 stat = &per_cpu(ftrace_profile_stats, cpu); 963 964 name = kasprintf(GFP_KERNEL, "function%d", cpu); 965 if (!name) { 966 /* 967 * The files created are permanent, if something happens 968 * we still do not free memory. 969 */ 970 WARN(1, 971 "Could not allocate stat file for cpu %d\n", 972 cpu); 973 return; 974 } 975 stat->stat = function_stats; 976 stat->stat.name = name; 977 ret = register_stat_tracer(&stat->stat); 978 if (ret) { 979 WARN(1, 980 "Could not register function stat for cpu %d\n", 981 cpu); 982 kfree(name); 983 return; 984 } 985 } 986 987 trace_create_file("function_profile_enabled", 988 TRACE_MODE_WRITE, d_tracer, NULL, 989 &ftrace_profile_fops); 990 } 991 992 #else /* CONFIG_FUNCTION_PROFILER */ 993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 994 { 995 } 996 #endif /* CONFIG_FUNCTION_PROFILER */ 997 998 #ifdef CONFIG_DYNAMIC_FTRACE 999 1000 static struct ftrace_ops *removed_ops; 1001 1002 /* 1003 * Set when doing a global update, like enabling all recs or disabling them. 1004 * It is not set when just updating a single ftrace_ops. 1005 */ 1006 static bool update_all_ops; 1007 1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1009 # error Dynamic ftrace depends on MCOUNT_RECORD 1010 #endif 1011 1012 struct ftrace_func_probe { 1013 struct ftrace_probe_ops *probe_ops; 1014 struct ftrace_ops ops; 1015 struct trace_array *tr; 1016 struct list_head list; 1017 void *data; 1018 int ref; 1019 }; 1020 1021 /* 1022 * We make these constant because no one should touch them, 1023 * but they are used as the default "empty hash", to avoid allocating 1024 * it all the time. These are in a read only section such that if 1025 * anyone does try to modify it, it will cause an exception. 1026 */ 1027 static const struct hlist_head empty_buckets[1]; 1028 static const struct ftrace_hash empty_hash = { 1029 .buckets = (struct hlist_head *)empty_buckets, 1030 }; 1031 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1032 1033 struct ftrace_ops global_ops = { 1034 .func = ftrace_stub, 1035 .local_hash.notrace_hash = EMPTY_HASH, 1036 .local_hash.filter_hash = EMPTY_HASH, 1037 INIT_OPS_HASH(global_ops) 1038 .flags = FTRACE_OPS_FL_INITIALIZED | 1039 FTRACE_OPS_FL_PID, 1040 }; 1041 1042 /* 1043 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1044 */ 1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1046 { 1047 struct ftrace_ops *op = NULL; 1048 1049 /* 1050 * Some of the ops may be dynamically allocated, 1051 * they are freed after a synchronize_rcu(). 1052 */ 1053 preempt_disable_notrace(); 1054 1055 do_for_each_ftrace_op(op, ftrace_ops_list) { 1056 /* 1057 * This is to check for dynamically allocated trampolines. 1058 * Trampolines that are in kernel text will have 1059 * core_kernel_text() return true. 1060 */ 1061 if (op->trampoline && op->trampoline_size) 1062 if (addr >= op->trampoline && 1063 addr < op->trampoline + op->trampoline_size) { 1064 preempt_enable_notrace(); 1065 return op; 1066 } 1067 } while_for_each_ftrace_op(op); 1068 preempt_enable_notrace(); 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * This is used by __kernel_text_address() to return true if the 1075 * address is on a dynamically allocated trampoline that would 1076 * not return true for either core_kernel_text() or 1077 * is_module_text_address(). 1078 */ 1079 bool is_ftrace_trampoline(unsigned long addr) 1080 { 1081 return ftrace_ops_trampoline(addr) != NULL; 1082 } 1083 1084 struct ftrace_page { 1085 struct ftrace_page *next; 1086 struct dyn_ftrace *records; 1087 int index; 1088 int order; 1089 }; 1090 1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1093 1094 static struct ftrace_page *ftrace_pages_start; 1095 static struct ftrace_page *ftrace_pages; 1096 1097 static __always_inline unsigned long 1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1099 { 1100 if (hash->size_bits > 0) 1101 return hash_long(ip, hash->size_bits); 1102 1103 return 0; 1104 } 1105 1106 /* Only use this function if ftrace_hash_empty() has already been tested */ 1107 static __always_inline struct ftrace_func_entry * 1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 unsigned long key; 1111 struct ftrace_func_entry *entry; 1112 struct hlist_head *hhd; 1113 1114 key = ftrace_hash_key(hash, ip); 1115 hhd = &hash->buckets[key]; 1116 1117 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1118 if (entry->ip == ip) 1119 return entry; 1120 } 1121 return NULL; 1122 } 1123 1124 /** 1125 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1126 * @hash: The hash to look at 1127 * @ip: The instruction pointer to test 1128 * 1129 * Search a given @hash to see if a given instruction pointer (@ip) 1130 * exists in it. 1131 * 1132 * Returns the entry that holds the @ip if found. NULL otherwise. 1133 */ 1134 struct ftrace_func_entry * 1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (ftrace_hash_empty(hash)) 1138 return NULL; 1139 1140 return __ftrace_lookup_ip(hash, ip); 1141 } 1142 1143 static void __add_hash_entry(struct ftrace_hash *hash, 1144 struct ftrace_func_entry *entry) 1145 { 1146 struct hlist_head *hhd; 1147 unsigned long key; 1148 1149 key = ftrace_hash_key(hash, entry->ip); 1150 hhd = &hash->buckets[key]; 1151 hlist_add_head(&entry->hlist, hhd); 1152 hash->count++; 1153 } 1154 1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1156 { 1157 struct ftrace_func_entry *entry; 1158 1159 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1160 if (!entry) 1161 return -ENOMEM; 1162 1163 entry->ip = ip; 1164 __add_hash_entry(hash, entry); 1165 1166 return 0; 1167 } 1168 1169 static void 1170 free_hash_entry(struct ftrace_hash *hash, 1171 struct ftrace_func_entry *entry) 1172 { 1173 hlist_del(&entry->hlist); 1174 kfree(entry); 1175 hash->count--; 1176 } 1177 1178 static void 1179 remove_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del_rcu(&entry->hlist); 1183 hash->count--; 1184 } 1185 1186 static void ftrace_hash_clear(struct ftrace_hash *hash) 1187 { 1188 struct hlist_head *hhd; 1189 struct hlist_node *tn; 1190 struct ftrace_func_entry *entry; 1191 int size = 1 << hash->size_bits; 1192 int i; 1193 1194 if (!hash->count) 1195 return; 1196 1197 for (i = 0; i < size; i++) { 1198 hhd = &hash->buckets[i]; 1199 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1200 free_hash_entry(hash, entry); 1201 } 1202 FTRACE_WARN_ON(hash->count); 1203 } 1204 1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1206 { 1207 list_del(&ftrace_mod->list); 1208 kfree(ftrace_mod->module); 1209 kfree(ftrace_mod->func); 1210 kfree(ftrace_mod); 1211 } 1212 1213 static void clear_ftrace_mod_list(struct list_head *head) 1214 { 1215 struct ftrace_mod_load *p, *n; 1216 1217 /* stack tracer isn't supported yet */ 1218 if (!head) 1219 return; 1220 1221 mutex_lock(&ftrace_lock); 1222 list_for_each_entry_safe(p, n, head, list) 1223 free_ftrace_mod(p); 1224 mutex_unlock(&ftrace_lock); 1225 } 1226 1227 static void free_ftrace_hash(struct ftrace_hash *hash) 1228 { 1229 if (!hash || hash == EMPTY_HASH) 1230 return; 1231 ftrace_hash_clear(hash); 1232 kfree(hash->buckets); 1233 kfree(hash); 1234 } 1235 1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1237 { 1238 struct ftrace_hash *hash; 1239 1240 hash = container_of(rcu, struct ftrace_hash, rcu); 1241 free_ftrace_hash(hash); 1242 } 1243 1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1245 { 1246 if (!hash || hash == EMPTY_HASH) 1247 return; 1248 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1249 } 1250 1251 void ftrace_free_filter(struct ftrace_ops *ops) 1252 { 1253 ftrace_ops_init(ops); 1254 free_ftrace_hash(ops->func_hash->filter_hash); 1255 free_ftrace_hash(ops->func_hash->notrace_hash); 1256 } 1257 1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1259 { 1260 struct ftrace_hash *hash; 1261 int size; 1262 1263 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1264 if (!hash) 1265 return NULL; 1266 1267 size = 1 << size_bits; 1268 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1269 1270 if (!hash->buckets) { 1271 kfree(hash); 1272 return NULL; 1273 } 1274 1275 hash->size_bits = size_bits; 1276 1277 return hash; 1278 } 1279 1280 1281 static int ftrace_add_mod(struct trace_array *tr, 1282 const char *func, const char *module, 1283 int enable) 1284 { 1285 struct ftrace_mod_load *ftrace_mod; 1286 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1287 1288 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1289 if (!ftrace_mod) 1290 return -ENOMEM; 1291 1292 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1293 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1294 ftrace_mod->enable = enable; 1295 1296 if (!ftrace_mod->func || !ftrace_mod->module) 1297 goto out_free; 1298 1299 list_add(&ftrace_mod->list, mod_head); 1300 1301 return 0; 1302 1303 out_free: 1304 free_ftrace_mod(ftrace_mod); 1305 1306 return -ENOMEM; 1307 } 1308 1309 static struct ftrace_hash * 1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1311 { 1312 struct ftrace_func_entry *entry; 1313 struct ftrace_hash *new_hash; 1314 int size; 1315 int ret; 1316 int i; 1317 1318 new_hash = alloc_ftrace_hash(size_bits); 1319 if (!new_hash) 1320 return NULL; 1321 1322 if (hash) 1323 new_hash->flags = hash->flags; 1324 1325 /* Empty hash? */ 1326 if (ftrace_hash_empty(hash)) 1327 return new_hash; 1328 1329 size = 1 << hash->size_bits; 1330 for (i = 0; i < size; i++) { 1331 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1332 ret = add_hash_entry(new_hash, entry->ip); 1333 if (ret < 0) 1334 goto free_hash; 1335 } 1336 } 1337 1338 FTRACE_WARN_ON(new_hash->count != hash->count); 1339 1340 return new_hash; 1341 1342 free_hash: 1343 free_ftrace_hash(new_hash); 1344 return NULL; 1345 } 1346 1347 static void 1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1349 static void 1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1351 1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1353 struct ftrace_hash *new_hash); 1354 1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1356 { 1357 struct ftrace_func_entry *entry; 1358 struct ftrace_hash *new_hash; 1359 struct hlist_head *hhd; 1360 struct hlist_node *tn; 1361 int bits = 0; 1362 int i; 1363 1364 /* 1365 * Use around half the size (max bit of it), but 1366 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1367 */ 1368 bits = fls(size / 2); 1369 1370 /* Don't allocate too much */ 1371 if (bits > FTRACE_HASH_MAX_BITS) 1372 bits = FTRACE_HASH_MAX_BITS; 1373 1374 new_hash = alloc_ftrace_hash(bits); 1375 if (!new_hash) 1376 return NULL; 1377 1378 new_hash->flags = src->flags; 1379 1380 size = 1 << src->size_bits; 1381 for (i = 0; i < size; i++) { 1382 hhd = &src->buckets[i]; 1383 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1384 remove_hash_entry(src, entry); 1385 __add_hash_entry(new_hash, entry); 1386 } 1387 } 1388 return new_hash; 1389 } 1390 1391 static struct ftrace_hash * 1392 __ftrace_hash_move(struct ftrace_hash *src) 1393 { 1394 int size = src->count; 1395 1396 /* 1397 * If the new source is empty, just return the empty_hash. 1398 */ 1399 if (ftrace_hash_empty(src)) 1400 return EMPTY_HASH; 1401 1402 return dup_hash(src, size); 1403 } 1404 1405 static int 1406 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1407 struct ftrace_hash **dst, struct ftrace_hash *src) 1408 { 1409 struct ftrace_hash *new_hash; 1410 int ret; 1411 1412 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1413 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1414 return -EINVAL; 1415 1416 new_hash = __ftrace_hash_move(src); 1417 if (!new_hash) 1418 return -ENOMEM; 1419 1420 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1421 if (enable) { 1422 /* IPMODIFY should be updated only when filter_hash updating */ 1423 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1424 if (ret < 0) { 1425 free_ftrace_hash(new_hash); 1426 return ret; 1427 } 1428 } 1429 1430 /* 1431 * Remove the current set, update the hash and add 1432 * them back. 1433 */ 1434 ftrace_hash_rec_disable_modify(ops, enable); 1435 1436 rcu_assign_pointer(*dst, new_hash); 1437 1438 ftrace_hash_rec_enable_modify(ops, enable); 1439 1440 return 0; 1441 } 1442 1443 static bool hash_contains_ip(unsigned long ip, 1444 struct ftrace_ops_hash *hash) 1445 { 1446 /* 1447 * The function record is a match if it exists in the filter 1448 * hash and not in the notrace hash. Note, an empty hash is 1449 * considered a match for the filter hash, but an empty 1450 * notrace hash is considered not in the notrace hash. 1451 */ 1452 return (ftrace_hash_empty(hash->filter_hash) || 1453 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1454 (ftrace_hash_empty(hash->notrace_hash) || 1455 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1456 } 1457 1458 /* 1459 * Test the hashes for this ops to see if we want to call 1460 * the ops->func or not. 1461 * 1462 * It's a match if the ip is in the ops->filter_hash or 1463 * the filter_hash does not exist or is empty, 1464 * AND 1465 * the ip is not in the ops->notrace_hash. 1466 * 1467 * This needs to be called with preemption disabled as 1468 * the hashes are freed with call_rcu(). 1469 */ 1470 int 1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1472 { 1473 struct ftrace_ops_hash hash; 1474 int ret; 1475 1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1477 /* 1478 * There's a small race when adding ops that the ftrace handler 1479 * that wants regs, may be called without them. We can not 1480 * allow that handler to be called if regs is NULL. 1481 */ 1482 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1483 return 0; 1484 #endif 1485 1486 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1487 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1488 1489 if (hash_contains_ip(ip, &hash)) 1490 ret = 1; 1491 else 1492 ret = 0; 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * This is a double for. Do not use 'break' to break out of the loop, 1499 * you must use a goto. 1500 */ 1501 #define do_for_each_ftrace_rec(pg, rec) \ 1502 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1503 int _____i; \ 1504 for (_____i = 0; _____i < pg->index; _____i++) { \ 1505 rec = &pg->records[_____i]; 1506 1507 #define while_for_each_ftrace_rec() \ 1508 } \ 1509 } 1510 1511 1512 static int ftrace_cmp_recs(const void *a, const void *b) 1513 { 1514 const struct dyn_ftrace *key = a; 1515 const struct dyn_ftrace *rec = b; 1516 1517 if (key->flags < rec->ip) 1518 return -1; 1519 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1520 return 1; 1521 return 0; 1522 } 1523 1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1525 { 1526 struct ftrace_page *pg; 1527 struct dyn_ftrace *rec = NULL; 1528 struct dyn_ftrace key; 1529 1530 key.ip = start; 1531 key.flags = end; /* overload flags, as it is unsigned long */ 1532 1533 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1534 if (end < pg->records[0].ip || 1535 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1536 continue; 1537 rec = bsearch(&key, pg->records, pg->index, 1538 sizeof(struct dyn_ftrace), 1539 ftrace_cmp_recs); 1540 if (rec) 1541 break; 1542 } 1543 return rec; 1544 } 1545 1546 /** 1547 * ftrace_location_range - return the first address of a traced location 1548 * if it touches the given ip range 1549 * @start: start of range to search. 1550 * @end: end of range to search (inclusive). @end points to the last byte 1551 * to check. 1552 * 1553 * Returns rec->ip if the related ftrace location is a least partly within 1554 * the given address range. That is, the first address of the instruction 1555 * that is either a NOP or call to the function tracer. It checks the ftrace 1556 * internal tables to determine if the address belongs or not. 1557 */ 1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1559 { 1560 struct dyn_ftrace *rec; 1561 1562 rec = lookup_rec(start, end); 1563 if (rec) 1564 return rec->ip; 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * ftrace_location - return the ftrace location 1571 * @ip: the instruction pointer to check 1572 * 1573 * If @ip matches the ftrace location, return @ip. 1574 * If @ip matches sym+0, return sym's ftrace location. 1575 * Otherwise, return 0. 1576 */ 1577 unsigned long ftrace_location(unsigned long ip) 1578 { 1579 struct dyn_ftrace *rec; 1580 unsigned long offset; 1581 unsigned long size; 1582 1583 rec = lookup_rec(ip, ip); 1584 if (!rec) { 1585 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1586 goto out; 1587 1588 /* map sym+0 to __fentry__ */ 1589 if (!offset) 1590 rec = lookup_rec(ip, ip + size - 1); 1591 } 1592 1593 if (rec) 1594 return rec->ip; 1595 1596 out: 1597 return 0; 1598 } 1599 1600 /** 1601 * ftrace_text_reserved - return true if range contains an ftrace location 1602 * @start: start of range to search 1603 * @end: end of range to search (inclusive). @end points to the last byte to check. 1604 * 1605 * Returns 1 if @start and @end contains a ftrace location. 1606 * That is, the instruction that is either a NOP or call to 1607 * the function tracer. It checks the ftrace internal tables to 1608 * determine if the address belongs or not. 1609 */ 1610 int ftrace_text_reserved(const void *start, const void *end) 1611 { 1612 unsigned long ret; 1613 1614 ret = ftrace_location_range((unsigned long)start, 1615 (unsigned long)end); 1616 1617 return (int)!!ret; 1618 } 1619 1620 /* Test if ops registered to this rec needs regs */ 1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1622 { 1623 struct ftrace_ops *ops; 1624 bool keep_regs = false; 1625 1626 for (ops = ftrace_ops_list; 1627 ops != &ftrace_list_end; ops = ops->next) { 1628 /* pass rec in as regs to have non-NULL val */ 1629 if (ftrace_ops_test(ops, rec->ip, rec)) { 1630 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1631 keep_regs = true; 1632 break; 1633 } 1634 } 1635 } 1636 1637 return keep_regs; 1638 } 1639 1640 static struct ftrace_ops * 1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1642 static struct ftrace_ops * 1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1644 static struct ftrace_ops * 1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1646 1647 static bool skip_record(struct dyn_ftrace *rec) 1648 { 1649 /* 1650 * At boot up, weak functions are set to disable. Function tracing 1651 * can be enabled before they are, and they still need to be disabled now. 1652 * If the record is disabled, still continue if it is marked as already 1653 * enabled (this is needed to keep the accounting working). 1654 */ 1655 return rec->flags & FTRACE_FL_DISABLED && 1656 !(rec->flags & FTRACE_FL_ENABLED); 1657 } 1658 1659 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1660 int filter_hash, 1661 bool inc) 1662 { 1663 struct ftrace_hash *hash; 1664 struct ftrace_hash *other_hash; 1665 struct ftrace_page *pg; 1666 struct dyn_ftrace *rec; 1667 bool update = false; 1668 int count = 0; 1669 int all = false; 1670 1671 /* Only update if the ops has been registered */ 1672 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1673 return false; 1674 1675 /* 1676 * In the filter_hash case: 1677 * If the count is zero, we update all records. 1678 * Otherwise we just update the items in the hash. 1679 * 1680 * In the notrace_hash case: 1681 * We enable the update in the hash. 1682 * As disabling notrace means enabling the tracing, 1683 * and enabling notrace means disabling, the inc variable 1684 * gets inversed. 1685 */ 1686 if (filter_hash) { 1687 hash = ops->func_hash->filter_hash; 1688 other_hash = ops->func_hash->notrace_hash; 1689 if (ftrace_hash_empty(hash)) 1690 all = true; 1691 } else { 1692 inc = !inc; 1693 hash = ops->func_hash->notrace_hash; 1694 other_hash = ops->func_hash->filter_hash; 1695 /* 1696 * If the notrace hash has no items, 1697 * then there's nothing to do. 1698 */ 1699 if (ftrace_hash_empty(hash)) 1700 return false; 1701 } 1702 1703 do_for_each_ftrace_rec(pg, rec) { 1704 int in_other_hash = 0; 1705 int in_hash = 0; 1706 int match = 0; 1707 1708 if (skip_record(rec)) 1709 continue; 1710 1711 if (all) { 1712 /* 1713 * Only the filter_hash affects all records. 1714 * Update if the record is not in the notrace hash. 1715 */ 1716 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1717 match = 1; 1718 } else { 1719 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1720 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1721 1722 /* 1723 * If filter_hash is set, we want to match all functions 1724 * that are in the hash but not in the other hash. 1725 * 1726 * If filter_hash is not set, then we are decrementing. 1727 * That means we match anything that is in the hash 1728 * and also in the other_hash. That is, we need to turn 1729 * off functions in the other hash because they are disabled 1730 * by this hash. 1731 */ 1732 if (filter_hash && in_hash && !in_other_hash) 1733 match = 1; 1734 else if (!filter_hash && in_hash && 1735 (in_other_hash || ftrace_hash_empty(other_hash))) 1736 match = 1; 1737 } 1738 if (!match) 1739 continue; 1740 1741 if (inc) { 1742 rec->flags++; 1743 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1744 return false; 1745 1746 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1747 rec->flags |= FTRACE_FL_DIRECT; 1748 1749 /* 1750 * If there's only a single callback registered to a 1751 * function, and the ops has a trampoline registered 1752 * for it, then we can call it directly. 1753 */ 1754 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1755 rec->flags |= FTRACE_FL_TRAMP; 1756 else 1757 /* 1758 * If we are adding another function callback 1759 * to this function, and the previous had a 1760 * custom trampoline in use, then we need to go 1761 * back to the default trampoline. 1762 */ 1763 rec->flags &= ~FTRACE_FL_TRAMP; 1764 1765 /* 1766 * If any ops wants regs saved for this function 1767 * then all ops will get saved regs. 1768 */ 1769 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1770 rec->flags |= FTRACE_FL_REGS; 1771 } else { 1772 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1773 return false; 1774 rec->flags--; 1775 1776 /* 1777 * Only the internal direct_ops should have the 1778 * DIRECT flag set. Thus, if it is removing a 1779 * function, then that function should no longer 1780 * be direct. 1781 */ 1782 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1783 rec->flags &= ~FTRACE_FL_DIRECT; 1784 1785 /* 1786 * If the rec had REGS enabled and the ops that is 1787 * being removed had REGS set, then see if there is 1788 * still any ops for this record that wants regs. 1789 * If not, we can stop recording them. 1790 */ 1791 if (ftrace_rec_count(rec) > 0 && 1792 rec->flags & FTRACE_FL_REGS && 1793 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1794 if (!test_rec_ops_needs_regs(rec)) 1795 rec->flags &= ~FTRACE_FL_REGS; 1796 } 1797 1798 /* 1799 * The TRAMP needs to be set only if rec count 1800 * is decremented to one, and the ops that is 1801 * left has a trampoline. As TRAMP can only be 1802 * enabled if there is only a single ops attached 1803 * to it. 1804 */ 1805 if (ftrace_rec_count(rec) == 1 && 1806 ftrace_find_tramp_ops_any_other(rec, ops)) 1807 rec->flags |= FTRACE_FL_TRAMP; 1808 else 1809 rec->flags &= ~FTRACE_FL_TRAMP; 1810 1811 /* 1812 * flags will be cleared in ftrace_check_record() 1813 * if rec count is zero. 1814 */ 1815 } 1816 count++; 1817 1818 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1819 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1820 1821 /* Shortcut, if we handled all records, we are done. */ 1822 if (!all && count == hash->count) 1823 return update; 1824 } while_for_each_ftrace_rec(); 1825 1826 return update; 1827 } 1828 1829 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1830 int filter_hash) 1831 { 1832 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1833 } 1834 1835 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1836 int filter_hash) 1837 { 1838 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1839 } 1840 1841 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1842 int filter_hash, int inc) 1843 { 1844 struct ftrace_ops *op; 1845 1846 __ftrace_hash_rec_update(ops, filter_hash, inc); 1847 1848 if (ops->func_hash != &global_ops.local_hash) 1849 return; 1850 1851 /* 1852 * If the ops shares the global_ops hash, then we need to update 1853 * all ops that are enabled and use this hash. 1854 */ 1855 do_for_each_ftrace_op(op, ftrace_ops_list) { 1856 /* Already done */ 1857 if (op == ops) 1858 continue; 1859 if (op->func_hash == &global_ops.local_hash) 1860 __ftrace_hash_rec_update(op, filter_hash, inc); 1861 } while_for_each_ftrace_op(op); 1862 } 1863 1864 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1865 int filter_hash) 1866 { 1867 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1868 } 1869 1870 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1871 int filter_hash) 1872 { 1873 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1874 } 1875 1876 /* 1877 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1878 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1879 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1880 * Note that old_hash and new_hash has below meanings 1881 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1882 * - If the hash is EMPTY_HASH, it hits nothing 1883 * - Anything else hits the recs which match the hash entries. 