xref: /openbmc/linux/kernel/trace/ftrace.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct pt_regs *regs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 			    struct ftrace_ops *op, struct pt_regs *regs)
144 {
145 	struct trace_array *tr = op->private;
146 	int pid;
147 
148 	if (tr) {
149 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
150 		if (pid == FTRACE_PID_IGNORE)
151 			return;
152 		if (pid != FTRACE_PID_TRACE &&
153 		    pid != current->pid)
154 			return;
155 	}
156 
157 	op->saved_func(ip, parent_ip, op, regs);
158 }
159 
160 static void ftrace_sync_ipi(void *data)
161 {
162 	/* Probably not needed, but do it anyway */
163 	smp_rmb();
164 }
165 
166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
167 {
168 	/*
169 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
170 	 * then it needs to call the list anyway.
171 	 */
172 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
173 	    FTRACE_FORCE_LIST_FUNC)
174 		return ftrace_ops_list_func;
175 
176 	return ftrace_ops_get_func(ops);
177 }
178 
179 static void update_ftrace_function(void)
180 {
181 	ftrace_func_t func;
182 
183 	/*
184 	 * Prepare the ftrace_ops that the arch callback will use.
185 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
186 	 * will point to the ops we want.
187 	 */
188 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
189 						lockdep_is_held(&ftrace_lock));
190 
191 	/* If there's no ftrace_ops registered, just call the stub function */
192 	if (set_function_trace_op == &ftrace_list_end) {
193 		func = ftrace_stub;
194 
195 	/*
196 	 * If we are at the end of the list and this ops is
197 	 * recursion safe and not dynamic and the arch supports passing ops,
198 	 * then have the mcount trampoline call the function directly.
199 	 */
200 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
201 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
202 		func = ftrace_ops_get_list_func(ftrace_ops_list);
203 
204 	} else {
205 		/* Just use the default ftrace_ops */
206 		set_function_trace_op = &ftrace_list_end;
207 		func = ftrace_ops_list_func;
208 	}
209 
210 	update_function_graph_func();
211 
212 	/* If there's no change, then do nothing more here */
213 	if (ftrace_trace_function == func)
214 		return;
215 
216 	/*
217 	 * If we are using the list function, it doesn't care
218 	 * about the function_trace_ops.
219 	 */
220 	if (func == ftrace_ops_list_func) {
221 		ftrace_trace_function = func;
222 		/*
223 		 * Don't even bother setting function_trace_ops,
224 		 * it would be racy to do so anyway.
225 		 */
226 		return;
227 	}
228 
229 #ifndef CONFIG_DYNAMIC_FTRACE
230 	/*
231 	 * For static tracing, we need to be a bit more careful.
232 	 * The function change takes affect immediately. Thus,
233 	 * we need to coorditate the setting of the function_trace_ops
234 	 * with the setting of the ftrace_trace_function.
235 	 *
236 	 * Set the function to the list ops, which will call the
237 	 * function we want, albeit indirectly, but it handles the
238 	 * ftrace_ops and doesn't depend on function_trace_op.
239 	 */
240 	ftrace_trace_function = ftrace_ops_list_func;
241 	/*
242 	 * Make sure all CPUs see this. Yes this is slow, but static
243 	 * tracing is slow and nasty to have enabled.
244 	 */
245 	synchronize_rcu_tasks_rude();
246 	/* Now all cpus are using the list ops. */
247 	function_trace_op = set_function_trace_op;
248 	/* Make sure the function_trace_op is visible on all CPUs */
249 	smp_wmb();
250 	/* Nasty way to force a rmb on all cpus */
251 	smp_call_function(ftrace_sync_ipi, NULL, 1);
252 	/* OK, we are all set to update the ftrace_trace_function now! */
253 #endif /* !CONFIG_DYNAMIC_FTRACE */
254 
255 	ftrace_trace_function = func;
256 }
257 
258 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
259 			   struct ftrace_ops *ops)
260 {
261 	rcu_assign_pointer(ops->next, *list);
262 
263 	/*
264 	 * We are entering ops into the list but another
265 	 * CPU might be walking that list. We need to make sure
266 	 * the ops->next pointer is valid before another CPU sees
267 	 * the ops pointer included into the list.
268 	 */
269 	rcu_assign_pointer(*list, ops);
270 }
271 
272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
273 			     struct ftrace_ops *ops)
274 {
275 	struct ftrace_ops **p;
276 
277 	/*
278 	 * If we are removing the last function, then simply point
279 	 * to the ftrace_stub.
280 	 */
281 	if (rcu_dereference_protected(*list,
282 			lockdep_is_held(&ftrace_lock)) == ops &&
283 	    rcu_dereference_protected(ops->next,
284 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
285 		*list = &ftrace_list_end;
286 		return 0;
287 	}
288 
289 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
290 		if (*p == ops)
291 			break;
292 
293 	if (*p != ops)
294 		return -1;
295 
296 	*p = (*p)->next;
297 	return 0;
298 }
299 
300 static void ftrace_update_trampoline(struct ftrace_ops *ops);
301 
302 int __register_ftrace_function(struct ftrace_ops *ops)
303 {
304 	if (ops->flags & FTRACE_OPS_FL_DELETED)
305 		return -EINVAL;
306 
307 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
308 		return -EBUSY;
309 
310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
311 	/*
312 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
313 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
314 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
315 	 */
316 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
317 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
318 		return -EINVAL;
319 
320 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
321 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
322 #endif
323 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
324 		return -EBUSY;
325 
326 	if (!core_kernel_data((unsigned long)ops))
327 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
328 
329 	add_ftrace_ops(&ftrace_ops_list, ops);
330 
331 	/* Always save the function, and reset at unregistering */
332 	ops->saved_func = ops->func;
333 
334 	if (ftrace_pids_enabled(ops))
335 		ops->func = ftrace_pid_func;
336 
337 	ftrace_update_trampoline(ops);
338 
339 	if (ftrace_enabled)
340 		update_ftrace_function();
341 
342 	return 0;
343 }
344 
345 int __unregister_ftrace_function(struct ftrace_ops *ops)
346 {
347 	int ret;
348 
349 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
350 		return -EBUSY;
351 
352 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
353 
354 	if (ret < 0)
355 		return ret;
356 
357 	if (ftrace_enabled)
358 		update_ftrace_function();
359 
360 	ops->func = ops->saved_func;
361 
362 	return 0;
363 }
364 
365 static void ftrace_update_pid_func(void)
366 {
367 	struct ftrace_ops *op;
368 
369 	/* Only do something if we are tracing something */
370 	if (ftrace_trace_function == ftrace_stub)
371 		return;
372 
373 	do_for_each_ftrace_op(op, ftrace_ops_list) {
374 		if (op->flags & FTRACE_OPS_FL_PID) {
375 			op->func = ftrace_pids_enabled(op) ?
376 				ftrace_pid_func : op->saved_func;
377 			ftrace_update_trampoline(op);
378 		}
379 	} while_for_each_ftrace_op(op);
380 
381 	update_ftrace_function();
382 }
383 
384 #ifdef CONFIG_FUNCTION_PROFILER
385 struct ftrace_profile {
386 	struct hlist_node		node;
387 	unsigned long			ip;
388 	unsigned long			counter;
389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
390 	unsigned long long		time;
391 	unsigned long long		time_squared;
392 #endif
393 };
394 
395 struct ftrace_profile_page {
396 	struct ftrace_profile_page	*next;
397 	unsigned long			index;
398 	struct ftrace_profile		records[];
399 };
400 
401 struct ftrace_profile_stat {
402 	atomic_t			disabled;
403 	struct hlist_head		*hash;
404 	struct ftrace_profile_page	*pages;
405 	struct ftrace_profile_page	*start;
406 	struct tracer_stat		stat;
407 };
408 
409 #define PROFILE_RECORDS_SIZE						\
410 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
411 
412 #define PROFILES_PER_PAGE					\
413 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
414 
415 static int ftrace_profile_enabled __read_mostly;
416 
417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
418 static DEFINE_MUTEX(ftrace_profile_lock);
419 
420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
421 
422 #define FTRACE_PROFILE_HASH_BITS 10
423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
424 
425 static void *
426 function_stat_next(void *v, int idx)
427 {
428 	struct ftrace_profile *rec = v;
429 	struct ftrace_profile_page *pg;
430 
431 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
432 
433  again:
434 	if (idx != 0)
435 		rec++;
436 
437 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
438 		pg = pg->next;
439 		if (!pg)
440 			return NULL;
441 		rec = &pg->records[0];
442 		if (!rec->counter)
443 			goto again;
444 	}
445 
446 	return rec;
447 }
448 
449 static void *function_stat_start(struct tracer_stat *trace)
450 {
451 	struct ftrace_profile_stat *stat =
452 		container_of(trace, struct ftrace_profile_stat, stat);
453 
454 	if (!stat || !stat->start)
455 		return NULL;
456 
457 	return function_stat_next(&stat->start->records[0], 0);
458 }
459 
460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
461 /* function graph compares on total time */
462 static int function_stat_cmp(const void *p1, const void *p2)
463 {
464 	const struct ftrace_profile *a = p1;
465 	const struct ftrace_profile *b = p2;
466 
467 	if (a->time < b->time)
468 		return -1;
469 	if (a->time > b->time)
470 		return 1;
471 	else
472 		return 0;
473 }
474 #else
475 /* not function graph compares against hits */
476 static int function_stat_cmp(const void *p1, const void *p2)
477 {
478 	const struct ftrace_profile *a = p1;
479 	const struct ftrace_profile *b = p2;
480 
481 	if (a->counter < b->counter)
482 		return -1;
483 	if (a->counter > b->counter)
484 		return 1;
485 	else
486 		return 0;
487 }
488 #endif
489 
490 static int function_stat_headers(struct seq_file *m)
491 {
492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
493 	seq_puts(m, "  Function                               "
494 		 "Hit    Time            Avg             s^2\n"
495 		    "  --------                               "
496 		 "---    ----            ---             ---\n");
497 #else
498 	seq_puts(m, "  Function                               Hit\n"
499 		    "  --------                               ---\n");
500 #endif
501 	return 0;
502 }
503 
504 static int function_stat_show(struct seq_file *m, void *v)
505 {
506 	struct ftrace_profile *rec = v;
507 	char str[KSYM_SYMBOL_LEN];
508 	int ret = 0;
509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
510 	static struct trace_seq s;
511 	unsigned long long avg;
512 	unsigned long long stddev;
513 #endif
514 	mutex_lock(&ftrace_profile_lock);
515 
516 	/* we raced with function_profile_reset() */
517 	if (unlikely(rec->counter == 0)) {
518 		ret = -EBUSY;
519 		goto out;
520 	}
521 
522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
523 	avg = div64_ul(rec->time, rec->counter);
524 	if (tracing_thresh && (avg < tracing_thresh))
525 		goto out;
526 #endif
527 
528 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
529 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
530 
531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
532 	seq_puts(m, "    ");
533 
534 	/* Sample standard deviation (s^2) */
535 	if (rec->counter <= 1)
536 		stddev = 0;
537 	else {
538 		/*
539 		 * Apply Welford's method:
540 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
541 		 */
542 		stddev = rec->counter * rec->time_squared -
543 			 rec->time * rec->time;
544 
545 		/*
546 		 * Divide only 1000 for ns^2 -> us^2 conversion.
547 		 * trace_print_graph_duration will divide 1000 again.
548 		 */
549 		stddev = div64_ul(stddev,
550 				  rec->counter * (rec->counter - 1) * 1000);
551 	}
552 
553 	trace_seq_init(&s);
554 	trace_print_graph_duration(rec->time, &s);
555 	trace_seq_puts(&s, "    ");
556 	trace_print_graph_duration(avg, &s);
557 	trace_seq_puts(&s, "    ");
558 	trace_print_graph_duration(stddev, &s);
559 	trace_print_seq(m, &s);
560 #endif
561 	seq_putc(m, '\n');
562 out:
563 	mutex_unlock(&ftrace_profile_lock);
564 
565 	return ret;
566 }
567 
568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
569 {
570 	struct ftrace_profile_page *pg;
571 
572 	pg = stat->pages = stat->start;
573 
574 	while (pg) {
575 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
576 		pg->index = 0;
577 		pg = pg->next;
578 	}
579 
580 	memset(stat->hash, 0,
581 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
582 }
583 
584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
585 {
586 	struct ftrace_profile_page *pg;
587 	int functions;
588 	int pages;
589 	int i;
590 
591 	/* If we already allocated, do nothing */
592 	if (stat->pages)
593 		return 0;
594 
595 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
596 	if (!stat->pages)
597 		return -ENOMEM;
598 
599 #ifdef CONFIG_DYNAMIC_FTRACE
600 	functions = ftrace_update_tot_cnt;
601 #else
602 	/*
603 	 * We do not know the number of functions that exist because
604 	 * dynamic tracing is what counts them. With past experience
605 	 * we have around 20K functions. That should be more than enough.
606 	 * It is highly unlikely we will execute every function in
607 	 * the kernel.
608 	 */
609 	functions = 20000;
610 #endif
611 
612 	pg = stat->start = stat->pages;
613 
614 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
615 
616 	for (i = 1; i < pages; i++) {
617 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
618 		if (!pg->next)
619 			goto out_free;
620 		pg = pg->next;
621 	}
622 
623 	return 0;
624 
625  out_free:
626 	pg = stat->start;
627 	while (pg) {
628 		unsigned long tmp = (unsigned long)pg;
629 
630 		pg = pg->next;
631 		free_page(tmp);
632 	}
633 
634 	stat->pages = NULL;
635 	stat->start = NULL;
636 
637 	return -ENOMEM;
638 }
639 
640 static int ftrace_profile_init_cpu(int cpu)
641 {
642 	struct ftrace_profile_stat *stat;
643 	int size;
644 
645 	stat = &per_cpu(ftrace_profile_stats, cpu);
646 
647 	if (stat->hash) {
648 		/* If the profile is already created, simply reset it */
649 		ftrace_profile_reset(stat);
650 		return 0;
651 	}
652 
653 	/*
654 	 * We are profiling all functions, but usually only a few thousand
655 	 * functions are hit. We'll make a hash of 1024 items.
656 	 */
657 	size = FTRACE_PROFILE_HASH_SIZE;
658 
659 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
660 
661 	if (!stat->hash)
662 		return -ENOMEM;
663 
664 	/* Preallocate the function profiling pages */
665 	if (ftrace_profile_pages_init(stat) < 0) {
666 		kfree(stat->hash);
667 		stat->hash = NULL;
668 		return -ENOMEM;
669 	}
670 
671 	return 0;
672 }
673 
674 static int ftrace_profile_init(void)
675 {
676 	int cpu;
677 	int ret = 0;
678 
679 	for_each_possible_cpu(cpu) {
680 		ret = ftrace_profile_init_cpu(cpu);
681 		if (ret)
682 			break;
683 	}
684 
685 	return ret;
686 }
687 
688 /* interrupts must be disabled */
689 static struct ftrace_profile *
690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
691 {
692 	struct ftrace_profile *rec;
693 	struct hlist_head *hhd;
694 	unsigned long key;
695 
696 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
697 	hhd = &stat->hash[key];
698 
699 	if (hlist_empty(hhd))
700 		return NULL;
701 
702 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
703 		if (rec->ip == ip)
704 			return rec;
705 	}
706 
707 	return NULL;
708 }
709 
710 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
711 			       struct ftrace_profile *rec)
712 {
713 	unsigned long key;
714 
715 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
716 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
717 }
718 
719 /*
720  * The memory is already allocated, this simply finds a new record to use.
721  */
722 static struct ftrace_profile *
723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
724 {
725 	struct ftrace_profile *rec = NULL;
726 
727 	/* prevent recursion (from NMIs) */
728 	if (atomic_inc_return(&stat->disabled) != 1)
729 		goto out;
730 
731 	/*
732 	 * Try to find the function again since an NMI
733 	 * could have added it
734 	 */
735 	rec = ftrace_find_profiled_func(stat, ip);
736 	if (rec)
737 		goto out;
738 
739 	if (stat->pages->index == PROFILES_PER_PAGE) {
740 		if (!stat->pages->next)
741 			goto out;
742 		stat->pages = stat->pages->next;
743 	}
744 
745 	rec = &stat->pages->records[stat->pages->index++];
746 	rec->ip = ip;
747 	ftrace_add_profile(stat, rec);
748 
749  out:
750 	atomic_dec(&stat->disabled);
751 
752 	return rec;
753 }
754 
755 static void
756 function_profile_call(unsigned long ip, unsigned long parent_ip,
757 		      struct ftrace_ops *ops, struct pt_regs *regs)
758 {
759 	struct ftrace_profile_stat *stat;
760 	struct ftrace_profile *rec;
761 	unsigned long flags;
762 
763 	if (!ftrace_profile_enabled)
764 		return;
765 
766 	local_irq_save(flags);
767 
768 	stat = this_cpu_ptr(&ftrace_profile_stats);
769 	if (!stat->hash || !ftrace_profile_enabled)
770 		goto out;
771 
772 	rec = ftrace_find_profiled_func(stat, ip);
773 	if (!rec) {
774 		rec = ftrace_profile_alloc(stat, ip);
775 		if (!rec)
776 			goto out;
777 	}
778 
779 	rec->counter++;
780  out:
781 	local_irq_restore(flags);
782 }
783 
784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
785 static bool fgraph_graph_time = true;
786 
787 void ftrace_graph_graph_time_control(bool enable)
788 {
789 	fgraph_graph_time = enable;
790 }
791 
792 static int profile_graph_entry(struct ftrace_graph_ent *trace)
793 {
794 	struct ftrace_ret_stack *ret_stack;
795 
796 	function_profile_call(trace->func, 0, NULL, NULL);
797 
798 	/* If function graph is shutting down, ret_stack can be NULL */
799 	if (!current->ret_stack)
800 		return 0;
801 
802 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
803 	if (ret_stack)
804 		ret_stack->subtime = 0;
805 
806 	return 1;
807 }
808 
809 static void profile_graph_return(struct ftrace_graph_ret *trace)
810 {
811 	struct ftrace_ret_stack *ret_stack;
812 	struct ftrace_profile_stat *stat;
813 	unsigned long long calltime;
814 	struct ftrace_profile *rec;
815 	unsigned long flags;
816 
817 	local_irq_save(flags);
818 	stat = this_cpu_ptr(&ftrace_profile_stats);
819 	if (!stat->hash || !ftrace_profile_enabled)
820 		goto out;
821 
822 	/* If the calltime was zero'd ignore it */
823 	if (!trace->calltime)
824 		goto out;
825 
826 	calltime = trace->rettime - trace->calltime;
827 
828 	if (!fgraph_graph_time) {
829 
830 		/* Append this call time to the parent time to subtract */
831 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
832 		if (ret_stack)
833 			ret_stack->subtime += calltime;
834 
835 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
836 		if (ret_stack && ret_stack->subtime < calltime)
837 			calltime -= ret_stack->subtime;
838 		else
839 			calltime = 0;
840 	}
841 
842 	rec = ftrace_find_profiled_func(stat, trace->func);
843 	if (rec) {
844 		rec->time += calltime;
845 		rec->time_squared += calltime * calltime;
846 	}
847 
848  out:
849 	local_irq_restore(flags);
850 }
851 
852 static struct fgraph_ops fprofiler_ops = {
853 	.entryfunc = &profile_graph_entry,
854 	.retfunc = &profile_graph_return,
855 };
856 
857 static int register_ftrace_profiler(void)
858 {
859 	return register_ftrace_graph(&fprofiler_ops);
860 }
861 
862 static void unregister_ftrace_profiler(void)
863 {
864 	unregister_ftrace_graph(&fprofiler_ops);
865 }
866 #else
867 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
868 	.func		= function_profile_call,
869 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
870 	INIT_OPS_HASH(ftrace_profile_ops)
871 };
872 
873 static int register_ftrace_profiler(void)
874 {
875 	return register_ftrace_function(&ftrace_profile_ops);
876 }
877 
878 static void unregister_ftrace_profiler(void)
879 {
880 	unregister_ftrace_function(&ftrace_profile_ops);
881 }
882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
883 
884 static ssize_t
885 ftrace_profile_write(struct file *filp, const char __user *ubuf,
886 		     size_t cnt, loff_t *ppos)
887 {
888 	unsigned long val;
889 	int ret;
890 
891 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
892 	if (ret)
893 		return ret;
894 
895 	val = !!val;
896 
897 	mutex_lock(&ftrace_profile_lock);
898 	if (ftrace_profile_enabled ^ val) {
899 		if (val) {
900 			ret = ftrace_profile_init();
901 			if (ret < 0) {
902 				cnt = ret;
903 				goto out;
904 			}
905 
906 			ret = register_ftrace_profiler();
907 			if (ret < 0) {
908 				cnt = ret;
909 				goto out;
910 			}
911 			ftrace_profile_enabled = 1;
912 		} else {
913 			ftrace_profile_enabled = 0;
914 			/*
915 			 * unregister_ftrace_profiler calls stop_machine
916 			 * so this acts like an synchronize_rcu.
917 			 */
918 			unregister_ftrace_profiler();
919 		}
920 	}
921  out:
922 	mutex_unlock(&ftrace_profile_lock);
923 
924 	*ppos += cnt;
925 
926 	return cnt;
927 }
928 
929 static ssize_t
930 ftrace_profile_read(struct file *filp, char __user *ubuf,
931 		     size_t cnt, loff_t *ppos)
932 {
933 	char buf[64];		/* big enough to hold a number */
934 	int r;
935 
936 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
937 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
938 }
939 
940 static const struct file_operations ftrace_profile_fops = {
941 	.open		= tracing_open_generic,
942 	.read		= ftrace_profile_read,
943 	.write		= ftrace_profile_write,
944 	.llseek		= default_llseek,
945 };
946 
947 /* used to initialize the real stat files */
948 static struct tracer_stat function_stats __initdata = {
949 	.name		= "functions",
950 	.stat_start	= function_stat_start,
951 	.stat_next	= function_stat_next,
952 	.stat_cmp	= function_stat_cmp,
953 	.stat_headers	= function_stat_headers,
954 	.stat_show	= function_stat_show
955 };
956 
957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
958 {
959 	struct ftrace_profile_stat *stat;
960 	struct dentry *entry;
961 	char *name;
962 	int ret;
963 	int cpu;
964 
965 	for_each_possible_cpu(cpu) {
966 		stat = &per_cpu(ftrace_profile_stats, cpu);
967 
968 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
969 		if (!name) {
970 			/*
971 			 * The files created are permanent, if something happens
972 			 * we still do not free memory.
973 			 */
974 			WARN(1,
975 			     "Could not allocate stat file for cpu %d\n",
976 			     cpu);
977 			return;
978 		}
979 		stat->stat = function_stats;
980 		stat->stat.name = name;
981 		ret = register_stat_tracer(&stat->stat);
982 		if (ret) {
983 			WARN(1,
984 			     "Could not register function stat for cpu %d\n",
985 			     cpu);
986 			kfree(name);
987 			return;
988 		}
989 	}
990 
991 	entry = tracefs_create_file("function_profile_enabled", 0644,
992 				    d_tracer, NULL, &ftrace_profile_fops);
993 	if (!entry)
994 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
995 }
996 
997 #else /* CONFIG_FUNCTION_PROFILER */
998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
999 {
1000 }
1001 #endif /* CONFIG_FUNCTION_PROFILER */
1002 
1003 #ifdef CONFIG_DYNAMIC_FTRACE
1004 
1005 static struct ftrace_ops *removed_ops;
1006 
1007 /*
1008  * Set when doing a global update, like enabling all recs or disabling them.
1009  * It is not set when just updating a single ftrace_ops.
1010  */
1011 static bool update_all_ops;
1012 
1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1014 # error Dynamic ftrace depends on MCOUNT_RECORD
1015 #endif
1016 
1017 struct ftrace_func_probe {
1018 	struct ftrace_probe_ops	*probe_ops;
1019 	struct ftrace_ops	ops;
1020 	struct trace_array	*tr;
1021 	struct list_head	list;
1022 	void			*data;
1023 	int			ref;
1024 };
1025 
1026 /*
1027  * We make these constant because no one should touch them,
1028  * but they are used as the default "empty hash", to avoid allocating
1029  * it all the time. These are in a read only section such that if
1030  * anyone does try to modify it, it will cause an exception.
1031  */
1032 static const struct hlist_head empty_buckets[1];
1033 static const struct ftrace_hash empty_hash = {
1034 	.buckets = (struct hlist_head *)empty_buckets,
1035 };
1036 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1037 
1038 struct ftrace_ops global_ops = {
1039 	.func				= ftrace_stub,
1040 	.local_hash.notrace_hash	= EMPTY_HASH,
1041 	.local_hash.filter_hash		= EMPTY_HASH,
1042 	INIT_OPS_HASH(global_ops)
1043 	.flags				= FTRACE_OPS_FL_RECURSION_SAFE |
1044 					  FTRACE_OPS_FL_INITIALIZED |
1045 					  FTRACE_OPS_FL_PID,
1046 };
1047 
1048 /*
1049  * Used by the stack undwinder to know about dynamic ftrace trampolines.
1050  */
1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1052 {
1053 	struct ftrace_ops *op = NULL;
1054 
1055 	/*
1056 	 * Some of the ops may be dynamically allocated,
1057 	 * they are freed after a synchronize_rcu().
1058 	 */
1059 	preempt_disable_notrace();
1060 
1061 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1062 		/*
1063 		 * This is to check for dynamically allocated trampolines.
1064 		 * Trampolines that are in kernel text will have
1065 		 * core_kernel_text() return true.
1066 		 */
1067 		if (op->trampoline && op->trampoline_size)
1068 			if (addr >= op->trampoline &&
1069 			    addr < op->trampoline + op->trampoline_size) {
1070 				preempt_enable_notrace();
1071 				return op;
1072 			}
1073 	} while_for_each_ftrace_op(op);
1074 	preempt_enable_notrace();
1075 
1076 	return NULL;
1077 }
1078 
1079 /*
1080  * This is used by __kernel_text_address() to return true if the
1081  * address is on a dynamically allocated trampoline that would
1082  * not return true for either core_kernel_text() or
1083  * is_module_text_address().
1084  */
1085 bool is_ftrace_trampoline(unsigned long addr)
1086 {
1087 	return ftrace_ops_trampoline(addr) != NULL;
1088 }
1089 
1090 struct ftrace_page {
1091 	struct ftrace_page	*next;
1092 	struct dyn_ftrace	*records;
1093 	int			index;
1094 	int			size;
1095 };
1096 
1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1099 
1100 static struct ftrace_page	*ftrace_pages_start;
1101 static struct ftrace_page	*ftrace_pages;
1102 
1103 static __always_inline unsigned long
1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1105 {
1106 	if (hash->size_bits > 0)
1107 		return hash_long(ip, hash->size_bits);
1108 
1109 	return 0;
1110 }
1111 
1112 /* Only use this function if ftrace_hash_empty() has already been tested */
1113 static __always_inline struct ftrace_func_entry *
1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1115 {
1116 	unsigned long key;
1117 	struct ftrace_func_entry *entry;
1118 	struct hlist_head *hhd;
1119 
1120 	key = ftrace_hash_key(hash, ip);
1121 	hhd = &hash->buckets[key];
1122 
1123 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1124 		if (entry->ip == ip)
1125 			return entry;
1126 	}
1127 	return NULL;
1128 }
1129 
1130 /**
1131  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1132  * @hash: The hash to look at
1133  * @ip: The instruction pointer to test
1134  *
1135  * Search a given @hash to see if a given instruction pointer (@ip)
1136  * exists in it.
