xref: /openbmc/linux/kernel/trace/ftrace.c (revision ba007062)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 static inline void ftrace_ops_init(struct ftrace_ops *ops)
129 {
130 #ifdef CONFIG_DYNAMIC_FTRACE
131 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
132 		mutex_init(&ops->local_hash.regex_lock);
133 		ops->func_hash = &ops->local_hash;
134 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
135 	}
136 #endif
137 }
138 
139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
140 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
141 {
142 	struct trace_array *tr = op->private;
143 	int pid;
144 
145 	if (tr) {
146 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
147 		if (pid == FTRACE_PID_IGNORE)
148 			return;
149 		if (pid != FTRACE_PID_TRACE &&
150 		    pid != current->pid)
151 			return;
152 	}
153 
154 	op->saved_func(ip, parent_ip, op, fregs);
155 }
156 
157 static void ftrace_sync_ipi(void *data)
158 {
159 	/* Probably not needed, but do it anyway */
160 	smp_rmb();
161 }
162 
163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
164 {
165 	/*
166 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
167 	 * then it needs to call the list anyway.
168 	 */
169 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
170 	    FTRACE_FORCE_LIST_FUNC)
171 		return ftrace_ops_list_func;
172 
173 	return ftrace_ops_get_func(ops);
174 }
175 
176 static void update_ftrace_function(void)
177 {
178 	ftrace_func_t func;
179 
180 	/*
181 	 * Prepare the ftrace_ops that the arch callback will use.
182 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
183 	 * will point to the ops we want.
184 	 */
185 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
186 						lockdep_is_held(&ftrace_lock));
187 
188 	/* If there's no ftrace_ops registered, just call the stub function */
189 	if (set_function_trace_op == &ftrace_list_end) {
190 		func = ftrace_stub;
191 
192 	/*
193 	 * If we are at the end of the list and this ops is
194 	 * recursion safe and not dynamic and the arch supports passing ops,
195 	 * then have the mcount trampoline call the function directly.
196 	 */
197 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
198 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
199 		func = ftrace_ops_get_list_func(ftrace_ops_list);
200 
201 	} else {
202 		/* Just use the default ftrace_ops */
203 		set_function_trace_op = &ftrace_list_end;
204 		func = ftrace_ops_list_func;
205 	}
206 
207 	update_function_graph_func();
208 
209 	/* If there's no change, then do nothing more here */
210 	if (ftrace_trace_function == func)
211 		return;
212 
213 	/*
214 	 * If we are using the list function, it doesn't care
215 	 * about the function_trace_ops.
216 	 */
217 	if (func == ftrace_ops_list_func) {
218 		ftrace_trace_function = func;
219 		/*
220 		 * Don't even bother setting function_trace_ops,
221 		 * it would be racy to do so anyway.
222 		 */
223 		return;
224 	}
225 
226 #ifndef CONFIG_DYNAMIC_FTRACE
227 	/*
228 	 * For static tracing, we need to be a bit more careful.
229 	 * The function change takes affect immediately. Thus,
230 	 * we need to coordinate the setting of the function_trace_ops
231 	 * with the setting of the ftrace_trace_function.
232 	 *
233 	 * Set the function to the list ops, which will call the
234 	 * function we want, albeit indirectly, but it handles the
235 	 * ftrace_ops and doesn't depend on function_trace_op.
236 	 */
237 	ftrace_trace_function = ftrace_ops_list_func;
238 	/*
239 	 * Make sure all CPUs see this. Yes this is slow, but static
240 	 * tracing is slow and nasty to have enabled.
241 	 */
242 	synchronize_rcu_tasks_rude();
243 	/* Now all cpus are using the list ops. */
244 	function_trace_op = set_function_trace_op;
245 	/* Make sure the function_trace_op is visible on all CPUs */
246 	smp_wmb();
247 	/* Nasty way to force a rmb on all cpus */
248 	smp_call_function(ftrace_sync_ipi, NULL, 1);
249 	/* OK, we are all set to update the ftrace_trace_function now! */
250 #endif /* !CONFIG_DYNAMIC_FTRACE */
251 
252 	ftrace_trace_function = func;
253 }
254 
255 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
256 			   struct ftrace_ops *ops)
257 {
258 	rcu_assign_pointer(ops->next, *list);
259 
260 	/*
261 	 * We are entering ops into the list but another
262 	 * CPU might be walking that list. We need to make sure
263 	 * the ops->next pointer is valid before another CPU sees
264 	 * the ops pointer included into the list.
265 	 */
266 	rcu_assign_pointer(*list, ops);
267 }
268 
269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
270 			     struct ftrace_ops *ops)
271 {
272 	struct ftrace_ops **p;
273 
274 	/*
275 	 * If we are removing the last function, then simply point
276 	 * to the ftrace_stub.
277 	 */
278 	if (rcu_dereference_protected(*list,
279 			lockdep_is_held(&ftrace_lock)) == ops &&
280 	    rcu_dereference_protected(ops->next,
281 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
282 		*list = &ftrace_list_end;
283 		return 0;
284 	}
285 
286 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
287 		if (*p == ops)
288 			break;
289 
290 	if (*p != ops)
291 		return -1;
292 
293 	*p = (*p)->next;
294 	return 0;
295 }
296 
297 static void ftrace_update_trampoline(struct ftrace_ops *ops);
298 
299 int __register_ftrace_function(struct ftrace_ops *ops)
300 {
301 	if (ops->flags & FTRACE_OPS_FL_DELETED)
302 		return -EINVAL;
303 
304 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
305 		return -EBUSY;
306 
307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
308 	/*
309 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
310 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
311 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
312 	 */
313 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
314 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
315 		return -EINVAL;
316 
317 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
318 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
319 #endif
320 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
321 		return -EBUSY;
322 
323 	if (!is_kernel_core_data((unsigned long)ops))
324 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
325 
326 	add_ftrace_ops(&ftrace_ops_list, ops);
327 
328 	/* Always save the function, and reset at unregistering */
329 	ops->saved_func = ops->func;
330 
331 	if (ftrace_pids_enabled(ops))
332 		ops->func = ftrace_pid_func;
333 
334 	ftrace_update_trampoline(ops);
335 
336 	if (ftrace_enabled)
337 		update_ftrace_function();
338 
339 	return 0;
340 }
341 
342 int __unregister_ftrace_function(struct ftrace_ops *ops)
343 {
344 	int ret;
345 
346 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
347 		return -EBUSY;
348 
349 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
350 
351 	if (ret < 0)
352 		return ret;
353 
354 	if (ftrace_enabled)
355 		update_ftrace_function();
356 
357 	ops->func = ops->saved_func;
358 
359 	return 0;
360 }
361 
362 static void ftrace_update_pid_func(void)
363 {
364 	struct ftrace_ops *op;
365 
366 	/* Only do something if we are tracing something */
367 	if (ftrace_trace_function == ftrace_stub)
368 		return;
369 
370 	do_for_each_ftrace_op(op, ftrace_ops_list) {
371 		if (op->flags & FTRACE_OPS_FL_PID) {
372 			op->func = ftrace_pids_enabled(op) ?
373 				ftrace_pid_func : op->saved_func;
374 			ftrace_update_trampoline(op);
375 		}
376 	} while_for_each_ftrace_op(op);
377 
378 	update_ftrace_function();
379 }
380 
381 #ifdef CONFIG_FUNCTION_PROFILER
382 struct ftrace_profile {
383 	struct hlist_node		node;
384 	unsigned long			ip;
385 	unsigned long			counter;
386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
387 	unsigned long long		time;
388 	unsigned long long		time_squared;
389 #endif
390 };
391 
392 struct ftrace_profile_page {
393 	struct ftrace_profile_page	*next;
394 	unsigned long			index;
395 	struct ftrace_profile		records[];
396 };
397 
398 struct ftrace_profile_stat {
399 	atomic_t			disabled;
400 	struct hlist_head		*hash;
401 	struct ftrace_profile_page	*pages;
402 	struct ftrace_profile_page	*start;
403 	struct tracer_stat		stat;
404 };
405 
406 #define PROFILE_RECORDS_SIZE						\
407 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
408 
409 #define PROFILES_PER_PAGE					\
410 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
411 
412 static int ftrace_profile_enabled __read_mostly;
413 
414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
415 static DEFINE_MUTEX(ftrace_profile_lock);
416 
417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
418 
419 #define FTRACE_PROFILE_HASH_BITS 10
420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
421 
422 static void *
423 function_stat_next(void *v, int idx)
424 {
425 	struct ftrace_profile *rec = v;
426 	struct ftrace_profile_page *pg;
427 
428 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
429 
430  again:
431 	if (idx != 0)
432 		rec++;
433 
434 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
435 		pg = pg->next;
436 		if (!pg)
437 			return NULL;
438 		rec = &pg->records[0];
439 		if (!rec->counter)
440 			goto again;
441 	}
442 
443 	return rec;
444 }
445 
446 static void *function_stat_start(struct tracer_stat *trace)
447 {
448 	struct ftrace_profile_stat *stat =
449 		container_of(trace, struct ftrace_profile_stat, stat);
450 
451 	if (!stat || !stat->start)
452 		return NULL;
453 
454 	return function_stat_next(&stat->start->records[0], 0);
455 }
456 
457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 /* function graph compares on total time */
459 static int function_stat_cmp(const void *p1, const void *p2)
460 {
461 	const struct ftrace_profile *a = p1;
462 	const struct ftrace_profile *b = p2;
463 
464 	if (a->time < b->time)
465 		return -1;
466 	if (a->time > b->time)
467 		return 1;
468 	else
469 		return 0;
470 }
471 #else
472 /* not function graph compares against hits */
473 static int function_stat_cmp(const void *p1, const void *p2)
474 {
475 	const struct ftrace_profile *a = p1;
476 	const struct ftrace_profile *b = p2;
477 
478 	if (a->counter < b->counter)
479 		return -1;
480 	if (a->counter > b->counter)
481 		return 1;
482 	else
483 		return 0;
484 }
485 #endif
486 
487 static int function_stat_headers(struct seq_file *m)
488 {
489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
490 	seq_puts(m, "  Function                               "
491 		 "Hit    Time            Avg             s^2\n"
492 		    "  --------                               "
493 		 "---    ----            ---             ---\n");
494 #else
495 	seq_puts(m, "  Function                               Hit\n"
496 		    "  --------                               ---\n");
497 #endif
498 	return 0;
499 }
500 
501 static int function_stat_show(struct seq_file *m, void *v)
502 {
503 	struct ftrace_profile *rec = v;
504 	char str[KSYM_SYMBOL_LEN];
505 	int ret = 0;
506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
507 	static struct trace_seq s;
508 	unsigned long long avg;
509 	unsigned long long stddev;
510 #endif
511 	mutex_lock(&ftrace_profile_lock);
512 
513 	/* we raced with function_profile_reset() */
514 	if (unlikely(rec->counter == 0)) {
515 		ret = -EBUSY;
516 		goto out;
517 	}
518 
519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
520 	avg = div64_ul(rec->time, rec->counter);
521 	if (tracing_thresh && (avg < tracing_thresh))
522 		goto out;
523 #endif
524 
525 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
526 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
527 
528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
529 	seq_puts(m, "    ");
530 
531 	/* Sample standard deviation (s^2) */
532 	if (rec->counter <= 1)
533 		stddev = 0;
534 	else {
535 		/*
536 		 * Apply Welford's method:
537 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
538 		 */
539 		stddev = rec->counter * rec->time_squared -
540 			 rec->time * rec->time;
541 
542 		/*
543 		 * Divide only 1000 for ns^2 -> us^2 conversion.
544 		 * trace_print_graph_duration will divide 1000 again.
545 		 */
546 		stddev = div64_ul(stddev,
547 				  rec->counter * (rec->counter - 1) * 1000);
548 	}
549 
550 	trace_seq_init(&s);
551 	trace_print_graph_duration(rec->time, &s);
552 	trace_seq_puts(&s, "    ");
553 	trace_print_graph_duration(avg, &s);
554 	trace_seq_puts(&s, "    ");
555 	trace_print_graph_duration(stddev, &s);
556 	trace_print_seq(m, &s);
557 #endif
558 	seq_putc(m, '\n');
559 out:
560 	mutex_unlock(&ftrace_profile_lock);
561 
562 	return ret;
563 }
564 
565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
566 {
567 	struct ftrace_profile_page *pg;
568 
569 	pg = stat->pages = stat->start;
570 
571 	while (pg) {
572 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
573 		pg->index = 0;
574 		pg = pg->next;
575 	}
576 
577 	memset(stat->hash, 0,
578 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
579 }
580 
581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
582 {
583 	struct ftrace_profile_page *pg;
584 	int functions;
585 	int pages;
586 	int i;
587 
588 	/* If we already allocated, do nothing */
589 	if (stat->pages)
590 		return 0;
591 
592 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!stat->pages)
594 		return -ENOMEM;
595 
596 #ifdef CONFIG_DYNAMIC_FTRACE
597 	functions = ftrace_update_tot_cnt;
598 #else
599 	/*
600 	 * We do not know the number of functions that exist because
601 	 * dynamic tracing is what counts them. With past experience
602 	 * we have around 20K functions. That should be more than enough.
603 	 * It is highly unlikely we will execute every function in
604 	 * the kernel.
605 	 */
606 	functions = 20000;
607 #endif
608 
609 	pg = stat->start = stat->pages;
610 
611 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
612 
613 	for (i = 1; i < pages; i++) {
614 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
615 		if (!pg->next)
616 			goto out_free;
617 		pg = pg->next;
618 	}
619 
620 	return 0;
621 
622  out_free:
623 	pg = stat->start;
624 	while (pg) {
625 		unsigned long tmp = (unsigned long)pg;
626 
627 		pg = pg->next;
628 		free_page(tmp);
629 	}
630 
631 	stat->pages = NULL;
632 	stat->start = NULL;
633 
634 	return -ENOMEM;
635 }
636 
637 static int ftrace_profile_init_cpu(int cpu)
638 {
639 	struct ftrace_profile_stat *stat;
640 	int size;
641 
642 	stat = &per_cpu(ftrace_profile_stats, cpu);
643 
644 	if (stat->hash) {
645 		/* If the profile is already created, simply reset it */
646 		ftrace_profile_reset(stat);
647 		return 0;
648 	}
649 
650 	/*
651 	 * We are profiling all functions, but usually only a few thousand
652 	 * functions are hit. We'll make a hash of 1024 items.
653 	 */
654 	size = FTRACE_PROFILE_HASH_SIZE;
655 
656 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
657 
658 	if (!stat->hash)
659 		return -ENOMEM;
660 
661 	/* Preallocate the function profiling pages */
662 	if (ftrace_profile_pages_init(stat) < 0) {
663 		kfree(stat->hash);
664 		stat->hash = NULL;
665 		return -ENOMEM;
666 	}
667 
668 	return 0;
669 }
670 
671 static int ftrace_profile_init(void)
672 {
673 	int cpu;
674 	int ret = 0;
675 
676 	for_each_possible_cpu(cpu) {
677 		ret = ftrace_profile_init_cpu(cpu);
678 		if (ret)
679 			break;
680 	}
681 
682 	return ret;
683 }
684 
685 /* interrupts must be disabled */
686 static struct ftrace_profile *
687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
688 {
689 	struct ftrace_profile *rec;
690 	struct hlist_head *hhd;
691 	unsigned long key;
692 
693 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
694 	hhd = &stat->hash[key];
695 
696 	if (hlist_empty(hhd))
697 		return NULL;
698 
699 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
700 		if (rec->ip == ip)
701 			return rec;
702 	}
703 
704 	return NULL;
705 }
706 
707 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
708 			       struct ftrace_profile *rec)
709 {
710 	unsigned long key;
711 
712 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
713 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
714 }
715 
716 /*
717  * The memory is already allocated, this simply finds a new record to use.
718  */
719 static struct ftrace_profile *
720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
721 {
722 	struct ftrace_profile *rec = NULL;
723 
724 	/* prevent recursion (from NMIs) */
725 	if (atomic_inc_return(&stat->disabled) != 1)
726 		goto out;
727 
728 	/*
729 	 * Try to find the function again since an NMI
730 	 * could have added it
731 	 */
732 	rec = ftrace_find_profiled_func(stat, ip);
733 	if (rec)
734 		goto out;
735 
736 	if (stat->pages->index == PROFILES_PER_PAGE) {
737 		if (!stat->pages->next)
738 			goto out;
739 		stat->pages = stat->pages->next;
740 	}
741 
742 	rec = &stat->pages->records[stat->pages->index++];
743 	rec->ip = ip;
744 	ftrace_add_profile(stat, rec);
745 
746  out:
747 	atomic_dec(&stat->disabled);
748 
749 	return rec;
750 }
751 
752 static void
753 function_profile_call(unsigned long ip, unsigned long parent_ip,
754 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
755 {
756 	struct ftrace_profile_stat *stat;
757 	struct ftrace_profile *rec;
758 	unsigned long flags;
759 
760 	if (!ftrace_profile_enabled)
761 		return;
762 
763 	local_irq_save(flags);
764 
765 	stat = this_cpu_ptr(&ftrace_profile_stats);
766 	if (!stat->hash || !ftrace_profile_enabled)
767 		goto out;
768 
769 	rec = ftrace_find_profiled_func(stat, ip);
770 	if (!rec) {
771 		rec = ftrace_profile_alloc(stat, ip);
772 		if (!rec)
773 			goto out;
774 	}
775 
776 	rec->counter++;
777  out:
778 	local_irq_restore(flags);
779 }
780 
781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
782 static bool fgraph_graph_time = true;
783 
784 void ftrace_graph_graph_time_control(bool enable)
785 {
786 	fgraph_graph_time = enable;
787 }
788 
789 static int profile_graph_entry(struct ftrace_graph_ent *trace)
790 {
791 	struct ftrace_ret_stack *ret_stack;
792 
793 	function_profile_call(trace->func, 0, NULL, NULL);
794 
795 	/* If function graph is shutting down, ret_stack can be NULL */
796 	if (!current->ret_stack)
797 		return 0;
798 
799 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
800 	if (ret_stack)
801 		ret_stack->subtime = 0;
802 
803 	return 1;
804 }
805 
806 static void profile_graph_return(struct ftrace_graph_ret *trace)
807 {
808 	struct ftrace_ret_stack *ret_stack;
809 	struct ftrace_profile_stat *stat;
810 	unsigned long long calltime;
811 	struct ftrace_profile *rec;
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	stat = this_cpu_ptr(&ftrace_profile_stats);
816 	if (!stat->hash || !ftrace_profile_enabled)
817 		goto out;
818 
819 	/* If the calltime was zero'd ignore it */
820 	if (!trace->calltime)
821 		goto out;
822 
823 	calltime = trace->rettime - trace->calltime;
824 
825 	if (!fgraph_graph_time) {
826 
827 		/* Append this call time to the parent time to subtract */
828 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
829 		if (ret_stack)
830 			ret_stack->subtime += calltime;
831 
832 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
833 		if (ret_stack && ret_stack->subtime < calltime)
834 			calltime -= ret_stack->subtime;
835 		else
836 			calltime = 0;
837 	}
838 
839 	rec = ftrace_find_profiled_func(stat, trace->func);
840 	if (rec) {
841 		rec->time += calltime;
842 		rec->time_squared += calltime * calltime;
843 	}
844 
845  out:
846 	local_irq_restore(flags);
847 }
848 
849 static struct fgraph_ops fprofiler_ops = {
850 	.entryfunc = &profile_graph_entry,
851 	.retfunc = &profile_graph_return,
852 };
853 
854 static int register_ftrace_profiler(void)
855 {
856 	return register_ftrace_graph(&fprofiler_ops);
857 }
858 
859 static void unregister_ftrace_profiler(void)
860 {
861 	unregister_ftrace_graph(&fprofiler_ops);
862 }
863 #else
864 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
865 	.func		= function_profile_call,
866 	.flags		= FTRACE_OPS_FL_INITIALIZED,
867 	INIT_OPS_HASH(ftrace_profile_ops)
868 };
869 
870 static int register_ftrace_profiler(void)
871 {
872 	return register_ftrace_function(&ftrace_profile_ops);
873 }
874 
875 static void unregister_ftrace_profiler(void)
876 {
877 	unregister_ftrace_function(&ftrace_profile_ops);
878 }
879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
880 
881 static ssize_t
882 ftrace_profile_write(struct file *filp, const char __user *ubuf,
883 		     size_t cnt, loff_t *ppos)
884 {
885 	unsigned long val;
886 	int ret;
887 
888 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
889 	if (ret)
890 		return ret;
891 
892 	val = !!val;
893 
894 	mutex_lock(&ftrace_profile_lock);
895 	if (ftrace_profile_enabled ^ val) {
896 		if (val) {
897 			ret = ftrace_profile_init();
898 			if (ret < 0) {
899 				cnt = ret;
900 				goto out;
901 			}
902 
903 			ret = register_ftrace_profiler();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 			ftrace_profile_enabled = 1;
909 		} else {
910 			ftrace_profile_enabled = 0;
911 			/*
912 			 * unregister_ftrace_profiler calls stop_machine
913 			 * so this acts like an synchronize_rcu.
