1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct pt_regs *regs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct pt_regs *regs) 144 { 145 struct trace_array *tr = op->private; 146 int pid; 147 148 if (tr) { 149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 150 if (pid == FTRACE_PID_IGNORE) 151 return; 152 if (pid != FTRACE_PID_TRACE && 153 pid != current->pid) 154 return; 155 } 156 157 op->saved_func(ip, parent_ip, op, regs); 158 } 159 160 static void ftrace_sync_ipi(void *data) 161 { 162 /* Probably not needed, but do it anyway */ 163 smp_rmb(); 164 } 165 166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 167 { 168 /* 169 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 170 * then it needs to call the list anyway. 171 */ 172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 173 FTRACE_FORCE_LIST_FUNC) 174 return ftrace_ops_list_func; 175 176 return ftrace_ops_get_func(ops); 177 } 178 179 static void update_ftrace_function(void) 180 { 181 ftrace_func_t func; 182 183 /* 184 * Prepare the ftrace_ops that the arch callback will use. 185 * If there's only one ftrace_ops registered, the ftrace_ops_list 186 * will point to the ops we want. 187 */ 188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 189 lockdep_is_held(&ftrace_lock)); 190 191 /* If there's no ftrace_ops registered, just call the stub function */ 192 if (set_function_trace_op == &ftrace_list_end) { 193 func = ftrace_stub; 194 195 /* 196 * If we are at the end of the list and this ops is 197 * recursion safe and not dynamic and the arch supports passing ops, 198 * then have the mcount trampoline call the function directly. 199 */ 200 } else if (rcu_dereference_protected(ftrace_ops_list->next, 201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 202 func = ftrace_ops_get_list_func(ftrace_ops_list); 203 204 } else { 205 /* Just use the default ftrace_ops */ 206 set_function_trace_op = &ftrace_list_end; 207 func = ftrace_ops_list_func; 208 } 209 210 update_function_graph_func(); 211 212 /* If there's no change, then do nothing more here */ 213 if (ftrace_trace_function == func) 214 return; 215 216 /* 217 * If we are using the list function, it doesn't care 218 * about the function_trace_ops. 219 */ 220 if (func == ftrace_ops_list_func) { 221 ftrace_trace_function = func; 222 /* 223 * Don't even bother setting function_trace_ops, 224 * it would be racy to do so anyway. 225 */ 226 return; 227 } 228 229 #ifndef CONFIG_DYNAMIC_FTRACE 230 /* 231 * For static tracing, we need to be a bit more careful. 232 * The function change takes affect immediately. Thus, 233 * we need to coorditate the setting of the function_trace_ops 234 * with the setting of the ftrace_trace_function. 235 * 236 * Set the function to the list ops, which will call the 237 * function we want, albeit indirectly, but it handles the 238 * ftrace_ops and doesn't depend on function_trace_op. 239 */ 240 ftrace_trace_function = ftrace_ops_list_func; 241 /* 242 * Make sure all CPUs see this. Yes this is slow, but static 243 * tracing is slow and nasty to have enabled. 244 */ 245 synchronize_rcu_tasks_rude(); 246 /* Now all cpus are using the list ops. */ 247 function_trace_op = set_function_trace_op; 248 /* Make sure the function_trace_op is visible on all CPUs */ 249 smp_wmb(); 250 /* Nasty way to force a rmb on all cpus */ 251 smp_call_function(ftrace_sync_ipi, NULL, 1); 252 /* OK, we are all set to update the ftrace_trace_function now! */ 253 #endif /* !CONFIG_DYNAMIC_FTRACE */ 254 255 ftrace_trace_function = func; 256 } 257 258 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 259 struct ftrace_ops *ops) 260 { 261 rcu_assign_pointer(ops->next, *list); 262 263 /* 264 * We are entering ops into the list but another 265 * CPU might be walking that list. We need to make sure 266 * the ops->next pointer is valid before another CPU sees 267 * the ops pointer included into the list. 268 */ 269 rcu_assign_pointer(*list, ops); 270 } 271 272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 273 struct ftrace_ops *ops) 274 { 275 struct ftrace_ops **p; 276 277 /* 278 * If we are removing the last function, then simply point 279 * to the ftrace_stub. 280 */ 281 if (rcu_dereference_protected(*list, 282 lockdep_is_held(&ftrace_lock)) == ops && 283 rcu_dereference_protected(ops->next, 284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 285 *list = &ftrace_list_end; 286 return 0; 287 } 288 289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 290 if (*p == ops) 291 break; 292 293 if (*p != ops) 294 return -1; 295 296 *p = (*p)->next; 297 return 0; 298 } 299 300 static void ftrace_update_trampoline(struct ftrace_ops *ops); 301 302 int __register_ftrace_function(struct ftrace_ops *ops) 303 { 304 if (ops->flags & FTRACE_OPS_FL_DELETED) 305 return -EINVAL; 306 307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 308 return -EBUSY; 309 310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 311 /* 312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 315 */ 316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 318 return -EINVAL; 319 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 322 #endif 323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 324 return -EBUSY; 325 326 if (!core_kernel_data((unsigned long)ops)) 327 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 328 329 add_ftrace_ops(&ftrace_ops_list, ops); 330 331 /* Always save the function, and reset at unregistering */ 332 ops->saved_func = ops->func; 333 334 if (ftrace_pids_enabled(ops)) 335 ops->func = ftrace_pid_func; 336 337 ftrace_update_trampoline(ops); 338 339 if (ftrace_enabled) 340 update_ftrace_function(); 341 342 return 0; 343 } 344 345 int __unregister_ftrace_function(struct ftrace_ops *ops) 346 { 347 int ret; 348 349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 350 return -EBUSY; 351 352 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 353 354 if (ret < 0) 355 return ret; 356 357 if (ftrace_enabled) 358 update_ftrace_function(); 359 360 ops->func = ops->saved_func; 361 362 return 0; 363 } 364 365 static void ftrace_update_pid_func(void) 366 { 367 struct ftrace_ops *op; 368 369 /* Only do something if we are tracing something */ 370 if (ftrace_trace_function == ftrace_stub) 371 return; 372 373 do_for_each_ftrace_op(op, ftrace_ops_list) { 374 if (op->flags & FTRACE_OPS_FL_PID) { 375 op->func = ftrace_pids_enabled(op) ? 376 ftrace_pid_func : op->saved_func; 377 ftrace_update_trampoline(op); 378 } 379 } while_for_each_ftrace_op(op); 380 381 update_ftrace_function(); 382 } 383 384 #ifdef CONFIG_FUNCTION_PROFILER 385 struct ftrace_profile { 386 struct hlist_node node; 387 unsigned long ip; 388 unsigned long counter; 389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 390 unsigned long long time; 391 unsigned long long time_squared; 392 #endif 393 }; 394 395 struct ftrace_profile_page { 396 struct ftrace_profile_page *next; 397 unsigned long index; 398 struct ftrace_profile records[]; 399 }; 400 401 struct ftrace_profile_stat { 402 atomic_t disabled; 403 struct hlist_head *hash; 404 struct ftrace_profile_page *pages; 405 struct ftrace_profile_page *start; 406 struct tracer_stat stat; 407 }; 408 409 #define PROFILE_RECORDS_SIZE \ 410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 411 412 #define PROFILES_PER_PAGE \ 413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 414 415 static int ftrace_profile_enabled __read_mostly; 416 417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 418 static DEFINE_MUTEX(ftrace_profile_lock); 419 420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 421 422 #define FTRACE_PROFILE_HASH_BITS 10 423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 424 425 static void * 426 function_stat_next(void *v, int idx) 427 { 428 struct ftrace_profile *rec = v; 429 struct ftrace_profile_page *pg; 430 431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 432 433 again: 434 if (idx != 0) 435 rec++; 436 437 if ((void *)rec >= (void *)&pg->records[pg->index]) { 438 pg = pg->next; 439 if (!pg) 440 return NULL; 441 rec = &pg->records[0]; 442 if (!rec->counter) 443 goto again; 444 } 445 446 return rec; 447 } 448 449 static void *function_stat_start(struct tracer_stat *trace) 450 { 451 struct ftrace_profile_stat *stat = 452 container_of(trace, struct ftrace_profile_stat, stat); 453 454 if (!stat || !stat->start) 455 return NULL; 456 457 return function_stat_next(&stat->start->records[0], 0); 458 } 459 460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 461 /* function graph compares on total time */ 462 static int function_stat_cmp(const void *p1, const void *p2) 463 { 464 const struct ftrace_profile *a = p1; 465 const struct ftrace_profile *b = p2; 466 467 if (a->time < b->time) 468 return -1; 469 if (a->time > b->time) 470 return 1; 471 else 472 return 0; 473 } 474 #else 475 /* not function graph compares against hits */ 476 static int function_stat_cmp(const void *p1, const void *p2) 477 { 478 const struct ftrace_profile *a = p1; 479 const struct ftrace_profile *b = p2; 480 481 if (a->counter < b->counter) 482 return -1; 483 if (a->counter > b->counter) 484 return 1; 485 else 486 return 0; 487 } 488 #endif 489 490 static int function_stat_headers(struct seq_file *m) 491 { 492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 493 seq_puts(m, " Function " 494 "Hit Time Avg s^2\n" 495 " -------- " 496 "--- ---- --- ---\n"); 497 #else 498 seq_puts(m, " Function Hit\n" 499 " -------- ---\n"); 500 #endif 501 return 0; 502 } 503 504 static int function_stat_show(struct seq_file *m, void *v) 505 { 506 struct ftrace_profile *rec = v; 507 char str[KSYM_SYMBOL_LEN]; 508 int ret = 0; 509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 510 static struct trace_seq s; 511 unsigned long long avg; 512 unsigned long long stddev; 513 #endif 514 mutex_lock(&ftrace_profile_lock); 515 516 /* we raced with function_profile_reset() */ 517 if (unlikely(rec->counter == 0)) { 518 ret = -EBUSY; 519 goto out; 520 } 521 522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 523 avg = div64_ul(rec->time, rec->counter); 524 if (tracing_thresh && (avg < tracing_thresh)) 525 goto out; 526 #endif 527 528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 529 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 530 531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 532 seq_puts(m, " "); 533 534 /* Sample standard deviation (s^2) */ 535 if (rec->counter <= 1) 536 stddev = 0; 537 else { 538 /* 539 * Apply Welford's method: 540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 541 */ 542 stddev = rec->counter * rec->time_squared - 543 rec->time * rec->time; 544 545 /* 546 * Divide only 1000 for ns^2 -> us^2 conversion. 547 * trace_print_graph_duration will divide 1000 again. 548 */ 549 stddev = div64_ul(stddev, 550 rec->counter * (rec->counter - 1) * 1000); 551 } 552 553 trace_seq_init(&s); 554 trace_print_graph_duration(rec->time, &s); 555 trace_seq_puts(&s, " "); 556 trace_print_graph_duration(avg, &s); 557 trace_seq_puts(&s, " "); 558 trace_print_graph_duration(stddev, &s); 559 trace_print_seq(m, &s); 560 #endif 561 seq_putc(m, '\n'); 562 out: 563 mutex_unlock(&ftrace_profile_lock); 564 565 return ret; 566 } 567 568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 569 { 570 struct ftrace_profile_page *pg; 571 572 pg = stat->pages = stat->start; 573 574 while (pg) { 575 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 576 pg->index = 0; 577 pg = pg->next; 578 } 579 580 memset(stat->hash, 0, 581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 582 } 583 584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 585 { 586 struct ftrace_profile_page *pg; 587 int functions; 588 int pages; 589 int i; 590 591 /* If we already allocated, do nothing */ 592 if (stat->pages) 593 return 0; 594 595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 596 if (!stat->pages) 597 return -ENOMEM; 598 599 #ifdef CONFIG_DYNAMIC_FTRACE 600 functions = ftrace_update_tot_cnt; 601 #else 602 /* 603 * We do not know the number of functions that exist because 604 * dynamic tracing is what counts them. With past experience 605 * we have around 20K functions. That should be more than enough. 606 * It is highly unlikely we will execute every function in 607 * the kernel. 608 */ 609 functions = 20000; 610 #endif 611 612 pg = stat->start = stat->pages; 613 614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 615 616 for (i = 1; i < pages; i++) { 617 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 618 if (!pg->next) 619 goto out_free; 620 pg = pg->next; 621 } 622 623 return 0; 624 625 out_free: 626 pg = stat->start; 627 while (pg) { 628 unsigned long tmp = (unsigned long)pg; 629 630 pg = pg->next; 631 free_page(tmp); 632 } 633 634 stat->pages = NULL; 635 stat->start = NULL; 636 637 return -ENOMEM; 638 } 639 640 static int ftrace_profile_init_cpu(int cpu) 641 { 642 struct ftrace_profile_stat *stat; 643 int size; 644 645 stat = &per_cpu(ftrace_profile_stats, cpu); 646 647 if (stat->hash) { 648 /* If the profile is already created, simply reset it */ 649 ftrace_profile_reset(stat); 650 return 0; 651 } 652 653 /* 654 * We are profiling all functions, but usually only a few thousand 655 * functions are hit. We'll make a hash of 1024 items. 656 */ 657 size = FTRACE_PROFILE_HASH_SIZE; 658 659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 660 661 if (!stat->hash) 662 return -ENOMEM; 663 664 /* Preallocate the function profiling pages */ 665 if (ftrace_profile_pages_init(stat) < 0) { 666 kfree(stat->hash); 667 stat->hash = NULL; 668 return -ENOMEM; 669 } 670 671 return 0; 672 } 673 674 static int ftrace_profile_init(void) 675 { 676 int cpu; 677 int ret = 0; 678 679 for_each_possible_cpu(cpu) { 680 ret = ftrace_profile_init_cpu(cpu); 681 if (ret) 682 break; 683 } 684 685 return ret; 686 } 687 688 /* interrupts must be disabled */ 689 static struct ftrace_profile * 690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 691 { 692 struct ftrace_profile *rec; 693 struct hlist_head *hhd; 694 unsigned long key; 695 696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 697 hhd = &stat->hash[key]; 698 699 if (hlist_empty(hhd)) 700 return NULL; 701 702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 703 if (rec->ip == ip) 704 return rec; 705 } 706 707 return NULL; 708 } 709 710 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 711 struct ftrace_profile *rec) 712 { 713 unsigned long key; 714 715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 716 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 717 } 718 719 /* 720 * The memory is already allocated, this simply finds a new record to use. 721 */ 722 static struct ftrace_profile * 723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec = NULL; 726 727 /* prevent recursion (from NMIs) */ 728 if (atomic_inc_return(&stat->disabled) != 1) 729 goto out; 730 731 /* 732 * Try to find the function again since an NMI 733 * could have added it 734 */ 735 rec = ftrace_find_profiled_func(stat, ip); 736 if (rec) 737 goto out; 738 739 if (stat->pages->index == PROFILES_PER_PAGE) { 740 if (!stat->pages->next) 741 goto out; 742 stat->pages = stat->pages->next; 743 } 744 745 rec = &stat->pages->records[stat->pages->index++]; 746 rec->ip = ip; 747 ftrace_add_profile(stat, rec); 748 749 out: 750 atomic_dec(&stat->disabled); 751 752 return rec; 753 } 754 755 static void 756 function_profile_call(unsigned long ip, unsigned long parent_ip, 757 struct ftrace_ops *ops, struct pt_regs *regs) 758 { 759 struct ftrace_profile_stat *stat; 760 struct ftrace_profile *rec; 761 unsigned long flags; 762 763 if (!ftrace_profile_enabled) 764 return; 765 766 local_irq_save(flags); 767 768 stat = this_cpu_ptr(&ftrace_profile_stats); 769 if (!stat->hash || !ftrace_profile_enabled) 770 goto out; 771 772 rec = ftrace_find_profiled_func(stat, ip); 773 if (!rec) { 774 rec = ftrace_profile_alloc(stat, ip); 775 if (!rec) 776 goto out; 777 } 778 779 rec->counter++; 780 out: 781 local_irq_restore(flags); 782 } 783 784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 785 static bool fgraph_graph_time = true; 786 787 void ftrace_graph_graph_time_control(bool enable) 788 { 789 fgraph_graph_time = enable; 790 } 791 792 static int profile_graph_entry(struct ftrace_graph_ent *trace) 793 { 794 struct ftrace_ret_stack *ret_stack; 795 796 function_profile_call(trace->func, 0, NULL, NULL); 797 798 /* If function graph is shutting down, ret_stack can be NULL */ 799 if (!current->ret_stack) 800 return 0; 801 802 ret_stack = ftrace_graph_get_ret_stack(current, 0); 803 if (ret_stack) 804 ret_stack->subtime = 0; 805 806 return 1; 807 } 808 809 static void profile_graph_return(struct ftrace_graph_ret *trace) 810 { 811 struct ftrace_ret_stack *ret_stack; 812 struct ftrace_profile_stat *stat; 813 unsigned long long calltime; 814 struct ftrace_profile *rec; 815 unsigned long flags; 816 817 local_irq_save(flags); 818 stat = this_cpu_ptr(&ftrace_profile_stats); 819 if (!stat->hash || !ftrace_profile_enabled) 820 goto out; 821 822 /* If the calltime was zero'd ignore it */ 823 if (!trace->calltime) 824 goto out; 825 826 calltime = trace->rettime - trace->calltime; 827 828 if (!fgraph_graph_time) { 829 830 /* Append this call time to the parent time to subtract */ 831 ret_stack = ftrace_graph_get_ret_stack(current, 1); 832 if (ret_stack) 833 ret_stack->subtime += calltime; 834 835 ret_stack = ftrace_graph_get_ret_stack(current, 0); 836 if (ret_stack && ret_stack->subtime < calltime) 837 calltime -= ret_stack->subtime; 838 else 839 calltime = 0; 840 } 841 842 rec = ftrace_find_profiled_func(stat, trace->func); 843 if (rec) { 844 rec->time += calltime; 845 rec->time_squared += calltime * calltime; 846 } 847 848 out: 849 local_irq_restore(flags); 850 } 851 852 static struct fgraph_ops fprofiler_ops = { 853 .entryfunc = &profile_graph_entry, 854 .retfunc = &profile_graph_return, 855 }; 856 857 static int register_ftrace_profiler(void) 858 { 859 return register_ftrace_graph(&fprofiler_ops); 860 } 861 862 static void unregister_ftrace_profiler(void) 863 { 864 unregister_ftrace_graph(&fprofiler_ops); 865 } 866 #else 867 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 868 .func = function_profile_call, 869 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 870 INIT_OPS_HASH(ftrace_profile_ops) 871 }; 872 873 static int register_ftrace_profiler(void) 874 { 875 return register_ftrace_function(&ftrace_profile_ops); 876 } 877 878 static void unregister_ftrace_profiler(void) 879 { 880 unregister_ftrace_function(&ftrace_profile_ops); 881 } 882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 883 884 static ssize_t 885 ftrace_profile_write(struct file *filp, const char __user *ubuf, 886 size_t cnt, loff_t *ppos) 887 { 888 unsigned long val; 889 int ret; 890 891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 892 if (ret) 893 return ret; 894 895 val = !!val; 896 897 mutex_lock(&ftrace_profile_lock); 898 if (ftrace_profile_enabled ^ val) { 899 if (val) { 900 ret = ftrace_profile_init(); 901 if (ret < 0) { 902 cnt = ret; 903 goto out; 904 } 905 906 ret = register_ftrace_profiler(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 ftrace_profile_enabled = 1; 912 } else { 913 ftrace_profile_enabled = 0; 914 /* 915 * unregister_ftrace_profiler calls stop_machine 916 * so this acts like an synchronize_rcu. 917 */ 918 unregister_ftrace_profiler(); 919 } 920 } 921 out: 922 mutex_unlock(&ftrace_profile_lock); 923 924 *ppos += cnt; 925 926 return cnt; 927 } 928 929 static ssize_t 930 ftrace_profile_read(struct file *filp, char __user *ubuf, 931 size_t cnt, loff_t *ppos) 932 { 933 char buf[64]; /* big enough to hold a number */ 934 int r; 935 936 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 938 } 939 940 static const struct file_operations ftrace_profile_fops = { 941 .open = tracing_open_generic, 942 .read = ftrace_profile_read, 943 .write = ftrace_profile_write, 944 .llseek = default_llseek, 945 }; 946 947 /* used to initialize the real stat files */ 948 static struct tracer_stat function_stats __initdata = { 949 .name = "functions", 950 .stat_start = function_stat_start, 951 .stat_next = function_stat_next, 952 .stat_cmp = function_stat_cmp, 953 .stat_headers = function_stat_headers, 954 .stat_show = function_stat_show 955 }; 956 957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 958 { 959 struct ftrace_profile_stat *stat; 960 struct dentry *entry; 961 char *name; 962 int ret; 963 int cpu; 964 965 for_each_possible_cpu(cpu) { 966 stat = &per_cpu(ftrace_profile_stats, cpu); 967 968 name = kasprintf(GFP_KERNEL, "function%d", cpu); 969 if (!name) { 970 /* 971 * The files created are permanent, if something happens 972 * we still do not free memory. 973 */ 974 WARN(1, 975 "Could not allocate stat file for cpu %d\n", 976 cpu); 977 return; 978 } 979 stat->stat = function_stats; 980 stat->stat.name = name; 981 ret = register_stat_tracer(&stat->stat); 982 if (ret) { 983 WARN(1, 984 "Could not register function stat for cpu %d\n", 985 cpu); 986 kfree(name); 987 return; 988 } 989 } 990 991 entry = tracefs_create_file("function_profile_enabled", 0644, 992 d_tracer, NULL, &ftrace_profile_fops); 993 if (!entry) 994 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 995 } 996 997 #else /* CONFIG_FUNCTION_PROFILER */ 998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 999 { 1000 } 1001 #endif /* CONFIG_FUNCTION_PROFILER */ 1002 1003 #ifdef CONFIG_DYNAMIC_FTRACE 1004 1005 static struct ftrace_ops *removed_ops; 1006 1007 /* 1008 * Set when doing a global update, like enabling all recs or disabling them. 1009 * It is not set when just updating a single ftrace_ops. 1010 */ 1011 static bool update_all_ops; 1012 1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1014 # error Dynamic ftrace depends on MCOUNT_RECORD 1015 #endif 1016 1017 struct ftrace_func_probe { 1018 struct ftrace_probe_ops *probe_ops; 1019 struct ftrace_ops ops; 1020 struct trace_array *tr; 1021 struct list_head list; 1022 void *data; 1023 int ref; 1024 }; 1025 1026 /* 1027 * We make these constant because no one should touch them, 1028 * but they are used as the default "empty hash", to avoid allocating 1029 * it all the time. These are in a read only section such that if 1030 * anyone does try to modify it, it will cause an exception. 1031 */ 1032 static const struct hlist_head empty_buckets[1]; 1033 static const struct ftrace_hash empty_hash = { 1034 .buckets = (struct hlist_head *)empty_buckets, 1035 }; 1036 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1037 1038 struct ftrace_ops global_ops = { 1039 .func = ftrace_stub, 1040 .local_hash.notrace_hash = EMPTY_HASH, 1041 .local_hash.filter_hash = EMPTY_HASH, 1042 INIT_OPS_HASH(global_ops) 1043 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1044 FTRACE_OPS_FL_INITIALIZED | 1045 FTRACE_OPS_FL_PID, 1046 }; 1047 1048 /* 1049 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1050 */ 1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1052 { 1053 struct ftrace_ops *op = NULL; 1054 1055 /* 1056 * Some of the ops may be dynamically allocated, 1057 * they are freed after a synchronize_rcu(). 1058 */ 1059 preempt_disable_notrace(); 1060 1061 do_for_each_ftrace_op(op, ftrace_ops_list) { 1062 /* 1063 * This is to check for dynamically allocated trampolines. 1064 * Trampolines that are in kernel text will have 1065 * core_kernel_text() return true. 1066 */ 1067 if (op->trampoline && op->trampoline_size) 1068 if (addr >= op->trampoline && 1069 addr < op->trampoline + op->trampoline_size) { 1070 preempt_enable_notrace(); 1071 return op; 1072 } 1073 } while_for_each_ftrace_op(op); 1074 preempt_enable_notrace(); 1075 1076 return NULL; 1077 } 1078 1079 /* 1080 * This is used by __kernel_text_address() to return true if the 1081 * address is on a dynamically allocated trampoline that would 1082 * not return true for either core_kernel_text() or 1083 * is_module_text_address(). 1084 */ 1085 bool is_ftrace_trampoline(unsigned long addr) 1086 { 1087 return ftrace_ops_trampoline(addr) != NULL; 1088 } 1089 1090 struct ftrace_page { 1091 struct ftrace_page *next; 1092 struct dyn_ftrace *records; 1093 int index; 1094 int size; 1095 }; 1096 1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1099 1100 static struct ftrace_page *ftrace_pages_start; 1101 static struct ftrace_page *ftrace_pages; 1102 1103 static __always_inline unsigned long 1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1105 { 1106 if (hash->size_bits > 0) 1107 return hash_long(ip, hash->size_bits); 1108 1109 return 0; 1110 } 1111 1112 /* Only use this function if ftrace_hash_empty() has already been tested */ 1113 static __always_inline struct ftrace_func_entry * 1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1115 { 1116 unsigned long key; 1117 struct ftrace_func_entry *entry; 1118 struct hlist_head *hhd; 1119 1120 key = ftrace_hash_key(hash, ip); 1121 hhd = &hash->buckets[key]; 1122 1123 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1124 if (entry->ip == ip) 1125 return entry; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1132 * @hash: The hash to look at 1133 * @ip: The instruction pointer to test 1134 * 1135 * Search a given @hash to see if a given instruction pointer (@ip) 1136 * exists in it. 1137 * 1138 * Returns the entry that holds the @ip if found. NULL otherwise. 