1137  *
1138  * Returns the entry that holds the @ip if found. NULL otherwise.
1139  */
1140 struct ftrace_func_entry *
1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1142 {
1143 	if (ftrace_hash_empty(hash))
1144 		return NULL;
1145 
1146 	return __ftrace_lookup_ip(hash, ip);
1147 }
1148 
1149 static void __add_hash_entry(struct ftrace_hash *hash,
1150 			     struct ftrace_func_entry *entry)
1151 {
1152 	struct hlist_head *hhd;
1153 	unsigned long key;
1154 
1155 	key = ftrace_hash_key(hash, entry->ip);
1156 	hhd = &hash->buckets[key];
1157 	hlist_add_head(&entry->hlist, hhd);
1158 	hash->count++;
1159 }
1160 
1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1162 {
1163 	struct ftrace_func_entry *entry;
1164 
1165 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1166 	if (!entry)
1167 		return -ENOMEM;
1168 
1169 	entry->ip = ip;
1170 	__add_hash_entry(hash, entry);
1171 
1172 	return 0;
1173 }
1174 
1175 static void
1176 free_hash_entry(struct ftrace_hash *hash,
1177 		  struct ftrace_func_entry *entry)
1178 {
1179 	hlist_del(&entry->hlist);
1180 	kfree(entry);
1181 	hash->count--;
1182 }
1183 
1184 static void
1185 remove_hash_entry(struct ftrace_hash *hash,
1186 		  struct ftrace_func_entry *entry)
1187 {
1188 	hlist_del_rcu(&entry->hlist);
1189 	hash->count--;
1190 }
1191 
1192 static void ftrace_hash_clear(struct ftrace_hash *hash)
1193 {
1194 	struct hlist_head *hhd;
1195 	struct hlist_node *tn;
1196 	struct ftrace_func_entry *entry;
1197 	int size = 1 << hash->size_bits;
1198 	int i;
1199 
1200 	if (!hash->count)
1201 		return;
1202 
1203 	for (i = 0; i < size; i++) {
1204 		hhd = &hash->buckets[i];
1205 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1206 			free_hash_entry(hash, entry);
1207 	}
1208 	FTRACE_WARN_ON(hash->count);
1209 }
1210 
1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1212 {
1213 	list_del(&ftrace_mod->list);
1214 	kfree(ftrace_mod->module);
1215 	kfree(ftrace_mod->func);
1216 	kfree(ftrace_mod);
1217 }
1218 
1219 static void clear_ftrace_mod_list(struct list_head *head)
1220 {
1221 	struct ftrace_mod_load *p, *n;
1222 
1223 	/* stack tracer isn't supported yet */
1224 	if (!head)
1225 		return;
1226 
1227 	mutex_lock(&ftrace_lock);
1228 	list_for_each_entry_safe(p, n, head, list)
1229 		free_ftrace_mod(p);
1230 	mutex_unlock(&ftrace_lock);
1231 }
1232 
1233 static void free_ftrace_hash(struct ftrace_hash *hash)
1234 {
1235 	if (!hash || hash == EMPTY_HASH)
1236 		return;
1237 	ftrace_hash_clear(hash);
1238 	kfree(hash->buckets);
1239 	kfree(hash);
1240 }
1241 
1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1243 {
1244 	struct ftrace_hash *hash;
1245 
1246 	hash = container_of(rcu, struct ftrace_hash, rcu);
1247 	free_ftrace_hash(hash);
1248 }
1249 
1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1251 {
1252 	if (!hash || hash == EMPTY_HASH)
1253 		return;
1254 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1255 }
1256 
1257 void ftrace_free_filter(struct ftrace_ops *ops)
1258 {
1259 	ftrace_ops_init(ops);
1260 	free_ftrace_hash(ops->func_hash->filter_hash);
1261 	free_ftrace_hash(ops->func_hash->notrace_hash);
1262 }
1263 
1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1265 {
1266 	struct ftrace_hash *hash;
1267 	int size;
1268 
1269 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1270 	if (!hash)
1271 		return NULL;
1272 
1273 	size = 1 << size_bits;
1274 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1275 
1276 	if (!hash->buckets) {
1277 		kfree(hash);
1278 		return NULL;
1279 	}
1280 
1281 	hash->size_bits = size_bits;
1282 
1283 	return hash;
1284 }
1285 
1286 
1287 static int ftrace_add_mod(struct trace_array *tr,
1288 			  const char *func, const char *module,
1289 			  int enable)
1290 {
1291 	struct ftrace_mod_load *ftrace_mod;
1292 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1293 
1294 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1295 	if (!ftrace_mod)
1296 		return -ENOMEM;
1297 
1298 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1299 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1300 	ftrace_mod->enable = enable;
1301 
1302 	if (!ftrace_mod->func || !ftrace_mod->module)
1303 		goto out_free;
1304 
1305 	list_add(&ftrace_mod->list, mod_head);
1306 
1307 	return 0;
1308 
1309  out_free:
1310 	free_ftrace_mod(ftrace_mod);
1311 
1312 	return -ENOMEM;
1313 }
1314 
1315 static struct ftrace_hash *
1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1317 {
1318 	struct ftrace_func_entry *entry;
1319 	struct ftrace_hash *new_hash;
1320 	int size;
1321 	int ret;
1322 	int i;
1323 
1324 	new_hash = alloc_ftrace_hash(size_bits);
1325 	if (!new_hash)
1326 		return NULL;
1327 
1328 	if (hash)
1329 		new_hash->flags = hash->flags;
1330 
1331 	/* Empty hash? */
1332 	if (ftrace_hash_empty(hash))
1333 		return new_hash;
1334 
1335 	size = 1 << hash->size_bits;
1336 	for (i = 0; i < size; i++) {
1337 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1338 			ret = add_hash_entry(new_hash, entry->ip);
1339 			if (ret < 0)
1340 				goto free_hash;
1341 		}
1342 	}
1343 
1344 	FTRACE_WARN_ON(new_hash->count != hash->count);
1345 
1346 	return new_hash;
1347 
1348  free_hash:
1349 	free_ftrace_hash(new_hash);
1350 	return NULL;
1351 }
1352 
1353 static void
1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1355 static void
1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1357 
1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1359 				       struct ftrace_hash *new_hash);
1360 
1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1362 {
1363 	struct ftrace_func_entry *entry;
1364 	struct ftrace_hash *new_hash;
1365 	struct hlist_head *hhd;
1366 	struct hlist_node *tn;
1367 	int bits = 0;
1368 	int i;
1369 
1370 	/*
1371 	 * Make the hash size about 1/2 the # found
1372 	 */
1373 	for (size /= 2; size; size >>= 1)
1374 		bits++;
1375 
1376 	/* Don't allocate too much */
1377 	if (bits > FTRACE_HASH_MAX_BITS)
1378 		bits = FTRACE_HASH_MAX_BITS;
1379 
1380 	new_hash = alloc_ftrace_hash(bits);
1381 	if (!new_hash)
1382 		return NULL;
1383 
1384 	new_hash->flags = src->flags;
1385 
1386 	size = 1 << src->size_bits;
1387 	for (i = 0; i < size; i++) {
1388 		hhd = &src->buckets[i];
1389 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1390 			remove_hash_entry(src, entry);
1391 			__add_hash_entry(new_hash, entry);
1392 		}
1393 	}
1394 	return new_hash;
1395 }
1396 
1397 static struct ftrace_hash *
1398 __ftrace_hash_move(struct ftrace_hash *src)
1399 {
1400 	int size = src->count;
1401 
1402 	/*
1403 	 * If the new source is empty, just return the empty_hash.
1404 	 */
1405 	if (ftrace_hash_empty(src))
1406 		return EMPTY_HASH;
1407 
1408 	return dup_hash(src, size);
1409 }
1410 
1411 static int
1412 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1413 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1414 {
1415 	struct ftrace_hash *new_hash;
1416 	int ret;
1417 
1418 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1419 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1420 		return -EINVAL;
1421 
1422 	new_hash = __ftrace_hash_move(src);
1423 	if (!new_hash)
1424 		return -ENOMEM;
1425 
1426 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1427 	if (enable) {
1428 		/* IPMODIFY should be updated only when filter_hash updating */
1429 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1430 		if (ret < 0) {
1431 			free_ftrace_hash(new_hash);
1432 			return ret;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * Remove the current set, update the hash and add
1438 	 * them back.
1439 	 */
1440 	ftrace_hash_rec_disable_modify(ops, enable);
1441 
1442 	rcu_assign_pointer(*dst, new_hash);
1443 
1444 	ftrace_hash_rec_enable_modify(ops, enable);
1445 
1446 	return 0;
1447 }
1448 
1449 static bool hash_contains_ip(unsigned long ip,
1450 			     struct ftrace_ops_hash *hash)
1451 {
1452 	/*
1453 	 * The function record is a match if it exists in the filter
1454 	 * hash and not in the notrace hash. Note, an emty hash is
1455 	 * considered a match for the filter hash, but an empty
1456 	 * notrace hash is considered not in the notrace hash.
1457 	 */
1458 	return (ftrace_hash_empty(hash->filter_hash) ||
1459 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1460 		(ftrace_hash_empty(hash->notrace_hash) ||
1461 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1462 }
1463 
1464 /*
1465  * Test the hashes for this ops to see if we want to call
1466  * the ops->func or not.
1467  *
1468  * It's a match if the ip is in the ops->filter_hash or
1469  * the filter_hash does not exist or is empty,
1470  *  AND
1471  * the ip is not in the ops->notrace_hash.
1472  *
1473  * This needs to be called with preemption disabled as
1474  * the hashes are freed with call_rcu().
1475  */
1476 int
1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1478 {
1479 	struct ftrace_ops_hash hash;
1480 	int ret;
1481 
1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1483 	/*
1484 	 * There's a small race when adding ops that the ftrace handler
1485 	 * that wants regs, may be called without them. We can not
1486 	 * allow that handler to be called if regs is NULL.
1487 	 */
1488 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1489 		return 0;
1490 #endif
1491 
1492 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1493 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1494 
1495 	if (hash_contains_ip(ip, &hash))
1496 		ret = 1;
1497 	else
1498 		ret = 0;
1499 
1500 	return ret;
1501 }
1502 
1503 /*
1504  * This is a double for. Do not use 'break' to break out of the loop,
1505  * you must use a goto.
1506  */
1507 #define do_for_each_ftrace_rec(pg, rec)					\
1508 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1509 		int _____i;						\
1510 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1511 			rec = &pg->records[_____i];
1512 
1513 #define while_for_each_ftrace_rec()		\
1514 		}				\
1515 	}
1516 
1517 
1518 static int ftrace_cmp_recs(const void *a, const void *b)
1519 {
1520 	const struct dyn_ftrace *key = a;
1521 	const struct dyn_ftrace *rec = b;
1522 
1523 	if (key->flags < rec->ip)
1524 		return -1;
1525 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1526 		return 1;
1527 	return 0;
1528 }
1529 
1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1531 {
1532 	struct ftrace_page *pg;
1533 	struct dyn_ftrace *rec = NULL;
1534 	struct dyn_ftrace key;
1535 
1536 	key.ip = start;
1537 	key.flags = end;	/* overload flags, as it is unsigned long */
1538 
1539 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1540 		if (end < pg->records[0].ip ||
1541 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1542 			continue;
1543 		rec = bsearch(&key, pg->records, pg->index,
1544 			      sizeof(struct dyn_ftrace),
1545 			      ftrace_cmp_recs);
1546 		if (rec)
1547 			break;
1548 	}
1549 	return rec;
1550 }
1551 
1552 /**
1553  * ftrace_location_range - return the first address of a traced location
1554  *	if it touches the given ip range
1555  * @start: start of range to search.
1556  * @end: end of range to search (inclusive). @end points to the last byte
1557  *	to check.
1558  *
1559  * Returns rec->ip if the related ftrace location is a least partly within
1560  * the given address range. That is, the first address of the instruction
1561  * that is either a NOP or call to the function tracer. It checks the ftrace
1562  * internal tables to determine if the address belongs or not.
1563  */
1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1565 {
1566 	struct dyn_ftrace *rec;
1567 
1568 	rec = lookup_rec(start, end);
1569 	if (rec)
1570 		return rec->ip;
1571 
1572 	return 0;
1573 }
1574 
1575 /**
1576  * ftrace_location - return true if the ip giving is a traced location
1577  * @ip: the instruction pointer to check
1578  *
1579  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1580  * That is, the instruction that is either a NOP or call to
1581  * the function tracer. It checks the ftrace internal tables to
1582  * determine if the address belongs or not.
1583  */
1584 unsigned long ftrace_location(unsigned long ip)
1585 {
1586 	return ftrace_location_range(ip, ip);
1587 }
1588 
1589 /**
1590  * ftrace_text_reserved - return true if range contains an ftrace location
1591  * @start: start of range to search
1592  * @end: end of range to search (inclusive). @end points to the last byte to check.
1593  *
1594  * Returns 1 if @start and @end contains a ftrace location.
1595  * That is, the instruction that is either a NOP or call to
1596  * the function tracer. It checks the ftrace internal tables to
1597  * determine if the address belongs or not.
1598  */
1599 int ftrace_text_reserved(const void *start, const void *end)
1600 {
1601 	unsigned long ret;
1602 
1603 	ret = ftrace_location_range((unsigned long)start,
1604 				    (unsigned long)end);
1605 
1606 	return (int)!!ret;
1607 }
1608 
1609 /* Test if ops registered to this rec needs regs */
1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1611 {
1612 	struct ftrace_ops *ops;
1613 	bool keep_regs = false;
1614 
1615 	for (ops = ftrace_ops_list;
1616 	     ops != &ftrace_list_end; ops = ops->next) {
1617 		/* pass rec in as regs to have non-NULL val */
1618 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1619 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1620 				keep_regs = true;
1621 				break;
1622 			}
1623 		}
1624 	}
1625 
1626 	return  keep_regs;
1627 }
1628 
1629 static struct ftrace_ops *
1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1631 static struct ftrace_ops *
1632 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1633 
1634 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1635 				     int filter_hash,
1636 				     bool inc)
1637 {
1638 	struct ftrace_hash *hash;
1639 	struct ftrace_hash *other_hash;
1640 	struct ftrace_page *pg;
1641 	struct dyn_ftrace *rec;
1642 	bool update = false;
1643 	int count = 0;
1644 	int all = false;
1645 
1646 	/* Only update if the ops has been registered */
1647 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1648 		return false;
1649 
1650 	/*
1651 	 * In the filter_hash case:
1652 	 *   If the count is zero, we update all records.
1653 	 *   Otherwise we just update the items in the hash.
1654 	 *
1655 	 * In the notrace_hash case:
1656 	 *   We enable the update in the hash.
1657 	 *   As disabling notrace means enabling the tracing,
1658 	 *   and enabling notrace means disabling, the inc variable
1659 	 *   gets inversed.
1660 	 */
1661 	if (filter_hash) {
1662 		hash = ops->func_hash->filter_hash;
1663 		other_hash = ops->func_hash->notrace_hash;
1664 		if (ftrace_hash_empty(hash))
1665 			all = true;
1666 	} else {
1667 		inc = !inc;
1668 		hash = ops->func_hash->notrace_hash;
1669 		other_hash = ops->func_hash->filter_hash;
1670 		/*
1671 		 * If the notrace hash has no items,
1672 		 * then there's nothing to do.
1673 		 */
1674 		if (ftrace_hash_empty(hash))
1675 			return false;
1676 	}
1677 
1678 	do_for_each_ftrace_rec(pg, rec) {
1679 		int in_other_hash = 0;
1680 		int in_hash = 0;
1681 		int match = 0;
1682 
1683 		if (rec->flags & FTRACE_FL_DISABLED)
1684 			continue;
1685 
1686 		if (all) {
1687 			/*
1688 			 * Only the filter_hash affects all records.
1689 			 * Update if the record is not in the notrace hash.
1690 			 */
1691 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1692 				match = 1;
1693 		} else {
1694 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1695 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1696 
1697 			/*
1698 			 * If filter_hash is set, we want to match all functions
1699 			 * that are in the hash but not in the other hash.
1700 			 *
1701 			 * If filter_hash is not set, then we are decrementing.
1702 			 * That means we match anything that is in the hash
1703 			 * and also in the other_hash. That is, we need to turn
1704 			 * off functions in the other hash because they are disabled
1705 			 * by this hash.
1706 			 */
1707 			if (filter_hash && in_hash && !in_other_hash)
1708 				match = 1;
1709 			else if (!filter_hash && in_hash &&
1710 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1711 				match = 1;
1712 		}
1713 		if (!match)
1714 			continue;
1715 
1716 		if (inc) {
1717 			rec->flags++;
1718 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1719 				return false;
1720 
1721 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1722 				rec->flags |= FTRACE_FL_DIRECT;
1723 
1724 			/*
1725 			 * If there's only a single callback registered to a
1726 			 * function, and the ops has a trampoline registered
1727 			 * for it, then we can call it directly.
1728 			 */
1729 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1730 				rec->flags |= FTRACE_FL_TRAMP;
1731 			else
1732 				/*
1733 				 * If we are adding another function callback
1734 				 * to this function, and the previous had a
1735 				 * custom trampoline in use, then we need to go
1736 				 * back to the default trampoline.
1737 				 */
1738 				rec->flags &= ~FTRACE_FL_TRAMP;
1739 
1740 			/*
1741 			 * If any ops wants regs saved for this function
1742 			 * then all ops will get saved regs.
1743 			 */
1744 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1745 				rec->flags |= FTRACE_FL_REGS;
1746 		} else {
1747 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1748 				return false;
1749 			rec->flags--;
1750 
1751 			/*
1752 			 * Only the internal direct_ops should have the
1753 			 * DIRECT flag set. Thus, if it is removing a
1754 			 * function, then that function should no longer
1755 			 * be direct.
1756 			 */
1757 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1758 				rec->flags &= ~FTRACE_FL_DIRECT;
1759 
1760 			/*
1761 			 * If the rec had REGS enabled and the ops that is
1762 			 * being removed had REGS set, then see if there is
1763 			 * still any ops for this record that wants regs.
1764 			 * If not, we can stop recording them.
1765 			 */
1766 			if (ftrace_rec_count(rec) > 0 &&
1767 			    rec->flags & FTRACE_FL_REGS &&
1768 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1769 				if (!test_rec_ops_needs_regs(rec))
1770 					rec->flags &= ~FTRACE_FL_REGS;
1771 			}
1772 
1773 			/*
1774 			 * The TRAMP needs to be set only if rec count
1775 			 * is decremented to one, and the ops that is
1776 			 * left has a trampoline. As TRAMP can only be
1777 			 * enabled if there is only a single ops attached
1778 			 * to it.
1779 			 */
1780 			if (ftrace_rec_count(rec) == 1 &&
1781 			    ftrace_find_tramp_ops_any(rec))
1782 				rec->flags |= FTRACE_FL_TRAMP;
1783 			else
1784 				rec->flags &= ~FTRACE_FL_TRAMP;
1785 
1786 			/*
1787 			 * flags will be cleared in ftrace_check_record()
1788 			 * if rec count is zero.
1789 			 */
1790 		}
1791 		count++;
1792 
1793 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1794 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1795 
1796 		/* Shortcut, if we handled all records, we are done. */
1797 		if (!all && count == hash->count)
1798 			return update;
1799 	} while_for_each_ftrace_rec();
1800 
1801 	return update;
1802 }
1803 
1804 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1805 				    int filter_hash)
1806 {
1807 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1808 }
1809 
1810 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1811 				   int filter_hash)
1812 {
1813 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1814 }
1815 
1816 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1817 					  int filter_hash, int inc)
1818 {
1819 	struct ftrace_ops *op;
1820 
1821 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1822 
1823 	if (ops->func_hash != &global_ops.local_hash)
1824 		return;
1825 
1826 	/*
1827 	 * If the ops shares the global_ops hash, then we need to update
1828 	 * all ops that are enabled and use this hash.
1829 	 */
1830 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1831 		/* Already done */
1832 		if (op == ops)
1833 			continue;
1834 		if (op->func_hash == &global_ops.local_hash)
1835 			__ftrace_hash_rec_update(op, filter_hash, inc);
1836 	} while_for_each_ftrace_op(op);
1837 }
1838 
1839 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1840 					   int filter_hash)
1841 {
1842 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1843 }
1844 
1845 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1846 					  int filter_hash)
1847 {
1848 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1849 }
1850 
1851 /*
1852  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1853  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1854  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1855  * Note that old_hash and new_hash has below meanings
1856  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1857  *  - If the hash is EMPTY_HASH, it hits nothing
1858  *  - Anything else hits the recs which match the hash entries.
1859  */
1860 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1861 					 struct ftrace_hash *old_hash,
1862 					 struct ftrace_hash *new_hash)
1863 {
1864 	struct ftrace_page *pg;
1865 	struct dyn_ftrace *rec, *end = NULL;
1866 	int in_old, in_new;
1867 
1868 	/* Only update if the ops has been registered */
1869 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1870 		return 0;
1871 
1872 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1873 		return 0;
1874 
1875 	/*
1876 	 * Since the IPMODIFY is a very address sensitive action, we do not
1877 	 * allow ftrace_ops to set all functions to new hash.
1878 	 */
1879 	if (!new_hash || !old_hash)
1880 		return -EINVAL;
1881 
1882 	/* Update rec->flags */
1883 	do_for_each_ftrace_rec(pg, rec) {
1884 
1885 		if (rec->flags & FTRACE_FL_DISABLED)
1886 			continue;
1887 
1888 		/* We need to update only differences of filter_hash */
1889 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1890 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1891 		if (in_old == in_new)
1892 			continue;
1893 
1894 		if (in_new) {
1895 			/* New entries must ensure no others are using it */
1896 			if (rec->flags & FTRACE_FL_IPMODIFY)
1897 				goto rollback;
1898 			rec->flags |= FTRACE_FL_IPMODIFY;
1899 		} else /* Removed entry */
1900 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1901 	} while_for_each_ftrace_rec();
1902 
1903 	return 0;
1904 
1905 rollback:
1906 	end = rec;
1907 
1908 	/* Roll back what we did above */
1909 	do_for_each_ftrace_rec(pg, rec) {
1910 
1911 		if (rec->flags & FTRACE_FL_DISABLED)
1912 			continue;
1913 
1914 		if (rec == end)
1915 			goto err_out;
1916 
1917 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1918 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1919 		if (in_old == in_new)
1920 			continue;
1921 
1922 		if (in_new)
1923 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1924 		else
1925 			rec->flags |= FTRACE_FL_IPMODIFY;
1926 	} while_for_each_ftrace_rec();
1927 
1928 err_out:
1929 	return -EBUSY;
1930 }
1931 
1932 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1933 {
1934 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1935 
1936 	if (ftrace_hash_empty(hash))
1937 		hash = NULL;
1938 
1939 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1940 }
1941 
1942 /* Disabling always succeeds */
1943 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1944 {
1945 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1946 
1947 	if (ftrace_hash_empty(hash))
1948 		hash = NULL;
1949 
1950 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1951 }
1952 
1953 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1954 				       struct ftrace_hash *new_hash)
1955 {
1956 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1957 
1958 	if (ftrace_hash_empty(old_hash))
1959 		old_hash = NULL;
1960 
1961 	if (ftrace_hash_empty(new_hash))
1962 		new_hash = NULL;
1963 
1964 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1965 }
1966 
1967 static void print_ip_ins(const char *fmt, const unsigned char *p)
1968 {
1969 	int i;
1970 
1971 	printk(KERN_CONT "%s", fmt);
1972 
1973 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1974 		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1975 }
1976 
1977 enum ftrace_bug_type ftrace_bug_type;
1978 const void *ftrace_expected;
1979 
1980 static void print_bug_type(void)
1981 {
1982 	switch (ftrace_bug_type) {
1983 	case FTRACE_BUG_UNKNOWN:
1984 		break;
1985 	case FTRACE_BUG_INIT:
1986 		pr_info("Initializing ftrace call sites\n");
1987 		break;
1988 	case FTRACE_BUG_NOP:
1989 		pr_info("Setting ftrace call site to NOP\n");
1990 		break;
1991 	case FTRACE_BUG_CALL:
1992 		pr_info("Setting ftrace call site to call ftrace function\n");
1993 		break;
1994 	case FTRACE_BUG_UPDATE:
1995 		pr_info("Updating ftrace call site to call a different ftrace function\n");
1996 		break;
1997 	}
1998 }
1999 
2000 /**
2001  * ftrace_bug - report and shutdown function tracer
2002  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2003  * @rec: The record that failed
2004  *
2005  * The arch code that enables or disables the function tracing
2006  * can call ftrace_bug() when it has detected a problem in
2007  * modifying the code. @failed should be one of either:
2008  * EFAULT - if the problem happens on reading the @ip address
2009  * EINVAL - if what is read at @ip is not what was expected
2010  * EPERM - if the problem happens on writing to the @ip address
2011  */
2012 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2013 {
2014 	unsigned long ip = rec ? rec->ip : 0;
2015 
2016 	pr_info("------------[ ftrace bug ]------------\n");
2017 
2018 	switch (failed) {
2019 	case -EFAULT:
2020 		pr_info("ftrace faulted on modifying ");
2021 		print_ip_sym(KERN_INFO, ip);
2022 		break;
2023 	case -EINVAL:
2024 		pr_info("ftrace failed to modify ");
2025 		print_ip_sym(KERN_INFO, ip);
2026 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2027 		pr_cont("\n");
2028 		if (ftrace_expected) {
2029 			print_ip_ins(" expected: ", ftrace_expected);
2030 			pr_cont("\n");
2031 		}
2032 		break;
2033 	case -EPERM:
2034 		pr_info("ftrace faulted on writing ");
2035 		print_ip_sym(KERN_INFO, ip);
2036 		break;
2037 	default:
2038 		pr_info("ftrace faulted on unknown error ");
2039 		print_ip_sym(KERN_INFO, ip);
2040 	}
2041 	print_bug_type();
2042 	if (rec) {
2043 		struct ftrace_ops *ops = NULL;
2044 
2045 		pr_info("ftrace record flags: %lx\n", rec->flags);
2046 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2047 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2048 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2049 			ops = ftrace_find_tramp_ops_any(rec);
2050 			if (ops) {
2051 				do {
2052 					pr_cont("\ttramp: %pS (%pS)",
2053 						(void *)ops->trampoline,
2054 						(void *)ops->func);
2055 					ops = ftrace_find_tramp_ops_next(rec, ops);
2056 				} while (ops);
2057 			} else
2058 				pr_cont("\ttramp: ERROR!");
2059 
2060 		}
2061 		ip = ftrace_get_addr_curr(rec);
2062 		pr_cont("\n expected tramp: %lx\n", ip);
2063 	}
2064 
2065 	FTRACE_WARN_ON_ONCE(1);
2066 }
2067 
2068 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2069 {
2070 	unsigned long flag = 0UL;
2071 
2072 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2073 
2074 	if (rec->flags & FTRACE_FL_DISABLED)
2075 		return FTRACE_UPDATE_IGNORE;
2076 
2077 	/*
2078 	 * If we are updating calls:
2079 	 *
2080 	 *   If the record has a ref count, then we need to enable it
2081 	 *   because someone is using it.
