xref: /openbmc/linux/kernel/trace/ftrace.c (revision cd6d421e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct ftrace_regs *fregs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
144 {
145 	struct trace_array *tr = op->private;
146 	int pid;
147 
148 	if (tr) {
149 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
150 		if (pid == FTRACE_PID_IGNORE)
151 			return;
152 		if (pid != FTRACE_PID_TRACE &&
153 		    pid != current->pid)
154 			return;
155 	}
156 
157 	op->saved_func(ip, parent_ip, op, fregs);
158 }
159 
160 static void ftrace_sync_ipi(void *data)
161 {
162 	/* Probably not needed, but do it anyway */
163 	smp_rmb();
164 }
165 
166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
167 {
168 	/*
169 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
170 	 * then it needs to call the list anyway.
171 	 */
172 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
173 	    FTRACE_FORCE_LIST_FUNC)
174 		return ftrace_ops_list_func;
175 
176 	return ftrace_ops_get_func(ops);
177 }
178 
179 static void update_ftrace_function(void)
180 {
181 	ftrace_func_t func;
182 
183 	/*
184 	 * Prepare the ftrace_ops that the arch callback will use.
185 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
186 	 * will point to the ops we want.
187 	 */
188 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
189 						lockdep_is_held(&ftrace_lock));
190 
191 	/* If there's no ftrace_ops registered, just call the stub function */
192 	if (set_function_trace_op == &ftrace_list_end) {
193 		func = ftrace_stub;
194 
195 	/*
196 	 * If we are at the end of the list and this ops is
197 	 * recursion safe and not dynamic and the arch supports passing ops,
198 	 * then have the mcount trampoline call the function directly.
199 	 */
200 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
201 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
202 		func = ftrace_ops_get_list_func(ftrace_ops_list);
203 
204 	} else {
205 		/* Just use the default ftrace_ops */
206 		set_function_trace_op = &ftrace_list_end;
207 		func = ftrace_ops_list_func;
208 	}
209 
210 	update_function_graph_func();
211 
212 	/* If there's no change, then do nothing more here */
213 	if (ftrace_trace_function == func)
214 		return;
215 
216 	/*
217 	 * If we are using the list function, it doesn't care
218 	 * about the function_trace_ops.
219 	 */
220 	if (func == ftrace_ops_list_func) {
221 		ftrace_trace_function = func;
222 		/*
223 		 * Don't even bother setting function_trace_ops,
224 		 * it would be racy to do so anyway.
225 		 */
226 		return;
227 	}
228 
229 #ifndef CONFIG_DYNAMIC_FTRACE
230 	/*
231 	 * For static tracing, we need to be a bit more careful.
232 	 * The function change takes affect immediately. Thus,
233 	 * we need to coordinate the setting of the function_trace_ops
234 	 * with the setting of the ftrace_trace_function.
235 	 *
236 	 * Set the function to the list ops, which will call the
237 	 * function we want, albeit indirectly, but it handles the
238 	 * ftrace_ops and doesn't depend on function_trace_op.
239 	 */
240 	ftrace_trace_function = ftrace_ops_list_func;
241 	/*
242 	 * Make sure all CPUs see this. Yes this is slow, but static
243 	 * tracing is slow and nasty to have enabled.
244 	 */
245 	synchronize_rcu_tasks_rude();
246 	/* Now all cpus are using the list ops. */
247 	function_trace_op = set_function_trace_op;
248 	/* Make sure the function_trace_op is visible on all CPUs */
249 	smp_wmb();
250 	/* Nasty way to force a rmb on all cpus */
251 	smp_call_function(ftrace_sync_ipi, NULL, 1);
252 	/* OK, we are all set to update the ftrace_trace_function now! */
253 #endif /* !CONFIG_DYNAMIC_FTRACE */
254 
255 	ftrace_trace_function = func;
256 }
257 
258 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
259 			   struct ftrace_ops *ops)
260 {
261 	rcu_assign_pointer(ops->next, *list);
262 
263 	/*
264 	 * We are entering ops into the list but another
265 	 * CPU might be walking that list. We need to make sure
266 	 * the ops->next pointer is valid before another CPU sees
267 	 * the ops pointer included into the list.
268 	 */
269 	rcu_assign_pointer(*list, ops);
270 }
271 
272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
273 			     struct ftrace_ops *ops)
274 {
275 	struct ftrace_ops **p;
276 
277 	/*
278 	 * If we are removing the last function, then simply point
279 	 * to the ftrace_stub.
280 	 */
281 	if (rcu_dereference_protected(*list,
282 			lockdep_is_held(&ftrace_lock)) == ops &&
283 	    rcu_dereference_protected(ops->next,
284 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
285 		*list = &ftrace_list_end;
286 		return 0;
287 	}
288 
289 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
290 		if (*p == ops)
291 			break;
292 
293 	if (*p != ops)
294 		return -1;
295 
296 	*p = (*p)->next;
297 	return 0;
298 }
299 
300 static void ftrace_update_trampoline(struct ftrace_ops *ops);
301 
302 int __register_ftrace_function(struct ftrace_ops *ops)
303 {
304 	if (ops->flags & FTRACE_OPS_FL_DELETED)
305 		return -EINVAL;
306 
307 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
308 		return -EBUSY;
309 
310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
311 	/*
312 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
313 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
314 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
315 	 */
316 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
317 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
318 		return -EINVAL;
319 
320 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
321 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
322 #endif
323 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
324 		return -EBUSY;
325 
326 	if (!core_kernel_data((unsigned long)ops))
327 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
328 
329 	add_ftrace_ops(&ftrace_ops_list, ops);
330 
331 	/* Always save the function, and reset at unregistering */
332 	ops->saved_func = ops->func;
333 
334 	if (ftrace_pids_enabled(ops))
335 		ops->func = ftrace_pid_func;
336 
337 	ftrace_update_trampoline(ops);
338 
339 	if (ftrace_enabled)
340 		update_ftrace_function();
341 
342 	return 0;
343 }
344 
345 int __unregister_ftrace_function(struct ftrace_ops *ops)
346 {
347 	int ret;
348 
349 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
350 		return -EBUSY;
351 
352 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
353 
354 	if (ret < 0)
355 		return ret;
356 
357 	if (ftrace_enabled)
358 		update_ftrace_function();
359 
360 	ops->func = ops->saved_func;
361 
362 	return 0;
363 }
364 
365 static void ftrace_update_pid_func(void)
366 {
367 	struct ftrace_ops *op;
368 
369 	/* Only do something if we are tracing something */
370 	if (ftrace_trace_function == ftrace_stub)
371 		return;
372 
373 	do_for_each_ftrace_op(op, ftrace_ops_list) {
374 		if (op->flags & FTRACE_OPS_FL_PID) {
375 			op->func = ftrace_pids_enabled(op) ?
376 				ftrace_pid_func : op->saved_func;
377 			ftrace_update_trampoline(op);
378 		}
379 	} while_for_each_ftrace_op(op);
380 
381 	update_ftrace_function();
382 }
383 
384 #ifdef CONFIG_FUNCTION_PROFILER
385 struct ftrace_profile {
386 	struct hlist_node		node;
387 	unsigned long			ip;
388 	unsigned long			counter;
389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
390 	unsigned long long		time;
391 	unsigned long long		time_squared;
392 #endif
393 };
394 
395 struct ftrace_profile_page {
396 	struct ftrace_profile_page	*next;
397 	unsigned long			index;
398 	struct ftrace_profile		records[];
399 };
400 
401 struct ftrace_profile_stat {
402 	atomic_t			disabled;
403 	struct hlist_head		*hash;
404 	struct ftrace_profile_page	*pages;
405 	struct ftrace_profile_page	*start;
406 	struct tracer_stat		stat;
407 };
408 
409 #define PROFILE_RECORDS_SIZE						\
410 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
411 
412 #define PROFILES_PER_PAGE					\
413 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
414 
415 static int ftrace_profile_enabled __read_mostly;
416 
417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
418 static DEFINE_MUTEX(ftrace_profile_lock);
419 
420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
421 
422 #define FTRACE_PROFILE_HASH_BITS 10
423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
424 
425 static void *
426 function_stat_next(void *v, int idx)
427 {
428 	struct ftrace_profile *rec = v;
429 	struct ftrace_profile_page *pg;
430 
431 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
432 
433  again:
434 	if (idx != 0)
435 		rec++;
436 
437 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
438 		pg = pg->next;
439 		if (!pg)
440 			return NULL;
441 		rec = &pg->records[0];
442 		if (!rec->counter)
443 			goto again;
444 	}
445 
446 	return rec;
447 }
448 
449 static void *function_stat_start(struct tracer_stat *trace)
450 {
451 	struct ftrace_profile_stat *stat =
452 		container_of(trace, struct ftrace_profile_stat, stat);
453 
454 	if (!stat || !stat->start)
455 		return NULL;
456 
457 	return function_stat_next(&stat->start->records[0], 0);
458 }
459 
460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
461 /* function graph compares on total time */
462 static int function_stat_cmp(const void *p1, const void *p2)
463 {
464 	const struct ftrace_profile *a = p1;
465 	const struct ftrace_profile *b = p2;
466 
467 	if (a->time < b->time)
468 		return -1;
469 	if (a->time > b->time)
470 		return 1;
471 	else
472 		return 0;
473 }
474 #else
475 /* not function graph compares against hits */
476 static int function_stat_cmp(const void *p1, const void *p2)
477 {
478 	const struct ftrace_profile *a = p1;
479 	const struct ftrace_profile *b = p2;
480 
481 	if (a->counter < b->counter)
482 		return -1;
483 	if (a->counter > b->counter)
484 		return 1;
485 	else
486 		return 0;
487 }
488 #endif
489 
490 static int function_stat_headers(struct seq_file *m)
491 {
492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
493 	seq_puts(m, "  Function                               "
494 		 "Hit    Time            Avg             s^2\n"
495 		    "  --------                               "
496 		 "---    ----            ---             ---\n");
497 #else
498 	seq_puts(m, "  Function                               Hit\n"
499 		    "  --------                               ---\n");
500 #endif
501 	return 0;
502 }
503 
504 static int function_stat_show(struct seq_file *m, void *v)
505 {
506 	struct ftrace_profile *rec = v;
507 	char str[KSYM_SYMBOL_LEN];
508 	int ret = 0;
509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
510 	static struct trace_seq s;
511 	unsigned long long avg;
512 	unsigned long long stddev;
513 #endif
514 	mutex_lock(&ftrace_profile_lock);
515 
516 	/* we raced with function_profile_reset() */
517 	if (unlikely(rec->counter == 0)) {
518 		ret = -EBUSY;
519 		goto out;
520 	}
521 
522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
523 	avg = div64_ul(rec->time, rec->counter);
524 	if (tracing_thresh && (avg < tracing_thresh))
525 		goto out;
526 #endif
527 
528 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
529 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
530 
531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
532 	seq_puts(m, "    ");
533 
534 	/* Sample standard deviation (s^2) */
535 	if (rec->counter <= 1)
536 		stddev = 0;
537 	else {
538 		/*
539 		 * Apply Welford's method:
540 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
541 		 */
542 		stddev = rec->counter * rec->time_squared -
543 			 rec->time * rec->time;
544 
545 		/*
546 		 * Divide only 1000 for ns^2 -> us^2 conversion.
547 		 * trace_print_graph_duration will divide 1000 again.
548 		 */
549 		stddev = div64_ul(stddev,
550 				  rec->counter * (rec->counter - 1) * 1000);
551 	}
552 
553 	trace_seq_init(&s);
554 	trace_print_graph_duration(rec->time, &s);
555 	trace_seq_puts(&s, "    ");
556 	trace_print_graph_duration(avg, &s);
557 	trace_seq_puts(&s, "    ");
558 	trace_print_graph_duration(stddev, &s);
559 	trace_print_seq(m, &s);
560 #endif
561 	seq_putc(m, '\n');
562 out:
563 	mutex_unlock(&ftrace_profile_lock);
564 
565 	return ret;
566 }
567 
568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
569 {
570 	struct ftrace_profile_page *pg;
571 
572 	pg = stat->pages = stat->start;
573 
574 	while (pg) {
575 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
576 		pg->index = 0;
577 		pg = pg->next;
578 	}
579 
580 	memset(stat->hash, 0,
581 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
582 }
583 
584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
585 {
586 	struct ftrace_profile_page *pg;
587 	int functions;
588 	int pages;
589 	int i;
590 
591 	/* If we already allocated, do nothing */
592 	if (stat->pages)
593 		return 0;
594 
595 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
596 	if (!stat->pages)
597 		return -ENOMEM;
598 
599 #ifdef CONFIG_DYNAMIC_FTRACE
600 	functions = ftrace_update_tot_cnt;
601 #else
602 	/*
603 	 * We do not know the number of functions that exist because
604 	 * dynamic tracing is what counts them. With past experience
605 	 * we have around 20K functions. That should be more than enough.
606 	 * It is highly unlikely we will execute every function in
607 	 * the kernel.
608 	 */
609 	functions = 20000;
610 #endif
611 
612 	pg = stat->start = stat->pages;
613 
614 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
615 
616 	for (i = 1; i < pages; i++) {
617 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
618 		if (!pg->next)
619 			goto out_free;
620 		pg = pg->next;
621 	}
622 
623 	return 0;
624 
625  out_free:
626 	pg = stat->start;
627 	while (pg) {
628 		unsigned long tmp = (unsigned long)pg;
629 
630 		pg = pg->next;
631 		free_page(tmp);
632 	}
633 
634 	stat->pages = NULL;
635 	stat->start = NULL;
636 
637 	return -ENOMEM;
638 }
639 
640 static int ftrace_profile_init_cpu(int cpu)
641 {
642 	struct ftrace_profile_stat *stat;
643 	int size;
644 
645 	stat = &per_cpu(ftrace_profile_stats, cpu);
646 
647 	if (stat->hash) {
648 		/* If the profile is already created, simply reset it */
649 		ftrace_profile_reset(stat);
650 		return 0;
651 	}
652 
653 	/*
654 	 * We are profiling all functions, but usually only a few thousand
655 	 * functions are hit. We'll make a hash of 1024 items.
656 	 */
657 	size = FTRACE_PROFILE_HASH_SIZE;
658 
659 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
660 
661 	if (!stat->hash)
662 		return -ENOMEM;
663 
664 	/* Preallocate the function profiling pages */
665 	if (ftrace_profile_pages_init(stat) < 0) {
666 		kfree(stat->hash);
667 		stat->hash = NULL;
668 		return -ENOMEM;
669 	}
670 
671 	return 0;
672 }
673 
674 static int ftrace_profile_init(void)
675 {
676 	int cpu;
677 	int ret = 0;
678 
679 	for_each_possible_cpu(cpu) {
680 		ret = ftrace_profile_init_cpu(cpu);
681 		if (ret)
682 			break;
683 	}
684 
685 	return ret;
686 }
687 
688 /* interrupts must be disabled */
689 static struct ftrace_profile *
690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
691 {
692 	struct ftrace_profile *rec;
693 	struct hlist_head *hhd;
694 	unsigned long key;
695 
696 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
697 	hhd = &stat->hash[key];
698 
699 	if (hlist_empty(hhd))
700 		return NULL;
701 
702 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
703 		if (rec->ip == ip)
704 			return rec;
705 	}
706 
707 	return NULL;
708 }
709 
710 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
711 			       struct ftrace_profile *rec)
712 {
713 	unsigned long key;
714 
715 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
716 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
717 }
718 
719 /*
720  * The memory is already allocated, this simply finds a new record to use.
721  */
722 static struct ftrace_profile *
723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
724 {
725 	struct ftrace_profile *rec = NULL;
726 
727 	/* prevent recursion (from NMIs) */
728 	if (atomic_inc_return(&stat->disabled) != 1)
729 		goto out;
730 
731 	/*
732 	 * Try to find the function again since an NMI
733 	 * could have added it
734 	 */
735 	rec = ftrace_find_profiled_func(stat, ip);
736 	if (rec)
737 		goto out;
738 
739 	if (stat->pages->index == PROFILES_PER_PAGE) {
740 		if (!stat->pages->next)
741 			goto out;
742 		stat->pages = stat->pages->next;
743 	}
744 
745 	rec = &stat->pages->records[stat->pages->index++];
746 	rec->ip = ip;
747 	ftrace_add_profile(stat, rec);
748 
749  out:
750 	atomic_dec(&stat->disabled);
751 
752 	return rec;
753 }
754 
755 static void
756 function_profile_call(unsigned long ip, unsigned long parent_ip,
757 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
758 {
759 	struct ftrace_profile_stat *stat;
760 	struct ftrace_profile *rec;
761 	unsigned long flags;
762 
763 	if (!ftrace_profile_enabled)
764 		return;
765 
766 	local_irq_save(flags);
767 
768 	stat = this_cpu_ptr(&ftrace_profile_stats);
769 	if (!stat->hash || !ftrace_profile_enabled)
770 		goto out;
771 
772 	rec = ftrace_find_profiled_func(stat, ip);
773 	if (!rec) {
774 		rec = ftrace_profile_alloc(stat, ip);
775 		if (!rec)
776 			goto out;
777 	}
778 
779 	rec->counter++;
780  out:
781 	local_irq_restore(flags);
782 }
783 
784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
785 static bool fgraph_graph_time = true;
786 
787 void ftrace_graph_graph_time_control(bool enable)
788 {
789 	fgraph_graph_time = enable;
790 }
791 
792 static int profile_graph_entry(struct ftrace_graph_ent *trace)
793 {
794 	struct ftrace_ret_stack *ret_stack;
795 
796 	function_profile_call(trace->func, 0, NULL, NULL);
797 
798 	/* If function graph is shutting down, ret_stack can be NULL */
799 	if (!current->ret_stack)
800 		return 0;
801 
802 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
803 	if (ret_stack)
804 		ret_stack->subtime = 0;
805 
806 	return 1;
807 }
808 
809 static void profile_graph_return(struct ftrace_graph_ret *trace)
810 {
811 	struct ftrace_ret_stack *ret_stack;
812 	struct ftrace_profile_stat *stat;
813 	unsigned long long calltime;
814 	struct ftrace_profile *rec;
815 	unsigned long flags;
816 
817 	local_irq_save(flags);
818 	stat = this_cpu_ptr(&ftrace_profile_stats);
819 	if (!stat->hash || !ftrace_profile_enabled)
820 		goto out;
821 
822 	/* If the calltime was zero'd ignore it */
823 	if (!trace->calltime)
824 		goto out;
825 
826 	calltime = trace->rettime - trace->calltime;
827 
828 	if (!fgraph_graph_time) {
829 
830 		/* Append this call time to the parent time to subtract */
831 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
832 		if (ret_stack)
833 			ret_stack->subtime += calltime;
834 
835 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
836 		if (ret_stack && ret_stack->subtime < calltime)
837 			calltime -= ret_stack->subtime;
838 		else
839 			calltime = 0;
840 	}
841 
842 	rec = ftrace_find_profiled_func(stat, trace->func);
843 	if (rec) {
844 		rec->time += calltime;
845 		rec->time_squared += calltime * calltime;
846 	}
847 
848  out:
849 	local_irq_restore(flags);
850 }
851 
852 static struct fgraph_ops fprofiler_ops = {
853 	.entryfunc = &profile_graph_entry,
854 	.retfunc = &profile_graph_return,
855 };
856 
857 static int register_ftrace_profiler(void)
858 {
859 	return register_ftrace_graph(&fprofiler_ops);
860 }
861 
862 static void unregister_ftrace_profiler(void)
863 {
864 	unregister_ftrace_graph(&fprofiler_ops);
865 }
866 #else
867 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
868 	.func		= function_profile_call,
869 	.flags		= FTRACE_OPS_FL_INITIALIZED,
870 	INIT_OPS_HASH(ftrace_profile_ops)
871 };
872 
873 static int register_ftrace_profiler(void)
874 {
875 	return register_ftrace_function(&ftrace_profile_ops);
876 }
877 
878 static void unregister_ftrace_profiler(void)
879 {
880 	unregister_ftrace_function(&ftrace_profile_ops);
881 }
882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
883 
884 static ssize_t
885 ftrace_profile_write(struct file *filp, const char __user *ubuf,
886 		     size_t cnt, loff_t *ppos)
887 {
888 	unsigned long val;
889 	int ret;
890 
891 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
892 	if (ret)
893 		return ret;
894 
895 	val = !!val;
896 
897 	mutex_lock(&ftrace_profile_lock);
898 	if (ftrace_profile_enabled ^ val) {
899 		if (val) {
900 			ret = ftrace_profile_init();
901 			if (ret < 0) {
902 				cnt = ret;
903 				goto out;
904 			}
905 
906 			ret = register_ftrace_profiler();
907 			if (ret < 0) {
908 				cnt = ret;
909 				goto out;
910 			}
911 			ftrace_profile_enabled = 1;
912 		} else {
913 			ftrace_profile_enabled = 0;
914 			/*
915 			 * unregister_ftrace_profiler calls stop_machine
916 			 * so this acts like an synchronize_rcu.
917 			 */
918 			unregister_ftrace_profiler();
919 		}
920 	}
921  out:
922 	mutex_unlock(&ftrace_profile_lock);
923 
924 	*ppos += cnt;
925 
926 	return cnt;
927 }
928 
929 static ssize_t
930 ftrace_profile_read(struct file *filp, char __user *ubuf,
931 		     size_t cnt, loff_t *ppos)
932 {
933 	char buf[64];		/* big enough to hold a number */
934 	int r;
935 
936 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
937 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
938 }
939 
940 static const struct file_operations ftrace_profile_fops = {
941 	.open		= tracing_open_generic,
942 	.read		= ftrace_profile_read,
943 	.write		= ftrace_profile_write,
944 	.llseek		= default_llseek,
945 };
946 
947 /* used to initialize the real stat files */
948 static struct tracer_stat function_stats __initdata = {
949 	.name		= "functions",
950 	.stat_start	= function_stat_start,
951 	.stat_next	= function_stat_next,
952 	.stat_cmp	= function_stat_cmp,
953 	.stat_headers	= function_stat_headers,
954 	.stat_show	= function_stat_show
955 };
956 
957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
958 {
959 	struct ftrace_profile_stat *stat;
960 	struct dentry *entry;
961 	char *name;
962 	int ret;
963 	int cpu;
964 
965 	for_each_possible_cpu(cpu) {
966 		stat = &per_cpu(ftrace_profile_stats, cpu);
967 
968 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
969 		if (!name) {
970 			/*
971 			 * The files created are permanent, if something happens
972 			 * we still do not free memory.
973 			 */
974 			WARN(1,
975 			     "Could not allocate stat file for cpu %d\n",
976 			     cpu);
977 			return;
978 		}
979 		stat->stat = function_stats;
980 		stat->stat.name = name;
981 		ret = register_stat_tracer(&stat->stat);
982 		if (ret) {
983 			WARN(1,
984 			     "Could not register function stat for cpu %d\n",
985 			     cpu);
986 			kfree(name);
987 			return;
988 		}
989 	}
990 
991 	entry = tracefs_create_file("function_profile_enabled", 0644,
992 				    d_tracer, NULL, &ftrace_profile_fops);
993 	if (!entry)
994 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
995 }
996 
997 #else /* CONFIG_FUNCTION_PROFILER */
998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
999 {
1000 }
1001 #endif /* CONFIG_FUNCTION_PROFILER */
1002 
1003 #ifdef CONFIG_DYNAMIC_FTRACE
1004 
1005 static struct ftrace_ops *removed_ops;
1006 
1007 /*
1008  * Set when doing a global update, like enabling all recs or disabling them.
1009  * It is not set when just updating a single ftrace_ops.
1010  */
1011 static bool update_all_ops;
1012 
1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1014 # error Dynamic ftrace depends on MCOUNT_RECORD
1015 #endif
1016 
1017 struct ftrace_func_probe {
1018 	struct ftrace_probe_ops	*probe_ops;
1019 	struct ftrace_ops	ops;
1020 	struct trace_array	*tr;
1021 	struct list_head	list;
1022 	void			*data;
1023 	int			ref;
1024 };
1025 
1026 /*
1027  * We make these constant because no one should touch them,
1028  * but they are used as the default "empty hash", to avoid allocating
1029  * it all the time. These are in a read only section such that if
1030  * anyone does try to modify it, it will cause an exception.
1031  */
1032 static const struct hlist_head empty_buckets[1];
1033 static const struct ftrace_hash empty_hash = {
1034 	.buckets = (struct hlist_head *)empty_buckets,
1035 };
1036 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1037 
1038 struct ftrace_ops global_ops = {
1039 	.func				= ftrace_stub,
1040 	.local_hash.notrace_hash	= EMPTY_HASH,
1041 	.local_hash.filter_hash		= EMPTY_HASH,
1042 	INIT_OPS_HASH(global_ops)
1043 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1044 					  FTRACE_OPS_FL_PID,
1045 };
1046 
1047 /*
1048  * Used by the stack undwinder to know about dynamic ftrace trampolines.
1049  */
1050 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1051 {
1052 	struct ftrace_ops *op = NULL;
1053 
1054 	/*
1055 	 * Some of the ops may be dynamically allocated,
1056 	 * they are freed after a synchronize_rcu().
1057 	 */
1058 	preempt_disable_notrace();
1059 
1060 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1061 		/*
1062 		 * This is to check for dynamically allocated trampolines.
1063 		 * Trampolines that are in kernel text will have
1064 		 * core_kernel_text() return true.
1065 		 */
1066 		if (op->trampoline && op->trampoline_size)
1067 			if (addr >= op->trampoline &&
1068 			    addr < op->trampoline + op->trampoline_size) {
1069 				preempt_enable_notrace();
1070 				return op;
1071 			}
1072 	} while_for_each_ftrace_op(op);
1073 	preempt_enable_notrace();
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * This is used by __kernel_text_address() to return true if the
1080  * address is on a dynamically allocated trampoline that would
1081  * not return true for either core_kernel_text() or
1082  * is_module_text_address().
1083  */
1084 bool is_ftrace_trampoline(unsigned long addr)
1085 {
1086 	return ftrace_ops_trampoline(addr) != NULL;
1087 }
1088 
1089 struct ftrace_page {
1090 	struct ftrace_page	*next;
1091 	struct dyn_ftrace	*records;
1092 	int			index;
1093 	int			size;
1094 };
1095 
1096 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1097 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1098 
1099 static struct ftrace_page	*ftrace_pages_start;
1100 static struct ftrace_page	*ftrace_pages;
1101 
1102 static __always_inline unsigned long
1103 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1104 {
1105 	if (hash->size_bits > 0)
1106 		return hash_long(ip, hash->size_bits);
1107 
1108 	return 0;
1109 }
1110 
1111 /* Only use this function if ftrace_hash_empty() has already been tested */
1112 static __always_inline struct ftrace_func_entry *
1113 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1114 {
1115 	unsigned long key;
1116 	struct ftrace_func_entry *entry;
1117 	struct hlist_head *hhd;
1118 
1119 	key = ftrace_hash_key(hash, ip);
1120 	hhd = &hash->buckets[key];
1121 
1122 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1123 		if (entry->ip == ip)
1124 			return entry;
1125 	}
1126 	return NULL;
1127 }
1128 
1129 /**
1130  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1131  * @hash: The hash to look at
1132  * @ip: The instruction pointer to test
1133  *
1134  * Search a given @hash to see if a given instruction pointer (@ip)
1135  * exists in it.
1136  *
1137  * Returns the entry that holds the @ip if found. NULL otherwise.