914 			 */
915 			unregister_ftrace_profiler();
916 		}
917 	}
918  out:
919 	mutex_unlock(&ftrace_profile_lock);
920 
921 	*ppos += cnt;
922 
923 	return cnt;
924 }
925 
926 static ssize_t
927 ftrace_profile_read(struct file *filp, char __user *ubuf,
928 		     size_t cnt, loff_t *ppos)
929 {
930 	char buf[64];		/* big enough to hold a number */
931 	int r;
932 
933 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
934 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
935 }
936 
937 static const struct file_operations ftrace_profile_fops = {
938 	.open		= tracing_open_generic,
939 	.read		= ftrace_profile_read,
940 	.write		= ftrace_profile_write,
941 	.llseek		= default_llseek,
942 };
943 
944 /* used to initialize the real stat files */
945 static struct tracer_stat function_stats __initdata = {
946 	.name		= "functions",
947 	.stat_start	= function_stat_start,
948 	.stat_next	= function_stat_next,
949 	.stat_cmp	= function_stat_cmp,
950 	.stat_headers	= function_stat_headers,
951 	.stat_show	= function_stat_show
952 };
953 
954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
955 {
956 	struct ftrace_profile_stat *stat;
957 	char *name;
958 	int ret;
959 	int cpu;
960 
961 	for_each_possible_cpu(cpu) {
962 		stat = &per_cpu(ftrace_profile_stats, cpu);
963 
964 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
965 		if (!name) {
966 			/*
967 			 * The files created are permanent, if something happens
968 			 * we still do not free memory.
969 			 */
970 			WARN(1,
971 			     "Could not allocate stat file for cpu %d\n",
972 			     cpu);
973 			return;
974 		}
975 		stat->stat = function_stats;
976 		stat->stat.name = name;
977 		ret = register_stat_tracer(&stat->stat);
978 		if (ret) {
979 			WARN(1,
980 			     "Could not register function stat for cpu %d\n",
981 			     cpu);
982 			kfree(name);
983 			return;
984 		}
985 	}
986 
987 	trace_create_file("function_profile_enabled",
988 			  TRACE_MODE_WRITE, d_tracer, NULL,
989 			  &ftrace_profile_fops);
990 }
991 
992 #else /* CONFIG_FUNCTION_PROFILER */
993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
994 {
995 }
996 #endif /* CONFIG_FUNCTION_PROFILER */
997 
998 #ifdef CONFIG_DYNAMIC_FTRACE
999 
1000 static struct ftrace_ops *removed_ops;
1001 
1002 /*
1003  * Set when doing a global update, like enabling all recs or disabling them.
1004  * It is not set when just updating a single ftrace_ops.
1005  */
1006 static bool update_all_ops;
1007 
1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1009 # error Dynamic ftrace depends on MCOUNT_RECORD
1010 #endif
1011 
1012 struct ftrace_func_probe {
1013 	struct ftrace_probe_ops	*probe_ops;
1014 	struct ftrace_ops	ops;
1015 	struct trace_array	*tr;
1016 	struct list_head	list;
1017 	void			*data;
1018 	int			ref;
1019 };
1020 
1021 /*
1022  * We make these constant because no one should touch them,
1023  * but they are used as the default "empty hash", to avoid allocating
1024  * it all the time. These are in a read only section such that if
1025  * anyone does try to modify it, it will cause an exception.
1026  */
1027 static const struct hlist_head empty_buckets[1];
1028 static const struct ftrace_hash empty_hash = {
1029 	.buckets = (struct hlist_head *)empty_buckets,
1030 };
1031 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1032 
1033 struct ftrace_ops global_ops = {
1034 	.func				= ftrace_stub,
1035 	.local_hash.notrace_hash	= EMPTY_HASH,
1036 	.local_hash.filter_hash		= EMPTY_HASH,
1037 	INIT_OPS_HASH(global_ops)
1038 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1039 					  FTRACE_OPS_FL_PID,
1040 };
1041 
1042 /*
1043  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1044  */
1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1046 {
1047 	struct ftrace_ops *op = NULL;
1048 
1049 	/*
1050 	 * Some of the ops may be dynamically allocated,
1051 	 * they are freed after a synchronize_rcu().
1052 	 */
1053 	preempt_disable_notrace();
1054 
1055 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1056 		/*
1057 		 * This is to check for dynamically allocated trampolines.
1058 		 * Trampolines that are in kernel text will have
1059 		 * core_kernel_text() return true.
1060 		 */
1061 		if (op->trampoline && op->trampoline_size)
1062 			if (addr >= op->trampoline &&
1063 			    addr < op->trampoline + op->trampoline_size) {
1064 				preempt_enable_notrace();
1065 				return op;
1066 			}
1067 	} while_for_each_ftrace_op(op);
1068 	preempt_enable_notrace();
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * This is used by __kernel_text_address() to return true if the
1075  * address is on a dynamically allocated trampoline that would
1076  * not return true for either core_kernel_text() or
1077  * is_module_text_address().
1078  */
1079 bool is_ftrace_trampoline(unsigned long addr)
1080 {
1081 	return ftrace_ops_trampoline(addr) != NULL;
1082 }
1083 
1084 struct ftrace_page {
1085 	struct ftrace_page	*next;
1086 	struct dyn_ftrace	*records;
1087 	int			index;
1088 	int			order;
1089 };
1090 
1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1093 
1094 static struct ftrace_page	*ftrace_pages_start;
1095 static struct ftrace_page	*ftrace_pages;
1096 
1097 static __always_inline unsigned long
1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1099 {
1100 	if (hash->size_bits > 0)
1101 		return hash_long(ip, hash->size_bits);
1102 
1103 	return 0;
1104 }
1105 
1106 /* Only use this function if ftrace_hash_empty() has already been tested */
1107 static __always_inline struct ftrace_func_entry *
1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1109 {
1110 	unsigned long key;
1111 	struct ftrace_func_entry *entry;
1112 	struct hlist_head *hhd;
1113 
1114 	key = ftrace_hash_key(hash, ip);
1115 	hhd = &hash->buckets[key];
1116 
1117 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1118 		if (entry->ip == ip)
1119 			return entry;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1126  * @hash: The hash to look at
1127  * @ip: The instruction pointer to test
1128  *
1129  * Search a given @hash to see if a given instruction pointer (@ip)
1130  * exists in it.
1131  *
1132  * Returns the entry that holds the @ip if found. NULL otherwise.
1133  */
1134 struct ftrace_func_entry *
1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	if (ftrace_hash_empty(hash))
1138 		return NULL;
1139 
1140 	return __ftrace_lookup_ip(hash, ip);
1141 }
1142 
1143 static void __add_hash_entry(struct ftrace_hash *hash,
1144 			     struct ftrace_func_entry *entry)
1145 {
1146 	struct hlist_head *hhd;
1147 	unsigned long key;
1148 
1149 	key = ftrace_hash_key(hash, entry->ip);
1150 	hhd = &hash->buckets[key];
1151 	hlist_add_head(&entry->hlist, hhd);
1152 	hash->count++;
1153 }
1154 
1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1156 {
1157 	struct ftrace_func_entry *entry;
1158 
1159 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1160 	if (!entry)
1161 		return -ENOMEM;
1162 
1163 	entry->ip = ip;
1164 	__add_hash_entry(hash, entry);
1165 
1166 	return 0;
1167 }
1168 
1169 static void
1170 free_hash_entry(struct ftrace_hash *hash,
1171 		  struct ftrace_func_entry *entry)
1172 {
1173 	hlist_del(&entry->hlist);
1174 	kfree(entry);
1175 	hash->count--;
1176 }
1177 
1178 static void
1179 remove_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del_rcu(&entry->hlist);
1183 	hash->count--;
1184 }
1185 
1186 static void ftrace_hash_clear(struct ftrace_hash *hash)
1187 {
1188 	struct hlist_head *hhd;
1189 	struct hlist_node *tn;
1190 	struct ftrace_func_entry *entry;
1191 	int size = 1 << hash->size_bits;
1192 	int i;
1193 
1194 	if (!hash->count)
1195 		return;
1196 
1197 	for (i = 0; i < size; i++) {
1198 		hhd = &hash->buckets[i];
1199 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1200 			free_hash_entry(hash, entry);
1201 	}
1202 	FTRACE_WARN_ON(hash->count);
1203 }
1204 
1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1206 {
1207 	list_del(&ftrace_mod->list);
1208 	kfree(ftrace_mod->module);
1209 	kfree(ftrace_mod->func);
1210 	kfree(ftrace_mod);
1211 }
1212 
1213 static void clear_ftrace_mod_list(struct list_head *head)
1214 {
1215 	struct ftrace_mod_load *p, *n;
1216 
1217 	/* stack tracer isn't supported yet */
1218 	if (!head)
1219 		return;
1220 
1221 	mutex_lock(&ftrace_lock);
1222 	list_for_each_entry_safe(p, n, head, list)
1223 		free_ftrace_mod(p);
1224 	mutex_unlock(&ftrace_lock);
1225 }
1226 
1227 static void free_ftrace_hash(struct ftrace_hash *hash)
1228 {
1229 	if (!hash || hash == EMPTY_HASH)
1230 		return;
1231 	ftrace_hash_clear(hash);
1232 	kfree(hash->buckets);
1233 	kfree(hash);
1234 }
1235 
1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1237 {
1238 	struct ftrace_hash *hash;
1239 
1240 	hash = container_of(rcu, struct ftrace_hash, rcu);
1241 	free_ftrace_hash(hash);
1242 }
1243 
1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1245 {
1246 	if (!hash || hash == EMPTY_HASH)
1247 		return;
1248 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1249 }
1250 
1251 void ftrace_free_filter(struct ftrace_ops *ops)
1252 {
1253 	ftrace_ops_init(ops);
1254 	free_ftrace_hash(ops->func_hash->filter_hash);
1255 	free_ftrace_hash(ops->func_hash->notrace_hash);
1256 }
1257 
1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1259 {
1260 	struct ftrace_hash *hash;
1261 	int size;
1262 
1263 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1264 	if (!hash)
1265 		return NULL;
1266 
1267 	size = 1 << size_bits;
1268 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1269 
1270 	if (!hash->buckets) {
1271 		kfree(hash);
1272 		return NULL;
1273 	}
1274 
1275 	hash->size_bits = size_bits;
1276 
1277 	return hash;
1278 }
1279 
1280 
1281 static int ftrace_add_mod(struct trace_array *tr,
1282 			  const char *func, const char *module,
1283 			  int enable)
1284 {
1285 	struct ftrace_mod_load *ftrace_mod;
1286 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1287 
1288 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1289 	if (!ftrace_mod)
1290 		return -ENOMEM;
1291 
1292 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1293 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1294 	ftrace_mod->enable = enable;
1295 
1296 	if (!ftrace_mod->func || !ftrace_mod->module)
1297 		goto out_free;
1298 
1299 	list_add(&ftrace_mod->list, mod_head);
1300 
1301 	return 0;
1302 
1303  out_free:
1304 	free_ftrace_mod(ftrace_mod);
1305 
1306 	return -ENOMEM;
1307 }
1308 
1309 static struct ftrace_hash *
1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1311 {
1312 	struct ftrace_func_entry *entry;
1313 	struct ftrace_hash *new_hash;
1314 	int size;
1315 	int ret;
1316 	int i;
1317 
1318 	new_hash = alloc_ftrace_hash(size_bits);
1319 	if (!new_hash)
1320 		return NULL;
1321 
1322 	if (hash)
1323 		new_hash->flags = hash->flags;
1324 
1325 	/* Empty hash? */
1326 	if (ftrace_hash_empty(hash))
1327 		return new_hash;
1328 
1329 	size = 1 << hash->size_bits;
1330 	for (i = 0; i < size; i++) {
1331 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1332 			ret = add_hash_entry(new_hash, entry->ip);
1333 			if (ret < 0)
1334 				goto free_hash;
1335 		}
1336 	}
1337 
1338 	FTRACE_WARN_ON(new_hash->count != hash->count);
1339 
1340 	return new_hash;
1341 
1342  free_hash:
1343 	free_ftrace_hash(new_hash);
1344 	return NULL;
1345 }
1346 
1347 static void
1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1349 static void
1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1351 
1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1353 				       struct ftrace_hash *new_hash);
1354 
1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1356 {
1357 	struct ftrace_func_entry *entry;
1358 	struct ftrace_hash *new_hash;
1359 	struct hlist_head *hhd;
1360 	struct hlist_node *tn;
1361 	int bits = 0;
1362 	int i;
1363 
1364 	/*
1365 	 * Use around half the size (max bit of it), but
1366 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1367 	 */
1368 	bits = fls(size / 2);
1369 
1370 	/* Don't allocate too much */
1371 	if (bits > FTRACE_HASH_MAX_BITS)
1372 		bits = FTRACE_HASH_MAX_BITS;
1373 
1374 	new_hash = alloc_ftrace_hash(bits);
1375 	if (!new_hash)
1376 		return NULL;
1377 
1378 	new_hash->flags = src->flags;
1379 
1380 	size = 1 << src->size_bits;
1381 	for (i = 0; i < size; i++) {
1382 		hhd = &src->buckets[i];
1383 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1384 			remove_hash_entry(src, entry);
1385 			__add_hash_entry(new_hash, entry);
1386 		}
1387 	}
1388 	return new_hash;
1389 }
1390 
1391 static struct ftrace_hash *
1392 __ftrace_hash_move(struct ftrace_hash *src)
1393 {
1394 	int size = src->count;
1395 
1396 	/*
1397 	 * If the new source is empty, just return the empty_hash.
1398 	 */
1399 	if (ftrace_hash_empty(src))
1400 		return EMPTY_HASH;
1401 
1402 	return dup_hash(src, size);
1403 }
1404 
1405 static int
1406 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1407 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1408 {
1409 	struct ftrace_hash *new_hash;
1410 	int ret;
1411 
1412 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1413 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1414 		return -EINVAL;
1415 
1416 	new_hash = __ftrace_hash_move(src);
1417 	if (!new_hash)
1418 		return -ENOMEM;
1419 
1420 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1421 	if (enable) {
1422 		/* IPMODIFY should be updated only when filter_hash updating */
1423 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1424 		if (ret < 0) {
1425 			free_ftrace_hash(new_hash);
1426 			return ret;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Remove the current set, update the hash and add
1432 	 * them back.
1433 	 */
1434 	ftrace_hash_rec_disable_modify(ops, enable);
1435 
1436 	rcu_assign_pointer(*dst, new_hash);
1437 
1438 	ftrace_hash_rec_enable_modify(ops, enable);
1439 
1440 	return 0;
1441 }
1442 
1443 static bool hash_contains_ip(unsigned long ip,
1444 			     struct ftrace_ops_hash *hash)
1445 {
1446 	/*
1447 	 * The function record is a match if it exists in the filter
1448 	 * hash and not in the notrace hash. Note, an empty hash is
1449 	 * considered a match for the filter hash, but an empty
1450 	 * notrace hash is considered not in the notrace hash.
1451 	 */
1452 	return (ftrace_hash_empty(hash->filter_hash) ||
1453 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1454 		(ftrace_hash_empty(hash->notrace_hash) ||
1455 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1456 }
1457 
1458 /*
1459  * Test the hashes for this ops to see if we want to call
1460  * the ops->func or not.
1461  *
1462  * It's a match if the ip is in the ops->filter_hash or
1463  * the filter_hash does not exist or is empty,
1464  *  AND
1465  * the ip is not in the ops->notrace_hash.
1466  *
1467  * This needs to be called with preemption disabled as
1468  * the hashes are freed with call_rcu().
1469  */
1470 int
1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1472 {
1473 	struct ftrace_ops_hash hash;
1474 	int ret;
1475 
1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1477 	/*
1478 	 * There's a small race when adding ops that the ftrace handler
1479 	 * that wants regs, may be called without them. We can not
1480 	 * allow that handler to be called if regs is NULL.
1481 	 */
1482 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1483 		return 0;
1484 #endif
1485 
1486 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1487 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1488 
1489 	if (hash_contains_ip(ip, &hash))
1490 		ret = 1;
1491 	else
1492 		ret = 0;
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * This is a double for. Do not use 'break' to break out of the loop,
1499  * you must use a goto.