1884 * 1885 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1886 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1887 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1888 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1889 * the return value to the caller and eventually to the owner of the DIRECT 1890 * ops. 1891 */ 1892 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1893 struct ftrace_hash *old_hash, 1894 struct ftrace_hash *new_hash) 1895 { 1896 struct ftrace_page *pg; 1897 struct dyn_ftrace *rec, *end = NULL; 1898 int in_old, in_new; 1899 bool is_ipmodify, is_direct; 1900 1901 /* Only update if the ops has been registered */ 1902 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1903 return 0; 1904 1905 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1906 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1907 1908 /* neither IPMODIFY nor DIRECT, skip */ 1909 if (!is_ipmodify && !is_direct) 1910 return 0; 1911 1912 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1913 return 0; 1914 1915 /* 1916 * Since the IPMODIFY and DIRECT are very address sensitive 1917 * actions, we do not allow ftrace_ops to set all functions to new 1918 * hash. 1919 */ 1920 if (!new_hash || !old_hash) 1921 return -EINVAL; 1922 1923 /* Update rec->flags */ 1924 do_for_each_ftrace_rec(pg, rec) { 1925 1926 if (rec->flags & FTRACE_FL_DISABLED) 1927 continue; 1928 1929 /* We need to update only differences of filter_hash */ 1930 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1931 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1932 if (in_old == in_new) 1933 continue; 1934 1935 if (in_new) { 1936 if (rec->flags & FTRACE_FL_IPMODIFY) { 1937 int ret; 1938 1939 /* Cannot have two ipmodify on same rec */ 1940 if (is_ipmodify) 1941 goto rollback; 1942 1943 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 1944 1945 /* 1946 * Another ops with IPMODIFY is already 1947 * attached. We are now attaching a direct 1948 * ops. Run SHARE_IPMODIFY_SELF, to check 1949 * whether sharing is supported. 1950 */ 1951 if (!ops->ops_func) 1952 return -EBUSY; 1953 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 1954 if (ret) 1955 return ret; 1956 } else if (is_ipmodify) { 1957 rec->flags |= FTRACE_FL_IPMODIFY; 1958 } 1959 } else if (is_ipmodify) { 1960 rec->flags &= ~FTRACE_FL_IPMODIFY; 1961 } 1962 } while_for_each_ftrace_rec(); 1963 1964 return 0; 1965 1966 rollback: 1967 end = rec; 1968 1969 /* Roll back what we did above */ 1970 do_for_each_ftrace_rec(pg, rec) { 1971 1972 if (rec->flags & FTRACE_FL_DISABLED) 1973 continue; 1974 1975 if (rec == end) 1976 goto err_out; 1977 1978 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1979 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1980 if (in_old == in_new) 1981 continue; 1982 1983 if (in_new) 1984 rec->flags &= ~FTRACE_FL_IPMODIFY; 1985 else 1986 rec->flags |= FTRACE_FL_IPMODIFY; 1987 } while_for_each_ftrace_rec(); 1988 1989 err_out: 1990 return -EBUSY; 1991 } 1992 1993 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1994 { 1995 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1996 1997 if (ftrace_hash_empty(hash)) 1998 hash = NULL; 1999 2000 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2001 } 2002 2003 /* Disabling always succeeds */ 2004 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2005 { 2006 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2007 2008 if (ftrace_hash_empty(hash)) 2009 hash = NULL; 2010 2011 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2012 } 2013 2014 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2015 struct ftrace_hash *new_hash) 2016 { 2017 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2018 2019 if (ftrace_hash_empty(old_hash)) 2020 old_hash = NULL; 2021 2022 if (ftrace_hash_empty(new_hash)) 2023 new_hash = NULL; 2024 2025 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2026 } 2027 2028 static void print_ip_ins(const char *fmt, const unsigned char *p) 2029 { 2030 char ins[MCOUNT_INSN_SIZE]; 2031 2032 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2033 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2034 return; 2035 } 2036 2037 printk(KERN_CONT "%s", fmt); 2038 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2039 } 2040 2041 enum ftrace_bug_type ftrace_bug_type; 2042 const void *ftrace_expected; 2043 2044 static void print_bug_type(void) 2045 { 2046 switch (ftrace_bug_type) { 2047 case FTRACE_BUG_UNKNOWN: 2048 break; 2049 case FTRACE_BUG_INIT: 2050 pr_info("Initializing ftrace call sites\n"); 2051 break; 2052 case FTRACE_BUG_NOP: 2053 pr_info("Setting ftrace call site to NOP\n"); 2054 break; 2055 case FTRACE_BUG_CALL: 2056 pr_info("Setting ftrace call site to call ftrace function\n"); 2057 break; 2058 case FTRACE_BUG_UPDATE: 2059 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2060 break; 2061 } 2062 } 2063 2064 /** 2065 * ftrace_bug - report and shutdown function tracer 2066 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2067 * @rec: The record that failed 2068 * 2069 * The arch code that enables or disables the function tracing 2070 * can call ftrace_bug() when it has detected a problem in 2071 * modifying the code. @failed should be one of either: 2072 * EFAULT - if the problem happens on reading the @ip address 2073 * EINVAL - if what is read at @ip is not what was expected 2074 * EPERM - if the problem happens on writing to the @ip address 2075 */ 2076 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2077 { 2078 unsigned long ip = rec ? rec->ip : 0; 2079 2080 pr_info("------------[ ftrace bug ]------------\n"); 2081 2082 switch (failed) { 2083 case -EFAULT: 2084 pr_info("ftrace faulted on modifying "); 2085 print_ip_sym(KERN_INFO, ip); 2086 break; 2087 case -EINVAL: 2088 pr_info("ftrace failed to modify "); 2089 print_ip_sym(KERN_INFO, ip); 2090 print_ip_ins(" actual: ", (unsigned char *)ip); 2091 pr_cont("\n"); 2092 if (ftrace_expected) { 2093 print_ip_ins(" expected: ", ftrace_expected); 2094 pr_cont("\n"); 2095 } 2096 break; 2097 case -EPERM: 2098 pr_info("ftrace faulted on writing "); 2099 print_ip_sym(KERN_INFO, ip); 2100 break; 2101 default: 2102 pr_info("ftrace faulted on unknown error "); 2103 print_ip_sym(KERN_INFO, ip); 2104 } 2105 print_bug_type(); 2106 if (rec) { 2107 struct ftrace_ops *ops = NULL; 2108 2109 pr_info("ftrace record flags: %lx\n", rec->flags); 2110 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2111 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2112 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2113 ops = ftrace_find_tramp_ops_any(rec); 2114 if (ops) { 2115 do { 2116 pr_cont("\ttramp: %pS (%pS)", 2117 (void *)ops->trampoline, 2118 (void *)ops->func); 2119 ops = ftrace_find_tramp_ops_next(rec, ops); 2120 } while (ops); 2121 } else 2122 pr_cont("\ttramp: ERROR!"); 2123 2124 } 2125 ip = ftrace_get_addr_curr(rec); 2126 pr_cont("\n expected tramp: %lx\n", ip); 2127 } 2128 2129 FTRACE_WARN_ON_ONCE(1); 2130 } 2131 2132 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2133 { 2134 unsigned long flag = 0UL; 2135 2136 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2137 2138 if (skip_record(rec)) 2139 return FTRACE_UPDATE_IGNORE; 2140 2141 /* 2142 * If we are updating calls: 2143 * 2144 * If the record has a ref count, then we need to enable it 2145 * because someone is using it. 2146 * 2147 * Otherwise we make sure its disabled. 2148 * 2149 * If we are disabling calls, then disable all records that 2150 * are enabled. 2151 */ 2152 if (enable && ftrace_rec_count(rec)) 2153 flag = FTRACE_FL_ENABLED; 2154 2155 /* 2156 * If enabling and the REGS flag does not match the REGS_EN, or 2157 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2158 * this record. Set flags to fail the compare against ENABLED. 2159 * Same for direct calls. 2160 */ 2161 if (flag) { 2162 if (!(rec->flags & FTRACE_FL_REGS) != 2163 !(rec->flags & FTRACE_FL_REGS_EN)) 2164 flag |= FTRACE_FL_REGS; 2165 2166 if (!(rec->flags & FTRACE_FL_TRAMP) != 2167 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2168 flag |= FTRACE_FL_TRAMP; 2169 2170 /* 2171 * Direct calls are special, as count matters. 2172 * We must test the record for direct, if the 2173 * DIRECT and DIRECT_EN do not match, but only 2174 * if the count is 1. That's because, if the 2175 * count is something other than one, we do not 2176 * want the direct enabled (it will be done via the 2177 * direct helper). But if DIRECT_EN is set, and 2178 * the count is not one, we need to clear it. 2179 */ 2180 if (ftrace_rec_count(rec) == 1) { 2181 if (!(rec->flags & FTRACE_FL_DIRECT) != 2182 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2183 flag |= FTRACE_FL_DIRECT; 2184 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2185 flag |= FTRACE_FL_DIRECT; 2186 } 2187 } 2188 2189 /* If the state of this record hasn't changed, then do nothing */ 2190 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2191 return FTRACE_UPDATE_IGNORE; 2192 2193 if (flag) { 2194 /* Save off if rec is being enabled (for return value) */ 2195 flag ^= rec->flags & FTRACE_FL_ENABLED; 2196 2197 if (update) { 2198 rec->flags |= FTRACE_FL_ENABLED; 2199 if (flag & FTRACE_FL_REGS) { 2200 if (rec->flags & FTRACE_FL_REGS) 2201 rec->flags |= FTRACE_FL_REGS_EN; 2202 else 2203 rec->flags &= ~FTRACE_FL_REGS_EN; 2204 } 2205 if (flag & FTRACE_FL_TRAMP) { 2206 if (rec->flags & FTRACE_FL_TRAMP) 2207 rec->flags |= FTRACE_FL_TRAMP_EN; 2208 else 2209 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2210 } 2211 2212 if (flag & FTRACE_FL_DIRECT) { 2213 /* 2214 * If there's only one user (direct_ops helper) 2215 * then we can call the direct function 2216 * directly (no ftrace trampoline). 2217 */ 2218 if (ftrace_rec_count(rec) == 1) { 2219 if (rec->flags & FTRACE_FL_DIRECT) 2220 rec->flags |= FTRACE_FL_DIRECT_EN; 2221 else 2222 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2223 } else { 2224 /* 2225 * Can only call directly if there's 2226 * only one callback to the function. 2227 */ 2228 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2229 } 2230 } 2231 } 2232 2233 /* 2234 * If this record is being updated from a nop, then 2235 * return UPDATE_MAKE_CALL. 2236 * Otherwise, 2237 * return UPDATE_MODIFY_CALL to tell the caller to convert 2238 * from the save regs, to a non-save regs function or 2239 * vice versa, or from a trampoline call. 2240 */ 2241 if (flag & FTRACE_FL_ENABLED) { 2242 ftrace_bug_type = FTRACE_BUG_CALL; 2243 return FTRACE_UPDATE_MAKE_CALL; 2244 } 2245 2246 ftrace_bug_type = FTRACE_BUG_UPDATE; 2247 return FTRACE_UPDATE_MODIFY_CALL; 2248 } 2249 2250 if (update) { 2251 /* If there's no more users, clear all flags */ 2252 if (!ftrace_rec_count(rec)) 2253 rec->flags &= FTRACE_FL_DISABLED; 2254 else 2255 /* 2256 * Just disable the record, but keep the ops TRAMP 2257 * and REGS states. The _EN flags must be disabled though. 2258 */ 2259 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2260 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2261 } 2262 2263 ftrace_bug_type = FTRACE_BUG_NOP; 2264 return FTRACE_UPDATE_MAKE_NOP; 2265 } 2266 2267 /** 2268 * ftrace_update_record - set a record that now is tracing or not 2269 * @rec: the record to update 2270 * @enable: set to true if the record is tracing, false to force disable 2271 * 2272 * The records that represent all functions that can be traced need 2273 * to be updated when tracing has been enabled. 2274 */ 2275 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2276 { 2277 return ftrace_check_record(rec, enable, true); 2278 } 2279 2280 /** 2281 * ftrace_test_record - check if the record has been enabled or not 2282 * @rec: the record to test 2283 * @enable: set to true to check if enabled, false if it is disabled 2284 * 2285 * The arch code may need to test if a record is already set to 2286 * tracing to determine how to modify the function code that it 2287 * represents. 2288 */ 2289 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2290 { 2291 return ftrace_check_record(rec, enable, false); 2292 } 2293 2294 static struct ftrace_ops * 2295 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2296 { 2297 struct ftrace_ops *op; 2298 unsigned long ip = rec->ip; 2299 2300 do_for_each_ftrace_op(op, ftrace_ops_list) { 2301 2302 if (!op->trampoline) 2303 continue; 2304 2305 if (hash_contains_ip(ip, op->func_hash)) 2306 return op; 2307 } while_for_each_ftrace_op(op); 2308 2309 return NULL; 2310 } 2311 2312 static struct ftrace_ops * 2313 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2314 { 2315 struct ftrace_ops *op; 2316 unsigned long ip = rec->ip; 2317 2318 do_for_each_ftrace_op(op, ftrace_ops_list) { 2319 2320 if (op == op_exclude || !op->trampoline) 2321 continue; 2322 2323 if (hash_contains_ip(ip, op->func_hash)) 2324 return op; 2325 } while_for_each_ftrace_op(op); 2326 2327 return NULL; 2328 } 2329 2330 static struct ftrace_ops * 2331 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2332 struct ftrace_ops *op) 2333 { 2334 unsigned long ip = rec->ip; 2335 2336 while_for_each_ftrace_op(op) { 2337 2338 if (!op->trampoline) 2339 continue; 2340 2341 if (hash_contains_ip(ip, op->func_hash)) 2342 return op; 2343 } 2344 2345 return NULL; 2346 } 2347 2348 static struct ftrace_ops * 2349 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2350 { 2351 struct ftrace_ops *op; 2352 unsigned long ip = rec->ip; 2353 2354 /* 2355 * Need to check removed ops first. 2356 * If they are being removed, and this rec has a tramp, 2357 * and this rec is in the ops list, then it would be the 2358 * one with the tramp. 2359 */ 2360 if (removed_ops) { 2361 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2362 return removed_ops; 2363 } 2364 2365 /* 2366 * Need to find the current trampoline for a rec. 2367 * Now, a trampoline is only attached to a rec if there 2368 * was a single 'ops' attached to it. But this can be called 2369 * when we are adding another op to the rec or removing the 2370 * current one. Thus, if the op is being added, we can 2371 * ignore it because it hasn't attached itself to the rec 2372 * yet. 2373 * 2374 * If an ops is being modified (hooking to different functions) 2375 * then we don't care about the new functions that are being 2376 * added, just the old ones (that are probably being removed). 2377 * 2378 * If we are adding an ops to a function that already is using 2379 * a trampoline, it needs to be removed (trampolines are only 2380 * for single ops connected), then an ops that is not being 2381 * modified also needs to be checked. 2382 */ 2383 do_for_each_ftrace_op(op, ftrace_ops_list) { 2384 2385 if (!op->trampoline) 2386 continue; 2387 2388 /* 2389 * If the ops is being added, it hasn't gotten to 2390 * the point to be removed from this tree yet. 2391 */ 2392 if (op->flags & FTRACE_OPS_FL_ADDING) 2393 continue; 2394 2395 2396 /* 2397 * If the ops is being modified and is in the old 2398 * hash, then it is probably being removed from this 2399 * function. 2400 */ 2401 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2402 hash_contains_ip(ip, &op->old_hash)) 2403 return op; 2404 /* 2405 * If the ops is not being added or modified, and it's 2406 * in its normal filter hash, then this must be the one 2407 * we want! 2408 */ 2409 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2410 hash_contains_ip(ip, op->func_hash)) 2411 return op; 2412 2413 } while_for_each_ftrace_op(op); 2414 2415 return NULL; 2416 } 2417 2418 static struct ftrace_ops * 2419 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2420 { 2421 struct ftrace_ops *op; 2422 unsigned long ip = rec->ip; 2423 2424 do_for_each_ftrace_op(op, ftrace_ops_list) { 2425 /* pass rec in as regs to have non-NULL val */ 2426 if (hash_contains_ip(ip, op->func_hash)) 2427 return op; 2428 } while_for_each_ftrace_op(op); 2429 2430 return NULL; 2431 } 2432 2433 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2434 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2435 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2436 static DEFINE_MUTEX(direct_mutex); 2437 int ftrace_direct_func_count; 2438 2439 /* 2440 * Search the direct_functions hash to see if the given instruction pointer 2441 * has a direct caller attached to it. 2442 */ 2443 unsigned long ftrace_find_rec_direct(unsigned long ip) 2444 { 2445 struct ftrace_func_entry *entry; 2446 2447 entry = __ftrace_lookup_ip(direct_functions, ip); 2448 if (!entry) 2449 return 0; 2450 2451 return entry->direct; 2452 } 2453 2454 static struct ftrace_func_entry* 2455 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2456 struct ftrace_hash **free_hash) 2457 { 2458 struct ftrace_func_entry *entry; 2459 2460 if (ftrace_hash_empty(direct_functions) || 2461 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2462 struct ftrace_hash *new_hash; 2463 int size = ftrace_hash_empty(direct_functions) ? 0 : 2464 direct_functions->count + 1; 2465 2466 if (size < 32) 2467 size = 32; 2468 2469 new_hash = dup_hash(direct_functions, size); 2470 if (!new_hash) 2471 return NULL; 2472 2473 *free_hash = direct_functions; 2474 direct_functions = new_hash; 2475 } 2476 2477 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2478 if (!entry) 2479 return NULL; 2480 2481 entry->ip = ip; 2482 entry->direct = addr; 2483 __add_hash_entry(direct_functions, entry); 2484 return entry; 2485 } 2486 2487 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2488 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2489 { 2490 struct pt_regs *regs = ftrace_get_regs(fregs); 2491 unsigned long addr; 2492 2493 addr = ftrace_find_rec_direct(ip); 2494 if (!addr) 2495 return; 2496 2497 arch_ftrace_set_direct_caller(regs, addr); 2498 } 2499 2500 struct ftrace_ops direct_ops = { 2501 .func = call_direct_funcs, 2502 .flags = FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2503 | FTRACE_OPS_FL_PERMANENT, 2504 /* 2505 * By declaring the main trampoline as this trampoline 2506 * it will never have one allocated for it. Allocated 2507 * trampolines should not call direct functions. 2508 * The direct_ops should only be called by the builtin 2509 * ftrace_regs_caller trampoline. 2510 */ 2511 .trampoline = FTRACE_REGS_ADDR, 2512 }; 2513 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2514 2515 /** 2516 * ftrace_get_addr_new - Get the call address to set to 2517 * @rec: The ftrace record descriptor 2518 * 2519 * If the record has the FTRACE_FL_REGS set, that means that it 2520 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2521 * is not set, then it wants to convert to the normal callback. 2522 * 2523 * Returns the address of the trampoline to set to 2524 */ 2525 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2526 { 2527 struct ftrace_ops *ops; 2528 unsigned long addr; 2529 2530 if ((rec->flags & FTRACE_FL_DIRECT) && 2531 (ftrace_rec_count(rec) == 1)) { 2532 addr = ftrace_find_rec_direct(rec->ip); 2533 if (addr) 2534 return addr; 2535 WARN_ON_ONCE(1); 2536 } 2537 2538 /* Trampolines take precedence over regs */ 2539 if (rec->flags & FTRACE_FL_TRAMP) { 2540 ops = ftrace_find_tramp_ops_new(rec); 2541 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2542 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2543 (void *)rec->ip, (void *)rec->ip, rec->flags); 2544 /* Ftrace is shutting down, return anything */ 2545 return (unsigned long)FTRACE_ADDR; 2546 } 2547 return ops->trampoline; 2548 } 2549 2550 if (rec->flags & FTRACE_FL_REGS) 2551 return (unsigned long)FTRACE_REGS_ADDR; 2552 else 2553 return (unsigned long)FTRACE_ADDR; 2554 } 2555 2556 /** 2557 * ftrace_get_addr_curr - Get the call address that is already there 2558 * @rec: The ftrace record descriptor 2559 * 2560 * The FTRACE_FL_REGS_EN is set when the record already points to 2561 * a function that saves all the regs. Basically the '_EN' version 2562 * represents the current state of the function. 2563 * 2564 * Returns the address of the trampoline that is currently being called 2565 */ 2566 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2567 { 2568 struct ftrace_ops *ops; 2569 unsigned long addr; 2570 2571 /* Direct calls take precedence over trampolines */ 2572 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2573 addr = ftrace_find_rec_direct(rec->ip); 2574 if (addr) 2575 return addr; 2576 WARN_ON_ONCE(1); 2577 } 2578 2579 /* Trampolines take precedence over regs */ 2580 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2581 ops = ftrace_find_tramp_ops_curr(rec); 2582 if (FTRACE_WARN_ON(!ops)) { 2583 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2584 (void *)rec->ip, (void *)rec->ip); 2585 /* Ftrace is shutting down, return anything */ 2586 return (unsigned long)FTRACE_ADDR; 2587 } 2588 return ops->trampoline; 2589 } 2590 2591 if (rec->flags & FTRACE_FL_REGS_EN) 2592 return (unsigned long)FTRACE_REGS_ADDR; 2593 else 2594 return (unsigned long)FTRACE_ADDR; 2595 } 2596 2597 static int 2598 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2599 { 2600 unsigned long ftrace_old_addr; 2601 unsigned long ftrace_addr; 2602 int ret; 2603 2604 ftrace_addr = ftrace_get_addr_new(rec); 2605 2606 /* This needs to be done before we call ftrace_update_record */ 2607 ftrace_old_addr = ftrace_get_addr_curr(rec); 2608 2609 ret = ftrace_update_record(rec, enable); 2610 2611 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2612 2613 switch (ret) { 2614 case FTRACE_UPDATE_IGNORE: 2615 return 0; 2616 2617 case FTRACE_UPDATE_MAKE_CALL: 2618 ftrace_bug_type = FTRACE_BUG_CALL; 2619 return ftrace_make_call(rec, ftrace_addr); 2620 2621 case FTRACE_UPDATE_MAKE_NOP: 2622 ftrace_bug_type = FTRACE_BUG_NOP; 2623 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2624 2625 case FTRACE_UPDATE_MODIFY_CALL: 2626 ftrace_bug_type = FTRACE_BUG_UPDATE; 2627 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2628 } 2629 2630 return -1; /* unknown ftrace bug */ 2631 } 2632 2633 void __weak ftrace_replace_code(int mod_flags) 2634 { 2635 struct dyn_ftrace *rec; 2636 struct ftrace_page *pg; 2637 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2638 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2639 int failed; 2640 2641 if (unlikely(ftrace_disabled)) 2642 return; 2643 2644 do_for_each_ftrace_rec(pg, rec) { 2645 2646 if (skip_record(rec)) 2647 continue; 2648 2649 failed = __ftrace_replace_code(rec, enable); 2650 if (failed) { 2651 ftrace_bug(failed, rec); 2652 /* Stop processing */ 2653 return; 2654 } 2655 if (schedulable) 2656 cond_resched(); 2657 } while_for_each_ftrace_rec(); 2658 } 2659 2660 struct ftrace_rec_iter { 2661 struct ftrace_page *pg; 2662 int index; 2663 }; 2664 2665 /** 2666 * ftrace_rec_iter_start - start up iterating over traced functions 2667 * 2668 * Returns an iterator handle that is used to iterate over all 2669 * the records that represent address locations where functions 2670 * are traced. 2671 * 2672 * May return NULL if no records are available. 2673 */ 2674 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2675 { 2676 /* 2677 * We only use a single iterator. 2678 * Protected by the ftrace_lock mutex. 2679 */ 2680 static struct ftrace_rec_iter ftrace_rec_iter; 2681 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2682 2683 iter->pg = ftrace_pages_start; 2684 iter->index = 0; 2685 2686 /* Could have empty pages */ 2687 while (iter->pg && !iter->pg->index) 2688 iter->pg = iter->pg->next; 2689 2690 if (!iter->pg) 2691 return NULL; 2692 2693 return iter; 2694 } 2695 2696 /** 2697 * ftrace_rec_iter_next - get the next record to process. 2698 * @iter: The handle to the iterator. 2699 * 2700 * Returns the next iterator after the given iterator @iter. 2701 */ 2702 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2703 { 2704 iter->index++; 2705 2706 if (iter->index >= iter->pg->index) { 2707 iter->pg = iter->pg->next; 2708 iter->index = 0; 2709 2710 /* Could have empty pages */ 2711 while (iter->pg && !iter->pg->index) 2712 iter->pg = iter->pg->next; 2713 } 2714 2715 if (!iter->pg) 2716 return NULL; 2717 2718 return iter; 2719 } 2720 2721 /** 2722 * ftrace_rec_iter_record - get the record at the iterator location 2723 * @iter: The current iterator location 2724 * 2725 * Returns the record that the current @iter is at. 2726 */ 2727 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2728 { 2729 return &iter->pg->records[iter->index]; 2730 } 2731 2732 static int 2733 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2734 { 2735 int ret; 2736 2737 if (unlikely(ftrace_disabled)) 2738 return 0; 2739 2740 ret = ftrace_init_nop(mod, rec); 2741 if (ret) { 2742 ftrace_bug_type = FTRACE_BUG_INIT; 2743 ftrace_bug(ret, rec); 2744 return 0; 2745 } 2746 return 1; 2747 } 2748 2749 /* 2750 * archs can override this function if they must do something 2751 * before the modifying code is performed. 2752 */ 2753 void __weak ftrace_arch_code_modify_prepare(void) 2754 { 2755 } 2756 2757 /* 2758 * archs can override this function if they must do something 2759 * after the modifying code is performed. 2760 */ 2761 void __weak ftrace_arch_code_modify_post_process(void) 2762 { 2763 } 2764 2765 void ftrace_modify_all_code(int command) 2766 { 2767 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2768 int mod_flags = 0; 2769 int err = 0; 2770 2771 if (command & FTRACE_MAY_SLEEP) 2772 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2773 2774 /* 2775 * If the ftrace_caller calls a ftrace_ops func directly, 2776 * we need to make sure that it only traces functions it 2777 * expects to trace. When doing the switch of functions, 2778 * we need to update to the ftrace_ops_list_func first 2779 * before the transition between old and new calls are set, 2780 * as the ftrace_ops_list_func will check the ops hashes 2781 * to make sure the ops are having the right functions 2782 * traced. 