2082 	 *
2083 	 *   Otherwise we make sure its disabled.
2084 	 *
2085 	 * If we are disabling calls, then disable all records that
2086 	 * are enabled.
2087 	 */
2088 	if (enable && ftrace_rec_count(rec))
2089 		flag = FTRACE_FL_ENABLED;
2090 
2091 	/*
2092 	 * If enabling and the REGS flag does not match the REGS_EN, or
2093 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2094 	 * this record. Set flags to fail the compare against ENABLED.
2095 	 * Same for direct calls.
2096 	 */
2097 	if (flag) {
2098 		if (!(rec->flags & FTRACE_FL_REGS) !=
2099 		    !(rec->flags & FTRACE_FL_REGS_EN))
2100 			flag |= FTRACE_FL_REGS;
2101 
2102 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2103 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2104 			flag |= FTRACE_FL_TRAMP;
2105 
2106 		/*
2107 		 * Direct calls are special, as count matters.
2108 		 * We must test the record for direct, if the
2109 		 * DIRECT and DIRECT_EN do not match, but only
2110 		 * if the count is 1. That's because, if the
2111 		 * count is something other than one, we do not
2112 		 * want the direct enabled (it will be done via the
2113 		 * direct helper). But if DIRECT_EN is set, and
2114 		 * the count is not one, we need to clear it.
2115 		 */
2116 		if (ftrace_rec_count(rec) == 1) {
2117 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2118 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2119 				flag |= FTRACE_FL_DIRECT;
2120 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2121 			flag |= FTRACE_FL_DIRECT;
2122 		}
2123 	}
2124 
2125 	/* If the state of this record hasn't changed, then do nothing */
2126 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2127 		return FTRACE_UPDATE_IGNORE;
2128 
2129 	if (flag) {
2130 		/* Save off if rec is being enabled (for return value) */
2131 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2132 
2133 		if (update) {
2134 			rec->flags |= FTRACE_FL_ENABLED;
2135 			if (flag & FTRACE_FL_REGS) {
2136 				if (rec->flags & FTRACE_FL_REGS)
2137 					rec->flags |= FTRACE_FL_REGS_EN;
2138 				else
2139 					rec->flags &= ~FTRACE_FL_REGS_EN;
2140 			}
2141 			if (flag & FTRACE_FL_TRAMP) {
2142 				if (rec->flags & FTRACE_FL_TRAMP)
2143 					rec->flags |= FTRACE_FL_TRAMP_EN;
2144 				else
2145 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2146 			}
2147 			if (flag & FTRACE_FL_DIRECT) {
2148 				/*
2149 				 * If there's only one user (direct_ops helper)
2150 				 * then we can call the direct function
2151 				 * directly (no ftrace trampoline).
2152 				 */
2153 				if (ftrace_rec_count(rec) == 1) {
2154 					if (rec->flags & FTRACE_FL_DIRECT)
2155 						rec->flags |= FTRACE_FL_DIRECT_EN;
2156 					else
2157 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2158 				} else {
2159 					/*
2160 					 * Can only call directly if there's
2161 					 * only one callback to the function.
2162 					 */
2163 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2164 				}
2165 			}
2166 		}
2167 
2168 		/*
2169 		 * If this record is being updated from a nop, then
2170 		 *   return UPDATE_MAKE_CALL.
2171 		 * Otherwise,
2172 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2173 		 *   from the save regs, to a non-save regs function or
2174 		 *   vice versa, or from a trampoline call.
2175 		 */
2176 		if (flag & FTRACE_FL_ENABLED) {
2177 			ftrace_bug_type = FTRACE_BUG_CALL;
2178 			return FTRACE_UPDATE_MAKE_CALL;
2179 		}
2180 
2181 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2182 		return FTRACE_UPDATE_MODIFY_CALL;
2183 	}
2184 
2185 	if (update) {
2186 		/* If there's no more users, clear all flags */
2187 		if (!ftrace_rec_count(rec))
2188 			rec->flags = 0;
2189 		else
2190 			/*
2191 			 * Just disable the record, but keep the ops TRAMP
2192 			 * and REGS states. The _EN flags must be disabled though.
2193 			 */
2194 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2195 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2196 	}
2197 
2198 	ftrace_bug_type = FTRACE_BUG_NOP;
2199 	return FTRACE_UPDATE_MAKE_NOP;
2200 }
2201 
2202 /**
2203  * ftrace_update_record, set a record that now is tracing or not
2204  * @rec: the record to update
2205  * @enable: set to true if the record is tracing, false to force disable
2206  *
2207  * The records that represent all functions that can be traced need
2208  * to be updated when tracing has been enabled.
2209  */
2210 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2211 {
2212 	return ftrace_check_record(rec, enable, true);
2213 }
2214 
2215 /**
2216  * ftrace_test_record, check if the record has been enabled or not
2217  * @rec: the record to test
2218  * @enable: set to true to check if enabled, false if it is disabled
2219  *
2220  * The arch code may need to test if a record is already set to
2221  * tracing to determine how to modify the function code that it
2222  * represents.
2223  */
2224 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2225 {
2226 	return ftrace_check_record(rec, enable, false);
2227 }
2228 
2229 static struct ftrace_ops *
2230 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2231 {
2232 	struct ftrace_ops *op;
2233 	unsigned long ip = rec->ip;
2234 
2235 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2236 
2237 		if (!op->trampoline)
2238 			continue;
2239 
2240 		if (hash_contains_ip(ip, op->func_hash))
2241 			return op;
2242 	} while_for_each_ftrace_op(op);
2243 
2244 	return NULL;
2245 }
2246 
2247 static struct ftrace_ops *
2248 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2249 			   struct ftrace_ops *op)
2250 {
2251 	unsigned long ip = rec->ip;
2252 
2253 	while_for_each_ftrace_op(op) {
2254 
2255 		if (!op->trampoline)
2256 			continue;
2257 
2258 		if (hash_contains_ip(ip, op->func_hash))
2259 			return op;
2260 	}
2261 
2262 	return NULL;
2263 }
2264 
2265 static struct ftrace_ops *
2266 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2267 {
2268 	struct ftrace_ops *op;
2269 	unsigned long ip = rec->ip;
2270 
2271 	/*
2272 	 * Need to check removed ops first.
2273 	 * If they are being removed, and this rec has a tramp,
2274 	 * and this rec is in the ops list, then it would be the
2275 	 * one with the tramp.
2276 	 */
2277 	if (removed_ops) {
2278 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2279 			return removed_ops;
2280 	}
2281 
2282 	/*
2283 	 * Need to find the current trampoline for a rec.
2284 	 * Now, a trampoline is only attached to a rec if there
2285 	 * was a single 'ops' attached to it. But this can be called
2286 	 * when we are adding another op to the rec or removing the
2287 	 * current one. Thus, if the op is being added, we can
2288 	 * ignore it because it hasn't attached itself to the rec
2289 	 * yet.
2290 	 *
2291 	 * If an ops is being modified (hooking to different functions)
2292 	 * then we don't care about the new functions that are being
2293 	 * added, just the old ones (that are probably being removed).
2294 	 *
2295 	 * If we are adding an ops to a function that already is using
2296 	 * a trampoline, it needs to be removed (trampolines are only
2297 	 * for single ops connected), then an ops that is not being
2298 	 * modified also needs to be checked.
2299 	 */
2300 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2301 
2302 		if (!op->trampoline)
2303 			continue;
2304 
2305 		/*
2306 		 * If the ops is being added, it hasn't gotten to
2307 		 * the point to be removed from this tree yet.
2308 		 */
2309 		if (op->flags & FTRACE_OPS_FL_ADDING)
2310 			continue;
2311 
2312 
2313 		/*
2314 		 * If the ops is being modified and is in the old
2315 		 * hash, then it is probably being removed from this
2316 		 * function.
2317 		 */
2318 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2319 		    hash_contains_ip(ip, &op->old_hash))
2320 			return op;
2321 		/*
2322 		 * If the ops is not being added or modified, and it's
2323 		 * in its normal filter hash, then this must be the one
2324 		 * we want!
2325 		 */
2326 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2327 		    hash_contains_ip(ip, op->func_hash))
2328 			return op;
2329 
2330 	} while_for_each_ftrace_op(op);
2331 
2332 	return NULL;
2333 }
2334 
2335 static struct ftrace_ops *
2336 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2337 {
2338 	struct ftrace_ops *op;
2339 	unsigned long ip = rec->ip;
2340 
2341 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2342 		/* pass rec in as regs to have non-NULL val */
2343 		if (hash_contains_ip(ip, op->func_hash))
2344 			return op;
2345 	} while_for_each_ftrace_op(op);
2346 
2347 	return NULL;
2348 }
2349 
2350 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2351 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2352 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2353 static DEFINE_MUTEX(direct_mutex);
2354 int ftrace_direct_func_count;
2355 
2356 /*
2357  * Search the direct_functions hash to see if the given instruction pointer
2358  * has a direct caller attached to it.
2359  */
2360 unsigned long ftrace_find_rec_direct(unsigned long ip)
2361 {
2362 	struct ftrace_func_entry *entry;
2363 
2364 	entry = __ftrace_lookup_ip(direct_functions, ip);
2365 	if (!entry)
2366 		return 0;
2367 
2368 	return entry->direct;
2369 }
2370 
2371 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2372 			      struct ftrace_ops *ops, struct pt_regs *regs)
2373 {
2374 	unsigned long addr;
2375 
2376 	addr = ftrace_find_rec_direct(ip);
2377 	if (!addr)
2378 		return;
2379 
2380 	arch_ftrace_set_direct_caller(regs, addr);
2381 }
2382 
2383 struct ftrace_ops direct_ops = {
2384 	.func		= call_direct_funcs,
2385 	.flags		= FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE
2386 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2387 			  | FTRACE_OPS_FL_PERMANENT,
2388 	/*
2389 	 * By declaring the main trampoline as this trampoline
2390 	 * it will never have one allocated for it. Allocated
2391 	 * trampolines should not call direct functions.
2392 	 * The direct_ops should only be called by the builtin
2393 	 * ftrace_regs_caller trampoline.
2394 	 */
2395 	.trampoline	= FTRACE_REGS_ADDR,
2396 };
2397 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2398 
2399 /**
2400  * ftrace_get_addr_new - Get the call address to set to
2401  * @rec:  The ftrace record descriptor
2402  *
2403  * If the record has the FTRACE_FL_REGS set, that means that it
2404  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2405  * is not not set, then it wants to convert to the normal callback.
2406  *
2407  * Returns the address of the trampoline to set to
2408  */
2409 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2410 {
2411 	struct ftrace_ops *ops;
2412 	unsigned long addr;
2413 
2414 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2415 	    (ftrace_rec_count(rec) == 1)) {
2416 		addr = ftrace_find_rec_direct(rec->ip);
2417 		if (addr)
2418 			return addr;
2419 		WARN_ON_ONCE(1);
2420 	}
2421 
2422 	/* Trampolines take precedence over regs */
2423 	if (rec->flags & FTRACE_FL_TRAMP) {
2424 		ops = ftrace_find_tramp_ops_new(rec);
2425 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2426 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2427 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2428 			/* Ftrace is shutting down, return anything */
2429 			return (unsigned long)FTRACE_ADDR;
2430 		}
2431 		return ops->trampoline;
2432 	}
2433 
2434 	if (rec->flags & FTRACE_FL_REGS)
2435 		return (unsigned long)FTRACE_REGS_ADDR;
2436 	else
2437 		return (unsigned long)FTRACE_ADDR;
2438 }
2439 
2440 /**
2441  * ftrace_get_addr_curr - Get the call address that is already there
2442  * @rec:  The ftrace record descriptor
2443  *
2444  * The FTRACE_FL_REGS_EN is set when the record already points to
2445  * a function that saves all the regs. Basically the '_EN' version
2446  * represents the current state of the function.
2447  *
2448  * Returns the address of the trampoline that is currently being called
2449  */
2450 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2451 {
2452 	struct ftrace_ops *ops;
2453 	unsigned long addr;
2454 
2455 	/* Direct calls take precedence over trampolines */
2456 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2457 		addr = ftrace_find_rec_direct(rec->ip);
2458 		if (addr)
2459 			return addr;
2460 		WARN_ON_ONCE(1);
2461 	}
2462 
2463 	/* Trampolines take precedence over regs */
2464 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2465 		ops = ftrace_find_tramp_ops_curr(rec);
2466 		if (FTRACE_WARN_ON(!ops)) {
2467 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2468 				(void *)rec->ip, (void *)rec->ip);
2469 			/* Ftrace is shutting down, return anything */
2470 			return (unsigned long)FTRACE_ADDR;
2471 		}
2472 		return ops->trampoline;
2473 	}
2474 
2475 	if (rec->flags & FTRACE_FL_REGS_EN)
2476 		return (unsigned long)FTRACE_REGS_ADDR;
2477 	else
2478 		return (unsigned long)FTRACE_ADDR;
2479 }
2480 
2481 static int
2482 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2483 {
2484 	unsigned long ftrace_old_addr;
2485 	unsigned long ftrace_addr;
2486 	int ret;
2487 
2488 	ftrace_addr = ftrace_get_addr_new(rec);
2489 
2490 	/* This needs to be done before we call ftrace_update_record */
2491 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2492 
2493 	ret = ftrace_update_record(rec, enable);
2494 
2495 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2496 
2497 	switch (ret) {
2498 	case FTRACE_UPDATE_IGNORE:
2499 		return 0;
2500 
2501 	case FTRACE_UPDATE_MAKE_CALL:
2502 		ftrace_bug_type = FTRACE_BUG_CALL;
2503 		return ftrace_make_call(rec, ftrace_addr);
2504 
2505 	case FTRACE_UPDATE_MAKE_NOP:
2506 		ftrace_bug_type = FTRACE_BUG_NOP;
2507 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2508 
2509 	case FTRACE_UPDATE_MODIFY_CALL:
2510 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2511 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2512 	}
2513 
2514 	return -1; /* unknown ftrace bug */
2515 }
2516 
2517 void __weak ftrace_replace_code(int mod_flags)
2518 {
2519 	struct dyn_ftrace *rec;
2520 	struct ftrace_page *pg;
2521 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2522 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2523 	int failed;
2524 
2525 	if (unlikely(ftrace_disabled))
2526 		return;
2527 
2528 	do_for_each_ftrace_rec(pg, rec) {
2529 
2530 		if (rec->flags & FTRACE_FL_DISABLED)
2531 			continue;
2532 
2533 		failed = __ftrace_replace_code(rec, enable);
2534 		if (failed) {
2535 			ftrace_bug(failed, rec);
2536 			/* Stop processing */
2537 			return;
2538 		}
2539 		if (schedulable)
2540 			cond_resched();
2541 	} while_for_each_ftrace_rec();
2542 }
2543 
2544 struct ftrace_rec_iter {
2545 	struct ftrace_page	*pg;
2546 	int			index;
2547 };
2548 
2549 /**
2550  * ftrace_rec_iter_start, start up iterating over traced functions
2551  *
2552  * Returns an iterator handle that is used to iterate over all
2553  * the records that represent address locations where functions
2554  * are traced.
2555  *
2556  * May return NULL if no records are available.
2557  */
2558 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2559 {
2560 	/*
2561 	 * We only use a single iterator.
2562 	 * Protected by the ftrace_lock mutex.
2563 	 */
2564 	static struct ftrace_rec_iter ftrace_rec_iter;
2565 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2566 
2567 	iter->pg = ftrace_pages_start;
2568 	iter->index = 0;
2569 
2570 	/* Could have empty pages */
2571 	while (iter->pg && !iter->pg->index)
2572 		iter->pg = iter->pg->next;
2573 
2574 	if (!iter->pg)
2575 		return NULL;
2576 
2577 	return iter;
2578 }
2579 
2580 /**
2581  * ftrace_rec_iter_next, get the next record to process.
2582  * @iter: The handle to the iterator.
2583  *
2584  * Returns the next iterator after the given iterator @iter.
2585  */
2586 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2587 {
2588 	iter->index++;
2589 
2590 	if (iter->index >= iter->pg->index) {
2591 		iter->pg = iter->pg->next;
2592 		iter->index = 0;
2593 
2594 		/* Could have empty pages */
2595 		while (iter->pg && !iter->pg->index)
2596 			iter->pg = iter->pg->next;
2597 	}
2598 
2599 	if (!iter->pg)
2600 		return NULL;
2601 
2602 	return iter;
2603 }
2604 
2605 /**
2606  * ftrace_rec_iter_record, get the record at the iterator location
2607  * @iter: The current iterator location
2608  *
2609  * Returns the record that the current @iter is at.
2610  */
2611 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2612 {
2613 	return &iter->pg->records[iter->index];
2614 }
2615 
2616 static int
2617 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2618 {
2619 	int ret;
2620 
2621 	if (unlikely(ftrace_disabled))
2622 		return 0;
2623 
2624 	ret = ftrace_init_nop(mod, rec);
2625 	if (ret) {
2626 		ftrace_bug_type = FTRACE_BUG_INIT;
2627 		ftrace_bug(ret, rec);
2628 		return 0;
2629 	}
2630 	return 1;
2631 }
2632 
2633 /*
2634  * archs can override this function if they must do something
2635  * before the modifying code is performed.
2636  */
2637 int __weak ftrace_arch_code_modify_prepare(void)
2638 {
2639 	return 0;
2640 }
2641 
2642 /*
2643  * archs can override this function if they must do something
2644  * after the modifying code is performed.
2645  */
2646 int __weak ftrace_arch_code_modify_post_process(void)
2647 {
2648 	return 0;
2649 }
2650 
2651 void ftrace_modify_all_code(int command)
2652 {
2653 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2654 	int mod_flags = 0;
2655 	int err = 0;
2656 
2657 	if (command & FTRACE_MAY_SLEEP)
2658 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2659 
2660 	/*
2661 	 * If the ftrace_caller calls a ftrace_ops func directly,
2662 	 * we need to make sure that it only traces functions it
2663 	 * expects to trace. When doing the switch of functions,
2664 	 * we need to update to the ftrace_ops_list_func first
2665 	 * before the transition between old and new calls are set,
2666 	 * as the ftrace_ops_list_func will check the ops hashes
2667 	 * to make sure the ops are having the right functions
2668 	 * traced.
2669 	 */
2670 	if (update) {
2671 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2672 		if (FTRACE_WARN_ON(err))
2673 			return;
2674 	}
2675 
2676 	if (command & FTRACE_UPDATE_CALLS)
2677 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2678 	else if (command & FTRACE_DISABLE_CALLS)
2679 		ftrace_replace_code(mod_flags);
2680 
2681 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2682 		function_trace_op = set_function_trace_op;
2683 		smp_wmb();
2684 		/* If irqs are disabled, we are in stop machine */
2685 		if (!irqs_disabled())
2686 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2687 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2688 		if (FTRACE_WARN_ON(err))
2689 			return;
2690 	}
2691 
2692 	if (command & FTRACE_START_FUNC_RET)
2693 		err = ftrace_enable_ftrace_graph_caller();
2694 	else if (command & FTRACE_STOP_FUNC_RET)
2695 		err = ftrace_disable_ftrace_graph_caller();
2696 	FTRACE_WARN_ON(err);
2697 }
2698 
2699 static int __ftrace_modify_code(void *data)
2700 {
2701 	int *command = data;
2702 
2703 	ftrace_modify_all_code(*command);
2704 
2705 	return 0;
2706 }
2707 
2708 /**
2709  * ftrace_run_stop_machine, go back to the stop machine method
2710  * @command: The command to tell ftrace what to do
2711  *
2712  * If an arch needs to fall back to the stop machine method, the
2713  * it can call this function.
2714  */
2715 void ftrace_run_stop_machine(int command)
2716 {
2717 	stop_machine(__ftrace_modify_code, &command, NULL);
2718 }
2719 
2720 /**
2721  * arch_ftrace_update_code, modify the code to trace or not trace
2722  * @command: The command that needs to be done
2723  *
2724  * Archs can override this function if it does not need to
2725  * run stop_machine() to modify code.
2726  */
2727 void __weak arch_ftrace_update_code(int command)
2728 {
2729 	ftrace_run_stop_machine(command);
2730 }
2731 
2732 static void ftrace_run_update_code(int command)
2733 {
2734 	int ret;
2735 
2736 	ret = ftrace_arch_code_modify_prepare();
2737 	FTRACE_WARN_ON(ret);
2738 	if (ret)
2739 		return;
2740 
2741 	/*
2742 	 * By default we use stop_machine() to modify the code.
2743 	 * But archs can do what ever they want as long as it
2744 	 * is safe. The stop_machine() is the safest, but also
2745 	 * produces the most overhead.
2746 	 */
2747 	arch_ftrace_update_code(command);
2748 
2749 	ret = ftrace_arch_code_modify_post_process();
2750 	FTRACE_WARN_ON(ret);
2751 }
2752 
2753 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2754 				   struct ftrace_ops_hash *old_hash)
2755 {
2756 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2757 	ops->old_hash.filter_hash = old_hash->filter_hash;
2758 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2759 	ftrace_run_update_code(command);
2760 	ops->old_hash.filter_hash = NULL;
2761 	ops->old_hash.notrace_hash = NULL;
2762 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2763 }
2764 
2765 static ftrace_func_t saved_ftrace_func;
2766 static int ftrace_start_up;
2767 
2768 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2769 {
2770 }
2771 
2772 /* List of trace_ops that have allocated trampolines */
2773 static LIST_HEAD(ftrace_ops_trampoline_list);
2774 
2775 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2776 {
2777 	lockdep_assert_held(&ftrace_lock);
2778 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2779 }
2780 
2781 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2782 {
2783 	lockdep_assert_held(&ftrace_lock);
2784 	list_del_rcu(&ops->list);
2785 	synchronize_rcu();
2786 }
2787 
2788 /*
2789  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2790  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2791  * not a module.
2792  */
2793 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2794 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2795 
2796 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2797 {
2798 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2799 	    ops->trampoline) {
2800 		/*
2801 		 * Record the text poke event before the ksymbol unregister
2802 		 * event.
2803 		 */
2804 		perf_event_text_poke((void *)ops->trampoline,
2805 				     (void *)ops->trampoline,
2806 				     ops->trampoline_size, NULL, 0);
2807 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2808 				   ops->trampoline, ops->trampoline_size,
2809 				   true, FTRACE_TRAMPOLINE_SYM);
2810 		/* Remove from kallsyms after the perf events */
2811 		ftrace_remove_trampoline_from_kallsyms(ops);
2812 	}
2813 
2814 	arch_ftrace_trampoline_free(ops);
2815 }
2816 
2817 static void ftrace_startup_enable(int command)
2818 {
2819 	if (saved_ftrace_func != ftrace_trace_function) {
2820 		saved_ftrace_func = ftrace_trace_function;
2821 		command |= FTRACE_UPDATE_TRACE_FUNC;
2822 	}
2823 
2824 	if (!command || !ftrace_enabled)
2825 		return;
2826 
2827 	ftrace_run_update_code(command);
2828 }
2829 
2830 static void ftrace_startup_all(int command)
2831 {
2832 	update_all_ops = true;
2833 	ftrace_startup_enable(command);
2834 	update_all_ops = false;
2835 }
2836 
2837 int ftrace_startup(struct ftrace_ops *ops, int command)
2838 {
2839 	int ret;
2840 
2841 	if (unlikely(ftrace_disabled))
2842 		return -ENODEV;
2843 
2844 	ret = __register_ftrace_function(ops);
2845 	if (ret)
2846 		return ret;
2847 
2848 	ftrace_start_up++;
2849 
2850 	/*
2851 	 * Note that ftrace probes uses this to start up
2852 	 * and modify functions it will probe. But we still
2853 	 * set the ADDING flag for modification, as probes
2854 	 * do not have trampolines. If they add them in the
2855 	 * future, then the probes will need to distinguish
2856 	 * between adding and updating probes.
2857 	 */
2858 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2859 
2860 	ret = ftrace_hash_ipmodify_enable(ops);
2861 	if (ret < 0) {
2862 		/* Rollback registration process */
2863 		__unregister_ftrace_function(ops);
2864 		ftrace_start_up--;
2865 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2866 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2867 			ftrace_trampoline_free(ops);
2868 		return ret;
2869 	}
2870 
2871 	if (ftrace_hash_rec_enable(ops, 1))
2872 		command |= FTRACE_UPDATE_CALLS;
2873 
2874 	ftrace_startup_enable(command);
2875 
2876 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2877 
2878 	return 0;
2879 }
2880 
2881 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2882 {
2883 	int ret;
2884 
2885 	if (unlikely(ftrace_disabled))
2886 		return -ENODEV;
2887 
2888 	ret = __unregister_ftrace_function(ops);
2889 	if (ret)
2890 		return ret;
2891 
2892 	ftrace_start_up--;
2893 	/*
2894 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2895 	 * critical but the ftrace_call callers may be never nopped again after
2896 	 * further ftrace uses.
2897 	 */
2898 	WARN_ON_ONCE(ftrace_start_up < 0);
2899 
2900 	/* Disabling ipmodify never fails */
2901 	ftrace_hash_ipmodify_disable(ops);
2902 
2903 	if (ftrace_hash_rec_disable(ops, 1))
2904 		command |= FTRACE_UPDATE_CALLS;
2905 
2906 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2907 
2908 	if (saved_ftrace_func != ftrace_trace_function) {
2909 		saved_ftrace_func = ftrace_trace_function;
2910 		command |= FTRACE_UPDATE_TRACE_FUNC;
2911 	}
2912 
2913 	if (!command || !ftrace_enabled) {
2914 		/*
2915 		 * If these are dynamic or per_cpu ops, they still
2916 		 * need their data freed. Since, function tracing is
2917 		 * not currently active, we can just free them
2918 		 * without synchronizing all CPUs.
2919 		 */
2920 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2921 			goto free_ops;
2922 
2923 		return 0;
2924 	}
2925 
2926 	/*
2927 	 * If the ops uses a trampoline, then it needs to be
2928 	 * tested first on update.
2929 	 */
2930 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2931 	removed_ops = ops;
2932 
2933 	/* The trampoline logic checks the old hashes */
2934 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2935 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2936 
2937 	ftrace_run_update_code(command);
2938 
2939 	/*
2940 	 * If there's no more ops registered with ftrace, run a
2941 	 * sanity check to make sure all rec flags are cleared.
2942 	 */
2943 	if (rcu_dereference_protected(ftrace_ops_list,
2944 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2945 		struct ftrace_page *pg;
2946 		struct dyn_ftrace *rec;
2947 
2948 		do_for_each_ftrace_rec(pg, rec) {
2949 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2950 				pr_warn("  %pS flags:%lx\n",
2951 					(void *)rec->ip, rec->flags);
2952 		} while_for_each_ftrace_rec();
2953 	}
2954 
2955 	ops->old_hash.filter_hash = NULL;
2956 	ops->old_hash.notrace_hash = NULL;
2957 
2958 	removed_ops = NULL;
2959 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2960 
2961 	/*
2962 	 * Dynamic ops may be freed, we must make sure that all
2963 	 * callers are done before leaving this function.
2964 	 * The same goes for freeing the per_cpu data of the per_cpu
2965 	 * ops.
2966 	 */
2967 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2968 		/*
2969 		 * We need to do a hard force of sched synchronization.