1500  */
1501 #define do_for_each_ftrace_rec(pg, rec)					\
1502 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1503 		int _____i;						\
1504 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1505 			rec = &pg->records[_____i];
1506 
1507 #define while_for_each_ftrace_rec()		\
1508 		}				\
1509 	}
1510 
1511 
1512 static int ftrace_cmp_recs(const void *a, const void *b)
1513 {
1514 	const struct dyn_ftrace *key = a;
1515 	const struct dyn_ftrace *rec = b;
1516 
1517 	if (key->flags < rec->ip)
1518 		return -1;
1519 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1520 		return 1;
1521 	return 0;
1522 }
1523 
1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1525 {
1526 	struct ftrace_page *pg;
1527 	struct dyn_ftrace *rec = NULL;
1528 	struct dyn_ftrace key;
1529 
1530 	key.ip = start;
1531 	key.flags = end;	/* overload flags, as it is unsigned long */
1532 
1533 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1534 		if (end < pg->records[0].ip ||
1535 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1536 			continue;
1537 		rec = bsearch(&key, pg->records, pg->index,
1538 			      sizeof(struct dyn_ftrace),
1539 			      ftrace_cmp_recs);
1540 		if (rec)
1541 			break;
1542 	}
1543 	return rec;
1544 }
1545 
1546 /**
1547  * ftrace_location_range - return the first address of a traced location
1548  *	if it touches the given ip range
1549  * @start: start of range to search.
1550  * @end: end of range to search (inclusive). @end points to the last byte
1551  *	to check.
1552  *
1553  * Returns rec->ip if the related ftrace location is a least partly within
1554  * the given address range. That is, the first address of the instruction
1555  * that is either a NOP or call to the function tracer. It checks the ftrace
1556  * internal tables to determine if the address belongs or not.
1557  */
1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1559 {
1560 	struct dyn_ftrace *rec;
1561 
1562 	rec = lookup_rec(start, end);
1563 	if (rec)
1564 		return rec->ip;
1565 
1566 	return 0;
1567 }
1568 
1569 /**
1570  * ftrace_location - return the ftrace location
1571  * @ip: the instruction pointer to check
1572  *
1573  * If @ip matches the ftrace location, return @ip.
1574  * If @ip matches sym+0, return sym's ftrace location.
1575  * Otherwise, return 0.
1576  */
1577 unsigned long ftrace_location(unsigned long ip)
1578 {
1579 	struct dyn_ftrace *rec;
1580 	unsigned long offset;
1581 	unsigned long size;
1582 
1583 	rec = lookup_rec(ip, ip);
1584 	if (!rec) {
1585 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1586 			goto out;
1587 
1588 		/* map sym+0 to __fentry__ */
1589 		if (!offset)
1590 			rec = lookup_rec(ip, ip + size - 1);
1591 	}
1592 
1593 	if (rec)
1594 		return rec->ip;
1595 
1596 out:
1597 	return 0;
1598 }
1599 
1600 /**
1601  * ftrace_text_reserved - return true if range contains an ftrace location
1602  * @start: start of range to search
1603  * @end: end of range to search (inclusive). @end points to the last byte to check.
1604  *
1605  * Returns 1 if @start and @end contains a ftrace location.
1606  * That is, the instruction that is either a NOP or call to
1607  * the function tracer. It checks the ftrace internal tables to
1608  * determine if the address belongs or not.
1609  */
1610 int ftrace_text_reserved(const void *start, const void *end)
1611 {
1612 	unsigned long ret;
1613 
1614 	ret = ftrace_location_range((unsigned long)start,
1615 				    (unsigned long)end);
1616 
1617 	return (int)!!ret;
1618 }
1619 
1620 /* Test if ops registered to this rec needs regs */
1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1622 {
1623 	struct ftrace_ops *ops;
1624 	bool keep_regs = false;
1625 
1626 	for (ops = ftrace_ops_list;
1627 	     ops != &ftrace_list_end; ops = ops->next) {
1628 		/* pass rec in as regs to have non-NULL val */
1629 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1630 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1631 				keep_regs = true;
1632 				break;
1633 			}
1634 		}
1635 	}
1636 
1637 	return  keep_regs;
1638 }
1639 
1640 static struct ftrace_ops *
1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1642 static struct ftrace_ops *
1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1644 static struct ftrace_ops *
1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1646 
1647 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1648 				     int filter_hash,
1649 				     bool inc)
1650 {
1651 	struct ftrace_hash *hash;
1652 	struct ftrace_hash *other_hash;
1653 	struct ftrace_page *pg;
1654 	struct dyn_ftrace *rec;
1655 	bool update = false;
1656 	int count = 0;
1657 	int all = false;
1658 
1659 	/* Only update if the ops has been registered */
1660 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1661 		return false;
1662 
1663 	/*
1664 	 * In the filter_hash case:
1665 	 *   If the count is zero, we update all records.
1666 	 *   Otherwise we just update the items in the hash.
1667 	 *
1668 	 * In the notrace_hash case:
1669 	 *   We enable the update in the hash.
1670 	 *   As disabling notrace means enabling the tracing,
1671 	 *   and enabling notrace means disabling, the inc variable
1672 	 *   gets inversed.
1673 	 */
1674 	if (filter_hash) {
1675 		hash = ops->func_hash->filter_hash;
1676 		other_hash = ops->func_hash->notrace_hash;
1677 		if (ftrace_hash_empty(hash))
1678 			all = true;
1679 	} else {
1680 		inc = !inc;
1681 		hash = ops->func_hash->notrace_hash;
1682 		other_hash = ops->func_hash->filter_hash;
1683 		/*
1684 		 * If the notrace hash has no items,
1685 		 * then there's nothing to do.
1686 		 */
1687 		if (ftrace_hash_empty(hash))
1688 			return false;
1689 	}
1690 
1691 	do_for_each_ftrace_rec(pg, rec) {
1692 		int in_other_hash = 0;
1693 		int in_hash = 0;
1694 		int match = 0;
1695 
1696 		if (rec->flags & FTRACE_FL_DISABLED)
1697 			continue;
1698 
1699 		if (all) {
1700 			/*
1701 			 * Only the filter_hash affects all records.
1702 			 * Update if the record is not in the notrace hash.
1703 			 */
1704 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1705 				match = 1;
1706 		} else {
1707 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1708 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1709 
1710 			/*
1711 			 * If filter_hash is set, we want to match all functions
1712 			 * that are in the hash but not in the other hash.
1713 			 *
1714 			 * If filter_hash is not set, then we are decrementing.
1715 			 * That means we match anything that is in the hash
1716 			 * and also in the other_hash. That is, we need to turn
1717 			 * off functions in the other hash because they are disabled
1718 			 * by this hash.
1719 			 */
1720 			if (filter_hash && in_hash && !in_other_hash)
1721 				match = 1;
1722 			else if (!filter_hash && in_hash &&
1723 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1724 				match = 1;
1725 		}
1726 		if (!match)
1727 			continue;
1728 
1729 		if (inc) {
1730 			rec->flags++;
1731 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1732 				return false;
1733 
1734 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1735 				rec->flags |= FTRACE_FL_DIRECT;
1736 
1737 			/*
1738 			 * If there's only a single callback registered to a
1739 			 * function, and the ops has a trampoline registered
1740 			 * for it, then we can call it directly.
1741 			 */
1742 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1743 				rec->flags |= FTRACE_FL_TRAMP;
1744 			else
1745 				/*
1746 				 * If we are adding another function callback
1747 				 * to this function, and the previous had a
1748 				 * custom trampoline in use, then we need to go
1749 				 * back to the default trampoline.
1750 				 */
1751 				rec->flags &= ~FTRACE_FL_TRAMP;
1752 
1753 			/*
1754 			 * If any ops wants regs saved for this function
1755 			 * then all ops will get saved regs.
1756 			 */
1757 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1758 				rec->flags |= FTRACE_FL_REGS;
1759 		} else {
1760 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1761 				return false;
1762 			rec->flags--;
1763 
1764 			/*
1765 			 * Only the internal direct_ops should have the
1766 			 * DIRECT flag set. Thus, if it is removing a
1767 			 * function, then that function should no longer
1768 			 * be direct.
1769 			 */
1770 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1771 				rec->flags &= ~FTRACE_FL_DIRECT;
1772 
1773 			/*
1774 			 * If the rec had REGS enabled and the ops that is
1775 			 * being removed had REGS set, then see if there is
1776 			 * still any ops for this record that wants regs.
1777 			 * If not, we can stop recording them.
1778 			 */
1779 			if (ftrace_rec_count(rec) > 0 &&
1780 			    rec->flags & FTRACE_FL_REGS &&
1781 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1782 				if (!test_rec_ops_needs_regs(rec))
1783 					rec->flags &= ~FTRACE_FL_REGS;
1784 			}
1785 
1786 			/*
1787 			 * The TRAMP needs to be set only if rec count
1788 			 * is decremented to one, and the ops that is
1789 			 * left has a trampoline. As TRAMP can only be
1790 			 * enabled if there is only a single ops attached
1791 			 * to it.
1792 			 */
1793 			if (ftrace_rec_count(rec) == 1 &&
1794 			    ftrace_find_tramp_ops_any_other(rec, ops))
1795 				rec->flags |= FTRACE_FL_TRAMP;
1796 			else
1797 				rec->flags &= ~FTRACE_FL_TRAMP;
1798 
1799 			/*
1800 			 * flags will be cleared in ftrace_check_record()
1801 			 * if rec count is zero.
1802 			 */
1803 		}
1804 		count++;
1805 
1806 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1807 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1808 
1809 		/* Shortcut, if we handled all records, we are done. */
1810 		if (!all && count == hash->count)
1811 			return update;
1812 	} while_for_each_ftrace_rec();
1813 
1814 	return update;
1815 }
1816 
1817 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1818 				    int filter_hash)
1819 {
1820 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1821 }
1822 
1823 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1824 				   int filter_hash)
1825 {
1826 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1827 }
1828 
1829 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1830 					  int filter_hash, int inc)
1831 {
1832 	struct ftrace_ops *op;
1833 
1834 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1835 
1836 	if (ops->func_hash != &global_ops.local_hash)
1837 		return;
1838 
1839 	/*
1840 	 * If the ops shares the global_ops hash, then we need to update
1841 	 * all ops that are enabled and use this hash.
1842 	 */
1843 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1844 		/* Already done */
1845 		if (op == ops)
1846 			continue;
1847 		if (op->func_hash == &global_ops.local_hash)
1848 			__ftrace_hash_rec_update(op, filter_hash, inc);
1849 	} while_for_each_ftrace_op(op);
1850 }
1851 
1852 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1853 					   int filter_hash)
1854 {
1855 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1856 }
1857 
1858 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1859 					  int filter_hash)
1860 {
1861 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1862 }
1863 
1864 static bool ops_references_ip(struct ftrace_ops *ops, unsigned long ip);
1865 
1866 /*
1867  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1868  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1869  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1870  * Note that old_hash and new_hash has below meanings
1871  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1872  *  - If the hash is EMPTY_HASH, it hits nothing
1873  *  - Anything else hits the recs which match the hash entries.
1874  *
1875  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1876  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1877  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1878  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1879  * the return value to the caller and eventually to the owner of the DIRECT
1880  * ops.
1881  */
1882 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1883 					 struct ftrace_hash *old_hash,
1884 					 struct ftrace_hash *new_hash)
1885 {
1886 	struct ftrace_page *pg;
1887 	struct dyn_ftrace *rec, *end = NULL;
1888 	int in_old, in_new;
1889 	bool is_ipmodify, is_direct;
1890 
1891 	/* Only update if the ops has been registered */
1892 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1893 		return 0;
1894 
1895 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1896 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1897 
1898 	/* neither IPMODIFY nor DIRECT, skip */
1899 	if (!is_ipmodify && !is_direct)
1900 		return 0;
1901 
1902 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1903 		return 0;
1904 
1905 	/*
1906 	 * Since the IPMODIFY and DIRECT are very address sensitive
1907 	 * actions, we do not allow ftrace_ops to set all functions to new
1908 	 * hash.
1909 	 */
1910 	if (!new_hash || !old_hash)
1911 		return -EINVAL;
1912 
1913 	/* Update rec->flags */
1914 	do_for_each_ftrace_rec(pg, rec) {
1915 
1916 		if (rec->flags & FTRACE_FL_DISABLED)
1917 			continue;
1918 
1919 		/* We need to update only differences of filter_hash */
1920 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1921 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1922 		if (in_old == in_new)
1923 			continue;
1924 
1925 		if (in_new) {
1926 			if (rec->flags & FTRACE_FL_IPMODIFY) {
1927 				int ret;
1928 
1929 				/* Cannot have two ipmodify on same rec */
1930 				if (is_ipmodify)
1931 					goto rollback;
1932 
1933 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
1934 
1935 				/*
1936 				 * Another ops with IPMODIFY is already
1937 				 * attached. We are now attaching a direct
1938 				 * ops. Run SHARE_IPMODIFY_SELF, to check
1939 				 * whether sharing is supported.
1940 				 */
1941 				if (!ops->ops_func)
1942 					return -EBUSY;
1943 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
1944 				if (ret)
1945 					return ret;
1946 			} else if (is_ipmodify) {
1947 				rec->flags |= FTRACE_FL_IPMODIFY;
1948 			}
1949 		} else if (is_ipmodify) {
1950 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1951 		}
1952 	} while_for_each_ftrace_rec();
1953 
1954 	return 0;
1955 
1956 rollback:
1957 	end = rec;
1958 
1959 	/* Roll back what we did above */
1960 	do_for_each_ftrace_rec(pg, rec) {
1961 
1962 		if (rec->flags & FTRACE_FL_DISABLED)
1963 			continue;
1964 
1965 		if (rec == end)
1966 			goto err_out;
1967 
1968 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1969 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1970 		if (in_old == in_new)
1971 			continue;
1972 
1973 		if (in_new)
1974 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1975 		else
1976 			rec->flags |= FTRACE_FL_IPMODIFY;
1977 	} while_for_each_ftrace_rec();
1978 
1979 err_out:
1980 	return -EBUSY;
1981 }
1982 
1983 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1984 {
1985 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1986 
1987 	if (ftrace_hash_empty(hash))
1988 		hash = NULL;
1989 
1990 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1991 }
1992 
1993 /* Disabling always succeeds */
1994 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1995 {
1996 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1997 
1998 	if (ftrace_hash_empty(hash))
1999 		hash = NULL;
2000 
2001 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2002 }
2003 
2004 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2005 				       struct ftrace_hash *new_hash)
2006 {
2007 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2008 
2009 	if (ftrace_hash_empty(old_hash))
2010 		old_hash = NULL;
2011 
2012 	if (ftrace_hash_empty(new_hash))
2013 		new_hash = NULL;
2014 
2015 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2016 }
2017 
2018 static void print_ip_ins(const char *fmt, const unsigned char *p)
2019 {
2020 	char ins[MCOUNT_INSN_SIZE];
2021 	int i;
2022 
2023 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2024 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2025 		return;
2026 	}
2027 
2028 	printk(KERN_CONT "%s", fmt);
2029 
2030 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
2031 		printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]);
2032 }
2033 
2034 enum ftrace_bug_type ftrace_bug_type;
2035 const void *ftrace_expected;
2036 
2037 static void print_bug_type(void)
2038 {
2039 	switch (ftrace_bug_type) {
2040 	case FTRACE_BUG_UNKNOWN:
2041 		break;
2042 	case FTRACE_BUG_INIT:
2043 		pr_info("Initializing ftrace call sites\n");
2044 		break;
2045 	case FTRACE_BUG_NOP:
2046 		pr_info("Setting ftrace call site to NOP\n");
2047 		break;
2048 	case FTRACE_BUG_CALL:
2049 		pr_info("Setting ftrace call site to call ftrace function\n");
2050 		break;
2051 	case FTRACE_BUG_UPDATE:
2052 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2053 		break;
2054 	}
2055 }
2056 
2057 /**
2058  * ftrace_bug - report and shutdown function tracer
2059  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2060  * @rec: The record that failed
2061  *
2062  * The arch code that enables or disables the function tracing
2063  * can call ftrace_bug() when it has detected a problem in
2064  * modifying the code. @failed should be one of either:
2065  * EFAULT - if the problem happens on reading the @ip address
2066  * EINVAL - if what is read at @ip is not what was expected
2067  * EPERM - if the problem happens on writing to the @ip address
2068  */
2069 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2070 {
2071 	unsigned long ip = rec ? rec->ip : 0;
2072 
2073 	pr_info("------------[ ftrace bug ]------------\n");
2074 
2075 	switch (failed) {
2076 	case -EFAULT:
2077 		pr_info("ftrace faulted on modifying ");
2078 		print_ip_sym(KERN_INFO, ip);
2079 		break;
2080 	case -EINVAL:
2081 		pr_info("ftrace failed to modify ");
2082 		print_ip_sym(KERN_INFO, ip);
2083 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2084 		pr_cont("\n");
2085 		if (ftrace_expected) {
2086 			print_ip_ins(" expected: ", ftrace_expected);
2087 			pr_cont("\n");
2088 		}
2089 		break;
2090 	case -EPERM:
2091 		pr_info("ftrace faulted on writing ");
2092 		print_ip_sym(KERN_INFO, ip);
2093 		break;
2094 	default:
2095 		pr_info("ftrace faulted on unknown error ");
2096 		print_ip_sym(KERN_INFO, ip);
2097 	}
2098 	print_bug_type();
2099 	if (rec) {
2100 		struct ftrace_ops *ops = NULL;
2101 
2102 		pr_info("ftrace record flags: %lx\n", rec->flags);
2103 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2104 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2105 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2106 			ops = ftrace_find_tramp_ops_any(rec);
2107 			if (ops) {
2108 				do {
2109 					pr_cont("\ttramp: %pS (%pS)",
2110 						(void *)ops->trampoline,
2111 						(void *)ops->func);
2112 					ops = ftrace_find_tramp_ops_next(rec, ops);
2113 				} while (ops);
2114 			} else
2115 				pr_cont("\ttramp: ERROR!");
2116 
2117 		}
2118 		ip = ftrace_get_addr_curr(rec);
2119 		pr_cont("\n expected tramp: %lx\n", ip);
2120 	}
2121 
2122 	FTRACE_WARN_ON_ONCE(1);
2123 }
2124 
2125 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2126 {
2127 	unsigned long flag = 0UL;
2128 
2129 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2130 
2131 	if (rec->flags & FTRACE_FL_DISABLED)
2132 		return FTRACE_UPDATE_IGNORE;
2133 
2134 	/*
2135 	 * If we are updating calls:
2136 	 *
2137 	 *   If the record has a ref count, then we need to enable it
2138 	 *   because someone is using it.
2139 	 *
2140 	 *   Otherwise we make sure its disabled.
2141 	 *
2142 	 * If we are disabling calls, then disable all records that
2143 	 * are enabled.
2144 	 */
2145 	if (enable && ftrace_rec_count(rec))
2146 		flag = FTRACE_FL_ENABLED;
2147 
2148 	/*
2149 	 * If enabling and the REGS flag does not match the REGS_EN, or
2150 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2151 	 * this record. Set flags to fail the compare against ENABLED.