2783 */ 2784 if (update) { 2785 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2786 if (FTRACE_WARN_ON(err)) 2787 return; 2788 } 2789 2790 if (command & FTRACE_UPDATE_CALLS) 2791 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2792 else if (command & FTRACE_DISABLE_CALLS) 2793 ftrace_replace_code(mod_flags); 2794 2795 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2796 function_trace_op = set_function_trace_op; 2797 smp_wmb(); 2798 /* If irqs are disabled, we are in stop machine */ 2799 if (!irqs_disabled()) 2800 smp_call_function(ftrace_sync_ipi, NULL, 1); 2801 err = ftrace_update_ftrace_func(ftrace_trace_function); 2802 if (FTRACE_WARN_ON(err)) 2803 return; 2804 } 2805 2806 if (command & FTRACE_START_FUNC_RET) 2807 err = ftrace_enable_ftrace_graph_caller(); 2808 else if (command & FTRACE_STOP_FUNC_RET) 2809 err = ftrace_disable_ftrace_graph_caller(); 2810 FTRACE_WARN_ON(err); 2811 } 2812 2813 static int __ftrace_modify_code(void *data) 2814 { 2815 int *command = data; 2816 2817 ftrace_modify_all_code(*command); 2818 2819 return 0; 2820 } 2821 2822 /** 2823 * ftrace_run_stop_machine - go back to the stop machine method 2824 * @command: The command to tell ftrace what to do 2825 * 2826 * If an arch needs to fall back to the stop machine method, the 2827 * it can call this function. 2828 */ 2829 void ftrace_run_stop_machine(int command) 2830 { 2831 stop_machine(__ftrace_modify_code, &command, NULL); 2832 } 2833 2834 /** 2835 * arch_ftrace_update_code - modify the code to trace or not trace 2836 * @command: The command that needs to be done 2837 * 2838 * Archs can override this function if it does not need to 2839 * run stop_machine() to modify code. 2840 */ 2841 void __weak arch_ftrace_update_code(int command) 2842 { 2843 ftrace_run_stop_machine(command); 2844 } 2845 2846 static void ftrace_run_update_code(int command) 2847 { 2848 ftrace_arch_code_modify_prepare(); 2849 2850 /* 2851 * By default we use stop_machine() to modify the code. 2852 * But archs can do what ever they want as long as it 2853 * is safe. The stop_machine() is the safest, but also 2854 * produces the most overhead. 2855 */ 2856 arch_ftrace_update_code(command); 2857 2858 ftrace_arch_code_modify_post_process(); 2859 } 2860 2861 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2862 struct ftrace_ops_hash *old_hash) 2863 { 2864 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2865 ops->old_hash.filter_hash = old_hash->filter_hash; 2866 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2867 ftrace_run_update_code(command); 2868 ops->old_hash.filter_hash = NULL; 2869 ops->old_hash.notrace_hash = NULL; 2870 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2871 } 2872 2873 static ftrace_func_t saved_ftrace_func; 2874 static int ftrace_start_up; 2875 2876 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2877 { 2878 } 2879 2880 /* List of trace_ops that have allocated trampolines */ 2881 static LIST_HEAD(ftrace_ops_trampoline_list); 2882 2883 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2884 { 2885 lockdep_assert_held(&ftrace_lock); 2886 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2887 } 2888 2889 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2890 { 2891 lockdep_assert_held(&ftrace_lock); 2892 list_del_rcu(&ops->list); 2893 synchronize_rcu(); 2894 } 2895 2896 /* 2897 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2898 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2899 * not a module. 2900 */ 2901 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2902 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2903 2904 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2905 { 2906 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2907 ops->trampoline) { 2908 /* 2909 * Record the text poke event before the ksymbol unregister 2910 * event. 2911 */ 2912 perf_event_text_poke((void *)ops->trampoline, 2913 (void *)ops->trampoline, 2914 ops->trampoline_size, NULL, 0); 2915 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2916 ops->trampoline, ops->trampoline_size, 2917 true, FTRACE_TRAMPOLINE_SYM); 2918 /* Remove from kallsyms after the perf events */ 2919 ftrace_remove_trampoline_from_kallsyms(ops); 2920 } 2921 2922 arch_ftrace_trampoline_free(ops); 2923 } 2924 2925 static void ftrace_startup_enable(int command) 2926 { 2927 if (saved_ftrace_func != ftrace_trace_function) { 2928 saved_ftrace_func = ftrace_trace_function; 2929 command |= FTRACE_UPDATE_TRACE_FUNC; 2930 } 2931 2932 if (!command || !ftrace_enabled) 2933 return; 2934 2935 ftrace_run_update_code(command); 2936 } 2937 2938 static void ftrace_startup_all(int command) 2939 { 2940 update_all_ops = true; 2941 ftrace_startup_enable(command); 2942 update_all_ops = false; 2943 } 2944 2945 int ftrace_startup(struct ftrace_ops *ops, int command) 2946 { 2947 int ret; 2948 2949 if (unlikely(ftrace_disabled)) 2950 return -ENODEV; 2951 2952 ret = __register_ftrace_function(ops); 2953 if (ret) 2954 return ret; 2955 2956 ftrace_start_up++; 2957 2958 /* 2959 * Note that ftrace probes uses this to start up 2960 * and modify functions it will probe. But we still 2961 * set the ADDING flag for modification, as probes 2962 * do not have trampolines. If they add them in the 2963 * future, then the probes will need to distinguish 2964 * between adding and updating probes. 2965 */ 2966 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2967 2968 ret = ftrace_hash_ipmodify_enable(ops); 2969 if (ret < 0) { 2970 /* Rollback registration process */ 2971 __unregister_ftrace_function(ops); 2972 ftrace_start_up--; 2973 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2974 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2975 ftrace_trampoline_free(ops); 2976 return ret; 2977 } 2978 2979 if (ftrace_hash_rec_enable(ops, 1)) 2980 command |= FTRACE_UPDATE_CALLS; 2981 2982 ftrace_startup_enable(command); 2983 2984 /* 2985 * If ftrace is in an undefined state, we just remove ops from list 2986 * to prevent the NULL pointer, instead of totally rolling it back and 2987 * free trampoline, because those actions could cause further damage. 2988 */ 2989 if (unlikely(ftrace_disabled)) { 2990 __unregister_ftrace_function(ops); 2991 return -ENODEV; 2992 } 2993 2994 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2995 2996 return 0; 2997 } 2998 2999 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3000 { 3001 int ret; 3002 3003 if (unlikely(ftrace_disabled)) 3004 return -ENODEV; 3005 3006 ret = __unregister_ftrace_function(ops); 3007 if (ret) 3008 return ret; 3009 3010 ftrace_start_up--; 3011 /* 3012 * Just warn in case of unbalance, no need to kill ftrace, it's not 3013 * critical but the ftrace_call callers may be never nopped again after 3014 * further ftrace uses. 3015 */ 3016 WARN_ON_ONCE(ftrace_start_up < 0); 3017 3018 /* Disabling ipmodify never fails */ 3019 ftrace_hash_ipmodify_disable(ops); 3020 3021 if (ftrace_hash_rec_disable(ops, 1)) 3022 command |= FTRACE_UPDATE_CALLS; 3023 3024 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3025 3026 if (saved_ftrace_func != ftrace_trace_function) { 3027 saved_ftrace_func = ftrace_trace_function; 3028 command |= FTRACE_UPDATE_TRACE_FUNC; 3029 } 3030 3031 if (!command || !ftrace_enabled) { 3032 /* 3033 * If these are dynamic or per_cpu ops, they still 3034 * need their data freed. Since, function tracing is 3035 * not currently active, we can just free them 3036 * without synchronizing all CPUs. 3037 */ 3038 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 3039 goto free_ops; 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * If the ops uses a trampoline, then it needs to be 3046 * tested first on update. 3047 */ 3048 ops->flags |= FTRACE_OPS_FL_REMOVING; 3049 removed_ops = ops; 3050 3051 /* The trampoline logic checks the old hashes */ 3052 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3053 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3054 3055 ftrace_run_update_code(command); 3056 3057 /* 3058 * If there's no more ops registered with ftrace, run a 3059 * sanity check to make sure all rec flags are cleared. 3060 */ 3061 if (rcu_dereference_protected(ftrace_ops_list, 3062 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3063 struct ftrace_page *pg; 3064 struct dyn_ftrace *rec; 3065 3066 do_for_each_ftrace_rec(pg, rec) { 3067 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3068 pr_warn(" %pS flags:%lx\n", 3069 (void *)rec->ip, rec->flags); 3070 } while_for_each_ftrace_rec(); 3071 } 3072 3073 ops->old_hash.filter_hash = NULL; 3074 ops->old_hash.notrace_hash = NULL; 3075 3076 removed_ops = NULL; 3077 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3078 3079 /* 3080 * Dynamic ops may be freed, we must make sure that all 3081 * callers are done before leaving this function. 3082 * The same goes for freeing the per_cpu data of the per_cpu 3083 * ops. 3084 */ 3085 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3086 /* 3087 * We need to do a hard force of sched synchronization. 3088 * This is because we use preempt_disable() to do RCU, but 3089 * the function tracers can be called where RCU is not watching 3090 * (like before user_exit()). We can not rely on the RCU 3091 * infrastructure to do the synchronization, thus we must do it 3092 * ourselves. 3093 */ 3094 synchronize_rcu_tasks_rude(); 3095 3096 /* 3097 * When the kernel is preemptive, tasks can be preempted 3098 * while on a ftrace trampoline. Just scheduling a task on 3099 * a CPU is not good enough to flush them. Calling 3100 * synchronize_rcu_tasks() will wait for those tasks to 3101 * execute and either schedule voluntarily or enter user space. 3102 */ 3103 if (IS_ENABLED(CONFIG_PREEMPTION)) 3104 synchronize_rcu_tasks(); 3105 3106 free_ops: 3107 ftrace_trampoline_free(ops); 3108 } 3109 3110 return 0; 3111 } 3112 3113 static u64 ftrace_update_time; 3114 unsigned long ftrace_update_tot_cnt; 3115 unsigned long ftrace_number_of_pages; 3116 unsigned long ftrace_number_of_groups; 3117 3118 static inline int ops_traces_mod(struct ftrace_ops *ops) 3119 { 3120 /* 3121 * Filter_hash being empty will default to trace module. 3122 * But notrace hash requires a test of individual module functions. 3123 */ 3124 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3125 ftrace_hash_empty(ops->func_hash->notrace_hash); 3126 } 3127 3128 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3129 { 3130 bool init_nop = ftrace_need_init_nop(); 3131 struct ftrace_page *pg; 3132 struct dyn_ftrace *p; 3133 u64 start, stop; 3134 unsigned long update_cnt = 0; 3135 unsigned long rec_flags = 0; 3136 int i; 3137 3138 start = ftrace_now(raw_smp_processor_id()); 3139 3140 /* 3141 * When a module is loaded, this function is called to convert 3142 * the calls to mcount in its text to nops, and also to create 3143 * an entry in the ftrace data. Now, if ftrace is activated 3144 * after this call, but before the module sets its text to 3145 * read-only, the modification of enabling ftrace can fail if 3146 * the read-only is done while ftrace is converting the calls. 3147 * To prevent this, the module's records are set as disabled 3148 * and will be enabled after the call to set the module's text 3149 * to read-only. 3150 */ 3151 if (mod) 3152 rec_flags |= FTRACE_FL_DISABLED; 3153 3154 for (pg = new_pgs; pg; pg = pg->next) { 3155 3156 for (i = 0; i < pg->index; i++) { 3157 3158 /* If something went wrong, bail without enabling anything */ 3159 if (unlikely(ftrace_disabled)) 3160 return -1; 3161 3162 p = &pg->records[i]; 3163 p->flags = rec_flags; 3164 3165 /* 3166 * Do the initial record conversion from mcount jump 3167 * to the NOP instructions. 3168 */ 3169 if (init_nop && !ftrace_nop_initialize(mod, p)) 3170 break; 3171 3172 update_cnt++; 3173 } 3174 } 3175 3176 stop = ftrace_now(raw_smp_processor_id()); 3177 ftrace_update_time = stop - start; 3178 ftrace_update_tot_cnt += update_cnt; 3179 3180 return 0; 3181 } 3182 3183 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3184 { 3185 int order; 3186 int pages; 3187 int cnt; 3188 3189 if (WARN_ON(!count)) 3190 return -EINVAL; 3191 3192 /* We want to fill as much as possible, with no empty pages */ 3193 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3194 order = fls(pages) - 1; 3195 3196 again: 3197 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3198 3199 if (!pg->records) { 3200 /* if we can't allocate this size, try something smaller */ 3201 if (!order) 3202 return -ENOMEM; 3203 order >>= 1; 3204 goto again; 3205 } 3206 3207 ftrace_number_of_pages += 1 << order; 3208 ftrace_number_of_groups++; 3209 3210 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3211 pg->order = order; 3212 3213 if (cnt > count) 3214 cnt = count; 3215 3216 return cnt; 3217 } 3218 3219 static struct ftrace_page * 3220 ftrace_allocate_pages(unsigned long num_to_init) 3221 { 3222 struct ftrace_page *start_pg; 3223 struct ftrace_page *pg; 3224 int cnt; 3225 3226 if (!num_to_init) 3227 return NULL; 3228 3229 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3230 if (!pg) 3231 return NULL; 3232 3233 /* 3234 * Try to allocate as much as possible in one continues 3235 * location that fills in all of the space. We want to 3236 * waste as little space as possible. 3237 */ 3238 for (;;) { 3239 cnt = ftrace_allocate_records(pg, num_to_init); 3240 if (cnt < 0) 3241 goto free_pages; 3242 3243 num_to_init -= cnt; 3244 if (!num_to_init) 3245 break; 3246 3247 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3248 if (!pg->next) 3249 goto free_pages; 3250 3251 pg = pg->next; 3252 } 3253 3254 return start_pg; 3255 3256 free_pages: 3257 pg = start_pg; 3258 while (pg) { 3259 if (pg->records) { 3260 free_pages((unsigned long)pg->records, pg->order); 3261 ftrace_number_of_pages -= 1 << pg->order; 3262 } 3263 start_pg = pg->next; 3264 kfree(pg); 3265 pg = start_pg; 3266 ftrace_number_of_groups--; 3267 } 3268 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3269 return NULL; 3270 } 3271 3272 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3273 3274 struct ftrace_iterator { 3275 loff_t pos; 3276 loff_t func_pos; 3277 loff_t mod_pos; 3278 struct ftrace_page *pg; 3279 struct dyn_ftrace *func; 3280 struct ftrace_func_probe *probe; 3281 struct ftrace_func_entry *probe_entry; 3282 struct trace_parser parser; 3283 struct ftrace_hash *hash; 3284 struct ftrace_ops *ops; 3285 struct trace_array *tr; 3286 struct list_head *mod_list; 3287 int pidx; 3288 int idx; 3289 unsigned flags; 3290 }; 3291 3292 static void * 3293 t_probe_next(struct seq_file *m, loff_t *pos) 3294 { 3295 struct ftrace_iterator *iter = m->private; 3296 struct trace_array *tr = iter->ops->private; 3297 struct list_head *func_probes; 3298 struct ftrace_hash *hash; 3299 struct list_head *next; 3300 struct hlist_node *hnd = NULL; 3301 struct hlist_head *hhd; 3302 int size; 3303 3304 (*pos)++; 3305 iter->pos = *pos; 3306 3307 if (!tr) 3308 return NULL; 3309 3310 func_probes = &tr->func_probes; 3311 if (list_empty(func_probes)) 3312 return NULL; 3313 3314 if (!iter->probe) { 3315 next = func_probes->next; 3316 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3317 } 3318 3319 if (iter->probe_entry) 3320 hnd = &iter->probe_entry->hlist; 3321 3322 hash = iter->probe->ops.func_hash->filter_hash; 3323 3324 /* 3325 * A probe being registered may temporarily have an empty hash 3326 * and it's at the end of the func_probes list. 3327 */ 3328 if (!hash || hash == EMPTY_HASH) 3329 return NULL; 3330 3331 size = 1 << hash->size_bits; 3332 3333 retry: 3334 if (iter->pidx >= size) { 3335 if (iter->probe->list.next == func_probes) 3336 return NULL; 3337 next = iter->probe->list.next; 3338 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3339 hash = iter->probe->ops.func_hash->filter_hash; 3340 size = 1 << hash->size_bits; 3341 iter->pidx = 0; 3342 } 3343 3344 hhd = &hash->buckets[iter->pidx]; 3345 3346 if (hlist_empty(hhd)) { 3347 iter->pidx++; 3348 hnd = NULL; 3349 goto retry; 3350 } 3351 3352 if (!hnd) 3353 hnd = hhd->first; 3354 else { 3355 hnd = hnd->next; 3356 if (!hnd) { 3357 iter->pidx++; 3358 goto retry; 3359 } 3360 } 3361 3362 if (WARN_ON_ONCE(!hnd)) 3363 return NULL; 3364 3365 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3366 3367 return iter; 3368 } 3369 3370 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3371 { 3372 struct ftrace_iterator *iter = m->private; 3373 void *p = NULL; 3374 loff_t l; 3375 3376 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3377 return NULL; 3378 3379 if (iter->mod_pos > *pos) 3380 return NULL; 3381 3382 iter->probe = NULL; 3383 iter->probe_entry = NULL; 3384 iter->pidx = 0; 3385 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3386 p = t_probe_next(m, &l); 3387 if (!p) 3388 break; 3389 } 3390 if (!p) 3391 return NULL; 3392 3393 /* Only set this if we have an item */ 3394 iter->flags |= FTRACE_ITER_PROBE; 3395 3396 return iter; 3397 } 3398 3399 static int 3400 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3401 { 3402 struct ftrace_func_entry *probe_entry; 3403 struct ftrace_probe_ops *probe_ops; 3404 struct ftrace_func_probe *probe; 3405 3406 probe = iter->probe; 3407 probe_entry = iter->probe_entry; 3408 3409 if (WARN_ON_ONCE(!probe || !probe_entry)) 3410 return -EIO; 3411 3412 probe_ops = probe->probe_ops; 3413 3414 if (probe_ops->print) 3415 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3416 3417 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3418 (void *)probe_ops->func); 3419 3420 return 0; 3421 } 3422 3423 static void * 3424 t_mod_next(struct seq_file *m, loff_t *pos) 3425 { 3426 struct ftrace_iterator *iter = m->private; 3427 struct trace_array *tr = iter->tr; 3428 3429 (*pos)++; 3430 iter->pos = *pos; 3431 3432 iter->mod_list = iter->mod_list->next; 3433 3434 if (iter->mod_list == &tr->mod_trace || 3435 iter->mod_list == &tr->mod_notrace) { 3436 iter->flags &= ~FTRACE_ITER_MOD; 3437 return NULL; 3438 } 3439 3440 iter->mod_pos = *pos; 3441 3442 return iter; 3443 } 3444 3445 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3446 { 3447 struct ftrace_iterator *iter = m->private; 3448 void *p = NULL; 3449 loff_t l; 3450 3451 if (iter->func_pos > *pos) 3452 return NULL; 3453 3454 iter->mod_pos = iter->func_pos; 3455 3456 /* probes are only available if tr is set */ 3457 if (!iter->tr) 3458 return NULL; 3459 3460 for (l = 0; l <= (*pos - iter->func_pos); ) { 3461 p = t_mod_next(m, &l); 3462 if (!p) 3463 break; 3464 } 3465 if (!p) { 3466 iter->flags &= ~FTRACE_ITER_MOD; 3467 return t_probe_start(m, pos); 3468 } 3469 3470 /* Only set this if we have an item */ 3471 iter->flags |= FTRACE_ITER_MOD; 3472 3473 return iter; 3474 } 3475 3476 static int 3477 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3478 { 3479 struct ftrace_mod_load *ftrace_mod; 3480 struct trace_array *tr = iter->tr; 3481 3482 if (WARN_ON_ONCE(!iter->mod_list) || 3483 iter->mod_list == &tr->mod_trace || 3484 iter->mod_list == &tr->mod_notrace) 3485 return -EIO; 3486 3487 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3488 3489 if (ftrace_mod->func) 3490 seq_printf(m, "%s", ftrace_mod->func); 3491 else 3492 seq_putc(m, '*'); 3493 3494 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3495 3496 return 0; 3497 } 3498 3499 static void * 3500 t_func_next(struct seq_file *m, loff_t *pos) 3501 { 3502 struct ftrace_iterator *iter = m->private; 3503 struct dyn_ftrace *rec = NULL; 3504 3505 (*pos)++; 3506 3507 retry: 3508 if (iter->idx >= iter->pg->index) { 3509 if (iter->pg->next) { 3510 iter->pg = iter->pg->next; 3511 iter->idx = 0; 3512 goto retry; 3513 } 3514 } else { 3515 rec = &iter->pg->records[iter->idx++]; 3516 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3517 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3518 3519 ((iter->flags & FTRACE_ITER_ENABLED) && 3520 !(rec->flags & FTRACE_FL_ENABLED))) { 3521 3522 rec = NULL; 3523 goto retry; 3524 } 3525 } 3526 3527 if (!rec) 3528 return NULL; 3529 3530 iter->pos = iter->func_pos = *pos; 3531 iter->func = rec; 3532 3533 return iter; 3534 } 3535 3536 static void * 3537 t_next(struct seq_file *m, void *v, loff_t *pos) 3538 { 3539 struct ftrace_iterator *iter = m->private; 3540 loff_t l = *pos; /* t_probe_start() must use original pos */ 3541 void *ret; 3542 3543 if (unlikely(ftrace_disabled)) 3544 return NULL; 3545 3546 if (iter->flags & FTRACE_ITER_PROBE) 3547 return t_probe_next(m, pos); 3548 3549 if (iter->flags & FTRACE_ITER_MOD) 3550 return t_mod_next(m, pos); 3551 3552 if (iter->flags & FTRACE_ITER_PRINTALL) { 3553 /* next must increment pos, and t_probe_start does not */ 3554 (*pos)++; 3555 return t_mod_start(m, &l); 3556 } 3557 3558 ret = t_func_next(m, pos); 3559 3560 if (!ret) 3561 return t_mod_start(m, &l); 3562 3563 return ret; 3564 } 3565 3566 static void reset_iter_read(struct ftrace_iterator *iter) 3567 { 3568 iter->pos = 0; 3569 iter->func_pos = 0; 3570 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3571 } 3572 3573 static void *t_start(struct seq_file *m, loff_t *pos) 3574 { 3575 struct ftrace_iterator *iter = m->private; 3576 void *p = NULL; 3577 loff_t l; 3578 3579 mutex_lock(&ftrace_lock); 3580 3581 if (unlikely(ftrace_disabled)) 3582 return NULL; 3583 3584 /* 3585 * If an lseek was done, then reset and start from beginning. 3586 */ 3587 if (*pos < iter->pos) 3588 reset_iter_read(iter); 3589 3590 /* 3591 * For set_ftrace_filter reading, if we have the filter 3592 * off, we can short cut and just print out that all 3593 * functions are enabled. 3594 */ 3595 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3596 ftrace_hash_empty(iter->hash)) { 3597 iter->func_pos = 1; /* Account for the message */ 3598 if (*pos > 0) 3599 return t_mod_start(m, pos); 3600 iter->flags |= FTRACE_ITER_PRINTALL; 3601 /* reset in case of seek/pread */ 3602 iter->flags &= ~FTRACE_ITER_PROBE; 3603 return iter; 3604 } 3605 3606 if (iter->flags & FTRACE_ITER_MOD) 3607 return t_mod_start(m, pos); 3608 3609 /* 3610 * Unfortunately, we need to restart at ftrace_pages_start 3611 * every time we let go of the ftrace_mutex. This is because 3612 * those pointers can change without the lock. 3613 */ 3614 iter->pg = ftrace_pages_start; 3615 iter->idx = 0; 3616 for (l = 0; l <= *pos; ) { 3617 p = t_func_next(m, &l); 3618 if (!p) 3619 break; 3620 } 3621 3622 if (!p) 3623 return t_mod_start(m, pos); 3624 3625 return iter; 3626 } 3627 3628 static void t_stop(struct seq_file *m, void *p) 3629 { 3630 mutex_unlock(&ftrace_lock); 3631 } 3632 3633 void * __weak 3634 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3635 { 3636 return NULL; 3637 } 3638 3639 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3640 struct dyn_ftrace *rec) 3641 { 3642 void *ptr; 3643 3644 ptr = arch_ftrace_trampoline_func(ops, rec); 3645 if (ptr) 3646 seq_printf(m, " ->%pS", ptr); 3647 } 3648 3649 #ifdef FTRACE_MCOUNT_MAX_OFFSET 3650 /* 3651 * Weak functions can still have an mcount/fentry that is saved in 3652 * the __mcount_loc section. These can be detected by having a 3653 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 3654 * symbol found by kallsyms is not the function that the mcount/fentry 3655 * is part of. The offset is much greater in these cases. 3656 * 3657 * Test the record to make sure that the ip points to a valid kallsyms 3658 * and if not, mark it disabled. 3659 */ 3660 static int test_for_valid_rec(struct dyn_ftrace *rec) 3661 { 3662 char str[KSYM_SYMBOL_LEN]; 3663 unsigned long offset; 3664 const char *ret; 3665 3666 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 3667 3668 /* Weak functions can cause invalid addresses */ 3669 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3670 rec->flags |= FTRACE_FL_DISABLED; 3671 return 0; 3672 } 3673 return 1; 3674 } 3675 3676 static struct workqueue_struct *ftrace_check_wq __initdata; 3677 static struct work_struct ftrace_check_work __initdata; 3678 3679 /* 3680 * Scan all the mcount/fentry entries to make sure they are valid. 3681 */ 3682 static __init void ftrace_check_work_func(struct work_struct *work) 3683 { 3684 struct ftrace_page *pg; 3685 struct dyn_ftrace *rec; 3686 3687 mutex_lock(&ftrace_lock); 3688 do_for_each_ftrace_rec(pg, rec) { 3689 test_for_valid_rec(rec); 3690 } while_for_each_ftrace_rec(); 3691 mutex_unlock(&ftrace_lock); 3692 } 3693 3694 static int __init ftrace_check_for_weak_functions(void) 3695 { 3696 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 3697 3698 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 3699 3700 queue_work(ftrace_check_wq, &ftrace_check_work); 3701 return 0; 3702 } 3703 3704 static int __init ftrace_check_sync(void) 3705 { 3706 /* Make sure the ftrace_check updates are finished */ 3707 if (ftrace_check_wq) 3708 destroy_workqueue(ftrace_check_wq); 3709 return 0; 3710 } 3711 3712 late_initcall_sync(ftrace_check_sync); 3713 subsys_initcall(ftrace_check_for_weak_functions); 3714 3715 static int print_rec(struct seq_file *m, unsigned long ip) 3716 { 3717 unsigned long offset; 3718 char str[KSYM_SYMBOL_LEN]; 3719 char *modname; 3720 const char *ret; 3721 3722 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 3723 /* Weak functions can cause invalid addresses */ 3724 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3725 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 3726 FTRACE_INVALID_FUNCTION, offset); 3727 ret = NULL; 3728 } 3729 3730 seq_puts(m, str); 3731 if (modname) 3732 seq_printf(m, " [%s]", modname); 3733 return ret == NULL ? -1 : 0; 3734 } 3735 #else 3736 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 3737 { 3738 return 1; 3739 } 3740 3741 static inline int print_rec(struct seq_file *m, unsigned long ip) 3742 { 3743 seq_printf(m, "%ps", (void *)ip); 3744 return 0; 3745 } 3746 #endif 3747 3748 static int t_show(struct seq_file *m, void *v) 3749 { 3750 struct ftrace_iterator *iter = m->private; 3751 struct dyn_ftrace *rec; 3752 3753 if (iter->flags & FTRACE_ITER_PROBE) 3754 return t_probe_show(m, iter); 3755 3756 if (iter->flags & FTRACE_ITER_MOD) 3757 return t_mod_show(m, iter); 3758 3759 if (iter->flags & FTRACE_ITER_PRINTALL) { 3760 if (iter->flags & FTRACE_ITER_NOTRACE) 3761 seq_puts(m, "#### no functions disabled ####\n"); 3762 else 3763 seq_puts(m, "#### all functions enabled ####\n"); 3764 return 0; 3765 } 3766 3767 rec = iter->func; 3768 3769 if (!rec) 3770 return 0; 3771 3772 if (print_rec(m, rec->ip)) { 3773 /* This should only happen when a rec is disabled */ 3774 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 3775 seq_putc(m, '\n'); 3776 return 0; 3777 } 3778 3779 if (iter->flags & FTRACE_ITER_ENABLED) { 3780 struct ftrace_ops *ops; 3781 3782 seq_printf(m, " (%ld)%s%s%s", 3783 ftrace_rec_count(rec), 3784 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3785 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3786 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3787 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3788 ops = ftrace_find_tramp_ops_any(rec); 3789 if (ops) { 3790 do { 3791 seq_printf(m, "\ttramp: %pS (%pS)", 3792 (void *)ops->trampoline, 3793 (void *)ops->func); 3794 add_trampoline_func(m, ops, rec); 3795 ops = ftrace_find_tramp_ops_next(rec, ops); 3796 } while (ops); 3797 } else 3798 seq_puts(m, "\ttramp: ERROR!"); 3799 } else { 3800 add_trampoline_func(m, NULL, rec); 3801 } 3802 if (rec->flags & FTRACE_FL_DIRECT) { 3803 unsigned long direct; 3804 3805 direct = ftrace_find_rec_direct(rec->ip); 3806 if (direct) 3807 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3808 } 3809 } 3810 3811 seq_putc(m, '\n'); 3812 3813 return 0; 3814 } 3815 3816 static const struct seq_operations show_ftrace_seq_ops = { 3817 .start = t_start, 3818 .next = t_next, 3819 .stop = t_stop, 3820 .show = t_show, 3821 }; 3822 3823 static int 3824 ftrace_avail_open(struct inode *inode, struct file *file) 3825 { 3826 struct ftrace_iterator *iter; 3827 int ret; 3828 3829 ret = security_locked_down(LOCKDOWN_TRACEFS); 3830 if (ret) 3831 return ret; 3832 3833 if (unlikely(ftrace_disabled)) 3834 return -ENODEV; 3835 3836 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3837 if (!iter) 3838 return -ENOMEM; 3839 3840 iter->pg = ftrace_pages_start; 3841 iter->ops = &global_ops; 3842 3843 return 0; 3844 } 3845 3846 static int 3847 ftrace_enabled_open(struct inode *inode, struct file *file) 3848 { 3849 struct ftrace_iterator *iter; 3850 3851 /* 3852 * This shows us what functions are currently being 3853 * traced and by what. Not sure if we want lockdown 3854 * to hide such critical information for an admin. 