2970 		 * This is because we use preempt_disable() to do RCU, but
2971 		 * the function tracers can be called where RCU is not watching
2972 		 * (like before user_exit()). We can not rely on the RCU
2973 		 * infrastructure to do the synchronization, thus we must do it
2974 		 * ourselves.
2975 		 */
2976 		synchronize_rcu_tasks_rude();
2977 
2978 		/*
2979 		 * When the kernel is preeptive, tasks can be preempted
2980 		 * while on a ftrace trampoline. Just scheduling a task on
2981 		 * a CPU is not good enough to flush them. Calling
2982 		 * synchornize_rcu_tasks() will wait for those tasks to
2983 		 * execute and either schedule voluntarily or enter user space.
2984 		 */
2985 		if (IS_ENABLED(CONFIG_PREEMPTION))
2986 			synchronize_rcu_tasks();
2987 
2988  free_ops:
2989 		ftrace_trampoline_free(ops);
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 static void ftrace_startup_sysctl(void)
2996 {
2997 	int command;
2998 
2999 	if (unlikely(ftrace_disabled))
3000 		return;
3001 
3002 	/* Force update next time */
3003 	saved_ftrace_func = NULL;
3004 	/* ftrace_start_up is true if we want ftrace running */
3005 	if (ftrace_start_up) {
3006 		command = FTRACE_UPDATE_CALLS;
3007 		if (ftrace_graph_active)
3008 			command |= FTRACE_START_FUNC_RET;
3009 		ftrace_startup_enable(command);
3010 	}
3011 }
3012 
3013 static void ftrace_shutdown_sysctl(void)
3014 {
3015 	int command;
3016 
3017 	if (unlikely(ftrace_disabled))
3018 		return;
3019 
3020 	/* ftrace_start_up is true if ftrace is running */
3021 	if (ftrace_start_up) {
3022 		command = FTRACE_DISABLE_CALLS;
3023 		if (ftrace_graph_active)
3024 			command |= FTRACE_STOP_FUNC_RET;
3025 		ftrace_run_update_code(command);
3026 	}
3027 }
3028 
3029 static u64		ftrace_update_time;
3030 unsigned long		ftrace_update_tot_cnt;
3031 unsigned long		ftrace_number_of_pages;
3032 unsigned long		ftrace_number_of_groups;
3033 
3034 static inline int ops_traces_mod(struct ftrace_ops *ops)
3035 {
3036 	/*
3037 	 * Filter_hash being empty will default to trace module.
3038 	 * But notrace hash requires a test of individual module functions.
3039 	 */
3040 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3041 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3042 }
3043 
3044 /*
3045  * Check if the current ops references the record.
3046  *
3047  * If the ops traces all functions, then it was already accounted for.
3048  * If the ops does not trace the current record function, skip it.
3049  * If the ops ignores the function via notrace filter, skip it.
3050  */
3051 static inline bool
3052 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3053 {
3054 	/* If ops isn't enabled, ignore it */
3055 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3056 		return false;
3057 
3058 	/* If ops traces all then it includes this function */
3059 	if (ops_traces_mod(ops))
3060 		return true;
3061 
3062 	/* The function must be in the filter */
3063 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3064 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3065 		return false;
3066 
3067 	/* If in notrace hash, we ignore it too */
3068 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3069 		return false;
3070 
3071 	return true;
3072 }
3073 
3074 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3075 {
3076 	struct ftrace_page *pg;
3077 	struct dyn_ftrace *p;
3078 	u64 start, stop;
3079 	unsigned long update_cnt = 0;
3080 	unsigned long rec_flags = 0;
3081 	int i;
3082 
3083 	start = ftrace_now(raw_smp_processor_id());
3084 
3085 	/*
3086 	 * When a module is loaded, this function is called to convert
3087 	 * the calls to mcount in its text to nops, and also to create
3088 	 * an entry in the ftrace data. Now, if ftrace is activated
3089 	 * after this call, but before the module sets its text to
3090 	 * read-only, the modification of enabling ftrace can fail if
3091 	 * the read-only is done while ftrace is converting the calls.
3092 	 * To prevent this, the module's records are set as disabled
3093 	 * and will be enabled after the call to set the module's text
3094 	 * to read-only.
3095 	 */
3096 	if (mod)
3097 		rec_flags |= FTRACE_FL_DISABLED;
3098 
3099 	for (pg = new_pgs; pg; pg = pg->next) {
3100 
3101 		for (i = 0; i < pg->index; i++) {
3102 
3103 			/* If something went wrong, bail without enabling anything */
3104 			if (unlikely(ftrace_disabled))
3105 				return -1;
3106 
3107 			p = &pg->records[i];
3108 			p->flags = rec_flags;
3109 
3110 			/*
3111 			 * Do the initial record conversion from mcount jump
3112 			 * to the NOP instructions.
3113 			 */
3114 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3115 			    !ftrace_nop_initialize(mod, p))
3116 				break;
3117 
3118 			update_cnt++;
3119 		}
3120 	}
3121 
3122 	stop = ftrace_now(raw_smp_processor_id());
3123 	ftrace_update_time = stop - start;
3124 	ftrace_update_tot_cnt += update_cnt;
3125 
3126 	return 0;
3127 }
3128 
3129 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3130 {
3131 	int order;
3132 	int cnt;
3133 
3134 	if (WARN_ON(!count))
3135 		return -EINVAL;
3136 
3137 	order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
3138 
3139 	/*
3140 	 * We want to fill as much as possible. No more than a page
3141 	 * may be empty.
3142 	 */
3143 	while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
3144 		order--;
3145 
3146  again:
3147 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3148 
3149 	if (!pg->records) {
3150 		/* if we can't allocate this size, try something smaller */
3151 		if (!order)
3152 			return -ENOMEM;
3153 		order >>= 1;
3154 		goto again;
3155 	}
3156 
3157 	ftrace_number_of_pages += 1 << order;
3158 	ftrace_number_of_groups++;
3159 
3160 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3161 	pg->size = cnt;
3162 
3163 	if (cnt > count)
3164 		cnt = count;
3165 
3166 	return cnt;
3167 }
3168 
3169 static struct ftrace_page *
3170 ftrace_allocate_pages(unsigned long num_to_init)
3171 {
3172 	struct ftrace_page *start_pg;
3173 	struct ftrace_page *pg;
3174 	int order;
3175 	int cnt;
3176 
3177 	if (!num_to_init)
3178 		return NULL;
3179 
3180 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3181 	if (!pg)
3182 		return NULL;
3183 
3184 	/*
3185 	 * Try to allocate as much as possible in one continues
3186 	 * location that fills in all of the space. We want to
3187 	 * waste as little space as possible.
3188 	 */
3189 	for (;;) {
3190 		cnt = ftrace_allocate_records(pg, num_to_init);
3191 		if (cnt < 0)
3192 			goto free_pages;
3193 
3194 		num_to_init -= cnt;
3195 		if (!num_to_init)
3196 			break;
3197 
3198 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3199 		if (!pg->next)
3200 			goto free_pages;
3201 
3202 		pg = pg->next;
3203 	}
3204 
3205 	return start_pg;
3206 
3207  free_pages:
3208 	pg = start_pg;
3209 	while (pg) {
3210 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3211 		free_pages((unsigned long)pg->records, order);
3212 		start_pg = pg->next;
3213 		kfree(pg);
3214 		pg = start_pg;
3215 		ftrace_number_of_pages -= 1 << order;
3216 		ftrace_number_of_groups--;
3217 	}
3218 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3219 	return NULL;
3220 }
3221 
3222 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3223 
3224 struct ftrace_iterator {
3225 	loff_t				pos;
3226 	loff_t				func_pos;
3227 	loff_t				mod_pos;
3228 	struct ftrace_page		*pg;
3229 	struct dyn_ftrace		*func;
3230 	struct ftrace_func_probe	*probe;
3231 	struct ftrace_func_entry	*probe_entry;
3232 	struct trace_parser		parser;
3233 	struct ftrace_hash		*hash;
3234 	struct ftrace_ops		*ops;
3235 	struct trace_array		*tr;
3236 	struct list_head		*mod_list;
3237 	int				pidx;
3238 	int				idx;
3239 	unsigned			flags;
3240 };
3241 
3242 static void *
3243 t_probe_next(struct seq_file *m, loff_t *pos)
3244 {
3245 	struct ftrace_iterator *iter = m->private;
3246 	struct trace_array *tr = iter->ops->private;
3247 	struct list_head *func_probes;
3248 	struct ftrace_hash *hash;
3249 	struct list_head *next;
3250 	struct hlist_node *hnd = NULL;
3251 	struct hlist_head *hhd;
3252 	int size;
3253 
3254 	(*pos)++;
3255 	iter->pos = *pos;
3256 
3257 	if (!tr)
3258 		return NULL;
3259 
3260 	func_probes = &tr->func_probes;
3261 	if (list_empty(func_probes))
3262 		return NULL;
3263 
3264 	if (!iter->probe) {
3265 		next = func_probes->next;
3266 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3267 	}
3268 
3269 	if (iter->probe_entry)
3270 		hnd = &iter->probe_entry->hlist;
3271 
3272 	hash = iter->probe->ops.func_hash->filter_hash;
3273 
3274 	/*
3275 	 * A probe being registered may temporarily have an empty hash
3276 	 * and it's at the end of the func_probes list.
3277 	 */
3278 	if (!hash || hash == EMPTY_HASH)
3279 		return NULL;
3280 
3281 	size = 1 << hash->size_bits;
3282 
3283  retry:
3284 	if (iter->pidx >= size) {
3285 		if (iter->probe->list.next == func_probes)
3286 			return NULL;
3287 		next = iter->probe->list.next;
3288 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3289 		hash = iter->probe->ops.func_hash->filter_hash;
3290 		size = 1 << hash->size_bits;
3291 		iter->pidx = 0;
3292 	}
3293 
3294 	hhd = &hash->buckets[iter->pidx];
3295 
3296 	if (hlist_empty(hhd)) {
3297 		iter->pidx++;
3298 		hnd = NULL;
3299 		goto retry;
3300 	}
3301 
3302 	if (!hnd)
3303 		hnd = hhd->first;
3304 	else {
3305 		hnd = hnd->next;
3306 		if (!hnd) {
3307 			iter->pidx++;
3308 			goto retry;
3309 		}
3310 	}
3311 
3312 	if (WARN_ON_ONCE(!hnd))
3313 		return NULL;
3314 
3315 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3316 
3317 	return iter;
3318 }
3319 
3320 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3321 {
3322 	struct ftrace_iterator *iter = m->private;
3323 	void *p = NULL;
3324 	loff_t l;
3325 
3326 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3327 		return NULL;
3328 
3329 	if (iter->mod_pos > *pos)
3330 		return NULL;
3331 
3332 	iter->probe = NULL;
3333 	iter->probe_entry = NULL;
3334 	iter->pidx = 0;
3335 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3336 		p = t_probe_next(m, &l);
3337 		if (!p)
3338 			break;
3339 	}
3340 	if (!p)
3341 		return NULL;
3342 
3343 	/* Only set this if we have an item */
3344 	iter->flags |= FTRACE_ITER_PROBE;
3345 
3346 	return iter;
3347 }
3348 
3349 static int
3350 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3351 {
3352 	struct ftrace_func_entry *probe_entry;
3353 	struct ftrace_probe_ops *probe_ops;
3354 	struct ftrace_func_probe *probe;
3355 
3356 	probe = iter->probe;
3357 	probe_entry = iter->probe_entry;
3358 
3359 	if (WARN_ON_ONCE(!probe || !probe_entry))
3360 		return -EIO;
3361 
3362 	probe_ops = probe->probe_ops;
3363 
3364 	if (probe_ops->print)
3365 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3366 
3367 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3368 		   (void *)probe_ops->func);
3369 
3370 	return 0;
3371 }
3372 
3373 static void *
3374 t_mod_next(struct seq_file *m, loff_t *pos)
3375 {
3376 	struct ftrace_iterator *iter = m->private;
3377 	struct trace_array *tr = iter->tr;
3378 
3379 	(*pos)++;
3380 	iter->pos = *pos;
3381 
3382 	iter->mod_list = iter->mod_list->next;
3383 
3384 	if (iter->mod_list == &tr->mod_trace ||
3385 	    iter->mod_list == &tr->mod_notrace) {
3386 		iter->flags &= ~FTRACE_ITER_MOD;
3387 		return NULL;
3388 	}
3389 
3390 	iter->mod_pos = *pos;
3391 
3392 	return iter;
3393 }
3394 
3395 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3396 {
3397 	struct ftrace_iterator *iter = m->private;
3398 	void *p = NULL;
3399 	loff_t l;
3400 
3401 	if (iter->func_pos > *pos)
3402 		return NULL;
3403 
3404 	iter->mod_pos = iter->func_pos;
3405 
3406 	/* probes are only available if tr is set */
3407 	if (!iter->tr)
3408 		return NULL;
3409 
3410 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3411 		p = t_mod_next(m, &l);
3412 		if (!p)
3413 			break;
3414 	}
3415 	if (!p) {
3416 		iter->flags &= ~FTRACE_ITER_MOD;
3417 		return t_probe_start(m, pos);
3418 	}
3419 
3420 	/* Only set this if we have an item */
3421 	iter->flags |= FTRACE_ITER_MOD;
3422 
3423 	return iter;
3424 }
3425 
3426 static int
3427 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3428 {
3429 	struct ftrace_mod_load *ftrace_mod;
3430 	struct trace_array *tr = iter->tr;
3431 
3432 	if (WARN_ON_ONCE(!iter->mod_list) ||
3433 			 iter->mod_list == &tr->mod_trace ||
3434 			 iter->mod_list == &tr->mod_notrace)
3435 		return -EIO;
3436 
3437 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3438 
3439 	if (ftrace_mod->func)
3440 		seq_printf(m, "%s", ftrace_mod->func);
3441 	else
3442 		seq_putc(m, '*');
3443 
3444 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3445 
3446 	return 0;
3447 }
3448 
3449 static void *
3450 t_func_next(struct seq_file *m, loff_t *pos)
3451 {
3452 	struct ftrace_iterator *iter = m->private;
3453 	struct dyn_ftrace *rec = NULL;
3454 
3455 	(*pos)++;
3456 
3457  retry:
3458 	if (iter->idx >= iter->pg->index) {
3459 		if (iter->pg->next) {
3460 			iter->pg = iter->pg->next;
3461 			iter->idx = 0;
3462 			goto retry;
3463 		}
3464 	} else {
3465 		rec = &iter->pg->records[iter->idx++];
3466 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3467 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3468 
3469 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3470 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3471 
3472 			rec = NULL;
3473 			goto retry;
3474 		}
3475 	}
3476 
3477 	if (!rec)
3478 		return NULL;
3479 
3480 	iter->pos = iter->func_pos = *pos;
3481 	iter->func = rec;
3482 
3483 	return iter;
3484 }
3485 
3486 static void *
3487 t_next(struct seq_file *m, void *v, loff_t *pos)
3488 {
3489 	struct ftrace_iterator *iter = m->private;
3490 	loff_t l = *pos; /* t_probe_start() must use original pos */
3491 	void *ret;
3492 
3493 	if (unlikely(ftrace_disabled))
3494 		return NULL;
3495 
3496 	if (iter->flags & FTRACE_ITER_PROBE)
3497 		return t_probe_next(m, pos);
3498 
3499 	if (iter->flags & FTRACE_ITER_MOD)
3500 		return t_mod_next(m, pos);
3501 
3502 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3503 		/* next must increment pos, and t_probe_start does not */
3504 		(*pos)++;
3505 		return t_mod_start(m, &l);
3506 	}
3507 
3508 	ret = t_func_next(m, pos);
3509 
3510 	if (!ret)
3511 		return t_mod_start(m, &l);
3512 
3513 	return ret;
3514 }
3515 
3516 static void reset_iter_read(struct ftrace_iterator *iter)
3517 {
3518 	iter->pos = 0;
3519 	iter->func_pos = 0;
3520 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3521 }
3522 
3523 static void *t_start(struct seq_file *m, loff_t *pos)
3524 {
3525 	struct ftrace_iterator *iter = m->private;
3526 	void *p = NULL;
3527 	loff_t l;
3528 
3529 	mutex_lock(&ftrace_lock);
3530 
3531 	if (unlikely(ftrace_disabled))
3532 		return NULL;
3533 
3534 	/*
3535 	 * If an lseek was done, then reset and start from beginning.
3536 	 */
3537 	if (*pos < iter->pos)
3538 		reset_iter_read(iter);
3539 
3540 	/*
3541 	 * For set_ftrace_filter reading, if we have the filter
3542 	 * off, we can short cut and just print out that all
3543 	 * functions are enabled.
3544 	 */
3545 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3546 	    ftrace_hash_empty(iter->hash)) {
3547 		iter->func_pos = 1; /* Account for the message */
3548 		if (*pos > 0)
3549 			return t_mod_start(m, pos);
3550 		iter->flags |= FTRACE_ITER_PRINTALL;
3551 		/* reset in case of seek/pread */
3552 		iter->flags &= ~FTRACE_ITER_PROBE;
3553 		return iter;
3554 	}
3555 
3556 	if (iter->flags & FTRACE_ITER_MOD)
3557 		return t_mod_start(m, pos);
3558 
3559 	/*
3560 	 * Unfortunately, we need to restart at ftrace_pages_start
3561 	 * every time we let go of the ftrace_mutex. This is because
3562 	 * those pointers can change without the lock.
3563 	 */
3564 	iter->pg = ftrace_pages_start;
3565 	iter->idx = 0;
3566 	for (l = 0; l <= *pos; ) {
3567 		p = t_func_next(m, &l);
3568 		if (!p)
3569 			break;
3570 	}
3571 
3572 	if (!p)
3573 		return t_mod_start(m, pos);
3574 
3575 	return iter;
3576 }
3577 
3578 static void t_stop(struct seq_file *m, void *p)
3579 {
3580 	mutex_unlock(&ftrace_lock);
3581 }
3582 
3583 void * __weak
3584 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3585 {
3586 	return NULL;
3587 }
3588 
3589 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3590 				struct dyn_ftrace *rec)
3591 {
3592 	void *ptr;
3593 
3594 	ptr = arch_ftrace_trampoline_func(ops, rec);
3595 	if (ptr)
3596 		seq_printf(m, " ->%pS", ptr);
3597 }
3598 
3599 static int t_show(struct seq_file *m, void *v)
3600 {
3601 	struct ftrace_iterator *iter = m->private;
3602 	struct dyn_ftrace *rec;
3603 
3604 	if (iter->flags & FTRACE_ITER_PROBE)
3605 		return t_probe_show(m, iter);
3606 
3607 	if (iter->flags & FTRACE_ITER_MOD)
3608 		return t_mod_show(m, iter);
3609 
3610 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3611 		if (iter->flags & FTRACE_ITER_NOTRACE)
3612 			seq_puts(m, "#### no functions disabled ####\n");
3613 		else
3614 			seq_puts(m, "#### all functions enabled ####\n");
3615 		return 0;
3616 	}
3617 
3618 	rec = iter->func;
3619 
3620 	if (!rec)
3621 		return 0;
3622 
3623 	seq_printf(m, "%ps", (void *)rec->ip);
3624 	if (iter->flags & FTRACE_ITER_ENABLED) {
3625 		struct ftrace_ops *ops;
3626 
3627 		seq_printf(m, " (%ld)%s%s%s",
3628 			   ftrace_rec_count(rec),
3629 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3630 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3631 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3632 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3633 			ops = ftrace_find_tramp_ops_any(rec);
3634 			if (ops) {
3635 				do {
3636 					seq_printf(m, "\ttramp: %pS (%pS)",
3637 						   (void *)ops->trampoline,
3638 						   (void *)ops->func);
3639 					add_trampoline_func(m, ops, rec);
3640 					ops = ftrace_find_tramp_ops_next(rec, ops);
3641 				} while (ops);
3642 			} else
3643 				seq_puts(m, "\ttramp: ERROR!");
3644 		} else {
3645 			add_trampoline_func(m, NULL, rec);
3646 		}
3647 		if (rec->flags & FTRACE_FL_DIRECT) {
3648 			unsigned long direct;
3649 
3650 			direct = ftrace_find_rec_direct(rec->ip);
3651 			if (direct)
3652 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3653 		}
3654 	}
3655 
3656 	seq_putc(m, '\n');
3657 
3658 	return 0;
3659 }
3660 
3661 static const struct seq_operations show_ftrace_seq_ops = {
3662 	.start = t_start,
3663 	.next = t_next,
3664 	.stop = t_stop,
3665 	.show = t_show,
3666 };
3667 
3668 static int
3669 ftrace_avail_open(struct inode *inode, struct file *file)
3670 {
3671 	struct ftrace_iterator *iter;
3672 	int ret;
3673 
3674 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3675 	if (ret)
3676 		return ret;
3677 
3678 	if (unlikely(ftrace_disabled))
3679 		return -ENODEV;
3680 
3681 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3682 	if (!iter)
3683 		return -ENOMEM;
3684 
3685 	iter->pg = ftrace_pages_start;
3686 	iter->ops = &global_ops;
3687 
3688 	return 0;
3689 }
3690 
3691 static int
3692 ftrace_enabled_open(struct inode *inode, struct file *file)
3693 {
3694 	struct ftrace_iterator *iter;
3695 
3696 	/*
3697 	 * This shows us what functions are currently being
3698 	 * traced and by what. Not sure if we want lockdown
3699 	 * to hide such critical information for an admin.
3700 	 * Although, perhaps it can show information we don't
3701 	 * want people to see, but if something is tracing
3702 	 * something, we probably want to know about it.
3703 	 */
3704 
3705 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3706 	if (!iter)
3707 		return -ENOMEM;
3708 
3709 	iter->pg = ftrace_pages_start;
3710 	iter->flags = FTRACE_ITER_ENABLED;
3711 	iter->ops = &global_ops;
3712 
3713 	return 0;
3714 }
3715 
3716 /**
3717  * ftrace_regex_open - initialize function tracer filter files
3718  * @ops: The ftrace_ops that hold the hash filters
3719  * @flag: The type of filter to process
3720  * @inode: The inode, usually passed in to your open routine
3721  * @file: The file, usually passed in to your open routine
3722  *
3723  * ftrace_regex_open() initializes the filter files for the
3724  * @ops. Depending on @flag it may process the filter hash or
3725  * the notrace hash of @ops. With this called from the open
3726  * routine, you can use ftrace_filter_write() for the write
3727  * routine if @flag has FTRACE_ITER_FILTER set, or
3728  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3729  * tracing_lseek() should be used as the lseek routine, and
3730  * release must call ftrace_regex_release().
3731  */
3732 int
3733 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3734 		  struct inode *inode, struct file *file)
3735 {
3736 	struct ftrace_iterator *iter;
3737 	struct ftrace_hash *hash;
3738 	struct list_head *mod_head;
3739 	struct trace_array *tr = ops->private;
3740 	int ret = -ENOMEM;
3741 
3742 	ftrace_ops_init(ops);
3743 
3744 	if (unlikely(ftrace_disabled))
3745 		return -ENODEV;
3746 
3747 	if (tracing_check_open_get_tr(tr))
3748 		return -ENODEV;
3749 
3750 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3751 	if (!iter)
3752 		goto out;
3753 
3754 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3755 		goto out;
3756 
3757 	iter->ops = ops;
3758 	iter->flags = flag;
3759 	iter->tr = tr;
3760 
3761 	mutex_lock(&ops->func_hash->regex_lock);
3762 
3763 	if (flag & FTRACE_ITER_NOTRACE) {
3764 		hash = ops->func_hash->notrace_hash;
3765 		mod_head = tr ? &tr->mod_notrace : NULL;
3766 	} else {
3767 		hash = ops->func_hash->filter_hash;
3768 		mod_head = tr ? &tr->mod_trace : NULL;
3769 	}
3770 
3771 	iter->mod_list = mod_head;
3772 
3773 	if (file->f_mode & FMODE_WRITE) {
3774 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3775 
3776 		if (file->f_flags & O_TRUNC) {
3777 			iter->hash = alloc_ftrace_hash(size_bits);
3778 			clear_ftrace_mod_list(mod_head);
3779 	        } else {
3780 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3781 		}
3782 
3783 		if (!iter->hash) {
3784 			trace_parser_put(&iter->parser);
3785 			goto out_unlock;
3786 		}
3787 	} else
3788 		iter->hash = hash;
3789 
3790 	ret = 0;
3791 
3792 	if (file->f_mode & FMODE_READ) {
3793 		iter->pg = ftrace_pages_start;
3794 
3795 		ret = seq_open(file, &show_ftrace_seq_ops);
3796 		if (!ret) {
3797 			struct seq_file *m = file->private_data;
3798 			m->private = iter;
3799 		} else {
3800 			/* Failed */
3801 			free_ftrace_hash(iter->hash);
3802 			trace_parser_put(&iter->parser);
3803 		}
3804 	} else
3805 		file->private_data = iter;
3806 
3807  out_unlock:
3808 	mutex_unlock(&ops->func_hash->regex_lock);
3809 
3810  out:
3811 	if (ret) {
3812 		kfree(iter);
3813 		if (tr)
3814 			trace_array_put(tr);
3815 	}
3816 
3817 	return ret;
3818 }
3819 
3820 static int
3821 ftrace_filter_open(struct inode *inode, struct file *file)
3822 {
3823 	struct ftrace_ops *ops = inode->i_private;
3824 
3825 	/* Checks for tracefs lockdown */
3826 	return ftrace_regex_open(ops,
3827 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3828 			inode, file);
3829 }
3830 
3831 static int
3832 ftrace_notrace_open(struct inode *inode, struct file *file)
3833 {
3834 	struct ftrace_ops *ops = inode->i_private;
3835 
3836 	/* Checks for tracefs lockdown */
3837 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3838 				 inode, file);
3839 }
3840 
3841 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3842 struct ftrace_glob {
3843 	char *search;
3844 	unsigned len;
3845 	int type;
3846 };
3847 
3848 /*
3849  * If symbols in an architecture don't correspond exactly to the user-visible
3850  * name of what they represent, it is possible to define this function to
3851  * perform the necessary adjustments.
