1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 /* Defined by vmlinux.lds.h see the commment above arch_ftrace_ops_list_func for details */ 123 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct ftrace_regs *fregs); 125 126 static inline void ftrace_ops_init(struct ftrace_ops *ops) 127 { 128 #ifdef CONFIG_DYNAMIC_FTRACE 129 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 130 mutex_init(&ops->local_hash.regex_lock); 131 ops->func_hash = &ops->local_hash; 132 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 133 } 134 #endif 135 } 136 137 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 138 struct ftrace_ops *op, struct ftrace_regs *fregs) 139 { 140 struct trace_array *tr = op->private; 141 int pid; 142 143 if (tr) { 144 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 145 if (pid == FTRACE_PID_IGNORE) 146 return; 147 if (pid != FTRACE_PID_TRACE && 148 pid != current->pid) 149 return; 150 } 151 152 op->saved_func(ip, parent_ip, op, fregs); 153 } 154 155 static void ftrace_sync_ipi(void *data) 156 { 157 /* Probably not needed, but do it anyway */ 158 smp_rmb(); 159 } 160 161 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 162 { 163 /* 164 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 165 * then it needs to call the list anyway. 166 */ 167 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 168 FTRACE_FORCE_LIST_FUNC) 169 return ftrace_ops_list_func; 170 171 return ftrace_ops_get_func(ops); 172 } 173 174 static void update_ftrace_function(void) 175 { 176 ftrace_func_t func; 177 178 /* 179 * Prepare the ftrace_ops that the arch callback will use. 180 * If there's only one ftrace_ops registered, the ftrace_ops_list 181 * will point to the ops we want. 182 */ 183 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 184 lockdep_is_held(&ftrace_lock)); 185 186 /* If there's no ftrace_ops registered, just call the stub function */ 187 if (set_function_trace_op == &ftrace_list_end) { 188 func = ftrace_stub; 189 190 /* 191 * If we are at the end of the list and this ops is 192 * recursion safe and not dynamic and the arch supports passing ops, 193 * then have the mcount trampoline call the function directly. 194 */ 195 } else if (rcu_dereference_protected(ftrace_ops_list->next, 196 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 197 func = ftrace_ops_get_list_func(ftrace_ops_list); 198 199 } else { 200 /* Just use the default ftrace_ops */ 201 set_function_trace_op = &ftrace_list_end; 202 func = ftrace_ops_list_func; 203 } 204 205 update_function_graph_func(); 206 207 /* If there's no change, then do nothing more here */ 208 if (ftrace_trace_function == func) 209 return; 210 211 /* 212 * If we are using the list function, it doesn't care 213 * about the function_trace_ops. 214 */ 215 if (func == ftrace_ops_list_func) { 216 ftrace_trace_function = func; 217 /* 218 * Don't even bother setting function_trace_ops, 219 * it would be racy to do so anyway. 220 */ 221 return; 222 } 223 224 #ifndef CONFIG_DYNAMIC_FTRACE 225 /* 226 * For static tracing, we need to be a bit more careful. 227 * The function change takes affect immediately. Thus, 228 * we need to coordinate the setting of the function_trace_ops 229 * with the setting of the ftrace_trace_function. 230 * 231 * Set the function to the list ops, which will call the 232 * function we want, albeit indirectly, but it handles the 233 * ftrace_ops and doesn't depend on function_trace_op. 234 */ 235 ftrace_trace_function = ftrace_ops_list_func; 236 /* 237 * Make sure all CPUs see this. Yes this is slow, but static 238 * tracing is slow and nasty to have enabled. 239 */ 240 synchronize_rcu_tasks_rude(); 241 /* Now all cpus are using the list ops. */ 242 function_trace_op = set_function_trace_op; 243 /* Make sure the function_trace_op is visible on all CPUs */ 244 smp_wmb(); 245 /* Nasty way to force a rmb on all cpus */ 246 smp_call_function(ftrace_sync_ipi, NULL, 1); 247 /* OK, we are all set to update the ftrace_trace_function now! */ 248 #endif /* !CONFIG_DYNAMIC_FTRACE */ 249 250 ftrace_trace_function = func; 251 } 252 253 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 254 struct ftrace_ops *ops) 255 { 256 rcu_assign_pointer(ops->next, *list); 257 258 /* 259 * We are entering ops into the list but another 260 * CPU might be walking that list. We need to make sure 261 * the ops->next pointer is valid before another CPU sees 262 * the ops pointer included into the list. 263 */ 264 rcu_assign_pointer(*list, ops); 265 } 266 267 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 268 struct ftrace_ops *ops) 269 { 270 struct ftrace_ops **p; 271 272 /* 273 * If we are removing the last function, then simply point 274 * to the ftrace_stub. 275 */ 276 if (rcu_dereference_protected(*list, 277 lockdep_is_held(&ftrace_lock)) == ops && 278 rcu_dereference_protected(ops->next, 279 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 280 *list = &ftrace_list_end; 281 return 0; 282 } 283 284 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 285 if (*p == ops) 286 break; 287 288 if (*p != ops) 289 return -1; 290 291 *p = (*p)->next; 292 return 0; 293 } 294 295 static void ftrace_update_trampoline(struct ftrace_ops *ops); 296 297 int __register_ftrace_function(struct ftrace_ops *ops) 298 { 299 if (ops->flags & FTRACE_OPS_FL_DELETED) 300 return -EINVAL; 301 302 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 303 return -EBUSY; 304 305 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 306 /* 307 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 308 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 309 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 310 */ 311 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 312 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 313 return -EINVAL; 314 315 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 316 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 317 #endif 318 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 319 return -EBUSY; 320 321 if (!is_kernel_core_data((unsigned long)ops)) 322 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 323 324 add_ftrace_ops(&ftrace_ops_list, ops); 325 326 /* Always save the function, and reset at unregistering */ 327 ops->saved_func = ops->func; 328 329 if (ftrace_pids_enabled(ops)) 330 ops->func = ftrace_pid_func; 331 332 ftrace_update_trampoline(ops); 333 334 if (ftrace_enabled) 335 update_ftrace_function(); 336 337 return 0; 338 } 339 340 int __unregister_ftrace_function(struct ftrace_ops *ops) 341 { 342 int ret; 343 344 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 345 return -EBUSY; 346 347 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 348 349 if (ret < 0) 350 return ret; 351 352 if (ftrace_enabled) 353 update_ftrace_function(); 354 355 ops->func = ops->saved_func; 356 357 return 0; 358 } 359 360 static void ftrace_update_pid_func(void) 361 { 362 struct ftrace_ops *op; 363 364 /* Only do something if we are tracing something */ 365 if (ftrace_trace_function == ftrace_stub) 366 return; 367 368 do_for_each_ftrace_op(op, ftrace_ops_list) { 369 if (op->flags & FTRACE_OPS_FL_PID) { 370 op->func = ftrace_pids_enabled(op) ? 371 ftrace_pid_func : op->saved_func; 372 ftrace_update_trampoline(op); 373 } 374 } while_for_each_ftrace_op(op); 375 376 update_ftrace_function(); 377 } 378 379 #ifdef CONFIG_FUNCTION_PROFILER 380 struct ftrace_profile { 381 struct hlist_node node; 382 unsigned long ip; 383 unsigned long counter; 384 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 385 unsigned long long time; 386 unsigned long long time_squared; 387 #endif 388 }; 389 390 struct ftrace_profile_page { 391 struct ftrace_profile_page *next; 392 unsigned long index; 393 struct ftrace_profile records[]; 394 }; 395 396 struct ftrace_profile_stat { 397 atomic_t disabled; 398 struct hlist_head *hash; 399 struct ftrace_profile_page *pages; 400 struct ftrace_profile_page *start; 401 struct tracer_stat stat; 402 }; 403 404 #define PROFILE_RECORDS_SIZE \ 405 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 406 407 #define PROFILES_PER_PAGE \ 408 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 409 410 static int ftrace_profile_enabled __read_mostly; 411 412 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 413 static DEFINE_MUTEX(ftrace_profile_lock); 414 415 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 416 417 #define FTRACE_PROFILE_HASH_BITS 10 418 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 419 420 static void * 421 function_stat_next(void *v, int idx) 422 { 423 struct ftrace_profile *rec = v; 424 struct ftrace_profile_page *pg; 425 426 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 427 428 again: 429 if (idx != 0) 430 rec++; 431 432 if ((void *)rec >= (void *)&pg->records[pg->index]) { 433 pg = pg->next; 434 if (!pg) 435 return NULL; 436 rec = &pg->records[0]; 437 if (!rec->counter) 438 goto again; 439 } 440 441 return rec; 442 } 443 444 static void *function_stat_start(struct tracer_stat *trace) 445 { 446 struct ftrace_profile_stat *stat = 447 container_of(trace, struct ftrace_profile_stat, stat); 448 449 if (!stat || !stat->start) 450 return NULL; 451 452 return function_stat_next(&stat->start->records[0], 0); 453 } 454 455 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 456 /* function graph compares on total time */ 457 static int function_stat_cmp(const void *p1, const void *p2) 458 { 459 const struct ftrace_profile *a = p1; 460 const struct ftrace_profile *b = p2; 461 462 if (a->time < b->time) 463 return -1; 464 if (a->time > b->time) 465 return 1; 466 else 467 return 0; 468 } 469 #else 470 /* not function graph compares against hits */ 471 static int function_stat_cmp(const void *p1, const void *p2) 472 { 473 const struct ftrace_profile *a = p1; 474 const struct ftrace_profile *b = p2; 475 476 if (a->counter < b->counter) 477 return -1; 478 if (a->counter > b->counter) 479 return 1; 480 else 481 return 0; 482 } 483 #endif 484 485 static int function_stat_headers(struct seq_file *m) 486 { 487 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 488 seq_puts(m, " Function " 489 "Hit Time Avg s^2\n" 490 " -------- " 491 "--- ---- --- ---\n"); 492 #else 493 seq_puts(m, " Function Hit\n" 494 " -------- ---\n"); 495 #endif 496 return 0; 497 } 498 499 static int function_stat_show(struct seq_file *m, void *v) 500 { 501 struct ftrace_profile *rec = v; 502 char str[KSYM_SYMBOL_LEN]; 503 int ret = 0; 504 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 505 static struct trace_seq s; 506 unsigned long long avg; 507 unsigned long long stddev; 508 #endif 509 mutex_lock(&ftrace_profile_lock); 510 511 /* we raced with function_profile_reset() */ 512 if (unlikely(rec->counter == 0)) { 513 ret = -EBUSY; 514 goto out; 515 } 516 517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 518 avg = div64_ul(rec->time, rec->counter); 519 if (tracing_thresh && (avg < tracing_thresh)) 520 goto out; 521 #endif 522 523 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 524 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 525 526 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 527 seq_puts(m, " "); 528 529 /* Sample standard deviation (s^2) */ 530 if (rec->counter <= 1) 531 stddev = 0; 532 else { 533 /* 534 * Apply Welford's method: 535 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 536 */ 537 stddev = rec->counter * rec->time_squared - 538 rec->time * rec->time; 539 540 /* 541 * Divide only 1000 for ns^2 -> us^2 conversion. 542 * trace_print_graph_duration will divide 1000 again. 543 */ 544 stddev = div64_ul(stddev, 545 rec->counter * (rec->counter - 1) * 1000); 546 } 547 548 trace_seq_init(&s); 549 trace_print_graph_duration(rec->time, &s); 550 trace_seq_puts(&s, " "); 551 trace_print_graph_duration(avg, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(stddev, &s); 554 trace_print_seq(m, &s); 555 #endif 556 seq_putc(m, '\n'); 557 out: 558 mutex_unlock(&ftrace_profile_lock); 559 560 return ret; 561 } 562 563 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 564 { 565 struct ftrace_profile_page *pg; 566 567 pg = stat->pages = stat->start; 568 569 while (pg) { 570 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 571 pg->index = 0; 572 pg = pg->next; 573 } 574 575 memset(stat->hash, 0, 576 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 577 } 578 579 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 580 { 581 struct ftrace_profile_page *pg; 582 int functions; 583 int pages; 584 int i; 585 586 /* If we already allocated, do nothing */ 587 if (stat->pages) 588 return 0; 589 590 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 591 if (!stat->pages) 592 return -ENOMEM; 593 594 #ifdef CONFIG_DYNAMIC_FTRACE 595 functions = ftrace_update_tot_cnt; 596 #else 597 /* 598 * We do not know the number of functions that exist because 599 * dynamic tracing is what counts them. With past experience 600 * we have around 20K functions. That should be more than enough. 601 * It is highly unlikely we will execute every function in 602 * the kernel. 603 */ 604 functions = 20000; 605 #endif 606 607 pg = stat->start = stat->pages; 608 609 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 610 611 for (i = 1; i < pages; i++) { 612 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 613 if (!pg->next) 614 goto out_free; 615 pg = pg->next; 616 } 617 618 return 0; 619 620 out_free: 621 pg = stat->start; 622 while (pg) { 623 unsigned long tmp = (unsigned long)pg; 624 625 pg = pg->next; 626 free_page(tmp); 627 } 628 629 stat->pages = NULL; 630 stat->start = NULL; 631 632 return -ENOMEM; 633 } 634 635 static int ftrace_profile_init_cpu(int cpu) 636 { 637 struct ftrace_profile_stat *stat; 638 int size; 639 640 stat = &per_cpu(ftrace_profile_stats, cpu); 641 642 if (stat->hash) { 643 /* If the profile is already created, simply reset it */ 644 ftrace_profile_reset(stat); 645 return 0; 646 } 647 648 /* 649 * We are profiling all functions, but usually only a few thousand 650 * functions are hit. We'll make a hash of 1024 items. 651 */ 652 size = FTRACE_PROFILE_HASH_SIZE; 653 654 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 655 656 if (!stat->hash) 657 return -ENOMEM; 658 659 /* Preallocate the function profiling pages */ 660 if (ftrace_profile_pages_init(stat) < 0) { 661 kfree(stat->hash); 662 stat->hash = NULL; 663 return -ENOMEM; 664 } 665 666 return 0; 667 } 668 669 static int ftrace_profile_init(void) 670 { 671 int cpu; 672 int ret = 0; 673 674 for_each_possible_cpu(cpu) { 675 ret = ftrace_profile_init_cpu(cpu); 676 if (ret) 677 break; 678 } 679 680 return ret; 681 } 682 683 /* interrupts must be disabled */ 684 static struct ftrace_profile * 685 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 686 { 687 struct ftrace_profile *rec; 688 struct hlist_head *hhd; 689 unsigned long key; 690 691 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 692 hhd = &stat->hash[key]; 693 694 if (hlist_empty(hhd)) 695 return NULL; 696 697 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 698 if (rec->ip == ip) 699 return rec; 700 } 701 702 return NULL; 703 } 704 705 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 706 struct ftrace_profile *rec) 707 { 708 unsigned long key; 709 710 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 711 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 712 } 713 714 /* 715 * The memory is already allocated, this simply finds a new record to use. 716 */ 717 static struct ftrace_profile * 718 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 719 { 720 struct ftrace_profile *rec = NULL; 721 722 /* prevent recursion (from NMIs) */ 723 if (atomic_inc_return(&stat->disabled) != 1) 724 goto out; 725 726 /* 727 * Try to find the function again since an NMI 728 * could have added it 729 */ 730 rec = ftrace_find_profiled_func(stat, ip); 731 if (rec) 732 goto out; 733 734 if (stat->pages->index == PROFILES_PER_PAGE) { 735 if (!stat->pages->next) 736 goto out; 737 stat->pages = stat->pages->next; 738 } 739 740 rec = &stat->pages->records[stat->pages->index++]; 741 rec->ip = ip; 742 ftrace_add_profile(stat, rec); 743 744 out: 745 atomic_dec(&stat->disabled); 746 747 return rec; 748 } 749 750 static void 751 function_profile_call(unsigned long ip, unsigned long parent_ip, 752 struct ftrace_ops *ops, struct ftrace_regs *fregs) 753 { 754 struct ftrace_profile_stat *stat; 755 struct ftrace_profile *rec; 756 unsigned long flags; 757 758 if (!ftrace_profile_enabled) 759 return; 760 761 local_irq_save(flags); 762 763 stat = this_cpu_ptr(&ftrace_profile_stats); 764 if (!stat->hash || !ftrace_profile_enabled) 765 goto out; 766 767 rec = ftrace_find_profiled_func(stat, ip); 768 if (!rec) { 769 rec = ftrace_profile_alloc(stat, ip); 770 if (!rec) 771 goto out; 772 } 773 774 rec->counter++; 775 out: 776 local_irq_restore(flags); 777 } 778 779 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 780 static bool fgraph_graph_time = true; 781 782 void ftrace_graph_graph_time_control(bool enable) 783 { 784 fgraph_graph_time = enable; 785 } 786 787 static int profile_graph_entry(struct ftrace_graph_ent *trace) 788 { 789 struct ftrace_ret_stack *ret_stack; 790 791 function_profile_call(trace->func, 0, NULL, NULL); 792 793 /* If function graph is shutting down, ret_stack can be NULL */ 794 if (!current->ret_stack) 795 return 0; 796 797 ret_stack = ftrace_graph_get_ret_stack(current, 0); 798 if (ret_stack) 799 ret_stack->subtime = 0; 800 801 return 1; 802 } 803 804 static void profile_graph_return(struct ftrace_graph_ret *trace) 805 { 806 struct ftrace_ret_stack *ret_stack; 807 struct ftrace_profile_stat *stat; 808 unsigned long long calltime; 809 struct ftrace_profile *rec; 810 unsigned long flags; 811 812 local_irq_save(flags); 813 stat = this_cpu_ptr(&ftrace_profile_stats); 814 if (!stat->hash || !ftrace_profile_enabled) 815 goto out; 816 817 /* If the calltime was zero'd ignore it */ 818 if (!trace->calltime) 819 goto out; 820 821 calltime = trace->rettime - trace->calltime; 822 823 if (!fgraph_graph_time) { 824 825 /* Append this call time to the parent time to subtract */ 826 ret_stack = ftrace_graph_get_ret_stack(current, 1); 827 if (ret_stack) 828 ret_stack->subtime += calltime; 829 830 ret_stack = ftrace_graph_get_ret_stack(current, 0); 831 if (ret_stack && ret_stack->subtime < calltime) 832 calltime -= ret_stack->subtime; 833 else 834 calltime = 0; 835 } 836 837 rec = ftrace_find_profiled_func(stat, trace->func); 838 if (rec) { 839 rec->time += calltime; 840 rec->time_squared += calltime * calltime; 841 } 842 843 out: 844 local_irq_restore(flags); 845 } 846 847 static struct fgraph_ops fprofiler_ops = { 848 .entryfunc = &profile_graph_entry, 849 .retfunc = &profile_graph_return, 850 }; 851 852 static int register_ftrace_profiler(void) 853 { 854 return register_ftrace_graph(&fprofiler_ops); 855 } 856 857 static void unregister_ftrace_profiler(void) 858 { 859 unregister_ftrace_graph(&fprofiler_ops); 860 } 861 #else 862 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 863 .func = function_profile_call, 864 .flags = FTRACE_OPS_FL_INITIALIZED, 865 INIT_OPS_HASH(ftrace_profile_ops) 866 }; 867 868 static int register_ftrace_profiler(void) 869 { 870 return register_ftrace_function(&ftrace_profile_ops); 871 } 872 873 static void unregister_ftrace_profiler(void) 874 { 875 unregister_ftrace_function(&ftrace_profile_ops); 876 } 877 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 878 879 static ssize_t 880 ftrace_profile_write(struct file *filp, const char __user *ubuf, 881 size_t cnt, loff_t *ppos) 882 { 883 unsigned long val; 884 int ret; 885 886 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 887 if (ret) 888 return ret; 889 890 val = !!val; 891 892 mutex_lock(&ftrace_profile_lock); 893 if (ftrace_profile_enabled ^ val) { 894 if (val) { 895 ret = ftrace_profile_init(); 896 if (ret < 0) { 897 cnt = ret; 898 goto out; 899 } 900 901 ret = register_ftrace_profiler(); 902 if (ret < 0) { 903 cnt = ret; 904 goto out; 905 } 906 ftrace_profile_enabled = 1; 907 } else { 908 ftrace_profile_enabled = 0; 909 /* 910 * unregister_ftrace_profiler calls stop_machine 911 * so this acts like an synchronize_rcu. 912 */ 913 unregister_ftrace_profiler(); 914 } 915 } 916 out: 917 mutex_unlock(&ftrace_profile_lock); 918 919 *ppos += cnt; 920 921 return cnt; 922 } 923 924 static ssize_t 925 ftrace_profile_read(struct file *filp, char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 char buf[64]; /* big enough to hold a number */ 929 int r; 930 931 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 932 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 933 } 934 935 static const struct file_operations ftrace_profile_fops = { 936 .open = tracing_open_generic, 937 .read = ftrace_profile_read, 938 .write = ftrace_profile_write, 939 .llseek = default_llseek, 940 }; 941 942 /* used to initialize the real stat files */ 943 static struct tracer_stat function_stats __initdata = { 944 .name = "functions", 945 .stat_start = function_stat_start, 946 .stat_next = function_stat_next, 947 .stat_cmp = function_stat_cmp, 948 .stat_headers = function_stat_headers, 949 .stat_show = function_stat_show 950 }; 951 952 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 953 { 954 struct ftrace_profile_stat *stat; 955 struct dentry *entry; 956 char *name; 957 int ret; 958 int cpu; 959 960 for_each_possible_cpu(cpu) { 961 stat = &per_cpu(ftrace_profile_stats, cpu); 962 963 name = kasprintf(GFP_KERNEL, "function%d", cpu); 964 if (!name) { 965 /* 966 * The files created are permanent, if something happens 967 * we still do not free memory. 968 */ 969 WARN(1, 970 "Could not allocate stat file for cpu %d\n", 971 cpu); 972 return; 973 } 974 stat->stat = function_stats; 975 stat->stat.name = name; 976 ret = register_stat_tracer(&stat->stat); 977 if (ret) { 978 WARN(1, 979 "Could not register function stat for cpu %d\n", 980 cpu); 981 kfree(name); 982 return; 983 } 984 } 985 986 entry = tracefs_create_file("function_profile_enabled", 987 TRACE_MODE_WRITE, d_tracer, NULL, 988 &ftrace_profile_fops); 989 if (!entry) 990 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 991 } 992 993 #else /* CONFIG_FUNCTION_PROFILER */ 994 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 995 { 996 } 997 #endif /* CONFIG_FUNCTION_PROFILER */ 998 999 #ifdef CONFIG_DYNAMIC_FTRACE 1000 1001 static struct ftrace_ops *removed_ops; 1002 1003 /* 1004 * Set when doing a global update, like enabling all recs or disabling them. 1005 * It is not set when just updating a single ftrace_ops. 1006 */ 1007 static bool update_all_ops; 1008 1009 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1010 # error Dynamic ftrace depends on MCOUNT_RECORD 1011 #endif 1012 1013 struct ftrace_func_probe { 1014 struct ftrace_probe_ops *probe_ops; 1015 struct ftrace_ops ops; 1016 struct trace_array *tr; 1017 struct list_head list; 1018 void *data; 1019 int ref; 1020 }; 1021 1022 /* 1023 * We make these constant because no one should touch them, 1024 * but they are used as the default "empty hash", to avoid allocating 1025 * it all the time. These are in a read only section such that if 1026 * anyone does try to modify it, it will cause an exception. 1027 */ 1028 static const struct hlist_head empty_buckets[1]; 1029 static const struct ftrace_hash empty_hash = { 1030 .buckets = (struct hlist_head *)empty_buckets, 1031 }; 1032 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1033 1034 struct ftrace_ops global_ops = { 1035 .func = ftrace_stub, 1036 .local_hash.notrace_hash = EMPTY_HASH, 1037 .local_hash.filter_hash = EMPTY_HASH, 1038 INIT_OPS_HASH(global_ops) 1039 .flags = FTRACE_OPS_FL_INITIALIZED | 1040 FTRACE_OPS_FL_PID, 1041 }; 1042 1043 /* 1044 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1045 */ 1046 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1047 { 1048 struct ftrace_ops *op = NULL; 1049 1050 /* 1051 * Some of the ops may be dynamically allocated, 1052 * they are freed after a synchronize_rcu(). 1053 */ 1054 preempt_disable_notrace(); 1055 1056 do_for_each_ftrace_op(op, ftrace_ops_list) { 1057 /* 1058 * This is to check for dynamically allocated trampolines. 1059 * Trampolines that are in kernel text will have 1060 * core_kernel_text() return true. 1061 */ 1062 if (op->trampoline && op->trampoline_size) 1063 if (addr >= op->trampoline && 1064 addr < op->trampoline + op->trampoline_size) { 1065 preempt_enable_notrace(); 1066 return op; 1067 } 1068 } while_for_each_ftrace_op(op); 1069 preempt_enable_notrace(); 1070 1071 return NULL; 1072 } 1073 1074 /* 1075 * This is used by __kernel_text_address() to return true if the 1076 * address is on a dynamically allocated trampoline that would 1077 * not return true for either core_kernel_text() or 1078 * is_module_text_address(). 1079 */ 1080 bool is_ftrace_trampoline(unsigned long addr) 1081 { 1082 return ftrace_ops_trampoline(addr) != NULL; 1083 } 1084 1085 struct ftrace_page { 1086 struct ftrace_page *next; 1087 struct dyn_ftrace *records; 1088 int index; 1089 int order; 1090 }; 1091 1092 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1093 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1094 1095 static struct ftrace_page *ftrace_pages_start; 1096 static struct ftrace_page *ftrace_pages; 1097 1098 static __always_inline unsigned long 1099 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1100 { 1101 if (hash->size_bits > 0) 1102 return hash_long(ip, hash->size_bits); 1103 1104 return 0; 1105 } 1106 1107 /* Only use this function if ftrace_hash_empty() has already been tested */ 1108 static __always_inline struct ftrace_func_entry * 1109 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1110 { 1111 unsigned long key; 1112 struct ftrace_func_entry *entry; 1113 struct hlist_head *hhd; 1114 1115 key = ftrace_hash_key(hash, ip); 1116 hhd = &hash->buckets[key]; 1117 1118 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1119 if (entry->ip == ip) 1120 return entry; 1121 } 1122 return NULL; 1123 } 1124 1125 /** 1126 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1127 * @hash: The hash to look at 1128 * @ip: The instruction pointer to test 1129 * 1130 * Search a given @hash to see if a given instruction pointer (@ip) 1131 * exists in it. 1132 * 1133 * Returns the entry that holds the @ip if found. NULL otherwise. 