2152 	 * Same for direct calls.
2153 	 */
2154 	if (flag) {
2155 		if (!(rec->flags & FTRACE_FL_REGS) !=
2156 		    !(rec->flags & FTRACE_FL_REGS_EN))
2157 			flag |= FTRACE_FL_REGS;
2158 
2159 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2160 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2161 			flag |= FTRACE_FL_TRAMP;
2162 
2163 		/*
2164 		 * Direct calls are special, as count matters.
2165 		 * We must test the record for direct, if the
2166 		 * DIRECT and DIRECT_EN do not match, but only
2167 		 * if the count is 1. That's because, if the
2168 		 * count is something other than one, we do not
2169 		 * want the direct enabled (it will be done via the
2170 		 * direct helper). But if DIRECT_EN is set, and
2171 		 * the count is not one, we need to clear it.
2172 		 */
2173 		if (ftrace_rec_count(rec) == 1) {
2174 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2175 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2176 				flag |= FTRACE_FL_DIRECT;
2177 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2178 			flag |= FTRACE_FL_DIRECT;
2179 		}
2180 	}
2181 
2182 	/* If the state of this record hasn't changed, then do nothing */
2183 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2184 		return FTRACE_UPDATE_IGNORE;
2185 
2186 	if (flag) {
2187 		/* Save off if rec is being enabled (for return value) */
2188 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2189 
2190 		if (update) {
2191 			rec->flags |= FTRACE_FL_ENABLED;
2192 			if (flag & FTRACE_FL_REGS) {
2193 				if (rec->flags & FTRACE_FL_REGS)
2194 					rec->flags |= FTRACE_FL_REGS_EN;
2195 				else
2196 					rec->flags &= ~FTRACE_FL_REGS_EN;
2197 			}
2198 			if (flag & FTRACE_FL_TRAMP) {
2199 				if (rec->flags & FTRACE_FL_TRAMP)
2200 					rec->flags |= FTRACE_FL_TRAMP_EN;
2201 				else
2202 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2203 			}
2204 
2205 			if (flag & FTRACE_FL_DIRECT) {
2206 				/*
2207 				 * If there's only one user (direct_ops helper)
2208 				 * then we can call the direct function
2209 				 * directly (no ftrace trampoline).
2210 				 */
2211 				if (ftrace_rec_count(rec) == 1) {
2212 					if (rec->flags & FTRACE_FL_DIRECT)
2213 						rec->flags |= FTRACE_FL_DIRECT_EN;
2214 					else
2215 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2216 				} else {
2217 					/*
2218 					 * Can only call directly if there's
2219 					 * only one callback to the function.
2220 					 */
2221 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2222 				}
2223 			}
2224 		}
2225 
2226 		/*
2227 		 * If this record is being updated from a nop, then
2228 		 *   return UPDATE_MAKE_CALL.
2229 		 * Otherwise,
2230 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2231 		 *   from the save regs, to a non-save regs function or
2232 		 *   vice versa, or from a trampoline call.
2233 		 */
2234 		if (flag & FTRACE_FL_ENABLED) {
2235 			ftrace_bug_type = FTRACE_BUG_CALL;
2236 			return FTRACE_UPDATE_MAKE_CALL;
2237 		}
2238 
2239 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2240 		return FTRACE_UPDATE_MODIFY_CALL;
2241 	}
2242 
2243 	if (update) {
2244 		/* If there's no more users, clear all flags */
2245 		if (!ftrace_rec_count(rec))
2246 			rec->flags = 0;
2247 		else
2248 			/*
2249 			 * Just disable the record, but keep the ops TRAMP
2250 			 * and REGS states. The _EN flags must be disabled though.
2251 			 */
2252 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2253 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2254 	}
2255 
2256 	ftrace_bug_type = FTRACE_BUG_NOP;
2257 	return FTRACE_UPDATE_MAKE_NOP;
2258 }
2259 
2260 /**
2261  * ftrace_update_record - set a record that now is tracing or not
2262  * @rec: the record to update
2263  * @enable: set to true if the record is tracing, false to force disable
2264  *
2265  * The records that represent all functions that can be traced need
2266  * to be updated when tracing has been enabled.
2267  */
2268 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2269 {
2270 	return ftrace_check_record(rec, enable, true);
2271 }
2272 
2273 /**
2274  * ftrace_test_record - check if the record has been enabled or not
2275  * @rec: the record to test
2276  * @enable: set to true to check if enabled, false if it is disabled
2277  *
2278  * The arch code may need to test if a record is already set to
2279  * tracing to determine how to modify the function code that it
2280  * represents.
2281  */
2282 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2283 {
2284 	return ftrace_check_record(rec, enable, false);
2285 }
2286 
2287 static struct ftrace_ops *
2288 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2289 {
2290 	struct ftrace_ops *op;
2291 	unsigned long ip = rec->ip;
2292 
2293 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2294 
2295 		if (!op->trampoline)
2296 			continue;
2297 
2298 		if (hash_contains_ip(ip, op->func_hash))
2299 			return op;
2300 	} while_for_each_ftrace_op(op);
2301 
2302 	return NULL;
2303 }
2304 
2305 static struct ftrace_ops *
2306 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2307 {
2308 	struct ftrace_ops *op;
2309 	unsigned long ip = rec->ip;
2310 
2311 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2312 
2313 		if (op == op_exclude || !op->trampoline)
2314 			continue;
2315 
2316 		if (hash_contains_ip(ip, op->func_hash))
2317 			return op;
2318 	} while_for_each_ftrace_op(op);
2319 
2320 	return NULL;
2321 }
2322 
2323 static struct ftrace_ops *
2324 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2325 			   struct ftrace_ops *op)
2326 {
2327 	unsigned long ip = rec->ip;
2328 
2329 	while_for_each_ftrace_op(op) {
2330 
2331 		if (!op->trampoline)
2332 			continue;
2333 
2334 		if (hash_contains_ip(ip, op->func_hash))
2335 			return op;
2336 	}
2337 
2338 	return NULL;
2339 }
2340 
2341 static struct ftrace_ops *
2342 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2343 {
2344 	struct ftrace_ops *op;
2345 	unsigned long ip = rec->ip;
2346 
2347 	/*
2348 	 * Need to check removed ops first.
2349 	 * If they are being removed, and this rec has a tramp,
2350 	 * and this rec is in the ops list, then it would be the
2351 	 * one with the tramp.
2352 	 */
2353 	if (removed_ops) {
2354 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2355 			return removed_ops;
2356 	}
2357 
2358 	/*
2359 	 * Need to find the current trampoline for a rec.
2360 	 * Now, a trampoline is only attached to a rec if there
2361 	 * was a single 'ops' attached to it. But this can be called
2362 	 * when we are adding another op to the rec or removing the
2363 	 * current one. Thus, if the op is being added, we can
2364 	 * ignore it because it hasn't attached itself to the rec
2365 	 * yet.
2366 	 *
2367 	 * If an ops is being modified (hooking to different functions)
2368 	 * then we don't care about the new functions that are being
2369 	 * added, just the old ones (that are probably being removed).
2370 	 *
2371 	 * If we are adding an ops to a function that already is using
2372 	 * a trampoline, it needs to be removed (trampolines are only
2373 	 * for single ops connected), then an ops that is not being
2374 	 * modified also needs to be checked.
2375 	 */
2376 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2377 
2378 		if (!op->trampoline)
2379 			continue;
2380 
2381 		/*
2382 		 * If the ops is being added, it hasn't gotten to
2383 		 * the point to be removed from this tree yet.
2384 		 */
2385 		if (op->flags & FTRACE_OPS_FL_ADDING)
2386 			continue;
2387 
2388 
2389 		/*
2390 		 * If the ops is being modified and is in the old
2391 		 * hash, then it is probably being removed from this
2392 		 * function.
2393 		 */
2394 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2395 		    hash_contains_ip(ip, &op->old_hash))
2396 			return op;
2397 		/*
2398 		 * If the ops is not being added or modified, and it's
2399 		 * in its normal filter hash, then this must be the one
2400 		 * we want!
2401 		 */
2402 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2403 		    hash_contains_ip(ip, op->func_hash))
2404 			return op;
2405 
2406 	} while_for_each_ftrace_op(op);
2407 
2408 	return NULL;
2409 }
2410 
2411 static struct ftrace_ops *
2412 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2413 {
2414 	struct ftrace_ops *op;
2415 	unsigned long ip = rec->ip;
2416 
2417 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2418 		/* pass rec in as regs to have non-NULL val */
2419 		if (hash_contains_ip(ip, op->func_hash))
2420 			return op;
2421 	} while_for_each_ftrace_op(op);
2422 
2423 	return NULL;
2424 }
2425 
2426 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2427 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2428 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2429 static DEFINE_MUTEX(direct_mutex);
2430 int ftrace_direct_func_count;
2431 
2432 /*
2433  * Search the direct_functions hash to see if the given instruction pointer
2434  * has a direct caller attached to it.
2435  */
2436 unsigned long ftrace_find_rec_direct(unsigned long ip)
2437 {
2438 	struct ftrace_func_entry *entry;
2439 
2440 	entry = __ftrace_lookup_ip(direct_functions, ip);
2441 	if (!entry)
2442 		return 0;
2443 
2444 	return entry->direct;
2445 }
2446 
2447 static struct ftrace_func_entry*
2448 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2449 		      struct ftrace_hash **free_hash)
2450 {
2451 	struct ftrace_func_entry *entry;
2452 
2453 	if (ftrace_hash_empty(direct_functions) ||
2454 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2455 		struct ftrace_hash *new_hash;
2456 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2457 			direct_functions->count + 1;
2458 
2459 		if (size < 32)
2460 			size = 32;
2461 
2462 		new_hash = dup_hash(direct_functions, size);
2463 		if (!new_hash)
2464 			return NULL;
2465 
2466 		*free_hash = direct_functions;
2467 		direct_functions = new_hash;
2468 	}
2469 
2470 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2471 	if (!entry)
2472 		return NULL;
2473 
2474 	entry->ip = ip;
2475 	entry->direct = addr;
2476 	__add_hash_entry(direct_functions, entry);
2477 	return entry;
2478 }
2479 
2480 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2481 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2482 {
2483 	struct pt_regs *regs = ftrace_get_regs(fregs);
2484 	unsigned long addr;
2485 
2486 	addr = ftrace_find_rec_direct(ip);
2487 	if (!addr)
2488 		return;
2489 
2490 	arch_ftrace_set_direct_caller(regs, addr);
2491 }
2492 
2493 struct ftrace_ops direct_ops = {
2494 	.func		= call_direct_funcs,
2495 	.flags		= FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2496 			  | FTRACE_OPS_FL_PERMANENT,
2497 	/*
2498 	 * By declaring the main trampoline as this trampoline
2499 	 * it will never have one allocated for it. Allocated
2500 	 * trampolines should not call direct functions.
2501 	 * The direct_ops should only be called by the builtin
2502 	 * ftrace_regs_caller trampoline.
2503 	 */
2504 	.trampoline	= FTRACE_REGS_ADDR,
2505 };
2506 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2507 
2508 /**
2509  * ftrace_get_addr_new - Get the call address to set to
2510  * @rec:  The ftrace record descriptor
2511  *
2512  * If the record has the FTRACE_FL_REGS set, that means that it
2513  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2514  * is not set, then it wants to convert to the normal callback.
2515  *
2516  * Returns the address of the trampoline to set to
2517  */
2518 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2519 {
2520 	struct ftrace_ops *ops;
2521 	unsigned long addr;
2522 
2523 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2524 	    (ftrace_rec_count(rec) == 1)) {
2525 		addr = ftrace_find_rec_direct(rec->ip);
2526 		if (addr)
2527 			return addr;
2528 		WARN_ON_ONCE(1);
2529 	}
2530 
2531 	/* Trampolines take precedence over regs */
2532 	if (rec->flags & FTRACE_FL_TRAMP) {
2533 		ops = ftrace_find_tramp_ops_new(rec);
2534 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2535 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2536 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2537 			/* Ftrace is shutting down, return anything */
2538 			return (unsigned long)FTRACE_ADDR;
2539 		}
2540 		return ops->trampoline;
2541 	}
2542 
2543 	if (rec->flags & FTRACE_FL_REGS)
2544 		return (unsigned long)FTRACE_REGS_ADDR;
2545 	else
2546 		return (unsigned long)FTRACE_ADDR;
2547 }
2548 
2549 /**
2550  * ftrace_get_addr_curr - Get the call address that is already there
2551  * @rec:  The ftrace record descriptor
2552  *
2553  * The FTRACE_FL_REGS_EN is set when the record already points to
2554  * a function that saves all the regs. Basically the '_EN' version
2555  * represents the current state of the function.
2556  *
2557  * Returns the address of the trampoline that is currently being called
2558  */
2559 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2560 {
2561 	struct ftrace_ops *ops;
2562 	unsigned long addr;
2563 
2564 	/* Direct calls take precedence over trampolines */
2565 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2566 		addr = ftrace_find_rec_direct(rec->ip);
2567 		if (addr)
2568 			return addr;
2569 		WARN_ON_ONCE(1);
2570 	}
2571 
2572 	/* Trampolines take precedence over regs */
2573 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2574 		ops = ftrace_find_tramp_ops_curr(rec);
2575 		if (FTRACE_WARN_ON(!ops)) {
2576 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2577 				(void *)rec->ip, (void *)rec->ip);
2578 			/* Ftrace is shutting down, return anything */
2579 			return (unsigned long)FTRACE_ADDR;
2580 		}
2581 		return ops->trampoline;
2582 	}
2583 
2584 	if (rec->flags & FTRACE_FL_REGS_EN)
2585 		return (unsigned long)FTRACE_REGS_ADDR;
2586 	else
2587 		return (unsigned long)FTRACE_ADDR;
2588 }
2589 
2590 static int
2591 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2592 {
2593 	unsigned long ftrace_old_addr;
2594 	unsigned long ftrace_addr;
2595 	int ret;
2596 
2597 	ftrace_addr = ftrace_get_addr_new(rec);
2598 
2599 	/* This needs to be done before we call ftrace_update_record */
2600 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2601 
2602 	ret = ftrace_update_record(rec, enable);
2603 
2604 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2605 
2606 	switch (ret) {
2607 	case FTRACE_UPDATE_IGNORE:
2608 		return 0;
2609 
2610 	case FTRACE_UPDATE_MAKE_CALL:
2611 		ftrace_bug_type = FTRACE_BUG_CALL;
2612 		return ftrace_make_call(rec, ftrace_addr);
2613 
2614 	case FTRACE_UPDATE_MAKE_NOP:
2615 		ftrace_bug_type = FTRACE_BUG_NOP;
2616 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2617 
2618 	case FTRACE_UPDATE_MODIFY_CALL:
2619 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2620 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2621 	}
2622 
2623 	return -1; /* unknown ftrace bug */
2624 }
2625 
2626 void __weak ftrace_replace_code(int mod_flags)
2627 {
2628 	struct dyn_ftrace *rec;
2629 	struct ftrace_page *pg;
2630 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2631 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2632 	int failed;
2633 
2634 	if (unlikely(ftrace_disabled))
2635 		return;
2636 
2637 	do_for_each_ftrace_rec(pg, rec) {
2638 
2639 		if (rec->flags & FTRACE_FL_DISABLED)
2640 			continue;
2641 
2642 		failed = __ftrace_replace_code(rec, enable);
2643 		if (failed) {
2644 			ftrace_bug(failed, rec);
2645 			/* Stop processing */
2646 			return;
2647 		}
2648 		if (schedulable)
2649 			cond_resched();
2650 	} while_for_each_ftrace_rec();
2651 }
2652 
2653 struct ftrace_rec_iter {
2654 	struct ftrace_page	*pg;
2655 	int			index;
2656 };
2657 
2658 /**
2659  * ftrace_rec_iter_start - start up iterating over traced functions
2660  *
2661  * Returns an iterator handle that is used to iterate over all
2662  * the records that represent address locations where functions
2663  * are traced.
2664  *
2665  * May return NULL if no records are available.
2666  */
2667 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2668 {
2669 	/*
2670 	 * We only use a single iterator.
2671 	 * Protected by the ftrace_lock mutex.
2672 	 */
2673 	static struct ftrace_rec_iter ftrace_rec_iter;
2674 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2675 
2676 	iter->pg = ftrace_pages_start;
2677 	iter->index = 0;
2678 
2679 	/* Could have empty pages */
2680 	while (iter->pg && !iter->pg->index)
2681 		iter->pg = iter->pg->next;
2682 
2683 	if (!iter->pg)
2684 		return NULL;
2685 
2686 	return iter;
2687 }
2688 
2689 /**
2690  * ftrace_rec_iter_next - get the next record to process.
2691  * @iter: The handle to the iterator.
2692  *
2693  * Returns the next iterator after the given iterator @iter.
2694  */
2695 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2696 {
2697 	iter->index++;
2698 
2699 	if (iter->index >= iter->pg->index) {
2700 		iter->pg = iter->pg->next;
2701 		iter->index = 0;
2702 
2703 		/* Could have empty pages */
2704 		while (iter->pg && !iter->pg->index)
2705 			iter->pg = iter->pg->next;
2706 	}
2707 
2708 	if (!iter->pg)
2709 		return NULL;
2710 
2711 	return iter;
2712 }
2713 
2714 /**
2715  * ftrace_rec_iter_record - get the record at the iterator location
2716  * @iter: The current iterator location
2717  *
2718  * Returns the record that the current @iter is at.
2719  */
2720 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2721 {
2722 	return &iter->pg->records[iter->index];
2723 }
2724 
2725 static int
2726 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2727 {
2728 	int ret;
2729 
2730 	if (unlikely(ftrace_disabled))
2731 		return 0;
2732 
2733 	ret = ftrace_init_nop(mod, rec);
2734 	if (ret) {
2735 		ftrace_bug_type = FTRACE_BUG_INIT;
2736 		ftrace_bug(ret, rec);
2737 		return 0;
2738 	}
2739 	return 1;
2740 }
2741 
2742 /*
2743  * archs can override this function if they must do something
2744  * before the modifying code is performed.
2745  */
2746 void __weak ftrace_arch_code_modify_prepare(void)
2747 {
2748 }
2749 
2750 /*
2751  * archs can override this function if they must do something
2752  * after the modifying code is performed.
2753  */
2754 void __weak ftrace_arch_code_modify_post_process(void)
2755 {
2756 }
2757 
2758 void ftrace_modify_all_code(int command)
2759 {
2760 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2761 	int mod_flags = 0;
2762 	int err = 0;
2763 
2764 	if (command & FTRACE_MAY_SLEEP)
2765 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2766 
2767 	/*
2768 	 * If the ftrace_caller calls a ftrace_ops func directly,
2769 	 * we need to make sure that it only traces functions it
2770 	 * expects to trace. When doing the switch of functions,
2771 	 * we need to update to the ftrace_ops_list_func first
2772 	 * before the transition between old and new calls are set,
2773 	 * as the ftrace_ops_list_func will check the ops hashes
2774 	 * to make sure the ops are having the right functions
2775 	 * traced.