1138  */
1139 struct ftrace_func_entry *
1140 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1141 {
1142 	if (ftrace_hash_empty(hash))
1143 		return NULL;
1144 
1145 	return __ftrace_lookup_ip(hash, ip);
1146 }
1147 
1148 static void __add_hash_entry(struct ftrace_hash *hash,
1149 			     struct ftrace_func_entry *entry)
1150 {
1151 	struct hlist_head *hhd;
1152 	unsigned long key;
1153 
1154 	key = ftrace_hash_key(hash, entry->ip);
1155 	hhd = &hash->buckets[key];
1156 	hlist_add_head(&entry->hlist, hhd);
1157 	hash->count++;
1158 }
1159 
1160 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1161 {
1162 	struct ftrace_func_entry *entry;
1163 
1164 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1165 	if (!entry)
1166 		return -ENOMEM;
1167 
1168 	entry->ip = ip;
1169 	__add_hash_entry(hash, entry);
1170 
1171 	return 0;
1172 }
1173 
1174 static void
1175 free_hash_entry(struct ftrace_hash *hash,
1176 		  struct ftrace_func_entry *entry)
1177 {
1178 	hlist_del(&entry->hlist);
1179 	kfree(entry);
1180 	hash->count--;
1181 }
1182 
1183 static void
1184 remove_hash_entry(struct ftrace_hash *hash,
1185 		  struct ftrace_func_entry *entry)
1186 {
1187 	hlist_del_rcu(&entry->hlist);
1188 	hash->count--;
1189 }
1190 
1191 static void ftrace_hash_clear(struct ftrace_hash *hash)
1192 {
1193 	struct hlist_head *hhd;
1194 	struct hlist_node *tn;
1195 	struct ftrace_func_entry *entry;
1196 	int size = 1 << hash->size_bits;
1197 	int i;
1198 
1199 	if (!hash->count)
1200 		return;
1201 
1202 	for (i = 0; i < size; i++) {
1203 		hhd = &hash->buckets[i];
1204 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1205 			free_hash_entry(hash, entry);
1206 	}
1207 	FTRACE_WARN_ON(hash->count);
1208 }
1209 
1210 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1211 {
1212 	list_del(&ftrace_mod->list);
1213 	kfree(ftrace_mod->module);
1214 	kfree(ftrace_mod->func);
1215 	kfree(ftrace_mod);
1216 }
1217 
1218 static void clear_ftrace_mod_list(struct list_head *head)
1219 {
1220 	struct ftrace_mod_load *p, *n;
1221 
1222 	/* stack tracer isn't supported yet */
1223 	if (!head)
1224 		return;
1225 
1226 	mutex_lock(&ftrace_lock);
1227 	list_for_each_entry_safe(p, n, head, list)
1228 		free_ftrace_mod(p);
1229 	mutex_unlock(&ftrace_lock);
1230 }
1231 
1232 static void free_ftrace_hash(struct ftrace_hash *hash)
1233 {
1234 	if (!hash || hash == EMPTY_HASH)
1235 		return;
1236 	ftrace_hash_clear(hash);
1237 	kfree(hash->buckets);
1238 	kfree(hash);
1239 }
1240 
1241 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1242 {
1243 	struct ftrace_hash *hash;
1244 
1245 	hash = container_of(rcu, struct ftrace_hash, rcu);
1246 	free_ftrace_hash(hash);
1247 }
1248 
1249 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1250 {
1251 	if (!hash || hash == EMPTY_HASH)
1252 		return;
1253 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1254 }
1255 
1256 void ftrace_free_filter(struct ftrace_ops *ops)
1257 {
1258 	ftrace_ops_init(ops);
1259 	free_ftrace_hash(ops->func_hash->filter_hash);
1260 	free_ftrace_hash(ops->func_hash->notrace_hash);
1261 }
1262 
1263 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1264 {
1265 	struct ftrace_hash *hash;
1266 	int size;
1267 
1268 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1269 	if (!hash)
1270 		return NULL;
1271 
1272 	size = 1 << size_bits;
1273 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1274 
1275 	if (!hash->buckets) {
1276 		kfree(hash);
1277 		return NULL;
1278 	}
1279 
1280 	hash->size_bits = size_bits;
1281 
1282 	return hash;
1283 }
1284 
1285 
1286 static int ftrace_add_mod(struct trace_array *tr,
1287 			  const char *func, const char *module,
1288 			  int enable)
1289 {
1290 	struct ftrace_mod_load *ftrace_mod;
1291 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1292 
1293 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1294 	if (!ftrace_mod)
1295 		return -ENOMEM;
1296 
1297 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1298 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1299 	ftrace_mod->enable = enable;
1300 
1301 	if (!ftrace_mod->func || !ftrace_mod->module)
1302 		goto out_free;
1303 
1304 	list_add(&ftrace_mod->list, mod_head);
1305 
1306 	return 0;
1307 
1308  out_free:
1309 	free_ftrace_mod(ftrace_mod);
1310 
1311 	return -ENOMEM;
1312 }
1313 
1314 static struct ftrace_hash *
1315 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1316 {
1317 	struct ftrace_func_entry *entry;
1318 	struct ftrace_hash *new_hash;
1319 	int size;
1320 	int ret;
1321 	int i;
1322 
1323 	new_hash = alloc_ftrace_hash(size_bits);
1324 	if (!new_hash)
1325 		return NULL;
1326 
1327 	if (hash)
1328 		new_hash->flags = hash->flags;
1329 
1330 	/* Empty hash? */
1331 	if (ftrace_hash_empty(hash))
1332 		return new_hash;
1333 
1334 	size = 1 << hash->size_bits;
1335 	for (i = 0; i < size; i++) {
1336 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1337 			ret = add_hash_entry(new_hash, entry->ip);
1338 			if (ret < 0)
1339 				goto free_hash;
1340 		}
1341 	}
1342 
1343 	FTRACE_WARN_ON(new_hash->count != hash->count);
1344 
1345 	return new_hash;
1346 
1347  free_hash:
1348 	free_ftrace_hash(new_hash);
1349 	return NULL;
1350 }
1351 
1352 static void
1353 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1354 static void
1355 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1356 
1357 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1358 				       struct ftrace_hash *new_hash);
1359 
1360 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1361 {
1362 	struct ftrace_func_entry *entry;
1363 	struct ftrace_hash *new_hash;
1364 	struct hlist_head *hhd;
1365 	struct hlist_node *tn;
1366 	int bits = 0;
1367 	int i;
1368 
1369 	/*
1370 	 * Use around half the size (max bit of it), but
1371 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1372 	 */
1373 	bits = fls(size / 2);
1374 
1375 	/* Don't allocate too much */
1376 	if (bits > FTRACE_HASH_MAX_BITS)
1377 		bits = FTRACE_HASH_MAX_BITS;
1378 
1379 	new_hash = alloc_ftrace_hash(bits);
1380 	if (!new_hash)
1381 		return NULL;
1382 
1383 	new_hash->flags = src->flags;
1384 
1385 	size = 1 << src->size_bits;
1386 	for (i = 0; i < size; i++) {
1387 		hhd = &src->buckets[i];
1388 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1389 			remove_hash_entry(src, entry);
1390 			__add_hash_entry(new_hash, entry);
1391 		}
1392 	}
1393 	return new_hash;
1394 }
1395 
1396 static struct ftrace_hash *
1397 __ftrace_hash_move(struct ftrace_hash *src)
1398 {
1399 	int size = src->count;
1400 
1401 	/*
1402 	 * If the new source is empty, just return the empty_hash.
1403 	 */
1404 	if (ftrace_hash_empty(src))
1405 		return EMPTY_HASH;
1406 
1407 	return dup_hash(src, size);
1408 }
1409 
1410 static int
1411 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1412 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1413 {
1414 	struct ftrace_hash *new_hash;
1415 	int ret;
1416 
1417 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1418 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1419 		return -EINVAL;
1420 
1421 	new_hash = __ftrace_hash_move(src);
1422 	if (!new_hash)
1423 		return -ENOMEM;
1424 
1425 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1426 	if (enable) {
1427 		/* IPMODIFY should be updated only when filter_hash updating */
1428 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1429 		if (ret < 0) {
1430 			free_ftrace_hash(new_hash);
1431 			return ret;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Remove the current set, update the hash and add
1437 	 * them back.
1438 	 */
1439 	ftrace_hash_rec_disable_modify(ops, enable);
1440 
1441 	rcu_assign_pointer(*dst, new_hash);
1442 
1443 	ftrace_hash_rec_enable_modify(ops, enable);
1444 
1445 	return 0;
1446 }
1447 
1448 static bool hash_contains_ip(unsigned long ip,
1449 			     struct ftrace_ops_hash *hash)
1450 {
1451 	/*
1452 	 * The function record is a match if it exists in the filter
1453 	 * hash and not in the notrace hash. Note, an empty hash is
1454 	 * considered a match for the filter hash, but an empty
1455 	 * notrace hash is considered not in the notrace hash.
1456 	 */
1457 	return (ftrace_hash_empty(hash->filter_hash) ||
1458 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1459 		(ftrace_hash_empty(hash->notrace_hash) ||
1460 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1461 }
1462 
1463 /*
1464  * Test the hashes for this ops to see if we want to call
1465  * the ops->func or not.
1466  *
1467  * It's a match if the ip is in the ops->filter_hash or
1468  * the filter_hash does not exist or is empty,
1469  *  AND
1470  * the ip is not in the ops->notrace_hash.
1471  *
1472  * This needs to be called with preemption disabled as
1473  * the hashes are freed with call_rcu().
1474  */
1475 int
1476 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1477 {
1478 	struct ftrace_ops_hash hash;
1479 	int ret;
1480 
1481 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1482 	/*
1483 	 * There's a small race when adding ops that the ftrace handler
1484 	 * that wants regs, may be called without them. We can not
1485 	 * allow that handler to be called if regs is NULL.
1486 	 */
1487 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1488 		return 0;
1489 #endif
1490 
1491 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1492 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1493 
1494 	if (hash_contains_ip(ip, &hash))
1495 		ret = 1;
1496 	else
1497 		ret = 0;
1498 
1499 	return ret;
1500 }
1501 
1502 /*
1503  * This is a double for. Do not use 'break' to break out of the loop,
1504  * you must use a goto.
1505  */
1506 #define do_for_each_ftrace_rec(pg, rec)					\
1507 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1508 		int _____i;						\
1509 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1510 			rec = &pg->records[_____i];
1511 
1512 #define while_for_each_ftrace_rec()		\
1513 		}				\
1514 	}
1515 
1516 
1517 static int ftrace_cmp_recs(const void *a, const void *b)
1518 {
1519 	const struct dyn_ftrace *key = a;
1520 	const struct dyn_ftrace *rec = b;
1521 
1522 	if (key->flags < rec->ip)
1523 		return -1;
1524 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1525 		return 1;
1526 	return 0;
1527 }
1528 
1529 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1530 {
1531 	struct ftrace_page *pg;
1532 	struct dyn_ftrace *rec = NULL;
1533 	struct dyn_ftrace key;
1534 
1535 	key.ip = start;
1536 	key.flags = end;	/* overload flags, as it is unsigned long */
1537 
1538 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1539 		if (end < pg->records[0].ip ||
1540 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1541 			continue;
1542 		rec = bsearch(&key, pg->records, pg->index,
1543 			      sizeof(struct dyn_ftrace),
1544 			      ftrace_cmp_recs);
1545 		if (rec)
1546 			break;
1547 	}
1548 	return rec;
1549 }
1550 
1551 /**
1552  * ftrace_location_range - return the first address of a traced location
1553  *	if it touches the given ip range
1554  * @start: start of range to search.
1555  * @end: end of range to search (inclusive). @end points to the last byte
1556  *	to check.
1557  *
1558  * Returns rec->ip if the related ftrace location is a least partly within
1559  * the given address range. That is, the first address of the instruction
1560  * that is either a NOP or call to the function tracer. It checks the ftrace
1561  * internal tables to determine if the address belongs or not.
1562  */
1563 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1564 {
1565 	struct dyn_ftrace *rec;
1566 
1567 	rec = lookup_rec(start, end);
1568 	if (rec)
1569 		return rec->ip;
1570 
1571 	return 0;
1572 }
1573 
1574 /**
1575  * ftrace_location - return true if the ip giving is a traced location
1576  * @ip: the instruction pointer to check
1577  *
1578  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1579  * That is, the instruction that is either a NOP or call to
1580  * the function tracer. It checks the ftrace internal tables to
1581  * determine if the address belongs or not.
1582  */
1583 unsigned long ftrace_location(unsigned long ip)
1584 {
1585 	return ftrace_location_range(ip, ip);
1586 }
1587 
1588 /**
1589  * ftrace_text_reserved - return true if range contains an ftrace location
1590  * @start: start of range to search
1591  * @end: end of range to search (inclusive). @end points to the last byte to check.
1592  *
1593  * Returns 1 if @start and @end contains a ftrace location.
1594  * That is, the instruction that is either a NOP or call to
1595  * the function tracer. It checks the ftrace internal tables to
1596  * determine if the address belongs or not.
1597  */
1598 int ftrace_text_reserved(const void *start, const void *end)
1599 {
1600 	unsigned long ret;
1601 
1602 	ret = ftrace_location_range((unsigned long)start,
1603 				    (unsigned long)end);
1604 
1605 	return (int)!!ret;
1606 }
1607 
1608 /* Test if ops registered to this rec needs regs */
1609 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1610 {
1611 	struct ftrace_ops *ops;
1612 	bool keep_regs = false;
1613 
1614 	for (ops = ftrace_ops_list;
1615 	     ops != &ftrace_list_end; ops = ops->next) {
1616 		/* pass rec in as regs to have non-NULL val */
1617 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1618 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1619 				keep_regs = true;
1620 				break;
1621 			}
1622 		}
1623 	}
1624 
1625 	return  keep_regs;
1626 }
1627 
1628 static struct ftrace_ops *
1629 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1630 static struct ftrace_ops *
1631 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1632 static struct ftrace_ops *
1633 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1634 
1635 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1636 				     int filter_hash,
1637 				     bool inc)
1638 {
1639 	struct ftrace_hash *hash;
1640 	struct ftrace_hash *other_hash;
1641 	struct ftrace_page *pg;
1642 	struct dyn_ftrace *rec;
1643 	bool update = false;
1644 	int count = 0;
1645 	int all = false;
1646 
1647 	/* Only update if the ops has been registered */
1648 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1649 		return false;
1650 
1651 	/*
1652 	 * In the filter_hash case:
1653 	 *   If the count is zero, we update all records.
1654 	 *   Otherwise we just update the items in the hash.
1655 	 *
1656 	 * In the notrace_hash case:
1657 	 *   We enable the update in the hash.
1658 	 *   As disabling notrace means enabling the tracing,
1659 	 *   and enabling notrace means disabling, the inc variable
1660 	 *   gets inversed.
1661 	 */
1662 	if (filter_hash) {
1663 		hash = ops->func_hash->filter_hash;
1664 		other_hash = ops->func_hash->notrace_hash;
1665 		if (ftrace_hash_empty(hash))
1666 			all = true;
1667 	} else {
1668 		inc = !inc;
1669 		hash = ops->func_hash->notrace_hash;
1670 		other_hash = ops->func_hash->filter_hash;
1671 		/*
1672 		 * If the notrace hash has no items,
1673 		 * then there's nothing to do.
1674 		 */
1675 		if (ftrace_hash_empty(hash))
1676 			return false;
1677 	}
1678 
1679 	do_for_each_ftrace_rec(pg, rec) {
1680 		int in_other_hash = 0;
1681 		int in_hash = 0;
1682 		int match = 0;
1683 
1684 		if (rec->flags & FTRACE_FL_DISABLED)
1685 			continue;
1686 
1687 		if (all) {
1688 			/*
1689 			 * Only the filter_hash affects all records.
1690 			 * Update if the record is not in the notrace hash.
1691 			 */
1692 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1693 				match = 1;
1694 		} else {
1695 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1696 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1697 
1698 			/*
1699 			 * If filter_hash is set, we want to match all functions
1700 			 * that are in the hash but not in the other hash.
1701 			 *
1702 			 * If filter_hash is not set, then we are decrementing.
1703 			 * That means we match anything that is in the hash
1704 			 * and also in the other_hash. That is, we need to turn
1705 			 * off functions in the other hash because they are disabled
1706 			 * by this hash.
1707 			 */
1708 			if (filter_hash && in_hash && !in_other_hash)
1709 				match = 1;
1710 			else if (!filter_hash && in_hash &&
1711 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1712 				match = 1;
1713 		}
1714 		if (!match)
1715 			continue;
1716 
1717 		if (inc) {
1718 			rec->flags++;
1719 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1720 				return false;
1721 
1722 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1723 				rec->flags |= FTRACE_FL_DIRECT;
1724 
1725 			/*
1726 			 * If there's only a single callback registered to a
1727 			 * function, and the ops has a trampoline registered
1728 			 * for it, then we can call it directly.
1729 			 */
1730 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1731 				rec->flags |= FTRACE_FL_TRAMP;
1732 			else
1733 				/*
1734 				 * If we are adding another function callback
1735 				 * to this function, and the previous had a
1736 				 * custom trampoline in use, then we need to go
1737 				 * back to the default trampoline.
1738 				 */
1739 				rec->flags &= ~FTRACE_FL_TRAMP;
1740 
1741 			/*
1742 			 * If any ops wants regs saved for this function
1743 			 * then all ops will get saved regs.
1744 			 */
1745 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1746 				rec->flags |= FTRACE_FL_REGS;
1747 		} else {
1748 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1749 				return false;
1750 			rec->flags--;
1751 
1752 			/*
1753 			 * Only the internal direct_ops should have the
1754 			 * DIRECT flag set. Thus, if it is removing a
1755 			 * function, then that function should no longer
1756 			 * be direct.
1757 			 */
1758 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1759 				rec->flags &= ~FTRACE_FL_DIRECT;
1760 
1761 			/*
1762 			 * If the rec had REGS enabled and the ops that is
1763 			 * being removed had REGS set, then see if there is
1764 			 * still any ops for this record that wants regs.
1765 			 * If not, we can stop recording them.
1766 			 */
1767 			if (ftrace_rec_count(rec) > 0 &&
1768 			    rec->flags & FTRACE_FL_REGS &&
1769 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1770 				if (!test_rec_ops_needs_regs(rec))
1771 					rec->flags &= ~FTRACE_FL_REGS;
1772 			}
1773 
1774 			/*
1775 			 * The TRAMP needs to be set only if rec count
1776 			 * is decremented to one, and the ops that is
1777 			 * left has a trampoline. As TRAMP can only be
1778 			 * enabled if there is only a single ops attached
1779 			 * to it.
1780 			 */
1781 			if (ftrace_rec_count(rec) == 1 &&
1782 			    ftrace_find_tramp_ops_any_other(rec, ops))
1783 				rec->flags |= FTRACE_FL_TRAMP;
1784 			else
1785 				rec->flags &= ~FTRACE_FL_TRAMP;
1786 
1787 			/*
1788 			 * flags will be cleared in ftrace_check_record()
1789 			 * if rec count is zero.
1790 			 */
1791 		}
1792 		count++;
1793 
1794 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1795 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1796 
1797 		/* Shortcut, if we handled all records, we are done. */
1798 		if (!all && count == hash->count)
1799 			return update;
1800 	} while_for_each_ftrace_rec();
1801 
1802 	return update;
1803 }
1804 
1805 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1806 				    int filter_hash)
1807 {
1808 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1809 }
1810 
1811 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1812 				   int filter_hash)
1813 {
1814 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1815 }
1816 
1817 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1818 					  int filter_hash, int inc)
1819 {
1820 	struct ftrace_ops *op;
1821 
1822 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1823 
1824 	if (ops->func_hash != &global_ops.local_hash)
1825 		return;
1826 
1827 	/*
1828 	 * If the ops shares the global_ops hash, then we need to update
1829 	 * all ops that are enabled and use this hash.
1830 	 */
1831 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1832 		/* Already done */
1833 		if (op == ops)
1834 			continue;
1835 		if (op->func_hash == &global_ops.local_hash)
1836 			__ftrace_hash_rec_update(op, filter_hash, inc);
1837 	} while_for_each_ftrace_op(op);
1838 }
1839 
1840 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1841 					   int filter_hash)
1842 {
1843 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1844 }
1845 
1846 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1847 					  int filter_hash)
1848 {
1849 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1850 }
1851 
1852 /*
1853  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1854  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1855  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1856  * Note that old_hash and new_hash has below meanings
1857  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1858  *  - If the hash is EMPTY_HASH, it hits nothing
1859  *  - Anything else hits the recs which match the hash entries.
1860  */
1861 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1862 					 struct ftrace_hash *old_hash,
1863 					 struct ftrace_hash *new_hash)
1864 {
1865 	struct ftrace_page *pg;
1866 	struct dyn_ftrace *rec, *end = NULL;
1867 	int in_old, in_new;
1868 
1869 	/* Only update if the ops has been registered */
1870 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1871 		return 0;
1872 
1873 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1874 		return 0;
1875 
1876 	/*
1877 	 * Since the IPMODIFY is a very address sensitive action, we do not
1878 	 * allow ftrace_ops to set all functions to new hash.
1879 	 */
1880 	if (!new_hash || !old_hash)
1881 		return -EINVAL;
1882 
1883 	/* Update rec->flags */
1884 	do_for_each_ftrace_rec(pg, rec) {
1885 
1886 		if (rec->flags & FTRACE_FL_DISABLED)
1887 			continue;
1888 
1889 		/* We need to update only differences of filter_hash */
1890 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1891 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1892 		if (in_old == in_new)
1893 			continue;
1894 
1895 		if (in_new) {
1896 			/* New entries must ensure no others are using it */
1897 			if (rec->flags & FTRACE_FL_IPMODIFY)
1898 				goto rollback;
1899 			rec->flags |= FTRACE_FL_IPMODIFY;
1900 		} else /* Removed entry */
1901 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1902 	} while_for_each_ftrace_rec();
1903 
1904 	return 0;
1905 
1906 rollback:
1907 	end = rec;
1908 
1909 	/* Roll back what we did above */
1910 	do_for_each_ftrace_rec(pg, rec) {
1911 
1912 		if (rec->flags & FTRACE_FL_DISABLED)
1913 			continue;
1914 
1915 		if (rec == end)
1916 			goto err_out;
1917 
1918 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1919 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1920 		if (in_old == in_new)
1921 			continue;
1922 
1923 		if (in_new)
1924 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1925 		else
1926 			rec->flags |= FTRACE_FL_IPMODIFY;
1927 	} while_for_each_ftrace_rec();
1928 
1929 err_out:
1930 	return -EBUSY;
1931 }
1932 
1933 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1934 {
1935 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1936 
1937 	if (ftrace_hash_empty(hash))
1938 		hash = NULL;
1939 
1940 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1941 }
1942 
1943 /* Disabling always succeeds */
1944 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1945 {
1946 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1947 
1948 	if (ftrace_hash_empty(hash))
1949 		hash = NULL;
1950 
1951 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1952 }
1953 
1954 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1955 				       struct ftrace_hash *new_hash)
1956 {
1957 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1958 
1959 	if (ftrace_hash_empty(old_hash))
1960 		old_hash = NULL;
1961 
1962 	if (ftrace_hash_empty(new_hash))
1963 		new_hash = NULL;
1964 
1965 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1966 }
1967 
1968 static void print_ip_ins(const char *fmt, const unsigned char *p)
1969 {
1970 	int i;
1971 
1972 	printk(KERN_CONT "%s", fmt);
1973 
1974 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1975 		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1976 }
1977 
1978 enum ftrace_bug_type ftrace_bug_type;
1979 const void *ftrace_expected;
1980 
1981 static void print_bug_type(void)
1982 {
1983 	switch (ftrace_bug_type) {
1984 	case FTRACE_BUG_UNKNOWN:
1985 		break;
1986 	case FTRACE_BUG_INIT:
1987 		pr_info("Initializing ftrace call sites\n");
1988 		break;
1989 	case FTRACE_BUG_NOP:
1990 		pr_info("Setting ftrace call site to NOP\n");
1991 		break;
1992 	case FTRACE_BUG_CALL:
1993 		pr_info("Setting ftrace call site to call ftrace function\n");
1994 		break;
1995 	case FTRACE_BUG_UPDATE:
1996 		pr_info("Updating ftrace call site to call a different ftrace function\n");
1997 		break;
1998 	}
1999 }
2000 
2001 /**
2002  * ftrace_bug - report and shutdown function tracer
2003  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2004  * @rec: The record that failed
2005  *
2006  * The arch code that enables or disables the function tracing
2007  * can call ftrace_bug() when it has detected a problem in
2008  * modifying the code. @failed should be one of either:
2009  * EFAULT - if the problem happens on reading the @ip address
2010  * EINVAL - if what is read at @ip is not what was expected
2011  * EPERM - if the problem happens on writing to the @ip address
2012  */
2013 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2014 {
2015 	unsigned long ip = rec ? rec->ip : 0;
2016 
2017 	pr_info("------------[ ftrace bug ]------------\n");
2018 
2019 	switch (failed) {
2020 	case -EFAULT:
2021 		pr_info("ftrace faulted on modifying ");
2022 		print_ip_sym(KERN_INFO, ip);
2023 		break;
2024 	case -EINVAL:
2025 		pr_info("ftrace failed to modify ");
2026 		print_ip_sym(KERN_INFO, ip);
2027 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2028 		pr_cont("\n");
2029 		if (ftrace_expected) {
2030 			print_ip_ins(" expected: ", ftrace_expected);
2031 			pr_cont("\n");
2032 		}
2033 		break;
2034 	case -EPERM:
2035 		pr_info("ftrace faulted on writing ");
2036 		print_ip_sym(KERN_INFO, ip);
2037 		break;
2038 	default:
2039 		pr_info("ftrace faulted on unknown error ");
2040 		print_ip_sym(KERN_INFO, ip);
2041 	}
2042 	print_bug_type();
2043 	if (rec) {
2044 		struct ftrace_ops *ops = NULL;
2045 
2046 		pr_info("ftrace record flags: %lx\n", rec->flags);
2047 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2048 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2049 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2050 			ops = ftrace_find_tramp_ops_any(rec);
2051 			if (ops) {
2052 				do {
2053 					pr_cont("\ttramp: %pS (%pS)",
2054 						(void *)ops->trampoline,
2055 						(void *)ops->func);
2056 					ops = ftrace_find_tramp_ops_next(rec, ops);
2057 				} while (ops);
2058 			} else
2059 				pr_cont("\ttramp: ERROR!");
2060 
2061 		}
2062 		ip = ftrace_get_addr_curr(rec);
2063 		pr_cont("\n expected tramp: %lx\n", ip);
2064 	}
2065 
2066 	FTRACE_WARN_ON_ONCE(1);
2067 }
2068 
2069 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2070 {
2071 	unsigned long flag = 0UL;
2072 
2073 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2074 
2075 	if (rec->flags & FTRACE_FL_DISABLED)
2076 		return FTRACE_UPDATE_IGNORE;
2077 
2078 	/*
2079 	 * If we are updating calls:
2080 	 *
2081 	 *   If the record has a ref count, then we need to enable it
2082 	 *   because someone is using it.
2083 	 *
2084 	 *   Otherwise we make sure its disabled.
2085 	 *
2086 	 * If we are disabling calls, then disable all records that
2087 	 * are enabled.