1134 */ 1135 struct ftrace_func_entry * 1136 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1137 { 1138 if (ftrace_hash_empty(hash)) 1139 return NULL; 1140 1141 return __ftrace_lookup_ip(hash, ip); 1142 } 1143 1144 static void __add_hash_entry(struct ftrace_hash *hash, 1145 struct ftrace_func_entry *entry) 1146 { 1147 struct hlist_head *hhd; 1148 unsigned long key; 1149 1150 key = ftrace_hash_key(hash, entry->ip); 1151 hhd = &hash->buckets[key]; 1152 hlist_add_head(&entry->hlist, hhd); 1153 hash->count++; 1154 } 1155 1156 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1157 { 1158 struct ftrace_func_entry *entry; 1159 1160 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1161 if (!entry) 1162 return -ENOMEM; 1163 1164 entry->ip = ip; 1165 __add_hash_entry(hash, entry); 1166 1167 return 0; 1168 } 1169 1170 static void 1171 free_hash_entry(struct ftrace_hash *hash, 1172 struct ftrace_func_entry *entry) 1173 { 1174 hlist_del(&entry->hlist); 1175 kfree(entry); 1176 hash->count--; 1177 } 1178 1179 static void 1180 remove_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 hlist_del_rcu(&entry->hlist); 1184 hash->count--; 1185 } 1186 1187 static void ftrace_hash_clear(struct ftrace_hash *hash) 1188 { 1189 struct hlist_head *hhd; 1190 struct hlist_node *tn; 1191 struct ftrace_func_entry *entry; 1192 int size = 1 << hash->size_bits; 1193 int i; 1194 1195 if (!hash->count) 1196 return; 1197 1198 for (i = 0; i < size; i++) { 1199 hhd = &hash->buckets[i]; 1200 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1201 free_hash_entry(hash, entry); 1202 } 1203 FTRACE_WARN_ON(hash->count); 1204 } 1205 1206 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1207 { 1208 list_del(&ftrace_mod->list); 1209 kfree(ftrace_mod->module); 1210 kfree(ftrace_mod->func); 1211 kfree(ftrace_mod); 1212 } 1213 1214 static void clear_ftrace_mod_list(struct list_head *head) 1215 { 1216 struct ftrace_mod_load *p, *n; 1217 1218 /* stack tracer isn't supported yet */ 1219 if (!head) 1220 return; 1221 1222 mutex_lock(&ftrace_lock); 1223 list_for_each_entry_safe(p, n, head, list) 1224 free_ftrace_mod(p); 1225 mutex_unlock(&ftrace_lock); 1226 } 1227 1228 static void free_ftrace_hash(struct ftrace_hash *hash) 1229 { 1230 if (!hash || hash == EMPTY_HASH) 1231 return; 1232 ftrace_hash_clear(hash); 1233 kfree(hash->buckets); 1234 kfree(hash); 1235 } 1236 1237 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1238 { 1239 struct ftrace_hash *hash; 1240 1241 hash = container_of(rcu, struct ftrace_hash, rcu); 1242 free_ftrace_hash(hash); 1243 } 1244 1245 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1246 { 1247 if (!hash || hash == EMPTY_HASH) 1248 return; 1249 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1250 } 1251 1252 void ftrace_free_filter(struct ftrace_ops *ops) 1253 { 1254 ftrace_ops_init(ops); 1255 free_ftrace_hash(ops->func_hash->filter_hash); 1256 free_ftrace_hash(ops->func_hash->notrace_hash); 1257 } 1258 1259 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1260 { 1261 struct ftrace_hash *hash; 1262 int size; 1263 1264 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1265 if (!hash) 1266 return NULL; 1267 1268 size = 1 << size_bits; 1269 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1270 1271 if (!hash->buckets) { 1272 kfree(hash); 1273 return NULL; 1274 } 1275 1276 hash->size_bits = size_bits; 1277 1278 return hash; 1279 } 1280 1281 1282 static int ftrace_add_mod(struct trace_array *tr, 1283 const char *func, const char *module, 1284 int enable) 1285 { 1286 struct ftrace_mod_load *ftrace_mod; 1287 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1288 1289 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1290 if (!ftrace_mod) 1291 return -ENOMEM; 1292 1293 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1294 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1295 ftrace_mod->enable = enable; 1296 1297 if (!ftrace_mod->func || !ftrace_mod->module) 1298 goto out_free; 1299 1300 list_add(&ftrace_mod->list, mod_head); 1301 1302 return 0; 1303 1304 out_free: 1305 free_ftrace_mod(ftrace_mod); 1306 1307 return -ENOMEM; 1308 } 1309 1310 static struct ftrace_hash * 1311 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1312 { 1313 struct ftrace_func_entry *entry; 1314 struct ftrace_hash *new_hash; 1315 int size; 1316 int ret; 1317 int i; 1318 1319 new_hash = alloc_ftrace_hash(size_bits); 1320 if (!new_hash) 1321 return NULL; 1322 1323 if (hash) 1324 new_hash->flags = hash->flags; 1325 1326 /* Empty hash? */ 1327 if (ftrace_hash_empty(hash)) 1328 return new_hash; 1329 1330 size = 1 << hash->size_bits; 1331 for (i = 0; i < size; i++) { 1332 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1333 ret = add_hash_entry(new_hash, entry->ip); 1334 if (ret < 0) 1335 goto free_hash; 1336 } 1337 } 1338 1339 FTRACE_WARN_ON(new_hash->count != hash->count); 1340 1341 return new_hash; 1342 1343 free_hash: 1344 free_ftrace_hash(new_hash); 1345 return NULL; 1346 } 1347 1348 static void 1349 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1350 static void 1351 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1352 1353 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1354 struct ftrace_hash *new_hash); 1355 1356 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1357 { 1358 struct ftrace_func_entry *entry; 1359 struct ftrace_hash *new_hash; 1360 struct hlist_head *hhd; 1361 struct hlist_node *tn; 1362 int bits = 0; 1363 int i; 1364 1365 /* 1366 * Use around half the size (max bit of it), but 1367 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1368 */ 1369 bits = fls(size / 2); 1370 1371 /* Don't allocate too much */ 1372 if (bits > FTRACE_HASH_MAX_BITS) 1373 bits = FTRACE_HASH_MAX_BITS; 1374 1375 new_hash = alloc_ftrace_hash(bits); 1376 if (!new_hash) 1377 return NULL; 1378 1379 new_hash->flags = src->flags; 1380 1381 size = 1 << src->size_bits; 1382 for (i = 0; i < size; i++) { 1383 hhd = &src->buckets[i]; 1384 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1385 remove_hash_entry(src, entry); 1386 __add_hash_entry(new_hash, entry); 1387 } 1388 } 1389 return new_hash; 1390 } 1391 1392 static struct ftrace_hash * 1393 __ftrace_hash_move(struct ftrace_hash *src) 1394 { 1395 int size = src->count; 1396 1397 /* 1398 * If the new source is empty, just return the empty_hash. 1399 */ 1400 if (ftrace_hash_empty(src)) 1401 return EMPTY_HASH; 1402 1403 return dup_hash(src, size); 1404 } 1405 1406 static int 1407 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1408 struct ftrace_hash **dst, struct ftrace_hash *src) 1409 { 1410 struct ftrace_hash *new_hash; 1411 int ret; 1412 1413 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1414 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1415 return -EINVAL; 1416 1417 new_hash = __ftrace_hash_move(src); 1418 if (!new_hash) 1419 return -ENOMEM; 1420 1421 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1422 if (enable) { 1423 /* IPMODIFY should be updated only when filter_hash updating */ 1424 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1425 if (ret < 0) { 1426 free_ftrace_hash(new_hash); 1427 return ret; 1428 } 1429 } 1430 1431 /* 1432 * Remove the current set, update the hash and add 1433 * them back. 1434 */ 1435 ftrace_hash_rec_disable_modify(ops, enable); 1436 1437 rcu_assign_pointer(*dst, new_hash); 1438 1439 ftrace_hash_rec_enable_modify(ops, enable); 1440 1441 return 0; 1442 } 1443 1444 static bool hash_contains_ip(unsigned long ip, 1445 struct ftrace_ops_hash *hash) 1446 { 1447 /* 1448 * The function record is a match if it exists in the filter 1449 * hash and not in the notrace hash. Note, an empty hash is 1450 * considered a match for the filter hash, but an empty 1451 * notrace hash is considered not in the notrace hash. 1452 */ 1453 return (ftrace_hash_empty(hash->filter_hash) || 1454 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1455 (ftrace_hash_empty(hash->notrace_hash) || 1456 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1457 } 1458 1459 /* 1460 * Test the hashes for this ops to see if we want to call 1461 * the ops->func or not. 1462 * 1463 * It's a match if the ip is in the ops->filter_hash or 1464 * the filter_hash does not exist or is empty, 1465 * AND 1466 * the ip is not in the ops->notrace_hash. 1467 * 1468 * This needs to be called with preemption disabled as 1469 * the hashes are freed with call_rcu(). 1470 */ 1471 int 1472 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1473 { 1474 struct ftrace_ops_hash hash; 1475 int ret; 1476 1477 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1478 /* 1479 * There's a small race when adding ops that the ftrace handler 1480 * that wants regs, may be called without them. We can not 1481 * allow that handler to be called if regs is NULL. 1482 */ 1483 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1484 return 0; 1485 #endif 1486 1487 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1488 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1489 1490 if (hash_contains_ip(ip, &hash)) 1491 ret = 1; 1492 else 1493 ret = 0; 1494 1495 return ret; 1496 } 1497 1498 /* 1499 * This is a double for. Do not use 'break' to break out of the loop, 1500 * you must use a goto. 1501 */ 1502 #define do_for_each_ftrace_rec(pg, rec) \ 1503 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1504 int _____i; \ 1505 for (_____i = 0; _____i < pg->index; _____i++) { \ 1506 rec = &pg->records[_____i]; 1507 1508 #define while_for_each_ftrace_rec() \ 1509 } \ 1510 } 1511 1512 1513 static int ftrace_cmp_recs(const void *a, const void *b) 1514 { 1515 const struct dyn_ftrace *key = a; 1516 const struct dyn_ftrace *rec = b; 1517 1518 if (key->flags < rec->ip) 1519 return -1; 1520 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1521 return 1; 1522 return 0; 1523 } 1524 1525 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1526 { 1527 struct ftrace_page *pg; 1528 struct dyn_ftrace *rec = NULL; 1529 struct dyn_ftrace key; 1530 1531 key.ip = start; 1532 key.flags = end; /* overload flags, as it is unsigned long */ 1533 1534 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1535 if (end < pg->records[0].ip || 1536 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1537 continue; 1538 rec = bsearch(&key, pg->records, pg->index, 1539 sizeof(struct dyn_ftrace), 1540 ftrace_cmp_recs); 1541 if (rec) 1542 break; 1543 } 1544 return rec; 1545 } 1546 1547 /** 1548 * ftrace_location_range - return the first address of a traced location 1549 * if it touches the given ip range 1550 * @start: start of range to search. 1551 * @end: end of range to search (inclusive). @end points to the last byte 1552 * to check. 1553 * 1554 * Returns rec->ip if the related ftrace location is a least partly within 1555 * the given address range. That is, the first address of the instruction 1556 * that is either a NOP or call to the function tracer. It checks the ftrace 1557 * internal tables to determine if the address belongs or not. 1558 */ 1559 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1560 { 1561 struct dyn_ftrace *rec; 1562 1563 rec = lookup_rec(start, end); 1564 if (rec) 1565 return rec->ip; 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * ftrace_location - return the ftrace location 1572 * @ip: the instruction pointer to check 1573 * 1574 * If @ip matches the ftrace location, return @ip. 1575 * If @ip matches sym+0, return sym's ftrace location. 1576 * Otherwise, return 0. 1577 */ 1578 unsigned long ftrace_location(unsigned long ip) 1579 { 1580 struct dyn_ftrace *rec; 1581 unsigned long offset; 1582 unsigned long size; 1583 1584 rec = lookup_rec(ip, ip); 1585 if (!rec) { 1586 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1587 goto out; 1588 1589 /* map sym+0 to __fentry__ */ 1590 if (!offset) 1591 rec = lookup_rec(ip, ip + size - 1); 1592 } 1593 1594 if (rec) 1595 return rec->ip; 1596 1597 out: 1598 return 0; 1599 } 1600 1601 /** 1602 * ftrace_text_reserved - return true if range contains an ftrace location 1603 * @start: start of range to search 1604 * @end: end of range to search (inclusive). @end points to the last byte to check. 1605 * 1606 * Returns 1 if @start and @end contains a ftrace location. 1607 * That is, the instruction that is either a NOP or call to 1608 * the function tracer. It checks the ftrace internal tables to 1609 * determine if the address belongs or not. 1610 */ 1611 int ftrace_text_reserved(const void *start, const void *end) 1612 { 1613 unsigned long ret; 1614 1615 ret = ftrace_location_range((unsigned long)start, 1616 (unsigned long)end); 1617 1618 return (int)!!ret; 1619 } 1620 1621 /* Test if ops registered to this rec needs regs */ 1622 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1623 { 1624 struct ftrace_ops *ops; 1625 bool keep_regs = false; 1626 1627 for (ops = ftrace_ops_list; 1628 ops != &ftrace_list_end; ops = ops->next) { 1629 /* pass rec in as regs to have non-NULL val */ 1630 if (ftrace_ops_test(ops, rec->ip, rec)) { 1631 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1632 keep_regs = true; 1633 break; 1634 } 1635 } 1636 } 1637 1638 return keep_regs; 1639 } 1640 1641 static struct ftrace_ops * 1642 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1643 static struct ftrace_ops * 1644 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1645 static struct ftrace_ops * 1646 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1647 1648 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1649 int filter_hash, 1650 bool inc) 1651 { 1652 struct ftrace_hash *hash; 1653 struct ftrace_hash *other_hash; 1654 struct ftrace_page *pg; 1655 struct dyn_ftrace *rec; 1656 bool update = false; 1657 int count = 0; 1658 int all = false; 1659 1660 /* Only update if the ops has been registered */ 1661 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1662 return false; 1663 1664 /* 1665 * In the filter_hash case: 1666 * If the count is zero, we update all records. 1667 * Otherwise we just update the items in the hash. 1668 * 1669 * In the notrace_hash case: 1670 * We enable the update in the hash. 1671 * As disabling notrace means enabling the tracing, 1672 * and enabling notrace means disabling, the inc variable 1673 * gets inversed. 1674 */ 1675 if (filter_hash) { 1676 hash = ops->func_hash->filter_hash; 1677 other_hash = ops->func_hash->notrace_hash; 1678 if (ftrace_hash_empty(hash)) 1679 all = true; 1680 } else { 1681 inc = !inc; 1682 hash = ops->func_hash->notrace_hash; 1683 other_hash = ops->func_hash->filter_hash; 1684 /* 1685 * If the notrace hash has no items, 1686 * then there's nothing to do. 1687 */ 1688 if (ftrace_hash_empty(hash)) 1689 return false; 1690 } 1691 1692 do_for_each_ftrace_rec(pg, rec) { 1693 int in_other_hash = 0; 1694 int in_hash = 0; 1695 int match = 0; 1696 1697 if (rec->flags & FTRACE_FL_DISABLED) 1698 continue; 1699 1700 if (all) { 1701 /* 1702 * Only the filter_hash affects all records. 1703 * Update if the record is not in the notrace hash. 1704 */ 1705 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1706 match = 1; 1707 } else { 1708 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1709 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1710 1711 /* 1712 * If filter_hash is set, we want to match all functions 1713 * that are in the hash but not in the other hash. 1714 * 1715 * If filter_hash is not set, then we are decrementing. 1716 * That means we match anything that is in the hash 1717 * and also in the other_hash. That is, we need to turn 1718 * off functions in the other hash because they are disabled 1719 * by this hash. 1720 */ 1721 if (filter_hash && in_hash && !in_other_hash) 1722 match = 1; 1723 else if (!filter_hash && in_hash && 1724 (in_other_hash || ftrace_hash_empty(other_hash))) 1725 match = 1; 1726 } 1727 if (!match) 1728 continue; 1729 1730 if (inc) { 1731 rec->flags++; 1732 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1733 return false; 1734 1735 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1736 rec->flags |= FTRACE_FL_DIRECT; 1737 1738 /* 1739 * If there's only a single callback registered to a 1740 * function, and the ops has a trampoline registered 1741 * for it, then we can call it directly. 1742 */ 1743 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1744 rec->flags |= FTRACE_FL_TRAMP; 1745 else 1746 /* 1747 * If we are adding another function callback 1748 * to this function, and the previous had a 1749 * custom trampoline in use, then we need to go 1750 * back to the default trampoline. 1751 */ 1752 rec->flags &= ~FTRACE_FL_TRAMP; 1753 1754 /* 1755 * If any ops wants regs saved for this function 1756 * then all ops will get saved regs. 1757 */ 1758 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1759 rec->flags |= FTRACE_FL_REGS; 1760 } else { 1761 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1762 return false; 1763 rec->flags--; 1764 1765 /* 1766 * Only the internal direct_ops should have the 1767 * DIRECT flag set. Thus, if it is removing a 1768 * function, then that function should no longer 1769 * be direct. 1770 */ 1771 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1772 rec->flags &= ~FTRACE_FL_DIRECT; 1773 1774 /* 1775 * If the rec had REGS enabled and the ops that is 1776 * being removed had REGS set, then see if there is 1777 * still any ops for this record that wants regs. 1778 * If not, we can stop recording them. 1779 */ 1780 if (ftrace_rec_count(rec) > 0 && 1781 rec->flags & FTRACE_FL_REGS && 1782 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1783 if (!test_rec_ops_needs_regs(rec)) 1784 rec->flags &= ~FTRACE_FL_REGS; 1785 } 1786 1787 /* 1788 * The TRAMP needs to be set only if rec count 1789 * is decremented to one, and the ops that is 1790 * left has a trampoline. As TRAMP can only be 1791 * enabled if there is only a single ops attached 1792 * to it. 1793 */ 1794 if (ftrace_rec_count(rec) == 1 && 1795 ftrace_find_tramp_ops_any_other(rec, ops)) 1796 rec->flags |= FTRACE_FL_TRAMP; 1797 else 1798 rec->flags &= ~FTRACE_FL_TRAMP; 1799 1800 /* 1801 * flags will be cleared in ftrace_check_record() 1802 * if rec count is zero. 1803 */ 1804 } 1805 count++; 1806 1807 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1808 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1809 1810 /* Shortcut, if we handled all records, we are done. */ 1811 if (!all && count == hash->count) 1812 return update; 1813 } while_for_each_ftrace_rec(); 1814 1815 return update; 1816 } 1817 1818 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1819 int filter_hash) 1820 { 1821 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1822 } 1823 1824 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1825 int filter_hash) 1826 { 1827 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1828 } 1829 1830 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1831 int filter_hash, int inc) 1832 { 1833 struct ftrace_ops *op; 1834 1835 __ftrace_hash_rec_update(ops, filter_hash, inc); 1836 1837 if (ops->func_hash != &global_ops.local_hash) 1838 return; 1839 1840 /* 1841 * If the ops shares the global_ops hash, then we need to update 1842 * all ops that are enabled and use this hash. 1843 */ 1844 do_for_each_ftrace_op(op, ftrace_ops_list) { 1845 /* Already done */ 1846 if (op == ops) 1847 continue; 1848 if (op->func_hash == &global_ops.local_hash) 1849 __ftrace_hash_rec_update(op, filter_hash, inc); 1850 } while_for_each_ftrace_op(op); 1851 } 1852 1853 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1854 int filter_hash) 1855 { 1856 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1857 } 1858 1859 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1860 int filter_hash) 1861 { 1862 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1863 } 1864 1865 /* 1866 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1867 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1868 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1869 * Note that old_hash and new_hash has below meanings 1870 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1871 * - If the hash is EMPTY_HASH, it hits nothing 1872 * - Anything else hits the recs which match the hash entries. 1873 */ 1874 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1875 struct ftrace_hash *old_hash, 1876 struct ftrace_hash *new_hash) 1877 { 1878 struct ftrace_page *pg; 1879 struct dyn_ftrace *rec, *end = NULL; 1880 int in_old, in_new; 1881 1882 /* Only update if the ops has been registered */ 1883 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1884 return 0; 1885 1886 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1887 return 0; 1888 1889 /* 1890 * Since the IPMODIFY is a very address sensitive action, we do not 1891 * allow ftrace_ops to set all functions to new hash. 1892 */ 1893 if (!new_hash || !old_hash) 1894 return -EINVAL; 1895 1896 /* Update rec->flags */ 1897 do_for_each_ftrace_rec(pg, rec) { 1898 1899 if (rec->flags & FTRACE_FL_DISABLED) 1900 continue; 1901 1902 /* We need to update only differences of filter_hash */ 1903 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1904 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1905 if (in_old == in_new) 1906 continue; 1907 1908 if (in_new) { 1909 /* New entries must ensure no others are using it */ 1910 if (rec->flags & FTRACE_FL_IPMODIFY) 1911 goto rollback; 1912 rec->flags |= FTRACE_FL_IPMODIFY; 1913 } else /* Removed entry */ 1914 rec->flags &= ~FTRACE_FL_IPMODIFY; 1915 } while_for_each_ftrace_rec(); 1916 1917 return 0; 1918 1919 rollback: 1920 end = rec; 1921 1922 /* Roll back what we did above */ 1923 do_for_each_ftrace_rec(pg, rec) { 1924 1925 if (rec->flags & FTRACE_FL_DISABLED) 1926 continue; 1927 1928 if (rec == end) 1929 goto err_out; 1930 1931 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1932 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1933 if (in_old == in_new) 1934 continue; 1935 1936 if (in_new) 1937 rec->flags &= ~FTRACE_FL_IPMODIFY; 1938 else 1939 rec->flags |= FTRACE_FL_IPMODIFY; 1940 } while_for_each_ftrace_rec(); 1941 1942 err_out: 1943 return -EBUSY; 1944 } 1945 1946 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1947 { 1948 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1949 1950 if (ftrace_hash_empty(hash)) 1951 hash = NULL; 1952 1953 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1954 } 1955 1956 /* Disabling always succeeds */ 1957 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1958 { 1959 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1960 1961 if (ftrace_hash_empty(hash)) 1962 hash = NULL; 1963 1964 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1965 } 1966 1967 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1968 struct ftrace_hash *new_hash) 1969 { 1970 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1971 1972 if (ftrace_hash_empty(old_hash)) 1973 old_hash = NULL; 1974 1975 if (ftrace_hash_empty(new_hash)) 1976 new_hash = NULL; 1977 1978 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1979 } 1980 1981 static void print_ip_ins(const char *fmt, const unsigned char *p) 1982 { 1983 char ins[MCOUNT_INSN_SIZE]; 1984 int i; 1985 1986 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 1987 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 1988 return; 1989 } 1990 1991 printk(KERN_CONT "%s", fmt); 1992 1993 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1994 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]); 1995 } 1996 1997 enum ftrace_bug_type ftrace_bug_type; 1998 const void *ftrace_expected; 1999 2000 static void print_bug_type(void) 2001 { 2002 switch (ftrace_bug_type) { 2003 case FTRACE_BUG_UNKNOWN: 2004 break; 2005 case FTRACE_BUG_INIT: 2006 pr_info("Initializing ftrace call sites\n"); 2007 break; 2008 case FTRACE_BUG_NOP: 2009 pr_info("Setting ftrace call site to NOP\n"); 2010 break; 2011 case FTRACE_BUG_CALL: 2012 pr_info("Setting ftrace call site to call ftrace function\n"); 2013 break; 2014 case FTRACE_BUG_UPDATE: 2015 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2016 break; 2017 } 2018 } 2019 2020 /** 2021 * ftrace_bug - report and shutdown function tracer 2022 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2023 * @rec: The record that failed 2024 * 2025 * The arch code that enables or disables the function tracing 2026 * can call ftrace_bug() when it has detected a problem in 2027 * modifying the code. @failed should be one of either: 2028 * EFAULT - if the problem happens on reading the @ip address 2029 * EINVAL - if what is read at @ip is not what was expected 2030 * EPERM - if the problem happens on writing to the @ip address 2031 */ 2032 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2033 { 2034 unsigned long ip = rec ? rec->ip : 0; 2035 2036 pr_info("------------[ ftrace bug ]------------\n"); 2037 2038 switch (failed) { 2039 case -EFAULT: 2040 pr_info("ftrace faulted on modifying "); 2041 print_ip_sym(KERN_INFO, ip); 2042 break; 2043 case -EINVAL: 2044 pr_info("ftrace failed to modify "); 2045 print_ip_sym(KERN_INFO, ip); 2046 print_ip_ins(" actual: ", (unsigned char *)ip); 2047 pr_cont("\n"); 2048 if (ftrace_expected) { 2049 print_ip_ins(" expected: ", ftrace_expected); 2050 pr_cont("\n"); 2051 } 2052 break; 2053 case -EPERM: 2054 pr_info("ftrace faulted on writing "); 2055 print_ip_sym(KERN_INFO, ip); 2056 break; 2057 default: 2058 pr_info("ftrace faulted on unknown error "); 2059 print_ip_sym(KERN_INFO, ip); 2060 } 2061 print_bug_type(); 2062 if (rec) { 2063 struct ftrace_ops *ops = NULL; 2064 2065 pr_info("ftrace record flags: %lx\n", rec->flags); 2066 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2067 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2068 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2069 ops = ftrace_find_tramp_ops_any(rec); 2070 if (ops) { 2071 do { 2072 pr_cont("\ttramp: %pS (%pS)", 2073 (void *)ops->trampoline, 2074 (void *)ops->func); 2075 ops = ftrace_find_tramp_ops_next(rec, ops); 2076 } while (ops); 2077 } else 2078 pr_cont("\ttramp: ERROR!"); 2079 2080 } 2081 ip = ftrace_get_addr_curr(rec); 2082 pr_cont("\n expected tramp: %lx\n", ip); 2083 } 2084 2085 FTRACE_WARN_ON_ONCE(1); 2086 } 2087 2088 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2089 { 2090 unsigned long flag = 0UL; 2091 2092 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2093 2094 if (rec->flags & FTRACE_FL_DISABLED) 2095 return FTRACE_UPDATE_IGNORE; 2096 2097 /* 2098 * If we are updating calls: 2099 * 2100 * If the record has a ref count, then we need to enable it 2101 * because someone is using it. 2102 * 2103 * Otherwise we make sure its disabled. 2104 * 2105 * If we are disabling calls, then disable all records that 2106 * are enabled. 2107 */ 2108 if (enable && ftrace_rec_count(rec)) 2109 flag = FTRACE_FL_ENABLED; 2110 2111 /* 2112 * If enabling and the REGS flag does not match the REGS_EN, or 2113 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2114 * this record. Set flags to fail the compare against ENABLED. 2115 * Same for direct calls. 2116 */ 2117 if (flag) { 2118 if (!(rec->flags & FTRACE_FL_REGS) != 2119 !(rec->flags & FTRACE_FL_REGS_EN)) 2120 flag |= FTRACE_FL_REGS; 2121 2122 if (!