2776 	 */
2777 	if (update) {
2778 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2779 		if (FTRACE_WARN_ON(err))
2780 			return;
2781 	}
2782 
2783 	if (command & FTRACE_UPDATE_CALLS)
2784 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2785 	else if (command & FTRACE_DISABLE_CALLS)
2786 		ftrace_replace_code(mod_flags);
2787 
2788 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2789 		function_trace_op = set_function_trace_op;
2790 		smp_wmb();
2791 		/* If irqs are disabled, we are in stop machine */
2792 		if (!irqs_disabled())
2793 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2794 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2795 		if (FTRACE_WARN_ON(err))
2796 			return;
2797 	}
2798 
2799 	if (command & FTRACE_START_FUNC_RET)
2800 		err = ftrace_enable_ftrace_graph_caller();
2801 	else if (command & FTRACE_STOP_FUNC_RET)
2802 		err = ftrace_disable_ftrace_graph_caller();
2803 	FTRACE_WARN_ON(err);
2804 }
2805 
2806 static int __ftrace_modify_code(void *data)
2807 {
2808 	int *command = data;
2809 
2810 	ftrace_modify_all_code(*command);
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  * ftrace_run_stop_machine - go back to the stop machine method
2817  * @command: The command to tell ftrace what to do
2818  *
2819  * If an arch needs to fall back to the stop machine method, the
2820  * it can call this function.
2821  */
2822 void ftrace_run_stop_machine(int command)
2823 {
2824 	stop_machine(__ftrace_modify_code, &command, NULL);
2825 }
2826 
2827 /**
2828  * arch_ftrace_update_code - modify the code to trace or not trace
2829  * @command: The command that needs to be done
2830  *
2831  * Archs can override this function if it does not need to
2832  * run stop_machine() to modify code.
2833  */
2834 void __weak arch_ftrace_update_code(int command)
2835 {
2836 	ftrace_run_stop_machine(command);
2837 }
2838 
2839 static void ftrace_run_update_code(int command)
2840 {
2841 	ftrace_arch_code_modify_prepare();
2842 
2843 	/*
2844 	 * By default we use stop_machine() to modify the code.
2845 	 * But archs can do what ever they want as long as it
2846 	 * is safe. The stop_machine() is the safest, but also
2847 	 * produces the most overhead.
2848 	 */
2849 	arch_ftrace_update_code(command);
2850 
2851 	ftrace_arch_code_modify_post_process();
2852 }
2853 
2854 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2855 				   struct ftrace_ops_hash *old_hash)
2856 {
2857 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2858 	ops->old_hash.filter_hash = old_hash->filter_hash;
2859 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2860 	ftrace_run_update_code(command);
2861 	ops->old_hash.filter_hash = NULL;
2862 	ops->old_hash.notrace_hash = NULL;
2863 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2864 }
2865 
2866 static ftrace_func_t saved_ftrace_func;
2867 static int ftrace_start_up;
2868 
2869 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2870 {
2871 }
2872 
2873 /* List of trace_ops that have allocated trampolines */
2874 static LIST_HEAD(ftrace_ops_trampoline_list);
2875 
2876 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2877 {
2878 	lockdep_assert_held(&ftrace_lock);
2879 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2880 }
2881 
2882 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2883 {
2884 	lockdep_assert_held(&ftrace_lock);
2885 	list_del_rcu(&ops->list);
2886 	synchronize_rcu();
2887 }
2888 
2889 /*
2890  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2891  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2892  * not a module.
2893  */
2894 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2895 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2896 
2897 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2898 {
2899 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2900 	    ops->trampoline) {
2901 		/*
2902 		 * Record the text poke event before the ksymbol unregister
2903 		 * event.
2904 		 */
2905 		perf_event_text_poke((void *)ops->trampoline,
2906 				     (void *)ops->trampoline,
2907 				     ops->trampoline_size, NULL, 0);
2908 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2909 				   ops->trampoline, ops->trampoline_size,
2910 				   true, FTRACE_TRAMPOLINE_SYM);
2911 		/* Remove from kallsyms after the perf events */
2912 		ftrace_remove_trampoline_from_kallsyms(ops);
2913 	}
2914 
2915 	arch_ftrace_trampoline_free(ops);
2916 }
2917 
2918 static void ftrace_startup_enable(int command)
2919 {
2920 	if (saved_ftrace_func != ftrace_trace_function) {
2921 		saved_ftrace_func = ftrace_trace_function;
2922 		command |= FTRACE_UPDATE_TRACE_FUNC;
2923 	}
2924 
2925 	if (!command || !ftrace_enabled)
2926 		return;
2927 
2928 	ftrace_run_update_code(command);
2929 }
2930 
2931 static void ftrace_startup_all(int command)
2932 {
2933 	update_all_ops = true;
2934 	ftrace_startup_enable(command);
2935 	update_all_ops = false;
2936 }
2937 
2938 int ftrace_startup(struct ftrace_ops *ops, int command)
2939 {
2940 	int ret;
2941 
2942 	if (unlikely(ftrace_disabled))
2943 		return -ENODEV;
2944 
2945 	ret = __register_ftrace_function(ops);
2946 	if (ret)
2947 		return ret;
2948 
2949 	ftrace_start_up++;
2950 
2951 	/*
2952 	 * Note that ftrace probes uses this to start up
2953 	 * and modify functions it will probe. But we still
2954 	 * set the ADDING flag for modification, as probes
2955 	 * do not have trampolines. If they add them in the
2956 	 * future, then the probes will need to distinguish
2957 	 * between adding and updating probes.
2958 	 */
2959 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2960 
2961 	ret = ftrace_hash_ipmodify_enable(ops);
2962 	if (ret < 0) {
2963 		/* Rollback registration process */
2964 		__unregister_ftrace_function(ops);
2965 		ftrace_start_up--;
2966 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2967 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2968 			ftrace_trampoline_free(ops);
2969 		return ret;
2970 	}
2971 
2972 	if (ftrace_hash_rec_enable(ops, 1))
2973 		command |= FTRACE_UPDATE_CALLS;
2974 
2975 	ftrace_startup_enable(command);
2976 
2977 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2978 
2979 	return 0;
2980 }
2981 
2982 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2983 {
2984 	int ret;
2985 
2986 	if (unlikely(ftrace_disabled))
2987 		return -ENODEV;
2988 
2989 	ret = __unregister_ftrace_function(ops);
2990 	if (ret)
2991 		return ret;
2992 
2993 	ftrace_start_up--;
2994 	/*
2995 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2996 	 * critical but the ftrace_call callers may be never nopped again after
2997 	 * further ftrace uses.
2998 	 */
2999 	WARN_ON_ONCE(ftrace_start_up < 0);
3000 
3001 	/* Disabling ipmodify never fails */
3002 	ftrace_hash_ipmodify_disable(ops);
3003 
3004 	if (ftrace_hash_rec_disable(ops, 1))
3005 		command |= FTRACE_UPDATE_CALLS;
3006 
3007 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3008 
3009 	if (saved_ftrace_func != ftrace_trace_function) {
3010 		saved_ftrace_func = ftrace_trace_function;
3011 		command |= FTRACE_UPDATE_TRACE_FUNC;
3012 	}
3013 
3014 	if (!command || !ftrace_enabled) {
3015 		/*
3016 		 * If these are dynamic or per_cpu ops, they still
3017 		 * need their data freed. Since, function tracing is
3018 		 * not currently active, we can just free them
3019 		 * without synchronizing all CPUs.
3020 		 */
3021 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3022 			goto free_ops;
3023 
3024 		return 0;
3025 	}
3026 
3027 	/*
3028 	 * If the ops uses a trampoline, then it needs to be
3029 	 * tested first on update.
3030 	 */
3031 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3032 	removed_ops = ops;
3033 
3034 	/* The trampoline logic checks the old hashes */
3035 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3036 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3037 
3038 	ftrace_run_update_code(command);
3039 
3040 	/*
3041 	 * If there's no more ops registered with ftrace, run a
3042 	 * sanity check to make sure all rec flags are cleared.
3043 	 */
3044 	if (rcu_dereference_protected(ftrace_ops_list,
3045 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3046 		struct ftrace_page *pg;
3047 		struct dyn_ftrace *rec;
3048 
3049 		do_for_each_ftrace_rec(pg, rec) {
3050 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3051 				pr_warn("  %pS flags:%lx\n",
3052 					(void *)rec->ip, rec->flags);
3053 		} while_for_each_ftrace_rec();
3054 	}
3055 
3056 	ops->old_hash.filter_hash = NULL;
3057 	ops->old_hash.notrace_hash = NULL;
3058 
3059 	removed_ops = NULL;
3060 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3061 
3062 	/*
3063 	 * Dynamic ops may be freed, we must make sure that all
3064 	 * callers are done before leaving this function.
3065 	 * The same goes for freeing the per_cpu data of the per_cpu
3066 	 * ops.
3067 	 */
3068 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3069 		/*
3070 		 * We need to do a hard force of sched synchronization.
3071 		 * This is because we use preempt_disable() to do RCU, but
3072 		 * the function tracers can be called where RCU is not watching
3073 		 * (like before user_exit()). We can not rely on the RCU
3074 		 * infrastructure to do the synchronization, thus we must do it
3075 		 * ourselves.
3076 		 */
3077 		synchronize_rcu_tasks_rude();
3078 
3079 		/*
3080 		 * When the kernel is preemptive, tasks can be preempted
3081 		 * while on a ftrace trampoline. Just scheduling a task on
3082 		 * a CPU is not good enough to flush them. Calling
3083 		 * synchronize_rcu_tasks() will wait for those tasks to
3084 		 * execute and either schedule voluntarily or enter user space.
3085 		 */
3086 		if (IS_ENABLED(CONFIG_PREEMPTION))
3087 			synchronize_rcu_tasks();
3088 
3089  free_ops:
3090 		ftrace_trampoline_free(ops);
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 static u64		ftrace_update_time;
3097 unsigned long		ftrace_update_tot_cnt;
3098 unsigned long		ftrace_number_of_pages;
3099 unsigned long		ftrace_number_of_groups;
3100 
3101 static inline int ops_traces_mod(struct ftrace_ops *ops)
3102 {
3103 	/*
3104 	 * Filter_hash being empty will default to trace module.
3105 	 * But notrace hash requires a test of individual module functions.
3106 	 */
3107 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3108 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3109 }
3110 
3111 /*
3112  * Check if the current ops references the given ip.
3113  *
3114  * If the ops traces all functions, then it was already accounted for.
3115  * If the ops does not trace the current record function, skip it.
3116  * If the ops ignores the function via notrace filter, skip it.
3117  */
3118 static bool
3119 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
3120 {
3121 	/* If ops isn't enabled, ignore it */
3122 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3123 		return false;
3124 
3125 	/* If ops traces all then it includes this function */
3126 	if (ops_traces_mod(ops))
3127 		return true;
3128 
3129 	/* The function must be in the filter */
3130 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3131 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
3132 		return false;
3133 
3134 	/* If in notrace hash, we ignore it too */
3135 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
3136 		return false;
3137 
3138 	return true;
3139 }
3140 
3141 /*
3142  * Check if the current ops references the record.
3143  *
3144  * If the ops traces all functions, then it was already accounted for.
3145  * If the ops does not trace the current record function, skip it.
3146  * If the ops ignores the function via notrace filter, skip it.
3147  */
3148 static bool
3149 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3150 {
3151 	return ops_references_ip(ops, rec->ip);
3152 }
3153 
3154 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3155 {
3156 	bool init_nop = ftrace_need_init_nop();
3157 	struct ftrace_page *pg;
3158 	struct dyn_ftrace *p;
3159 	u64 start, stop;
3160 	unsigned long update_cnt = 0;
3161 	unsigned long rec_flags = 0;
3162 	int i;
3163 
3164 	start = ftrace_now(raw_smp_processor_id());
3165 
3166 	/*
3167 	 * When a module is loaded, this function is called to convert
3168 	 * the calls to mcount in its text to nops, and also to create
3169 	 * an entry in the ftrace data. Now, if ftrace is activated
3170 	 * after this call, but before the module sets its text to
3171 	 * read-only, the modification of enabling ftrace can fail if
3172 	 * the read-only is done while ftrace is converting the calls.
3173 	 * To prevent this, the module's records are set as disabled
3174 	 * and will be enabled after the call to set the module's text
3175 	 * to read-only.
3176 	 */
3177 	if (mod)
3178 		rec_flags |= FTRACE_FL_DISABLED;
3179 
3180 	for (pg = new_pgs; pg; pg = pg->next) {
3181 
3182 		for (i = 0; i < pg->index; i++) {
3183 
3184 			/* If something went wrong, bail without enabling anything */
3185 			if (unlikely(ftrace_disabled))
3186 				return -1;
3187 
3188 			p = &pg->records[i];
3189 			p->flags = rec_flags;
3190 
3191 			/*
3192 			 * Do the initial record conversion from mcount jump
3193 			 * to the NOP instructions.
3194 			 */
3195 			if (init_nop && !ftrace_nop_initialize(mod, p))
3196 				break;
3197 
3198 			update_cnt++;
3199 		}
3200 	}
3201 
3202 	stop = ftrace_now(raw_smp_processor_id());
3203 	ftrace_update_time = stop - start;
3204 	ftrace_update_tot_cnt += update_cnt;
3205 
3206 	return 0;
3207 }
3208 
3209 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3210 {
3211 	int order;
3212 	int pages;
3213 	int cnt;
3214 
3215 	if (WARN_ON(!count))
3216 		return -EINVAL;
3217 
3218 	/* We want to fill as much as possible, with no empty pages */
3219 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3220 	order = fls(pages) - 1;
3221 
3222  again:
3223 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3224 
3225 	if (!pg->records) {
3226 		/* if we can't allocate this size, try something smaller */
3227 		if (!order)
3228 			return -ENOMEM;
3229 		order >>= 1;
3230 		goto again;
3231 	}
3232 
3233 	ftrace_number_of_pages += 1 << order;
3234 	ftrace_number_of_groups++;
3235 
3236 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3237 	pg->order = order;
3238 
3239 	if (cnt > count)
3240 		cnt = count;
3241 
3242 	return cnt;
3243 }
3244 
3245 static struct ftrace_page *
3246 ftrace_allocate_pages(unsigned long num_to_init)
3247 {
3248 	struct ftrace_page *start_pg;
3249 	struct ftrace_page *pg;
3250 	int cnt;
3251 
3252 	if (!num_to_init)
3253 		return NULL;
3254 
3255 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3256 	if (!pg)
3257 		return NULL;
3258 
3259 	/*
3260 	 * Try to allocate as much as possible in one continues
3261 	 * location that fills in all of the space. We want to
3262 	 * waste as little space as possible.
3263 	 */
3264 	for (;;) {
3265 		cnt = ftrace_allocate_records(pg, num_to_init);
3266 		if (cnt < 0)
3267 			goto free_pages;
3268 
3269 		num_to_init -= cnt;
3270 		if (!num_to_init)
3271 			break;
3272 
3273 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3274 		if (!pg->next)
3275 			goto free_pages;
3276 
3277 		pg = pg->next;
3278 	}
3279 
3280 	return start_pg;
3281 
3282  free_pages:
3283 	pg = start_pg;
3284 	while (pg) {
3285 		if (pg->records) {
3286 			free_pages((unsigned long)pg->records, pg->order);
3287 			ftrace_number_of_pages -= 1 << pg->order;
3288 		}
3289 		start_pg = pg->next;
3290 		kfree(pg);
3291 		pg = start_pg;
3292 		ftrace_number_of_groups--;
3293 	}
3294 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3295 	return NULL;
3296 }
3297 
3298 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3299 
3300 struct ftrace_iterator {
3301 	loff_t				pos;
3302 	loff_t				func_pos;
3303 	loff_t				mod_pos;
3304 	struct ftrace_page		*pg;
3305 	struct dyn_ftrace		*func;
3306 	struct ftrace_func_probe	*probe;
3307 	struct ftrace_func_entry	*probe_entry;
3308 	struct trace_parser		parser;
3309 	struct ftrace_hash		*hash;
3310 	struct ftrace_ops		*ops;
3311 	struct trace_array		*tr;
3312 	struct list_head		*mod_list;
3313 	int				pidx;
3314 	int				idx;
3315 	unsigned			flags;
3316 };
3317 
3318 static void *
3319 t_probe_next(struct seq_file *m, loff_t *pos)
3320 {
3321 	struct ftrace_iterator *iter = m->private;
3322 	struct trace_array *tr = iter->ops->private;
3323 	struct list_head *func_probes;
3324 	struct ftrace_hash *hash;
3325 	struct list_head *next;
3326 	struct hlist_node *hnd = NULL;
3327 	struct hlist_head *hhd;
3328 	int size;
3329 
3330 	(*pos)++;
3331 	iter->pos = *pos;
3332 
3333 	if (!tr)
3334 		return NULL;
3335 
3336 	func_probes = &tr->func_probes;
3337 	if (list_empty(func_probes))
3338 		return NULL;
3339 
3340 	if (!iter->probe) {
3341 		next = func_probes->next;
3342 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3343 	}
3344 
3345 	if (iter->probe_entry)
3346 		hnd = &iter->probe_entry->hlist;
3347 
3348 	hash = iter->probe->ops.func_hash->filter_hash;
3349 
3350 	/*
3351 	 * A probe being registered may temporarily have an empty hash
3352 	 * and it's at the end of the func_probes list.