3855 * Although, perhaps it can show information we don't 3856 * want people to see, but if something is tracing 3857 * something, we probably want to know about it. 3858 */ 3859 3860 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3861 if (!iter) 3862 return -ENOMEM; 3863 3864 iter->pg = ftrace_pages_start; 3865 iter->flags = FTRACE_ITER_ENABLED; 3866 iter->ops = &global_ops; 3867 3868 return 0; 3869 } 3870 3871 /** 3872 * ftrace_regex_open - initialize function tracer filter files 3873 * @ops: The ftrace_ops that hold the hash filters 3874 * @flag: The type of filter to process 3875 * @inode: The inode, usually passed in to your open routine 3876 * @file: The file, usually passed in to your open routine 3877 * 3878 * ftrace_regex_open() initializes the filter files for the 3879 * @ops. Depending on @flag it may process the filter hash or 3880 * the notrace hash of @ops. With this called from the open 3881 * routine, you can use ftrace_filter_write() for the write 3882 * routine if @flag has FTRACE_ITER_FILTER set, or 3883 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3884 * tracing_lseek() should be used as the lseek routine, and 3885 * release must call ftrace_regex_release(). 3886 */ 3887 int 3888 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3889 struct inode *inode, struct file *file) 3890 { 3891 struct ftrace_iterator *iter; 3892 struct ftrace_hash *hash; 3893 struct list_head *mod_head; 3894 struct trace_array *tr = ops->private; 3895 int ret = -ENOMEM; 3896 3897 ftrace_ops_init(ops); 3898 3899 if (unlikely(ftrace_disabled)) 3900 return -ENODEV; 3901 3902 if (tracing_check_open_get_tr(tr)) 3903 return -ENODEV; 3904 3905 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3906 if (!iter) 3907 goto out; 3908 3909 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3910 goto out; 3911 3912 iter->ops = ops; 3913 iter->flags = flag; 3914 iter->tr = tr; 3915 3916 mutex_lock(&ops->func_hash->regex_lock); 3917 3918 if (flag & FTRACE_ITER_NOTRACE) { 3919 hash = ops->func_hash->notrace_hash; 3920 mod_head = tr ? &tr->mod_notrace : NULL; 3921 } else { 3922 hash = ops->func_hash->filter_hash; 3923 mod_head = tr ? &tr->mod_trace : NULL; 3924 } 3925 3926 iter->mod_list = mod_head; 3927 3928 if (file->f_mode & FMODE_WRITE) { 3929 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3930 3931 if (file->f_flags & O_TRUNC) { 3932 iter->hash = alloc_ftrace_hash(size_bits); 3933 clear_ftrace_mod_list(mod_head); 3934 } else { 3935 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3936 } 3937 3938 if (!iter->hash) { 3939 trace_parser_put(&iter->parser); 3940 goto out_unlock; 3941 } 3942 } else 3943 iter->hash = hash; 3944 3945 ret = 0; 3946 3947 if (file->f_mode & FMODE_READ) { 3948 iter->pg = ftrace_pages_start; 3949 3950 ret = seq_open(file, &show_ftrace_seq_ops); 3951 if (!ret) { 3952 struct seq_file *m = file->private_data; 3953 m->private = iter; 3954 } else { 3955 /* Failed */ 3956 free_ftrace_hash(iter->hash); 3957 trace_parser_put(&iter->parser); 3958 } 3959 } else 3960 file->private_data = iter; 3961 3962 out_unlock: 3963 mutex_unlock(&ops->func_hash->regex_lock); 3964 3965 out: 3966 if (ret) { 3967 kfree(iter); 3968 if (tr) 3969 trace_array_put(tr); 3970 } 3971 3972 return ret; 3973 } 3974 3975 static int 3976 ftrace_filter_open(struct inode *inode, struct file *file) 3977 { 3978 struct ftrace_ops *ops = inode->i_private; 3979 3980 /* Checks for tracefs lockdown */ 3981 return ftrace_regex_open(ops, 3982 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3983 inode, file); 3984 } 3985 3986 static int 3987 ftrace_notrace_open(struct inode *inode, struct file *file) 3988 { 3989 struct ftrace_ops *ops = inode->i_private; 3990 3991 /* Checks for tracefs lockdown */ 3992 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3993 inode, file); 3994 } 3995 3996 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3997 struct ftrace_glob { 3998 char *search; 3999 unsigned len; 4000 int type; 4001 }; 4002 4003 /* 4004 * If symbols in an architecture don't correspond exactly to the user-visible 4005 * name of what they represent, it is possible to define this function to 4006 * perform the necessary adjustments. 4007 */ 4008 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4009 { 4010 return str; 4011 } 4012 4013 static int ftrace_match(char *str, struct ftrace_glob *g) 4014 { 4015 int matched = 0; 4016 int slen; 4017 4018 str = arch_ftrace_match_adjust(str, g->search); 4019 4020 switch (g->type) { 4021 case MATCH_FULL: 4022 if (strcmp(str, g->search) == 0) 4023 matched = 1; 4024 break; 4025 case MATCH_FRONT_ONLY: 4026 if (strncmp(str, g->search, g->len) == 0) 4027 matched = 1; 4028 break; 4029 case MATCH_MIDDLE_ONLY: 4030 if (strstr(str, g->search)) 4031 matched = 1; 4032 break; 4033 case MATCH_END_ONLY: 4034 slen = strlen(str); 4035 if (slen >= g->len && 4036 memcmp(str + slen - g->len, g->search, g->len) == 0) 4037 matched = 1; 4038 break; 4039 case MATCH_GLOB: 4040 if (glob_match(g->search, str)) 4041 matched = 1; 4042 break; 4043 } 4044 4045 return matched; 4046 } 4047 4048 static int 4049 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4050 { 4051 struct ftrace_func_entry *entry; 4052 int ret = 0; 4053 4054 entry = ftrace_lookup_ip(hash, rec->ip); 4055 if (clear_filter) { 4056 /* Do nothing if it doesn't exist */ 4057 if (!entry) 4058 return 0; 4059 4060 free_hash_entry(hash, entry); 4061 } else { 4062 /* Do nothing if it exists */ 4063 if (entry) 4064 return 0; 4065 4066 ret = add_hash_entry(hash, rec->ip); 4067 } 4068 return ret; 4069 } 4070 4071 static int 4072 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4073 int clear_filter) 4074 { 4075 long index = simple_strtoul(func_g->search, NULL, 0); 4076 struct ftrace_page *pg; 4077 struct dyn_ftrace *rec; 4078 4079 /* The index starts at 1 */ 4080 if (--index < 0) 4081 return 0; 4082 4083 do_for_each_ftrace_rec(pg, rec) { 4084 if (pg->index <= index) { 4085 index -= pg->index; 4086 /* this is a double loop, break goes to the next page */ 4087 break; 4088 } 4089 rec = &pg->records[index]; 4090 enter_record(hash, rec, clear_filter); 4091 return 1; 4092 } while_for_each_ftrace_rec(); 4093 return 0; 4094 } 4095 4096 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4097 static int lookup_ip(unsigned long ip, char **modname, char *str) 4098 { 4099 unsigned long offset; 4100 4101 kallsyms_lookup(ip, NULL, &offset, modname, str); 4102 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4103 return -1; 4104 return 0; 4105 } 4106 #else 4107 static int lookup_ip(unsigned long ip, char **modname, char *str) 4108 { 4109 kallsyms_lookup(ip, NULL, NULL, modname, str); 4110 return 0; 4111 } 4112 #endif 4113 4114 static int 4115 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4116 struct ftrace_glob *mod_g, int exclude_mod) 4117 { 4118 char str[KSYM_SYMBOL_LEN]; 4119 char *modname; 4120 4121 if (lookup_ip(rec->ip, &modname, str)) { 4122 /* This should only happen when a rec is disabled */ 4123 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4124 !(rec->flags & FTRACE_FL_DISABLED)); 4125 return 0; 4126 } 4127 4128 if (mod_g) { 4129 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4130 4131 /* blank module name to match all modules */ 4132 if (!mod_g->len) { 4133 /* blank module globbing: modname xor exclude_mod */ 4134 if (!exclude_mod != !modname) 4135 goto func_match; 4136 return 0; 4137 } 4138 4139 /* 4140 * exclude_mod is set to trace everything but the given 4141 * module. If it is set and the module matches, then 4142 * return 0. If it is not set, and the module doesn't match 4143 * also return 0. Otherwise, check the function to see if 4144 * that matches. 4145 */ 4146 if (!mod_matches == !exclude_mod) 4147 return 0; 4148 func_match: 4149 /* blank search means to match all funcs in the mod */ 4150 if (!func_g->len) 4151 return 1; 4152 } 4153 4154 return ftrace_match(str, func_g); 4155 } 4156 4157 static int 4158 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4159 { 4160 struct ftrace_page *pg; 4161 struct dyn_ftrace *rec; 4162 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4163 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4164 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4165 int exclude_mod = 0; 4166 int found = 0; 4167 int ret; 4168 int clear_filter = 0; 4169 4170 if (func) { 4171 func_g.type = filter_parse_regex(func, len, &func_g.search, 4172 &clear_filter); 4173 func_g.len = strlen(func_g.search); 4174 } 4175 4176 if (mod) { 4177 mod_g.type = filter_parse_regex(mod, strlen(mod), 4178 &mod_g.search, &exclude_mod); 4179 mod_g.len = strlen(mod_g.search); 4180 } 4181 4182 mutex_lock(&ftrace_lock); 4183 4184 if (unlikely(ftrace_disabled)) 4185 goto out_unlock; 4186 4187 if (func_g.type == MATCH_INDEX) { 4188 found = add_rec_by_index(hash, &func_g, clear_filter); 4189 goto out_unlock; 4190 } 4191 4192 do_for_each_ftrace_rec(pg, rec) { 4193 4194 if (rec->flags & FTRACE_FL_DISABLED) 4195 continue; 4196 4197 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4198 ret = enter_record(hash, rec, clear_filter); 4199 if (ret < 0) { 4200 found = ret; 4201 goto out_unlock; 4202 } 4203 found = 1; 4204 } 4205 } while_for_each_ftrace_rec(); 4206 out_unlock: 4207 mutex_unlock(&ftrace_lock); 4208 4209 return found; 4210 } 4211 4212 static int 4213 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4214 { 4215 return match_records(hash, buff, len, NULL); 4216 } 4217 4218 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4219 struct ftrace_ops_hash *old_hash) 4220 { 4221 struct ftrace_ops *op; 4222 4223 if (!ftrace_enabled) 4224 return; 4225 4226 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4227 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4228 return; 4229 } 4230 4231 /* 4232 * If this is the shared global_ops filter, then we need to 4233 * check if there is another ops that shares it, is enabled. 4234 * If so, we still need to run the modify code. 4235 */ 4236 if (ops->func_hash != &global_ops.local_hash) 4237 return; 4238 4239 do_for_each_ftrace_op(op, ftrace_ops_list) { 4240 if (op->func_hash == &global_ops.local_hash && 4241 op->flags & FTRACE_OPS_FL_ENABLED) { 4242 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4243 /* Only need to do this once */ 4244 return; 4245 } 4246 } while_for_each_ftrace_op(op); 4247 } 4248 4249 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4250 struct ftrace_hash **orig_hash, 4251 struct ftrace_hash *hash, 4252 int enable) 4253 { 4254 struct ftrace_ops_hash old_hash_ops; 4255 struct ftrace_hash *old_hash; 4256 int ret; 4257 4258 old_hash = *orig_hash; 4259 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4260 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4261 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4262 if (!ret) { 4263 ftrace_ops_update_code(ops, &old_hash_ops); 4264 free_ftrace_hash_rcu(old_hash); 4265 } 4266 return ret; 4267 } 4268 4269 static bool module_exists(const char *module) 4270 { 4271 /* All modules have the symbol __this_module */ 4272 static const char this_mod[] = "__this_module"; 4273 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4274 unsigned long val; 4275 int n; 4276 4277 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4278 4279 if (n > sizeof(modname) - 1) 4280 return false; 4281 4282 val = module_kallsyms_lookup_name(modname); 4283 return val != 0; 4284 } 4285 4286 static int cache_mod(struct trace_array *tr, 4287 const char *func, char *module, int enable) 4288 { 4289 struct ftrace_mod_load *ftrace_mod, *n; 4290 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4291 int ret; 4292 4293 mutex_lock(&ftrace_lock); 4294 4295 /* We do not cache inverse filters */ 4296 if (func[0] == '!') { 4297 func++; 4298 ret = -EINVAL; 4299 4300 /* Look to remove this hash */ 4301 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4302 if (strcmp(ftrace_mod->module, module) != 0) 4303 continue; 4304 4305 /* no func matches all */ 4306 if (strcmp(func, "*") == 0 || 4307 (ftrace_mod->func && 4308 strcmp(ftrace_mod->func, func) == 0)) { 4309 ret = 0; 4310 free_ftrace_mod(ftrace_mod); 4311 continue; 4312 } 4313 } 4314 goto out; 4315 } 4316 4317 ret = -EINVAL; 4318 /* We only care about modules that have not been loaded yet */ 4319 if (module_exists(module)) 4320 goto out; 4321 4322 /* Save this string off, and execute it when the module is loaded */ 4323 ret = ftrace_add_mod(tr, func, module, enable); 4324 out: 4325 mutex_unlock(&ftrace_lock); 4326 4327 return ret; 4328 } 4329 4330 static int 4331 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4332 int reset, int enable); 4333 4334 #ifdef CONFIG_MODULES 4335 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4336 char *mod, bool enable) 4337 { 4338 struct ftrace_mod_load *ftrace_mod, *n; 4339 struct ftrace_hash **orig_hash, *new_hash; 4340 LIST_HEAD(process_mods); 4341 char *func; 4342 4343 mutex_lock(&ops->func_hash->regex_lock); 4344 4345 if (enable) 4346 orig_hash = &ops->func_hash->filter_hash; 4347 else 4348 orig_hash = &ops->func_hash->notrace_hash; 4349 4350 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4351 *orig_hash); 4352 if (!new_hash) 4353 goto out; /* warn? */ 4354 4355 mutex_lock(&ftrace_lock); 4356 4357 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4358 4359 if (strcmp(ftrace_mod->module, mod) != 0) 4360 continue; 4361 4362 if (ftrace_mod->func) 4363 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4364 else 4365 func = kstrdup("*", GFP_KERNEL); 4366 4367 if (!func) /* warn? */ 4368 continue; 4369 4370 list_move(&ftrace_mod->list, &process_mods); 4371 4372 /* Use the newly allocated func, as it may be "*" */ 4373 kfree(ftrace_mod->func); 4374 ftrace_mod->func = func; 4375 } 4376 4377 mutex_unlock(&ftrace_lock); 4378 4379 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4380 4381 func = ftrace_mod->func; 4382 4383 /* Grabs ftrace_lock, which is why we have this extra step */ 4384 match_records(new_hash, func, strlen(func), mod); 4385 free_ftrace_mod(ftrace_mod); 4386 } 4387 4388 if (enable && list_empty(head)) 4389 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4390 4391 mutex_lock(&ftrace_lock); 4392 4393 ftrace_hash_move_and_update_ops(ops, orig_hash, 4394 new_hash, enable); 4395 mutex_unlock(&ftrace_lock); 4396 4397 out: 4398 mutex_unlock(&ops->func_hash->regex_lock); 4399 4400 free_ftrace_hash(new_hash); 4401 } 4402 4403 static void process_cached_mods(const char *mod_name) 4404 { 4405 struct trace_array *tr; 4406 char *mod; 4407 4408 mod = kstrdup(mod_name, GFP_KERNEL); 4409 if (!mod) 4410 return; 4411 4412 mutex_lock(&trace_types_lock); 4413 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4414 if (!list_empty(&tr->mod_trace)) 4415 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4416 if (!list_empty(&tr->mod_notrace)) 4417 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4418 } 4419 mutex_unlock(&trace_types_lock); 4420 4421 kfree(mod); 4422 } 4423 #endif 4424 4425 /* 4426 * We register the module command as a template to show others how 4427 * to register the a command as well. 4428 */ 4429 4430 static int 4431 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4432 char *func_orig, char *cmd, char *module, int enable) 4433 { 4434 char *func; 4435 int ret; 4436 4437 /* match_records() modifies func, and we need the original */ 4438 func = kstrdup(func_orig, GFP_KERNEL); 4439 if (!func) 4440 return -ENOMEM; 4441 4442 /* 4443 * cmd == 'mod' because we only registered this func 4444 * for the 'mod' ftrace_func_command. 4445 * But if you register one func with multiple commands, 4446 * you can tell which command was used by the cmd 4447 * parameter. 4448 */ 4449 ret = match_records(hash, func, strlen(func), module); 4450 kfree(func); 4451 4452 if (!ret) 4453 return cache_mod(tr, func_orig, module, enable); 4454 if (ret < 0) 4455 return ret; 4456 return 0; 4457 } 4458 4459 static struct ftrace_func_command ftrace_mod_cmd = { 4460 .name = "mod", 4461 .func = ftrace_mod_callback, 4462 }; 4463 4464 static int __init ftrace_mod_cmd_init(void) 4465 { 4466 return register_ftrace_command(&ftrace_mod_cmd); 4467 } 4468 core_initcall(ftrace_mod_cmd_init); 4469 4470 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4471 struct ftrace_ops *op, struct ftrace_regs *fregs) 4472 { 4473 struct ftrace_probe_ops *probe_ops; 4474 struct ftrace_func_probe *probe; 4475 4476 probe = container_of(op, struct ftrace_func_probe, ops); 4477 probe_ops = probe->probe_ops; 4478 4479 /* 4480 * Disable preemption for these calls to prevent a RCU grace 4481 * period. This syncs the hash iteration and freeing of items 4482 * on the hash. rcu_read_lock is too dangerous here. 4483 */ 4484 preempt_disable_notrace(); 4485 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4486 preempt_enable_notrace(); 4487 } 4488 4489 struct ftrace_func_map { 4490 struct ftrace_func_entry entry; 4491 void *data; 4492 }; 4493 4494 struct ftrace_func_mapper { 4495 struct ftrace_hash hash; 4496 }; 4497 4498 /** 4499 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4500 * 4501 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4502 */ 4503 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4504 { 4505 struct ftrace_hash *hash; 4506 4507 /* 4508 * The mapper is simply a ftrace_hash, but since the entries 4509 * in the hash are not ftrace_func_entry type, we define it 4510 * as a separate structure. 4511 */ 4512 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4513 return (struct ftrace_func_mapper *)hash; 4514 } 4515 4516 /** 4517 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4518 * @mapper: The mapper that has the ip maps 4519 * @ip: the instruction pointer to find the data for 4520 * 4521 * Returns the data mapped to @ip if found otherwise NULL. The return 4522 * is actually the address of the mapper data pointer. The address is 4523 * returned for use cases where the data is no bigger than a long, and 4524 * the user can use the data pointer as its data instead of having to 4525 * allocate more memory for the reference. 4526 */ 4527 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4528 unsigned long ip) 4529 { 4530 struct ftrace_func_entry *entry; 4531 struct ftrace_func_map *map; 4532 4533 entry = ftrace_lookup_ip(&mapper->hash, ip); 4534 if (!entry) 4535 return NULL; 4536 4537 map = (struct ftrace_func_map *)entry; 4538 return &map->data; 4539 } 4540 4541 /** 4542 * ftrace_func_mapper_add_ip - Map some data to an ip 4543 * @mapper: The mapper that has the ip maps 4544 * @ip: The instruction pointer address to map @data to 4545 * @data: The data to map to @ip 4546 * 4547 * Returns 0 on success otherwise an error. 4548 */ 4549 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4550 unsigned long ip, void *data) 4551 { 4552 struct ftrace_func_entry *entry; 4553 struct ftrace_func_map *map; 4554 4555 entry = ftrace_lookup_ip(&mapper->hash, ip); 4556 if (entry) 4557 return -EBUSY; 4558 4559 map = kmalloc(sizeof(*map), GFP_KERNEL); 4560 if (!map) 4561 return -ENOMEM; 4562 4563 map->entry.ip = ip; 4564 map->data = data; 4565 4566 __add_hash_entry(&mapper->hash, &map->entry); 4567 4568 return 0; 4569 } 4570 4571 /** 4572 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4573 * @mapper: The mapper that has the ip maps 4574 * @ip: The instruction pointer address to remove the data from 4575 * 4576 * Returns the data if it is found, otherwise NULL. 4577 * Note, if the data pointer is used as the data itself, (see 4578 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4579 * if the data pointer was set to zero. 4580 */ 4581 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4582 unsigned long ip) 4583 { 4584 struct ftrace_func_entry *entry; 4585 struct ftrace_func_map *map; 4586 void *data; 4587 4588 entry = ftrace_lookup_ip(&mapper->hash, ip); 4589 if (!entry) 4590 return NULL; 4591 4592 map = (struct ftrace_func_map *)entry; 4593 data = map->data; 4594 4595 remove_hash_entry(&mapper->hash, entry); 4596 kfree(entry); 4597 4598 return data; 4599 } 4600 4601 /** 4602 * free_ftrace_func_mapper - free a mapping of ips and data 4603 * @mapper: The mapper that has the ip maps 4604 * @free_func: A function to be called on each data item. 4605 * 4606 * This is used to free the function mapper. The @free_func is optional 4607 * and can be used if the data needs to be freed as well. 4608 */ 4609 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4610 ftrace_mapper_func free_func) 4611 { 4612 struct ftrace_func_entry *entry; 4613 struct ftrace_func_map *map; 4614 struct hlist_head *hhd; 4615 int size, i; 4616 4617 if (!mapper) 4618 return; 4619 4620 if (free_func && mapper->hash.count) { 4621 size = 1 << mapper->hash.size_bits; 4622 for (i = 0; i < size; i++) { 4623 hhd = &mapper->hash.buckets[i]; 4624 hlist_for_each_entry(entry, hhd, hlist) { 4625 map = (struct ftrace_func_map *)entry; 4626 free_func(map); 4627 } 4628 } 4629 } 4630 free_ftrace_hash(&mapper->hash); 4631 } 4632 4633 static void release_probe(struct ftrace_func_probe *probe) 4634 { 4635 struct ftrace_probe_ops *probe_ops; 4636 4637 mutex_lock(&ftrace_lock); 4638 4639 WARN_ON(probe->ref <= 0); 4640 4641 /* Subtract the ref that was used to protect this instance */ 4642 probe->ref--; 4643 4644 if (!probe->ref) { 4645 probe_ops = probe->probe_ops; 4646 /* 4647 * Sending zero as ip tells probe_ops to free 4648 * the probe->data itself 4649 */ 4650 if (probe_ops->free) 4651 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4652 list_del(&probe->list); 4653 kfree(probe); 4654 } 4655 mutex_unlock(&ftrace_lock); 4656 } 4657 4658 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4659 { 4660 /* 4661 * Add one ref to keep it from being freed when releasing the 4662 * ftrace_lock mutex. 4663 */ 4664 probe->ref++; 4665 } 4666 4667 int 4668 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4669 struct ftrace_probe_ops *probe_ops, 4670 void *data) 4671 { 4672 struct ftrace_func_probe *probe = NULL, *iter; 4673 struct ftrace_func_entry *entry; 4674 struct ftrace_hash **orig_hash; 4675 struct ftrace_hash *old_hash; 4676 struct ftrace_hash *hash; 4677 int count = 0; 4678 int size; 4679 int ret; 4680 int i; 4681 4682 if (WARN_ON(!tr)) 4683 return -EINVAL; 4684 4685 /* We do not support '!' for function probes */ 4686 if (WARN_ON(glob[0] == '!')) 