3852 */
3853 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3854 {
3855 	return str;
3856 }
3857 
3858 static int ftrace_match(char *str, struct ftrace_glob *g)
3859 {
3860 	int matched = 0;
3861 	int slen;
3862 
3863 	str = arch_ftrace_match_adjust(str, g->search);
3864 
3865 	switch (g->type) {
3866 	case MATCH_FULL:
3867 		if (strcmp(str, g->search) == 0)
3868 			matched = 1;
3869 		break;
3870 	case MATCH_FRONT_ONLY:
3871 		if (strncmp(str, g->search, g->len) == 0)
3872 			matched = 1;
3873 		break;
3874 	case MATCH_MIDDLE_ONLY:
3875 		if (strstr(str, g->search))
3876 			matched = 1;
3877 		break;
3878 	case MATCH_END_ONLY:
3879 		slen = strlen(str);
3880 		if (slen >= g->len &&
3881 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3882 			matched = 1;
3883 		break;
3884 	case MATCH_GLOB:
3885 		if (glob_match(g->search, str))
3886 			matched = 1;
3887 		break;
3888 	}
3889 
3890 	return matched;
3891 }
3892 
3893 static int
3894 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3895 {
3896 	struct ftrace_func_entry *entry;
3897 	int ret = 0;
3898 
3899 	entry = ftrace_lookup_ip(hash, rec->ip);
3900 	if (clear_filter) {
3901 		/* Do nothing if it doesn't exist */
3902 		if (!entry)
3903 			return 0;
3904 
3905 		free_hash_entry(hash, entry);
3906 	} else {
3907 		/* Do nothing if it exists */
3908 		if (entry)
3909 			return 0;
3910 
3911 		ret = add_hash_entry(hash, rec->ip);
3912 	}
3913 	return ret;
3914 }
3915 
3916 static int
3917 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3918 		 int clear_filter)
3919 {
3920 	long index = simple_strtoul(func_g->search, NULL, 0);
3921 	struct ftrace_page *pg;
3922 	struct dyn_ftrace *rec;
3923 
3924 	/* The index starts at 1 */
3925 	if (--index < 0)
3926 		return 0;
3927 
3928 	do_for_each_ftrace_rec(pg, rec) {
3929 		if (pg->index <= index) {
3930 			index -= pg->index;
3931 			/* this is a double loop, break goes to the next page */
3932 			break;
3933 		}
3934 		rec = &pg->records[index];
3935 		enter_record(hash, rec, clear_filter);
3936 		return 1;
3937 	} while_for_each_ftrace_rec();
3938 	return 0;
3939 }
3940 
3941 static int
3942 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3943 		struct ftrace_glob *mod_g, int exclude_mod)
3944 {
3945 	char str[KSYM_SYMBOL_LEN];
3946 	char *modname;
3947 
3948 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3949 
3950 	if (mod_g) {
3951 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3952 
3953 		/* blank module name to match all modules */
3954 		if (!mod_g->len) {
3955 			/* blank module globbing: modname xor exclude_mod */
3956 			if (!exclude_mod != !modname)
3957 				goto func_match;
3958 			return 0;
3959 		}
3960 
3961 		/*
3962 		 * exclude_mod is set to trace everything but the given
3963 		 * module. If it is set and the module matches, then
3964 		 * return 0. If it is not set, and the module doesn't match
3965 		 * also return 0. Otherwise, check the function to see if
3966 		 * that matches.
3967 		 */
3968 		if (!mod_matches == !exclude_mod)
3969 			return 0;
3970 func_match:
3971 		/* blank search means to match all funcs in the mod */
3972 		if (!func_g->len)
3973 			return 1;
3974 	}
3975 
3976 	return ftrace_match(str, func_g);
3977 }
3978 
3979 static int
3980 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3981 {
3982 	struct ftrace_page *pg;
3983 	struct dyn_ftrace *rec;
3984 	struct ftrace_glob func_g = { .type = MATCH_FULL };
3985 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
3986 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
3987 	int exclude_mod = 0;
3988 	int found = 0;
3989 	int ret;
3990 	int clear_filter = 0;
3991 
3992 	if (func) {
3993 		func_g.type = filter_parse_regex(func, len, &func_g.search,
3994 						 &clear_filter);
3995 		func_g.len = strlen(func_g.search);
3996 	}
3997 
3998 	if (mod) {
3999 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4000 				&mod_g.search, &exclude_mod);
4001 		mod_g.len = strlen(mod_g.search);
4002 	}
4003 
4004 	mutex_lock(&ftrace_lock);
4005 
4006 	if (unlikely(ftrace_disabled))
4007 		goto out_unlock;
4008 
4009 	if (func_g.type == MATCH_INDEX) {
4010 		found = add_rec_by_index(hash, &func_g, clear_filter);
4011 		goto out_unlock;
4012 	}
4013 
4014 	do_for_each_ftrace_rec(pg, rec) {
4015 
4016 		if (rec->flags & FTRACE_FL_DISABLED)
4017 			continue;
4018 
4019 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4020 			ret = enter_record(hash, rec, clear_filter);
4021 			if (ret < 0) {
4022 				found = ret;
4023 				goto out_unlock;
4024 			}
4025 			found = 1;
4026 		}
4027 	} while_for_each_ftrace_rec();
4028  out_unlock:
4029 	mutex_unlock(&ftrace_lock);
4030 
4031 	return found;
4032 }
4033 
4034 static int
4035 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4036 {
4037 	return match_records(hash, buff, len, NULL);
4038 }
4039 
4040 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4041 				   struct ftrace_ops_hash *old_hash)
4042 {
4043 	struct ftrace_ops *op;
4044 
4045 	if (!ftrace_enabled)
4046 		return;
4047 
4048 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4049 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4050 		return;
4051 	}
4052 
4053 	/*
4054 	 * If this is the shared global_ops filter, then we need to
4055 	 * check if there is another ops that shares it, is enabled.
4056 	 * If so, we still need to run the modify code.
4057 	 */
4058 	if (ops->func_hash != &global_ops.local_hash)
4059 		return;
4060 
4061 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4062 		if (op->func_hash == &global_ops.local_hash &&
4063 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4064 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4065 			/* Only need to do this once */
4066 			return;
4067 		}
4068 	} while_for_each_ftrace_op(op);
4069 }
4070 
4071 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4072 					   struct ftrace_hash **orig_hash,
4073 					   struct ftrace_hash *hash,
4074 					   int enable)
4075 {
4076 	struct ftrace_ops_hash old_hash_ops;
4077 	struct ftrace_hash *old_hash;
4078 	int ret;
4079 
4080 	old_hash = *orig_hash;
4081 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4082 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4083 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4084 	if (!ret) {
4085 		ftrace_ops_update_code(ops, &old_hash_ops);
4086 		free_ftrace_hash_rcu(old_hash);
4087 	}
4088 	return ret;
4089 }
4090 
4091 static bool module_exists(const char *module)
4092 {
4093 	/* All modules have the symbol __this_module */
4094 	static const char this_mod[] = "__this_module";
4095 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4096 	unsigned long val;
4097 	int n;
4098 
4099 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4100 
4101 	if (n > sizeof(modname) - 1)
4102 		return false;
4103 
4104 	val = module_kallsyms_lookup_name(modname);
4105 	return val != 0;
4106 }
4107 
4108 static int cache_mod(struct trace_array *tr,
4109 		     const char *func, char *module, int enable)
4110 {
4111 	struct ftrace_mod_load *ftrace_mod, *n;
4112 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4113 	int ret;
4114 
4115 	mutex_lock(&ftrace_lock);
4116 
4117 	/* We do not cache inverse filters */
4118 	if (func[0] == '!') {
4119 		func++;
4120 		ret = -EINVAL;
4121 
4122 		/* Look to remove this hash */
4123 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4124 			if (strcmp(ftrace_mod->module, module) != 0)
4125 				continue;
4126 
4127 			/* no func matches all */
4128 			if (strcmp(func, "*") == 0 ||
4129 			    (ftrace_mod->func &&
4130 			     strcmp(ftrace_mod->func, func) == 0)) {
4131 				ret = 0;
4132 				free_ftrace_mod(ftrace_mod);
4133 				continue;
4134 			}
4135 		}
4136 		goto out;
4137 	}
4138 
4139 	ret = -EINVAL;
4140 	/* We only care about modules that have not been loaded yet */
4141 	if (module_exists(module))
4142 		goto out;
4143 
4144 	/* Save this string off, and execute it when the module is loaded */
4145 	ret = ftrace_add_mod(tr, func, module, enable);
4146  out:
4147 	mutex_unlock(&ftrace_lock);
4148 
4149 	return ret;
4150 }
4151 
4152 static int
4153 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4154 		 int reset, int enable);
4155 
4156 #ifdef CONFIG_MODULES
4157 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4158 			     char *mod, bool enable)
4159 {
4160 	struct ftrace_mod_load *ftrace_mod, *n;
4161 	struct ftrace_hash **orig_hash, *new_hash;
4162 	LIST_HEAD(process_mods);
4163 	char *func;
4164 	int ret;
4165 
4166 	mutex_lock(&ops->func_hash->regex_lock);
4167 
4168 	if (enable)
4169 		orig_hash = &ops->func_hash->filter_hash;
4170 	else
4171 		orig_hash = &ops->func_hash->notrace_hash;
4172 
4173 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4174 					      *orig_hash);
4175 	if (!new_hash)
4176 		goto out; /* warn? */
4177 
4178 	mutex_lock(&ftrace_lock);
4179 
4180 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4181 
4182 		if (strcmp(ftrace_mod->module, mod) != 0)
4183 			continue;
4184 
4185 		if (ftrace_mod->func)
4186 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4187 		else
4188 			func = kstrdup("*", GFP_KERNEL);
4189 
4190 		if (!func) /* warn? */
4191 			continue;
4192 
4193 		list_del(&ftrace_mod->list);
4194 		list_add(&ftrace_mod->list, &process_mods);
4195 
4196 		/* Use the newly allocated func, as it may be "*" */
4197 		kfree(ftrace_mod->func);
4198 		ftrace_mod->func = func;
4199 	}
4200 
4201 	mutex_unlock(&ftrace_lock);
4202 
4203 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4204 
4205 		func = ftrace_mod->func;
4206 
4207 		/* Grabs ftrace_lock, which is why we have this extra step */
4208 		match_records(new_hash, func, strlen(func), mod);
4209 		free_ftrace_mod(ftrace_mod);
4210 	}
4211 
4212 	if (enable && list_empty(head))
4213 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4214 
4215 	mutex_lock(&ftrace_lock);
4216 
4217 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
4218 					      new_hash, enable);
4219 	mutex_unlock(&ftrace_lock);
4220 
4221  out:
4222 	mutex_unlock(&ops->func_hash->regex_lock);
4223 
4224 	free_ftrace_hash(new_hash);
4225 }
4226 
4227 static void process_cached_mods(const char *mod_name)
4228 {
4229 	struct trace_array *tr;
4230 	char *mod;
4231 
4232 	mod = kstrdup(mod_name, GFP_KERNEL);
4233 	if (!mod)
4234 		return;
4235 
4236 	mutex_lock(&trace_types_lock);
4237 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4238 		if (!list_empty(&tr->mod_trace))
4239 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4240 		if (!list_empty(&tr->mod_notrace))
4241 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4242 	}
4243 	mutex_unlock(&trace_types_lock);
4244 
4245 	kfree(mod);
4246 }
4247 #endif
4248 
4249 /*
4250  * We register the module command as a template to show others how
4251  * to register the a command as well.
4252  */
4253 
4254 static int
4255 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4256 		    char *func_orig, char *cmd, char *module, int enable)
4257 {
4258 	char *func;
4259 	int ret;
4260 
4261 	/* match_records() modifies func, and we need the original */
4262 	func = kstrdup(func_orig, GFP_KERNEL);
4263 	if (!func)
4264 		return -ENOMEM;
4265 
4266 	/*
4267 	 * cmd == 'mod' because we only registered this func
4268 	 * for the 'mod' ftrace_func_command.
4269 	 * But if you register one func with multiple commands,
4270 	 * you can tell which command was used by the cmd
4271 	 * parameter.
4272 	 */
4273 	ret = match_records(hash, func, strlen(func), module);
4274 	kfree(func);
4275 
4276 	if (!ret)
4277 		return cache_mod(tr, func_orig, module, enable);
4278 	if (ret < 0)
4279 		return ret;
4280 	return 0;
4281 }
4282 
4283 static struct ftrace_func_command ftrace_mod_cmd = {
4284 	.name			= "mod",
4285 	.func			= ftrace_mod_callback,
4286 };
4287 
4288 static int __init ftrace_mod_cmd_init(void)
4289 {
4290 	return register_ftrace_command(&ftrace_mod_cmd);
4291 }
4292 core_initcall(ftrace_mod_cmd_init);
4293 
4294 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4295 				      struct ftrace_ops *op, struct pt_regs *pt_regs)
4296 {
4297 	struct ftrace_probe_ops *probe_ops;
4298 	struct ftrace_func_probe *probe;
4299 
4300 	probe = container_of(op, struct ftrace_func_probe, ops);
4301 	probe_ops = probe->probe_ops;
4302 
4303 	/*
4304 	 * Disable preemption for these calls to prevent a RCU grace
4305 	 * period. This syncs the hash iteration and freeing of items
4306 	 * on the hash. rcu_read_lock is too dangerous here.
4307 	 */
4308 	preempt_disable_notrace();
4309 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4310 	preempt_enable_notrace();
4311 }
4312 
4313 struct ftrace_func_map {
4314 	struct ftrace_func_entry	entry;
4315 	void				*data;
4316 };
4317 
4318 struct ftrace_func_mapper {
4319 	struct ftrace_hash		hash;
4320 };
4321 
4322 /**
4323  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4324  *
4325  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4326  */
4327 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4328 {
4329 	struct ftrace_hash *hash;
4330 
4331 	/*
4332 	 * The mapper is simply a ftrace_hash, but since the entries
4333 	 * in the hash are not ftrace_func_entry type, we define it
4334 	 * as a separate structure.
4335 	 */
4336 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4337 	return (struct ftrace_func_mapper *)hash;
4338 }
4339 
4340 /**
4341  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4342  * @mapper: The mapper that has the ip maps
4343  * @ip: the instruction pointer to find the data for
4344  *
4345  * Returns the data mapped to @ip if found otherwise NULL. The return
4346  * is actually the address of the mapper data pointer. The address is
4347  * returned for use cases where the data is no bigger than a long, and
4348  * the user can use the data pointer as its data instead of having to
4349  * allocate more memory for the reference.
4350  */
4351 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4352 				  unsigned long ip)
4353 {
4354 	struct ftrace_func_entry *entry;
4355 	struct ftrace_func_map *map;
4356 
4357 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4358 	if (!entry)
4359 		return NULL;
4360 
4361 	map = (struct ftrace_func_map *)entry;
4362 	return &map->data;
4363 }
4364 
4365 /**
4366  * ftrace_func_mapper_add_ip - Map some data to an ip
4367  * @mapper: The mapper that has the ip maps
4368  * @ip: The instruction pointer address to map @data to
4369  * @data: The data to map to @ip
4370  *
4371  * Returns 0 on succes otherwise an error.
4372  */
4373 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4374 			      unsigned long ip, void *data)
4375 {
4376 	struct ftrace_func_entry *entry;
4377 	struct ftrace_func_map *map;
4378 
4379 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4380 	if (entry)
4381 		return -EBUSY;
4382 
4383 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4384 	if (!map)
4385 		return -ENOMEM;
4386 
4387 	map->entry.ip = ip;
4388 	map->data = data;
4389 
4390 	__add_hash_entry(&mapper->hash, &map->entry);
4391 
4392 	return 0;
4393 }
4394 
4395 /**
4396  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4397  * @mapper: The mapper that has the ip maps
4398  * @ip: The instruction pointer address to remove the data from
4399  *
4400  * Returns the data if it is found, otherwise NULL.
4401  * Note, if the data pointer is used as the data itself, (see
4402  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4403  * if the data pointer was set to zero.
4404  */
4405 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4406 				   unsigned long ip)
4407 {
4408 	struct ftrace_func_entry *entry;
4409 	struct ftrace_func_map *map;
4410 	void *data;
4411 
4412 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4413 	if (!entry)
4414 		return NULL;
4415 
4416 	map = (struct ftrace_func_map *)entry;
4417 	data = map->data;
4418 
4419 	remove_hash_entry(&mapper->hash, entry);
4420 	kfree(entry);
4421 
4422 	return data;
4423 }
4424 
4425 /**
4426  * free_ftrace_func_mapper - free a mapping of ips and data
4427  * @mapper: The mapper that has the ip maps
4428  * @free_func: A function to be called on each data item.
4429  *
4430  * This is used to free the function mapper. The @free_func is optional
4431  * and can be used if the data needs to be freed as well.
4432  */
4433 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4434 			     ftrace_mapper_func free_func)
4435 {
4436 	struct ftrace_func_entry *entry;
4437 	struct ftrace_func_map *map;
4438 	struct hlist_head *hhd;
4439 	int size, i;
4440 
4441 	if (!mapper)
4442 		return;
4443 
4444 	if (free_func && mapper->hash.count) {
4445 		size = 1 << mapper->hash.size_bits;
4446 		for (i = 0; i < size; i++) {
4447 			hhd = &mapper->hash.buckets[i];
4448 			hlist_for_each_entry(entry, hhd, hlist) {
4449 				map = (struct ftrace_func_map *)entry;
4450 				free_func(map);
4451 			}
4452 		}
4453 	}
4454 	free_ftrace_hash(&mapper->hash);
4455 }
4456 
4457 static void release_probe(struct ftrace_func_probe *probe)
4458 {
4459 	struct ftrace_probe_ops *probe_ops;
4460 
4461 	mutex_lock(&ftrace_lock);
4462 
4463 	WARN_ON(probe->ref <= 0);
4464 
4465 	/* Subtract the ref that was used to protect this instance */
4466 	probe->ref--;
4467 
4468 	if (!probe->ref) {
4469 		probe_ops = probe->probe_ops;
4470 		/*
4471 		 * Sending zero as ip tells probe_ops to free
4472 		 * the probe->data itself
4473 		 */
4474 		if (probe_ops->free)
4475 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4476 		list_del(&probe->list);
4477 		kfree(probe);
4478 	}
4479 	mutex_unlock(&ftrace_lock);
4480 }
4481 
4482 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4483 {
4484 	/*
4485 	 * Add one ref to keep it from being freed when releasing the
4486 	 * ftrace_lock mutex.
4487 	 */
4488 	probe->ref++;
4489 }
4490 
4491 int
4492 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4493 			       struct ftrace_probe_ops *probe_ops,
4494 			       void *data)
4495 {
4496 	struct ftrace_func_entry *entry;
4497 	struct ftrace_func_probe *probe;
4498 	struct ftrace_hash **orig_hash;
4499 	struct ftrace_hash *old_hash;
4500 	struct ftrace_hash *hash;
4501 	int count = 0;
4502 	int size;
4503 	int ret;
4504 	int i;
4505 
4506 	if (WARN_ON(!tr))
4507 		return -EINVAL;
4508 
4509 	/* We do not support '!' for function probes */
4510 	if (WARN_ON(glob[0] == '!'))
4511 		return -EINVAL;
4512 
4513 
4514 	mutex_lock(&ftrace_lock);
4515 	/* Check if the probe_ops is already registered */
4516 	list_for_each_entry(probe, &tr->func_probes, list) {
4517 		if (probe->probe_ops == probe_ops)
4518 			break;
4519 	}
4520 	if (&probe->list == &tr->func_probes) {
4521 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4522 		if (!probe) {
4523 			mutex_unlock(&ftrace_lock);
4524 			return -ENOMEM;
4525 		}
4526 		probe->probe_ops = probe_ops;
4527 		probe->ops.func = function_trace_probe_call;
4528 		probe->tr = tr;
4529 		ftrace_ops_init(&probe->ops);
4530 		list_add(&probe->list, &tr->func_probes);
4531 	}
4532 
4533 	acquire_probe_locked(probe);
4534 
4535 	mutex_unlock(&ftrace_lock);
4536 
4537 	/*
4538 	 * Note, there's a small window here that the func_hash->filter_hash
4539 	 * may be NULL or empty. Need to be carefule when reading the loop.
4540 	 */
4541 	mutex_lock(&probe->ops.func_hash->regex_lock);
4542 
4543 	orig_hash = &probe->ops.func_hash->filter_hash;
4544 	old_hash = *orig_hash;
4545 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4546 
4547 	if (!hash) {
4548 		ret = -ENOMEM;
4549 		goto out;
4550 	}
4551 
4552 	ret = ftrace_match_records(hash, glob, strlen(glob));
4553 
4554 	/* Nothing found? */
4555 	if (!ret)
4556 		ret = -EINVAL;
4557 
4558 	if (ret < 0)
4559 		goto out;
4560 
4561 	size = 1 << hash->size_bits;
4562 	for (i = 0; i < size; i++) {
4563 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4564 			if (ftrace_lookup_ip(old_hash, entry->ip))
4565 				continue;
4566 			/*
4567 			 * The caller might want to do something special
4568 			 * for each function we find. We call the callback
4569 			 * to give the caller an opportunity to do so.
4570 			 */
4571 			if (probe_ops->init) {
4572 				ret = probe_ops->init(probe_ops, tr,
4573 						      entry->ip, data,
4574 						      &probe->data);
4575 				if (ret < 0) {
4576 					if (probe_ops->free && count)
4577 						probe_ops->free(probe_ops, tr,
4578 								0, probe->data);
4579 					probe->data = NULL;
4580 					goto out;
4581 				}
4582 			}
4583 			count++;
4584 		}
4585 	}
4586 
4587 	mutex_lock(&ftrace_lock);
4588 
4589 	if (!count) {
4590 		/* Nothing was added? */
4591 		ret = -EINVAL;
4592 		goto out_unlock;
4593 	}
4594 
4595 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4596 					      hash, 1);
4597 	if (ret < 0)
4598 		goto err_unlock;
4599 
4600 	/* One ref for each new function traced */
4601 	probe->ref += count;
4602 
4603 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4604 		ret = ftrace_startup(&probe->ops, 0);
4605 
4606  out_unlock:
4607 	mutex_unlock(&ftrace_lock);
4608 
4609 	if (!ret)
4610 		ret = count;
4611  out:
4612 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4613 	free_ftrace_hash(hash);
4614 
4615 	release_probe(probe);
4616 
4617 	return ret;
4618 
4619  err_unlock:
4620 	if (!probe_ops->free || !count)
4621 		goto out_unlock;
4622 
4623 	/* Failed to do the move, need to call the free functions */
4624 	for (i = 0; i < size; i++) {
4625 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4626 			if (ftrace_lookup_ip(old_hash, entry->ip))
4627 				continue;
4628 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4629 		}
4630 	}
4631 	goto out_unlock;
4632 }
4633 
4634 int
4635 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4636 				      struct ftrace_probe_ops *probe_ops)
4637 {
4638 	struct ftrace_ops_hash old_hash_ops;
4639 	struct ftrace_func_entry *entry;
4640 	struct ftrace_func_probe *probe;
4641 	struct ftrace_glob func_g;
4642 	struct ftrace_hash **orig_hash;
4643 	struct ftrace_hash *old_hash;
4644 	struct ftrace_hash *hash = NULL;
4645 	struct hlist_node *tmp;
4646 	struct hlist_head hhd;
4647 	char str[KSYM_SYMBOL_LEN];
4648 	int count = 0;
4649 	int i, ret = -ENODEV;
4650 	int size;
4651 
4652 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4653 		func_g.search = NULL;
4654 	else {
4655 		int not;
4656 
4657 		func_g.type = filter_parse_regex(glob, strlen(glob),
4658 						 &func_g.search, &not);
4659 		func_g.len = strlen(func_g.search);
4660 
4661 		/* we do not support '!' for function probes */
4662 		if (WARN_ON(not))
4663 			return -EINVAL;
4664 	}
4665 
4666 	mutex_lock(&ftrace_lock);
4667 	/* Check if the probe_ops is already registered */
4668 	list_for_each_entry(probe, &tr->func_probes, list) {
4669 		if (probe->probe_ops == probe_ops)
4670 			break;
4671 	}
4672 	if (&probe->list == &tr->func_probes)
4673 		goto err_unlock_ftrace;
4674 
4675 	ret = -EINVAL;
4676 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4677 		goto err_unlock_ftrace;
4678 
4679 	acquire_probe_locked(probe);
4680 
4681 	mutex_unlock(&ftrace_lock);
4682 
4683 	mutex_lock(&probe->ops.func_hash->regex_lock);
4684 
4685 	orig_hash = &probe->ops.func_hash->filter_hash;
4686 	old_hash = *orig_hash;
4687 
4688 	if (ftrace_hash_empty(old_hash))
4689 		goto out_unlock;
4690 
4691 	old_hash_ops.filter_hash = old_hash;
4692 	/* Probes only have filters */
4693 	old_hash_ops.notrace_hash = NULL;
4694 
4695 	ret = -ENOMEM;
4696 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4697 	if (!hash)
4698 		goto out_unlock;
4699 
4700 	INIT_HLIST_HEAD(&hhd);
4701 
4702 	size = 1 << hash->size_bits;
4703 	for (i = 0; i < size; i++) {
4704 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4705 
4706 			if (func_g.search) {
4707 				kallsyms_lookup(entry->ip, NULL, NULL,
4708 						NULL, str);
4709 				if (!ftrace_match(str, &func_g))
4710 					continue;
4711 			}
4712 			count++;
4713 			remove_hash_entry(hash, entry);
4714 			hlist_add_head(&entry->hlist, &hhd);
4715 		}
4716 	}
4717 
4718 	/* Nothing found? */
4719 	if (!count) {
4720 		ret = -EINVAL;
4721 		goto out_unlock;
4722 	}
4723 
4724 	mutex_lock(&ftrace_lock);
4725 
4726 	WARN_ON(probe->ref < count);
4727 
4728 	probe->ref -= count;
4729 
4730 	if (ftrace_hash_empty(hash))
4731 		ftrace_shutdown(&probe->ops, 0);
4732 
4733 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4734 					      hash, 1);
4735 
4736 	/* still need to update the function call sites */
4737 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4738 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4739 				       &old_hash_ops);
4740 	synchronize_rcu();
4741 
4742 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4743 		hlist_del(&entry->hlist);
4744 		if (probe_ops->free)
4745 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4746 		kfree(entry);
4747 	}
4748 	mutex_unlock(&ftrace_lock);
4749 
4750  out_unlock:
4751 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4752 	free_ftrace_hash(hash);
4753 
4754 	release_probe(probe);
4755 
4756 	return ret;
4757 
4758  err_unlock_ftrace:
4759 	mutex_unlock(&ftrace_lock);
4760 	return ret;
4761 }
4762 
4763 void clear_ftrace_function_probes(struct trace_array *tr)
4764 {
4765 	struct ftrace_func_probe *probe, *n;
4766 
4767 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4768 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4769 }
4770 
4771 static LIST_HEAD(ftrace_commands);
4772 static DEFINE_MUTEX(ftrace_cmd_mutex);
4773 
4774 /*
4775  * Currently we only register ftrace commands from __init, so mark this
4776  * __init too.
4777  */
4778 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4779 {
4780 	struct ftrace_func_command *p;
4781 	int ret = 0;
4782 
4783 	mutex_lock(&ftrace_cmd_mutex);
4784 	list_for_each_entry(p, &ftrace_commands, list) {
4785 		if (strcmp(cmd->name, p->name) == 0) {
4786 			ret = -EBUSY;
4787 			goto out_unlock;
4788 		}
4789 	}
4790 	list_add(&cmd->list, &ftrace_commands);
4791  out_unlock:
4792 	mutex_unlock(&ftrace_cmd_mutex);
4793 
4794 	return ret;
4795 }
4796 
4797 /*
4798  * Currently we only unregister ftrace commands from __init, so mark
4799  * this __init too.