2088 	 */
2089 	if (enable && ftrace_rec_count(rec))
2090 		flag = FTRACE_FL_ENABLED;
2091 
2092 	/*
2093 	 * If enabling and the REGS flag does not match the REGS_EN, or
2094 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2095 	 * this record. Set flags to fail the compare against ENABLED.
2096 	 * Same for direct calls.
2097 	 */
2098 	if (flag) {
2099 		if (!(rec->flags & FTRACE_FL_REGS) !=
2100 		    !(rec->flags & FTRACE_FL_REGS_EN))
2101 			flag |= FTRACE_FL_REGS;
2102 
2103 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2104 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2105 			flag |= FTRACE_FL_TRAMP;
2106 
2107 		/*
2108 		 * Direct calls are special, as count matters.
2109 		 * We must test the record for direct, if the
2110 		 * DIRECT and DIRECT_EN do not match, but only
2111 		 * if the count is 1. That's because, if the
2112 		 * count is something other than one, we do not
2113 		 * want the direct enabled (it will be done via the
2114 		 * direct helper). But if DIRECT_EN is set, and
2115 		 * the count is not one, we need to clear it.
2116 		 */
2117 		if (ftrace_rec_count(rec) == 1) {
2118 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2119 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2120 				flag |= FTRACE_FL_DIRECT;
2121 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2122 			flag |= FTRACE_FL_DIRECT;
2123 		}
2124 	}
2125 
2126 	/* If the state of this record hasn't changed, then do nothing */
2127 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2128 		return FTRACE_UPDATE_IGNORE;
2129 
2130 	if (flag) {
2131 		/* Save off if rec is being enabled (for return value) */
2132 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2133 
2134 		if (update) {
2135 			rec->flags |= FTRACE_FL_ENABLED;
2136 			if (flag & FTRACE_FL_REGS) {
2137 				if (rec->flags & FTRACE_FL_REGS)
2138 					rec->flags |= FTRACE_FL_REGS_EN;
2139 				else
2140 					rec->flags &= ~FTRACE_FL_REGS_EN;
2141 			}
2142 			if (flag & FTRACE_FL_TRAMP) {
2143 				if (rec->flags & FTRACE_FL_TRAMP)
2144 					rec->flags |= FTRACE_FL_TRAMP_EN;
2145 				else
2146 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2147 			}
2148 
2149 			if (flag & FTRACE_FL_DIRECT) {
2150 				/*
2151 				 * If there's only one user (direct_ops helper)
2152 				 * then we can call the direct function
2153 				 * directly (no ftrace trampoline).
2154 				 */
2155 				if (ftrace_rec_count(rec) == 1) {
2156 					if (rec->flags & FTRACE_FL_DIRECT)
2157 						rec->flags |= FTRACE_FL_DIRECT_EN;
2158 					else
2159 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2160 				} else {
2161 					/*
2162 					 * Can only call directly if there's
2163 					 * only one callback to the function.
2164 					 */
2165 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2166 				}
2167 			}
2168 		}
2169 
2170 		/*
2171 		 * If this record is being updated from a nop, then
2172 		 *   return UPDATE_MAKE_CALL.
2173 		 * Otherwise,
2174 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2175 		 *   from the save regs, to a non-save regs function or
2176 		 *   vice versa, or from a trampoline call.
2177 		 */
2178 		if (flag & FTRACE_FL_ENABLED) {
2179 			ftrace_bug_type = FTRACE_BUG_CALL;
2180 			return FTRACE_UPDATE_MAKE_CALL;
2181 		}
2182 
2183 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2184 		return FTRACE_UPDATE_MODIFY_CALL;
2185 	}
2186 
2187 	if (update) {
2188 		/* If there's no more users, clear all flags */
2189 		if (!ftrace_rec_count(rec))
2190 			rec->flags = 0;
2191 		else
2192 			/*
2193 			 * Just disable the record, but keep the ops TRAMP
2194 			 * and REGS states. The _EN flags must be disabled though.
2195 			 */
2196 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2197 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2198 	}
2199 
2200 	ftrace_bug_type = FTRACE_BUG_NOP;
2201 	return FTRACE_UPDATE_MAKE_NOP;
2202 }
2203 
2204 /**
2205  * ftrace_update_record, set a record that now is tracing or not
2206  * @rec: the record to update
2207  * @enable: set to true if the record is tracing, false to force disable
2208  *
2209  * The records that represent all functions that can be traced need
2210  * to be updated when tracing has been enabled.
2211  */
2212 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2213 {
2214 	return ftrace_check_record(rec, enable, true);
2215 }
2216 
2217 /**
2218  * ftrace_test_record, check if the record has been enabled or not
2219  * @rec: the record to test
2220  * @enable: set to true to check if enabled, false if it is disabled
2221  *
2222  * The arch code may need to test if a record is already set to
2223  * tracing to determine how to modify the function code that it
2224  * represents.
2225  */
2226 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2227 {
2228 	return ftrace_check_record(rec, enable, false);
2229 }
2230 
2231 static struct ftrace_ops *
2232 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2233 {
2234 	struct ftrace_ops *op;
2235 	unsigned long ip = rec->ip;
2236 
2237 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2238 
2239 		if (!op->trampoline)
2240 			continue;
2241 
2242 		if (hash_contains_ip(ip, op->func_hash))
2243 			return op;
2244 	} while_for_each_ftrace_op(op);
2245 
2246 	return NULL;
2247 }
2248 
2249 static struct ftrace_ops *
2250 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2251 {
2252 	struct ftrace_ops *op;
2253 	unsigned long ip = rec->ip;
2254 
2255 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2256 
2257 		if (op == op_exclude || !op->trampoline)
2258 			continue;
2259 
2260 		if (hash_contains_ip(ip, op->func_hash))
2261 			return op;
2262 	} while_for_each_ftrace_op(op);
2263 
2264 	return NULL;
2265 }
2266 
2267 static struct ftrace_ops *
2268 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2269 			   struct ftrace_ops *op)
2270 {
2271 	unsigned long ip = rec->ip;
2272 
2273 	while_for_each_ftrace_op(op) {
2274 
2275 		if (!op->trampoline)
2276 			continue;
2277 
2278 		if (hash_contains_ip(ip, op->func_hash))
2279 			return op;
2280 	}
2281 
2282 	return NULL;
2283 }
2284 
2285 static struct ftrace_ops *
2286 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2287 {
2288 	struct ftrace_ops *op;
2289 	unsigned long ip = rec->ip;
2290 
2291 	/*
2292 	 * Need to check removed ops first.
2293 	 * If they are being removed, and this rec has a tramp,
2294 	 * and this rec is in the ops list, then it would be the
2295 	 * one with the tramp.
2296 	 */
2297 	if (removed_ops) {
2298 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2299 			return removed_ops;
2300 	}
2301 
2302 	/*
2303 	 * Need to find the current trampoline for a rec.
2304 	 * Now, a trampoline is only attached to a rec if there
2305 	 * was a single 'ops' attached to it. But this can be called
2306 	 * when we are adding another op to the rec or removing the
2307 	 * current one. Thus, if the op is being added, we can
2308 	 * ignore it because it hasn't attached itself to the rec
2309 	 * yet.
2310 	 *
2311 	 * If an ops is being modified (hooking to different functions)
2312 	 * then we don't care about the new functions that are being
2313 	 * added, just the old ones (that are probably being removed).
2314 	 *
2315 	 * If we are adding an ops to a function that already is using
2316 	 * a trampoline, it needs to be removed (trampolines are only
2317 	 * for single ops connected), then an ops that is not being
2318 	 * modified also needs to be checked.
2319 	 */
2320 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2321 
2322 		if (!op->trampoline)
2323 			continue;
2324 
2325 		/*
2326 		 * If the ops is being added, it hasn't gotten to
2327 		 * the point to be removed from this tree yet.
2328 		 */
2329 		if (op->flags & FTRACE_OPS_FL_ADDING)
2330 			continue;
2331 
2332 
2333 		/*
2334 		 * If the ops is being modified and is in the old
2335 		 * hash, then it is probably being removed from this
2336 		 * function.
2337 		 */
2338 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2339 		    hash_contains_ip(ip, &op->old_hash))
2340 			return op;
2341 		/*
2342 		 * If the ops is not being added or modified, and it's
2343 		 * in its normal filter hash, then this must be the one
2344 		 * we want!
2345 		 */
2346 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2347 		    hash_contains_ip(ip, op->func_hash))
2348 			return op;
2349 
2350 	} while_for_each_ftrace_op(op);
2351 
2352 	return NULL;
2353 }
2354 
2355 static struct ftrace_ops *
2356 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2357 {
2358 	struct ftrace_ops *op;
2359 	unsigned long ip = rec->ip;
2360 
2361 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2362 		/* pass rec in as regs to have non-NULL val */
2363 		if (hash_contains_ip(ip, op->func_hash))
2364 			return op;
2365 	} while_for_each_ftrace_op(op);
2366 
2367 	return NULL;
2368 }
2369 
2370 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2371 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2372 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2373 static DEFINE_MUTEX(direct_mutex);
2374 int ftrace_direct_func_count;
2375 
2376 /*
2377  * Search the direct_functions hash to see if the given instruction pointer
2378  * has a direct caller attached to it.
2379  */
2380 unsigned long ftrace_find_rec_direct(unsigned long ip)
2381 {
2382 	struct ftrace_func_entry *entry;
2383 
2384 	entry = __ftrace_lookup_ip(direct_functions, ip);
2385 	if (!entry)
2386 		return 0;
2387 
2388 	return entry->direct;
2389 }
2390 
2391 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2392 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2393 {
2394 	struct pt_regs *regs = ftrace_get_regs(fregs);
2395 	unsigned long addr;
2396 
2397 	addr = ftrace_find_rec_direct(ip);
2398 	if (!addr)
2399 		return;
2400 
2401 	arch_ftrace_set_direct_caller(regs, addr);
2402 }
2403 
2404 struct ftrace_ops direct_ops = {
2405 	.func		= call_direct_funcs,
2406 	.flags		= FTRACE_OPS_FL_IPMODIFY
2407 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2408 			  | FTRACE_OPS_FL_PERMANENT,
2409 	/*
2410 	 * By declaring the main trampoline as this trampoline
2411 	 * it will never have one allocated for it. Allocated
2412 	 * trampolines should not call direct functions.
2413 	 * The direct_ops should only be called by the builtin
2414 	 * ftrace_regs_caller trampoline.
2415 	 */
2416 	.trampoline	= FTRACE_REGS_ADDR,
2417 };
2418 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2419 
2420 /**
2421  * ftrace_get_addr_new - Get the call address to set to
2422  * @rec:  The ftrace record descriptor
2423  *
2424  * If the record has the FTRACE_FL_REGS set, that means that it
2425  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2426  * is not set, then it wants to convert to the normal callback.
2427  *
2428  * Returns the address of the trampoline to set to
2429  */
2430 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2431 {
2432 	struct ftrace_ops *ops;
2433 	unsigned long addr;
2434 
2435 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2436 	    (ftrace_rec_count(rec) == 1)) {
2437 		addr = ftrace_find_rec_direct(rec->ip);
2438 		if (addr)
2439 			return addr;
2440 		WARN_ON_ONCE(1);
2441 	}
2442 
2443 	/* Trampolines take precedence over regs */
2444 	if (rec->flags & FTRACE_FL_TRAMP) {
2445 		ops = ftrace_find_tramp_ops_new(rec);
2446 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2447 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2448 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2449 			/* Ftrace is shutting down, return anything */
2450 			return (unsigned long)FTRACE_ADDR;
2451 		}
2452 		return ops->trampoline;
2453 	}
2454 
2455 	if (rec->flags & FTRACE_FL_REGS)
2456 		return (unsigned long)FTRACE_REGS_ADDR;
2457 	else
2458 		return (unsigned long)FTRACE_ADDR;
2459 }
2460 
2461 /**
2462  * ftrace_get_addr_curr - Get the call address that is already there
2463  * @rec:  The ftrace record descriptor
2464  *
2465  * The FTRACE_FL_REGS_EN is set when the record already points to
2466  * a function that saves all the regs. Basically the '_EN' version
2467  * represents the current state of the function.
2468  *
2469  * Returns the address of the trampoline that is currently being called
2470  */
2471 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2472 {
2473 	struct ftrace_ops *ops;
2474 	unsigned long addr;
2475 
2476 	/* Direct calls take precedence over trampolines */
2477 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2478 		addr = ftrace_find_rec_direct(rec->ip);
2479 		if (addr)
2480 			return addr;
2481 		WARN_ON_ONCE(1);
2482 	}
2483 
2484 	/* Trampolines take precedence over regs */
2485 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2486 		ops = ftrace_find_tramp_ops_curr(rec);
2487 		if (FTRACE_WARN_ON(!ops)) {
2488 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2489 				(void *)rec->ip, (void *)rec->ip);
2490 			/* Ftrace is shutting down, return anything */
2491 			return (unsigned long)FTRACE_ADDR;
2492 		}
2493 		return ops->trampoline;
2494 	}
2495 
2496 	if (rec->flags & FTRACE_FL_REGS_EN)
2497 		return (unsigned long)FTRACE_REGS_ADDR;
2498 	else
2499 		return (unsigned long)FTRACE_ADDR;
2500 }
2501 
2502 static int
2503 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2504 {
2505 	unsigned long ftrace_old_addr;
2506 	unsigned long ftrace_addr;
2507 	int ret;
2508 
2509 	ftrace_addr = ftrace_get_addr_new(rec);
2510 
2511 	/* This needs to be done before we call ftrace_update_record */
2512 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2513 
2514 	ret = ftrace_update_record(rec, enable);
2515 
2516 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2517 
2518 	switch (ret) {
2519 	case FTRACE_UPDATE_IGNORE:
2520 		return 0;
2521 
2522 	case FTRACE_UPDATE_MAKE_CALL:
2523 		ftrace_bug_type = FTRACE_BUG_CALL;
2524 		return ftrace_make_call(rec, ftrace_addr);
2525 
2526 	case FTRACE_UPDATE_MAKE_NOP:
2527 		ftrace_bug_type = FTRACE_BUG_NOP;
2528 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2529 
2530 	case FTRACE_UPDATE_MODIFY_CALL:
2531 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2532 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2533 	}
2534 
2535 	return -1; /* unknown ftrace bug */
2536 }
2537 
2538 void __weak ftrace_replace_code(int mod_flags)
2539 {
2540 	struct dyn_ftrace *rec;
2541 	struct ftrace_page *pg;
2542 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2543 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2544 	int failed;
2545 
2546 	if (unlikely(ftrace_disabled))
2547 		return;
2548 
2549 	do_for_each_ftrace_rec(pg, rec) {
2550 
2551 		if (rec->flags & FTRACE_FL_DISABLED)
2552 			continue;
2553 
2554 		failed = __ftrace_replace_code(rec, enable);
2555 		if (failed) {
2556 			ftrace_bug(failed, rec);
2557 			/* Stop processing */
2558 			return;
2559 		}
2560 		if (schedulable)
2561 			cond_resched();
2562 	} while_for_each_ftrace_rec();
2563 }
2564 
2565 struct ftrace_rec_iter {
2566 	struct ftrace_page	*pg;
2567 	int			index;
2568 };
2569 
2570 /**
2571  * ftrace_rec_iter_start, start up iterating over traced functions
2572  *
2573  * Returns an iterator handle that is used to iterate over all
2574  * the records that represent address locations where functions
2575  * are traced.
2576  *
2577  * May return NULL if no records are available.
2578  */
2579 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2580 {
2581 	/*
2582 	 * We only use a single iterator.
2583 	 * Protected by the ftrace_lock mutex.
2584 	 */
2585 	static struct ftrace_rec_iter ftrace_rec_iter;
2586 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2587 
2588 	iter->pg = ftrace_pages_start;
2589 	iter->index = 0;
2590 
2591 	/* Could have empty pages */
2592 	while (iter->pg && !iter->pg->index)
2593 		iter->pg = iter->pg->next;
2594 
2595 	if (!iter->pg)
2596 		return NULL;
2597 
2598 	return iter;
2599 }
2600 
2601 /**
2602  * ftrace_rec_iter_next, get the next record to process.
2603  * @iter: The handle to the iterator.
2604  *
2605  * Returns the next iterator after the given iterator @iter.
2606  */
2607 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2608 {
2609 	iter->index++;
2610 
2611 	if (iter->index >= iter->pg->index) {
2612 		iter->pg = iter->pg->next;
2613 		iter->index = 0;
2614 
2615 		/* Could have empty pages */
2616 		while (iter->pg && !iter->pg->index)
2617 			iter->pg = iter->pg->next;
2618 	}
2619 
2620 	if (!iter->pg)
2621 		return NULL;
2622 
2623 	return iter;
2624 }
2625 
2626 /**
2627  * ftrace_rec_iter_record, get the record at the iterator location
2628  * @iter: The current iterator location
2629  *
2630  * Returns the record that the current @iter is at.
2631  */
2632 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2633 {
2634 	return &iter->pg->records[iter->index];
2635 }
2636 
2637 static int
2638 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2639 {
2640 	int ret;
2641 
2642 	if (unlikely(ftrace_disabled))
2643 		return 0;
2644 
2645 	ret = ftrace_init_nop(mod, rec);
2646 	if (ret) {
2647 		ftrace_bug_type = FTRACE_BUG_INIT;
2648 		ftrace_bug(ret, rec);
2649 		return 0;
2650 	}
2651 	return 1;
2652 }
2653 
2654 /*
2655  * archs can override this function if they must do something
2656  * before the modifying code is performed.
2657  */
2658 int __weak ftrace_arch_code_modify_prepare(void)
2659 {
2660 	return 0;
2661 }
2662 
2663 /*
2664  * archs can override this function if they must do something
2665  * after the modifying code is performed.
2666  */
2667 int __weak ftrace_arch_code_modify_post_process(void)
2668 {
2669 	return 0;
2670 }
2671 
2672 void ftrace_modify_all_code(int command)
2673 {
2674 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2675 	int mod_flags = 0;
2676 	int err = 0;
2677 
2678 	if (command & FTRACE_MAY_SLEEP)
2679 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2680 
2681 	/*
2682 	 * If the ftrace_caller calls a ftrace_ops func directly,
2683 	 * we need to make sure that it only traces functions it
2684 	 * expects to trace. When doing the switch of functions,
2685 	 * we need to update to the ftrace_ops_list_func first
2686 	 * before the transition between old and new calls are set,
2687 	 * as the ftrace_ops_list_func will check the ops hashes
2688 	 * to make sure the ops are having the right functions
2689 	 * traced.
2690 	 */
2691 	if (update) {
2692 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2693 		if (FTRACE_WARN_ON(err))
2694 			return;
2695 	}
2696 
2697 	if (command & FTRACE_UPDATE_CALLS)
2698 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2699 	else if (command & FTRACE_DISABLE_CALLS)
2700 		ftrace_replace_code(mod_flags);
2701 
2702 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2703 		function_trace_op = set_function_trace_op;
2704 		smp_wmb();
2705 		/* If irqs are disabled, we are in stop machine */
2706 		if (!irqs_disabled())
2707 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2708 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2709 		if (FTRACE_WARN_ON(err))
2710 			return;
2711 	}
2712 
2713 	if (command & FTRACE_START_FUNC_RET)
2714 		err = ftrace_enable_ftrace_graph_caller();
2715 	else if (command & FTRACE_STOP_FUNC_RET)
2716 		err = ftrace_disable_ftrace_graph_caller();
2717 	FTRACE_WARN_ON(err);
2718 }
2719 
2720 static int __ftrace_modify_code(void *data)
2721 {
2722 	int *command = data;
2723 
2724 	ftrace_modify_all_code(*command);
2725 
2726 	return 0;
2727 }
2728 
2729 /**
2730  * ftrace_run_stop_machine, go back to the stop machine method
2731  * @command: The command to tell ftrace what to do
2732  *
2733  * If an arch needs to fall back to the stop machine method, the
2734  * it can call this function.
2735  */
2736 void ftrace_run_stop_machine(int command)
2737 {
2738 	stop_machine(__ftrace_modify_code, &command, NULL);
2739 }
2740 
2741 /**
2742  * arch_ftrace_update_code, modify the code to trace or not trace
2743  * @command: The command that needs to be done
2744  *
2745  * Archs can override this function if it does not need to
2746  * run stop_machine() to modify code.
2747  */
2748 void __weak arch_ftrace_update_code(int command)
2749 {
2750 	ftrace_run_stop_machine(command);
2751 }
2752 
2753 static void ftrace_run_update_code(int command)
2754 {
2755 	int ret;
2756 
2757 	ret = ftrace_arch_code_modify_prepare();
2758 	FTRACE_WARN_ON(ret);
2759 	if (ret)
2760 		return;
2761 
2762 	/*
2763 	 * By default we use stop_machine() to modify the code.
2764 	 * But archs can do what ever they want as long as it
2765 	 * is safe. The stop_machine() is the safest, but also
2766 	 * produces the most overhead.
2767 	 */
2768 	arch_ftrace_update_code(command);
2769 
2770 	ret = ftrace_arch_code_modify_post_process();
2771 	FTRACE_WARN_ON(ret);
2772 }
2773 
2774 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2775 				   struct ftrace_ops_hash *old_hash)
2776 {
2777 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2778 	ops->old_hash.filter_hash = old_hash->filter_hash;
2779 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2780 	ftrace_run_update_code(command);
2781 	ops->old_hash.filter_hash = NULL;
2782 	ops->old_hash.notrace_hash = NULL;
2783 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2784 }
2785 
2786 static ftrace_func_t saved_ftrace_func;
2787 static int ftrace_start_up;
2788 
2789 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2790 {
2791 }
2792 
2793 /* List of trace_ops that have allocated trampolines */
2794 static LIST_HEAD(ftrace_ops_trampoline_list);
2795 
2796 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2797 {
2798 	lockdep_assert_held(&ftrace_lock);
2799 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2800 }
2801 
2802 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2803 {
2804 	lockdep_assert_held(&ftrace_lock);
2805 	list_del_rcu(&ops->list);
2806 	synchronize_rcu();
2807 }
2808 
2809 /*
2810  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2811  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2812  * not a module.
2813  */
2814 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2815 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2816 
2817 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2818 {
2819 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2820 	    ops->trampoline) {
2821 		/*
2822 		 * Record the text poke event before the ksymbol unregister
2823 		 * event.
2824 		 */
2825 		perf_event_text_poke((void *)ops->trampoline,
2826 				     (void *)ops->trampoline,
2827 				     ops->trampoline_size, NULL, 0);
2828 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2829 				   ops->trampoline, ops->trampoline_size,
2830 				   true, FTRACE_TRAMPOLINE_SYM);
2831 		/* Remove from kallsyms after the perf events */
2832 		ftrace_remove_trampoline_from_kallsyms(ops);
2833 	}
2834 
2835 	arch_ftrace_trampoline_free(ops);
2836 }
2837 
2838 static void ftrace_startup_enable(int command)
2839 {
2840 	if (saved_ftrace_func != ftrace_trace_function) {
2841 		saved_ftrace_func = ftrace_trace_function;
2842 		command |= FTRACE_UPDATE_TRACE_FUNC;
2843 	}
2844 
2845 	if (!command || !ftrace_enabled)
2846 		return;
2847 
2848 	ftrace_run_update_code(command);
2849 }
2850 
2851 static void ftrace_startup_all(int command)
2852 {
2853 	update_all_ops = true;
2854 	ftrace_startup_enable(command);
2855 	update_all_ops = false;
2856 }
2857 
2858 int ftrace_startup(struct ftrace_ops *ops, int command)
2859 {
2860 	int ret;
2861 
2862 	if (unlikely(ftrace_disabled))
2863 		return -ENODEV;
2864 
2865 	ret = __register_ftrace_function(ops);
2866 	if (ret)
2867 		return ret;
2868 
2869 	ftrace_start_up++;
2870 
2871 	/*
2872 	 * Note that ftrace probes uses this to start up
2873 	 * and modify functions it will probe. But we still
2874 	 * set the ADDING flag for modification, as probes
2875 	 * do not have trampolines. If they add them in the
2876 	 * future, then the probes will need to distinguish
2877 	 * between adding and updating probes.
2878 	 */
2879 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2880 
2881 	ret = ftrace_hash_ipmodify_enable(ops);
2882 	if (ret < 0) {
2883 		/* Rollback registration process */
2884 		__unregister_ftrace_function(ops);
2885 		ftrace_start_up--;
2886 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2887 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2888 			ftrace_trampoline_free(ops);
2889 		return ret;
2890 	}
2891 
2892 	if (ftrace_hash_rec_enable(ops, 1))
2893 		command |= FTRACE_UPDATE_CALLS;
2894 
2895 	ftrace_startup_enable(command);
2896 
2897 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2898 
2899 	return 0;
2900 }
2901 
2902 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2903 {
2904 	int ret;
2905 
2906 	if (unlikely(ftrace_disabled))
2907 		return -ENODEV;
2908 
2909 	ret = __unregister_ftrace_function(ops);
2910 	if (ret)
2911 		return ret;
2912 
2913 	ftrace_start_up--;
2914 	/*
2915 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2916 	 * critical but the ftrace_call callers may be never nopped again after
2917 	 * further ftrace uses.
2918 	 */
2919 	WARN_ON_ONCE(ftrace_start_up < 0);
2920 
2921 	/* Disabling ipmodify never fails */
2922 	ftrace_hash_ipmodify_disable(ops);
2923 
2924 	if (ftrace_hash_rec_disable(ops, 1))
2925 		command |= FTRACE_UPDATE_CALLS;
2926 
2927 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2928 
2929 	if (saved_ftrace_func != ftrace_trace_function) {
2930 		saved_ftrace_func = ftrace_trace_function;
2931 		command |= FTRACE_UPDATE_TRACE_FUNC;
2932 	}
2933 
2934 	if (!command || !ftrace_enabled) {
2935 		/*
2936 		 * If these are dynamic or per_cpu ops, they still
2937 		 * need their data freed. Since, function tracing is
2938 		 * not currently active, we can just free them
2939 		 * without synchronizing all CPUs.
2940 		 */
2941 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2942 			goto free_ops;
2943 
2944 		return 0;
2945 	}
2946 
2947 	/*
2948 	 * If the ops uses a trampoline, then it needs to be
2949 	 * tested first on update.
2950 	 */
2951 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2952 	removed_ops = ops;
2953 
2954 	/* The trampoline logic checks the old hashes */
2955 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2956 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2957 
2958 	ftrace_run_update_code(command);
2959 
2960 	/*
2961 	 * If there's no more ops registered with ftrace, run a
2962 	 * sanity check to make sure all rec flags are cleared.
2963 	 */
2964 	if (rcu_dereference_protected(ftrace_ops_list,
2965 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2966 		struct ftrace_page *pg;
2967 		struct dyn_ftrace *rec;
2968 
2969 		do_for_each_ftrace_rec(pg, rec) {
2970 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2971 				pr_warn("  %pS flags:%lx\n",
2972 					(void *)rec->ip, rec->flags);
2973 		} while_for_each_ftrace_rec();
2974 	}
2975 
2976 	ops->old_hash.filter_hash = NULL;
2977 	ops->old_hash.notrace_hash = NULL;
2978 
2979 	removed_ops = NULL;
2980 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2981 
2982 	/*
2983 	 * Dynamic ops may be freed, we must make sure that all
2984 	 * callers are done before leaving this function.
2985 	 * The same goes for freeing the per_cpu data of the per_cpu
2986 	 * ops.
2987 	 */
2988 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2989 		/*
2990 		 * We need to do a hard force of sched synchronization.