4687 return -EINVAL; 4688 4689 4690 mutex_lock(&ftrace_lock); 4691 /* Check if the probe_ops is already registered */ 4692 list_for_each_entry(iter, &tr->func_probes, list) { 4693 if (iter->probe_ops == probe_ops) { 4694 probe = iter; 4695 break; 4696 } 4697 } 4698 if (!probe) { 4699 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4700 if (!probe) { 4701 mutex_unlock(&ftrace_lock); 4702 return -ENOMEM; 4703 } 4704 probe->probe_ops = probe_ops; 4705 probe->ops.func = function_trace_probe_call; 4706 probe->tr = tr; 4707 ftrace_ops_init(&probe->ops); 4708 list_add(&probe->list, &tr->func_probes); 4709 } 4710 4711 acquire_probe_locked(probe); 4712 4713 mutex_unlock(&ftrace_lock); 4714 4715 /* 4716 * Note, there's a small window here that the func_hash->filter_hash 4717 * may be NULL or empty. Need to be careful when reading the loop. 4718 */ 4719 mutex_lock(&probe->ops.func_hash->regex_lock); 4720 4721 orig_hash = &probe->ops.func_hash->filter_hash; 4722 old_hash = *orig_hash; 4723 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4724 4725 if (!hash) { 4726 ret = -ENOMEM; 4727 goto out; 4728 } 4729 4730 ret = ftrace_match_records(hash, glob, strlen(glob)); 4731 4732 /* Nothing found? */ 4733 if (!ret) 4734 ret = -EINVAL; 4735 4736 if (ret < 0) 4737 goto out; 4738 4739 size = 1 << hash->size_bits; 4740 for (i = 0; i < size; i++) { 4741 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4742 if (ftrace_lookup_ip(old_hash, entry->ip)) 4743 continue; 4744 /* 4745 * The caller might want to do something special 4746 * for each function we find. We call the callback 4747 * to give the caller an opportunity to do so. 4748 */ 4749 if (probe_ops->init) { 4750 ret = probe_ops->init(probe_ops, tr, 4751 entry->ip, data, 4752 &probe->data); 4753 if (ret < 0) { 4754 if (probe_ops->free && count) 4755 probe_ops->free(probe_ops, tr, 4756 0, probe->data); 4757 probe->data = NULL; 4758 goto out; 4759 } 4760 } 4761 count++; 4762 } 4763 } 4764 4765 mutex_lock(&ftrace_lock); 4766 4767 if (!count) { 4768 /* Nothing was added? */ 4769 ret = -EINVAL; 4770 goto out_unlock; 4771 } 4772 4773 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4774 hash, 1); 4775 if (ret < 0) 4776 goto err_unlock; 4777 4778 /* One ref for each new function traced */ 4779 probe->ref += count; 4780 4781 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4782 ret = ftrace_startup(&probe->ops, 0); 4783 4784 out_unlock: 4785 mutex_unlock(&ftrace_lock); 4786 4787 if (!ret) 4788 ret = count; 4789 out: 4790 mutex_unlock(&probe->ops.func_hash->regex_lock); 4791 free_ftrace_hash(hash); 4792 4793 release_probe(probe); 4794 4795 return ret; 4796 4797 err_unlock: 4798 if (!probe_ops->free || !count) 4799 goto out_unlock; 4800 4801 /* Failed to do the move, need to call the free functions */ 4802 for (i = 0; i < size; i++) { 4803 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4804 if (ftrace_lookup_ip(old_hash, entry->ip)) 4805 continue; 4806 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4807 } 4808 } 4809 goto out_unlock; 4810 } 4811 4812 int 4813 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4814 struct ftrace_probe_ops *probe_ops) 4815 { 4816 struct ftrace_func_probe *probe = NULL, *iter; 4817 struct ftrace_ops_hash old_hash_ops; 4818 struct ftrace_func_entry *entry; 4819 struct ftrace_glob func_g; 4820 struct ftrace_hash **orig_hash; 4821 struct ftrace_hash *old_hash; 4822 struct ftrace_hash *hash = NULL; 4823 struct hlist_node *tmp; 4824 struct hlist_head hhd; 4825 char str[KSYM_SYMBOL_LEN]; 4826 int count = 0; 4827 int i, ret = -ENODEV; 4828 int size; 4829 4830 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4831 func_g.search = NULL; 4832 else { 4833 int not; 4834 4835 func_g.type = filter_parse_regex(glob, strlen(glob), 4836 &func_g.search, ¬); 4837 func_g.len = strlen(func_g.search); 4838 4839 /* we do not support '!' for function probes */ 4840 if (WARN_ON(not)) 4841 return -EINVAL; 4842 } 4843 4844 mutex_lock(&ftrace_lock); 4845 /* Check if the probe_ops is already registered */ 4846 list_for_each_entry(iter, &tr->func_probes, list) { 4847 if (iter->probe_ops == probe_ops) { 4848 probe = iter; 4849 break; 4850 } 4851 } 4852 if (!probe) 4853 goto err_unlock_ftrace; 4854 4855 ret = -EINVAL; 4856 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4857 goto err_unlock_ftrace; 4858 4859 acquire_probe_locked(probe); 4860 4861 mutex_unlock(&ftrace_lock); 4862 4863 mutex_lock(&probe->ops.func_hash->regex_lock); 4864 4865 orig_hash = &probe->ops.func_hash->filter_hash; 4866 old_hash = *orig_hash; 4867 4868 if (ftrace_hash_empty(old_hash)) 4869 goto out_unlock; 4870 4871 old_hash_ops.filter_hash = old_hash; 4872 /* Probes only have filters */ 4873 old_hash_ops.notrace_hash = NULL; 4874 4875 ret = -ENOMEM; 4876 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4877 if (!hash) 4878 goto out_unlock; 4879 4880 INIT_HLIST_HEAD(&hhd); 4881 4882 size = 1 << hash->size_bits; 4883 for (i = 0; i < size; i++) { 4884 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4885 4886 if (func_g.search) { 4887 kallsyms_lookup(entry->ip, NULL, NULL, 4888 NULL, str); 4889 if (!ftrace_match(str, &func_g)) 4890 continue; 4891 } 4892 count++; 4893 remove_hash_entry(hash, entry); 4894 hlist_add_head(&entry->hlist, &hhd); 4895 } 4896 } 4897 4898 /* Nothing found? */ 4899 if (!count) { 4900 ret = -EINVAL; 4901 goto out_unlock; 4902 } 4903 4904 mutex_lock(&ftrace_lock); 4905 4906 WARN_ON(probe->ref < count); 4907 4908 probe->ref -= count; 4909 4910 if (ftrace_hash_empty(hash)) 4911 ftrace_shutdown(&probe->ops, 0); 4912 4913 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4914 hash, 1); 4915 4916 /* still need to update the function call sites */ 4917 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4918 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4919 &old_hash_ops); 4920 synchronize_rcu(); 4921 4922 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4923 hlist_del(&entry->hlist); 4924 if (probe_ops->free) 4925 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4926 kfree(entry); 4927 } 4928 mutex_unlock(&ftrace_lock); 4929 4930 out_unlock: 4931 mutex_unlock(&probe->ops.func_hash->regex_lock); 4932 free_ftrace_hash(hash); 4933 4934 release_probe(probe); 4935 4936 return ret; 4937 4938 err_unlock_ftrace: 4939 mutex_unlock(&ftrace_lock); 4940 return ret; 4941 } 4942 4943 void clear_ftrace_function_probes(struct trace_array *tr) 4944 { 4945 struct ftrace_func_probe *probe, *n; 4946 4947 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4948 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4949 } 4950 4951 static LIST_HEAD(ftrace_commands); 4952 static DEFINE_MUTEX(ftrace_cmd_mutex); 4953 4954 /* 4955 * Currently we only register ftrace commands from __init, so mark this 4956 * __init too. 4957 */ 4958 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4959 { 4960 struct ftrace_func_command *p; 4961 int ret = 0; 4962 4963 mutex_lock(&ftrace_cmd_mutex); 4964 list_for_each_entry(p, &ftrace_commands, list) { 4965 if (strcmp(cmd->name, p->name) == 0) { 4966 ret = -EBUSY; 4967 goto out_unlock; 4968 } 4969 } 4970 list_add(&cmd->list, &ftrace_commands); 4971 out_unlock: 4972 mutex_unlock(&ftrace_cmd_mutex); 4973 4974 return ret; 4975 } 4976 4977 /* 4978 * Currently we only unregister ftrace commands from __init, so mark 4979 * this __init too. 4980 */ 4981 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4982 { 4983 struct ftrace_func_command *p, *n; 4984 int ret = -ENODEV; 4985 4986 mutex_lock(&ftrace_cmd_mutex); 4987 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4988 if (strcmp(cmd->name, p->name) == 0) { 4989 ret = 0; 4990 list_del_init(&p->list); 4991 goto out_unlock; 4992 } 4993 } 4994 out_unlock: 4995 mutex_unlock(&ftrace_cmd_mutex); 4996 4997 return ret; 4998 } 4999 5000 static int ftrace_process_regex(struct ftrace_iterator *iter, 5001 char *buff, int len, int enable) 5002 { 5003 struct ftrace_hash *hash = iter->hash; 5004 struct trace_array *tr = iter->ops->private; 5005 char *func, *command, *next = buff; 5006 struct ftrace_func_command *p; 5007 int ret = -EINVAL; 5008 5009 func = strsep(&next, ":"); 5010 5011 if (!next) { 5012 ret = ftrace_match_records(hash, func, len); 5013 if (!ret) 5014 ret = -EINVAL; 5015 if (ret < 0) 5016 return ret; 5017 return 0; 5018 } 5019 5020 /* command found */ 5021 5022 command = strsep(&next, ":"); 5023 5024 mutex_lock(&ftrace_cmd_mutex); 5025 list_for_each_entry(p, &ftrace_commands, list) { 5026 if (strcmp(p->name, command) == 0) { 5027 ret = p->func(tr, hash, func, command, next, enable); 5028 goto out_unlock; 5029 } 5030 } 5031 out_unlock: 5032 mutex_unlock(&ftrace_cmd_mutex); 5033 5034 return ret; 5035 } 5036 5037 static ssize_t 5038 ftrace_regex_write(struct file *file, const char __user *ubuf, 5039 size_t cnt, loff_t *ppos, int enable) 5040 { 5041 struct ftrace_iterator *iter; 5042 struct trace_parser *parser; 5043 ssize_t ret, read; 5044 5045 if (!cnt) 5046 return 0; 5047 5048 if (file->f_mode & FMODE_READ) { 5049 struct seq_file *m = file->private_data; 5050 iter = m->private; 5051 } else 5052 iter = file->private_data; 5053 5054 if (unlikely(ftrace_disabled)) 5055 return -ENODEV; 5056 5057 /* iter->hash is a local copy, so we don't need regex_lock */ 5058 5059 parser = &iter->parser; 5060 read = trace_get_user(parser, ubuf, cnt, ppos); 5061 5062 if (read >= 0 && trace_parser_loaded(parser) && 5063 !trace_parser_cont(parser)) { 5064 ret = ftrace_process_regex(iter, parser->buffer, 5065 parser->idx, enable); 5066 trace_parser_clear(parser); 5067 if (ret < 0) 5068 goto out; 5069 } 5070 5071 ret = read; 5072 out: 5073 return ret; 5074 } 5075 5076 ssize_t 5077 ftrace_filter_write(struct file *file, const char __user *ubuf, 5078 size_t cnt, loff_t *ppos) 5079 { 5080 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5081 } 5082 5083 ssize_t 5084 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5085 size_t cnt, loff_t *ppos) 5086 { 5087 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5088 } 5089 5090 static int 5091 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5092 { 5093 struct ftrace_func_entry *entry; 5094 5095 ip = ftrace_location(ip); 5096 if (!ip) 5097 return -EINVAL; 5098 5099 if (remove) { 5100 entry = ftrace_lookup_ip(hash, ip); 5101 if (!entry) 5102 return -ENOENT; 5103 free_hash_entry(hash, entry); 5104 return 0; 5105 } 5106 5107 return add_hash_entry(hash, ip); 5108 } 5109 5110 static int 5111 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5112 unsigned int cnt, int remove) 5113 { 5114 unsigned int i; 5115 int err; 5116 5117 for (i = 0; i < cnt; i++) { 5118 err = __ftrace_match_addr(hash, ips[i], remove); 5119 if (err) { 5120 /* 5121 * This expects the @hash is a temporary hash and if this 5122 * fails the caller must free the @hash. 5123 */ 5124 return err; 5125 } 5126 } 5127 return 0; 5128 } 5129 5130 static int 5131 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5132 unsigned long *ips, unsigned int cnt, 5133 int remove, int reset, int enable) 5134 { 5135 struct ftrace_hash **orig_hash; 5136 struct ftrace_hash *hash; 5137 int ret; 5138 5139 if (unlikely(ftrace_disabled)) 5140 return -ENODEV; 5141 5142 mutex_lock(&ops->func_hash->regex_lock); 5143 5144 if (enable) 5145 orig_hash = &ops->func_hash->filter_hash; 5146 else 5147 orig_hash = &ops->func_hash->notrace_hash; 5148 5149 if (reset) 5150 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5151 else 5152 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5153 5154 if (!hash) { 5155 ret = -ENOMEM; 5156 goto out_regex_unlock; 5157 } 5158 5159 if (buf && !ftrace_match_records(hash, buf, len)) { 5160 ret = -EINVAL; 5161 goto out_regex_unlock; 5162 } 5163 if (ips) { 5164 ret = ftrace_match_addr(hash, ips, cnt, remove); 5165 if (ret < 0) 5166 goto out_regex_unlock; 5167 } 5168 5169 mutex_lock(&ftrace_lock); 5170 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5171 mutex_unlock(&ftrace_lock); 5172 5173 out_regex_unlock: 5174 mutex_unlock(&ops->func_hash->regex_lock); 5175 5176 free_ftrace_hash(hash); 5177 return ret; 5178 } 5179 5180 static int 5181 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5182 int remove, int reset, int enable) 5183 { 5184 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5185 } 5186 5187 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5188 5189 struct ftrace_direct_func { 5190 struct list_head next; 5191 unsigned long addr; 5192 int count; 5193 }; 5194 5195 static LIST_HEAD(ftrace_direct_funcs); 5196 5197 /** 5198 * ftrace_find_direct_func - test an address if it is a registered direct caller 5199 * @addr: The address of a registered direct caller 5200 * 5201 * This searches to see if a ftrace direct caller has been registered 5202 * at a specific address, and if so, it returns a descriptor for it. 5203 * 5204 * This can be used by architecture code to see if an address is 5205 * a direct caller (trampoline) attached to a fentry/mcount location. 5206 * This is useful for the function_graph tracer, as it may need to 5207 * do adjustments if it traced a location that also has a direct 5208 * trampoline attached to it. 5209 */ 5210 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5211 { 5212 struct ftrace_direct_func *entry; 5213 bool found = false; 5214 5215 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5216 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5217 if (entry->addr == addr) { 5218 found = true; 5219 break; 5220 } 5221 } 5222 if (found) 5223 return entry; 5224 5225 return NULL; 5226 } 5227 5228 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5229 { 5230 struct ftrace_direct_func *direct; 5231 5232 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5233 if (!direct) 5234 return NULL; 5235 direct->addr = addr; 5236 direct->count = 0; 5237 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5238 ftrace_direct_func_count++; 5239 return direct; 5240 } 5241 5242 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5243 5244 /** 5245 * register_ftrace_direct - Call a custom trampoline directly 5246 * @ip: The address of the nop at the beginning of a function 5247 * @addr: The address of the trampoline to call at @ip 5248 * 5249 * This is used to connect a direct call from the nop location (@ip) 5250 * at the start of ftrace traced functions. The location that it calls 5251 * (@addr) must be able to handle a direct call, and save the parameters 5252 * of the function being traced, and restore them (or inject new ones 5253 * if needed), before returning. 5254 * 5255 * Returns: 5256 * 0 on success 5257 * -EBUSY - Another direct function is already attached (there can be only one) 5258 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5259 * -ENOMEM - There was an allocation failure. 5260 */ 5261 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5262 { 5263 struct ftrace_direct_func *direct; 5264 struct ftrace_func_entry *entry; 5265 struct ftrace_hash *free_hash = NULL; 5266 struct dyn_ftrace *rec; 5267 int ret = -ENODEV; 5268 5269 mutex_lock(&direct_mutex); 5270 5271 ip = ftrace_location(ip); 5272 if (!ip) 5273 goto out_unlock; 5274 5275 /* See if there's a direct function at @ip already */ 5276 ret = -EBUSY; 5277 if (ftrace_find_rec_direct(ip)) 5278 goto out_unlock; 5279 5280 ret = -ENODEV; 5281 rec = lookup_rec(ip, ip); 5282 if (!rec) 5283 goto out_unlock; 5284 5285 /* 5286 * Check if the rec says it has a direct call but we didn't 5287 * find one earlier? 5288 */ 5289 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5290 goto out_unlock; 5291 5292 /* Make sure the ip points to the exact record */ 5293 if (ip != rec->ip) { 5294 ip = rec->ip; 5295 /* Need to check this ip for a direct. */ 5296 if (ftrace_find_rec_direct(ip)) 5297 goto out_unlock; 5298 } 5299 5300 ret = -ENOMEM; 5301 direct = ftrace_find_direct_func(addr); 5302 if (!direct) { 5303 direct = ftrace_alloc_direct_func(addr); 5304 if (!direct) 5305 goto out_unlock; 5306 } 5307 5308 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5309 if (!entry) 5310 goto out_unlock; 5311 5312 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5313 5314 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5315 ret = register_ftrace_function_nolock(&direct_ops); 5316 if (ret) 5317 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5318 } 5319 5320 if (ret) { 5321 remove_hash_entry(direct_functions, entry); 5322 kfree(entry); 5323 if (!direct->count) { 5324 list_del_rcu(&direct->next); 5325 synchronize_rcu_tasks(); 5326 kfree(direct); 5327 if (free_hash) 5328 free_ftrace_hash(free_hash); 5329 free_hash = NULL; 5330 ftrace_direct_func_count--; 5331 } 5332 } else { 5333 direct->count++; 5334 } 5335 out_unlock: 5336 mutex_unlock(&direct_mutex); 5337 5338 if (free_hash) { 5339 synchronize_rcu_tasks(); 5340 free_ftrace_hash(free_hash); 5341 } 5342 5343 return ret; 5344 } 5345 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5346 5347 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5348 struct dyn_ftrace **recp) 5349 { 5350 struct ftrace_func_entry *entry; 5351 struct dyn_ftrace *rec; 5352 5353 rec = lookup_rec(*ip, *ip); 5354 if (!rec) 5355 return NULL; 5356 5357 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5358 if (!entry) { 5359 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5360 return NULL; 5361 } 5362 5363 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5364 5365 /* Passed in ip just needs to be on the call site */ 5366 *ip = rec->ip; 5367 5368 if (recp) 5369 *recp = rec; 5370 5371 return entry; 5372 } 5373 5374 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5375 { 5376 struct ftrace_direct_func *direct; 5377 struct ftrace_func_entry *entry; 5378 struct ftrace_hash *hash; 5379 int ret = -ENODEV; 5380 5381 mutex_lock(&direct_mutex); 5382 5383 ip = ftrace_location(ip); 5384 if (!ip) 5385 goto out_unlock; 5386 5387 entry = find_direct_entry(&ip, NULL); 5388 if (!entry) 5389 goto out_unlock; 5390 5391 hash = direct_ops.func_hash->filter_hash; 5392 if (hash->count == 1) 5393 unregister_ftrace_function(&direct_ops); 5394 5395 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5396 5397 WARN_ON(ret); 5398 5399 remove_hash_entry(direct_functions, entry); 5400 5401 direct = ftrace_find_direct_func(addr); 5402 if (!WARN_ON(!direct)) { 5403 /* This is the good path (see the ! before WARN) */ 5404 direct->count--; 5405 WARN_ON(direct->count < 0); 5406 if (!direct->count) { 5407 list_del_rcu(&direct->next); 5408 synchronize_rcu_tasks(); 5409 kfree(direct); 5410 kfree(entry); 5411 ftrace_direct_func_count--; 5412 } 5413 } 5414 out_unlock: 5415 mutex_unlock(&direct_mutex); 5416 5417 return ret; 5418 } 5419 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5420 5421 static struct ftrace_ops stub_ops = { 5422 .func = ftrace_stub, 5423 }; 5424 5425 /** 5426 * ftrace_modify_direct_caller - modify ftrace nop directly 5427 * @entry: The ftrace hash entry of the direct helper for @rec 5428 * @rec: The record representing the function site to patch 5429 * @old_addr: The location that the site at @rec->ip currently calls 5430 * @new_addr: The location that the site at @rec->ip should call 5431 * 5432 * An architecture may overwrite this function to optimize the 5433 * changing of the direct callback on an ftrace nop location. 5434 * This is called with the ftrace_lock mutex held, and no other 5435 * ftrace callbacks are on the associated record (@rec). Thus, 5436 * it is safe to modify the ftrace record, where it should be 5437 * currently calling @old_addr directly, to call @new_addr. 5438 * 5439 * This is called with direct_mutex locked. 5440 * 5441 * Safety checks should be made to make sure that the code at 5442 * @rec->ip is currently calling @old_addr. And this must 5443 * also update entry->direct to @new_addr. 5444 */ 5445 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5446 struct dyn_ftrace *rec, 5447 unsigned long old_addr, 5448 unsigned long new_addr) 5449 { 5450 unsigned long ip = rec->ip; 5451 int ret; 5452 5453 lockdep_assert_held(&direct_mutex); 5454 5455 /* 5456 * The ftrace_lock was used to determine if the record 5457 * had more than one registered user to it. If it did, 5458 * we needed to prevent that from changing to do the quick 5459 * switch. But if it did not (only a direct caller was attached) 5460 * then this function is called. But this function can deal 5461 * with attached callers to the rec that we care about, and 5462 * since this function uses standard ftrace calls that take 5463 * the ftrace_lock mutex, we need to release it. 5464 */ 5465 mutex_unlock(&ftrace_lock); 5466 5467 /* 5468 * By setting a stub function at the same address, we force 5469 * the code to call the iterator and the direct_ops helper. 5470 * This means that @ip does not call the direct call, and 5471 * we can simply modify it. 5472 */ 5473 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5474 if (ret) 5475 goto out_lock; 5476 5477 ret = register_ftrace_function_nolock(&stub_ops); 5478 if (ret) { 5479 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5480 goto out_lock; 5481 } 5482 5483 entry->direct = new_addr; 5484 5485 /* 5486 * By removing the stub, we put back the direct call, calling 5487 * the @new_addr. 5488 */ 5489 unregister_ftrace_function(&stub_ops); 5490 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5491 5492 out_lock: 5493 mutex_lock(&ftrace_lock); 5494 5495 return ret; 5496 } 5497 5498 /** 5499 * modify_ftrace_direct - Modify an existing direct call to call something else 5500 * @ip: The instruction pointer to modify 5501 * @old_addr: The address that the current @ip calls directly 5502 * @new_addr: The address that the @ip should call 5503 * 5504 * This modifies a ftrace direct caller at an instruction pointer without 5505 * having to disable it first. The direct call will switch over to the 5506 * @new_addr without missing anything. 5507 * 5508 * Returns: zero on success. Non zero on error, which includes: 5509 * -ENODEV : the @ip given has no direct caller attached 5510 * -EINVAL : the @old_addr does not match the current direct caller 5511 */ 5512 int modify_ftrace_direct(unsigned long ip, 5513 unsigned long old_addr, unsigned long new_addr) 5514 { 5515 struct ftrace_direct_func *direct, *new_direct = NULL; 5516 struct ftrace_func_entry *entry; 5517 struct dyn_ftrace *rec; 5518 int ret = -ENODEV; 5519 5520 mutex_lock(&direct_mutex); 5521 5522 mutex_lock(&ftrace_lock); 5523 5524 ip = ftrace_location(ip); 5525 if (!ip) 5526 goto out_unlock; 5527 5528 entry = find_direct_entry(&ip, &rec); 5529 if (!entry) 5530 goto out_unlock; 5531 5532 ret = -EINVAL; 5533 if (entry->direct != old_addr) 5534 goto out_unlock; 5535 5536 direct = ftrace_find_direct_func(old_addr); 5537 if (WARN_ON(!direct)) 5538 goto out_unlock; 5539 if (direct->count > 1) { 5540 ret = -ENOMEM; 5541 new_direct = ftrace_alloc_direct_func(new_addr); 5542 if (!new_direct) 5543 goto out_unlock; 5544 direct->count--; 5545 new_direct->count++; 5546 } else { 5547 direct->addr = new_addr; 5548 } 5549 5550 /* 5551 * If there's no other ftrace callback on the rec->ip location, 5552 * then it can be changed directly by the architecture. 5553 * If there is another caller, then we just need to change the 5554 * direct caller helper to point to @new_addr. 5555 */ 5556 if (ftrace_rec_count(rec) == 1) { 5557 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5558 } else { 5559 entry->direct = new_addr; 5560 ret = 0; 5561 } 5562 5563 if (unlikely(ret && new_direct)) { 5564 direct->count++; 5565 list_del_rcu(&new_direct->next); 5566 synchronize_rcu_tasks(); 5567 kfree(new_direct); 5568 ftrace_direct_func_count--; 5569 } 5570 5571 out_unlock: 5572 mutex_unlock(&ftrace_lock); 5573 mutex_unlock(&direct_mutex); 5574 return ret; 5575 } 5576 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5577 5578 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5579 5580 static int check_direct_multi(struct ftrace_ops *ops) 5581 { 5582 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5583 return -EINVAL; 5584 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5585 return -EINVAL; 5586 return 0; 5587 } 5588 5589 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5590 { 5591 struct ftrace_func_entry *entry, *del; 5592 int size, i; 5593 5594 size = 1 << hash->size_bits; 5595 for (i = 0; i < size; i++) { 5596 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5597 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5598 if (del && del->direct == addr) { 5599 remove_hash_entry(direct_functions, del); 5600 kfree(del); 5601 } 5602 } 5603 } 5604 } 5605 5606 /** 5607 * register_ftrace_direct_multi - Call a custom trampoline directly 5608 * for multiple functions registered in @ops 5609 * @ops: The address of the struct ftrace_ops object 5610 * @addr: The address of the trampoline to call at @ops functions 5611 * 5612 * This is used to connect a direct calls to @addr from the nop locations 5613 * of the functions registered in @ops (with by ftrace_set_filter_ip 5614 * function). 5615 * 5616 * The location that it calls (@addr) must be able to handle a direct call, 5617 * and save the parameters of the function being traced, and restore them 5618 * (or inject new ones if needed), before returning. 5619 * 5620 * Returns: 5621 * 0 on success 5622 * -EINVAL - The @ops object was already registered with this call or 5623 * when there are no functions in @ops object. 5624 * -EBUSY - Another direct function is already attached (there can be only one) 5625 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5626 * -ENOMEM - There was an allocation failure. 5627 */ 5628 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5629 { 5630 struct ftrace_hash *hash, *free_hash = NULL; 5631 struct ftrace_func_entry *entry, *new; 5632 int err = -EBUSY, size, i; 5633 5634 if (ops->func || ops->trampoline) 5635 return -EINVAL; 5636 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5637 return -EINVAL; 5638 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5639 return -EINVAL; 5640 5641 hash = ops->func_hash->filter_hash; 5642 if (ftrace_hash_empty(hash)) 5643 return -EINVAL; 5644 5645 mutex_lock(&direct_mutex); 5646 5647 /* Make sure requested entries are not already registered.. */ 5648 size = 1 << hash->size_bits; 5649 for (i = 0; i < size; i++) { 5650 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5651 if (ftrace_find_rec_direct(entry->ip)) 5652 goto out_unlock; 5653 } 5654 } 5655 5656 /* ... and insert them to direct_functions hash. */ 5657 err = -ENOMEM; 5658 for (i = 0; i < size; i++) { 5659 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5660 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5661 if (!new) 5662 goto out_remove; 5663 entry->direct = addr; 5664 } 5665 } 5666 5667 ops->func = call_direct_funcs; 5668 ops->flags = MULTI_FLAGS; 5669 ops->trampoline = FTRACE_REGS_ADDR; 5670 5671 err = register_ftrace_function_nolock(ops); 5672 5673 out_remove: 5674 if (err) 5675 remove_direct_functions_hash(hash, addr); 5676 5677 out_unlock: 5678 mutex_unlock(&direct_mutex); 5679 5680 if (free_hash) { 5681 synchronize_rcu_tasks(); 5682 free_ftrace_hash(free_hash); 5683 } 5684 return err; 5685 } 5686 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5687 5688 /** 5689 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5690 * previously registered by register_ftrace_direct_multi for @ops object. 