1139 */ 1140 struct ftrace_func_entry * 1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1142 { 1143 if (ftrace_hash_empty(hash)) 1144 return NULL; 1145 1146 return __ftrace_lookup_ip(hash, ip); 1147 } 1148 1149 static void __add_hash_entry(struct ftrace_hash *hash, 1150 struct ftrace_func_entry *entry) 1151 { 1152 struct hlist_head *hhd; 1153 unsigned long key; 1154 1155 key = ftrace_hash_key(hash, entry->ip); 1156 hhd = &hash->buckets[key]; 1157 hlist_add_head(&entry->hlist, hhd); 1158 hash->count++; 1159 } 1160 1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1162 { 1163 struct ftrace_func_entry *entry; 1164 1165 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1166 if (!entry) 1167 return -ENOMEM; 1168 1169 entry->ip = ip; 1170 __add_hash_entry(hash, entry); 1171 1172 return 0; 1173 } 1174 1175 static void 1176 free_hash_entry(struct ftrace_hash *hash, 1177 struct ftrace_func_entry *entry) 1178 { 1179 hlist_del(&entry->hlist); 1180 kfree(entry); 1181 hash->count--; 1182 } 1183 1184 static void 1185 remove_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del_rcu(&entry->hlist); 1189 hash->count--; 1190 } 1191 1192 static void ftrace_hash_clear(struct ftrace_hash *hash) 1193 { 1194 struct hlist_head *hhd; 1195 struct hlist_node *tn; 1196 struct ftrace_func_entry *entry; 1197 int size = 1 << hash->size_bits; 1198 int i; 1199 1200 if (!hash->count) 1201 return; 1202 1203 for (i = 0; i < size; i++) { 1204 hhd = &hash->buckets[i]; 1205 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1206 free_hash_entry(hash, entry); 1207 } 1208 FTRACE_WARN_ON(hash->count); 1209 } 1210 1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1212 { 1213 list_del(&ftrace_mod->list); 1214 kfree(ftrace_mod->module); 1215 kfree(ftrace_mod->func); 1216 kfree(ftrace_mod); 1217 } 1218 1219 static void clear_ftrace_mod_list(struct list_head *head) 1220 { 1221 struct ftrace_mod_load *p, *n; 1222 1223 /* stack tracer isn't supported yet */ 1224 if (!head) 1225 return; 1226 1227 mutex_lock(&ftrace_lock); 1228 list_for_each_entry_safe(p, n, head, list) 1229 free_ftrace_mod(p); 1230 mutex_unlock(&ftrace_lock); 1231 } 1232 1233 static void free_ftrace_hash(struct ftrace_hash *hash) 1234 { 1235 if (!hash || hash == EMPTY_HASH) 1236 return; 1237 ftrace_hash_clear(hash); 1238 kfree(hash->buckets); 1239 kfree(hash); 1240 } 1241 1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1243 { 1244 struct ftrace_hash *hash; 1245 1246 hash = container_of(rcu, struct ftrace_hash, rcu); 1247 free_ftrace_hash(hash); 1248 } 1249 1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1251 { 1252 if (!hash || hash == EMPTY_HASH) 1253 return; 1254 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1255 } 1256 1257 void ftrace_free_filter(struct ftrace_ops *ops) 1258 { 1259 ftrace_ops_init(ops); 1260 free_ftrace_hash(ops->func_hash->filter_hash); 1261 free_ftrace_hash(ops->func_hash->notrace_hash); 1262 } 1263 1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1265 { 1266 struct ftrace_hash *hash; 1267 int size; 1268 1269 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1270 if (!hash) 1271 return NULL; 1272 1273 size = 1 << size_bits; 1274 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1275 1276 if (!hash->buckets) { 1277 kfree(hash); 1278 return NULL; 1279 } 1280 1281 hash->size_bits = size_bits; 1282 1283 return hash; 1284 } 1285 1286 1287 static int ftrace_add_mod(struct trace_array *tr, 1288 const char *func, const char *module, 1289 int enable) 1290 { 1291 struct ftrace_mod_load *ftrace_mod; 1292 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1293 1294 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1295 if (!ftrace_mod) 1296 return -ENOMEM; 1297 1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1300 ftrace_mod->enable = enable; 1301 1302 if (!ftrace_mod->func || !ftrace_mod->module) 1303 goto out_free; 1304 1305 list_add(&ftrace_mod->list, mod_head); 1306 1307 return 0; 1308 1309 out_free: 1310 free_ftrace_mod(ftrace_mod); 1311 1312 return -ENOMEM; 1313 } 1314 1315 static struct ftrace_hash * 1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1317 { 1318 struct ftrace_func_entry *entry; 1319 struct ftrace_hash *new_hash; 1320 int size; 1321 int ret; 1322 int i; 1323 1324 new_hash = alloc_ftrace_hash(size_bits); 1325 if (!new_hash) 1326 return NULL; 1327 1328 if (hash) 1329 new_hash->flags = hash->flags; 1330 1331 /* Empty hash? */ 1332 if (ftrace_hash_empty(hash)) 1333 return new_hash; 1334 1335 size = 1 << hash->size_bits; 1336 for (i = 0; i < size; i++) { 1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1338 ret = add_hash_entry(new_hash, entry->ip); 1339 if (ret < 0) 1340 goto free_hash; 1341 } 1342 } 1343 1344 FTRACE_WARN_ON(new_hash->count != hash->count); 1345 1346 return new_hash; 1347 1348 free_hash: 1349 free_ftrace_hash(new_hash); 1350 return NULL; 1351 } 1352 1353 static void 1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1355 static void 1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1357 1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1359 struct ftrace_hash *new_hash); 1360 1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1362 { 1363 struct ftrace_func_entry *entry; 1364 struct ftrace_hash *new_hash; 1365 struct hlist_head *hhd; 1366 struct hlist_node *tn; 1367 int bits = 0; 1368 int i; 1369 1370 /* 1371 * Make the hash size about 1/2 the # found 1372 */ 1373 for (size /= 2; size; size >>= 1) 1374 bits++; 1375 1376 /* Don't allocate too much */ 1377 if (bits > FTRACE_HASH_MAX_BITS) 1378 bits = FTRACE_HASH_MAX_BITS; 1379 1380 new_hash = alloc_ftrace_hash(bits); 1381 if (!new_hash) 1382 return NULL; 1383 1384 new_hash->flags = src->flags; 1385 1386 size = 1 << src->size_bits; 1387 for (i = 0; i < size; i++) { 1388 hhd = &src->buckets[i]; 1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1390 remove_hash_entry(src, entry); 1391 __add_hash_entry(new_hash, entry); 1392 } 1393 } 1394 return new_hash; 1395 } 1396 1397 static struct ftrace_hash * 1398 __ftrace_hash_move(struct ftrace_hash *src) 1399 { 1400 int size = src->count; 1401 1402 /* 1403 * If the new source is empty, just return the empty_hash. 1404 */ 1405 if (ftrace_hash_empty(src)) 1406 return EMPTY_HASH; 1407 1408 return dup_hash(src, size); 1409 } 1410 1411 static int 1412 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1413 struct ftrace_hash **dst, struct ftrace_hash *src) 1414 { 1415 struct ftrace_hash *new_hash; 1416 int ret; 1417 1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1420 return -EINVAL; 1421 1422 new_hash = __ftrace_hash_move(src); 1423 if (!new_hash) 1424 return -ENOMEM; 1425 1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1427 if (enable) { 1428 /* IPMODIFY should be updated only when filter_hash updating */ 1429 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1430 if (ret < 0) { 1431 free_ftrace_hash(new_hash); 1432 return ret; 1433 } 1434 } 1435 1436 /* 1437 * Remove the current set, update the hash and add 1438 * them back. 1439 */ 1440 ftrace_hash_rec_disable_modify(ops, enable); 1441 1442 rcu_assign_pointer(*dst, new_hash); 1443 1444 ftrace_hash_rec_enable_modify(ops, enable); 1445 1446 return 0; 1447 } 1448 1449 static bool hash_contains_ip(unsigned long ip, 1450 struct ftrace_ops_hash *hash) 1451 { 1452 /* 1453 * The function record is a match if it exists in the filter 1454 * hash and not in the notrace hash. Note, an emty hash is 1455 * considered a match for the filter hash, but an empty 1456 * notrace hash is considered not in the notrace hash. 1457 */ 1458 return (ftrace_hash_empty(hash->filter_hash) || 1459 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1460 (ftrace_hash_empty(hash->notrace_hash) || 1461 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1462 } 1463 1464 /* 1465 * Test the hashes for this ops to see if we want to call 1466 * the ops->func or not. 1467 * 1468 * It's a match if the ip is in the ops->filter_hash or 1469 * the filter_hash does not exist or is empty, 1470 * AND 1471 * the ip is not in the ops->notrace_hash. 1472 * 1473 * This needs to be called with preemption disabled as 1474 * the hashes are freed with call_rcu(). 1475 */ 1476 int 1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1478 { 1479 struct ftrace_ops_hash hash; 1480 int ret; 1481 1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1483 /* 1484 * There's a small race when adding ops that the ftrace handler 1485 * that wants regs, may be called without them. We can not 1486 * allow that handler to be called if regs is NULL. 1487 */ 1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1489 return 0; 1490 #endif 1491 1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1494 1495 if (hash_contains_ip(ip, &hash)) 1496 ret = 1; 1497 else 1498 ret = 0; 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * This is a double for. Do not use 'break' to break out of the loop, 1505 * you must use a goto. 1506 */ 1507 #define do_for_each_ftrace_rec(pg, rec) \ 1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1509 int _____i; \ 1510 for (_____i = 0; _____i < pg->index; _____i++) { \ 1511 rec = &pg->records[_____i]; 1512 1513 #define while_for_each_ftrace_rec() \ 1514 } \ 1515 } 1516 1517 1518 static int ftrace_cmp_recs(const void *a, const void *b) 1519 { 1520 const struct dyn_ftrace *key = a; 1521 const struct dyn_ftrace *rec = b; 1522 1523 if (key->flags < rec->ip) 1524 return -1; 1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1526 return 1; 1527 return 0; 1528 } 1529 1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1531 { 1532 struct ftrace_page *pg; 1533 struct dyn_ftrace *rec = NULL; 1534 struct dyn_ftrace key; 1535 1536 key.ip = start; 1537 key.flags = end; /* overload flags, as it is unsigned long */ 1538 1539 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1540 if (end < pg->records[0].ip || 1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1542 continue; 1543 rec = bsearch(&key, pg->records, pg->index, 1544 sizeof(struct dyn_ftrace), 1545 ftrace_cmp_recs); 1546 if (rec) 1547 break; 1548 } 1549 return rec; 1550 } 1551 1552 /** 1553 * ftrace_location_range - return the first address of a traced location 1554 * if it touches the given ip range 1555 * @start: start of range to search. 1556 * @end: end of range to search (inclusive). @end points to the last byte 1557 * to check. 1558 * 1559 * Returns rec->ip if the related ftrace location is a least partly within 1560 * the given address range. That is, the first address of the instruction 1561 * that is either a NOP or call to the function tracer. It checks the ftrace 1562 * internal tables to determine if the address belongs or not. 1563 */ 1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1565 { 1566 struct dyn_ftrace *rec; 1567 1568 rec = lookup_rec(start, end); 1569 if (rec) 1570 return rec->ip; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * ftrace_location - return true if the ip giving is a traced location 1577 * @ip: the instruction pointer to check 1578 * 1579 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1580 * That is, the instruction that is either a NOP or call to 1581 * the function tracer. It checks the ftrace internal tables to 1582 * determine if the address belongs or not. 1583 */ 1584 unsigned long ftrace_location(unsigned long ip) 1585 { 1586 return ftrace_location_range(ip, ip); 1587 } 1588 1589 /** 1590 * ftrace_text_reserved - return true if range contains an ftrace location 1591 * @start: start of range to search 1592 * @end: end of range to search (inclusive). @end points to the last byte to check. 1593 * 1594 * Returns 1 if @start and @end contains a ftrace location. 1595 * That is, the instruction that is either a NOP or call to 1596 * the function tracer. It checks the ftrace internal tables to 1597 * determine if the address belongs or not. 1598 */ 1599 int ftrace_text_reserved(const void *start, const void *end) 1600 { 1601 unsigned long ret; 1602 1603 ret = ftrace_location_range((unsigned long)start, 1604 (unsigned long)end); 1605 1606 return (int)!!ret; 1607 } 1608 1609 /* Test if ops registered to this rec needs regs */ 1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1611 { 1612 struct ftrace_ops *ops; 1613 bool keep_regs = false; 1614 1615 for (ops = ftrace_ops_list; 1616 ops != &ftrace_list_end; ops = ops->next) { 1617 /* pass rec in as regs to have non-NULL val */ 1618 if (ftrace_ops_test(ops, rec->ip, rec)) { 1619 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1620 keep_regs = true; 1621 break; 1622 } 1623 } 1624 } 1625 1626 return keep_regs; 1627 } 1628 1629 static struct ftrace_ops * 1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1631 static struct ftrace_ops * 1632 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1633 1634 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1635 int filter_hash, 1636 bool inc) 1637 { 1638 struct ftrace_hash *hash; 1639 struct ftrace_hash *other_hash; 1640 struct ftrace_page *pg; 1641 struct dyn_ftrace *rec; 1642 bool update = false; 1643 int count = 0; 1644 int all = false; 1645 1646 /* Only update if the ops has been registered */ 1647 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1648 return false; 1649 1650 /* 1651 * In the filter_hash case: 1652 * If the count is zero, we update all records. 1653 * Otherwise we just update the items in the hash. 1654 * 1655 * In the notrace_hash case: 1656 * We enable the update in the hash. 1657 * As disabling notrace means enabling the tracing, 1658 * and enabling notrace means disabling, the inc variable 1659 * gets inversed. 1660 */ 1661 if (filter_hash) { 1662 hash = ops->func_hash->filter_hash; 1663 other_hash = ops->func_hash->notrace_hash; 1664 if (ftrace_hash_empty(hash)) 1665 all = true; 1666 } else { 1667 inc = !inc; 1668 hash = ops->func_hash->notrace_hash; 1669 other_hash = ops->func_hash->filter_hash; 1670 /* 1671 * If the notrace hash has no items, 1672 * then there's nothing to do. 1673 */ 1674 if (ftrace_hash_empty(hash)) 1675 return false; 1676 } 1677 1678 do_for_each_ftrace_rec(pg, rec) { 1679 int in_other_hash = 0; 1680 int in_hash = 0; 1681 int match = 0; 1682 1683 if (rec->flags & FTRACE_FL_DISABLED) 1684 continue; 1685 1686 if (all) { 1687 /* 1688 * Only the filter_hash affects all records. 1689 * Update if the record is not in the notrace hash. 1690 */ 1691 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1692 match = 1; 1693 } else { 1694 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1695 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1696 1697 /* 1698 * If filter_hash is set, we want to match all functions 1699 * that are in the hash but not in the other hash. 1700 * 1701 * If filter_hash is not set, then we are decrementing. 1702 * That means we match anything that is in the hash 1703 * and also in the other_hash. That is, we need to turn 1704 * off functions in the other hash because they are disabled 1705 * by this hash. 1706 */ 1707 if (filter_hash && in_hash && !in_other_hash) 1708 match = 1; 1709 else if (!filter_hash && in_hash && 1710 (in_other_hash || ftrace_hash_empty(other_hash))) 1711 match = 1; 1712 } 1713 if (!match) 1714 continue; 1715 1716 if (inc) { 1717 rec->flags++; 1718 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1719 return false; 1720 1721 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1722 rec->flags |= FTRACE_FL_DIRECT; 1723 1724 /* 1725 * If there's only a single callback registered to a 1726 * function, and the ops has a trampoline registered 1727 * for it, then we can call it directly. 1728 */ 1729 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1730 rec->flags |= FTRACE_FL_TRAMP; 1731 else 1732 /* 1733 * If we are adding another function callback 1734 * to this function, and the previous had a 1735 * custom trampoline in use, then we need to go 1736 * back to the default trampoline. 1737 */ 1738 rec->flags &= ~FTRACE_FL_TRAMP; 1739 1740 /* 1741 * If any ops wants regs saved for this function 1742 * then all ops will get saved regs. 1743 */ 1744 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1745 rec->flags |= FTRACE_FL_REGS; 1746 } else { 1747 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1748 return false; 1749 rec->flags--; 1750 1751 /* 1752 * Only the internal direct_ops should have the 1753 * DIRECT flag set. Thus, if it is removing a 1754 * function, then that function should no longer 1755 * be direct. 1756 */ 1757 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1758 rec->flags &= ~FTRACE_FL_DIRECT; 1759 1760 /* 1761 * If the rec had REGS enabled and the ops that is 1762 * being removed had REGS set, then see if there is 1763 * still any ops for this record that wants regs. 1764 * If not, we can stop recording them. 1765 */ 1766 if (ftrace_rec_count(rec) > 0 && 1767 rec->flags & FTRACE_FL_REGS && 1768 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1769 if (!test_rec_ops_needs_regs(rec)) 1770 rec->flags &= ~FTRACE_FL_REGS; 1771 } 1772 1773 /* 1774 * The TRAMP needs to be set only if rec count 1775 * is decremented to one, and the ops that is 1776 * left has a trampoline. As TRAMP can only be 1777 * enabled if there is only a single ops attached 1778 * to it. 1779 */ 1780 if (ftrace_rec_count(rec) == 1 && 1781 ftrace_find_tramp_ops_any(rec)) 1782 rec->flags |= FTRACE_FL_TRAMP; 1783 else 1784 rec->flags &= ~FTRACE_FL_TRAMP; 1785 1786 /* 1787 * flags will be cleared in ftrace_check_record() 1788 * if rec count is zero. 1789 */ 1790 } 1791 count++; 1792 1793 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1794 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1795 1796 /* Shortcut, if we handled all records, we are done. */ 1797 if (!all && count == hash->count) 1798 return update; 1799 } while_for_each_ftrace_rec(); 1800 1801 return update; 1802 } 1803 1804 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1805 int filter_hash) 1806 { 1807 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1808 } 1809 1810 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1811 int filter_hash) 1812 { 1813 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1814 } 1815 1816 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1817 int filter_hash, int inc) 1818 { 1819 struct ftrace_ops *op; 1820 1821 __ftrace_hash_rec_update(ops, filter_hash, inc); 1822 1823 if (ops->func_hash != &global_ops.local_hash) 1824 return; 1825 1826 /* 1827 * If the ops shares the global_ops hash, then we need to update 1828 * all ops that are enabled and use this hash. 1829 */ 1830 do_for_each_ftrace_op(op, ftrace_ops_list) { 1831 /* Already done */ 1832 if (op == ops) 1833 continue; 1834 if (op->func_hash == &global_ops.local_hash) 1835 __ftrace_hash_rec_update(op, filter_hash, inc); 1836 } while_for_each_ftrace_op(op); 1837 } 1838 1839 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1840 int filter_hash) 1841 { 1842 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1843 } 1844 1845 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1846 int filter_hash) 1847 { 1848 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1849 } 1850 1851 /* 1852 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1853 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1854 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1855 * Note that old_hash and new_hash has below meanings 1856 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1857 * - If the hash is EMPTY_HASH, it hits nothing 1858 * - Anything else hits the recs which match the hash entries. 1859 */ 1860 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1861 struct ftrace_hash *old_hash, 1862 struct ftrace_hash *new_hash) 1863 { 1864 struct ftrace_page *pg; 1865 struct dyn_ftrace *rec, *end = NULL; 1866 int in_old, in_new; 1867 1868 /* Only update if the ops has been registered */ 1869 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1870 return 0; 1871 1872 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1873 return 0; 1874 1875 /* 1876 * Since the IPMODIFY is a very address sensitive action, we do not 1877 * allow ftrace_ops to set all functions to new hash. 1878 */ 1879 if (!new_hash || !old_hash) 1880 return -EINVAL; 1881 1882 /* Update rec->flags */ 1883 do_for_each_ftrace_rec(pg, rec) { 1884 1885 if (rec->flags & FTRACE_FL_DISABLED) 1886 continue; 1887 1888 /* We need to update only differences of filter_hash */ 1889 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1890 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1891 if (in_old == in_new) 1892 continue; 1893 1894 if (in_new) { 1895 /* New entries must ensure no others are using it */ 1896 if (rec->flags & FTRACE_FL_IPMODIFY) 1897 goto rollback; 1898 rec->flags |= FTRACE_FL_IPMODIFY; 1899 } else /* Removed entry */ 1900 rec->flags &= ~FTRACE_FL_IPMODIFY; 1901 } while_for_each_ftrace_rec(); 1902 1903 return 0; 1904 1905 rollback: 1906 end = rec; 1907 1908 /* Roll back what we did above */ 1909 do_for_each_ftrace_rec(pg, rec) { 1910 1911 if (rec->flags & FTRACE_FL_DISABLED) 1912 continue; 1913 1914 if (rec == end) 1915 goto err_out; 1916 1917 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1918 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1919 if (in_old == in_new) 1920 continue; 1921 1922 if (in_new) 1923 rec->flags &= ~FTRACE_FL_IPMODIFY; 1924 else 1925 rec->flags |= FTRACE_FL_IPMODIFY; 1926 } while_for_each_ftrace_rec(); 1927 1928 err_out: 1929 return -EBUSY; 1930 } 1931 1932 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1933 { 1934 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1935 1936 if (ftrace_hash_empty(hash)) 1937 hash = NULL; 1938 1939 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1940 } 1941 1942 /* Disabling always succeeds */ 1943 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1944 { 1945 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1946 1947 if (ftrace_hash_empty(hash)) 1948 hash = NULL; 1949 1950 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1951 } 1952 1953 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1954 struct ftrace_hash *new_hash) 1955 { 1956 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1957 1958 if (ftrace_hash_empty(old_hash)) 1959 old_hash = NULL; 1960 1961 if (ftrace_hash_empty(new_hash)) 1962 new_hash = NULL; 1963 1964 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1965 } 1966 1967 static void print_ip_ins(const char *fmt, const unsigned char *p) 1968 { 1969 int i; 1970 1971 printk(KERN_CONT "%s", fmt); 1972 1973 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1974 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1975 } 1976 1977 enum ftrace_bug_type ftrace_bug_type; 1978 const void *ftrace_expected; 1979 1980 static void print_bug_type(void) 1981 { 1982 switch (ftrace_bug_type) { 1983 case FTRACE_BUG_UNKNOWN: 1984 break; 1985 case FTRACE_BUG_INIT: 1986 pr_info("Initializing ftrace call sites\n"); 1987 break; 1988 case FTRACE_BUG_NOP: 1989 pr_info("Setting ftrace call site to NOP\n"); 1990 break; 1991 case FTRACE_BUG_CALL: 1992 pr_info("Setting ftrace call site to call ftrace function\n"); 1993 break; 1994 case FTRACE_BUG_UPDATE: 1995 pr_info("Updating ftrace call site to call a different ftrace function\n"); 1996 break; 1997 } 1998 } 1999 2000 /** 2001 * ftrace_bug - report and shutdown function tracer 2002 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2003 * @rec: The record that failed 2004 * 2005 * The arch code that enables or disables the function tracing 2006 * can call ftrace_bug() when it has detected a problem in 2007 * modifying the code. @failed should be one of either: 2008 * EFAULT - if the problem happens on reading the @ip address 2009 * EINVAL - if what is read at @ip is not what was expected 2010 * EPERM - if the problem happens on writing to the @ip address 2011 */ 2012 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2013 { 2014 unsigned long ip = rec ? rec->ip : 0; 2015 2016 pr_info("------------[ ftrace bug ]------------\n"); 2017 2018 switch (failed) { 2019 case -EFAULT: 2020 pr_info("ftrace faulted on modifying "); 2021 print_ip_sym(KERN_INFO, ip); 2022 break; 2023 case -EINVAL: 2024 pr_info("ftrace failed to modify "); 2025 print_ip_sym(KERN_INFO, ip); 2026 print_ip_ins(" actual: ", (unsigned char *)ip); 2027 pr_cont("\n"); 2028 if (ftrace_expected) { 2029 print_ip_ins(" expected: ", ftrace_expected); 2030 pr_cont("\n"); 2031 } 2032 break; 2033 case -EPERM: 2034 pr_info("ftrace faulted on writing "); 2035 print_ip_sym(KERN_INFO, ip); 2036 break; 2037 default: 2038 pr_info("ftrace faulted on unknown error "); 2039 print_ip_sym(KERN_INFO, ip); 2040 } 2041 print_bug_type(); 2042 if (rec) { 2043 struct ftrace_ops *ops = NULL; 2044 2045 pr_info("ftrace record flags: %lx\n", rec->flags); 2046 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2047 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2048 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2049 ops = ftrace_find_tramp_ops_any(rec); 2050 if (ops) { 2051 do { 2052 pr_cont("\ttramp: %pS (%pS)", 2053 (void *)ops->trampoline, 2054 (void *)ops->func); 2055 ops = ftrace_find_tramp_ops_next(rec, ops); 2056 } while (ops); 2057 } else 2058 pr_cont("\ttramp: ERROR!"); 2059 2060 } 2061 ip = ftrace_get_addr_curr(rec); 2062 pr_cont("\n expected tramp: %lx\n", ip); 2063 } 2064 2065 FTRACE_WARN_ON_ONCE(1); 2066 } 2067 2068 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2069 { 2070 unsigned long flag = 0UL; 2071 2072 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2073 2074 if (rec->flags & FTRACE_FL_DISABLED) 2075 return FTRACE_UPDATE_IGNORE; 2076 2077 /* 2078 * If we are updating calls: 2079 * 2080 * If the record has a ref count, then we need to enable it 2081 * because someone is using it. 2082 * 2083 * Otherwise we make sure its disabled. 