xref: /openbmc/linux/kernel/trace/ftrace.c (revision e847c767)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS
129 /*
130  * Stub used to invoke the list ops without requiring a separate trampoline.
131  */
132 const struct ftrace_ops ftrace_list_ops = {
133 	.func	= ftrace_ops_list_func,
134 	.flags	= FTRACE_OPS_FL_STUB,
135 };
136 
137 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip,
138 				struct ftrace_ops *op,
139 				struct ftrace_regs *fregs)
140 {
141 	/* do nothing */
142 }
143 
144 /*
145  * Stub used when a call site is disabled. May be called transiently by threads
146  * which have made it into ftrace_caller but haven't yet recovered the ops at
147  * the point the call site is disabled.
148  */
149 const struct ftrace_ops ftrace_nop_ops = {
150 	.func	= ftrace_ops_nop_func,
151 	.flags  = FTRACE_OPS_FL_STUB,
152 };
153 #endif
154 
155 static inline void ftrace_ops_init(struct ftrace_ops *ops)
156 {
157 #ifdef CONFIG_DYNAMIC_FTRACE
158 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
159 		mutex_init(&ops->local_hash.regex_lock);
160 		ops->func_hash = &ops->local_hash;
161 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
162 	}
163 #endif
164 }
165 
166 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
167 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
168 {
169 	struct trace_array *tr = op->private;
170 	int pid;
171 
172 	if (tr) {
173 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
174 		if (pid == FTRACE_PID_IGNORE)
175 			return;
176 		if (pid != FTRACE_PID_TRACE &&
177 		    pid != current->pid)
178 			return;
179 	}
180 
181 	op->saved_func(ip, parent_ip, op, fregs);
182 }
183 
184 static void ftrace_sync_ipi(void *data)
185 {
186 	/* Probably not needed, but do it anyway */
187 	smp_rmb();
188 }
189 
190 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
191 {
192 	/*
193 	 * If this is a dynamic or RCU ops, or we force list func,
194 	 * then it needs to call the list anyway.
195 	 */
196 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
197 	    FTRACE_FORCE_LIST_FUNC)
198 		return ftrace_ops_list_func;
199 
200 	return ftrace_ops_get_func(ops);
201 }
202 
203 static void update_ftrace_function(void)
204 {
205 	ftrace_func_t func;
206 
207 	/*
208 	 * Prepare the ftrace_ops that the arch callback will use.
209 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
210 	 * will point to the ops we want.
211 	 */
212 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
213 						lockdep_is_held(&ftrace_lock));
214 
215 	/* If there's no ftrace_ops registered, just call the stub function */
216 	if (set_function_trace_op == &ftrace_list_end) {
217 		func = ftrace_stub;
218 
219 	/*
220 	 * If we are at the end of the list and this ops is
221 	 * recursion safe and not dynamic and the arch supports passing ops,
222 	 * then have the mcount trampoline call the function directly.
223 	 */
224 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
225 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
226 		func = ftrace_ops_get_list_func(ftrace_ops_list);
227 
228 	} else {
229 		/* Just use the default ftrace_ops */
230 		set_function_trace_op = &ftrace_list_end;
231 		func = ftrace_ops_list_func;
232 	}
233 
234 	update_function_graph_func();
235 
236 	/* If there's no change, then do nothing more here */
237 	if (ftrace_trace_function == func)
238 		return;
239 
240 	/*
241 	 * If we are using the list function, it doesn't care
242 	 * about the function_trace_ops.
243 	 */
244 	if (func == ftrace_ops_list_func) {
245 		ftrace_trace_function = func;
246 		/*
247 		 * Don't even bother setting function_trace_ops,
248 		 * it would be racy to do so anyway.
249 		 */
250 		return;
251 	}
252 
253 #ifndef CONFIG_DYNAMIC_FTRACE
254 	/*
255 	 * For static tracing, we need to be a bit more careful.
256 	 * The function change takes affect immediately. Thus,
257 	 * we need to coordinate the setting of the function_trace_ops
258 	 * with the setting of the ftrace_trace_function.
259 	 *
260 	 * Set the function to the list ops, which will call the
261 	 * function we want, albeit indirectly, but it handles the
262 	 * ftrace_ops and doesn't depend on function_trace_op.
263 	 */
264 	ftrace_trace_function = ftrace_ops_list_func;
265 	/*
266 	 * Make sure all CPUs see this. Yes this is slow, but static
267 	 * tracing is slow and nasty to have enabled.
268 	 */
269 	synchronize_rcu_tasks_rude();
270 	/* Now all cpus are using the list ops. */
271 	function_trace_op = set_function_trace_op;
272 	/* Make sure the function_trace_op is visible on all CPUs */
273 	smp_wmb();
274 	/* Nasty way to force a rmb on all cpus */
275 	smp_call_function(ftrace_sync_ipi, NULL, 1);
276 	/* OK, we are all set to update the ftrace_trace_function now! */
277 #endif /* !CONFIG_DYNAMIC_FTRACE */
278 
279 	ftrace_trace_function = func;
280 }
281 
282 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
283 			   struct ftrace_ops *ops)
284 {
285 	rcu_assign_pointer(ops->next, *list);
286 
287 	/*
288 	 * We are entering ops into the list but another
289 	 * CPU might be walking that list. We need to make sure
290 	 * the ops->next pointer is valid before another CPU sees
291 	 * the ops pointer included into the list.
292 	 */
293 	rcu_assign_pointer(*list, ops);
294 }
295 
296 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
297 			     struct ftrace_ops *ops)
298 {
299 	struct ftrace_ops **p;
300 
301 	/*
302 	 * If we are removing the last function, then simply point
303 	 * to the ftrace_stub.
304 	 */
305 	if (rcu_dereference_protected(*list,
306 			lockdep_is_held(&ftrace_lock)) == ops &&
307 	    rcu_dereference_protected(ops->next,
308 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
309 		*list = &ftrace_list_end;
310 		return 0;
311 	}
312 
313 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
314 		if (*p == ops)
315 			break;
316 
317 	if (*p != ops)
318 		return -1;
319 
320 	*p = (*p)->next;
321 	return 0;
322 }
323 
324 static void ftrace_update_trampoline(struct ftrace_ops *ops);
325 
326 int __register_ftrace_function(struct ftrace_ops *ops)
327 {
328 	if (ops->flags & FTRACE_OPS_FL_DELETED)
329 		return -EINVAL;
330 
331 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
332 		return -EBUSY;
333 
334 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
335 	/*
336 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
337 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
338 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
339 	 */
340 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
341 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
342 		return -EINVAL;
343 
344 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
345 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
346 #endif
347 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
348 		return -EBUSY;
349 
350 	if (!is_kernel_core_data((unsigned long)ops))
351 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
352 
353 	add_ftrace_ops(&ftrace_ops_list, ops);
354 
355 	/* Always save the function, and reset at unregistering */
356 	ops->saved_func = ops->func;
357 
358 	if (ftrace_pids_enabled(ops))
359 		ops->func = ftrace_pid_func;
360 
361 	ftrace_update_trampoline(ops);
362 
363 	if (ftrace_enabled)
364 		update_ftrace_function();
365 
366 	return 0;
367 }
368 
369 int __unregister_ftrace_function(struct ftrace_ops *ops)
370 {
371 	int ret;
372 
373 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
374 		return -EBUSY;
375 
376 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
377 
378 	if (ret < 0)
379 		return ret;
380 
381 	if (ftrace_enabled)
382 		update_ftrace_function();
383 
384 	ops->func = ops->saved_func;
385 
386 	return 0;
387 }
388 
389 static void ftrace_update_pid_func(void)
390 {
391 	struct ftrace_ops *op;
392 
393 	/* Only do something if we are tracing something */
394 	if (ftrace_trace_function == ftrace_stub)
395 		return;
396 
397 	do_for_each_ftrace_op(op, ftrace_ops_list) {
398 		if (op->flags & FTRACE_OPS_FL_PID) {
399 			op->func = ftrace_pids_enabled(op) ?
400 				ftrace_pid_func : op->saved_func;
401 			ftrace_update_trampoline(op);
402 		}
403 	} while_for_each_ftrace_op(op);
404 
405 	update_ftrace_function();
406 }
407 
408 #ifdef CONFIG_FUNCTION_PROFILER
409 struct ftrace_profile {
410 	struct hlist_node		node;
411 	unsigned long			ip;
412 	unsigned long			counter;
413 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
414 	unsigned long long		time;
415 	unsigned long long		time_squared;
416 #endif
417 };
418 
419 struct ftrace_profile_page {
420 	struct ftrace_profile_page	*next;
421 	unsigned long			index;
422 	struct ftrace_profile		records[];
423 };
424 
425 struct ftrace_profile_stat {
426 	atomic_t			disabled;
427 	struct hlist_head		*hash;
428 	struct ftrace_profile_page	*pages;
429 	struct ftrace_profile_page	*start;
430 	struct tracer_stat		stat;
431 };
432 
433 #define PROFILE_RECORDS_SIZE						\
434 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
435 
436 #define PROFILES_PER_PAGE					\
437 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
438 
439 static int ftrace_profile_enabled __read_mostly;
440 
441 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
442 static DEFINE_MUTEX(ftrace_profile_lock);
443 
444 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
445 
446 #define FTRACE_PROFILE_HASH_BITS 10
447 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
448 
449 static void *
450 function_stat_next(void *v, int idx)
451 {
452 	struct ftrace_profile *rec = v;
453 	struct ftrace_profile_page *pg;
454 
455 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
456 
457  again:
458 	if (idx != 0)
459 		rec++;
460 
461 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
462 		pg = pg->next;
463 		if (!pg)
464 			return NULL;
465 		rec = &pg->records[0];
466 		if (!rec->counter)
467 			goto again;
468 	}
469 
470 	return rec;
471 }
472 
473 static void *function_stat_start(struct tracer_stat *trace)
474 {
475 	struct ftrace_profile_stat *stat =
476 		container_of(trace, struct ftrace_profile_stat, stat);
477 
478 	if (!stat || !stat->start)
479 		return NULL;
480 
481 	return function_stat_next(&stat->start->records[0], 0);
482 }
483 
484 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
485 /* function graph compares on total time */
486 static int function_stat_cmp(const void *p1, const void *p2)
487 {
488 	const struct ftrace_profile *a = p1;
489 	const struct ftrace_profile *b = p2;
490 
491 	if (a->time < b->time)
492 		return -1;
493 	if (a->time > b->time)
494 		return 1;
495 	else
496 		return 0;
497 }
498 #else
499 /* not function graph compares against hits */
500 static int function_stat_cmp(const void *p1, const void *p2)
501 {
502 	const struct ftrace_profile *a = p1;
503 	const struct ftrace_profile *b = p2;
504 
505 	if (a->counter < b->counter)
506 		return -1;
507 	if (a->counter > b->counter)
508 		return 1;
509 	else
510 		return 0;
511 }
512 #endif
513 
514 static int function_stat_headers(struct seq_file *m)
515 {
516 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
517 	seq_puts(m, "  Function                               "
518 		 "Hit    Time            Avg             s^2\n"
519 		    "  --------                               "
520 		 "---    ----            ---             ---\n");
521 #else
522 	seq_puts(m, "  Function                               Hit\n"
523 		    "  --------                               ---\n");
524 #endif
525 	return 0;
526 }
527 
528 static int function_stat_show(struct seq_file *m, void *v)
529 {
530 	struct ftrace_profile *rec = v;
531 	char str[KSYM_SYMBOL_LEN];
532 	int ret = 0;
533 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
534 	static struct trace_seq s;
535 	unsigned long long avg;
536 	unsigned long long stddev;
537 #endif
538 	mutex_lock(&ftrace_profile_lock);
539 
540 	/* we raced with function_profile_reset() */
541 	if (unlikely(rec->counter == 0)) {
542 		ret = -EBUSY;
543 		goto out;
544 	}
545 
546 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
547 	avg = div64_ul(rec->time, rec->counter);
548 	if (tracing_thresh && (avg < tracing_thresh))
549 		goto out;
550 #endif
551 
552 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
553 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
554 
555 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
556 	seq_puts(m, "    ");
557 
558 	/* Sample standard deviation (s^2) */
559 	if (rec->counter <= 1)
560 		stddev = 0;
561 	else {
562 		/*
563 		 * Apply Welford's method:
564 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
565 		 */
566 		stddev = rec->counter * rec->time_squared -
567 			 rec->time * rec->time;
568 
569 		/*
570 		 * Divide only 1000 for ns^2 -> us^2 conversion.
571 		 * trace_print_graph_duration will divide 1000 again.
572 		 */
573 		stddev = div64_ul(stddev,
574 				  rec->counter * (rec->counter - 1) * 1000);
575 	}
576 
577 	trace_seq_init(&s);
578 	trace_print_graph_duration(rec->time, &s);
579 	trace_seq_puts(&s, "    ");
580 	trace_print_graph_duration(avg, &s);
581 	trace_seq_puts(&s, "    ");
582 	trace_print_graph_duration(stddev, &s);
583 	trace_print_seq(m, &s);
584 #endif
585 	seq_putc(m, '\n');
586 out:
587 	mutex_unlock(&ftrace_profile_lock);
588 
589 	return ret;
590 }
591 
592 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
593 {
594 	struct ftrace_profile_page *pg;
595 
596 	pg = stat->pages = stat->start;
597 
598 	while (pg) {
599 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
600 		pg->index = 0;
601 		pg = pg->next;
602 	}
603 
604 	memset(stat->hash, 0,
605 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
606 }
607 
608 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
609 {
610 	struct ftrace_profile_page *pg;
611 	int functions;
612 	int pages;
613 	int i;
614 
615 	/* If we already allocated, do nothing */
616 	if (stat->pages)
617 		return 0;
618 
619 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
620 	if (!stat->pages)
621 		return -ENOMEM;
622 
623 #ifdef CONFIG_DYNAMIC_FTRACE
624 	functions = ftrace_update_tot_cnt;
625 #else
626 	/*
627 	 * We do not know the number of functions that exist because
628 	 * dynamic tracing is what counts them. With past experience
629 	 * we have around 20K functions. That should be more than enough.
630 	 * It is highly unlikely we will execute every function in
631 	 * the kernel.
632 	 */
633 	functions = 20000;
634 #endif
635 
636 	pg = stat->start = stat->pages;
637 
638 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
639 
640 	for (i = 1; i < pages; i++) {
641 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
642 		if (!pg->next)
643 			goto out_free;
644 		pg = pg->next;
645 	}
646 
647 	return 0;
648 
649  out_free:
650 	pg = stat->start;
651 	while (pg) {
652 		unsigned long tmp = (unsigned long)pg;
653 
654 		pg = pg->next;
655 		free_page(tmp);
656 	}
657 
658 	stat->pages = NULL;
659 	stat->start = NULL;
660 
661 	return -ENOMEM;
662 }
663 
664 static int ftrace_profile_init_cpu(int cpu)
665 {
666 	struct ftrace_profile_stat *stat;
667 	int size;
668 
669 	stat = &per_cpu(ftrace_profile_stats, cpu);
670 
671 	if (stat->hash) {
672 		/* If the profile is already created, simply reset it */
673 		ftrace_profile_reset(stat);
674 		return 0;
675 	}
676 
677 	/*
678 	 * We are profiling all functions, but usually only a few thousand
679 	 * functions are hit. We'll make a hash of 1024 items.
680 	 */
681 	size = FTRACE_PROFILE_HASH_SIZE;
682 
683 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
684 
685 	if (!stat->hash)
686 		return -ENOMEM;
687 
688 	/* Preallocate the function profiling pages */
689 	if (ftrace_profile_pages_init(stat) < 0) {
690 		kfree(stat->hash);
691 		stat->hash = NULL;
692 		return -ENOMEM;
693 	}
694 
695 	return 0;
696 }
697 
698 static int ftrace_profile_init(void)
699 {
700 	int cpu;
701 	int ret = 0;
702 
703 	for_each_possible_cpu(cpu) {
704 		ret = ftrace_profile_init_cpu(cpu);
705 		if (ret)
706 			break;
707 	}
708 
709 	return ret;
710 }
711 
712 /* interrupts must be disabled */
713 static struct ftrace_profile *
714 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
715 {
716 	struct ftrace_profile *rec;
717 	struct hlist_head *hhd;
718 	unsigned long key;
719 
720 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
721 	hhd = &stat->hash[key];
722 
723 	if (hlist_empty(hhd))
724 		return NULL;
725 
726 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
727 		if (rec->ip == ip)
728 			return rec;
729 	}
730 
731 	return NULL;
732 }
733 
734 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
735 			       struct ftrace_profile *rec)
736 {
737 	unsigned long key;
738 
739 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
740 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
741 }
742 
743 /*
744  * The memory is already allocated, this simply finds a new record to use.
745  */
746 static struct ftrace_profile *
747 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
748 {
749 	struct ftrace_profile *rec = NULL;
750 
751 	/* prevent recursion (from NMIs) */
752 	if (atomic_inc_return(&stat->disabled) != 1)
753 		goto out;
754 
755 	/*
756 	 * Try to find the function again since an NMI
757 	 * could have added it
758 	 */
759 	rec = ftrace_find_profiled_func(stat, ip);
760 	if (rec)
761 		goto out;
762 
763 	if (stat->pages->index == PROFILES_PER_PAGE) {
764 		if (!stat->pages->next)
765 			goto out;
766 		stat->pages = stat->pages->next;
767 	}
768 
769 	rec = &stat->pages->records[stat->pages->index++];
770 	rec->ip = ip;
771 	ftrace_add_profile(stat, rec);
772 
773  out:
774 	atomic_dec(&stat->disabled);
775 
776 	return rec;
777 }
778 
779 static void
780 function_profile_call(unsigned long ip, unsigned long parent_ip,
781 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
782 {
783 	struct ftrace_profile_stat *stat;
784 	struct ftrace_profile *rec;
785 	unsigned long flags;
786 
787 	if (!ftrace_profile_enabled)
788 		return;
789 
790 	local_irq_save(flags);
791 
792 	stat = this_cpu_ptr(&ftrace_profile_stats);
793 	if (!stat->hash || !ftrace_profile_enabled)
794 		goto out;
795 
796 	rec = ftrace_find_profiled_func(stat, ip);
797 	if (!rec) {
798 		rec = ftrace_profile_alloc(stat, ip);
799 		if (!rec)
800 			goto out;
801 	}
802 
803 	rec->counter++;
804  out:
805 	local_irq_restore(flags);
806 }
807 
808 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
809 static bool fgraph_graph_time = true;
810 
811 void ftrace_graph_graph_time_control(bool enable)
812 {
813 	fgraph_graph_time = enable;
814 }
815 
816 static int profile_graph_entry(struct ftrace_graph_ent *trace)
817 {
818 	struct ftrace_ret_stack *ret_stack;
819 
820 	function_profile_call(trace->func, 0, NULL, NULL);
821 
822 	/* If function graph is shutting down, ret_stack can be NULL */
823 	if (!current->ret_stack)
824 		return 0;
825 
826 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
827 	if (ret_stack)
828 		ret_stack->subtime = 0;
829 
830 	return 1;
831 }
832 
833 static void profile_graph_return(struct ftrace_graph_ret *trace)
834 {
835 	struct ftrace_ret_stack *ret_stack;
836 	struct ftrace_profile_stat *stat;
837 	unsigned long long calltime;
838 	struct ftrace_profile *rec;
839 	unsigned long flags;
840 
841 	local_irq_save(flags);
842 	stat = this_cpu_ptr(&ftrace_profile_stats);
843 	if (!stat->hash || !ftrace_profile_enabled)
844 		goto out;
845 
846 	/* If the calltime was zero'd ignore it */
847 	if (!trace->calltime)
848 		goto out;
849 
850 	calltime = trace->rettime - trace->calltime;
851 
852 	if (!fgraph_graph_time) {
853 
854 		/* Append this call time to the parent time to subtract */
855 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
856 		if (ret_stack)
857 			ret_stack->subtime += calltime;
858 
859 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
860 		if (ret_stack && ret_stack->subtime < calltime)
861 			calltime -= ret_stack->subtime;
862 		else
863 			calltime = 0;
864 	}
865 
866 	rec = ftrace_find_profiled_func(stat, trace->func);
867 	if (rec) {
868 		rec->time += calltime;
869 		rec->time_squared += calltime * calltime;
870 	}
871 
872  out:
873 	local_irq_restore(flags);
874 }
875 
876 static struct fgraph_ops fprofiler_ops = {
877 	.entryfunc = &profile_graph_entry,
878 	.retfunc = &profile_graph_return,
879 };
880 
881 static int register_ftrace_profiler(void)
882 {
883 	return register_ftrace_graph(&fprofiler_ops);
884 }
885 
886 static void unregister_ftrace_profiler(void)
887 {
888 	unregister_ftrace_graph(&fprofiler_ops);
889 }
890 #else
891 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
892 	.func		= function_profile_call,
893 	.flags		= FTRACE_OPS_FL_INITIALIZED,
894 	INIT_OPS_HASH(ftrace_profile_ops)
895 };
896 
897 static int register_ftrace_profiler(void)
898 {
899 	return register_ftrace_function(&ftrace_profile_ops);
900 }
901 
902 static void unregister_ftrace_profiler(void)
903 {
904 	unregister_ftrace_function(&ftrace_profile_ops);
905 }
906 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
907 
908 static ssize_t
909 ftrace_profile_write(struct file *filp, const char __user *ubuf,
910 		     size_t cnt, loff_t *ppos)
911 {
912 	unsigned long val;
913 	int ret;
914 
915 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
916 	if (ret)
917 		return ret;
918 
919 	val = !!val;
920 
921 	mutex_lock(&ftrace_profile_lock);
922 	if (ftrace_profile_enabled ^ val) {
923 		if (val) {
924 			ret = ftrace_profile_init();
925 			if (ret < 0) {
926 				cnt = ret;
927 				goto out;
928 			}
929 
930 			ret = register_ftrace_profiler();
931 			if (ret < 0) {
932 				cnt = ret;
933 				goto out;
934 			}
935 			ftrace_profile_enabled = 1;
936 		} else {
937 			ftrace_profile_enabled = 0;
938 			/*
939 			 * unregister_ftrace_profiler calls stop_machine
940 			 * so this acts like an synchronize_rcu.
941 			 */
942 			unregister_ftrace_profiler();
943 		}
944 	}
945  out:
946 	mutex_unlock(&ftrace_profile_lock);
947 
948 	*ppos += cnt;
949 
950 	return cnt;
951 }
952 
953 static ssize_t
954 ftrace_profile_read(struct file *filp, char __user *ubuf,
955 		     size_t cnt, loff_t *ppos)
956 {
957 	char buf[64];		/* big enough to hold a number */
958 	int r;
959 
960 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
961 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
962 }
963 
964 static const struct file_operations ftrace_profile_fops = {
965 	.open		= tracing_open_generic,
966 	.read		= ftrace_profile_read,
967 	.write		= ftrace_profile_write,
968 	.llseek		= default_llseek,
969 };
970 
971 /* used to initialize the real stat files */
972 static struct tracer_stat function_stats __initdata = {
973 	.name		= "functions",
974 	.stat_start	= function_stat_start,
975 	.stat_next	= function_stat_next,
976 	.stat_cmp	= function_stat_cmp,
977 	.stat_headers	= function_stat_headers,
978 	.stat_show	= function_stat_show
979 };
980 
981 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
982 {
983 	struct ftrace_profile_stat *stat;
984 	char *name;
985 	int ret;
986 	int cpu;
987 
988 	for_each_possible_cpu(cpu) {
989 		stat = &per_cpu(ftrace_profile_stats, cpu);
990 
991 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
992 		if (!name) {
993 			/*
994 			 * The files created are permanent, if something happens
995 			 * we still do not free memory.
996 			 */
997 			WARN(1,
998 			     "Could not allocate stat file for cpu %d\n",
999 			     cpu);
1000 			return;
1001 		}
1002 		stat->stat = function_stats;
1003 		stat->stat.name = name;
1004 		ret = register_stat_tracer(&stat->stat);
1005 		if (ret) {
1006 			WARN(1,
1007 			     "Could not register function stat for cpu %d\n",
1008 			     cpu);
1009 			kfree(name);
1010 			return;
1011 		}
1012 	}
1013 
1014 	trace_create_file("function_profile_enabled",
1015 			  TRACE_MODE_WRITE, d_tracer, NULL,
1016 			  &ftrace_profile_fops);
1017 }
1018 
1019 #else /* CONFIG_FUNCTION_PROFILER */
1020 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1021 {
1022 }
1023 #endif /* CONFIG_FUNCTION_PROFILER */
1024 
1025 #ifdef CONFIG_DYNAMIC_FTRACE
1026 
1027 static struct ftrace_ops *removed_ops;
1028 
1029 /*
1030  * Set when doing a global update, like enabling all recs or disabling them.
1031  * It is not set when just updating a single ftrace_ops.
1032  */
1033 static bool update_all_ops;
1034 
1035 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1036 # error Dynamic ftrace depends on MCOUNT_RECORD
1037 #endif
1038 
1039 struct ftrace_func_probe {
1040 	struct ftrace_probe_ops	*probe_ops;
1041 	struct ftrace_ops	ops;
1042 	struct trace_array	*tr;
1043 	struct list_head	list;
1044 	void			*data;
1045 	int			ref;
1046 };
1047 
1048 /*
1049  * We make these constant because no one should touch them,
1050  * but they are used as the default "empty hash", to avoid allocating
1051  * it all the time. These are in a read only section such that if
1052  * anyone does try to modify it, it will cause an exception.
1053  */
1054 static const struct hlist_head empty_buckets[1];
1055 static const struct ftrace_hash empty_hash = {
1056 	.buckets = (struct hlist_head *)empty_buckets,
1057 };
1058 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1059 
1060 struct ftrace_ops global_ops = {
1061 	.func				= ftrace_stub,
1062 	.local_hash.notrace_hash	= EMPTY_HASH,
1063 	.local_hash.filter_hash		= EMPTY_HASH,
1064 	INIT_OPS_HASH(global_ops)
1065 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1066 					  FTRACE_OPS_FL_PID,
1067 };
1068 
1069 /*
1070  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1071  */
1072 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1073 {
1074 	struct ftrace_ops *op = NULL;
1075 
1076 	/*
1077 	 * Some of the ops may be dynamically allocated,
1078 	 * they are freed after a synchronize_rcu().
1079 	 */
1080 	preempt_disable_notrace();
1081 
1082 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1083 		/*
1084 		 * This is to check for dynamically allocated trampolines.
1085 		 * Trampolines that are in kernel text will have
1086 		 * core_kernel_text() return true.
1087 		 */
1088 		if (op->trampoline && op->trampoline_size)
1089 			if (addr >= op->trampoline &&
1090 			    addr < op->trampoline + op->trampoline_size) {
1091 				preempt_enable_notrace();
1092 				return op;
1093 			}
1094 	} while_for_each_ftrace_op(op);
1095 	preempt_enable_notrace();
1096 
1097 	return NULL;
1098 }
1099 
1100 /*
1101  * This is used by __kernel_text_address() to return true if the
1102  * address is on a dynamically allocated trampoline that would
1103  * not return true for either core_kernel_text() or
1104  * is_module_text_address().
1105  */
1106 bool is_ftrace_trampoline(unsigned long addr)
1107 {
1108 	return ftrace_ops_trampoline(addr) != NULL;
1109 }
1110 
1111 struct ftrace_page {
1112 	struct ftrace_page	*next;
1113 	struct dyn_ftrace	*records;
1114 	int			index;
1115 	int			order;
1116 };
1117 
1118 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1119 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1120 
1121 static struct ftrace_page	*ftrace_pages_start;
1122 static struct ftrace_page	*ftrace_pages;
1123 
1124 static __always_inline unsigned long
1125 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1126 {
1127 	if (hash->size_bits > 0)
1128 		return hash_long(ip, hash->size_bits);
1129 
1130 	return 0;
1131 }
1132 
1133 /* Only use this function if ftrace_hash_empty() has already been tested */
1134 static __always_inline struct ftrace_func_entry *
1135 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	unsigned long key;
1138 	struct ftrace_func_entry *entry;
1139 	struct hlist_head *hhd;
1140 
1141 	key = ftrace_hash_key(hash, ip);
1142 	hhd = &hash->buckets[key];
1143 
1144 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1145 		if (entry->ip == ip)
1146 			return entry;
1147 	}
1148 	return NULL;
1149 }
1150 
1151 /**
1152  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1153  * @hash: The hash to look at
1154  * @ip: The instruction pointer to test
1155  *
1156  * Search a given @hash to see if a given instruction pointer (@ip)
1157  * exists in it.
1158  *
1159  * Returns the entry that holds the @ip if found. NULL otherwise.