5691 * @ops: The address of the struct ftrace_ops object 5692 * 5693 * This is used to remove a direct calls to @addr from the nop locations 5694 * of the functions registered in @ops (with by ftrace_set_filter_ip 5695 * function). 5696 * 5697 * Returns: 5698 * 0 on success 5699 * -EINVAL - The @ops object was not properly registered. 5700 */ 5701 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5702 { 5703 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5704 int err; 5705 5706 if (check_direct_multi(ops)) 5707 return -EINVAL; 5708 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5709 return -EINVAL; 5710 5711 mutex_lock(&direct_mutex); 5712 err = unregister_ftrace_function(ops); 5713 remove_direct_functions_hash(hash, addr); 5714 mutex_unlock(&direct_mutex); 5715 5716 /* cleanup for possible another register call */ 5717 ops->func = NULL; 5718 ops->trampoline = 0; 5719 return err; 5720 } 5721 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5722 5723 static int 5724 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5725 { 5726 struct ftrace_hash *hash; 5727 struct ftrace_func_entry *entry, *iter; 5728 static struct ftrace_ops tmp_ops = { 5729 .func = ftrace_stub, 5730 .flags = FTRACE_OPS_FL_STUB, 5731 }; 5732 int i, size; 5733 int err; 5734 5735 lockdep_assert_held_once(&direct_mutex); 5736 5737 /* Enable the tmp_ops to have the same functions as the direct ops */ 5738 ftrace_ops_init(&tmp_ops); 5739 tmp_ops.func_hash = ops->func_hash; 5740 5741 err = register_ftrace_function_nolock(&tmp_ops); 5742 if (err) 5743 return err; 5744 5745 /* 5746 * Now the ftrace_ops_list_func() is called to do the direct callers. 5747 * We can safely change the direct functions attached to each entry. 5748 */ 5749 mutex_lock(&ftrace_lock); 5750 5751 hash = ops->func_hash->filter_hash; 5752 size = 1 << hash->size_bits; 5753 for (i = 0; i < size; i++) { 5754 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5755 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5756 if (!entry) 5757 continue; 5758 entry->direct = addr; 5759 } 5760 } 5761 5762 mutex_unlock(&ftrace_lock); 5763 5764 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5765 unregister_ftrace_function(&tmp_ops); 5766 5767 return err; 5768 } 5769 5770 /** 5771 * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call 5772 * to call something else 5773 * @ops: The address of the struct ftrace_ops object 5774 * @addr: The address of the new trampoline to call at @ops functions 5775 * 5776 * This is used to unregister currently registered direct caller and 5777 * register new one @addr on functions registered in @ops object. 5778 * 5779 * Note there's window between ftrace_shutdown and ftrace_startup calls 5780 * where there will be no callbacks called. 5781 * 5782 * Caller should already have direct_mutex locked, so we don't lock 5783 * direct_mutex here. 5784 * 5785 * Returns: zero on success. Non zero on error, which includes: 5786 * -EINVAL - The @ops object was not properly registered. 5787 */ 5788 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr) 5789 { 5790 if (check_direct_multi(ops)) 5791 return -EINVAL; 5792 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5793 return -EINVAL; 5794 5795 return __modify_ftrace_direct_multi(ops, addr); 5796 } 5797 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock); 5798 5799 /** 5800 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5801 * to call something else 5802 * @ops: The address of the struct ftrace_ops object 5803 * @addr: The address of the new trampoline to call at @ops functions 5804 * 5805 * This is used to unregister currently registered direct caller and 5806 * register new one @addr on functions registered in @ops object. 5807 * 5808 * Note there's window between ftrace_shutdown and ftrace_startup calls 5809 * where there will be no callbacks called. 5810 * 5811 * Returns: zero on success. Non zero on error, which includes: 5812 * -EINVAL - The @ops object was not properly registered. 5813 */ 5814 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5815 { 5816 int err; 5817 5818 if (check_direct_multi(ops)) 5819 return -EINVAL; 5820 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5821 return -EINVAL; 5822 5823 mutex_lock(&direct_mutex); 5824 err = __modify_ftrace_direct_multi(ops, addr); 5825 mutex_unlock(&direct_mutex); 5826 return err; 5827 } 5828 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5829 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5830 5831 /** 5832 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5833 * @ops - the ops to set the filter with 5834 * @ip - the address to add to or remove from the filter. 5835 * @remove - non zero to remove the ip from the filter 5836 * @reset - non zero to reset all filters before applying this filter. 5837 * 5838 * Filters denote which functions should be enabled when tracing is enabled 5839 * If @ip is NULL, it fails to update filter. 5840 */ 5841 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5842 int remove, int reset) 5843 { 5844 ftrace_ops_init(ops); 5845 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5846 } 5847 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5848 5849 /** 5850 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5851 * @ops - the ops to set the filter with 5852 * @ips - the array of addresses to add to or remove from the filter. 5853 * @cnt - the number of addresses in @ips 5854 * @remove - non zero to remove ips from the filter 5855 * @reset - non zero to reset all filters before applying this filter. 5856 * 5857 * Filters denote which functions should be enabled when tracing is enabled 5858 * If @ips array or any ip specified within is NULL , it fails to update filter. 5859 */ 5860 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5861 unsigned int cnt, int remove, int reset) 5862 { 5863 ftrace_ops_init(ops); 5864 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5865 } 5866 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5867 5868 /** 5869 * ftrace_ops_set_global_filter - setup ops to use global filters 5870 * @ops - the ops which will use the global filters 5871 * 5872 * ftrace users who need global function trace filtering should call this. 5873 * It can set the global filter only if ops were not initialized before. 5874 */ 5875 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5876 { 5877 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5878 return; 5879 5880 ftrace_ops_init(ops); 5881 ops->func_hash = &global_ops.local_hash; 5882 } 5883 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5884 5885 static int 5886 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5887 int reset, int enable) 5888 { 5889 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5890 } 5891 5892 /** 5893 * ftrace_set_filter - set a function to filter on in ftrace 5894 * @ops - the ops to set the filter with 5895 * @buf - the string that holds the function filter text. 5896 * @len - the length of the string. 5897 * @reset - non zero to reset all filters before applying this filter. 5898 * 5899 * Filters denote which functions should be enabled when tracing is enabled. 5900 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5901 */ 5902 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5903 int len, int reset) 5904 { 5905 ftrace_ops_init(ops); 5906 return ftrace_set_regex(ops, buf, len, reset, 1); 5907 } 5908 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5909 5910 /** 5911 * ftrace_set_notrace - set a function to not trace in ftrace 5912 * @ops - the ops to set the notrace filter with 5913 * @buf - the string that holds the function notrace text. 5914 * @len - the length of the string. 5915 * @reset - non zero to reset all filters before applying this filter. 5916 * 5917 * Notrace Filters denote which functions should not be enabled when tracing 5918 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5919 * for tracing. 5920 */ 5921 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5922 int len, int reset) 5923 { 5924 ftrace_ops_init(ops); 5925 return ftrace_set_regex(ops, buf, len, reset, 0); 5926 } 5927 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5928 /** 5929 * ftrace_set_global_filter - set a function to filter on with global tracers 5930 * @buf - the string that holds the function filter text. 5931 * @len - the length of the string. 5932 * @reset - non zero to reset all filters before applying this filter. 5933 * 5934 * Filters denote which functions should be enabled when tracing is enabled. 5935 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5936 */ 5937 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5938 { 5939 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5940 } 5941 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5942 5943 /** 5944 * ftrace_set_global_notrace - set a function to not trace with global tracers 5945 * @buf - the string that holds the function notrace text. 5946 * @len - the length of the string. 5947 * @reset - non zero to reset all filters before applying this filter. 5948 * 5949 * Notrace Filters denote which functions should not be enabled when tracing 5950 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5951 * for tracing. 5952 */ 5953 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5954 { 5955 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5956 } 5957 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5958 5959 /* 5960 * command line interface to allow users to set filters on boot up. 5961 */ 5962 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5963 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5964 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5965 5966 /* Used by function selftest to not test if filter is set */ 5967 bool ftrace_filter_param __initdata; 5968 5969 static int __init set_ftrace_notrace(char *str) 5970 { 5971 ftrace_filter_param = true; 5972 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5973 return 1; 5974 } 5975 __setup("ftrace_notrace=", set_ftrace_notrace); 5976 5977 static int __init set_ftrace_filter(char *str) 5978 { 5979 ftrace_filter_param = true; 5980 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5981 return 1; 5982 } 5983 __setup("ftrace_filter=", set_ftrace_filter); 5984 5985 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5986 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5987 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5988 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5989 5990 static int __init set_graph_function(char *str) 5991 { 5992 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5993 return 1; 5994 } 5995 __setup("ftrace_graph_filter=", set_graph_function); 5996 5997 static int __init set_graph_notrace_function(char *str) 5998 { 5999 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6000 return 1; 6001 } 6002 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6003 6004 static int __init set_graph_max_depth_function(char *str) 6005 { 6006 if (!str) 6007 return 0; 6008 fgraph_max_depth = simple_strtoul(str, NULL, 0); 6009 return 1; 6010 } 6011 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6012 6013 static void __init set_ftrace_early_graph(char *buf, int enable) 6014 { 6015 int ret; 6016 char *func; 6017 struct ftrace_hash *hash; 6018 6019 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6020 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6021 return; 6022 6023 while (buf) { 6024 func = strsep(&buf, ","); 6025 /* we allow only one expression at a time */ 6026 ret = ftrace_graph_set_hash(hash, func); 6027 if (ret) 6028 printk(KERN_DEBUG "ftrace: function %s not " 6029 "traceable\n", func); 6030 } 6031 6032 if (enable) 6033 ftrace_graph_hash = hash; 6034 else 6035 ftrace_graph_notrace_hash = hash; 6036 } 6037 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6038 6039 void __init 6040 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6041 { 6042 char *func; 6043 6044 ftrace_ops_init(ops); 6045 6046 while (buf) { 6047 func = strsep(&buf, ","); 6048 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6049 } 6050 } 6051 6052 static void __init set_ftrace_early_filters(void) 6053 { 6054 if (ftrace_filter_buf[0]) 6055 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6056 if (ftrace_notrace_buf[0]) 6057 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6058 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6059 if (ftrace_graph_buf[0]) 6060 set_ftrace_early_graph(ftrace_graph_buf, 1); 6061 if (ftrace_graph_notrace_buf[0]) 6062 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6063 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6064 } 6065 6066 int ftrace_regex_release(struct inode *inode, struct file *file) 6067 { 6068 struct seq_file *m = (struct seq_file *)file->private_data; 6069 struct ftrace_iterator *iter; 6070 struct ftrace_hash **orig_hash; 6071 struct trace_parser *parser; 6072 int filter_hash; 6073 6074 if (file->f_mode & FMODE_READ) { 6075 iter = m->private; 6076 seq_release(inode, file); 6077 } else 6078 iter = file->private_data; 6079 6080 parser = &iter->parser; 6081 if (trace_parser_loaded(parser)) { 6082 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6083 6084 ftrace_process_regex(iter, parser->buffer, 6085 parser->idx, enable); 6086 } 6087 6088 trace_parser_put(parser); 6089 6090 mutex_lock(&iter->ops->func_hash->regex_lock); 6091 6092 if (file->f_mode & FMODE_WRITE) { 6093 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6094 6095 if (filter_hash) { 6096 orig_hash = &iter->ops->func_hash->filter_hash; 6097 if (iter->tr) { 6098 if (list_empty(&iter->tr->mod_trace)) 6099 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6100 else 6101 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6102 } 6103 } else 6104 orig_hash = &iter->ops->func_hash->notrace_hash; 6105 6106 mutex_lock(&ftrace_lock); 6107 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6108 iter->hash, filter_hash); 6109 mutex_unlock(&ftrace_lock); 6110 } else { 6111 /* For read only, the hash is the ops hash */ 6112 iter->hash = NULL; 6113 } 6114 6115 mutex_unlock(&iter->ops->func_hash->regex_lock); 6116 free_ftrace_hash(iter->hash); 6117 if (iter->tr) 6118 trace_array_put(iter->tr); 6119 kfree(iter); 6120 6121 return 0; 6122 } 6123 6124 static const struct file_operations ftrace_avail_fops = { 6125 .open = ftrace_avail_open, 6126 .read = seq_read, 6127 .llseek = seq_lseek, 6128 .release = seq_release_private, 6129 }; 6130 6131 static const struct file_operations ftrace_enabled_fops = { 6132 .open = ftrace_enabled_open, 6133 .read = seq_read, 6134 .llseek = seq_lseek, 6135 .release = seq_release_private, 6136 }; 6137 6138 static const struct file_operations ftrace_filter_fops = { 6139 .open = ftrace_filter_open, 6140 .read = seq_read, 6141 .write = ftrace_filter_write, 6142 .llseek = tracing_lseek, 6143 .release = ftrace_regex_release, 6144 }; 6145 6146 static const struct file_operations ftrace_notrace_fops = { 6147 .open = ftrace_notrace_open, 6148 .read = seq_read, 6149 .write = ftrace_notrace_write, 6150 .llseek = tracing_lseek, 6151 .release = ftrace_regex_release, 6152 }; 6153 6154 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6155 6156 static DEFINE_MUTEX(graph_lock); 6157 6158 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6159 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6160 6161 enum graph_filter_type { 6162 GRAPH_FILTER_NOTRACE = 0, 6163 GRAPH_FILTER_FUNCTION, 6164 }; 6165 6166 #define FTRACE_GRAPH_EMPTY ((void *)1) 6167 6168 struct ftrace_graph_data { 6169 struct ftrace_hash *hash; 6170 struct ftrace_func_entry *entry; 6171 int idx; /* for hash table iteration */ 6172 enum graph_filter_type type; 6173 struct ftrace_hash *new_hash; 6174 const struct seq_operations *seq_ops; 6175 struct trace_parser parser; 6176 }; 6177 6178 static void * 6179 __g_next(struct seq_file *m, loff_t *pos) 6180 { 6181 struct ftrace_graph_data *fgd = m->private; 6182 struct ftrace_func_entry *entry = fgd->entry; 6183 struct hlist_head *head; 6184 int i, idx = fgd->idx; 6185 6186 if (*pos >= fgd->hash->count) 6187 return NULL; 6188 6189 if (entry) { 6190 hlist_for_each_entry_continue(entry, hlist) { 6191 fgd->entry = entry; 6192 return entry; 6193 } 6194 6195 idx++; 6196 } 6197 6198 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6199 head = &fgd->hash->buckets[i]; 6200 hlist_for_each_entry(entry, head, hlist) { 6201 fgd->entry = entry; 6202 fgd->idx = i; 6203 return entry; 6204 } 6205 } 6206 return NULL; 6207 } 6208 6209 static void * 6210 g_next(struct seq_file *m, void *v, loff_t *pos) 6211 { 6212 (*pos)++; 6213 return __g_next(m, pos); 6214 } 6215 6216 static void *g_start(struct seq_file *m, loff_t *pos) 6217 { 6218 struct ftrace_graph_data *fgd = m->private; 6219 6220 mutex_lock(&graph_lock); 6221 6222 if (fgd->type == GRAPH_FILTER_FUNCTION) 6223 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6224 lockdep_is_held(&graph_lock)); 6225 else 6226 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6227 lockdep_is_held(&graph_lock)); 6228 6229 /* Nothing, tell g_show to print all functions are enabled */ 6230 if (ftrace_hash_empty(fgd->hash) && !*pos) 6231 return FTRACE_GRAPH_EMPTY; 6232 6233 fgd->idx = 0; 6234 fgd->entry = NULL; 6235 return __g_next(m, pos); 6236 } 6237 6238 static void g_stop(struct seq_file *m, void *p) 6239 { 6240 mutex_unlock(&graph_lock); 6241 } 6242 6243 static int g_show(struct seq_file *m, void *v) 6244 { 6245 struct ftrace_func_entry *entry = v; 6246 6247 if (!entry) 6248 return 0; 6249 6250 if (entry == FTRACE_GRAPH_EMPTY) { 6251 struct ftrace_graph_data *fgd = m->private; 6252 6253 if (fgd->type == GRAPH_FILTER_FUNCTION) 6254 seq_puts(m, "#### all functions enabled ####\n"); 6255 else 6256 seq_puts(m, "#### no functions disabled ####\n"); 6257 return 0; 6258 } 6259 6260 seq_printf(m, "%ps\n", (void *)entry->ip); 6261 6262 return 0; 6263 } 6264 6265 static const struct seq_operations ftrace_graph_seq_ops = { 6266 .start = g_start, 6267 .next = g_next, 6268 .stop = g_stop, 6269 .show = g_show, 6270 }; 6271 6272 static int 6273 __ftrace_graph_open(struct inode *inode, struct file *file, 6274 struct ftrace_graph_data *fgd) 6275 { 6276 int ret; 6277 struct ftrace_hash *new_hash = NULL; 6278 6279 ret = security_locked_down(LOCKDOWN_TRACEFS); 6280 if (ret) 6281 return ret; 6282 6283 if (file->f_mode & FMODE_WRITE) { 6284 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6285 6286 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6287 return -ENOMEM; 6288 6289 if (file->f_flags & O_TRUNC) 6290 new_hash = alloc_ftrace_hash(size_bits); 6291 else 6292 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6293 fgd->hash); 6294 if (!new_hash) { 6295 ret = -ENOMEM; 6296 goto out; 6297 } 6298 } 6299 6300 if (file->f_mode & FMODE_READ) { 6301 ret = seq_open(file, &ftrace_graph_seq_ops); 6302 if (!ret) { 6303 struct seq_file *m = file->private_data; 6304 m->private = fgd; 6305 } else { 6306 /* Failed */ 6307 free_ftrace_hash(new_hash); 6308 new_hash = NULL; 6309 } 6310 } else 6311 file->private_data = fgd; 6312 6313 out: 6314 if (ret < 0 && file->f_mode & FMODE_WRITE) 6315 trace_parser_put(&fgd->parser); 6316 6317 fgd->new_hash = new_hash; 6318 6319 /* 6320 * All uses of fgd->hash must be taken with the graph_lock 6321 * held. The graph_lock is going to be released, so force 6322 * fgd->hash to be reinitialized when it is taken again. 6323 */ 6324 fgd->hash = NULL; 6325 6326 return ret; 6327 } 6328 6329 static int 6330 ftrace_graph_open(struct inode *inode, struct file *file) 6331 { 6332 struct ftrace_graph_data *fgd; 6333 int ret; 6334 6335 if (unlikely(ftrace_disabled)) 6336 return -ENODEV; 6337 6338 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6339 if (fgd == NULL) 6340 return -ENOMEM; 6341 6342 mutex_lock(&graph_lock); 6343 6344 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6345 lockdep_is_held(&graph_lock)); 6346 fgd->type = GRAPH_FILTER_FUNCTION; 6347 fgd->seq_ops = &ftrace_graph_seq_ops; 6348 6349 ret = __ftrace_graph_open(inode, file, fgd); 6350 if (ret < 0) 6351 kfree(fgd); 6352 6353 mutex_unlock(&graph_lock); 6354 return ret; 6355 } 6356 6357 static int 6358 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6359 { 6360 struct ftrace_graph_data *fgd; 6361 int ret; 6362 6363 if (unlikely(ftrace_disabled)) 6364 return -ENODEV; 6365 6366 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6367 if (fgd == NULL) 6368 return -ENOMEM; 6369 6370 mutex_lock(&graph_lock); 6371 6372 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6373 lockdep_is_held(&graph_lock)); 6374 fgd->type = GRAPH_FILTER_NOTRACE; 6375 fgd->seq_ops = &ftrace_graph_seq_ops; 6376 6377 ret = __ftrace_graph_open(inode, file, fgd); 6378 if (ret < 0) 6379 kfree(fgd); 6380 6381 mutex_unlock(&graph_lock); 6382 return ret; 6383 } 6384 6385 static int 6386 ftrace_graph_release(struct inode *inode, struct file *file) 6387 { 6388 struct ftrace_graph_data *fgd; 6389 struct ftrace_hash *old_hash, *new_hash; 6390 struct trace_parser *parser; 6391 int ret = 0; 6392 6393 if (file->f_mode & FMODE_READ) { 6394 struct seq_file *m = file->private_data; 6395 6396 fgd = m->private; 6397 seq_release(inode, file); 6398 } else { 6399 fgd = file->private_data; 6400 } 6401 6402 6403 if (file->f_mode & FMODE_WRITE) { 6404 6405 parser = &fgd->parser; 6406 6407 if (trace_parser_loaded((parser))) { 6408 ret = ftrace_graph_set_hash(fgd->new_hash, 6409 parser->buffer); 6410 } 6411 6412 trace_parser_put(parser); 6413 6414 new_hash = __ftrace_hash_move(fgd->new_hash); 6415 if (!new_hash) { 6416 ret = -ENOMEM; 6417 goto out; 6418 } 6419 6420 mutex_lock(&graph_lock); 6421 6422 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6423 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6424 lockdep_is_held(&graph_lock)); 6425 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6426 } else { 6427 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6428 lockdep_is_held(&graph_lock)); 6429 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6430 } 6431 6432 mutex_unlock(&graph_lock); 6433 6434 /* 6435 * We need to do a hard force of sched synchronization. 6436 * This is because we use preempt_disable() to do RCU, but 6437 * the function tracers can be called where RCU is not watching 6438 * (like before user_exit()). We can not rely on the RCU 6439 * infrastructure to do the synchronization, thus we must do it 6440 * ourselves. 