2084 * 2085 * If we are disabling calls, then disable all records that 2086 * are enabled. 2087 */ 2088 if (enable && ftrace_rec_count(rec)) 2089 flag = FTRACE_FL_ENABLED; 2090 2091 /* 2092 * If enabling and the REGS flag does not match the REGS_EN, or 2093 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2094 * this record. Set flags to fail the compare against ENABLED. 2095 * Same for direct calls. 2096 */ 2097 if (flag) { 2098 if (!(rec->flags & FTRACE_FL_REGS) != 2099 !(rec->flags & FTRACE_FL_REGS_EN)) 2100 flag |= FTRACE_FL_REGS; 2101 2102 if (!(rec->flags & FTRACE_FL_TRAMP) != 2103 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2104 flag |= FTRACE_FL_TRAMP; 2105 2106 /* 2107 * Direct calls are special, as count matters. 2108 * We must test the record for direct, if the 2109 * DIRECT and DIRECT_EN do not match, but only 2110 * if the count is 1. That's because, if the 2111 * count is something other than one, we do not 2112 * want the direct enabled (it will be done via the 2113 * direct helper). But if DIRECT_EN is set, and 2114 * the count is not one, we need to clear it. 2115 */ 2116 if (ftrace_rec_count(rec) == 1) { 2117 if (!(rec->flags & FTRACE_FL_DIRECT) != 2118 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2119 flag |= FTRACE_FL_DIRECT; 2120 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2121 flag |= FTRACE_FL_DIRECT; 2122 } 2123 } 2124 2125 /* If the state of this record hasn't changed, then do nothing */ 2126 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2127 return FTRACE_UPDATE_IGNORE; 2128 2129 if (flag) { 2130 /* Save off if rec is being enabled (for return value) */ 2131 flag ^= rec->flags & FTRACE_FL_ENABLED; 2132 2133 if (update) { 2134 rec->flags |= FTRACE_FL_ENABLED; 2135 if (flag & FTRACE_FL_REGS) { 2136 if (rec->flags & FTRACE_FL_REGS) 2137 rec->flags |= FTRACE_FL_REGS_EN; 2138 else 2139 rec->flags &= ~FTRACE_FL_REGS_EN; 2140 } 2141 if (flag & FTRACE_FL_TRAMP) { 2142 if (rec->flags & FTRACE_FL_TRAMP) 2143 rec->flags |= FTRACE_FL_TRAMP_EN; 2144 else 2145 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2146 } 2147 if (flag & FTRACE_FL_DIRECT) { 2148 /* 2149 * If there's only one user (direct_ops helper) 2150 * then we can call the direct function 2151 * directly (no ftrace trampoline). 2152 */ 2153 if (ftrace_rec_count(rec) == 1) { 2154 if (rec->flags & FTRACE_FL_DIRECT) 2155 rec->flags |= FTRACE_FL_DIRECT_EN; 2156 else 2157 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2158 } else { 2159 /* 2160 * Can only call directly if there's 2161 * only one callback to the function. 2162 */ 2163 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2164 } 2165 } 2166 } 2167 2168 /* 2169 * If this record is being updated from a nop, then 2170 * return UPDATE_MAKE_CALL. 2171 * Otherwise, 2172 * return UPDATE_MODIFY_CALL to tell the caller to convert 2173 * from the save regs, to a non-save regs function or 2174 * vice versa, or from a trampoline call. 2175 */ 2176 if (flag & FTRACE_FL_ENABLED) { 2177 ftrace_bug_type = FTRACE_BUG_CALL; 2178 return FTRACE_UPDATE_MAKE_CALL; 2179 } 2180 2181 ftrace_bug_type = FTRACE_BUG_UPDATE; 2182 return FTRACE_UPDATE_MODIFY_CALL; 2183 } 2184 2185 if (update) { 2186 /* If there's no more users, clear all flags */ 2187 if (!ftrace_rec_count(rec)) 2188 rec->flags = 0; 2189 else 2190 /* 2191 * Just disable the record, but keep the ops TRAMP 2192 * and REGS states. The _EN flags must be disabled though. 2193 */ 2194 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2195 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2196 } 2197 2198 ftrace_bug_type = FTRACE_BUG_NOP; 2199 return FTRACE_UPDATE_MAKE_NOP; 2200 } 2201 2202 /** 2203 * ftrace_update_record, set a record that now is tracing or not 2204 * @rec: the record to update 2205 * @enable: set to true if the record is tracing, false to force disable 2206 * 2207 * The records that represent all functions that can be traced need 2208 * to be updated when tracing has been enabled. 2209 */ 2210 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2211 { 2212 return ftrace_check_record(rec, enable, true); 2213 } 2214 2215 /** 2216 * ftrace_test_record, check if the record has been enabled or not 2217 * @rec: the record to test 2218 * @enable: set to true to check if enabled, false if it is disabled 2219 * 2220 * The arch code may need to test if a record is already set to 2221 * tracing to determine how to modify the function code that it 2222 * represents. 2223 */ 2224 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2225 { 2226 return ftrace_check_record(rec, enable, false); 2227 } 2228 2229 static struct ftrace_ops * 2230 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2231 { 2232 struct ftrace_ops *op; 2233 unsigned long ip = rec->ip; 2234 2235 do_for_each_ftrace_op(op, ftrace_ops_list) { 2236 2237 if (!op->trampoline) 2238 continue; 2239 2240 if (hash_contains_ip(ip, op->func_hash)) 2241 return op; 2242 } while_for_each_ftrace_op(op); 2243 2244 return NULL; 2245 } 2246 2247 static struct ftrace_ops * 2248 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2249 struct ftrace_ops *op) 2250 { 2251 unsigned long ip = rec->ip; 2252 2253 while_for_each_ftrace_op(op) { 2254 2255 if (!op->trampoline) 2256 continue; 2257 2258 if (hash_contains_ip(ip, op->func_hash)) 2259 return op; 2260 } 2261 2262 return NULL; 2263 } 2264 2265 static struct ftrace_ops * 2266 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2267 { 2268 struct ftrace_ops *op; 2269 unsigned long ip = rec->ip; 2270 2271 /* 2272 * Need to check removed ops first. 2273 * If they are being removed, and this rec has a tramp, 2274 * and this rec is in the ops list, then it would be the 2275 * one with the tramp. 2276 */ 2277 if (removed_ops) { 2278 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2279 return removed_ops; 2280 } 2281 2282 /* 2283 * Need to find the current trampoline for a rec. 2284 * Now, a trampoline is only attached to a rec if there 2285 * was a single 'ops' attached to it. But this can be called 2286 * when we are adding another op to the rec or removing the 2287 * current one. Thus, if the op is being added, we can 2288 * ignore it because it hasn't attached itself to the rec 2289 * yet. 2290 * 2291 * If an ops is being modified (hooking to different functions) 2292 * then we don't care about the new functions that are being 2293 * added, just the old ones (that are probably being removed). 2294 * 2295 * If we are adding an ops to a function that already is using 2296 * a trampoline, it needs to be removed (trampolines are only 2297 * for single ops connected), then an ops that is not being 2298 * modified also needs to be checked. 2299 */ 2300 do_for_each_ftrace_op(op, ftrace_ops_list) { 2301 2302 if (!op->trampoline) 2303 continue; 2304 2305 /* 2306 * If the ops is being added, it hasn't gotten to 2307 * the point to be removed from this tree yet. 2308 */ 2309 if (op->flags & FTRACE_OPS_FL_ADDING) 2310 continue; 2311 2312 2313 /* 2314 * If the ops is being modified and is in the old 2315 * hash, then it is probably being removed from this 2316 * function. 2317 */ 2318 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2319 hash_contains_ip(ip, &op->old_hash)) 2320 return op; 2321 /* 2322 * If the ops is not being added or modified, and it's 2323 * in its normal filter hash, then this must be the one 2324 * we want! 2325 */ 2326 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2327 hash_contains_ip(ip, op->func_hash)) 2328 return op; 2329 2330 } while_for_each_ftrace_op(op); 2331 2332 return NULL; 2333 } 2334 2335 static struct ftrace_ops * 2336 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2337 { 2338 struct ftrace_ops *op; 2339 unsigned long ip = rec->ip; 2340 2341 do_for_each_ftrace_op(op, ftrace_ops_list) { 2342 /* pass rec in as regs to have non-NULL val */ 2343 if (hash_contains_ip(ip, op->func_hash)) 2344 return op; 2345 } while_for_each_ftrace_op(op); 2346 2347 return NULL; 2348 } 2349 2350 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2351 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2352 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2353 static DEFINE_MUTEX(direct_mutex); 2354 int ftrace_direct_func_count; 2355 2356 /* 2357 * Search the direct_functions hash to see if the given instruction pointer 2358 * has a direct caller attached to it. 2359 */ 2360 unsigned long ftrace_find_rec_direct(unsigned long ip) 2361 { 2362 struct ftrace_func_entry *entry; 2363 2364 entry = __ftrace_lookup_ip(direct_functions, ip); 2365 if (!entry) 2366 return 0; 2367 2368 return entry->direct; 2369 } 2370 2371 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2372 struct ftrace_ops *ops, struct pt_regs *regs) 2373 { 2374 unsigned long addr; 2375 2376 addr = ftrace_find_rec_direct(ip); 2377 if (!addr) 2378 return; 2379 2380 arch_ftrace_set_direct_caller(regs, addr); 2381 } 2382 2383 struct ftrace_ops direct_ops = { 2384 .func = call_direct_funcs, 2385 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2386 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2387 | FTRACE_OPS_FL_PERMANENT, 2388 /* 2389 * By declaring the main trampoline as this trampoline 2390 * it will never have one allocated for it. Allocated 2391 * trampolines should not call direct functions. 2392 * The direct_ops should only be called by the builtin 2393 * ftrace_regs_caller trampoline. 2394 */ 2395 .trampoline = FTRACE_REGS_ADDR, 2396 }; 2397 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2398 2399 /** 2400 * ftrace_get_addr_new - Get the call address to set to 2401 * @rec: The ftrace record descriptor 2402 * 2403 * If the record has the FTRACE_FL_REGS set, that means that it 2404 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2405 * is not not set, then it wants to convert to the normal callback. 2406 * 2407 * Returns the address of the trampoline to set to 2408 */ 2409 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2410 { 2411 struct ftrace_ops *ops; 2412 unsigned long addr; 2413 2414 if ((rec->flags & FTRACE_FL_DIRECT) && 2415 (ftrace_rec_count(rec) == 1)) { 2416 addr = ftrace_find_rec_direct(rec->ip); 2417 if (addr) 2418 return addr; 2419 WARN_ON_ONCE(1); 2420 } 2421 2422 /* Trampolines take precedence over regs */ 2423 if (rec->flags & FTRACE_FL_TRAMP) { 2424 ops = ftrace_find_tramp_ops_new(rec); 2425 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2426 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2427 (void *)rec->ip, (void *)rec->ip, rec->flags); 2428 /* Ftrace is shutting down, return anything */ 2429 return (unsigned long)FTRACE_ADDR; 2430 } 2431 return ops->trampoline; 2432 } 2433 2434 if (rec->flags & FTRACE_FL_REGS) 2435 return (unsigned long)FTRACE_REGS_ADDR; 2436 else 2437 return (unsigned long)FTRACE_ADDR; 2438 } 2439 2440 /** 2441 * ftrace_get_addr_curr - Get the call address that is already there 2442 * @rec: The ftrace record descriptor 2443 * 2444 * The FTRACE_FL_REGS_EN is set when the record already points to 2445 * a function that saves all the regs. Basically the '_EN' version 2446 * represents the current state of the function. 2447 * 2448 * Returns the address of the trampoline that is currently being called 2449 */ 2450 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2451 { 2452 struct ftrace_ops *ops; 2453 unsigned long addr; 2454 2455 /* Direct calls take precedence over trampolines */ 2456 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2457 addr = ftrace_find_rec_direct(rec->ip); 2458 if (addr) 2459 return addr; 2460 WARN_ON_ONCE(1); 2461 } 2462 2463 /* Trampolines take precedence over regs */ 2464 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2465 ops = ftrace_find_tramp_ops_curr(rec); 2466 if (FTRACE_WARN_ON(!ops)) { 2467 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2468 (void *)rec->ip, (void *)rec->ip); 2469 /* Ftrace is shutting down, return anything */ 2470 return (unsigned long)FTRACE_ADDR; 2471 } 2472 return ops->trampoline; 2473 } 2474 2475 if (rec->flags & FTRACE_FL_REGS_EN) 2476 return (unsigned long)FTRACE_REGS_ADDR; 2477 else 2478 return (unsigned long)FTRACE_ADDR; 2479 } 2480 2481 static int 2482 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2483 { 2484 unsigned long ftrace_old_addr; 2485 unsigned long ftrace_addr; 2486 int ret; 2487 2488 ftrace_addr = ftrace_get_addr_new(rec); 2489 2490 /* This needs to be done before we call ftrace_update_record */ 2491 ftrace_old_addr = ftrace_get_addr_curr(rec); 2492 2493 ret = ftrace_update_record(rec, enable); 2494 2495 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2496 2497 switch (ret) { 2498 case FTRACE_UPDATE_IGNORE: 2499 return 0; 2500 2501 case FTRACE_UPDATE_MAKE_CALL: 2502 ftrace_bug_type = FTRACE_BUG_CALL; 2503 return ftrace_make_call(rec, ftrace_addr); 2504 2505 case FTRACE_UPDATE_MAKE_NOP: 2506 ftrace_bug_type = FTRACE_BUG_NOP; 2507 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2508 2509 case FTRACE_UPDATE_MODIFY_CALL: 2510 ftrace_bug_type = FTRACE_BUG_UPDATE; 2511 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2512 } 2513 2514 return -1; /* unknown ftrace bug */ 2515 } 2516 2517 void __weak ftrace_replace_code(int mod_flags) 2518 { 2519 struct dyn_ftrace *rec; 2520 struct ftrace_page *pg; 2521 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2522 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2523 int failed; 2524 2525 if (unlikely(ftrace_disabled)) 2526 return; 2527 2528 do_for_each_ftrace_rec(pg, rec) { 2529 2530 if (rec->flags & FTRACE_FL_DISABLED) 2531 continue; 2532 2533 failed = __ftrace_replace_code(rec, enable); 2534 if (failed) { 2535 ftrace_bug(failed, rec); 2536 /* Stop processing */ 2537 return; 2538 } 2539 if (schedulable) 2540 cond_resched(); 2541 } while_for_each_ftrace_rec(); 2542 } 2543 2544 struct ftrace_rec_iter { 2545 struct ftrace_page *pg; 2546 int index; 2547 }; 2548 2549 /** 2550 * ftrace_rec_iter_start, start up iterating over traced functions 2551 * 2552 * Returns an iterator handle that is used to iterate over all 2553 * the records that represent address locations where functions 2554 * are traced. 2555 * 2556 * May return NULL if no records are available. 2557 */ 2558 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2559 { 2560 /* 2561 * We only use a single iterator. 2562 * Protected by the ftrace_lock mutex. 2563 */ 2564 static struct ftrace_rec_iter ftrace_rec_iter; 2565 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2566 2567 iter->pg = ftrace_pages_start; 2568 iter->index = 0; 2569 2570 /* Could have empty pages */ 2571 while (iter->pg && !iter->pg->index) 2572 iter->pg = iter->pg->next; 2573 2574 if (!iter->pg) 2575 return NULL; 2576 2577 return iter; 2578 } 2579 2580 /** 2581 * ftrace_rec_iter_next, get the next record to process. 2582 * @iter: The handle to the iterator. 2583 * 2584 * Returns the next iterator after the given iterator @iter. 2585 */ 2586 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2587 { 2588 iter->index++; 2589 2590 if (iter->index >= iter->pg->index) { 2591 iter->pg = iter->pg->next; 2592 iter->index = 0; 2593 2594 /* Could have empty pages */ 2595 while (iter->pg && !iter->pg->index) 2596 iter->pg = iter->pg->next; 2597 } 2598 2599 if (!iter->pg) 2600 return NULL; 2601 2602 return iter; 2603 } 2604 2605 /** 2606 * ftrace_rec_iter_record, get the record at the iterator location 2607 * @iter: The current iterator location 2608 * 2609 * Returns the record that the current @iter is at. 2610 */ 2611 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2612 { 2613 return &iter->pg->records[iter->index]; 2614 } 2615 2616 static int 2617 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2618 { 2619 int ret; 2620 2621 if (unlikely(ftrace_disabled)) 2622 return 0; 2623 2624 ret = ftrace_init_nop(mod, rec); 2625 if (ret) { 2626 ftrace_bug_type = FTRACE_BUG_INIT; 2627 ftrace_bug(ret, rec); 2628 return 0; 2629 } 2630 return 1; 2631 } 2632 2633 /* 2634 * archs can override this function if they must do something 2635 * before the modifying code is performed. 2636 */ 2637 int __weak ftrace_arch_code_modify_prepare(void) 2638 { 2639 return 0; 2640 } 2641 2642 /* 2643 * archs can override this function if they must do something 2644 * after the modifying code is performed. 2645 */ 2646 int __weak ftrace_arch_code_modify_post_process(void) 2647 { 2648 return 0; 2649 } 2650 2651 void ftrace_modify_all_code(int command) 2652 { 2653 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2654 int mod_flags = 0; 2655 int err = 0; 2656 2657 if (command & FTRACE_MAY_SLEEP) 2658 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2659 2660 /* 2661 * If the ftrace_caller calls a ftrace_ops func directly, 2662 * we need to make sure that it only traces functions it 2663 * expects to trace. When doing the switch of functions, 2664 * we need to update to the ftrace_ops_list_func first 2665 * before the transition between old and new calls are set, 2666 * as the ftrace_ops_list_func will check the ops hashes 2667 * to make sure the ops are having the right functions 2668 * traced. 2669 */ 2670 if (update) { 2671 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2672 if (FTRACE_WARN_ON(err)) 2673 return; 2674 } 2675 2676 if (command & FTRACE_UPDATE_CALLS) 2677 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2678 else if (command & FTRACE_DISABLE_CALLS) 2679 ftrace_replace_code(mod_flags); 2680 2681 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2682 function_trace_op = set_function_trace_op; 2683 smp_wmb(); 2684 /* If irqs are disabled, we are in stop machine */ 2685 if (!irqs_disabled()) 2686 smp_call_function(ftrace_sync_ipi, NULL, 1); 2687 err = ftrace_update_ftrace_func(ftrace_trace_function); 2688 if (FTRACE_WARN_ON(err)) 2689 return; 2690 } 2691 2692 if (command & FTRACE_START_FUNC_RET) 2693 err = ftrace_enable_ftrace_graph_caller(); 2694 else if (command & FTRACE_STOP_FUNC_RET) 2695 err = ftrace_disable_ftrace_graph_caller(); 2696 FTRACE_WARN_ON(err); 2697 } 2698 2699 static int __ftrace_modify_code(void *data) 2700 { 2701 int *command = data; 2702 2703 ftrace_modify_all_code(*command); 2704 2705 return 0; 2706 } 2707 2708 /** 2709 * ftrace_run_stop_machine, go back to the stop machine method 2710 * @command: The command to tell ftrace what to do 2711 * 2712 * If an arch needs to fall back to the stop machine method, the 2713 * it can call this function. 2714 */ 2715 void ftrace_run_stop_machine(int command) 2716 { 2717 stop_machine(__ftrace_modify_code, &command, NULL); 2718 } 2719 2720 /** 2721 * arch_ftrace_update_code, modify the code to trace or not trace 2722 * @command: The command that needs to be done 2723 * 2724 * Archs can override this function if it does not need to 2725 * run stop_machine() to modify code. 2726 */ 2727 void __weak arch_ftrace_update_code(int command) 2728 { 2729 ftrace_run_stop_machine(command); 2730 } 2731 2732 static void ftrace_run_update_code(int command) 2733 { 2734 int ret; 2735 2736 ret = ftrace_arch_code_modify_prepare(); 2737 FTRACE_WARN_ON(ret); 2738 if (ret) 2739 return; 2740 2741 /* 2742 * By default we use stop_machine() to modify the code. 2743 * But archs can do what ever they want as long as it 2744 * is safe. The stop_machine() is the safest, but also 2745 * produces the most overhead. 2746 */ 2747 arch_ftrace_update_code(command); 2748 2749 ret = ftrace_arch_code_modify_post_process(); 2750 FTRACE_WARN_ON(ret); 2751 } 2752 2753 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2754 struct ftrace_ops_hash *old_hash) 2755 { 2756 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2757 ops->old_hash.filter_hash = old_hash->filter_hash; 2758 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2759 ftrace_run_update_code(command); 2760 ops->old_hash.filter_hash = NULL; 2761 ops->old_hash.notrace_hash = NULL; 2762 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2763 } 2764 2765 static ftrace_func_t saved_ftrace_func; 2766 static int ftrace_start_up; 2767 2768 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2769 { 2770 } 2771 2772 /* List of trace_ops that have allocated trampolines */ 2773 static LIST_HEAD(ftrace_ops_trampoline_list); 2774 2775 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2776 { 2777 lockdep_assert_held(&ftrace_lock); 2778 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2779 } 2780 2781 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2782 { 2783 lockdep_assert_held(&ftrace_lock); 2784 list_del_rcu(&ops->list); 2785 synchronize_rcu(); 2786 } 2787 2788 /* 2789 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2790 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2791 * not a module. 2792 */ 2793 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2794 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2795 2796 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2797 { 2798 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2799 ops->trampoline) { 2800 /* 2801 * Record the text poke event before the ksymbol unregister 2802 * event. 2803 */ 2804 perf_event_text_poke((void *)ops->trampoline, 2805 (void *)ops->trampoline, 2806 ops->trampoline_size, NULL, 0); 2807 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2808 ops->trampoline, ops->trampoline_size, 2809 true, FTRACE_TRAMPOLINE_SYM); 2810 /* Remove from kallsyms after the perf events */ 2811 ftrace_remove_trampoline_from_kallsyms(ops); 2812 } 2813 2814 arch_ftrace_trampoline_free(ops); 2815 } 2816 2817 static void ftrace_startup_enable(int command) 2818 { 2819 if (saved_ftrace_func != ftrace_trace_function) { 2820 saved_ftrace_func = ftrace_trace_function; 2821 command |= FTRACE_UPDATE_TRACE_FUNC; 2822 } 2823 2824 if (!command || !ftrace_enabled) 2825 return; 2826 2827 ftrace_run_update_code(command); 2828 } 2829 2830 static void ftrace_startup_all(int command) 2831 { 2832 update_all_ops = true; 2833 ftrace_startup_enable(command); 2834 update_all_ops = false; 2835 } 2836 2837 int ftrace_startup(struct ftrace_ops *ops, int command) 2838 { 2839 int ret; 2840 2841 if (unlikely(ftrace_disabled)) 2842 return -ENODEV; 2843 2844 ret = __register_ftrace_function(ops); 2845 if (ret) 2846 return ret; 2847 2848 ftrace_start_up++; 2849 2850 /* 2851 * Note that ftrace probes uses this to start up 2852 * and modify functions it will probe. But we still 2853 * set the ADDING flag for modification, as probes 2854 * do not have trampolines. If they add them in the 2855 * future, then the probes will need to distinguish 2856 * between adding and updating probes. 2857 */ 2858 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2859 2860 ret = ftrace_hash_ipmodify_enable(ops); 2861 if (ret < 0) { 2862 /* Rollback registration process */ 2863 __unregister_ftrace_function(ops); 2864 ftrace_start_up--; 2865 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2866 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2867 ftrace_trampoline_free(ops); 2868 return ret; 2869 } 2870 2871 if (ftrace_hash_rec_enable(ops, 1)) 2872 command |= FTRACE_UPDATE_CALLS; 2873 2874 ftrace_startup_enable(command); 2875 2876 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2877 2878 return 0; 2879 } 2880 2881 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2882 { 2883 int ret; 2884 2885 if (unlikely(ftrace_disabled)) 2886 return -ENODEV; 2887 2888 ret = __unregister_ftrace_function(ops); 2889 if (ret) 2890 return ret; 2891 2892 ftrace_start_up--; 2893 /* 2894 * Just warn in case of unbalance, no need to kill ftrace, it's not 2895 * critical but the ftrace_call callers may be never nopped again after 2896 * further ftrace uses. 2897 */ 2898 WARN_ON_ONCE(ftrace_start_up < 0); 2899 2900 /* Disabling ipmodify never fails */ 2901 ftrace_hash_ipmodify_disable(ops); 2902 2903 if (ftrace_hash_rec_disable(ops, 1)) 2904 command |= FTRACE_UPDATE_CALLS; 2905 2906 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2907 2908 if (saved_ftrace_func != ftrace_trace_function) { 2909 saved_ftrace_func = ftrace_trace_function; 2910 command |= FTRACE_UPDATE_TRACE_FUNC; 2911 } 2912 2913 if (!command || !ftrace_enabled) { 2914 /* 2915 * If these are dynamic or per_cpu ops, they still 2916 * need their data freed. Since, function tracing is 2917 * not currently active, we can just free them 2918 * without synchronizing all CPUs. 2919 */ 2920 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2921 goto free_ops; 2922 2923 return 0; 2924 } 2925 2926 /* 2927 * If the ops uses a trampoline, then it needs to be 2928 * tested first on update. 