(rec->flags & FTRACE_FL_TRAMP) != 2123 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2124 flag |= FTRACE_FL_TRAMP; 2125 2126 /* 2127 * Direct calls are special, as count matters. 2128 * We must test the record for direct, if the 2129 * DIRECT and DIRECT_EN do not match, but only 2130 * if the count is 1. That's because, if the 2131 * count is something other than one, we do not 2132 * want the direct enabled (it will be done via the 2133 * direct helper). But if DIRECT_EN is set, and 2134 * the count is not one, we need to clear it. 2135 */ 2136 if (ftrace_rec_count(rec) == 1) { 2137 if (!(rec->flags & FTRACE_FL_DIRECT) != 2138 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2139 flag |= FTRACE_FL_DIRECT; 2140 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2141 flag |= FTRACE_FL_DIRECT; 2142 } 2143 } 2144 2145 /* If the state of this record hasn't changed, then do nothing */ 2146 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2147 return FTRACE_UPDATE_IGNORE; 2148 2149 if (flag) { 2150 /* Save off if rec is being enabled (for return value) */ 2151 flag ^= rec->flags & FTRACE_FL_ENABLED; 2152 2153 if (update) { 2154 rec->flags |= FTRACE_FL_ENABLED; 2155 if (flag & FTRACE_FL_REGS) { 2156 if (rec->flags & FTRACE_FL_REGS) 2157 rec->flags |= FTRACE_FL_REGS_EN; 2158 else 2159 rec->flags &= ~FTRACE_FL_REGS_EN; 2160 } 2161 if (flag & FTRACE_FL_TRAMP) { 2162 if (rec->flags & FTRACE_FL_TRAMP) 2163 rec->flags |= FTRACE_FL_TRAMP_EN; 2164 else 2165 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2166 } 2167 2168 if (flag & FTRACE_FL_DIRECT) { 2169 /* 2170 * If there's only one user (direct_ops helper) 2171 * then we can call the direct function 2172 * directly (no ftrace trampoline). 2173 */ 2174 if (ftrace_rec_count(rec) == 1) { 2175 if (rec->flags & FTRACE_FL_DIRECT) 2176 rec->flags |= FTRACE_FL_DIRECT_EN; 2177 else 2178 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2179 } else { 2180 /* 2181 * Can only call directly if there's 2182 * only one callback to the function. 2183 */ 2184 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2185 } 2186 } 2187 } 2188 2189 /* 2190 * If this record is being updated from a nop, then 2191 * return UPDATE_MAKE_CALL. 2192 * Otherwise, 2193 * return UPDATE_MODIFY_CALL to tell the caller to convert 2194 * from the save regs, to a non-save regs function or 2195 * vice versa, or from a trampoline call. 2196 */ 2197 if (flag & FTRACE_FL_ENABLED) { 2198 ftrace_bug_type = FTRACE_BUG_CALL; 2199 return FTRACE_UPDATE_MAKE_CALL; 2200 } 2201 2202 ftrace_bug_type = FTRACE_BUG_UPDATE; 2203 return FTRACE_UPDATE_MODIFY_CALL; 2204 } 2205 2206 if (update) { 2207 /* If there's no more users, clear all flags */ 2208 if (!ftrace_rec_count(rec)) 2209 rec->flags = 0; 2210 else 2211 /* 2212 * Just disable the record, but keep the ops TRAMP 2213 * and REGS states. The _EN flags must be disabled though. 2214 */ 2215 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2216 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2217 } 2218 2219 ftrace_bug_type = FTRACE_BUG_NOP; 2220 return FTRACE_UPDATE_MAKE_NOP; 2221 } 2222 2223 /** 2224 * ftrace_update_record - set a record that now is tracing or not 2225 * @rec: the record to update 2226 * @enable: set to true if the record is tracing, false to force disable 2227 * 2228 * The records that represent all functions that can be traced need 2229 * to be updated when tracing has been enabled. 2230 */ 2231 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2232 { 2233 return ftrace_check_record(rec, enable, true); 2234 } 2235 2236 /** 2237 * ftrace_test_record - check if the record has been enabled or not 2238 * @rec: the record to test 2239 * @enable: set to true to check if enabled, false if it is disabled 2240 * 2241 * The arch code may need to test if a record is already set to 2242 * tracing to determine how to modify the function code that it 2243 * represents. 2244 */ 2245 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2246 { 2247 return ftrace_check_record(rec, enable, false); 2248 } 2249 2250 static struct ftrace_ops * 2251 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2252 { 2253 struct ftrace_ops *op; 2254 unsigned long ip = rec->ip; 2255 2256 do_for_each_ftrace_op(op, ftrace_ops_list) { 2257 2258 if (!op->trampoline) 2259 continue; 2260 2261 if (hash_contains_ip(ip, op->func_hash)) 2262 return op; 2263 } while_for_each_ftrace_op(op); 2264 2265 return NULL; 2266 } 2267 2268 static struct ftrace_ops * 2269 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2270 { 2271 struct ftrace_ops *op; 2272 unsigned long ip = rec->ip; 2273 2274 do_for_each_ftrace_op(op, ftrace_ops_list) { 2275 2276 if (op == op_exclude || !op->trampoline) 2277 continue; 2278 2279 if (hash_contains_ip(ip, op->func_hash)) 2280 return op; 2281 } while_for_each_ftrace_op(op); 2282 2283 return NULL; 2284 } 2285 2286 static struct ftrace_ops * 2287 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2288 struct ftrace_ops *op) 2289 { 2290 unsigned long ip = rec->ip; 2291 2292 while_for_each_ftrace_op(op) { 2293 2294 if (!op->trampoline) 2295 continue; 2296 2297 if (hash_contains_ip(ip, op->func_hash)) 2298 return op; 2299 } 2300 2301 return NULL; 2302 } 2303 2304 static struct ftrace_ops * 2305 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2306 { 2307 struct ftrace_ops *op; 2308 unsigned long ip = rec->ip; 2309 2310 /* 2311 * Need to check removed ops first. 2312 * If they are being removed, and this rec has a tramp, 2313 * and this rec is in the ops list, then it would be the 2314 * one with the tramp. 2315 */ 2316 if (removed_ops) { 2317 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2318 return removed_ops; 2319 } 2320 2321 /* 2322 * Need to find the current trampoline for a rec. 2323 * Now, a trampoline is only attached to a rec if there 2324 * was a single 'ops' attached to it. But this can be called 2325 * when we are adding another op to the rec or removing the 2326 * current one. Thus, if the op is being added, we can 2327 * ignore it because it hasn't attached itself to the rec 2328 * yet. 2329 * 2330 * If an ops is being modified (hooking to different functions) 2331 * then we don't care about the new functions that are being 2332 * added, just the old ones (that are probably being removed). 2333 * 2334 * If we are adding an ops to a function that already is using 2335 * a trampoline, it needs to be removed (trampolines are only 2336 * for single ops connected), then an ops that is not being 2337 * modified also needs to be checked. 2338 */ 2339 do_for_each_ftrace_op(op, ftrace_ops_list) { 2340 2341 if (!op->trampoline) 2342 continue; 2343 2344 /* 2345 * If the ops is being added, it hasn't gotten to 2346 * the point to be removed from this tree yet. 2347 */ 2348 if (op->flags & FTRACE_OPS_FL_ADDING) 2349 continue; 2350 2351 2352 /* 2353 * If the ops is being modified and is in the old 2354 * hash, then it is probably being removed from this 2355 * function. 2356 */ 2357 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2358 hash_contains_ip(ip, &op->old_hash)) 2359 return op; 2360 /* 2361 * If the ops is not being added or modified, and it's 2362 * in its normal filter hash, then this must be the one 2363 * we want! 2364 */ 2365 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2366 hash_contains_ip(ip, op->func_hash)) 2367 return op; 2368 2369 } while_for_each_ftrace_op(op); 2370 2371 return NULL; 2372 } 2373 2374 static struct ftrace_ops * 2375 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2376 { 2377 struct ftrace_ops *op; 2378 unsigned long ip = rec->ip; 2379 2380 do_for_each_ftrace_op(op, ftrace_ops_list) { 2381 /* pass rec in as regs to have non-NULL val */ 2382 if (hash_contains_ip(ip, op->func_hash)) 2383 return op; 2384 } while_for_each_ftrace_op(op); 2385 2386 return NULL; 2387 } 2388 2389 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2390 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2391 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2392 static DEFINE_MUTEX(direct_mutex); 2393 int ftrace_direct_func_count; 2394 2395 /* 2396 * Search the direct_functions hash to see if the given instruction pointer 2397 * has a direct caller attached to it. 2398 */ 2399 unsigned long ftrace_find_rec_direct(unsigned long ip) 2400 { 2401 struct ftrace_func_entry *entry; 2402 2403 entry = __ftrace_lookup_ip(direct_functions, ip); 2404 if (!entry) 2405 return 0; 2406 2407 return entry->direct; 2408 } 2409 2410 static struct ftrace_func_entry* 2411 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2412 struct ftrace_hash **free_hash) 2413 { 2414 struct ftrace_func_entry *entry; 2415 2416 if (ftrace_hash_empty(direct_functions) || 2417 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2418 struct ftrace_hash *new_hash; 2419 int size = ftrace_hash_empty(direct_functions) ? 0 : 2420 direct_functions->count + 1; 2421 2422 if (size < 32) 2423 size = 32; 2424 2425 new_hash = dup_hash(direct_functions, size); 2426 if (!new_hash) 2427 return NULL; 2428 2429 *free_hash = direct_functions; 2430 direct_functions = new_hash; 2431 } 2432 2433 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2434 if (!entry) 2435 return NULL; 2436 2437 entry->ip = ip; 2438 entry->direct = addr; 2439 __add_hash_entry(direct_functions, entry); 2440 return entry; 2441 } 2442 2443 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2444 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2445 { 2446 struct pt_regs *regs = ftrace_get_regs(fregs); 2447 unsigned long addr; 2448 2449 addr = ftrace_find_rec_direct(ip); 2450 if (!addr) 2451 return; 2452 2453 arch_ftrace_set_direct_caller(regs, addr); 2454 } 2455 2456 struct ftrace_ops direct_ops = { 2457 .func = call_direct_funcs, 2458 .flags = FTRACE_OPS_FL_IPMODIFY 2459 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2460 | FTRACE_OPS_FL_PERMANENT, 2461 /* 2462 * By declaring the main trampoline as this trampoline 2463 * it will never have one allocated for it. Allocated 2464 * trampolines should not call direct functions. 2465 * The direct_ops should only be called by the builtin 2466 * ftrace_regs_caller trampoline. 2467 */ 2468 .trampoline = FTRACE_REGS_ADDR, 2469 }; 2470 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2471 2472 /** 2473 * ftrace_get_addr_new - Get the call address to set to 2474 * @rec: The ftrace record descriptor 2475 * 2476 * If the record has the FTRACE_FL_REGS set, that means that it 2477 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2478 * is not set, then it wants to convert to the normal callback. 2479 * 2480 * Returns the address of the trampoline to set to 2481 */ 2482 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2483 { 2484 struct ftrace_ops *ops; 2485 unsigned long addr; 2486 2487 if ((rec->flags & FTRACE_FL_DIRECT) && 2488 (ftrace_rec_count(rec) == 1)) { 2489 addr = ftrace_find_rec_direct(rec->ip); 2490 if (addr) 2491 return addr; 2492 WARN_ON_ONCE(1); 2493 } 2494 2495 /* Trampolines take precedence over regs */ 2496 if (rec->flags & FTRACE_FL_TRAMP) { 2497 ops = ftrace_find_tramp_ops_new(rec); 2498 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2499 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2500 (void *)rec->ip, (void *)rec->ip, rec->flags); 2501 /* Ftrace is shutting down, return anything */ 2502 return (unsigned long)FTRACE_ADDR; 2503 } 2504 return ops->trampoline; 2505 } 2506 2507 if (rec->flags & FTRACE_FL_REGS) 2508 return (unsigned long)FTRACE_REGS_ADDR; 2509 else 2510 return (unsigned long)FTRACE_ADDR; 2511 } 2512 2513 /** 2514 * ftrace_get_addr_curr - Get the call address that is already there 2515 * @rec: The ftrace record descriptor 2516 * 2517 * The FTRACE_FL_REGS_EN is set when the record already points to 2518 * a function that saves all the regs. Basically the '_EN' version 2519 * represents the current state of the function. 2520 * 2521 * Returns the address of the trampoline that is currently being called 2522 */ 2523 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2524 { 2525 struct ftrace_ops *ops; 2526 unsigned long addr; 2527 2528 /* Direct calls take precedence over trampolines */ 2529 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2530 addr = ftrace_find_rec_direct(rec->ip); 2531 if (addr) 2532 return addr; 2533 WARN_ON_ONCE(1); 2534 } 2535 2536 /* Trampolines take precedence over regs */ 2537 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2538 ops = ftrace_find_tramp_ops_curr(rec); 2539 if (FTRACE_WARN_ON(!ops)) { 2540 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2541 (void *)rec->ip, (void *)rec->ip); 2542 /* Ftrace is shutting down, return anything */ 2543 return (unsigned long)FTRACE_ADDR; 2544 } 2545 return ops->trampoline; 2546 } 2547 2548 if (rec->flags & FTRACE_FL_REGS_EN) 2549 return (unsigned long)FTRACE_REGS_ADDR; 2550 else 2551 return (unsigned long)FTRACE_ADDR; 2552 } 2553 2554 static int 2555 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2556 { 2557 unsigned long ftrace_old_addr; 2558 unsigned long ftrace_addr; 2559 int ret; 2560 2561 ftrace_addr = ftrace_get_addr_new(rec); 2562 2563 /* This needs to be done before we call ftrace_update_record */ 2564 ftrace_old_addr = ftrace_get_addr_curr(rec); 2565 2566 ret = ftrace_update_record(rec, enable); 2567 2568 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2569 2570 switch (ret) { 2571 case FTRACE_UPDATE_IGNORE: 2572 return 0; 2573 2574 case FTRACE_UPDATE_MAKE_CALL: 2575 ftrace_bug_type = FTRACE_BUG_CALL; 2576 return ftrace_make_call(rec, ftrace_addr); 2577 2578 case FTRACE_UPDATE_MAKE_NOP: 2579 ftrace_bug_type = FTRACE_BUG_NOP; 2580 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2581 2582 case FTRACE_UPDATE_MODIFY_CALL: 2583 ftrace_bug_type = FTRACE_BUG_UPDATE; 2584 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2585 } 2586 2587 return -1; /* unknown ftrace bug */ 2588 } 2589 2590 void __weak ftrace_replace_code(int mod_flags) 2591 { 2592 struct dyn_ftrace *rec; 2593 struct ftrace_page *pg; 2594 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2595 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2596 int failed; 2597 2598 if (unlikely(ftrace_disabled)) 2599 return; 2600 2601 do_for_each_ftrace_rec(pg, rec) { 2602 2603 if (rec->flags & FTRACE_FL_DISABLED) 2604 continue; 2605 2606 failed = __ftrace_replace_code(rec, enable); 2607 if (failed) { 2608 ftrace_bug(failed, rec); 2609 /* Stop processing */ 2610 return; 2611 } 2612 if (schedulable) 2613 cond_resched(); 2614 } while_for_each_ftrace_rec(); 2615 } 2616 2617 struct ftrace_rec_iter { 2618 struct ftrace_page *pg; 2619 int index; 2620 }; 2621 2622 /** 2623 * ftrace_rec_iter_start - start up iterating over traced functions 2624 * 2625 * Returns an iterator handle that is used to iterate over all 2626 * the records that represent address locations where functions 2627 * are traced. 2628 * 2629 * May return NULL if no records are available. 2630 */ 2631 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2632 { 2633 /* 2634 * We only use a single iterator. 2635 * Protected by the ftrace_lock mutex. 2636 */ 2637 static struct ftrace_rec_iter ftrace_rec_iter; 2638 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2639 2640 iter->pg = ftrace_pages_start; 2641 iter->index = 0; 2642 2643 /* Could have empty pages */ 2644 while (iter->pg && !iter->pg->index) 2645 iter->pg = iter->pg->next; 2646 2647 if (!iter->pg) 2648 return NULL; 2649 2650 return iter; 2651 } 2652 2653 /** 2654 * ftrace_rec_iter_next - get the next record to process. 2655 * @iter: The handle to the iterator. 2656 * 2657 * Returns the next iterator after the given iterator @iter. 2658 */ 2659 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2660 { 2661 iter->index++; 2662 2663 if (iter->index >= iter->pg->index) { 2664 iter->pg = iter->pg->next; 2665 iter->index = 0; 2666 2667 /* Could have empty pages */ 2668 while (iter->pg && !iter->pg->index) 2669 iter->pg = iter->pg->next; 2670 } 2671 2672 if (!iter->pg) 2673 return NULL; 2674 2675 return iter; 2676 } 2677 2678 /** 2679 * ftrace_rec_iter_record - get the record at the iterator location 2680 * @iter: The current iterator location 2681 * 2682 * Returns the record that the current @iter is at. 2683 */ 2684 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2685 { 2686 return &iter->pg->records[iter->index]; 2687 } 2688 2689 static int 2690 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2691 { 2692 int ret; 2693 2694 if (unlikely(ftrace_disabled)) 2695 return 0; 2696 2697 ret = ftrace_init_nop(mod, rec); 2698 if (ret) { 2699 ftrace_bug_type = FTRACE_BUG_INIT; 2700 ftrace_bug(ret, rec); 2701 return 0; 2702 } 2703 return 1; 2704 } 2705 2706 /* 2707 * archs can override this function if they must do something 2708 * before the modifying code is performed. 2709 */ 2710 int __weak ftrace_arch_code_modify_prepare(void) 2711 { 2712 return 0; 2713 } 2714 2715 /* 2716 * archs can override this function if they must do something 2717 * after the modifying code is performed. 2718 */ 2719 int __weak ftrace_arch_code_modify_post_process(void) 2720 { 2721 return 0; 2722 } 2723 2724 void ftrace_modify_all_code(int command) 2725 { 2726 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2727 int mod_flags = 0; 2728 int err = 0; 2729 2730 if (command & FTRACE_MAY_SLEEP) 2731 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2732 2733 /* 2734 * If the ftrace_caller calls a ftrace_ops func directly, 2735 * we need to make sure that it only traces functions it 2736 * expects to trace. When doing the switch of functions, 2737 * we need to update to the ftrace_ops_list_func first 2738 * before the transition between old and new calls are set, 2739 * as the ftrace_ops_list_func will check the ops hashes 2740 * to make sure the ops are having the right functions 2741 * traced. 2742 */ 2743 if (update) { 2744 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2745 if (FTRACE_WARN_ON(err)) 2746 return; 2747 } 2748 2749 if (command & FTRACE_UPDATE_CALLS) 2750 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2751 else if (command & FTRACE_DISABLE_CALLS) 2752 ftrace_replace_code(mod_flags); 2753 2754 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2755 function_trace_op = set_function_trace_op; 2756 smp_wmb(); 2757 /* If irqs are disabled, we are in stop machine */ 2758 if (!irqs_disabled()) 2759 smp_call_function(ftrace_sync_ipi, NULL, 1); 2760 err = ftrace_update_ftrace_func(ftrace_trace_function); 2761 if (FTRACE_WARN_ON(err)) 2762 return; 2763 } 2764 2765 if (command & FTRACE_START_FUNC_RET) 2766 err = ftrace_enable_ftrace_graph_caller(); 2767 else if (command & FTRACE_STOP_FUNC_RET) 2768 err = ftrace_disable_ftrace_graph_caller(); 2769 FTRACE_WARN_ON(err); 2770 } 2771 2772 static int __ftrace_modify_code(void *data) 2773 { 2774 int *command = data; 2775 2776 ftrace_modify_all_code(*command); 2777 2778 return 0; 2779 } 2780 2781 /** 2782 * ftrace_run_stop_machine - go back to the stop machine method 2783 * @command: The command to tell ftrace what to do 2784 * 2785 * If an arch needs to fall back to the stop machine method, the 2786 * it can call this function. 2787 */ 2788 void ftrace_run_stop_machine(int command) 2789 { 2790 stop_machine(__ftrace_modify_code, &command, NULL); 2791 } 2792 2793 /** 2794 * arch_ftrace_update_code - modify the code to trace or not trace 2795 * @command: The command that needs to be done 2796 * 2797 * Archs can override this function if it does not need to 2798 * run stop_machine() to modify code. 2799 */ 2800 void __weak arch_ftrace_update_code(int command) 2801 { 2802 ftrace_run_stop_machine(command); 2803 } 2804 2805 static void ftrace_run_update_code(int command) 2806 { 2807 int ret; 2808 2809 ret = ftrace_arch_code_modify_prepare(); 2810 FTRACE_WARN_ON(ret); 2811 if (ret) 2812 return; 2813 2814 /* 2815 * By default we use stop_machine() to modify the code. 2816 * But archs can do what ever they want as long as it 2817 * is safe. The stop_machine() is the safest, but also 2818 * produces the most overhead. 2819 */ 2820 arch_ftrace_update_code(command); 2821 2822 ret = ftrace_arch_code_modify_post_process(); 2823 FTRACE_WARN_ON(ret); 2824 } 2825 2826 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2827 struct ftrace_ops_hash *old_hash) 2828 { 2829 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2830 ops->old_hash.filter_hash = old_hash->filter_hash; 2831 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2832 ftrace_run_update_code(command); 2833 ops->old_hash.filter_hash = NULL; 2834 ops->old_hash.notrace_hash = NULL; 2835 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2836 } 2837 2838 static ftrace_func_t saved_ftrace_func; 2839 static int ftrace_start_up; 2840 2841 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2842 { 2843 } 2844 2845 /* List of trace_ops that have allocated trampolines */ 2846 static LIST_HEAD(ftrace_ops_trampoline_list); 2847 2848 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2849 { 2850 lockdep_assert_held(&ftrace_lock); 2851 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2852 } 2853 2854 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2855 { 2856 lockdep_assert_held(&ftrace_lock); 2857 list_del_rcu(&ops->list); 2858 synchronize_rcu(); 2859 } 2860 2861 /* 2862 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2863 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2864 * not a module. 2865 */ 2866 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2867 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2868 2869 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2870 { 2871 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2872 ops->trampoline) { 2873 /* 2874 * Record the text poke event before the ksymbol unregister 2875 * event. 2876 */ 2877 perf_event_text_poke((void *)ops->trampoline, 2878 (void *)ops->trampoline, 2879 ops->trampoline_size, NULL, 0); 2880 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2881 ops->trampoline, ops->trampoline_size, 2882 true, FTRACE_TRAMPOLINE_SYM); 2883 /* Remove from kallsyms after the perf events */ 2884 ftrace_remove_trampoline_from_kallsyms(ops); 2885 } 2886 2887 arch_ftrace_trampoline_free(ops); 2888 } 2889 2890 static void ftrace_startup_enable(int command) 2891 { 2892 if (saved_ftrace_func != ftrace_trace_function) { 2893 saved_ftrace_func = ftrace_trace_function; 2894 command |= FTRACE_UPDATE_TRACE_FUNC; 2895 } 2896 2897 if (!command || !ftrace_enabled) 2898 return; 2899 2900 ftrace_run_update_code(command); 2901 } 2902 2903 static void ftrace_startup_all(int command) 2904 { 2905 update_all_ops = true; 2906 ftrace_startup_enable(command); 2907 update_all_ops = false; 2908 } 2909 2910 int ftrace_startup(struct ftrace_ops *ops, int command) 2911 { 2912 int ret; 2913 2914 if (unlikely(ftrace_disabled)) 2915 return -ENODEV; 2916 2917 ret = __register_ftrace_function(ops); 2918 if (ret) 2919 return ret; 2920 2921 ftrace_start_up++; 2922 2923 /* 2924 * Note that ftrace probes uses this to start up 2925 * and modify functions it will probe. But we still 2926 * set the ADDING flag for modification, as probes 2927 * do not have trampolines. If they add them in the 2928 * future, then the probes will need to distinguish 2929 * between adding and updating probes. 2930 */ 2931 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2932 2933 ret = ftrace_hash_ipmodify_enable(ops); 2934 if (ret < 0) { 2935 /* Rollback registration process */ 2936 __unregister_ftrace_function(ops); 2937 ftrace_start_up--; 2938 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2939 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2940 ftrace_trampoline_free(ops); 2941 return ret; 2942 } 2943 2944 if (ftrace_hash_rec_enable(ops, 1)) 2945 command |= FTRACE_UPDATE_CALLS; 2946 2947 ftrace_startup_enable(command); 2948 2949 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2950 2951 return 0; 2952 } 2953 2954 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2955 { 2956 int ret; 2957 2958 if (unlikely(ftrace_disabled)) 2959 return -ENODEV; 2960 2961 ret = __unregister_ftrace_function(ops); 2962 if (ret) 2963 return ret; 2964 2965 ftrace_start_up--; 2966 /* 2967 * Just warn in case of unbalance, no need to kill ftrace, it's not 2968 * critical but the ftrace_call callers may be never nopped again after 2969 * further ftrace uses. 2970 */ 2971 WARN_ON_ONCE(ftrace_start_up < 0); 2972 2973 /* Disabling ipmodify never fails */ 2974 ftrace_hash_ipmodify_disable(ops); 2975 2976 if (ftrace_hash_rec_disable(ops, 1)) 2977 command |= FTRACE_UPDATE_CALLS; 2978 2979 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2980 2981 if (saved_ftrace_func != ftrace_trace_function) { 2982 saved_ftrace_func = ftrace_trace_function; 2983 command |= FTRACE_UPDATE_TRACE_FUNC; 2984 } 2985 2986 if (!command || !ftrace_enabled) { 2987 /* 2988 * If these are dynamic or per_cpu ops, they still 2989 * need their data freed. Since, function tracing is 2990 * not currently active, we can just free them 2991 * without synchronizing all CPUs. 2992 */ 2993 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2994 goto free_ops; 2995 2996 return 0; 2997 } 2998 2999 /* 3000 * If the ops uses a trampoline, then it needs to be 3001 * tested first on update. 3002 */ 3003 ops->flags |= FTRACE_OPS_FL_REMOVING; 3004 removed_ops = ops; 3005 3006 /* The trampoline logic checks the old hashes */ 3007 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3008 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3009 3010 ftrace_run_update_code(command); 3011 3012 /* 3013 * If there's no more ops registered with ftrace, run a 3014 * sanity check to make sure all rec flags are cleared. 3015 */ 3016 if (rcu_dereference_protected(ftrace_ops_list, 3017 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3018 struct ftrace_page *pg; 3019 struct dyn_ftrace *rec; 3020 3021 do_for_each_ftrace_rec(pg, rec) { 3022 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3023 pr_warn(" %pS flags:%lx\n", 3024 (void *)rec->ip, rec->flags); 3025 } while_for_each_ftrace_rec(); 3026 } 3027 3028 ops->old_hash.filter_hash = NULL; 3029 ops->old_hash.notrace_hash = NULL; 3030 3031 removed_ops = NULL; 3032 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3033 3034 /* 3035 * Dynamic ops may be freed, we must make sure that all 3036 * callers are done before leaving this function. 3037 * The same goes for freeing the per_cpu data of the per_cpu 3038 * ops. 3039 */ 3040 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3041 /* 3042 * We need to do a hard force of sched synchronization. 