6441 */ 6442 if (old_hash != EMPTY_HASH) 6443 synchronize_rcu_tasks_rude(); 6444 6445 free_ftrace_hash(old_hash); 6446 } 6447 6448 out: 6449 free_ftrace_hash(fgd->new_hash); 6450 kfree(fgd); 6451 6452 return ret; 6453 } 6454 6455 static int 6456 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6457 { 6458 struct ftrace_glob func_g; 6459 struct dyn_ftrace *rec; 6460 struct ftrace_page *pg; 6461 struct ftrace_func_entry *entry; 6462 int fail = 1; 6463 int not; 6464 6465 /* decode regex */ 6466 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6467 &func_g.search, ¬); 6468 6469 func_g.len = strlen(func_g.search); 6470 6471 mutex_lock(&ftrace_lock); 6472 6473 if (unlikely(ftrace_disabled)) { 6474 mutex_unlock(&ftrace_lock); 6475 return -ENODEV; 6476 } 6477 6478 do_for_each_ftrace_rec(pg, rec) { 6479 6480 if (rec->flags & FTRACE_FL_DISABLED) 6481 continue; 6482 6483 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6484 entry = ftrace_lookup_ip(hash, rec->ip); 6485 6486 if (!not) { 6487 fail = 0; 6488 6489 if (entry) 6490 continue; 6491 if (add_hash_entry(hash, rec->ip) < 0) 6492 goto out; 6493 } else { 6494 if (entry) { 6495 free_hash_entry(hash, entry); 6496 fail = 0; 6497 } 6498 } 6499 } 6500 } while_for_each_ftrace_rec(); 6501 out: 6502 mutex_unlock(&ftrace_lock); 6503 6504 if (fail) 6505 return -EINVAL; 6506 6507 return 0; 6508 } 6509 6510 static ssize_t 6511 ftrace_graph_write(struct file *file, const char __user *ubuf, 6512 size_t cnt, loff_t *ppos) 6513 { 6514 ssize_t read, ret = 0; 6515 struct ftrace_graph_data *fgd = file->private_data; 6516 struct trace_parser *parser; 6517 6518 if (!cnt) 6519 return 0; 6520 6521 /* Read mode uses seq functions */ 6522 if (file->f_mode & FMODE_READ) { 6523 struct seq_file *m = file->private_data; 6524 fgd = m->private; 6525 } 6526 6527 parser = &fgd->parser; 6528 6529 read = trace_get_user(parser, ubuf, cnt, ppos); 6530 6531 if (read >= 0 && trace_parser_loaded(parser) && 6532 !trace_parser_cont(parser)) { 6533 6534 ret = ftrace_graph_set_hash(fgd->new_hash, 6535 parser->buffer); 6536 trace_parser_clear(parser); 6537 } 6538 6539 if (!ret) 6540 ret = read; 6541 6542 return ret; 6543 } 6544 6545 static const struct file_operations ftrace_graph_fops = { 6546 .open = ftrace_graph_open, 6547 .read = seq_read, 6548 .write = ftrace_graph_write, 6549 .llseek = tracing_lseek, 6550 .release = ftrace_graph_release, 6551 }; 6552 6553 static const struct file_operations ftrace_graph_notrace_fops = { 6554 .open = ftrace_graph_notrace_open, 6555 .read = seq_read, 6556 .write = ftrace_graph_write, 6557 .llseek = tracing_lseek, 6558 .release = ftrace_graph_release, 6559 }; 6560 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6561 6562 void ftrace_create_filter_files(struct ftrace_ops *ops, 6563 struct dentry *parent) 6564 { 6565 6566 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6567 ops, &ftrace_filter_fops); 6568 6569 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6570 ops, &ftrace_notrace_fops); 6571 } 6572 6573 /* 6574 * The name "destroy_filter_files" is really a misnomer. Although 6575 * in the future, it may actually delete the files, but this is 6576 * really intended to make sure the ops passed in are disabled 6577 * and that when this function returns, the caller is free to 6578 * free the ops. 6579 * 6580 * The "destroy" name is only to match the "create" name that this 6581 * should be paired with. 6582 */ 6583 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6584 { 6585 mutex_lock(&ftrace_lock); 6586 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6587 ftrace_shutdown(ops, 0); 6588 ops->flags |= FTRACE_OPS_FL_DELETED; 6589 ftrace_free_filter(ops); 6590 mutex_unlock(&ftrace_lock); 6591 } 6592 6593 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6594 { 6595 6596 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6597 d_tracer, NULL, &ftrace_avail_fops); 6598 6599 trace_create_file("enabled_functions", TRACE_MODE_READ, 6600 d_tracer, NULL, &ftrace_enabled_fops); 6601 6602 ftrace_create_filter_files(&global_ops, d_tracer); 6603 6604 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6605 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6606 NULL, 6607 &ftrace_graph_fops); 6608 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6609 NULL, 6610 &ftrace_graph_notrace_fops); 6611 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6612 6613 return 0; 6614 } 6615 6616 static int ftrace_cmp_ips(const void *a, const void *b) 6617 { 6618 const unsigned long *ipa = a; 6619 const unsigned long *ipb = b; 6620 6621 if (*ipa > *ipb) 6622 return 1; 6623 if (*ipa < *ipb) 6624 return -1; 6625 return 0; 6626 } 6627 6628 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6629 static void test_is_sorted(unsigned long *start, unsigned long count) 6630 { 6631 int i; 6632 6633 for (i = 1; i < count; i++) { 6634 if (WARN(start[i - 1] > start[i], 6635 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6636 (void *)start[i - 1], start[i - 1], 6637 (void *)start[i], start[i])) 6638 break; 6639 } 6640 if (i == count) 6641 pr_info("ftrace section at %px sorted properly\n", start); 6642 } 6643 #else 6644 static void test_is_sorted(unsigned long *start, unsigned long count) 6645 { 6646 } 6647 #endif 6648 6649 static int ftrace_process_locs(struct module *mod, 6650 unsigned long *start, 6651 unsigned long *end) 6652 { 6653 struct ftrace_page *start_pg; 6654 struct ftrace_page *pg; 6655 struct dyn_ftrace *rec; 6656 unsigned long count; 6657 unsigned long *p; 6658 unsigned long addr; 6659 unsigned long flags = 0; /* Shut up gcc */ 6660 int ret = -ENOMEM; 6661 6662 count = end - start; 6663 6664 if (!count) 6665 return 0; 6666 6667 /* 6668 * Sorting mcount in vmlinux at build time depend on 6669 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6670 * modules can not be sorted at build time. 6671 */ 6672 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6673 sort(start, count, sizeof(*start), 6674 ftrace_cmp_ips, NULL); 6675 } else { 6676 test_is_sorted(start, count); 6677 } 6678 6679 start_pg = ftrace_allocate_pages(count); 6680 if (!start_pg) 6681 return -ENOMEM; 6682 6683 mutex_lock(&ftrace_lock); 6684 6685 /* 6686 * Core and each module needs their own pages, as 6687 * modules will free them when they are removed. 6688 * Force a new page to be allocated for modules. 6689 */ 6690 if (!mod) { 6691 WARN_ON(ftrace_pages || ftrace_pages_start); 6692 /* First initialization */ 6693 ftrace_pages = ftrace_pages_start = start_pg; 6694 } else { 6695 if (!ftrace_pages) 6696 goto out; 6697 6698 if (WARN_ON(ftrace_pages->next)) { 6699 /* Hmm, we have free pages? */ 6700 while (ftrace_pages->next) 6701 ftrace_pages = ftrace_pages->next; 6702 } 6703 6704 ftrace_pages->next = start_pg; 6705 } 6706 6707 p = start; 6708 pg = start_pg; 6709 while (p < end) { 6710 unsigned long end_offset; 6711 addr = ftrace_call_adjust(*p++); 6712 /* 6713 * Some architecture linkers will pad between 6714 * the different mcount_loc sections of different 6715 * object files to satisfy alignments. 6716 * Skip any NULL pointers. 6717 */ 6718 if (!addr) 6719 continue; 6720 6721 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6722 if (end_offset > PAGE_SIZE << pg->order) { 6723 /* We should have allocated enough */ 6724 if (WARN_ON(!pg->next)) 6725 break; 6726 pg = pg->next; 6727 } 6728 6729 rec = &pg->records[pg->index++]; 6730 rec->ip = addr; 6731 } 6732 6733 /* We should have used all pages */ 6734 WARN_ON(pg->next); 6735 6736 /* Assign the last page to ftrace_pages */ 6737 ftrace_pages = pg; 6738 6739 /* 6740 * We only need to disable interrupts on start up 6741 * because we are modifying code that an interrupt 6742 * may execute, and the modification is not atomic. 6743 * But for modules, nothing runs the code we modify 6744 * until we are finished with it, and there's no 6745 * reason to cause large interrupt latencies while we do it. 6746 */ 6747 if (!mod) 6748 local_irq_save(flags); 6749 ftrace_update_code(mod, start_pg); 6750 if (!mod) 6751 local_irq_restore(flags); 6752 ret = 0; 6753 out: 6754 mutex_unlock(&ftrace_lock); 6755 6756 return ret; 6757 } 6758 6759 struct ftrace_mod_func { 6760 struct list_head list; 6761 char *name; 6762 unsigned long ip; 6763 unsigned int size; 6764 }; 6765 6766 struct ftrace_mod_map { 6767 struct rcu_head rcu; 6768 struct list_head list; 6769 struct module *mod; 6770 unsigned long start_addr; 6771 unsigned long end_addr; 6772 struct list_head funcs; 6773 unsigned int num_funcs; 6774 }; 6775 6776 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6777 unsigned long *value, char *type, 6778 char *name, char *module_name, 6779 int *exported) 6780 { 6781 struct ftrace_ops *op; 6782 6783 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6784 if (!op->trampoline || symnum--) 6785 continue; 6786 *value = op->trampoline; 6787 *type = 't'; 6788 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6789 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6790 *exported = 0; 6791 return 0; 6792 } 6793 6794 return -ERANGE; 6795 } 6796 6797 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 6798 /* 6799 * Check if the current ops references the given ip. 6800 * 6801 * If the ops traces all functions, then it was already accounted for. 6802 * If the ops does not trace the current record function, skip it. 6803 * If the ops ignores the function via notrace filter, skip it. 6804 */ 6805 static bool 6806 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 6807 { 6808 /* If ops isn't enabled, ignore it */ 6809 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6810 return false; 6811 6812 /* If ops traces all then it includes this function */ 6813 if (ops_traces_mod(ops)) 6814 return true; 6815 6816 /* The function must be in the filter */ 6817 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 6818 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 6819 return false; 6820 6821 /* If in notrace hash, we ignore it too */ 6822 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 6823 return false; 6824 6825 return true; 6826 } 6827 #endif 6828 6829 #ifdef CONFIG_MODULES 6830 6831 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6832 6833 static LIST_HEAD(ftrace_mod_maps); 6834 6835 static int referenced_filters(struct dyn_ftrace *rec) 6836 { 6837 struct ftrace_ops *ops; 6838 int cnt = 0; 6839 6840 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6841 if (ops_references_ip(ops, rec->ip)) { 6842 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6843 continue; 6844 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6845 continue; 6846 cnt++; 6847 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6848 rec->flags |= FTRACE_FL_REGS; 6849 if (cnt == 1 && ops->trampoline) 6850 rec->flags |= FTRACE_FL_TRAMP; 6851 else 6852 rec->flags &= ~FTRACE_FL_TRAMP; 6853 } 6854 } 6855 6856 return cnt; 6857 } 6858 6859 static void 6860 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6861 { 6862 struct ftrace_func_entry *entry; 6863 struct dyn_ftrace *rec; 6864 int i; 6865 6866 if (ftrace_hash_empty(hash)) 6867 return; 6868 6869 for (i = 0; i < pg->index; i++) { 6870 rec = &pg->records[i]; 6871 entry = __ftrace_lookup_ip(hash, rec->ip); 6872 /* 6873 * Do not allow this rec to match again. 6874 * Yeah, it may waste some memory, but will be removed 6875 * if/when the hash is modified again. 6876 */ 6877 if (entry) 6878 entry->ip = 0; 6879 } 6880 } 6881 6882 /* Clear any records from hashes */ 6883 static void clear_mod_from_hashes(struct ftrace_page *pg) 6884 { 6885 struct trace_array *tr; 6886 6887 mutex_lock(&trace_types_lock); 6888 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6889 if (!tr->ops || !tr->ops->func_hash) 6890 continue; 6891 mutex_lock(&tr->ops->func_hash->regex_lock); 6892 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6893 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6894 mutex_unlock(&tr->ops->func_hash->regex_lock); 6895 } 6896 mutex_unlock(&trace_types_lock); 6897 } 6898 6899 static void ftrace_free_mod_map(struct rcu_head *rcu) 6900 { 6901 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6902 struct ftrace_mod_func *mod_func; 6903 struct ftrace_mod_func *n; 6904 6905 /* All the contents of mod_map are now not visible to readers */ 6906 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6907 kfree(mod_func->name); 6908 list_del(&mod_func->list); 6909 kfree(mod_func); 6910 } 6911 6912 kfree(mod_map); 6913 } 6914 6915 void ftrace_release_mod(struct module *mod) 6916 { 6917 struct ftrace_mod_map *mod_map; 6918 struct ftrace_mod_map *n; 6919 struct dyn_ftrace *rec; 6920 struct ftrace_page **last_pg; 6921 struct ftrace_page *tmp_page = NULL; 6922 struct ftrace_page *pg; 6923 6924 mutex_lock(&ftrace_lock); 6925 6926 if (ftrace_disabled) 6927 goto out_unlock; 6928 6929 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6930 if (mod_map->mod == mod) { 6931 list_del_rcu(&mod_map->list); 6932 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6933 break; 6934 } 6935 } 6936 6937 /* 6938 * Each module has its own ftrace_pages, remove 6939 * them from the list. 6940 */ 6941 last_pg = &ftrace_pages_start; 6942 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6943 rec = &pg->records[0]; 6944 if (within_module_core(rec->ip, mod) || 6945 within_module_init(rec->ip, mod)) { 6946 /* 6947 * As core pages are first, the first 6948 * page should never be a module page. 6949 */ 6950 if (WARN_ON(pg == ftrace_pages_start)) 6951 goto out_unlock; 6952 6953 /* Check if we are deleting the last page */ 6954 if (pg == ftrace_pages) 6955 ftrace_pages = next_to_ftrace_page(last_pg); 6956 6957 ftrace_update_tot_cnt -= pg->index; 6958 *last_pg = pg->next; 6959 6960 pg->next = tmp_page; 6961 tmp_page = pg; 6962 } else 6963 last_pg = &pg->next; 6964 } 6965 out_unlock: 6966 mutex_unlock(&ftrace_lock); 6967 6968 for (pg = tmp_page; pg; pg = tmp_page) { 6969 6970 /* Needs to be called outside of ftrace_lock */ 6971 clear_mod_from_hashes(pg); 6972 6973 if (pg->records) { 6974 free_pages((unsigned long)pg->records, pg->order); 6975 ftrace_number_of_pages -= 1 << pg->order; 6976 } 6977 tmp_page = pg->next; 6978 kfree(pg); 6979 ftrace_number_of_groups--; 6980 } 6981 } 6982 6983 void ftrace_module_enable(struct module *mod) 6984 { 6985 struct dyn_ftrace *rec; 6986 struct ftrace_page *pg; 6987 6988 mutex_lock(&ftrace_lock); 6989 6990 if (ftrace_disabled) 6991 goto out_unlock; 6992 6993 /* 6994 * If the tracing is enabled, go ahead and enable the record. 6995 * 6996 * The reason not to enable the record immediately is the 6997 * inherent check of ftrace_make_nop/ftrace_make_call for 6998 * correct previous instructions. Making first the NOP 6999 * conversion puts the module to the correct state, thus 7000 * passing the ftrace_make_call check. 7001 * 7002 * We also delay this to after the module code already set the 7003 * text to read-only, as we now need to set it back to read-write 7004 * so that we can modify the text. 7005 */ 7006 if (ftrace_start_up) 7007 ftrace_arch_code_modify_prepare(); 7008 7009 do_for_each_ftrace_rec(pg, rec) { 7010 int cnt; 7011 /* 7012 * do_for_each_ftrace_rec() is a double loop. 7013 * module text shares the pg. If a record is 7014 * not part of this module, then skip this pg, 7015 * which the "break" will do. 7016 */ 7017 if (!within_module_core(rec->ip, mod) && 7018 !within_module_init(rec->ip, mod)) 7019 break; 7020 7021 /* Weak functions should still be ignored */ 7022 if (!test_for_valid_rec(rec)) { 7023 /* Clear all other flags. Should not be enabled anyway */ 7024 rec->flags = FTRACE_FL_DISABLED; 7025 continue; 7026 } 7027 7028 cnt = 0; 7029 7030 /* 7031 * When adding a module, we need to check if tracers are 7032 * currently enabled and if they are, and can trace this record, 7033 * we need to enable the module functions as well as update the 7034 * reference counts for those function records. 7035 */ 7036 if (ftrace_start_up) 7037 cnt += referenced_filters(rec); 7038 7039 rec->flags &= ~FTRACE_FL_DISABLED; 7040 rec->flags += cnt; 7041 7042 if (ftrace_start_up && cnt) { 7043 int failed = __ftrace_replace_code(rec, 1); 7044 if (failed) { 7045 ftrace_bug(failed, rec); 7046 goto out_loop; 7047 } 7048 } 7049 7050 } while_for_each_ftrace_rec(); 7051 7052 out_loop: 7053 if (ftrace_start_up) 7054 ftrace_arch_code_modify_post_process(); 7055 7056 out_unlock: 7057 mutex_unlock(&ftrace_lock); 7058 7059 process_cached_mods(mod->name); 7060 } 7061 7062 void ftrace_module_init(struct module *mod) 7063 { 7064 int ret; 7065 7066 if (ftrace_disabled || !mod->num_ftrace_callsites) 7067 return; 7068 7069 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7070 mod->ftrace_callsites + mod->num_ftrace_callsites); 7071 if (ret) 7072 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7073 mod->name); 7074 } 7075 7076 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7077 struct dyn_ftrace *rec) 7078 { 7079 struct ftrace_mod_func *mod_func; 7080 unsigned long symsize; 7081 unsigned long offset; 7082 char str[KSYM_SYMBOL_LEN]; 7083 char *modname; 7084 const char *ret; 7085 7086 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7087 if (!ret) 7088 return; 7089 7090 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7091 if (!mod_func) 7092 return; 7093 7094 mod_func->name = kstrdup(str, GFP_KERNEL); 7095 if (!mod_func->name) { 7096 kfree(mod_func); 7097 return; 7098 } 7099 7100 mod_func->ip = rec->ip - offset; 7101 mod_func->size = symsize; 7102 7103 mod_map->num_funcs++; 7104 7105 list_add_rcu(&mod_func->list, &mod_map->funcs); 7106 } 7107 7108 static struct ftrace_mod_map * 7109 allocate_ftrace_mod_map(struct module *mod, 7110 unsigned long start, unsigned long end) 7111 { 7112 struct ftrace_mod_map *mod_map; 7113 7114 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7115 if (!mod_map) 7116 return NULL; 7117 7118 mod_map->mod = mod; 7119 mod_map->start_addr = start; 7120 mod_map->end_addr = end; 7121 mod_map->num_funcs = 0; 7122 7123 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7124 7125 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7126 7127 return mod_map; 7128 } 7129 7130 static const char * 7131 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7132 unsigned long addr, unsigned long *size, 7133 unsigned long *off, char *sym) 7134 { 7135 struct ftrace_mod_func *found_func = NULL; 7136 struct ftrace_mod_func *mod_func; 7137 7138 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7139 if (addr >= mod_func->ip && 7140 addr < mod_func->ip + mod_func->size) { 7141 found_func = mod_func; 7142 break; 7143 } 7144 } 7145 7146 if (found_func) { 7147 if (size) 7148 *size = found_func->size; 7149 if (off) 7150 *off = addr - found_func->ip; 7151 if (sym) 7152 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 7153 7154 return found_func->name; 7155 } 7156 7157 return NULL; 7158 } 7159 7160 const char * 7161 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7162 unsigned long *off, char **modname, char *sym) 7163 { 7164 struct ftrace_mod_map *mod_map; 7165 const char *ret = NULL; 7166 7167 /* mod_map is freed via call_rcu() */ 7168 preempt_disable(); 7169 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7170 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7171 if (ret) { 7172 if (modname) 7173 *modname = mod_map->mod->name; 7174 break; 7175 } 7176 } 7177 preempt_enable(); 7178 7179 return ret; 7180 } 7181 7182 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7183 char *type, char *name, 7184 char *module_name, int *exported) 7185 { 7186 struct ftrace_mod_map *mod_map; 7187 struct ftrace_mod_func *mod_func; 7188 int ret; 7189 7190 preempt_disable(); 7191 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7192 7193 if (symnum >= mod_map->num_funcs) { 7194 symnum -= mod_map->num_funcs; 7195 continue; 7196 } 7197 7198 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7199 if (symnum > 1) { 7200 symnum--; 7201 continue; 7202 } 7203 7204 *value = mod_func->ip; 7205 *type = 'T'; 7206 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7207 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7208 *exported = 1; 7209 preempt_enable(); 7210 return 0; 7211 } 7212 WARN_ON(1); 7213 break; 7214 } 7215 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7216 module_name, exported); 7217 preempt_enable(); 7218 return ret; 7219 } 7220 7221 #else 7222 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7223 struct dyn_ftrace *rec) { } 7224 static inline struct ftrace_mod_map * 7225 allocate_ftrace_mod_map(struct module *mod, 7226 unsigned long start, unsigned long end) 7227 { 7228 return NULL; 7229 } 7230 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7231 char *type, char *name, char *module_name, 7232 int *exported) 7233 { 7234 int ret; 7235 7236 preempt_disable(); 7237 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7238 module_name, exported); 7239 preempt_enable(); 7240 return ret; 7241 } 7242 #endif /* CONFIG_MODULES */ 7243 7244 struct ftrace_init_func { 7245 struct list_head list; 7246 unsigned long ip; 7247 }; 7248 7249 /* Clear any init ips from hashes */ 7250 static void 7251 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7252 { 7253 struct ftrace_func_entry *entry; 7254 7255 entry = ftrace_lookup_ip(hash, func->ip); 7256 /* 7257 * Do not allow this rec to match again. 7258 * Yeah, it may waste some memory, but will be removed 7259 * if/when the hash is modified again. 7260 */ 7261 if (entry) 7262 entry->ip = 0; 7263 } 7264 7265 static void 7266 clear_func_from_hashes(struct ftrace_init_func *func) 7267 { 7268 struct trace_array *tr; 7269 7270 mutex_lock(&trace_types_lock); 7271 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7272 if (!tr->ops || !tr->ops->func_hash) 7273 continue; 7274 mutex_lock(&tr->ops->func_hash->regex_lock); 7275 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7276 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7277 mutex_unlock(&tr->ops->func_hash->regex_lock); 7278 } 7279 mutex_unlock(&trace_types_lock); 7280 } 7281 7282 static void add_to_clear_hash_list(struct list_head *clear_list, 7283 struct dyn_ftrace *rec) 7284 { 7285 struct ftrace_init_func *func; 7286 7287 func = kmalloc(sizeof(*func), GFP_KERNEL); 7288 if (!func) { 7289 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7290 return; 7291 } 7292 7293 func->ip = rec->ip; 7294 list_add(&func->list, clear_list); 7295 } 7296 7297 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7298 { 7299 unsigned long start = (unsigned long)(start_ptr); 7300 unsigned long end = (unsigned long)(end_ptr); 7301 struct ftrace_page **last_pg = &ftrace_pages_start; 7302 struct ftrace_page *pg; 7303 struct dyn_ftrace *rec; 7304 struct dyn_ftrace key; 7305 struct ftrace_mod_map *mod_map = NULL; 7306 struct ftrace_init_func *func, *func_next; 7307 struct list_head clear_hash; 7308 7309 INIT_LIST_HEAD(&clear_hash); 7310 7311 key.ip = start; 7312 key.flags = end; /* overload flags, as it is unsigned long */ 7313 7314 mutex_lock(&ftrace_lock); 7315 7316 /* 7317 * If we are freeing module init memory, then check if 7318 * any tracer is active. If so, we need to save a mapping of 7319 * the module functions being freed with the address. 7320 */ 7321 if (mod && ftrace_ops_list != &ftrace_list_end) 7322 mod_map = allocate_ftrace_mod_map(mod, start, end); 7323 7324 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7325 if (end < pg->records[0].ip || 7326 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7327 continue; 7328 again: 7329 rec = bsearch(&key, pg->records, pg->index, 7330 sizeof(struct dyn_ftrace), 7331 ftrace_cmp_recs); 7332 if (!rec) 7333 continue; 7334 7335 /* rec will be cleared from hashes after ftrace_lock unlock */ 7336 add_to_clear_hash_list(&clear_hash, rec); 7337 7338 if (mod_map) 7339 save_ftrace_mod_rec(mod_map, rec); 7340 7341 pg->index--; 7342 ftrace_update_tot_cnt--; 7343 if (!pg->index) { 7344 *last_pg = pg->next; 7345 if (pg->records) { 7346 free_pages((unsigned long)pg->records, pg->order); 7347 ftrace_number_of_pages -= 1 << pg->order; 7348 } 7349 ftrace_number_of_groups--; 7350 kfree(pg); 7351 pg = container_of(last_pg, struct ftrace_page, next); 7352 if (!(*last_pg)) 7353 ftrace_pages = pg; 7354 continue; 7355 } 7356 memmove(rec, rec + 1, 7357 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7358 /* More than one function may be in this block */ 7359 goto again; 7360 } 7361 mutex_unlock(&ftrace_lock); 7362 7363 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7364 clear_func_from_hashes(func); 7365 kfree(func); 7366 } 7367 } 7368 7369 void __init ftrace_free_init_mem(void) 7370 { 7371 void *start = (void *)(&__init_begin); 7372 void *end = (void *)(&__init_end); 7373 7374 ftrace_boot_snapshot(); 7375 7376 ftrace_free_mem(NULL, start, end); 7377 } 7378 7379 int __init __weak ftrace_dyn_arch_init(void) 7380 { 7381 return 0; 7382 } 7383 7384 void __init ftrace_init(void) 7385 { 7386 extern unsigned long __start_mcount_loc[]; 7387 extern unsigned long __stop_mcount_loc[]; 7388 unsigned long count, flags; 7389 int ret; 7390 7391 local_irq_save(flags); 7392 ret = ftrace_dyn_arch_init(); 7393 local_irq_restore(flags); 7394 if (ret) 7395 goto failed; 7396 7397 count = __stop_mcount_loc - __start_mcount_loc; 7398 if (!count) { 7399 pr_info("ftrace: No functions to be traced?\n"); 7400 goto failed; 7401 } 7402 7403 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7404 count, count / ENTRIES_PER_PAGE + 1); 7405 7406 ret = ftrace_process_locs(NULL, 7407 __start_mcount_loc, 7408 __stop_mcount_loc); 7409 if (ret) { 7410 pr_warn("ftrace: failed to allocate entries for functions\n"); 7411 goto failed; 7412 } 7413 7414 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7415 ftrace_number_of_pages, ftrace_number_of_groups); 7416 7417 last_ftrace_enabled = ftrace_enabled = 1; 7418 7419 set_ftrace_early_filters(); 7420 7421 return; 7422 failed: 7423 ftrace_disabled = 1; 7424 } 7425 7426 /* Do nothing if arch does not support this */ 7427 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7428 { 7429 } 7430 7431 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7432 { 7433 unsigned long trampoline = ops->trampoline; 7434 7435 arch_ftrace_update_trampoline(ops); 7436 if (ops->trampoline && ops->trampoline != trampoline && 7437 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7438 /* Add to kallsyms before the perf events */ 7439 ftrace_add_trampoline_to_kallsyms(ops); 7440 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7441 ops->trampoline, ops->trampoline_size, false, 7442 FTRACE_TRAMPOLINE_SYM); 7443 /* 7444 * Record the perf text poke event after the ksymbol register 7445 * event. 7446 */ 7447 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7448 (void *)ops->trampoline, 7449 ops->trampoline_size); 7450 } 7451 } 7452 7453 void ftrace_init_trace_array(struct trace_array *tr) 7454 { 7455 INIT_LIST_HEAD(&tr->func_probes); 7456 INIT_LIST_HEAD(&tr->mod_trace); 7457 INIT_LIST_HEAD(&tr->mod_notrace); 7458 } 7459 #else 7460 7461 struct ftrace_ops global_ops = { 7462 .func = ftrace_stub, 7463 .flags = FTRACE_OPS_FL_INITIALIZED | 7464 FTRACE_OPS_FL_PID, 7465 }; 7466 7467 static int __init ftrace_nodyn_init(void) 7468 { 7469 ftrace_enabled = 1; 7470 return 0; 7471 } 7472 core_initcall(ftrace_nodyn_init); 7473 7474 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7475 static inline void ftrace_startup_all(int command) { } 7476 7477 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7478 { 7479 } 7480 7481 #endif /* CONFIG_DYNAMIC_FTRACE */ 7482 7483 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7484 { 7485 tr->ops = &global_ops; 7486 tr->ops->private = tr; 7487 ftrace_init_trace_array(tr); 7488 } 7489 7490 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7491 { 7492 /* If we filter on pids, update to use the pid function */ 7493 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7494 if (WARN_ON(tr->ops->func != ftrace_stub)) 7495 printk("ftrace ops had %pS for function\n", 7496 tr->ops->func); 7497 } 7498 tr->ops->func = func; 7499 tr->ops->private = tr; 7500 } 7501 7502 void ftrace_reset_array_ops(struct trace_array *tr) 7503 { 7504 tr->ops->func = ftrace_stub; 7505 } 7506 7507 static nokprobe_inline void 7508 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7509 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7510 { 7511 struct pt_regs *regs = ftrace_get_regs(fregs); 7512 struct ftrace_ops *op; 7513 int bit; 7514 7515 /* 7516 * The ftrace_test_and_set_recursion() will disable preemption, 7517 * which is required since some of the ops may be dynamically 7518 * allocated, they must be freed after a synchronize_rcu(). 