2929 */ 2930 ops->flags |= FTRACE_OPS_FL_REMOVING; 2931 removed_ops = ops; 2932 2933 /* The trampoline logic checks the old hashes */ 2934 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2935 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2936 2937 ftrace_run_update_code(command); 2938 2939 /* 2940 * If there's no more ops registered with ftrace, run a 2941 * sanity check to make sure all rec flags are cleared. 2942 */ 2943 if (rcu_dereference_protected(ftrace_ops_list, 2944 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2945 struct ftrace_page *pg; 2946 struct dyn_ftrace *rec; 2947 2948 do_for_each_ftrace_rec(pg, rec) { 2949 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2950 pr_warn(" %pS flags:%lx\n", 2951 (void *)rec->ip, rec->flags); 2952 } while_for_each_ftrace_rec(); 2953 } 2954 2955 ops->old_hash.filter_hash = NULL; 2956 ops->old_hash.notrace_hash = NULL; 2957 2958 removed_ops = NULL; 2959 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2960 2961 /* 2962 * Dynamic ops may be freed, we must make sure that all 2963 * callers are done before leaving this function. 2964 * The same goes for freeing the per_cpu data of the per_cpu 2965 * ops. 2966 */ 2967 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2968 /* 2969 * We need to do a hard force of sched synchronization. 2970 * This is because we use preempt_disable() to do RCU, but 2971 * the function tracers can be called where RCU is not watching 2972 * (like before user_exit()). We can not rely on the RCU 2973 * infrastructure to do the synchronization, thus we must do it 2974 * ourselves. 2975 */ 2976 synchronize_rcu_tasks_rude(); 2977 2978 /* 2979 * When the kernel is preeptive, tasks can be preempted 2980 * while on a ftrace trampoline. Just scheduling a task on 2981 * a CPU is not good enough to flush them. Calling 2982 * synchornize_rcu_tasks() will wait for those tasks to 2983 * execute and either schedule voluntarily or enter user space. 2984 */ 2985 if (IS_ENABLED(CONFIG_PREEMPTION)) 2986 synchronize_rcu_tasks(); 2987 2988 free_ops: 2989 ftrace_trampoline_free(ops); 2990 } 2991 2992 return 0; 2993 } 2994 2995 static void ftrace_startup_sysctl(void) 2996 { 2997 int command; 2998 2999 if (unlikely(ftrace_disabled)) 3000 return; 3001 3002 /* Force update next time */ 3003 saved_ftrace_func = NULL; 3004 /* ftrace_start_up is true if we want ftrace running */ 3005 if (ftrace_start_up) { 3006 command = FTRACE_UPDATE_CALLS; 3007 if (ftrace_graph_active) 3008 command |= FTRACE_START_FUNC_RET; 3009 ftrace_startup_enable(command); 3010 } 3011 } 3012 3013 static void ftrace_shutdown_sysctl(void) 3014 { 3015 int command; 3016 3017 if (unlikely(ftrace_disabled)) 3018 return; 3019 3020 /* ftrace_start_up is true if ftrace is running */ 3021 if (ftrace_start_up) { 3022 command = FTRACE_DISABLE_CALLS; 3023 if (ftrace_graph_active) 3024 command |= FTRACE_STOP_FUNC_RET; 3025 ftrace_run_update_code(command); 3026 } 3027 } 3028 3029 static u64 ftrace_update_time; 3030 unsigned long ftrace_update_tot_cnt; 3031 unsigned long ftrace_number_of_pages; 3032 unsigned long ftrace_number_of_groups; 3033 3034 static inline int ops_traces_mod(struct ftrace_ops *ops) 3035 { 3036 /* 3037 * Filter_hash being empty will default to trace module. 3038 * But notrace hash requires a test of individual module functions. 3039 */ 3040 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3041 ftrace_hash_empty(ops->func_hash->notrace_hash); 3042 } 3043 3044 /* 3045 * Check if the current ops references the record. 3046 * 3047 * If the ops traces all functions, then it was already accounted for. 3048 * If the ops does not trace the current record function, skip it. 3049 * If the ops ignores the function via notrace filter, skip it. 3050 */ 3051 static inline bool 3052 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3053 { 3054 /* If ops isn't enabled, ignore it */ 3055 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3056 return false; 3057 3058 /* If ops traces all then it includes this function */ 3059 if (ops_traces_mod(ops)) 3060 return true; 3061 3062 /* The function must be in the filter */ 3063 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3064 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3065 return false; 3066 3067 /* If in notrace hash, we ignore it too */ 3068 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3069 return false; 3070 3071 return true; 3072 } 3073 3074 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3075 { 3076 struct ftrace_page *pg; 3077 struct dyn_ftrace *p; 3078 u64 start, stop; 3079 unsigned long update_cnt = 0; 3080 unsigned long rec_flags = 0; 3081 int i; 3082 3083 start = ftrace_now(raw_smp_processor_id()); 3084 3085 /* 3086 * When a module is loaded, this function is called to convert 3087 * the calls to mcount in its text to nops, and also to create 3088 * an entry in the ftrace data. Now, if ftrace is activated 3089 * after this call, but before the module sets its text to 3090 * read-only, the modification of enabling ftrace can fail if 3091 * the read-only is done while ftrace is converting the calls. 3092 * To prevent this, the module's records are set as disabled 3093 * and will be enabled after the call to set the module's text 3094 * to read-only. 3095 */ 3096 if (mod) 3097 rec_flags |= FTRACE_FL_DISABLED; 3098 3099 for (pg = new_pgs; pg; pg = pg->next) { 3100 3101 for (i = 0; i < pg->index; i++) { 3102 3103 /* If something went wrong, bail without enabling anything */ 3104 if (unlikely(ftrace_disabled)) 3105 return -1; 3106 3107 p = &pg->records[i]; 3108 p->flags = rec_flags; 3109 3110 /* 3111 * Do the initial record conversion from mcount jump 3112 * to the NOP instructions. 3113 */ 3114 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3115 !ftrace_nop_initialize(mod, p)) 3116 break; 3117 3118 update_cnt++; 3119 } 3120 } 3121 3122 stop = ftrace_now(raw_smp_processor_id()); 3123 ftrace_update_time = stop - start; 3124 ftrace_update_tot_cnt += update_cnt; 3125 3126 return 0; 3127 } 3128 3129 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3130 { 3131 int order; 3132 int cnt; 3133 3134 if (WARN_ON(!count)) 3135 return -EINVAL; 3136 3137 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3138 3139 /* 3140 * We want to fill as much as possible. No more than a page 3141 * may be empty. 3142 */ 3143 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3144 order--; 3145 3146 again: 3147 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3148 3149 if (!pg->records) { 3150 /* if we can't allocate this size, try something smaller */ 3151 if (!order) 3152 return -ENOMEM; 3153 order >>= 1; 3154 goto again; 3155 } 3156 3157 ftrace_number_of_pages += 1 << order; 3158 ftrace_number_of_groups++; 3159 3160 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3161 pg->size = cnt; 3162 3163 if (cnt > count) 3164 cnt = count; 3165 3166 return cnt; 3167 } 3168 3169 static struct ftrace_page * 3170 ftrace_allocate_pages(unsigned long num_to_init) 3171 { 3172 struct ftrace_page *start_pg; 3173 struct ftrace_page *pg; 3174 int order; 3175 int cnt; 3176 3177 if (!num_to_init) 3178 return NULL; 3179 3180 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3181 if (!pg) 3182 return NULL; 3183 3184 /* 3185 * Try to allocate as much as possible in one continues 3186 * location that fills in all of the space. We want to 3187 * waste as little space as possible. 3188 */ 3189 for (;;) { 3190 cnt = ftrace_allocate_records(pg, num_to_init); 3191 if (cnt < 0) 3192 goto free_pages; 3193 3194 num_to_init -= cnt; 3195 if (!num_to_init) 3196 break; 3197 3198 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3199 if (!pg->next) 3200 goto free_pages; 3201 3202 pg = pg->next; 3203 } 3204 3205 return start_pg; 3206 3207 free_pages: 3208 pg = start_pg; 3209 while (pg) { 3210 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3211 free_pages((unsigned long)pg->records, order); 3212 start_pg = pg->next; 3213 kfree(pg); 3214 pg = start_pg; 3215 ftrace_number_of_pages -= 1 << order; 3216 ftrace_number_of_groups--; 3217 } 3218 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3219 return NULL; 3220 } 3221 3222 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3223 3224 struct ftrace_iterator { 3225 loff_t pos; 3226 loff_t func_pos; 3227 loff_t mod_pos; 3228 struct ftrace_page *pg; 3229 struct dyn_ftrace *func; 3230 struct ftrace_func_probe *probe; 3231 struct ftrace_func_entry *probe_entry; 3232 struct trace_parser parser; 3233 struct ftrace_hash *hash; 3234 struct ftrace_ops *ops; 3235 struct trace_array *tr; 3236 struct list_head *mod_list; 3237 int pidx; 3238 int idx; 3239 unsigned flags; 3240 }; 3241 3242 static void * 3243 t_probe_next(struct seq_file *m, loff_t *pos) 3244 { 3245 struct ftrace_iterator *iter = m->private; 3246 struct trace_array *tr = iter->ops->private; 3247 struct list_head *func_probes; 3248 struct ftrace_hash *hash; 3249 struct list_head *next; 3250 struct hlist_node *hnd = NULL; 3251 struct hlist_head *hhd; 3252 int size; 3253 3254 (*pos)++; 3255 iter->pos = *pos; 3256 3257 if (!tr) 3258 return NULL; 3259 3260 func_probes = &tr->func_probes; 3261 if (list_empty(func_probes)) 3262 return NULL; 3263 3264 if (!iter->probe) { 3265 next = func_probes->next; 3266 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3267 } 3268 3269 if (iter->probe_entry) 3270 hnd = &iter->probe_entry->hlist; 3271 3272 hash = iter->probe->ops.func_hash->filter_hash; 3273 3274 /* 3275 * A probe being registered may temporarily have an empty hash 3276 * and it's at the end of the func_probes list. 3277 */ 3278 if (!hash || hash == EMPTY_HASH) 3279 return NULL; 3280 3281 size = 1 << hash->size_bits; 3282 3283 retry: 3284 if (iter->pidx >= size) { 3285 if (iter->probe->list.next == func_probes) 3286 return NULL; 3287 next = iter->probe->list.next; 3288 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3289 hash = iter->probe->ops.func_hash->filter_hash; 3290 size = 1 << hash->size_bits; 3291 iter->pidx = 0; 3292 } 3293 3294 hhd = &hash->buckets[iter->pidx]; 3295 3296 if (hlist_empty(hhd)) { 3297 iter->pidx++; 3298 hnd = NULL; 3299 goto retry; 3300 } 3301 3302 if (!hnd) 3303 hnd = hhd->first; 3304 else { 3305 hnd = hnd->next; 3306 if (!hnd) { 3307 iter->pidx++; 3308 goto retry; 3309 } 3310 } 3311 3312 if (WARN_ON_ONCE(!hnd)) 3313 return NULL; 3314 3315 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3316 3317 return iter; 3318 } 3319 3320 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3321 { 3322 struct ftrace_iterator *iter = m->private; 3323 void *p = NULL; 3324 loff_t l; 3325 3326 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3327 return NULL; 3328 3329 if (iter->mod_pos > *pos) 3330 return NULL; 3331 3332 iter->probe = NULL; 3333 iter->probe_entry = NULL; 3334 iter->pidx = 0; 3335 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3336 p = t_probe_next(m, &l); 3337 if (!p) 3338 break; 3339 } 3340 if (!p) 3341 return NULL; 3342 3343 /* Only set this if we have an item */ 3344 iter->flags |= FTRACE_ITER_PROBE; 3345 3346 return iter; 3347 } 3348 3349 static int 3350 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3351 { 3352 struct ftrace_func_entry *probe_entry; 3353 struct ftrace_probe_ops *probe_ops; 3354 struct ftrace_func_probe *probe; 3355 3356 probe = iter->probe; 3357 probe_entry = iter->probe_entry; 3358 3359 if (WARN_ON_ONCE(!probe || !probe_entry)) 3360 return -EIO; 3361 3362 probe_ops = probe->probe_ops; 3363 3364 if (probe_ops->print) 3365 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3366 3367 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3368 (void *)probe_ops->func); 3369 3370 return 0; 3371 } 3372 3373 static void * 3374 t_mod_next(struct seq_file *m, loff_t *pos) 3375 { 3376 struct ftrace_iterator *iter = m->private; 3377 struct trace_array *tr = iter->tr; 3378 3379 (*pos)++; 3380 iter->pos = *pos; 3381 3382 iter->mod_list = iter->mod_list->next; 3383 3384 if (iter->mod_list == &tr->mod_trace || 3385 iter->mod_list == &tr->mod_notrace) { 3386 iter->flags &= ~FTRACE_ITER_MOD; 3387 return NULL; 3388 } 3389 3390 iter->mod_pos = *pos; 3391 3392 return iter; 3393 } 3394 3395 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3396 { 3397 struct ftrace_iterator *iter = m->private; 3398 void *p = NULL; 3399 loff_t l; 3400 3401 if (iter->func_pos > *pos) 3402 return NULL; 3403 3404 iter->mod_pos = iter->func_pos; 3405 3406 /* probes are only available if tr is set */ 3407 if (!iter->tr) 3408 return NULL; 3409 3410 for (l = 0; l <= (*pos - iter->func_pos); ) { 3411 p = t_mod_next(m, &l); 3412 if (!p) 3413 break; 3414 } 3415 if (!p) { 3416 iter->flags &= ~FTRACE_ITER_MOD; 3417 return t_probe_start(m, pos); 3418 } 3419 3420 /* Only set this if we have an item */ 3421 iter->flags |= FTRACE_ITER_MOD; 3422 3423 return iter; 3424 } 3425 3426 static int 3427 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3428 { 3429 struct ftrace_mod_load *ftrace_mod; 3430 struct trace_array *tr = iter->tr; 3431 3432 if (WARN_ON_ONCE(!iter->mod_list) || 3433 iter->mod_list == &tr->mod_trace || 3434 iter->mod_list == &tr->mod_notrace) 3435 return -EIO; 3436 3437 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3438 3439 if (ftrace_mod->func) 3440 seq_printf(m, "%s", ftrace_mod->func); 3441 else 3442 seq_putc(m, '*'); 3443 3444 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3445 3446 return 0; 3447 } 3448 3449 static void * 3450 t_func_next(struct seq_file *m, loff_t *pos) 3451 { 3452 struct ftrace_iterator *iter = m->private; 3453 struct dyn_ftrace *rec = NULL; 3454 3455 (*pos)++; 3456 3457 retry: 3458 if (iter->idx >= iter->pg->index) { 3459 if (iter->pg->next) { 3460 iter->pg = iter->pg->next; 3461 iter->idx = 0; 3462 goto retry; 3463 } 3464 } else { 3465 rec = &iter->pg->records[iter->idx++]; 3466 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3467 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3468 3469 ((iter->flags & FTRACE_ITER_ENABLED) && 3470 !(rec->flags & FTRACE_FL_ENABLED))) { 3471 3472 rec = NULL; 3473 goto retry; 3474 } 3475 } 3476 3477 if (!rec) 3478 return NULL; 3479 3480 iter->pos = iter->func_pos = *pos; 3481 iter->func = rec; 3482 3483 return iter; 3484 } 3485 3486 static void * 3487 t_next(struct seq_file *m, void *v, loff_t *pos) 3488 { 3489 struct ftrace_iterator *iter = m->private; 3490 loff_t l = *pos; /* t_probe_start() must use original pos */ 3491 void *ret; 3492 3493 if (unlikely(ftrace_disabled)) 3494 return NULL; 3495 3496 if (iter->flags & FTRACE_ITER_PROBE) 3497 return t_probe_next(m, pos); 3498 3499 if (iter->flags & FTRACE_ITER_MOD) 3500 return t_mod_next(m, pos); 3501 3502 if (iter->flags & FTRACE_ITER_PRINTALL) { 3503 /* next must increment pos, and t_probe_start does not */ 3504 (*pos)++; 3505 return t_mod_start(m, &l); 3506 } 3507 3508 ret = t_func_next(m, pos); 3509 3510 if (!ret) 3511 return t_mod_start(m, &l); 3512 3513 return ret; 3514 } 3515 3516 static void reset_iter_read(struct ftrace_iterator *iter) 3517 { 3518 iter->pos = 0; 3519 iter->func_pos = 0; 3520 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3521 } 3522 3523 static void *t_start(struct seq_file *m, loff_t *pos) 3524 { 3525 struct ftrace_iterator *iter = m->private; 3526 void *p = NULL; 3527 loff_t l; 3528 3529 mutex_lock(&ftrace_lock); 3530 3531 if (unlikely(ftrace_disabled)) 3532 return NULL; 3533 3534 /* 3535 * If an lseek was done, then reset and start from beginning. 3536 */ 3537 if (*pos < iter->pos) 3538 reset_iter_read(iter); 3539 3540 /* 3541 * For set_ftrace_filter reading, if we have the filter 3542 * off, we can short cut and just print out that all 3543 * functions are enabled. 3544 */ 3545 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3546 ftrace_hash_empty(iter->hash)) { 3547 iter->func_pos = 1; /* Account for the message */ 3548 if (*pos > 0) 3549 return t_mod_start(m, pos); 3550 iter->flags |= FTRACE_ITER_PRINTALL; 3551 /* reset in case of seek/pread */ 3552 iter->flags &= ~FTRACE_ITER_PROBE; 3553 return iter; 3554 } 3555 3556 if (iter->flags & FTRACE_ITER_MOD) 3557 return t_mod_start(m, pos); 3558 3559 /* 3560 * Unfortunately, we need to restart at ftrace_pages_start 3561 * every time we let go of the ftrace_mutex. This is because 3562 * those pointers can change without the lock. 3563 */ 3564 iter->pg = ftrace_pages_start; 3565 iter->idx = 0; 3566 for (l = 0; l <= *pos; ) { 3567 p = t_func_next(m, &l); 3568 if (!p) 3569 break; 3570 } 3571 3572 if (!p) 3573 return t_mod_start(m, pos); 3574 3575 return iter; 3576 } 3577 3578 static void t_stop(struct seq_file *m, void *p) 3579 { 3580 mutex_unlock(&ftrace_lock); 3581 } 3582 3583 void * __weak 3584 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3585 { 3586 return NULL; 3587 } 3588 3589 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3590 struct dyn_ftrace *rec) 3591 { 3592 void *ptr; 3593 3594 ptr = arch_ftrace_trampoline_func(ops, rec); 3595 if (ptr) 3596 seq_printf(m, " ->%pS", ptr); 3597 } 3598 3599 static int t_show(struct seq_file *m, void *v) 3600 { 3601 struct ftrace_iterator *iter = m->private; 3602 struct dyn_ftrace *rec; 3603 3604 if (iter->flags & FTRACE_ITER_PROBE) 3605 return t_probe_show(m, iter); 3606 3607 if (iter->flags & FTRACE_ITER_MOD) 3608 return t_mod_show(m, iter); 3609 3610 if (iter->flags & FTRACE_ITER_PRINTALL) { 3611 if (iter->flags & FTRACE_ITER_NOTRACE) 3612 seq_puts(m, "#### no functions disabled ####\n"); 3613 else 3614 seq_puts(m, "#### all functions enabled ####\n"); 3615 return 0; 3616 } 3617 3618 rec = iter->func; 3619 3620 if (!rec) 3621 return 0; 3622 3623 seq_printf(m, "%ps", (void *)rec->ip); 3624 if (iter->flags & FTRACE_ITER_ENABLED) { 3625 struct ftrace_ops *ops; 3626 3627 seq_printf(m, " (%ld)%s%s%s", 3628 ftrace_rec_count(rec), 3629 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3630 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3631 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3632 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3633 ops = ftrace_find_tramp_ops_any(rec); 3634 if (ops) { 3635 do { 3636 seq_printf(m, "\ttramp: %pS (%pS)", 3637 (void *)ops->trampoline, 3638 (void *)ops->func); 3639 add_trampoline_func(m, ops, rec); 3640 ops = ftrace_find_tramp_ops_next(rec, ops); 3641 } while (ops); 3642 } else 3643 seq_puts(m, "\ttramp: ERROR!"); 3644 } else { 3645 add_trampoline_func(m, NULL, rec); 3646 } 3647 if (rec->flags & FTRACE_FL_DIRECT) { 3648 unsigned long direct; 3649 3650 direct = ftrace_find_rec_direct(rec->ip); 3651 if (direct) 3652 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3653 } 3654 } 3655 3656 seq_putc(m, '\n'); 3657 3658 return 0; 3659 } 3660 3661 static const struct seq_operations show_ftrace_seq_ops = { 3662 .start = t_start, 3663 .next = t_next, 3664 .stop = t_stop, 3665 .show = t_show, 3666 }; 3667 3668 static int 3669 ftrace_avail_open(struct inode *inode, struct file *file) 3670 { 3671 struct ftrace_iterator *iter; 3672 int ret; 3673 3674 ret = security_locked_down(LOCKDOWN_TRACEFS); 3675 if (ret) 3676 return ret; 3677 3678 if (unlikely(ftrace_disabled)) 3679 return -ENODEV; 3680 3681 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3682 if (!iter) 3683 return -ENOMEM; 3684 3685 iter->pg = ftrace_pages_start; 3686 iter->ops = &global_ops; 3687 3688 return 0; 3689 } 3690 3691 static int 3692 ftrace_enabled_open(struct inode *inode, struct file *file) 3693 { 3694 struct ftrace_iterator *iter; 3695 3696 /* 3697 * This shows us what functions are currently being 3698 * traced and by what. Not sure if we want lockdown 3699 * to hide such critical information for an admin. 3700 * Although, perhaps it can show information we don't 3701 * want people to see, but if something is tracing 3702 * something, we probably want to know about it. 3703 */ 3704 3705 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3706 if (!iter) 3707 return -ENOMEM; 3708 3709 iter->pg = ftrace_pages_start; 3710 iter->flags = FTRACE_ITER_ENABLED; 3711 iter->ops = &global_ops; 3712 3713 return 0; 3714 } 3715 3716 /** 3717 * ftrace_regex_open - initialize function tracer filter files 3718 * @ops: The ftrace_ops that hold the hash filters 3719 * @flag: The type of filter to process 3720 * @inode: The inode, usually passed in to your open routine 3721 * @file: The file, usually passed in to your open routine 3722 * 3723 * ftrace_regex_open() initializes the filter files for the 3724 * @ops. Depending on @flag it may process the filter hash or 3725 * the notrace hash of @ops. With this called from the open 3726 * routine, you can use ftrace_filter_write() for the write 3727 * routine if @flag has FTRACE_ITER_FILTER set, or 3728 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3729 * tracing_lseek() should be used as the lseek routine, and 3730 * release must call ftrace_regex_release(). 3731 */ 3732 int 3733 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3734 struct inode *inode, struct file *file) 3735 { 3736 struct ftrace_iterator *iter; 3737 struct ftrace_hash *hash; 3738 struct list_head *mod_head; 3739 struct trace_array *tr = ops->private; 3740 int ret = -ENOMEM; 3741 3742 ftrace_ops_init(ops); 3743 3744 if (unlikely(ftrace_disabled)) 3745 return -ENODEV; 3746 3747 if (tracing_check_open_get_tr(tr)) 3748 return -ENODEV; 3749 3750 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3751 if (!iter) 3752 goto out; 3753 3754 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3755 goto out; 3756 3757 iter->ops = ops; 3758 iter->flags = flag; 3759 iter->tr = tr; 3760 3761 mutex_lock(&ops->func_hash->regex_lock); 3762 3763 if (flag & FTRACE_ITER_NOTRACE) { 3764 hash = ops->func_hash->notrace_hash; 3765 mod_head = tr ? &tr->mod_notrace : NULL; 3766 } else { 3767 hash = ops->func_hash->filter_hash; 3768 mod_head = tr ? &tr->mod_trace : NULL; 3769 } 3770 3771 iter->mod_list = mod_head; 3772 3773 if (file->f_mode & FMODE_WRITE) { 3774 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3775 3776 if (file->f_flags & O_TRUNC) { 3777 iter->hash = alloc_ftrace_hash(size_bits); 3778 clear_ftrace_mod_list(mod_head); 3779 } else { 3780 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3781 } 3782 3783 if (!iter->hash) { 3784 trace_parser_put(&iter->parser); 3785 goto out_unlock; 3786 } 3787 } else 3788 iter->hash = hash; 3789 3790 ret = 0; 3791 3792 if (file->f_mode & FMODE_READ) { 3793 iter->pg = ftrace_pages_start; 3794 3795 ret = seq_open(file, &show_ftrace_seq_ops); 3796 if (!ret) { 3797 struct seq_file *m = file->private_data; 3798 m->private = iter; 3799 } else { 3800 /* Failed */ 3801 free_ftrace_hash(iter->hash); 3802 trace_parser_put(&iter->parser); 3803 } 3804 } else 3805 file->private_data = iter; 3806 3807 out_unlock: 3808 mutex_unlock(&ops->func_hash->regex_lock); 3809 3810 out: 3811 if (ret) { 3812 kfree(iter); 3813 if (tr) 3814 trace_array_put(tr); 3815 } 3816 3817 return ret; 3818 } 3819 3820 static int 3821 ftrace_filter_open(struct inode *inode, struct file *file) 3822 { 3823 struct ftrace_ops *ops = inode->i_private; 3824 3825 /* Checks for tracefs lockdown */ 3826 return ftrace_regex_open(ops, 3827 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3828 inode, file); 3829 } 3830 3831 static int 3832 ftrace_notrace_open(struct inode *inode, struct file *file) 3833 { 3834 struct ftrace_ops *ops = inode->i_private; 3835 3836 /* Checks for tracefs lockdown */ 3837 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3838 inode, file); 3839 } 3840 3841 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3842 struct ftrace_glob { 3843 char *search; 3844 unsigned len; 3845 int type; 3846 }; 3847 3848 /* 3849 * If symbols in an architecture don't correspond exactly to the user-visible 3850 * name of what they represent, it is possible to define this function to 3851 * perform the necessary adjustments. 