2991 		 * This is because we use preempt_disable() to do RCU, but
2992 		 * the function tracers can be called where RCU is not watching
2993 		 * (like before user_exit()). We can not rely on the RCU
2994 		 * infrastructure to do the synchronization, thus we must do it
2995 		 * ourselves.
2996 		 */
2997 		synchronize_rcu_tasks_rude();
2998 
2999 		/*
3000 		 * When the kernel is preemptive, tasks can be preempted
3001 		 * while on a ftrace trampoline. Just scheduling a task on
3002 		 * a CPU is not good enough to flush them. Calling
3003 		 * synchornize_rcu_tasks() will wait for those tasks to
3004 		 * execute and either schedule voluntarily or enter user space.
3005 		 */
3006 		if (IS_ENABLED(CONFIG_PREEMPTION))
3007 			synchronize_rcu_tasks();
3008 
3009  free_ops:
3010 		ftrace_trampoline_free(ops);
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static void ftrace_startup_sysctl(void)
3017 {
3018 	int command;
3019 
3020 	if (unlikely(ftrace_disabled))
3021 		return;
3022 
3023 	/* Force update next time */
3024 	saved_ftrace_func = NULL;
3025 	/* ftrace_start_up is true if we want ftrace running */
3026 	if (ftrace_start_up) {
3027 		command = FTRACE_UPDATE_CALLS;
3028 		if (ftrace_graph_active)
3029 			command |= FTRACE_START_FUNC_RET;
3030 		ftrace_startup_enable(command);
3031 	}
3032 }
3033 
3034 static void ftrace_shutdown_sysctl(void)
3035 {
3036 	int command;
3037 
3038 	if (unlikely(ftrace_disabled))
3039 		return;
3040 
3041 	/* ftrace_start_up is true if ftrace is running */
3042 	if (ftrace_start_up) {
3043 		command = FTRACE_DISABLE_CALLS;
3044 		if (ftrace_graph_active)
3045 			command |= FTRACE_STOP_FUNC_RET;
3046 		ftrace_run_update_code(command);
3047 	}
3048 }
3049 
3050 static u64		ftrace_update_time;
3051 unsigned long		ftrace_update_tot_cnt;
3052 unsigned long		ftrace_number_of_pages;
3053 unsigned long		ftrace_number_of_groups;
3054 
3055 static inline int ops_traces_mod(struct ftrace_ops *ops)
3056 {
3057 	/*
3058 	 * Filter_hash being empty will default to trace module.
3059 	 * But notrace hash requires a test of individual module functions.
3060 	 */
3061 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3062 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3063 }
3064 
3065 /*
3066  * Check if the current ops references the record.
3067  *
3068  * If the ops traces all functions, then it was already accounted for.
3069  * If the ops does not trace the current record function, skip it.
3070  * If the ops ignores the function via notrace filter, skip it.
3071  */
3072 static inline bool
3073 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3074 {
3075 	/* If ops isn't enabled, ignore it */
3076 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3077 		return false;
3078 
3079 	/* If ops traces all then it includes this function */
3080 	if (ops_traces_mod(ops))
3081 		return true;
3082 
3083 	/* The function must be in the filter */
3084 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3085 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3086 		return false;
3087 
3088 	/* If in notrace hash, we ignore it too */
3089 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3090 		return false;
3091 
3092 	return true;
3093 }
3094 
3095 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3096 {
3097 	struct ftrace_page *pg;
3098 	struct dyn_ftrace *p;
3099 	u64 start, stop;
3100 	unsigned long update_cnt = 0;
3101 	unsigned long rec_flags = 0;
3102 	int i;
3103 
3104 	start = ftrace_now(raw_smp_processor_id());
3105 
3106 	/*
3107 	 * When a module is loaded, this function is called to convert
3108 	 * the calls to mcount in its text to nops, and also to create
3109 	 * an entry in the ftrace data. Now, if ftrace is activated
3110 	 * after this call, but before the module sets its text to
3111 	 * read-only, the modification of enabling ftrace can fail if
3112 	 * the read-only is done while ftrace is converting the calls.
3113 	 * To prevent this, the module's records are set as disabled
3114 	 * and will be enabled after the call to set the module's text
3115 	 * to read-only.
3116 	 */
3117 	if (mod)
3118 		rec_flags |= FTRACE_FL_DISABLED;
3119 
3120 	for (pg = new_pgs; pg; pg = pg->next) {
3121 
3122 		for (i = 0; i < pg->index; i++) {
3123 
3124 			/* If something went wrong, bail without enabling anything */
3125 			if (unlikely(ftrace_disabled))
3126 				return -1;
3127 
3128 			p = &pg->records[i];
3129 			p->flags = rec_flags;
3130 
3131 			/*
3132 			 * Do the initial record conversion from mcount jump
3133 			 * to the NOP instructions.
3134 			 */
3135 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3136 			    !ftrace_nop_initialize(mod, p))
3137 				break;
3138 
3139 			update_cnt++;
3140 		}
3141 	}
3142 
3143 	stop = ftrace_now(raw_smp_processor_id());
3144 	ftrace_update_time = stop - start;
3145 	ftrace_update_tot_cnt += update_cnt;
3146 
3147 	return 0;
3148 }
3149 
3150 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3151 {
3152 	int order;
3153 	int pages;
3154 	int cnt;
3155 
3156 	if (WARN_ON(!count))
3157 		return -EINVAL;
3158 
3159 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3160 	order = get_count_order(pages);
3161 
3162 	/*
3163 	 * We want to fill as much as possible. No more than a page
3164 	 * may be empty.
3165 	 */
3166 	if (!is_power_of_2(pages))
3167 		order--;
3168 
3169  again:
3170 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3171 
3172 	if (!pg->records) {
3173 		/* if we can't allocate this size, try something smaller */
3174 		if (!order)
3175 			return -ENOMEM;
3176 		order >>= 1;
3177 		goto again;
3178 	}
3179 
3180 	ftrace_number_of_pages += 1 << order;
3181 	ftrace_number_of_groups++;
3182 
3183 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3184 	pg->size = cnt;
3185 
3186 	if (cnt > count)
3187 		cnt = count;
3188 
3189 	return cnt;
3190 }
3191 
3192 static struct ftrace_page *
3193 ftrace_allocate_pages(unsigned long num_to_init)
3194 {
3195 	struct ftrace_page *start_pg;
3196 	struct ftrace_page *pg;
3197 	int order;
3198 	int cnt;
3199 
3200 	if (!num_to_init)
3201 		return NULL;
3202 
3203 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3204 	if (!pg)
3205 		return NULL;
3206 
3207 	/*
3208 	 * Try to allocate as much as possible in one continues
3209 	 * location that fills in all of the space. We want to
3210 	 * waste as little space as possible.
3211 	 */
3212 	for (;;) {
3213 		cnt = ftrace_allocate_records(pg, num_to_init);
3214 		if (cnt < 0)
3215 			goto free_pages;
3216 
3217 		num_to_init -= cnt;
3218 		if (!num_to_init)
3219 			break;
3220 
3221 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3222 		if (!pg->next)
3223 			goto free_pages;
3224 
3225 		pg = pg->next;
3226 	}
3227 
3228 	return start_pg;
3229 
3230  free_pages:
3231 	pg = start_pg;
3232 	while (pg) {
3233 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3234 		if (order >= 0)
3235 			free_pages((unsigned long)pg->records, order);
3236 		start_pg = pg->next;
3237 		kfree(pg);
3238 		pg = start_pg;
3239 		ftrace_number_of_pages -= 1 << order;
3240 		ftrace_number_of_groups--;
3241 	}
3242 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3243 	return NULL;
3244 }
3245 
3246 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3247 
3248 struct ftrace_iterator {
3249 	loff_t				pos;
3250 	loff_t				func_pos;
3251 	loff_t				mod_pos;
3252 	struct ftrace_page		*pg;
3253 	struct dyn_ftrace		*func;
3254 	struct ftrace_func_probe	*probe;
3255 	struct ftrace_func_entry	*probe_entry;
3256 	struct trace_parser		parser;
3257 	struct ftrace_hash		*hash;
3258 	struct ftrace_ops		*ops;
3259 	struct trace_array		*tr;
3260 	struct list_head		*mod_list;
3261 	int				pidx;
3262 	int				idx;
3263 	unsigned			flags;
3264 };
3265 
3266 static void *
3267 t_probe_next(struct seq_file *m, loff_t *pos)
3268 {
3269 	struct ftrace_iterator *iter = m->private;
3270 	struct trace_array *tr = iter->ops->private;
3271 	struct list_head *func_probes;
3272 	struct ftrace_hash *hash;
3273 	struct list_head *next;
3274 	struct hlist_node *hnd = NULL;
3275 	struct hlist_head *hhd;
3276 	int size;
3277 
3278 	(*pos)++;
3279 	iter->pos = *pos;
3280 
3281 	if (!tr)
3282 		return NULL;
3283 
3284 	func_probes = &tr->func_probes;
3285 	if (list_empty(func_probes))
3286 		return NULL;
3287 
3288 	if (!iter->probe) {
3289 		next = func_probes->next;
3290 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3291 	}
3292 
3293 	if (iter->probe_entry)
3294 		hnd = &iter->probe_entry->hlist;
3295 
3296 	hash = iter->probe->ops.func_hash->filter_hash;
3297 
3298 	/*
3299 	 * A probe being registered may temporarily have an empty hash
3300 	 * and it's at the end of the func_probes list.
3301 	 */
3302 	if (!hash || hash == EMPTY_HASH)
3303 		return NULL;
3304 
3305 	size = 1 << hash->size_bits;
3306 
3307  retry:
3308 	if (iter->pidx >= size) {
3309 		if (iter->probe->list.next == func_probes)
3310 			return NULL;
3311 		next = iter->probe->list.next;
3312 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3313 		hash = iter->probe->ops.func_hash->filter_hash;
3314 		size = 1 << hash->size_bits;
3315 		iter->pidx = 0;
3316 	}
3317 
3318 	hhd = &hash->buckets[iter->pidx];
3319 
3320 	if (hlist_empty(hhd)) {
3321 		iter->pidx++;
3322 		hnd = NULL;
3323 		goto retry;
3324 	}
3325 
3326 	if (!hnd)
3327 		hnd = hhd->first;
3328 	else {
3329 		hnd = hnd->next;
3330 		if (!hnd) {
3331 			iter->pidx++;
3332 			goto retry;
3333 		}
3334 	}
3335 
3336 	if (WARN_ON_ONCE(!hnd))
3337 		return NULL;
3338 
3339 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3340 
3341 	return iter;
3342 }
3343 
3344 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3345 {
3346 	struct ftrace_iterator *iter = m->private;
3347 	void *p = NULL;
3348 	loff_t l;
3349 
3350 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3351 		return NULL;
3352 
3353 	if (iter->mod_pos > *pos)
3354 		return NULL;
3355 
3356 	iter->probe = NULL;
3357 	iter->probe_entry = NULL;
3358 	iter->pidx = 0;
3359 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3360 		p = t_probe_next(m, &l);
3361 		if (!p)
3362 			break;
3363 	}
3364 	if (!p)
3365 		return NULL;
3366 
3367 	/* Only set this if we have an item */
3368 	iter->flags |= FTRACE_ITER_PROBE;
3369 
3370 	return iter;
3371 }
3372 
3373 static int
3374 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3375 {
3376 	struct ftrace_func_entry *probe_entry;
3377 	struct ftrace_probe_ops *probe_ops;
3378 	struct ftrace_func_probe *probe;
3379 
3380 	probe = iter->probe;
3381 	probe_entry = iter->probe_entry;
3382 
3383 	if (WARN_ON_ONCE(!probe || !probe_entry))
3384 		return -EIO;
3385 
3386 	probe_ops = probe->probe_ops;
3387 
3388 	if (probe_ops->print)
3389 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3390 
3391 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3392 		   (void *)probe_ops->func);
3393 
3394 	return 0;
3395 }
3396 
3397 static void *
3398 t_mod_next(struct seq_file *m, loff_t *pos)
3399 {
3400 	struct ftrace_iterator *iter = m->private;
3401 	struct trace_array *tr = iter->tr;
3402 
3403 	(*pos)++;
3404 	iter->pos = *pos;
3405 
3406 	iter->mod_list = iter->mod_list->next;
3407 
3408 	if (iter->mod_list == &tr->mod_trace ||
3409 	    iter->mod_list == &tr->mod_notrace) {
3410 		iter->flags &= ~FTRACE_ITER_MOD;
3411 		return NULL;
3412 	}
3413 
3414 	iter->mod_pos = *pos;
3415 
3416 	return iter;
3417 }
3418 
3419 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3420 {
3421 	struct ftrace_iterator *iter = m->private;
3422 	void *p = NULL;
3423 	loff_t l;
3424 
3425 	if (iter->func_pos > *pos)
3426 		return NULL;
3427 
3428 	iter->mod_pos = iter->func_pos;
3429 
3430 	/* probes are only available if tr is set */
3431 	if (!iter->tr)
3432 		return NULL;
3433 
3434 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3435 		p = t_mod_next(m, &l);
3436 		if (!p)
3437 			break;
3438 	}
3439 	if (!p) {
3440 		iter->flags &= ~FTRACE_ITER_MOD;
3441 		return t_probe_start(m, pos);
3442 	}
3443 
3444 	/* Only set this if we have an item */
3445 	iter->flags |= FTRACE_ITER_MOD;
3446 
3447 	return iter;
3448 }
3449 
3450 static int
3451 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3452 {
3453 	struct ftrace_mod_load *ftrace_mod;
3454 	struct trace_array *tr = iter->tr;
3455 
3456 	if (WARN_ON_ONCE(!iter->mod_list) ||
3457 			 iter->mod_list == &tr->mod_trace ||
3458 			 iter->mod_list == &tr->mod_notrace)
3459 		return -EIO;
3460 
3461 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3462 
3463 	if (ftrace_mod->func)
3464 		seq_printf(m, "%s", ftrace_mod->func);
3465 	else
3466 		seq_putc(m, '*');
3467 
3468 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3469 
3470 	return 0;
3471 }
3472 
3473 static void *
3474 t_func_next(struct seq_file *m, loff_t *pos)
3475 {
3476 	struct ftrace_iterator *iter = m->private;
3477 	struct dyn_ftrace *rec = NULL;
3478 
3479 	(*pos)++;
3480 
3481  retry:
3482 	if (iter->idx >= iter->pg->index) {
3483 		if (iter->pg->next) {
3484 			iter->pg = iter->pg->next;
3485 			iter->idx = 0;
3486 			goto retry;
3487 		}
3488 	} else {
3489 		rec = &iter->pg->records[iter->idx++];
3490 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3491 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3492 
3493 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3494 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3495 
3496 			rec = NULL;
3497 			goto retry;
3498 		}
3499 	}
3500 
3501 	if (!rec)
3502 		return NULL;
3503 
3504 	iter->pos = iter->func_pos = *pos;
3505 	iter->func = rec;
3506 
3507 	return iter;
3508 }
3509 
3510 static void *
3511 t_next(struct seq_file *m, void *v, loff_t *pos)
3512 {
3513 	struct ftrace_iterator *iter = m->private;
3514 	loff_t l = *pos; /* t_probe_start() must use original pos */
3515 	void *ret;
3516 
3517 	if (unlikely(ftrace_disabled))
3518 		return NULL;
3519 
3520 	if (iter->flags & FTRACE_ITER_PROBE)
3521 		return t_probe_next(m, pos);
3522 
3523 	if (iter->flags & FTRACE_ITER_MOD)
3524 		return t_mod_next(m, pos);
3525 
3526 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3527 		/* next must increment pos, and t_probe_start does not */
3528 		(*pos)++;
3529 		return t_mod_start(m, &l);
3530 	}
3531 
3532 	ret = t_func_next(m, pos);
3533 
3534 	if (!ret)
3535 		return t_mod_start(m, &l);
3536 
3537 	return ret;
3538 }
3539 
3540 static void reset_iter_read(struct ftrace_iterator *iter)
3541 {
3542 	iter->pos = 0;
3543 	iter->func_pos = 0;
3544 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3545 }
3546 
3547 static void *t_start(struct seq_file *m, loff_t *pos)
3548 {
3549 	struct ftrace_iterator *iter = m->private;
3550 	void *p = NULL;
3551 	loff_t l;
3552 
3553 	mutex_lock(&ftrace_lock);
3554 
3555 	if (unlikely(ftrace_disabled))
3556 		return NULL;
3557 
3558 	/*
3559 	 * If an lseek was done, then reset and start from beginning.
3560 	 */
3561 	if (*pos < iter->pos)
3562 		reset_iter_read(iter);
3563 
3564 	/*
3565 	 * For set_ftrace_filter reading, if we have the filter
3566 	 * off, we can short cut and just print out that all
3567 	 * functions are enabled.
3568 	 */
3569 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3570 	    ftrace_hash_empty(iter->hash)) {
3571 		iter->func_pos = 1; /* Account for the message */
3572 		if (*pos > 0)
3573 			return t_mod_start(m, pos);
3574 		iter->flags |= FTRACE_ITER_PRINTALL;
3575 		/* reset in case of seek/pread */
3576 		iter->flags &= ~FTRACE_ITER_PROBE;
3577 		return iter;
3578 	}
3579 
3580 	if (iter->flags & FTRACE_ITER_MOD)
3581 		return t_mod_start(m, pos);
3582 
3583 	/*
3584 	 * Unfortunately, we need to restart at ftrace_pages_start
3585 	 * every time we let go of the ftrace_mutex. This is because
3586 	 * those pointers can change without the lock.
3587 	 */
3588 	iter->pg = ftrace_pages_start;
3589 	iter->idx = 0;
3590 	for (l = 0; l <= *pos; ) {
3591 		p = t_func_next(m, &l);
3592 		if (!p)
3593 			break;
3594 	}
3595 
3596 	if (!p)
3597 		return t_mod_start(m, pos);
3598 
3599 	return iter;
3600 }
3601 
3602 static void t_stop(struct seq_file *m, void *p)
3603 {
3604 	mutex_unlock(&ftrace_lock);
3605 }
3606 
3607 void * __weak
3608 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3609 {
3610 	return NULL;
3611 }
3612 
3613 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3614 				struct dyn_ftrace *rec)
3615 {
3616 	void *ptr;
3617 
3618 	ptr = arch_ftrace_trampoline_func(ops, rec);
3619 	if (ptr)
3620 		seq_printf(m, " ->%pS", ptr);
3621 }
3622 
3623 static int t_show(struct seq_file *m, void *v)
3624 {
3625 	struct ftrace_iterator *iter = m->private;
3626 	struct dyn_ftrace *rec;
3627 
3628 	if (iter->flags & FTRACE_ITER_PROBE)
3629 		return t_probe_show(m, iter);
3630 
3631 	if (iter->flags & FTRACE_ITER_MOD)
3632 		return t_mod_show(m, iter);
3633 
3634 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3635 		if (iter->flags & FTRACE_ITER_NOTRACE)
3636 			seq_puts(m, "#### no functions disabled ####\n");
3637 		else
3638 			seq_puts(m, "#### all functions enabled ####\n");
3639 		return 0;
3640 	}
3641 
3642 	rec = iter->func;
3643 
3644 	if (!rec)
3645 		return 0;
3646 
3647 	seq_printf(m, "%ps", (void *)rec->ip);
3648 	if (iter->flags & FTRACE_ITER_ENABLED) {
3649 		struct ftrace_ops *ops;
3650 
3651 		seq_printf(m, " (%ld)%s%s%s",
3652 			   ftrace_rec_count(rec),
3653 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3654 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3655 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3656 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3657 			ops = ftrace_find_tramp_ops_any(rec);
3658 			if (ops) {
3659 				do {
3660 					seq_printf(m, "\ttramp: %pS (%pS)",
3661 						   (void *)ops->trampoline,
3662 						   (void *)ops->func);
3663 					add_trampoline_func(m, ops, rec);
3664 					ops = ftrace_find_tramp_ops_next(rec, ops);
3665 				} while (ops);
3666 			} else
3667 				seq_puts(m, "\ttramp: ERROR!");
3668 		} else {
3669 			add_trampoline_func(m, NULL, rec);
3670 		}
3671 		if (rec->flags & FTRACE_FL_DIRECT) {
3672 			unsigned long direct;
3673 
3674 			direct = ftrace_find_rec_direct(rec->ip);
3675 			if (direct)
3676 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3677 		}
3678 	}
3679 
3680 	seq_putc(m, '\n');
3681 
3682 	return 0;
3683 }
3684 
3685 static const struct seq_operations show_ftrace_seq_ops = {
3686 	.start = t_start,
3687 	.next = t_next,
3688 	.stop = t_stop,
3689 	.show = t_show,
3690 };
3691 
3692 static int
3693 ftrace_avail_open(struct inode *inode, struct file *file)
3694 {
3695 	struct ftrace_iterator *iter;
3696 	int ret;
3697 
3698 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3699 	if (ret)
3700 		return ret;
3701 
3702 	if (unlikely(ftrace_disabled))
3703 		return -ENODEV;
3704 
3705 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3706 	if (!iter)
3707 		return -ENOMEM;
3708 
3709 	iter->pg = ftrace_pages_start;
3710 	iter->ops = &global_ops;
3711 
3712 	return 0;
3713 }
3714 
3715 static int
3716 ftrace_enabled_open(struct inode *inode, struct file *file)
3717 {
3718 	struct ftrace_iterator *iter;
3719 
3720 	/*
3721 	 * This shows us what functions are currently being
3722 	 * traced and by what. Not sure if we want lockdown
3723 	 * to hide such critical information for an admin.
3724 	 * Although, perhaps it can show information we don't
3725 	 * want people to see, but if something is tracing
3726 	 * something, we probably want to know about it.
3727 	 */
3728 
3729 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3730 	if (!iter)
3731 		return -ENOMEM;
3732 
3733 	iter->pg = ftrace_pages_start;
3734 	iter->flags = FTRACE_ITER_ENABLED;
3735 	iter->ops = &global_ops;
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  * ftrace_regex_open - initialize function tracer filter files
3742  * @ops: The ftrace_ops that hold the hash filters
3743  * @flag: The type of filter to process
3744  * @inode: The inode, usually passed in to your open routine
3745  * @file: The file, usually passed in to your open routine
3746  *
3747  * ftrace_regex_open() initializes the filter files for the
3748  * @ops. Depending on @flag it may process the filter hash or
3749  * the notrace hash of @ops. With this called from the open
3750  * routine, you can use ftrace_filter_write() for the write
3751  * routine if @flag has FTRACE_ITER_FILTER set, or
3752  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3753  * tracing_lseek() should be used as the lseek routine, and
3754  * release must call ftrace_regex_release().
3755  */
3756 int
3757 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3758 		  struct inode *inode, struct file *file)
3759 {
3760 	struct ftrace_iterator *iter;
3761 	struct ftrace_hash *hash;
3762 	struct list_head *mod_head;
3763 	struct trace_array *tr = ops->private;
3764 	int ret = -ENOMEM;
3765 
3766 	ftrace_ops_init(ops);
3767 
3768 	if (unlikely(ftrace_disabled))
3769 		return -ENODEV;
3770 
3771 	if (tracing_check_open_get_tr(tr))
3772 		return -ENODEV;
3773 
3774 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3775 	if (!iter)
3776 		goto out;
3777 
3778 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3779 		goto out;
3780 
3781 	iter->ops = ops;
3782 	iter->flags = flag;
3783 	iter->tr = tr;
3784 
3785 	mutex_lock(&ops->func_hash->regex_lock);
3786 
3787 	if (flag & FTRACE_ITER_NOTRACE) {
3788 		hash = ops->func_hash->notrace_hash;
3789 		mod_head = tr ? &tr->mod_notrace : NULL;
3790 	} else {
3791 		hash = ops->func_hash->filter_hash;
3792 		mod_head = tr ? &tr->mod_trace : NULL;
3793 	}
3794 
3795 	iter->mod_list = mod_head;
3796 
3797 	if (file->f_mode & FMODE_WRITE) {
3798 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3799 
3800 		if (file->f_flags & O_TRUNC) {
3801 			iter->hash = alloc_ftrace_hash(size_bits);
3802 			clear_ftrace_mod_list(mod_head);
3803 	        } else {
3804 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3805 		}
3806 
3807 		if (!iter->hash) {
3808 			trace_parser_put(&iter->parser);
3809 			goto out_unlock;
3810 		}
3811 	} else
3812 		iter->hash = hash;
3813 
3814 	ret = 0;
3815 
3816 	if (file->f_mode & FMODE_READ) {
3817 		iter->pg = ftrace_pages_start;
3818 
3819 		ret = seq_open(file, &show_ftrace_seq_ops);
3820 		if (!ret) {
3821 			struct seq_file *m = file->private_data;
3822 			m->private = iter;
3823 		} else {
3824 			/* Failed */
3825 			free_ftrace_hash(iter->hash);
3826 			trace_parser_put(&iter->parser);
3827 		}
3828 	} else
3829 		file->private_data = iter;
3830 
3831  out_unlock:
3832 	mutex_unlock(&ops->func_hash->regex_lock);
3833 
3834  out:
3835 	if (ret) {
3836 		kfree(iter);
3837 		if (tr)
3838 			trace_array_put(tr);
3839 	}
3840 
3841 	return ret;
3842 }
3843 
3844 static int
3845 ftrace_filter_open(struct inode *inode, struct file *file)
3846 {
3847 	struct ftrace_ops *ops = inode->i_private;
3848 
3849 	/* Checks for tracefs lockdown */
3850 	return ftrace_regex_open(ops,
3851 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3852 			inode, file);
3853 }
3854 
3855 static int
3856 ftrace_notrace_open(struct inode *inode, struct file *file)
3857 {
3858 	struct ftrace_ops *ops = inode->i_private;
3859 
3860 	/* Checks for tracefs lockdown */
3861 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3862 				 inode, file);
3863 }
3864 
3865 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3866 struct ftrace_glob {
3867 	char *search;
3868 	unsigned len;
3869 	int type;
3870 };
3871 
3872 /*
3873  * If symbols in an architecture don't correspond exactly to the user-visible
3874  * name of what they represent, it is possible to define this function to
3875  * perform the necessary adjustments.