3043 * This is because we use preempt_disable() to do RCU, but 3044 * the function tracers can be called where RCU is not watching 3045 * (like before user_exit()). We can not rely on the RCU 3046 * infrastructure to do the synchronization, thus we must do it 3047 * ourselves. 3048 */ 3049 synchronize_rcu_tasks_rude(); 3050 3051 /* 3052 * When the kernel is preemptive, tasks can be preempted 3053 * while on a ftrace trampoline. Just scheduling a task on 3054 * a CPU is not good enough to flush them. Calling 3055 * synchronize_rcu_tasks() will wait for those tasks to 3056 * execute and either schedule voluntarily or enter user space. 3057 */ 3058 if (IS_ENABLED(CONFIG_PREEMPTION)) 3059 synchronize_rcu_tasks(); 3060 3061 free_ops: 3062 ftrace_trampoline_free(ops); 3063 } 3064 3065 return 0; 3066 } 3067 3068 static void ftrace_startup_sysctl(void) 3069 { 3070 int command; 3071 3072 if (unlikely(ftrace_disabled)) 3073 return; 3074 3075 /* Force update next time */ 3076 saved_ftrace_func = NULL; 3077 /* ftrace_start_up is true if we want ftrace running */ 3078 if (ftrace_start_up) { 3079 command = FTRACE_UPDATE_CALLS; 3080 if (ftrace_graph_active) 3081 command |= FTRACE_START_FUNC_RET; 3082 ftrace_startup_enable(command); 3083 } 3084 } 3085 3086 static void ftrace_shutdown_sysctl(void) 3087 { 3088 int command; 3089 3090 if (unlikely(ftrace_disabled)) 3091 return; 3092 3093 /* ftrace_start_up is true if ftrace is running */ 3094 if (ftrace_start_up) { 3095 command = FTRACE_DISABLE_CALLS; 3096 if (ftrace_graph_active) 3097 command |= FTRACE_STOP_FUNC_RET; 3098 ftrace_run_update_code(command); 3099 } 3100 } 3101 3102 static u64 ftrace_update_time; 3103 unsigned long ftrace_update_tot_cnt; 3104 unsigned long ftrace_number_of_pages; 3105 unsigned long ftrace_number_of_groups; 3106 3107 static inline int ops_traces_mod(struct ftrace_ops *ops) 3108 { 3109 /* 3110 * Filter_hash being empty will default to trace module. 3111 * But notrace hash requires a test of individual module functions. 3112 */ 3113 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3114 ftrace_hash_empty(ops->func_hash->notrace_hash); 3115 } 3116 3117 /* 3118 * Check if the current ops references the record. 3119 * 3120 * If the ops traces all functions, then it was already accounted for. 3121 * If the ops does not trace the current record function, skip it. 3122 * If the ops ignores the function via notrace filter, skip it. 3123 */ 3124 static inline bool 3125 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3126 { 3127 /* If ops isn't enabled, ignore it */ 3128 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3129 return false; 3130 3131 /* If ops traces all then it includes this function */ 3132 if (ops_traces_mod(ops)) 3133 return true; 3134 3135 /* The function must be in the filter */ 3136 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3137 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3138 return false; 3139 3140 /* If in notrace hash, we ignore it too */ 3141 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3142 return false; 3143 3144 return true; 3145 } 3146 3147 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3148 { 3149 bool init_nop = ftrace_need_init_nop(); 3150 struct ftrace_page *pg; 3151 struct dyn_ftrace *p; 3152 u64 start, stop; 3153 unsigned long update_cnt = 0; 3154 unsigned long rec_flags = 0; 3155 int i; 3156 3157 start = ftrace_now(raw_smp_processor_id()); 3158 3159 /* 3160 * When a module is loaded, this function is called to convert 3161 * the calls to mcount in its text to nops, and also to create 3162 * an entry in the ftrace data. Now, if ftrace is activated 3163 * after this call, but before the module sets its text to 3164 * read-only, the modification of enabling ftrace can fail if 3165 * the read-only is done while ftrace is converting the calls. 3166 * To prevent this, the module's records are set as disabled 3167 * and will be enabled after the call to set the module's text 3168 * to read-only. 3169 */ 3170 if (mod) 3171 rec_flags |= FTRACE_FL_DISABLED; 3172 3173 for (pg = new_pgs; pg; pg = pg->next) { 3174 3175 for (i = 0; i < pg->index; i++) { 3176 3177 /* If something went wrong, bail without enabling anything */ 3178 if (unlikely(ftrace_disabled)) 3179 return -1; 3180 3181 p = &pg->records[i]; 3182 p->flags = rec_flags; 3183 3184 /* 3185 * Do the initial record conversion from mcount jump 3186 * to the NOP instructions. 3187 */ 3188 if (init_nop && !ftrace_nop_initialize(mod, p)) 3189 break; 3190 3191 update_cnt++; 3192 } 3193 } 3194 3195 stop = ftrace_now(raw_smp_processor_id()); 3196 ftrace_update_time = stop - start; 3197 ftrace_update_tot_cnt += update_cnt; 3198 3199 return 0; 3200 } 3201 3202 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3203 { 3204 int order; 3205 int pages; 3206 int cnt; 3207 3208 if (WARN_ON(!count)) 3209 return -EINVAL; 3210 3211 /* We want to fill as much as possible, with no empty pages */ 3212 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3213 order = fls(pages) - 1; 3214 3215 again: 3216 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3217 3218 if (!pg->records) { 3219 /* if we can't allocate this size, try something smaller */ 3220 if (!order) 3221 return -ENOMEM; 3222 order >>= 1; 3223 goto again; 3224 } 3225 3226 ftrace_number_of_pages += 1 << order; 3227 ftrace_number_of_groups++; 3228 3229 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3230 pg->order = order; 3231 3232 if (cnt > count) 3233 cnt = count; 3234 3235 return cnt; 3236 } 3237 3238 static struct ftrace_page * 3239 ftrace_allocate_pages(unsigned long num_to_init) 3240 { 3241 struct ftrace_page *start_pg; 3242 struct ftrace_page *pg; 3243 int cnt; 3244 3245 if (!num_to_init) 3246 return NULL; 3247 3248 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3249 if (!pg) 3250 return NULL; 3251 3252 /* 3253 * Try to allocate as much as possible in one continues 3254 * location that fills in all of the space. We want to 3255 * waste as little space as possible. 3256 */ 3257 for (;;) { 3258 cnt = ftrace_allocate_records(pg, num_to_init); 3259 if (cnt < 0) 3260 goto free_pages; 3261 3262 num_to_init -= cnt; 3263 if (!num_to_init) 3264 break; 3265 3266 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3267 if (!pg->next) 3268 goto free_pages; 3269 3270 pg = pg->next; 3271 } 3272 3273 return start_pg; 3274 3275 free_pages: 3276 pg = start_pg; 3277 while (pg) { 3278 if (pg->records) { 3279 free_pages((unsigned long)pg->records, pg->order); 3280 ftrace_number_of_pages -= 1 << pg->order; 3281 } 3282 start_pg = pg->next; 3283 kfree(pg); 3284 pg = start_pg; 3285 ftrace_number_of_groups--; 3286 } 3287 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3288 return NULL; 3289 } 3290 3291 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3292 3293 struct ftrace_iterator { 3294 loff_t pos; 3295 loff_t func_pos; 3296 loff_t mod_pos; 3297 struct ftrace_page *pg; 3298 struct dyn_ftrace *func; 3299 struct ftrace_func_probe *probe; 3300 struct ftrace_func_entry *probe_entry; 3301 struct trace_parser parser; 3302 struct ftrace_hash *hash; 3303 struct ftrace_ops *ops; 3304 struct trace_array *tr; 3305 struct list_head *mod_list; 3306 int pidx; 3307 int idx; 3308 unsigned flags; 3309 }; 3310 3311 static void * 3312 t_probe_next(struct seq_file *m, loff_t *pos) 3313 { 3314 struct ftrace_iterator *iter = m->private; 3315 struct trace_array *tr = iter->ops->private; 3316 struct list_head *func_probes; 3317 struct ftrace_hash *hash; 3318 struct list_head *next; 3319 struct hlist_node *hnd = NULL; 3320 struct hlist_head *hhd; 3321 int size; 3322 3323 (*pos)++; 3324 iter->pos = *pos; 3325 3326 if (!tr) 3327 return NULL; 3328 3329 func_probes = &tr->func_probes; 3330 if (list_empty(func_probes)) 3331 return NULL; 3332 3333 if (!iter->probe) { 3334 next = func_probes->next; 3335 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3336 } 3337 3338 if (iter->probe_entry) 3339 hnd = &iter->probe_entry->hlist; 3340 3341 hash = iter->probe->ops.func_hash->filter_hash; 3342 3343 /* 3344 * A probe being registered may temporarily have an empty hash 3345 * and it's at the end of the func_probes list. 3346 */ 3347 if (!hash || hash == EMPTY_HASH) 3348 return NULL; 3349 3350 size = 1 << hash->size_bits; 3351 3352 retry: 3353 if (iter->pidx >= size) { 3354 if (iter->probe->list.next == func_probes) 3355 return NULL; 3356 next = iter->probe->list.next; 3357 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3358 hash = iter->probe->ops.func_hash->filter_hash; 3359 size = 1 << hash->size_bits; 3360 iter->pidx = 0; 3361 } 3362 3363 hhd = &hash->buckets[iter->pidx]; 3364 3365 if (hlist_empty(hhd)) { 3366 iter->pidx++; 3367 hnd = NULL; 3368 goto retry; 3369 } 3370 3371 if (!hnd) 3372 hnd = hhd->first; 3373 else { 3374 hnd = hnd->next; 3375 if (!hnd) { 3376 iter->pidx++; 3377 goto retry; 3378 } 3379 } 3380 3381 if (WARN_ON_ONCE(!hnd)) 3382 return NULL; 3383 3384 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3385 3386 return iter; 3387 } 3388 3389 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3390 { 3391 struct ftrace_iterator *iter = m->private; 3392 void *p = NULL; 3393 loff_t l; 3394 3395 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3396 return NULL; 3397 3398 if (iter->mod_pos > *pos) 3399 return NULL; 3400 3401 iter->probe = NULL; 3402 iter->probe_entry = NULL; 3403 iter->pidx = 0; 3404 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3405 p = t_probe_next(m, &l); 3406 if (!p) 3407 break; 3408 } 3409 if (!p) 3410 return NULL; 3411 3412 /* Only set this if we have an item */ 3413 iter->flags |= FTRACE_ITER_PROBE; 3414 3415 return iter; 3416 } 3417 3418 static int 3419 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3420 { 3421 struct ftrace_func_entry *probe_entry; 3422 struct ftrace_probe_ops *probe_ops; 3423 struct ftrace_func_probe *probe; 3424 3425 probe = iter->probe; 3426 probe_entry = iter->probe_entry; 3427 3428 if (WARN_ON_ONCE(!probe || !probe_entry)) 3429 return -EIO; 3430 3431 probe_ops = probe->probe_ops; 3432 3433 if (probe_ops->print) 3434 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3435 3436 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3437 (void *)probe_ops->func); 3438 3439 return 0; 3440 } 3441 3442 static void * 3443 t_mod_next(struct seq_file *m, loff_t *pos) 3444 { 3445 struct ftrace_iterator *iter = m->private; 3446 struct trace_array *tr = iter->tr; 3447 3448 (*pos)++; 3449 iter->pos = *pos; 3450 3451 iter->mod_list = iter->mod_list->next; 3452 3453 if (iter->mod_list == &tr->mod_trace || 3454 iter->mod_list == &tr->mod_notrace) { 3455 iter->flags &= ~FTRACE_ITER_MOD; 3456 return NULL; 3457 } 3458 3459 iter->mod_pos = *pos; 3460 3461 return iter; 3462 } 3463 3464 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3465 { 3466 struct ftrace_iterator *iter = m->private; 3467 void *p = NULL; 3468 loff_t l; 3469 3470 if (iter->func_pos > *pos) 3471 return NULL; 3472 3473 iter->mod_pos = iter->func_pos; 3474 3475 /* probes are only available if tr is set */ 3476 if (!iter->tr) 3477 return NULL; 3478 3479 for (l = 0; l <= (*pos - iter->func_pos); ) { 3480 p = t_mod_next(m, &l); 3481 if (!p) 3482 break; 3483 } 3484 if (!p) { 3485 iter->flags &= ~FTRACE_ITER_MOD; 3486 return t_probe_start(m, pos); 3487 } 3488 3489 /* Only set this if we have an item */ 3490 iter->flags |= FTRACE_ITER_MOD; 3491 3492 return iter; 3493 } 3494 3495 static int 3496 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3497 { 3498 struct ftrace_mod_load *ftrace_mod; 3499 struct trace_array *tr = iter->tr; 3500 3501 if (WARN_ON_ONCE(!iter->mod_list) || 3502 iter->mod_list == &tr->mod_trace || 3503 iter->mod_list == &tr->mod_notrace) 3504 return -EIO; 3505 3506 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3507 3508 if (ftrace_mod->func) 3509 seq_printf(m, "%s", ftrace_mod->func); 3510 else 3511 seq_putc(m, '*'); 3512 3513 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3514 3515 return 0; 3516 } 3517 3518 static void * 3519 t_func_next(struct seq_file *m, loff_t *pos) 3520 { 3521 struct ftrace_iterator *iter = m->private; 3522 struct dyn_ftrace *rec = NULL; 3523 3524 (*pos)++; 3525 3526 retry: 3527 if (iter->idx >= iter->pg->index) { 3528 if (iter->pg->next) { 3529 iter->pg = iter->pg->next; 3530 iter->idx = 0; 3531 goto retry; 3532 } 3533 } else { 3534 rec = &iter->pg->records[iter->idx++]; 3535 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3536 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3537 3538 ((iter->flags & FTRACE_ITER_ENABLED) && 3539 !(rec->flags & FTRACE_FL_ENABLED))) { 3540 3541 rec = NULL; 3542 goto retry; 3543 } 3544 } 3545 3546 if (!rec) 3547 return NULL; 3548 3549 iter->pos = iter->func_pos = *pos; 3550 iter->func = rec; 3551 3552 return iter; 3553 } 3554 3555 static void * 3556 t_next(struct seq_file *m, void *v, loff_t *pos) 3557 { 3558 struct ftrace_iterator *iter = m->private; 3559 loff_t l = *pos; /* t_probe_start() must use original pos */ 3560 void *ret; 3561 3562 if (unlikely(ftrace_disabled)) 3563 return NULL; 3564 3565 if (iter->flags & FTRACE_ITER_PROBE) 3566 return t_probe_next(m, pos); 3567 3568 if (iter->flags & FTRACE_ITER_MOD) 3569 return t_mod_next(m, pos); 3570 3571 if (iter->flags & FTRACE_ITER_PRINTALL) { 3572 /* next must increment pos, and t_probe_start does not */ 3573 (*pos)++; 3574 return t_mod_start(m, &l); 3575 } 3576 3577 ret = t_func_next(m, pos); 3578 3579 if (!ret) 3580 return t_mod_start(m, &l); 3581 3582 return ret; 3583 } 3584 3585 static void reset_iter_read(struct ftrace_iterator *iter) 3586 { 3587 iter->pos = 0; 3588 iter->func_pos = 0; 3589 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3590 } 3591 3592 static void *t_start(struct seq_file *m, loff_t *pos) 3593 { 3594 struct ftrace_iterator *iter = m->private; 3595 void *p = NULL; 3596 loff_t l; 3597 3598 mutex_lock(&ftrace_lock); 3599 3600 if (unlikely(ftrace_disabled)) 3601 return NULL; 3602 3603 /* 3604 * If an lseek was done, then reset and start from beginning. 3605 */ 3606 if (*pos < iter->pos) 3607 reset_iter_read(iter); 3608 3609 /* 3610 * For set_ftrace_filter reading, if we have the filter 3611 * off, we can short cut and just print out that all 3612 * functions are enabled. 3613 */ 3614 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3615 ftrace_hash_empty(iter->hash)) { 3616 iter->func_pos = 1; /* Account for the message */ 3617 if (*pos > 0) 3618 return t_mod_start(m, pos); 3619 iter->flags |= FTRACE_ITER_PRINTALL; 3620 /* reset in case of seek/pread */ 3621 iter->flags &= ~FTRACE_ITER_PROBE; 3622 return iter; 3623 } 3624 3625 if (iter->flags & FTRACE_ITER_MOD) 3626 return t_mod_start(m, pos); 3627 3628 /* 3629 * Unfortunately, we need to restart at ftrace_pages_start 3630 * every time we let go of the ftrace_mutex. This is because 3631 * those pointers can change without the lock. 3632 */ 3633 iter->pg = ftrace_pages_start; 3634 iter->idx = 0; 3635 for (l = 0; l <= *pos; ) { 3636 p = t_func_next(m, &l); 3637 if (!p) 3638 break; 3639 } 3640 3641 if (!p) 3642 return t_mod_start(m, pos); 3643 3644 return iter; 3645 } 3646 3647 static void t_stop(struct seq_file *m, void *p) 3648 { 3649 mutex_unlock(&ftrace_lock); 3650 } 3651 3652 void * __weak 3653 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3654 { 3655 return NULL; 3656 } 3657 3658 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3659 struct dyn_ftrace *rec) 3660 { 3661 void *ptr; 3662 3663 ptr = arch_ftrace_trampoline_func(ops, rec); 3664 if (ptr) 3665 seq_printf(m, " ->%pS", ptr); 3666 } 3667 3668 static int t_show(struct seq_file *m, void *v) 3669 { 3670 struct ftrace_iterator *iter = m->private; 3671 struct dyn_ftrace *rec; 3672 3673 if (iter->flags & FTRACE_ITER_PROBE) 3674 return t_probe_show(m, iter); 3675 3676 if (iter->flags & FTRACE_ITER_MOD) 3677 return t_mod_show(m, iter); 3678 3679 if (iter->flags & FTRACE_ITER_PRINTALL) { 3680 if (iter->flags & FTRACE_ITER_NOTRACE) 3681 seq_puts(m, "#### no functions disabled ####\n"); 3682 else 3683 seq_puts(m, "#### all functions enabled ####\n"); 3684 return 0; 3685 } 3686 3687 rec = iter->func; 3688 3689 if (!rec) 3690 return 0; 3691 3692 seq_printf(m, "%ps", (void *)rec->ip); 3693 if (iter->flags & FTRACE_ITER_ENABLED) { 3694 struct ftrace_ops *ops; 3695 3696 seq_printf(m, " (%ld)%s%s%s", 3697 ftrace_rec_count(rec), 3698 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3699 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3700 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3701 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3702 ops = ftrace_find_tramp_ops_any(rec); 3703 if (ops) { 3704 do { 3705 seq_printf(m, "\ttramp: %pS (%pS)", 3706 (void *)ops->trampoline, 3707 (void *)ops->func); 3708 add_trampoline_func(m, ops, rec); 3709 ops = ftrace_find_tramp_ops_next(rec, ops); 3710 } while (ops); 3711 } else 3712 seq_puts(m, "\ttramp: ERROR!"); 3713 } else { 3714 add_trampoline_func(m, NULL, rec); 3715 } 3716 if (rec->flags & FTRACE_FL_DIRECT) { 3717 unsigned long direct; 3718 3719 direct = ftrace_find_rec_direct(rec->ip); 3720 if (direct) 3721 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3722 } 3723 } 3724 3725 seq_putc(m, '\n'); 3726 3727 return 0; 3728 } 3729 3730 static const struct seq_operations show_ftrace_seq_ops = { 3731 .start = t_start, 3732 .next = t_next, 3733 .stop = t_stop, 3734 .show = t_show, 3735 }; 3736 3737 static int 3738 ftrace_avail_open(struct inode *inode, struct file *file) 3739 { 3740 struct ftrace_iterator *iter; 3741 int ret; 3742 3743 ret = security_locked_down(LOCKDOWN_TRACEFS); 3744 if (ret) 3745 return ret; 3746 3747 if (unlikely(ftrace_disabled)) 3748 return -ENODEV; 3749 3750 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3751 if (!iter) 3752 return -ENOMEM; 3753 3754 iter->pg = ftrace_pages_start; 3755 iter->ops = &global_ops; 3756 3757 return 0; 3758 } 3759 3760 static int 3761 ftrace_enabled_open(struct inode *inode, struct file *file) 3762 { 3763 struct ftrace_iterator *iter; 3764 3765 /* 3766 * This shows us what functions are currently being 3767 * traced and by what. Not sure if we want lockdown 3768 * to hide such critical information for an admin. 3769 * Although, perhaps it can show information we don't 3770 * want people to see, but if something is tracing 3771 * something, we probably want to know about it. 3772 */ 3773 3774 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3775 if (!iter) 3776 return -ENOMEM; 3777 3778 iter->pg = ftrace_pages_start; 3779 iter->flags = FTRACE_ITER_ENABLED; 3780 iter->ops = &global_ops; 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * ftrace_regex_open - initialize function tracer filter files 3787 * @ops: The ftrace_ops that hold the hash filters 3788 * @flag: The type of filter to process 3789 * @inode: The inode, usually passed in to your open routine 3790 * @file: The file, usually passed in to your open routine 3791 * 3792 * ftrace_regex_open() initializes the filter files for the 3793 * @ops. Depending on @flag it may process the filter hash or 3794 * the notrace hash of @ops. With this called from the open 3795 * routine, you can use ftrace_filter_write() for the write 3796 * routine if @flag has FTRACE_ITER_FILTER set, or 3797 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3798 * tracing_lseek() should be used as the lseek routine, and 3799 * release must call ftrace_regex_release(). 3800 */ 3801 int 3802 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3803 struct inode *inode, struct file *file) 3804 { 3805 struct ftrace_iterator *iter; 3806 struct ftrace_hash *hash; 3807 struct list_head *mod_head; 3808 struct trace_array *tr = ops->private; 3809 int ret = -ENOMEM; 3810 3811 ftrace_ops_init(ops); 3812 3813 if (unlikely(ftrace_disabled)) 3814 return -ENODEV; 3815 3816 if (tracing_check_open_get_tr(tr)) 3817 return -ENODEV; 3818 3819 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3820 if (!iter) 3821 goto out; 3822 3823 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3824 goto out; 3825 3826 iter->ops = ops; 3827 iter->flags = flag; 3828 iter->tr = tr; 3829 3830 mutex_lock(&ops->func_hash->regex_lock); 3831 3832 if (flag & FTRACE_ITER_NOTRACE) { 3833 hash = ops->func_hash->notrace_hash; 3834 mod_head = tr ? &tr->mod_notrace : NULL; 3835 } else { 3836 hash = ops->func_hash->filter_hash; 3837 mod_head = tr ? &tr->mod_trace : NULL; 3838 } 3839 3840 iter->mod_list = mod_head; 3841 3842 if (file->f_mode & FMODE_WRITE) { 3843 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3844 3845 if (file->f_flags & O_TRUNC) { 3846 iter->hash = alloc_ftrace_hash(size_bits); 3847 clear_ftrace_mod_list(mod_head); 3848 } else { 3849 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3850 } 3851 3852 if (!iter->hash) { 3853 trace_parser_put(&iter->parser); 3854 goto out_unlock; 3855 } 3856 } else 3857 iter->hash = hash; 3858 3859 ret = 0; 3860 3861 if (file->f_mode & FMODE_READ) { 3862 iter->pg = ftrace_pages_start; 3863 3864 ret = seq_open(file, &show_ftrace_seq_ops); 3865 if (!ret) { 3866 struct seq_file *m = file->private_data; 3867 m->private = iter; 3868 } else { 3869 /* Failed */ 3870 free_ftrace_hash(iter->hash); 3871 trace_parser_put(&iter->parser); 3872 } 3873 } else 3874 file->private_data = iter; 3875 3876 out_unlock: 3877 mutex_unlock(&ops->func_hash->regex_lock); 3878 3879 out: 3880 if (ret) { 3881 kfree(iter); 3882 if (tr) 3883 trace_array_put(tr); 3884 } 3885 3886 return ret; 3887 } 3888 3889 static int 3890 ftrace_filter_open(struct inode *inode, struct file *file) 3891 { 3892 struct ftrace_ops *ops = inode->i_private; 3893 3894 /* Checks for tracefs lockdown */ 3895 return ftrace_regex_open(ops, 3896 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3897 inode, file); 3898 } 3899 3900 static int 3901 ftrace_notrace_open(struct inode *inode, struct file *file) 3902 { 3903 struct ftrace_ops *ops = inode->i_private; 3904 3905 /* Checks for tracefs lockdown */ 3906 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3907 inode, file); 3908 } 3909 3910 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3911 struct ftrace_glob { 3912 char *search; 3913 unsigned len; 3914 int type; 3915 }; 3916 3917 /* 3918 * If symbols in an architecture don't correspond exactly to the user-visible 3919 * name of what they represent, it is possible to define this function to 3920 * perform the necessary adjustments. 3921 */ 3922 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3923 { 3924 return str; 3925 } 3926 3927 static int ftrace_match(char *str, struct ftrace_glob *g) 3928 { 3929 int matched = 0; 3930 int slen; 3931 3932 str = arch_ftrace_match_adjust(str, g->search); 3933 3934 switch (g->type) { 3935 case MATCH_FULL: 3936 if (strcmp(str, g->search) == 0) 3937 matched = 1; 3938 break; 3939 case MATCH_FRONT_ONLY: 3940 if (strncmp(str, g->search, g->len) == 0) 3941 matched = 1; 3942 break; 3943 case MATCH_MIDDLE_ONLY: 3944 if (strstr(str, g->search)) 3945 matched = 1; 3946 break; 3947 case MATCH_END_ONLY: 3948 slen = strlen(str); 3949 if (slen >= g->len && 3950 memcmp(str + slen - g->len, g->search, g->len) == 0) 3951 matched = 1; 3952 break; 3953 case MATCH_GLOB: 3954 if (glob_match(g->search, str)) 3955 matched = 1; 3956 break; 3957 } 3958 3959 return matched; 3960 } 3961 3962 static int 3963 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3964 { 3965 struct ftrace_func_entry *entry; 3966 int ret = 0; 3967 3968 entry = ftrace_lookup_ip(hash, rec->ip); 3969 if (clear_filter) { 3970 /* Do nothing if it doesn't exist */ 3971 if (!entry) 3972 return 0; 3973 3974 free_hash_entry(hash, entry); 3975 } else { 3976 /* Do nothing if it exists */ 3977 if (entry) 3978 return 0; 3979 3980 ret = add_hash_entry(hash, rec->ip); 3981 } 3982 return ret; 3983 } 3984 3985 static int 3986 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3987 int clear_filter) 3988 { 3989 long index = simple_strtoul(func_g->search, NULL, 0); 3990 struct ftrace_page *pg; 3991 struct dyn_ftrace *rec; 3992 3993 /* The index starts at 1 */ 3994 if (--index < 0) 3995 return 0; 3996 3997 do_for_each_ftrace_rec(pg, rec) { 3998 if (pg->index <= index) { 3999 index -= pg->index; 4000 /* this is a double loop, break goes to the next page */ 4001 break; 4002 } 4003 rec = &pg->records[index]; 4004 enter_record(hash, rec, clear_filter); 4005 return 1; 4006 } while_for_each_ftrace_rec(); 4007 return 0; 4008 } 4009 4010 static int 4011 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4012 struct ftrace_glob *mod_g, int exclude_mod) 4013 { 4014 char str[KSYM_SYMBOL_LEN]; 4015 char *modname; 4016 4017 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 4018 4019 if (mod_g) { 4020 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4021 4022 /* blank module name to match all modules */ 4023 if (!mod_g->len) { 4024 /* blank module globbing: modname xor exclude_mod */ 4025 if (!exclude_mod != !modname) 4026 goto func_match; 4027 return 0; 4028 } 4029 4030 /* 4031 * exclude_mod is set to trace everything but the given 4032 * module. If it is set and the module matches, then 4033 * return 0. If it is not set, and the module doesn't match 4034 * also return 0. Otherwise, check the function to see if 4035 * that matches. 4036 */ 4037 if (!mod_matches == !exclude_mod) 4038 return 0; 4039 func_match: 4040 /* blank search means to match all funcs in the mod */ 4041 if (!func_g->len) 4042 return 1; 4043 } 4044 4045 return ftrace_match(str, func_g); 4046 } 4047 4048 static int 4049 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4050 { 4051 struct ftrace_page *pg; 4052 struct dyn_ftrace *rec; 4053 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4054 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4055 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4056 int exclude_mod = 0; 4057 int found = 0; 4058 int ret; 4059 int clear_filter = 0; 4060 4061 if (func) { 4062 func_g.type = filter_parse_regex(func, len, &func_g.search, 4063 &clear_filter); 4064 func_g.len = strlen(func_g.search); 4065 } 4066 4067 if (mod) { 4068 mod_g.type = filter_parse_regex(mod, strlen(mod), 4069 &mod_g.search, &exclude_mod); 4070 mod_g.len = strlen(mod_g.search); 4071 } 4072 4073 mutex_lock(&ftrace_lock); 4074 4075 if (unlikely(ftrace_disabled)) 4076 goto out_unlock; 4077 4078 if (func_g.type == MATCH_INDEX) { 4079 found = add_rec_by_index(hash, &func_g, clear_filter); 4080 goto out_unlock; 4081 } 4082 4083 do_for_each_ftrace_rec(pg, rec) { 4084 4085 if (rec->flags & FTRACE_FL_DISABLED) 4086 continue; 4087 4088 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4089 ret = enter_record(hash, rec, clear_filter); 4090 if (ret < 0) { 4091 found = ret; 4092 goto out_unlock; 4093 } 4094 found = 1; 4095 } 4096 } while_for_each_ftrace_rec(); 4097 out_unlock: 4098 mutex_unlock(&ftrace_lock); 4099 4100 return found; 4101 } 4102 4103 static int 4104 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4105 { 4106 return match_records(hash, buff, len, NULL); 4107 } 4108 4109 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4110 struct ftrace_ops_hash *old_hash) 4111 { 4112 struct ftrace_ops *op; 4113 4114 if (!ftrace_enabled) 4115 return; 4116 4117 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4118 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4119 return; 4120 } 4121 4122 /* 4123 * If this is the shared global_ops filter, then we need to 4124 * check if there is another ops that shares it, is enabled. 