3852 */ 3853 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3854 { 3855 return str; 3856 } 3857 3858 static int ftrace_match(char *str, struct ftrace_glob *g) 3859 { 3860 int matched = 0; 3861 int slen; 3862 3863 str = arch_ftrace_match_adjust(str, g->search); 3864 3865 switch (g->type) { 3866 case MATCH_FULL: 3867 if (strcmp(str, g->search) == 0) 3868 matched = 1; 3869 break; 3870 case MATCH_FRONT_ONLY: 3871 if (strncmp(str, g->search, g->len) == 0) 3872 matched = 1; 3873 break; 3874 case MATCH_MIDDLE_ONLY: 3875 if (strstr(str, g->search)) 3876 matched = 1; 3877 break; 3878 case MATCH_END_ONLY: 3879 slen = strlen(str); 3880 if (slen >= g->len && 3881 memcmp(str + slen - g->len, g->search, g->len) == 0) 3882 matched = 1; 3883 break; 3884 case MATCH_GLOB: 3885 if (glob_match(g->search, str)) 3886 matched = 1; 3887 break; 3888 } 3889 3890 return matched; 3891 } 3892 3893 static int 3894 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3895 { 3896 struct ftrace_func_entry *entry; 3897 int ret = 0; 3898 3899 entry = ftrace_lookup_ip(hash, rec->ip); 3900 if (clear_filter) { 3901 /* Do nothing if it doesn't exist */ 3902 if (!entry) 3903 return 0; 3904 3905 free_hash_entry(hash, entry); 3906 } else { 3907 /* Do nothing if it exists */ 3908 if (entry) 3909 return 0; 3910 3911 ret = add_hash_entry(hash, rec->ip); 3912 } 3913 return ret; 3914 } 3915 3916 static int 3917 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3918 int clear_filter) 3919 { 3920 long index = simple_strtoul(func_g->search, NULL, 0); 3921 struct ftrace_page *pg; 3922 struct dyn_ftrace *rec; 3923 3924 /* The index starts at 1 */ 3925 if (--index < 0) 3926 return 0; 3927 3928 do_for_each_ftrace_rec(pg, rec) { 3929 if (pg->index <= index) { 3930 index -= pg->index; 3931 /* this is a double loop, break goes to the next page */ 3932 break; 3933 } 3934 rec = &pg->records[index]; 3935 enter_record(hash, rec, clear_filter); 3936 return 1; 3937 } while_for_each_ftrace_rec(); 3938 return 0; 3939 } 3940 3941 static int 3942 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3943 struct ftrace_glob *mod_g, int exclude_mod) 3944 { 3945 char str[KSYM_SYMBOL_LEN]; 3946 char *modname; 3947 3948 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3949 3950 if (mod_g) { 3951 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3952 3953 /* blank module name to match all modules */ 3954 if (!mod_g->len) { 3955 /* blank module globbing: modname xor exclude_mod */ 3956 if (!exclude_mod != !modname) 3957 goto func_match; 3958 return 0; 3959 } 3960 3961 /* 3962 * exclude_mod is set to trace everything but the given 3963 * module. If it is set and the module matches, then 3964 * return 0. If it is not set, and the module doesn't match 3965 * also return 0. Otherwise, check the function to see if 3966 * that matches. 3967 */ 3968 if (!mod_matches == !exclude_mod) 3969 return 0; 3970 func_match: 3971 /* blank search means to match all funcs in the mod */ 3972 if (!func_g->len) 3973 return 1; 3974 } 3975 3976 return ftrace_match(str, func_g); 3977 } 3978 3979 static int 3980 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3981 { 3982 struct ftrace_page *pg; 3983 struct dyn_ftrace *rec; 3984 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3985 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3986 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3987 int exclude_mod = 0; 3988 int found = 0; 3989 int ret; 3990 int clear_filter = 0; 3991 3992 if (func) { 3993 func_g.type = filter_parse_regex(func, len, &func_g.search, 3994 &clear_filter); 3995 func_g.len = strlen(func_g.search); 3996 } 3997 3998 if (mod) { 3999 mod_g.type = filter_parse_regex(mod, strlen(mod), 4000 &mod_g.search, &exclude_mod); 4001 mod_g.len = strlen(mod_g.search); 4002 } 4003 4004 mutex_lock(&ftrace_lock); 4005 4006 if (unlikely(ftrace_disabled)) 4007 goto out_unlock; 4008 4009 if (func_g.type == MATCH_INDEX) { 4010 found = add_rec_by_index(hash, &func_g, clear_filter); 4011 goto out_unlock; 4012 } 4013 4014 do_for_each_ftrace_rec(pg, rec) { 4015 4016 if (rec->flags & FTRACE_FL_DISABLED) 4017 continue; 4018 4019 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4020 ret = enter_record(hash, rec, clear_filter); 4021 if (ret < 0) { 4022 found = ret; 4023 goto out_unlock; 4024 } 4025 found = 1; 4026 } 4027 } while_for_each_ftrace_rec(); 4028 out_unlock: 4029 mutex_unlock(&ftrace_lock); 4030 4031 return found; 4032 } 4033 4034 static int 4035 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4036 { 4037 return match_records(hash, buff, len, NULL); 4038 } 4039 4040 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4041 struct ftrace_ops_hash *old_hash) 4042 { 4043 struct ftrace_ops *op; 4044 4045 if (!ftrace_enabled) 4046 return; 4047 4048 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4049 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4050 return; 4051 } 4052 4053 /* 4054 * If this is the shared global_ops filter, then we need to 4055 * check if there is another ops that shares it, is enabled. 4056 * If so, we still need to run the modify code. 4057 */ 4058 if (ops->func_hash != &global_ops.local_hash) 4059 return; 4060 4061 do_for_each_ftrace_op(op, ftrace_ops_list) { 4062 if (op->func_hash == &global_ops.local_hash && 4063 op->flags & FTRACE_OPS_FL_ENABLED) { 4064 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4065 /* Only need to do this once */ 4066 return; 4067 } 4068 } while_for_each_ftrace_op(op); 4069 } 4070 4071 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4072 struct ftrace_hash **orig_hash, 4073 struct ftrace_hash *hash, 4074 int enable) 4075 { 4076 struct ftrace_ops_hash old_hash_ops; 4077 struct ftrace_hash *old_hash; 4078 int ret; 4079 4080 old_hash = *orig_hash; 4081 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4082 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4083 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4084 if (!ret) { 4085 ftrace_ops_update_code(ops, &old_hash_ops); 4086 free_ftrace_hash_rcu(old_hash); 4087 } 4088 return ret; 4089 } 4090 4091 static bool module_exists(const char *module) 4092 { 4093 /* All modules have the symbol __this_module */ 4094 static const char this_mod[] = "__this_module"; 4095 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4096 unsigned long val; 4097 int n; 4098 4099 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4100 4101 if (n > sizeof(modname) - 1) 4102 return false; 4103 4104 val = module_kallsyms_lookup_name(modname); 4105 return val != 0; 4106 } 4107 4108 static int cache_mod(struct trace_array *tr, 4109 const char *func, char *module, int enable) 4110 { 4111 struct ftrace_mod_load *ftrace_mod, *n; 4112 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4113 int ret; 4114 4115 mutex_lock(&ftrace_lock); 4116 4117 /* We do not cache inverse filters */ 4118 if (func[0] == '!') { 4119 func++; 4120 ret = -EINVAL; 4121 4122 /* Look to remove this hash */ 4123 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4124 if (strcmp(ftrace_mod->module, module) != 0) 4125 continue; 4126 4127 /* no func matches all */ 4128 if (strcmp(func, "*") == 0 || 4129 (ftrace_mod->func && 4130 strcmp(ftrace_mod->func, func) == 0)) { 4131 ret = 0; 4132 free_ftrace_mod(ftrace_mod); 4133 continue; 4134 } 4135 } 4136 goto out; 4137 } 4138 4139 ret = -EINVAL; 4140 /* We only care about modules that have not been loaded yet */ 4141 if (module_exists(module)) 4142 goto out; 4143 4144 /* Save this string off, and execute it when the module is loaded */ 4145 ret = ftrace_add_mod(tr, func, module, enable); 4146 out: 4147 mutex_unlock(&ftrace_lock); 4148 4149 return ret; 4150 } 4151 4152 static int 4153 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4154 int reset, int enable); 4155 4156 #ifdef CONFIG_MODULES 4157 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4158 char *mod, bool enable) 4159 { 4160 struct ftrace_mod_load *ftrace_mod, *n; 4161 struct ftrace_hash **orig_hash, *new_hash; 4162 LIST_HEAD(process_mods); 4163 char *func; 4164 int ret; 4165 4166 mutex_lock(&ops->func_hash->regex_lock); 4167 4168 if (enable) 4169 orig_hash = &ops->func_hash->filter_hash; 4170 else 4171 orig_hash = &ops->func_hash->notrace_hash; 4172 4173 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4174 *orig_hash); 4175 if (!new_hash) 4176 goto out; /* warn? */ 4177 4178 mutex_lock(&ftrace_lock); 4179 4180 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4181 4182 if (strcmp(ftrace_mod->module, mod) != 0) 4183 continue; 4184 4185 if (ftrace_mod->func) 4186 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4187 else 4188 func = kstrdup("*", GFP_KERNEL); 4189 4190 if (!func) /* warn? */ 4191 continue; 4192 4193 list_del(&ftrace_mod->list); 4194 list_add(&ftrace_mod->list, &process_mods); 4195 4196 /* Use the newly allocated func, as it may be "*" */ 4197 kfree(ftrace_mod->func); 4198 ftrace_mod->func = func; 4199 } 4200 4201 mutex_unlock(&ftrace_lock); 4202 4203 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4204 4205 func = ftrace_mod->func; 4206 4207 /* Grabs ftrace_lock, which is why we have this extra step */ 4208 match_records(new_hash, func, strlen(func), mod); 4209 free_ftrace_mod(ftrace_mod); 4210 } 4211 4212 if (enable && list_empty(head)) 4213 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4214 4215 mutex_lock(&ftrace_lock); 4216 4217 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4218 new_hash, enable); 4219 mutex_unlock(&ftrace_lock); 4220 4221 out: 4222 mutex_unlock(&ops->func_hash->regex_lock); 4223 4224 free_ftrace_hash(new_hash); 4225 } 4226 4227 static void process_cached_mods(const char *mod_name) 4228 { 4229 struct trace_array *tr; 4230 char *mod; 4231 4232 mod = kstrdup(mod_name, GFP_KERNEL); 4233 if (!mod) 4234 return; 4235 4236 mutex_lock(&trace_types_lock); 4237 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4238 if (!list_empty(&tr->mod_trace)) 4239 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4240 if (!list_empty(&tr->mod_notrace)) 4241 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4242 } 4243 mutex_unlock(&trace_types_lock); 4244 4245 kfree(mod); 4246 } 4247 #endif 4248 4249 /* 4250 * We register the module command as a template to show others how 4251 * to register the a command as well. 4252 */ 4253 4254 static int 4255 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4256 char *func_orig, char *cmd, char *module, int enable) 4257 { 4258 char *func; 4259 int ret; 4260 4261 /* match_records() modifies func, and we need the original */ 4262 func = kstrdup(func_orig, GFP_KERNEL); 4263 if (!func) 4264 return -ENOMEM; 4265 4266 /* 4267 * cmd == 'mod' because we only registered this func 4268 * for the 'mod' ftrace_func_command. 4269 * But if you register one func with multiple commands, 4270 * you can tell which command was used by the cmd 4271 * parameter. 4272 */ 4273 ret = match_records(hash, func, strlen(func), module); 4274 kfree(func); 4275 4276 if (!ret) 4277 return cache_mod(tr, func_orig, module, enable); 4278 if (ret < 0) 4279 return ret; 4280 return 0; 4281 } 4282 4283 static struct ftrace_func_command ftrace_mod_cmd = { 4284 .name = "mod", 4285 .func = ftrace_mod_callback, 4286 }; 4287 4288 static int __init ftrace_mod_cmd_init(void) 4289 { 4290 return register_ftrace_command(&ftrace_mod_cmd); 4291 } 4292 core_initcall(ftrace_mod_cmd_init); 4293 4294 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4295 struct ftrace_ops *op, struct pt_regs *pt_regs) 4296 { 4297 struct ftrace_probe_ops *probe_ops; 4298 struct ftrace_func_probe *probe; 4299 4300 probe = container_of(op, struct ftrace_func_probe, ops); 4301 probe_ops = probe->probe_ops; 4302 4303 /* 4304 * Disable preemption for these calls to prevent a RCU grace 4305 * period. This syncs the hash iteration and freeing of items 4306 * on the hash. rcu_read_lock is too dangerous here. 4307 */ 4308 preempt_disable_notrace(); 4309 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4310 preempt_enable_notrace(); 4311 } 4312 4313 struct ftrace_func_map { 4314 struct ftrace_func_entry entry; 4315 void *data; 4316 }; 4317 4318 struct ftrace_func_mapper { 4319 struct ftrace_hash hash; 4320 }; 4321 4322 /** 4323 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4324 * 4325 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4326 */ 4327 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4328 { 4329 struct ftrace_hash *hash; 4330 4331 /* 4332 * The mapper is simply a ftrace_hash, but since the entries 4333 * in the hash are not ftrace_func_entry type, we define it 4334 * as a separate structure. 4335 */ 4336 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4337 return (struct ftrace_func_mapper *)hash; 4338 } 4339 4340 /** 4341 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4342 * @mapper: The mapper that has the ip maps 4343 * @ip: the instruction pointer to find the data for 4344 * 4345 * Returns the data mapped to @ip if found otherwise NULL. The return 4346 * is actually the address of the mapper data pointer. The address is 4347 * returned for use cases where the data is no bigger than a long, and 4348 * the user can use the data pointer as its data instead of having to 4349 * allocate more memory for the reference. 4350 */ 4351 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4352 unsigned long ip) 4353 { 4354 struct ftrace_func_entry *entry; 4355 struct ftrace_func_map *map; 4356 4357 entry = ftrace_lookup_ip(&mapper->hash, ip); 4358 if (!entry) 4359 return NULL; 4360 4361 map = (struct ftrace_func_map *)entry; 4362 return &map->data; 4363 } 4364 4365 /** 4366 * ftrace_func_mapper_add_ip - Map some data to an ip 4367 * @mapper: The mapper that has the ip maps 4368 * @ip: The instruction pointer address to map @data to 4369 * @data: The data to map to @ip 4370 * 4371 * Returns 0 on succes otherwise an error. 4372 */ 4373 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4374 unsigned long ip, void *data) 4375 { 4376 struct ftrace_func_entry *entry; 4377 struct ftrace_func_map *map; 4378 4379 entry = ftrace_lookup_ip(&mapper->hash, ip); 4380 if (entry) 4381 return -EBUSY; 4382 4383 map = kmalloc(sizeof(*map), GFP_KERNEL); 4384 if (!map) 4385 return -ENOMEM; 4386 4387 map->entry.ip = ip; 4388 map->data = data; 4389 4390 __add_hash_entry(&mapper->hash, &map->entry); 4391 4392 return 0; 4393 } 4394 4395 /** 4396 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4397 * @mapper: The mapper that has the ip maps 4398 * @ip: The instruction pointer address to remove the data from 4399 * 4400 * Returns the data if it is found, otherwise NULL. 4401 * Note, if the data pointer is used as the data itself, (see 4402 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4403 * if the data pointer was set to zero. 4404 */ 4405 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4406 unsigned long ip) 4407 { 4408 struct ftrace_func_entry *entry; 4409 struct ftrace_func_map *map; 4410 void *data; 4411 4412 entry = ftrace_lookup_ip(&mapper->hash, ip); 4413 if (!entry) 4414 return NULL; 4415 4416 map = (struct ftrace_func_map *)entry; 4417 data = map->data; 4418 4419 remove_hash_entry(&mapper->hash, entry); 4420 kfree(entry); 4421 4422 return data; 4423 } 4424 4425 /** 4426 * free_ftrace_func_mapper - free a mapping of ips and data 4427 * @mapper: The mapper that has the ip maps 4428 * @free_func: A function to be called on each data item. 4429 * 4430 * This is used to free the function mapper. The @free_func is optional 4431 * and can be used if the data needs to be freed as well. 4432 */ 4433 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4434 ftrace_mapper_func free_func) 4435 { 4436 struct ftrace_func_entry *entry; 4437 struct ftrace_func_map *map; 4438 struct hlist_head *hhd; 4439 int size, i; 4440 4441 if (!mapper) 4442 return; 4443 4444 if (free_func && mapper->hash.count) { 4445 size = 1 << mapper->hash.size_bits; 4446 for (i = 0; i < size; i++) { 4447 hhd = &mapper->hash.buckets[i]; 4448 hlist_for_each_entry(entry, hhd, hlist) { 4449 map = (struct ftrace_func_map *)entry; 4450 free_func(map); 4451 } 4452 } 4453 } 4454 free_ftrace_hash(&mapper->hash); 4455 } 4456 4457 static void release_probe(struct ftrace_func_probe *probe) 4458 { 4459 struct ftrace_probe_ops *probe_ops; 4460 4461 mutex_lock(&ftrace_lock); 4462 4463 WARN_ON(probe->ref <= 0); 4464 4465 /* Subtract the ref that was used to protect this instance */ 4466 probe->ref--; 4467 4468 if (!probe->ref) { 4469 probe_ops = probe->probe_ops; 4470 /* 4471 * Sending zero as ip tells probe_ops to free 4472 * the probe->data itself 4473 */ 4474 if (probe_ops->free) 4475 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4476 list_del(&probe->list); 4477 kfree(probe); 4478 } 4479 mutex_unlock(&ftrace_lock); 4480 } 4481 4482 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4483 { 4484 /* 4485 * Add one ref to keep it from being freed when releasing the 4486 * ftrace_lock mutex. 4487 */ 4488 probe->ref++; 4489 } 4490 4491 int 4492 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4493 struct ftrace_probe_ops *probe_ops, 4494 void *data) 4495 { 4496 struct ftrace_func_entry *entry; 4497 struct ftrace_func_probe *probe; 4498 struct ftrace_hash **orig_hash; 4499 struct ftrace_hash *old_hash; 4500 struct ftrace_hash *hash; 4501 int count = 0; 4502 int size; 4503 int ret; 4504 int i; 4505 4506 if (WARN_ON(!tr)) 4507 return -EINVAL; 4508 4509 /* We do not support '!' for function probes */ 4510 if (WARN_ON(glob[0] == '!')) 4511 return -EINVAL; 4512 4513 4514 mutex_lock(&ftrace_lock); 4515 /* Check if the probe_ops is already registered */ 4516 list_for_each_entry(probe, &tr->func_probes, list) { 4517 if (probe->probe_ops == probe_ops) 4518 break; 4519 } 4520 if (&probe->list == &tr->func_probes) { 4521 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4522 if (!probe) { 4523 mutex_unlock(&ftrace_lock); 4524 return -ENOMEM; 4525 } 4526 probe->probe_ops = probe_ops; 4527 probe->ops.func = function_trace_probe_call; 4528 probe->tr = tr; 4529 ftrace_ops_init(&probe->ops); 4530 list_add(&probe->list, &tr->func_probes); 4531 } 4532 4533 acquire_probe_locked(probe); 4534 4535 mutex_unlock(&ftrace_lock); 4536 4537 /* 4538 * Note, there's a small window here that the func_hash->filter_hash 4539 * may be NULL or empty. Need to be carefule when reading the loop. 4540 */ 4541 mutex_lock(&probe->ops.func_hash->regex_lock); 4542 4543 orig_hash = &probe->ops.func_hash->filter_hash; 4544 old_hash = *orig_hash; 4545 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4546 4547 if (!hash) { 4548 ret = -ENOMEM; 4549 goto out; 4550 } 4551 4552 ret = ftrace_match_records(hash, glob, strlen(glob)); 4553 4554 /* Nothing found? */ 4555 if (!ret) 4556 ret = -EINVAL; 4557 4558 if (ret < 0) 4559 goto out; 4560 4561 size = 1 << hash->size_bits; 4562 for (i = 0; i < size; i++) { 4563 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4564 if (ftrace_lookup_ip(old_hash, entry->ip)) 4565 continue; 4566 /* 4567 * The caller might want to do something special 4568 * for each function we find. We call the callback 4569 * to give the caller an opportunity to do so. 4570 */ 4571 if (probe_ops->init) { 4572 ret = probe_ops->init(probe_ops, tr, 4573 entry->ip, data, 4574 &probe->data); 4575 if (ret < 0) { 4576 if (probe_ops->free && count) 4577 probe_ops->free(probe_ops, tr, 4578 0, probe->data); 4579 probe->data = NULL; 4580 goto out; 4581 } 4582 } 4583 count++; 4584 } 4585 } 4586 4587 mutex_lock(&ftrace_lock); 4588 4589 if (!count) { 4590 /* Nothing was added? */ 4591 ret = -EINVAL; 4592 goto out_unlock; 4593 } 4594 4595 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4596 hash, 1); 4597 if (ret < 0) 4598 goto err_unlock; 4599 4600 /* One ref for each new function traced */ 4601 probe->ref += count; 4602 4603 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4604 ret = ftrace_startup(&probe->ops, 0); 4605 4606 out_unlock: 4607 mutex_unlock(&ftrace_lock); 4608 4609 if (!ret) 4610 ret = count; 4611 out: 4612 mutex_unlock(&probe->ops.func_hash->regex_lock); 4613 free_ftrace_hash(hash); 4614 4615 release_probe(probe); 4616 4617 return ret; 4618 4619 err_unlock: 4620 if (!probe_ops->free || !count) 4621 goto out_unlock; 4622 4623 /* Failed to do the move, need to call the free functions */ 4624 for (i = 0; i < size; i++) { 4625 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4626 if (ftrace_lookup_ip(old_hash, entry->ip)) 4627 continue; 4628 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4629 } 4630 } 4631 goto out_unlock; 4632 } 4633 4634 int 4635 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4636 struct ftrace_probe_ops *probe_ops) 4637 { 4638 struct ftrace_ops_hash old_hash_ops; 4639 struct ftrace_func_entry *entry; 4640 struct ftrace_func_probe *probe; 4641 struct ftrace_glob func_g; 4642 struct ftrace_hash **orig_hash; 4643 struct ftrace_hash *old_hash; 4644 struct ftrace_hash *hash = NULL; 4645 struct hlist_node *tmp; 4646 struct hlist_head hhd; 4647 char str[KSYM_SYMBOL_LEN]; 4648 int count = 0; 4649 int i, ret = -ENODEV; 4650 int size; 4651 4652 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4653 func_g.search = NULL; 4654 else { 4655 int not; 4656 4657 func_g.type = filter_parse_regex(glob, strlen(glob), 4658 &func_g.search, ¬); 4659 func_g.len = strlen(func_g.search); 4660 4661 /* we do not support '!' for function probes */ 4662 if (WARN_ON(not)) 4663 return -EINVAL; 4664 } 4665 4666 mutex_lock(&ftrace_lock); 4667 /* Check if the probe_ops is already registered */ 4668 list_for_each_entry(probe, &tr->func_probes, list) { 4669 if (probe->probe_ops == probe_ops) 4670 break; 4671 } 4672 if (&probe->list == &tr->func_probes) 4673 goto err_unlock_ftrace; 4674 4675 ret = -EINVAL; 4676 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4677 goto err_unlock_ftrace; 4678 4679 acquire_probe_locked(probe); 4680 4681 mutex_unlock(&ftrace_lock); 4682 4683 mutex_lock(&probe->ops.func_hash->regex_lock); 4684 4685 orig_hash = &probe->ops.func_hash->filter_hash; 4686 old_hash = *orig_hash; 4687 4688 if (ftrace_hash_empty(old_hash)) 4689 goto out_unlock; 4690 4691 old_hash_ops.filter_hash = old_hash; 4692 /* Probes only have filters */ 4693 old_hash_ops.notrace_hash = NULL; 4694 4695 ret = -ENOMEM; 4696 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4697 if (!hash) 4698 goto out_unlock; 4699 4700 INIT_HLIST_HEAD(&hhd); 4701 4702 size = 1 << hash->size_bits; 4703 for (i = 0; i < size; i++) { 4704 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4705 4706 if (func_g.search) { 4707 kallsyms_lookup(entry->ip, NULL, NULL, 4708 NULL, str); 4709 if (!ftrace_match(str, &func_g)) 4710 continue; 4711 } 4712 count++; 4713 remove_hash_entry(hash, entry); 4714 hlist_add_head(&entry->hlist, &hhd); 4715 } 4716 } 4717 4718 /* Nothing found? */ 4719 if (!count) { 4720 ret = -EINVAL; 4721 goto out_unlock; 4722 } 4723 4724 mutex_lock(&ftrace_lock); 4725 4726 WARN_ON(probe->ref < count); 4727 4728 probe->ref -= count; 4729 4730 if (ftrace_hash_empty(hash)) 4731 ftrace_shutdown(&probe->ops, 0); 4732 4733 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4734 hash, 1); 4735 4736 /* still need to update the function call sites */ 4737 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4738 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4739 &old_hash_ops); 4740 synchronize_rcu(); 4741 4742 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4743 hlist_del(&entry->hlist); 4744 if (probe_ops->free) 4745 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4746 kfree(entry); 4747 } 4748 mutex_unlock(&ftrace_lock); 4749 4750 out_unlock: 4751 mutex_unlock(&probe->ops.func_hash->regex_lock); 4752 free_ftrace_hash(hash); 4753 4754 release_probe(probe); 4755 4756 return ret; 4757 4758 err_unlock_ftrace: 4759 mutex_unlock(&ftrace_lock); 4760 return ret; 4761 } 4762 4763 void clear_ftrace_function_probes(struct trace_array *tr) 4764 { 4765 struct ftrace_func_probe *probe, *n; 4766 4767 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4768 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4769 } 4770 4771 static LIST_HEAD(ftrace_commands); 4772 static DEFINE_MUTEX(ftrace_cmd_mutex); 4773 4774 /* 4775 * Currently we only register ftrace commands from __init, so mark this 4776 * __init too. 4777 */ 4778 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4779 { 4780 struct ftrace_func_command *p; 4781 int ret = 0; 4782 4783 mutex_lock(&ftrace_cmd_mutex); 4784 list_for_each_entry(p, &ftrace_commands, list) { 4785 if (strcmp(cmd->name, p->name) == 0) { 4786 ret = -EBUSY; 4787 goto out_unlock; 4788 } 4789 } 4790 list_add(&cmd->list, &ftrace_commands); 4791 out_unlock: 4792 mutex_unlock(&ftrace_cmd_mutex); 4793 4794 return ret; 4795 } 4796 4797 /* 4798 * Currently we only unregister ftrace commands from __init, so mark 4799 * this __init too. 4800 */ 4801 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4802 { 4803 struct ftrace_func_command *p, *n; 4804 int ret = -ENODEV; 4805 4806 mutex_lock(&ftrace_cmd_mutex); 4807 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4808 if (strcmp(cmd->name, p->name) == 0) { 4809 ret = 0; 4810 list_del_init(&p->list); 4811 goto out_unlock; 4812 } 4813 } 4814 out_unlock: 4815 mutex_unlock(&ftrace_cmd_mutex); 4816 4817 return ret; 4818 } 4819 4820 static int ftrace_process_regex(struct ftrace_iterator *iter, 4821 char *buff, int len, int enable) 4822 { 4823 struct ftrace_hash *hash = iter->hash; 4824 struct trace_array *tr = iter->ops->private; 4825 char *func, *command, *next = buff; 4826 struct ftrace_func_command *p; 4827 int ret = -EINVAL; 4828 4829 func = strsep(&next, ":"); 4830 4831 if (!next) { 4832 ret = ftrace_match_records(hash, func, len); 4833 if (!ret) 4834 ret = -EINVAL; 4835 if (ret < 0) 4836 return ret; 4837 return 0; 4838 } 4839 4840 /* command found */ 4841 4842 command = strsep(&next, ":"); 4843 4844 mutex_lock(&ftrace_cmd_mutex); 4845 list_for_each_entry(p, &ftrace_commands, list) { 4846 if (strcmp(p->name, command) == 0) { 4847 ret = p->func(tr, hash, func, command, next, enable); 4848 goto out_unlock; 4849 } 4850 } 4851 out_unlock: 4852 mutex_unlock(&ftrace_cmd_mutex); 4853 4854 return ret; 4855 } 4856 4857 static ssize_t 4858 ftrace_regex_write(struct file *file, const char __user *ubuf, 4859 size_t cnt, loff_t *ppos, int enable) 4860 { 4861 struct ftrace_iterator *iter; 4862 struct trace_parser *parser; 4863 ssize_t ret, read; 4864 4865 if (!cnt) 4866 return 0; 4867 4868 if (file->f_mode & FMODE_READ) { 4869 struct seq_file *m = file->private_data; 4870 iter = m->private; 4871 } else 4872 iter = file->private_data; 4873 4874 if (unlikely(ftrace_disabled)) 4875 return -ENODEV; 4876 4877 /* iter->hash is a local copy, so we don't need regex_lock */ 4878 4879 parser = &iter->parser; 4880 read = trace_get_user(parser, ubuf, cnt, ppos); 4881 4882 if (read >= 0 && trace_parser_loaded(parser) && 4883 !trace_parser_cont(parser)) { 4884 ret = ftrace_process_regex(iter, parser->buffer, 4885 parser->idx, enable); 4886 trace_parser_clear(parser); 4887 if (ret < 0) 4888 goto out; 4889 } 4890 4891 ret = read; 4892 out: 4893 return ret; 4894 } 4895 4896 ssize_t 4897 ftrace_filter_write(struct file *file, const char __user *ubuf, 4898 size_t cnt, loff_t *ppos) 4899 { 4900 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4901 } 4902 4903 ssize_t 4904 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4905 size_t cnt, loff_t *ppos) 4906 { 4907 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4908 } 4909 4910 static int 4911 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4912 { 4913 struct ftrace_func_entry *entry; 4914 4915 if (!ftrace_location(ip)) 4916 return -EINVAL; 4917 4918 if (remove) { 4919 entry = ftrace_lookup_ip(hash, ip); 4920 if (!entry) 4921 return -ENOENT; 4922 free_hash_entry(hash, entry); 4923 return 0; 4924 } 4925 4926 return add_hash_entry(hash, ip); 4927 } 4928 4929 static int 4930 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4931 unsigned long ip, int remove, int reset, int enable) 4932 { 4933 struct ftrace_hash **orig_hash; 4934 struct ftrace_hash *hash; 4935 int ret; 4936 4937 if (unlikely(ftrace_disabled)) 4938 return -ENODEV; 4939 4940 mutex_lock(&ops->func_hash->regex_lock); 4941 4942 if (enable) 4943 orig_hash = &ops->func_hash->filter_hash; 4944 else 4945 orig_hash = &ops->func_hash->notrace_hash; 4946 4947 if (reset) 4948 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4949 else 4950 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4951 4952 if (!hash) { 4953 ret = -ENOMEM; 4954 goto out_regex_unlock; 4955 } 4956 4957 if (buf && !ftrace_match_records(hash, buf, len)) { 4958 ret = -EINVAL; 4959 goto out_regex_unlock; 4960 } 4961 if (ip) { 4962 ret = ftrace_match_addr(hash, ip, remove); 4963 if (ret < 0) 4964 goto out_regex_unlock; 4965 } 4966 4967 mutex_lock(&ftrace_lock); 4968 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4969 mutex_unlock(&ftrace_lock); 4970 4971 out_regex_unlock: 4972 mutex_unlock(&ops->func_hash->regex_lock); 4973 4974 free_ftrace_hash(hash); 4975 return ret; 4976 } 4977 4978 static int 4979 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4980 int reset, int enable) 4981 { 4982 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4983 } 4984 4985 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4986 4987 struct ftrace_direct_func { 4988 struct list_head next; 4989 unsigned long addr; 4990 int count; 4991 }; 4992 4993 static LIST_HEAD(ftrace_direct_funcs); 4994 4995 /** 4996 * ftrace_find_direct_func - test an address if it is a registered direct caller 4997 * @addr: The address of a registered direct caller 4998 * 4999 * This searches to see if a ftrace direct caller has been registered 5000 * at a specific address, and if so, it returns a descriptor for it. 5001 * 5002 * This can be used by architecture code to see if an address is 5003 * a direct caller (trampoline) attached to a fentry/mcount location. 