1160  */
1161 struct ftrace_func_entry *
1162 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1163 {
1164 	if (ftrace_hash_empty(hash))
1165 		return NULL;
1166 
1167 	return __ftrace_lookup_ip(hash, ip);
1168 }
1169 
1170 static void __add_hash_entry(struct ftrace_hash *hash,
1171 			     struct ftrace_func_entry *entry)
1172 {
1173 	struct hlist_head *hhd;
1174 	unsigned long key;
1175 
1176 	key = ftrace_hash_key(hash, entry->ip);
1177 	hhd = &hash->buckets[key];
1178 	hlist_add_head(&entry->hlist, hhd);
1179 	hash->count++;
1180 }
1181 
1182 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1183 {
1184 	struct ftrace_func_entry *entry;
1185 
1186 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1187 	if (!entry)
1188 		return -ENOMEM;
1189 
1190 	entry->ip = ip;
1191 	__add_hash_entry(hash, entry);
1192 
1193 	return 0;
1194 }
1195 
1196 static void
1197 free_hash_entry(struct ftrace_hash *hash,
1198 		  struct ftrace_func_entry *entry)
1199 {
1200 	hlist_del(&entry->hlist);
1201 	kfree(entry);
1202 	hash->count--;
1203 }
1204 
1205 static void
1206 remove_hash_entry(struct ftrace_hash *hash,
1207 		  struct ftrace_func_entry *entry)
1208 {
1209 	hlist_del_rcu(&entry->hlist);
1210 	hash->count--;
1211 }
1212 
1213 static void ftrace_hash_clear(struct ftrace_hash *hash)
1214 {
1215 	struct hlist_head *hhd;
1216 	struct hlist_node *tn;
1217 	struct ftrace_func_entry *entry;
1218 	int size = 1 << hash->size_bits;
1219 	int i;
1220 
1221 	if (!hash->count)
1222 		return;
1223 
1224 	for (i = 0; i < size; i++) {
1225 		hhd = &hash->buckets[i];
1226 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1227 			free_hash_entry(hash, entry);
1228 	}
1229 	FTRACE_WARN_ON(hash->count);
1230 }
1231 
1232 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1233 {
1234 	list_del(&ftrace_mod->list);
1235 	kfree(ftrace_mod->module);
1236 	kfree(ftrace_mod->func);
1237 	kfree(ftrace_mod);
1238 }
1239 
1240 static void clear_ftrace_mod_list(struct list_head *head)
1241 {
1242 	struct ftrace_mod_load *p, *n;
1243 
1244 	/* stack tracer isn't supported yet */
1245 	if (!head)
1246 		return;
1247 
1248 	mutex_lock(&ftrace_lock);
1249 	list_for_each_entry_safe(p, n, head, list)
1250 		free_ftrace_mod(p);
1251 	mutex_unlock(&ftrace_lock);
1252 }
1253 
1254 static void free_ftrace_hash(struct ftrace_hash *hash)
1255 {
1256 	if (!hash || hash == EMPTY_HASH)
1257 		return;
1258 	ftrace_hash_clear(hash);
1259 	kfree(hash->buckets);
1260 	kfree(hash);
1261 }
1262 
1263 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1264 {
1265 	struct ftrace_hash *hash;
1266 
1267 	hash = container_of(rcu, struct ftrace_hash, rcu);
1268 	free_ftrace_hash(hash);
1269 }
1270 
1271 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1272 {
1273 	if (!hash || hash == EMPTY_HASH)
1274 		return;
1275 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1276 }
1277 
1278 /**
1279  * ftrace_free_filter - remove all filters for an ftrace_ops
1280  * @ops - the ops to remove the filters from
1281  */
1282 void ftrace_free_filter(struct ftrace_ops *ops)
1283 {
1284 	ftrace_ops_init(ops);
1285 	free_ftrace_hash(ops->func_hash->filter_hash);
1286 	free_ftrace_hash(ops->func_hash->notrace_hash);
1287 }
1288 EXPORT_SYMBOL_GPL(ftrace_free_filter);
1289 
1290 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1291 {
1292 	struct ftrace_hash *hash;
1293 	int size;
1294 
1295 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1296 	if (!hash)
1297 		return NULL;
1298 
1299 	size = 1 << size_bits;
1300 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1301 
1302 	if (!hash->buckets) {
1303 		kfree(hash);
1304 		return NULL;
1305 	}
1306 
1307 	hash->size_bits = size_bits;
1308 
1309 	return hash;
1310 }
1311 
1312 
1313 static int ftrace_add_mod(struct trace_array *tr,
1314 			  const char *func, const char *module,
1315 			  int enable)
1316 {
1317 	struct ftrace_mod_load *ftrace_mod;
1318 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1319 
1320 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1321 	if (!ftrace_mod)
1322 		return -ENOMEM;
1323 
1324 	INIT_LIST_HEAD(&ftrace_mod->list);
1325 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1326 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1327 	ftrace_mod->enable = enable;
1328 
1329 	if (!ftrace_mod->func || !ftrace_mod->module)
1330 		goto out_free;
1331 
1332 	list_add(&ftrace_mod->list, mod_head);
1333 
1334 	return 0;
1335 
1336  out_free:
1337 	free_ftrace_mod(ftrace_mod);
1338 
1339 	return -ENOMEM;
1340 }
1341 
1342 static struct ftrace_hash *
1343 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1344 {
1345 	struct ftrace_func_entry *entry;
1346 	struct ftrace_hash *new_hash;
1347 	int size;
1348 	int ret;
1349 	int i;
1350 
1351 	new_hash = alloc_ftrace_hash(size_bits);
1352 	if (!new_hash)
1353 		return NULL;
1354 
1355 	if (hash)
1356 		new_hash->flags = hash->flags;
1357 
1358 	/* Empty hash? */
1359 	if (ftrace_hash_empty(hash))
1360 		return new_hash;
1361 
1362 	size = 1 << hash->size_bits;
1363 	for (i = 0; i < size; i++) {
1364 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1365 			ret = add_hash_entry(new_hash, entry->ip);
1366 			if (ret < 0)
1367 				goto free_hash;
1368 		}
1369 	}
1370 
1371 	FTRACE_WARN_ON(new_hash->count != hash->count);
1372 
1373 	return new_hash;
1374 
1375  free_hash:
1376 	free_ftrace_hash(new_hash);
1377 	return NULL;
1378 }
1379 
1380 static void
1381 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1382 static void
1383 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1384 
1385 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1386 				       struct ftrace_hash *new_hash);
1387 
1388 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1389 {
1390 	struct ftrace_func_entry *entry;
1391 	struct ftrace_hash *new_hash;
1392 	struct hlist_head *hhd;
1393 	struct hlist_node *tn;
1394 	int bits = 0;
1395 	int i;
1396 
1397 	/*
1398 	 * Use around half the size (max bit of it), but
1399 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1400 	 */
1401 	bits = fls(size / 2);
1402 
1403 	/* Don't allocate too much */
1404 	if (bits > FTRACE_HASH_MAX_BITS)
1405 		bits = FTRACE_HASH_MAX_BITS;
1406 
1407 	new_hash = alloc_ftrace_hash(bits);
1408 	if (!new_hash)
1409 		return NULL;
1410 
1411 	new_hash->flags = src->flags;
1412 
1413 	size = 1 << src->size_bits;
1414 	for (i = 0; i < size; i++) {
1415 		hhd = &src->buckets[i];
1416 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1417 			remove_hash_entry(src, entry);
1418 			__add_hash_entry(new_hash, entry);
1419 		}
1420 	}
1421 	return new_hash;
1422 }
1423 
1424 static struct ftrace_hash *
1425 __ftrace_hash_move(struct ftrace_hash *src)
1426 {
1427 	int size = src->count;
1428 
1429 	/*
1430 	 * If the new source is empty, just return the empty_hash.
1431 	 */
1432 	if (ftrace_hash_empty(src))
1433 		return EMPTY_HASH;
1434 
1435 	return dup_hash(src, size);
1436 }
1437 
1438 static int
1439 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1440 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1441 {
1442 	struct ftrace_hash *new_hash;
1443 	int ret;
1444 
1445 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1446 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1447 		return -EINVAL;
1448 
1449 	new_hash = __ftrace_hash_move(src);
1450 	if (!new_hash)
1451 		return -ENOMEM;
1452 
1453 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1454 	if (enable) {
1455 		/* IPMODIFY should be updated only when filter_hash updating */
1456 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1457 		if (ret < 0) {
1458 			free_ftrace_hash(new_hash);
1459 			return ret;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Remove the current set, update the hash and add
1465 	 * them back.
1466 	 */
1467 	ftrace_hash_rec_disable_modify(ops, enable);
1468 
1469 	rcu_assign_pointer(*dst, new_hash);
1470 
1471 	ftrace_hash_rec_enable_modify(ops, enable);
1472 
1473 	return 0;
1474 }
1475 
1476 static bool hash_contains_ip(unsigned long ip,
1477 			     struct ftrace_ops_hash *hash)
1478 {
1479 	/*
1480 	 * The function record is a match if it exists in the filter
1481 	 * hash and not in the notrace hash. Note, an empty hash is
1482 	 * considered a match for the filter hash, but an empty
1483 	 * notrace hash is considered not in the notrace hash.
1484 	 */
1485 	return (ftrace_hash_empty(hash->filter_hash) ||
1486 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1487 		(ftrace_hash_empty(hash->notrace_hash) ||
1488 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1489 }
1490 
1491 /*
1492  * Test the hashes for this ops to see if we want to call
1493  * the ops->func or not.
1494  *
1495  * It's a match if the ip is in the ops->filter_hash or
1496  * the filter_hash does not exist or is empty,
1497  *  AND
1498  * the ip is not in the ops->notrace_hash.
1499  *
1500  * This needs to be called with preemption disabled as
1501  * the hashes are freed with call_rcu().
1502  */
1503 int
1504 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1505 {
1506 	struct ftrace_ops_hash hash;
1507 	int ret;
1508 
1509 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1510 	/*
1511 	 * There's a small race when adding ops that the ftrace handler
1512 	 * that wants regs, may be called without them. We can not
1513 	 * allow that handler to be called if regs is NULL.
1514 	 */
1515 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1516 		return 0;
1517 #endif
1518 
1519 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1520 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1521 
1522 	if (hash_contains_ip(ip, &hash))
1523 		ret = 1;
1524 	else
1525 		ret = 0;
1526 
1527 	return ret;
1528 }
1529 
1530 /*
1531  * This is a double for. Do not use 'break' to break out of the loop,
1532  * you must use a goto.
1533  */
1534 #define do_for_each_ftrace_rec(pg, rec)					\
1535 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1536 		int _____i;						\
1537 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1538 			rec = &pg->records[_____i];
1539 
1540 #define while_for_each_ftrace_rec()		\
1541 		}				\
1542 	}
1543 
1544 
1545 static int ftrace_cmp_recs(const void *a, const void *b)
1546 {
1547 	const struct dyn_ftrace *key = a;
1548 	const struct dyn_ftrace *rec = b;
1549 
1550 	if (key->flags < rec->ip)
1551 		return -1;
1552 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1553 		return 1;
1554 	return 0;
1555 }
1556 
1557 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1558 {
1559 	struct ftrace_page *pg;
1560 	struct dyn_ftrace *rec = NULL;
1561 	struct dyn_ftrace key;
1562 
1563 	key.ip = start;
1564 	key.flags = end;	/* overload flags, as it is unsigned long */
1565 
1566 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1567 		if (pg->index == 0 ||
1568 		    end < pg->records[0].ip ||
1569 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1570 			continue;
1571 		rec = bsearch(&key, pg->records, pg->index,
1572 			      sizeof(struct dyn_ftrace),
1573 			      ftrace_cmp_recs);
1574 		if (rec)
1575 			break;
1576 	}
1577 	return rec;
1578 }
1579 
1580 /**
1581  * ftrace_location_range - return the first address of a traced location
1582  *	if it touches the given ip range
1583  * @start: start of range to search.
1584  * @end: end of range to search (inclusive). @end points to the last byte
1585  *	to check.
1586  *
1587  * Returns rec->ip if the related ftrace location is a least partly within
1588  * the given address range. That is, the first address of the instruction
1589  * that is either a NOP or call to the function tracer. It checks the ftrace
1590  * internal tables to determine if the address belongs or not.
1591  */
1592 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1593 {
1594 	struct dyn_ftrace *rec;
1595 
1596 	rec = lookup_rec(start, end);
1597 	if (rec)
1598 		return rec->ip;
1599 
1600 	return 0;
1601 }
1602 
1603 /**
1604  * ftrace_location - return the ftrace location
1605  * @ip: the instruction pointer to check
1606  *
1607  * If @ip matches the ftrace location, return @ip.
1608  * If @ip matches sym+0, return sym's ftrace location.
1609  * Otherwise, return 0.
1610  */
1611 unsigned long ftrace_location(unsigned long ip)
1612 {
1613 	struct dyn_ftrace *rec;
1614 	unsigned long offset;
1615 	unsigned long size;
1616 
1617 	rec = lookup_rec(ip, ip);
1618 	if (!rec) {
1619 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1620 			goto out;
1621 
1622 		/* map sym+0 to __fentry__ */
1623 		if (!offset)
1624 			rec = lookup_rec(ip, ip + size - 1);
1625 	}
1626 
1627 	if (rec)
1628 		return rec->ip;
1629 
1630 out:
1631 	return 0;
1632 }
1633 
1634 /**
1635  * ftrace_text_reserved - return true if range contains an ftrace location
1636  * @start: start of range to search
1637  * @end: end of range to search (inclusive). @end points to the last byte to check.
1638  *
1639  * Returns 1 if @start and @end contains a ftrace location.
1640  * That is, the instruction that is either a NOP or call to
1641  * the function tracer. It checks the ftrace internal tables to
1642  * determine if the address belongs or not.
1643  */
1644 int ftrace_text_reserved(const void *start, const void *end)
1645 {
1646 	unsigned long ret;
1647 
1648 	ret = ftrace_location_range((unsigned long)start,
1649 				    (unsigned long)end);
1650 
1651 	return (int)!!ret;
1652 }
1653 
1654 /* Test if ops registered to this rec needs regs */
1655 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1656 {
1657 	struct ftrace_ops *ops;
1658 	bool keep_regs = false;
1659 
1660 	for (ops = ftrace_ops_list;
1661 	     ops != &ftrace_list_end; ops = ops->next) {
1662 		/* pass rec in as regs to have non-NULL val */
1663 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1664 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1665 				keep_regs = true;
1666 				break;
1667 			}
1668 		}
1669 	}
1670 
1671 	return  keep_regs;
1672 }
1673 
1674 static struct ftrace_ops *
1675 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1676 static struct ftrace_ops *
1677 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1678 static struct ftrace_ops *
1679 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1680 
1681 static bool skip_record(struct dyn_ftrace *rec)
1682 {
1683 	/*
1684 	 * At boot up, weak functions are set to disable. Function tracing
1685 	 * can be enabled before they are, and they still need to be disabled now.
1686 	 * If the record is disabled, still continue if it is marked as already
1687 	 * enabled (this is needed to keep the accounting working).
1688 	 */
1689 	return rec->flags & FTRACE_FL_DISABLED &&
1690 		!(rec->flags & FTRACE_FL_ENABLED);
1691 }
1692 
1693 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1694 				     int filter_hash,
1695 				     bool inc)
1696 {
1697 	struct ftrace_hash *hash;
1698 	struct ftrace_hash *other_hash;
1699 	struct ftrace_page *pg;
1700 	struct dyn_ftrace *rec;
1701 	bool update = false;
1702 	int count = 0;
1703 	int all = false;
1704 
1705 	/* Only update if the ops has been registered */
1706 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1707 		return false;
1708 
1709 	/*
1710 	 * In the filter_hash case:
1711 	 *   If the count is zero, we update all records.
1712 	 *   Otherwise we just update the items in the hash.
1713 	 *
1714 	 * In the notrace_hash case:
1715 	 *   We enable the update in the hash.
1716 	 *   As disabling notrace means enabling the tracing,
1717 	 *   and enabling notrace means disabling, the inc variable
1718 	 *   gets inversed.
1719 	 */
1720 	if (filter_hash) {
1721 		hash = ops->func_hash->filter_hash;
1722 		other_hash = ops->func_hash->notrace_hash;
1723 		if (ftrace_hash_empty(hash))
1724 			all = true;
1725 	} else {
1726 		inc = !inc;
1727 		hash = ops->func_hash->notrace_hash;
1728 		other_hash = ops->func_hash->filter_hash;
1729 		/*
1730 		 * If the notrace hash has no items,
1731 		 * then there's nothing to do.
1732 		 */
1733 		if (ftrace_hash_empty(hash))
1734 			return false;
1735 	}
1736 
1737 	do_for_each_ftrace_rec(pg, rec) {
1738 		int in_other_hash = 0;
1739 		int in_hash = 0;
1740 		int match = 0;
1741 
1742 		if (skip_record(rec))
1743 			continue;
1744 
1745 		if (all) {
1746 			/*
1747 			 * Only the filter_hash affects all records.
1748 			 * Update if the record is not in the notrace hash.
1749 			 */
1750 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1751 				match = 1;
1752 		} else {
1753 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1754 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1755 
1756 			/*
1757 			 * If filter_hash is set, we want to match all functions
1758 			 * that are in the hash but not in the other hash.
1759 			 *
1760 			 * If filter_hash is not set, then we are decrementing.
1761 			 * That means we match anything that is in the hash
1762 			 * and also in the other_hash. That is, we need to turn
1763 			 * off functions in the other hash because they are disabled
1764 			 * by this hash.
1765 			 */
1766 			if (filter_hash && in_hash && !in_other_hash)
1767 				match = 1;
1768 			else if (!filter_hash && in_hash &&
1769 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1770 				match = 1;
1771 		}
1772 		if (!match)
1773 			continue;
1774 
1775 		if (inc) {
1776 			rec->flags++;
1777 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1778 				return false;
1779 
1780 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1781 				rec->flags |= FTRACE_FL_DIRECT;
1782 
1783 			/*
1784 			 * If there's only a single callback registered to a
1785 			 * function, and the ops has a trampoline registered
1786 			 * for it, then we can call it directly.
1787 			 */
1788 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1789 				rec->flags |= FTRACE_FL_TRAMP;
1790 			else
1791 				/*
1792 				 * If we are adding another function callback
1793 				 * to this function, and the previous had a
1794 				 * custom trampoline in use, then we need to go
1795 				 * back to the default trampoline.
1796 				 */
1797 				rec->flags &= ~FTRACE_FL_TRAMP;
1798 
1799 			/*
1800 			 * If any ops wants regs saved for this function
1801 			 * then all ops will get saved regs.
1802 			 */
1803 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1804 				rec->flags |= FTRACE_FL_REGS;
1805 		} else {
1806 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1807 				return false;
1808 			rec->flags--;
1809 
1810 			/*
1811 			 * Only the internal direct_ops should have the
1812 			 * DIRECT flag set. Thus, if it is removing a
1813 			 * function, then that function should no longer
1814 			 * be direct.
1815 			 */
1816 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1817 				rec->flags &= ~FTRACE_FL_DIRECT;
1818 
1819 			/*
1820 			 * If the rec had REGS enabled and the ops that is
1821 			 * being removed had REGS set, then see if there is
1822 			 * still any ops for this record that wants regs.
1823 			 * If not, we can stop recording them.
1824 			 */
1825 			if (ftrace_rec_count(rec) > 0 &&
1826 			    rec->flags & FTRACE_FL_REGS &&
1827 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1828 				if (!test_rec_ops_needs_regs(rec))
1829 					rec->flags &= ~FTRACE_FL_REGS;
1830 			}
1831 
1832 			/*
1833 			 * The TRAMP needs to be set only if rec count
1834 			 * is decremented to one, and the ops that is
1835 			 * left has a trampoline. As TRAMP can only be
1836 			 * enabled if there is only a single ops attached
1837 			 * to it.
1838 			 */
1839 			if (ftrace_rec_count(rec) == 1 &&
1840 			    ftrace_find_tramp_ops_any_other(rec, ops))
1841 				rec->flags |= FTRACE_FL_TRAMP;
1842 			else
1843 				rec->flags &= ~FTRACE_FL_TRAMP;
1844 
1845 			/*
1846 			 * flags will be cleared in ftrace_check_record()
1847 			 * if rec count is zero.
1848 			 */
1849 		}
1850 
1851 		/*
1852 		 * If the rec has a single associated ops, and ops->func can be
1853 		 * called directly, allow the call site to call via the ops.
1854 		 */
1855 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) &&
1856 		    ftrace_rec_count(rec) == 1 &&
1857 		    ftrace_ops_get_func(ops) == ops->func)
1858 			rec->flags |= FTRACE_FL_CALL_OPS;
1859 		else
1860 			rec->flags &= ~FTRACE_FL_CALL_OPS;
1861 
1862 		count++;
1863 
1864 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1865 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1866 
1867 		/* Shortcut, if we handled all records, we are done. */
1868 		if (!all && count == hash->count)
1869 			return update;
1870 	} while_for_each_ftrace_rec();
1871 
1872 	return update;
1873 }
1874 
1875 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1876 				    int filter_hash)
1877 {
1878 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1879 }
1880 
1881 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1882 				   int filter_hash)
1883 {
1884 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1885 }
1886 
1887 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1888 					  int filter_hash, int inc)
1889 {
1890 	struct ftrace_ops *op;
1891 
1892 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1893 
1894 	if (ops->func_hash != &global_ops.local_hash)
1895 		return;
1896 
1897 	/*
1898 	 * If the ops shares the global_ops hash, then we need to update
1899 	 * all ops that are enabled and use this hash.
1900 	 */
1901 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1902 		/* Already done */
1903 		if (op == ops)
1904 			continue;
1905 		if (op->func_hash == &global_ops.local_hash)
1906 			__ftrace_hash_rec_update(op, filter_hash, inc);
1907 	} while_for_each_ftrace_op(op);
1908 }
1909 
1910 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1911 					   int filter_hash)
1912 {
1913 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1914 }
1915 
1916 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1917 					  int filter_hash)
1918 {
1919 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1920 }
1921 
1922 /*
1923  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1924  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1925  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1926  * Note that old_hash and new_hash has below meanings
1927  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1928  *  - If the hash is EMPTY_HASH, it hits nothing
1929  *  - Anything else hits the recs which match the hash entries.
1930  *
1931  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1932  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1933  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1934  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1935  * the return value to the caller and eventually to the owner of the DIRECT
1936  * ops.
1937  */
1938 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1939 					 struct ftrace_hash *old_hash,
1940 					 struct ftrace_hash *new_hash)
1941 {
1942 	struct ftrace_page *pg;
1943 	struct dyn_ftrace *rec, *end = NULL;
1944 	int in_old, in_new;
1945 	bool is_ipmodify, is_direct;
1946 
1947 	/* Only update if the ops has been registered */
1948 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1949 		return 0;
1950 
1951 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1952 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1953 
1954 	/* neither IPMODIFY nor DIRECT, skip */
1955 	if (!is_ipmodify && !is_direct)
1956 		return 0;
1957 
1958 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1959 		return 0;
1960 
1961 	/*
1962 	 * Since the IPMODIFY and DIRECT are very address sensitive
1963 	 * actions, we do not allow ftrace_ops to set all functions to new
1964 	 * hash.
1965 	 */
1966 	if (!new_hash || !old_hash)
1967 		return -EINVAL;
1968 
1969 	/* Update rec->flags */
1970 	do_for_each_ftrace_rec(pg, rec) {
1971 
1972 		if (rec->flags & FTRACE_FL_DISABLED)
1973 			continue;
1974 
1975 		/* We need to update only differences of filter_hash */
1976 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1977 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1978 		if (in_old == in_new)
1979 			continue;
1980 
1981 		if (in_new) {
1982 			if (rec->flags & FTRACE_FL_IPMODIFY) {
1983 				int ret;
1984 
1985 				/* Cannot have two ipmodify on same rec */
1986 				if (is_ipmodify)
1987 					goto rollback;
1988 
1989 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
1990 
1991 				/*
1992 				 * Another ops with IPMODIFY is already
1993 				 * attached. We are now attaching a direct
1994 				 * ops. Run SHARE_IPMODIFY_SELF, to check
1995 				 * whether sharing is supported.
1996 				 */
1997 				if (!ops->ops_func)
1998 					return -EBUSY;
1999 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
2000 				if (ret)
2001 					return ret;
2002 			} else if (is_ipmodify) {
2003 				rec->flags |= FTRACE_FL_IPMODIFY;
2004 			}
2005 		} else if (is_ipmodify) {
2006 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2007 		}
2008 	} while_for_each_ftrace_rec();
2009 
2010 	return 0;
2011 
2012 rollback:
2013 	end = rec;
2014 
2015 	/* Roll back what we did above */
2016 	do_for_each_ftrace_rec(pg, rec) {
2017 
2018 		if (rec->flags & FTRACE_FL_DISABLED)
2019 			continue;
2020 
2021 		if (rec == end)
2022 			goto err_out;
2023 
2024 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2025 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2026 		if (in_old == in_new)
2027 			continue;
2028 
2029 		if (in_new)
2030 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2031 		else
2032 			rec->flags |= FTRACE_FL_IPMODIFY;
2033 	} while_for_each_ftrace_rec();
2034 
2035 err_out:
2036 	return -EBUSY;
2037 }
2038 
2039 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
2040 {
2041 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2042 
2043 	if (ftrace_hash_empty(hash))
2044 		hash = NULL;
2045 
2046 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2047 }
2048 
2049 /* Disabling always succeeds */
2050 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2051 {
2052 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2053 
2054 	if (ftrace_hash_empty(hash))
2055 		hash = NULL;
2056 
2057 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2058 }
2059 
2060 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2061 				       struct ftrace_hash *new_hash)
2062 {
2063 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2064 
2065 	if (ftrace_hash_empty(old_hash))
2066 		old_hash = NULL;
2067 
2068 	if (ftrace_hash_empty(new_hash))
2069 		new_hash = NULL;
2070 
2071 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2072 }
2073 
2074 static void print_ip_ins(const char *fmt, const unsigned char *p)
2075 {
2076 	char ins[MCOUNT_INSN_SIZE];
2077 
2078 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2079 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2080 		return;
2081 	}
2082 
2083 	printk(KERN_CONT "%s", fmt);
2084 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2085 }
2086 
2087 enum ftrace_bug_type ftrace_bug_type;
2088 const void *ftrace_expected;
2089 
2090 static void print_bug_type(void)
2091 {
2092 	switch (ftrace_bug_type) {
2093 	case FTRACE_BUG_UNKNOWN:
2094 		break;
2095 	case FTRACE_BUG_INIT:
2096 		pr_info("Initializing ftrace call sites\n");
2097 		break;
2098 	case FTRACE_BUG_NOP:
2099 		pr_info("Setting ftrace call site to NOP\n");
2100 		break;
2101 	case FTRACE_BUG_CALL:
2102 		pr_info("Setting ftrace call site to call ftrace function\n");
2103 		break;
2104 	case FTRACE_BUG_UPDATE:
2105 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2106 		break;
2107 	}
2108 }
2109 
2110 /**
2111  * ftrace_bug - report and shutdown function tracer
2112  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2113  * @rec: The record that failed
2114  *
2115  * The arch code that enables or disables the function tracing
2116  * can call ftrace_bug() when it has detected a problem in
2117  * modifying the code. @failed should be one of either:
2118  * EFAULT - if the problem happens on reading the @ip address
2119  * EINVAL - if what is read at @ip is not what was expected
2120  * EPERM - if the problem happens on writing to the @ip address
2121  */
2122 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2123 {
2124 	unsigned long ip = rec ? rec->ip : 0;
2125 
2126 	pr_info("------------[ ftrace bug ]------------\n");
2127 
2128 	switch (failed) {
2129 	case -EFAULT:
2130 		pr_info("ftrace faulted on modifying ");
2131 		print_ip_sym(KERN_INFO, ip);
2132 		break;
2133 	case -EINVAL:
2134 		pr_info("ftrace failed to modify ");
2135 		print_ip_sym(KERN_INFO, ip);
2136 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2137 		pr_cont("\n");
2138 		if (ftrace_expected) {
2139 			print_ip_ins(" expected: ", ftrace_expected);
2140 			pr_cont("\n");
2141 		}
2142 		break;
2143 	case -EPERM:
2144 		pr_info("ftrace faulted on writing ");
2145 		print_ip_sym(KERN_INFO, ip);
2146 		break;
2147 	default:
2148 		pr_info("ftrace faulted on unknown error ");
2149 		print_ip_sym(KERN_INFO, ip);
2150 	}
2151 	print_bug_type();
2152 	if (rec) {
2153 		struct ftrace_ops *ops = NULL;
2154 
2155 		pr_info("ftrace record flags: %lx\n", rec->flags);
2156 		pr_cont(" (%ld)%s%s", ftrace_rec_count(rec),
2157 			rec->flags & FTRACE_FL_REGS ? " R" : "  ",
2158 			rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
2159 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2160 			ops = ftrace_find_tramp_ops_any(rec);
2161 			if (ops) {
2162 				do {
2163 					pr_cont("\ttramp: %pS (%pS)",
2164 						(void *)ops->trampoline,
2165 						(void *)ops->func);
2166 					ops = ftrace_find_tramp_ops_next(rec, ops);
2167 				} while (ops);
2168 			} else
2169 				pr_cont("\ttramp: ERROR!");
2170 
2171 		}
2172 		ip = ftrace_get_addr_curr(rec);
2173 		pr_cont("\n expected tramp: %lx\n", ip);
2174 	}
2175 
2176 	FTRACE_WARN_ON_ONCE(1);
2177 }
2178 
2179 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2180 {
2181 	unsigned long flag = 0UL;
2182 
2183 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2184 
2185 	if (skip_record(rec))
2186 		return FTRACE_UPDATE_IGNORE;
2187 
2188 	/*
2189 	 * If we are updating calls:
2190 	 *
2191 	 *   If the record has a ref count, then we need to enable it
2192 	 *   because someone is using it.
2193 	 *
2194 	 *   Otherwise we make sure its disabled.
2195 	 *
2196 	 * If we are disabling calls, then disable all records that
2197 	 * are enabled.
2198 	 */
2199 	if (enable && ftrace_rec_count(rec))
2200 		flag = FTRACE_FL_ENABLED;
2201 
2202 	/*
2203 	 * If enabling and the REGS flag does not match the REGS_EN, or
2204 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2205 	 * this record. Set flags to fail the compare against ENABLED.
2206 	 * Same for direct calls.
2207 	 */
2208 	if (flag) {
2209 		if (!(rec->flags & FTRACE_FL_REGS) !=
2210 		    !(rec->flags & FTRACE_FL_REGS_EN))
2211 			flag |= FTRACE_FL_REGS;
2212 
2213 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2214 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2215 			flag |= FTRACE_FL_TRAMP;
2216 
2217 		/*
2218 		 * Direct calls are special, as count matters.
2219 		 * We must test the record for direct, if the
2220 		 * DIRECT and DIRECT_EN do not match, but only
2221 		 * if the count is 1. That's because, if the
2222 		 * count is something other than one, we do not
2223 		 * want the direct enabled (it will be done via the
2224 		 * direct helper). But if DIRECT_EN is set, and
2225 		 * the count is not one, we need to clear it.
2226 		 *
2227 		 */
2228 		if (ftrace_rec_count(rec) == 1) {
2229 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2230 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2231 				flag |= FTRACE_FL_DIRECT;
2232 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2233 			flag |= FTRACE_FL_DIRECT;
2234 		}
2235 
2236 		/*
2237 		 * Ops calls are special, as count matters.
2238 		 * As with direct calls, they must only be enabled when count
2239 		 * is one, otherwise they'll be handled via the list ops.
2240 		 */
2241 		if (ftrace_rec_count(rec) == 1) {
2242 			if (!(rec->flags & FTRACE_FL_CALL_OPS) !=
2243 			    !(rec->flags & FTRACE_FL_CALL_OPS_EN))
2244 				flag |= FTRACE_FL_CALL_OPS;
2245 		} else if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
2246 			flag |= FTRACE_FL_CALL_OPS;
2247 		}
2248 	}
2249 
2250 	/* If the state of this record hasn't changed, then do nothing */
2251 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2252 		return FTRACE_UPDATE_IGNORE;
2253 
2254 	if (flag) {
2255 		/* Save off if rec is being enabled (for return value) */
2256 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2257 
2258 		if (update) {
2259 			rec->flags |= FTRACE_FL_ENABLED;
2260 			if (flag & FTRACE_FL_REGS) {
2261 				if (rec->flags & FTRACE_FL_REGS)
2262 					rec->flags |= FTRACE_FL_REGS_EN;
2263 				else
2264 					rec->flags &= ~FTRACE_FL_REGS_EN;
2265 			}
2266 			if (flag & FTRACE_FL_TRAMP) {
2267 				if (rec->flags & FTRACE_FL_TRAMP)
2268 					rec->flags |= FTRACE_FL_TRAMP_EN;
2269 				else
2270 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2271 			}
2272 
2273 			if (flag & FTRACE_FL_DIRECT) {
2274 				/*
2275 				 * If there's only one user (direct_ops helper)
2276 				 * then we can call the direct function
2277 				 * directly (no ftrace trampoline).