3876 */
3877 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3878 {
3879 	return str;
3880 }
3881 
3882 static int ftrace_match(char *str, struct ftrace_glob *g)
3883 {
3884 	int matched = 0;
3885 	int slen;
3886 
3887 	str = arch_ftrace_match_adjust(str, g->search);
3888 
3889 	switch (g->type) {
3890 	case MATCH_FULL:
3891 		if (strcmp(str, g->search) == 0)
3892 			matched = 1;
3893 		break;
3894 	case MATCH_FRONT_ONLY:
3895 		if (strncmp(str, g->search, g->len) == 0)
3896 			matched = 1;
3897 		break;
3898 	case MATCH_MIDDLE_ONLY:
3899 		if (strstr(str, g->search))
3900 			matched = 1;
3901 		break;
3902 	case MATCH_END_ONLY:
3903 		slen = strlen(str);
3904 		if (slen >= g->len &&
3905 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3906 			matched = 1;
3907 		break;
3908 	case MATCH_GLOB:
3909 		if (glob_match(g->search, str))
3910 			matched = 1;
3911 		break;
3912 	}
3913 
3914 	return matched;
3915 }
3916 
3917 static int
3918 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3919 {
3920 	struct ftrace_func_entry *entry;
3921 	int ret = 0;
3922 
3923 	entry = ftrace_lookup_ip(hash, rec->ip);
3924 	if (clear_filter) {
3925 		/* Do nothing if it doesn't exist */
3926 		if (!entry)
3927 			return 0;
3928 
3929 		free_hash_entry(hash, entry);
3930 	} else {
3931 		/* Do nothing if it exists */
3932 		if (entry)
3933 			return 0;
3934 
3935 		ret = add_hash_entry(hash, rec->ip);
3936 	}
3937 	return ret;
3938 }
3939 
3940 static int
3941 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3942 		 int clear_filter)
3943 {
3944 	long index = simple_strtoul(func_g->search, NULL, 0);
3945 	struct ftrace_page *pg;
3946 	struct dyn_ftrace *rec;
3947 
3948 	/* The index starts at 1 */
3949 	if (--index < 0)
3950 		return 0;
3951 
3952 	do_for_each_ftrace_rec(pg, rec) {
3953 		if (pg->index <= index) {
3954 			index -= pg->index;
3955 			/* this is a double loop, break goes to the next page */
3956 			break;
3957 		}
3958 		rec = &pg->records[index];
3959 		enter_record(hash, rec, clear_filter);
3960 		return 1;
3961 	} while_for_each_ftrace_rec();
3962 	return 0;
3963 }
3964 
3965 static int
3966 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3967 		struct ftrace_glob *mod_g, int exclude_mod)
3968 {
3969 	char str[KSYM_SYMBOL_LEN];
3970 	char *modname;
3971 
3972 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3973 
3974 	if (mod_g) {
3975 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3976 
3977 		/* blank module name to match all modules */
3978 		if (!mod_g->len) {
3979 			/* blank module globbing: modname xor exclude_mod */
3980 			if (!exclude_mod != !modname)
3981 				goto func_match;
3982 			return 0;
3983 		}
3984 
3985 		/*
3986 		 * exclude_mod is set to trace everything but the given
3987 		 * module. If it is set and the module matches, then
3988 		 * return 0. If it is not set, and the module doesn't match
3989 		 * also return 0. Otherwise, check the function to see if
3990 		 * that matches.
3991 		 */
3992 		if (!mod_matches == !exclude_mod)
3993 			return 0;
3994 func_match:
3995 		/* blank search means to match all funcs in the mod */
3996 		if (!func_g->len)
3997 			return 1;
3998 	}
3999 
4000 	return ftrace_match(str, func_g);
4001 }
4002 
4003 static int
4004 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4005 {
4006 	struct ftrace_page *pg;
4007 	struct dyn_ftrace *rec;
4008 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4009 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4010 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4011 	int exclude_mod = 0;
4012 	int found = 0;
4013 	int ret;
4014 	int clear_filter = 0;
4015 
4016 	if (func) {
4017 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4018 						 &clear_filter);
4019 		func_g.len = strlen(func_g.search);
4020 	}
4021 
4022 	if (mod) {
4023 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4024 				&mod_g.search, &exclude_mod);
4025 		mod_g.len = strlen(mod_g.search);
4026 	}
4027 
4028 	mutex_lock(&ftrace_lock);
4029 
4030 	if (unlikely(ftrace_disabled))
4031 		goto out_unlock;
4032 
4033 	if (func_g.type == MATCH_INDEX) {
4034 		found = add_rec_by_index(hash, &func_g, clear_filter);
4035 		goto out_unlock;
4036 	}
4037 
4038 	do_for_each_ftrace_rec(pg, rec) {
4039 
4040 		if (rec->flags & FTRACE_FL_DISABLED)
4041 			continue;
4042 
4043 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4044 			ret = enter_record(hash, rec, clear_filter);
4045 			if (ret < 0) {
4046 				found = ret;
4047 				goto out_unlock;
4048 			}
4049 			found = 1;
4050 		}
4051 	} while_for_each_ftrace_rec();
4052  out_unlock:
4053 	mutex_unlock(&ftrace_lock);
4054 
4055 	return found;
4056 }
4057 
4058 static int
4059 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4060 {
4061 	return match_records(hash, buff, len, NULL);
4062 }
4063 
4064 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4065 				   struct ftrace_ops_hash *old_hash)
4066 {
4067 	struct ftrace_ops *op;
4068 
4069 	if (!ftrace_enabled)
4070 		return;
4071 
4072 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4073 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4074 		return;
4075 	}
4076 
4077 	/*
4078 	 * If this is the shared global_ops filter, then we need to
4079 	 * check if there is another ops that shares it, is enabled.
4080 	 * If so, we still need to run the modify code.
4081 	 */
4082 	if (ops->func_hash != &global_ops.local_hash)
4083 		return;
4084 
4085 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4086 		if (op->func_hash == &global_ops.local_hash &&
4087 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4088 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4089 			/* Only need to do this once */
4090 			return;
4091 		}
4092 	} while_for_each_ftrace_op(op);
4093 }
4094 
4095 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4096 					   struct ftrace_hash **orig_hash,
4097 					   struct ftrace_hash *hash,
4098 					   int enable)
4099 {
4100 	struct ftrace_ops_hash old_hash_ops;
4101 	struct ftrace_hash *old_hash;
4102 	int ret;
4103 
4104 	old_hash = *orig_hash;
4105 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4106 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4107 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4108 	if (!ret) {
4109 		ftrace_ops_update_code(ops, &old_hash_ops);
4110 		free_ftrace_hash_rcu(old_hash);
4111 	}
4112 	return ret;
4113 }
4114 
4115 static bool module_exists(const char *module)
4116 {
4117 	/* All modules have the symbol __this_module */
4118 	static const char this_mod[] = "__this_module";
4119 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4120 	unsigned long val;
4121 	int n;
4122 
4123 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4124 
4125 	if (n > sizeof(modname) - 1)
4126 		return false;
4127 
4128 	val = module_kallsyms_lookup_name(modname);
4129 	return val != 0;
4130 }
4131 
4132 static int cache_mod(struct trace_array *tr,
4133 		     const char *func, char *module, int enable)
4134 {
4135 	struct ftrace_mod_load *ftrace_mod, *n;
4136 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4137 	int ret;
4138 
4139 	mutex_lock(&ftrace_lock);
4140 
4141 	/* We do not cache inverse filters */
4142 	if (func[0] == '!') {
4143 		func++;
4144 		ret = -EINVAL;
4145 
4146 		/* Look to remove this hash */
4147 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4148 			if (strcmp(ftrace_mod->module, module) != 0)
4149 				continue;
4150 
4151 			/* no func matches all */
4152 			if (strcmp(func, "*") == 0 ||
4153 			    (ftrace_mod->func &&
4154 			     strcmp(ftrace_mod->func, func) == 0)) {
4155 				ret = 0;
4156 				free_ftrace_mod(ftrace_mod);
4157 				continue;
4158 			}
4159 		}
4160 		goto out;
4161 	}
4162 
4163 	ret = -EINVAL;
4164 	/* We only care about modules that have not been loaded yet */
4165 	if (module_exists(module))
4166 		goto out;
4167 
4168 	/* Save this string off, and execute it when the module is loaded */
4169 	ret = ftrace_add_mod(tr, func, module, enable);
4170  out:
4171 	mutex_unlock(&ftrace_lock);
4172 
4173 	return ret;
4174 }
4175 
4176 static int
4177 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4178 		 int reset, int enable);
4179 
4180 #ifdef CONFIG_MODULES
4181 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4182 			     char *mod, bool enable)
4183 {
4184 	struct ftrace_mod_load *ftrace_mod, *n;
4185 	struct ftrace_hash **orig_hash, *new_hash;
4186 	LIST_HEAD(process_mods);
4187 	char *func;
4188 
4189 	mutex_lock(&ops->func_hash->regex_lock);
4190 
4191 	if (enable)
4192 		orig_hash = &ops->func_hash->filter_hash;
4193 	else
4194 		orig_hash = &ops->func_hash->notrace_hash;
4195 
4196 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4197 					      *orig_hash);
4198 	if (!new_hash)
4199 		goto out; /* warn? */
4200 
4201 	mutex_lock(&ftrace_lock);
4202 
4203 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4204 
4205 		if (strcmp(ftrace_mod->module, mod) != 0)
4206 			continue;
4207 
4208 		if (ftrace_mod->func)
4209 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4210 		else
4211 			func = kstrdup("*", GFP_KERNEL);
4212 
4213 		if (!func) /* warn? */
4214 			continue;
4215 
4216 		list_del(&ftrace_mod->list);
4217 		list_add(&ftrace_mod->list, &process_mods);
4218 
4219 		/* Use the newly allocated func, as it may be "*" */
4220 		kfree(ftrace_mod->func);
4221 		ftrace_mod->func = func;
4222 	}
4223 
4224 	mutex_unlock(&ftrace_lock);
4225 
4226 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4227 
4228 		func = ftrace_mod->func;
4229 
4230 		/* Grabs ftrace_lock, which is why we have this extra step */
4231 		match_records(new_hash, func, strlen(func), mod);
4232 		free_ftrace_mod(ftrace_mod);
4233 	}
4234 
4235 	if (enable && list_empty(head))
4236 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4237 
4238 	mutex_lock(&ftrace_lock);
4239 
4240 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4241 					      new_hash, enable);
4242 	mutex_unlock(&ftrace_lock);
4243 
4244  out:
4245 	mutex_unlock(&ops->func_hash->regex_lock);
4246 
4247 	free_ftrace_hash(new_hash);
4248 }
4249 
4250 static void process_cached_mods(const char *mod_name)
4251 {
4252 	struct trace_array *tr;
4253 	char *mod;
4254 
4255 	mod = kstrdup(mod_name, GFP_KERNEL);
4256 	if (!mod)
4257 		return;
4258 
4259 	mutex_lock(&trace_types_lock);
4260 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4261 		if (!list_empty(&tr->mod_trace))
4262 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4263 		if (!list_empty(&tr->mod_notrace))
4264 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4265 	}
4266 	mutex_unlock(&trace_types_lock);
4267 
4268 	kfree(mod);
4269 }
4270 #endif
4271 
4272 /*
4273  * We register the module command as a template to show others how
4274  * to register the a command as well.
4275  */
4276 
4277 static int
4278 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4279 		    char *func_orig, char *cmd, char *module, int enable)
4280 {
4281 	char *func;
4282 	int ret;
4283 
4284 	/* match_records() modifies func, and we need the original */
4285 	func = kstrdup(func_orig, GFP_KERNEL);
4286 	if (!func)
4287 		return -ENOMEM;
4288 
4289 	/*
4290 	 * cmd == 'mod' because we only registered this func
4291 	 * for the 'mod' ftrace_func_command.
4292 	 * But if you register one func with multiple commands,
4293 	 * you can tell which command was used by the cmd
4294 	 * parameter.
4295 	 */
4296 	ret = match_records(hash, func, strlen(func), module);
4297 	kfree(func);
4298 
4299 	if (!ret)
4300 		return cache_mod(tr, func_orig, module, enable);
4301 	if (ret < 0)
4302 		return ret;
4303 	return 0;
4304 }
4305 
4306 static struct ftrace_func_command ftrace_mod_cmd = {
4307 	.name			= "mod",
4308 	.func			= ftrace_mod_callback,
4309 };
4310 
4311 static int __init ftrace_mod_cmd_init(void)
4312 {
4313 	return register_ftrace_command(&ftrace_mod_cmd);
4314 }
4315 core_initcall(ftrace_mod_cmd_init);
4316 
4317 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4318 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4319 {
4320 	struct ftrace_probe_ops *probe_ops;
4321 	struct ftrace_func_probe *probe;
4322 
4323 	probe = container_of(op, struct ftrace_func_probe, ops);
4324 	probe_ops = probe->probe_ops;
4325 
4326 	/*
4327 	 * Disable preemption for these calls to prevent a RCU grace
4328 	 * period. This syncs the hash iteration and freeing of items
4329 	 * on the hash. rcu_read_lock is too dangerous here.
4330 	 */
4331 	preempt_disable_notrace();
4332 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4333 	preempt_enable_notrace();
4334 }
4335 
4336 struct ftrace_func_map {
4337 	struct ftrace_func_entry	entry;
4338 	void				*data;
4339 };
4340 
4341 struct ftrace_func_mapper {
4342 	struct ftrace_hash		hash;
4343 };
4344 
4345 /**
4346  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4347  *
4348  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4349  */
4350 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4351 {
4352 	struct ftrace_hash *hash;
4353 
4354 	/*
4355 	 * The mapper is simply a ftrace_hash, but since the entries
4356 	 * in the hash are not ftrace_func_entry type, we define it
4357 	 * as a separate structure.
4358 	 */
4359 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4360 	return (struct ftrace_func_mapper *)hash;
4361 }
4362 
4363 /**
4364  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4365  * @mapper: The mapper that has the ip maps
4366  * @ip: the instruction pointer to find the data for
4367  *
4368  * Returns the data mapped to @ip if found otherwise NULL. The return
4369  * is actually the address of the mapper data pointer. The address is
4370  * returned for use cases where the data is no bigger than a long, and
4371  * the user can use the data pointer as its data instead of having to
4372  * allocate more memory for the reference.
4373  */
4374 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4375 				  unsigned long ip)
4376 {
4377 	struct ftrace_func_entry *entry;
4378 	struct ftrace_func_map *map;
4379 
4380 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4381 	if (!entry)
4382 		return NULL;
4383 
4384 	map = (struct ftrace_func_map *)entry;
4385 	return &map->data;
4386 }
4387 
4388 /**
4389  * ftrace_func_mapper_add_ip - Map some data to an ip
4390  * @mapper: The mapper that has the ip maps
4391  * @ip: The instruction pointer address to map @data to
4392  * @data: The data to map to @ip
4393  *
4394  * Returns 0 on success otherwise an error.
4395  */
4396 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4397 			      unsigned long ip, void *data)
4398 {
4399 	struct ftrace_func_entry *entry;
4400 	struct ftrace_func_map *map;
4401 
4402 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4403 	if (entry)
4404 		return -EBUSY;
4405 
4406 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4407 	if (!map)
4408 		return -ENOMEM;
4409 
4410 	map->entry.ip = ip;
4411 	map->data = data;
4412 
4413 	__add_hash_entry(&mapper->hash, &map->entry);
4414 
4415 	return 0;
4416 }
4417 
4418 /**
4419  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4420  * @mapper: The mapper that has the ip maps
4421  * @ip: The instruction pointer address to remove the data from
4422  *
4423  * Returns the data if it is found, otherwise NULL.
4424  * Note, if the data pointer is used as the data itself, (see
4425  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4426  * if the data pointer was set to zero.
4427  */
4428 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4429 				   unsigned long ip)
4430 {
4431 	struct ftrace_func_entry *entry;
4432 	struct ftrace_func_map *map;
4433 	void *data;
4434 
4435 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4436 	if (!entry)
4437 		return NULL;
4438 
4439 	map = (struct ftrace_func_map *)entry;
4440 	data = map->data;
4441 
4442 	remove_hash_entry(&mapper->hash, entry);
4443 	kfree(entry);
4444 
4445 	return data;
4446 }
4447 
4448 /**
4449  * free_ftrace_func_mapper - free a mapping of ips and data
4450  * @mapper: The mapper that has the ip maps
4451  * @free_func: A function to be called on each data item.
4452  *
4453  * This is used to free the function mapper. The @free_func is optional
4454  * and can be used if the data needs to be freed as well.
4455  */
4456 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4457 			     ftrace_mapper_func free_func)
4458 {
4459 	struct ftrace_func_entry *entry;
4460 	struct ftrace_func_map *map;
4461 	struct hlist_head *hhd;
4462 	int size, i;
4463 
4464 	if (!mapper)
4465 		return;
4466 
4467 	if (free_func && mapper->hash.count) {
4468 		size = 1 << mapper->hash.size_bits;
4469 		for (i = 0; i < size; i++) {
4470 			hhd = &mapper->hash.buckets[i];
4471 			hlist_for_each_entry(entry, hhd, hlist) {
4472 				map = (struct ftrace_func_map *)entry;
4473 				free_func(map);
4474 			}
4475 		}
4476 	}
4477 	free_ftrace_hash(&mapper->hash);
4478 }
4479 
4480 static void release_probe(struct ftrace_func_probe *probe)
4481 {
4482 	struct ftrace_probe_ops *probe_ops;
4483 
4484 	mutex_lock(&ftrace_lock);
4485 
4486 	WARN_ON(probe->ref <= 0);
4487 
4488 	/* Subtract the ref that was used to protect this instance */
4489 	probe->ref--;
4490 
4491 	if (!probe->ref) {
4492 		probe_ops = probe->probe_ops;
4493 		/*
4494 		 * Sending zero as ip tells probe_ops to free
4495 		 * the probe->data itself
4496 		 */
4497 		if (probe_ops->free)
4498 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4499 		list_del(&probe->list);
4500 		kfree(probe);
4501 	}
4502 	mutex_unlock(&ftrace_lock);
4503 }
4504 
4505 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4506 {
4507 	/*
4508 	 * Add one ref to keep it from being freed when releasing the
4509 	 * ftrace_lock mutex.
4510 	 */
4511 	probe->ref++;
4512 }
4513 
4514 int
4515 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4516 			       struct ftrace_probe_ops *probe_ops,
4517 			       void *data)
4518 {
4519 	struct ftrace_func_entry *entry;
4520 	struct ftrace_func_probe *probe;
4521 	struct ftrace_hash **orig_hash;
4522 	struct ftrace_hash *old_hash;
4523 	struct ftrace_hash *hash;
4524 	int count = 0;
4525 	int size;
4526 	int ret;
4527 	int i;
4528 
4529 	if (WARN_ON(!tr))
4530 		return -EINVAL;
4531 
4532 	/* We do not support '!' for function probes */
4533 	if (WARN_ON(glob[0] == '!'))
4534 		return -EINVAL;
4535 
4536 
4537 	mutex_lock(&ftrace_lock);
4538 	/* Check if the probe_ops is already registered */
4539 	list_for_each_entry(probe, &tr->func_probes, list) {
4540 		if (probe->probe_ops == probe_ops)
4541 			break;
4542 	}
4543 	if (&probe->list == &tr->func_probes) {
4544 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4545 		if (!probe) {
4546 			mutex_unlock(&ftrace_lock);
4547 			return -ENOMEM;
4548 		}
4549 		probe->probe_ops = probe_ops;
4550 		probe->ops.func = function_trace_probe_call;
4551 		probe->tr = tr;
4552 		ftrace_ops_init(&probe->ops);
4553 		list_add(&probe->list, &tr->func_probes);
4554 	}
4555 
4556 	acquire_probe_locked(probe);
4557 
4558 	mutex_unlock(&ftrace_lock);
4559 
4560 	/*
4561 	 * Note, there's a small window here that the func_hash->filter_hash
4562 	 * may be NULL or empty. Need to be careful when reading the loop.
4563 	 */
4564 	mutex_lock(&probe->ops.func_hash->regex_lock);
4565 
4566 	orig_hash = &probe->ops.func_hash->filter_hash;
4567 	old_hash = *orig_hash;
4568 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4569 
4570 	if (!hash) {
4571 		ret = -ENOMEM;
4572 		goto out;
4573 	}
4574 
4575 	ret = ftrace_match_records(hash, glob, strlen(glob));
4576 
4577 	/* Nothing found? */
4578 	if (!ret)
4579 		ret = -EINVAL;
4580 
4581 	if (ret < 0)
4582 		goto out;
4583 
4584 	size = 1 << hash->size_bits;
4585 	for (i = 0; i < size; i++) {
4586 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4587 			if (ftrace_lookup_ip(old_hash, entry->ip))
4588 				continue;
4589 			/*
4590 			 * The caller might want to do something special
4591 			 * for each function we find. We call the callback
4592 			 * to give the caller an opportunity to do so.
4593 			 */
4594 			if (probe_ops->init) {
4595 				ret = probe_ops->init(probe_ops, tr,
4596 						      entry->ip, data,
4597 						      &probe->data);
4598 				if (ret < 0) {
4599 					if (probe_ops->free && count)
4600 						probe_ops->free(probe_ops, tr,
4601 								0, probe->data);
4602 					probe->data = NULL;
4603 					goto out;
4604 				}
4605 			}
4606 			count++;
4607 		}
4608 	}
4609 
4610 	mutex_lock(&ftrace_lock);
4611 
4612 	if (!count) {
4613 		/* Nothing was added? */
4614 		ret = -EINVAL;
4615 		goto out_unlock;
4616 	}
4617 
4618 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4619 					      hash, 1);
4620 	if (ret < 0)
4621 		goto err_unlock;
4622 
4623 	/* One ref for each new function traced */
4624 	probe->ref += count;
4625 
4626 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4627 		ret = ftrace_startup(&probe->ops, 0);
4628 
4629  out_unlock:
4630 	mutex_unlock(&ftrace_lock);
4631 
4632 	if (!ret)
4633 		ret = count;
4634  out:
4635 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4636 	free_ftrace_hash(hash);
4637 
4638 	release_probe(probe);
4639 
4640 	return ret;
4641 
4642  err_unlock:
4643 	if (!probe_ops->free || !count)
4644 		goto out_unlock;
4645 
4646 	/* Failed to do the move, need to call the free functions */
4647 	for (i = 0; i < size; i++) {
4648 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4649 			if (ftrace_lookup_ip(old_hash, entry->ip))
4650 				continue;
4651 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4652 		}
4653 	}
4654 	goto out_unlock;
4655 }
4656 
4657 int
4658 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4659 				      struct ftrace_probe_ops *probe_ops)
4660 {
4661 	struct ftrace_ops_hash old_hash_ops;
4662 	struct ftrace_func_entry *entry;
4663 	struct ftrace_func_probe *probe;
4664 	struct ftrace_glob func_g;
4665 	struct ftrace_hash **orig_hash;
4666 	struct ftrace_hash *old_hash;
4667 	struct ftrace_hash *hash = NULL;
4668 	struct hlist_node *tmp;
4669 	struct hlist_head hhd;
4670 	char str[KSYM_SYMBOL_LEN];
4671 	int count = 0;
4672 	int i, ret = -ENODEV;
4673 	int size;
4674 
4675 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4676 		func_g.search = NULL;
4677 	else {
4678 		int not;
4679 
4680 		func_g.type = filter_parse_regex(glob, strlen(glob),
4681 						 &func_g.search, &not);
4682 		func_g.len = strlen(func_g.search);
4683 
4684 		/* we do not support '!' for function probes */
4685 		if (WARN_ON(not))
4686 			return -EINVAL;
4687 	}
4688 
4689 	mutex_lock(&ftrace_lock);
4690 	/* Check if the probe_ops is already registered */
4691 	list_for_each_entry(probe, &tr->func_probes, list) {
4692 		if (probe->probe_ops == probe_ops)
4693 			break;
4694 	}
4695 	if (&probe->list == &tr->func_probes)
4696 		goto err_unlock_ftrace;
4697 
4698 	ret = -EINVAL;
4699 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4700 		goto err_unlock_ftrace;
4701 
4702 	acquire_probe_locked(probe);
4703 
4704 	mutex_unlock(&ftrace_lock);
4705 
4706 	mutex_lock(&probe->ops.func_hash->regex_lock);
4707 
4708 	orig_hash = &probe->ops.func_hash->filter_hash;
4709 	old_hash = *orig_hash;
4710 
4711 	if (ftrace_hash_empty(old_hash))
4712 		goto out_unlock;
4713 
4714 	old_hash_ops.filter_hash = old_hash;
4715 	/* Probes only have filters */
4716 	old_hash_ops.notrace_hash = NULL;
4717 
4718 	ret = -ENOMEM;
4719 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4720 	if (!hash)
4721 		goto out_unlock;
4722 
4723 	INIT_HLIST_HEAD(&hhd);
4724 
4725 	size = 1 << hash->size_bits;
4726 	for (i = 0; i < size; i++) {
4727 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4728 
4729 			if (func_g.search) {
4730 				kallsyms_lookup(entry->ip, NULL, NULL,
4731 						NULL, str);
4732 				if (!ftrace_match(str, &func_g))
4733 					continue;
4734 			}
4735 			count++;
4736 			remove_hash_entry(hash, entry);
4737 			hlist_add_head(&entry->hlist, &hhd);
4738 		}
4739 	}
4740 
4741 	/* Nothing found? */
4742 	if (!count) {
4743 		ret = -EINVAL;
4744 		goto out_unlock;
4745 	}
4746 
4747 	mutex_lock(&ftrace_lock);
4748 
4749 	WARN_ON(probe->ref < count);
4750 
4751 	probe->ref -= count;
4752 
4753 	if (ftrace_hash_empty(hash))
4754 		ftrace_shutdown(&probe->ops, 0);
4755 
4756 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4757 					      hash, 1);
4758 
4759 	/* still need to update the function call sites */
4760 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4761 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4762 				       &old_hash_ops);
4763 	synchronize_rcu();
4764 
4765 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4766 		hlist_del(&entry->hlist);
4767 		if (probe_ops->free)
4768 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4769 		kfree(entry);
4770 	}
4771 	mutex_unlock(&ftrace_lock);
4772 
4773  out_unlock:
4774 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4775 	free_ftrace_hash(hash);
4776 
4777 	release_probe(probe);
4778 
4779 	return ret;
4780 
4781  err_unlock_ftrace:
4782 	mutex_unlock(&ftrace_lock);
4783 	return ret;
4784 }
4785 
4786 void clear_ftrace_function_probes(struct trace_array *tr)
4787 {
4788 	struct ftrace_func_probe *probe, *n;
4789 
4790 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4791 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4792 }
4793 
4794 static LIST_HEAD(ftrace_commands);
4795 static DEFINE_MUTEX(ftrace_cmd_mutex);
4796 
4797 /*
4798  * Currently we only register ftrace commands from __init, so mark this
4799  * __init too.
4800  */
4801 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4802 {
4803 	struct ftrace_func_command *p;
4804 	int ret = 0;
4805 
4806 	mutex_lock(&ftrace_cmd_mutex);
4807 	list_for_each_entry(p, &ftrace_commands, list) {
4808 		if (strcmp(cmd->name, p->name) == 0) {
4809 			ret = -EBUSY;
4810 			goto out_unlock;
4811 		}
4812 	}
4813 	list_add(&cmd->list, &ftrace_commands);
4814  out_unlock:
4815 	mutex_unlock(&ftrace_cmd_mutex);
4816 
4817 	return ret;
4818 }
4819 
4820 /*
4821  * Currently we only unregister ftrace commands from __init, so mark
4822  * this __init too.