5004 * This is useful for the function_graph tracer, as it may need to 5005 * do adjustments if it traced a location that also has a direct 5006 * trampoline attached to it. 5007 */ 5008 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5009 { 5010 struct ftrace_direct_func *entry; 5011 bool found = false; 5012 5013 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5014 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5015 if (entry->addr == addr) { 5016 found = true; 5017 break; 5018 } 5019 } 5020 if (found) 5021 return entry; 5022 5023 return NULL; 5024 } 5025 5026 /** 5027 * register_ftrace_direct - Call a custom trampoline directly 5028 * @ip: The address of the nop at the beginning of a function 5029 * @addr: The address of the trampoline to call at @ip 5030 * 5031 * This is used to connect a direct call from the nop location (@ip) 5032 * at the start of ftrace traced functions. The location that it calls 5033 * (@addr) must be able to handle a direct call, and save the parameters 5034 * of the function being traced, and restore them (or inject new ones 5035 * if needed), before returning. 5036 * 5037 * Returns: 5038 * 0 on success 5039 * -EBUSY - Another direct function is already attached (there can be only one) 5040 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5041 * -ENOMEM - There was an allocation failure. 5042 */ 5043 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5044 { 5045 struct ftrace_direct_func *direct; 5046 struct ftrace_func_entry *entry; 5047 struct ftrace_hash *free_hash = NULL; 5048 struct dyn_ftrace *rec; 5049 int ret = -EBUSY; 5050 5051 mutex_lock(&direct_mutex); 5052 5053 /* See if there's a direct function at @ip already */ 5054 if (ftrace_find_rec_direct(ip)) 5055 goto out_unlock; 5056 5057 ret = -ENODEV; 5058 rec = lookup_rec(ip, ip); 5059 if (!rec) 5060 goto out_unlock; 5061 5062 /* 5063 * Check if the rec says it has a direct call but we didn't 5064 * find one earlier? 5065 */ 5066 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5067 goto out_unlock; 5068 5069 /* Make sure the ip points to the exact record */ 5070 if (ip != rec->ip) { 5071 ip = rec->ip; 5072 /* Need to check this ip for a direct. */ 5073 if (ftrace_find_rec_direct(ip)) 5074 goto out_unlock; 5075 } 5076 5077 ret = -ENOMEM; 5078 if (ftrace_hash_empty(direct_functions) || 5079 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5080 struct ftrace_hash *new_hash; 5081 int size = ftrace_hash_empty(direct_functions) ? 0 : 5082 direct_functions->count + 1; 5083 5084 if (size < 32) 5085 size = 32; 5086 5087 new_hash = dup_hash(direct_functions, size); 5088 if (!new_hash) 5089 goto out_unlock; 5090 5091 free_hash = direct_functions; 5092 direct_functions = new_hash; 5093 } 5094 5095 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5096 if (!entry) 5097 goto out_unlock; 5098 5099 direct = ftrace_find_direct_func(addr); 5100 if (!direct) { 5101 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5102 if (!direct) { 5103 kfree(entry); 5104 goto out_unlock; 5105 } 5106 direct->addr = addr; 5107 direct->count = 0; 5108 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5109 ftrace_direct_func_count++; 5110 } 5111 5112 entry->ip = ip; 5113 entry->direct = addr; 5114 __add_hash_entry(direct_functions, entry); 5115 5116 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5117 if (ret) 5118 remove_hash_entry(direct_functions, entry); 5119 5120 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5121 ret = register_ftrace_function(&direct_ops); 5122 if (ret) 5123 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5124 } 5125 5126 if (ret) { 5127 kfree(entry); 5128 if (!direct->count) { 5129 list_del_rcu(&direct->next); 5130 synchronize_rcu_tasks(); 5131 kfree(direct); 5132 if (free_hash) 5133 free_ftrace_hash(free_hash); 5134 free_hash = NULL; 5135 ftrace_direct_func_count--; 5136 } 5137 } else { 5138 direct->count++; 5139 } 5140 out_unlock: 5141 mutex_unlock(&direct_mutex); 5142 5143 if (free_hash) { 5144 synchronize_rcu_tasks(); 5145 free_ftrace_hash(free_hash); 5146 } 5147 5148 return ret; 5149 } 5150 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5151 5152 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5153 struct dyn_ftrace **recp) 5154 { 5155 struct ftrace_func_entry *entry; 5156 struct dyn_ftrace *rec; 5157 5158 rec = lookup_rec(*ip, *ip); 5159 if (!rec) 5160 return NULL; 5161 5162 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5163 if (!entry) { 5164 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5165 return NULL; 5166 } 5167 5168 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5169 5170 /* Passed in ip just needs to be on the call site */ 5171 *ip = rec->ip; 5172 5173 if (recp) 5174 *recp = rec; 5175 5176 return entry; 5177 } 5178 5179 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5180 { 5181 struct ftrace_direct_func *direct; 5182 struct ftrace_func_entry *entry; 5183 int ret = -ENODEV; 5184 5185 mutex_lock(&direct_mutex); 5186 5187 entry = find_direct_entry(&ip, NULL); 5188 if (!entry) 5189 goto out_unlock; 5190 5191 if (direct_functions->count == 1) 5192 unregister_ftrace_function(&direct_ops); 5193 5194 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5195 5196 WARN_ON(ret); 5197 5198 remove_hash_entry(direct_functions, entry); 5199 5200 direct = ftrace_find_direct_func(addr); 5201 if (!WARN_ON(!direct)) { 5202 /* This is the good path (see the ! before WARN) */ 5203 direct->count--; 5204 WARN_ON(direct->count < 0); 5205 if (!direct->count) { 5206 list_del_rcu(&direct->next); 5207 synchronize_rcu_tasks(); 5208 kfree(direct); 5209 kfree(entry); 5210 ftrace_direct_func_count--; 5211 } 5212 } 5213 out_unlock: 5214 mutex_unlock(&direct_mutex); 5215 5216 return ret; 5217 } 5218 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5219 5220 static struct ftrace_ops stub_ops = { 5221 .func = ftrace_stub, 5222 }; 5223 5224 /** 5225 * ftrace_modify_direct_caller - modify ftrace nop directly 5226 * @entry: The ftrace hash entry of the direct helper for @rec 5227 * @rec: The record representing the function site to patch 5228 * @old_addr: The location that the site at @rec->ip currently calls 5229 * @new_addr: The location that the site at @rec->ip should call 5230 * 5231 * An architecture may overwrite this function to optimize the 5232 * changing of the direct callback on an ftrace nop location. 5233 * This is called with the ftrace_lock mutex held, and no other 5234 * ftrace callbacks are on the associated record (@rec). Thus, 5235 * it is safe to modify the ftrace record, where it should be 5236 * currently calling @old_addr directly, to call @new_addr. 5237 * 5238 * Safety checks should be made to make sure that the code at 5239 * @rec->ip is currently calling @old_addr. And this must 5240 * also update entry->direct to @new_addr. 5241 */ 5242 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5243 struct dyn_ftrace *rec, 5244 unsigned long old_addr, 5245 unsigned long new_addr) 5246 { 5247 unsigned long ip = rec->ip; 5248 int ret; 5249 5250 /* 5251 * The ftrace_lock was used to determine if the record 5252 * had more than one registered user to it. If it did, 5253 * we needed to prevent that from changing to do the quick 5254 * switch. But if it did not (only a direct caller was attached) 5255 * then this function is called. But this function can deal 5256 * with attached callers to the rec that we care about, and 5257 * since this function uses standard ftrace calls that take 5258 * the ftrace_lock mutex, we need to release it. 5259 */ 5260 mutex_unlock(&ftrace_lock); 5261 5262 /* 5263 * By setting a stub function at the same address, we force 5264 * the code to call the iterator and the direct_ops helper. 5265 * This means that @ip does not call the direct call, and 5266 * we can simply modify it. 5267 */ 5268 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5269 if (ret) 5270 goto out_lock; 5271 5272 ret = register_ftrace_function(&stub_ops); 5273 if (ret) { 5274 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5275 goto out_lock; 5276 } 5277 5278 entry->direct = new_addr; 5279 5280 /* 5281 * By removing the stub, we put back the direct call, calling 5282 * the @new_addr. 5283 */ 5284 unregister_ftrace_function(&stub_ops); 5285 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5286 5287 out_lock: 5288 mutex_lock(&ftrace_lock); 5289 5290 return ret; 5291 } 5292 5293 /** 5294 * modify_ftrace_direct - Modify an existing direct call to call something else 5295 * @ip: The instruction pointer to modify 5296 * @old_addr: The address that the current @ip calls directly 5297 * @new_addr: The address that the @ip should call 5298 * 5299 * This modifies a ftrace direct caller at an instruction pointer without 5300 * having to disable it first. The direct call will switch over to the 5301 * @new_addr without missing anything. 5302 * 5303 * Returns: zero on success. Non zero on error, which includes: 5304 * -ENODEV : the @ip given has no direct caller attached 5305 * -EINVAL : the @old_addr does not match the current direct caller 5306 */ 5307 int modify_ftrace_direct(unsigned long ip, 5308 unsigned long old_addr, unsigned long new_addr) 5309 { 5310 struct ftrace_func_entry *entry; 5311 struct dyn_ftrace *rec; 5312 int ret = -ENODEV; 5313 5314 mutex_lock(&direct_mutex); 5315 5316 mutex_lock(&ftrace_lock); 5317 entry = find_direct_entry(&ip, &rec); 5318 if (!entry) 5319 goto out_unlock; 5320 5321 ret = -EINVAL; 5322 if (entry->direct != old_addr) 5323 goto out_unlock; 5324 5325 /* 5326 * If there's no other ftrace callback on the rec->ip location, 5327 * then it can be changed directly by the architecture. 5328 * If there is another caller, then we just need to change the 5329 * direct caller helper to point to @new_addr. 5330 */ 5331 if (ftrace_rec_count(rec) == 1) { 5332 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5333 } else { 5334 entry->direct = new_addr; 5335 ret = 0; 5336 } 5337 5338 out_unlock: 5339 mutex_unlock(&ftrace_lock); 5340 mutex_unlock(&direct_mutex); 5341 return ret; 5342 } 5343 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5344 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5345 5346 /** 5347 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5348 * @ops - the ops to set the filter with 5349 * @ip - the address to add to or remove from the filter. 5350 * @remove - non zero to remove the ip from the filter 5351 * @reset - non zero to reset all filters before applying this filter. 5352 * 5353 * Filters denote which functions should be enabled when tracing is enabled 5354 * If @ip is NULL, it failes to update filter. 5355 */ 5356 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5357 int remove, int reset) 5358 { 5359 ftrace_ops_init(ops); 5360 return ftrace_set_addr(ops, ip, remove, reset, 1); 5361 } 5362 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5363 5364 /** 5365 * ftrace_ops_set_global_filter - setup ops to use global filters 5366 * @ops - the ops which will use the global filters 5367 * 5368 * ftrace users who need global function trace filtering should call this. 5369 * It can set the global filter only if ops were not initialized before. 5370 */ 5371 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5372 { 5373 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5374 return; 5375 5376 ftrace_ops_init(ops); 5377 ops->func_hash = &global_ops.local_hash; 5378 } 5379 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5380 5381 static int 5382 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5383 int reset, int enable) 5384 { 5385 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5386 } 5387 5388 /** 5389 * ftrace_set_filter - set a function to filter on in ftrace 5390 * @ops - the ops to set the filter with 5391 * @buf - the string that holds the function filter text. 5392 * @len - the length of the string. 5393 * @reset - non zero to reset all filters before applying this filter. 5394 * 5395 * Filters denote which functions should be enabled when tracing is enabled. 5396 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5397 */ 5398 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5399 int len, int reset) 5400 { 5401 ftrace_ops_init(ops); 5402 return ftrace_set_regex(ops, buf, len, reset, 1); 5403 } 5404 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5405 5406 /** 5407 * ftrace_set_notrace - set a function to not trace in ftrace 5408 * @ops - the ops to set the notrace filter with 5409 * @buf - the string that holds the function notrace text. 5410 * @len - the length of the string. 5411 * @reset - non zero to reset all filters before applying this filter. 5412 * 5413 * Notrace Filters denote which functions should not be enabled when tracing 5414 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5415 * for tracing. 5416 */ 5417 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5418 int len, int reset) 5419 { 5420 ftrace_ops_init(ops); 5421 return ftrace_set_regex(ops, buf, len, reset, 0); 5422 } 5423 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5424 /** 5425 * ftrace_set_global_filter - set a function to filter on with global tracers 5426 * @buf - the string that holds the function filter text. 5427 * @len - the length of the string. 5428 * @reset - non zero to reset all filters before applying this filter. 5429 * 5430 * Filters denote which functions should be enabled when tracing is enabled. 5431 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5432 */ 5433 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5434 { 5435 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5436 } 5437 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5438 5439 /** 5440 * ftrace_set_global_notrace - set a function to not trace with global tracers 5441 * @buf - the string that holds the function notrace text. 5442 * @len - the length of the string. 5443 * @reset - non zero to reset all filters before applying this filter. 5444 * 5445 * Notrace Filters denote which functions should not be enabled when tracing 5446 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5447 * for tracing. 5448 */ 5449 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5450 { 5451 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5452 } 5453 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5454 5455 /* 5456 * command line interface to allow users to set filters on boot up. 5457 */ 5458 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5459 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5460 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5461 5462 /* Used by function selftest to not test if filter is set */ 5463 bool ftrace_filter_param __initdata; 5464 5465 static int __init set_ftrace_notrace(char *str) 5466 { 5467 ftrace_filter_param = true; 5468 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5469 return 1; 5470 } 5471 __setup("ftrace_notrace=", set_ftrace_notrace); 5472 5473 static int __init set_ftrace_filter(char *str) 5474 { 5475 ftrace_filter_param = true; 5476 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5477 return 1; 5478 } 5479 __setup("ftrace_filter=", set_ftrace_filter); 5480 5481 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5482 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5483 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5484 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5485 5486 static int __init set_graph_function(char *str) 5487 { 5488 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5489 return 1; 5490 } 5491 __setup("ftrace_graph_filter=", set_graph_function); 5492 5493 static int __init set_graph_notrace_function(char *str) 5494 { 5495 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5496 return 1; 5497 } 5498 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5499 5500 static int __init set_graph_max_depth_function(char *str) 5501 { 5502 if (!str) 5503 return 0; 5504 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5505 return 1; 5506 } 5507 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5508 5509 static void __init set_ftrace_early_graph(char *buf, int enable) 5510 { 5511 int ret; 5512 char *func; 5513 struct ftrace_hash *hash; 5514 5515 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5516 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5517 return; 5518 5519 while (buf) { 5520 func = strsep(&buf, ","); 5521 /* we allow only one expression at a time */ 5522 ret = ftrace_graph_set_hash(hash, func); 5523 if (ret) 5524 printk(KERN_DEBUG "ftrace: function %s not " 5525 "traceable\n", func); 5526 } 5527 5528 if (enable) 5529 ftrace_graph_hash = hash; 5530 else 5531 ftrace_graph_notrace_hash = hash; 5532 } 5533 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5534 5535 void __init 5536 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5537 { 5538 char *func; 5539 5540 ftrace_ops_init(ops); 5541 5542 while (buf) { 5543 func = strsep(&buf, ","); 5544 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5545 } 5546 } 5547 5548 static void __init set_ftrace_early_filters(void) 5549 { 5550 if (ftrace_filter_buf[0]) 5551 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5552 if (ftrace_notrace_buf[0]) 5553 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5554 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5555 if (ftrace_graph_buf[0]) 5556 set_ftrace_early_graph(ftrace_graph_buf, 1); 5557 if (ftrace_graph_notrace_buf[0]) 5558 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5559 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5560 } 5561 5562 int ftrace_regex_release(struct inode *inode, struct file *file) 5563 { 5564 struct seq_file *m = (struct seq_file *)file->private_data; 5565 struct ftrace_iterator *iter; 5566 struct ftrace_hash **orig_hash; 5567 struct trace_parser *parser; 5568 int filter_hash; 5569 int ret; 5570 5571 if (file->f_mode & FMODE_READ) { 5572 iter = m->private; 5573 seq_release(inode, file); 5574 } else 5575 iter = file->private_data; 5576 5577 parser = &iter->parser; 5578 if (trace_parser_loaded(parser)) { 5579 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5580 } 5581 5582 trace_parser_put(parser); 5583 5584 mutex_lock(&iter->ops->func_hash->regex_lock); 5585 5586 if (file->f_mode & FMODE_WRITE) { 5587 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5588 5589 if (filter_hash) { 5590 orig_hash = &iter->ops->func_hash->filter_hash; 5591 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5592 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5593 } else 5594 orig_hash = &iter->ops->func_hash->notrace_hash; 5595 5596 mutex_lock(&ftrace_lock); 5597 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5598 iter->hash, filter_hash); 5599 mutex_unlock(&ftrace_lock); 5600 } else { 5601 /* For read only, the hash is the ops hash */ 5602 iter->hash = NULL; 5603 } 5604 5605 mutex_unlock(&iter->ops->func_hash->regex_lock); 5606 free_ftrace_hash(iter->hash); 5607 if (iter->tr) 5608 trace_array_put(iter->tr); 5609 kfree(iter); 5610 5611 return 0; 5612 } 5613 5614 static const struct file_operations ftrace_avail_fops = { 5615 .open = ftrace_avail_open, 5616 .read = seq_read, 5617 .llseek = seq_lseek, 5618 .release = seq_release_private, 5619 }; 5620 5621 static const struct file_operations ftrace_enabled_fops = { 5622 .open = ftrace_enabled_open, 5623 .read = seq_read, 5624 .llseek = seq_lseek, 5625 .release = seq_release_private, 5626 }; 5627 5628 static const struct file_operations ftrace_filter_fops = { 5629 .open = ftrace_filter_open, 5630 .read = seq_read, 5631 .write = ftrace_filter_write, 5632 .llseek = tracing_lseek, 5633 .release = ftrace_regex_release, 5634 }; 5635 5636 static const struct file_operations ftrace_notrace_fops = { 5637 .open = ftrace_notrace_open, 5638 .read = seq_read, 5639 .write = ftrace_notrace_write, 5640 .llseek = tracing_lseek, 5641 .release = ftrace_regex_release, 5642 }; 5643 5644 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5645 5646 static DEFINE_MUTEX(graph_lock); 5647 5648 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5649 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5650 5651 enum graph_filter_type { 5652 GRAPH_FILTER_NOTRACE = 0, 5653 GRAPH_FILTER_FUNCTION, 5654 }; 5655 5656 #define FTRACE_GRAPH_EMPTY ((void *)1) 5657 5658 struct ftrace_graph_data { 5659 struct ftrace_hash *hash; 5660 struct ftrace_func_entry *entry; 5661 int idx; /* for hash table iteration */ 5662 enum graph_filter_type type; 5663 struct ftrace_hash *new_hash; 5664 const struct seq_operations *seq_ops; 5665 struct trace_parser parser; 5666 }; 5667 5668 static void * 5669 __g_next(struct seq_file *m, loff_t *pos) 5670 { 5671 struct ftrace_graph_data *fgd = m->private; 5672 struct ftrace_func_entry *entry = fgd->entry; 5673 struct hlist_head *head; 5674 int i, idx = fgd->idx; 5675 5676 if (*pos >= fgd->hash->count) 5677 return NULL; 5678 5679 if (entry) { 5680 hlist_for_each_entry_continue(entry, hlist) { 5681 fgd->entry = entry; 5682 return entry; 5683 } 5684 5685 idx++; 5686 } 5687 5688 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5689 head = &fgd->hash->buckets[i]; 5690 hlist_for_each_entry(entry, head, hlist) { 5691 fgd->entry = entry; 5692 fgd->idx = i; 5693 return entry; 5694 } 5695 } 5696 return NULL; 5697 } 5698 5699 static void * 5700 g_next(struct seq_file *m, void *v, loff_t *pos) 5701 { 5702 (*pos)++; 5703 return __g_next(m, pos); 5704 } 5705 5706 static void *g_start(struct seq_file *m, loff_t *pos) 5707 { 5708 struct ftrace_graph_data *fgd = m->private; 5709 5710 mutex_lock(&graph_lock); 5711 5712 if (fgd->type == GRAPH_FILTER_FUNCTION) 5713 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5714 lockdep_is_held(&graph_lock)); 5715 else 5716 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5717 lockdep_is_held(&graph_lock)); 5718 5719 /* Nothing, tell g_show to print all functions are enabled */ 5720 if (ftrace_hash_empty(fgd->hash) && !