2278 				 */
2279 				if (ftrace_rec_count(rec) == 1) {
2280 					if (rec->flags & FTRACE_FL_DIRECT)
2281 						rec->flags |= FTRACE_FL_DIRECT_EN;
2282 					else
2283 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2284 				} else {
2285 					/*
2286 					 * Can only call directly if there's
2287 					 * only one callback to the function.
2288 					 */
2289 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2290 				}
2291 			}
2292 
2293 			if (flag & FTRACE_FL_CALL_OPS) {
2294 				if (ftrace_rec_count(rec) == 1) {
2295 					if (rec->flags & FTRACE_FL_CALL_OPS)
2296 						rec->flags |= FTRACE_FL_CALL_OPS_EN;
2297 					else
2298 						rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2299 				} else {
2300 					/*
2301 					 * Can only call directly if there's
2302 					 * only one set of associated ops.
2303 					 */
2304 					rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2305 				}
2306 			}
2307 		}
2308 
2309 		/*
2310 		 * If this record is being updated from a nop, then
2311 		 *   return UPDATE_MAKE_CALL.
2312 		 * Otherwise,
2313 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2314 		 *   from the save regs, to a non-save regs function or
2315 		 *   vice versa, or from a trampoline call.
2316 		 */
2317 		if (flag & FTRACE_FL_ENABLED) {
2318 			ftrace_bug_type = FTRACE_BUG_CALL;
2319 			return FTRACE_UPDATE_MAKE_CALL;
2320 		}
2321 
2322 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2323 		return FTRACE_UPDATE_MODIFY_CALL;
2324 	}
2325 
2326 	if (update) {
2327 		/* If there's no more users, clear all flags */
2328 		if (!ftrace_rec_count(rec))
2329 			rec->flags &= FTRACE_FL_DISABLED;
2330 		else
2331 			/*
2332 			 * Just disable the record, but keep the ops TRAMP
2333 			 * and REGS states. The _EN flags must be disabled though.
2334 			 */
2335 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2336 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN |
2337 					FTRACE_FL_CALL_OPS_EN);
2338 	}
2339 
2340 	ftrace_bug_type = FTRACE_BUG_NOP;
2341 	return FTRACE_UPDATE_MAKE_NOP;
2342 }
2343 
2344 /**
2345  * ftrace_update_record - set a record that now is tracing or not
2346  * @rec: the record to update
2347  * @enable: set to true if the record is tracing, false to force disable
2348  *
2349  * The records that represent all functions that can be traced need
2350  * to be updated when tracing has been enabled.
2351  */
2352 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2353 {
2354 	return ftrace_check_record(rec, enable, true);
2355 }
2356 
2357 /**
2358  * ftrace_test_record - check if the record has been enabled or not
2359  * @rec: the record to test
2360  * @enable: set to true to check if enabled, false if it is disabled
2361  *
2362  * The arch code may need to test if a record is already set to
2363  * tracing to determine how to modify the function code that it
2364  * represents.
2365  */
2366 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2367 {
2368 	return ftrace_check_record(rec, enable, false);
2369 }
2370 
2371 static struct ftrace_ops *
2372 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2373 {
2374 	struct ftrace_ops *op;
2375 	unsigned long ip = rec->ip;
2376 
2377 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2378 
2379 		if (!op->trampoline)
2380 			continue;
2381 
2382 		if (hash_contains_ip(ip, op->func_hash))
2383 			return op;
2384 	} while_for_each_ftrace_op(op);
2385 
2386 	return NULL;
2387 }
2388 
2389 static struct ftrace_ops *
2390 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2391 {
2392 	struct ftrace_ops *op;
2393 	unsigned long ip = rec->ip;
2394 
2395 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2396 
2397 		if (op == op_exclude || !op->trampoline)
2398 			continue;
2399 
2400 		if (hash_contains_ip(ip, op->func_hash))
2401 			return op;
2402 	} while_for_each_ftrace_op(op);
2403 
2404 	return NULL;
2405 }
2406 
2407 static struct ftrace_ops *
2408 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2409 			   struct ftrace_ops *op)
2410 {
2411 	unsigned long ip = rec->ip;
2412 
2413 	while_for_each_ftrace_op(op) {
2414 
2415 		if (!op->trampoline)
2416 			continue;
2417 
2418 		if (hash_contains_ip(ip, op->func_hash))
2419 			return op;
2420 	}
2421 
2422 	return NULL;
2423 }
2424 
2425 static struct ftrace_ops *
2426 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2427 {
2428 	struct ftrace_ops *op;
2429 	unsigned long ip = rec->ip;
2430 
2431 	/*
2432 	 * Need to check removed ops first.
2433 	 * If they are being removed, and this rec has a tramp,
2434 	 * and this rec is in the ops list, then it would be the
2435 	 * one with the tramp.
2436 	 */
2437 	if (removed_ops) {
2438 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2439 			return removed_ops;
2440 	}
2441 
2442 	/*
2443 	 * Need to find the current trampoline for a rec.
2444 	 * Now, a trampoline is only attached to a rec if there
2445 	 * was a single 'ops' attached to it. But this can be called
2446 	 * when we are adding another op to the rec or removing the
2447 	 * current one. Thus, if the op is being added, we can
2448 	 * ignore it because it hasn't attached itself to the rec
2449 	 * yet.
2450 	 *
2451 	 * If an ops is being modified (hooking to different functions)
2452 	 * then we don't care about the new functions that are being
2453 	 * added, just the old ones (that are probably being removed).
2454 	 *
2455 	 * If we are adding an ops to a function that already is using
2456 	 * a trampoline, it needs to be removed (trampolines are only
2457 	 * for single ops connected), then an ops that is not being
2458 	 * modified also needs to be checked.
2459 	 */
2460 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2461 
2462 		if (!op->trampoline)
2463 			continue;
2464 
2465 		/*
2466 		 * If the ops is being added, it hasn't gotten to
2467 		 * the point to be removed from this tree yet.
2468 		 */
2469 		if (op->flags & FTRACE_OPS_FL_ADDING)
2470 			continue;
2471 
2472 
2473 		/*
2474 		 * If the ops is being modified and is in the old
2475 		 * hash, then it is probably being removed from this
2476 		 * function.
2477 		 */
2478 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2479 		    hash_contains_ip(ip, &op->old_hash))
2480 			return op;
2481 		/*
2482 		 * If the ops is not being added or modified, and it's
2483 		 * in its normal filter hash, then this must be the one
2484 		 * we want!
2485 		 */
2486 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2487 		    hash_contains_ip(ip, op->func_hash))
2488 			return op;
2489 
2490 	} while_for_each_ftrace_op(op);
2491 
2492 	return NULL;
2493 }
2494 
2495 static struct ftrace_ops *
2496 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2497 {
2498 	struct ftrace_ops *op;
2499 	unsigned long ip = rec->ip;
2500 
2501 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2502 		/* pass rec in as regs to have non-NULL val */
2503 		if (hash_contains_ip(ip, op->func_hash))
2504 			return op;
2505 	} while_for_each_ftrace_op(op);
2506 
2507 	return NULL;
2508 }
2509 
2510 struct ftrace_ops *
2511 ftrace_find_unique_ops(struct dyn_ftrace *rec)
2512 {
2513 	struct ftrace_ops *op, *found = NULL;
2514 	unsigned long ip = rec->ip;
2515 
2516 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2517 
2518 		if (hash_contains_ip(ip, op->func_hash)) {
2519 			if (found)
2520 				return NULL;
2521 			found = op;
2522 		}
2523 
2524 	} while_for_each_ftrace_op(op);
2525 
2526 	return found;
2527 }
2528 
2529 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2530 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2531 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2532 static DEFINE_MUTEX(direct_mutex);
2533 int ftrace_direct_func_count;
2534 
2535 /*
2536  * Search the direct_functions hash to see if the given instruction pointer
2537  * has a direct caller attached to it.
2538  */
2539 unsigned long ftrace_find_rec_direct(unsigned long ip)
2540 {
2541 	struct ftrace_func_entry *entry;
2542 
2543 	entry = __ftrace_lookup_ip(direct_functions, ip);
2544 	if (!entry)
2545 		return 0;
2546 
2547 	return entry->direct;
2548 }
2549 
2550 static struct ftrace_func_entry*
2551 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2552 		      struct ftrace_hash **free_hash)
2553 {
2554 	struct ftrace_func_entry *entry;
2555 
2556 	if (ftrace_hash_empty(direct_functions) ||
2557 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2558 		struct ftrace_hash *new_hash;
2559 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2560 			direct_functions->count + 1;
2561 
2562 		if (size < 32)
2563 			size = 32;
2564 
2565 		new_hash = dup_hash(direct_functions, size);
2566 		if (!new_hash)
2567 			return NULL;
2568 
2569 		*free_hash = direct_functions;
2570 		direct_functions = new_hash;
2571 	}
2572 
2573 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2574 	if (!entry)
2575 		return NULL;
2576 
2577 	entry->ip = ip;
2578 	entry->direct = addr;
2579 	__add_hash_entry(direct_functions, entry);
2580 	return entry;
2581 }
2582 
2583 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2584 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2585 {
2586 	unsigned long addr;
2587 
2588 	addr = ftrace_find_rec_direct(ip);
2589 	if (!addr)
2590 		return;
2591 
2592 	arch_ftrace_set_direct_caller(fregs, addr);
2593 }
2594 
2595 static struct ftrace_ops direct_ops = {
2596 	.func		= call_direct_funcs,
2597 	.flags		= FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2598 			  | FTRACE_OPS_FL_PERMANENT,
2599 	/*
2600 	 * By declaring the main trampoline as this trampoline
2601 	 * it will never have one allocated for it. Allocated
2602 	 * trampolines should not call direct functions.
2603 	 * The direct_ops should only be called by the builtin
2604 	 * ftrace_regs_caller trampoline.
2605 	 */
2606 	.trampoline	= FTRACE_REGS_ADDR,
2607 };
2608 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2609 
2610 /**
2611  * ftrace_get_addr_new - Get the call address to set to
2612  * @rec:  The ftrace record descriptor
2613  *
2614  * If the record has the FTRACE_FL_REGS set, that means that it
2615  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2616  * is not set, then it wants to convert to the normal callback.
2617  *
2618  * Returns the address of the trampoline to set to
2619  */
2620 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2621 {
2622 	struct ftrace_ops *ops;
2623 	unsigned long addr;
2624 
2625 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2626 	    (ftrace_rec_count(rec) == 1)) {
2627 		addr = ftrace_find_rec_direct(rec->ip);
2628 		if (addr)
2629 			return addr;
2630 		WARN_ON_ONCE(1);
2631 	}
2632 
2633 	/* Trampolines take precedence over regs */
2634 	if (rec->flags & FTRACE_FL_TRAMP) {
2635 		ops = ftrace_find_tramp_ops_new(rec);
2636 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2637 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2638 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2639 			/* Ftrace is shutting down, return anything */
2640 			return (unsigned long)FTRACE_ADDR;
2641 		}
2642 		return ops->trampoline;
2643 	}
2644 
2645 	if (rec->flags & FTRACE_FL_REGS)
2646 		return (unsigned long)FTRACE_REGS_ADDR;
2647 	else
2648 		return (unsigned long)FTRACE_ADDR;
2649 }
2650 
2651 /**
2652  * ftrace_get_addr_curr - Get the call address that is already there
2653  * @rec:  The ftrace record descriptor
2654  *
2655  * The FTRACE_FL_REGS_EN is set when the record already points to
2656  * a function that saves all the regs. Basically the '_EN' version
2657  * represents the current state of the function.
2658  *
2659  * Returns the address of the trampoline that is currently being called
2660  */
2661 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2662 {
2663 	struct ftrace_ops *ops;
2664 	unsigned long addr;
2665 
2666 	/* Direct calls take precedence over trampolines */
2667 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2668 		addr = ftrace_find_rec_direct(rec->ip);
2669 		if (addr)
2670 			return addr;
2671 		WARN_ON_ONCE(1);
2672 	}
2673 
2674 	/* Trampolines take precedence over regs */
2675 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2676 		ops = ftrace_find_tramp_ops_curr(rec);
2677 		if (FTRACE_WARN_ON(!ops)) {
2678 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2679 				(void *)rec->ip, (void *)rec->ip);
2680 			/* Ftrace is shutting down, return anything */
2681 			return (unsigned long)FTRACE_ADDR;
2682 		}
2683 		return ops->trampoline;
2684 	}
2685 
2686 	if (rec->flags & FTRACE_FL_REGS_EN)
2687 		return (unsigned long)FTRACE_REGS_ADDR;
2688 	else
2689 		return (unsigned long)FTRACE_ADDR;
2690 }
2691 
2692 static int
2693 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2694 {
2695 	unsigned long ftrace_old_addr;
2696 	unsigned long ftrace_addr;
2697 	int ret;
2698 
2699 	ftrace_addr = ftrace_get_addr_new(rec);
2700 
2701 	/* This needs to be done before we call ftrace_update_record */
2702 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2703 
2704 	ret = ftrace_update_record(rec, enable);
2705 
2706 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2707 
2708 	switch (ret) {
2709 	case FTRACE_UPDATE_IGNORE:
2710 		return 0;
2711 
2712 	case FTRACE_UPDATE_MAKE_CALL:
2713 		ftrace_bug_type = FTRACE_BUG_CALL;
2714 		return ftrace_make_call(rec, ftrace_addr);
2715 
2716 	case FTRACE_UPDATE_MAKE_NOP:
2717 		ftrace_bug_type = FTRACE_BUG_NOP;
2718 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2719 
2720 	case FTRACE_UPDATE_MODIFY_CALL:
2721 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2722 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2723 	}
2724 
2725 	return -1; /* unknown ftrace bug */
2726 }
2727 
2728 void __weak ftrace_replace_code(int mod_flags)
2729 {
2730 	struct dyn_ftrace *rec;
2731 	struct ftrace_page *pg;
2732 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2733 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2734 	int failed;
2735 
2736 	if (unlikely(ftrace_disabled))
2737 		return;
2738 
2739 	do_for_each_ftrace_rec(pg, rec) {
2740 
2741 		if (skip_record(rec))
2742 			continue;
2743 
2744 		failed = __ftrace_replace_code(rec, enable);
2745 		if (failed) {
2746 			ftrace_bug(failed, rec);
2747 			/* Stop processing */
2748 			return;
2749 		}
2750 		if (schedulable)
2751 			cond_resched();
2752 	} while_for_each_ftrace_rec();
2753 }
2754 
2755 struct ftrace_rec_iter {
2756 	struct ftrace_page	*pg;
2757 	int			index;
2758 };
2759 
2760 /**
2761  * ftrace_rec_iter_start - start up iterating over traced functions
2762  *
2763  * Returns an iterator handle that is used to iterate over all
2764  * the records that represent address locations where functions
2765  * are traced.
2766  *
2767  * May return NULL if no records are available.
2768  */
2769 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2770 {
2771 	/*
2772 	 * We only use a single iterator.
2773 	 * Protected by the ftrace_lock mutex.
2774 	 */
2775 	static struct ftrace_rec_iter ftrace_rec_iter;
2776 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2777 
2778 	iter->pg = ftrace_pages_start;
2779 	iter->index = 0;
2780 
2781 	/* Could have empty pages */
2782 	while (iter->pg && !iter->pg->index)
2783 		iter->pg = iter->pg->next;
2784 
2785 	if (!iter->pg)
2786 		return NULL;
2787 
2788 	return iter;
2789 }
2790 
2791 /**
2792  * ftrace_rec_iter_next - get the next record to process.
2793  * @iter: The handle to the iterator.
2794  *
2795  * Returns the next iterator after the given iterator @iter.
2796  */
2797 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2798 {
2799 	iter->index++;
2800 
2801 	if (iter->index >= iter->pg->index) {
2802 		iter->pg = iter->pg->next;
2803 		iter->index = 0;
2804 
2805 		/* Could have empty pages */
2806 		while (iter->pg && !iter->pg->index)
2807 			iter->pg = iter->pg->next;
2808 	}
2809 
2810 	if (!iter->pg)
2811 		return NULL;
2812 
2813 	return iter;
2814 }
2815 
2816 /**
2817  * ftrace_rec_iter_record - get the record at the iterator location
2818  * @iter: The current iterator location
2819  *
2820  * Returns the record that the current @iter is at.
2821  */
2822 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2823 {
2824 	return &iter->pg->records[iter->index];
2825 }
2826 
2827 static int
2828 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2829 {
2830 	int ret;
2831 
2832 	if (unlikely(ftrace_disabled))
2833 		return 0;
2834 
2835 	ret = ftrace_init_nop(mod, rec);
2836 	if (ret) {
2837 		ftrace_bug_type = FTRACE_BUG_INIT;
2838 		ftrace_bug(ret, rec);
2839 		return 0;
2840 	}
2841 	return 1;
2842 }
2843 
2844 /*
2845  * archs can override this function if they must do something
2846  * before the modifying code is performed.
2847  */
2848 void __weak ftrace_arch_code_modify_prepare(void)
2849 {
2850 }
2851 
2852 /*
2853  * archs can override this function if they must do something
2854  * after the modifying code is performed.
2855  */
2856 void __weak ftrace_arch_code_modify_post_process(void)
2857 {
2858 }
2859 
2860 static int update_ftrace_func(ftrace_func_t func)
2861 {
2862 	static ftrace_func_t save_func;
2863 
2864 	/* Avoid updating if it hasn't changed */
2865 	if (func == save_func)
2866 		return 0;
2867 
2868 	save_func = func;
2869 
2870 	return ftrace_update_ftrace_func(func);
2871 }
2872 
2873 void ftrace_modify_all_code(int command)
2874 {
2875 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2876 	int mod_flags = 0;
2877 	int err = 0;
2878 
2879 	if (command & FTRACE_MAY_SLEEP)
2880 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2881 
2882 	/*
2883 	 * If the ftrace_caller calls a ftrace_ops func directly,
2884 	 * we need to make sure that it only traces functions it
2885 	 * expects to trace. When doing the switch of functions,
2886 	 * we need to update to the ftrace_ops_list_func first
2887 	 * before the transition between old and new calls are set,
2888 	 * as the ftrace_ops_list_func will check the ops hashes
2889 	 * to make sure the ops are having the right functions
2890 	 * traced.
2891 	 */
2892 	if (update) {
2893 		err = update_ftrace_func(ftrace_ops_list_func);
2894 		if (FTRACE_WARN_ON(err))
2895 			return;
2896 	}
2897 
2898 	if (command & FTRACE_UPDATE_CALLS)
2899 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2900 	else if (command & FTRACE_DISABLE_CALLS)
2901 		ftrace_replace_code(mod_flags);
2902 
2903 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2904 		function_trace_op = set_function_trace_op;
2905 		smp_wmb();
2906 		/* If irqs are disabled, we are in stop machine */
2907 		if (!irqs_disabled())
2908 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2909 		err = update_ftrace_func(ftrace_trace_function);
2910 		if (FTRACE_WARN_ON(err))
2911 			return;
2912 	}
2913 
2914 	if (command & FTRACE_START_FUNC_RET)
2915 		err = ftrace_enable_ftrace_graph_caller();
2916 	else if (command & FTRACE_STOP_FUNC_RET)
2917 		err = ftrace_disable_ftrace_graph_caller();
2918 	FTRACE_WARN_ON(err);
2919 }
2920 
2921 static int __ftrace_modify_code(void *data)
2922 {
2923 	int *command = data;
2924 
2925 	ftrace_modify_all_code(*command);
2926 
2927 	return 0;
2928 }
2929 
2930 /**
2931  * ftrace_run_stop_machine - go back to the stop machine method
2932  * @command: The command to tell ftrace what to do
2933  *
2934  * If an arch needs to fall back to the stop machine method, the
2935  * it can call this function.
2936  */
2937 void ftrace_run_stop_machine(int command)
2938 {
2939 	stop_machine(__ftrace_modify_code, &command, NULL);
2940 }
2941 
2942 /**
2943  * arch_ftrace_update_code - modify the code to trace or not trace
2944  * @command: The command that needs to be done
2945  *
2946  * Archs can override this function if it does not need to
2947  * run stop_machine() to modify code.
2948  */
2949 void __weak arch_ftrace_update_code(int command)
2950 {
2951 	ftrace_run_stop_machine(command);
2952 }
2953 
2954 static void ftrace_run_update_code(int command)
2955 {
2956 	ftrace_arch_code_modify_prepare();
2957 
2958 	/*
2959 	 * By default we use stop_machine() to modify the code.
2960 	 * But archs can do what ever they want as long as it
2961 	 * is safe. The stop_machine() is the safest, but also
2962 	 * produces the most overhead.
2963 	 */
2964 	arch_ftrace_update_code(command);
2965 
2966 	ftrace_arch_code_modify_post_process();
2967 }
2968 
2969 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2970 				   struct ftrace_ops_hash *old_hash)
2971 {
2972 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2973 	ops->old_hash.filter_hash = old_hash->filter_hash;
2974 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2975 	ftrace_run_update_code(command);
2976 	ops->old_hash.filter_hash = NULL;
2977 	ops->old_hash.notrace_hash = NULL;
2978 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2979 }
2980 
2981 static ftrace_func_t saved_ftrace_func;
2982 static int ftrace_start_up;
2983 
2984 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2985 {
2986 }
2987 
2988 /* List of trace_ops that have allocated trampolines */
2989 static LIST_HEAD(ftrace_ops_trampoline_list);
2990 
2991 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2992 {
2993 	lockdep_assert_held(&ftrace_lock);
2994 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2995 }
2996 
2997 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2998 {
2999 	lockdep_assert_held(&ftrace_lock);
3000 	list_del_rcu(&ops->list);
3001 	synchronize_rcu();
3002 }
3003 
3004 /*
3005  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
3006  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
3007  * not a module.
3008  */
3009 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
3010 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
3011 
3012 static void ftrace_trampoline_free(struct ftrace_ops *ops)
3013 {
3014 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
3015 	    ops->trampoline) {
3016 		/*
3017 		 * Record the text poke event before the ksymbol unregister
3018 		 * event.
3019 		 */
3020 		perf_event_text_poke((void *)ops->trampoline,
3021 				     (void *)ops->trampoline,
3022 				     ops->trampoline_size, NULL, 0);
3023 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
3024 				   ops->trampoline, ops->trampoline_size,
3025 				   true, FTRACE_TRAMPOLINE_SYM);
3026 		/* Remove from kallsyms after the perf events */
3027 		ftrace_remove_trampoline_from_kallsyms(ops);
3028 	}
3029 
3030 	arch_ftrace_trampoline_free(ops);
3031 }
3032 
3033 static void ftrace_startup_enable(int command)
3034 {
3035 	if (saved_ftrace_func != ftrace_trace_function) {
3036 		saved_ftrace_func = ftrace_trace_function;
3037 		command |= FTRACE_UPDATE_TRACE_FUNC;
3038 	}
3039 
3040 	if (!command || !ftrace_enabled)
3041 		return;
3042 
3043 	ftrace_run_update_code(command);
3044 }
3045 
3046 static void ftrace_startup_all(int command)
3047 {
3048 	update_all_ops = true;
3049 	ftrace_startup_enable(command);
3050 	update_all_ops = false;
3051 }
3052 
3053 int ftrace_startup(struct ftrace_ops *ops, int command)
3054 {
3055 	int ret;
3056 
3057 	if (unlikely(ftrace_disabled))
3058 		return -ENODEV;
3059 
3060 	ret = __register_ftrace_function(ops);
3061 	if (ret)
3062 		return ret;
3063 
3064 	ftrace_start_up++;
3065 
3066 	/*
3067 	 * Note that ftrace probes uses this to start up
3068 	 * and modify functions it will probe. But we still
3069 	 * set the ADDING flag for modification, as probes
3070 	 * do not have trampolines. If they add them in the
3071 	 * future, then the probes will need to distinguish
3072 	 * between adding and updating probes.
3073 	 */
3074 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
3075 
3076 	ret = ftrace_hash_ipmodify_enable(ops);
3077 	if (ret < 0) {
3078 		/* Rollback registration process */
3079 		__unregister_ftrace_function(ops);
3080 		ftrace_start_up--;
3081 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3082 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3083 			ftrace_trampoline_free(ops);
3084 		return ret;
3085 	}
3086 
3087 	if (ftrace_hash_rec_enable(ops, 1))
3088 		command |= FTRACE_UPDATE_CALLS;
3089 
3090 	ftrace_startup_enable(command);
3091 
3092 	/*
3093 	 * If ftrace is in an undefined state, we just remove ops from list
3094 	 * to prevent the NULL pointer, instead of totally rolling it back and
3095 	 * free trampoline, because those actions could cause further damage.
3096 	 */
3097 	if (unlikely(ftrace_disabled)) {
3098 		__unregister_ftrace_function(ops);
3099 		return -ENODEV;
3100 	}
3101 
3102 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3103 
3104 	return 0;
3105 }
3106 
3107 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3108 {
3109 	int ret;
3110 
3111 	if (unlikely(ftrace_disabled))
3112 		return -ENODEV;
3113 
3114 	ret = __unregister_ftrace_function(ops);
3115 	if (ret)
3116 		return ret;
3117 
3118 	ftrace_start_up--;
3119 	/*
3120 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3121 	 * critical but the ftrace_call callers may be never nopped again after
3122 	 * further ftrace uses.
3123 	 */
3124 	WARN_ON_ONCE(ftrace_start_up < 0);
3125 
3126 	/* Disabling ipmodify never fails */
3127 	ftrace_hash_ipmodify_disable(ops);
3128 
3129 	if (ftrace_hash_rec_disable(ops, 1))
3130 		command |= FTRACE_UPDATE_CALLS;
3131 
3132 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3133 
3134 	if (saved_ftrace_func != ftrace_trace_function) {
3135 		saved_ftrace_func = ftrace_trace_function;
3136 		command |= FTRACE_UPDATE_TRACE_FUNC;
3137 	}
3138 
3139 	if (!command || !ftrace_enabled)
3140 		goto out;
3141 
3142 	/*
3143 	 * If the ops uses a trampoline, then it needs to be
3144 	 * tested first on update.
3145 	 */
3146 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3147 	removed_ops = ops;
3148 
3149 	/* The trampoline logic checks the old hashes */
3150 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3151 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3152 
3153 	ftrace_run_update_code(command);
3154 
3155 	/*
3156 	 * If there's no more ops registered with ftrace, run a
3157 	 * sanity check to make sure all rec flags are cleared.
3158 	 */
3159 	if (rcu_dereference_protected(ftrace_ops_list,
3160 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3161 		struct ftrace_page *pg;
3162 		struct dyn_ftrace *rec;
3163 
3164 		do_for_each_ftrace_rec(pg, rec) {
3165 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3166 				pr_warn("  %pS flags:%lx\n",
3167 					(void *)rec->ip, rec->flags);
3168 		} while_for_each_ftrace_rec();
3169 	}
3170 
3171 	ops->old_hash.filter_hash = NULL;
3172 	ops->old_hash.notrace_hash = NULL;
3173 
3174 	removed_ops = NULL;
3175 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3176 
3177 out:
3178 	/*
3179 	 * Dynamic ops may be freed, we must make sure that all
3180 	 * callers are done before leaving this function.
3181 	 */
3182 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3183 		/*
3184 		 * We need to do a hard force of sched synchronization.
3185 		 * This is because we use preempt_disable() to do RCU, but
3186 		 * the function tracers can be called where RCU is not watching
3187 		 * (like before user_exit()). We can not rely on the RCU
3188 		 * infrastructure to do the synchronization, thus we must do it
3189 		 * ourselves.
3190 		 */
3191 		synchronize_rcu_tasks_rude();
3192 
3193 		/*
3194 		 * When the kernel is preemptive, tasks can be preempted
3195 		 * while on a ftrace trampoline. Just scheduling a task on
3196 		 * a CPU is not good enough to flush them. Calling
3197 		 * synchronize_rcu_tasks() will wait for those tasks to
3198 		 * execute and either schedule voluntarily or enter user space.
3199 		 */
3200 		if (IS_ENABLED(CONFIG_PREEMPTION))
3201 			synchronize_rcu_tasks();
3202 
3203 		ftrace_trampoline_free(ops);
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 static u64		ftrace_update_time;
3210 unsigned long		ftrace_update_tot_cnt;
3211 unsigned long		ftrace_number_of_pages;
3212 unsigned long		ftrace_number_of_groups;
3213 
3214 static inline int ops_traces_mod(struct ftrace_ops *ops)
3215 {
3216 	/*
3217 	 * Filter_hash being empty will default to trace module.
3218 	 * But notrace hash requires a test of individual module functions.
3219 	 */
3220 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3221 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3222 }
3223 
3224 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3225 {
3226 	bool init_nop = ftrace_need_init_nop();
3227 	struct ftrace_page *pg;
3228 	struct dyn_ftrace *p;
3229 	u64 start, stop;
3230 	unsigned long update_cnt = 0;
3231 	unsigned long rec_flags = 0;
3232 	int i;
3233 
3234 	start = ftrace_now(raw_smp_processor_id());
3235 
3236 	/*
3237 	 * When a module is loaded, this function is called to convert
3238 	 * the calls to mcount in its text to nops, and also to create
3239 	 * an entry in the ftrace data. Now, if ftrace is activated
3240 	 * after this call, but before the module sets its text to
3241 	 * read-only, the modification of enabling ftrace can fail if
3242 	 * the read-only is done while ftrace is converting the calls.
3243 	 * To prevent this, the module's records are set as disabled
3244 	 * and will be enabled after the call to set the module's text
3245 	 * to read-only.
3246 	 */
3247 	if (mod)
3248 		rec_flags |= FTRACE_FL_DISABLED;
3249 
3250 	for (pg = new_pgs; pg; pg = pg->next) {
3251 
3252 		for (i = 0; i < pg->index; i++) {
3253 
3254 			/* If something went wrong, bail without enabling anything */
3255 			if (unlikely(ftrace_disabled))
3256 				return -1;
3257 
3258 			p = &pg->records[i];
3259 			p->flags = rec_flags;
3260 
3261 			/*
3262 			 * Do the initial record conversion from mcount jump
3263 			 * to the NOP instructions.
3264 			 */
3265 			if (init_nop && !ftrace_nop_initialize(mod, p))
3266 				break;
3267 
3268 			update_cnt++;
3269 		}
3270 	}
3271 
3272 	stop = ftrace_now(raw_smp_processor_id());
3273 	ftrace_update_time = stop - start;
3274 	ftrace_update_tot_cnt += update_cnt;
3275 
3276 	return 0;
3277 }
3278 
3279 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3280 {
3281 	int order;
3282 	int pages;
3283 	int cnt;
3284 
3285 	if (WARN_ON(!count))
3286 		return -EINVAL;
3287 
3288 	/* We want to fill as much as possible, with no empty pages */
3289 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3290 	order = fls(pages) - 1;
3291 
3292  again:
3293 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3294 
3295 	if (!pg->records) {
3296 		/* if we can't allocate this size, try something smaller */
3297 		if (!order)
3298 			return -ENOMEM;
3299 		order--;
3300 		goto again;
3301 	}
3302 
3303 	ftrace_number_of_pages += 1 << order;
3304 	ftrace_number_of_groups++;
3305 
3306 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3307 	pg->order = order;
3308 
3309 	if (cnt > count)
3310 		cnt = count;
3311 
3312 	return cnt;
3313 }
3314 
3315 static struct ftrace_page *
3316 ftrace_allocate_pages(unsigned long num_to_init)
3317 {
3318 	struct ftrace_page *start_pg;
3319 	struct ftrace_page *pg;
3320 	int cnt;
3321 
3322 	if (!num_to_init)
3323 		return NULL;
3324 
3325 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3326 	if (!pg)
3327 		return NULL;
3328 
3329 	/*
3330 	 * Try to allocate as much as possible in one continues
3331 	 * location that fills in all of the space. We want to
3332 	 * waste as little space as possible.