3353 	 */
3354 	if (!hash || hash == EMPTY_HASH)
3355 		return NULL;
3356 
3357 	size = 1 << hash->size_bits;
3358 
3359  retry:
3360 	if (iter->pidx >= size) {
3361 		if (iter->probe->list.next == func_probes)
3362 			return NULL;
3363 		next = iter->probe->list.next;
3364 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3365 		hash = iter->probe->ops.func_hash->filter_hash;
3366 		size = 1 << hash->size_bits;
3367 		iter->pidx = 0;
3368 	}
3369 
3370 	hhd = &hash->buckets[iter->pidx];
3371 
3372 	if (hlist_empty(hhd)) {
3373 		iter->pidx++;
3374 		hnd = NULL;
3375 		goto retry;
3376 	}
3377 
3378 	if (!hnd)
3379 		hnd = hhd->first;
3380 	else {
3381 		hnd = hnd->next;
3382 		if (!hnd) {
3383 			iter->pidx++;
3384 			goto retry;
3385 		}
3386 	}
3387 
3388 	if (WARN_ON_ONCE(!hnd))
3389 		return NULL;
3390 
3391 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3392 
3393 	return iter;
3394 }
3395 
3396 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3397 {
3398 	struct ftrace_iterator *iter = m->private;
3399 	void *p = NULL;
3400 	loff_t l;
3401 
3402 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3403 		return NULL;
3404 
3405 	if (iter->mod_pos > *pos)
3406 		return NULL;
3407 
3408 	iter->probe = NULL;
3409 	iter->probe_entry = NULL;
3410 	iter->pidx = 0;
3411 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3412 		p = t_probe_next(m, &l);
3413 		if (!p)
3414 			break;
3415 	}
3416 	if (!p)
3417 		return NULL;
3418 
3419 	/* Only set this if we have an item */
3420 	iter->flags |= FTRACE_ITER_PROBE;
3421 
3422 	return iter;
3423 }
3424 
3425 static int
3426 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3427 {
3428 	struct ftrace_func_entry *probe_entry;
3429 	struct ftrace_probe_ops *probe_ops;
3430 	struct ftrace_func_probe *probe;
3431 
3432 	probe = iter->probe;
3433 	probe_entry = iter->probe_entry;
3434 
3435 	if (WARN_ON_ONCE(!probe || !probe_entry))
3436 		return -EIO;
3437 
3438 	probe_ops = probe->probe_ops;
3439 
3440 	if (probe_ops->print)
3441 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3442 
3443 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3444 		   (void *)probe_ops->func);
3445 
3446 	return 0;
3447 }
3448 
3449 static void *
3450 t_mod_next(struct seq_file *m, loff_t *pos)
3451 {
3452 	struct ftrace_iterator *iter = m->private;
3453 	struct trace_array *tr = iter->tr;
3454 
3455 	(*pos)++;
3456 	iter->pos = *pos;
3457 
3458 	iter->mod_list = iter->mod_list->next;
3459 
3460 	if (iter->mod_list == &tr->mod_trace ||
3461 	    iter->mod_list == &tr->mod_notrace) {
3462 		iter->flags &= ~FTRACE_ITER_MOD;
3463 		return NULL;
3464 	}
3465 
3466 	iter->mod_pos = *pos;
3467 
3468 	return iter;
3469 }
3470 
3471 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3472 {
3473 	struct ftrace_iterator *iter = m->private;
3474 	void *p = NULL;
3475 	loff_t l;
3476 
3477 	if (iter->func_pos > *pos)
3478 		return NULL;
3479 
3480 	iter->mod_pos = iter->func_pos;
3481 
3482 	/* probes are only available if tr is set */
3483 	if (!iter->tr)
3484 		return NULL;
3485 
3486 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3487 		p = t_mod_next(m, &l);
3488 		if (!p)
3489 			break;
3490 	}
3491 	if (!p) {
3492 		iter->flags &= ~FTRACE_ITER_MOD;
3493 		return t_probe_start(m, pos);
3494 	}
3495 
3496 	/* Only set this if we have an item */
3497 	iter->flags |= FTRACE_ITER_MOD;
3498 
3499 	return iter;
3500 }
3501 
3502 static int
3503 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3504 {
3505 	struct ftrace_mod_load *ftrace_mod;
3506 	struct trace_array *tr = iter->tr;
3507 
3508 	if (WARN_ON_ONCE(!iter->mod_list) ||
3509 			 iter->mod_list == &tr->mod_trace ||
3510 			 iter->mod_list == &tr->mod_notrace)
3511 		return -EIO;
3512 
3513 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3514 
3515 	if (ftrace_mod->func)
3516 		seq_printf(m, "%s", ftrace_mod->func);
3517 	else
3518 		seq_putc(m, '*');
3519 
3520 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3521 
3522 	return 0;
3523 }
3524 
3525 static void *
3526 t_func_next(struct seq_file *m, loff_t *pos)
3527 {
3528 	struct ftrace_iterator *iter = m->private;
3529 	struct dyn_ftrace *rec = NULL;
3530 
3531 	(*pos)++;
3532 
3533  retry:
3534 	if (iter->idx >= iter->pg->index) {
3535 		if (iter->pg->next) {
3536 			iter->pg = iter->pg->next;
3537 			iter->idx = 0;
3538 			goto retry;
3539 		}
3540 	} else {
3541 		rec = &iter->pg->records[iter->idx++];
3542 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3543 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3544 
3545 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3546 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3547 
3548 			rec = NULL;
3549 			goto retry;
3550 		}
3551 	}
3552 
3553 	if (!rec)
3554 		return NULL;
3555 
3556 	iter->pos = iter->func_pos = *pos;
3557 	iter->func = rec;
3558 
3559 	return iter;
3560 }
3561 
3562 static void *
3563 t_next(struct seq_file *m, void *v, loff_t *pos)
3564 {
3565 	struct ftrace_iterator *iter = m->private;
3566 	loff_t l = *pos; /* t_probe_start() must use original pos */
3567 	void *ret;
3568 
3569 	if (unlikely(ftrace_disabled))
3570 		return NULL;
3571 
3572 	if (iter->flags & FTRACE_ITER_PROBE)
3573 		return t_probe_next(m, pos);
3574 
3575 	if (iter->flags & FTRACE_ITER_MOD)
3576 		return t_mod_next(m, pos);
3577 
3578 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3579 		/* next must increment pos, and t_probe_start does not */
3580 		(*pos)++;
3581 		return t_mod_start(m, &l);
3582 	}
3583 
3584 	ret = t_func_next(m, pos);
3585 
3586 	if (!ret)
3587 		return t_mod_start(m, &l);
3588 
3589 	return ret;
3590 }
3591 
3592 static void reset_iter_read(struct ftrace_iterator *iter)
3593 {
3594 	iter->pos = 0;
3595 	iter->func_pos = 0;
3596 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3597 }
3598 
3599 static void *t_start(struct seq_file *m, loff_t *pos)
3600 {
3601 	struct ftrace_iterator *iter = m->private;
3602 	void *p = NULL;
3603 	loff_t l;
3604 
3605 	mutex_lock(&ftrace_lock);
3606 
3607 	if (unlikely(ftrace_disabled))
3608 		return NULL;
3609 
3610 	/*
3611 	 * If an lseek was done, then reset and start from beginning.
3612 	 */
3613 	if (*pos < iter->pos)
3614 		reset_iter_read(iter);
3615 
3616 	/*
3617 	 * For set_ftrace_filter reading, if we have the filter
3618 	 * off, we can short cut and just print out that all
3619 	 * functions are enabled.
3620 	 */
3621 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3622 	    ftrace_hash_empty(iter->hash)) {
3623 		iter->func_pos = 1; /* Account for the message */
3624 		if (*pos > 0)
3625 			return t_mod_start(m, pos);
3626 		iter->flags |= FTRACE_ITER_PRINTALL;
3627 		/* reset in case of seek/pread */
3628 		iter->flags &= ~FTRACE_ITER_PROBE;
3629 		return iter;
3630 	}
3631 
3632 	if (iter->flags & FTRACE_ITER_MOD)
3633 		return t_mod_start(m, pos);
3634 
3635 	/*
3636 	 * Unfortunately, we need to restart at ftrace_pages_start
3637 	 * every time we let go of the ftrace_mutex. This is because
3638 	 * those pointers can change without the lock.
3639 	 */
3640 	iter->pg = ftrace_pages_start;
3641 	iter->idx = 0;
3642 	for (l = 0; l <= *pos; ) {
3643 		p = t_func_next(m, &l);
3644 		if (!p)
3645 			break;
3646 	}
3647 
3648 	if (!p)
3649 		return t_mod_start(m, pos);
3650 
3651 	return iter;
3652 }
3653 
3654 static void t_stop(struct seq_file *m, void *p)
3655 {
3656 	mutex_unlock(&ftrace_lock);
3657 }
3658 
3659 void * __weak
3660 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3661 {
3662 	return NULL;
3663 }
3664 
3665 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3666 				struct dyn_ftrace *rec)
3667 {
3668 	void *ptr;
3669 
3670 	ptr = arch_ftrace_trampoline_func(ops, rec);
3671 	if (ptr)
3672 		seq_printf(m, " ->%pS", ptr);
3673 }
3674 
3675 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3676 /*
3677  * Weak functions can still have an mcount/fentry that is saved in
3678  * the __mcount_loc section. These can be detected by having a
3679  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3680  * symbol found by kallsyms is not the function that the mcount/fentry
3681  * is part of. The offset is much greater in these cases.
3682  *
3683  * Test the record to make sure that the ip points to a valid kallsyms
3684  * and if not, mark it disabled.
3685  */
3686 static int test_for_valid_rec(struct dyn_ftrace *rec)
3687 {
3688 	char str[KSYM_SYMBOL_LEN];
3689 	unsigned long offset;
3690 	const char *ret;
3691 
3692 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3693 
3694 	/* Weak functions can cause invalid addresses */
3695 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3696 		rec->flags |= FTRACE_FL_DISABLED;
3697 		return 0;
3698 	}
3699 	return 1;
3700 }
3701 
3702 static struct workqueue_struct *ftrace_check_wq __initdata;
3703 static struct work_struct ftrace_check_work __initdata;
3704 
3705 /*
3706  * Scan all the mcount/fentry entries to make sure they are valid.
3707  */
3708 static __init void ftrace_check_work_func(struct work_struct *work)
3709 {
3710 	struct ftrace_page *pg;
3711 	struct dyn_ftrace *rec;
3712 
3713 	mutex_lock(&ftrace_lock);
3714 	do_for_each_ftrace_rec(pg, rec) {
3715 		test_for_valid_rec(rec);
3716 	} while_for_each_ftrace_rec();
3717 	mutex_unlock(&ftrace_lock);
3718 }
3719 
3720 static int __init ftrace_check_for_weak_functions(void)
3721 {
3722 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3723 
3724 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3725 
3726 	queue_work(ftrace_check_wq, &ftrace_check_work);
3727 	return 0;
3728 }
3729 
3730 static int __init ftrace_check_sync(void)
3731 {
3732 	/* Make sure the ftrace_check updates are finished */
3733 	if (ftrace_check_wq)
3734 		destroy_workqueue(ftrace_check_wq);
3735 	return 0;
3736 }
3737 
3738 late_initcall_sync(ftrace_check_sync);
3739 subsys_initcall(ftrace_check_for_weak_functions);
3740 
3741 static int print_rec(struct seq_file *m, unsigned long ip)
3742 {
3743 	unsigned long offset;
3744 	char str[KSYM_SYMBOL_LEN];
3745 	char *modname;
3746 	const char *ret;
3747 
3748 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3749 	/* Weak functions can cause invalid addresses */
3750 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3751 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3752 			 FTRACE_INVALID_FUNCTION, offset);
3753 		ret = NULL;
3754 	}
3755 
3756 	seq_puts(m, str);
3757 	if (modname)
3758 		seq_printf(m, " [%s]", modname);
3759 	return ret == NULL ? -1 : 0;
3760 }
3761 #else
3762 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3763 {
3764 	return 1;
3765 }
3766 
3767 static inline int print_rec(struct seq_file *m, unsigned long ip)
3768 {
3769 	seq_printf(m, "%ps", (void *)ip);
3770 	return 0;
3771 }
3772 #endif
3773 
3774 static int t_show(struct seq_file *m, void *v)
3775 {
3776 	struct ftrace_iterator *iter = m->private;
3777 	struct dyn_ftrace *rec;
3778 
3779 	if (iter->flags & FTRACE_ITER_PROBE)
3780 		return t_probe_show(m, iter);
3781 
3782 	if (iter->flags & FTRACE_ITER_MOD)
3783 		return t_mod_show(m, iter);
3784 
3785 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3786 		if (iter->flags & FTRACE_ITER_NOTRACE)
3787 			seq_puts(m, "#### no functions disabled ####\n");
3788 		else
3789 			seq_puts(m, "#### all functions enabled ####\n");
3790 		return 0;
3791 	}
3792 
3793 	rec = iter->func;
3794 
3795 	if (!rec)
3796 		return 0;
3797 
3798 	if (print_rec(m, rec->ip)) {
3799 		/* This should only happen when a rec is disabled */
3800 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3801 		seq_putc(m, '\n');
3802 		return 0;
3803 	}
3804 
3805 	if (iter->flags & FTRACE_ITER_ENABLED) {
3806 		struct ftrace_ops *ops;
3807 
3808 		seq_printf(m, " (%ld)%s%s%s",
3809 			   ftrace_rec_count(rec),
3810 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3811 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3812 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3813 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3814 			ops = ftrace_find_tramp_ops_any(rec);
3815 			if (ops) {
3816 				do {
3817 					seq_printf(m, "\ttramp: %pS (%pS)",
3818 						   (void *)ops->trampoline,
3819 						   (void *)ops->func);
3820 					add_trampoline_func(m, ops, rec);
3821 					ops = ftrace_find_tramp_ops_next(rec, ops);
3822 				} while (ops);
3823 			} else
3824 				seq_puts(m, "\ttramp: ERROR!");
3825 		} else {
3826 			add_trampoline_func(m, NULL, rec);
3827 		}
3828 		if (rec->flags & FTRACE_FL_DIRECT) {
3829 			unsigned long direct;
3830 
3831 			direct = ftrace_find_rec_direct(rec->ip);
3832 			if (direct)
3833 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3834 		}
3835 	}
3836 
3837 	seq_putc(m, '\n');
3838 
3839 	return 0;
3840 }
3841 
3842 static const struct seq_operations show_ftrace_seq_ops = {
3843 	.start = t_start,
3844 	.next = t_next,
3845 	.stop = t_stop,
3846 	.show = t_show,
3847 };
3848 
3849 static int
3850 ftrace_avail_open(struct inode *inode, struct file *file)
3851 {
3852 	struct ftrace_iterator *iter;
3853 	int ret;
3854 
3855 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3856 	if (ret)
3857 		return ret;
3858 
3859 	if (unlikely(ftrace_disabled))
3860 		return -ENODEV;
3861 
3862 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3863 	if (!iter)
3864 		return -ENOMEM;
3865 
3866 	iter->pg = ftrace_pages_start;
3867 	iter->ops = &global_ops;
3868 
3869 	return 0;
3870 }
3871 
3872 static int
3873 ftrace_enabled_open(struct inode *inode, struct file *file)
3874 {
3875 	struct ftrace_iterator *iter;
3876 
3877 	/*
3878 	 * This shows us what functions are currently being
3879 	 * traced and by what. Not sure if we want lockdown
3880 	 * to hide such critical information for an admin.
3881 	 * Although, perhaps it can show information we don't
3882 	 * want people to see, but if something is tracing
3883 	 * something, we probably want to know about it.
3884 	 */
3885 
3886 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3887 	if (!iter)
3888 		return -ENOMEM;
3889 
3890 	iter->pg = ftrace_pages_start;
3891 	iter->flags = FTRACE_ITER_ENABLED;
3892 	iter->ops = &global_ops;
3893 
3894 	return 0;
3895 }
3896 
3897 /**
3898  * ftrace_regex_open - initialize function tracer filter files
3899  * @ops: The ftrace_ops that hold the hash filters
3900  * @flag: The type of filter to process
3901  * @inode: The inode, usually passed in to your open routine
3902  * @file: The file, usually passed in to your open routine
3903  *
3904  * ftrace_regex_open() initializes the filter files for the
3905  * @ops. Depending on @flag it may process the filter hash or
3906  * the notrace hash of @ops. With this called from the open
3907  * routine, you can use ftrace_filter_write() for the write
3908  * routine if @flag has FTRACE_ITER_FILTER set, or
3909  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3910  * tracing_lseek() should be used as the lseek routine, and
3911  * release must call ftrace_regex_release().
3912  */
3913 int
3914 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3915 		  struct inode *inode, struct file *file)
3916 {
3917 	struct ftrace_iterator *iter;
3918 	struct ftrace_hash *hash;
3919 	struct list_head *mod_head;
3920 	struct trace_array *tr = ops->private;
3921 	int ret = -ENOMEM;
3922 
3923 	ftrace_ops_init(ops);
3924 
3925 	if (unlikely(ftrace_disabled))
3926 		return -ENODEV;
3927 
3928 	if (tracing_check_open_get_tr(tr))
3929 		return -ENODEV;
3930 
3931 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3932 	if (!iter)
3933 		goto out;
3934 
3935 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3936 		goto out;
3937 
3938 	iter->ops = ops;
3939 	iter->flags = flag;
3940 	iter->tr = tr;
3941 
3942 	mutex_lock(&ops->func_hash->regex_lock);
3943 
3944 	if (flag & FTRACE_ITER_NOTRACE) {
3945 		hash = ops->func_hash->notrace_hash;
3946 		mod_head = tr ? &tr->mod_notrace : NULL;
3947 	} else {
3948 		hash = ops->func_hash->filter_hash;
3949 		mod_head = tr ? &tr->mod_trace : NULL;
3950 	}
3951 
3952 	iter->mod_list = mod_head;
3953 
3954 	if (file->f_mode & FMODE_WRITE) {
3955 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3956 
3957 		if (file->f_flags & O_TRUNC) {
3958 			iter->hash = alloc_ftrace_hash(size_bits);
3959 			clear_ftrace_mod_list(mod_head);
3960 	        } else {
3961 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3962 		}
3963 
3964 		if (!iter->hash) {
3965 			trace_parser_put(&iter->parser);
3966 			goto out_unlock;
3967 		}
3968 	} else
3969 		iter->hash = hash;
3970 
3971 	ret = 0;
3972 
3973 	if (file->f_mode & FMODE_READ) {
3974 		iter->pg = ftrace_pages_start;
3975 
3976 		ret = seq_open(file, &show_ftrace_seq_ops);
3977 		if (!ret) {
3978 			struct seq_file *m = file->private_data;
3979 			m->private = iter;
3980 		} else {
3981 			/* Failed */
3982 			free_ftrace_hash(iter->hash);
3983 			trace_parser_put(&iter->parser);
3984 		}
3985 	} else
3986 		file->private_data = iter;
3987 
3988  out_unlock:
3989 	mutex_unlock(&ops->func_hash->regex_lock);
3990 
3991  out:
3992 	if (ret) {
3993 		kfree(iter);
3994 		if (tr)
3995 			trace_array_put(tr);
3996 	}
3997 
3998 	return ret;
3999 }
4000 
4001 static int
4002 ftrace_filter_open(struct inode *inode, struct file *file)
4003 {
4004 	struct ftrace_ops *ops = inode->i_private;
4005 
4006 	/* Checks for tracefs lockdown */
4007 	return ftrace_regex_open(ops,
4008 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4009 			inode, file);
4010 }
4011 
4012 static int
4013 ftrace_notrace_open(struct inode *inode, struct file *file)
4014 {
4015 	struct ftrace_ops *ops = inode->i_private;
4016 
4017 	/* Checks for tracefs lockdown */
4018 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4019 				 inode, file);
4020 }
4021 
4022 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4023 struct ftrace_glob {
4024 	char *search;
4025 	unsigned len;
4026 	int type;
4027 };
4028 
4029 /*
4030  * If symbols in an architecture don't correspond exactly to the user-visible
4031  * name of what they represent, it is possible to define this function to
4032  * perform the necessary adjustments.