4125 * If so, we still need to run the modify code. 4126 */ 4127 if (ops->func_hash != &global_ops.local_hash) 4128 return; 4129 4130 do_for_each_ftrace_op(op, ftrace_ops_list) { 4131 if (op->func_hash == &global_ops.local_hash && 4132 op->flags & FTRACE_OPS_FL_ENABLED) { 4133 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4134 /* Only need to do this once */ 4135 return; 4136 } 4137 } while_for_each_ftrace_op(op); 4138 } 4139 4140 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4141 struct ftrace_hash **orig_hash, 4142 struct ftrace_hash *hash, 4143 int enable) 4144 { 4145 struct ftrace_ops_hash old_hash_ops; 4146 struct ftrace_hash *old_hash; 4147 int ret; 4148 4149 old_hash = *orig_hash; 4150 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4151 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4152 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4153 if (!ret) { 4154 ftrace_ops_update_code(ops, &old_hash_ops); 4155 free_ftrace_hash_rcu(old_hash); 4156 } 4157 return ret; 4158 } 4159 4160 static bool module_exists(const char *module) 4161 { 4162 /* All modules have the symbol __this_module */ 4163 static const char this_mod[] = "__this_module"; 4164 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4165 unsigned long val; 4166 int n; 4167 4168 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4169 4170 if (n > sizeof(modname) - 1) 4171 return false; 4172 4173 val = module_kallsyms_lookup_name(modname); 4174 return val != 0; 4175 } 4176 4177 static int cache_mod(struct trace_array *tr, 4178 const char *func, char *module, int enable) 4179 { 4180 struct ftrace_mod_load *ftrace_mod, *n; 4181 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4182 int ret; 4183 4184 mutex_lock(&ftrace_lock); 4185 4186 /* We do not cache inverse filters */ 4187 if (func[0] == '!') { 4188 func++; 4189 ret = -EINVAL; 4190 4191 /* Look to remove this hash */ 4192 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4193 if (strcmp(ftrace_mod->module, module) != 0) 4194 continue; 4195 4196 /* no func matches all */ 4197 if (strcmp(func, "*") == 0 || 4198 (ftrace_mod->func && 4199 strcmp(ftrace_mod->func, func) == 0)) { 4200 ret = 0; 4201 free_ftrace_mod(ftrace_mod); 4202 continue; 4203 } 4204 } 4205 goto out; 4206 } 4207 4208 ret = -EINVAL; 4209 /* We only care about modules that have not been loaded yet */ 4210 if (module_exists(module)) 4211 goto out; 4212 4213 /* Save this string off, and execute it when the module is loaded */ 4214 ret = ftrace_add_mod(tr, func, module, enable); 4215 out: 4216 mutex_unlock(&ftrace_lock); 4217 4218 return ret; 4219 } 4220 4221 static int 4222 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4223 int reset, int enable); 4224 4225 #ifdef CONFIG_MODULES 4226 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4227 char *mod, bool enable) 4228 { 4229 struct ftrace_mod_load *ftrace_mod, *n; 4230 struct ftrace_hash **orig_hash, *new_hash; 4231 LIST_HEAD(process_mods); 4232 char *func; 4233 4234 mutex_lock(&ops->func_hash->regex_lock); 4235 4236 if (enable) 4237 orig_hash = &ops->func_hash->filter_hash; 4238 else 4239 orig_hash = &ops->func_hash->notrace_hash; 4240 4241 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4242 *orig_hash); 4243 if (!new_hash) 4244 goto out; /* warn? */ 4245 4246 mutex_lock(&ftrace_lock); 4247 4248 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4249 4250 if (strcmp(ftrace_mod->module, mod) != 0) 4251 continue; 4252 4253 if (ftrace_mod->func) 4254 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4255 else 4256 func = kstrdup("*", GFP_KERNEL); 4257 4258 if (!func) /* warn? */ 4259 continue; 4260 4261 list_move(&ftrace_mod->list, &process_mods); 4262 4263 /* Use the newly allocated func, as it may be "*" */ 4264 kfree(ftrace_mod->func); 4265 ftrace_mod->func = func; 4266 } 4267 4268 mutex_unlock(&ftrace_lock); 4269 4270 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4271 4272 func = ftrace_mod->func; 4273 4274 /* Grabs ftrace_lock, which is why we have this extra step */ 4275 match_records(new_hash, func, strlen(func), mod); 4276 free_ftrace_mod(ftrace_mod); 4277 } 4278 4279 if (enable && list_empty(head)) 4280 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4281 4282 mutex_lock(&ftrace_lock); 4283 4284 ftrace_hash_move_and_update_ops(ops, orig_hash, 4285 new_hash, enable); 4286 mutex_unlock(&ftrace_lock); 4287 4288 out: 4289 mutex_unlock(&ops->func_hash->regex_lock); 4290 4291 free_ftrace_hash(new_hash); 4292 } 4293 4294 static void process_cached_mods(const char *mod_name) 4295 { 4296 struct trace_array *tr; 4297 char *mod; 4298 4299 mod = kstrdup(mod_name, GFP_KERNEL); 4300 if (!mod) 4301 return; 4302 4303 mutex_lock(&trace_types_lock); 4304 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4305 if (!list_empty(&tr->mod_trace)) 4306 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4307 if (!list_empty(&tr->mod_notrace)) 4308 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4309 } 4310 mutex_unlock(&trace_types_lock); 4311 4312 kfree(mod); 4313 } 4314 #endif 4315 4316 /* 4317 * We register the module command as a template to show others how 4318 * to register the a command as well. 4319 */ 4320 4321 static int 4322 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4323 char *func_orig, char *cmd, char *module, int enable) 4324 { 4325 char *func; 4326 int ret; 4327 4328 /* match_records() modifies func, and we need the original */ 4329 func = kstrdup(func_orig, GFP_KERNEL); 4330 if (!func) 4331 return -ENOMEM; 4332 4333 /* 4334 * cmd == 'mod' because we only registered this func 4335 * for the 'mod' ftrace_func_command. 4336 * But if you register one func with multiple commands, 4337 * you can tell which command was used by the cmd 4338 * parameter. 4339 */ 4340 ret = match_records(hash, func, strlen(func), module); 4341 kfree(func); 4342 4343 if (!ret) 4344 return cache_mod(tr, func_orig, module, enable); 4345 if (ret < 0) 4346 return ret; 4347 return 0; 4348 } 4349 4350 static struct ftrace_func_command ftrace_mod_cmd = { 4351 .name = "mod", 4352 .func = ftrace_mod_callback, 4353 }; 4354 4355 static int __init ftrace_mod_cmd_init(void) 4356 { 4357 return register_ftrace_command(&ftrace_mod_cmd); 4358 } 4359 core_initcall(ftrace_mod_cmd_init); 4360 4361 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4362 struct ftrace_ops *op, struct ftrace_regs *fregs) 4363 { 4364 struct ftrace_probe_ops *probe_ops; 4365 struct ftrace_func_probe *probe; 4366 4367 probe = container_of(op, struct ftrace_func_probe, ops); 4368 probe_ops = probe->probe_ops; 4369 4370 /* 4371 * Disable preemption for these calls to prevent a RCU grace 4372 * period. This syncs the hash iteration and freeing of items 4373 * on the hash. rcu_read_lock is too dangerous here. 4374 */ 4375 preempt_disable_notrace(); 4376 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4377 preempt_enable_notrace(); 4378 } 4379 4380 struct ftrace_func_map { 4381 struct ftrace_func_entry entry; 4382 void *data; 4383 }; 4384 4385 struct ftrace_func_mapper { 4386 struct ftrace_hash hash; 4387 }; 4388 4389 /** 4390 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4391 * 4392 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4393 */ 4394 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4395 { 4396 struct ftrace_hash *hash; 4397 4398 /* 4399 * The mapper is simply a ftrace_hash, but since the entries 4400 * in the hash are not ftrace_func_entry type, we define it 4401 * as a separate structure. 4402 */ 4403 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4404 return (struct ftrace_func_mapper *)hash; 4405 } 4406 4407 /** 4408 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4409 * @mapper: The mapper that has the ip maps 4410 * @ip: the instruction pointer to find the data for 4411 * 4412 * Returns the data mapped to @ip if found otherwise NULL. The return 4413 * is actually the address of the mapper data pointer. The address is 4414 * returned for use cases where the data is no bigger than a long, and 4415 * the user can use the data pointer as its data instead of having to 4416 * allocate more memory for the reference. 4417 */ 4418 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4419 unsigned long ip) 4420 { 4421 struct ftrace_func_entry *entry; 4422 struct ftrace_func_map *map; 4423 4424 entry = ftrace_lookup_ip(&mapper->hash, ip); 4425 if (!entry) 4426 return NULL; 4427 4428 map = (struct ftrace_func_map *)entry; 4429 return &map->data; 4430 } 4431 4432 /** 4433 * ftrace_func_mapper_add_ip - Map some data to an ip 4434 * @mapper: The mapper that has the ip maps 4435 * @ip: The instruction pointer address to map @data to 4436 * @data: The data to map to @ip 4437 * 4438 * Returns 0 on success otherwise an error. 4439 */ 4440 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4441 unsigned long ip, void *data) 4442 { 4443 struct ftrace_func_entry *entry; 4444 struct ftrace_func_map *map; 4445 4446 entry = ftrace_lookup_ip(&mapper->hash, ip); 4447 if (entry) 4448 return -EBUSY; 4449 4450 map = kmalloc(sizeof(*map), GFP_KERNEL); 4451 if (!map) 4452 return -ENOMEM; 4453 4454 map->entry.ip = ip; 4455 map->data = data; 4456 4457 __add_hash_entry(&mapper->hash, &map->entry); 4458 4459 return 0; 4460 } 4461 4462 /** 4463 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4464 * @mapper: The mapper that has the ip maps 4465 * @ip: The instruction pointer address to remove the data from 4466 * 4467 * Returns the data if it is found, otherwise NULL. 4468 * Note, if the data pointer is used as the data itself, (see 4469 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4470 * if the data pointer was set to zero. 4471 */ 4472 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4473 unsigned long ip) 4474 { 4475 struct ftrace_func_entry *entry; 4476 struct ftrace_func_map *map; 4477 void *data; 4478 4479 entry = ftrace_lookup_ip(&mapper->hash, ip); 4480 if (!entry) 4481 return NULL; 4482 4483 map = (struct ftrace_func_map *)entry; 4484 data = map->data; 4485 4486 remove_hash_entry(&mapper->hash, entry); 4487 kfree(entry); 4488 4489 return data; 4490 } 4491 4492 /** 4493 * free_ftrace_func_mapper - free a mapping of ips and data 4494 * @mapper: The mapper that has the ip maps 4495 * @free_func: A function to be called on each data item. 4496 * 4497 * This is used to free the function mapper. The @free_func is optional 4498 * and can be used if the data needs to be freed as well. 4499 */ 4500 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4501 ftrace_mapper_func free_func) 4502 { 4503 struct ftrace_func_entry *entry; 4504 struct ftrace_func_map *map; 4505 struct hlist_head *hhd; 4506 int size, i; 4507 4508 if (!mapper) 4509 return; 4510 4511 if (free_func && mapper->hash.count) { 4512 size = 1 << mapper->hash.size_bits; 4513 for (i = 0; i < size; i++) { 4514 hhd = &mapper->hash.buckets[i]; 4515 hlist_for_each_entry(entry, hhd, hlist) { 4516 map = (struct ftrace_func_map *)entry; 4517 free_func(map); 4518 } 4519 } 4520 } 4521 free_ftrace_hash(&mapper->hash); 4522 } 4523 4524 static void release_probe(struct ftrace_func_probe *probe) 4525 { 4526 struct ftrace_probe_ops *probe_ops; 4527 4528 mutex_lock(&ftrace_lock); 4529 4530 WARN_ON(probe->ref <= 0); 4531 4532 /* Subtract the ref that was used to protect this instance */ 4533 probe->ref--; 4534 4535 if (!probe->ref) { 4536 probe_ops = probe->probe_ops; 4537 /* 4538 * Sending zero as ip tells probe_ops to free 4539 * the probe->data itself 4540 */ 4541 if (probe_ops->free) 4542 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4543 list_del(&probe->list); 4544 kfree(probe); 4545 } 4546 mutex_unlock(&ftrace_lock); 4547 } 4548 4549 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4550 { 4551 /* 4552 * Add one ref to keep it from being freed when releasing the 4553 * ftrace_lock mutex. 4554 */ 4555 probe->ref++; 4556 } 4557 4558 int 4559 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4560 struct ftrace_probe_ops *probe_ops, 4561 void *data) 4562 { 4563 struct ftrace_func_entry *entry; 4564 struct ftrace_func_probe *probe; 4565 struct ftrace_hash **orig_hash; 4566 struct ftrace_hash *old_hash; 4567 struct ftrace_hash *hash; 4568 int count = 0; 4569 int size; 4570 int ret; 4571 int i; 4572 4573 if (WARN_ON(!tr)) 4574 return -EINVAL; 4575 4576 /* We do not support '!' for function probes */ 4577 if (WARN_ON(glob[0] == '!')) 4578 return -EINVAL; 4579 4580 4581 mutex_lock(&ftrace_lock); 4582 /* Check if the probe_ops is already registered */ 4583 list_for_each_entry(probe, &tr->func_probes, list) { 4584 if (probe->probe_ops == probe_ops) 4585 break; 4586 } 4587 if (&probe->list == &tr->func_probes) { 4588 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4589 if (!probe) { 4590 mutex_unlock(&ftrace_lock); 4591 return -ENOMEM; 4592 } 4593 probe->probe_ops = probe_ops; 4594 probe->ops.func = function_trace_probe_call; 4595 probe->tr = tr; 4596 ftrace_ops_init(&probe->ops); 4597 list_add(&probe->list, &tr->func_probes); 4598 } 4599 4600 acquire_probe_locked(probe); 4601 4602 mutex_unlock(&ftrace_lock); 4603 4604 /* 4605 * Note, there's a small window here that the func_hash->filter_hash 4606 * may be NULL or empty. Need to be careful when reading the loop. 4607 */ 4608 mutex_lock(&probe->ops.func_hash->regex_lock); 4609 4610 orig_hash = &probe->ops.func_hash->filter_hash; 4611 old_hash = *orig_hash; 4612 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4613 4614 if (!hash) { 4615 ret = -ENOMEM; 4616 goto out; 4617 } 4618 4619 ret = ftrace_match_records(hash, glob, strlen(glob)); 4620 4621 /* Nothing found? */ 4622 if (!ret) 4623 ret = -EINVAL; 4624 4625 if (ret < 0) 4626 goto out; 4627 4628 size = 1 << hash->size_bits; 4629 for (i = 0; i < size; i++) { 4630 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4631 if (ftrace_lookup_ip(old_hash, entry->ip)) 4632 continue; 4633 /* 4634 * The caller might want to do something special 4635 * for each function we find. We call the callback 4636 * to give the caller an opportunity to do so. 4637 */ 4638 if (probe_ops->init) { 4639 ret = probe_ops->init(probe_ops, tr, 4640 entry->ip, data, 4641 &probe->data); 4642 if (ret < 0) { 4643 if (probe_ops->free && count) 4644 probe_ops->free(probe_ops, tr, 4645 0, probe->data); 4646 probe->data = NULL; 4647 goto out; 4648 } 4649 } 4650 count++; 4651 } 4652 } 4653 4654 mutex_lock(&ftrace_lock); 4655 4656 if (!count) { 4657 /* Nothing was added? */ 4658 ret = -EINVAL; 4659 goto out_unlock; 4660 } 4661 4662 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4663 hash, 1); 4664 if (ret < 0) 4665 goto err_unlock; 4666 4667 /* One ref for each new function traced */ 4668 probe->ref += count; 4669 4670 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4671 ret = ftrace_startup(&probe->ops, 0); 4672 4673 out_unlock: 4674 mutex_unlock(&ftrace_lock); 4675 4676 if (!ret) 4677 ret = count; 4678 out: 4679 mutex_unlock(&probe->ops.func_hash->regex_lock); 4680 free_ftrace_hash(hash); 4681 4682 release_probe(probe); 4683 4684 return ret; 4685 4686 err_unlock: 4687 if (!probe_ops->free || !count) 4688 goto out_unlock; 4689 4690 /* Failed to do the move, need to call the free functions */ 4691 for (i = 0; i < size; i++) { 4692 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4693 if (ftrace_lookup_ip(old_hash, entry->ip)) 4694 continue; 4695 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4696 } 4697 } 4698 goto out_unlock; 4699 } 4700 4701 int 4702 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4703 struct ftrace_probe_ops *probe_ops) 4704 { 4705 struct ftrace_ops_hash old_hash_ops; 4706 struct ftrace_func_entry *entry; 4707 struct ftrace_func_probe *probe; 4708 struct ftrace_glob func_g; 4709 struct ftrace_hash **orig_hash; 4710 struct ftrace_hash *old_hash; 4711 struct ftrace_hash *hash = NULL; 4712 struct hlist_node *tmp; 4713 struct hlist_head hhd; 4714 char str[KSYM_SYMBOL_LEN]; 4715 int count = 0; 4716 int i, ret = -ENODEV; 4717 int size; 4718 4719 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4720 func_g.search = NULL; 4721 else { 4722 int not; 4723 4724 func_g.type = filter_parse_regex(glob, strlen(glob), 4725 &func_g.search, ¬); 4726 func_g.len = strlen(func_g.search); 4727 4728 /* we do not support '!' for function probes */ 4729 if (WARN_ON(not)) 4730 return -EINVAL; 4731 } 4732 4733 mutex_lock(&ftrace_lock); 4734 /* Check if the probe_ops is already registered */ 4735 list_for_each_entry(probe, &tr->func_probes, list) { 4736 if (probe->probe_ops == probe_ops) 4737 break; 4738 } 4739 if (&probe->list == &tr->func_probes) 4740 goto err_unlock_ftrace; 4741 4742 ret = -EINVAL; 4743 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4744 goto err_unlock_ftrace; 4745 4746 acquire_probe_locked(probe); 4747 4748 mutex_unlock(&ftrace_lock); 4749 4750 mutex_lock(&probe->ops.func_hash->regex_lock); 4751 4752 orig_hash = &probe->ops.func_hash->filter_hash; 4753 old_hash = *orig_hash; 4754 4755 if (ftrace_hash_empty(old_hash)) 4756 goto out_unlock; 4757 4758 old_hash_ops.filter_hash = old_hash; 4759 /* Probes only have filters */ 4760 old_hash_ops.notrace_hash = NULL; 4761 4762 ret = -ENOMEM; 4763 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4764 if (!hash) 4765 goto out_unlock; 4766 4767 INIT_HLIST_HEAD(&hhd); 4768 4769 size = 1 << hash->size_bits; 4770 for (i = 0; i < size; i++) { 4771 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4772 4773 if (func_g.search) { 4774 kallsyms_lookup(entry->ip, NULL, NULL, 4775 NULL, str); 4776 if (!ftrace_match(str, &func_g)) 4777 continue; 4778 } 4779 count++; 4780 remove_hash_entry(hash, entry); 4781 hlist_add_head(&entry->hlist, &hhd); 4782 } 4783 } 4784 4785 /* Nothing found? */ 4786 if (!count) { 4787 ret = -EINVAL; 4788 goto out_unlock; 4789 } 4790 4791 mutex_lock(&ftrace_lock); 4792 4793 WARN_ON(probe->ref < count); 4794 4795 probe->ref -= count; 4796 4797 if (ftrace_hash_empty(hash)) 4798 ftrace_shutdown(&probe->ops, 0); 4799 4800 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4801 hash, 1); 4802 4803 /* still need to update the function call sites */ 4804 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4805 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4806 &old_hash_ops); 4807 synchronize_rcu(); 4808 4809 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4810 hlist_del(&entry->hlist); 4811 if (probe_ops->free) 4812 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4813 kfree(entry); 4814 } 4815 mutex_unlock(&ftrace_lock); 4816 4817 out_unlock: 4818 mutex_unlock(&probe->ops.func_hash->regex_lock); 4819 free_ftrace_hash(hash); 4820 4821 release_probe(probe); 4822 4823 return ret; 4824 4825 err_unlock_ftrace: 4826 mutex_unlock(&ftrace_lock); 4827 return ret; 4828 } 4829 4830 void clear_ftrace_function_probes(struct trace_array *tr) 4831 { 4832 struct ftrace_func_probe *probe, *n; 4833 4834 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4835 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4836 } 4837 4838 static LIST_HEAD(ftrace_commands); 4839 static DEFINE_MUTEX(ftrace_cmd_mutex); 4840 4841 /* 4842 * Currently we only register ftrace commands from __init, so mark this 4843 * __init too. 4844 */ 4845 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4846 { 4847 struct ftrace_func_command *p; 4848 int ret = 0; 4849 4850 mutex_lock(&ftrace_cmd_mutex); 4851 list_for_each_entry(p, &ftrace_commands, list) { 4852 if (strcmp(cmd->name, p->name) == 0) { 4853 ret = -EBUSY; 4854 goto out_unlock; 4855 } 4856 } 4857 list_add(&cmd->list, &ftrace_commands); 4858 out_unlock: 4859 mutex_unlock(&ftrace_cmd_mutex); 4860 4861 return ret; 4862 } 4863 4864 /* 4865 * Currently we only unregister ftrace commands from __init, so mark 4866 * this __init too. 4867 */ 4868 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4869 { 4870 struct ftrace_func_command *p, *n; 4871 int ret = -ENODEV; 4872 4873 mutex_lock(&ftrace_cmd_mutex); 4874 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4875 if (strcmp(cmd->name, p->name) == 0) { 4876 ret = 0; 4877 list_del_init(&p->list); 4878 goto out_unlock; 4879 } 4880 } 4881 out_unlock: 4882 mutex_unlock(&ftrace_cmd_mutex); 4883 4884 return ret; 4885 } 4886 4887 static int ftrace_process_regex(struct ftrace_iterator *iter, 4888 char *buff, int len, int enable) 4889 { 4890 struct ftrace_hash *hash = iter->hash; 4891 struct trace_array *tr = iter->ops->private; 4892 char *func, *command, *next = buff; 4893 struct ftrace_func_command *p; 4894 int ret = -EINVAL; 4895 4896 func = strsep(&next, ":"); 4897 4898 if (!next) { 4899 ret = ftrace_match_records(hash, func, len); 4900 if (!ret) 4901 ret = -EINVAL; 4902 if (ret < 0) 4903 return ret; 4904 return 0; 4905 } 4906 4907 /* command found */ 4908 4909 command = strsep(&next, ":"); 4910 4911 mutex_lock(&ftrace_cmd_mutex); 4912 list_for_each_entry(p, &ftrace_commands, list) { 4913 if (strcmp(p->name, command) == 0) { 4914 ret = p->func(tr, hash, func, command, next, enable); 4915 goto out_unlock; 4916 } 4917 } 4918 out_unlock: 4919 mutex_unlock(&ftrace_cmd_mutex); 4920 4921 return ret; 4922 } 4923 4924 static ssize_t 4925 ftrace_regex_write(struct file *file, const char __user *ubuf, 4926 size_t cnt, loff_t *ppos, int enable) 4927 { 4928 struct ftrace_iterator *iter; 4929 struct trace_parser *parser; 4930 ssize_t ret, read; 4931 4932 if (!cnt) 4933 return 0; 4934 4935 if (file->f_mode & FMODE_READ) { 4936 struct seq_file *m = file->private_data; 4937 iter = m->private; 4938 } else 4939 iter = file->private_data; 4940 4941 if (unlikely(ftrace_disabled)) 4942 return -ENODEV; 4943 4944 /* iter->hash is a local copy, so we don't need regex_lock */ 4945 4946 parser = &iter->parser; 4947 read = trace_get_user(parser, ubuf, cnt, ppos); 4948 4949 if (read >= 0 && trace_parser_loaded(parser) && 4950 !trace_parser_cont(parser)) { 4951 ret = ftrace_process_regex(iter, parser->buffer, 4952 parser->idx, enable); 4953 trace_parser_clear(parser); 4954 if (ret < 0) 4955 goto out; 4956 } 4957 4958 ret = read; 4959 out: 4960 return ret; 4961 } 4962 4963 ssize_t 4964 ftrace_filter_write(struct file *file, const char __user *ubuf, 4965 size_t cnt, loff_t *ppos) 4966 { 4967 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4968 } 4969 4970 ssize_t 4971 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4972 size_t cnt, loff_t *ppos) 4973 { 4974 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4975 } 4976 4977 static int 4978 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4979 { 4980 struct ftrace_func_entry *entry; 4981 4982 ip = ftrace_location(ip); 4983 if (!ip) 4984 return -EINVAL; 4985 4986 if (remove) { 4987 entry = ftrace_lookup_ip(hash, ip); 4988 if (!entry) 4989 return -ENOENT; 4990 free_hash_entry(hash, entry); 4991 return 0; 4992 } 4993 4994 return add_hash_entry(hash, ip); 4995 } 4996 4997 static int 4998 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 4999 unsigned int cnt, int remove) 5000 { 5001 unsigned int i; 5002 int err; 5003 5004 for (i = 0; i < cnt; i++) { 5005 err = __ftrace_match_addr(hash, ips[i], remove); 5006 if (err) { 5007 /* 5008 * This expects the @hash is a temporary hash and if this 5009 * fails the caller must free the @hash. 5010 */ 5011 return err; 5012 } 5013 } 5014 return 0; 5015 } 5016 5017 static int 5018 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5019 unsigned long *ips, unsigned int cnt, 5020 int remove, int reset, int enable) 5021 { 5022 struct ftrace_hash **orig_hash; 5023 struct ftrace_hash *hash; 5024 int ret; 5025 5026 if (unlikely(ftrace_disabled)) 5027 return -ENODEV; 5028 5029 mutex_lock(&ops->func_hash->regex_lock); 5030 5031 if (enable) 5032 orig_hash = &ops->func_hash->filter_hash; 5033 else 5034 orig_hash = &ops->func_hash->notrace_hash; 5035 5036 if (reset) 5037 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5038 else 5039 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5040 5041 if (!hash) { 5042 ret = -ENOMEM; 5043 goto out_regex_unlock; 5044 } 5045 5046 if (buf && !ftrace_match_records(hash, buf, len)) { 5047 ret = -EINVAL; 5048 goto out_regex_unlock; 5049 } 5050 if (ips) { 5051 ret = ftrace_match_addr(hash, ips, cnt, remove); 5052 if (ret < 0) 5053 goto out_regex_unlock; 5054 } 5055 5056 mutex_lock(&ftrace_lock); 5057 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5058 mutex_unlock(&ftrace_lock); 5059 5060 out_regex_unlock: 5061 mutex_unlock(&ops->func_hash->regex_lock); 5062 5063 free_ftrace_hash(hash); 5064 return ret; 5065 } 5066 5067 static int 5068 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5069 int remove, int reset, int enable) 5070 { 5071 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5072 } 5073 5074 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5075 5076 struct ftrace_direct_func { 5077 struct list_head next; 5078 unsigned long addr; 5079 int count; 5080 }; 5081 5082 static LIST_HEAD(ftrace_direct_funcs); 5083 5084 /** 5085 * ftrace_find_direct_func - test an address if it is a registered direct caller 5086 * @addr: The address of a registered direct caller 5087 * 5088 * This searches to see if a ftrace direct caller has been registered 5089 * at a specific address, and if so, it returns a descriptor for it. 5090 * 5091 * This can be used by architecture code to see if an address is 5092 * a direct caller (trampoline) attached to a fentry/mcount location. 5093 * This is useful for the function_graph tracer, as it may need to 5094 * do adjustments if it traced a location that also has a direct 5095 * trampoline attached to it. 5096 */ 5097 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5098 { 5099 struct ftrace_direct_func *entry; 5100 bool found = false; 5101 5102 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5103 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5104 if (entry->addr == addr) { 5105 found = true; 5106 break; 5107 } 5108 } 5109 if (found) 5110 return entry; 5111 5112 return NULL; 5113 } 5114 5115 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5116 { 5117 struct ftrace_direct_func *direct; 5118 5119 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5120 if (!direct) 5121 return NULL; 5122 direct->addr = addr; 5123 direct->count = 0; 5124 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5125 ftrace_direct_func_count++; 5126 return direct; 5127 } 5128 5129 /** 5130 * register_ftrace_direct - Call a custom trampoline directly 5131 * @ip: The address of the nop at the beginning of a function 5132 * @addr: The address of the trampoline to call at @ip 5133 * 5134 * This is used to connect a direct call from the nop location (@ip) 5135 * at the start of ftrace traced functions. The location that it calls 5136 * (@addr) must be able to handle a direct call, and save the parameters 5137 * of the function being traced, and restore them (or inject new ones 5138 * if needed), before returning. 