3333 	 */
3334 	for (;;) {
3335 		cnt = ftrace_allocate_records(pg, num_to_init);
3336 		if (cnt < 0)
3337 			goto free_pages;
3338 
3339 		num_to_init -= cnt;
3340 		if (!num_to_init)
3341 			break;
3342 
3343 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3344 		if (!pg->next)
3345 			goto free_pages;
3346 
3347 		pg = pg->next;
3348 	}
3349 
3350 	return start_pg;
3351 
3352  free_pages:
3353 	pg = start_pg;
3354 	while (pg) {
3355 		if (pg->records) {
3356 			free_pages((unsigned long)pg->records, pg->order);
3357 			ftrace_number_of_pages -= 1 << pg->order;
3358 		}
3359 		start_pg = pg->next;
3360 		kfree(pg);
3361 		pg = start_pg;
3362 		ftrace_number_of_groups--;
3363 	}
3364 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3365 	return NULL;
3366 }
3367 
3368 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3369 
3370 struct ftrace_iterator {
3371 	loff_t				pos;
3372 	loff_t				func_pos;
3373 	loff_t				mod_pos;
3374 	struct ftrace_page		*pg;
3375 	struct dyn_ftrace		*func;
3376 	struct ftrace_func_probe	*probe;
3377 	struct ftrace_func_entry	*probe_entry;
3378 	struct trace_parser		parser;
3379 	struct ftrace_hash		*hash;
3380 	struct ftrace_ops		*ops;
3381 	struct trace_array		*tr;
3382 	struct list_head		*mod_list;
3383 	int				pidx;
3384 	int				idx;
3385 	unsigned			flags;
3386 };
3387 
3388 static void *
3389 t_probe_next(struct seq_file *m, loff_t *pos)
3390 {
3391 	struct ftrace_iterator *iter = m->private;
3392 	struct trace_array *tr = iter->ops->private;
3393 	struct list_head *func_probes;
3394 	struct ftrace_hash *hash;
3395 	struct list_head *next;
3396 	struct hlist_node *hnd = NULL;
3397 	struct hlist_head *hhd;
3398 	int size;
3399 
3400 	(*pos)++;
3401 	iter->pos = *pos;
3402 
3403 	if (!tr)
3404 		return NULL;
3405 
3406 	func_probes = &tr->func_probes;
3407 	if (list_empty(func_probes))
3408 		return NULL;
3409 
3410 	if (!iter->probe) {
3411 		next = func_probes->next;
3412 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3413 	}
3414 
3415 	if (iter->probe_entry)
3416 		hnd = &iter->probe_entry->hlist;
3417 
3418 	hash = iter->probe->ops.func_hash->filter_hash;
3419 
3420 	/*
3421 	 * A probe being registered may temporarily have an empty hash
3422 	 * and it's at the end of the func_probes list.
3423 	 */
3424 	if (!hash || hash == EMPTY_HASH)
3425 		return NULL;
3426 
3427 	size = 1 << hash->size_bits;
3428 
3429  retry:
3430 	if (iter->pidx >= size) {
3431 		if (iter->probe->list.next == func_probes)
3432 			return NULL;
3433 		next = iter->probe->list.next;
3434 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3435 		hash = iter->probe->ops.func_hash->filter_hash;
3436 		size = 1 << hash->size_bits;
3437 		iter->pidx = 0;
3438 	}
3439 
3440 	hhd = &hash->buckets[iter->pidx];
3441 
3442 	if (hlist_empty(hhd)) {
3443 		iter->pidx++;
3444 		hnd = NULL;
3445 		goto retry;
3446 	}
3447 
3448 	if (!hnd)
3449 		hnd = hhd->first;
3450 	else {
3451 		hnd = hnd->next;
3452 		if (!hnd) {
3453 			iter->pidx++;
3454 			goto retry;
3455 		}
3456 	}
3457 
3458 	if (WARN_ON_ONCE(!hnd))
3459 		return NULL;
3460 
3461 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3462 
3463 	return iter;
3464 }
3465 
3466 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3467 {
3468 	struct ftrace_iterator *iter = m->private;
3469 	void *p = NULL;
3470 	loff_t l;
3471 
3472 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3473 		return NULL;
3474 
3475 	if (iter->mod_pos > *pos)
3476 		return NULL;
3477 
3478 	iter->probe = NULL;
3479 	iter->probe_entry = NULL;
3480 	iter->pidx = 0;
3481 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3482 		p = t_probe_next(m, &l);
3483 		if (!p)
3484 			break;
3485 	}
3486 	if (!p)
3487 		return NULL;
3488 
3489 	/* Only set this if we have an item */
3490 	iter->flags |= FTRACE_ITER_PROBE;
3491 
3492 	return iter;
3493 }
3494 
3495 static int
3496 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3497 {
3498 	struct ftrace_func_entry *probe_entry;
3499 	struct ftrace_probe_ops *probe_ops;
3500 	struct ftrace_func_probe *probe;
3501 
3502 	probe = iter->probe;
3503 	probe_entry = iter->probe_entry;
3504 
3505 	if (WARN_ON_ONCE(!probe || !probe_entry))
3506 		return -EIO;
3507 
3508 	probe_ops = probe->probe_ops;
3509 
3510 	if (probe_ops->print)
3511 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3512 
3513 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3514 		   (void *)probe_ops->func);
3515 
3516 	return 0;
3517 }
3518 
3519 static void *
3520 t_mod_next(struct seq_file *m, loff_t *pos)
3521 {
3522 	struct ftrace_iterator *iter = m->private;
3523 	struct trace_array *tr = iter->tr;
3524 
3525 	(*pos)++;
3526 	iter->pos = *pos;
3527 
3528 	iter->mod_list = iter->mod_list->next;
3529 
3530 	if (iter->mod_list == &tr->mod_trace ||
3531 	    iter->mod_list == &tr->mod_notrace) {
3532 		iter->flags &= ~FTRACE_ITER_MOD;
3533 		return NULL;
3534 	}
3535 
3536 	iter->mod_pos = *pos;
3537 
3538 	return iter;
3539 }
3540 
3541 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3542 {
3543 	struct ftrace_iterator *iter = m->private;
3544 	void *p = NULL;
3545 	loff_t l;
3546 
3547 	if (iter->func_pos > *pos)
3548 		return NULL;
3549 
3550 	iter->mod_pos = iter->func_pos;
3551 
3552 	/* probes are only available if tr is set */
3553 	if (!iter->tr)
3554 		return NULL;
3555 
3556 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3557 		p = t_mod_next(m, &l);
3558 		if (!p)
3559 			break;
3560 	}
3561 	if (!p) {
3562 		iter->flags &= ~FTRACE_ITER_MOD;
3563 		return t_probe_start(m, pos);
3564 	}
3565 
3566 	/* Only set this if we have an item */
3567 	iter->flags |= FTRACE_ITER_MOD;
3568 
3569 	return iter;
3570 }
3571 
3572 static int
3573 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3574 {
3575 	struct ftrace_mod_load *ftrace_mod;
3576 	struct trace_array *tr = iter->tr;
3577 
3578 	if (WARN_ON_ONCE(!iter->mod_list) ||
3579 			 iter->mod_list == &tr->mod_trace ||
3580 			 iter->mod_list == &tr->mod_notrace)
3581 		return -EIO;
3582 
3583 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3584 
3585 	if (ftrace_mod->func)
3586 		seq_printf(m, "%s", ftrace_mod->func);
3587 	else
3588 		seq_putc(m, '*');
3589 
3590 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3591 
3592 	return 0;
3593 }
3594 
3595 static void *
3596 t_func_next(struct seq_file *m, loff_t *pos)
3597 {
3598 	struct ftrace_iterator *iter = m->private;
3599 	struct dyn_ftrace *rec = NULL;
3600 
3601 	(*pos)++;
3602 
3603  retry:
3604 	if (iter->idx >= iter->pg->index) {
3605 		if (iter->pg->next) {
3606 			iter->pg = iter->pg->next;
3607 			iter->idx = 0;
3608 			goto retry;
3609 		}
3610 	} else {
3611 		rec = &iter->pg->records[iter->idx++];
3612 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3613 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3614 
3615 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3616 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3617 
3618 			rec = NULL;
3619 			goto retry;
3620 		}
3621 	}
3622 
3623 	if (!rec)
3624 		return NULL;
3625 
3626 	iter->pos = iter->func_pos = *pos;
3627 	iter->func = rec;
3628 
3629 	return iter;
3630 }
3631 
3632 static void *
3633 t_next(struct seq_file *m, void *v, loff_t *pos)
3634 {
3635 	struct ftrace_iterator *iter = m->private;
3636 	loff_t l = *pos; /* t_probe_start() must use original pos */
3637 	void *ret;
3638 
3639 	if (unlikely(ftrace_disabled))
3640 		return NULL;
3641 
3642 	if (iter->flags & FTRACE_ITER_PROBE)
3643 		return t_probe_next(m, pos);
3644 
3645 	if (iter->flags & FTRACE_ITER_MOD)
3646 		return t_mod_next(m, pos);
3647 
3648 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3649 		/* next must increment pos, and t_probe_start does not */
3650 		(*pos)++;
3651 		return t_mod_start(m, &l);
3652 	}
3653 
3654 	ret = t_func_next(m, pos);
3655 
3656 	if (!ret)
3657 		return t_mod_start(m, &l);
3658 
3659 	return ret;
3660 }
3661 
3662 static void reset_iter_read(struct ftrace_iterator *iter)
3663 {
3664 	iter->pos = 0;
3665 	iter->func_pos = 0;
3666 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3667 }
3668 
3669 static void *t_start(struct seq_file *m, loff_t *pos)
3670 {
3671 	struct ftrace_iterator *iter = m->private;
3672 	void *p = NULL;
3673 	loff_t l;
3674 
3675 	mutex_lock(&ftrace_lock);
3676 
3677 	if (unlikely(ftrace_disabled))
3678 		return NULL;
3679 
3680 	/*
3681 	 * If an lseek was done, then reset and start from beginning.
3682 	 */
3683 	if (*pos < iter->pos)
3684 		reset_iter_read(iter);
3685 
3686 	/*
3687 	 * For set_ftrace_filter reading, if we have the filter
3688 	 * off, we can short cut and just print out that all
3689 	 * functions are enabled.
3690 	 */
3691 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3692 	    ftrace_hash_empty(iter->hash)) {
3693 		iter->func_pos = 1; /* Account for the message */
3694 		if (*pos > 0)
3695 			return t_mod_start(m, pos);
3696 		iter->flags |= FTRACE_ITER_PRINTALL;
3697 		/* reset in case of seek/pread */
3698 		iter->flags &= ~FTRACE_ITER_PROBE;
3699 		return iter;
3700 	}
3701 
3702 	if (iter->flags & FTRACE_ITER_MOD)
3703 		return t_mod_start(m, pos);
3704 
3705 	/*
3706 	 * Unfortunately, we need to restart at ftrace_pages_start
3707 	 * every time we let go of the ftrace_mutex. This is because
3708 	 * those pointers can change without the lock.
3709 	 */
3710 	iter->pg = ftrace_pages_start;
3711 	iter->idx = 0;
3712 	for (l = 0; l <= *pos; ) {
3713 		p = t_func_next(m, &l);
3714 		if (!p)
3715 			break;
3716 	}
3717 
3718 	if (!p)
3719 		return t_mod_start(m, pos);
3720 
3721 	return iter;
3722 }
3723 
3724 static void t_stop(struct seq_file *m, void *p)
3725 {
3726 	mutex_unlock(&ftrace_lock);
3727 }
3728 
3729 void * __weak
3730 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3731 {
3732 	return NULL;
3733 }
3734 
3735 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3736 				struct dyn_ftrace *rec)
3737 {
3738 	void *ptr;
3739 
3740 	ptr = arch_ftrace_trampoline_func(ops, rec);
3741 	if (ptr)
3742 		seq_printf(m, " ->%pS", ptr);
3743 }
3744 
3745 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3746 /*
3747  * Weak functions can still have an mcount/fentry that is saved in
3748  * the __mcount_loc section. These can be detected by having a
3749  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3750  * symbol found by kallsyms is not the function that the mcount/fentry
3751  * is part of. The offset is much greater in these cases.
3752  *
3753  * Test the record to make sure that the ip points to a valid kallsyms
3754  * and if not, mark it disabled.
3755  */
3756 static int test_for_valid_rec(struct dyn_ftrace *rec)
3757 {
3758 	char str[KSYM_SYMBOL_LEN];
3759 	unsigned long offset;
3760 	const char *ret;
3761 
3762 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3763 
3764 	/* Weak functions can cause invalid addresses */
3765 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3766 		rec->flags |= FTRACE_FL_DISABLED;
3767 		return 0;
3768 	}
3769 	return 1;
3770 }
3771 
3772 static struct workqueue_struct *ftrace_check_wq __initdata;
3773 static struct work_struct ftrace_check_work __initdata;
3774 
3775 /*
3776  * Scan all the mcount/fentry entries to make sure they are valid.
3777  */
3778 static __init void ftrace_check_work_func(struct work_struct *work)
3779 {
3780 	struct ftrace_page *pg;
3781 	struct dyn_ftrace *rec;
3782 
3783 	mutex_lock(&ftrace_lock);
3784 	do_for_each_ftrace_rec(pg, rec) {
3785 		test_for_valid_rec(rec);
3786 	} while_for_each_ftrace_rec();
3787 	mutex_unlock(&ftrace_lock);
3788 }
3789 
3790 static int __init ftrace_check_for_weak_functions(void)
3791 {
3792 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3793 
3794 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3795 
3796 	queue_work(ftrace_check_wq, &ftrace_check_work);
3797 	return 0;
3798 }
3799 
3800 static int __init ftrace_check_sync(void)
3801 {
3802 	/* Make sure the ftrace_check updates are finished */
3803 	if (ftrace_check_wq)
3804 		destroy_workqueue(ftrace_check_wq);
3805 	return 0;
3806 }
3807 
3808 late_initcall_sync(ftrace_check_sync);
3809 subsys_initcall(ftrace_check_for_weak_functions);
3810 
3811 static int print_rec(struct seq_file *m, unsigned long ip)
3812 {
3813 	unsigned long offset;
3814 	char str[KSYM_SYMBOL_LEN];
3815 	char *modname;
3816 	const char *ret;
3817 
3818 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3819 	/* Weak functions can cause invalid addresses */
3820 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3821 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3822 			 FTRACE_INVALID_FUNCTION, offset);
3823 		ret = NULL;
3824 	}
3825 
3826 	seq_puts(m, str);
3827 	if (modname)
3828 		seq_printf(m, " [%s]", modname);
3829 	return ret == NULL ? -1 : 0;
3830 }
3831 #else
3832 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3833 {
3834 	return 1;
3835 }
3836 
3837 static inline int print_rec(struct seq_file *m, unsigned long ip)
3838 {
3839 	seq_printf(m, "%ps", (void *)ip);
3840 	return 0;
3841 }
3842 #endif
3843 
3844 static int t_show(struct seq_file *m, void *v)
3845 {
3846 	struct ftrace_iterator *iter = m->private;
3847 	struct dyn_ftrace *rec;
3848 
3849 	if (iter->flags & FTRACE_ITER_PROBE)
3850 		return t_probe_show(m, iter);
3851 
3852 	if (iter->flags & FTRACE_ITER_MOD)
3853 		return t_mod_show(m, iter);
3854 
3855 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3856 		if (iter->flags & FTRACE_ITER_NOTRACE)
3857 			seq_puts(m, "#### no functions disabled ####\n");
3858 		else
3859 			seq_puts(m, "#### all functions enabled ####\n");
3860 		return 0;
3861 	}
3862 
3863 	rec = iter->func;
3864 
3865 	if (!rec)
3866 		return 0;
3867 
3868 	if (print_rec(m, rec->ip)) {
3869 		/* This should only happen when a rec is disabled */
3870 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3871 		seq_putc(m, '\n');
3872 		return 0;
3873 	}
3874 
3875 	if (iter->flags & FTRACE_ITER_ENABLED) {
3876 		struct ftrace_ops *ops;
3877 
3878 		seq_printf(m, " (%ld)%s%s%s%s",
3879 			   ftrace_rec_count(rec),
3880 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3881 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3882 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ",
3883 			   rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
3884 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3885 			ops = ftrace_find_tramp_ops_any(rec);
3886 			if (ops) {
3887 				do {
3888 					seq_printf(m, "\ttramp: %pS (%pS)",
3889 						   (void *)ops->trampoline,
3890 						   (void *)ops->func);
3891 					add_trampoline_func(m, ops, rec);
3892 					ops = ftrace_find_tramp_ops_next(rec, ops);
3893 				} while (ops);
3894 			} else
3895 				seq_puts(m, "\ttramp: ERROR!");
3896 		} else {
3897 			add_trampoline_func(m, NULL, rec);
3898 		}
3899 		if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
3900 			ops = ftrace_find_unique_ops(rec);
3901 			if (ops) {
3902 				seq_printf(m, "\tops: %pS (%pS)",
3903 					   ops, ops->func);
3904 			} else {
3905 				seq_puts(m, "\tops: ERROR!");
3906 			}
3907 		}
3908 		if (rec->flags & FTRACE_FL_DIRECT) {
3909 			unsigned long direct;
3910 
3911 			direct = ftrace_find_rec_direct(rec->ip);
3912 			if (direct)
3913 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3914 		}
3915 	}
3916 
3917 	seq_putc(m, '\n');
3918 
3919 	return 0;
3920 }
3921 
3922 static const struct seq_operations show_ftrace_seq_ops = {
3923 	.start = t_start,
3924 	.next = t_next,
3925 	.stop = t_stop,
3926 	.show = t_show,
3927 };
3928 
3929 static int
3930 ftrace_avail_open(struct inode *inode, struct file *file)
3931 {
3932 	struct ftrace_iterator *iter;
3933 	int ret;
3934 
3935 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3936 	if (ret)
3937 		return ret;
3938 
3939 	if (unlikely(ftrace_disabled))
3940 		return -ENODEV;
3941 
3942 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3943 	if (!iter)
3944 		return -ENOMEM;
3945 
3946 	iter->pg = ftrace_pages_start;
3947 	iter->ops = &global_ops;
3948 
3949 	return 0;
3950 }
3951 
3952 static int
3953 ftrace_enabled_open(struct inode *inode, struct file *file)
3954 {
3955 	struct ftrace_iterator *iter;
3956 
3957 	/*
3958 	 * This shows us what functions are currently being
3959 	 * traced and by what. Not sure if we want lockdown
3960 	 * to hide such critical information for an admin.
3961 	 * Although, perhaps it can show information we don't
3962 	 * want people to see, but if something is tracing
3963 	 * something, we probably want to know about it.
3964 	 */
3965 
3966 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3967 	if (!iter)
3968 		return -ENOMEM;
3969 
3970 	iter->pg = ftrace_pages_start;
3971 	iter->flags = FTRACE_ITER_ENABLED;
3972 	iter->ops = &global_ops;
3973 
3974 	return 0;
3975 }
3976 
3977 /**
3978  * ftrace_regex_open - initialize function tracer filter files
3979  * @ops: The ftrace_ops that hold the hash filters
3980  * @flag: The type of filter to process
3981  * @inode: The inode, usually passed in to your open routine
3982  * @file: The file, usually passed in to your open routine
3983  *
3984  * ftrace_regex_open() initializes the filter files for the
3985  * @ops. Depending on @flag it may process the filter hash or
3986  * the notrace hash of @ops. With this called from the open
3987  * routine, you can use ftrace_filter_write() for the write
3988  * routine if @flag has FTRACE_ITER_FILTER set, or
3989  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3990  * tracing_lseek() should be used as the lseek routine, and
3991  * release must call ftrace_regex_release().
3992  */
3993 int
3994 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3995 		  struct inode *inode, struct file *file)
3996 {
3997 	struct ftrace_iterator *iter;
3998 	struct ftrace_hash *hash;
3999 	struct list_head *mod_head;
4000 	struct trace_array *tr = ops->private;
4001 	int ret = -ENOMEM;
4002 
4003 	ftrace_ops_init(ops);
4004 
4005 	if (unlikely(ftrace_disabled))
4006 		return -ENODEV;
4007 
4008 	if (tracing_check_open_get_tr(tr))
4009 		return -ENODEV;
4010 
4011 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
4012 	if (!iter)
4013 		goto out;
4014 
4015 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
4016 		goto out;
4017 
4018 	iter->ops = ops;
4019 	iter->flags = flag;
4020 	iter->tr = tr;
4021 
4022 	mutex_lock(&ops->func_hash->regex_lock);
4023 
4024 	if (flag & FTRACE_ITER_NOTRACE) {
4025 		hash = ops->func_hash->notrace_hash;
4026 		mod_head = tr ? &tr->mod_notrace : NULL;
4027 	} else {
4028 		hash = ops->func_hash->filter_hash;
4029 		mod_head = tr ? &tr->mod_trace : NULL;
4030 	}
4031 
4032 	iter->mod_list = mod_head;
4033 
4034 	if (file->f_mode & FMODE_WRITE) {
4035 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
4036 
4037 		if (file->f_flags & O_TRUNC) {
4038 			iter->hash = alloc_ftrace_hash(size_bits);
4039 			clear_ftrace_mod_list(mod_head);
4040 	        } else {
4041 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
4042 		}
4043 
4044 		if (!iter->hash) {
4045 			trace_parser_put(&iter->parser);
4046 			goto out_unlock;
4047 		}
4048 	} else
4049 		iter->hash = hash;
4050 
4051 	ret = 0;
4052 
4053 	if (file->f_mode & FMODE_READ) {
4054 		iter->pg = ftrace_pages_start;
4055 
4056 		ret = seq_open(file, &show_ftrace_seq_ops);
4057 		if (!ret) {
4058 			struct seq_file *m = file->private_data;
4059 			m->private = iter;
4060 		} else {
4061 			/* Failed */
4062 			free_ftrace_hash(iter->hash);
4063 			trace_parser_put(&iter->parser);
4064 		}
4065 	} else
4066 		file->private_data = iter;
4067 
4068  out_unlock:
4069 	mutex_unlock(&ops->func_hash->regex_lock);
4070 
4071  out:
4072 	if (ret) {
4073 		kfree(iter);
4074 		if (tr)
4075 			trace_array_put(tr);
4076 	}
4077 
4078 	return ret;
4079 }
4080 
4081 static int
4082 ftrace_filter_open(struct inode *inode, struct file *file)
4083 {
4084 	struct ftrace_ops *ops = inode->i_private;
4085 
4086 	/* Checks for tracefs lockdown */
4087 	return ftrace_regex_open(ops,
4088 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4089 			inode, file);
4090 }
4091 
4092 static int
4093 ftrace_notrace_open(struct inode *inode, struct file *file)
4094 {
4095 	struct ftrace_ops *ops = inode->i_private;
4096 
4097 	/* Checks for tracefs lockdown */
4098 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4099 				 inode, file);
4100 }
4101 
4102 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4103 struct ftrace_glob {
4104 	char *search;
4105 	unsigned len;
4106 	int type;
4107 };
4108 
4109 /*
4110  * If symbols in an architecture don't correspond exactly to the user-visible
4111  * name of what they represent, it is possible to define this function to
4112  * perform the necessary adjustments.
4113 */
4114 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4115 {
4116 	return str;
4117 }
4118 
4119 static int ftrace_match(char *str, struct ftrace_glob *g)
4120 {
4121 	int matched = 0;
4122 	int slen;
4123 
4124 	str = arch_ftrace_match_adjust(str, g->search);
4125 
4126 	switch (g->type) {
4127 	case MATCH_FULL:
4128 		if (strcmp(str, g->search) == 0)
4129 			matched = 1;
4130 		break;
4131 	case MATCH_FRONT_ONLY:
4132 		if (strncmp(str, g->search, g->len) == 0)
4133 			matched = 1;
4134 		break;
4135 	case MATCH_MIDDLE_ONLY:
4136 		if (strstr(str, g->search))
4137 			matched = 1;
4138 		break;
4139 	case MATCH_END_ONLY:
4140 		slen = strlen(str);
4141 		if (slen >= g->len &&
4142 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4143 			matched = 1;
4144 		break;
4145 	case MATCH_GLOB:
4146 		if (glob_match(g->search, str))
4147 			matched = 1;
4148 		break;
4149 	}
4150 
4151 	return matched;
4152 }
4153 
4154 static int
4155 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4156 {
4157 	struct ftrace_func_entry *entry;
4158 	int ret = 0;
4159 
4160 	entry = ftrace_lookup_ip(hash, rec->ip);
4161 	if (clear_filter) {
4162 		/* Do nothing if it doesn't exist */
4163 		if (!entry)
4164 			return 0;
4165 
4166 		free_hash_entry(hash, entry);
4167 	} else {
4168 		/* Do nothing if it exists */
4169 		if (entry)
4170 			return 0;
4171 
4172 		ret = add_hash_entry(hash, rec->ip);
4173 	}
4174 	return ret;
4175 }
4176 
4177 static int
4178 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4179 		 int clear_filter)
4180 {
4181 	long index = simple_strtoul(func_g->search, NULL, 0);
4182 	struct ftrace_page *pg;
4183 	struct dyn_ftrace *rec;
4184 
4185 	/* The index starts at 1 */
4186 	if (--index < 0)
4187 		return 0;
4188 
4189 	do_for_each_ftrace_rec(pg, rec) {
4190 		if (pg->index <= index) {
4191 			index -= pg->index;
4192 			/* this is a double loop, break goes to the next page */
4193 			break;
4194 		}
4195 		rec = &pg->records[index];
4196 		enter_record(hash, rec, clear_filter);
4197 		return 1;
4198 	} while_for_each_ftrace_rec();
4199 	return 0;
4200 }
4201 
4202 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4203 static int lookup_ip(unsigned long ip, char **modname, char *str)
4204 {
4205 	unsigned long offset;
4206 
4207 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4208 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4209 		return -1;
4210 	return 0;
4211 }
4212 #else
4213 static int lookup_ip(unsigned long ip, char **modname, char *str)
4214 {
4215 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4216 	return 0;
4217 }
4218 #endif
4219 
4220 static int
4221 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4222 		struct ftrace_glob *mod_g, int exclude_mod)
4223 {
4224 	char str[KSYM_SYMBOL_LEN];
4225 	char *modname;
4226 
4227 	if (lookup_ip(rec->ip, &modname, str)) {
4228 		/* This should only happen when a rec is disabled */
4229 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4230 			     !(rec->flags & FTRACE_FL_DISABLED));
4231 		return 0;
4232 	}
4233 
4234 	if (mod_g) {
4235 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4236 
4237 		/* blank module name to match all modules */
4238 		if (!mod_g->len) {
4239 			/* blank module globbing: modname xor exclude_mod */
4240 			if (!exclude_mod != !modname)
4241 				goto func_match;
4242 			return 0;
4243 		}
4244 
4245 		/*
4246 		 * exclude_mod is set to trace everything but the given
4247 		 * module. If it is set and the module matches, then
4248 		 * return 0. If it is not set, and the module doesn't match
4249 		 * also return 0. Otherwise, check the function to see if
4250 		 * that matches.
4251 		 */
4252 		if (!mod_matches == !exclude_mod)
4253 			return 0;
4254 func_match:
4255 		/* blank search means to match all funcs in the mod */
4256 		if (!func_g->len)
4257 			return 1;
4258 	}
4259 
4260 	return ftrace_match(str, func_g);
4261 }
4262 
4263 static int
4264 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4265 {
4266 	struct ftrace_page *pg;
4267 	struct dyn_ftrace *rec;
4268 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4269 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4270 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4271 	int exclude_mod = 0;
4272 	int found = 0;
4273 	int ret;
4274 	int clear_filter = 0;
4275 
4276 	if (func) {
4277 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4278 						 &clear_filter);
4279 		func_g.len = strlen(func_g.search);
4280 	}
4281 
4282 	if (mod) {
4283 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4284 				&mod_g.search, &exclude_mod);
4285 		mod_g.len = strlen(mod_g.search);
4286 	}
4287 
4288 	mutex_lock(&ftrace_lock);
4289 
4290 	if (unlikely(ftrace_disabled))
4291 		goto out_unlock;
4292 
4293 	if (func_g.type == MATCH_INDEX) {
4294 		found = add_rec_by_index(hash, &func_g, clear_filter);
4295 		goto out_unlock;
4296 	}
4297 
4298 	do_for_each_ftrace_rec(pg, rec) {
4299 
4300 		if (rec->flags & FTRACE_FL_DISABLED)
4301 			continue;
4302 
4303 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4304 			ret = enter_record(hash, rec, clear_filter);
4305 			if (ret < 0) {
4306 				found = ret;
4307 				goto out_unlock;
4308 			}
4309 			found = 1;
4310 		}
4311 		cond_resched();
4312 	} while_for_each_ftrace_rec();
4313  out_unlock:
4314 	mutex_unlock(&ftrace_lock);
4315 
4316 	return found;
4317 }
4318 
4319 static int
4320 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4321 {
4322 	return match_records(hash, buff, len, NULL);
4323 }
4324 
4325 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4326 				   struct ftrace_ops_hash *old_hash)
4327 {
4328 	struct ftrace_ops *op;
4329 
4330 	if (!ftrace_enabled)
4331 		return;
4332 
4333 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4334 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4335 		return;
4336 	}
4337 
4338 	/*
4339 	 * If this is the shared global_ops filter, then we need to
4340 	 * check if there is another ops that shares it, is enabled.
4341 	 * If so, we still need to run the modify code.