4800  */
4801 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4802 {
4803 	struct ftrace_func_command *p, *n;
4804 	int ret = -ENODEV;
4805 
4806 	mutex_lock(&ftrace_cmd_mutex);
4807 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4808 		if (strcmp(cmd->name, p->name) == 0) {
4809 			ret = 0;
4810 			list_del_init(&p->list);
4811 			goto out_unlock;
4812 		}
4813 	}
4814  out_unlock:
4815 	mutex_unlock(&ftrace_cmd_mutex);
4816 
4817 	return ret;
4818 }
4819 
4820 static int ftrace_process_regex(struct ftrace_iterator *iter,
4821 				char *buff, int len, int enable)
4822 {
4823 	struct ftrace_hash *hash = iter->hash;
4824 	struct trace_array *tr = iter->ops->private;
4825 	char *func, *command, *next = buff;
4826 	struct ftrace_func_command *p;
4827 	int ret = -EINVAL;
4828 
4829 	func = strsep(&next, ":");
4830 
4831 	if (!next) {
4832 		ret = ftrace_match_records(hash, func, len);
4833 		if (!ret)
4834 			ret = -EINVAL;
4835 		if (ret < 0)
4836 			return ret;
4837 		return 0;
4838 	}
4839 
4840 	/* command found */
4841 
4842 	command = strsep(&next, ":");
4843 
4844 	mutex_lock(&ftrace_cmd_mutex);
4845 	list_for_each_entry(p, &ftrace_commands, list) {
4846 		if (strcmp(p->name, command) == 0) {
4847 			ret = p->func(tr, hash, func, command, next, enable);
4848 			goto out_unlock;
4849 		}
4850 	}
4851  out_unlock:
4852 	mutex_unlock(&ftrace_cmd_mutex);
4853 
4854 	return ret;
4855 }
4856 
4857 static ssize_t
4858 ftrace_regex_write(struct file *file, const char __user *ubuf,
4859 		   size_t cnt, loff_t *ppos, int enable)
4860 {
4861 	struct ftrace_iterator *iter;
4862 	struct trace_parser *parser;
4863 	ssize_t ret, read;
4864 
4865 	if (!cnt)
4866 		return 0;
4867 
4868 	if (file->f_mode & FMODE_READ) {
4869 		struct seq_file *m = file->private_data;
4870 		iter = m->private;
4871 	} else
4872 		iter = file->private_data;
4873 
4874 	if (unlikely(ftrace_disabled))
4875 		return -ENODEV;
4876 
4877 	/* iter->hash is a local copy, so we don't need regex_lock */
4878 
4879 	parser = &iter->parser;
4880 	read = trace_get_user(parser, ubuf, cnt, ppos);
4881 
4882 	if (read >= 0 && trace_parser_loaded(parser) &&
4883 	    !trace_parser_cont(parser)) {
4884 		ret = ftrace_process_regex(iter, parser->buffer,
4885 					   parser->idx, enable);
4886 		trace_parser_clear(parser);
4887 		if (ret < 0)
4888 			goto out;
4889 	}
4890 
4891 	ret = read;
4892  out:
4893 	return ret;
4894 }
4895 
4896 ssize_t
4897 ftrace_filter_write(struct file *file, const char __user *ubuf,
4898 		    size_t cnt, loff_t *ppos)
4899 {
4900 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4901 }
4902 
4903 ssize_t
4904 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4905 		     size_t cnt, loff_t *ppos)
4906 {
4907 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4908 }
4909 
4910 static int
4911 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4912 {
4913 	struct ftrace_func_entry *entry;
4914 
4915 	if (!ftrace_location(ip))
4916 		return -EINVAL;
4917 
4918 	if (remove) {
4919 		entry = ftrace_lookup_ip(hash, ip);
4920 		if (!entry)
4921 			return -ENOENT;
4922 		free_hash_entry(hash, entry);
4923 		return 0;
4924 	}
4925 
4926 	return add_hash_entry(hash, ip);
4927 }
4928 
4929 static int
4930 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4931 		unsigned long ip, int remove, int reset, int enable)
4932 {
4933 	struct ftrace_hash **orig_hash;
4934 	struct ftrace_hash *hash;
4935 	int ret;
4936 
4937 	if (unlikely(ftrace_disabled))
4938 		return -ENODEV;
4939 
4940 	mutex_lock(&ops->func_hash->regex_lock);
4941 
4942 	if (enable)
4943 		orig_hash = &ops->func_hash->filter_hash;
4944 	else
4945 		orig_hash = &ops->func_hash->notrace_hash;
4946 
4947 	if (reset)
4948 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4949 	else
4950 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4951 
4952 	if (!hash) {
4953 		ret = -ENOMEM;
4954 		goto out_regex_unlock;
4955 	}
4956 
4957 	if (buf && !ftrace_match_records(hash, buf, len)) {
4958 		ret = -EINVAL;
4959 		goto out_regex_unlock;
4960 	}
4961 	if (ip) {
4962 		ret = ftrace_match_addr(hash, ip, remove);
4963 		if (ret < 0)
4964 			goto out_regex_unlock;
4965 	}
4966 
4967 	mutex_lock(&ftrace_lock);
4968 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4969 	mutex_unlock(&ftrace_lock);
4970 
4971  out_regex_unlock:
4972 	mutex_unlock(&ops->func_hash->regex_lock);
4973 
4974 	free_ftrace_hash(hash);
4975 	return ret;
4976 }
4977 
4978 static int
4979 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4980 		int reset, int enable)
4981 {
4982 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
4983 }
4984 
4985 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
4986 
4987 struct ftrace_direct_func {
4988 	struct list_head	next;
4989 	unsigned long		addr;
4990 	int			count;
4991 };
4992 
4993 static LIST_HEAD(ftrace_direct_funcs);
4994 
4995 /**
4996  * ftrace_find_direct_func - test an address if it is a registered direct caller
4997  * @addr: The address of a registered direct caller
4998  *
4999  * This searches to see if a ftrace direct caller has been registered
5000  * at a specific address, and if so, it returns a descriptor for it.
5001  *
5002  * This can be used by architecture code to see if an address is
5003  * a direct caller (trampoline) attached to a fentry/mcount location.
5004  * This is useful for the function_graph tracer, as it may need to
5005  * do adjustments if it traced a location that also has a direct
5006  * trampoline attached to it.
5007  */
5008 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5009 {
5010 	struct ftrace_direct_func *entry;
5011 	bool found = false;
5012 
5013 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5014 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5015 		if (entry->addr == addr) {
5016 			found = true;
5017 			break;
5018 		}
5019 	}
5020 	if (found)
5021 		return entry;
5022 
5023 	return NULL;
5024 }
5025 
5026 /**
5027  * register_ftrace_direct - Call a custom trampoline directly
5028  * @ip: The address of the nop at the beginning of a function
5029  * @addr: The address of the trampoline to call at @ip
5030  *
5031  * This is used to connect a direct call from the nop location (@ip)
5032  * at the start of ftrace traced functions. The location that it calls
5033  * (@addr) must be able to handle a direct call, and save the parameters
5034  * of the function being traced, and restore them (or inject new ones
5035  * if needed), before returning.
5036  *
5037  * Returns:
5038  *  0 on success
5039  *  -EBUSY - Another direct function is already attached (there can be only one)
5040  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5041  *  -ENOMEM - There was an allocation failure.
5042  */
5043 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5044 {
5045 	struct ftrace_direct_func *direct;
5046 	struct ftrace_func_entry *entry;
5047 	struct ftrace_hash *free_hash = NULL;
5048 	struct dyn_ftrace *rec;
5049 	int ret = -EBUSY;
5050 
5051 	mutex_lock(&direct_mutex);
5052 
5053 	/* See if there's a direct function at @ip already */
5054 	if (ftrace_find_rec_direct(ip))
5055 		goto out_unlock;
5056 
5057 	ret = -ENODEV;
5058 	rec = lookup_rec(ip, ip);
5059 	if (!rec)
5060 		goto out_unlock;
5061 
5062 	/*
5063 	 * Check if the rec says it has a direct call but we didn't
5064 	 * find one earlier?
5065 	 */
5066 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5067 		goto out_unlock;
5068 
5069 	/* Make sure the ip points to the exact record */
5070 	if (ip != rec->ip) {
5071 		ip = rec->ip;
5072 		/* Need to check this ip for a direct. */
5073 		if (ftrace_find_rec_direct(ip))
5074 			goto out_unlock;
5075 	}
5076 
5077 	ret = -ENOMEM;
5078 	if (ftrace_hash_empty(direct_functions) ||
5079 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5080 		struct ftrace_hash *new_hash;
5081 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5082 			direct_functions->count + 1;
5083 
5084 		if (size < 32)
5085 			size = 32;
5086 
5087 		new_hash = dup_hash(direct_functions, size);
5088 		if (!new_hash)
5089 			goto out_unlock;
5090 
5091 		free_hash = direct_functions;
5092 		direct_functions = new_hash;
5093 	}
5094 
5095 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5096 	if (!entry)
5097 		goto out_unlock;
5098 
5099 	direct = ftrace_find_direct_func(addr);
5100 	if (!direct) {
5101 		direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5102 		if (!direct) {
5103 			kfree(entry);
5104 			goto out_unlock;
5105 		}
5106 		direct->addr = addr;
5107 		direct->count = 0;
5108 		list_add_rcu(&direct->next, &ftrace_direct_funcs);
5109 		ftrace_direct_func_count++;
5110 	}
5111 
5112 	entry->ip = ip;
5113 	entry->direct = addr;
5114 	__add_hash_entry(direct_functions, entry);
5115 
5116 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5117 	if (ret)
5118 		remove_hash_entry(direct_functions, entry);
5119 
5120 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5121 		ret = register_ftrace_function(&direct_ops);
5122 		if (ret)
5123 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5124 	}
5125 
5126 	if (ret) {
5127 		kfree(entry);
5128 		if (!direct->count) {
5129 			list_del_rcu(&direct->next);
5130 			synchronize_rcu_tasks();
5131 			kfree(direct);
5132 			if (free_hash)
5133 				free_ftrace_hash(free_hash);
5134 			free_hash = NULL;
5135 			ftrace_direct_func_count--;
5136 		}
5137 	} else {
5138 		direct->count++;
5139 	}
5140  out_unlock:
5141 	mutex_unlock(&direct_mutex);
5142 
5143 	if (free_hash) {
5144 		synchronize_rcu_tasks();
5145 		free_ftrace_hash(free_hash);
5146 	}
5147 
5148 	return ret;
5149 }
5150 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5151 
5152 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5153 						   struct dyn_ftrace **recp)
5154 {
5155 	struct ftrace_func_entry *entry;
5156 	struct dyn_ftrace *rec;
5157 
5158 	rec = lookup_rec(*ip, *ip);
5159 	if (!rec)
5160 		return NULL;
5161 
5162 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5163 	if (!entry) {
5164 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5165 		return NULL;
5166 	}
5167 
5168 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5169 
5170 	/* Passed in ip just needs to be on the call site */
5171 	*ip = rec->ip;
5172 
5173 	if (recp)
5174 		*recp = rec;
5175 
5176 	return entry;
5177 }
5178 
5179 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5180 {
5181 	struct ftrace_direct_func *direct;
5182 	struct ftrace_func_entry *entry;
5183 	int ret = -ENODEV;
5184 
5185 	mutex_lock(&direct_mutex);
5186 
5187 	entry = find_direct_entry(&ip, NULL);
5188 	if (!entry)
5189 		goto out_unlock;
5190 
5191 	if (direct_functions->count == 1)
5192 		unregister_ftrace_function(&direct_ops);
5193 
5194 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5195 
5196 	WARN_ON(ret);
5197 
5198 	remove_hash_entry(direct_functions, entry);
5199 
5200 	direct = ftrace_find_direct_func(addr);
5201 	if (!WARN_ON(!direct)) {
5202 		/* This is the good path (see the ! before WARN) */
5203 		direct->count--;
5204 		WARN_ON(direct->count < 0);
5205 		if (!direct->count) {
5206 			list_del_rcu(&direct->next);
5207 			synchronize_rcu_tasks();
5208 			kfree(direct);
5209 			kfree(entry);
5210 			ftrace_direct_func_count--;
5211 		}
5212 	}
5213  out_unlock:
5214 	mutex_unlock(&direct_mutex);
5215 
5216 	return ret;
5217 }
5218 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5219 
5220 static struct ftrace_ops stub_ops = {
5221 	.func		= ftrace_stub,
5222 };
5223 
5224 /**
5225  * ftrace_modify_direct_caller - modify ftrace nop directly
5226  * @entry: The ftrace hash entry of the direct helper for @rec
5227  * @rec: The record representing the function site to patch
5228  * @old_addr: The location that the site at @rec->ip currently calls
5229  * @new_addr: The location that the site at @rec->ip should call
5230  *
5231  * An architecture may overwrite this function to optimize the
5232  * changing of the direct callback on an ftrace nop location.
5233  * This is called with the ftrace_lock mutex held, and no other
5234  * ftrace callbacks are on the associated record (@rec). Thus,
5235  * it is safe to modify the ftrace record, where it should be
5236  * currently calling @old_addr directly, to call @new_addr.
5237  *
5238  * Safety checks should be made to make sure that the code at
5239  * @rec->ip is currently calling @old_addr. And this must
5240  * also update entry->direct to @new_addr.
5241  */
5242 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5243 				       struct dyn_ftrace *rec,
5244 				       unsigned long old_addr,
5245 				       unsigned long new_addr)
5246 {
5247 	unsigned long ip = rec->ip;
5248 	int ret;
5249 
5250 	/*
5251 	 * The ftrace_lock was used to determine if the record
5252 	 * had more than one registered user to it. If it did,
5253 	 * we needed to prevent that from changing to do the quick
5254 	 * switch. But if it did not (only a direct caller was attached)
5255 	 * then this function is called. But this function can deal
5256 	 * with attached callers to the rec that we care about, and
5257 	 * since this function uses standard ftrace calls that take
5258 	 * the ftrace_lock mutex, we need to release it.
5259 	 */
5260 	mutex_unlock(&ftrace_lock);
5261 
5262 	/*
5263 	 * By setting a stub function at the same address, we force
5264 	 * the code to call the iterator and the direct_ops helper.
5265 	 * This means that @ip does not call the direct call, and
5266 	 * we can simply modify it.
5267 	 */
5268 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5269 	if (ret)
5270 		goto out_lock;
5271 
5272 	ret = register_ftrace_function(&stub_ops);
5273 	if (ret) {
5274 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5275 		goto out_lock;
5276 	}
5277 
5278 	entry->direct = new_addr;
5279 
5280 	/*
5281 	 * By removing the stub, we put back the direct call, calling
5282 	 * the @new_addr.
5283 	 */
5284 	unregister_ftrace_function(&stub_ops);
5285 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5286 
5287  out_lock:
5288 	mutex_lock(&ftrace_lock);
5289 
5290 	return ret;
5291 }
5292 
5293 /**
5294  * modify_ftrace_direct - Modify an existing direct call to call something else
5295  * @ip: The instruction pointer to modify
5296  * @old_addr: The address that the current @ip calls directly
5297  * @new_addr: The address that the @ip should call
5298  *
5299  * This modifies a ftrace direct caller at an instruction pointer without
5300  * having to disable it first. The direct call will switch over to the
5301  * @new_addr without missing anything.
5302  *
5303  * Returns: zero on success. Non zero on error, which includes:
5304  *  -ENODEV : the @ip given has no direct caller attached
5305  *  -EINVAL : the @old_addr does not match the current direct caller
5306  */
5307 int modify_ftrace_direct(unsigned long ip,
5308 			 unsigned long old_addr, unsigned long new_addr)
5309 {
5310 	struct ftrace_func_entry *entry;
5311 	struct dyn_ftrace *rec;
5312 	int ret = -ENODEV;
5313 
5314 	mutex_lock(&direct_mutex);
5315 
5316 	mutex_lock(&ftrace_lock);
5317 	entry = find_direct_entry(&ip, &rec);
5318 	if (!entry)
5319 		goto out_unlock;
5320 
5321 	ret = -EINVAL;
5322 	if (entry->direct != old_addr)
5323 		goto out_unlock;
5324 
5325 	/*
5326 	 * If there's no other ftrace callback on the rec->ip location,
5327 	 * then it can be changed directly by the architecture.
5328 	 * If there is another caller, then we just need to change the
5329 	 * direct caller helper to point to @new_addr.
5330 	 */
5331 	if (ftrace_rec_count(rec) == 1) {
5332 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5333 	} else {
5334 		entry->direct = new_addr;
5335 		ret = 0;
5336 	}
5337 
5338  out_unlock:
5339 	mutex_unlock(&ftrace_lock);
5340 	mutex_unlock(&direct_mutex);
5341 	return ret;
5342 }
5343 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5344 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5345 
5346 /**
5347  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5348  * @ops - the ops to set the filter with
5349  * @ip - the address to add to or remove from the filter.
5350  * @remove - non zero to remove the ip from the filter
5351  * @reset - non zero to reset all filters before applying this filter.
5352  *
5353  * Filters denote which functions should be enabled when tracing is enabled
5354  * If @ip is NULL, it failes to update filter.
5355  */
5356 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5357 			 int remove, int reset)
5358 {
5359 	ftrace_ops_init(ops);
5360 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5361 }
5362 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5363 
5364 /**
5365  * ftrace_ops_set_global_filter - setup ops to use global filters
5366  * @ops - the ops which will use the global filters
5367  *
5368  * ftrace users who need global function trace filtering should call this.
5369  * It can set the global filter only if ops were not initialized before.
5370  */
5371 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5372 {
5373 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5374 		return;
5375 
5376 	ftrace_ops_init(ops);
5377 	ops->func_hash = &global_ops.local_hash;
5378 }
5379 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5380 
5381 static int
5382 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5383 		 int reset, int enable)
5384 {
5385 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5386 }
5387 
5388 /**
5389  * ftrace_set_filter - set a function to filter on in ftrace
5390  * @ops - the ops to set the filter with
5391  * @buf - the string that holds the function filter text.
5392  * @len - the length of the string.
5393  * @reset - non zero to reset all filters before applying this filter.
5394  *
5395  * Filters denote which functions should be enabled when tracing is enabled.
5396  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5397  */
5398 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5399 		       int len, int reset)
5400 {
5401 	ftrace_ops_init(ops);
5402 	return ftrace_set_regex(ops, buf, len, reset, 1);
5403 }
5404 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5405 
5406 /**
5407  * ftrace_set_notrace - set a function to not trace in ftrace
5408  * @ops - the ops to set the notrace filter with
5409  * @buf - the string that holds the function notrace text.
5410  * @len - the length of the string.
5411  * @reset - non zero to reset all filters before applying this filter.
5412  *
5413  * Notrace Filters denote which functions should not be enabled when tracing
5414  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5415  * for tracing.
5416  */
5417 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5418 			int len, int reset)
5419 {
5420 	ftrace_ops_init(ops);
5421 	return ftrace_set_regex(ops, buf, len, reset, 0);
5422 }
5423 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5424 /**
5425  * ftrace_set_global_filter - set a function to filter on with global tracers
5426  * @buf - the string that holds the function filter text.
5427  * @len - the length of the string.
5428  * @reset - non zero to reset all filters before applying this filter.
5429  *
5430  * Filters denote which functions should be enabled when tracing is enabled.
5431  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5432  */
5433 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5434 {
5435 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5436 }
5437 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5438 
5439 /**
5440  * ftrace_set_global_notrace - set a function to not trace with global tracers
5441  * @buf - the string that holds the function notrace text.
5442  * @len - the length of the string.
5443  * @reset - non zero to reset all filters before applying this filter.
5444  *
5445  * Notrace Filters denote which functions should not be enabled when tracing
5446  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5447  * for tracing.
5448  */
5449 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5450 {
5451 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5452 }
5453 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5454 
5455 /*
5456  * command line interface to allow users to set filters on boot up.
5457  */
5458 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5459 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5460 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5461 
5462 /* Used by function selftest to not test if filter is set */
5463 bool ftrace_filter_param __initdata;
5464 
5465 static int __init set_ftrace_notrace(char *str)
5466 {
5467 	ftrace_filter_param = true;
5468 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5469 	return 1;
5470 }
5471 __setup("ftrace_notrace=", set_ftrace_notrace);
5472 
5473 static int __init set_ftrace_filter(char *str)
5474 {
5475 	ftrace_filter_param = true;
5476 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5477 	return 1;
5478 }
5479 __setup("ftrace_filter=", set_ftrace_filter);
5480 
5481 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5482 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5483 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5484 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5485 
5486 static int __init set_graph_function(char *str)
5487 {
5488 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5489 	return 1;
5490 }
5491 __setup("ftrace_graph_filter=", set_graph_function);
5492 
5493 static int __init set_graph_notrace_function(char *str)
5494 {
5495 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5496 	return 1;
5497 }
5498 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5499 
5500 static int __init set_graph_max_depth_function(char *str)
5501 {
5502 	if (!str)
5503 		return 0;
5504 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5505 	return 1;
5506 }
5507 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5508 
5509 static void __init set_ftrace_early_graph(char *buf, int enable)
5510 {
5511 	int ret;
5512 	char *func;
5513 	struct ftrace_hash *hash;
5514 
5515 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5516 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5517 		return;
5518 
5519 	while (buf) {
5520 		func = strsep(&buf, ",");
5521 		/* we allow only one expression at a time */
5522 		ret = ftrace_graph_set_hash(hash, func);
5523 		if (ret)
5524 			printk(KERN_DEBUG "ftrace: function %s not "
5525 					  "traceable\n", func);
5526 	}
5527 
5528 	if (enable)
5529 		ftrace_graph_hash = hash;
5530 	else
5531 		ftrace_graph_notrace_hash = hash;
5532 }
5533 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5534 
5535 void __init
5536 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5537 {
5538 	char *func;
5539 
5540 	ftrace_ops_init(ops);
5541 
5542 	while (buf) {
5543 		func = strsep(&buf, ",");
5544 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5545 	}
5546 }
5547 
5548 static void __init set_ftrace_early_filters(void)
5549 {
5550 	if (ftrace_filter_buf[0])
5551 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5552 	if (ftrace_notrace_buf[0])
5553 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5554 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5555 	if (ftrace_graph_buf[0])
5556 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5557 	if (ftrace_graph_notrace_buf[0])
5558 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5559 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5560 }
5561 
5562 int ftrace_regex_release(struct inode *inode, struct file *file)
5563 {
5564 	struct seq_file *m = (struct seq_file *)file->private_data;
5565 	struct ftrace_iterator *iter;
5566 	struct ftrace_hash **orig_hash;
5567 	struct trace_parser *parser;
5568 	int filter_hash;
5569 	int ret;
5570 
5571 	if (file->f_mode & FMODE_READ) {
5572 		iter = m->private;
5573 		seq_release(inode, file);
5574 	} else
5575 		iter = file->private_data;
5576 
5577 	parser = &iter->parser;
5578 	if (trace_parser_loaded(parser)) {
5579 		ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5580 	}
5581 
5582 	trace_parser_put(parser);
5583 
5584 	mutex_lock(&iter->ops->func_hash->regex_lock);
5585 
5586 	if (file->f_mode & FMODE_WRITE) {
5587 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5588 
5589 		if (filter_hash) {
5590 			orig_hash = &iter->ops->func_hash->filter_hash;
5591 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5592 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5593 		} else
5594 			orig_hash = &iter->ops->func_hash->notrace_hash;
5595 
5596 		mutex_lock(&ftrace_lock);
5597 		ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5598 						      iter->hash, filter_hash);
5599 		mutex_unlock(&ftrace_lock);
5600 	} else {
5601 		/* For read only, the hash is the ops hash */
5602 		iter->hash = NULL;
5603 	}
5604 
5605 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5606 	free_ftrace_hash(iter->hash);
5607 	if (iter->tr)
5608 		trace_array_put(iter->tr);
5609 	kfree(iter);
5610 
5611 	return 0;
5612 }
5613 
5614 static const struct file_operations ftrace_avail_fops = {
5615 	.open = ftrace_avail_open,
5616 	.read = seq_read,
5617 	.llseek = seq_lseek,
5618 	.release = seq_release_private,
5619 };
5620 
5621 static const struct file_operations ftrace_enabled_fops = {
5622 	.open = ftrace_enabled_open,
5623 	.read = seq_read,
5624 	.llseek = seq_lseek,
5625 	.release = seq_release_private,
5626 };
5627 
5628 static const struct file_operations ftrace_filter_fops = {
5629 	.open = ftrace_filter_open,
5630 	.read = seq_read,
5631 	.write = ftrace_filter_write,
5632 	.llseek = tracing_lseek,
5633 	.release = ftrace_regex_release,
5634 };
5635 
5636 static const struct file_operations ftrace_notrace_fops = {
5637 	.open = ftrace_notrace_open,
5638 	.read = seq_read,
5639 	.write = ftrace_notrace_write,
5640 	.llseek = tracing_lseek,
5641 	.release = ftrace_regex_release,
5642 };
5643 
5644 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5645 
5646 static DEFINE_MUTEX(graph_lock);
5647 
5648 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5649 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5650 
5651 enum graph_filter_type {
5652 	GRAPH_FILTER_NOTRACE	= 0,
5653 	GRAPH_FILTER_FUNCTION,
5654 };
5655 
5656 #define FTRACE_GRAPH_EMPTY	((void *)1)
5657 
5658 struct ftrace_graph_data {
5659 	struct ftrace_hash		*hash;
5660 	struct ftrace_func_entry	*entry;
5661 	int				idx;   /* for hash table iteration */
5662 	enum graph_filter_type		type;
5663 	struct ftrace_hash		*new_hash;
5664 	const struct seq_operations	*seq_ops;
5665 	struct trace_parser		parser;
5666 };
5667 
5668 static void *
5669 __g_next(struct seq_file *m, loff_t *pos)
5670 {
5671 	struct ftrace_graph_data *fgd = m->private;
5672 	struct ftrace_func_entry *entry = fgd->entry;
5673 	struct hlist_head *head;
5674 	int i, idx = fgd->idx;
5675 
5676 	if (*pos >= fgd->hash->count)
5677 		return NULL;
5678 
5679 	if (entry) {
5680 		hlist_for_each_entry_continue(entry, hlist) {
5681 			fgd->entry = entry;
5682 			return entry;
5683 		}
5684 
5685 		idx++;
5686 	}
5687 
5688 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5689 		head = &fgd->hash->buckets[i];
5690 		hlist_for_each_entry(entry, head, hlist) {
5691 			fgd->entry = entry;
5692 			fgd->idx = i;
5693 			return entry;
5694 		}
5695 	}
5696 	return NULL;
5697 }
5698 
5699 static void *
5700 g_next(struct seq_file *m, void *v, loff_t *pos)
5701 {
5702 	(*pos)++;
5703 	return __g_next(m, pos);
5704 }
5705 
5706 static void *g_start(struct seq_file *m, loff_t *pos)
5707 {
5708 	struct ftrace_graph_data *fgd = m->private;
5709 
5710 	mutex_lock(&graph_lock);
5711 
5712 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5713 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5714 					lockdep_is_held(&graph_lock));
5715 	else
5716 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5717 					lockdep_is_held(&graph_lock));
5718 
5719 	/* Nothing, tell g_show to print all functions are enabled */
5720 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5721 		return FTRACE_GRAPH_EMPTY;
5722 
5723 	fgd->idx = 0;
5724 	fgd->entry = NULL;
5725 	return __g_next(m, pos);
5726 }
5727 
5728 static void g_stop(struct seq_file *m, void *p)
5729 {
5730 	mutex_unlock(&graph_lock);
5731 }
5732 
5733 static int g_show(struct seq_file *m, void *v)
5734 {
5735 	struct ftrace_func_entry *entry = v;
5736 
5737 	if (!entry)
5738 		return 0;
5739 
5740 	if (entry == FTRACE_GRAPH_EMPTY) {
5741 		struct ftrace_graph_data *fgd = m->private;
5742 
5743 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5744 			seq_puts(m, "#### all functions enabled ####\n");
5745 		else
5746 			seq_puts(m, "#### no functions disabled ####\n");
5747 		return 0;
5748 	}
5749 
5750 	seq_printf(m, "%ps\n", (void *)entry->ip);
5751 
5752 	return 0;
5753 }
5754 
5755 static const struct seq_operations ftrace_graph_seq_ops = {
5756 	.start = g_start,
5757 	.next = g_next,
5758 	.stop = g_stop,
5759 	.show = g_show,
5760 };
5761 
5762 static int
5763 __ftrace_graph_open(struct inode *inode, struct file *file,
5764 		    struct ftrace_graph_data *fgd)
5765 {
5766 	int ret;
5767 	struct ftrace_hash *new_hash = NULL;
5768 
5769 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5770 	if (ret)
5771 		return ret;
5772 
5773 	if (file->f_mode & FMODE_WRITE) {
5774 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5775 
5776 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5777 			return -ENOMEM;
5778 
5779 		if (file->f_flags & O_TRUNC)
5780 			new_hash = alloc_ftrace_hash(size_bits);
5781 		else
5782 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5783 							      fgd->hash);
5784 		if (!new_hash) {
5785 			ret = -ENOMEM;
5786 			goto out;
5787 		}
5788 	}
5789 
5790 	if (file->f_mode & FMODE_READ) {
5791 		ret = seq_open(file, &ftrace_graph_seq_ops);
5792 		if (!ret) {
5793 			struct seq_file *m = file->private_data;
5794 			m->private = fgd;
5795 		} else {
5796 			/* Failed */
5797 			free_ftrace_hash(new_hash);
5798 			new_hash = NULL;
5799 		}
5800 	} else
5801 		file->private_data = fgd;
5802 
5803 out:
5804 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5805 		trace_parser_put(&fgd->parser);
5806 
5807 	fgd->new_hash = new_hash;
5808 
5809 	/*
5810 	 * All uses of fgd->hash must be taken with the graph_lock
5811 	 * held. The graph_lock is going to be released, so force
5812 	 * fgd->hash to be reinitialized when it is taken again.