4823  */
4824 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4825 {
4826 	struct ftrace_func_command *p, *n;
4827 	int ret = -ENODEV;
4828 
4829 	mutex_lock(&ftrace_cmd_mutex);
4830 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4831 		if (strcmp(cmd->name, p->name) == 0) {
4832 			ret = 0;
4833 			list_del_init(&p->list);
4834 			goto out_unlock;
4835 		}
4836 	}
4837  out_unlock:
4838 	mutex_unlock(&ftrace_cmd_mutex);
4839 
4840 	return ret;
4841 }
4842 
4843 static int ftrace_process_regex(struct ftrace_iterator *iter,
4844 				char *buff, int len, int enable)
4845 {
4846 	struct ftrace_hash *hash = iter->hash;
4847 	struct trace_array *tr = iter->ops->private;
4848 	char *func, *command, *next = buff;
4849 	struct ftrace_func_command *p;
4850 	int ret = -EINVAL;
4851 
4852 	func = strsep(&next, ":");
4853 
4854 	if (!next) {
4855 		ret = ftrace_match_records(hash, func, len);
4856 		if (!ret)
4857 			ret = -EINVAL;
4858 		if (ret < 0)
4859 			return ret;
4860 		return 0;
4861 	}
4862 
4863 	/* command found */
4864 
4865 	command = strsep(&next, ":");
4866 
4867 	mutex_lock(&ftrace_cmd_mutex);
4868 	list_for_each_entry(p, &ftrace_commands, list) {
4869 		if (strcmp(p->name, command) == 0) {
4870 			ret = p->func(tr, hash, func, command, next, enable);
4871 			goto out_unlock;
4872 		}
4873 	}
4874  out_unlock:
4875 	mutex_unlock(&ftrace_cmd_mutex);
4876 
4877 	return ret;
4878 }
4879 
4880 static ssize_t
4881 ftrace_regex_write(struct file *file, const char __user *ubuf,
4882 		   size_t cnt, loff_t *ppos, int enable)
4883 {
4884 	struct ftrace_iterator *iter;
4885 	struct trace_parser *parser;
4886 	ssize_t ret, read;
4887 
4888 	if (!cnt)
4889 		return 0;
4890 
4891 	if (file->f_mode & FMODE_READ) {
4892 		struct seq_file *m = file->private_data;
4893 		iter = m->private;
4894 	} else
4895 		iter = file->private_data;
4896 
4897 	if (unlikely(ftrace_disabled))
4898 		return -ENODEV;
4899 
4900 	/* iter->hash is a local copy, so we don't need regex_lock */
4901 
4902 	parser = &iter->parser;
4903 	read = trace_get_user(parser, ubuf, cnt, ppos);
4904 
4905 	if (read >= 0 && trace_parser_loaded(parser) &&
4906 	    !trace_parser_cont(parser)) {
4907 		ret = ftrace_process_regex(iter, parser->buffer,
4908 					   parser->idx, enable);
4909 		trace_parser_clear(parser);
4910 		if (ret < 0)
4911 			goto out;
4912 	}
4913 
4914 	ret = read;
4915  out:
4916 	return ret;
4917 }
4918 
4919 ssize_t
4920 ftrace_filter_write(struct file *file, const char __user *ubuf,
4921 		    size_t cnt, loff_t *ppos)
4922 {
4923 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4924 }
4925 
4926 ssize_t
4927 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4928 		     size_t cnt, loff_t *ppos)
4929 {
4930 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4931 }
4932 
4933 static int
4934 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4935 {
4936 	struct ftrace_func_entry *entry;
4937 
4938 	if (!ftrace_location(ip))
4939 		return -EINVAL;
4940 
4941 	if (remove) {
4942 		entry = ftrace_lookup_ip(hash, ip);
4943 		if (!entry)
4944 			return -ENOENT;
4945 		free_hash_entry(hash, entry);
4946 		return 0;
4947 	}
4948 
4949 	return add_hash_entry(hash, ip);
4950 }
4951 
4952 static int
4953 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4954 		unsigned long ip, int remove, int reset, int enable)
4955 {
4956 	struct ftrace_hash **orig_hash;
4957 	struct ftrace_hash *hash;
4958 	int ret;
4959 
4960 	if (unlikely(ftrace_disabled))
4961 		return -ENODEV;
4962 
4963 	mutex_lock(&ops->func_hash->regex_lock);
4964 
4965 	if (enable)
4966 		orig_hash = &ops->func_hash->filter_hash;
4967 	else
4968 		orig_hash = &ops->func_hash->notrace_hash;
4969 
4970 	if (reset)
4971 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4972 	else
4973 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4974 
4975 	if (!hash) {
4976 		ret = -ENOMEM;
4977 		goto out_regex_unlock;
4978 	}
4979 
4980 	if (buf && !ftrace_match_records(hash, buf, len)) {
4981 		ret = -EINVAL;
4982 		goto out_regex_unlock;
4983 	}
4984 	if (ip) {
4985 		ret = ftrace_match_addr(hash, ip, remove);
4986 		if (ret < 0)
4987 			goto out_regex_unlock;
4988 	}
4989 
4990 	mutex_lock(&ftrace_lock);
4991 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4992 	mutex_unlock(&ftrace_lock);
4993 
4994  out_regex_unlock:
4995 	mutex_unlock(&ops->func_hash->regex_lock);
4996 
4997 	free_ftrace_hash(hash);
4998 	return ret;
4999 }
5000 
5001 static int
5002 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
5003 		int reset, int enable)
5004 {
5005 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
5006 }
5007 
5008 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5009 
5010 struct ftrace_direct_func {
5011 	struct list_head	next;
5012 	unsigned long		addr;
5013 	int			count;
5014 };
5015 
5016 static LIST_HEAD(ftrace_direct_funcs);
5017 
5018 /**
5019  * ftrace_find_direct_func - test an address if it is a registered direct caller
5020  * @addr: The address of a registered direct caller
5021  *
5022  * This searches to see if a ftrace direct caller has been registered
5023  * at a specific address, and if so, it returns a descriptor for it.
5024  *
5025  * This can be used by architecture code to see if an address is
5026  * a direct caller (trampoline) attached to a fentry/mcount location.
5027  * This is useful for the function_graph tracer, as it may need to
5028  * do adjustments if it traced a location that also has a direct
5029  * trampoline attached to it.
5030  */
5031 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5032 {
5033 	struct ftrace_direct_func *entry;
5034 	bool found = false;
5035 
5036 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5037 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5038 		if (entry->addr == addr) {
5039 			found = true;
5040 			break;
5041 		}
5042 	}
5043 	if (found)
5044 		return entry;
5045 
5046 	return NULL;
5047 }
5048 
5049 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5050 {
5051 	struct ftrace_direct_func *direct;
5052 
5053 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5054 	if (!direct)
5055 		return NULL;
5056 	direct->addr = addr;
5057 	direct->count = 0;
5058 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5059 	ftrace_direct_func_count++;
5060 	return direct;
5061 }
5062 
5063 /**
5064  * register_ftrace_direct - Call a custom trampoline directly
5065  * @ip: The address of the nop at the beginning of a function
5066  * @addr: The address of the trampoline to call at @ip
5067  *
5068  * This is used to connect a direct call from the nop location (@ip)
5069  * at the start of ftrace traced functions. The location that it calls
5070  * (@addr) must be able to handle a direct call, and save the parameters
5071  * of the function being traced, and restore them (or inject new ones
5072  * if needed), before returning.
5073  *
5074  * Returns:
5075  *  0 on success
5076  *  -EBUSY - Another direct function is already attached (there can be only one)
5077  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5078  *  -ENOMEM - There was an allocation failure.
5079  */
5080 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5081 {
5082 	struct ftrace_direct_func *direct;
5083 	struct ftrace_func_entry *entry;
5084 	struct ftrace_hash *free_hash = NULL;
5085 	struct dyn_ftrace *rec;
5086 	int ret = -EBUSY;
5087 
5088 	mutex_lock(&direct_mutex);
5089 
5090 	/* See if there's a direct function at @ip already */
5091 	if (ftrace_find_rec_direct(ip))
5092 		goto out_unlock;
5093 
5094 	ret = -ENODEV;
5095 	rec = lookup_rec(ip, ip);
5096 	if (!rec)
5097 		goto out_unlock;
5098 
5099 	/*
5100 	 * Check if the rec says it has a direct call but we didn't
5101 	 * find one earlier?
5102 	 */
5103 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5104 		goto out_unlock;
5105 
5106 	/* Make sure the ip points to the exact record */
5107 	if (ip != rec->ip) {
5108 		ip = rec->ip;
5109 		/* Need to check this ip for a direct. */
5110 		if (ftrace_find_rec_direct(ip))
5111 			goto out_unlock;
5112 	}
5113 
5114 	ret = -ENOMEM;
5115 	if (ftrace_hash_empty(direct_functions) ||
5116 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5117 		struct ftrace_hash *new_hash;
5118 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5119 			direct_functions->count + 1;
5120 
5121 		if (size < 32)
5122 			size = 32;
5123 
5124 		new_hash = dup_hash(direct_functions, size);
5125 		if (!new_hash)
5126 			goto out_unlock;
5127 
5128 		free_hash = direct_functions;
5129 		direct_functions = new_hash;
5130 	}
5131 
5132 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5133 	if (!entry)
5134 		goto out_unlock;
5135 
5136 	direct = ftrace_find_direct_func(addr);
5137 	if (!direct) {
5138 		direct = ftrace_alloc_direct_func(addr);
5139 		if (!direct) {
5140 			kfree(entry);
5141 			goto out_unlock;
5142 		}
5143 	}
5144 
5145 	entry->ip = ip;
5146 	entry->direct = addr;
5147 	__add_hash_entry(direct_functions, entry);
5148 
5149 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5150 	if (ret)
5151 		remove_hash_entry(direct_functions, entry);
5152 
5153 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5154 		ret = register_ftrace_function(&direct_ops);
5155 		if (ret)
5156 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5157 	}
5158 
5159 	if (ret) {
5160 		kfree(entry);
5161 		if (!direct->count) {
5162 			list_del_rcu(&direct->next);
5163 			synchronize_rcu_tasks();
5164 			kfree(direct);
5165 			if (free_hash)
5166 				free_ftrace_hash(free_hash);
5167 			free_hash = NULL;
5168 			ftrace_direct_func_count--;
5169 		}
5170 	} else {
5171 		direct->count++;
5172 	}
5173  out_unlock:
5174 	mutex_unlock(&direct_mutex);
5175 
5176 	if (free_hash) {
5177 		synchronize_rcu_tasks();
5178 		free_ftrace_hash(free_hash);
5179 	}
5180 
5181 	return ret;
5182 }
5183 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5184 
5185 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5186 						   struct dyn_ftrace **recp)
5187 {
5188 	struct ftrace_func_entry *entry;
5189 	struct dyn_ftrace *rec;
5190 
5191 	rec = lookup_rec(*ip, *ip);
5192 	if (!rec)
5193 		return NULL;
5194 
5195 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5196 	if (!entry) {
5197 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5198 		return NULL;
5199 	}
5200 
5201 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5202 
5203 	/* Passed in ip just needs to be on the call site */
5204 	*ip = rec->ip;
5205 
5206 	if (recp)
5207 		*recp = rec;
5208 
5209 	return entry;
5210 }
5211 
5212 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5213 {
5214 	struct ftrace_direct_func *direct;
5215 	struct ftrace_func_entry *entry;
5216 	int ret = -ENODEV;
5217 
5218 	mutex_lock(&direct_mutex);
5219 
5220 	entry = find_direct_entry(&ip, NULL);
5221 	if (!entry)
5222 		goto out_unlock;
5223 
5224 	if (direct_functions->count == 1)
5225 		unregister_ftrace_function(&direct_ops);
5226 
5227 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5228 
5229 	WARN_ON(ret);
5230 
5231 	remove_hash_entry(direct_functions, entry);
5232 
5233 	direct = ftrace_find_direct_func(addr);
5234 	if (!WARN_ON(!direct)) {
5235 		/* This is the good path (see the ! before WARN) */
5236 		direct->count--;
5237 		WARN_ON(direct->count < 0);
5238 		if (!direct->count) {
5239 			list_del_rcu(&direct->next);
5240 			synchronize_rcu_tasks();
5241 			kfree(direct);
5242 			kfree(entry);
5243 			ftrace_direct_func_count--;
5244 		}
5245 	}
5246  out_unlock:
5247 	mutex_unlock(&direct_mutex);
5248 
5249 	return ret;
5250 }
5251 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5252 
5253 static struct ftrace_ops stub_ops = {
5254 	.func		= ftrace_stub,
5255 };
5256 
5257 /**
5258  * ftrace_modify_direct_caller - modify ftrace nop directly
5259  * @entry: The ftrace hash entry of the direct helper for @rec
5260  * @rec: The record representing the function site to patch
5261  * @old_addr: The location that the site at @rec->ip currently calls
5262  * @new_addr: The location that the site at @rec->ip should call
5263  *
5264  * An architecture may overwrite this function to optimize the
5265  * changing of the direct callback on an ftrace nop location.
5266  * This is called with the ftrace_lock mutex held, and no other
5267  * ftrace callbacks are on the associated record (@rec). Thus,
5268  * it is safe to modify the ftrace record, where it should be
5269  * currently calling @old_addr directly, to call @new_addr.
5270  *
5271  * Safety checks should be made to make sure that the code at
5272  * @rec->ip is currently calling @old_addr. And this must
5273  * also update entry->direct to @new_addr.
5274  */
5275 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5276 				       struct dyn_ftrace *rec,
5277 				       unsigned long old_addr,
5278 				       unsigned long new_addr)
5279 {
5280 	unsigned long ip = rec->ip;
5281 	int ret;
5282 
5283 	/*
5284 	 * The ftrace_lock was used to determine if the record
5285 	 * had more than one registered user to it. If it did,
5286 	 * we needed to prevent that from changing to do the quick
5287 	 * switch. But if it did not (only a direct caller was attached)
5288 	 * then this function is called. But this function can deal
5289 	 * with attached callers to the rec that we care about, and
5290 	 * since this function uses standard ftrace calls that take
5291 	 * the ftrace_lock mutex, we need to release it.
5292 	 */
5293 	mutex_unlock(&ftrace_lock);
5294 
5295 	/*
5296 	 * By setting a stub function at the same address, we force
5297 	 * the code to call the iterator and the direct_ops helper.
5298 	 * This means that @ip does not call the direct call, and
5299 	 * we can simply modify it.
5300 	 */
5301 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5302 	if (ret)
5303 		goto out_lock;
5304 
5305 	ret = register_ftrace_function(&stub_ops);
5306 	if (ret) {
5307 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5308 		goto out_lock;
5309 	}
5310 
5311 	entry->direct = new_addr;
5312 
5313 	/*
5314 	 * By removing the stub, we put back the direct call, calling
5315 	 * the @new_addr.
5316 	 */
5317 	unregister_ftrace_function(&stub_ops);
5318 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5319 
5320  out_lock:
5321 	mutex_lock(&ftrace_lock);
5322 
5323 	return ret;
5324 }
5325 
5326 /**
5327  * modify_ftrace_direct - Modify an existing direct call to call something else
5328  * @ip: The instruction pointer to modify
5329  * @old_addr: The address that the current @ip calls directly
5330  * @new_addr: The address that the @ip should call
5331  *
5332  * This modifies a ftrace direct caller at an instruction pointer without
5333  * having to disable it first. The direct call will switch over to the
5334  * @new_addr without missing anything.
5335  *
5336  * Returns: zero on success. Non zero on error, which includes:
5337  *  -ENODEV : the @ip given has no direct caller attached
5338  *  -EINVAL : the @old_addr does not match the current direct caller
5339  */
5340 int modify_ftrace_direct(unsigned long ip,
5341 			 unsigned long old_addr, unsigned long new_addr)
5342 {
5343 	struct ftrace_direct_func *direct, *new_direct = NULL;
5344 	struct ftrace_func_entry *entry;
5345 	struct dyn_ftrace *rec;
5346 	int ret = -ENODEV;
5347 
5348 	mutex_lock(&direct_mutex);
5349 
5350 	mutex_lock(&ftrace_lock);
5351 	entry = find_direct_entry(&ip, &rec);
5352 	if (!entry)
5353 		goto out_unlock;
5354 
5355 	ret = -EINVAL;
5356 	if (entry->direct != old_addr)
5357 		goto out_unlock;
5358 
5359 	direct = ftrace_find_direct_func(old_addr);
5360 	if (WARN_ON(!direct))
5361 		goto out_unlock;
5362 	if (direct->count > 1) {
5363 		ret = -ENOMEM;
5364 		new_direct = ftrace_alloc_direct_func(new_addr);
5365 		if (!new_direct)
5366 			goto out_unlock;
5367 		direct->count--;
5368 		new_direct->count++;
5369 	} else {
5370 		direct->addr = new_addr;
5371 	}
5372 
5373 	/*
5374 	 * If there's no other ftrace callback on the rec->ip location,
5375 	 * then it can be changed directly by the architecture.
5376 	 * If there is another caller, then we just need to change the
5377 	 * direct caller helper to point to @new_addr.
5378 	 */
5379 	if (ftrace_rec_count(rec) == 1) {
5380 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5381 	} else {
5382 		entry->direct = new_addr;
5383 		ret = 0;
5384 	}
5385 
5386 	if (unlikely(ret && new_direct)) {
5387 		direct->count++;
5388 		list_del_rcu(&new_direct->next);
5389 		synchronize_rcu_tasks();
5390 		kfree(new_direct);
5391 		ftrace_direct_func_count--;
5392 	}
5393 
5394  out_unlock:
5395 	mutex_unlock(&ftrace_lock);
5396 	mutex_unlock(&direct_mutex);
5397 	return ret;
5398 }
5399 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5400 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5401 
5402 /**
5403  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5404  * @ops - the ops to set the filter with
5405  * @ip - the address to add to or remove from the filter.
5406  * @remove - non zero to remove the ip from the filter
5407  * @reset - non zero to reset all filters before applying this filter.
5408  *
5409  * Filters denote which functions should be enabled when tracing is enabled
5410  * If @ip is NULL, it failes to update filter.
5411  */
5412 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5413 			 int remove, int reset)
5414 {
5415 	ftrace_ops_init(ops);
5416 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5417 }
5418 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5419 
5420 /**
5421  * ftrace_ops_set_global_filter - setup ops to use global filters
5422  * @ops - the ops which will use the global filters
5423  *
5424  * ftrace users who need global function trace filtering should call this.
5425  * It can set the global filter only if ops were not initialized before.
5426  */
5427 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5428 {
5429 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5430 		return;
5431 
5432 	ftrace_ops_init(ops);
5433 	ops->func_hash = &global_ops.local_hash;
5434 }
5435 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5436 
5437 static int
5438 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5439 		 int reset, int enable)
5440 {
5441 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5442 }
5443 
5444 /**
5445  * ftrace_set_filter - set a function to filter on in ftrace
5446  * @ops - the ops to set the filter with
5447  * @buf - the string that holds the function filter text.
5448  * @len - the length of the string.
5449  * @reset - non zero to reset all filters before applying this filter.
5450  *
5451  * Filters denote which functions should be enabled when tracing is enabled.
5452  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5453  */
5454 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5455 		       int len, int reset)
5456 {
5457 	ftrace_ops_init(ops);
5458 	return ftrace_set_regex(ops, buf, len, reset, 1);
5459 }
5460 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5461 
5462 /**
5463  * ftrace_set_notrace - set a function to not trace in ftrace
5464  * @ops - the ops to set the notrace filter with
5465  * @buf - the string that holds the function notrace text.
5466  * @len - the length of the string.
5467  * @reset - non zero to reset all filters before applying this filter.
5468  *
5469  * Notrace Filters denote which functions should not be enabled when tracing
5470  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5471  * for tracing.
5472  */
5473 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5474 			int len, int reset)
5475 {
5476 	ftrace_ops_init(ops);
5477 	return ftrace_set_regex(ops, buf, len, reset, 0);
5478 }
5479 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5480 /**
5481  * ftrace_set_global_filter - set a function to filter on with global tracers
5482  * @buf - the string that holds the function filter text.
5483  * @len - the length of the string.
5484  * @reset - non zero to reset all filters before applying this filter.
5485  *
5486  * Filters denote which functions should be enabled when tracing is enabled.
5487  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5488  */
5489 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5490 {
5491 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5492 }
5493 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5494 
5495 /**
5496  * ftrace_set_global_notrace - set a function to not trace with global tracers
5497  * @buf - the string that holds the function notrace text.
5498  * @len - the length of the string.
5499  * @reset - non zero to reset all filters before applying this filter.
5500  *
5501  * Notrace Filters denote which functions should not be enabled when tracing
5502  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5503  * for tracing.
5504  */
5505 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5506 {
5507 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5508 }
5509 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5510 
5511 /*
5512  * command line interface to allow users to set filters on boot up.
5513  */
5514 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5515 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5516 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5517 
5518 /* Used by function selftest to not test if filter is set */
5519 bool ftrace_filter_param __initdata;
5520 
5521 static int __init set_ftrace_notrace(char *str)
5522 {
5523 	ftrace_filter_param = true;
5524 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5525 	return 1;
5526 }
5527 __setup("ftrace_notrace=", set_ftrace_notrace);
5528 
5529 static int __init set_ftrace_filter(char *str)
5530 {
5531 	ftrace_filter_param = true;
5532 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5533 	return 1;
5534 }
5535 __setup("ftrace_filter=", set_ftrace_filter);
5536 
5537 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5538 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5539 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5540 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5541 
5542 static int __init set_graph_function(char *str)
5543 {
5544 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5545 	return 1;
5546 }
5547 __setup("ftrace_graph_filter=", set_graph_function);
5548 
5549 static int __init set_graph_notrace_function(char *str)
5550 {
5551 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5552 	return 1;
5553 }
5554 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5555 
5556 static int __init set_graph_max_depth_function(char *str)
5557 {
5558 	if (!str)
5559 		return 0;
5560 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5561 	return 1;
5562 }
5563 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5564 
5565 static void __init set_ftrace_early_graph(char *buf, int enable)
5566 {
5567 	int ret;
5568 	char *func;
5569 	struct ftrace_hash *hash;
5570 
5571 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5572 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5573 		return;
5574 
5575 	while (buf) {
5576 		func = strsep(&buf, ",");
5577 		/* we allow only one expression at a time */
5578 		ret = ftrace_graph_set_hash(hash, func);
5579 		if (ret)
5580 			printk(KERN_DEBUG "ftrace: function %s not "
5581 					  "traceable\n", func);
5582 	}
5583 
5584 	if (enable)
5585 		ftrace_graph_hash = hash;
5586 	else
5587 		ftrace_graph_notrace_hash = hash;
5588 }
5589 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5590 
5591 void __init
5592 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5593 {
5594 	char *func;
5595 
5596 	ftrace_ops_init(ops);
5597 
5598 	while (buf) {
5599 		func = strsep(&buf, ",");
5600 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5601 	}
5602 }
5603 
5604 static void __init set_ftrace_early_filters(void)
5605 {
5606 	if (ftrace_filter_buf[0])
5607 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5608 	if (ftrace_notrace_buf[0])
5609 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5610 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5611 	if (ftrace_graph_buf[0])
5612 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5613 	if (ftrace_graph_notrace_buf[0])
5614 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5615 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5616 }
5617 
5618 int ftrace_regex_release(struct inode *inode, struct file *file)
5619 {
5620 	struct seq_file *m = (struct seq_file *)file->private_data;
5621 	struct ftrace_iterator *iter;
5622 	struct ftrace_hash **orig_hash;
5623 	struct trace_parser *parser;
5624 	int filter_hash;
5625 
5626 	if (file->f_mode & FMODE_READ) {
5627 		iter = m->private;
5628 		seq_release(inode, file);
5629 	} else
5630 		iter = file->private_data;
5631 
5632 	parser = &iter->parser;
5633 	if (trace_parser_loaded(parser)) {
5634 		ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5635 	}
5636 
5637 	trace_parser_put(parser);
5638 
5639 	mutex_lock(&iter->ops->func_hash->regex_lock);
5640 
5641 	if (file->f_mode & FMODE_WRITE) {
5642 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5643 
5644 		if (filter_hash) {
5645 			orig_hash = &iter->ops->func_hash->filter_hash;
5646 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5647 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5648 		} else
5649 			orig_hash = &iter->ops->func_hash->notrace_hash;
5650 
5651 		mutex_lock(&ftrace_lock);
5652 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5653 						      iter->hash, filter_hash);
5654 		mutex_unlock(&ftrace_lock);
5655 	} else {
5656 		/* For read only, the hash is the ops hash */
5657 		iter->hash = NULL;
5658 	}
5659 
5660 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5661 	free_ftrace_hash(iter->hash);
5662 	if (iter->tr)
5663 		trace_array_put(iter->tr);
5664 	kfree(iter);
5665 
5666 	return 0;
5667 }
5668 
5669 static const struct file_operations ftrace_avail_fops = {
5670 	.open = ftrace_avail_open,
5671 	.read = seq_read,
5672 	.llseek = seq_lseek,
5673 	.release = seq_release_private,
5674 };
5675 
5676 static const struct file_operations ftrace_enabled_fops = {
5677 	.open = ftrace_enabled_open,
5678 	.read = seq_read,
5679 	.llseek = seq_lseek,
5680 	.release = seq_release_private,
5681 };
5682 
5683 static const struct file_operations ftrace_filter_fops = {
5684 	.open = ftrace_filter_open,
5685 	.read = seq_read,
5686 	.write = ftrace_filter_write,
5687 	.llseek = tracing_lseek,
5688 	.release = ftrace_regex_release,
5689 };
5690 
5691 static const struct file_operations ftrace_notrace_fops = {
5692 	.open = ftrace_notrace_open,
5693 	.read = seq_read,
5694 	.write = ftrace_notrace_write,
5695 	.llseek = tracing_lseek,
5696 	.release = ftrace_regex_release,
5697 };
5698 
5699 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5700 
5701 static DEFINE_MUTEX(graph_lock);
5702 
5703 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5704 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5705 
5706 enum graph_filter_type {
5707 	GRAPH_FILTER_NOTRACE	= 0,
5708 	GRAPH_FILTER_FUNCTION,
5709 };
5710 
5711 #define FTRACE_GRAPH_EMPTY	((void *)1)
5712 
5713 struct ftrace_graph_data {
5714 	struct ftrace_hash		*hash;
5715 	struct ftrace_func_entry	*entry;
5716 	int				idx;   /* for hash table iteration */
5717 	enum graph_filter_type		type;
5718 	struct ftrace_hash		*new_hash;
5719 	const struct seq_operations	*seq_ops;
5720 	struct trace_parser		parser;
5721 };
5722 
5723 static void *
5724 __g_next(struct seq_file *m, loff_t *pos)
5725 {
5726 	struct ftrace_graph_data *fgd = m->private;
5727 	struct ftrace_func_entry *entry = fgd->entry;
5728 	struct hlist_head *head;
5729 	int i, idx = fgd->idx;
5730 
5731 	if (*pos >= fgd->hash->count)
5732 		return NULL;
5733 
5734 	if (entry) {
5735 		hlist_for_each_entry_continue(entry, hlist) {
5736 			fgd->entry = entry;
5737 			return entry;
5738 		}
5739 
5740 		idx++;
5741 	}
5742 
5743 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5744 		head = &fgd->hash->buckets[i];
5745 		hlist_for_each_entry(entry, head, hlist) {
5746 			fgd->entry = entry;
5747 			fgd->idx = i;
5748 			return entry;
5749 		}
5750 	}
5751 	return NULL;
5752 }
5753 
5754 static void *
5755 g_next(struct seq_file *m, void *v, loff_t *pos)
5756 {
5757 	(*pos)++;
5758 	return __g_next(m, pos);
5759 }
5760 
5761 static void *g_start(struct seq_file *m, loff_t *pos)
5762 {
5763 	struct ftrace_graph_data *fgd = m->private;
5764 
5765 	mutex_lock(&graph_lock);
5766 
5767 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5768 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5769 					lockdep_is_held(&graph_lock));
5770 	else
5771 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5772 					lockdep_is_held(&graph_lock));
5773 
5774 	/* Nothing, tell g_show to print all functions are enabled */
5775 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5776 		return FTRACE_GRAPH_EMPTY;
5777 
5778 	fgd->idx = 0;
5779 	fgd->entry = NULL;
5780 	return __g_next(m, pos);
5781 }
5782 
5783 static void g_stop(struct seq_file *m, void *p)
5784 {
5785 	mutex_unlock(&graph_lock);
5786 }
5787 
5788 static int g_show(struct seq_file *m, void *v)
5789 {
5790 	struct ftrace_func_entry *entry = v;
5791 
5792 	if (!entry)
5793 		return 0;
5794 
5795 	if (entry == FTRACE_GRAPH_EMPTY) {
5796 		struct ftrace_graph_data *fgd = m->private;
5797 
5798 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5799 			seq_puts(m, "#### all functions enabled ####\n");
5800 		else
5801 			seq_puts(m, "#### no functions disabled ####\n");
5802 		return 0;
5803 	}
5804 
5805 	seq_printf(m, "%ps\n", (void *)entry->ip);
5806 
5807 	return 0;
5808 }
5809 
5810 static const struct seq_operations ftrace_graph_seq_ops = {
5811 	.start = g_start,
5812 	.next = g_next,
5813 	.stop = g_stop,
5814 	.show = g_show,
5815 };
5816 
5817 static int
5818 __ftrace_graph_open(struct inode *inode, struct file *file,
5819 		    struct ftrace_graph_data *fgd)
5820 {
5821 	int ret;
5822 	struct ftrace_hash *new_hash = NULL;
5823 
5824 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5825 	if (ret)
5826 		return ret;
5827 
5828 	if (file->f_mode & FMODE_WRITE) {
5829 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5830 
5831 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5832 			return -ENOMEM;
5833 
5834 		if (file->f_flags & O_TRUNC)
5835 			new_hash = alloc_ftrace_hash(size_bits);
5836 		else
5837 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5838 							      fgd->hash);
5839 		if (!new_hash) {
5840 			ret = -ENOMEM;
5841 			goto out;
5842 		}
5843 	}
5844 
5845 	if (file->f_mode & FMODE_READ) {
5846 		ret = seq_open(file, &ftrace_graph_seq_ops);
5847 		if (!ret) {
5848 			struct seq_file *m = file->private_data;
5849 			m->private = fgd;
5850 		} else {
5851 			/* Failed */
5852 			free_ftrace_hash(new_hash);
5853 			new_hash = NULL;
5854 		}
5855 	} else
5856 		file->private_data = fgd;
5857 
5858 out:
5859 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5860 		trace_parser_put(&fgd->parser);
5861 
5862 	fgd->new_hash = new_hash;
5863 
5864 	/*
5865 	 * All uses of fgd->hash must be taken with the graph_lock
5866 	 * held. The graph_lock is going to be released, so force
5867 	 * fgd->hash to be reinitialized when it is taken again.