4342 	 */
4343 	if (ops->func_hash != &global_ops.local_hash)
4344 		return;
4345 
4346 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4347 		if (op->func_hash == &global_ops.local_hash &&
4348 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4349 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4350 			/* Only need to do this once */
4351 			return;
4352 		}
4353 	} while_for_each_ftrace_op(op);
4354 }
4355 
4356 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4357 					   struct ftrace_hash **orig_hash,
4358 					   struct ftrace_hash *hash,
4359 					   int enable)
4360 {
4361 	struct ftrace_ops_hash old_hash_ops;
4362 	struct ftrace_hash *old_hash;
4363 	int ret;
4364 
4365 	old_hash = *orig_hash;
4366 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4367 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4368 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4369 	if (!ret) {
4370 		ftrace_ops_update_code(ops, &old_hash_ops);
4371 		free_ftrace_hash_rcu(old_hash);
4372 	}
4373 	return ret;
4374 }
4375 
4376 static bool module_exists(const char *module)
4377 {
4378 	/* All modules have the symbol __this_module */
4379 	static const char this_mod[] = "__this_module";
4380 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4381 	unsigned long val;
4382 	int n;
4383 
4384 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4385 
4386 	if (n > sizeof(modname) - 1)
4387 		return false;
4388 
4389 	val = module_kallsyms_lookup_name(modname);
4390 	return val != 0;
4391 }
4392 
4393 static int cache_mod(struct trace_array *tr,
4394 		     const char *func, char *module, int enable)
4395 {
4396 	struct ftrace_mod_load *ftrace_mod, *n;
4397 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4398 	int ret;
4399 
4400 	mutex_lock(&ftrace_lock);
4401 
4402 	/* We do not cache inverse filters */
4403 	if (func[0] == '!') {
4404 		func++;
4405 		ret = -EINVAL;
4406 
4407 		/* Look to remove this hash */
4408 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4409 			if (strcmp(ftrace_mod->module, module) != 0)
4410 				continue;
4411 
4412 			/* no func matches all */
4413 			if (strcmp(func, "*") == 0 ||
4414 			    (ftrace_mod->func &&
4415 			     strcmp(ftrace_mod->func, func) == 0)) {
4416 				ret = 0;
4417 				free_ftrace_mod(ftrace_mod);
4418 				continue;
4419 			}
4420 		}
4421 		goto out;
4422 	}
4423 
4424 	ret = -EINVAL;
4425 	/* We only care about modules that have not been loaded yet */
4426 	if (module_exists(module))
4427 		goto out;
4428 
4429 	/* Save this string off, and execute it when the module is loaded */
4430 	ret = ftrace_add_mod(tr, func, module, enable);
4431  out:
4432 	mutex_unlock(&ftrace_lock);
4433 
4434 	return ret;
4435 }
4436 
4437 static int
4438 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4439 		 int reset, int enable);
4440 
4441 #ifdef CONFIG_MODULES
4442 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4443 			     char *mod, bool enable)
4444 {
4445 	struct ftrace_mod_load *ftrace_mod, *n;
4446 	struct ftrace_hash **orig_hash, *new_hash;
4447 	LIST_HEAD(process_mods);
4448 	char *func;
4449 
4450 	mutex_lock(&ops->func_hash->regex_lock);
4451 
4452 	if (enable)
4453 		orig_hash = &ops->func_hash->filter_hash;
4454 	else
4455 		orig_hash = &ops->func_hash->notrace_hash;
4456 
4457 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4458 					      *orig_hash);
4459 	if (!new_hash)
4460 		goto out; /* warn? */
4461 
4462 	mutex_lock(&ftrace_lock);
4463 
4464 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4465 
4466 		if (strcmp(ftrace_mod->module, mod) != 0)
4467 			continue;
4468 
4469 		if (ftrace_mod->func)
4470 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4471 		else
4472 			func = kstrdup("*", GFP_KERNEL);
4473 
4474 		if (!func) /* warn? */
4475 			continue;
4476 
4477 		list_move(&ftrace_mod->list, &process_mods);
4478 
4479 		/* Use the newly allocated func, as it may be "*" */
4480 		kfree(ftrace_mod->func);
4481 		ftrace_mod->func = func;
4482 	}
4483 
4484 	mutex_unlock(&ftrace_lock);
4485 
4486 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4487 
4488 		func = ftrace_mod->func;
4489 
4490 		/* Grabs ftrace_lock, which is why we have this extra step */
4491 		match_records(new_hash, func, strlen(func), mod);
4492 		free_ftrace_mod(ftrace_mod);
4493 	}
4494 
4495 	if (enable && list_empty(head))
4496 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4497 
4498 	mutex_lock(&ftrace_lock);
4499 
4500 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4501 					      new_hash, enable);
4502 	mutex_unlock(&ftrace_lock);
4503 
4504  out:
4505 	mutex_unlock(&ops->func_hash->regex_lock);
4506 
4507 	free_ftrace_hash(new_hash);
4508 }
4509 
4510 static void process_cached_mods(const char *mod_name)
4511 {
4512 	struct trace_array *tr;
4513 	char *mod;
4514 
4515 	mod = kstrdup(mod_name, GFP_KERNEL);
4516 	if (!mod)
4517 		return;
4518 
4519 	mutex_lock(&trace_types_lock);
4520 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4521 		if (!list_empty(&tr->mod_trace))
4522 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4523 		if (!list_empty(&tr->mod_notrace))
4524 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4525 	}
4526 	mutex_unlock(&trace_types_lock);
4527 
4528 	kfree(mod);
4529 }
4530 #endif
4531 
4532 /*
4533  * We register the module command as a template to show others how
4534  * to register the a command as well.
4535  */
4536 
4537 static int
4538 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4539 		    char *func_orig, char *cmd, char *module, int enable)
4540 {
4541 	char *func;
4542 	int ret;
4543 
4544 	/* match_records() modifies func, and we need the original */
4545 	func = kstrdup(func_orig, GFP_KERNEL);
4546 	if (!func)
4547 		return -ENOMEM;
4548 
4549 	/*
4550 	 * cmd == 'mod' because we only registered this func
4551 	 * for the 'mod' ftrace_func_command.
4552 	 * But if you register one func with multiple commands,
4553 	 * you can tell which command was used by the cmd
4554 	 * parameter.
4555 	 */
4556 	ret = match_records(hash, func, strlen(func), module);
4557 	kfree(func);
4558 
4559 	if (!ret)
4560 		return cache_mod(tr, func_orig, module, enable);
4561 	if (ret < 0)
4562 		return ret;
4563 	return 0;
4564 }
4565 
4566 static struct ftrace_func_command ftrace_mod_cmd = {
4567 	.name			= "mod",
4568 	.func			= ftrace_mod_callback,
4569 };
4570 
4571 static int __init ftrace_mod_cmd_init(void)
4572 {
4573 	return register_ftrace_command(&ftrace_mod_cmd);
4574 }
4575 core_initcall(ftrace_mod_cmd_init);
4576 
4577 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4578 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4579 {
4580 	struct ftrace_probe_ops *probe_ops;
4581 	struct ftrace_func_probe *probe;
4582 
4583 	probe = container_of(op, struct ftrace_func_probe, ops);
4584 	probe_ops = probe->probe_ops;
4585 
4586 	/*
4587 	 * Disable preemption for these calls to prevent a RCU grace
4588 	 * period. This syncs the hash iteration and freeing of items
4589 	 * on the hash. rcu_read_lock is too dangerous here.
4590 	 */
4591 	preempt_disable_notrace();
4592 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4593 	preempt_enable_notrace();
4594 }
4595 
4596 struct ftrace_func_map {
4597 	struct ftrace_func_entry	entry;
4598 	void				*data;
4599 };
4600 
4601 struct ftrace_func_mapper {
4602 	struct ftrace_hash		hash;
4603 };
4604 
4605 /**
4606  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4607  *
4608  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4609  */
4610 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4611 {
4612 	struct ftrace_hash *hash;
4613 
4614 	/*
4615 	 * The mapper is simply a ftrace_hash, but since the entries
4616 	 * in the hash are not ftrace_func_entry type, we define it
4617 	 * as a separate structure.
4618 	 */
4619 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4620 	return (struct ftrace_func_mapper *)hash;
4621 }
4622 
4623 /**
4624  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4625  * @mapper: The mapper that has the ip maps
4626  * @ip: the instruction pointer to find the data for
4627  *
4628  * Returns the data mapped to @ip if found otherwise NULL. The return
4629  * is actually the address of the mapper data pointer. The address is
4630  * returned for use cases where the data is no bigger than a long, and
4631  * the user can use the data pointer as its data instead of having to
4632  * allocate more memory for the reference.
4633  */
4634 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4635 				  unsigned long ip)
4636 {
4637 	struct ftrace_func_entry *entry;
4638 	struct ftrace_func_map *map;
4639 
4640 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4641 	if (!entry)
4642 		return NULL;
4643 
4644 	map = (struct ftrace_func_map *)entry;
4645 	return &map->data;
4646 }
4647 
4648 /**
4649  * ftrace_func_mapper_add_ip - Map some data to an ip
4650  * @mapper: The mapper that has the ip maps
4651  * @ip: The instruction pointer address to map @data to
4652  * @data: The data to map to @ip
4653  *
4654  * Returns 0 on success otherwise an error.
4655  */
4656 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4657 			      unsigned long ip, void *data)
4658 {
4659 	struct ftrace_func_entry *entry;
4660 	struct ftrace_func_map *map;
4661 
4662 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4663 	if (entry)
4664 		return -EBUSY;
4665 
4666 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4667 	if (!map)
4668 		return -ENOMEM;
4669 
4670 	map->entry.ip = ip;
4671 	map->data = data;
4672 
4673 	__add_hash_entry(&mapper->hash, &map->entry);
4674 
4675 	return 0;
4676 }
4677 
4678 /**
4679  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4680  * @mapper: The mapper that has the ip maps
4681  * @ip: The instruction pointer address to remove the data from
4682  *
4683  * Returns the data if it is found, otherwise NULL.
4684  * Note, if the data pointer is used as the data itself, (see
4685  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4686  * if the data pointer was set to zero.
4687  */
4688 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4689 				   unsigned long ip)
4690 {
4691 	struct ftrace_func_entry *entry;
4692 	struct ftrace_func_map *map;
4693 	void *data;
4694 
4695 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4696 	if (!entry)
4697 		return NULL;
4698 
4699 	map = (struct ftrace_func_map *)entry;
4700 	data = map->data;
4701 
4702 	remove_hash_entry(&mapper->hash, entry);
4703 	kfree(entry);
4704 
4705 	return data;
4706 }
4707 
4708 /**
4709  * free_ftrace_func_mapper - free a mapping of ips and data
4710  * @mapper: The mapper that has the ip maps
4711  * @free_func: A function to be called on each data item.
4712  *
4713  * This is used to free the function mapper. The @free_func is optional
4714  * and can be used if the data needs to be freed as well.
4715  */
4716 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4717 			     ftrace_mapper_func free_func)
4718 {
4719 	struct ftrace_func_entry *entry;
4720 	struct ftrace_func_map *map;
4721 	struct hlist_head *hhd;
4722 	int size, i;
4723 
4724 	if (!mapper)
4725 		return;
4726 
4727 	if (free_func && mapper->hash.count) {
4728 		size = 1 << mapper->hash.size_bits;
4729 		for (i = 0; i < size; i++) {
4730 			hhd = &mapper->hash.buckets[i];
4731 			hlist_for_each_entry(entry, hhd, hlist) {
4732 				map = (struct ftrace_func_map *)entry;
4733 				free_func(map);
4734 			}
4735 		}
4736 	}
4737 	free_ftrace_hash(&mapper->hash);
4738 }
4739 
4740 static void release_probe(struct ftrace_func_probe *probe)
4741 {
4742 	struct ftrace_probe_ops *probe_ops;
4743 
4744 	mutex_lock(&ftrace_lock);
4745 
4746 	WARN_ON(probe->ref <= 0);
4747 
4748 	/* Subtract the ref that was used to protect this instance */
4749 	probe->ref--;
4750 
4751 	if (!probe->ref) {
4752 		probe_ops = probe->probe_ops;
4753 		/*
4754 		 * Sending zero as ip tells probe_ops to free
4755 		 * the probe->data itself
4756 		 */
4757 		if (probe_ops->free)
4758 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4759 		list_del(&probe->list);
4760 		kfree(probe);
4761 	}
4762 	mutex_unlock(&ftrace_lock);
4763 }
4764 
4765 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4766 {
4767 	/*
4768 	 * Add one ref to keep it from being freed when releasing the
4769 	 * ftrace_lock mutex.
4770 	 */
4771 	probe->ref++;
4772 }
4773 
4774 int
4775 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4776 			       struct ftrace_probe_ops *probe_ops,
4777 			       void *data)
4778 {
4779 	struct ftrace_func_probe *probe = NULL, *iter;
4780 	struct ftrace_func_entry *entry;
4781 	struct ftrace_hash **orig_hash;
4782 	struct ftrace_hash *old_hash;
4783 	struct ftrace_hash *hash;
4784 	int count = 0;
4785 	int size;
4786 	int ret;
4787 	int i;
4788 
4789 	if (WARN_ON(!tr))
4790 		return -EINVAL;
4791 
4792 	/* We do not support '!' for function probes */
4793 	if (WARN_ON(glob[0] == '!'))
4794 		return -EINVAL;
4795 
4796 
4797 	mutex_lock(&ftrace_lock);
4798 	/* Check if the probe_ops is already registered */
4799 	list_for_each_entry(iter, &tr->func_probes, list) {
4800 		if (iter->probe_ops == probe_ops) {
4801 			probe = iter;
4802 			break;
4803 		}
4804 	}
4805 	if (!probe) {
4806 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4807 		if (!probe) {
4808 			mutex_unlock(&ftrace_lock);
4809 			return -ENOMEM;
4810 		}
4811 		probe->probe_ops = probe_ops;
4812 		probe->ops.func = function_trace_probe_call;
4813 		probe->tr = tr;
4814 		ftrace_ops_init(&probe->ops);
4815 		list_add(&probe->list, &tr->func_probes);
4816 	}
4817 
4818 	acquire_probe_locked(probe);
4819 
4820 	mutex_unlock(&ftrace_lock);
4821 
4822 	/*
4823 	 * Note, there's a small window here that the func_hash->filter_hash
4824 	 * may be NULL or empty. Need to be careful when reading the loop.
4825 	 */
4826 	mutex_lock(&probe->ops.func_hash->regex_lock);
4827 
4828 	orig_hash = &probe->ops.func_hash->filter_hash;
4829 	old_hash = *orig_hash;
4830 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4831 
4832 	if (!hash) {
4833 		ret = -ENOMEM;
4834 		goto out;
4835 	}
4836 
4837 	ret = ftrace_match_records(hash, glob, strlen(glob));
4838 
4839 	/* Nothing found? */
4840 	if (!ret)
4841 		ret = -EINVAL;
4842 
4843 	if (ret < 0)
4844 		goto out;
4845 
4846 	size = 1 << hash->size_bits;
4847 	for (i = 0; i < size; i++) {
4848 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4849 			if (ftrace_lookup_ip(old_hash, entry->ip))
4850 				continue;
4851 			/*
4852 			 * The caller might want to do something special
4853 			 * for each function we find. We call the callback
4854 			 * to give the caller an opportunity to do so.
4855 			 */
4856 			if (probe_ops->init) {
4857 				ret = probe_ops->init(probe_ops, tr,
4858 						      entry->ip, data,
4859 						      &probe->data);
4860 				if (ret < 0) {
4861 					if (probe_ops->free && count)
4862 						probe_ops->free(probe_ops, tr,
4863 								0, probe->data);
4864 					probe->data = NULL;
4865 					goto out;
4866 				}
4867 			}
4868 			count++;
4869 		}
4870 	}
4871 
4872 	mutex_lock(&ftrace_lock);
4873 
4874 	if (!count) {
4875 		/* Nothing was added? */
4876 		ret = -EINVAL;
4877 		goto out_unlock;
4878 	}
4879 
4880 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4881 					      hash, 1);
4882 	if (ret < 0)
4883 		goto err_unlock;
4884 
4885 	/* One ref for each new function traced */
4886 	probe->ref += count;
4887 
4888 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4889 		ret = ftrace_startup(&probe->ops, 0);
4890 
4891  out_unlock:
4892 	mutex_unlock(&ftrace_lock);
4893 
4894 	if (!ret)
4895 		ret = count;
4896  out:
4897 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4898 	free_ftrace_hash(hash);
4899 
4900 	release_probe(probe);
4901 
4902 	return ret;
4903 
4904  err_unlock:
4905 	if (!probe_ops->free || !count)
4906 		goto out_unlock;
4907 
4908 	/* Failed to do the move, need to call the free functions */
4909 	for (i = 0; i < size; i++) {
4910 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4911 			if (ftrace_lookup_ip(old_hash, entry->ip))
4912 				continue;
4913 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4914 		}
4915 	}
4916 	goto out_unlock;
4917 }
4918 
4919 int
4920 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4921 				      struct ftrace_probe_ops *probe_ops)
4922 {
4923 	struct ftrace_func_probe *probe = NULL, *iter;
4924 	struct ftrace_ops_hash old_hash_ops;
4925 	struct ftrace_func_entry *entry;
4926 	struct ftrace_glob func_g;
4927 	struct ftrace_hash **orig_hash;
4928 	struct ftrace_hash *old_hash;
4929 	struct ftrace_hash *hash = NULL;
4930 	struct hlist_node *tmp;
4931 	struct hlist_head hhd;
4932 	char str[KSYM_SYMBOL_LEN];
4933 	int count = 0;
4934 	int i, ret = -ENODEV;
4935 	int size;
4936 
4937 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4938 		func_g.search = NULL;
4939 	else {
4940 		int not;
4941 
4942 		func_g.type = filter_parse_regex(glob, strlen(glob),
4943 						 &func_g.search, &not);
4944 		func_g.len = strlen(func_g.search);
4945 
4946 		/* we do not support '!' for function probes */
4947 		if (WARN_ON(not))
4948 			return -EINVAL;
4949 	}
4950 
4951 	mutex_lock(&ftrace_lock);
4952 	/* Check if the probe_ops is already registered */
4953 	list_for_each_entry(iter, &tr->func_probes, list) {
4954 		if (iter->probe_ops == probe_ops) {
4955 			probe = iter;
4956 			break;
4957 		}
4958 	}
4959 	if (!probe)
4960 		goto err_unlock_ftrace;
4961 
4962 	ret = -EINVAL;
4963 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4964 		goto err_unlock_ftrace;
4965 
4966 	acquire_probe_locked(probe);
4967 
4968 	mutex_unlock(&ftrace_lock);
4969 
4970 	mutex_lock(&probe->ops.func_hash->regex_lock);
4971 
4972 	orig_hash = &probe->ops.func_hash->filter_hash;
4973 	old_hash = *orig_hash;
4974 
4975 	if (ftrace_hash_empty(old_hash))
4976 		goto out_unlock;
4977 
4978 	old_hash_ops.filter_hash = old_hash;
4979 	/* Probes only have filters */
4980 	old_hash_ops.notrace_hash = NULL;
4981 
4982 	ret = -ENOMEM;
4983 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4984 	if (!hash)
4985 		goto out_unlock;
4986 
4987 	INIT_HLIST_HEAD(&hhd);
4988 
4989 	size = 1 << hash->size_bits;
4990 	for (i = 0; i < size; i++) {
4991 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4992 
4993 			if (func_g.search) {
4994 				kallsyms_lookup(entry->ip, NULL, NULL,
4995 						NULL, str);
4996 				if (!ftrace_match(str, &func_g))
4997 					continue;
4998 			}
4999 			count++;
5000 			remove_hash_entry(hash, entry);
5001 			hlist_add_head(&entry->hlist, &hhd);
5002 		}
5003 	}
5004 
5005 	/* Nothing found? */
5006 	if (!count) {
5007 		ret = -EINVAL;
5008 		goto out_unlock;
5009 	}
5010 
5011 	mutex_lock(&ftrace_lock);
5012 
5013 	WARN_ON(probe->ref < count);
5014 
5015 	probe->ref -= count;
5016 
5017 	if (ftrace_hash_empty(hash))
5018 		ftrace_shutdown(&probe->ops, 0);
5019 
5020 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5021 					      hash, 1);
5022 
5023 	/* still need to update the function call sites */
5024 	if (ftrace_enabled && !ftrace_hash_empty(hash))
5025 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
5026 				       &old_hash_ops);
5027 	synchronize_rcu();
5028 
5029 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
5030 		hlist_del(&entry->hlist);
5031 		if (probe_ops->free)
5032 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5033 		kfree(entry);
5034 	}
5035 	mutex_unlock(&ftrace_lock);
5036 
5037  out_unlock:
5038 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5039 	free_ftrace_hash(hash);
5040 
5041 	release_probe(probe);
5042 
5043 	return ret;
5044 
5045  err_unlock_ftrace:
5046 	mutex_unlock(&ftrace_lock);
5047 	return ret;
5048 }
5049 
5050 void clear_ftrace_function_probes(struct trace_array *tr)
5051 {
5052 	struct ftrace_func_probe *probe, *n;
5053 
5054 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
5055 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
5056 }
5057 
5058 static LIST_HEAD(ftrace_commands);
5059 static DEFINE_MUTEX(ftrace_cmd_mutex);
5060 
5061 /*
5062  * Currently we only register ftrace commands from __init, so mark this
5063  * __init too.
5064  */
5065 __init int register_ftrace_command(struct ftrace_func_command *cmd)
5066 {
5067 	struct ftrace_func_command *p;
5068 	int ret = 0;
5069 
5070 	mutex_lock(&ftrace_cmd_mutex);
5071 	list_for_each_entry(p, &ftrace_commands, list) {
5072 		if (strcmp(cmd->name, p->name) == 0) {
5073 			ret = -EBUSY;
5074 			goto out_unlock;
5075 		}
5076 	}
5077 	list_add(&cmd->list, &ftrace_commands);
5078  out_unlock:
5079 	mutex_unlock(&ftrace_cmd_mutex);
5080 
5081 	return ret;
5082 }
5083 
5084 /*
5085  * Currently we only unregister ftrace commands from __init, so mark
5086  * this __init too.
5087  */
5088 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5089 {
5090 	struct ftrace_func_command *p, *n;
5091 	int ret = -ENODEV;
5092 
5093 	mutex_lock(&ftrace_cmd_mutex);
5094 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5095 		if (strcmp(cmd->name, p->name) == 0) {
5096 			ret = 0;
5097 			list_del_init(&p->list);
5098 			goto out_unlock;
5099 		}
5100 	}
5101  out_unlock:
5102 	mutex_unlock(&ftrace_cmd_mutex);
5103 
5104 	return ret;
5105 }
5106 
5107 static int ftrace_process_regex(struct ftrace_iterator *iter,
5108 				char *buff, int len, int enable)
5109 {
5110 	struct ftrace_hash *hash = iter->hash;
5111 	struct trace_array *tr = iter->ops->private;
5112 	char *func, *command, *next = buff;
5113 	struct ftrace_func_command *p;
5114 	int ret = -EINVAL;
5115 
5116 	func = strsep(&next, ":");
5117 
5118 	if (!next) {
5119 		ret = ftrace_match_records(hash, func, len);
5120 		if (!ret)
5121 			ret = -EINVAL;
5122 		if (ret < 0)
5123 			return ret;
5124 		return 0;
5125 	}
5126 
5127 	/* command found */
5128 
5129 	command = strsep(&next, ":");
5130 
5131 	mutex_lock(&ftrace_cmd_mutex);
5132 	list_for_each_entry(p, &ftrace_commands, list) {
5133 		if (strcmp(p->name, command) == 0) {
5134 			ret = p->func(tr, hash, func, command, next, enable);
5135 			goto out_unlock;
5136 		}
5137 	}
5138  out_unlock:
5139 	mutex_unlock(&ftrace_cmd_mutex);
5140 
5141 	return ret;
5142 }
5143 
5144 static ssize_t
5145 ftrace_regex_write(struct file *file, const char __user *ubuf,
5146 		   size_t cnt, loff_t *ppos, int enable)
5147 {
5148 	struct ftrace_iterator *iter;
5149 	struct trace_parser *parser;
5150 	ssize_t ret, read;
5151 
5152 	if (!cnt)
5153 		return 0;
5154 
5155 	if (file->f_mode & FMODE_READ) {
5156 		struct seq_file *m = file->private_data;
5157 		iter = m->private;
5158 	} else
5159 		iter = file->private_data;
5160 
5161 	if (unlikely(ftrace_disabled))
5162 		return -ENODEV;
5163 
5164 	/* iter->hash is a local copy, so we don't need regex_lock */
5165 
5166 	parser = &iter->parser;
5167 	read = trace_get_user(parser, ubuf, cnt, ppos);
5168 
5169 	if (read >= 0 && trace_parser_loaded(parser) &&
5170 	    !trace_parser_cont(parser)) {
5171 		ret = ftrace_process_regex(iter, parser->buffer,
5172 					   parser->idx, enable);
5173 		trace_parser_clear(parser);
5174 		if (ret < 0)
5175 			goto out;
5176 	}
5177 
5178 	ret = read;
5179  out:
5180 	return ret;
5181 }
5182 
5183 ssize_t
5184 ftrace_filter_write(struct file *file, const char __user *ubuf,
5185 		    size_t cnt, loff_t *ppos)
5186 {
5187 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5188 }
5189 
5190 ssize_t
5191 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5192 		     size_t cnt, loff_t *ppos)
5193 {
5194 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5195 }
5196 
5197 static int
5198 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5199 {
5200 	struct ftrace_func_entry *entry;
5201 
5202 	ip = ftrace_location(ip);
5203 	if (!ip)
5204 		return -EINVAL;
5205 
5206 	if (remove) {
5207 		entry = ftrace_lookup_ip(hash, ip);
5208 		if (!entry)
5209 			return -ENOENT;
5210 		free_hash_entry(hash, entry);
5211 		return 0;
5212 	}
5213 
5214 	return add_hash_entry(hash, ip);
5215 }
5216 
5217 static int
5218 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5219 		  unsigned int cnt, int remove)
5220 {
5221 	unsigned int i;
5222 	int err;
5223 
5224 	for (i = 0; i < cnt; i++) {
5225 		err = __ftrace_match_addr(hash, ips[i], remove);
5226 		if (err) {
5227 			/*
5228 			 * This expects the @hash is a temporary hash and if this
5229 			 * fails the caller must free the @hash.
5230 			 */
5231 			return err;
5232 		}
5233 	}
5234 	return 0;
5235 }
5236 
5237 static int
5238 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5239 		unsigned long *ips, unsigned int cnt,
5240 		int remove, int reset, int enable)
5241 {
5242 	struct ftrace_hash **orig_hash;
5243 	struct ftrace_hash *hash;
5244 	int ret;
5245 
5246 	if (unlikely(ftrace_disabled))
5247 		return -ENODEV;
5248 
5249 	mutex_lock(&ops->func_hash->regex_lock);
5250 
5251 	if (enable)
5252 		orig_hash = &ops->func_hash->filter_hash;
5253 	else
5254 		orig_hash = &ops->func_hash->notrace_hash;
5255 
5256 	if (reset)
5257 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5258 	else
5259 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5260 
5261 	if (!hash) {
5262 		ret = -ENOMEM;
5263 		goto out_regex_unlock;
5264 	}
5265 
5266 	if (buf && !ftrace_match_records(hash, buf, len)) {
5267 		ret = -EINVAL;
5268 		goto out_regex_unlock;
5269 	}
5270 	if (ips) {
5271 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5272 		if (ret < 0)
5273 			goto out_regex_unlock;
5274 	}
5275 
5276 	mutex_lock(&ftrace_lock);
5277 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5278 	mutex_unlock(&ftrace_lock);
5279 
5280  out_regex_unlock:
5281 	mutex_unlock(&ops->func_hash->regex_lock);
5282 
5283 	free_ftrace_hash(hash);
5284 	return ret;
5285 }
5286 
5287 static int
5288 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5289 		int remove, int reset, int enable)
5290 {
5291 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5292 }
5293 
5294 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5295 
5296 struct ftrace_direct_func {
5297 	struct list_head	next;
5298 	unsigned long		addr;
5299 	int			count;
5300 };
5301 
5302 static LIST_HEAD(ftrace_direct_funcs);
5303 
5304 /**
5305  * ftrace_find_direct_func - test an address if it is a registered direct caller
5306  * @addr: The address of a registered direct caller
5307  *
5308  * This searches to see if a ftrace direct caller has been registered
5309  * at a specific address, and if so, it returns a descriptor for it.
5310  *
5311  * This can be used by architecture code to see if an address is
5312  * a direct caller (trampoline) attached to a fentry/mcount location.
5313  * This is useful for the function_graph tracer, as it may need to
5314  * do adjustments if it traced a location that also has a direct
5315  * trampoline attached to it.
5316  */
5317 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5318 {
5319 	struct ftrace_direct_func *entry;
5320 	bool found = false;
5321 
5322 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5323 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5324 		if (entry->addr == addr) {
5325 			found = true;
5326 			break;
5327 		}
5328 	}
5329 	if (found)
5330 		return entry;
5331 
5332 	return NULL;
5333 }
5334 
5335 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5336 {
5337 	struct ftrace_direct_func *direct;
5338 
5339 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5340 	if (!direct)
5341 		return NULL;
5342 	direct->addr = addr;
5343 	direct->count = 0;
5344 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5345 	ftrace_direct_func_count++;
5346 	return direct;
5347 }
5348 
5349 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5350 
5351 /**
5352  * register_ftrace_direct - Call a custom trampoline directly
5353  * @ip: The address of the nop at the beginning of a function
5354  * @addr: The address of the trampoline to call at @ip
5355  *
5356  * This is used to connect a direct call from the nop location (@ip)
5357  * at the start of ftrace traced functions. The location that it calls
5358  * (@addr) must be able to handle a direct call, and save the parameters
5359  * of the function being traced, and restore them (or inject new ones
5360  * if needed), before returning.
5361  *
5362  * Returns:
5363  *  0 on success
5364  *  -EBUSY - Another direct function is already attached (there can be only one)
5365  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5366  *  -ENOMEM - There was an allocation failure.
5367  */
5368 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5369 {
5370 	struct ftrace_direct_func *direct;
5371 	struct ftrace_func_entry *entry;
5372 	struct ftrace_hash *free_hash = NULL;
5373 	struct dyn_ftrace *rec;
5374 	int ret = -ENODEV;
5375 
5376 	mutex_lock(&direct_mutex);
5377 
5378 	ip = ftrace_location(ip);
5379 	if (!ip)
5380 		goto out_unlock;
5381 
5382 	/* See if there's a direct function at @ip already */
5383 	ret = -EBUSY;
5384 	if (ftrace_find_rec_direct(ip))
5385 		goto out_unlock;
5386 
5387 	ret = -ENODEV;
5388 	rec = lookup_rec(ip, ip);
5389 	if (!rec)
5390 		goto out_unlock;
5391 
5392 	/*
5393 	 * Check if the rec says it has a direct call but we didn't
5394 	 * find one earlier?