*pos) 5721 return FTRACE_GRAPH_EMPTY; 5722 5723 fgd->idx = 0; 5724 fgd->entry = NULL; 5725 return __g_next(m, pos); 5726 } 5727 5728 static void g_stop(struct seq_file *m, void *p) 5729 { 5730 mutex_unlock(&graph_lock); 5731 } 5732 5733 static int g_show(struct seq_file *m, void *v) 5734 { 5735 struct ftrace_func_entry *entry = v; 5736 5737 if (!entry) 5738 return 0; 5739 5740 if (entry == FTRACE_GRAPH_EMPTY) { 5741 struct ftrace_graph_data *fgd = m->private; 5742 5743 if (fgd->type == GRAPH_FILTER_FUNCTION) 5744 seq_puts(m, "#### all functions enabled ####\n"); 5745 else 5746 seq_puts(m, "#### no functions disabled ####\n"); 5747 return 0; 5748 } 5749 5750 seq_printf(m, "%ps\n", (void *)entry->ip); 5751 5752 return 0; 5753 } 5754 5755 static const struct seq_operations ftrace_graph_seq_ops = { 5756 .start = g_start, 5757 .next = g_next, 5758 .stop = g_stop, 5759 .show = g_show, 5760 }; 5761 5762 static int 5763 __ftrace_graph_open(struct inode *inode, struct file *file, 5764 struct ftrace_graph_data *fgd) 5765 { 5766 int ret; 5767 struct ftrace_hash *new_hash = NULL; 5768 5769 ret = security_locked_down(LOCKDOWN_TRACEFS); 5770 if (ret) 5771 return ret; 5772 5773 if (file->f_mode & FMODE_WRITE) { 5774 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5775 5776 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5777 return -ENOMEM; 5778 5779 if (file->f_flags & O_TRUNC) 5780 new_hash = alloc_ftrace_hash(size_bits); 5781 else 5782 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5783 fgd->hash); 5784 if (!new_hash) { 5785 ret = -ENOMEM; 5786 goto out; 5787 } 5788 } 5789 5790 if (file->f_mode & FMODE_READ) { 5791 ret = seq_open(file, &ftrace_graph_seq_ops); 5792 if (!ret) { 5793 struct seq_file *m = file->private_data; 5794 m->private = fgd; 5795 } else { 5796 /* Failed */ 5797 free_ftrace_hash(new_hash); 5798 new_hash = NULL; 5799 } 5800 } else 5801 file->private_data = fgd; 5802 5803 out: 5804 if (ret < 0 && file->f_mode & FMODE_WRITE) 5805 trace_parser_put(&fgd->parser); 5806 5807 fgd->new_hash = new_hash; 5808 5809 /* 5810 * All uses of fgd->hash must be taken with the graph_lock 5811 * held. The graph_lock is going to be released, so force 5812 * fgd->hash to be reinitialized when it is taken again. 5813 */ 5814 fgd->hash = NULL; 5815 5816 return ret; 5817 } 5818 5819 static int 5820 ftrace_graph_open(struct inode *inode, struct file *file) 5821 { 5822 struct ftrace_graph_data *fgd; 5823 int ret; 5824 5825 if (unlikely(ftrace_disabled)) 5826 return -ENODEV; 5827 5828 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5829 if (fgd == NULL) 5830 return -ENOMEM; 5831 5832 mutex_lock(&graph_lock); 5833 5834 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5835 lockdep_is_held(&graph_lock)); 5836 fgd->type = GRAPH_FILTER_FUNCTION; 5837 fgd->seq_ops = &ftrace_graph_seq_ops; 5838 5839 ret = __ftrace_graph_open(inode, file, fgd); 5840 if (ret < 0) 5841 kfree(fgd); 5842 5843 mutex_unlock(&graph_lock); 5844 return ret; 5845 } 5846 5847 static int 5848 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5849 { 5850 struct ftrace_graph_data *fgd; 5851 int ret; 5852 5853 if (unlikely(ftrace_disabled)) 5854 return -ENODEV; 5855 5856 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5857 if (fgd == NULL) 5858 return -ENOMEM; 5859 5860 mutex_lock(&graph_lock); 5861 5862 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5863 lockdep_is_held(&graph_lock)); 5864 fgd->type = GRAPH_FILTER_NOTRACE; 5865 fgd->seq_ops = &ftrace_graph_seq_ops; 5866 5867 ret = __ftrace_graph_open(inode, file, fgd); 5868 if (ret < 0) 5869 kfree(fgd); 5870 5871 mutex_unlock(&graph_lock); 5872 return ret; 5873 } 5874 5875 static int 5876 ftrace_graph_release(struct inode *inode, struct file *file) 5877 { 5878 struct ftrace_graph_data *fgd; 5879 struct ftrace_hash *old_hash, *new_hash; 5880 struct trace_parser *parser; 5881 int ret = 0; 5882 5883 if (file->f_mode & FMODE_READ) { 5884 struct seq_file *m = file->private_data; 5885 5886 fgd = m->private; 5887 seq_release(inode, file); 5888 } else { 5889 fgd = file->private_data; 5890 } 5891 5892 5893 if (file->f_mode & FMODE_WRITE) { 5894 5895 parser = &fgd->parser; 5896 5897 if (trace_parser_loaded((parser))) { 5898 ret = ftrace_graph_set_hash(fgd->new_hash, 5899 parser->buffer); 5900 } 5901 5902 trace_parser_put(parser); 5903 5904 new_hash = __ftrace_hash_move(fgd->new_hash); 5905 if (!new_hash) { 5906 ret = -ENOMEM; 5907 goto out; 5908 } 5909 5910 mutex_lock(&graph_lock); 5911 5912 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5913 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5914 lockdep_is_held(&graph_lock)); 5915 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5916 } else { 5917 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5918 lockdep_is_held(&graph_lock)); 5919 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5920 } 5921 5922 mutex_unlock(&graph_lock); 5923 5924 /* 5925 * We need to do a hard force of sched synchronization. 5926 * This is because we use preempt_disable() to do RCU, but 5927 * the function tracers can be called where RCU is not watching 5928 * (like before user_exit()). We can not rely on the RCU 5929 * infrastructure to do the synchronization, thus we must do it 5930 * ourselves. 5931 */ 5932 synchronize_rcu_tasks_rude(); 5933 5934 free_ftrace_hash(old_hash); 5935 } 5936 5937 out: 5938 free_ftrace_hash(fgd->new_hash); 5939 kfree(fgd); 5940 5941 return ret; 5942 } 5943 5944 static int 5945 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5946 { 5947 struct ftrace_glob func_g; 5948 struct dyn_ftrace *rec; 5949 struct ftrace_page *pg; 5950 struct ftrace_func_entry *entry; 5951 int fail = 1; 5952 int not; 5953 5954 /* decode regex */ 5955 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5956 &func_g.search, ¬); 5957 5958 func_g.len = strlen(func_g.search); 5959 5960 mutex_lock(&ftrace_lock); 5961 5962 if (unlikely(ftrace_disabled)) { 5963 mutex_unlock(&ftrace_lock); 5964 return -ENODEV; 5965 } 5966 5967 do_for_each_ftrace_rec(pg, rec) { 5968 5969 if (rec->flags & FTRACE_FL_DISABLED) 5970 continue; 5971 5972 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5973 entry = ftrace_lookup_ip(hash, rec->ip); 5974 5975 if (!not) { 5976 fail = 0; 5977 5978 if (entry) 5979 continue; 5980 if (add_hash_entry(hash, rec->ip) < 0) 5981 goto out; 5982 } else { 5983 if (entry) { 5984 free_hash_entry(hash, entry); 5985 fail = 0; 5986 } 5987 } 5988 } 5989 } while_for_each_ftrace_rec(); 5990 out: 5991 mutex_unlock(&ftrace_lock); 5992 5993 if (fail) 5994 return -EINVAL; 5995 5996 return 0; 5997 } 5998 5999 static ssize_t 6000 ftrace_graph_write(struct file *file, const char __user *ubuf, 6001 size_t cnt, loff_t *ppos) 6002 { 6003 ssize_t read, ret = 0; 6004 struct ftrace_graph_data *fgd = file->private_data; 6005 struct trace_parser *parser; 6006 6007 if (!cnt) 6008 return 0; 6009 6010 /* Read mode uses seq functions */ 6011 if (file->f_mode & FMODE_READ) { 6012 struct seq_file *m = file->private_data; 6013 fgd = m->private; 6014 } 6015 6016 parser = &fgd->parser; 6017 6018 read = trace_get_user(parser, ubuf, cnt, ppos); 6019 6020 if (read >= 0 && trace_parser_loaded(parser) && 6021 !trace_parser_cont(parser)) { 6022 6023 ret = ftrace_graph_set_hash(fgd->new_hash, 6024 parser->buffer); 6025 trace_parser_clear(parser); 6026 } 6027 6028 if (!ret) 6029 ret = read; 6030 6031 return ret; 6032 } 6033 6034 static const struct file_operations ftrace_graph_fops = { 6035 .open = ftrace_graph_open, 6036 .read = seq_read, 6037 .write = ftrace_graph_write, 6038 .llseek = tracing_lseek, 6039 .release = ftrace_graph_release, 6040 }; 6041 6042 static const struct file_operations ftrace_graph_notrace_fops = { 6043 .open = ftrace_graph_notrace_open, 6044 .read = seq_read, 6045 .write = ftrace_graph_write, 6046 .llseek = tracing_lseek, 6047 .release = ftrace_graph_release, 6048 }; 6049 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6050 6051 void ftrace_create_filter_files(struct ftrace_ops *ops, 6052 struct dentry *parent) 6053 { 6054 6055 trace_create_file("set_ftrace_filter", 0644, parent, 6056 ops, &ftrace_filter_fops); 6057 6058 trace_create_file("set_ftrace_notrace", 0644, parent, 6059 ops, &ftrace_notrace_fops); 6060 } 6061 6062 /* 6063 * The name "destroy_filter_files" is really a misnomer. Although 6064 * in the future, it may actually delete the files, but this is 6065 * really intended to make sure the ops passed in are disabled 6066 * and that when this function returns, the caller is free to 6067 * free the ops. 6068 * 6069 * The "destroy" name is only to match the "create" name that this 6070 * should be paired with. 6071 */ 6072 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6073 { 6074 mutex_lock(&ftrace_lock); 6075 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6076 ftrace_shutdown(ops, 0); 6077 ops->flags |= FTRACE_OPS_FL_DELETED; 6078 ftrace_free_filter(ops); 6079 mutex_unlock(&ftrace_lock); 6080 } 6081 6082 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6083 { 6084 6085 trace_create_file("available_filter_functions", 0444, 6086 d_tracer, NULL, &ftrace_avail_fops); 6087 6088 trace_create_file("enabled_functions", 0444, 6089 d_tracer, NULL, &ftrace_enabled_fops); 6090 6091 ftrace_create_filter_files(&global_ops, d_tracer); 6092 6093 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6094 trace_create_file("set_graph_function", 0644, d_tracer, 6095 NULL, 6096 &ftrace_graph_fops); 6097 trace_create_file("set_graph_notrace", 0644, d_tracer, 6098 NULL, 6099 &ftrace_graph_notrace_fops); 6100 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6101 6102 return 0; 6103 } 6104 6105 static int ftrace_cmp_ips(const void *a, const void *b) 6106 { 6107 const unsigned long *ipa = a; 6108 const unsigned long *ipb = b; 6109 6110 if (*ipa > *ipb) 6111 return 1; 6112 if (*ipa < *ipb) 6113 return -1; 6114 return 0; 6115 } 6116 6117 static int ftrace_process_locs(struct module *mod, 6118 unsigned long *start, 6119 unsigned long *end) 6120 { 6121 struct ftrace_page *start_pg; 6122 struct ftrace_page *pg; 6123 struct dyn_ftrace *rec; 6124 unsigned long count; 6125 unsigned long *p; 6126 unsigned long addr; 6127 unsigned long flags = 0; /* Shut up gcc */ 6128 int ret = -ENOMEM; 6129 6130 count = end - start; 6131 6132 if (!count) 6133 return 0; 6134 6135 sort(start, count, sizeof(*start), 6136 ftrace_cmp_ips, NULL); 6137 6138 start_pg = ftrace_allocate_pages(count); 6139 if (!start_pg) 6140 return -ENOMEM; 6141 6142 mutex_lock(&ftrace_lock); 6143 6144 /* 6145 * Core and each module needs their own pages, as 6146 * modules will free them when they are removed. 6147 * Force a new page to be allocated for modules. 6148 */ 6149 if (!mod) { 6150 WARN_ON(ftrace_pages || ftrace_pages_start); 6151 /* First initialization */ 6152 ftrace_pages = ftrace_pages_start = start_pg; 6153 } else { 6154 if (!ftrace_pages) 6155 goto out; 6156 6157 if (WARN_ON(ftrace_pages->next)) { 6158 /* Hmm, we have free pages? */ 6159 while (ftrace_pages->next) 6160 ftrace_pages = ftrace_pages->next; 6161 } 6162 6163 ftrace_pages->next = start_pg; 6164 } 6165 6166 p = start; 6167 pg = start_pg; 6168 while (p < end) { 6169 addr = ftrace_call_adjust(*p++); 6170 /* 6171 * Some architecture linkers will pad between 6172 * the different mcount_loc sections of different 6173 * object files to satisfy alignments. 6174 * Skip any NULL pointers. 6175 */ 6176 if (!addr) 6177 continue; 6178 6179 if (pg->index == pg->size) { 6180 /* We should have allocated enough */ 6181 if (WARN_ON(!pg->next)) 6182 break; 6183 pg = pg->next; 6184 } 6185 6186 rec = &pg->records[pg->index++]; 6187 rec->ip = addr; 6188 } 6189 6190 /* We should have used all pages */ 6191 WARN_ON(pg->next); 6192 6193 /* Assign the last page to ftrace_pages */ 6194 ftrace_pages = pg; 6195 6196 /* 6197 * We only need to disable interrupts on start up 6198 * because we are modifying code that an interrupt 6199 * may execute, and the modification is not atomic. 6200 * But for modules, nothing runs the code we modify 6201 * until we are finished with it, and there's no 6202 * reason to cause large interrupt latencies while we do it. 6203 */ 6204 if (!mod) 6205 local_irq_save(flags); 6206 ftrace_update_code(mod, start_pg); 6207 if (!mod) 6208 local_irq_restore(flags); 6209 ret = 0; 6210 out: 6211 mutex_unlock(&ftrace_lock); 6212 6213 return ret; 6214 } 6215 6216 struct ftrace_mod_func { 6217 struct list_head list; 6218 char *name; 6219 unsigned long ip; 6220 unsigned int size; 6221 }; 6222 6223 struct ftrace_mod_map { 6224 struct rcu_head rcu; 6225 struct list_head list; 6226 struct module *mod; 6227 unsigned long start_addr; 6228 unsigned long end_addr; 6229 struct list_head funcs; 6230 unsigned int num_funcs; 6231 }; 6232 6233 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6234 unsigned long *value, char *type, 6235 char *name, char *module_name, 6236 int *exported) 6237 { 6238 struct ftrace_ops *op; 6239 6240 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6241 if (!op->trampoline || symnum--) 6242 continue; 6243 *value = op->trampoline; 6244 *type = 't'; 6245 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6246 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6247 *exported = 0; 6248 return 0; 6249 } 6250 6251 return -ERANGE; 6252 } 6253 6254 #ifdef CONFIG_MODULES 6255 6256 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6257 6258 static LIST_HEAD(ftrace_mod_maps); 6259 6260 static int referenced_filters(struct dyn_ftrace *rec) 6261 { 6262 struct ftrace_ops *ops; 6263 int cnt = 0; 6264 6265 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6266 if (ops_references_rec(ops, rec)) { 6267 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6268 continue; 6269 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6270 continue; 6271 cnt++; 6272 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6273 rec->flags |= FTRACE_FL_REGS; 6274 if (cnt == 1 && ops->trampoline) 6275 rec->flags |= FTRACE_FL_TRAMP; 6276 else 6277 rec->flags &= ~FTRACE_FL_TRAMP; 6278 } 6279 } 6280 6281 return cnt; 6282 } 6283 6284 static void 6285 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6286 { 6287 struct ftrace_func_entry *entry; 6288 struct dyn_ftrace *rec; 6289 int i; 6290 6291 if (ftrace_hash_empty(hash)) 6292 return; 6293 6294 for (i = 0; i < pg->index; i++) { 6295 rec = &pg->records[i]; 6296 entry = __ftrace_lookup_ip(hash, rec->ip); 6297 /* 6298 * Do not allow this rec to match again. 6299 * Yeah, it may waste some memory, but will be removed 6300 * if/when the hash is modified again. 6301 */ 6302 if (entry) 6303 entry->ip = 0; 6304 } 6305 } 6306 6307 /* Clear any records from hashs */ 6308 static void clear_mod_from_hashes(struct ftrace_page *pg) 6309 { 6310 struct trace_array *tr; 6311 6312 mutex_lock(&trace_types_lock); 6313 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6314 if (!tr->ops || !tr->ops->func_hash) 6315 continue; 6316 mutex_lock(&tr->ops->func_hash->regex_lock); 6317 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6318 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6319 mutex_unlock(&tr->ops->func_hash->regex_lock); 6320 } 6321 mutex_unlock(&trace_types_lock); 6322 } 6323 6324 static void ftrace_free_mod_map(struct rcu_head *rcu) 6325 { 6326 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6327 struct ftrace_mod_func *mod_func; 6328 struct ftrace_mod_func *n; 6329 6330 /* All the contents of mod_map are now not visible to readers */ 6331 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6332 kfree(mod_func->name); 6333 list_del(&mod_func->list); 6334 kfree(mod_func); 6335 } 6336 6337 kfree(mod_map); 6338 } 6339 6340 void ftrace_release_mod(struct module *mod) 6341 { 6342 struct ftrace_mod_map *mod_map; 6343 struct ftrace_mod_map *n; 6344 struct dyn_ftrace *rec; 6345 struct ftrace_page **last_pg; 6346 struct ftrace_page *tmp_page = NULL; 6347 struct ftrace_page *pg; 6348 int order; 6349 6350 mutex_lock(&ftrace_lock); 6351 6352 if (ftrace_disabled) 6353 goto out_unlock; 6354 6355 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6356 if (mod_map->mod == mod) { 6357 list_del_rcu(&mod_map->list); 6358 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6359 break; 6360 } 6361 } 6362 6363 /* 6364 * Each module has its own ftrace_pages, remove 6365 * them from the list. 6366 */ 6367 last_pg = &ftrace_pages_start; 6368 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6369 rec = &pg->records[0]; 6370 if (within_module_core(rec->ip, mod) || 6371 within_module_init(rec->ip, mod)) { 6372 /* 6373 * As core pages are first, the first 6374 * page should never be a module page. 6375 */ 6376 if (WARN_ON(pg == ftrace_pages_start)) 6377 goto out_unlock; 6378 6379 /* Check if we are deleting the last page */ 6380 if (pg == ftrace_pages) 6381 ftrace_pages = next_to_ftrace_page(last_pg); 6382 6383 ftrace_update_tot_cnt -= pg->index; 6384 *last_pg = pg->next; 6385 6386 pg->next = tmp_page; 6387 tmp_page = pg; 6388 } else 6389 last_pg = &pg->next; 6390 } 6391 out_unlock: 6392 mutex_unlock(&ftrace_lock); 6393 6394 for (pg = tmp_page; pg; pg = tmp_page) { 6395 6396 /* Needs to be called outside of ftrace_lock */ 6397 clear_mod_from_hashes(pg); 6398 6399 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6400 free_pages((unsigned long)pg->records, order); 6401 tmp_page = pg->next; 6402 kfree(pg); 6403 ftrace_number_of_pages -= 1 << order; 6404 ftrace_number_of_groups--; 6405 } 6406 } 6407 6408 void ftrace_module_enable(struct module *mod) 6409 { 6410 struct dyn_ftrace *rec; 6411 struct ftrace_page *pg; 6412 6413 mutex_lock(&ftrace_lock); 6414 6415 if (ftrace_disabled) 6416 goto out_unlock; 6417 6418 /* 6419 * If the tracing is enabled, go ahead and enable the record. 6420 * 6421 * The reason not to enable the record immediately is the 6422 * inherent check of ftrace_make_nop/ftrace_make_call for 6423 * correct previous instructions. Making first the NOP 6424 * conversion puts the module to the correct state, thus 6425 * passing the ftrace_make_call check. 6426 * 6427 * We also delay this to after the module code already set the 6428 * text to read-only, as we now need to set it back to read-write 6429 * so that we can modify the text. 6430 */ 6431 if (ftrace_start_up) 6432 ftrace_arch_code_modify_prepare(); 6433 6434 do_for_each_ftrace_rec(pg, rec) { 6435 int cnt; 6436 /* 6437 * do_for_each_ftrace_rec() is a double loop. 6438 * module text shares the pg. If a record is 6439 * not part of this module, then skip this pg, 6440 * which the "break" will do. 6441 */ 6442 if (!within_module_core(rec->ip, mod) && 6443 !within_module_init(rec->ip, mod)) 6444 break; 6445 6446 cnt = 0; 6447 6448 /* 6449 * When adding a module, we need to check if tracers are 6450 * currently enabled and if they are, and can trace this record, 6451 * we need to enable the module functions as well as update the 6452 * reference counts for those function records. 6453 */ 6454 if (ftrace_start_up) 6455 cnt += referenced_filters(rec); 6456 6457 rec->flags &= ~FTRACE_FL_DISABLED; 6458 rec->flags += cnt; 6459 6460 if (ftrace_start_up && cnt) { 6461 int failed = __ftrace_replace_code(rec, 1); 6462 if (failed) { 6463 ftrace_bug(failed, rec); 6464 goto out_loop; 6465 } 6466 } 6467 6468 } while_for_each_ftrace_rec(); 6469 6470 out_loop: 6471 if (ftrace_start_up) 6472 ftrace_arch_code_modify_post_process(); 6473 6474 out_unlock: 6475 mutex_unlock(&ftrace_lock); 6476 6477 process_cached_mods(mod->name); 6478 } 6479 6480 void ftrace_module_init(struct module *mod) 6481 { 6482 if (ftrace_disabled || !mod->num_ftrace_callsites) 6483 return; 6484 6485 ftrace_process_locs(mod, mod->ftrace_callsites, 6486 mod->ftrace_callsites + mod->num_ftrace_callsites); 6487 } 6488 6489 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6490 struct dyn_ftrace *rec) 6491 { 6492 struct ftrace_mod_func *mod_func; 6493 unsigned long symsize; 6494 unsigned long offset; 6495 char str[KSYM_SYMBOL_LEN]; 6496 char *modname; 6497 const char *ret; 6498 6499 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6500 if (!ret) 6501 return; 6502 6503 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6504 if (!mod_func) 6505 return; 6506 6507 mod_func->name = kstrdup(str, GFP_KERNEL); 6508 if (!mod_func->name) { 6509 kfree(mod_func); 6510 return; 6511 } 6512 6513 mod_func->ip = rec->ip - offset; 6514 mod_func->size = symsize; 6515 6516 mod_map->num_funcs++; 6517 6518 list_add_rcu(&mod_func->list, &mod_map->funcs); 6519 } 6520 6521 static struct ftrace_mod_map * 6522 allocate_ftrace_mod_map(struct module *mod, 6523 unsigned long start, unsigned long end) 6524 { 6525 struct ftrace_mod_map *mod_map; 6526 6527 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6528 if (!mod_map) 6529 return NULL; 6530 6531 mod_map->mod = mod; 6532 mod_map->start_addr = start; 6533 mod_map->end_addr = end; 6534 mod_map->num_funcs = 0; 6535 6536 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6537 6538 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6539 6540 return mod_map; 6541 } 6542 6543 static const char * 6544 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6545 unsigned long addr, unsigned long *size, 6546 unsigned long *off, char *sym) 6547 { 6548 struct ftrace_mod_func *found_func = NULL; 6549 struct ftrace_mod_func *mod_func; 6550 6551 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6552 if (addr >= mod_func->ip && 6553 addr < mod_func->ip + mod_func->size) { 6554 found_func = mod_func; 6555 break; 6556 } 6557 } 6558 6559 if (found_func) { 6560 if (size) 6561 *size = found_func->size; 6562 if (off) 6563 *off = addr - found_func->ip; 6564 if (sym) 6565 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6566 6567 return found_func->name; 6568 } 6569 6570 return NULL; 6571 } 6572 6573 const char * 6574 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6575 unsigned long *off, char **modname, char *sym) 6576 { 6577 struct ftrace_mod_map *mod_map; 6578 const char *ret = NULL; 6579 6580 /* mod_map is freed via call_rcu() */ 6581 preempt_disable(); 6582 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6583 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6584 if (ret) { 6585 if (modname) 6586 *modname = mod_map->mod->name; 6587 break; 6588 } 6589 } 6590 preempt_enable(); 6591 6592 return ret; 6593 } 6594 6595 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6596 char *type, char *name, 6597 char *module_name, int *exported) 6598 { 6599 struct ftrace_mod_map *mod_map; 6600 struct ftrace_mod_func *mod_func; 6601 int ret; 6602 6603 preempt_disable(); 6604 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6605 6606 if (symnum >= mod_map->num_funcs) { 6607 symnum -= mod_map->num_funcs; 6608 continue; 6609 } 6610 6611 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6612 if (symnum > 1) { 6613 symnum--; 6614 continue; 6615 } 6616 6617 *value = mod_func->ip; 6618 *type = 'T'; 6619 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6620 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6621 *exported = 1; 6622 preempt_enable(); 6623 return 0; 6624 } 6625 WARN_ON(1); 6626 break; 6627 } 6628 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6629 module_name, exported); 6630 preempt_enable(); 6631 return ret; 6632 } 6633 6634 #else 6635 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6636 struct dyn_ftrace *rec) { } 6637 static inline struct ftrace_mod_map * 6638 allocate_ftrace_mod_map(struct module *mod, 6639 unsigned long start, unsigned long end) 6640 { 6641 return NULL; 6642 } 6643 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6644 char *type, char *name, char *module_name, 6645 int *exported) 6646 { 6647 int ret; 6648 6649 preempt_disable(); 6650 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6651 module_name, exported); 6652 preempt_enable(); 6653 return ret; 6654 } 6655 #endif /* CONFIG_MODULES */ 6656 6657 struct ftrace_init_func { 6658 struct list_head list; 6659 unsigned long ip; 6660 }; 6661 6662 /* Clear any init ips from hashes */ 6663 static void 6664 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6665 { 6666 struct ftrace_func_entry *entry; 6667 6668 entry = ftrace_lookup_ip(hash, func->ip); 6669 /* 6670 * Do not allow this rec to match again. 6671 * Yeah, it may waste some memory, but will be removed 6672 * if/when the hash is modified again. 