4033 */
4034 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4035 {
4036 	return str;
4037 }
4038 
4039 static int ftrace_match(char *str, struct ftrace_glob *g)
4040 {
4041 	int matched = 0;
4042 	int slen;
4043 
4044 	str = arch_ftrace_match_adjust(str, g->search);
4045 
4046 	switch (g->type) {
4047 	case MATCH_FULL:
4048 		if (strcmp(str, g->search) == 0)
4049 			matched = 1;
4050 		break;
4051 	case MATCH_FRONT_ONLY:
4052 		if (strncmp(str, g->search, g->len) == 0)
4053 			matched = 1;
4054 		break;
4055 	case MATCH_MIDDLE_ONLY:
4056 		if (strstr(str, g->search))
4057 			matched = 1;
4058 		break;
4059 	case MATCH_END_ONLY:
4060 		slen = strlen(str);
4061 		if (slen >= g->len &&
4062 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4063 			matched = 1;
4064 		break;
4065 	case MATCH_GLOB:
4066 		if (glob_match(g->search, str))
4067 			matched = 1;
4068 		break;
4069 	}
4070 
4071 	return matched;
4072 }
4073 
4074 static int
4075 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4076 {
4077 	struct ftrace_func_entry *entry;
4078 	int ret = 0;
4079 
4080 	entry = ftrace_lookup_ip(hash, rec->ip);
4081 	if (clear_filter) {
4082 		/* Do nothing if it doesn't exist */
4083 		if (!entry)
4084 			return 0;
4085 
4086 		free_hash_entry(hash, entry);
4087 	} else {
4088 		/* Do nothing if it exists */
4089 		if (entry)
4090 			return 0;
4091 
4092 		ret = add_hash_entry(hash, rec->ip);
4093 	}
4094 	return ret;
4095 }
4096 
4097 static int
4098 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4099 		 int clear_filter)
4100 {
4101 	long index = simple_strtoul(func_g->search, NULL, 0);
4102 	struct ftrace_page *pg;
4103 	struct dyn_ftrace *rec;
4104 
4105 	/* The index starts at 1 */
4106 	if (--index < 0)
4107 		return 0;
4108 
4109 	do_for_each_ftrace_rec(pg, rec) {
4110 		if (pg->index <= index) {
4111 			index -= pg->index;
4112 			/* this is a double loop, break goes to the next page */
4113 			break;
4114 		}
4115 		rec = &pg->records[index];
4116 		enter_record(hash, rec, clear_filter);
4117 		return 1;
4118 	} while_for_each_ftrace_rec();
4119 	return 0;
4120 }
4121 
4122 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4123 static int lookup_ip(unsigned long ip, char **modname, char *str)
4124 {
4125 	unsigned long offset;
4126 
4127 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4128 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4129 		return -1;
4130 	return 0;
4131 }
4132 #else
4133 static int lookup_ip(unsigned long ip, char **modname, char *str)
4134 {
4135 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4136 	return 0;
4137 }
4138 #endif
4139 
4140 static int
4141 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4142 		struct ftrace_glob *mod_g, int exclude_mod)
4143 {
4144 	char str[KSYM_SYMBOL_LEN];
4145 	char *modname;
4146 
4147 	if (lookup_ip(rec->ip, &modname, str)) {
4148 		/* This should only happen when a rec is disabled */
4149 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4150 			     !(rec->flags & FTRACE_FL_DISABLED));
4151 		return 0;
4152 	}
4153 
4154 	if (mod_g) {
4155 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4156 
4157 		/* blank module name to match all modules */
4158 		if (!mod_g->len) {
4159 			/* blank module globbing: modname xor exclude_mod */
4160 			if (!exclude_mod != !modname)
4161 				goto func_match;
4162 			return 0;
4163 		}
4164 
4165 		/*
4166 		 * exclude_mod is set to trace everything but the given
4167 		 * module. If it is set and the module matches, then
4168 		 * return 0. If it is not set, and the module doesn't match
4169 		 * also return 0. Otherwise, check the function to see if
4170 		 * that matches.
4171 		 */
4172 		if (!mod_matches == !exclude_mod)
4173 			return 0;
4174 func_match:
4175 		/* blank search means to match all funcs in the mod */
4176 		if (!func_g->len)
4177 			return 1;
4178 	}
4179 
4180 	return ftrace_match(str, func_g);
4181 }
4182 
4183 static int
4184 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4185 {
4186 	struct ftrace_page *pg;
4187 	struct dyn_ftrace *rec;
4188 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4189 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4190 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4191 	int exclude_mod = 0;
4192 	int found = 0;
4193 	int ret;
4194 	int clear_filter = 0;
4195 
4196 	if (func) {
4197 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4198 						 &clear_filter);
4199 		func_g.len = strlen(func_g.search);
4200 	}
4201 
4202 	if (mod) {
4203 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4204 				&mod_g.search, &exclude_mod);
4205 		mod_g.len = strlen(mod_g.search);
4206 	}
4207 
4208 	mutex_lock(&ftrace_lock);
4209 
4210 	if (unlikely(ftrace_disabled))
4211 		goto out_unlock;
4212 
4213 	if (func_g.type == MATCH_INDEX) {
4214 		found = add_rec_by_index(hash, &func_g, clear_filter);
4215 		goto out_unlock;
4216 	}
4217 
4218 	do_for_each_ftrace_rec(pg, rec) {
4219 
4220 		if (rec->flags & FTRACE_FL_DISABLED)
4221 			continue;
4222 
4223 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4224 			ret = enter_record(hash, rec, clear_filter);
4225 			if (ret < 0) {
4226 				found = ret;
4227 				goto out_unlock;
4228 			}
4229 			found = 1;
4230 		}
4231 	} while_for_each_ftrace_rec();
4232  out_unlock:
4233 	mutex_unlock(&ftrace_lock);
4234 
4235 	return found;
4236 }
4237 
4238 static int
4239 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4240 {
4241 	return match_records(hash, buff, len, NULL);
4242 }
4243 
4244 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4245 				   struct ftrace_ops_hash *old_hash)
4246 {
4247 	struct ftrace_ops *op;
4248 
4249 	if (!ftrace_enabled)
4250 		return;
4251 
4252 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4253 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4254 		return;
4255 	}
4256 
4257 	/*
4258 	 * If this is the shared global_ops filter, then we need to
4259 	 * check if there is another ops that shares it, is enabled.
4260 	 * If so, we still need to run the modify code.
4261 	 */
4262 	if (ops->func_hash != &global_ops.local_hash)
4263 		return;
4264 
4265 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4266 		if (op->func_hash == &global_ops.local_hash &&
4267 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4268 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4269 			/* Only need to do this once */
4270 			return;
4271 		}
4272 	} while_for_each_ftrace_op(op);
4273 }
4274 
4275 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4276 					   struct ftrace_hash **orig_hash,
4277 					   struct ftrace_hash *hash,
4278 					   int enable)
4279 {
4280 	struct ftrace_ops_hash old_hash_ops;
4281 	struct ftrace_hash *old_hash;
4282 	int ret;
4283 
4284 	old_hash = *orig_hash;
4285 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4286 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4287 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4288 	if (!ret) {
4289 		ftrace_ops_update_code(ops, &old_hash_ops);
4290 		free_ftrace_hash_rcu(old_hash);
4291 	}
4292 	return ret;
4293 }
4294 
4295 static bool module_exists(const char *module)
4296 {
4297 	/* All modules have the symbol __this_module */
4298 	static const char this_mod[] = "__this_module";
4299 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4300 	unsigned long val;
4301 	int n;
4302 
4303 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4304 
4305 	if (n > sizeof(modname) - 1)
4306 		return false;
4307 
4308 	val = module_kallsyms_lookup_name(modname);
4309 	return val != 0;
4310 }
4311 
4312 static int cache_mod(struct trace_array *tr,
4313 		     const char *func, char *module, int enable)
4314 {
4315 	struct ftrace_mod_load *ftrace_mod, *n;
4316 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4317 	int ret;
4318 
4319 	mutex_lock(&ftrace_lock);
4320 
4321 	/* We do not cache inverse filters */
4322 	if (func[0] == '!') {
4323 		func++;
4324 		ret = -EINVAL;
4325 
4326 		/* Look to remove this hash */
4327 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4328 			if (strcmp(ftrace_mod->module, module) != 0)
4329 				continue;
4330 
4331 			/* no func matches all */
4332 			if (strcmp(func, "*") == 0 ||
4333 			    (ftrace_mod->func &&
4334 			     strcmp(ftrace_mod->func, func) == 0)) {
4335 				ret = 0;
4336 				free_ftrace_mod(ftrace_mod);
4337 				continue;
4338 			}
4339 		}
4340 		goto out;
4341 	}
4342 
4343 	ret = -EINVAL;
4344 	/* We only care about modules that have not been loaded yet */
4345 	if (module_exists(module))
4346 		goto out;
4347 
4348 	/* Save this string off, and execute it when the module is loaded */
4349 	ret = ftrace_add_mod(tr, func, module, enable);
4350  out:
4351 	mutex_unlock(&ftrace_lock);
4352 
4353 	return ret;
4354 }
4355 
4356 static int
4357 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4358 		 int reset, int enable);
4359 
4360 #ifdef CONFIG_MODULES
4361 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4362 			     char *mod, bool enable)
4363 {
4364 	struct ftrace_mod_load *ftrace_mod, *n;
4365 	struct ftrace_hash **orig_hash, *new_hash;
4366 	LIST_HEAD(process_mods);
4367 	char *func;
4368 
4369 	mutex_lock(&ops->func_hash->regex_lock);
4370 
4371 	if (enable)
4372 		orig_hash = &ops->func_hash->filter_hash;
4373 	else
4374 		orig_hash = &ops->func_hash->notrace_hash;
4375 
4376 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4377 					      *orig_hash);
4378 	if (!new_hash)
4379 		goto out; /* warn? */
4380 
4381 	mutex_lock(&ftrace_lock);
4382 
4383 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4384 
4385 		if (strcmp(ftrace_mod->module, mod) != 0)
4386 			continue;
4387 
4388 		if (ftrace_mod->func)
4389 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4390 		else
4391 			func = kstrdup("*", GFP_KERNEL);
4392 
4393 		if (!func) /* warn? */
4394 			continue;
4395 
4396 		list_move(&ftrace_mod->list, &process_mods);
4397 
4398 		/* Use the newly allocated func, as it may be "*" */
4399 		kfree(ftrace_mod->func);
4400 		ftrace_mod->func = func;
4401 	}
4402 
4403 	mutex_unlock(&ftrace_lock);
4404 
4405 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4406 
4407 		func = ftrace_mod->func;
4408 
4409 		/* Grabs ftrace_lock, which is why we have this extra step */
4410 		match_records(new_hash, func, strlen(func), mod);
4411 		free_ftrace_mod(ftrace_mod);
4412 	}
4413 
4414 	if (enable && list_empty(head))
4415 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4416 
4417 	mutex_lock(&ftrace_lock);
4418 
4419 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4420 					      new_hash, enable);
4421 	mutex_unlock(&ftrace_lock);
4422 
4423  out:
4424 	mutex_unlock(&ops->func_hash->regex_lock);
4425 
4426 	free_ftrace_hash(new_hash);
4427 }
4428 
4429 static void process_cached_mods(const char *mod_name)
4430 {
4431 	struct trace_array *tr;
4432 	char *mod;
4433 
4434 	mod = kstrdup(mod_name, GFP_KERNEL);
4435 	if (!mod)
4436 		return;
4437 
4438 	mutex_lock(&trace_types_lock);
4439 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4440 		if (!list_empty(&tr->mod_trace))
4441 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4442 		if (!list_empty(&tr->mod_notrace))
4443 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4444 	}
4445 	mutex_unlock(&trace_types_lock);
4446 
4447 	kfree(mod);
4448 }
4449 #endif
4450 
4451 /*
4452  * We register the module command as a template to show others how
4453  * to register the a command as well.
4454  */
4455 
4456 static int
4457 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4458 		    char *func_orig, char *cmd, char *module, int enable)
4459 {
4460 	char *func;
4461 	int ret;
4462 
4463 	/* match_records() modifies func, and we need the original */
4464 	func = kstrdup(func_orig, GFP_KERNEL);
4465 	if (!func)
4466 		return -ENOMEM;
4467 
4468 	/*
4469 	 * cmd == 'mod' because we only registered this func
4470 	 * for the 'mod' ftrace_func_command.
4471 	 * But if you register one func with multiple commands,
4472 	 * you can tell which command was used by the cmd
4473 	 * parameter.
4474 	 */
4475 	ret = match_records(hash, func, strlen(func), module);
4476 	kfree(func);
4477 
4478 	if (!ret)
4479 		return cache_mod(tr, func_orig, module, enable);
4480 	if (ret < 0)
4481 		return ret;
4482 	return 0;
4483 }
4484 
4485 static struct ftrace_func_command ftrace_mod_cmd = {
4486 	.name			= "mod",
4487 	.func			= ftrace_mod_callback,
4488 };
4489 
4490 static int __init ftrace_mod_cmd_init(void)
4491 {
4492 	return register_ftrace_command(&ftrace_mod_cmd);
4493 }
4494 core_initcall(ftrace_mod_cmd_init);
4495 
4496 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4497 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4498 {
4499 	struct ftrace_probe_ops *probe_ops;
4500 	struct ftrace_func_probe *probe;
4501 
4502 	probe = container_of(op, struct ftrace_func_probe, ops);
4503 	probe_ops = probe->probe_ops;
4504 
4505 	/*
4506 	 * Disable preemption for these calls to prevent a RCU grace
4507 	 * period. This syncs the hash iteration and freeing of items
4508 	 * on the hash. rcu_read_lock is too dangerous here.
4509 	 */
4510 	preempt_disable_notrace();
4511 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4512 	preempt_enable_notrace();
4513 }
4514 
4515 struct ftrace_func_map {
4516 	struct ftrace_func_entry	entry;
4517 	void				*data;
4518 };
4519 
4520 struct ftrace_func_mapper {
4521 	struct ftrace_hash		hash;
4522 };
4523 
4524 /**
4525  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4526  *
4527  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4528  */
4529 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4530 {
4531 	struct ftrace_hash *hash;
4532 
4533 	/*
4534 	 * The mapper is simply a ftrace_hash, but since the entries
4535 	 * in the hash are not ftrace_func_entry type, we define it
4536 	 * as a separate structure.
4537 	 */
4538 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4539 	return (struct ftrace_func_mapper *)hash;
4540 }
4541 
4542 /**
4543  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4544  * @mapper: The mapper that has the ip maps
4545  * @ip: the instruction pointer to find the data for
4546  *
4547  * Returns the data mapped to @ip if found otherwise NULL. The return
4548  * is actually the address of the mapper data pointer. The address is
4549  * returned for use cases where the data is no bigger than a long, and
4550  * the user can use the data pointer as its data instead of having to
4551  * allocate more memory for the reference.
4552  */
4553 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4554 				  unsigned long ip)
4555 {
4556 	struct ftrace_func_entry *entry;
4557 	struct ftrace_func_map *map;
4558 
4559 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4560 	if (!entry)
4561 		return NULL;
4562 
4563 	map = (struct ftrace_func_map *)entry;
4564 	return &map->data;
4565 }
4566 
4567 /**
4568  * ftrace_func_mapper_add_ip - Map some data to an ip
4569  * @mapper: The mapper that has the ip maps
4570  * @ip: The instruction pointer address to map @data to
4571  * @data: The data to map to @ip
4572  *
4573  * Returns 0 on success otherwise an error.
4574  */
4575 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4576 			      unsigned long ip, void *data)
4577 {
4578 	struct ftrace_func_entry *entry;
4579 	struct ftrace_func_map *map;
4580 
4581 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4582 	if (entry)
4583 		return -EBUSY;
4584 
4585 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4586 	if (!map)
4587 		return -ENOMEM;
4588 
4589 	map->entry.ip = ip;
4590 	map->data = data;
4591 
4592 	__add_hash_entry(&mapper->hash, &map->entry);
4593 
4594 	return 0;
4595 }
4596 
4597 /**
4598  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4599  * @mapper: The mapper that has the ip maps
4600  * @ip: The instruction pointer address to remove the data from
4601  *
4602  * Returns the data if it is found, otherwise NULL.
4603  * Note, if the data pointer is used as the data itself, (see
4604  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4605  * if the data pointer was set to zero.
4606  */
4607 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4608 				   unsigned long ip)
4609 {
4610 	struct ftrace_func_entry *entry;
4611 	struct ftrace_func_map *map;
4612 	void *data;
4613 
4614 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4615 	if (!entry)
4616 		return NULL;
4617 
4618 	map = (struct ftrace_func_map *)entry;
4619 	data = map->data;
4620 
4621 	remove_hash_entry(&mapper->hash, entry);
4622 	kfree(entry);
4623 
4624 	return data;
4625 }
4626 
4627 /**
4628  * free_ftrace_func_mapper - free a mapping of ips and data
4629  * @mapper: The mapper that has the ip maps
4630  * @free_func: A function to be called on each data item.
4631  *
4632  * This is used to free the function mapper. The @free_func is optional
4633  * and can be used if the data needs to be freed as well.
4634  */
4635 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4636 			     ftrace_mapper_func free_func)
4637 {
4638 	struct ftrace_func_entry *entry;
4639 	struct ftrace_func_map *map;
4640 	struct hlist_head *hhd;
4641 	int size, i;
4642 
4643 	if (!mapper)
4644 		return;
4645 
4646 	if (free_func && mapper->hash.count) {
4647 		size = 1 << mapper->hash.size_bits;
4648 		for (i = 0; i < size; i++) {
4649 			hhd = &mapper->hash.buckets[i];
4650 			hlist_for_each_entry(entry, hhd, hlist) {
4651 				map = (struct ftrace_func_map *)entry;
4652 				free_func(map);
4653 			}
4654 		}
4655 	}
4656 	free_ftrace_hash(&mapper->hash);
4657 }
4658 
4659 static void release_probe(struct ftrace_func_probe *probe)
4660 {
4661 	struct ftrace_probe_ops *probe_ops;
4662 
4663 	mutex_lock(&ftrace_lock);
4664 
4665 	WARN_ON(probe->ref <= 0);
4666 
4667 	/* Subtract the ref that was used to protect this instance */
4668 	probe->ref--;
4669 
4670 	if (!probe->ref) {
4671 		probe_ops = probe->probe_ops;
4672 		/*
4673 		 * Sending zero as ip tells probe_ops to free
4674 		 * the probe->data itself
4675 		 */
4676 		if (probe_ops->free)
4677 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4678 		list_del(&probe->list);
4679 		kfree(probe);
4680 	}
4681 	mutex_unlock(&ftrace_lock);
4682 }
4683 
4684 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4685 {
4686 	/*
4687 	 * Add one ref to keep it from being freed when releasing the
4688 	 * ftrace_lock mutex.