7519 */ 7520 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7521 if (bit < 0) 7522 return; 7523 7524 do_for_each_ftrace_op(op, ftrace_ops_list) { 7525 /* Stub functions don't need to be called nor tested */ 7526 if (op->flags & FTRACE_OPS_FL_STUB) 7527 continue; 7528 /* 7529 * Check the following for each ops before calling their func: 7530 * if RCU flag is set, then rcu_is_watching() must be true 7531 * if PER_CPU is set, then ftrace_function_local_disable() 7532 * must be false 7533 * Otherwise test if the ip matches the ops filter 7534 * 7535 * If any of the above fails then the op->func() is not executed. 7536 */ 7537 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7538 ftrace_ops_test(op, ip, regs)) { 7539 if (FTRACE_WARN_ON(!op->func)) { 7540 pr_warn("op=%p %pS\n", op, op); 7541 goto out; 7542 } 7543 op->func(ip, parent_ip, op, fregs); 7544 } 7545 } while_for_each_ftrace_op(op); 7546 out: 7547 trace_clear_recursion(bit); 7548 } 7549 7550 /* 7551 * Some archs only support passing ip and parent_ip. Even though 7552 * the list function ignores the op parameter, we do not want any 7553 * C side effects, where a function is called without the caller 7554 * sending a third parameter. 7555 * Archs are to support both the regs and ftrace_ops at the same time. 7556 * If they support ftrace_ops, it is assumed they support regs. 7557 * If call backs want to use regs, they must either check for regs 7558 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7559 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7560 * An architecture can pass partial regs with ftrace_ops and still 7561 * set the ARCH_SUPPORTS_FTRACE_OPS. 7562 * 7563 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7564 * arch_ftrace_ops_list_func. 7565 */ 7566 #if ARCH_SUPPORTS_FTRACE_OPS 7567 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7568 struct ftrace_ops *op, struct ftrace_regs *fregs) 7569 { 7570 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7571 } 7572 #else 7573 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7574 { 7575 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7576 } 7577 #endif 7578 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7579 7580 /* 7581 * If there's only one function registered but it does not support 7582 * recursion, needs RCU protection and/or requires per cpu handling, then 7583 * this function will be called by the mcount trampoline. 7584 */ 7585 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7586 struct ftrace_ops *op, struct ftrace_regs *fregs) 7587 { 7588 int bit; 7589 7590 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7591 if (bit < 0) 7592 return; 7593 7594 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7595 op->func(ip, parent_ip, op, fregs); 7596 7597 trace_clear_recursion(bit); 7598 } 7599 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7600 7601 /** 7602 * ftrace_ops_get_func - get the function a trampoline should call 7603 * @ops: the ops to get the function for 7604 * 7605 * Normally the mcount trampoline will call the ops->func, but there 7606 * are times that it should not. For example, if the ops does not 7607 * have its own recursion protection, then it should call the 7608 * ftrace_ops_assist_func() instead. 7609 * 7610 * Returns the function that the trampoline should call for @ops. 7611 */ 7612 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7613 { 7614 /* 7615 * If the function does not handle recursion or needs to be RCU safe, 7616 * then we need to call the assist handler. 7617 */ 7618 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7619 FTRACE_OPS_FL_RCU)) 7620 return ftrace_ops_assist_func; 7621 7622 return ops->func; 7623 } 7624 7625 static void 7626 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7627 struct task_struct *prev, 7628 struct task_struct *next, 7629 unsigned int prev_state) 7630 { 7631 struct trace_array *tr = data; 7632 struct trace_pid_list *pid_list; 7633 struct trace_pid_list *no_pid_list; 7634 7635 pid_list = rcu_dereference_sched(tr->function_pids); 7636 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7637 7638 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7639 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7640 FTRACE_PID_IGNORE); 7641 else 7642 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7643 next->pid); 7644 } 7645 7646 static void 7647 ftrace_pid_follow_sched_process_fork(void *data, 7648 struct task_struct *self, 7649 struct task_struct *task) 7650 { 7651 struct trace_pid_list *pid_list; 7652 struct trace_array *tr = data; 7653 7654 pid_list = rcu_dereference_sched(tr->function_pids); 7655 trace_filter_add_remove_task(pid_list, self, task); 7656 7657 pid_list = rcu_dereference_sched(tr->function_no_pids); 7658 trace_filter_add_remove_task(pid_list, self, task); 7659 } 7660 7661 static void 7662 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7663 { 7664 struct trace_pid_list *pid_list; 7665 struct trace_array *tr = data; 7666 7667 pid_list = rcu_dereference_sched(tr->function_pids); 7668 trace_filter_add_remove_task(pid_list, NULL, task); 7669 7670 pid_list = rcu_dereference_sched(tr->function_no_pids); 7671 trace_filter_add_remove_task(pid_list, NULL, task); 7672 } 7673 7674 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7675 { 7676 if (enable) { 7677 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7678 tr); 7679 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7680 tr); 7681 } else { 7682 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7683 tr); 7684 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7685 tr); 7686 } 7687 } 7688 7689 static void clear_ftrace_pids(struct trace_array *tr, int type) 7690 { 7691 struct trace_pid_list *pid_list; 7692 struct trace_pid_list *no_pid_list; 7693 int cpu; 7694 7695 pid_list = rcu_dereference_protected(tr->function_pids, 7696 lockdep_is_held(&ftrace_lock)); 7697 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7698 lockdep_is_held(&ftrace_lock)); 7699 7700 /* Make sure there's something to do */ 7701 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7702 return; 7703 7704 /* See if the pids still need to be checked after this */ 7705 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7706 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7707 for_each_possible_cpu(cpu) 7708 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7709 } 7710 7711 if (type & TRACE_PIDS) 7712 rcu_assign_pointer(tr->function_pids, NULL); 7713 7714 if (type & TRACE_NO_PIDS) 7715 rcu_assign_pointer(tr->function_no_pids, NULL); 7716 7717 /* Wait till all users are no longer using pid filtering */ 7718 synchronize_rcu(); 7719 7720 if ((type & TRACE_PIDS) && pid_list) 7721 trace_pid_list_free(pid_list); 7722 7723 if ((type & TRACE_NO_PIDS) && no_pid_list) 7724 trace_pid_list_free(no_pid_list); 7725 } 7726 7727 void ftrace_clear_pids(struct trace_array *tr) 7728 { 7729 mutex_lock(&ftrace_lock); 7730 7731 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7732 7733 mutex_unlock(&ftrace_lock); 7734 } 7735 7736 static void ftrace_pid_reset(struct trace_array *tr, int type) 7737 { 7738 mutex_lock(&ftrace_lock); 7739 clear_ftrace_pids(tr, type); 7740 7741 ftrace_update_pid_func(); 7742 ftrace_startup_all(0); 7743 7744 mutex_unlock(&ftrace_lock); 7745 } 7746 7747 /* Greater than any max PID */ 7748 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7749 7750 static void *fpid_start(struct seq_file *m, loff_t *pos) 7751 __acquires(RCU) 7752 { 7753 struct trace_pid_list *pid_list; 7754 struct trace_array *tr = m->private; 7755 7756 mutex_lock(&ftrace_lock); 7757 rcu_read_lock_sched(); 7758 7759 pid_list = rcu_dereference_sched(tr->function_pids); 7760 7761 if (!pid_list) 7762 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7763 7764 return trace_pid_start(pid_list, pos); 7765 } 7766 7767 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7768 { 7769 struct trace_array *tr = m->private; 7770 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7771 7772 if (v == FTRACE_NO_PIDS) { 7773 (*pos)++; 7774 return NULL; 7775 } 7776 return trace_pid_next(pid_list, v, pos); 7777 } 7778 7779 static void fpid_stop(struct seq_file *m, void *p) 7780 __releases(RCU) 7781 { 7782 rcu_read_unlock_sched(); 7783 mutex_unlock(&ftrace_lock); 7784 } 7785 7786 static int fpid_show(struct seq_file *m, void *v) 7787 { 7788 if (v == FTRACE_NO_PIDS) { 7789 seq_puts(m, "no pid\n"); 7790 return 0; 7791 } 7792 7793 return trace_pid_show(m, v); 7794 } 7795 7796 static const struct seq_operations ftrace_pid_sops = { 7797 .start = fpid_start, 7798 .next = fpid_next, 7799 .stop = fpid_stop, 7800 .show = fpid_show, 7801 }; 7802 7803 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7804 __acquires(RCU) 7805 { 7806 struct trace_pid_list *pid_list; 7807 struct trace_array *tr = m->private; 7808 7809 mutex_lock(&ftrace_lock); 7810 rcu_read_lock_sched(); 7811 7812 pid_list = rcu_dereference_sched(tr->function_no_pids); 7813 7814 if (!pid_list) 7815 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7816 7817 return trace_pid_start(pid_list, pos); 7818 } 7819 7820 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7821 { 7822 struct trace_array *tr = m->private; 7823 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7824 7825 if (v == FTRACE_NO_PIDS) { 7826 (*pos)++; 7827 return NULL; 7828 } 7829 return trace_pid_next(pid_list, v, pos); 7830 } 7831 7832 static const struct seq_operations ftrace_no_pid_sops = { 7833 .start = fnpid_start, 7834 .next = fnpid_next, 7835 .stop = fpid_stop, 7836 .show = fpid_show, 7837 }; 7838 7839 static int pid_open(struct inode *inode, struct file *file, int type) 7840 { 7841 const struct seq_operations *seq_ops; 7842 struct trace_array *tr = inode->i_private; 7843 struct seq_file *m; 7844 int ret = 0; 7845 7846 ret = tracing_check_open_get_tr(tr); 7847 if (ret) 7848 return ret; 7849 7850 if ((file->f_mode & FMODE_WRITE) && 7851 (file->f_flags & O_TRUNC)) 7852 ftrace_pid_reset(tr, type); 7853 7854 switch (type) { 7855 case TRACE_PIDS: 7856 seq_ops = &ftrace_pid_sops; 7857 break; 7858 case TRACE_NO_PIDS: 7859 seq_ops = &ftrace_no_pid_sops; 7860 break; 7861 default: 7862 trace_array_put(tr); 7863 WARN_ON_ONCE(1); 7864 return -EINVAL; 7865 } 7866 7867 ret = seq_open(file, seq_ops); 7868 if (ret < 0) { 7869 trace_array_put(tr); 7870 } else { 7871 m = file->private_data; 7872 /* copy tr over to seq ops */ 7873 m->private = tr; 7874 } 7875 7876 return ret; 7877 } 7878 7879 static int 7880 ftrace_pid_open(struct inode *inode, struct file *file) 7881 { 7882 return pid_open(inode, file, TRACE_PIDS); 7883 } 7884 7885 static int 7886 ftrace_no_pid_open(struct inode *inode, struct file *file) 7887 { 7888 return pid_open(inode, file, TRACE_NO_PIDS); 7889 } 7890 7891 static void ignore_task_cpu(void *data) 7892 { 7893 struct trace_array *tr = data; 7894 struct trace_pid_list *pid_list; 7895 struct trace_pid_list *no_pid_list; 7896 7897 /* 7898 * This function is called by on_each_cpu() while the 7899 * event_mutex is held. 7900 */ 7901 pid_list = rcu_dereference_protected(tr->function_pids, 7902 mutex_is_locked(&ftrace_lock)); 7903 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7904 mutex_is_locked(&ftrace_lock)); 7905 7906 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7907 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7908 FTRACE_PID_IGNORE); 7909 else 7910 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7911 current->pid); 7912 } 7913 7914 static ssize_t 7915 pid_write(struct file *filp, const char __user *ubuf, 7916 size_t cnt, loff_t *ppos, int type) 7917 { 7918 struct seq_file *m = filp->private_data; 7919 struct trace_array *tr = m->private; 7920 struct trace_pid_list *filtered_pids; 7921 struct trace_pid_list *other_pids; 7922 struct trace_pid_list *pid_list; 7923 ssize_t ret; 7924 7925 if (!cnt) 7926 return 0; 7927 7928 mutex_lock(&ftrace_lock); 7929 7930 switch (type) { 7931 case TRACE_PIDS: 7932 filtered_pids = rcu_dereference_protected(tr->function_pids, 7933 lockdep_is_held(&ftrace_lock)); 7934 other_pids = rcu_dereference_protected(tr->function_no_pids, 7935 lockdep_is_held(&ftrace_lock)); 7936 break; 7937 case TRACE_NO_PIDS: 7938 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7939 lockdep_is_held(&ftrace_lock)); 7940 other_pids = rcu_dereference_protected(tr->function_pids, 7941 lockdep_is_held(&ftrace_lock)); 7942 break; 7943 default: 7944 ret = -EINVAL; 7945 WARN_ON_ONCE(1); 7946 goto out; 7947 } 7948 7949 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7950 if (ret < 0) 7951 goto out; 7952 7953 switch (type) { 7954 case TRACE_PIDS: 7955 rcu_assign_pointer(tr->function_pids, pid_list); 7956 break; 7957 case TRACE_NO_PIDS: 7958 rcu_assign_pointer(tr->function_no_pids, pid_list); 7959 break; 7960 } 7961 7962 7963 if (filtered_pids) { 7964 synchronize_rcu(); 7965 trace_pid_list_free(filtered_pids); 7966 } else if (pid_list && !other_pids) { 7967 /* Register a probe to set whether to ignore the tracing of a task */ 7968 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7969 } 7970 7971 /* 7972 * Ignoring of pids is done at task switch. But we have to 7973 * check for those tasks that are currently running. 7974 * Always do this in case a pid was appended or removed. 7975 */ 7976 on_each_cpu(ignore_task_cpu, tr, 1); 7977 7978 ftrace_update_pid_func(); 7979 ftrace_startup_all(0); 7980 out: 7981 mutex_unlock(&ftrace_lock); 7982 7983 if (ret > 0) 7984 *ppos += ret; 7985 7986 return ret; 7987 } 7988 7989 static ssize_t 7990 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7991 size_t cnt, loff_t *ppos) 7992 { 7993 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7994 } 7995 7996 static ssize_t 7997 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7998 size_t cnt, loff_t *ppos) 7999 { 8000 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8001 } 8002 8003 static int 8004 ftrace_pid_release(struct inode *inode, struct file *file) 8005 { 8006 struct trace_array *tr = inode->i_private; 8007 8008 trace_array_put(tr); 8009 8010 return seq_release(inode, file); 8011 } 8012 8013 static const struct file_operations ftrace_pid_fops = { 8014 .open = ftrace_pid_open, 8015 .write = ftrace_pid_write, 8016 .read = seq_read, 8017 .llseek = tracing_lseek, 8018 .release = ftrace_pid_release, 8019 }; 8020 8021 static const struct file_operations ftrace_no_pid_fops = { 8022 .open = ftrace_no_pid_open, 8023 .write = ftrace_no_pid_write, 8024 .read = seq_read, 8025 .llseek = tracing_lseek, 8026 .release = ftrace_pid_release, 8027 }; 8028 8029 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8030 { 8031 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8032 tr, &ftrace_pid_fops); 8033 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8034 d_tracer, tr, &ftrace_no_pid_fops); 8035 } 8036 8037 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8038 struct dentry *d_tracer) 8039 { 8040 /* Only the top level directory has the dyn_tracefs and profile */ 8041 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8042 8043 ftrace_init_dyn_tracefs(d_tracer); 8044 ftrace_profile_tracefs(d_tracer); 8045 } 8046 8047 /** 8048 * ftrace_kill - kill ftrace 8049 * 8050 * This function should be used by panic code. It stops ftrace 8051 * but in a not so nice way. If you need to simply kill ftrace 8052 * from a non-atomic section, use ftrace_kill. 8053 */ 8054 void ftrace_kill(void) 8055 { 8056 ftrace_disabled = 1; 8057 ftrace_enabled = 0; 8058 ftrace_trace_function = ftrace_stub; 8059 } 8060 8061 /** 8062 * ftrace_is_dead - Test if ftrace is dead or not. 8063 * 8064 * Returns 1 if ftrace is "dead", zero otherwise. 8065 */ 8066 int ftrace_is_dead(void) 8067 { 8068 return ftrace_disabled; 8069 } 8070 8071 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8072 /* 8073 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8074 * it doesn't conflict with any direct ftrace_ops. If there is existing 8075 * direct ftrace_ops on a kernel function being patched, call 8076 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8077 * 8078 * @ops: ftrace_ops being registered. 8079 * 8080 * Returns: 8081 * 0 on success; 8082 * Negative on failure. 8083 */ 8084 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8085 { 8086 struct ftrace_func_entry *entry; 8087 struct ftrace_hash *hash; 8088 struct ftrace_ops *op; 8089 int size, i, ret; 8090 8091 lockdep_assert_held_once(&direct_mutex); 8092 8093 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8094 return 0; 8095 8096 hash = ops->func_hash->filter_hash; 8097 size = 1 << hash->size_bits; 8098 for (i = 0; i < size; i++) { 8099 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8100 unsigned long ip = entry->ip; 8101 bool found_op = false; 8102 8103 mutex_lock(&ftrace_lock); 8104 do_for_each_ftrace_op(op, ftrace_ops_list) { 8105 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8106 continue; 8107 if (ops_references_ip(op, ip)) { 8108 found_op = true; 8109 break; 8110 } 8111 } while_for_each_ftrace_op(op); 8112 mutex_unlock(&ftrace_lock); 8113 8114 if (found_op) { 8115 if (!op->ops_func) 8116 return -EBUSY; 8117 8118 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8119 if (ret) 8120 return ret; 8121 } 8122 } 8123 } 8124 8125 return 0; 8126 } 8127 8128 /* 8129 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8130 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8131 * ops. 8132 */ 8133 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8134 { 8135 struct ftrace_func_entry *entry; 8136 struct ftrace_hash *hash; 8137 struct ftrace_ops *op; 8138 int size, i; 8139 8140 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8141 return; 8142 8143 mutex_lock(&direct_mutex); 8144 8145 hash = ops->func_hash->filter_hash; 8146 size = 1 << hash->size_bits; 8147 for (i = 0; i < size; i++) { 8148 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8149 unsigned long ip = entry->ip; 8150 bool found_op = false; 8151 8152 mutex_lock(&ftrace_lock); 8153 do_for_each_ftrace_op(op, ftrace_ops_list) { 8154 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8155 continue; 8156 if (ops_references_ip(op, ip)) { 8157 found_op = true; 8158 break; 8159 } 8160 } while_for_each_ftrace_op(op); 8161 mutex_unlock(&ftrace_lock); 8162 8163 /* The cleanup is optional, ignore any errors */ 8164 if (found_op && op->ops_func) 8165 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8166 } 8167 } 8168 mutex_unlock(&direct_mutex); 8169 } 8170 8171 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8172 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8173 8174 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8175 8176 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8177 { 8178 return 0; 8179 } 8180 8181 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8182 { 8183 } 8184 8185 #define lock_direct_mutex() do { } while (0) 8186 #define unlock_direct_mutex() do { } while (0) 8187 8188 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8189 8190 /* 8191 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8192 */ 8193 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8194 { 8195 int ret; 8196 8197 ftrace_ops_init(ops); 8198 8199 mutex_lock(&ftrace_lock); 8200 8201 ret = ftrace_startup(ops, 0); 8202 8203 mutex_unlock(&ftrace_lock); 8204 8205 return ret; 8206 } 8207 8208 /** 8209 * register_ftrace_function - register a function for profiling 8210 * @ops: ops structure that holds the function for profiling. 8211 * 8212 * Register a function to be called by all functions in the 8213 * kernel. 8214 * 8215 * Note: @ops->func and all the functions it calls must be labeled 8216 * with "notrace", otherwise it will go into a 8217 * recursive loop. 8218 */ 8219 int register_ftrace_function(struct ftrace_ops *ops) 8220 { 8221 int ret; 8222 8223 lock_direct_mutex(); 8224 ret = prepare_direct_functions_for_ipmodify(ops); 8225 if (ret < 0) 8226 goto out_unlock; 8227 8228 ret = register_ftrace_function_nolock(ops); 8229 8230 out_unlock: 8231 unlock_direct_mutex(); 8232 return ret; 8233 } 8234 EXPORT_SYMBOL_GPL(register_ftrace_function); 8235 8236 /** 8237 * unregister_ftrace_function - unregister a function for profiling. 8238 * @ops: ops structure that holds the function to unregister 8239 * 8240 * Unregister a function that was added to be called by ftrace profiling. 8241 */ 8242 int unregister_ftrace_function(struct ftrace_ops *ops) 8243 { 8244 int ret; 8245 8246 mutex_lock(&ftrace_lock); 8247 ret = ftrace_shutdown(ops, 0); 8248 mutex_unlock(&ftrace_lock); 8249 8250 cleanup_direct_functions_after_ipmodify(ops); 8251 return ret; 8252 } 8253 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8254 8255 static int symbols_cmp(const void *a, const void *b) 8256 { 8257 const char **str_a = (const char **) a; 8258 const char **str_b = (const char **) b; 8259 8260 return strcmp(*str_a, *str_b); 8261 } 8262 8263 struct kallsyms_data { 8264 unsigned long *addrs; 8265 const char **syms; 8266 size_t cnt; 8267 size_t found; 8268 }; 8269 8270 /* This function gets called for all kernel and module symbols 8271 * and returns 1 in case we resolved all the requested symbols, 8272 * 0 otherwise. 8273 */ 8274 static int kallsyms_callback(void *data, const char *name, 8275 struct module *mod, unsigned long addr) 8276 { 8277 struct kallsyms_data *args = data; 8278 const char **sym; 8279 int idx; 8280 8281 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8282 if (!sym) 8283 return 0; 8284 8285 idx = sym - args->syms; 8286 if (args->addrs[idx]) 8287 return 0; 8288 8289 if (!ftrace_location(addr)) 8290 return 0; 8291 8292 args->addrs[idx] = addr; 8293 args->found++; 8294 return args->found == args->cnt ? 1 : 0; 8295 } 8296 8297 /** 8298 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8299 * 8300 * @sorted_syms: array of symbols pointers symbols to resolve, 8301 * must be alphabetically sorted 8302 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8303 * @addrs: array for storing resulting addresses 8304 * 8305 * This function looks up addresses for array of symbols provided in 8306 * @syms array (must be alphabetically sorted) and stores them in 8307 * @addrs array, which needs to be big enough to store at least @cnt 8308 * addresses. 8309 * 8310 * This function returns 0 if all provided symbols are found, 8311 * -ESRCH otherwise. 8312 */ 8313 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8314 { 8315 struct kallsyms_data args; 8316 int found_all; 8317 8318 memset(addrs, 0, sizeof(*addrs) * cnt); 8319 args.addrs = addrs; 8320 args.syms = sorted_syms; 8321 args.cnt = cnt; 8322 args.found = 0; 8323 8324 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8325 if (found_all) 8326 return 0; 8327 found_all = module_kallsyms_on_each_symbol(kallsyms_callback, &args); 8328 return found_all ? 0 : -ESRCH; 8329 } 8330 8331 #ifdef CONFIG_SYSCTL 8332 8333 #ifdef CONFIG_DYNAMIC_FTRACE 8334 static void ftrace_startup_sysctl(void) 8335 { 8336 int command; 8337 8338 if (unlikely(ftrace_disabled)) 8339 return; 8340 8341 /* Force update next time */ 8342 saved_ftrace_func = NULL; 8343 /* ftrace_start_up is true if we want ftrace running */ 8344 if (ftrace_start_up) { 8345 command = FTRACE_UPDATE_CALLS; 8346 if (ftrace_graph_active) 8347 command |= FTRACE_START_FUNC_RET; 8348 ftrace_startup_enable(command); 8349 } 8350 } 8351 8352 static void ftrace_shutdown_sysctl(void) 8353 { 8354 int command; 8355 8356 if (unlikely(ftrace_disabled)) 8357 return; 8358 8359 /* ftrace_start_up is true if ftrace is running */ 8360 if (ftrace_start_up) { 8361 command = FTRACE_DISABLE_CALLS; 8362 if (ftrace_graph_active) 8363 command |= FTRACE_STOP_FUNC_RET; 8364 ftrace_run_update_code(command); 8365 } 8366 } 8367 #else 8368 # define ftrace_startup_sysctl() do { } while (0) 8369 # define ftrace_shutdown_sysctl() do { } while (0) 8370 #endif /* CONFIG_DYNAMIC_FTRACE */ 8371 8372 static bool is_permanent_ops_registered(void) 8373 { 8374 struct ftrace_ops *op; 8375 8376 do_for_each_ftrace_op(op, ftrace_ops_list) { 8377 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8378 return true; 8379 } while_for_each_ftrace_op(op); 8380 8381 return false; 8382 } 8383 8384 static int 8385 ftrace_enable_sysctl(struct ctl_table *table, int write, 8386 void *buffer, size_t *lenp, loff_t *ppos) 8387 { 8388 int ret = -ENODEV; 8389 8390 mutex_lock(&ftrace_lock); 8391 8392 if (unlikely(ftrace_disabled)) 8393 goto out; 8394 8395 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8396 8397 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8398 goto out; 8399 8400 if (ftrace_enabled) { 8401 8402 /* we are starting ftrace again */ 8403 if (rcu_dereference_protected(ftrace_ops_list, 8404 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8405 update_ftrace_function(); 8406 8407 ftrace_startup_sysctl(); 8408 8409 } else { 8410 if (is_permanent_ops_registered()) { 8411 ftrace_enabled = true; 8412 ret = -EBUSY; 8413 goto out; 8414 } 8415 8416 /* stopping ftrace calls (just send to ftrace_stub) */ 8417 ftrace_trace_function = ftrace_stub; 8418 8419 ftrace_shutdown_sysctl(); 8420 } 8421 8422 last_ftrace_enabled = !!ftrace_enabled; 8423 out: 8424 mutex_unlock(&ftrace_lock); 8425 return ret; 8426 } 8427 8428 static struct ctl_table ftrace_sysctls[] = { 8429 { 8430 .procname = "ftrace_enabled", 8431 .data = &ftrace_enabled, 8432 .maxlen = sizeof(int), 8433 .mode = 0644, 8434 .proc_handler = ftrace_enable_sysctl, 8435 }, 8436 {} 8437 }; 8438 8439 static int __init ftrace_sysctl_init(void) 8440 { 8441 register_sysctl_init("kernel", ftrace_sysctls); 8442 return 0; 8443 } 8444 late_initcall(ftrace_sysctl_init); 8445 #endif 8446