5395 	 */
5396 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5397 		goto out_unlock;
5398 
5399 	/* Make sure the ip points to the exact record */
5400 	if (ip != rec->ip) {
5401 		ip = rec->ip;
5402 		/* Need to check this ip for a direct. */
5403 		if (ftrace_find_rec_direct(ip))
5404 			goto out_unlock;
5405 	}
5406 
5407 	ret = -ENOMEM;
5408 	direct = ftrace_find_direct_func(addr);
5409 	if (!direct) {
5410 		direct = ftrace_alloc_direct_func(addr);
5411 		if (!direct)
5412 			goto out_unlock;
5413 	}
5414 
5415 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5416 	if (!entry)
5417 		goto out_unlock;
5418 
5419 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5420 
5421 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5422 		ret = register_ftrace_function_nolock(&direct_ops);
5423 		if (ret)
5424 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5425 	}
5426 
5427 	if (ret) {
5428 		remove_hash_entry(direct_functions, entry);
5429 		kfree(entry);
5430 		if (!direct->count) {
5431 			list_del_rcu(&direct->next);
5432 			synchronize_rcu_tasks();
5433 			kfree(direct);
5434 			if (free_hash)
5435 				free_ftrace_hash(free_hash);
5436 			free_hash = NULL;
5437 			ftrace_direct_func_count--;
5438 		}
5439 	} else {
5440 		direct->count++;
5441 	}
5442  out_unlock:
5443 	mutex_unlock(&direct_mutex);
5444 
5445 	if (free_hash) {
5446 		synchronize_rcu_tasks();
5447 		free_ftrace_hash(free_hash);
5448 	}
5449 
5450 	return ret;
5451 }
5452 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5453 
5454 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5455 						   struct dyn_ftrace **recp)
5456 {
5457 	struct ftrace_func_entry *entry;
5458 	struct dyn_ftrace *rec;
5459 
5460 	rec = lookup_rec(*ip, *ip);
5461 	if (!rec)
5462 		return NULL;
5463 
5464 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5465 	if (!entry) {
5466 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5467 		return NULL;
5468 	}
5469 
5470 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5471 
5472 	/* Passed in ip just needs to be on the call site */
5473 	*ip = rec->ip;
5474 
5475 	if (recp)
5476 		*recp = rec;
5477 
5478 	return entry;
5479 }
5480 
5481 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5482 {
5483 	struct ftrace_direct_func *direct;
5484 	struct ftrace_func_entry *entry;
5485 	struct ftrace_hash *hash;
5486 	int ret = -ENODEV;
5487 
5488 	mutex_lock(&direct_mutex);
5489 
5490 	ip = ftrace_location(ip);
5491 	if (!ip)
5492 		goto out_unlock;
5493 
5494 	entry = find_direct_entry(&ip, NULL);
5495 	if (!entry)
5496 		goto out_unlock;
5497 
5498 	hash = direct_ops.func_hash->filter_hash;
5499 	if (hash->count == 1)
5500 		unregister_ftrace_function(&direct_ops);
5501 
5502 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5503 
5504 	WARN_ON(ret);
5505 
5506 	remove_hash_entry(direct_functions, entry);
5507 
5508 	direct = ftrace_find_direct_func(addr);
5509 	if (!WARN_ON(!direct)) {
5510 		/* This is the good path (see the ! before WARN) */
5511 		direct->count--;
5512 		WARN_ON(direct->count < 0);
5513 		if (!direct->count) {
5514 			list_del_rcu(&direct->next);
5515 			synchronize_rcu_tasks();
5516 			kfree(direct);
5517 			kfree(entry);
5518 			ftrace_direct_func_count--;
5519 		}
5520 	}
5521  out_unlock:
5522 	mutex_unlock(&direct_mutex);
5523 
5524 	return ret;
5525 }
5526 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5527 
5528 static struct ftrace_ops stub_ops = {
5529 	.func		= ftrace_stub,
5530 };
5531 
5532 /**
5533  * ftrace_modify_direct_caller - modify ftrace nop directly
5534  * @entry: The ftrace hash entry of the direct helper for @rec
5535  * @rec: The record representing the function site to patch
5536  * @old_addr: The location that the site at @rec->ip currently calls
5537  * @new_addr: The location that the site at @rec->ip should call
5538  *
5539  * An architecture may overwrite this function to optimize the
5540  * changing of the direct callback on an ftrace nop location.
5541  * This is called with the ftrace_lock mutex held, and no other
5542  * ftrace callbacks are on the associated record (@rec). Thus,
5543  * it is safe to modify the ftrace record, where it should be
5544  * currently calling @old_addr directly, to call @new_addr.
5545  *
5546  * This is called with direct_mutex locked.
5547  *
5548  * Safety checks should be made to make sure that the code at
5549  * @rec->ip is currently calling @old_addr. And this must
5550  * also update entry->direct to @new_addr.
5551  */
5552 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5553 				       struct dyn_ftrace *rec,
5554 				       unsigned long old_addr,
5555 				       unsigned long new_addr)
5556 {
5557 	unsigned long ip = rec->ip;
5558 	int ret;
5559 
5560 	lockdep_assert_held(&direct_mutex);
5561 
5562 	/*
5563 	 * The ftrace_lock was used to determine if the record
5564 	 * had more than one registered user to it. If it did,
5565 	 * we needed to prevent that from changing to do the quick
5566 	 * switch. But if it did not (only a direct caller was attached)
5567 	 * then this function is called. But this function can deal
5568 	 * with attached callers to the rec that we care about, and
5569 	 * since this function uses standard ftrace calls that take
5570 	 * the ftrace_lock mutex, we need to release it.
5571 	 */
5572 	mutex_unlock(&ftrace_lock);
5573 
5574 	/*
5575 	 * By setting a stub function at the same address, we force
5576 	 * the code to call the iterator and the direct_ops helper.
5577 	 * This means that @ip does not call the direct call, and
5578 	 * we can simply modify it.
5579 	 */
5580 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5581 	if (ret)
5582 		goto out_lock;
5583 
5584 	ret = register_ftrace_function_nolock(&stub_ops);
5585 	if (ret) {
5586 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5587 		goto out_lock;
5588 	}
5589 
5590 	entry->direct = new_addr;
5591 
5592 	/*
5593 	 * By removing the stub, we put back the direct call, calling
5594 	 * the @new_addr.
5595 	 */
5596 	unregister_ftrace_function(&stub_ops);
5597 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5598 
5599  out_lock:
5600 	mutex_lock(&ftrace_lock);
5601 
5602 	return ret;
5603 }
5604 
5605 /**
5606  * modify_ftrace_direct - Modify an existing direct call to call something else
5607  * @ip: The instruction pointer to modify
5608  * @old_addr: The address that the current @ip calls directly
5609  * @new_addr: The address that the @ip should call
5610  *
5611  * This modifies a ftrace direct caller at an instruction pointer without
5612  * having to disable it first. The direct call will switch over to the
5613  * @new_addr without missing anything.
5614  *
5615  * Returns: zero on success. Non zero on error, which includes:
5616  *  -ENODEV : the @ip given has no direct caller attached
5617  *  -EINVAL : the @old_addr does not match the current direct caller
5618  */
5619 int modify_ftrace_direct(unsigned long ip,
5620 			 unsigned long old_addr, unsigned long new_addr)
5621 {
5622 	struct ftrace_direct_func *direct, *new_direct = NULL;
5623 	struct ftrace_func_entry *entry;
5624 	struct dyn_ftrace *rec;
5625 	int ret = -ENODEV;
5626 
5627 	mutex_lock(&direct_mutex);
5628 
5629 	mutex_lock(&ftrace_lock);
5630 
5631 	ip = ftrace_location(ip);
5632 	if (!ip)
5633 		goto out_unlock;
5634 
5635 	entry = find_direct_entry(&ip, &rec);
5636 	if (!entry)
5637 		goto out_unlock;
5638 
5639 	ret = -EINVAL;
5640 	if (entry->direct != old_addr)
5641 		goto out_unlock;
5642 
5643 	direct = ftrace_find_direct_func(old_addr);
5644 	if (WARN_ON(!direct))
5645 		goto out_unlock;
5646 	if (direct->count > 1) {
5647 		ret = -ENOMEM;
5648 		new_direct = ftrace_alloc_direct_func(new_addr);
5649 		if (!new_direct)
5650 			goto out_unlock;
5651 		direct->count--;
5652 		new_direct->count++;
5653 	} else {
5654 		direct->addr = new_addr;
5655 	}
5656 
5657 	/*
5658 	 * If there's no other ftrace callback on the rec->ip location,
5659 	 * then it can be changed directly by the architecture.
5660 	 * If there is another caller, then we just need to change the
5661 	 * direct caller helper to point to @new_addr.
5662 	 */
5663 	if (ftrace_rec_count(rec) == 1) {
5664 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5665 	} else {
5666 		entry->direct = new_addr;
5667 		ret = 0;
5668 	}
5669 
5670 	if (unlikely(ret && new_direct)) {
5671 		direct->count++;
5672 		list_del_rcu(&new_direct->next);
5673 		synchronize_rcu_tasks();
5674 		kfree(new_direct);
5675 		ftrace_direct_func_count--;
5676 	}
5677 
5678  out_unlock:
5679 	mutex_unlock(&ftrace_lock);
5680 	mutex_unlock(&direct_mutex);
5681 	return ret;
5682 }
5683 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5684 
5685 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5686 
5687 static int check_direct_multi(struct ftrace_ops *ops)
5688 {
5689 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5690 		return -EINVAL;
5691 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5692 		return -EINVAL;
5693 	return 0;
5694 }
5695 
5696 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5697 {
5698 	struct ftrace_func_entry *entry, *del;
5699 	int size, i;
5700 
5701 	size = 1 << hash->size_bits;
5702 	for (i = 0; i < size; i++) {
5703 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5704 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5705 			if (del && del->direct == addr) {
5706 				remove_hash_entry(direct_functions, del);
5707 				kfree(del);
5708 			}
5709 		}
5710 	}
5711 }
5712 
5713 /**
5714  * register_ftrace_direct_multi - Call a custom trampoline directly
5715  * for multiple functions registered in @ops
5716  * @ops: The address of the struct ftrace_ops object
5717  * @addr: The address of the trampoline to call at @ops functions
5718  *
5719  * This is used to connect a direct calls to @addr from the nop locations
5720  * of the functions registered in @ops (with by ftrace_set_filter_ip
5721  * function).
5722  *
5723  * The location that it calls (@addr) must be able to handle a direct call,
5724  * and save the parameters of the function being traced, and restore them
5725  * (or inject new ones if needed), before returning.
5726  *
5727  * Returns:
5728  *  0 on success
5729  *  -EINVAL  - The @ops object was already registered with this call or
5730  *             when there are no functions in @ops object.
5731  *  -EBUSY   - Another direct function is already attached (there can be only one)
5732  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5733  *  -ENOMEM  - There was an allocation failure.
5734  */
5735 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5736 {
5737 	struct ftrace_hash *hash, *free_hash = NULL;
5738 	struct ftrace_func_entry *entry, *new;
5739 	int err = -EBUSY, size, i;
5740 
5741 	if (ops->func || ops->trampoline)
5742 		return -EINVAL;
5743 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5744 		return -EINVAL;
5745 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5746 		return -EINVAL;
5747 
5748 	hash = ops->func_hash->filter_hash;
5749 	if (ftrace_hash_empty(hash))
5750 		return -EINVAL;
5751 
5752 	mutex_lock(&direct_mutex);
5753 
5754 	/* Make sure requested entries are not already registered.. */
5755 	size = 1 << hash->size_bits;
5756 	for (i = 0; i < size; i++) {
5757 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5758 			if (ftrace_find_rec_direct(entry->ip))
5759 				goto out_unlock;
5760 		}
5761 	}
5762 
5763 	/* ... and insert them to direct_functions hash. */
5764 	err = -ENOMEM;
5765 	for (i = 0; i < size; i++) {
5766 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5767 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5768 			if (!new)
5769 				goto out_remove;
5770 			entry->direct = addr;
5771 		}
5772 	}
5773 
5774 	ops->func = call_direct_funcs;
5775 	ops->flags = MULTI_FLAGS;
5776 	ops->trampoline = FTRACE_REGS_ADDR;
5777 
5778 	err = register_ftrace_function_nolock(ops);
5779 
5780  out_remove:
5781 	if (err)
5782 		remove_direct_functions_hash(hash, addr);
5783 
5784  out_unlock:
5785 	mutex_unlock(&direct_mutex);
5786 
5787 	if (free_hash) {
5788 		synchronize_rcu_tasks();
5789 		free_ftrace_hash(free_hash);
5790 	}
5791 	return err;
5792 }
5793 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5794 
5795 /**
5796  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5797  * previously registered by register_ftrace_direct_multi for @ops object.
5798  * @ops: The address of the struct ftrace_ops object
5799  *
5800  * This is used to remove a direct calls to @addr from the nop locations
5801  * of the functions registered in @ops (with by ftrace_set_filter_ip
5802  * function).
5803  *
5804  * Returns:
5805  *  0 on success
5806  *  -EINVAL - The @ops object was not properly registered.
5807  */
5808 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5809 {
5810 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5811 	int err;
5812 
5813 	if (check_direct_multi(ops))
5814 		return -EINVAL;
5815 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5816 		return -EINVAL;
5817 
5818 	mutex_lock(&direct_mutex);
5819 	err = unregister_ftrace_function(ops);
5820 	remove_direct_functions_hash(hash, addr);
5821 	mutex_unlock(&direct_mutex);
5822 
5823 	/* cleanup for possible another register call */
5824 	ops->func = NULL;
5825 	ops->trampoline = 0;
5826 	return err;
5827 }
5828 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5829 
5830 static int
5831 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5832 {
5833 	struct ftrace_hash *hash;
5834 	struct ftrace_func_entry *entry, *iter;
5835 	static struct ftrace_ops tmp_ops = {
5836 		.func		= ftrace_stub,
5837 		.flags		= FTRACE_OPS_FL_STUB,
5838 	};
5839 	int i, size;
5840 	int err;
5841 
5842 	lockdep_assert_held_once(&direct_mutex);
5843 
5844 	/* Enable the tmp_ops to have the same functions as the direct ops */
5845 	ftrace_ops_init(&tmp_ops);
5846 	tmp_ops.func_hash = ops->func_hash;
5847 
5848 	err = register_ftrace_function_nolock(&tmp_ops);
5849 	if (err)
5850 		return err;
5851 
5852 	/*
5853 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5854 	 * We can safely change the direct functions attached to each entry.
5855 	 */
5856 	mutex_lock(&ftrace_lock);
5857 
5858 	hash = ops->func_hash->filter_hash;
5859 	size = 1 << hash->size_bits;
5860 	for (i = 0; i < size; i++) {
5861 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5862 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5863 			if (!entry)
5864 				continue;
5865 			entry->direct = addr;
5866 		}
5867 	}
5868 
5869 	mutex_unlock(&ftrace_lock);
5870 
5871 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5872 	unregister_ftrace_function(&tmp_ops);
5873 
5874 	return err;
5875 }
5876 
5877 /**
5878  * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call
5879  * to call something else
5880  * @ops: The address of the struct ftrace_ops object
5881  * @addr: The address of the new trampoline to call at @ops functions
5882  *
5883  * This is used to unregister currently registered direct caller and
5884  * register new one @addr on functions registered in @ops object.
5885  *
5886  * Note there's window between ftrace_shutdown and ftrace_startup calls
5887  * where there will be no callbacks called.
5888  *
5889  * Caller should already have direct_mutex locked, so we don't lock
5890  * direct_mutex here.
5891  *
5892  * Returns: zero on success. Non zero on error, which includes:
5893  *  -EINVAL - The @ops object was not properly registered.
5894  */
5895 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr)
5896 {
5897 	if (check_direct_multi(ops))
5898 		return -EINVAL;
5899 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5900 		return -EINVAL;
5901 
5902 	return __modify_ftrace_direct_multi(ops, addr);
5903 }
5904 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock);
5905 
5906 /**
5907  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5908  * to call something else
5909  * @ops: The address of the struct ftrace_ops object
5910  * @addr: The address of the new trampoline to call at @ops functions
5911  *
5912  * This is used to unregister currently registered direct caller and
5913  * register new one @addr on functions registered in @ops object.
5914  *
5915  * Note there's window between ftrace_shutdown and ftrace_startup calls
5916  * where there will be no callbacks called.
5917  *
5918  * Returns: zero on success. Non zero on error, which includes:
5919  *  -EINVAL - The @ops object was not properly registered.
5920  */
5921 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5922 {
5923 	int err;
5924 
5925 	if (check_direct_multi(ops))
5926 		return -EINVAL;
5927 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5928 		return -EINVAL;
5929 
5930 	mutex_lock(&direct_mutex);
5931 	err = __modify_ftrace_direct_multi(ops, addr);
5932 	mutex_unlock(&direct_mutex);
5933 	return err;
5934 }
5935 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5936 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5937 
5938 /**
5939  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5940  * @ops - the ops to set the filter with
5941  * @ip - the address to add to or remove from the filter.
5942  * @remove - non zero to remove the ip from the filter
5943  * @reset - non zero to reset all filters before applying this filter.
5944  *
5945  * Filters denote which functions should be enabled when tracing is enabled
5946  * If @ip is NULL, it fails to update filter.
5947  *
5948  * This can allocate memory which must be freed before @ops can be freed,
5949  * either by removing each filtered addr or by using
5950  * ftrace_free_filter(@ops).
5951  */
5952 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5953 			 int remove, int reset)
5954 {
5955 	ftrace_ops_init(ops);
5956 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5957 }
5958 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5959 
5960 /**
5961  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5962  * @ops - the ops to set the filter with
5963  * @ips - the array of addresses to add to or remove from the filter.
5964  * @cnt - the number of addresses in @ips
5965  * @remove - non zero to remove ips from the filter
5966  * @reset - non zero to reset all filters before applying this filter.
5967  *
5968  * Filters denote which functions should be enabled when tracing is enabled
5969  * If @ips array or any ip specified within is NULL , it fails to update filter.
5970  *
5971  * This can allocate memory which must be freed before @ops can be freed,
5972  * either by removing each filtered addr or by using
5973  * ftrace_free_filter(@ops).
5974 */
5975 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5976 			  unsigned int cnt, int remove, int reset)
5977 {
5978 	ftrace_ops_init(ops);
5979 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5980 }
5981 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5982 
5983 /**
5984  * ftrace_ops_set_global_filter - setup ops to use global filters
5985  * @ops - the ops which will use the global filters
5986  *
5987  * ftrace users who need global function trace filtering should call this.
5988  * It can set the global filter only if ops were not initialized before.
5989  */
5990 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5991 {
5992 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5993 		return;
5994 
5995 	ftrace_ops_init(ops);
5996 	ops->func_hash = &global_ops.local_hash;
5997 }
5998 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5999 
6000 static int
6001 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
6002 		 int reset, int enable)
6003 {
6004 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
6005 }
6006 
6007 /**
6008  * ftrace_set_filter - set a function to filter on in ftrace
6009  * @ops - the ops to set the filter with
6010  * @buf - the string that holds the function filter text.
6011  * @len - the length of the string.
6012  * @reset - non zero to reset all filters before applying this filter.
6013  *
6014  * Filters denote which functions should be enabled when tracing is enabled.
6015  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6016  *
6017  * This can allocate memory which must be freed before @ops can be freed,
6018  * either by removing each filtered addr or by using
6019  * ftrace_free_filter(@ops).
6020  */
6021 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
6022 		       int len, int reset)
6023 {
6024 	ftrace_ops_init(ops);
6025 	return ftrace_set_regex(ops, buf, len, reset, 1);
6026 }
6027 EXPORT_SYMBOL_GPL(ftrace_set_filter);
6028 
6029 /**
6030  * ftrace_set_notrace - set a function to not trace in ftrace
6031  * @ops - the ops to set the notrace filter with
6032  * @buf - the string that holds the function notrace text.
6033  * @len - the length of the string.
6034  * @reset - non zero to reset all filters before applying this filter.
6035  *
6036  * Notrace Filters denote which functions should not be enabled when tracing
6037  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6038  * for tracing.
6039  *
6040  * This can allocate memory which must be freed before @ops can be freed,
6041  * either by removing each filtered addr or by using
6042  * ftrace_free_filter(@ops).
6043  */
6044 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
6045 			int len, int reset)
6046 {
6047 	ftrace_ops_init(ops);
6048 	return ftrace_set_regex(ops, buf, len, reset, 0);
6049 }
6050 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
6051 /**
6052  * ftrace_set_global_filter - set a function to filter on with global tracers
6053  * @buf - the string that holds the function filter text.
6054  * @len - the length of the string.
6055  * @reset - non zero to reset all filters before applying this filter.
6056  *
6057  * Filters denote which functions should be enabled when tracing is enabled.
6058  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6059  */
6060 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
6061 {
6062 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
6063 }
6064 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
6065 
6066 /**
6067  * ftrace_set_global_notrace - set a function to not trace with global tracers
6068  * @buf - the string that holds the function notrace text.
6069  * @len - the length of the string.
6070  * @reset - non zero to reset all filters before applying this filter.
6071  *
6072  * Notrace Filters denote which functions should not be enabled when tracing
6073  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6074  * for tracing.
6075  */
6076 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
6077 {
6078 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
6079 }
6080 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
6081 
6082 /*
6083  * command line interface to allow users to set filters on boot up.
6084  */
6085 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
6086 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6087 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
6088 
6089 /* Used by function selftest to not test if filter is set */
6090 bool ftrace_filter_param __initdata;
6091 
6092 static int __init set_ftrace_notrace(char *str)
6093 {
6094 	ftrace_filter_param = true;
6095 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6096 	return 1;
6097 }
6098 __setup("ftrace_notrace=", set_ftrace_notrace);
6099 
6100 static int __init set_ftrace_filter(char *str)
6101 {
6102 	ftrace_filter_param = true;
6103 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6104 	return 1;
6105 }
6106 __setup("ftrace_filter=", set_ftrace_filter);
6107 
6108 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6109 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6110 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6111 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6112 
6113 static int __init set_graph_function(char *str)
6114 {
6115 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6116 	return 1;
6117 }
6118 __setup("ftrace_graph_filter=", set_graph_function);
6119 
6120 static int __init set_graph_notrace_function(char *str)
6121 {
6122 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6123 	return 1;
6124 }
6125 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6126 
6127 static int __init set_graph_max_depth_function(char *str)
6128 {
6129 	if (!str)
6130 		return 0;
6131 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
6132 	return 1;
6133 }
6134 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6135 
6136 static void __init set_ftrace_early_graph(char *buf, int enable)
6137 {
6138 	int ret;
6139 	char *func;
6140 	struct ftrace_hash *hash;
6141 
6142 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6143 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6144 		return;
6145 
6146 	while (buf) {
6147 		func = strsep(&buf, ",");
6148 		/* we allow only one expression at a time */
6149 		ret = ftrace_graph_set_hash(hash, func);
6150 		if (ret)
6151 			printk(KERN_DEBUG "ftrace: function %s not "
6152 					  "traceable\n", func);
6153 	}
6154 
6155 	if (enable)
6156 		ftrace_graph_hash = hash;
6157 	else
6158 		ftrace_graph_notrace_hash = hash;
6159 }
6160 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6161 
6162 void __init
6163 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6164 {
6165 	char *func;
6166 
6167 	ftrace_ops_init(ops);
6168 
6169 	while (buf) {
6170 		func = strsep(&buf, ",");
6171 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6172 	}
6173 }
6174 
6175 static void __init set_ftrace_early_filters(void)
6176 {
6177 	if (ftrace_filter_buf[0])
6178 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6179 	if (ftrace_notrace_buf[0])
6180 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6181 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6182 	if (ftrace_graph_buf[0])
6183 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6184 	if (ftrace_graph_notrace_buf[0])
6185 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6186 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6187 }
6188 
6189 int ftrace_regex_release(struct inode *inode, struct file *file)
6190 {
6191 	struct seq_file *m = (struct seq_file *)file->private_data;
6192 	struct ftrace_iterator *iter;
6193 	struct ftrace_hash **orig_hash;
6194 	struct trace_parser *parser;
6195 	int filter_hash;
6196 
6197 	if (file->f_mode & FMODE_READ) {
6198 		iter = m->private;
6199 		seq_release(inode, file);
6200 	} else
6201 		iter = file->private_data;
6202 
6203 	parser = &iter->parser;
6204 	if (trace_parser_loaded(parser)) {
6205 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6206 
6207 		ftrace_process_regex(iter, parser->buffer,
6208 				     parser->idx, enable);
6209 	}
6210 
6211 	trace_parser_put(parser);
6212 
6213 	mutex_lock(&iter->ops->func_hash->regex_lock);
6214 
6215 	if (file->f_mode & FMODE_WRITE) {
6216 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6217 
6218 		if (filter_hash) {
6219 			orig_hash = &iter->ops->func_hash->filter_hash;
6220 			if (iter->tr) {
6221 				if (list_empty(&iter->tr->mod_trace))
6222 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6223 				else
6224 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6225 			}
6226 		} else
6227 			orig_hash = &iter->ops->func_hash->notrace_hash;
6228 
6229 		mutex_lock(&ftrace_lock);
6230 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6231 						      iter->hash, filter_hash);
6232 		mutex_unlock(&ftrace_lock);
6233 	} else {
6234 		/* For read only, the hash is the ops hash */
6235 		iter->hash = NULL;
6236 	}
6237 
6238 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6239 	free_ftrace_hash(iter->hash);
6240 	if (iter->tr)
6241 		trace_array_put(iter->tr);
6242 	kfree(iter);
6243 
6244 	return 0;
6245 }
6246 
6247 static const struct file_operations ftrace_avail_fops = {
6248 	.open = ftrace_avail_open,
6249 	.read = seq_read,
6250 	.llseek = seq_lseek,
6251 	.release = seq_release_private,
6252 };
6253 
6254 static const struct file_operations ftrace_enabled_fops = {
6255 	.open = ftrace_enabled_open,
6256 	.read = seq_read,
6257 	.llseek = seq_lseek,
6258 	.release = seq_release_private,
6259 };
6260 
6261 static const struct file_operations ftrace_filter_fops = {
6262 	.open = ftrace_filter_open,
6263 	.read = seq_read,
6264 	.write = ftrace_filter_write,
6265 	.llseek = tracing_lseek,
6266 	.release = ftrace_regex_release,
6267 };
6268 
6269 static const struct file_operations ftrace_notrace_fops = {
6270 	.open = ftrace_notrace_open,
6271 	.read = seq_read,
6272 	.write = ftrace_notrace_write,
6273 	.llseek = tracing_lseek,
6274 	.release = ftrace_regex_release,
6275 };
6276 
6277 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6278 
6279 static DEFINE_MUTEX(graph_lock);
6280 
6281 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6282 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6283 
6284 enum graph_filter_type {
6285 	GRAPH_FILTER_NOTRACE	= 0,
6286 	GRAPH_FILTER_FUNCTION,
6287 };
6288 
6289 #define FTRACE_GRAPH_EMPTY	((void *)1)
6290 
6291 struct ftrace_graph_data {
6292 	struct ftrace_hash		*hash;
6293 	struct ftrace_func_entry	*entry;
6294 	int				idx;   /* for hash table iteration */
6295 	enum graph_filter_type		type;
6296 	struct ftrace_hash		*new_hash;
6297 	const struct seq_operations	*seq_ops;
6298 	struct trace_parser		parser;
6299 };
6300 
6301 static void *
6302 __g_next(struct seq_file *m, loff_t *pos)
6303 {
6304 	struct ftrace_graph_data *fgd = m->private;
6305 	struct ftrace_func_entry *entry = fgd->entry;
6306 	struct hlist_head *head;
6307 	int i, idx = fgd->idx;
6308 
6309 	if (*pos >= fgd->hash->count)
6310 		return NULL;
6311 
6312 	if (entry) {
6313 		hlist_for_each_entry_continue(entry, hlist) {
6314 			fgd->entry = entry;
6315 			return entry;
6316 		}
6317 
6318 		idx++;
6319 	}
6320 
6321 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6322 		head = &fgd->hash->buckets[i];
6323 		hlist_for_each_entry(entry, head, hlist) {
6324 			fgd->entry = entry;
6325 			fgd->idx = i;
6326 			return entry;
6327 		}
6328 	}
6329 	return NULL;
6330 }
6331 
6332 static void *
6333 g_next(struct seq_file *m, void *v, loff_t *pos)
6334 {
6335 	(*pos)++;
6336 	return __g_next(m, pos);
6337 }
6338 
6339 static void *g_start(struct seq_file *m, loff_t *pos)
6340 {
6341 	struct ftrace_graph_data *fgd = m->private;
6342 
6343 	mutex_lock(&graph_lock);
6344 
6345 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6346 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6347 					lockdep_is_held(&graph_lock));
6348 	else
6349 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6350 					lockdep_is_held(&graph_lock));
6351 
6352 	/* Nothing, tell g_show to print all functions are enabled */
6353 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6354 		return FTRACE_GRAPH_EMPTY;
6355 
6356 	fgd->idx = 0;
6357 	fgd->entry = NULL;
6358 	return __g_next(m, pos);
6359 }
6360 
6361 static void g_stop(struct seq_file *m, void *p)
6362 {
6363 	mutex_unlock(&graph_lock);
6364 }
6365 
6366 static int g_show(struct seq_file *m, void *v)
6367 {
6368 	struct ftrace_func_entry *entry = v;
6369 
6370 	if (!entry)
6371 		return 0;
6372 
6373 	if (entry == FTRACE_GRAPH_EMPTY) {
6374 		struct ftrace_graph_data *fgd = m->private;
6375 
6376 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6377 			seq_puts(m, "#### all functions enabled ####\n");
6378 		else
6379 			seq_puts(m, "#### no functions disabled ####\n");
6380 		return 0;
6381 	}
6382 
6383 	seq_printf(m, "%ps\n", (void *)entry->ip);
6384 
6385 	return 0;
6386 }
6387 
6388 static const struct seq_operations ftrace_graph_seq_ops = {
6389 	.start = g_start,
6390 	.next = g_next,
6391 	.stop = g_stop,
6392 	.show = g_show,
6393 };
6394 
6395 static int
6396 __ftrace_graph_open(struct inode *inode, struct file *file,
6397 		    struct ftrace_graph_data *fgd)
6398 {
6399 	int ret;
6400 	struct ftrace_hash *new_hash = NULL;
6401 
6402 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6403 	if (ret)
6404 		return ret;
6405 
6406 	if (file->f_mode & FMODE_WRITE) {
6407 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6408 
6409 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6410 			return -ENOMEM;
6411 
6412 		if (file->f_flags & O_TRUNC)
6413 			new_hash = alloc_ftrace_hash(size_bits);
6414 		else
6415 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6416 							      fgd->hash);
6417 		if (!new_hash) {
6418 			ret = -ENOMEM;
6419 			goto out;
6420 		}
6421 	}
6422 
6423 	if (file->f_mode & FMODE_READ) {
6424 		ret = seq_open(file, &ftrace_graph_seq_ops);
6425 		if (!ret) {
6426 			struct seq_file *m = file->private_data;
6427 			m->private = fgd;
6428 		} else {
6429 			/* Failed */
6430 			free_ftrace_hash(new_hash);
6431 			new_hash = NULL;
6432 		}
6433 	} else
6434 		file->private_data = fgd;
6435 
6436 out:
6437 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6438 		trace_parser_put(&fgd->parser);
6439 
6440 	fgd->new_hash = new_hash;
6441 
6442 	/*
6443 	 * All uses of fgd->hash must be taken with the graph_lock
6444 	 * held. The graph_lock is going to be released, so force
6445 	 * fgd->hash to be reinitialized when it is taken again.