5813 	 */
5814 	fgd->hash = NULL;
5815 
5816 	return ret;
5817 }
5818 
5819 static int
5820 ftrace_graph_open(struct inode *inode, struct file *file)
5821 {
5822 	struct ftrace_graph_data *fgd;
5823 	int ret;
5824 
5825 	if (unlikely(ftrace_disabled))
5826 		return -ENODEV;
5827 
5828 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5829 	if (fgd == NULL)
5830 		return -ENOMEM;
5831 
5832 	mutex_lock(&graph_lock);
5833 
5834 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5835 					lockdep_is_held(&graph_lock));
5836 	fgd->type = GRAPH_FILTER_FUNCTION;
5837 	fgd->seq_ops = &ftrace_graph_seq_ops;
5838 
5839 	ret = __ftrace_graph_open(inode, file, fgd);
5840 	if (ret < 0)
5841 		kfree(fgd);
5842 
5843 	mutex_unlock(&graph_lock);
5844 	return ret;
5845 }
5846 
5847 static int
5848 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5849 {
5850 	struct ftrace_graph_data *fgd;
5851 	int ret;
5852 
5853 	if (unlikely(ftrace_disabled))
5854 		return -ENODEV;
5855 
5856 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5857 	if (fgd == NULL)
5858 		return -ENOMEM;
5859 
5860 	mutex_lock(&graph_lock);
5861 
5862 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5863 					lockdep_is_held(&graph_lock));
5864 	fgd->type = GRAPH_FILTER_NOTRACE;
5865 	fgd->seq_ops = &ftrace_graph_seq_ops;
5866 
5867 	ret = __ftrace_graph_open(inode, file, fgd);
5868 	if (ret < 0)
5869 		kfree(fgd);
5870 
5871 	mutex_unlock(&graph_lock);
5872 	return ret;
5873 }
5874 
5875 static int
5876 ftrace_graph_release(struct inode *inode, struct file *file)
5877 {
5878 	struct ftrace_graph_data *fgd;
5879 	struct ftrace_hash *old_hash, *new_hash;
5880 	struct trace_parser *parser;
5881 	int ret = 0;
5882 
5883 	if (file->f_mode & FMODE_READ) {
5884 		struct seq_file *m = file->private_data;
5885 
5886 		fgd = m->private;
5887 		seq_release(inode, file);
5888 	} else {
5889 		fgd = file->private_data;
5890 	}
5891 
5892 
5893 	if (file->f_mode & FMODE_WRITE) {
5894 
5895 		parser = &fgd->parser;
5896 
5897 		if (trace_parser_loaded((parser))) {
5898 			ret = ftrace_graph_set_hash(fgd->new_hash,
5899 						    parser->buffer);
5900 		}
5901 
5902 		trace_parser_put(parser);
5903 
5904 		new_hash = __ftrace_hash_move(fgd->new_hash);
5905 		if (!new_hash) {
5906 			ret = -ENOMEM;
5907 			goto out;
5908 		}
5909 
5910 		mutex_lock(&graph_lock);
5911 
5912 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5913 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5914 					lockdep_is_held(&graph_lock));
5915 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5916 		} else {
5917 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5918 					lockdep_is_held(&graph_lock));
5919 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5920 		}
5921 
5922 		mutex_unlock(&graph_lock);
5923 
5924 		/*
5925 		 * We need to do a hard force of sched synchronization.
5926 		 * This is because we use preempt_disable() to do RCU, but
5927 		 * the function tracers can be called where RCU is not watching
5928 		 * (like before user_exit()). We can not rely on the RCU
5929 		 * infrastructure to do the synchronization, thus we must do it
5930 		 * ourselves.
5931 		 */
5932 		synchronize_rcu_tasks_rude();
5933 
5934 		free_ftrace_hash(old_hash);
5935 	}
5936 
5937  out:
5938 	free_ftrace_hash(fgd->new_hash);
5939 	kfree(fgd);
5940 
5941 	return ret;
5942 }
5943 
5944 static int
5945 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5946 {
5947 	struct ftrace_glob func_g;
5948 	struct dyn_ftrace *rec;
5949 	struct ftrace_page *pg;
5950 	struct ftrace_func_entry *entry;
5951 	int fail = 1;
5952 	int not;
5953 
5954 	/* decode regex */
5955 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
5956 					 &func_g.search, &not);
5957 
5958 	func_g.len = strlen(func_g.search);
5959 
5960 	mutex_lock(&ftrace_lock);
5961 
5962 	if (unlikely(ftrace_disabled)) {
5963 		mutex_unlock(&ftrace_lock);
5964 		return -ENODEV;
5965 	}
5966 
5967 	do_for_each_ftrace_rec(pg, rec) {
5968 
5969 		if (rec->flags & FTRACE_FL_DISABLED)
5970 			continue;
5971 
5972 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
5973 			entry = ftrace_lookup_ip(hash, rec->ip);
5974 
5975 			if (!not) {
5976 				fail = 0;
5977 
5978 				if (entry)
5979 					continue;
5980 				if (add_hash_entry(hash, rec->ip) < 0)
5981 					goto out;
5982 			} else {
5983 				if (entry) {
5984 					free_hash_entry(hash, entry);
5985 					fail = 0;
5986 				}
5987 			}
5988 		}
5989 	} while_for_each_ftrace_rec();
5990 out:
5991 	mutex_unlock(&ftrace_lock);
5992 
5993 	if (fail)
5994 		return -EINVAL;
5995 
5996 	return 0;
5997 }
5998 
5999 static ssize_t
6000 ftrace_graph_write(struct file *file, const char __user *ubuf,
6001 		   size_t cnt, loff_t *ppos)
6002 {
6003 	ssize_t read, ret = 0;
6004 	struct ftrace_graph_data *fgd = file->private_data;
6005 	struct trace_parser *parser;
6006 
6007 	if (!cnt)
6008 		return 0;
6009 
6010 	/* Read mode uses seq functions */
6011 	if (file->f_mode & FMODE_READ) {
6012 		struct seq_file *m = file->private_data;
6013 		fgd = m->private;
6014 	}
6015 
6016 	parser = &fgd->parser;
6017 
6018 	read = trace_get_user(parser, ubuf, cnt, ppos);
6019 
6020 	if (read >= 0 && trace_parser_loaded(parser) &&
6021 	    !trace_parser_cont(parser)) {
6022 
6023 		ret = ftrace_graph_set_hash(fgd->new_hash,
6024 					    parser->buffer);
6025 		trace_parser_clear(parser);
6026 	}
6027 
6028 	if (!ret)
6029 		ret = read;
6030 
6031 	return ret;
6032 }
6033 
6034 static const struct file_operations ftrace_graph_fops = {
6035 	.open		= ftrace_graph_open,
6036 	.read		= seq_read,
6037 	.write		= ftrace_graph_write,
6038 	.llseek		= tracing_lseek,
6039 	.release	= ftrace_graph_release,
6040 };
6041 
6042 static const struct file_operations ftrace_graph_notrace_fops = {
6043 	.open		= ftrace_graph_notrace_open,
6044 	.read		= seq_read,
6045 	.write		= ftrace_graph_write,
6046 	.llseek		= tracing_lseek,
6047 	.release	= ftrace_graph_release,
6048 };
6049 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6050 
6051 void ftrace_create_filter_files(struct ftrace_ops *ops,
6052 				struct dentry *parent)
6053 {
6054 
6055 	trace_create_file("set_ftrace_filter", 0644, parent,
6056 			  ops, &ftrace_filter_fops);
6057 
6058 	trace_create_file("set_ftrace_notrace", 0644, parent,
6059 			  ops, &ftrace_notrace_fops);
6060 }
6061 
6062 /*
6063  * The name "destroy_filter_files" is really a misnomer. Although
6064  * in the future, it may actually delete the files, but this is
6065  * really intended to make sure the ops passed in are disabled
6066  * and that when this function returns, the caller is free to
6067  * free the ops.
6068  *
6069  * The "destroy" name is only to match the "create" name that this
6070  * should be paired with.
6071  */
6072 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6073 {
6074 	mutex_lock(&ftrace_lock);
6075 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6076 		ftrace_shutdown(ops, 0);
6077 	ops->flags |= FTRACE_OPS_FL_DELETED;
6078 	ftrace_free_filter(ops);
6079 	mutex_unlock(&ftrace_lock);
6080 }
6081 
6082 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6083 {
6084 
6085 	trace_create_file("available_filter_functions", 0444,
6086 			d_tracer, NULL, &ftrace_avail_fops);
6087 
6088 	trace_create_file("enabled_functions", 0444,
6089 			d_tracer, NULL, &ftrace_enabled_fops);
6090 
6091 	ftrace_create_filter_files(&global_ops, d_tracer);
6092 
6093 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6094 	trace_create_file("set_graph_function", 0644, d_tracer,
6095 				    NULL,
6096 				    &ftrace_graph_fops);
6097 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6098 				    NULL,
6099 				    &ftrace_graph_notrace_fops);
6100 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6101 
6102 	return 0;
6103 }
6104 
6105 static int ftrace_cmp_ips(const void *a, const void *b)
6106 {
6107 	const unsigned long *ipa = a;
6108 	const unsigned long *ipb = b;
6109 
6110 	if (*ipa > *ipb)
6111 		return 1;
6112 	if (*ipa < *ipb)
6113 		return -1;
6114 	return 0;
6115 }
6116 
6117 static int ftrace_process_locs(struct module *mod,
6118 			       unsigned long *start,
6119 			       unsigned long *end)
6120 {
6121 	struct ftrace_page *start_pg;
6122 	struct ftrace_page *pg;
6123 	struct dyn_ftrace *rec;
6124 	unsigned long count;
6125 	unsigned long *p;
6126 	unsigned long addr;
6127 	unsigned long flags = 0; /* Shut up gcc */
6128 	int ret = -ENOMEM;
6129 
6130 	count = end - start;
6131 
6132 	if (!count)
6133 		return 0;
6134 
6135 	sort(start, count, sizeof(*start),
6136 	     ftrace_cmp_ips, NULL);
6137 
6138 	start_pg = ftrace_allocate_pages(count);
6139 	if (!start_pg)
6140 		return -ENOMEM;
6141 
6142 	mutex_lock(&ftrace_lock);
6143 
6144 	/*
6145 	 * Core and each module needs their own pages, as
6146 	 * modules will free them when they are removed.
6147 	 * Force a new page to be allocated for modules.
6148 	 */
6149 	if (!mod) {
6150 		WARN_ON(ftrace_pages || ftrace_pages_start);
6151 		/* First initialization */
6152 		ftrace_pages = ftrace_pages_start = start_pg;
6153 	} else {
6154 		if (!ftrace_pages)
6155 			goto out;
6156 
6157 		if (WARN_ON(ftrace_pages->next)) {
6158 			/* Hmm, we have free pages? */
6159 			while (ftrace_pages->next)
6160 				ftrace_pages = ftrace_pages->next;
6161 		}
6162 
6163 		ftrace_pages->next = start_pg;
6164 	}
6165 
6166 	p = start;
6167 	pg = start_pg;
6168 	while (p < end) {
6169 		addr = ftrace_call_adjust(*p++);
6170 		/*
6171 		 * Some architecture linkers will pad between
6172 		 * the different mcount_loc sections of different
6173 		 * object files to satisfy alignments.
6174 		 * Skip any NULL pointers.
6175 		 */
6176 		if (!addr)
6177 			continue;
6178 
6179 		if (pg->index == pg->size) {
6180 			/* We should have allocated enough */
6181 			if (WARN_ON(!pg->next))
6182 				break;
6183 			pg = pg->next;
6184 		}
6185 
6186 		rec = &pg->records[pg->index++];
6187 		rec->ip = addr;
6188 	}
6189 
6190 	/* We should have used all pages */
6191 	WARN_ON(pg->next);
6192 
6193 	/* Assign the last page to ftrace_pages */
6194 	ftrace_pages = pg;
6195 
6196 	/*
6197 	 * We only need to disable interrupts on start up
6198 	 * because we are modifying code that an interrupt
6199 	 * may execute, and the modification is not atomic.
6200 	 * But for modules, nothing runs the code we modify
6201 	 * until we are finished with it, and there's no
6202 	 * reason to cause large interrupt latencies while we do it.
6203 	 */
6204 	if (!mod)
6205 		local_irq_save(flags);
6206 	ftrace_update_code(mod, start_pg);
6207 	if (!mod)
6208 		local_irq_restore(flags);
6209 	ret = 0;
6210  out:
6211 	mutex_unlock(&ftrace_lock);
6212 
6213 	return ret;
6214 }
6215 
6216 struct ftrace_mod_func {
6217 	struct list_head	list;
6218 	char			*name;
6219 	unsigned long		ip;
6220 	unsigned int		size;
6221 };
6222 
6223 struct ftrace_mod_map {
6224 	struct rcu_head		rcu;
6225 	struct list_head	list;
6226 	struct module		*mod;
6227 	unsigned long		start_addr;
6228 	unsigned long		end_addr;
6229 	struct list_head	funcs;
6230 	unsigned int		num_funcs;
6231 };
6232 
6233 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6234 					 unsigned long *value, char *type,
6235 					 char *name, char *module_name,
6236 					 int *exported)
6237 {
6238 	struct ftrace_ops *op;
6239 
6240 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6241 		if (!op->trampoline || symnum--)
6242 			continue;
6243 		*value = op->trampoline;
6244 		*type = 't';
6245 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6246 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6247 		*exported = 0;
6248 		return 0;
6249 	}
6250 
6251 	return -ERANGE;
6252 }
6253 
6254 #ifdef CONFIG_MODULES
6255 
6256 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6257 
6258 static LIST_HEAD(ftrace_mod_maps);
6259 
6260 static int referenced_filters(struct dyn_ftrace *rec)
6261 {
6262 	struct ftrace_ops *ops;
6263 	int cnt = 0;
6264 
6265 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6266 		if (ops_references_rec(ops, rec)) {
6267 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6268 				continue;
6269 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6270 				continue;
6271 			cnt++;
6272 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6273 				rec->flags |= FTRACE_FL_REGS;
6274 			if (cnt == 1 && ops->trampoline)
6275 				rec->flags |= FTRACE_FL_TRAMP;
6276 			else
6277 				rec->flags &= ~FTRACE_FL_TRAMP;
6278 		}
6279 	}
6280 
6281 	return cnt;
6282 }
6283 
6284 static void
6285 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6286 {
6287 	struct ftrace_func_entry *entry;
6288 	struct dyn_ftrace *rec;
6289 	int i;
6290 
6291 	if (ftrace_hash_empty(hash))
6292 		return;
6293 
6294 	for (i = 0; i < pg->index; i++) {
6295 		rec = &pg->records[i];
6296 		entry = __ftrace_lookup_ip(hash, rec->ip);
6297 		/*
6298 		 * Do not allow this rec to match again.
6299 		 * Yeah, it may waste some memory, but will be removed
6300 		 * if/when the hash is modified again.
6301 		 */
6302 		if (entry)
6303 			entry->ip = 0;
6304 	}
6305 }
6306 
6307 /* Clear any records from hashs */
6308 static void clear_mod_from_hashes(struct ftrace_page *pg)
6309 {
6310 	struct trace_array *tr;
6311 
6312 	mutex_lock(&trace_types_lock);
6313 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6314 		if (!tr->ops || !tr->ops->func_hash)
6315 			continue;
6316 		mutex_lock(&tr->ops->func_hash->regex_lock);
6317 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6318 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6319 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6320 	}
6321 	mutex_unlock(&trace_types_lock);
6322 }
6323 
6324 static void ftrace_free_mod_map(struct rcu_head *rcu)
6325 {
6326 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6327 	struct ftrace_mod_func *mod_func;
6328 	struct ftrace_mod_func *n;
6329 
6330 	/* All the contents of mod_map are now not visible to readers */
6331 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6332 		kfree(mod_func->name);
6333 		list_del(&mod_func->list);
6334 		kfree(mod_func);
6335 	}
6336 
6337 	kfree(mod_map);
6338 }
6339 
6340 void ftrace_release_mod(struct module *mod)
6341 {
6342 	struct ftrace_mod_map *mod_map;
6343 	struct ftrace_mod_map *n;
6344 	struct dyn_ftrace *rec;
6345 	struct ftrace_page **last_pg;
6346 	struct ftrace_page *tmp_page = NULL;
6347 	struct ftrace_page *pg;
6348 	int order;
6349 
6350 	mutex_lock(&ftrace_lock);
6351 
6352 	if (ftrace_disabled)
6353 		goto out_unlock;
6354 
6355 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6356 		if (mod_map->mod == mod) {
6357 			list_del_rcu(&mod_map->list);
6358 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6359 			break;
6360 		}
6361 	}
6362 
6363 	/*
6364 	 * Each module has its own ftrace_pages, remove
6365 	 * them from the list.
6366 	 */
6367 	last_pg = &ftrace_pages_start;
6368 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6369 		rec = &pg->records[0];
6370 		if (within_module_core(rec->ip, mod) ||
6371 		    within_module_init(rec->ip, mod)) {
6372 			/*
6373 			 * As core pages are first, the first
6374 			 * page should never be a module page.
6375 			 */
6376 			if (WARN_ON(pg == ftrace_pages_start))
6377 				goto out_unlock;
6378 
6379 			/* Check if we are deleting the last page */
6380 			if (pg == ftrace_pages)
6381 				ftrace_pages = next_to_ftrace_page(last_pg);
6382 
6383 			ftrace_update_tot_cnt -= pg->index;
6384 			*last_pg = pg->next;
6385 
6386 			pg->next = tmp_page;
6387 			tmp_page = pg;
6388 		} else
6389 			last_pg = &pg->next;
6390 	}
6391  out_unlock:
6392 	mutex_unlock(&ftrace_lock);
6393 
6394 	for (pg = tmp_page; pg; pg = tmp_page) {
6395 
6396 		/* Needs to be called outside of ftrace_lock */
6397 		clear_mod_from_hashes(pg);
6398 
6399 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6400 		free_pages((unsigned long)pg->records, order);
6401 		tmp_page = pg->next;
6402 		kfree(pg);
6403 		ftrace_number_of_pages -= 1 << order;
6404 		ftrace_number_of_groups--;
6405 	}
6406 }
6407 
6408 void ftrace_module_enable(struct module *mod)
6409 {
6410 	struct dyn_ftrace *rec;
6411 	struct ftrace_page *pg;
6412 
6413 	mutex_lock(&ftrace_lock);
6414 
6415 	if (ftrace_disabled)
6416 		goto out_unlock;
6417 
6418 	/*
6419 	 * If the tracing is enabled, go ahead and enable the record.
6420 	 *
6421 	 * The reason not to enable the record immediately is the
6422 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6423 	 * correct previous instructions.  Making first the NOP
6424 	 * conversion puts the module to the correct state, thus
6425 	 * passing the ftrace_make_call check.
6426 	 *
6427 	 * We also delay this to after the module code already set the
6428 	 * text to read-only, as we now need to set it back to read-write
6429 	 * so that we can modify the text.
6430 	 */
6431 	if (ftrace_start_up)
6432 		ftrace_arch_code_modify_prepare();
6433 
6434 	do_for_each_ftrace_rec(pg, rec) {
6435 		int cnt;
6436 		/*
6437 		 * do_for_each_ftrace_rec() is a double loop.
6438 		 * module text shares the pg. If a record is
6439 		 * not part of this module, then skip this pg,
6440 		 * which the "break" will do.
6441 		 */
6442 		if (!within_module_core(rec->ip, mod) &&
6443 		    !within_module_init(rec->ip, mod))
6444 			break;
6445 
6446 		cnt = 0;
6447 
6448 		/*
6449 		 * When adding a module, we need to check if tracers are
6450 		 * currently enabled and if they are, and can trace this record,
6451 		 * we need to enable the module functions as well as update the
6452 		 * reference counts for those function records.
6453 		 */
6454 		if (ftrace_start_up)
6455 			cnt += referenced_filters(rec);
6456 
6457 		rec->flags &= ~FTRACE_FL_DISABLED;
6458 		rec->flags += cnt;
6459 
6460 		if (ftrace_start_up && cnt) {
6461 			int failed = __ftrace_replace_code(rec, 1);
6462 			if (failed) {
6463 				ftrace_bug(failed, rec);
6464 				goto out_loop;
6465 			}
6466 		}
6467 
6468 	} while_for_each_ftrace_rec();
6469 
6470  out_loop:
6471 	if (ftrace_start_up)
6472 		ftrace_arch_code_modify_post_process();
6473 
6474  out_unlock:
6475 	mutex_unlock(&ftrace_lock);
6476 
6477 	process_cached_mods(mod->name);
6478 }
6479 
6480 void ftrace_module_init(struct module *mod)
6481 {
6482 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6483 		return;
6484 
6485 	ftrace_process_locs(mod, mod->ftrace_callsites,
6486 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6487 }
6488 
6489 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6490 				struct dyn_ftrace *rec)
6491 {
6492 	struct ftrace_mod_func *mod_func;
6493 	unsigned long symsize;
6494 	unsigned long offset;
6495 	char str[KSYM_SYMBOL_LEN];
6496 	char *modname;
6497 	const char *ret;
6498 
6499 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6500 	if (!ret)
6501 		return;
6502 
6503 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6504 	if (!mod_func)
6505 		return;
6506 
6507 	mod_func->name = kstrdup(str, GFP_KERNEL);
6508 	if (!mod_func->name) {
6509 		kfree(mod_func);
6510 		return;
6511 	}
6512 
6513 	mod_func->ip = rec->ip - offset;
6514 	mod_func->size = symsize;
6515 
6516 	mod_map->num_funcs++;
6517 
6518 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6519 }
6520 
6521 static struct ftrace_mod_map *
6522 allocate_ftrace_mod_map(struct module *mod,
6523 			unsigned long start, unsigned long end)
6524 {
6525 	struct ftrace_mod_map *mod_map;
6526 
6527 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6528 	if (!mod_map)
6529 		return NULL;
6530 
6531 	mod_map->mod = mod;
6532 	mod_map->start_addr = start;
6533 	mod_map->end_addr = end;
6534 	mod_map->num_funcs = 0;
6535 
6536 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6537 
6538 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6539 
6540 	return mod_map;
6541 }
6542 
6543 static const char *
6544 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6545 			   unsigned long addr, unsigned long *size,
6546 			   unsigned long *off, char *sym)
6547 {
6548 	struct ftrace_mod_func *found_func =  NULL;
6549 	struct ftrace_mod_func *mod_func;
6550 
6551 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6552 		if (addr >= mod_func->ip &&
6553 		    addr < mod_func->ip + mod_func->size) {
6554 			found_func = mod_func;
6555 			break;
6556 		}
6557 	}
6558 
6559 	if (found_func) {
6560 		if (size)
6561 			*size = found_func->size;
6562 		if (off)
6563 			*off = addr - found_func->ip;
6564 		if (sym)
6565 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6566 
6567 		return found_func->name;
6568 	}
6569 
6570 	return NULL;
6571 }
6572 
6573 const char *
6574 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6575 		   unsigned long *off, char **modname, char *sym)
6576 {
6577 	struct ftrace_mod_map *mod_map;
6578 	const char *ret = NULL;
6579 
6580 	/* mod_map is freed via call_rcu() */
6581 	preempt_disable();
6582 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6583 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6584 		if (ret) {
6585 			if (modname)
6586 				*modname = mod_map->mod->name;
6587 			break;
6588 		}
6589 	}
6590 	preempt_enable();
6591 
6592 	return ret;
6593 }
6594 
6595 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6596 			   char *type, char *name,
6597 			   char *module_name, int *exported)
6598 {
6599 	struct ftrace_mod_map *mod_map;
6600 	struct ftrace_mod_func *mod_func;
6601 	int ret;
6602 
6603 	preempt_disable();
6604 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6605 
6606 		if (symnum >= mod_map->num_funcs) {
6607 			symnum -= mod_map->num_funcs;
6608 			continue;
6609 		}
6610 
6611 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6612 			if (symnum > 1) {
6613 				symnum--;
6614 				continue;
6615 			}
6616 
6617 			*value = mod_func->ip;
6618 			*type = 'T';
6619 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6620 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6621 			*exported = 1;
6622 			preempt_enable();
6623 			return 0;
6624 		}
6625 		WARN_ON(1);
6626 		break;
6627 	}
6628 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6629 					    module_name, exported);
6630 	preempt_enable();
6631 	return ret;
6632 }
6633 
6634 #else
6635 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6636 				struct dyn_ftrace *rec) { }
6637 static inline struct ftrace_mod_map *
6638 allocate_ftrace_mod_map(struct module *mod,
6639 			unsigned long start, unsigned long end)
6640 {
6641 	return NULL;
6642 }
6643 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6644 			   char *type, char *name, char *module_name,
6645 			   int *exported)
6646 {
6647 	int ret;
6648 
6649 	preempt_disable();
6650 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6651 					    module_name, exported);
6652 	preempt_enable();
6653 	return ret;
6654 }
6655 #endif /* CONFIG_MODULES */
6656 
6657 struct ftrace_init_func {
6658 	struct list_head list;
6659 	unsigned long ip;
6660 };
6661 
6662 /* Clear any init ips from hashes */
6663 static void
6664 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6665 {
6666 	struct ftrace_func_entry *entry;
6667 
6668 	entry = ftrace_lookup_ip(hash, func->ip);
6669 	/*
6670 	 * Do not allow this rec to match again.
6671 	 * Yeah, it may waste some memory, but will be removed
6672 	 * if/when the hash is modified again.