5139 * 5140 * Returns: 5141 * 0 on success 5142 * -EBUSY - Another direct function is already attached (there can be only one) 5143 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5144 * -ENOMEM - There was an allocation failure. 5145 */ 5146 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5147 { 5148 struct ftrace_direct_func *direct; 5149 struct ftrace_func_entry *entry; 5150 struct ftrace_hash *free_hash = NULL; 5151 struct dyn_ftrace *rec; 5152 int ret = -ENODEV; 5153 5154 mutex_lock(&direct_mutex); 5155 5156 ip = ftrace_location(ip); 5157 if (!ip) 5158 goto out_unlock; 5159 5160 /* See if there's a direct function at @ip already */ 5161 ret = -EBUSY; 5162 if (ftrace_find_rec_direct(ip)) 5163 goto out_unlock; 5164 5165 ret = -ENODEV; 5166 rec = lookup_rec(ip, ip); 5167 if (!rec) 5168 goto out_unlock; 5169 5170 /* 5171 * Check if the rec says it has a direct call but we didn't 5172 * find one earlier? 5173 */ 5174 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5175 goto out_unlock; 5176 5177 /* Make sure the ip points to the exact record */ 5178 if (ip != rec->ip) { 5179 ip = rec->ip; 5180 /* Need to check this ip for a direct. */ 5181 if (ftrace_find_rec_direct(ip)) 5182 goto out_unlock; 5183 } 5184 5185 ret = -ENOMEM; 5186 direct = ftrace_find_direct_func(addr); 5187 if (!direct) { 5188 direct = ftrace_alloc_direct_func(addr); 5189 if (!direct) 5190 goto out_unlock; 5191 } 5192 5193 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5194 if (!entry) 5195 goto out_unlock; 5196 5197 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5198 if (ret) 5199 remove_hash_entry(direct_functions, entry); 5200 5201 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5202 ret = register_ftrace_function(&direct_ops); 5203 if (ret) 5204 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5205 } 5206 5207 if (ret) { 5208 kfree(entry); 5209 if (!direct->count) { 5210 list_del_rcu(&direct->next); 5211 synchronize_rcu_tasks(); 5212 kfree(direct); 5213 if (free_hash) 5214 free_ftrace_hash(free_hash); 5215 free_hash = NULL; 5216 ftrace_direct_func_count--; 5217 } 5218 } else { 5219 direct->count++; 5220 } 5221 out_unlock: 5222 mutex_unlock(&direct_mutex); 5223 5224 if (free_hash) { 5225 synchronize_rcu_tasks(); 5226 free_ftrace_hash(free_hash); 5227 } 5228 5229 return ret; 5230 } 5231 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5232 5233 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5234 struct dyn_ftrace **recp) 5235 { 5236 struct ftrace_func_entry *entry; 5237 struct dyn_ftrace *rec; 5238 5239 rec = lookup_rec(*ip, *ip); 5240 if (!rec) 5241 return NULL; 5242 5243 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5244 if (!entry) { 5245 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5246 return NULL; 5247 } 5248 5249 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5250 5251 /* Passed in ip just needs to be on the call site */ 5252 *ip = rec->ip; 5253 5254 if (recp) 5255 *recp = rec; 5256 5257 return entry; 5258 } 5259 5260 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5261 { 5262 struct ftrace_direct_func *direct; 5263 struct ftrace_func_entry *entry; 5264 struct ftrace_hash *hash; 5265 int ret = -ENODEV; 5266 5267 mutex_lock(&direct_mutex); 5268 5269 ip = ftrace_location(ip); 5270 if (!ip) 5271 goto out_unlock; 5272 5273 entry = find_direct_entry(&ip, NULL); 5274 if (!entry) 5275 goto out_unlock; 5276 5277 hash = direct_ops.func_hash->filter_hash; 5278 if (hash->count == 1) 5279 unregister_ftrace_function(&direct_ops); 5280 5281 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5282 5283 WARN_ON(ret); 5284 5285 remove_hash_entry(direct_functions, entry); 5286 5287 direct = ftrace_find_direct_func(addr); 5288 if (!WARN_ON(!direct)) { 5289 /* This is the good path (see the ! before WARN) */ 5290 direct->count--; 5291 WARN_ON(direct->count < 0); 5292 if (!direct->count) { 5293 list_del_rcu(&direct->next); 5294 synchronize_rcu_tasks(); 5295 kfree(direct); 5296 kfree(entry); 5297 ftrace_direct_func_count--; 5298 } 5299 } 5300 out_unlock: 5301 mutex_unlock(&direct_mutex); 5302 5303 return ret; 5304 } 5305 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5306 5307 static struct ftrace_ops stub_ops = { 5308 .func = ftrace_stub, 5309 }; 5310 5311 /** 5312 * ftrace_modify_direct_caller - modify ftrace nop directly 5313 * @entry: The ftrace hash entry of the direct helper for @rec 5314 * @rec: The record representing the function site to patch 5315 * @old_addr: The location that the site at @rec->ip currently calls 5316 * @new_addr: The location that the site at @rec->ip should call 5317 * 5318 * An architecture may overwrite this function to optimize the 5319 * changing of the direct callback on an ftrace nop location. 5320 * This is called with the ftrace_lock mutex held, and no other 5321 * ftrace callbacks are on the associated record (@rec). Thus, 5322 * it is safe to modify the ftrace record, where it should be 5323 * currently calling @old_addr directly, to call @new_addr. 5324 * 5325 * Safety checks should be made to make sure that the code at 5326 * @rec->ip is currently calling @old_addr. And this must 5327 * also update entry->direct to @new_addr. 5328 */ 5329 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5330 struct dyn_ftrace *rec, 5331 unsigned long old_addr, 5332 unsigned long new_addr) 5333 { 5334 unsigned long ip = rec->ip; 5335 int ret; 5336 5337 /* 5338 * The ftrace_lock was used to determine if the record 5339 * had more than one registered user to it. If it did, 5340 * we needed to prevent that from changing to do the quick 5341 * switch. But if it did not (only a direct caller was attached) 5342 * then this function is called. But this function can deal 5343 * with attached callers to the rec that we care about, and 5344 * since this function uses standard ftrace calls that take 5345 * the ftrace_lock mutex, we need to release it. 5346 */ 5347 mutex_unlock(&ftrace_lock); 5348 5349 /* 5350 * By setting a stub function at the same address, we force 5351 * the code to call the iterator and the direct_ops helper. 5352 * This means that @ip does not call the direct call, and 5353 * we can simply modify it. 5354 */ 5355 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5356 if (ret) 5357 goto out_lock; 5358 5359 ret = register_ftrace_function(&stub_ops); 5360 if (ret) { 5361 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5362 goto out_lock; 5363 } 5364 5365 entry->direct = new_addr; 5366 5367 /* 5368 * By removing the stub, we put back the direct call, calling 5369 * the @new_addr. 5370 */ 5371 unregister_ftrace_function(&stub_ops); 5372 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5373 5374 out_lock: 5375 mutex_lock(&ftrace_lock); 5376 5377 return ret; 5378 } 5379 5380 /** 5381 * modify_ftrace_direct - Modify an existing direct call to call something else 5382 * @ip: The instruction pointer to modify 5383 * @old_addr: The address that the current @ip calls directly 5384 * @new_addr: The address that the @ip should call 5385 * 5386 * This modifies a ftrace direct caller at an instruction pointer without 5387 * having to disable it first. The direct call will switch over to the 5388 * @new_addr without missing anything. 5389 * 5390 * Returns: zero on success. Non zero on error, which includes: 5391 * -ENODEV : the @ip given has no direct caller attached 5392 * -EINVAL : the @old_addr does not match the current direct caller 5393 */ 5394 int modify_ftrace_direct(unsigned long ip, 5395 unsigned long old_addr, unsigned long new_addr) 5396 { 5397 struct ftrace_direct_func *direct, *new_direct = NULL; 5398 struct ftrace_func_entry *entry; 5399 struct dyn_ftrace *rec; 5400 int ret = -ENODEV; 5401 5402 mutex_lock(&direct_mutex); 5403 5404 mutex_lock(&ftrace_lock); 5405 5406 ip = ftrace_location(ip); 5407 if (!ip) 5408 goto out_unlock; 5409 5410 entry = find_direct_entry(&ip, &rec); 5411 if (!entry) 5412 goto out_unlock; 5413 5414 ret = -EINVAL; 5415 if (entry->direct != old_addr) 5416 goto out_unlock; 5417 5418 direct = ftrace_find_direct_func(old_addr); 5419 if (WARN_ON(!direct)) 5420 goto out_unlock; 5421 if (direct->count > 1) { 5422 ret = -ENOMEM; 5423 new_direct = ftrace_alloc_direct_func(new_addr); 5424 if (!new_direct) 5425 goto out_unlock; 5426 direct->count--; 5427 new_direct->count++; 5428 } else { 5429 direct->addr = new_addr; 5430 } 5431 5432 /* 5433 * If there's no other ftrace callback on the rec->ip location, 5434 * then it can be changed directly by the architecture. 5435 * If there is another caller, then we just need to change the 5436 * direct caller helper to point to @new_addr. 5437 */ 5438 if (ftrace_rec_count(rec) == 1) { 5439 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5440 } else { 5441 entry->direct = new_addr; 5442 ret = 0; 5443 } 5444 5445 if (unlikely(ret && new_direct)) { 5446 direct->count++; 5447 list_del_rcu(&new_direct->next); 5448 synchronize_rcu_tasks(); 5449 kfree(new_direct); 5450 ftrace_direct_func_count--; 5451 } 5452 5453 out_unlock: 5454 mutex_unlock(&ftrace_lock); 5455 mutex_unlock(&direct_mutex); 5456 return ret; 5457 } 5458 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5459 5460 #define MULTI_FLAGS (FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_DIRECT | \ 5461 FTRACE_OPS_FL_SAVE_REGS) 5462 5463 static int check_direct_multi(struct ftrace_ops *ops) 5464 { 5465 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5466 return -EINVAL; 5467 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5468 return -EINVAL; 5469 return 0; 5470 } 5471 5472 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5473 { 5474 struct ftrace_func_entry *entry, *del; 5475 int size, i; 5476 5477 size = 1 << hash->size_bits; 5478 for (i = 0; i < size; i++) { 5479 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5480 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5481 if (del && del->direct == addr) { 5482 remove_hash_entry(direct_functions, del); 5483 kfree(del); 5484 } 5485 } 5486 } 5487 } 5488 5489 /** 5490 * register_ftrace_direct_multi - Call a custom trampoline directly 5491 * for multiple functions registered in @ops 5492 * @ops: The address of the struct ftrace_ops object 5493 * @addr: The address of the trampoline to call at @ops functions 5494 * 5495 * This is used to connect a direct calls to @addr from the nop locations 5496 * of the functions registered in @ops (with by ftrace_set_filter_ip 5497 * function). 5498 * 5499 * The location that it calls (@addr) must be able to handle a direct call, 5500 * and save the parameters of the function being traced, and restore them 5501 * (or inject new ones if needed), before returning. 5502 * 5503 * Returns: 5504 * 0 on success 5505 * -EINVAL - The @ops object was already registered with this call or 5506 * when there are no functions in @ops object. 5507 * -EBUSY - Another direct function is already attached (there can be only one) 5508 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5509 * -ENOMEM - There was an allocation failure. 5510 */ 5511 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5512 { 5513 struct ftrace_hash *hash, *free_hash = NULL; 5514 struct ftrace_func_entry *entry, *new; 5515 int err = -EBUSY, size, i; 5516 5517 if (ops->func || ops->trampoline) 5518 return -EINVAL; 5519 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5520 return -EINVAL; 5521 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5522 return -EINVAL; 5523 5524 hash = ops->func_hash->filter_hash; 5525 if (ftrace_hash_empty(hash)) 5526 return -EINVAL; 5527 5528 mutex_lock(&direct_mutex); 5529 5530 /* Make sure requested entries are not already registered.. */ 5531 size = 1 << hash->size_bits; 5532 for (i = 0; i < size; i++) { 5533 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5534 if (ftrace_find_rec_direct(entry->ip)) 5535 goto out_unlock; 5536 } 5537 } 5538 5539 /* ... and insert them to direct_functions hash. */ 5540 err = -ENOMEM; 5541 for (i = 0; i < size; i++) { 5542 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5543 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5544 if (!new) 5545 goto out_remove; 5546 entry->direct = addr; 5547 } 5548 } 5549 5550 ops->func = call_direct_funcs; 5551 ops->flags = MULTI_FLAGS; 5552 ops->trampoline = FTRACE_REGS_ADDR; 5553 5554 err = register_ftrace_function(ops); 5555 5556 out_remove: 5557 if (err) 5558 remove_direct_functions_hash(hash, addr); 5559 5560 out_unlock: 5561 mutex_unlock(&direct_mutex); 5562 5563 if (free_hash) { 5564 synchronize_rcu_tasks(); 5565 free_ftrace_hash(free_hash); 5566 } 5567 return err; 5568 } 5569 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5570 5571 /** 5572 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5573 * previously registered by register_ftrace_direct_multi for @ops object. 5574 * @ops: The address of the struct ftrace_ops object 5575 * 5576 * This is used to remove a direct calls to @addr from the nop locations 5577 * of the functions registered in @ops (with by ftrace_set_filter_ip 5578 * function). 5579 * 5580 * Returns: 5581 * 0 on success 5582 * -EINVAL - The @ops object was not properly registered. 5583 */ 5584 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5585 { 5586 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5587 int err; 5588 5589 if (check_direct_multi(ops)) 5590 return -EINVAL; 5591 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5592 return -EINVAL; 5593 5594 mutex_lock(&direct_mutex); 5595 err = unregister_ftrace_function(ops); 5596 remove_direct_functions_hash(hash, addr); 5597 mutex_unlock(&direct_mutex); 5598 5599 /* cleanup for possible another register call */ 5600 ops->func = NULL; 5601 ops->trampoline = 0; 5602 return err; 5603 } 5604 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5605 5606 /** 5607 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5608 * to call something else 5609 * @ops: The address of the struct ftrace_ops object 5610 * @addr: The address of the new trampoline to call at @ops functions 5611 * 5612 * This is used to unregister currently registered direct caller and 5613 * register new one @addr on functions registered in @ops object. 5614 * 5615 * Note there's window between ftrace_shutdown and ftrace_startup calls 5616 * where there will be no callbacks called. 5617 * 5618 * Returns: zero on success. Non zero on error, which includes: 5619 * -EINVAL - The @ops object was not properly registered. 5620 */ 5621 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5622 { 5623 struct ftrace_hash *hash; 5624 struct ftrace_func_entry *entry, *iter; 5625 static struct ftrace_ops tmp_ops = { 5626 .func = ftrace_stub, 5627 .flags = FTRACE_OPS_FL_STUB, 5628 }; 5629 int i, size; 5630 int err; 5631 5632 if (check_direct_multi(ops)) 5633 return -EINVAL; 5634 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5635 return -EINVAL; 5636 5637 mutex_lock(&direct_mutex); 5638 5639 /* Enable the tmp_ops to have the same functions as the direct ops */ 5640 ftrace_ops_init(&tmp_ops); 5641 tmp_ops.func_hash = ops->func_hash; 5642 5643 err = register_ftrace_function(&tmp_ops); 5644 if (err) 5645 goto out_direct; 5646 5647 /* 5648 * Now the ftrace_ops_list_func() is called to do the direct callers. 5649 * We can safely change the direct functions attached to each entry. 5650 */ 5651 mutex_lock(&ftrace_lock); 5652 5653 hash = ops->func_hash->filter_hash; 5654 size = 1 << hash->size_bits; 5655 for (i = 0; i < size; i++) { 5656 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5657 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5658 if (!entry) 5659 continue; 5660 entry->direct = addr; 5661 } 5662 } 5663 5664 mutex_unlock(&ftrace_lock); 5665 5666 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5667 unregister_ftrace_function(&tmp_ops); 5668 5669 out_direct: 5670 mutex_unlock(&direct_mutex); 5671 return err; 5672 } 5673 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5674 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5675 5676 /** 5677 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5678 * @ops - the ops to set the filter with 5679 * @ip - the address to add to or remove from the filter. 5680 * @remove - non zero to remove the ip from the filter 5681 * @reset - non zero to reset all filters before applying this filter. 5682 * 5683 * Filters denote which functions should be enabled when tracing is enabled 5684 * If @ip is NULL, it fails to update filter. 5685 */ 5686 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5687 int remove, int reset) 5688 { 5689 ftrace_ops_init(ops); 5690 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5691 } 5692 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5693 5694 /** 5695 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5696 * @ops - the ops to set the filter with 5697 * @ips - the array of addresses to add to or remove from the filter. 5698 * @cnt - the number of addresses in @ips 5699 * @remove - non zero to remove ips from the filter 5700 * @reset - non zero to reset all filters before applying this filter. 5701 * 5702 * Filters denote which functions should be enabled when tracing is enabled 5703 * If @ips array or any ip specified within is NULL , it fails to update filter. 5704 */ 5705 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5706 unsigned int cnt, int remove, int reset) 5707 { 5708 ftrace_ops_init(ops); 5709 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5710 } 5711 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5712 5713 /** 5714 * ftrace_ops_set_global_filter - setup ops to use global filters 5715 * @ops - the ops which will use the global filters 5716 * 5717 * ftrace users who need global function trace filtering should call this. 5718 * It can set the global filter only if ops were not initialized before. 5719 */ 5720 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5721 { 5722 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5723 return; 5724 5725 ftrace_ops_init(ops); 5726 ops->func_hash = &global_ops.local_hash; 5727 } 5728 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5729 5730 static int 5731 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5732 int reset, int enable) 5733 { 5734 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5735 } 5736 5737 /** 5738 * ftrace_set_filter - set a function to filter on in ftrace 5739 * @ops - the ops to set the filter with 5740 * @buf - the string that holds the function filter text. 5741 * @len - the length of the string. 5742 * @reset - non zero to reset all filters before applying this filter. 5743 * 5744 * Filters denote which functions should be enabled when tracing is enabled. 5745 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5746 */ 5747 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5748 int len, int reset) 5749 { 5750 ftrace_ops_init(ops); 5751 return ftrace_set_regex(ops, buf, len, reset, 1); 5752 } 5753 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5754 5755 /** 5756 * ftrace_set_notrace - set a function to not trace in ftrace 5757 * @ops - the ops to set the notrace filter with 5758 * @buf - the string that holds the function notrace text. 5759 * @len - the length of the string. 5760 * @reset - non zero to reset all filters before applying this filter. 5761 * 5762 * Notrace Filters denote which functions should not be enabled when tracing 5763 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5764 * for tracing. 5765 */ 5766 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5767 int len, int reset) 5768 { 5769 ftrace_ops_init(ops); 5770 return ftrace_set_regex(ops, buf, len, reset, 0); 5771 } 5772 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5773 /** 5774 * ftrace_set_global_filter - set a function to filter on with global tracers 5775 * @buf - the string that holds the function filter text. 5776 * @len - the length of the string. 5777 * @reset - non zero to reset all filters before applying this filter. 5778 * 5779 * Filters denote which functions should be enabled when tracing is enabled. 5780 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5781 */ 5782 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5783 { 5784 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5785 } 5786 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5787 5788 /** 5789 * ftrace_set_global_notrace - set a function to not trace with global tracers 5790 * @buf - the string that holds the function notrace text. 5791 * @len - the length of the string. 5792 * @reset - non zero to reset all filters before applying this filter. 5793 * 5794 * Notrace Filters denote which functions should not be enabled when tracing 5795 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5796 * for tracing. 5797 */ 5798 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5799 { 5800 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5801 } 5802 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5803 5804 /* 5805 * command line interface to allow users to set filters on boot up. 5806 */ 5807 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5808 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5809 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5810 5811 /* Used by function selftest to not test if filter is set */ 5812 bool ftrace_filter_param __initdata; 5813 5814 static int __init set_ftrace_notrace(char *str) 5815 { 5816 ftrace_filter_param = true; 5817 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5818 return 1; 5819 } 5820 __setup("ftrace_notrace=", set_ftrace_notrace); 5821 5822 static int __init set_ftrace_filter(char *str) 5823 { 5824 ftrace_filter_param = true; 5825 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5826 return 1; 5827 } 5828 __setup("ftrace_filter=", set_ftrace_filter); 5829 5830 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5831 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5832 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5833 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5834 5835 static int __init set_graph_function(char *str) 5836 { 5837 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5838 return 1; 5839 } 5840 __setup("ftrace_graph_filter=", set_graph_function); 5841 5842 static int __init set_graph_notrace_function(char *str) 5843 { 5844 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5845 return 1; 5846 } 5847 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5848 5849 static int __init set_graph_max_depth_function(char *str) 5850 { 5851 if (!str) 5852 return 0; 5853 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5854 return 1; 5855 } 5856 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5857 5858 static void __init set_ftrace_early_graph(char *buf, int enable) 5859 { 5860 int ret; 5861 char *func; 5862 struct ftrace_hash *hash; 5863 5864 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5865 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5866 return; 5867 5868 while (buf) { 5869 func = strsep(&buf, ","); 5870 /* we allow only one expression at a time */ 5871 ret = ftrace_graph_set_hash(hash, func); 5872 if (ret) 5873 printk(KERN_DEBUG "ftrace: function %s not " 5874 "traceable\n", func); 5875 } 5876 5877 if (enable) 5878 ftrace_graph_hash = hash; 5879 else 5880 ftrace_graph_notrace_hash = hash; 5881 } 5882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5883 5884 void __init 5885 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5886 { 5887 char *func; 5888 5889 ftrace_ops_init(ops); 5890 5891 while (buf) { 5892 func = strsep(&buf, ","); 5893 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5894 } 5895 } 5896 5897 static void __init set_ftrace_early_filters(void) 5898 { 5899 if (ftrace_filter_buf[0]) 5900 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5901 if (ftrace_notrace_buf[0]) 5902 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5903 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5904 if (ftrace_graph_buf[0]) 5905 set_ftrace_early_graph(ftrace_graph_buf, 1); 5906 if (ftrace_graph_notrace_buf[0]) 5907 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5908 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5909 } 5910 5911 int ftrace_regex_release(struct inode *inode, struct file *file) 5912 { 5913 struct seq_file *m = (struct seq_file *)file->private_data; 5914 struct ftrace_iterator *iter; 5915 struct ftrace_hash **orig_hash; 5916 struct trace_parser *parser; 5917 int filter_hash; 5918 5919 if (file->f_mode & FMODE_READ) { 5920 iter = m->private; 5921 seq_release(inode, file); 5922 } else 5923 iter = file->private_data; 5924 5925 parser = &iter->parser; 5926 if (trace_parser_loaded(parser)) { 5927 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 5928 5929 ftrace_process_regex(iter, parser->buffer, 5930 parser->idx, enable); 5931 } 5932 5933 trace_parser_put(parser); 5934 5935 mutex_lock(&iter->ops->func_hash->regex_lock); 5936 5937 if (file->f_mode & FMODE_WRITE) { 5938 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5939 5940 if (filter_hash) { 5941 orig_hash = &iter->ops->func_hash->filter_hash; 5942 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5943 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5944 } else 5945 orig_hash = &iter->ops->func_hash->notrace_hash; 5946 5947 mutex_lock(&ftrace_lock); 5948 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5949 iter->hash, filter_hash); 5950 mutex_unlock(&ftrace_lock); 5951 } else { 5952 /* For read only, the hash is the ops hash */ 5953 iter->hash = NULL; 5954 } 5955 5956 mutex_unlock(&iter->ops->func_hash->regex_lock); 5957 free_ftrace_hash(iter->hash); 5958 if (iter->tr) 5959 trace_array_put(iter->tr); 5960 kfree(iter); 5961 5962 return 0; 5963 } 5964 5965 static const struct file_operations ftrace_avail_fops = { 5966 .open = ftrace_avail_open, 5967 .read = seq_read, 5968 .llseek = seq_lseek, 5969 .release = seq_release_private, 5970 }; 5971 5972 static const struct file_operations ftrace_enabled_fops = { 5973 .open = ftrace_enabled_open, 5974 .read = seq_read, 5975 .llseek = seq_lseek, 5976 .release = seq_release_private, 5977 }; 5978 5979 static const struct file_operations ftrace_filter_fops = { 5980 .open = ftrace_filter_open, 5981 .read = seq_read, 5982 .write = ftrace_filter_write, 5983 .llseek = tracing_lseek, 5984 .release = ftrace_regex_release, 5985 }; 5986 5987 static const struct file_operations ftrace_notrace_fops = { 5988 .open = ftrace_notrace_open, 5989 .read = seq_read, 5990 .write = ftrace_notrace_write, 5991 .llseek = tracing_lseek, 5992 .release = ftrace_regex_release, 5993 }; 5994 5995 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5996 5997 static DEFINE_MUTEX(graph_lock); 5998 5999 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6000 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6001 6002 enum graph_filter_type { 6003 GRAPH_FILTER_NOTRACE = 0, 6004 GRAPH_FILTER_FUNCTION, 6005 }; 6006 6007 #define FTRACE_GRAPH_EMPTY ((void *)1) 6008 6009 struct ftrace_graph_data { 6010 struct ftrace_hash *hash; 6011 struct ftrace_func_entry *entry; 6012 int idx; /* for hash table iteration */ 6013 enum graph_filter_type type; 6014 struct ftrace_hash *new_hash; 6015 const struct seq_operations *seq_ops; 6016 struct trace_parser parser; 6017 }; 6018 6019 static void * 6020 __g_next(struct seq_file *m, loff_t *pos) 6021 { 6022 struct ftrace_graph_data *fgd = m->private; 6023 struct ftrace_func_entry *entry = fgd->entry; 6024 struct hlist_head *head; 6025 int i, idx = fgd->idx; 6026 6027 if (*pos >= fgd->hash->count) 6028 return NULL; 6029 6030 if (entry) { 6031 hlist_for_each_entry_continue(entry, hlist) { 6032 fgd->entry = entry; 6033 return entry; 6034 } 6035 6036 idx++; 6037 } 6038 6039 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6040 head = &fgd->hash->buckets[i]; 6041 hlist_for_each_entry(entry, head, hlist) { 6042 fgd->entry = entry; 6043 fgd->idx = i; 6044 return entry; 6045 } 6046 } 6047 return NULL; 6048 } 6049 6050 static void * 6051 g_next(struct seq_file *m, void *v, loff_t *pos) 6052 { 6053 (*pos)++; 6054 return __g_next(m, pos); 6055 } 6056 6057 static void *g_start(struct seq_file *m, loff_t *pos) 6058 { 6059 struct ftrace_graph_data *fgd = m->private; 6060 6061 mutex_lock(&graph_lock); 6062 6063 if (fgd->type == GRAPH_FILTER_FUNCTION) 6064 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6065 lockdep_is_held(&graph_lock)); 6066 else 6067 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6068 lockdep_is_held(&graph_lock)); 6069 6070 /* Nothing, tell g_show to print all functions are enabled */ 6071 if (ftrace_hash_empty(fgd->hash) && !