6446 	 */
6447 	fgd->hash = NULL;
6448 
6449 	return ret;
6450 }
6451 
6452 static int
6453 ftrace_graph_open(struct inode *inode, struct file *file)
6454 {
6455 	struct ftrace_graph_data *fgd;
6456 	int ret;
6457 
6458 	if (unlikely(ftrace_disabled))
6459 		return -ENODEV;
6460 
6461 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6462 	if (fgd == NULL)
6463 		return -ENOMEM;
6464 
6465 	mutex_lock(&graph_lock);
6466 
6467 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6468 					lockdep_is_held(&graph_lock));
6469 	fgd->type = GRAPH_FILTER_FUNCTION;
6470 	fgd->seq_ops = &ftrace_graph_seq_ops;
6471 
6472 	ret = __ftrace_graph_open(inode, file, fgd);
6473 	if (ret < 0)
6474 		kfree(fgd);
6475 
6476 	mutex_unlock(&graph_lock);
6477 	return ret;
6478 }
6479 
6480 static int
6481 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6482 {
6483 	struct ftrace_graph_data *fgd;
6484 	int ret;
6485 
6486 	if (unlikely(ftrace_disabled))
6487 		return -ENODEV;
6488 
6489 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6490 	if (fgd == NULL)
6491 		return -ENOMEM;
6492 
6493 	mutex_lock(&graph_lock);
6494 
6495 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6496 					lockdep_is_held(&graph_lock));
6497 	fgd->type = GRAPH_FILTER_NOTRACE;
6498 	fgd->seq_ops = &ftrace_graph_seq_ops;
6499 
6500 	ret = __ftrace_graph_open(inode, file, fgd);
6501 	if (ret < 0)
6502 		kfree(fgd);
6503 
6504 	mutex_unlock(&graph_lock);
6505 	return ret;
6506 }
6507 
6508 static int
6509 ftrace_graph_release(struct inode *inode, struct file *file)
6510 {
6511 	struct ftrace_graph_data *fgd;
6512 	struct ftrace_hash *old_hash, *new_hash;
6513 	struct trace_parser *parser;
6514 	int ret = 0;
6515 
6516 	if (file->f_mode & FMODE_READ) {
6517 		struct seq_file *m = file->private_data;
6518 
6519 		fgd = m->private;
6520 		seq_release(inode, file);
6521 	} else {
6522 		fgd = file->private_data;
6523 	}
6524 
6525 
6526 	if (file->f_mode & FMODE_WRITE) {
6527 
6528 		parser = &fgd->parser;
6529 
6530 		if (trace_parser_loaded((parser))) {
6531 			ret = ftrace_graph_set_hash(fgd->new_hash,
6532 						    parser->buffer);
6533 		}
6534 
6535 		trace_parser_put(parser);
6536 
6537 		new_hash = __ftrace_hash_move(fgd->new_hash);
6538 		if (!new_hash) {
6539 			ret = -ENOMEM;
6540 			goto out;
6541 		}
6542 
6543 		mutex_lock(&graph_lock);
6544 
6545 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6546 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6547 					lockdep_is_held(&graph_lock));
6548 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6549 		} else {
6550 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6551 					lockdep_is_held(&graph_lock));
6552 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6553 		}
6554 
6555 		mutex_unlock(&graph_lock);
6556 
6557 		/*
6558 		 * We need to do a hard force of sched synchronization.
6559 		 * This is because we use preempt_disable() to do RCU, but
6560 		 * the function tracers can be called where RCU is not watching
6561 		 * (like before user_exit()). We can not rely on the RCU
6562 		 * infrastructure to do the synchronization, thus we must do it
6563 		 * ourselves.
6564 		 */
6565 		if (old_hash != EMPTY_HASH)
6566 			synchronize_rcu_tasks_rude();
6567 
6568 		free_ftrace_hash(old_hash);
6569 	}
6570 
6571  out:
6572 	free_ftrace_hash(fgd->new_hash);
6573 	kfree(fgd);
6574 
6575 	return ret;
6576 }
6577 
6578 static int
6579 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6580 {
6581 	struct ftrace_glob func_g;
6582 	struct dyn_ftrace *rec;
6583 	struct ftrace_page *pg;
6584 	struct ftrace_func_entry *entry;
6585 	int fail = 1;
6586 	int not;
6587 
6588 	/* decode regex */
6589 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6590 					 &func_g.search, &not);
6591 
6592 	func_g.len = strlen(func_g.search);
6593 
6594 	mutex_lock(&ftrace_lock);
6595 
6596 	if (unlikely(ftrace_disabled)) {
6597 		mutex_unlock(&ftrace_lock);
6598 		return -ENODEV;
6599 	}
6600 
6601 	do_for_each_ftrace_rec(pg, rec) {
6602 
6603 		if (rec->flags & FTRACE_FL_DISABLED)
6604 			continue;
6605 
6606 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6607 			entry = ftrace_lookup_ip(hash, rec->ip);
6608 
6609 			if (!not) {
6610 				fail = 0;
6611 
6612 				if (entry)
6613 					continue;
6614 				if (add_hash_entry(hash, rec->ip) < 0)
6615 					goto out;
6616 			} else {
6617 				if (entry) {
6618 					free_hash_entry(hash, entry);
6619 					fail = 0;
6620 				}
6621 			}
6622 		}
6623 	} while_for_each_ftrace_rec();
6624 out:
6625 	mutex_unlock(&ftrace_lock);
6626 
6627 	if (fail)
6628 		return -EINVAL;
6629 
6630 	return 0;
6631 }
6632 
6633 static ssize_t
6634 ftrace_graph_write(struct file *file, const char __user *ubuf,
6635 		   size_t cnt, loff_t *ppos)
6636 {
6637 	ssize_t read, ret = 0;
6638 	struct ftrace_graph_data *fgd = file->private_data;
6639 	struct trace_parser *parser;
6640 
6641 	if (!cnt)
6642 		return 0;
6643 
6644 	/* Read mode uses seq functions */
6645 	if (file->f_mode & FMODE_READ) {
6646 		struct seq_file *m = file->private_data;
6647 		fgd = m->private;
6648 	}
6649 
6650 	parser = &fgd->parser;
6651 
6652 	read = trace_get_user(parser, ubuf, cnt, ppos);
6653 
6654 	if (read >= 0 && trace_parser_loaded(parser) &&
6655 	    !trace_parser_cont(parser)) {
6656 
6657 		ret = ftrace_graph_set_hash(fgd->new_hash,
6658 					    parser->buffer);
6659 		trace_parser_clear(parser);
6660 	}
6661 
6662 	if (!ret)
6663 		ret = read;
6664 
6665 	return ret;
6666 }
6667 
6668 static const struct file_operations ftrace_graph_fops = {
6669 	.open		= ftrace_graph_open,
6670 	.read		= seq_read,
6671 	.write		= ftrace_graph_write,
6672 	.llseek		= tracing_lseek,
6673 	.release	= ftrace_graph_release,
6674 };
6675 
6676 static const struct file_operations ftrace_graph_notrace_fops = {
6677 	.open		= ftrace_graph_notrace_open,
6678 	.read		= seq_read,
6679 	.write		= ftrace_graph_write,
6680 	.llseek		= tracing_lseek,
6681 	.release	= ftrace_graph_release,
6682 };
6683 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6684 
6685 void ftrace_create_filter_files(struct ftrace_ops *ops,
6686 				struct dentry *parent)
6687 {
6688 
6689 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6690 			  ops, &ftrace_filter_fops);
6691 
6692 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6693 			  ops, &ftrace_notrace_fops);
6694 }
6695 
6696 /*
6697  * The name "destroy_filter_files" is really a misnomer. Although
6698  * in the future, it may actually delete the files, but this is
6699  * really intended to make sure the ops passed in are disabled
6700  * and that when this function returns, the caller is free to
6701  * free the ops.
6702  *
6703  * The "destroy" name is only to match the "create" name that this
6704  * should be paired with.
6705  */
6706 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6707 {
6708 	mutex_lock(&ftrace_lock);
6709 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6710 		ftrace_shutdown(ops, 0);
6711 	ops->flags |= FTRACE_OPS_FL_DELETED;
6712 	ftrace_free_filter(ops);
6713 	mutex_unlock(&ftrace_lock);
6714 }
6715 
6716 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6717 {
6718 
6719 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6720 			d_tracer, NULL, &ftrace_avail_fops);
6721 
6722 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6723 			d_tracer, NULL, &ftrace_enabled_fops);
6724 
6725 	ftrace_create_filter_files(&global_ops, d_tracer);
6726 
6727 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6728 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6729 				    NULL,
6730 				    &ftrace_graph_fops);
6731 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6732 				    NULL,
6733 				    &ftrace_graph_notrace_fops);
6734 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6735 
6736 	return 0;
6737 }
6738 
6739 static int ftrace_cmp_ips(const void *a, const void *b)
6740 {
6741 	const unsigned long *ipa = a;
6742 	const unsigned long *ipb = b;
6743 
6744 	if (*ipa > *ipb)
6745 		return 1;
6746 	if (*ipa < *ipb)
6747 		return -1;
6748 	return 0;
6749 }
6750 
6751 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6752 static void test_is_sorted(unsigned long *start, unsigned long count)
6753 {
6754 	int i;
6755 
6756 	for (i = 1; i < count; i++) {
6757 		if (WARN(start[i - 1] > start[i],
6758 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6759 			 (void *)start[i - 1], start[i - 1],
6760 			 (void *)start[i], start[i]))
6761 			break;
6762 	}
6763 	if (i == count)
6764 		pr_info("ftrace section at %px sorted properly\n", start);
6765 }
6766 #else
6767 static void test_is_sorted(unsigned long *start, unsigned long count)
6768 {
6769 }
6770 #endif
6771 
6772 static int ftrace_process_locs(struct module *mod,
6773 			       unsigned long *start,
6774 			       unsigned long *end)
6775 {
6776 	struct ftrace_page *start_pg;
6777 	struct ftrace_page *pg;
6778 	struct dyn_ftrace *rec;
6779 	unsigned long count;
6780 	unsigned long *p;
6781 	unsigned long addr;
6782 	unsigned long flags = 0; /* Shut up gcc */
6783 	int ret = -ENOMEM;
6784 
6785 	count = end - start;
6786 
6787 	if (!count)
6788 		return 0;
6789 
6790 	/*
6791 	 * Sorting mcount in vmlinux at build time depend on
6792 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6793 	 * modules can not be sorted at build time.
6794 	 */
6795 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6796 		sort(start, count, sizeof(*start),
6797 		     ftrace_cmp_ips, NULL);
6798 	} else {
6799 		test_is_sorted(start, count);
6800 	}
6801 
6802 	start_pg = ftrace_allocate_pages(count);
6803 	if (!start_pg)
6804 		return -ENOMEM;
6805 
6806 	mutex_lock(&ftrace_lock);
6807 
6808 	/*
6809 	 * Core and each module needs their own pages, as
6810 	 * modules will free them when they are removed.
6811 	 * Force a new page to be allocated for modules.
6812 	 */
6813 	if (!mod) {
6814 		WARN_ON(ftrace_pages || ftrace_pages_start);
6815 		/* First initialization */
6816 		ftrace_pages = ftrace_pages_start = start_pg;
6817 	} else {
6818 		if (!ftrace_pages)
6819 			goto out;
6820 
6821 		if (WARN_ON(ftrace_pages->next)) {
6822 			/* Hmm, we have free pages? */
6823 			while (ftrace_pages->next)
6824 				ftrace_pages = ftrace_pages->next;
6825 		}
6826 
6827 		ftrace_pages->next = start_pg;
6828 	}
6829 
6830 	p = start;
6831 	pg = start_pg;
6832 	while (p < end) {
6833 		unsigned long end_offset;
6834 		addr = ftrace_call_adjust(*p++);
6835 		/*
6836 		 * Some architecture linkers will pad between
6837 		 * the different mcount_loc sections of different
6838 		 * object files to satisfy alignments.
6839 		 * Skip any NULL pointers.
6840 		 */
6841 		if (!addr)
6842 			continue;
6843 
6844 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6845 		if (end_offset > PAGE_SIZE << pg->order) {
6846 			/* We should have allocated enough */
6847 			if (WARN_ON(!pg->next))
6848 				break;
6849 			pg = pg->next;
6850 		}
6851 
6852 		rec = &pg->records[pg->index++];
6853 		rec->ip = addr;
6854 	}
6855 
6856 	/* We should have used all pages */
6857 	WARN_ON(pg->next);
6858 
6859 	/* Assign the last page to ftrace_pages */
6860 	ftrace_pages = pg;
6861 
6862 	/*
6863 	 * We only need to disable interrupts on start up
6864 	 * because we are modifying code that an interrupt
6865 	 * may execute, and the modification is not atomic.
6866 	 * But for modules, nothing runs the code we modify
6867 	 * until we are finished with it, and there's no
6868 	 * reason to cause large interrupt latencies while we do it.
6869 	 */
6870 	if (!mod)
6871 		local_irq_save(flags);
6872 	ftrace_update_code(mod, start_pg);
6873 	if (!mod)
6874 		local_irq_restore(flags);
6875 	ret = 0;
6876  out:
6877 	mutex_unlock(&ftrace_lock);
6878 
6879 	return ret;
6880 }
6881 
6882 struct ftrace_mod_func {
6883 	struct list_head	list;
6884 	char			*name;
6885 	unsigned long		ip;
6886 	unsigned int		size;
6887 };
6888 
6889 struct ftrace_mod_map {
6890 	struct rcu_head		rcu;
6891 	struct list_head	list;
6892 	struct module		*mod;
6893 	unsigned long		start_addr;
6894 	unsigned long		end_addr;
6895 	struct list_head	funcs;
6896 	unsigned int		num_funcs;
6897 };
6898 
6899 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6900 					 unsigned long *value, char *type,
6901 					 char *name, char *module_name,
6902 					 int *exported)
6903 {
6904 	struct ftrace_ops *op;
6905 
6906 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6907 		if (!op->trampoline || symnum--)
6908 			continue;
6909 		*value = op->trampoline;
6910 		*type = 't';
6911 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6912 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6913 		*exported = 0;
6914 		return 0;
6915 	}
6916 
6917 	return -ERANGE;
6918 }
6919 
6920 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
6921 /*
6922  * Check if the current ops references the given ip.
6923  *
6924  * If the ops traces all functions, then it was already accounted for.
6925  * If the ops does not trace the current record function, skip it.
6926  * If the ops ignores the function via notrace filter, skip it.
6927  */
6928 static bool
6929 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
6930 {
6931 	/* If ops isn't enabled, ignore it */
6932 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6933 		return false;
6934 
6935 	/* If ops traces all then it includes this function */
6936 	if (ops_traces_mod(ops))
6937 		return true;
6938 
6939 	/* The function must be in the filter */
6940 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
6941 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
6942 		return false;
6943 
6944 	/* If in notrace hash, we ignore it too */
6945 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
6946 		return false;
6947 
6948 	return true;
6949 }
6950 #endif
6951 
6952 #ifdef CONFIG_MODULES
6953 
6954 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6955 
6956 static LIST_HEAD(ftrace_mod_maps);
6957 
6958 static int referenced_filters(struct dyn_ftrace *rec)
6959 {
6960 	struct ftrace_ops *ops;
6961 	int cnt = 0;
6962 
6963 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6964 		if (ops_references_ip(ops, rec->ip)) {
6965 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6966 				continue;
6967 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6968 				continue;
6969 			cnt++;
6970 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6971 				rec->flags |= FTRACE_FL_REGS;
6972 			if (cnt == 1 && ops->trampoline)
6973 				rec->flags |= FTRACE_FL_TRAMP;
6974 			else
6975 				rec->flags &= ~FTRACE_FL_TRAMP;
6976 		}
6977 	}
6978 
6979 	return cnt;
6980 }
6981 
6982 static void
6983 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6984 {
6985 	struct ftrace_func_entry *entry;
6986 	struct dyn_ftrace *rec;
6987 	int i;
6988 
6989 	if (ftrace_hash_empty(hash))
6990 		return;
6991 
6992 	for (i = 0; i < pg->index; i++) {
6993 		rec = &pg->records[i];
6994 		entry = __ftrace_lookup_ip(hash, rec->ip);
6995 		/*
6996 		 * Do not allow this rec to match again.
6997 		 * Yeah, it may waste some memory, but will be removed
6998 		 * if/when the hash is modified again.
6999 		 */
7000 		if (entry)
7001 			entry->ip = 0;
7002 	}
7003 }
7004 
7005 /* Clear any records from hashes */
7006 static void clear_mod_from_hashes(struct ftrace_page *pg)
7007 {
7008 	struct trace_array *tr;
7009 
7010 	mutex_lock(&trace_types_lock);
7011 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7012 		if (!tr->ops || !tr->ops->func_hash)
7013 			continue;
7014 		mutex_lock(&tr->ops->func_hash->regex_lock);
7015 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
7016 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
7017 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7018 	}
7019 	mutex_unlock(&trace_types_lock);
7020 }
7021 
7022 static void ftrace_free_mod_map(struct rcu_head *rcu)
7023 {
7024 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
7025 	struct ftrace_mod_func *mod_func;
7026 	struct ftrace_mod_func *n;
7027 
7028 	/* All the contents of mod_map are now not visible to readers */
7029 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
7030 		kfree(mod_func->name);
7031 		list_del(&mod_func->list);
7032 		kfree(mod_func);
7033 	}
7034 
7035 	kfree(mod_map);
7036 }
7037 
7038 void ftrace_release_mod(struct module *mod)
7039 {
7040 	struct ftrace_mod_map *mod_map;
7041 	struct ftrace_mod_map *n;
7042 	struct dyn_ftrace *rec;
7043 	struct ftrace_page **last_pg;
7044 	struct ftrace_page *tmp_page = NULL;
7045 	struct ftrace_page *pg;
7046 
7047 	mutex_lock(&ftrace_lock);
7048 
7049 	if (ftrace_disabled)
7050 		goto out_unlock;
7051 
7052 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
7053 		if (mod_map->mod == mod) {
7054 			list_del_rcu(&mod_map->list);
7055 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
7056 			break;
7057 		}
7058 	}
7059 
7060 	/*
7061 	 * Each module has its own ftrace_pages, remove
7062 	 * them from the list.
7063 	 */
7064 	last_pg = &ftrace_pages_start;
7065 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
7066 		rec = &pg->records[0];
7067 		if (within_module_core(rec->ip, mod) ||
7068 		    within_module_init(rec->ip, mod)) {
7069 			/*
7070 			 * As core pages are first, the first
7071 			 * page should never be a module page.
7072 			 */
7073 			if (WARN_ON(pg == ftrace_pages_start))
7074 				goto out_unlock;
7075 
7076 			/* Check if we are deleting the last page */
7077 			if (pg == ftrace_pages)
7078 				ftrace_pages = next_to_ftrace_page(last_pg);
7079 
7080 			ftrace_update_tot_cnt -= pg->index;
7081 			*last_pg = pg->next;
7082 
7083 			pg->next = tmp_page;
7084 			tmp_page = pg;
7085 		} else
7086 			last_pg = &pg->next;
7087 	}
7088  out_unlock:
7089 	mutex_unlock(&ftrace_lock);
7090 
7091 	for (pg = tmp_page; pg; pg = tmp_page) {
7092 
7093 		/* Needs to be called outside of ftrace_lock */
7094 		clear_mod_from_hashes(pg);
7095 
7096 		if (pg->records) {
7097 			free_pages((unsigned long)pg->records, pg->order);
7098 			ftrace_number_of_pages -= 1 << pg->order;
7099 		}
7100 		tmp_page = pg->next;
7101 		kfree(pg);
7102 		ftrace_number_of_groups--;
7103 	}
7104 }
7105 
7106 void ftrace_module_enable(struct module *mod)
7107 {
7108 	struct dyn_ftrace *rec;
7109 	struct ftrace_page *pg;
7110 
7111 	mutex_lock(&ftrace_lock);
7112 
7113 	if (ftrace_disabled)
7114 		goto out_unlock;
7115 
7116 	/*
7117 	 * If the tracing is enabled, go ahead and enable the record.
7118 	 *
7119 	 * The reason not to enable the record immediately is the
7120 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7121 	 * correct previous instructions.  Making first the NOP
7122 	 * conversion puts the module to the correct state, thus
7123 	 * passing the ftrace_make_call check.
7124 	 *
7125 	 * We also delay this to after the module code already set the
7126 	 * text to read-only, as we now need to set it back to read-write
7127 	 * so that we can modify the text.
7128 	 */
7129 	if (ftrace_start_up)
7130 		ftrace_arch_code_modify_prepare();
7131 
7132 	do_for_each_ftrace_rec(pg, rec) {
7133 		int cnt;
7134 		/*
7135 		 * do_for_each_ftrace_rec() is a double loop.
7136 		 * module text shares the pg. If a record is
7137 		 * not part of this module, then skip this pg,
7138 		 * which the "break" will do.
7139 		 */
7140 		if (!within_module_core(rec->ip, mod) &&
7141 		    !within_module_init(rec->ip, mod))
7142 			break;
7143 
7144 		/* Weak functions should still be ignored */
7145 		if (!test_for_valid_rec(rec)) {
7146 			/* Clear all other flags. Should not be enabled anyway */
7147 			rec->flags = FTRACE_FL_DISABLED;
7148 			continue;
7149 		}
7150 
7151 		cnt = 0;
7152 
7153 		/*
7154 		 * When adding a module, we need to check if tracers are
7155 		 * currently enabled and if they are, and can trace this record,
7156 		 * we need to enable the module functions as well as update the
7157 		 * reference counts for those function records.
7158 		 */
7159 		if (ftrace_start_up)
7160 			cnt += referenced_filters(rec);
7161 
7162 		rec->flags &= ~FTRACE_FL_DISABLED;
7163 		rec->flags += cnt;
7164 
7165 		if (ftrace_start_up && cnt) {
7166 			int failed = __ftrace_replace_code(rec, 1);
7167 			if (failed) {
7168 				ftrace_bug(failed, rec);
7169 				goto out_loop;
7170 			}
7171 		}
7172 
7173 	} while_for_each_ftrace_rec();
7174 
7175  out_loop:
7176 	if (ftrace_start_up)
7177 		ftrace_arch_code_modify_post_process();
7178 
7179  out_unlock:
7180 	mutex_unlock(&ftrace_lock);
7181 
7182 	process_cached_mods(mod->name);
7183 }
7184 
7185 void ftrace_module_init(struct module *mod)
7186 {
7187 	int ret;
7188 
7189 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7190 		return;
7191 
7192 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7193 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7194 	if (ret)
7195 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7196 			mod->name);
7197 }
7198 
7199 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7200 				struct dyn_ftrace *rec)
7201 {
7202 	struct ftrace_mod_func *mod_func;
7203 	unsigned long symsize;
7204 	unsigned long offset;
7205 	char str[KSYM_SYMBOL_LEN];
7206 	char *modname;
7207 	const char *ret;
7208 
7209 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7210 	if (!ret)
7211 		return;
7212 
7213 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7214 	if (!mod_func)
7215 		return;
7216 
7217 	mod_func->name = kstrdup(str, GFP_KERNEL);
7218 	if (!mod_func->name) {
7219 		kfree(mod_func);
7220 		return;
7221 	}
7222 
7223 	mod_func->ip = rec->ip - offset;
7224 	mod_func->size = symsize;
7225 
7226 	mod_map->num_funcs++;
7227 
7228 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7229 }
7230 
7231 static struct ftrace_mod_map *
7232 allocate_ftrace_mod_map(struct module *mod,
7233 			unsigned long start, unsigned long end)
7234 {
7235 	struct ftrace_mod_map *mod_map;
7236 
7237 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7238 	if (!mod_map)
7239 		return NULL;
7240 
7241 	mod_map->mod = mod;
7242 	mod_map->start_addr = start;
7243 	mod_map->end_addr = end;
7244 	mod_map->num_funcs = 0;
7245 
7246 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7247 
7248 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7249 
7250 	return mod_map;
7251 }
7252 
7253 static const char *
7254 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7255 			   unsigned long addr, unsigned long *size,
7256 			   unsigned long *off, char *sym)
7257 {
7258 	struct ftrace_mod_func *found_func =  NULL;
7259 	struct ftrace_mod_func *mod_func;
7260 
7261 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7262 		if (addr >= mod_func->ip &&
7263 		    addr < mod_func->ip + mod_func->size) {
7264 			found_func = mod_func;
7265 			break;
7266 		}
7267 	}
7268 
7269 	if (found_func) {
7270 		if (size)
7271 			*size = found_func->size;
7272 		if (off)
7273 			*off = addr - found_func->ip;
7274 		if (sym)
7275 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7276 
7277 		return found_func->name;
7278 	}
7279 
7280 	return NULL;
7281 }
7282 
7283 const char *
7284 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7285 		   unsigned long *off, char **modname, char *sym)
7286 {
7287 	struct ftrace_mod_map *mod_map;
7288 	const char *ret = NULL;
7289 
7290 	/* mod_map is freed via call_rcu() */
7291 	preempt_disable();
7292 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7293 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7294 		if (ret) {
7295 			if (modname)
7296 				*modname = mod_map->mod->name;
7297 			break;
7298 		}
7299 	}
7300 	preempt_enable();
7301 
7302 	return ret;
7303 }
7304 
7305 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7306 			   char *type, char *name,
7307 			   char *module_name, int *exported)
7308 {
7309 	struct ftrace_mod_map *mod_map;
7310 	struct ftrace_mod_func *mod_func;
7311 	int ret;
7312 
7313 	preempt_disable();
7314 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7315 
7316 		if (symnum >= mod_map->num_funcs) {
7317 			symnum -= mod_map->num_funcs;
7318 			continue;
7319 		}
7320 
7321 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7322 			if (symnum > 1) {
7323 				symnum--;
7324 				continue;
7325 			}
7326 
7327 			*value = mod_func->ip;
7328 			*type = 'T';
7329 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7330 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7331 			*exported = 1;
7332 			preempt_enable();
7333 			return 0;
7334 		}
7335 		WARN_ON(1);
7336 		break;
7337 	}
7338 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7339 					    module_name, exported);
7340 	preempt_enable();
7341 	return ret;
7342 }
7343 
7344 #else
7345 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7346 				struct dyn_ftrace *rec) { }
7347 static inline struct ftrace_mod_map *
7348 allocate_ftrace_mod_map(struct module *mod,
7349 			unsigned long start, unsigned long end)
7350 {
7351 	return NULL;
7352 }
7353 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7354 			   char *type, char *name, char *module_name,
7355 			   int *exported)
7356 {
7357 	int ret;
7358 
7359 	preempt_disable();
7360 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7361 					    module_name, exported);
7362 	preempt_enable();
7363 	return ret;
7364 }
7365 #endif /* CONFIG_MODULES */
7366 
7367 struct ftrace_init_func {
7368 	struct list_head list;
7369 	unsigned long ip;
7370 };
7371 
7372 /* Clear any init ips from hashes */
7373 static void
7374 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7375 {
7376 	struct ftrace_func_entry *entry;
7377 
7378 	entry = ftrace_lookup_ip(hash, func->ip);
7379 	/*
7380 	 * Do not allow this rec to match again.
7381 	 * Yeah, it may waste some memory, but will be removed
7382 	 * if/when the hash is modified again.
7383 	 */
7384 	if (entry)
7385 		entry->ip = 0;
7386 }
7387 
7388 static void
7389 clear_func_from_hashes(struct ftrace_init_func *func)
7390 {
7391 	struct trace_array *tr;
7392 
7393 	mutex_lock(&trace_types_lock);
7394 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7395 		if (!tr->ops || !tr->ops->func_hash)
7396 			continue;
7397 		mutex_lock(&tr->ops->func_hash->regex_lock);
7398 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7399 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7400 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7401 	}
7402 	mutex_unlock(&trace_types_lock);
7403 }
7404 
7405 static void add_to_clear_hash_list(struct list_head *clear_list,
7406 				   struct dyn_ftrace *rec)
7407 {
7408 	struct ftrace_init_func *func;
7409 
7410 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7411 	if (!func) {
7412 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7413 		return;
7414 	}
7415 
7416 	func->ip = rec->ip;
7417 	list_add(&func->list, clear_list);
7418 }
7419 
7420 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7421 {
7422 	unsigned long start = (unsigned long)(start_ptr);
7423 	unsigned long end = (unsigned long)(end_ptr);
7424 	struct ftrace_page **last_pg = &ftrace_pages_start;
7425 	struct ftrace_page *pg;
7426 	struct dyn_ftrace *rec;
7427 	struct dyn_ftrace key;
7428 	struct ftrace_mod_map *mod_map = NULL;
7429 	struct ftrace_init_func *func, *func_next;
7430 	struct list_head clear_hash;
7431 
7432 	INIT_LIST_HEAD(&clear_hash);
7433 
7434 	key.ip = start;
7435 	key.flags = end;	/* overload flags, as it is unsigned long */
7436 
7437 	mutex_lock(&ftrace_lock);
7438 
7439 	/*
7440 	 * If we are freeing module init memory, then check if
7441 	 * any tracer is active. If so, we need to save a mapping of
7442 	 * the module functions being freed with the address.
7443 	 */
7444 	if (mod && ftrace_ops_list != &ftrace_list_end)
7445 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7446 
7447 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7448 		if (end < pg->records[0].ip ||
7449 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7450 			continue;
7451  again:
7452 		rec = bsearch(&key, pg->records, pg->index,
7453 			      sizeof(struct dyn_ftrace),
7454 			      ftrace_cmp_recs);
7455 		if (!rec)
7456 			continue;
7457 
7458 		/* rec will be cleared from hashes after ftrace_lock unlock */
7459 		add_to_clear_hash_list(&clear_hash, rec);
7460 
7461 		if (mod_map)
7462 			save_ftrace_mod_rec(mod_map, rec);
7463 
7464 		pg->index--;
7465 		ftrace_update_tot_cnt--;
7466 		if (!pg->index) {
7467 			*last_pg = pg->next;
7468 			if (pg->records) {
7469 				free_pages((unsigned long)pg->records, pg->order);
7470 				ftrace_number_of_pages -= 1 << pg->order;
7471 			}
7472 			ftrace_number_of_groups--;
7473 			kfree(pg);
7474 			pg = container_of(last_pg, struct ftrace_page, next);
7475 			if (!(*last_pg))
7476 				ftrace_pages = pg;
7477 			continue;
7478 		}
7479 		memmove(rec, rec + 1,
7480 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7481 		/* More than one function may be in this block */
7482 		goto again;
7483 	}
7484 	mutex_unlock(&ftrace_lock);
7485 
7486 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7487 		clear_func_from_hashes(func);
7488 		kfree(func);
7489 	}
7490 }
7491 
7492 void __init ftrace_free_init_mem(void)
7493 {
7494 	void *start = (void *)(&__init_begin);
7495 	void *end = (void *)(&__init_end);
7496 
7497 	ftrace_boot_snapshot();
7498 
7499 	ftrace_free_mem(NULL, start, end);
7500 }
7501 
7502 int __init __weak ftrace_dyn_arch_init(void)
7503 {
7504 	return 0;
7505 }
7506 
7507 void __init ftrace_init(void)
7508 {
7509 	extern unsigned long __start_mcount_loc[];
7510 	extern unsigned long __stop_mcount_loc[];
7511 	unsigned long count, flags;
7512 	int ret;
7513 
7514 	local_irq_save(flags);
7515 	ret = ftrace_dyn_arch_init();
7516 	local_irq_restore(flags);
7517 	if (ret)
7518 		goto failed;
7519 
7520 	count = __stop_mcount_loc - __start_mcount_loc;
7521 	if (!count) {
7522 		pr_info("ftrace: No functions to be traced?\n");
7523 		goto failed;
7524 	}
7525 
7526 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7527 		count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
7528 
7529 	ret = ftrace_process_locs(NULL,
7530 				  __start_mcount_loc,
7531 				  __stop_mcount_loc);
7532 	if (ret) {
7533 		pr_warn("ftrace: failed to allocate entries for functions\n");
7534 		goto failed;
7535 	}
7536 
7537 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7538 		ftrace_number_of_pages, ftrace_number_of_groups);
7539 
7540 	last_ftrace_enabled = ftrace_enabled = 1;
7541 
7542 	set_ftrace_early_filters();
7543 
7544 	return;
7545  failed:
7546 	ftrace_disabled = 1;
7547 }
7548 
7549 /* Do nothing if arch does not support this */
7550 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7551 {
7552 }
7553 
7554 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7555 {
7556 	unsigned long trampoline = ops->trampoline;
7557 
7558 	arch_ftrace_update_trampoline(ops);
7559 	if (ops->trampoline && ops->trampoline != trampoline &&
7560 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7561 		/* Add to kallsyms before the perf events */
7562 		ftrace_add_trampoline_to_kallsyms(ops);
7563 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7564 				   ops->trampoline, ops->trampoline_size, false,
7565 				   FTRACE_TRAMPOLINE_SYM);
7566 		/*
7567 		 * Record the perf text poke event after the ksymbol register
7568 		 * event.