6673 	 */
6674 	if (entry)
6675 		entry->ip = 0;
6676 }
6677 
6678 static void
6679 clear_func_from_hashes(struct ftrace_init_func *func)
6680 {
6681 	struct trace_array *tr;
6682 
6683 	mutex_lock(&trace_types_lock);
6684 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6685 		if (!tr->ops || !tr->ops->func_hash)
6686 			continue;
6687 		mutex_lock(&tr->ops->func_hash->regex_lock);
6688 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6689 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6690 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6691 	}
6692 	mutex_unlock(&trace_types_lock);
6693 }
6694 
6695 static void add_to_clear_hash_list(struct list_head *clear_list,
6696 				   struct dyn_ftrace *rec)
6697 {
6698 	struct ftrace_init_func *func;
6699 
6700 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6701 	if (!func) {
6702 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6703 		return;
6704 	}
6705 
6706 	func->ip = rec->ip;
6707 	list_add(&func->list, clear_list);
6708 }
6709 
6710 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6711 {
6712 	unsigned long start = (unsigned long)(start_ptr);
6713 	unsigned long end = (unsigned long)(end_ptr);
6714 	struct ftrace_page **last_pg = &ftrace_pages_start;
6715 	struct ftrace_page *pg;
6716 	struct dyn_ftrace *rec;
6717 	struct dyn_ftrace key;
6718 	struct ftrace_mod_map *mod_map = NULL;
6719 	struct ftrace_init_func *func, *func_next;
6720 	struct list_head clear_hash;
6721 	int order;
6722 
6723 	INIT_LIST_HEAD(&clear_hash);
6724 
6725 	key.ip = start;
6726 	key.flags = end;	/* overload flags, as it is unsigned long */
6727 
6728 	mutex_lock(&ftrace_lock);
6729 
6730 	/*
6731 	 * If we are freeing module init memory, then check if
6732 	 * any tracer is active. If so, we need to save a mapping of
6733 	 * the module functions being freed with the address.
6734 	 */
6735 	if (mod && ftrace_ops_list != &ftrace_list_end)
6736 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6737 
6738 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6739 		if (end < pg->records[0].ip ||
6740 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6741 			continue;
6742  again:
6743 		rec = bsearch(&key, pg->records, pg->index,
6744 			      sizeof(struct dyn_ftrace),
6745 			      ftrace_cmp_recs);
6746 		if (!rec)
6747 			continue;
6748 
6749 		/* rec will be cleared from hashes after ftrace_lock unlock */
6750 		add_to_clear_hash_list(&clear_hash, rec);
6751 
6752 		if (mod_map)
6753 			save_ftrace_mod_rec(mod_map, rec);
6754 
6755 		pg->index--;
6756 		ftrace_update_tot_cnt--;
6757 		if (!pg->index) {
6758 			*last_pg = pg->next;
6759 			order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6760 			free_pages((unsigned long)pg->records, order);
6761 			ftrace_number_of_pages -= 1 << order;
6762 			ftrace_number_of_groups--;
6763 			kfree(pg);
6764 			pg = container_of(last_pg, struct ftrace_page, next);
6765 			if (!(*last_pg))
6766 				ftrace_pages = pg;
6767 			continue;
6768 		}
6769 		memmove(rec, rec + 1,
6770 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6771 		/* More than one function may be in this block */
6772 		goto again;
6773 	}
6774 	mutex_unlock(&ftrace_lock);
6775 
6776 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6777 		clear_func_from_hashes(func);
6778 		kfree(func);
6779 	}
6780 }
6781 
6782 void __init ftrace_free_init_mem(void)
6783 {
6784 	void *start = (void *)(&__init_begin);
6785 	void *end = (void *)(&__init_end);
6786 
6787 	ftrace_free_mem(NULL, start, end);
6788 }
6789 
6790 void __init ftrace_init(void)
6791 {
6792 	extern unsigned long __start_mcount_loc[];
6793 	extern unsigned long __stop_mcount_loc[];
6794 	unsigned long count, flags;
6795 	int ret;
6796 
6797 	local_irq_save(flags);
6798 	ret = ftrace_dyn_arch_init();
6799 	local_irq_restore(flags);
6800 	if (ret)
6801 		goto failed;
6802 
6803 	count = __stop_mcount_loc - __start_mcount_loc;
6804 	if (!count) {
6805 		pr_info("ftrace: No functions to be traced?\n");
6806 		goto failed;
6807 	}
6808 
6809 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6810 		count, count / ENTRIES_PER_PAGE + 1);
6811 
6812 	last_ftrace_enabled = ftrace_enabled = 1;
6813 
6814 	ret = ftrace_process_locs(NULL,
6815 				  __start_mcount_loc,
6816 				  __stop_mcount_loc);
6817 
6818 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6819 		ftrace_number_of_pages, ftrace_number_of_groups);
6820 
6821 	set_ftrace_early_filters();
6822 
6823 	return;
6824  failed:
6825 	ftrace_disabled = 1;
6826 }
6827 
6828 /* Do nothing if arch does not support this */
6829 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6830 {
6831 }
6832 
6833 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6834 {
6835 	unsigned long trampoline = ops->trampoline;
6836 
6837 	arch_ftrace_update_trampoline(ops);
6838 	if (ops->trampoline && ops->trampoline != trampoline &&
6839 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6840 		/* Add to kallsyms before the perf events */
6841 		ftrace_add_trampoline_to_kallsyms(ops);
6842 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6843 				   ops->trampoline, ops->trampoline_size, false,
6844 				   FTRACE_TRAMPOLINE_SYM);
6845 		/*
6846 		 * Record the perf text poke event after the ksymbol register
6847 		 * event.
6848 		 */
6849 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6850 				     (void *)ops->trampoline,
6851 				     ops->trampoline_size);
6852 	}
6853 }
6854 
6855 void ftrace_init_trace_array(struct trace_array *tr)
6856 {
6857 	INIT_LIST_HEAD(&tr->func_probes);
6858 	INIT_LIST_HEAD(&tr->mod_trace);
6859 	INIT_LIST_HEAD(&tr->mod_notrace);
6860 }
6861 #else
6862 
6863 struct ftrace_ops global_ops = {
6864 	.func			= ftrace_stub,
6865 	.flags			= FTRACE_OPS_FL_RECURSION_SAFE |
6866 				  FTRACE_OPS_FL_INITIALIZED |
6867 				  FTRACE_OPS_FL_PID,
6868 };
6869 
6870 static int __init ftrace_nodyn_init(void)
6871 {
6872 	ftrace_enabled = 1;
6873 	return 0;
6874 }
6875 core_initcall(ftrace_nodyn_init);
6876 
6877 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6878 static inline void ftrace_startup_enable(int command) { }
6879 static inline void ftrace_startup_all(int command) { }
6880 
6881 # define ftrace_startup_sysctl()	do { } while (0)
6882 # define ftrace_shutdown_sysctl()	do { } while (0)
6883 
6884 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6885 {
6886 }
6887 
6888 #endif /* CONFIG_DYNAMIC_FTRACE */
6889 
6890 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6891 {
6892 	tr->ops = &global_ops;
6893 	tr->ops->private = tr;
6894 	ftrace_init_trace_array(tr);
6895 }
6896 
6897 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6898 {
6899 	/* If we filter on pids, update to use the pid function */
6900 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6901 		if (WARN_ON(tr->ops->func != ftrace_stub))
6902 			printk("ftrace ops had %pS for function\n",
6903 			       tr->ops->func);
6904 	}
6905 	tr->ops->func = func;
6906 	tr->ops->private = tr;
6907 }
6908 
6909 void ftrace_reset_array_ops(struct trace_array *tr)
6910 {
6911 	tr->ops->func = ftrace_stub;
6912 }
6913 
6914 static nokprobe_inline void
6915 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6916 		       struct ftrace_ops *ignored, struct pt_regs *regs)
6917 {
6918 	struct ftrace_ops *op;
6919 	int bit;
6920 
6921 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6922 	if (bit < 0)
6923 		return;
6924 
6925 	/*
6926 	 * Some of the ops may be dynamically allocated,
6927 	 * they must be freed after a synchronize_rcu().
6928 	 */
6929 	preempt_disable_notrace();
6930 
6931 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6932 		/* Stub functions don't need to be called nor tested */
6933 		if (op->flags & FTRACE_OPS_FL_STUB)
6934 			continue;
6935 		/*
6936 		 * Check the following for each ops before calling their func:
6937 		 *  if RCU flag is set, then rcu_is_watching() must be true
6938 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6939 		 *                          must be false
6940 		 *  Otherwise test if the ip matches the ops filter
6941 		 *
6942 		 * If any of the above fails then the op->func() is not executed.
6943 		 */
6944 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6945 		    ftrace_ops_test(op, ip, regs)) {
6946 			if (FTRACE_WARN_ON(!op->func)) {
6947 				pr_warn("op=%p %pS\n", op, op);
6948 				goto out;
6949 			}
6950 			op->func(ip, parent_ip, op, regs);
6951 		}
6952 	} while_for_each_ftrace_op(op);
6953 out:
6954 	preempt_enable_notrace();
6955 	trace_clear_recursion(bit);
6956 }
6957 
6958 /*
6959  * Some archs only support passing ip and parent_ip. Even though
6960  * the list function ignores the op parameter, we do not want any
6961  * C side effects, where a function is called without the caller
6962  * sending a third parameter.
6963  * Archs are to support both the regs and ftrace_ops at the same time.
6964  * If they support ftrace_ops, it is assumed they support regs.
6965  * If call backs want to use regs, they must either check for regs
6966  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
6967  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
6968  * An architecture can pass partial regs with ftrace_ops and still
6969  * set the ARCH_SUPPORTS_FTRACE_OPS.
6970  */
6971 #if ARCH_SUPPORTS_FTRACE_OPS
6972 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6973 				 struct ftrace_ops *op, struct pt_regs *regs)
6974 {
6975 	__ftrace_ops_list_func(ip, parent_ip, NULL, regs);
6976 }
6977 NOKPROBE_SYMBOL(ftrace_ops_list_func);
6978 #else
6979 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
6980 {
6981 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
6982 }
6983 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
6984 #endif
6985 
6986 /*
6987  * If there's only one function registered but it does not support
6988  * recursion, needs RCU protection and/or requires per cpu handling, then
6989  * this function will be called by the mcount trampoline.
6990  */
6991 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
6992 				   struct ftrace_ops *op, struct pt_regs *regs)
6993 {
6994 	int bit;
6995 
6996 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6997 	if (bit < 0)
6998 		return;
6999 
7000 	preempt_disable_notrace();
7001 
7002 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7003 		op->func(ip, parent_ip, op, regs);
7004 
7005 	preempt_enable_notrace();
7006 	trace_clear_recursion(bit);
7007 }
7008 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7009 
7010 /**
7011  * ftrace_ops_get_func - get the function a trampoline should call
7012  * @ops: the ops to get the function for
7013  *
7014  * Normally the mcount trampoline will call the ops->func, but there
7015  * are times that it should not. For example, if the ops does not
7016  * have its own recursion protection, then it should call the
7017  * ftrace_ops_assist_func() instead.
7018  *
7019  * Returns the function that the trampoline should call for @ops.
7020  */
7021 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7022 {
7023 	/*
7024 	 * If the function does not handle recursion, needs to be RCU safe,
7025 	 * or does per cpu logic, then we need to call the assist handler.
7026 	 */
7027 	if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
7028 	    ops->flags & FTRACE_OPS_FL_RCU)
7029 		return ftrace_ops_assist_func;
7030 
7031 	return ops->func;
7032 }
7033 
7034 static void
7035 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7036 		    struct task_struct *prev, struct task_struct *next)
7037 {
7038 	struct trace_array *tr = data;
7039 	struct trace_pid_list *pid_list;
7040 	struct trace_pid_list *no_pid_list;
7041 
7042 	pid_list = rcu_dereference_sched(tr->function_pids);
7043 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7044 
7045 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7046 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7047 			       FTRACE_PID_IGNORE);
7048 	else
7049 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7050 			       next->pid);
7051 }
7052 
7053 static void
7054 ftrace_pid_follow_sched_process_fork(void *data,
7055 				     struct task_struct *self,
7056 				     struct task_struct *task)
7057 {
7058 	struct trace_pid_list *pid_list;
7059 	struct trace_array *tr = data;
7060 
7061 	pid_list = rcu_dereference_sched(tr->function_pids);
7062 	trace_filter_add_remove_task(pid_list, self, task);
7063 
7064 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7065 	trace_filter_add_remove_task(pid_list, self, task);
7066 }
7067 
7068 static void
7069 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7070 {
7071 	struct trace_pid_list *pid_list;
7072 	struct trace_array *tr = data;
7073 
7074 	pid_list = rcu_dereference_sched(tr->function_pids);
7075 	trace_filter_add_remove_task(pid_list, NULL, task);
7076 
7077 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7078 	trace_filter_add_remove_task(pid_list, NULL, task);
7079 }
7080 
7081 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7082 {
7083 	if (enable) {
7084 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7085 						  tr);
7086 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7087 						  tr);
7088 	} else {
7089 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7090 						    tr);
7091 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7092 						    tr);
7093 	}
7094 }
7095 
7096 static void clear_ftrace_pids(struct trace_array *tr, int type)
7097 {
7098 	struct trace_pid_list *pid_list;
7099 	struct trace_pid_list *no_pid_list;
7100 	int cpu;
7101 
7102 	pid_list = rcu_dereference_protected(tr->function_pids,
7103 					     lockdep_is_held(&ftrace_lock));
7104 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7105 						lockdep_is_held(&ftrace_lock));
7106 
7107 	/* Make sure there's something to do */
7108 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7109 		return;
7110 
7111 	/* See if the pids still need to be checked after this */
7112 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7113 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7114 		for_each_possible_cpu(cpu)
7115 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7116 	}
7117 
7118 	if (type & TRACE_PIDS)
7119 		rcu_assign_pointer(tr->function_pids, NULL);
7120 
7121 	if (type & TRACE_NO_PIDS)
7122 		rcu_assign_pointer(tr->function_no_pids, NULL);
7123 
7124 	/* Wait till all users are no longer using pid filtering */
7125 	synchronize_rcu();
7126 
7127 	if ((type & TRACE_PIDS) && pid_list)
7128 		trace_free_pid_list(pid_list);
7129 
7130 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7131 		trace_free_pid_list(no_pid_list);
7132 }
7133 
7134 void ftrace_clear_pids(struct trace_array *tr)
7135 {
7136 	mutex_lock(&ftrace_lock);
7137 
7138 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7139 
7140 	mutex_unlock(&ftrace_lock);
7141 }
7142 
7143 static void ftrace_pid_reset(struct trace_array *tr, int type)
7144 {
7145 	mutex_lock(&ftrace_lock);
7146 	clear_ftrace_pids(tr, type);
7147 
7148 	ftrace_update_pid_func();
7149 	ftrace_startup_all(0);
7150 
7151 	mutex_unlock(&ftrace_lock);
7152 }
7153 
7154 /* Greater than any max PID */
7155 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7156 
7157 static void *fpid_start(struct seq_file *m, loff_t *pos)
7158 	__acquires(RCU)
7159 {
7160 	struct trace_pid_list *pid_list;
7161 	struct trace_array *tr = m->private;
7162 
7163 	mutex_lock(&ftrace_lock);
7164 	rcu_read_lock_sched();
7165 
7166 	pid_list = rcu_dereference_sched(tr->function_pids);
7167 
7168 	if (!pid_list)
7169 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7170 
7171 	return trace_pid_start(pid_list, pos);
7172 }
7173 
7174 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7175 {
7176 	struct trace_array *tr = m->private;
7177 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7178 
7179 	if (v == FTRACE_NO_PIDS) {
7180 		(*pos)++;
7181 		return NULL;
7182 	}
7183 	return trace_pid_next(pid_list, v, pos);
7184 }
7185 
7186 static void fpid_stop(struct seq_file *m, void *p)
7187 	__releases(RCU)
7188 {
7189 	rcu_read_unlock_sched();
7190 	mutex_unlock(&ftrace_lock);
7191 }
7192 
7193 static int fpid_show(struct seq_file *m, void *v)
7194 {
7195 	if (v == FTRACE_NO_PIDS) {
7196 		seq_puts(m, "no pid\n");
7197 		return 0;
7198 	}
7199 
7200 	return trace_pid_show(m, v);
7201 }
7202 
7203 static const struct seq_operations ftrace_pid_sops = {
7204 	.start = fpid_start,
7205 	.next = fpid_next,
7206 	.stop = fpid_stop,
7207 	.show = fpid_show,
7208 };
7209 
7210 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7211 	__acquires(RCU)
7212 {
7213 	struct trace_pid_list *pid_list;
7214 	struct trace_array *tr = m->private;
7215 
7216 	mutex_lock(&ftrace_lock);
7217 	rcu_read_lock_sched();
7218 
7219 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7220 
7221 	if (!pid_list)
7222 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7223 
7224 	return trace_pid_start(pid_list, pos);
7225 }
7226 
7227 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7228 {
7229 	struct trace_array *tr = m->private;
7230 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7231 
7232 	if (v == FTRACE_NO_PIDS) {
7233 		(*pos)++;
7234 		return NULL;
7235 	}
7236 	return trace_pid_next(pid_list, v, pos);
7237 }
7238 
7239 static const struct seq_operations ftrace_no_pid_sops = {
7240 	.start = fnpid_start,
7241 	.next = fnpid_next,
7242 	.stop = fpid_stop,
7243 	.show = fpid_show,
7244 };
7245 
7246 static int pid_open(struct inode *inode, struct file *file, int type)
7247 {
7248 	const struct seq_operations *seq_ops;
7249 	struct trace_array *tr = inode->i_private;
7250 	struct seq_file *m;
7251 	int ret = 0;
7252 
7253 	ret = tracing_check_open_get_tr(tr);
7254 	if (ret)
7255 		return ret;
7256 
7257 	if ((file->f_mode & FMODE_WRITE) &&
7258 	    (file->f_flags & O_TRUNC))
7259 		ftrace_pid_reset(tr, type);
7260 
7261 	switch (type) {
7262 	case TRACE_PIDS:
7263 		seq_ops = &ftrace_pid_sops;
7264 		break;
7265 	case TRACE_NO_PIDS:
7266 		seq_ops = &ftrace_no_pid_sops;
7267 		break;
7268 	default:
7269 		trace_array_put(tr);
7270 		WARN_ON_ONCE(1);
7271 		return -EINVAL;
7272 	}
7273 
7274 	ret = seq_open(file, seq_ops);
7275 	if (ret < 0) {
7276 		trace_array_put(tr);
7277 	} else {
7278 		m = file->private_data;
7279 		/* copy tr over to seq ops */
7280 		m->private = tr;
7281 	}
7282 
7283 	return ret;
7284 }
7285 
7286 static int
7287 ftrace_pid_open(struct inode *inode, struct file *file)
7288 {
7289 	return pid_open(inode, file, TRACE_PIDS);
7290 }
7291 
7292 static int
7293 ftrace_no_pid_open(struct inode *inode, struct file *file)
7294 {
7295 	return pid_open(inode, file, TRACE_NO_PIDS);
7296 }
7297 
7298 static void ignore_task_cpu(void *data)
7299 {
7300 	struct trace_array *tr = data;
7301 	struct trace_pid_list *pid_list;
7302 	struct trace_pid_list *no_pid_list;
7303 
7304 	/*
7305 	 * This function is called by on_each_cpu() while the
7306 	 * event_mutex is held.
7307 	 */
7308 	pid_list = rcu_dereference_protected(tr->function_pids,
7309 					     mutex_is_locked(&ftrace_lock));
7310 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7311 						mutex_is_locked(&ftrace_lock));
7312 
7313 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7314 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7315 			       FTRACE_PID_IGNORE);
7316 	else
7317 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7318 			       current->pid);
7319 }
7320 
7321 static ssize_t
7322 pid_write(struct file *filp, const char __user *ubuf,
7323 	  size_t cnt, loff_t *ppos, int type)
7324 {
7325 	struct seq_file *m = filp->private_data;
7326 	struct trace_array *tr = m->private;
7327 	struct trace_pid_list *filtered_pids;
7328 	struct trace_pid_list *other_pids;
7329 	struct trace_pid_list *pid_list;
7330 	ssize_t ret;
7331 
7332 	if (!cnt)
7333 		return 0;
7334 
7335 	mutex_lock(&ftrace_lock);
7336 
7337 	switch (type) {
7338 	case TRACE_PIDS:
7339 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7340 					     lockdep_is_held(&ftrace_lock));
7341 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7342 					     lockdep_is_held(&ftrace_lock));
7343 		break;
7344 	case TRACE_NO_PIDS:
7345 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7346 					     lockdep_is_held(&ftrace_lock));
7347 		other_pids = rcu_dereference_protected(tr->function_pids,
7348 					     lockdep_is_held(&ftrace_lock));
7349 		break;
7350 	default:
7351 		ret = -EINVAL;
7352 		WARN_ON_ONCE(1);
7353 		goto out;
7354 	}
7355 
7356 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7357 	if (ret < 0)
7358 		goto out;
7359 
7360 	switch (type) {
7361 	case TRACE_PIDS:
7362 		rcu_assign_pointer(tr->function_pids, pid_list);
7363 		break;
7364 	case TRACE_NO_PIDS:
7365 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7366 		break;
7367 	}
7368 
7369 
7370 	if (filtered_pids) {
7371 		synchronize_rcu();
7372 		trace_free_pid_list(filtered_pids);
7373 	} else if (pid_list && !other_pids) {
7374 		/* Register a probe to set whether to ignore the tracing of a task */
7375 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7376 	}
7377 
7378 	/*
7379 	 * Ignoring of pids is done at task switch. But we have to
7380 	 * check for those tasks that are currently running.
7381 	 * Always do this in case a pid was appended or removed.
7382 	 */
7383 	on_each_cpu(ignore_task_cpu, tr, 1);
7384 
7385 	ftrace_update_pid_func();
7386 	ftrace_startup_all(0);
7387  out:
7388 	mutex_unlock(&ftrace_lock);
7389 
7390 	if (ret > 0)
7391 		*ppos += ret;
7392 
7393 	return ret;
7394 }
7395 
7396 static ssize_t
7397 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7398 		 size_t cnt, loff_t *ppos)
7399 {
7400 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7401 }
7402 
7403 static ssize_t
7404 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7405 		    size_t cnt, loff_t *ppos)
7406 {
7407 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7408 }
7409 
7410 static int
7411 ftrace_pid_release(struct inode *inode, struct file *file)
7412 {
7413 	struct trace_array *tr = inode->i_private;
7414 
7415 	trace_array_put(tr);
7416 
7417 	return seq_release(inode, file);
7418 }
7419 
7420 static const struct file_operations ftrace_pid_fops = {
7421 	.open		= ftrace_pid_open,
7422 	.write		= ftrace_pid_write,
7423 	.read		= seq_read,
7424 	.llseek		= tracing_lseek,
7425 	.release	= ftrace_pid_release,
7426 };
7427 
7428 static const struct file_operations ftrace_no_pid_fops = {
7429 	.open		= ftrace_no_pid_open,
7430 	.write		= ftrace_no_pid_write,
7431 	.read		= seq_read,
7432 	.llseek		= tracing_lseek,
7433 	.release	= ftrace_pid_release,
7434 };
7435 
7436 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7437 {
7438 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7439 			    tr, &ftrace_pid_fops);
7440 	trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7441 			    tr, &ftrace_no_pid_fops);
7442 }
7443 
7444 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7445 					 struct dentry *d_tracer)
7446 {
7447 	/* Only the top level directory has the dyn_tracefs and profile */
7448 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7449 
7450 	ftrace_init_dyn_tracefs(d_tracer);
7451 	ftrace_profile_tracefs(d_tracer);
7452 }
7453 
7454 /**
7455  * ftrace_kill - kill ftrace
7456  *
7457  * This function should be used by panic code. It stops ftrace
7458  * but in a not so nice way. If you need to simply kill ftrace
7459  * from a non-atomic section, use ftrace_kill.
7460  */
7461 void ftrace_kill(void)
7462 {
7463 	ftrace_disabled = 1;
7464 	ftrace_enabled = 0;
7465 	ftrace_trace_function = ftrace_stub;
7466 }
7467 
7468 /**
7469  * Test if ftrace is dead or not.
7470  */
7471 int ftrace_is_dead(void)
7472 {
7473 	return ftrace_disabled;
7474 }
7475 
7476 /**
7477  * register_ftrace_function - register a function for profiling
7478  * @ops - ops structure that holds the function for profiling.
7479  *
7480  * Register a function to be called by all functions in the
7481  * kernel.
7482  *
7483  * Note: @ops->func and all the functions it calls must be labeled
7484  *       with "notrace", otherwise it will go into a
7485  *       recursive loop.
7486  */
7487 int register_ftrace_function(struct ftrace_ops *ops)
7488 {
7489 	int ret = -1;
7490 
7491 	ftrace_ops_init(ops);
7492 
7493 	mutex_lock(&ftrace_lock);
7494 
7495 	ret = ftrace_startup(ops, 0);
7496 
7497 	mutex_unlock(&ftrace_lock);
7498 
7499 	return ret;
7500 }
7501 EXPORT_SYMBOL_GPL(register_ftrace_function);
7502 
7503 /**
7504  * unregister_ftrace_function - unregister a function for profiling.
7505  * @ops - ops structure that holds the function to unregister
7506  *
7507  * Unregister a function that was added to be called by ftrace profiling.
7508  */
7509 int unregister_ftrace_function(struct ftrace_ops *ops)
7510 {
7511 	int ret;
7512 
7513 	mutex_lock(&ftrace_lock);
7514 	ret = ftrace_shutdown(ops, 0);
7515 	mutex_unlock(&ftrace_lock);
7516 
7517 	return ret;
7518 }
7519 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7520 
7521 static bool is_permanent_ops_registered(void)
7522 {
7523 	struct ftrace_ops *op;
7524 
7525 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7526 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7527 			return true;
7528 	} while_for_each_ftrace_op(op);
7529 
7530 	return false;
7531 }
7532 
7533 int
7534 ftrace_enable_sysctl(struct ctl_table *table, int write,
7535 		     void *buffer, size_t *lenp, loff_t *ppos)
7536 {
7537 	int ret = -ENODEV;
7538 
7539 	mutex_lock(&ftrace_lock);
7540 
7541 	if (unlikely(ftrace_disabled))
7542 		goto out;
7543 
7544 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7545 
7546 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7547 		goto out;
7548 
7549 	if (ftrace_enabled) {
7550 
7551 		/* we are starting ftrace again */
7552 		if (rcu_dereference_protected(ftrace_ops_list,
7553 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7554 			update_ftrace_function();
7555 
7556 		ftrace_startup_sysctl();
7557 
7558 	} else {
7559 		if (is_permanent_ops_registered()) {
7560 			ftrace_enabled = true;
7561 			ret = -EBUSY;
7562 			goto out;
7563 		}
7564 
7565 		/* stopping ftrace calls (just send to ftrace_stub) */
7566 		ftrace_trace_function = ftrace_stub;
7567 
7568 		ftrace_shutdown_sysctl();
7569 	}
7570 
7571 	last_ftrace_enabled = !!ftrace_enabled;
7572  out:
7573 	mutex_unlock(&ftrace_lock);
7574 	return ret;
7575 }
7576