*pos) 6072 return FTRACE_GRAPH_EMPTY; 6073 6074 fgd->idx = 0; 6075 fgd->entry = NULL; 6076 return __g_next(m, pos); 6077 } 6078 6079 static void g_stop(struct seq_file *m, void *p) 6080 { 6081 mutex_unlock(&graph_lock); 6082 } 6083 6084 static int g_show(struct seq_file *m, void *v) 6085 { 6086 struct ftrace_func_entry *entry = v; 6087 6088 if (!entry) 6089 return 0; 6090 6091 if (entry == FTRACE_GRAPH_EMPTY) { 6092 struct ftrace_graph_data *fgd = m->private; 6093 6094 if (fgd->type == GRAPH_FILTER_FUNCTION) 6095 seq_puts(m, "#### all functions enabled ####\n"); 6096 else 6097 seq_puts(m, "#### no functions disabled ####\n"); 6098 return 0; 6099 } 6100 6101 seq_printf(m, "%ps\n", (void *)entry->ip); 6102 6103 return 0; 6104 } 6105 6106 static const struct seq_operations ftrace_graph_seq_ops = { 6107 .start = g_start, 6108 .next = g_next, 6109 .stop = g_stop, 6110 .show = g_show, 6111 }; 6112 6113 static int 6114 __ftrace_graph_open(struct inode *inode, struct file *file, 6115 struct ftrace_graph_data *fgd) 6116 { 6117 int ret; 6118 struct ftrace_hash *new_hash = NULL; 6119 6120 ret = security_locked_down(LOCKDOWN_TRACEFS); 6121 if (ret) 6122 return ret; 6123 6124 if (file->f_mode & FMODE_WRITE) { 6125 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6126 6127 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6128 return -ENOMEM; 6129 6130 if (file->f_flags & O_TRUNC) 6131 new_hash = alloc_ftrace_hash(size_bits); 6132 else 6133 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6134 fgd->hash); 6135 if (!new_hash) { 6136 ret = -ENOMEM; 6137 goto out; 6138 } 6139 } 6140 6141 if (file->f_mode & FMODE_READ) { 6142 ret = seq_open(file, &ftrace_graph_seq_ops); 6143 if (!ret) { 6144 struct seq_file *m = file->private_data; 6145 m->private = fgd; 6146 } else { 6147 /* Failed */ 6148 free_ftrace_hash(new_hash); 6149 new_hash = NULL; 6150 } 6151 } else 6152 file->private_data = fgd; 6153 6154 out: 6155 if (ret < 0 && file->f_mode & FMODE_WRITE) 6156 trace_parser_put(&fgd->parser); 6157 6158 fgd->new_hash = new_hash; 6159 6160 /* 6161 * All uses of fgd->hash must be taken with the graph_lock 6162 * held. The graph_lock is going to be released, so force 6163 * fgd->hash to be reinitialized when it is taken again. 6164 */ 6165 fgd->hash = NULL; 6166 6167 return ret; 6168 } 6169 6170 static int 6171 ftrace_graph_open(struct inode *inode, struct file *file) 6172 { 6173 struct ftrace_graph_data *fgd; 6174 int ret; 6175 6176 if (unlikely(ftrace_disabled)) 6177 return -ENODEV; 6178 6179 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6180 if (fgd == NULL) 6181 return -ENOMEM; 6182 6183 mutex_lock(&graph_lock); 6184 6185 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6186 lockdep_is_held(&graph_lock)); 6187 fgd->type = GRAPH_FILTER_FUNCTION; 6188 fgd->seq_ops = &ftrace_graph_seq_ops; 6189 6190 ret = __ftrace_graph_open(inode, file, fgd); 6191 if (ret < 0) 6192 kfree(fgd); 6193 6194 mutex_unlock(&graph_lock); 6195 return ret; 6196 } 6197 6198 static int 6199 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6200 { 6201 struct ftrace_graph_data *fgd; 6202 int ret; 6203 6204 if (unlikely(ftrace_disabled)) 6205 return -ENODEV; 6206 6207 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6208 if (fgd == NULL) 6209 return -ENOMEM; 6210 6211 mutex_lock(&graph_lock); 6212 6213 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6214 lockdep_is_held(&graph_lock)); 6215 fgd->type = GRAPH_FILTER_NOTRACE; 6216 fgd->seq_ops = &ftrace_graph_seq_ops; 6217 6218 ret = __ftrace_graph_open(inode, file, fgd); 6219 if (ret < 0) 6220 kfree(fgd); 6221 6222 mutex_unlock(&graph_lock); 6223 return ret; 6224 } 6225 6226 static int 6227 ftrace_graph_release(struct inode *inode, struct file *file) 6228 { 6229 struct ftrace_graph_data *fgd; 6230 struct ftrace_hash *old_hash, *new_hash; 6231 struct trace_parser *parser; 6232 int ret = 0; 6233 6234 if (file->f_mode & FMODE_READ) { 6235 struct seq_file *m = file->private_data; 6236 6237 fgd = m->private; 6238 seq_release(inode, file); 6239 } else { 6240 fgd = file->private_data; 6241 } 6242 6243 6244 if (file->f_mode & FMODE_WRITE) { 6245 6246 parser = &fgd->parser; 6247 6248 if (trace_parser_loaded((parser))) { 6249 ret = ftrace_graph_set_hash(fgd->new_hash, 6250 parser->buffer); 6251 } 6252 6253 trace_parser_put(parser); 6254 6255 new_hash = __ftrace_hash_move(fgd->new_hash); 6256 if (!new_hash) { 6257 ret = -ENOMEM; 6258 goto out; 6259 } 6260 6261 mutex_lock(&graph_lock); 6262 6263 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6264 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6265 lockdep_is_held(&graph_lock)); 6266 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6267 } else { 6268 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6269 lockdep_is_held(&graph_lock)); 6270 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6271 } 6272 6273 mutex_unlock(&graph_lock); 6274 6275 /* 6276 * We need to do a hard force of sched synchronization. 6277 * This is because we use preempt_disable() to do RCU, but 6278 * the function tracers can be called where RCU is not watching 6279 * (like before user_exit()). We can not rely on the RCU 6280 * infrastructure to do the synchronization, thus we must do it 6281 * ourselves. 6282 */ 6283 if (old_hash != EMPTY_HASH) 6284 synchronize_rcu_tasks_rude(); 6285 6286 free_ftrace_hash(old_hash); 6287 } 6288 6289 out: 6290 free_ftrace_hash(fgd->new_hash); 6291 kfree(fgd); 6292 6293 return ret; 6294 } 6295 6296 static int 6297 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6298 { 6299 struct ftrace_glob func_g; 6300 struct dyn_ftrace *rec; 6301 struct ftrace_page *pg; 6302 struct ftrace_func_entry *entry; 6303 int fail = 1; 6304 int not; 6305 6306 /* decode regex */ 6307 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6308 &func_g.search, ¬); 6309 6310 func_g.len = strlen(func_g.search); 6311 6312 mutex_lock(&ftrace_lock); 6313 6314 if (unlikely(ftrace_disabled)) { 6315 mutex_unlock(&ftrace_lock); 6316 return -ENODEV; 6317 } 6318 6319 do_for_each_ftrace_rec(pg, rec) { 6320 6321 if (rec->flags & FTRACE_FL_DISABLED) 6322 continue; 6323 6324 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6325 entry = ftrace_lookup_ip(hash, rec->ip); 6326 6327 if (!not) { 6328 fail = 0; 6329 6330 if (entry) 6331 continue; 6332 if (add_hash_entry(hash, rec->ip) < 0) 6333 goto out; 6334 } else { 6335 if (entry) { 6336 free_hash_entry(hash, entry); 6337 fail = 0; 6338 } 6339 } 6340 } 6341 } while_for_each_ftrace_rec(); 6342 out: 6343 mutex_unlock(&ftrace_lock); 6344 6345 if (fail) 6346 return -EINVAL; 6347 6348 return 0; 6349 } 6350 6351 static ssize_t 6352 ftrace_graph_write(struct file *file, const char __user *ubuf, 6353 size_t cnt, loff_t *ppos) 6354 { 6355 ssize_t read, ret = 0; 6356 struct ftrace_graph_data *fgd = file->private_data; 6357 struct trace_parser *parser; 6358 6359 if (!cnt) 6360 return 0; 6361 6362 /* Read mode uses seq functions */ 6363 if (file->f_mode & FMODE_READ) { 6364 struct seq_file *m = file->private_data; 6365 fgd = m->private; 6366 } 6367 6368 parser = &fgd->parser; 6369 6370 read = trace_get_user(parser, ubuf, cnt, ppos); 6371 6372 if (read >= 0 && trace_parser_loaded(parser) && 6373 !trace_parser_cont(parser)) { 6374 6375 ret = ftrace_graph_set_hash(fgd->new_hash, 6376 parser->buffer); 6377 trace_parser_clear(parser); 6378 } 6379 6380 if (!ret) 6381 ret = read; 6382 6383 return ret; 6384 } 6385 6386 static const struct file_operations ftrace_graph_fops = { 6387 .open = ftrace_graph_open, 6388 .read = seq_read, 6389 .write = ftrace_graph_write, 6390 .llseek = tracing_lseek, 6391 .release = ftrace_graph_release, 6392 }; 6393 6394 static const struct file_operations ftrace_graph_notrace_fops = { 6395 .open = ftrace_graph_notrace_open, 6396 .read = seq_read, 6397 .write = ftrace_graph_write, 6398 .llseek = tracing_lseek, 6399 .release = ftrace_graph_release, 6400 }; 6401 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6402 6403 void ftrace_create_filter_files(struct ftrace_ops *ops, 6404 struct dentry *parent) 6405 { 6406 6407 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6408 ops, &ftrace_filter_fops); 6409 6410 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6411 ops, &ftrace_notrace_fops); 6412 } 6413 6414 /* 6415 * The name "destroy_filter_files" is really a misnomer. Although 6416 * in the future, it may actually delete the files, but this is 6417 * really intended to make sure the ops passed in are disabled 6418 * and that when this function returns, the caller is free to 6419 * free the ops. 6420 * 6421 * The "destroy" name is only to match the "create" name that this 6422 * should be paired with. 6423 */ 6424 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6425 { 6426 mutex_lock(&ftrace_lock); 6427 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6428 ftrace_shutdown(ops, 0); 6429 ops->flags |= FTRACE_OPS_FL_DELETED; 6430 ftrace_free_filter(ops); 6431 mutex_unlock(&ftrace_lock); 6432 } 6433 6434 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6435 { 6436 6437 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6438 d_tracer, NULL, &ftrace_avail_fops); 6439 6440 trace_create_file("enabled_functions", TRACE_MODE_READ, 6441 d_tracer, NULL, &ftrace_enabled_fops); 6442 6443 ftrace_create_filter_files(&global_ops, d_tracer); 6444 6445 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6446 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6447 NULL, 6448 &ftrace_graph_fops); 6449 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6450 NULL, 6451 &ftrace_graph_notrace_fops); 6452 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6453 6454 return 0; 6455 } 6456 6457 static int ftrace_cmp_ips(const void *a, const void *b) 6458 { 6459 const unsigned long *ipa = a; 6460 const unsigned long *ipb = b; 6461 6462 if (*ipa > *ipb) 6463 return 1; 6464 if (*ipa < *ipb) 6465 return -1; 6466 return 0; 6467 } 6468 6469 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6470 static void test_is_sorted(unsigned long *start, unsigned long count) 6471 { 6472 int i; 6473 6474 for (i = 1; i < count; i++) { 6475 if (WARN(start[i - 1] > start[i], 6476 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6477 (void *)start[i - 1], start[i - 1], 6478 (void *)start[i], start[i])) 6479 break; 6480 } 6481 if (i == count) 6482 pr_info("ftrace section at %px sorted properly\n", start); 6483 } 6484 #else 6485 static void test_is_sorted(unsigned long *start, unsigned long count) 6486 { 6487 } 6488 #endif 6489 6490 static int ftrace_process_locs(struct module *mod, 6491 unsigned long *start, 6492 unsigned long *end) 6493 { 6494 struct ftrace_page *start_pg; 6495 struct ftrace_page *pg; 6496 struct dyn_ftrace *rec; 6497 unsigned long count; 6498 unsigned long *p; 6499 unsigned long addr; 6500 unsigned long flags = 0; /* Shut up gcc */ 6501 int ret = -ENOMEM; 6502 6503 count = end - start; 6504 6505 if (!count) 6506 return 0; 6507 6508 /* 6509 * Sorting mcount in vmlinux at build time depend on 6510 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6511 * modules can not be sorted at build time. 6512 */ 6513 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6514 sort(start, count, sizeof(*start), 6515 ftrace_cmp_ips, NULL); 6516 } else { 6517 test_is_sorted(start, count); 6518 } 6519 6520 start_pg = ftrace_allocate_pages(count); 6521 if (!start_pg) 6522 return -ENOMEM; 6523 6524 mutex_lock(&ftrace_lock); 6525 6526 /* 6527 * Core and each module needs their own pages, as 6528 * modules will free them when they are removed. 6529 * Force a new page to be allocated for modules. 6530 */ 6531 if (!mod) { 6532 WARN_ON(ftrace_pages || ftrace_pages_start); 6533 /* First initialization */ 6534 ftrace_pages = ftrace_pages_start = start_pg; 6535 } else { 6536 if (!ftrace_pages) 6537 goto out; 6538 6539 if (WARN_ON(ftrace_pages->next)) { 6540 /* Hmm, we have free pages? */ 6541 while (ftrace_pages->next) 6542 ftrace_pages = ftrace_pages->next; 6543 } 6544 6545 ftrace_pages->next = start_pg; 6546 } 6547 6548 p = start; 6549 pg = start_pg; 6550 while (p < end) { 6551 unsigned long end_offset; 6552 addr = ftrace_call_adjust(*p++); 6553 /* 6554 * Some architecture linkers will pad between 6555 * the different mcount_loc sections of different 6556 * object files to satisfy alignments. 6557 * Skip any NULL pointers. 6558 */ 6559 if (!addr) 6560 continue; 6561 6562 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6563 if (end_offset > PAGE_SIZE << pg->order) { 6564 /* We should have allocated enough */ 6565 if (WARN_ON(!pg->next)) 6566 break; 6567 pg = pg->next; 6568 } 6569 6570 rec = &pg->records[pg->index++]; 6571 rec->ip = addr; 6572 } 6573 6574 /* We should have used all pages */ 6575 WARN_ON(pg->next); 6576 6577 /* Assign the last page to ftrace_pages */ 6578 ftrace_pages = pg; 6579 6580 /* 6581 * We only need to disable interrupts on start up 6582 * because we are modifying code that an interrupt 6583 * may execute, and the modification is not atomic. 6584 * But for modules, nothing runs the code we modify 6585 * until we are finished with it, and there's no 6586 * reason to cause large interrupt latencies while we do it. 6587 */ 6588 if (!mod) 6589 local_irq_save(flags); 6590 ftrace_update_code(mod, start_pg); 6591 if (!mod) 6592 local_irq_restore(flags); 6593 ret = 0; 6594 out: 6595 mutex_unlock(&ftrace_lock); 6596 6597 return ret; 6598 } 6599 6600 struct ftrace_mod_func { 6601 struct list_head list; 6602 char *name; 6603 unsigned long ip; 6604 unsigned int size; 6605 }; 6606 6607 struct ftrace_mod_map { 6608 struct rcu_head rcu; 6609 struct list_head list; 6610 struct module *mod; 6611 unsigned long start_addr; 6612 unsigned long end_addr; 6613 struct list_head funcs; 6614 unsigned int num_funcs; 6615 }; 6616 6617 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6618 unsigned long *value, char *type, 6619 char *name, char *module_name, 6620 int *exported) 6621 { 6622 struct ftrace_ops *op; 6623 6624 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6625 if (!op->trampoline || symnum--) 6626 continue; 6627 *value = op->trampoline; 6628 *type = 't'; 6629 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6630 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6631 *exported = 0; 6632 return 0; 6633 } 6634 6635 return -ERANGE; 6636 } 6637 6638 #ifdef CONFIG_MODULES 6639 6640 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6641 6642 static LIST_HEAD(ftrace_mod_maps); 6643 6644 static int referenced_filters(struct dyn_ftrace *rec) 6645 { 6646 struct ftrace_ops *ops; 6647 int cnt = 0; 6648 6649 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6650 if (ops_references_rec(ops, rec)) { 6651 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6652 continue; 6653 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6654 continue; 6655 cnt++; 6656 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6657 rec->flags |= FTRACE_FL_REGS; 6658 if (cnt == 1 && ops->trampoline) 6659 rec->flags |= FTRACE_FL_TRAMP; 6660 else 6661 rec->flags &= ~FTRACE_FL_TRAMP; 6662 } 6663 } 6664 6665 return cnt; 6666 } 6667 6668 static void 6669 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6670 { 6671 struct ftrace_func_entry *entry; 6672 struct dyn_ftrace *rec; 6673 int i; 6674 6675 if (ftrace_hash_empty(hash)) 6676 return; 6677 6678 for (i = 0; i < pg->index; i++) { 6679 rec = &pg->records[i]; 6680 entry = __ftrace_lookup_ip(hash, rec->ip); 6681 /* 6682 * Do not allow this rec to match again. 6683 * Yeah, it may waste some memory, but will be removed 6684 * if/when the hash is modified again. 6685 */ 6686 if (entry) 6687 entry->ip = 0; 6688 } 6689 } 6690 6691 /* Clear any records from hashes */ 6692 static void clear_mod_from_hashes(struct ftrace_page *pg) 6693 { 6694 struct trace_array *tr; 6695 6696 mutex_lock(&trace_types_lock); 6697 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6698 if (!tr->ops || !tr->ops->func_hash) 6699 continue; 6700 mutex_lock(&tr->ops->func_hash->regex_lock); 6701 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6702 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6703 mutex_unlock(&tr->ops->func_hash->regex_lock); 6704 } 6705 mutex_unlock(&trace_types_lock); 6706 } 6707 6708 static void ftrace_free_mod_map(struct rcu_head *rcu) 6709 { 6710 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6711 struct ftrace_mod_func *mod_func; 6712 struct ftrace_mod_func *n; 6713 6714 /* All the contents of mod_map are now not visible to readers */ 6715 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6716 kfree(mod_func->name); 6717 list_del(&mod_func->list); 6718 kfree(mod_func); 6719 } 6720 6721 kfree(mod_map); 6722 } 6723 6724 void ftrace_release_mod(struct module *mod) 6725 { 6726 struct ftrace_mod_map *mod_map; 6727 struct ftrace_mod_map *n; 6728 struct dyn_ftrace *rec; 6729 struct ftrace_page **last_pg; 6730 struct ftrace_page *tmp_page = NULL; 6731 struct ftrace_page *pg; 6732 6733 mutex_lock(&ftrace_lock); 6734 6735 if (ftrace_disabled) 6736 goto out_unlock; 6737 6738 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6739 if (mod_map->mod == mod) { 6740 list_del_rcu(&mod_map->list); 6741 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6742 break; 6743 } 6744 } 6745 6746 /* 6747 * Each module has its own ftrace_pages, remove 6748 * them from the list. 6749 */ 6750 last_pg = &ftrace_pages_start; 6751 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6752 rec = &pg->records[0]; 6753 if (within_module_core(rec->ip, mod) || 6754 within_module_init(rec->ip, mod)) { 6755 /* 6756 * As core pages are first, the first 6757 * page should never be a module page. 6758 */ 6759 if (WARN_ON(pg == ftrace_pages_start)) 6760 goto out_unlock; 6761 6762 /* Check if we are deleting the last page */ 6763 if (pg == ftrace_pages) 6764 ftrace_pages = next_to_ftrace_page(last_pg); 6765 6766 ftrace_update_tot_cnt -= pg->index; 6767 *last_pg = pg->next; 6768 6769 pg->next = tmp_page; 6770 tmp_page = pg; 6771 } else 6772 last_pg = &pg->next; 6773 } 6774 out_unlock: 6775 mutex_unlock(&ftrace_lock); 6776 6777 for (pg = tmp_page; pg; pg = tmp_page) { 6778 6779 /* Needs to be called outside of ftrace_lock */ 6780 clear_mod_from_hashes(pg); 6781 6782 if (pg->records) { 6783 free_pages((unsigned long)pg->records, pg->order); 6784 ftrace_number_of_pages -= 1 << pg->order; 6785 } 6786 tmp_page = pg->next; 6787 kfree(pg); 6788 ftrace_number_of_groups--; 6789 } 6790 } 6791 6792 void ftrace_module_enable(struct module *mod) 6793 { 6794 struct dyn_ftrace *rec; 6795 struct ftrace_page *pg; 6796 6797 mutex_lock(&ftrace_lock); 6798 6799 if (ftrace_disabled) 6800 goto out_unlock; 6801 6802 /* 6803 * If the tracing is enabled, go ahead and enable the record. 6804 * 6805 * The reason not to enable the record immediately is the 6806 * inherent check of ftrace_make_nop/ftrace_make_call for 6807 * correct previous instructions. Making first the NOP 6808 * conversion puts the module to the correct state, thus 6809 * passing the ftrace_make_call check. 6810 * 6811 * We also delay this to after the module code already set the 6812 * text to read-only, as we now need to set it back to read-write 6813 * so that we can modify the text. 6814 */ 6815 if (ftrace_start_up) 6816 ftrace_arch_code_modify_prepare(); 6817 6818 do_for_each_ftrace_rec(pg, rec) { 6819 int cnt; 6820 /* 6821 * do_for_each_ftrace_rec() is a double loop. 6822 * module text shares the pg. If a record is 6823 * not part of this module, then skip this pg, 6824 * which the "break" will do. 6825 */ 6826 if (!within_module_core(rec->ip, mod) && 6827 !within_module_init(rec->ip, mod)) 6828 break; 6829 6830 cnt = 0; 6831 6832 /* 6833 * When adding a module, we need to check if tracers are 6834 * currently enabled and if they are, and can trace this record, 6835 * we need to enable the module functions as well as update the 6836 * reference counts for those function records. 6837 */ 6838 if (ftrace_start_up) 6839 cnt += referenced_filters(rec); 6840 6841 rec->flags &= ~FTRACE_FL_DISABLED; 6842 rec->flags += cnt; 6843 6844 if (ftrace_start_up && cnt) { 6845 int failed = __ftrace_replace_code(rec, 1); 6846 if (failed) { 6847 ftrace_bug(failed, rec); 6848 goto out_loop; 6849 } 6850 } 6851 6852 } while_for_each_ftrace_rec(); 6853 6854 out_loop: 6855 if (ftrace_start_up) 6856 ftrace_arch_code_modify_post_process(); 6857 6858 out_unlock: 6859 mutex_unlock(&ftrace_lock); 6860 6861 process_cached_mods(mod->name); 6862 } 6863 6864 void ftrace_module_init(struct module *mod) 6865 { 6866 if (ftrace_disabled || !mod->num_ftrace_callsites) 6867 return; 6868 6869 ftrace_process_locs(mod, mod->ftrace_callsites, 6870 mod->ftrace_callsites + mod->num_ftrace_callsites); 6871 } 6872 6873 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6874 struct dyn_ftrace *rec) 6875 { 6876 struct ftrace_mod_func *mod_func; 6877 unsigned long symsize; 6878 unsigned long offset; 6879 char str[KSYM_SYMBOL_LEN]; 6880 char *modname; 6881 const char *ret; 6882 6883 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6884 if (!ret) 6885 return; 6886 6887 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6888 if (!mod_func) 6889 return; 6890 6891 mod_func->name = kstrdup(str, GFP_KERNEL); 6892 if (!mod_func->name) { 6893 kfree(mod_func); 6894 return; 6895 } 6896 6897 mod_func->ip = rec->ip - offset; 6898 mod_func->size = symsize; 6899 6900 mod_map->num_funcs++; 6901 6902 list_add_rcu(&mod_func->list, &mod_map->funcs); 6903 } 6904 6905 static struct ftrace_mod_map * 6906 allocate_ftrace_mod_map(struct module *mod, 6907 unsigned long start, unsigned long end) 6908 { 6909 struct ftrace_mod_map *mod_map; 6910 6911 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6912 if (!mod_map) 6913 return NULL; 6914 6915 mod_map->mod = mod; 6916 mod_map->start_addr = start; 6917 mod_map->end_addr = end; 6918 mod_map->num_funcs = 0; 6919 6920 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6921 6922 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6923 6924 return mod_map; 6925 } 6926 6927 static const char * 6928 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6929 unsigned long addr, unsigned long *size, 6930 unsigned long *off, char *sym) 6931 { 6932 struct ftrace_mod_func *found_func = NULL; 6933 struct ftrace_mod_func *mod_func; 6934 6935 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6936 if (addr >= mod_func->ip && 6937 addr < mod_func->ip + mod_func->size) { 6938 found_func = mod_func; 6939 break; 6940 } 6941 } 6942 6943 if (found_func) { 6944 if (size) 6945 *size = found_func->size; 6946 if (off) 6947 *off = addr - found_func->ip; 6948 if (sym) 6949 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6950 6951 return found_func->name; 6952 } 6953 6954 return NULL; 6955 } 6956 6957 const char * 6958 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6959 unsigned long *off, char **modname, char *sym) 6960 { 6961 struct ftrace_mod_map *mod_map; 6962 const char *ret = NULL; 6963 6964 /* mod_map is freed via call_rcu() */ 6965 preempt_disable(); 6966 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6967 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6968 if (ret) { 6969 if (modname) 6970 *modname = mod_map->mod->name; 6971 break; 6972 } 6973 } 6974 preempt_enable(); 6975 6976 return ret; 6977 } 6978 6979 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6980 char *type, char *name, 6981 char *module_name, int *exported) 6982 { 6983 struct ftrace_mod_map *mod_map; 6984 struct ftrace_mod_func *mod_func; 6985 int ret; 6986 6987 preempt_disable(); 6988 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6989 6990 if (symnum >= mod_map->num_funcs) { 6991 symnum -= mod_map->num_funcs; 6992 continue; 6993 } 6994 6995 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6996 if (symnum > 1) { 6997 symnum--; 6998 continue; 6999 } 7000 7001 *value = mod_func->ip; 7002 *type = 'T'; 7003 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7004 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7005 *exported = 1; 7006 preempt_enable(); 7007 return 0; 7008 } 7009 WARN_ON(1); 7010 break; 7011 } 7012 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7013 module_name, exported); 7014 preempt_enable(); 7015 return ret; 7016 } 7017 7018 #else 7019 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7020 struct dyn_ftrace *rec) { } 7021 static inline struct ftrace_mod_map * 7022 allocate_ftrace_mod_map(struct module *mod, 7023 unsigned long start, unsigned long end) 7024 { 7025 return NULL; 7026 } 7027 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7028 char *type, char *name, char *module_name, 7029 int *exported) 7030 { 7031 int ret; 7032 7033 preempt_disable(); 7034 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7035 module_name, exported); 7036 preempt_enable(); 7037 return ret; 7038 } 7039 #endif /* CONFIG_MODULES */ 7040 7041 struct ftrace_init_func { 7042 struct list_head list; 7043 unsigned long ip; 7044 }; 7045 7046 /* Clear any init ips from hashes */ 7047 static void 7048 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7049 { 7050 struct ftrace_func_entry *entry; 7051 7052 entry = ftrace_lookup_ip(hash, func->ip); 7053 /* 7054 * Do not allow this rec to match again. 