7569 		 */
7570 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7571 				     (void *)ops->trampoline,
7572 				     ops->trampoline_size);
7573 	}
7574 }
7575 
7576 void ftrace_init_trace_array(struct trace_array *tr)
7577 {
7578 	INIT_LIST_HEAD(&tr->func_probes);
7579 	INIT_LIST_HEAD(&tr->mod_trace);
7580 	INIT_LIST_HEAD(&tr->mod_notrace);
7581 }
7582 #else
7583 
7584 struct ftrace_ops global_ops = {
7585 	.func			= ftrace_stub,
7586 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7587 				  FTRACE_OPS_FL_PID,
7588 };
7589 
7590 static int __init ftrace_nodyn_init(void)
7591 {
7592 	ftrace_enabled = 1;
7593 	return 0;
7594 }
7595 core_initcall(ftrace_nodyn_init);
7596 
7597 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7598 static inline void ftrace_startup_all(int command) { }
7599 
7600 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7601 {
7602 }
7603 
7604 #endif /* CONFIG_DYNAMIC_FTRACE */
7605 
7606 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7607 {
7608 	tr->ops = &global_ops;
7609 	tr->ops->private = tr;
7610 	ftrace_init_trace_array(tr);
7611 }
7612 
7613 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7614 {
7615 	/* If we filter on pids, update to use the pid function */
7616 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7617 		if (WARN_ON(tr->ops->func != ftrace_stub))
7618 			printk("ftrace ops had %pS for function\n",
7619 			       tr->ops->func);
7620 	}
7621 	tr->ops->func = func;
7622 	tr->ops->private = tr;
7623 }
7624 
7625 void ftrace_reset_array_ops(struct trace_array *tr)
7626 {
7627 	tr->ops->func = ftrace_stub;
7628 }
7629 
7630 static nokprobe_inline void
7631 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7632 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7633 {
7634 	struct pt_regs *regs = ftrace_get_regs(fregs);
7635 	struct ftrace_ops *op;
7636 	int bit;
7637 
7638 	/*
7639 	 * The ftrace_test_and_set_recursion() will disable preemption,
7640 	 * which is required since some of the ops may be dynamically
7641 	 * allocated, they must be freed after a synchronize_rcu().
7642 	 */
7643 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7644 	if (bit < 0)
7645 		return;
7646 
7647 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7648 		/* Stub functions don't need to be called nor tested */
7649 		if (op->flags & FTRACE_OPS_FL_STUB)
7650 			continue;
7651 		/*
7652 		 * Check the following for each ops before calling their func:
7653 		 *  if RCU flag is set, then rcu_is_watching() must be true
7654 		 *  Otherwise test if the ip matches the ops filter
7655 		 *
7656 		 * If any of the above fails then the op->func() is not executed.
7657 		 */
7658 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7659 		    ftrace_ops_test(op, ip, regs)) {
7660 			if (FTRACE_WARN_ON(!op->func)) {
7661 				pr_warn("op=%p %pS\n", op, op);
7662 				goto out;
7663 			}
7664 			op->func(ip, parent_ip, op, fregs);
7665 		}
7666 	} while_for_each_ftrace_op(op);
7667 out:
7668 	trace_clear_recursion(bit);
7669 }
7670 
7671 /*
7672  * Some archs only support passing ip and parent_ip. Even though
7673  * the list function ignores the op parameter, we do not want any
7674  * C side effects, where a function is called without the caller
7675  * sending a third parameter.
7676  * Archs are to support both the regs and ftrace_ops at the same time.
7677  * If they support ftrace_ops, it is assumed they support regs.
7678  * If call backs want to use regs, they must either check for regs
7679  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7680  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7681  * An architecture can pass partial regs with ftrace_ops and still
7682  * set the ARCH_SUPPORTS_FTRACE_OPS.
7683  *
7684  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7685  * arch_ftrace_ops_list_func.
7686  */
7687 #if ARCH_SUPPORTS_FTRACE_OPS
7688 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7689 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7690 {
7691 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7692 }
7693 #else
7694 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7695 {
7696 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7697 }
7698 #endif
7699 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7700 
7701 /*
7702  * If there's only one function registered but it does not support
7703  * recursion, needs RCU protection, then this function will be called
7704  * by the mcount trampoline.
7705  */
7706 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7707 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7708 {
7709 	int bit;
7710 
7711 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7712 	if (bit < 0)
7713 		return;
7714 
7715 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7716 		op->func(ip, parent_ip, op, fregs);
7717 
7718 	trace_clear_recursion(bit);
7719 }
7720 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7721 
7722 /**
7723  * ftrace_ops_get_func - get the function a trampoline should call
7724  * @ops: the ops to get the function for
7725  *
7726  * Normally the mcount trampoline will call the ops->func, but there
7727  * are times that it should not. For example, if the ops does not
7728  * have its own recursion protection, then it should call the
7729  * ftrace_ops_assist_func() instead.
7730  *
7731  * Returns the function that the trampoline should call for @ops.
7732  */
7733 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7734 {
7735 	/*
7736 	 * If the function does not handle recursion or needs to be RCU safe,
7737 	 * then we need to call the assist handler.
7738 	 */
7739 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7740 			  FTRACE_OPS_FL_RCU))
7741 		return ftrace_ops_assist_func;
7742 
7743 	return ops->func;
7744 }
7745 
7746 static void
7747 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7748 				     struct task_struct *prev,
7749 				     struct task_struct *next,
7750 				     unsigned int prev_state)
7751 {
7752 	struct trace_array *tr = data;
7753 	struct trace_pid_list *pid_list;
7754 	struct trace_pid_list *no_pid_list;
7755 
7756 	pid_list = rcu_dereference_sched(tr->function_pids);
7757 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7758 
7759 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7760 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7761 			       FTRACE_PID_IGNORE);
7762 	else
7763 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7764 			       next->pid);
7765 }
7766 
7767 static void
7768 ftrace_pid_follow_sched_process_fork(void *data,
7769 				     struct task_struct *self,
7770 				     struct task_struct *task)
7771 {
7772 	struct trace_pid_list *pid_list;
7773 	struct trace_array *tr = data;
7774 
7775 	pid_list = rcu_dereference_sched(tr->function_pids);
7776 	trace_filter_add_remove_task(pid_list, self, task);
7777 
7778 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7779 	trace_filter_add_remove_task(pid_list, self, task);
7780 }
7781 
7782 static void
7783 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7784 {
7785 	struct trace_pid_list *pid_list;
7786 	struct trace_array *tr = data;
7787 
7788 	pid_list = rcu_dereference_sched(tr->function_pids);
7789 	trace_filter_add_remove_task(pid_list, NULL, task);
7790 
7791 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7792 	trace_filter_add_remove_task(pid_list, NULL, task);
7793 }
7794 
7795 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7796 {
7797 	if (enable) {
7798 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7799 						  tr);
7800 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7801 						  tr);
7802 	} else {
7803 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7804 						    tr);
7805 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7806 						    tr);
7807 	}
7808 }
7809 
7810 static void clear_ftrace_pids(struct trace_array *tr, int type)
7811 {
7812 	struct trace_pid_list *pid_list;
7813 	struct trace_pid_list *no_pid_list;
7814 	int cpu;
7815 
7816 	pid_list = rcu_dereference_protected(tr->function_pids,
7817 					     lockdep_is_held(&ftrace_lock));
7818 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7819 						lockdep_is_held(&ftrace_lock));
7820 
7821 	/* Make sure there's something to do */
7822 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7823 		return;
7824 
7825 	/* See if the pids still need to be checked after this */
7826 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7827 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7828 		for_each_possible_cpu(cpu)
7829 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7830 	}
7831 
7832 	if (type & TRACE_PIDS)
7833 		rcu_assign_pointer(tr->function_pids, NULL);
7834 
7835 	if (type & TRACE_NO_PIDS)
7836 		rcu_assign_pointer(tr->function_no_pids, NULL);
7837 
7838 	/* Wait till all users are no longer using pid filtering */
7839 	synchronize_rcu();
7840 
7841 	if ((type & TRACE_PIDS) && pid_list)
7842 		trace_pid_list_free(pid_list);
7843 
7844 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7845 		trace_pid_list_free(no_pid_list);
7846 }
7847 
7848 void ftrace_clear_pids(struct trace_array *tr)
7849 {
7850 	mutex_lock(&ftrace_lock);
7851 
7852 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7853 
7854 	mutex_unlock(&ftrace_lock);
7855 }
7856 
7857 static void ftrace_pid_reset(struct trace_array *tr, int type)
7858 {
7859 	mutex_lock(&ftrace_lock);
7860 	clear_ftrace_pids(tr, type);
7861 
7862 	ftrace_update_pid_func();
7863 	ftrace_startup_all(0);
7864 
7865 	mutex_unlock(&ftrace_lock);
7866 }
7867 
7868 /* Greater than any max PID */
7869 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7870 
7871 static void *fpid_start(struct seq_file *m, loff_t *pos)
7872 	__acquires(RCU)
7873 {
7874 	struct trace_pid_list *pid_list;
7875 	struct trace_array *tr = m->private;
7876 
7877 	mutex_lock(&ftrace_lock);
7878 	rcu_read_lock_sched();
7879 
7880 	pid_list = rcu_dereference_sched(tr->function_pids);
7881 
7882 	if (!pid_list)
7883 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7884 
7885 	return trace_pid_start(pid_list, pos);
7886 }
7887 
7888 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7889 {
7890 	struct trace_array *tr = m->private;
7891 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7892 
7893 	if (v == FTRACE_NO_PIDS) {
7894 		(*pos)++;
7895 		return NULL;
7896 	}
7897 	return trace_pid_next(pid_list, v, pos);
7898 }
7899 
7900 static void fpid_stop(struct seq_file *m, void *p)
7901 	__releases(RCU)
7902 {
7903 	rcu_read_unlock_sched();
7904 	mutex_unlock(&ftrace_lock);
7905 }
7906 
7907 static int fpid_show(struct seq_file *m, void *v)
7908 {
7909 	if (v == FTRACE_NO_PIDS) {
7910 		seq_puts(m, "no pid\n");
7911 		return 0;
7912 	}
7913 
7914 	return trace_pid_show(m, v);
7915 }
7916 
7917 static const struct seq_operations ftrace_pid_sops = {
7918 	.start = fpid_start,
7919 	.next = fpid_next,
7920 	.stop = fpid_stop,
7921 	.show = fpid_show,
7922 };
7923 
7924 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7925 	__acquires(RCU)
7926 {
7927 	struct trace_pid_list *pid_list;
7928 	struct trace_array *tr = m->private;
7929 
7930 	mutex_lock(&ftrace_lock);
7931 	rcu_read_lock_sched();
7932 
7933 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7934 
7935 	if (!pid_list)
7936 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7937 
7938 	return trace_pid_start(pid_list, pos);
7939 }
7940 
7941 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7942 {
7943 	struct trace_array *tr = m->private;
7944 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7945 
7946 	if (v == FTRACE_NO_PIDS) {
7947 		(*pos)++;
7948 		return NULL;
7949 	}
7950 	return trace_pid_next(pid_list, v, pos);
7951 }
7952 
7953 static const struct seq_operations ftrace_no_pid_sops = {
7954 	.start = fnpid_start,
7955 	.next = fnpid_next,
7956 	.stop = fpid_stop,
7957 	.show = fpid_show,
7958 };
7959 
7960 static int pid_open(struct inode *inode, struct file *file, int type)
7961 {
7962 	const struct seq_operations *seq_ops;
7963 	struct trace_array *tr = inode->i_private;
7964 	struct seq_file *m;
7965 	int ret = 0;
7966 
7967 	ret = tracing_check_open_get_tr(tr);
7968 	if (ret)
7969 		return ret;
7970 
7971 	if ((file->f_mode & FMODE_WRITE) &&
7972 	    (file->f_flags & O_TRUNC))
7973 		ftrace_pid_reset(tr, type);
7974 
7975 	switch (type) {
7976 	case TRACE_PIDS:
7977 		seq_ops = &ftrace_pid_sops;
7978 		break;
7979 	case TRACE_NO_PIDS:
7980 		seq_ops = &ftrace_no_pid_sops;
7981 		break;
7982 	default:
7983 		trace_array_put(tr);
7984 		WARN_ON_ONCE(1);
7985 		return -EINVAL;
7986 	}
7987 
7988 	ret = seq_open(file, seq_ops);
7989 	if (ret < 0) {
7990 		trace_array_put(tr);
7991 	} else {
7992 		m = file->private_data;
7993 		/* copy tr over to seq ops */
7994 		m->private = tr;
7995 	}
7996 
7997 	return ret;
7998 }
7999 
8000 static int
8001 ftrace_pid_open(struct inode *inode, struct file *file)
8002 {
8003 	return pid_open(inode, file, TRACE_PIDS);
8004 }
8005 
8006 static int
8007 ftrace_no_pid_open(struct inode *inode, struct file *file)
8008 {
8009 	return pid_open(inode, file, TRACE_NO_PIDS);
8010 }
8011 
8012 static void ignore_task_cpu(void *data)
8013 {
8014 	struct trace_array *tr = data;
8015 	struct trace_pid_list *pid_list;
8016 	struct trace_pid_list *no_pid_list;
8017 
8018 	/*
8019 	 * This function is called by on_each_cpu() while the
8020 	 * event_mutex is held.
8021 	 */
8022 	pid_list = rcu_dereference_protected(tr->function_pids,
8023 					     mutex_is_locked(&ftrace_lock));
8024 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8025 						mutex_is_locked(&ftrace_lock));
8026 
8027 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
8028 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8029 			       FTRACE_PID_IGNORE);
8030 	else
8031 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8032 			       current->pid);
8033 }
8034 
8035 static ssize_t
8036 pid_write(struct file *filp, const char __user *ubuf,
8037 	  size_t cnt, loff_t *ppos, int type)
8038 {
8039 	struct seq_file *m = filp->private_data;
8040 	struct trace_array *tr = m->private;
8041 	struct trace_pid_list *filtered_pids;
8042 	struct trace_pid_list *other_pids;
8043 	struct trace_pid_list *pid_list;
8044 	ssize_t ret;
8045 
8046 	if (!cnt)
8047 		return 0;
8048 
8049 	mutex_lock(&ftrace_lock);
8050 
8051 	switch (type) {
8052 	case TRACE_PIDS:
8053 		filtered_pids = rcu_dereference_protected(tr->function_pids,
8054 					     lockdep_is_held(&ftrace_lock));
8055 		other_pids = rcu_dereference_protected(tr->function_no_pids,
8056 					     lockdep_is_held(&ftrace_lock));
8057 		break;
8058 	case TRACE_NO_PIDS:
8059 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
8060 					     lockdep_is_held(&ftrace_lock));
8061 		other_pids = rcu_dereference_protected(tr->function_pids,
8062 					     lockdep_is_held(&ftrace_lock));
8063 		break;
8064 	default:
8065 		ret = -EINVAL;
8066 		WARN_ON_ONCE(1);
8067 		goto out;
8068 	}
8069 
8070 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
8071 	if (ret < 0)
8072 		goto out;
8073 
8074 	switch (type) {
8075 	case TRACE_PIDS:
8076 		rcu_assign_pointer(tr->function_pids, pid_list);
8077 		break;
8078 	case TRACE_NO_PIDS:
8079 		rcu_assign_pointer(tr->function_no_pids, pid_list);
8080 		break;
8081 	}
8082 
8083 
8084 	if (filtered_pids) {
8085 		synchronize_rcu();
8086 		trace_pid_list_free(filtered_pids);
8087 	} else if (pid_list && !other_pids) {
8088 		/* Register a probe to set whether to ignore the tracing of a task */
8089 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8090 	}
8091 
8092 	/*
8093 	 * Ignoring of pids is done at task switch. But we have to
8094 	 * check for those tasks that are currently running.
8095 	 * Always do this in case a pid was appended or removed.
8096 	 */
8097 	on_each_cpu(ignore_task_cpu, tr, 1);
8098 
8099 	ftrace_update_pid_func();
8100 	ftrace_startup_all(0);
8101  out:
8102 	mutex_unlock(&ftrace_lock);
8103 
8104 	if (ret > 0)
8105 		*ppos += ret;
8106 
8107 	return ret;
8108 }
8109 
8110 static ssize_t
8111 ftrace_pid_write(struct file *filp, const char __user *ubuf,
8112 		 size_t cnt, loff_t *ppos)
8113 {
8114 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
8115 }
8116 
8117 static ssize_t
8118 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
8119 		    size_t cnt, loff_t *ppos)
8120 {
8121 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8122 }
8123 
8124 static int
8125 ftrace_pid_release(struct inode *inode, struct file *file)
8126 {
8127 	struct trace_array *tr = inode->i_private;
8128 
8129 	trace_array_put(tr);
8130 
8131 	return seq_release(inode, file);
8132 }
8133 
8134 static const struct file_operations ftrace_pid_fops = {
8135 	.open		= ftrace_pid_open,
8136 	.write		= ftrace_pid_write,
8137 	.read		= seq_read,
8138 	.llseek		= tracing_lseek,
8139 	.release	= ftrace_pid_release,
8140 };
8141 
8142 static const struct file_operations ftrace_no_pid_fops = {
8143 	.open		= ftrace_no_pid_open,
8144 	.write		= ftrace_no_pid_write,
8145 	.read		= seq_read,
8146 	.llseek		= tracing_lseek,
8147 	.release	= ftrace_pid_release,
8148 };
8149 
8150 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8151 {
8152 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8153 			    tr, &ftrace_pid_fops);
8154 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8155 			  d_tracer, tr, &ftrace_no_pid_fops);
8156 }
8157 
8158 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8159 					 struct dentry *d_tracer)
8160 {
8161 	/* Only the top level directory has the dyn_tracefs and profile */
8162 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8163 
8164 	ftrace_init_dyn_tracefs(d_tracer);
8165 	ftrace_profile_tracefs(d_tracer);
8166 }
8167 
8168 /**
8169  * ftrace_kill - kill ftrace
8170  *
8171  * This function should be used by panic code. It stops ftrace
8172  * but in a not so nice way. If you need to simply kill ftrace
8173  * from a non-atomic section, use ftrace_kill.
8174  */
8175 void ftrace_kill(void)
8176 {
8177 	ftrace_disabled = 1;
8178 	ftrace_enabled = 0;
8179 	ftrace_trace_function = ftrace_stub;
8180 }
8181 
8182 /**
8183  * ftrace_is_dead - Test if ftrace is dead or not.
8184  *
8185  * Returns 1 if ftrace is "dead", zero otherwise.
8186  */
8187 int ftrace_is_dead(void)
8188 {
8189 	return ftrace_disabled;
8190 }
8191 
8192 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8193 /*
8194  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8195  * it doesn't conflict with any direct ftrace_ops. If there is existing
8196  * direct ftrace_ops on a kernel function being patched, call
8197  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8198  *
8199  * @ops:     ftrace_ops being registered.
8200  *
8201  * Returns:
8202  *         0 on success;
8203  *         Negative on failure.
8204  */
8205 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8206 {
8207 	struct ftrace_func_entry *entry;
8208 	struct ftrace_hash *hash;
8209 	struct ftrace_ops *op;
8210 	int size, i, ret;
8211 
8212 	lockdep_assert_held_once(&direct_mutex);
8213 
8214 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8215 		return 0;
8216 
8217 	hash = ops->func_hash->filter_hash;
8218 	size = 1 << hash->size_bits;
8219 	for (i = 0; i < size; i++) {
8220 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8221 			unsigned long ip = entry->ip;
8222 			bool found_op = false;
8223 
8224 			mutex_lock(&ftrace_lock);
8225 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8226 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8227 					continue;
8228 				if (ops_references_ip(op, ip)) {
8229 					found_op = true;
8230 					break;
8231 				}
8232 			} while_for_each_ftrace_op(op);
8233 			mutex_unlock(&ftrace_lock);
8234 
8235 			if (found_op) {
8236 				if (!op->ops_func)
8237 					return -EBUSY;
8238 
8239 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8240 				if (ret)
8241 					return ret;
8242 			}
8243 		}
8244 	}
8245 
8246 	return 0;
8247 }
8248 
8249 /*
8250  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8251  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8252  * ops.
8253  */
8254 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8255 {
8256 	struct ftrace_func_entry *entry;
8257 	struct ftrace_hash *hash;
8258 	struct ftrace_ops *op;
8259 	int size, i;
8260 
8261 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8262 		return;
8263 
8264 	mutex_lock(&direct_mutex);
8265 
8266 	hash = ops->func_hash->filter_hash;
8267 	size = 1 << hash->size_bits;
8268 	for (i = 0; i < size; i++) {
8269 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8270 			unsigned long ip = entry->ip;
8271 			bool found_op = false;
8272 
8273 			mutex_lock(&ftrace_lock);
8274 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8275 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8276 					continue;
8277 				if (ops_references_ip(op, ip)) {
8278 					found_op = true;
8279 					break;
8280 				}
8281 			} while_for_each_ftrace_op(op);
8282 			mutex_unlock(&ftrace_lock);
8283 
8284 			/* The cleanup is optional, ignore any errors */
8285 			if (found_op && op->ops_func)
8286 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8287 		}
8288 	}
8289 	mutex_unlock(&direct_mutex);
8290 }
8291 
8292 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8293 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8294 
8295 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8296 
8297 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8298 {
8299 	return 0;
8300 }
8301 
8302 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8303 {
8304 }
8305 
8306 #define lock_direct_mutex()	do { } while (0)
8307 #define unlock_direct_mutex()	do { } while (0)
8308 
8309 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8310 
8311 /*
8312  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8313  */
8314 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8315 {
8316 	int ret;
8317 
8318 	ftrace_ops_init(ops);
8319 
8320 	mutex_lock(&ftrace_lock);
8321 
8322 	ret = ftrace_startup(ops, 0);
8323 
8324 	mutex_unlock(&ftrace_lock);
8325 
8326 	return ret;
8327 }
8328 
8329 /**
8330  * register_ftrace_function - register a function for profiling
8331  * @ops:	ops structure that holds the function for profiling.
8332  *
8333  * Register a function to be called by all functions in the
8334  * kernel.
8335  *
8336  * Note: @ops->func and all the functions it calls must be labeled
8337  *       with "notrace", otherwise it will go into a
8338  *       recursive loop.
8339  */
8340 int register_ftrace_function(struct ftrace_ops *ops)
8341 {
8342 	int ret;
8343 
8344 	lock_direct_mutex();
8345 	ret = prepare_direct_functions_for_ipmodify(ops);
8346 	if (ret < 0)
8347 		goto out_unlock;
8348 
8349 	ret = register_ftrace_function_nolock(ops);
8350 
8351 out_unlock:
8352 	unlock_direct_mutex();
8353 	return ret;
8354 }
8355 EXPORT_SYMBOL_GPL(register_ftrace_function);
8356 
8357 /**
8358  * unregister_ftrace_function - unregister a function for profiling.
8359  * @ops:	ops structure that holds the function to unregister
8360  *
8361  * Unregister a function that was added to be called by ftrace profiling.
8362  */
8363 int unregister_ftrace_function(struct ftrace_ops *ops)
8364 {
8365 	int ret;
8366 
8367 	mutex_lock(&ftrace_lock);
8368 	ret = ftrace_shutdown(ops, 0);
8369 	mutex_unlock(&ftrace_lock);
8370 
8371 	cleanup_direct_functions_after_ipmodify(ops);
8372 	return ret;
8373 }
8374 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8375 
8376 static int symbols_cmp(const void *a, const void *b)
8377 {
8378 	const char **str_a = (const char **) a;
8379 	const char **str_b = (const char **) b;
8380 
8381 	return strcmp(*str_a, *str_b);
8382 }
8383 
8384 struct kallsyms_data {
8385 	unsigned long *addrs;
8386 	const char **syms;
8387 	size_t cnt;
8388 	size_t found;
8389 };
8390 
8391 /* This function gets called for all kernel and module symbols
8392  * and returns 1 in case we resolved all the requested symbols,
8393  * 0 otherwise.
8394  */
8395 static int kallsyms_callback(void *data, const char *name,
8396 			     struct module *mod, unsigned long addr)
8397 {
8398 	struct kallsyms_data *args = data;
8399 	const char **sym;
8400 	int idx;
8401 
8402 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8403 	if (!sym)
8404 		return 0;
8405 
8406 	idx = sym - args->syms;
8407 	if (args->addrs[idx])
8408 		return 0;
8409 
8410 	if (!ftrace_location(addr))
8411 		return 0;
8412 
8413 	args->addrs[idx] = addr;
8414 	args->found++;
8415 	return args->found == args->cnt ? 1 : 0;
8416 }
8417 
8418 /**
8419  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8420  *
8421  * @sorted_syms: array of symbols pointers symbols to resolve,
8422  * must be alphabetically sorted
8423  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8424  * @addrs: array for storing resulting addresses
8425  *
8426  * This function looks up addresses for array of symbols provided in
8427  * @syms array (must be alphabetically sorted) and stores them in
8428  * @addrs array, which needs to be big enough to store at least @cnt
8429  * addresses.
8430  *
8431  * This function returns 0 if all provided symbols are found,
8432  * -ESRCH otherwise.
8433  */
8434 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8435 {
8436 	struct kallsyms_data args;
8437 	int found_all;
8438 
8439 	memset(addrs, 0, sizeof(*addrs) * cnt);
8440 	args.addrs = addrs;
8441 	args.syms = sorted_syms;
8442 	args.cnt = cnt;
8443 	args.found = 0;
8444 
8445 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8446 	if (found_all)
8447 		return 0;
8448 	found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args);
8449 	return found_all ? 0 : -ESRCH;
8450 }
8451 
8452 #ifdef CONFIG_SYSCTL
8453 
8454 #ifdef CONFIG_DYNAMIC_FTRACE
8455 static void ftrace_startup_sysctl(void)
8456 {
8457 	int command;
8458 
8459 	if (unlikely(ftrace_disabled))
8460 		return;
8461 
8462 	/* Force update next time */
8463 	saved_ftrace_func = NULL;
8464 	/* ftrace_start_up is true if we want ftrace running */
8465 	if (ftrace_start_up) {
8466 		command = FTRACE_UPDATE_CALLS;
8467 		if (ftrace_graph_active)
8468 			command |= FTRACE_START_FUNC_RET;
8469 		ftrace_startup_enable(command);
8470 	}
8471 }
8472 
8473 static void ftrace_shutdown_sysctl(void)
8474 {
8475 	int command;
8476 
8477 	if (unlikely(ftrace_disabled))
8478 		return;
8479 
8480 	/* ftrace_start_up is true if ftrace is running */
8481 	if (ftrace_start_up) {
8482 		command = FTRACE_DISABLE_CALLS;
8483 		if (ftrace_graph_active)
8484 			command |= FTRACE_STOP_FUNC_RET;
8485 		ftrace_run_update_code(command);
8486 	}
8487 }
8488 #else
8489 # define ftrace_startup_sysctl()       do { } while (0)
8490 # define ftrace_shutdown_sysctl()      do { } while (0)
8491 #endif /* CONFIG_DYNAMIC_FTRACE */
8492 
8493 static bool is_permanent_ops_registered(void)
8494 {
8495 	struct ftrace_ops *op;
8496 
8497 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8498 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8499 			return true;
8500 	} while_for_each_ftrace_op(op);
8501 
8502 	return false;
8503 }
8504 
8505 static int
8506 ftrace_enable_sysctl(struct ctl_table *table, int write,
8507 		     void *buffer, size_t *lenp, loff_t *ppos)
8508 {
8509 	int ret = -ENODEV;
8510 
8511 	mutex_lock(&ftrace_lock);
8512 
8513 	if (unlikely(ftrace_disabled))
8514 		goto out;
8515 
8516 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8517 
8518 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8519 		goto out;
8520 
8521 	if (ftrace_enabled) {
8522 
8523 		/* we are starting ftrace again */
8524 		if (rcu_dereference_protected(ftrace_ops_list,
8525 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8526 			update_ftrace_function();
8527 
8528 		ftrace_startup_sysctl();
8529 
8530 	} else {
8531 		if (is_permanent_ops_registered()) {
8532 			ftrace_enabled = true;
8533 			ret = -EBUSY;
8534 			goto out;
8535 		}
8536 
8537 		/* stopping ftrace calls (just send to ftrace_stub) */
8538 		ftrace_trace_function = ftrace_stub;
8539 
8540 		ftrace_shutdown_sysctl();
8541 	}
8542 
8543 	last_ftrace_enabled = !!ftrace_enabled;
8544  out:
8545 	mutex_unlock(&ftrace_lock);
8546 	return ret;
8547 }
8548 
8549 static struct ctl_table ftrace_sysctls[] = {
8550 	{
8551 		.procname       = "ftrace_enabled",
8552 		.data           = &ftrace_enabled,
8553 		.maxlen         = sizeof(int),
8554 		.mode           = 0644,
8555 		.proc_handler   = ftrace_enable_sysctl,
8556 	},
8557 	{}
8558 };
8559 
8560 static int __init ftrace_sysctl_init(void)
8561 {
8562 	register_sysctl_init("kernel", ftrace_sysctls);
8563 	return 0;
8564 }
8565 late_initcall(ftrace_sysctl_init);
8566 #endif
8567