5868 	 */
5869 	fgd->hash = NULL;
5870 
5871 	return ret;
5872 }
5873 
5874 static int
5875 ftrace_graph_open(struct inode *inode, struct file *file)
5876 {
5877 	struct ftrace_graph_data *fgd;
5878 	int ret;
5879 
5880 	if (unlikely(ftrace_disabled))
5881 		return -ENODEV;
5882 
5883 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5884 	if (fgd == NULL)
5885 		return -ENOMEM;
5886 
5887 	mutex_lock(&graph_lock);
5888 
5889 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5890 					lockdep_is_held(&graph_lock));
5891 	fgd->type = GRAPH_FILTER_FUNCTION;
5892 	fgd->seq_ops = &ftrace_graph_seq_ops;
5893 
5894 	ret = __ftrace_graph_open(inode, file, fgd);
5895 	if (ret < 0)
5896 		kfree(fgd);
5897 
5898 	mutex_unlock(&graph_lock);
5899 	return ret;
5900 }
5901 
5902 static int
5903 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5904 {
5905 	struct ftrace_graph_data *fgd;
5906 	int ret;
5907 
5908 	if (unlikely(ftrace_disabled))
5909 		return -ENODEV;
5910 
5911 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5912 	if (fgd == NULL)
5913 		return -ENOMEM;
5914 
5915 	mutex_lock(&graph_lock);
5916 
5917 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5918 					lockdep_is_held(&graph_lock));
5919 	fgd->type = GRAPH_FILTER_NOTRACE;
5920 	fgd->seq_ops = &ftrace_graph_seq_ops;
5921 
5922 	ret = __ftrace_graph_open(inode, file, fgd);
5923 	if (ret < 0)
5924 		kfree(fgd);
5925 
5926 	mutex_unlock(&graph_lock);
5927 	return ret;
5928 }
5929 
5930 static int
5931 ftrace_graph_release(struct inode *inode, struct file *file)
5932 {
5933 	struct ftrace_graph_data *fgd;
5934 	struct ftrace_hash *old_hash, *new_hash;
5935 	struct trace_parser *parser;
5936 	int ret = 0;
5937 
5938 	if (file->f_mode & FMODE_READ) {
5939 		struct seq_file *m = file->private_data;
5940 
5941 		fgd = m->private;
5942 		seq_release(inode, file);
5943 	} else {
5944 		fgd = file->private_data;
5945 	}
5946 
5947 
5948 	if (file->f_mode & FMODE_WRITE) {
5949 
5950 		parser = &fgd->parser;
5951 
5952 		if (trace_parser_loaded((parser))) {
5953 			ret = ftrace_graph_set_hash(fgd->new_hash,
5954 						    parser->buffer);
5955 		}
5956 
5957 		trace_parser_put(parser);
5958 
5959 		new_hash = __ftrace_hash_move(fgd->new_hash);
5960 		if (!new_hash) {
5961 			ret = -ENOMEM;
5962 			goto out;
5963 		}
5964 
5965 		mutex_lock(&graph_lock);
5966 
5967 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5968 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5969 					lockdep_is_held(&graph_lock));
5970 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5971 		} else {
5972 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5973 					lockdep_is_held(&graph_lock));
5974 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5975 		}
5976 
5977 		mutex_unlock(&graph_lock);
5978 
5979 		/*
5980 		 * We need to do a hard force of sched synchronization.
5981 		 * This is because we use preempt_disable() to do RCU, but
5982 		 * the function tracers can be called where RCU is not watching
5983 		 * (like before user_exit()). We can not rely on the RCU
5984 		 * infrastructure to do the synchronization, thus we must do it
5985 		 * ourselves.
5986 		 */
5987 		synchronize_rcu_tasks_rude();
5988 
5989 		free_ftrace_hash(old_hash);
5990 	}
5991 
5992  out:
5993 	free_ftrace_hash(fgd->new_hash);
5994 	kfree(fgd);
5995 
5996 	return ret;
5997 }
5998 
5999 static int
6000 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6001 {
6002 	struct ftrace_glob func_g;
6003 	struct dyn_ftrace *rec;
6004 	struct ftrace_page *pg;
6005 	struct ftrace_func_entry *entry;
6006 	int fail = 1;
6007 	int not;
6008 
6009 	/* decode regex */
6010 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6011 					 &func_g.search, &not);
6012 
6013 	func_g.len = strlen(func_g.search);
6014 
6015 	mutex_lock(&ftrace_lock);
6016 
6017 	if (unlikely(ftrace_disabled)) {
6018 		mutex_unlock(&ftrace_lock);
6019 		return -ENODEV;
6020 	}
6021 
6022 	do_for_each_ftrace_rec(pg, rec) {
6023 
6024 		if (rec->flags & FTRACE_FL_DISABLED)
6025 			continue;
6026 
6027 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6028 			entry = ftrace_lookup_ip(hash, rec->ip);
6029 
6030 			if (!not) {
6031 				fail = 0;
6032 
6033 				if (entry)
6034 					continue;
6035 				if (add_hash_entry(hash, rec->ip) < 0)
6036 					goto out;
6037 			} else {
6038 				if (entry) {
6039 					free_hash_entry(hash, entry);
6040 					fail = 0;
6041 				}
6042 			}
6043 		}
6044 	} while_for_each_ftrace_rec();
6045 out:
6046 	mutex_unlock(&ftrace_lock);
6047 
6048 	if (fail)
6049 		return -EINVAL;
6050 
6051 	return 0;
6052 }
6053 
6054 static ssize_t
6055 ftrace_graph_write(struct file *file, const char __user *ubuf,
6056 		   size_t cnt, loff_t *ppos)
6057 {
6058 	ssize_t read, ret = 0;
6059 	struct ftrace_graph_data *fgd = file->private_data;
6060 	struct trace_parser *parser;
6061 
6062 	if (!cnt)
6063 		return 0;
6064 
6065 	/* Read mode uses seq functions */
6066 	if (file->f_mode & FMODE_READ) {
6067 		struct seq_file *m = file->private_data;
6068 		fgd = m->private;
6069 	}
6070 
6071 	parser = &fgd->parser;
6072 
6073 	read = trace_get_user(parser, ubuf, cnt, ppos);
6074 
6075 	if (read >= 0 && trace_parser_loaded(parser) &&
6076 	    !trace_parser_cont(parser)) {
6077 
6078 		ret = ftrace_graph_set_hash(fgd->new_hash,
6079 					    parser->buffer);
6080 		trace_parser_clear(parser);
6081 	}
6082 
6083 	if (!ret)
6084 		ret = read;
6085 
6086 	return ret;
6087 }
6088 
6089 static const struct file_operations ftrace_graph_fops = {
6090 	.open		= ftrace_graph_open,
6091 	.read		= seq_read,
6092 	.write		= ftrace_graph_write,
6093 	.llseek		= tracing_lseek,
6094 	.release	= ftrace_graph_release,
6095 };
6096 
6097 static const struct file_operations ftrace_graph_notrace_fops = {
6098 	.open		= ftrace_graph_notrace_open,
6099 	.read		= seq_read,
6100 	.write		= ftrace_graph_write,
6101 	.llseek		= tracing_lseek,
6102 	.release	= ftrace_graph_release,
6103 };
6104 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6105 
6106 void ftrace_create_filter_files(struct ftrace_ops *ops,
6107 				struct dentry *parent)
6108 {
6109 
6110 	trace_create_file("set_ftrace_filter", 0644, parent,
6111 			  ops, &ftrace_filter_fops);
6112 
6113 	trace_create_file("set_ftrace_notrace", 0644, parent,
6114 			  ops, &ftrace_notrace_fops);
6115 }
6116 
6117 /*
6118  * The name "destroy_filter_files" is really a misnomer. Although
6119  * in the future, it may actually delete the files, but this is
6120  * really intended to make sure the ops passed in are disabled
6121  * and that when this function returns, the caller is free to
6122  * free the ops.
6123  *
6124  * The "destroy" name is only to match the "create" name that this
6125  * should be paired with.
6126  */
6127 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6128 {
6129 	mutex_lock(&ftrace_lock);
6130 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6131 		ftrace_shutdown(ops, 0);
6132 	ops->flags |= FTRACE_OPS_FL_DELETED;
6133 	ftrace_free_filter(ops);
6134 	mutex_unlock(&ftrace_lock);
6135 }
6136 
6137 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6138 {
6139 
6140 	trace_create_file("available_filter_functions", 0444,
6141 			d_tracer, NULL, &ftrace_avail_fops);
6142 
6143 	trace_create_file("enabled_functions", 0444,
6144 			d_tracer, NULL, &ftrace_enabled_fops);
6145 
6146 	ftrace_create_filter_files(&global_ops, d_tracer);
6147 
6148 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6149 	trace_create_file("set_graph_function", 0644, d_tracer,
6150 				    NULL,
6151 				    &ftrace_graph_fops);
6152 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6153 				    NULL,
6154 				    &ftrace_graph_notrace_fops);
6155 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6156 
6157 	return 0;
6158 }
6159 
6160 static int ftrace_cmp_ips(const void *a, const void *b)
6161 {
6162 	const unsigned long *ipa = a;
6163 	const unsigned long *ipb = b;
6164 
6165 	if (*ipa > *ipb)
6166 		return 1;
6167 	if (*ipa < *ipb)
6168 		return -1;
6169 	return 0;
6170 }
6171 
6172 static int ftrace_process_locs(struct module *mod,
6173 			       unsigned long *start,
6174 			       unsigned long *end)
6175 {
6176 	struct ftrace_page *start_pg;
6177 	struct ftrace_page *pg;
6178 	struct dyn_ftrace *rec;
6179 	unsigned long count;
6180 	unsigned long *p;
6181 	unsigned long addr;
6182 	unsigned long flags = 0; /* Shut up gcc */
6183 	int ret = -ENOMEM;
6184 
6185 	count = end - start;
6186 
6187 	if (!count)
6188 		return 0;
6189 
6190 	sort(start, count, sizeof(*start),
6191 	     ftrace_cmp_ips, NULL);
6192 
6193 	start_pg = ftrace_allocate_pages(count);
6194 	if (!start_pg)
6195 		return -ENOMEM;
6196 
6197 	mutex_lock(&ftrace_lock);
6198 
6199 	/*
6200 	 * Core and each module needs their own pages, as
6201 	 * modules will free them when they are removed.
6202 	 * Force a new page to be allocated for modules.
6203 	 */
6204 	if (!mod) {
6205 		WARN_ON(ftrace_pages || ftrace_pages_start);
6206 		/* First initialization */
6207 		ftrace_pages = ftrace_pages_start = start_pg;
6208 	} else {
6209 		if (!ftrace_pages)
6210 			goto out;
6211 
6212 		if (WARN_ON(ftrace_pages->next)) {
6213 			/* Hmm, we have free pages? */
6214 			while (ftrace_pages->next)
6215 				ftrace_pages = ftrace_pages->next;
6216 		}
6217 
6218 		ftrace_pages->next = start_pg;
6219 	}
6220 
6221 	p = start;
6222 	pg = start_pg;
6223 	while (p < end) {
6224 		addr = ftrace_call_adjust(*p++);
6225 		/*
6226 		 * Some architecture linkers will pad between
6227 		 * the different mcount_loc sections of different
6228 		 * object files to satisfy alignments.
6229 		 * Skip any NULL pointers.
6230 		 */
6231 		if (!addr)
6232 			continue;
6233 
6234 		if (pg->index == pg->size) {
6235 			/* We should have allocated enough */
6236 			if (WARN_ON(!pg->next))
6237 				break;
6238 			pg = pg->next;
6239 		}
6240 
6241 		rec = &pg->records[pg->index++];
6242 		rec->ip = addr;
6243 	}
6244 
6245 	/* We should have used all pages */
6246 	WARN_ON(pg->next);
6247 
6248 	/* Assign the last page to ftrace_pages */
6249 	ftrace_pages = pg;
6250 
6251 	/*
6252 	 * We only need to disable interrupts on start up
6253 	 * because we are modifying code that an interrupt
6254 	 * may execute, and the modification is not atomic.
6255 	 * But for modules, nothing runs the code we modify
6256 	 * until we are finished with it, and there's no
6257 	 * reason to cause large interrupt latencies while we do it.
6258 	 */
6259 	if (!mod)
6260 		local_irq_save(flags);
6261 	ftrace_update_code(mod, start_pg);
6262 	if (!mod)
6263 		local_irq_restore(flags);
6264 	ret = 0;
6265  out:
6266 	mutex_unlock(&ftrace_lock);
6267 
6268 	return ret;
6269 }
6270 
6271 struct ftrace_mod_func {
6272 	struct list_head	list;
6273 	char			*name;
6274 	unsigned long		ip;
6275 	unsigned int		size;
6276 };
6277 
6278 struct ftrace_mod_map {
6279 	struct rcu_head		rcu;
6280 	struct list_head	list;
6281 	struct module		*mod;
6282 	unsigned long		start_addr;
6283 	unsigned long		end_addr;
6284 	struct list_head	funcs;
6285 	unsigned int		num_funcs;
6286 };
6287 
6288 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6289 					 unsigned long *value, char *type,
6290 					 char *name, char *module_name,
6291 					 int *exported)
6292 {
6293 	struct ftrace_ops *op;
6294 
6295 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6296 		if (!op->trampoline || symnum--)
6297 			continue;
6298 		*value = op->trampoline;
6299 		*type = 't';
6300 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6301 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6302 		*exported = 0;
6303 		return 0;
6304 	}
6305 
6306 	return -ERANGE;
6307 }
6308 
6309 #ifdef CONFIG_MODULES
6310 
6311 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6312 
6313 static LIST_HEAD(ftrace_mod_maps);
6314 
6315 static int referenced_filters(struct dyn_ftrace *rec)
6316 {
6317 	struct ftrace_ops *ops;
6318 	int cnt = 0;
6319 
6320 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6321 		if (ops_references_rec(ops, rec)) {
6322 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6323 				continue;
6324 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6325 				continue;
6326 			cnt++;
6327 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6328 				rec->flags |= FTRACE_FL_REGS;
6329 			if (cnt == 1 && ops->trampoline)
6330 				rec->flags |= FTRACE_FL_TRAMP;
6331 			else
6332 				rec->flags &= ~FTRACE_FL_TRAMP;
6333 		}
6334 	}
6335 
6336 	return cnt;
6337 }
6338 
6339 static void
6340 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6341 {
6342 	struct ftrace_func_entry *entry;
6343 	struct dyn_ftrace *rec;
6344 	int i;
6345 
6346 	if (ftrace_hash_empty(hash))
6347 		return;
6348 
6349 	for (i = 0; i < pg->index; i++) {
6350 		rec = &pg->records[i];
6351 		entry = __ftrace_lookup_ip(hash, rec->ip);
6352 		/*
6353 		 * Do not allow this rec to match again.
6354 		 * Yeah, it may waste some memory, but will be removed
6355 		 * if/when the hash is modified again.
6356 		 */
6357 		if (entry)
6358 			entry->ip = 0;
6359 	}
6360 }
6361 
6362 /* Clear any records from hashs */
6363 static void clear_mod_from_hashes(struct ftrace_page *pg)
6364 {
6365 	struct trace_array *tr;
6366 
6367 	mutex_lock(&trace_types_lock);
6368 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6369 		if (!tr->ops || !tr->ops->func_hash)
6370 			continue;
6371 		mutex_lock(&tr->ops->func_hash->regex_lock);
6372 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6373 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6374 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6375 	}
6376 	mutex_unlock(&trace_types_lock);
6377 }
6378 
6379 static void ftrace_free_mod_map(struct rcu_head *rcu)
6380 {
6381 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6382 	struct ftrace_mod_func *mod_func;
6383 	struct ftrace_mod_func *n;
6384 
6385 	/* All the contents of mod_map are now not visible to readers */
6386 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6387 		kfree(mod_func->name);
6388 		list_del(&mod_func->list);
6389 		kfree(mod_func);
6390 	}
6391 
6392 	kfree(mod_map);
6393 }
6394 
6395 void ftrace_release_mod(struct module *mod)
6396 {
6397 	struct ftrace_mod_map *mod_map;
6398 	struct ftrace_mod_map *n;
6399 	struct dyn_ftrace *rec;
6400 	struct ftrace_page **last_pg;
6401 	struct ftrace_page *tmp_page = NULL;
6402 	struct ftrace_page *pg;
6403 	int order;
6404 
6405 	mutex_lock(&ftrace_lock);
6406 
6407 	if (ftrace_disabled)
6408 		goto out_unlock;
6409 
6410 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6411 		if (mod_map->mod == mod) {
6412 			list_del_rcu(&mod_map->list);
6413 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6414 			break;
6415 		}
6416 	}
6417 
6418 	/*
6419 	 * Each module has its own ftrace_pages, remove
6420 	 * them from the list.
6421 	 */
6422 	last_pg = &ftrace_pages_start;
6423 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6424 		rec = &pg->records[0];
6425 		if (within_module_core(rec->ip, mod) ||
6426 		    within_module_init(rec->ip, mod)) {
6427 			/*
6428 			 * As core pages are first, the first
6429 			 * page should never be a module page.
6430 			 */
6431 			if (WARN_ON(pg == ftrace_pages_start))
6432 				goto out_unlock;
6433 
6434 			/* Check if we are deleting the last page */
6435 			if (pg == ftrace_pages)
6436 				ftrace_pages = next_to_ftrace_page(last_pg);
6437 
6438 			ftrace_update_tot_cnt -= pg->index;
6439 			*last_pg = pg->next;
6440 
6441 			pg->next = tmp_page;
6442 			tmp_page = pg;
6443 		} else
6444 			last_pg = &pg->next;
6445 	}
6446  out_unlock:
6447 	mutex_unlock(&ftrace_lock);
6448 
6449 	for (pg = tmp_page; pg; pg = tmp_page) {
6450 
6451 		/* Needs to be called outside of ftrace_lock */
6452 		clear_mod_from_hashes(pg);
6453 
6454 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6455 		if (order >= 0)
6456 			free_pages((unsigned long)pg->records, order);
6457 		tmp_page = pg->next;
6458 		kfree(pg);
6459 		ftrace_number_of_pages -= 1 << order;
6460 		ftrace_number_of_groups--;
6461 	}
6462 }
6463 
6464 void ftrace_module_enable(struct module *mod)
6465 {
6466 	struct dyn_ftrace *rec;
6467 	struct ftrace_page *pg;
6468 
6469 	mutex_lock(&ftrace_lock);
6470 
6471 	if (ftrace_disabled)
6472 		goto out_unlock;
6473 
6474 	/*
6475 	 * If the tracing is enabled, go ahead and enable the record.
6476 	 *
6477 	 * The reason not to enable the record immediately is the
6478 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6479 	 * correct previous instructions.  Making first the NOP
6480 	 * conversion puts the module to the correct state, thus
6481 	 * passing the ftrace_make_call check.
6482 	 *
6483 	 * We also delay this to after the module code already set the
6484 	 * text to read-only, as we now need to set it back to read-write
6485 	 * so that we can modify the text.
6486 	 */
6487 	if (ftrace_start_up)
6488 		ftrace_arch_code_modify_prepare();
6489 
6490 	do_for_each_ftrace_rec(pg, rec) {
6491 		int cnt;
6492 		/*
6493 		 * do_for_each_ftrace_rec() is a double loop.
6494 		 * module text shares the pg. If a record is
6495 		 * not part of this module, then skip this pg,
6496 		 * which the "break" will do.
6497 		 */
6498 		if (!within_module_core(rec->ip, mod) &&
6499 		    !within_module_init(rec->ip, mod))
6500 			break;
6501 
6502 		cnt = 0;
6503 
6504 		/*
6505 		 * When adding a module, we need to check if tracers are
6506 		 * currently enabled and if they are, and can trace this record,
6507 		 * we need to enable the module functions as well as update the
6508 		 * reference counts for those function records.
6509 		 */
6510 		if (ftrace_start_up)
6511 			cnt += referenced_filters(rec);
6512 
6513 		rec->flags &= ~FTRACE_FL_DISABLED;
6514 		rec->flags += cnt;
6515 
6516 		if (ftrace_start_up && cnt) {
6517 			int failed = __ftrace_replace_code(rec, 1);
6518 			if (failed) {
6519 				ftrace_bug(failed, rec);
6520 				goto out_loop;
6521 			}
6522 		}
6523 
6524 	} while_for_each_ftrace_rec();
6525 
6526  out_loop:
6527 	if (ftrace_start_up)
6528 		ftrace_arch_code_modify_post_process();
6529 
6530  out_unlock:
6531 	mutex_unlock(&ftrace_lock);
6532 
6533 	process_cached_mods(mod->name);
6534 }
6535 
6536 void ftrace_module_init(struct module *mod)
6537 {
6538 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6539 		return;
6540 
6541 	ftrace_process_locs(mod, mod->ftrace_callsites,
6542 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6543 }
6544 
6545 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6546 				struct dyn_ftrace *rec)
6547 {
6548 	struct ftrace_mod_func *mod_func;
6549 	unsigned long symsize;
6550 	unsigned long offset;
6551 	char str[KSYM_SYMBOL_LEN];
6552 	char *modname;
6553 	const char *ret;
6554 
6555 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6556 	if (!ret)
6557 		return;
6558 
6559 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6560 	if (!mod_func)
6561 		return;
6562 
6563 	mod_func->name = kstrdup(str, GFP_KERNEL);
6564 	if (!mod_func->name) {
6565 		kfree(mod_func);
6566 		return;
6567 	}
6568 
6569 	mod_func->ip = rec->ip - offset;
6570 	mod_func->size = symsize;
6571 
6572 	mod_map->num_funcs++;
6573 
6574 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6575 }
6576 
6577 static struct ftrace_mod_map *
6578 allocate_ftrace_mod_map(struct module *mod,
6579 			unsigned long start, unsigned long end)
6580 {
6581 	struct ftrace_mod_map *mod_map;
6582 
6583 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6584 	if (!mod_map)
6585 		return NULL;
6586 
6587 	mod_map->mod = mod;
6588 	mod_map->start_addr = start;
6589 	mod_map->end_addr = end;
6590 	mod_map->num_funcs = 0;
6591 
6592 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6593 
6594 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6595 
6596 	return mod_map;
6597 }
6598 
6599 static const char *
6600 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6601 			   unsigned long addr, unsigned long *size,
6602 			   unsigned long *off, char *sym)
6603 {
6604 	struct ftrace_mod_func *found_func =  NULL;
6605 	struct ftrace_mod_func *mod_func;
6606 
6607 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6608 		if (addr >= mod_func->ip &&
6609 		    addr < mod_func->ip + mod_func->size) {
6610 			found_func = mod_func;
6611 			break;
6612 		}
6613 	}
6614 
6615 	if (found_func) {
6616 		if (size)
6617 			*size = found_func->size;
6618 		if (off)
6619 			*off = addr - found_func->ip;
6620 		if (sym)
6621 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6622 
6623 		return found_func->name;
6624 	}
6625 
6626 	return NULL;
6627 }
6628 
6629 const char *
6630 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6631 		   unsigned long *off, char **modname, char *sym)
6632 {
6633 	struct ftrace_mod_map *mod_map;
6634 	const char *ret = NULL;
6635 
6636 	/* mod_map is freed via call_rcu() */
6637 	preempt_disable();
6638 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6639 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6640 		if (ret) {
6641 			if (modname)
6642 				*modname = mod_map->mod->name;
6643 			break;
6644 		}
6645 	}
6646 	preempt_enable();
6647 
6648 	return ret;
6649 }
6650 
6651 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6652 			   char *type, char *name,
6653 			   char *module_name, int *exported)
6654 {
6655 	struct ftrace_mod_map *mod_map;
6656 	struct ftrace_mod_func *mod_func;
6657 	int ret;
6658 
6659 	preempt_disable();
6660 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6661 
6662 		if (symnum >= mod_map->num_funcs) {
6663 			symnum -= mod_map->num_funcs;
6664 			continue;
6665 		}
6666 
6667 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6668 			if (symnum > 1) {
6669 				symnum--;
6670 				continue;
6671 			}
6672 
6673 			*value = mod_func->ip;
6674 			*type = 'T';
6675 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6676 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6677 			*exported = 1;
6678 			preempt_enable();
6679 			return 0;
6680 		}
6681 		WARN_ON(1);
6682 		break;
6683 	}
6684 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6685 					    module_name, exported);
6686 	preempt_enable();
6687 	return ret;
6688 }
6689 
6690 #else
6691 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6692 				struct dyn_ftrace *rec) { }
6693 static inline struct ftrace_mod_map *
6694 allocate_ftrace_mod_map(struct module *mod,
6695 			unsigned long start, unsigned long end)
6696 {
6697 	return NULL;
6698 }
6699 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6700 			   char *type, char *name, char *module_name,
6701 			   int *exported)
6702 {
6703 	int ret;
6704 
6705 	preempt_disable();
6706 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6707 					    module_name, exported);
6708 	preempt_enable();
6709 	return ret;
6710 }
6711 #endif /* CONFIG_MODULES */
6712 
6713 struct ftrace_init_func {
6714 	struct list_head list;
6715 	unsigned long ip;
6716 };
6717 
6718 /* Clear any init ips from hashes */
6719 static void
6720 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6721 {
6722 	struct ftrace_func_entry *entry;
6723 
6724 	entry = ftrace_lookup_ip(hash, func->ip);
6725 	/*
6726 	 * Do not allow this rec to match again.