7055 * Yeah, it may waste some memory, but will be removed 7056 * if/when the hash is modified again. 7057 */ 7058 if (entry) 7059 entry->ip = 0; 7060 } 7061 7062 static void 7063 clear_func_from_hashes(struct ftrace_init_func *func) 7064 { 7065 struct trace_array *tr; 7066 7067 mutex_lock(&trace_types_lock); 7068 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7069 if (!tr->ops || !tr->ops->func_hash) 7070 continue; 7071 mutex_lock(&tr->ops->func_hash->regex_lock); 7072 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7073 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7074 mutex_unlock(&tr->ops->func_hash->regex_lock); 7075 } 7076 mutex_unlock(&trace_types_lock); 7077 } 7078 7079 static void add_to_clear_hash_list(struct list_head *clear_list, 7080 struct dyn_ftrace *rec) 7081 { 7082 struct ftrace_init_func *func; 7083 7084 func = kmalloc(sizeof(*func), GFP_KERNEL); 7085 if (!func) { 7086 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7087 return; 7088 } 7089 7090 func->ip = rec->ip; 7091 list_add(&func->list, clear_list); 7092 } 7093 7094 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7095 { 7096 unsigned long start = (unsigned long)(start_ptr); 7097 unsigned long end = (unsigned long)(end_ptr); 7098 struct ftrace_page **last_pg = &ftrace_pages_start; 7099 struct ftrace_page *pg; 7100 struct dyn_ftrace *rec; 7101 struct dyn_ftrace key; 7102 struct ftrace_mod_map *mod_map = NULL; 7103 struct ftrace_init_func *func, *func_next; 7104 struct list_head clear_hash; 7105 7106 INIT_LIST_HEAD(&clear_hash); 7107 7108 key.ip = start; 7109 key.flags = end; /* overload flags, as it is unsigned long */ 7110 7111 mutex_lock(&ftrace_lock); 7112 7113 /* 7114 * If we are freeing module init memory, then check if 7115 * any tracer is active. If so, we need to save a mapping of 7116 * the module functions being freed with the address. 7117 */ 7118 if (mod && ftrace_ops_list != &ftrace_list_end) 7119 mod_map = allocate_ftrace_mod_map(mod, start, end); 7120 7121 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7122 if (end < pg->records[0].ip || 7123 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7124 continue; 7125 again: 7126 rec = bsearch(&key, pg->records, pg->index, 7127 sizeof(struct dyn_ftrace), 7128 ftrace_cmp_recs); 7129 if (!rec) 7130 continue; 7131 7132 /* rec will be cleared from hashes after ftrace_lock unlock */ 7133 add_to_clear_hash_list(&clear_hash, rec); 7134 7135 if (mod_map) 7136 save_ftrace_mod_rec(mod_map, rec); 7137 7138 pg->index--; 7139 ftrace_update_tot_cnt--; 7140 if (!pg->index) { 7141 *last_pg = pg->next; 7142 if (pg->records) { 7143 free_pages((unsigned long)pg->records, pg->order); 7144 ftrace_number_of_pages -= 1 << pg->order; 7145 } 7146 ftrace_number_of_groups--; 7147 kfree(pg); 7148 pg = container_of(last_pg, struct ftrace_page, next); 7149 if (!(*last_pg)) 7150 ftrace_pages = pg; 7151 continue; 7152 } 7153 memmove(rec, rec + 1, 7154 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7155 /* More than one function may be in this block */ 7156 goto again; 7157 } 7158 mutex_unlock(&ftrace_lock); 7159 7160 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7161 clear_func_from_hashes(func); 7162 kfree(func); 7163 } 7164 } 7165 7166 void __init ftrace_free_init_mem(void) 7167 { 7168 void *start = (void *)(&__init_begin); 7169 void *end = (void *)(&__init_end); 7170 7171 ftrace_boot_snapshot(); 7172 7173 ftrace_free_mem(NULL, start, end); 7174 } 7175 7176 int __init __weak ftrace_dyn_arch_init(void) 7177 { 7178 return 0; 7179 } 7180 7181 void __init ftrace_init(void) 7182 { 7183 extern unsigned long __start_mcount_loc[]; 7184 extern unsigned long __stop_mcount_loc[]; 7185 unsigned long count, flags; 7186 int ret; 7187 7188 local_irq_save(flags); 7189 ret = ftrace_dyn_arch_init(); 7190 local_irq_restore(flags); 7191 if (ret) 7192 goto failed; 7193 7194 count = __stop_mcount_loc - __start_mcount_loc; 7195 if (!count) { 7196 pr_info("ftrace: No functions to be traced?\n"); 7197 goto failed; 7198 } 7199 7200 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7201 count, count / ENTRIES_PER_PAGE + 1); 7202 7203 last_ftrace_enabled = ftrace_enabled = 1; 7204 7205 ret = ftrace_process_locs(NULL, 7206 __start_mcount_loc, 7207 __stop_mcount_loc); 7208 7209 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7210 ftrace_number_of_pages, ftrace_number_of_groups); 7211 7212 set_ftrace_early_filters(); 7213 7214 return; 7215 failed: 7216 ftrace_disabled = 1; 7217 } 7218 7219 /* Do nothing if arch does not support this */ 7220 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7221 { 7222 } 7223 7224 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7225 { 7226 unsigned long trampoline = ops->trampoline; 7227 7228 arch_ftrace_update_trampoline(ops); 7229 if (ops->trampoline && ops->trampoline != trampoline && 7230 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7231 /* Add to kallsyms before the perf events */ 7232 ftrace_add_trampoline_to_kallsyms(ops); 7233 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7234 ops->trampoline, ops->trampoline_size, false, 7235 FTRACE_TRAMPOLINE_SYM); 7236 /* 7237 * Record the perf text poke event after the ksymbol register 7238 * event. 7239 */ 7240 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7241 (void *)ops->trampoline, 7242 ops->trampoline_size); 7243 } 7244 } 7245 7246 void ftrace_init_trace_array(struct trace_array *tr) 7247 { 7248 INIT_LIST_HEAD(&tr->func_probes); 7249 INIT_LIST_HEAD(&tr->mod_trace); 7250 INIT_LIST_HEAD(&tr->mod_notrace); 7251 } 7252 #else 7253 7254 struct ftrace_ops global_ops = { 7255 .func = ftrace_stub, 7256 .flags = FTRACE_OPS_FL_INITIALIZED | 7257 FTRACE_OPS_FL_PID, 7258 }; 7259 7260 static int __init ftrace_nodyn_init(void) 7261 { 7262 ftrace_enabled = 1; 7263 return 0; 7264 } 7265 core_initcall(ftrace_nodyn_init); 7266 7267 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7268 static inline void ftrace_startup_all(int command) { } 7269 7270 # define ftrace_startup_sysctl() do { } while (0) 7271 # define ftrace_shutdown_sysctl() do { } while (0) 7272 7273 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7274 { 7275 } 7276 7277 #endif /* CONFIG_DYNAMIC_FTRACE */ 7278 7279 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7280 { 7281 tr->ops = &global_ops; 7282 tr->ops->private = tr; 7283 ftrace_init_trace_array(tr); 7284 } 7285 7286 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7287 { 7288 /* If we filter on pids, update to use the pid function */ 7289 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7290 if (WARN_ON(tr->ops->func != ftrace_stub)) 7291 printk("ftrace ops had %pS for function\n", 7292 tr->ops->func); 7293 } 7294 tr->ops->func = func; 7295 tr->ops->private = tr; 7296 } 7297 7298 void ftrace_reset_array_ops(struct trace_array *tr) 7299 { 7300 tr->ops->func = ftrace_stub; 7301 } 7302 7303 static nokprobe_inline void 7304 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7305 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7306 { 7307 struct pt_regs *regs = ftrace_get_regs(fregs); 7308 struct ftrace_ops *op; 7309 int bit; 7310 7311 /* 7312 * The ftrace_test_and_set_recursion() will disable preemption, 7313 * which is required since some of the ops may be dynamically 7314 * allocated, they must be freed after a synchronize_rcu(). 7315 */ 7316 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7317 if (bit < 0) 7318 return; 7319 7320 do_for_each_ftrace_op(op, ftrace_ops_list) { 7321 /* Stub functions don't need to be called nor tested */ 7322 if (op->flags & FTRACE_OPS_FL_STUB) 7323 continue; 7324 /* 7325 * Check the following for each ops before calling their func: 7326 * if RCU flag is set, then rcu_is_watching() must be true 7327 * if PER_CPU is set, then ftrace_function_local_disable() 7328 * must be false 7329 * Otherwise test if the ip matches the ops filter 7330 * 7331 * If any of the above fails then the op->func() is not executed. 7332 */ 7333 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7334 ftrace_ops_test(op, ip, regs)) { 7335 if (FTRACE_WARN_ON(!op->func)) { 7336 pr_warn("op=%p %pS\n", op, op); 7337 goto out; 7338 } 7339 op->func(ip, parent_ip, op, fregs); 7340 } 7341 } while_for_each_ftrace_op(op); 7342 out: 7343 trace_clear_recursion(bit); 7344 } 7345 7346 /* 7347 * Some archs only support passing ip and parent_ip. Even though 7348 * the list function ignores the op parameter, we do not want any 7349 * C side effects, where a function is called without the caller 7350 * sending a third parameter. 7351 * Archs are to support both the regs and ftrace_ops at the same time. 7352 * If they support ftrace_ops, it is assumed they support regs. 7353 * If call backs want to use regs, they must either check for regs 7354 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7355 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7356 * An architecture can pass partial regs with ftrace_ops and still 7357 * set the ARCH_SUPPORTS_FTRACE_OPS. 7358 * 7359 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7360 * arch_ftrace_ops_list_func. 7361 */ 7362 #if ARCH_SUPPORTS_FTRACE_OPS 7363 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7364 struct ftrace_ops *op, struct ftrace_regs *fregs) 7365 { 7366 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7367 } 7368 #else 7369 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7370 { 7371 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7372 } 7373 #endif 7374 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7375 7376 /* 7377 * If there's only one function registered but it does not support 7378 * recursion, needs RCU protection and/or requires per cpu handling, then 7379 * this function will be called by the mcount trampoline. 7380 */ 7381 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7382 struct ftrace_ops *op, struct ftrace_regs *fregs) 7383 { 7384 int bit; 7385 7386 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7387 if (bit < 0) 7388 return; 7389 7390 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7391 op->func(ip, parent_ip, op, fregs); 7392 7393 trace_clear_recursion(bit); 7394 } 7395 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7396 7397 /** 7398 * ftrace_ops_get_func - get the function a trampoline should call 7399 * @ops: the ops to get the function for 7400 * 7401 * Normally the mcount trampoline will call the ops->func, but there 7402 * are times that it should not. For example, if the ops does not 7403 * have its own recursion protection, then it should call the 7404 * ftrace_ops_assist_func() instead. 7405 * 7406 * Returns the function that the trampoline should call for @ops. 7407 */ 7408 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7409 { 7410 /* 7411 * If the function does not handle recursion or needs to be RCU safe, 7412 * then we need to call the assist handler. 7413 */ 7414 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7415 FTRACE_OPS_FL_RCU)) 7416 return ftrace_ops_assist_func; 7417 7418 return ops->func; 7419 } 7420 7421 static void 7422 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7423 unsigned int prev_state, 7424 struct task_struct *prev, 7425 struct task_struct *next) 7426 { 7427 struct trace_array *tr = data; 7428 struct trace_pid_list *pid_list; 7429 struct trace_pid_list *no_pid_list; 7430 7431 pid_list = rcu_dereference_sched(tr->function_pids); 7432 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7433 7434 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7435 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7436 FTRACE_PID_IGNORE); 7437 else 7438 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7439 next->pid); 7440 } 7441 7442 static void 7443 ftrace_pid_follow_sched_process_fork(void *data, 7444 struct task_struct *self, 7445 struct task_struct *task) 7446 { 7447 struct trace_pid_list *pid_list; 7448 struct trace_array *tr = data; 7449 7450 pid_list = rcu_dereference_sched(tr->function_pids); 7451 trace_filter_add_remove_task(pid_list, self, task); 7452 7453 pid_list = rcu_dereference_sched(tr->function_no_pids); 7454 trace_filter_add_remove_task(pid_list, self, task); 7455 } 7456 7457 static void 7458 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7459 { 7460 struct trace_pid_list *pid_list; 7461 struct trace_array *tr = data; 7462 7463 pid_list = rcu_dereference_sched(tr->function_pids); 7464 trace_filter_add_remove_task(pid_list, NULL, task); 7465 7466 pid_list = rcu_dereference_sched(tr->function_no_pids); 7467 trace_filter_add_remove_task(pid_list, NULL, task); 7468 } 7469 7470 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7471 { 7472 if (enable) { 7473 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7474 tr); 7475 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7476 tr); 7477 } else { 7478 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7479 tr); 7480 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7481 tr); 7482 } 7483 } 7484 7485 static void clear_ftrace_pids(struct trace_array *tr, int type) 7486 { 7487 struct trace_pid_list *pid_list; 7488 struct trace_pid_list *no_pid_list; 7489 int cpu; 7490 7491 pid_list = rcu_dereference_protected(tr->function_pids, 7492 lockdep_is_held(&ftrace_lock)); 7493 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7494 lockdep_is_held(&ftrace_lock)); 7495 7496 /* Make sure there's something to do */ 7497 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7498 return; 7499 7500 /* See if the pids still need to be checked after this */ 7501 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7502 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7503 for_each_possible_cpu(cpu) 7504 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7505 } 7506 7507 if (type & TRACE_PIDS) 7508 rcu_assign_pointer(tr->function_pids, NULL); 7509 7510 if (type & TRACE_NO_PIDS) 7511 rcu_assign_pointer(tr->function_no_pids, NULL); 7512 7513 /* Wait till all users are no longer using pid filtering */ 7514 synchronize_rcu(); 7515 7516 if ((type & TRACE_PIDS) && pid_list) 7517 trace_pid_list_free(pid_list); 7518 7519 if ((type & TRACE_NO_PIDS) && no_pid_list) 7520 trace_pid_list_free(no_pid_list); 7521 } 7522 7523 void ftrace_clear_pids(struct trace_array *tr) 7524 { 7525 mutex_lock(&ftrace_lock); 7526 7527 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7528 7529 mutex_unlock(&ftrace_lock); 7530 } 7531 7532 static void ftrace_pid_reset(struct trace_array *tr, int type) 7533 { 7534 mutex_lock(&ftrace_lock); 7535 clear_ftrace_pids(tr, type); 7536 7537 ftrace_update_pid_func(); 7538 ftrace_startup_all(0); 7539 7540 mutex_unlock(&ftrace_lock); 7541 } 7542 7543 /* Greater than any max PID */ 7544 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7545 7546 static void *fpid_start(struct seq_file *m, loff_t *pos) 7547 __acquires(RCU) 7548 { 7549 struct trace_pid_list *pid_list; 7550 struct trace_array *tr = m->private; 7551 7552 mutex_lock(&ftrace_lock); 7553 rcu_read_lock_sched(); 7554 7555 pid_list = rcu_dereference_sched(tr->function_pids); 7556 7557 if (!pid_list) 7558 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7559 7560 return trace_pid_start(pid_list, pos); 7561 } 7562 7563 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7564 { 7565 struct trace_array *tr = m->private; 7566 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7567 7568 if (v == FTRACE_NO_PIDS) { 7569 (*pos)++; 7570 return NULL; 7571 } 7572 return trace_pid_next(pid_list, v, pos); 7573 } 7574 7575 static void fpid_stop(struct seq_file *m, void *p) 7576 __releases(RCU) 7577 { 7578 rcu_read_unlock_sched(); 7579 mutex_unlock(&ftrace_lock); 7580 } 7581 7582 static int fpid_show(struct seq_file *m, void *v) 7583 { 7584 if (v == FTRACE_NO_PIDS) { 7585 seq_puts(m, "no pid\n"); 7586 return 0; 7587 } 7588 7589 return trace_pid_show(m, v); 7590 } 7591 7592 static const struct seq_operations ftrace_pid_sops = { 7593 .start = fpid_start, 7594 .next = fpid_next, 7595 .stop = fpid_stop, 7596 .show = fpid_show, 7597 }; 7598 7599 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7600 __acquires(RCU) 7601 { 7602 struct trace_pid_list *pid_list; 7603 struct trace_array *tr = m->private; 7604 7605 mutex_lock(&ftrace_lock); 7606 rcu_read_lock_sched(); 7607 7608 pid_list = rcu_dereference_sched(tr->function_no_pids); 7609 7610 if (!pid_list) 7611 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7612 7613 return trace_pid_start(pid_list, pos); 7614 } 7615 7616 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7617 { 7618 struct trace_array *tr = m->private; 7619 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7620 7621 if (v == FTRACE_NO_PIDS) { 7622 (*pos)++; 7623 return NULL; 7624 } 7625 return trace_pid_next(pid_list, v, pos); 7626 } 7627 7628 static const struct seq_operations ftrace_no_pid_sops = { 7629 .start = fnpid_start, 7630 .next = fnpid_next, 7631 .stop = fpid_stop, 7632 .show = fpid_show, 7633 }; 7634 7635 static int pid_open(struct inode *inode, struct file *file, int type) 7636 { 7637 const struct seq_operations *seq_ops; 7638 struct trace_array *tr = inode->i_private; 7639 struct seq_file *m; 7640 int ret = 0; 7641 7642 ret = tracing_check_open_get_tr(tr); 7643 if (ret) 7644 return ret; 7645 7646 if ((file->f_mode & FMODE_WRITE) && 7647 (file->f_flags & O_TRUNC)) 7648 ftrace_pid_reset(tr, type); 7649 7650 switch (type) { 7651 case TRACE_PIDS: 7652 seq_ops = &ftrace_pid_sops; 7653 break; 7654 case TRACE_NO_PIDS: 7655 seq_ops = &ftrace_no_pid_sops; 7656 break; 7657 default: 7658 trace_array_put(tr); 7659 WARN_ON_ONCE(1); 7660 return -EINVAL; 7661 } 7662 7663 ret = seq_open(file, seq_ops); 7664 if (ret < 0) { 7665 trace_array_put(tr); 7666 } else { 7667 m = file->private_data; 7668 /* copy tr over to seq ops */ 7669 m->private = tr; 7670 } 7671 7672 return ret; 7673 } 7674 7675 static int 7676 ftrace_pid_open(struct inode *inode, struct file *file) 7677 { 7678 return pid_open(inode, file, TRACE_PIDS); 7679 } 7680 7681 static int 7682 ftrace_no_pid_open(struct inode *inode, struct file *file) 7683 { 7684 return pid_open(inode, file, TRACE_NO_PIDS); 7685 } 7686 7687 static void ignore_task_cpu(void *data) 7688 { 7689 struct trace_array *tr = data; 7690 struct trace_pid_list *pid_list; 7691 struct trace_pid_list *no_pid_list; 7692 7693 /* 7694 * This function is called by on_each_cpu() while the 7695 * event_mutex is held. 7696 */ 7697 pid_list = rcu_dereference_protected(tr->function_pids, 7698 mutex_is_locked(&ftrace_lock)); 7699 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7700 mutex_is_locked(&ftrace_lock)); 7701 7702 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7703 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7704 FTRACE_PID_IGNORE); 7705 else 7706 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7707 current->pid); 7708 } 7709 7710 static ssize_t 7711 pid_write(struct file *filp, const char __user *ubuf, 7712 size_t cnt, loff_t *ppos, int type) 7713 { 7714 struct seq_file *m = filp->private_data; 7715 struct trace_array *tr = m->private; 7716 struct trace_pid_list *filtered_pids; 7717 struct trace_pid_list *other_pids; 7718 struct trace_pid_list *pid_list; 7719 ssize_t ret; 7720 7721 if (!cnt) 7722 return 0; 7723 7724 mutex_lock(&ftrace_lock); 7725 7726 switch (type) { 7727 case TRACE_PIDS: 7728 filtered_pids = rcu_dereference_protected(tr->function_pids, 7729 lockdep_is_held(&ftrace_lock)); 7730 other_pids = rcu_dereference_protected(tr->function_no_pids, 7731 lockdep_is_held(&ftrace_lock)); 7732 break; 7733 case TRACE_NO_PIDS: 7734 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7735 lockdep_is_held(&ftrace_lock)); 7736 other_pids = rcu_dereference_protected(tr->function_pids, 7737 lockdep_is_held(&ftrace_lock)); 7738 break; 7739 default: 7740 ret = -EINVAL; 7741 WARN_ON_ONCE(1); 7742 goto out; 7743 } 7744 7745 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7746 if (ret < 0) 7747 goto out; 7748 7749 switch (type) { 7750 case TRACE_PIDS: 7751 rcu_assign_pointer(tr->function_pids, pid_list); 7752 break; 7753 case TRACE_NO_PIDS: 7754 rcu_assign_pointer(tr->function_no_pids, pid_list); 7755 break; 7756 } 7757 7758 7759 if (filtered_pids) { 7760 synchronize_rcu(); 7761 trace_pid_list_free(filtered_pids); 7762 } else if (pid_list && !other_pids) { 7763 /* Register a probe to set whether to ignore the tracing of a task */ 7764 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7765 } 7766 7767 /* 7768 * Ignoring of pids is done at task switch. But we have to 7769 * check for those tasks that are currently running. 7770 * Always do this in case a pid was appended or removed. 7771 */ 7772 on_each_cpu(ignore_task_cpu, tr, 1); 7773 7774 ftrace_update_pid_func(); 7775 ftrace_startup_all(0); 7776 out: 7777 mutex_unlock(&ftrace_lock); 7778 7779 if (ret > 0) 7780 *ppos += ret; 7781 7782 return ret; 7783 } 7784 7785 static ssize_t 7786 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7787 size_t cnt, loff_t *ppos) 7788 { 7789 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7790 } 7791 7792 static ssize_t 7793 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7794 size_t cnt, loff_t *ppos) 7795 { 7796 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7797 } 7798 7799 static int 7800 ftrace_pid_release(struct inode *inode, struct file *file) 7801 { 7802 struct trace_array *tr = inode->i_private; 7803 7804 trace_array_put(tr); 7805 7806 return seq_release(inode, file); 7807 } 7808 7809 static const struct file_operations ftrace_pid_fops = { 7810 .open = ftrace_pid_open, 7811 .write = ftrace_pid_write, 7812 .read = seq_read, 7813 .llseek = tracing_lseek, 7814 .release = ftrace_pid_release, 7815 }; 7816 7817 static const struct file_operations ftrace_no_pid_fops = { 7818 .open = ftrace_no_pid_open, 7819 .write = ftrace_no_pid_write, 7820 .read = seq_read, 7821 .llseek = tracing_lseek, 7822 .release = ftrace_pid_release, 7823 }; 7824 7825 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7826 { 7827 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 7828 tr, &ftrace_pid_fops); 7829 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 7830 d_tracer, tr, &ftrace_no_pid_fops); 7831 } 7832 7833 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7834 struct dentry *d_tracer) 7835 { 7836 /* Only the top level directory has the dyn_tracefs and profile */ 7837 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7838 7839 ftrace_init_dyn_tracefs(d_tracer); 7840 ftrace_profile_tracefs(d_tracer); 7841 } 7842 7843 /** 7844 * ftrace_kill - kill ftrace 7845 * 7846 * This function should be used by panic code. It stops ftrace 7847 * but in a not so nice way. If you need to simply kill ftrace 7848 * from a non-atomic section, use ftrace_kill. 7849 */ 7850 void ftrace_kill(void) 7851 { 7852 ftrace_disabled = 1; 7853 ftrace_enabled = 0; 7854 ftrace_trace_function = ftrace_stub; 7855 } 7856 7857 /** 7858 * ftrace_is_dead - Test if ftrace is dead or not. 7859 * 7860 * Returns 1 if ftrace is "dead", zero otherwise. 7861 */ 7862 int ftrace_is_dead(void) 7863 { 7864 return ftrace_disabled; 7865 } 7866 7867 /** 7868 * register_ftrace_function - register a function for profiling 7869 * @ops: ops structure that holds the function for profiling. 7870 * 7871 * Register a function to be called by all functions in the 7872 * kernel. 7873 * 7874 * Note: @ops->func and all the functions it calls must be labeled 7875 * with "notrace", otherwise it will go into a 7876 * recursive loop. 7877 */ 7878 int register_ftrace_function(struct ftrace_ops *ops) 7879 { 7880 int ret; 7881 7882 ftrace_ops_init(ops); 7883 7884 mutex_lock(&ftrace_lock); 7885 7886 ret = ftrace_startup(ops, 0); 7887 7888 mutex_unlock(&ftrace_lock); 7889 7890 return ret; 7891 } 7892 EXPORT_SYMBOL_GPL(register_ftrace_function); 7893 7894 /** 7895 * unregister_ftrace_function - unregister a function for profiling. 7896 * @ops: ops structure that holds the function to unregister 7897 * 7898 * Unregister a function that was added to be called by ftrace profiling. 7899 */ 7900 int unregister_ftrace_function(struct ftrace_ops *ops) 7901 { 7902 int ret; 7903 7904 mutex_lock(&ftrace_lock); 7905 ret = ftrace_shutdown(ops, 0); 7906 mutex_unlock(&ftrace_lock); 7907 7908 return ret; 7909 } 7910 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7911 7912 static bool is_permanent_ops_registered(void) 7913 { 7914 struct ftrace_ops *op; 7915 7916 do_for_each_ftrace_op(op, ftrace_ops_list) { 7917 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7918 return true; 7919 } while_for_each_ftrace_op(op); 7920 7921 return false; 7922 } 7923 7924 int 7925 ftrace_enable_sysctl(struct ctl_table *table, int write, 7926 void *buffer, size_t *lenp, loff_t *ppos) 7927 { 7928 int ret = -ENODEV; 7929 7930 mutex_lock(&ftrace_lock); 7931 7932 if (unlikely(ftrace_disabled)) 7933 goto out; 7934 7935 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7936 7937 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7938 goto out; 7939 7940 if (ftrace_enabled) { 7941 7942 /* we are starting ftrace again */ 7943 if (rcu_dereference_protected(ftrace_ops_list, 7944 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7945 update_ftrace_function(); 7946 7947 ftrace_startup_sysctl(); 7948 7949 } else { 7950 if (is_permanent_ops_registered()) { 7951 ftrace_enabled = true; 7952 ret = -EBUSY; 7953 goto out; 7954 } 7955 7956 /* stopping ftrace calls (just send to ftrace_stub) */ 7957 ftrace_trace_function = ftrace_stub; 7958 7959 ftrace_shutdown_sysctl(); 7960 } 7961 7962 last_ftrace_enabled = !!ftrace_enabled; 7963 out: 7964 mutex_unlock(&ftrace_lock); 7965 return ret; 7966 } 7967