6673 */ 6674 if (entry) 6675 entry->ip = 0; 6676 } 6677 6678 static void 6679 clear_func_from_hashes(struct ftrace_init_func *func) 6680 { 6681 struct trace_array *tr; 6682 6683 mutex_lock(&trace_types_lock); 6684 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6685 if (!tr->ops || !tr->ops->func_hash) 6686 continue; 6687 mutex_lock(&tr->ops->func_hash->regex_lock); 6688 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6689 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6690 mutex_unlock(&tr->ops->func_hash->regex_lock); 6691 } 6692 mutex_unlock(&trace_types_lock); 6693 } 6694 6695 static void add_to_clear_hash_list(struct list_head *clear_list, 6696 struct dyn_ftrace *rec) 6697 { 6698 struct ftrace_init_func *func; 6699 6700 func = kmalloc(sizeof(*func), GFP_KERNEL); 6701 if (!func) { 6702 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6703 return; 6704 } 6705 6706 func->ip = rec->ip; 6707 list_add(&func->list, clear_list); 6708 } 6709 6710 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6711 { 6712 unsigned long start = (unsigned long)(start_ptr); 6713 unsigned long end = (unsigned long)(end_ptr); 6714 struct ftrace_page **last_pg = &ftrace_pages_start; 6715 struct ftrace_page *pg; 6716 struct dyn_ftrace *rec; 6717 struct dyn_ftrace key; 6718 struct ftrace_mod_map *mod_map = NULL; 6719 struct ftrace_init_func *func, *func_next; 6720 struct list_head clear_hash; 6721 int order; 6722 6723 INIT_LIST_HEAD(&clear_hash); 6724 6725 key.ip = start; 6726 key.flags = end; /* overload flags, as it is unsigned long */ 6727 6728 mutex_lock(&ftrace_lock); 6729 6730 /* 6731 * If we are freeing module init memory, then check if 6732 * any tracer is active. If so, we need to save a mapping of 6733 * the module functions being freed with the address. 6734 */ 6735 if (mod && ftrace_ops_list != &ftrace_list_end) 6736 mod_map = allocate_ftrace_mod_map(mod, start, end); 6737 6738 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6739 if (end < pg->records[0].ip || 6740 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6741 continue; 6742 again: 6743 rec = bsearch(&key, pg->records, pg->index, 6744 sizeof(struct dyn_ftrace), 6745 ftrace_cmp_recs); 6746 if (!rec) 6747 continue; 6748 6749 /* rec will be cleared from hashes after ftrace_lock unlock */ 6750 add_to_clear_hash_list(&clear_hash, rec); 6751 6752 if (mod_map) 6753 save_ftrace_mod_rec(mod_map, rec); 6754 6755 pg->index--; 6756 ftrace_update_tot_cnt--; 6757 if (!pg->index) { 6758 *last_pg = pg->next; 6759 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6760 free_pages((unsigned long)pg->records, order); 6761 ftrace_number_of_pages -= 1 << order; 6762 ftrace_number_of_groups--; 6763 kfree(pg); 6764 pg = container_of(last_pg, struct ftrace_page, next); 6765 if (!(*last_pg)) 6766 ftrace_pages = pg; 6767 continue; 6768 } 6769 memmove(rec, rec + 1, 6770 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6771 /* More than one function may be in this block */ 6772 goto again; 6773 } 6774 mutex_unlock(&ftrace_lock); 6775 6776 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6777 clear_func_from_hashes(func); 6778 kfree(func); 6779 } 6780 } 6781 6782 void __init ftrace_free_init_mem(void) 6783 { 6784 void *start = (void *)(&__init_begin); 6785 void *end = (void *)(&__init_end); 6786 6787 ftrace_free_mem(NULL, start, end); 6788 } 6789 6790 void __init ftrace_init(void) 6791 { 6792 extern unsigned long __start_mcount_loc[]; 6793 extern unsigned long __stop_mcount_loc[]; 6794 unsigned long count, flags; 6795 int ret; 6796 6797 local_irq_save(flags); 6798 ret = ftrace_dyn_arch_init(); 6799 local_irq_restore(flags); 6800 if (ret) 6801 goto failed; 6802 6803 count = __stop_mcount_loc - __start_mcount_loc; 6804 if (!count) { 6805 pr_info("ftrace: No functions to be traced?\n"); 6806 goto failed; 6807 } 6808 6809 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6810 count, count / ENTRIES_PER_PAGE + 1); 6811 6812 last_ftrace_enabled = ftrace_enabled = 1; 6813 6814 ret = ftrace_process_locs(NULL, 6815 __start_mcount_loc, 6816 __stop_mcount_loc); 6817 6818 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6819 ftrace_number_of_pages, ftrace_number_of_groups); 6820 6821 set_ftrace_early_filters(); 6822 6823 return; 6824 failed: 6825 ftrace_disabled = 1; 6826 } 6827 6828 /* Do nothing if arch does not support this */ 6829 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6830 { 6831 } 6832 6833 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6834 { 6835 unsigned long trampoline = ops->trampoline; 6836 6837 arch_ftrace_update_trampoline(ops); 6838 if (ops->trampoline && ops->trampoline != trampoline && 6839 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 6840 /* Add to kallsyms before the perf events */ 6841 ftrace_add_trampoline_to_kallsyms(ops); 6842 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 6843 ops->trampoline, ops->trampoline_size, false, 6844 FTRACE_TRAMPOLINE_SYM); 6845 /* 6846 * Record the perf text poke event after the ksymbol register 6847 * event. 6848 */ 6849 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 6850 (void *)ops->trampoline, 6851 ops->trampoline_size); 6852 } 6853 } 6854 6855 void ftrace_init_trace_array(struct trace_array *tr) 6856 { 6857 INIT_LIST_HEAD(&tr->func_probes); 6858 INIT_LIST_HEAD(&tr->mod_trace); 6859 INIT_LIST_HEAD(&tr->mod_notrace); 6860 } 6861 #else 6862 6863 struct ftrace_ops global_ops = { 6864 .func = ftrace_stub, 6865 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6866 FTRACE_OPS_FL_INITIALIZED | 6867 FTRACE_OPS_FL_PID, 6868 }; 6869 6870 static int __init ftrace_nodyn_init(void) 6871 { 6872 ftrace_enabled = 1; 6873 return 0; 6874 } 6875 core_initcall(ftrace_nodyn_init); 6876 6877 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6878 static inline void ftrace_startup_enable(int command) { } 6879 static inline void ftrace_startup_all(int command) { } 6880 6881 # define ftrace_startup_sysctl() do { } while (0) 6882 # define ftrace_shutdown_sysctl() do { } while (0) 6883 6884 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6885 { 6886 } 6887 6888 #endif /* CONFIG_DYNAMIC_FTRACE */ 6889 6890 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6891 { 6892 tr->ops = &global_ops; 6893 tr->ops->private = tr; 6894 ftrace_init_trace_array(tr); 6895 } 6896 6897 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6898 { 6899 /* If we filter on pids, update to use the pid function */ 6900 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6901 if (WARN_ON(tr->ops->func != ftrace_stub)) 6902 printk("ftrace ops had %pS for function\n", 6903 tr->ops->func); 6904 } 6905 tr->ops->func = func; 6906 tr->ops->private = tr; 6907 } 6908 6909 void ftrace_reset_array_ops(struct trace_array *tr) 6910 { 6911 tr->ops->func = ftrace_stub; 6912 } 6913 6914 static nokprobe_inline void 6915 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6916 struct ftrace_ops *ignored, struct pt_regs *regs) 6917 { 6918 struct ftrace_ops *op; 6919 int bit; 6920 6921 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6922 if (bit < 0) 6923 return; 6924 6925 /* 6926 * Some of the ops may be dynamically allocated, 6927 * they must be freed after a synchronize_rcu(). 6928 */ 6929 preempt_disable_notrace(); 6930 6931 do_for_each_ftrace_op(op, ftrace_ops_list) { 6932 /* Stub functions don't need to be called nor tested */ 6933 if (op->flags & FTRACE_OPS_FL_STUB) 6934 continue; 6935 /* 6936 * Check the following for each ops before calling their func: 6937 * if RCU flag is set, then rcu_is_watching() must be true 6938 * if PER_CPU is set, then ftrace_function_local_disable() 6939 * must be false 6940 * Otherwise test if the ip matches the ops filter 6941 * 6942 * If any of the above fails then the op->func() is not executed. 6943 */ 6944 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6945 ftrace_ops_test(op, ip, regs)) { 6946 if (FTRACE_WARN_ON(!op->func)) { 6947 pr_warn("op=%p %pS\n", op, op); 6948 goto out; 6949 } 6950 op->func(ip, parent_ip, op, regs); 6951 } 6952 } while_for_each_ftrace_op(op); 6953 out: 6954 preempt_enable_notrace(); 6955 trace_clear_recursion(bit); 6956 } 6957 6958 /* 6959 * Some archs only support passing ip and parent_ip. Even though 6960 * the list function ignores the op parameter, we do not want any 6961 * C side effects, where a function is called without the caller 6962 * sending a third parameter. 6963 * Archs are to support both the regs and ftrace_ops at the same time. 6964 * If they support ftrace_ops, it is assumed they support regs. 6965 * If call backs want to use regs, they must either check for regs 6966 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6967 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6968 * An architecture can pass partial regs with ftrace_ops and still 6969 * set the ARCH_SUPPORTS_FTRACE_OPS. 6970 */ 6971 #if ARCH_SUPPORTS_FTRACE_OPS 6972 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6973 struct ftrace_ops *op, struct pt_regs *regs) 6974 { 6975 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6976 } 6977 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6978 #else 6979 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6980 { 6981 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6982 } 6983 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6984 #endif 6985 6986 /* 6987 * If there's only one function registered but it does not support 6988 * recursion, needs RCU protection and/or requires per cpu handling, then 6989 * this function will be called by the mcount trampoline. 6990 */ 6991 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6992 struct ftrace_ops *op, struct pt_regs *regs) 6993 { 6994 int bit; 6995 6996 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6997 if (bit < 0) 6998 return; 6999 7000 preempt_disable_notrace(); 7001 7002 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7003 op->func(ip, parent_ip, op, regs); 7004 7005 preempt_enable_notrace(); 7006 trace_clear_recursion(bit); 7007 } 7008 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7009 7010 /** 7011 * ftrace_ops_get_func - get the function a trampoline should call 7012 * @ops: the ops to get the function for 7013 * 7014 * Normally the mcount trampoline will call the ops->func, but there 7015 * are times that it should not. For example, if the ops does not 7016 * have its own recursion protection, then it should call the 7017 * ftrace_ops_assist_func() instead. 7018 * 7019 * Returns the function that the trampoline should call for @ops. 7020 */ 7021 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7022 { 7023 /* 7024 * If the function does not handle recursion, needs to be RCU safe, 7025 * or does per cpu logic, then we need to call the assist handler. 7026 */ 7027 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 7028 ops->flags & FTRACE_OPS_FL_RCU) 7029 return ftrace_ops_assist_func; 7030 7031 return ops->func; 7032 } 7033 7034 static void 7035 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7036 struct task_struct *prev, struct task_struct *next) 7037 { 7038 struct trace_array *tr = data; 7039 struct trace_pid_list *pid_list; 7040 struct trace_pid_list *no_pid_list; 7041 7042 pid_list = rcu_dereference_sched(tr->function_pids); 7043 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7044 7045 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7046 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7047 FTRACE_PID_IGNORE); 7048 else 7049 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7050 next->pid); 7051 } 7052 7053 static void 7054 ftrace_pid_follow_sched_process_fork(void *data, 7055 struct task_struct *self, 7056 struct task_struct *task) 7057 { 7058 struct trace_pid_list *pid_list; 7059 struct trace_array *tr = data; 7060 7061 pid_list = rcu_dereference_sched(tr->function_pids); 7062 trace_filter_add_remove_task(pid_list, self, task); 7063 7064 pid_list = rcu_dereference_sched(tr->function_no_pids); 7065 trace_filter_add_remove_task(pid_list, self, task); 7066 } 7067 7068 static void 7069 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7070 { 7071 struct trace_pid_list *pid_list; 7072 struct trace_array *tr = data; 7073 7074 pid_list = rcu_dereference_sched(tr->function_pids); 7075 trace_filter_add_remove_task(pid_list, NULL, task); 7076 7077 pid_list = rcu_dereference_sched(tr->function_no_pids); 7078 trace_filter_add_remove_task(pid_list, NULL, task); 7079 } 7080 7081 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7082 { 7083 if (enable) { 7084 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7085 tr); 7086 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7087 tr); 7088 } else { 7089 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7090 tr); 7091 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7092 tr); 7093 } 7094 } 7095 7096 static void clear_ftrace_pids(struct trace_array *tr, int type) 7097 { 7098 struct trace_pid_list *pid_list; 7099 struct trace_pid_list *no_pid_list; 7100 int cpu; 7101 7102 pid_list = rcu_dereference_protected(tr->function_pids, 7103 lockdep_is_held(&ftrace_lock)); 7104 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7105 lockdep_is_held(&ftrace_lock)); 7106 7107 /* Make sure there's something to do */ 7108 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7109 return; 7110 7111 /* See if the pids still need to be checked after this */ 7112 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7113 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7114 for_each_possible_cpu(cpu) 7115 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7116 } 7117 7118 if (type & TRACE_PIDS) 7119 rcu_assign_pointer(tr->function_pids, NULL); 7120 7121 if (type & TRACE_NO_PIDS) 7122 rcu_assign_pointer(tr->function_no_pids, NULL); 7123 7124 /* Wait till all users are no longer using pid filtering */ 7125 synchronize_rcu(); 7126 7127 if ((type & TRACE_PIDS) && pid_list) 7128 trace_free_pid_list(pid_list); 7129 7130 if ((type & TRACE_NO_PIDS) && no_pid_list) 7131 trace_free_pid_list(no_pid_list); 7132 } 7133 7134 void ftrace_clear_pids(struct trace_array *tr) 7135 { 7136 mutex_lock(&ftrace_lock); 7137 7138 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7139 7140 mutex_unlock(&ftrace_lock); 7141 } 7142 7143 static void ftrace_pid_reset(struct trace_array *tr, int type) 7144 { 7145 mutex_lock(&ftrace_lock); 7146 clear_ftrace_pids(tr, type); 7147 7148 ftrace_update_pid_func(); 7149 ftrace_startup_all(0); 7150 7151 mutex_unlock(&ftrace_lock); 7152 } 7153 7154 /* Greater than any max PID */ 7155 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7156 7157 static void *fpid_start(struct seq_file *m, loff_t *pos) 7158 __acquires(RCU) 7159 { 7160 struct trace_pid_list *pid_list; 7161 struct trace_array *tr = m->private; 7162 7163 mutex_lock(&ftrace_lock); 7164 rcu_read_lock_sched(); 7165 7166 pid_list = rcu_dereference_sched(tr->function_pids); 7167 7168 if (!pid_list) 7169 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7170 7171 return trace_pid_start(pid_list, pos); 7172 } 7173 7174 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7175 { 7176 struct trace_array *tr = m->private; 7177 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7178 7179 if (v == FTRACE_NO_PIDS) { 7180 (*pos)++; 7181 return NULL; 7182 } 7183 return trace_pid_next(pid_list, v, pos); 7184 } 7185 7186 static void fpid_stop(struct seq_file *m, void *p) 7187 __releases(RCU) 7188 { 7189 rcu_read_unlock_sched(); 7190 mutex_unlock(&ftrace_lock); 7191 } 7192 7193 static int fpid_show(struct seq_file *m, void *v) 7194 { 7195 if (v == FTRACE_NO_PIDS) { 7196 seq_puts(m, "no pid\n"); 7197 return 0; 7198 } 7199 7200 return trace_pid_show(m, v); 7201 } 7202 7203 static const struct seq_operations ftrace_pid_sops = { 7204 .start = fpid_start, 7205 .next = fpid_next, 7206 .stop = fpid_stop, 7207 .show = fpid_show, 7208 }; 7209 7210 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7211 __acquires(RCU) 7212 { 7213 struct trace_pid_list *pid_list; 7214 struct trace_array *tr = m->private; 7215 7216 mutex_lock(&ftrace_lock); 7217 rcu_read_lock_sched(); 7218 7219 pid_list = rcu_dereference_sched(tr->function_no_pids); 7220 7221 if (!pid_list) 7222 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7223 7224 return trace_pid_start(pid_list, pos); 7225 } 7226 7227 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7228 { 7229 struct trace_array *tr = m->private; 7230 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7231 7232 if (v == FTRACE_NO_PIDS) { 7233 (*pos)++; 7234 return NULL; 7235 } 7236 return trace_pid_next(pid_list, v, pos); 7237 } 7238 7239 static const struct seq_operations ftrace_no_pid_sops = { 7240 .start = fnpid_start, 7241 .next = fnpid_next, 7242 .stop = fpid_stop, 7243 .show = fpid_show, 7244 }; 7245 7246 static int pid_open(struct inode *inode, struct file *file, int type) 7247 { 7248 const struct seq_operations *seq_ops; 7249 struct trace_array *tr = inode->i_private; 7250 struct seq_file *m; 7251 int ret = 0; 7252 7253 ret = tracing_check_open_get_tr(tr); 7254 if (ret) 7255 return ret; 7256 7257 if ((file->f_mode & FMODE_WRITE) && 7258 (file->f_flags & O_TRUNC)) 7259 ftrace_pid_reset(tr, type); 7260 7261 switch (type) { 7262 case TRACE_PIDS: 7263 seq_ops = &ftrace_pid_sops; 7264 break; 7265 case TRACE_NO_PIDS: 7266 seq_ops = &ftrace_no_pid_sops; 7267 break; 7268 default: 7269 trace_array_put(tr); 7270 WARN_ON_ONCE(1); 7271 return -EINVAL; 7272 } 7273 7274 ret = seq_open(file, seq_ops); 7275 if (ret < 0) { 7276 trace_array_put(tr); 7277 } else { 7278 m = file->private_data; 7279 /* copy tr over to seq ops */ 7280 m->private = tr; 7281 } 7282 7283 return ret; 7284 } 7285 7286 static int 7287 ftrace_pid_open(struct inode *inode, struct file *file) 7288 { 7289 return pid_open(inode, file, TRACE_PIDS); 7290 } 7291 7292 static int 7293 ftrace_no_pid_open(struct inode *inode, struct file *file) 7294 { 7295 return pid_open(inode, file, TRACE_NO_PIDS); 7296 } 7297 7298 static void ignore_task_cpu(void *data) 7299 { 7300 struct trace_array *tr = data; 7301 struct trace_pid_list *pid_list; 7302 struct trace_pid_list *no_pid_list; 7303 7304 /* 7305 * This function is called by on_each_cpu() while the 7306 * event_mutex is held. 7307 */ 7308 pid_list = rcu_dereference_protected(tr->function_pids, 7309 mutex_is_locked(&ftrace_lock)); 7310 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7311 mutex_is_locked(&ftrace_lock)); 7312 7313 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7314 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7315 FTRACE_PID_IGNORE); 7316 else 7317 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7318 current->pid); 7319 } 7320 7321 static ssize_t 7322 pid_write(struct file *filp, const char __user *ubuf, 7323 size_t cnt, loff_t *ppos, int type) 7324 { 7325 struct seq_file *m = filp->private_data; 7326 struct trace_array *tr = m->private; 7327 struct trace_pid_list *filtered_pids; 7328 struct trace_pid_list *other_pids; 7329 struct trace_pid_list *pid_list; 7330 ssize_t ret; 7331 7332 if (!cnt) 7333 return 0; 7334 7335 mutex_lock(&ftrace_lock); 7336 7337 switch (type) { 7338 case TRACE_PIDS: 7339 filtered_pids = rcu_dereference_protected(tr->function_pids, 7340 lockdep_is_held(&ftrace_lock)); 7341 other_pids = rcu_dereference_protected(tr->function_no_pids, 7342 lockdep_is_held(&ftrace_lock)); 7343 break; 7344 case TRACE_NO_PIDS: 7345 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7346 lockdep_is_held(&ftrace_lock)); 7347 other_pids = rcu_dereference_protected(tr->function_pids, 7348 lockdep_is_held(&ftrace_lock)); 7349 break; 7350 default: 7351 ret = -EINVAL; 7352 WARN_ON_ONCE(1); 7353 goto out; 7354 } 7355 7356 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7357 if (ret < 0) 7358 goto out; 7359 7360 switch (type) { 7361 case TRACE_PIDS: 7362 rcu_assign_pointer(tr->function_pids, pid_list); 7363 break; 7364 case TRACE_NO_PIDS: 7365 rcu_assign_pointer(tr->function_no_pids, pid_list); 7366 break; 7367 } 7368 7369 7370 if (filtered_pids) { 7371 synchronize_rcu(); 7372 trace_free_pid_list(filtered_pids); 7373 } else if (pid_list && !other_pids) { 7374 /* Register a probe to set whether to ignore the tracing of a task */ 7375 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7376 } 7377 7378 /* 7379 * Ignoring of pids is done at task switch. But we have to 7380 * check for those tasks that are currently running. 7381 * Always do this in case a pid was appended or removed. 7382 */ 7383 on_each_cpu(ignore_task_cpu, tr, 1); 7384 7385 ftrace_update_pid_func(); 7386 ftrace_startup_all(0); 7387 out: 7388 mutex_unlock(&ftrace_lock); 7389 7390 if (ret > 0) 7391 *ppos += ret; 7392 7393 return ret; 7394 } 7395 7396 static ssize_t 7397 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7398 size_t cnt, loff_t *ppos) 7399 { 7400 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7401 } 7402 7403 static ssize_t 7404 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7405 size_t cnt, loff_t *ppos) 7406 { 7407 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7408 } 7409 7410 static int 7411 ftrace_pid_release(struct inode *inode, struct file *file) 7412 { 7413 struct trace_array *tr = inode->i_private; 7414 7415 trace_array_put(tr); 7416 7417 return seq_release(inode, file); 7418 } 7419 7420 static const struct file_operations ftrace_pid_fops = { 7421 .open = ftrace_pid_open, 7422 .write = ftrace_pid_write, 7423 .read = seq_read, 7424 .llseek = tracing_lseek, 7425 .release = ftrace_pid_release, 7426 }; 7427 7428 static const struct file_operations ftrace_no_pid_fops = { 7429 .open = ftrace_no_pid_open, 7430 .write = ftrace_no_pid_write, 7431 .read = seq_read, 7432 .llseek = tracing_lseek, 7433 .release = ftrace_pid_release, 7434 }; 7435 7436 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7437 { 7438 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7439 tr, &ftrace_pid_fops); 7440 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer, 7441 tr, &ftrace_no_pid_fops); 7442 } 7443 7444 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7445 struct dentry *d_tracer) 7446 { 7447 /* Only the top level directory has the dyn_tracefs and profile */ 7448 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7449 7450 ftrace_init_dyn_tracefs(d_tracer); 7451 ftrace_profile_tracefs(d_tracer); 7452 } 7453 7454 /** 7455 * ftrace_kill - kill ftrace 7456 * 7457 * This function should be used by panic code. It stops ftrace 7458 * but in a not so nice way. If you need to simply kill ftrace 7459 * from a non-atomic section, use ftrace_kill. 7460 */ 7461 void ftrace_kill(void) 7462 { 7463 ftrace_disabled = 1; 7464 ftrace_enabled = 0; 7465 ftrace_trace_function = ftrace_stub; 7466 } 7467 7468 /** 7469 * Test if ftrace is dead or not. 7470 */ 7471 int ftrace_is_dead(void) 7472 { 7473 return ftrace_disabled; 7474 } 7475 7476 /** 7477 * register_ftrace_function - register a function for profiling 7478 * @ops - ops structure that holds the function for profiling. 7479 * 7480 * Register a function to be called by all functions in the 7481 * kernel. 7482 * 7483 * Note: @ops->func and all the functions it calls must be labeled 7484 * with "notrace", otherwise it will go into a 7485 * recursive loop. 7486 */ 7487 int register_ftrace_function(struct ftrace_ops *ops) 7488 { 7489 int ret = -1; 7490 7491 ftrace_ops_init(ops); 7492 7493 mutex_lock(&ftrace_lock); 7494 7495 ret = ftrace_startup(ops, 0); 7496 7497 mutex_unlock(&ftrace_lock); 7498 7499 return ret; 7500 } 7501 EXPORT_SYMBOL_GPL(register_ftrace_function); 7502 7503 /** 7504 * unregister_ftrace_function - unregister a function for profiling. 7505 * @ops - ops structure that holds the function to unregister 7506 * 7507 * Unregister a function that was added to be called by ftrace profiling. 7508 */ 7509 int unregister_ftrace_function(struct ftrace_ops *ops) 7510 { 7511 int ret; 7512 7513 mutex_lock(&ftrace_lock); 7514 ret = ftrace_shutdown(ops, 0); 7515 mutex_unlock(&ftrace_lock); 7516 7517 return ret; 7518 } 7519 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7520 7521 static bool is_permanent_ops_registered(void) 7522 { 7523 struct ftrace_ops *op; 7524 7525 do_for_each_ftrace_op(op, ftrace_ops_list) { 7526 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7527 return true; 7528 } while_for_each_ftrace_op(op); 7529 7530 return false; 7531 } 7532 7533 int 7534 ftrace_enable_sysctl(struct ctl_table *table, int write, 7535 void *buffer, size_t *lenp, loff_t *ppos) 7536 { 7537 int ret = -ENODEV; 7538 7539 mutex_lock(&ftrace_lock); 7540 7541 if (unlikely(ftrace_disabled)) 7542 goto out; 7543 7544 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7545 7546 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7547 goto out; 7548 7549 if (ftrace_enabled) { 7550 7551 /* we are starting ftrace again */ 7552 if (rcu_dereference_protected(ftrace_ops_list, 7553 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7554 update_ftrace_function(); 7555 7556 ftrace_startup_sysctl(); 7557 7558 } else { 7559 if (is_permanent_ops_registered()) { 7560 ftrace_enabled = true; 7561 ret = -EBUSY; 7562 goto out; 7563 } 7564 7565 /* stopping ftrace calls (just send to ftrace_stub) */ 7566 ftrace_trace_function = ftrace_stub; 7567 7568 ftrace_shutdown_sysctl(); 7569 } 7570 7571 last_ftrace_enabled = !!ftrace_enabled; 7572 out: 7573 mutex_unlock(&ftrace_lock); 7574 return ret; 7575 } 7576