6727 	 * Yeah, it may waste some memory, but will be removed
6728 	 * if/when the hash is modified again.
6729 	 */
6730 	if (entry)
6731 		entry->ip = 0;
6732 }
6733 
6734 static void
6735 clear_func_from_hashes(struct ftrace_init_func *func)
6736 {
6737 	struct trace_array *tr;
6738 
6739 	mutex_lock(&trace_types_lock);
6740 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6741 		if (!tr->ops || !tr->ops->func_hash)
6742 			continue;
6743 		mutex_lock(&tr->ops->func_hash->regex_lock);
6744 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6745 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6746 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6747 	}
6748 	mutex_unlock(&trace_types_lock);
6749 }
6750 
6751 static void add_to_clear_hash_list(struct list_head *clear_list,
6752 				   struct dyn_ftrace *rec)
6753 {
6754 	struct ftrace_init_func *func;
6755 
6756 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6757 	if (!func) {
6758 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6759 		return;
6760 	}
6761 
6762 	func->ip = rec->ip;
6763 	list_add(&func->list, clear_list);
6764 }
6765 
6766 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6767 {
6768 	unsigned long start = (unsigned long)(start_ptr);
6769 	unsigned long end = (unsigned long)(end_ptr);
6770 	struct ftrace_page **last_pg = &ftrace_pages_start;
6771 	struct ftrace_page *pg;
6772 	struct dyn_ftrace *rec;
6773 	struct dyn_ftrace key;
6774 	struct ftrace_mod_map *mod_map = NULL;
6775 	struct ftrace_init_func *func, *func_next;
6776 	struct list_head clear_hash;
6777 	int order;
6778 
6779 	INIT_LIST_HEAD(&clear_hash);
6780 
6781 	key.ip = start;
6782 	key.flags = end;	/* overload flags, as it is unsigned long */
6783 
6784 	mutex_lock(&ftrace_lock);
6785 
6786 	/*
6787 	 * If we are freeing module init memory, then check if
6788 	 * any tracer is active. If so, we need to save a mapping of
6789 	 * the module functions being freed with the address.
6790 	 */
6791 	if (mod && ftrace_ops_list != &ftrace_list_end)
6792 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6793 
6794 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6795 		if (end < pg->records[0].ip ||
6796 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6797 			continue;
6798  again:
6799 		rec = bsearch(&key, pg->records, pg->index,
6800 			      sizeof(struct dyn_ftrace),
6801 			      ftrace_cmp_recs);
6802 		if (!rec)
6803 			continue;
6804 
6805 		/* rec will be cleared from hashes after ftrace_lock unlock */
6806 		add_to_clear_hash_list(&clear_hash, rec);
6807 
6808 		if (mod_map)
6809 			save_ftrace_mod_rec(mod_map, rec);
6810 
6811 		pg->index--;
6812 		ftrace_update_tot_cnt--;
6813 		if (!pg->index) {
6814 			*last_pg = pg->next;
6815 			order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6816 			if (order >= 0)
6817 				free_pages((unsigned long)pg->records, order);
6818 			ftrace_number_of_pages -= 1 << order;
6819 			ftrace_number_of_groups--;
6820 			kfree(pg);
6821 			pg = container_of(last_pg, struct ftrace_page, next);
6822 			if (!(*last_pg))
6823 				ftrace_pages = pg;
6824 			continue;
6825 		}
6826 		memmove(rec, rec + 1,
6827 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6828 		/* More than one function may be in this block */
6829 		goto again;
6830 	}
6831 	mutex_unlock(&ftrace_lock);
6832 
6833 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6834 		clear_func_from_hashes(func);
6835 		kfree(func);
6836 	}
6837 }
6838 
6839 void __init ftrace_free_init_mem(void)
6840 {
6841 	void *start = (void *)(&__init_begin);
6842 	void *end = (void *)(&__init_end);
6843 
6844 	ftrace_free_mem(NULL, start, end);
6845 }
6846 
6847 void __init ftrace_init(void)
6848 {
6849 	extern unsigned long __start_mcount_loc[];
6850 	extern unsigned long __stop_mcount_loc[];
6851 	unsigned long count, flags;
6852 	int ret;
6853 
6854 	local_irq_save(flags);
6855 	ret = ftrace_dyn_arch_init();
6856 	local_irq_restore(flags);
6857 	if (ret)
6858 		goto failed;
6859 
6860 	count = __stop_mcount_loc - __start_mcount_loc;
6861 	if (!count) {
6862 		pr_info("ftrace: No functions to be traced?\n");
6863 		goto failed;
6864 	}
6865 
6866 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6867 		count, count / ENTRIES_PER_PAGE + 1);
6868 
6869 	last_ftrace_enabled = ftrace_enabled = 1;
6870 
6871 	ret = ftrace_process_locs(NULL,
6872 				  __start_mcount_loc,
6873 				  __stop_mcount_loc);
6874 
6875 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6876 		ftrace_number_of_pages, ftrace_number_of_groups);
6877 
6878 	set_ftrace_early_filters();
6879 
6880 	return;
6881  failed:
6882 	ftrace_disabled = 1;
6883 }
6884 
6885 /* Do nothing if arch does not support this */
6886 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6887 {
6888 }
6889 
6890 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6891 {
6892 	unsigned long trampoline = ops->trampoline;
6893 
6894 	arch_ftrace_update_trampoline(ops);
6895 	if (ops->trampoline && ops->trampoline != trampoline &&
6896 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6897 		/* Add to kallsyms before the perf events */
6898 		ftrace_add_trampoline_to_kallsyms(ops);
6899 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6900 				   ops->trampoline, ops->trampoline_size, false,
6901 				   FTRACE_TRAMPOLINE_SYM);
6902 		/*
6903 		 * Record the perf text poke event after the ksymbol register
6904 		 * event.
6905 		 */
6906 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6907 				     (void *)ops->trampoline,
6908 				     ops->trampoline_size);
6909 	}
6910 }
6911 
6912 void ftrace_init_trace_array(struct trace_array *tr)
6913 {
6914 	INIT_LIST_HEAD(&tr->func_probes);
6915 	INIT_LIST_HEAD(&tr->mod_trace);
6916 	INIT_LIST_HEAD(&tr->mod_notrace);
6917 }
6918 #else
6919 
6920 struct ftrace_ops global_ops = {
6921 	.func			= ftrace_stub,
6922 	.flags			= FTRACE_OPS_FL_INITIALIZED |
6923 				  FTRACE_OPS_FL_PID,
6924 };
6925 
6926 static int __init ftrace_nodyn_init(void)
6927 {
6928 	ftrace_enabled = 1;
6929 	return 0;
6930 }
6931 core_initcall(ftrace_nodyn_init);
6932 
6933 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6934 static inline void ftrace_startup_enable(int command) { }
6935 static inline void ftrace_startup_all(int command) { }
6936 
6937 # define ftrace_startup_sysctl()	do { } while (0)
6938 # define ftrace_shutdown_sysctl()	do { } while (0)
6939 
6940 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6941 {
6942 }
6943 
6944 #endif /* CONFIG_DYNAMIC_FTRACE */
6945 
6946 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6947 {
6948 	tr->ops = &global_ops;
6949 	tr->ops->private = tr;
6950 	ftrace_init_trace_array(tr);
6951 }
6952 
6953 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6954 {
6955 	/* If we filter on pids, update to use the pid function */
6956 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6957 		if (WARN_ON(tr->ops->func != ftrace_stub))
6958 			printk("ftrace ops had %pS for function\n",
6959 			       tr->ops->func);
6960 	}
6961 	tr->ops->func = func;
6962 	tr->ops->private = tr;
6963 }
6964 
6965 void ftrace_reset_array_ops(struct trace_array *tr)
6966 {
6967 	tr->ops->func = ftrace_stub;
6968 }
6969 
6970 static nokprobe_inline void
6971 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6972 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
6973 {
6974 	struct pt_regs *regs = ftrace_get_regs(fregs);
6975 	struct ftrace_ops *op;
6976 	int bit;
6977 
6978 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
6979 	if (bit < 0)
6980 		return;
6981 
6982 	/*
6983 	 * Some of the ops may be dynamically allocated,
6984 	 * they must be freed after a synchronize_rcu().
6985 	 */
6986 	preempt_disable_notrace();
6987 
6988 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6989 		/* Stub functions don't need to be called nor tested */
6990 		if (op->flags & FTRACE_OPS_FL_STUB)
6991 			continue;
6992 		/*
6993 		 * Check the following for each ops before calling their func:
6994 		 *  if RCU flag is set, then rcu_is_watching() must be true
6995 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6996 		 *                          must be false
6997 		 *  Otherwise test if the ip matches the ops filter
6998 		 *
6999 		 * If any of the above fails then the op->func() is not executed.
7000 		 */
7001 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7002 		    ftrace_ops_test(op, ip, regs)) {
7003 			if (FTRACE_WARN_ON(!op->func)) {
7004 				pr_warn("op=%p %pS\n", op, op);
7005 				goto out;
7006 			}
7007 			op->func(ip, parent_ip, op, fregs);
7008 		}
7009 	} while_for_each_ftrace_op(op);
7010 out:
7011 	preempt_enable_notrace();
7012 	trace_clear_recursion(bit);
7013 }
7014 
7015 /*
7016  * Some archs only support passing ip and parent_ip. Even though
7017  * the list function ignores the op parameter, we do not want any
7018  * C side effects, where a function is called without the caller
7019  * sending a third parameter.
7020  * Archs are to support both the regs and ftrace_ops at the same time.
7021  * If they support ftrace_ops, it is assumed they support regs.
7022  * If call backs want to use regs, they must either check for regs
7023  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7024  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7025  * An architecture can pass partial regs with ftrace_ops and still
7026  * set the ARCH_SUPPORTS_FTRACE_OPS.
7027  */
7028 #if ARCH_SUPPORTS_FTRACE_OPS
7029 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7030 				 struct ftrace_ops *op, struct ftrace_regs *fregs)
7031 {
7032 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7033 }
7034 NOKPROBE_SYMBOL(ftrace_ops_list_func);
7035 #else
7036 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
7037 {
7038 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7039 }
7040 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
7041 #endif
7042 
7043 /*
7044  * If there's only one function registered but it does not support
7045  * recursion, needs RCU protection and/or requires per cpu handling, then
7046  * this function will be called by the mcount trampoline.
7047  */
7048 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7049 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7050 {
7051 	int bit;
7052 
7053 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
7054 	if (bit < 0)
7055 		return;
7056 
7057 	preempt_disable_notrace();
7058 
7059 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7060 		op->func(ip, parent_ip, op, fregs);
7061 
7062 	preempt_enable_notrace();
7063 	trace_clear_recursion(bit);
7064 }
7065 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7066 
7067 /**
7068  * ftrace_ops_get_func - get the function a trampoline should call
7069  * @ops: the ops to get the function for
7070  *
7071  * Normally the mcount trampoline will call the ops->func, but there
7072  * are times that it should not. For example, if the ops does not
7073  * have its own recursion protection, then it should call the
7074  * ftrace_ops_assist_func() instead.
7075  *
7076  * Returns the function that the trampoline should call for @ops.
7077  */
7078 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7079 {
7080 	/*
7081 	 * If the function does not handle recursion or needs to be RCU safe,
7082 	 * then we need to call the assist handler.
7083 	 */
7084 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7085 			  FTRACE_OPS_FL_RCU))
7086 		return ftrace_ops_assist_func;
7087 
7088 	return ops->func;
7089 }
7090 
7091 static void
7092 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7093 		    struct task_struct *prev, struct task_struct *next)
7094 {
7095 	struct trace_array *tr = data;
7096 	struct trace_pid_list *pid_list;
7097 	struct trace_pid_list *no_pid_list;
7098 
7099 	pid_list = rcu_dereference_sched(tr->function_pids);
7100 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7101 
7102 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7103 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7104 			       FTRACE_PID_IGNORE);
7105 	else
7106 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7107 			       next->pid);
7108 }
7109 
7110 static void
7111 ftrace_pid_follow_sched_process_fork(void *data,
7112 				     struct task_struct *self,
7113 				     struct task_struct *task)
7114 {
7115 	struct trace_pid_list *pid_list;
7116 	struct trace_array *tr = data;
7117 
7118 	pid_list = rcu_dereference_sched(tr->function_pids);
7119 	trace_filter_add_remove_task(pid_list, self, task);
7120 
7121 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7122 	trace_filter_add_remove_task(pid_list, self, task);
7123 }
7124 
7125 static void
7126 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7127 {
7128 	struct trace_pid_list *pid_list;
7129 	struct trace_array *tr = data;
7130 
7131 	pid_list = rcu_dereference_sched(tr->function_pids);
7132 	trace_filter_add_remove_task(pid_list, NULL, task);
7133 
7134 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7135 	trace_filter_add_remove_task(pid_list, NULL, task);
7136 }
7137 
7138 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7139 {
7140 	if (enable) {
7141 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7142 						  tr);
7143 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7144 						  tr);
7145 	} else {
7146 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7147 						    tr);
7148 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7149 						    tr);
7150 	}
7151 }
7152 
7153 static void clear_ftrace_pids(struct trace_array *tr, int type)
7154 {
7155 	struct trace_pid_list *pid_list;
7156 	struct trace_pid_list *no_pid_list;
7157 	int cpu;
7158 
7159 	pid_list = rcu_dereference_protected(tr->function_pids,
7160 					     lockdep_is_held(&ftrace_lock));
7161 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7162 						lockdep_is_held(&ftrace_lock));
7163 
7164 	/* Make sure there's something to do */
7165 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7166 		return;
7167 
7168 	/* See if the pids still need to be checked after this */
7169 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7170 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7171 		for_each_possible_cpu(cpu)
7172 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7173 	}
7174 
7175 	if (type & TRACE_PIDS)
7176 		rcu_assign_pointer(tr->function_pids, NULL);
7177 
7178 	if (type & TRACE_NO_PIDS)
7179 		rcu_assign_pointer(tr->function_no_pids, NULL);
7180 
7181 	/* Wait till all users are no longer using pid filtering */
7182 	synchronize_rcu();
7183 
7184 	if ((type & TRACE_PIDS) && pid_list)
7185 		trace_free_pid_list(pid_list);
7186 
7187 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7188 		trace_free_pid_list(no_pid_list);
7189 }
7190 
7191 void ftrace_clear_pids(struct trace_array *tr)
7192 {
7193 	mutex_lock(&ftrace_lock);
7194 
7195 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7196 
7197 	mutex_unlock(&ftrace_lock);
7198 }
7199 
7200 static void ftrace_pid_reset(struct trace_array *tr, int type)
7201 {
7202 	mutex_lock(&ftrace_lock);
7203 	clear_ftrace_pids(tr, type);
7204 
7205 	ftrace_update_pid_func();
7206 	ftrace_startup_all(0);
7207 
7208 	mutex_unlock(&ftrace_lock);
7209 }
7210 
7211 /* Greater than any max PID */
7212 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7213 
7214 static void *fpid_start(struct seq_file *m, loff_t *pos)
7215 	__acquires(RCU)
7216 {
7217 	struct trace_pid_list *pid_list;
7218 	struct trace_array *tr = m->private;
7219 
7220 	mutex_lock(&ftrace_lock);
7221 	rcu_read_lock_sched();
7222 
7223 	pid_list = rcu_dereference_sched(tr->function_pids);
7224 
7225 	if (!pid_list)
7226 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7227 
7228 	return trace_pid_start(pid_list, pos);
7229 }
7230 
7231 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7232 {
7233 	struct trace_array *tr = m->private;
7234 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7235 
7236 	if (v == FTRACE_NO_PIDS) {
7237 		(*pos)++;
7238 		return NULL;
7239 	}
7240 	return trace_pid_next(pid_list, v, pos);
7241 }
7242 
7243 static void fpid_stop(struct seq_file *m, void *p)
7244 	__releases(RCU)
7245 {
7246 	rcu_read_unlock_sched();
7247 	mutex_unlock(&ftrace_lock);
7248 }
7249 
7250 static int fpid_show(struct seq_file *m, void *v)
7251 {
7252 	if (v == FTRACE_NO_PIDS) {
7253 		seq_puts(m, "no pid\n");
7254 		return 0;
7255 	}
7256 
7257 	return trace_pid_show(m, v);
7258 }
7259 
7260 static const struct seq_operations ftrace_pid_sops = {
7261 	.start = fpid_start,
7262 	.next = fpid_next,
7263 	.stop = fpid_stop,
7264 	.show = fpid_show,
7265 };
7266 
7267 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7268 	__acquires(RCU)
7269 {
7270 	struct trace_pid_list *pid_list;
7271 	struct trace_array *tr = m->private;
7272 
7273 	mutex_lock(&ftrace_lock);
7274 	rcu_read_lock_sched();
7275 
7276 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7277 
7278 	if (!pid_list)
7279 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7280 
7281 	return trace_pid_start(pid_list, pos);
7282 }
7283 
7284 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7285 {
7286 	struct trace_array *tr = m->private;
7287 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7288 
7289 	if (v == FTRACE_NO_PIDS) {
7290 		(*pos)++;
7291 		return NULL;
7292 	}
7293 	return trace_pid_next(pid_list, v, pos);
7294 }
7295 
7296 static const struct seq_operations ftrace_no_pid_sops = {
7297 	.start = fnpid_start,
7298 	.next = fnpid_next,
7299 	.stop = fpid_stop,
7300 	.show = fpid_show,
7301 };
7302 
7303 static int pid_open(struct inode *inode, struct file *file, int type)
7304 {
7305 	const struct seq_operations *seq_ops;
7306 	struct trace_array *tr = inode->i_private;
7307 	struct seq_file *m;
7308 	int ret = 0;
7309 
7310 	ret = tracing_check_open_get_tr(tr);
7311 	if (ret)
7312 		return ret;
7313 
7314 	if ((file->f_mode & FMODE_WRITE) &&
7315 	    (file->f_flags & O_TRUNC))
7316 		ftrace_pid_reset(tr, type);
7317 
7318 	switch (type) {
7319 	case TRACE_PIDS:
7320 		seq_ops = &ftrace_pid_sops;
7321 		break;
7322 	case TRACE_NO_PIDS:
7323 		seq_ops = &ftrace_no_pid_sops;
7324 		break;
7325 	default:
7326 		trace_array_put(tr);
7327 		WARN_ON_ONCE(1);
7328 		return -EINVAL;
7329 	}
7330 
7331 	ret = seq_open(file, seq_ops);
7332 	if (ret < 0) {
7333 		trace_array_put(tr);
7334 	} else {
7335 		m = file->private_data;
7336 		/* copy tr over to seq ops */
7337 		m->private = tr;
7338 	}
7339 
7340 	return ret;
7341 }
7342 
7343 static int
7344 ftrace_pid_open(struct inode *inode, struct file *file)
7345 {
7346 	return pid_open(inode, file, TRACE_PIDS);
7347 }
7348 
7349 static int
7350 ftrace_no_pid_open(struct inode *inode, struct file *file)
7351 {
7352 	return pid_open(inode, file, TRACE_NO_PIDS);
7353 }
7354 
7355 static void ignore_task_cpu(void *data)
7356 {
7357 	struct trace_array *tr = data;
7358 	struct trace_pid_list *pid_list;
7359 	struct trace_pid_list *no_pid_list;
7360 
7361 	/*
7362 	 * This function is called by on_each_cpu() while the
7363 	 * event_mutex is held.
7364 	 */
7365 	pid_list = rcu_dereference_protected(tr->function_pids,
7366 					     mutex_is_locked(&ftrace_lock));
7367 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7368 						mutex_is_locked(&ftrace_lock));
7369 
7370 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7371 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7372 			       FTRACE_PID_IGNORE);
7373 	else
7374 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7375 			       current->pid);
7376 }
7377 
7378 static ssize_t
7379 pid_write(struct file *filp, const char __user *ubuf,
7380 	  size_t cnt, loff_t *ppos, int type)
7381 {
7382 	struct seq_file *m = filp->private_data;
7383 	struct trace_array *tr = m->private;
7384 	struct trace_pid_list *filtered_pids;
7385 	struct trace_pid_list *other_pids;
7386 	struct trace_pid_list *pid_list;
7387 	ssize_t ret;
7388 
7389 	if (!cnt)
7390 		return 0;
7391 
7392 	mutex_lock(&ftrace_lock);
7393 
7394 	switch (type) {
7395 	case TRACE_PIDS:
7396 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7397 					     lockdep_is_held(&ftrace_lock));
7398 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7399 					     lockdep_is_held(&ftrace_lock));
7400 		break;
7401 	case TRACE_NO_PIDS:
7402 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7403 					     lockdep_is_held(&ftrace_lock));
7404 		other_pids = rcu_dereference_protected(tr->function_pids,
7405 					     lockdep_is_held(&ftrace_lock));
7406 		break;
7407 	default:
7408 		ret = -EINVAL;
7409 		WARN_ON_ONCE(1);
7410 		goto out;
7411 	}
7412 
7413 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7414 	if (ret < 0)
7415 		goto out;
7416 
7417 	switch (type) {
7418 	case TRACE_PIDS:
7419 		rcu_assign_pointer(tr->function_pids, pid_list);
7420 		break;
7421 	case TRACE_NO_PIDS:
7422 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7423 		break;
7424 	}
7425 
7426 
7427 	if (filtered_pids) {
7428 		synchronize_rcu();
7429 		trace_free_pid_list(filtered_pids);
7430 	} else if (pid_list && !other_pids) {
7431 		/* Register a probe to set whether to ignore the tracing of a task */
7432 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7433 	}
7434 
7435 	/*
7436 	 * Ignoring of pids is done at task switch. But we have to
7437 	 * check for those tasks that are currently running.
7438 	 * Always do this in case a pid was appended or removed.
7439 	 */
7440 	on_each_cpu(ignore_task_cpu, tr, 1);
7441 
7442 	ftrace_update_pid_func();
7443 	ftrace_startup_all(0);
7444  out:
7445 	mutex_unlock(&ftrace_lock);
7446 
7447 	if (ret > 0)
7448 		*ppos += ret;
7449 
7450 	return ret;
7451 }
7452 
7453 static ssize_t
7454 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7455 		 size_t cnt, loff_t *ppos)
7456 {
7457 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7458 }
7459 
7460 static ssize_t
7461 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7462 		    size_t cnt, loff_t *ppos)
7463 {
7464 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7465 }
7466 
7467 static int
7468 ftrace_pid_release(struct inode *inode, struct file *file)
7469 {
7470 	struct trace_array *tr = inode->i_private;
7471 
7472 	trace_array_put(tr);
7473 
7474 	return seq_release(inode, file);
7475 }
7476 
7477 static const struct file_operations ftrace_pid_fops = {
7478 	.open		= ftrace_pid_open,
7479 	.write		= ftrace_pid_write,
7480 	.read		= seq_read,
7481 	.llseek		= tracing_lseek,
7482 	.release	= ftrace_pid_release,
7483 };
7484 
7485 static const struct file_operations ftrace_no_pid_fops = {
7486 	.open		= ftrace_no_pid_open,
7487 	.write		= ftrace_no_pid_write,
7488 	.read		= seq_read,
7489 	.llseek		= tracing_lseek,
7490 	.release	= ftrace_pid_release,
7491 };
7492 
7493 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7494 {
7495 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7496 			    tr, &ftrace_pid_fops);
7497 	trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7498 			    tr, &ftrace_no_pid_fops);
7499 }
7500 
7501 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7502 					 struct dentry *d_tracer)
7503 {
7504 	/* Only the top level directory has the dyn_tracefs and profile */
7505 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7506 
7507 	ftrace_init_dyn_tracefs(d_tracer);
7508 	ftrace_profile_tracefs(d_tracer);
7509 }
7510 
7511 /**
7512  * ftrace_kill - kill ftrace
7513  *
7514  * This function should be used by panic code. It stops ftrace
7515  * but in a not so nice way. If you need to simply kill ftrace
7516  * from a non-atomic section, use ftrace_kill.
7517  */
7518 void ftrace_kill(void)
7519 {
7520 	ftrace_disabled = 1;
7521 	ftrace_enabled = 0;
7522 	ftrace_trace_function = ftrace_stub;
7523 }
7524 
7525 /**
7526  * Test if ftrace is dead or not.
7527  */
7528 int ftrace_is_dead(void)
7529 {
7530 	return ftrace_disabled;
7531 }
7532 
7533 /**
7534  * register_ftrace_function - register a function for profiling
7535  * @ops - ops structure that holds the function for profiling.
7536  *
7537  * Register a function to be called by all functions in the
7538  * kernel.
7539  *
7540  * Note: @ops->func and all the functions it calls must be labeled
7541  *       with "notrace", otherwise it will go into a
7542  *       recursive loop.
7543  */
7544 int register_ftrace_function(struct ftrace_ops *ops)
7545 {
7546 	int ret = -1;
7547 
7548 	ftrace_ops_init(ops);
7549 
7550 	mutex_lock(&ftrace_lock);
7551 
7552 	ret = ftrace_startup(ops, 0);
7553 
7554 	mutex_unlock(&ftrace_lock);
7555 
7556 	return ret;
7557 }
7558 EXPORT_SYMBOL_GPL(register_ftrace_function);
7559 
7560 /**
7561  * unregister_ftrace_function - unregister a function for profiling.
7562  * @ops - ops structure that holds the function to unregister
7563  *
7564  * Unregister a function that was added to be called by ftrace profiling.
7565  */
7566 int unregister_ftrace_function(struct ftrace_ops *ops)
7567 {
7568 	int ret;
7569 
7570 	mutex_lock(&ftrace_lock);
7571 	ret = ftrace_shutdown(ops, 0);
7572 	mutex_unlock(&ftrace_lock);
7573 
7574 	return ret;
7575 }
7576 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7577 
7578 static bool is_permanent_ops_registered(void)
7579 {
7580 	struct ftrace_ops *op;
7581 
7582 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7583 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7584 			return true;
7585 	} while_for_each_ftrace_op(op);
7586 
7587 	return false;
7588 }
7589 
7590 int
7591 ftrace_enable_sysctl(struct ctl_table *table, int write,
7592 		     void *buffer, size_t *lenp, loff_t *ppos)
7593 {
7594 	int ret = -ENODEV;
7595 
7596 	mutex_lock(&ftrace_lock);
7597 
7598 	if (unlikely(ftrace_disabled))
7599 		goto out;
7600 
7601 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7602 
7603 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7604 		goto out;
7605 
7606 	if (ftrace_enabled) {
7607 
7608 		/* we are starting ftrace again */
7609 		if (rcu_dereference_protected(ftrace_ops_list,
7610 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7611 			update_ftrace_function();
7612 
7613 		ftrace_startup_sysctl();
7614 
7615 	} else {
7616 		if (is_permanent_ops_registered()) {
7617 			ftrace_enabled = true;
7618 			ret = -EBUSY;
7619 			goto out;
7620 		}
7621 
7622 		/* stopping ftrace calls (just send to ftrace_stub) */
7623 		ftrace_trace_function = ftrace_stub;
7624 
7625 		ftrace_shutdown_sysctl();
7626 	}
7627 
7628 	last_ftrace_enabled = !!ftrace_enabled;
7629  out:
7630 	mutex_unlock(&ftrace_lock);
7631 	return ret;
7632 }
7633