4689 	 */
4690 	probe->ref++;
4691 }
4692 
4693 int
4694 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4695 			       struct ftrace_probe_ops *probe_ops,
4696 			       void *data)
4697 {
4698 	struct ftrace_func_probe *probe = NULL, *iter;
4699 	struct ftrace_func_entry *entry;
4700 	struct ftrace_hash **orig_hash;
4701 	struct ftrace_hash *old_hash;
4702 	struct ftrace_hash *hash;
4703 	int count = 0;
4704 	int size;
4705 	int ret;
4706 	int i;
4707 
4708 	if (WARN_ON(!tr))
4709 		return -EINVAL;
4710 
4711 	/* We do not support '!' for function probes */
4712 	if (WARN_ON(glob[0] == '!'))
4713 		return -EINVAL;
4714 
4715 
4716 	mutex_lock(&ftrace_lock);
4717 	/* Check if the probe_ops is already registered */
4718 	list_for_each_entry(iter, &tr->func_probes, list) {
4719 		if (iter->probe_ops == probe_ops) {
4720 			probe = iter;
4721 			break;
4722 		}
4723 	}
4724 	if (!probe) {
4725 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4726 		if (!probe) {
4727 			mutex_unlock(&ftrace_lock);
4728 			return -ENOMEM;
4729 		}
4730 		probe->probe_ops = probe_ops;
4731 		probe->ops.func = function_trace_probe_call;
4732 		probe->tr = tr;
4733 		ftrace_ops_init(&probe->ops);
4734 		list_add(&probe->list, &tr->func_probes);
4735 	}
4736 
4737 	acquire_probe_locked(probe);
4738 
4739 	mutex_unlock(&ftrace_lock);
4740 
4741 	/*
4742 	 * Note, there's a small window here that the func_hash->filter_hash
4743 	 * may be NULL or empty. Need to be careful when reading the loop.
4744 	 */
4745 	mutex_lock(&probe->ops.func_hash->regex_lock);
4746 
4747 	orig_hash = &probe->ops.func_hash->filter_hash;
4748 	old_hash = *orig_hash;
4749 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4750 
4751 	if (!hash) {
4752 		ret = -ENOMEM;
4753 		goto out;
4754 	}
4755 
4756 	ret = ftrace_match_records(hash, glob, strlen(glob));
4757 
4758 	/* Nothing found? */
4759 	if (!ret)
4760 		ret = -EINVAL;
4761 
4762 	if (ret < 0)
4763 		goto out;
4764 
4765 	size = 1 << hash->size_bits;
4766 	for (i = 0; i < size; i++) {
4767 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4768 			if (ftrace_lookup_ip(old_hash, entry->ip))
4769 				continue;
4770 			/*
4771 			 * The caller might want to do something special
4772 			 * for each function we find. We call the callback
4773 			 * to give the caller an opportunity to do so.
4774 			 */
4775 			if (probe_ops->init) {
4776 				ret = probe_ops->init(probe_ops, tr,
4777 						      entry->ip, data,
4778 						      &probe->data);
4779 				if (ret < 0) {
4780 					if (probe_ops->free && count)
4781 						probe_ops->free(probe_ops, tr,
4782 								0, probe->data);
4783 					probe->data = NULL;
4784 					goto out;
4785 				}
4786 			}
4787 			count++;
4788 		}
4789 	}
4790 
4791 	mutex_lock(&ftrace_lock);
4792 
4793 	if (!count) {
4794 		/* Nothing was added? */
4795 		ret = -EINVAL;
4796 		goto out_unlock;
4797 	}
4798 
4799 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4800 					      hash, 1);
4801 	if (ret < 0)
4802 		goto err_unlock;
4803 
4804 	/* One ref for each new function traced */
4805 	probe->ref += count;
4806 
4807 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4808 		ret = ftrace_startup(&probe->ops, 0);
4809 
4810  out_unlock:
4811 	mutex_unlock(&ftrace_lock);
4812 
4813 	if (!ret)
4814 		ret = count;
4815  out:
4816 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4817 	free_ftrace_hash(hash);
4818 
4819 	release_probe(probe);
4820 
4821 	return ret;
4822 
4823  err_unlock:
4824 	if (!probe_ops->free || !count)
4825 		goto out_unlock;
4826 
4827 	/* Failed to do the move, need to call the free functions */
4828 	for (i = 0; i < size; i++) {
4829 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4830 			if (ftrace_lookup_ip(old_hash, entry->ip))
4831 				continue;
4832 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4833 		}
4834 	}
4835 	goto out_unlock;
4836 }
4837 
4838 int
4839 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4840 				      struct ftrace_probe_ops *probe_ops)
4841 {
4842 	struct ftrace_func_probe *probe = NULL, *iter;
4843 	struct ftrace_ops_hash old_hash_ops;
4844 	struct ftrace_func_entry *entry;
4845 	struct ftrace_glob func_g;
4846 	struct ftrace_hash **orig_hash;
4847 	struct ftrace_hash *old_hash;
4848 	struct ftrace_hash *hash = NULL;
4849 	struct hlist_node *tmp;
4850 	struct hlist_head hhd;
4851 	char str[KSYM_SYMBOL_LEN];
4852 	int count = 0;
4853 	int i, ret = -ENODEV;
4854 	int size;
4855 
4856 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4857 		func_g.search = NULL;
4858 	else {
4859 		int not;
4860 
4861 		func_g.type = filter_parse_regex(glob, strlen(glob),
4862 						 &func_g.search, &not);
4863 		func_g.len = strlen(func_g.search);
4864 
4865 		/* we do not support '!' for function probes */
4866 		if (WARN_ON(not))
4867 			return -EINVAL;
4868 	}
4869 
4870 	mutex_lock(&ftrace_lock);
4871 	/* Check if the probe_ops is already registered */
4872 	list_for_each_entry(iter, &tr->func_probes, list) {
4873 		if (iter->probe_ops == probe_ops) {
4874 			probe = iter;
4875 			break;
4876 		}
4877 	}
4878 	if (!probe)
4879 		goto err_unlock_ftrace;
4880 
4881 	ret = -EINVAL;
4882 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4883 		goto err_unlock_ftrace;
4884 
4885 	acquire_probe_locked(probe);
4886 
4887 	mutex_unlock(&ftrace_lock);
4888 
4889 	mutex_lock(&probe->ops.func_hash->regex_lock);
4890 
4891 	orig_hash = &probe->ops.func_hash->filter_hash;
4892 	old_hash = *orig_hash;
4893 
4894 	if (ftrace_hash_empty(old_hash))
4895 		goto out_unlock;
4896 
4897 	old_hash_ops.filter_hash = old_hash;
4898 	/* Probes only have filters */
4899 	old_hash_ops.notrace_hash = NULL;
4900 
4901 	ret = -ENOMEM;
4902 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4903 	if (!hash)
4904 		goto out_unlock;
4905 
4906 	INIT_HLIST_HEAD(&hhd);
4907 
4908 	size = 1 << hash->size_bits;
4909 	for (i = 0; i < size; i++) {
4910 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4911 
4912 			if (func_g.search) {
4913 				kallsyms_lookup(entry->ip, NULL, NULL,
4914 						NULL, str);
4915 				if (!ftrace_match(str, &func_g))
4916 					continue;
4917 			}
4918 			count++;
4919 			remove_hash_entry(hash, entry);
4920 			hlist_add_head(&entry->hlist, &hhd);
4921 		}
4922 	}
4923 
4924 	/* Nothing found? */
4925 	if (!count) {
4926 		ret = -EINVAL;
4927 		goto out_unlock;
4928 	}
4929 
4930 	mutex_lock(&ftrace_lock);
4931 
4932 	WARN_ON(probe->ref < count);
4933 
4934 	probe->ref -= count;
4935 
4936 	if (ftrace_hash_empty(hash))
4937 		ftrace_shutdown(&probe->ops, 0);
4938 
4939 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4940 					      hash, 1);
4941 
4942 	/* still need to update the function call sites */
4943 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4944 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4945 				       &old_hash_ops);
4946 	synchronize_rcu();
4947 
4948 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4949 		hlist_del(&entry->hlist);
4950 		if (probe_ops->free)
4951 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4952 		kfree(entry);
4953 	}
4954 	mutex_unlock(&ftrace_lock);
4955 
4956  out_unlock:
4957 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4958 	free_ftrace_hash(hash);
4959 
4960 	release_probe(probe);
4961 
4962 	return ret;
4963 
4964  err_unlock_ftrace:
4965 	mutex_unlock(&ftrace_lock);
4966 	return ret;
4967 }
4968 
4969 void clear_ftrace_function_probes(struct trace_array *tr)
4970 {
4971 	struct ftrace_func_probe *probe, *n;
4972 
4973 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4974 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4975 }
4976 
4977 static LIST_HEAD(ftrace_commands);
4978 static DEFINE_MUTEX(ftrace_cmd_mutex);
4979 
4980 /*
4981  * Currently we only register ftrace commands from __init, so mark this
4982  * __init too.
4983  */
4984 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4985 {
4986 	struct ftrace_func_command *p;
4987 	int ret = 0;
4988 
4989 	mutex_lock(&ftrace_cmd_mutex);
4990 	list_for_each_entry(p, &ftrace_commands, list) {
4991 		if (strcmp(cmd->name, p->name) == 0) {
4992 			ret = -EBUSY;
4993 			goto out_unlock;
4994 		}
4995 	}
4996 	list_add(&cmd->list, &ftrace_commands);
4997  out_unlock:
4998 	mutex_unlock(&ftrace_cmd_mutex);
4999 
5000 	return ret;
5001 }
5002 
5003 /*
5004  * Currently we only unregister ftrace commands from __init, so mark
5005  * this __init too.
5006  */
5007 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5008 {
5009 	struct ftrace_func_command *p, *n;
5010 	int ret = -ENODEV;
5011 
5012 	mutex_lock(&ftrace_cmd_mutex);
5013 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5014 		if (strcmp(cmd->name, p->name) == 0) {
5015 			ret = 0;
5016 			list_del_init(&p->list);
5017 			goto out_unlock;
5018 		}
5019 	}
5020  out_unlock:
5021 	mutex_unlock(&ftrace_cmd_mutex);
5022 
5023 	return ret;
5024 }
5025 
5026 static int ftrace_process_regex(struct ftrace_iterator *iter,
5027 				char *buff, int len, int enable)
5028 {
5029 	struct ftrace_hash *hash = iter->hash;
5030 	struct trace_array *tr = iter->ops->private;
5031 	char *func, *command, *next = buff;
5032 	struct ftrace_func_command *p;
5033 	int ret = -EINVAL;
5034 
5035 	func = strsep(&next, ":");
5036 
5037 	if (!next) {
5038 		ret = ftrace_match_records(hash, func, len);
5039 		if (!ret)
5040 			ret = -EINVAL;
5041 		if (ret < 0)
5042 			return ret;
5043 		return 0;
5044 	}
5045 
5046 	/* command found */
5047 
5048 	command = strsep(&next, ":");
5049 
5050 	mutex_lock(&ftrace_cmd_mutex);
5051 	list_for_each_entry(p, &ftrace_commands, list) {
5052 		if (strcmp(p->name, command) == 0) {
5053 			ret = p->func(tr, hash, func, command, next, enable);
5054 			goto out_unlock;
5055 		}
5056 	}
5057  out_unlock:
5058 	mutex_unlock(&ftrace_cmd_mutex);
5059 
5060 	return ret;
5061 }
5062 
5063 static ssize_t
5064 ftrace_regex_write(struct file *file, const char __user *ubuf,
5065 		   size_t cnt, loff_t *ppos, int enable)
5066 {
5067 	struct ftrace_iterator *iter;
5068 	struct trace_parser *parser;
5069 	ssize_t ret, read;
5070 
5071 	if (!cnt)
5072 		return 0;
5073 
5074 	if (file->f_mode & FMODE_READ) {
5075 		struct seq_file *m = file->private_data;
5076 		iter = m->private;
5077 	} else
5078 		iter = file->private_data;
5079 
5080 	if (unlikely(ftrace_disabled))
5081 		return -ENODEV;
5082 
5083 	/* iter->hash is a local copy, so we don't need regex_lock */
5084 
5085 	parser = &iter->parser;
5086 	read = trace_get_user(parser, ubuf, cnt, ppos);
5087 
5088 	if (read >= 0 && trace_parser_loaded(parser) &&
5089 	    !trace_parser_cont(parser)) {
5090 		ret = ftrace_process_regex(iter, parser->buffer,
5091 					   parser->idx, enable);
5092 		trace_parser_clear(parser);
5093 		if (ret < 0)
5094 			goto out;
5095 	}
5096 
5097 	ret = read;
5098  out:
5099 	return ret;
5100 }
5101 
5102 ssize_t
5103 ftrace_filter_write(struct file *file, const char __user *ubuf,
5104 		    size_t cnt, loff_t *ppos)
5105 {
5106 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5107 }
5108 
5109 ssize_t
5110 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5111 		     size_t cnt, loff_t *ppos)
5112 {
5113 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5114 }
5115 
5116 static int
5117 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5118 {
5119 	struct ftrace_func_entry *entry;
5120 
5121 	ip = ftrace_location(ip);
5122 	if (!ip)
5123 		return -EINVAL;
5124 
5125 	if (remove) {
5126 		entry = ftrace_lookup_ip(hash, ip);
5127 		if (!entry)
5128 			return -ENOENT;
5129 		free_hash_entry(hash, entry);
5130 		return 0;
5131 	}
5132 
5133 	return add_hash_entry(hash, ip);
5134 }
5135 
5136 static int
5137 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5138 		  unsigned int cnt, int remove)
5139 {
5140 	unsigned int i;
5141 	int err;
5142 
5143 	for (i = 0; i < cnt; i++) {
5144 		err = __ftrace_match_addr(hash, ips[i], remove);
5145 		if (err) {
5146 			/*
5147 			 * This expects the @hash is a temporary hash and if this
5148 			 * fails the caller must free the @hash.
5149 			 */
5150 			return err;
5151 		}
5152 	}
5153 	return 0;
5154 }
5155 
5156 static int
5157 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5158 		unsigned long *ips, unsigned int cnt,
5159 		int remove, int reset, int enable)
5160 {
5161 	struct ftrace_hash **orig_hash;
5162 	struct ftrace_hash *hash;
5163 	int ret;
5164 
5165 	if (unlikely(ftrace_disabled))
5166 		return -ENODEV;
5167 
5168 	mutex_lock(&ops->func_hash->regex_lock);
5169 
5170 	if (enable)
5171 		orig_hash = &ops->func_hash->filter_hash;
5172 	else
5173 		orig_hash = &ops->func_hash->notrace_hash;
5174 
5175 	if (reset)
5176 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5177 	else
5178 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5179 
5180 	if (!hash) {
5181 		ret = -ENOMEM;
5182 		goto out_regex_unlock;
5183 	}
5184 
5185 	if (buf && !ftrace_match_records(hash, buf, len)) {
5186 		ret = -EINVAL;
5187 		goto out_regex_unlock;
5188 	}
5189 	if (ips) {
5190 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5191 		if (ret < 0)
5192 			goto out_regex_unlock;
5193 	}
5194 
5195 	mutex_lock(&ftrace_lock);
5196 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5197 	mutex_unlock(&ftrace_lock);
5198 
5199  out_regex_unlock:
5200 	mutex_unlock(&ops->func_hash->regex_lock);
5201 
5202 	free_ftrace_hash(hash);
5203 	return ret;
5204 }
5205 
5206 static int
5207 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5208 		int remove, int reset, int enable)
5209 {
5210 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5211 }
5212 
5213 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5214 
5215 struct ftrace_direct_func {
5216 	struct list_head	next;
5217 	unsigned long		addr;
5218 	int			count;
5219 };
5220 
5221 static LIST_HEAD(ftrace_direct_funcs);
5222 
5223 /**
5224  * ftrace_find_direct_func - test an address if it is a registered direct caller
5225  * @addr: The address of a registered direct caller
5226  *
5227  * This searches to see if a ftrace direct caller has been registered
5228  * at a specific address, and if so, it returns a descriptor for it.
5229  *
5230  * This can be used by architecture code to see if an address is
5231  * a direct caller (trampoline) attached to a fentry/mcount location.
5232  * This is useful for the function_graph tracer, as it may need to
5233  * do adjustments if it traced a location that also has a direct
5234  * trampoline attached to it.
5235  */
5236 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5237 {
5238 	struct ftrace_direct_func *entry;
5239 	bool found = false;
5240 
5241 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5242 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5243 		if (entry->addr == addr) {
5244 			found = true;
5245 			break;
5246 		}
5247 	}
5248 	if (found)
5249 		return entry;
5250 
5251 	return NULL;
5252 }
5253 
5254 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5255 {
5256 	struct ftrace_direct_func *direct;
5257 
5258 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5259 	if (!direct)
5260 		return NULL;
5261 	direct->addr = addr;
5262 	direct->count = 0;
5263 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5264 	ftrace_direct_func_count++;
5265 	return direct;
5266 }
5267 
5268 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5269 
5270 /**
5271  * register_ftrace_direct - Call a custom trampoline directly
5272  * @ip: The address of the nop at the beginning of a function
5273  * @addr: The address of the trampoline to call at @ip
5274  *
5275  * This is used to connect a direct call from the nop location (@ip)
5276  * at the start of ftrace traced functions. The location that it calls
5277  * (@addr) must be able to handle a direct call, and save the parameters
5278  * of the function being traced, and restore them (or inject new ones
5279  * if needed), before returning.
5280  *
5281  * Returns:
5282  *  0 on success
5283  *  -EBUSY - Another direct function is already attached (there can be only one)
5284  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5285  *  -ENOMEM - There was an allocation failure.
5286  */
5287 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5288 {
5289 	struct ftrace_direct_func *direct;
5290 	struct ftrace_func_entry *entry;
5291 	struct ftrace_hash *free_hash = NULL;
5292 	struct dyn_ftrace *rec;
5293 	int ret = -ENODEV;
5294 
5295 	mutex_lock(&direct_mutex);
5296 
5297 	ip = ftrace_location(ip);
5298 	if (!ip)
5299 		goto out_unlock;
5300 
5301 	/* See if there's a direct function at @ip already */
5302 	ret = -EBUSY;
5303 	if (ftrace_find_rec_direct(ip))
5304 		goto out_unlock;
5305 
5306 	ret = -ENODEV;
5307 	rec = lookup_rec(ip, ip);
5308 	if (!rec)
5309 		goto out_unlock;
5310 
5311 	/*
5312 	 * Check if the rec says it has a direct call but we didn't
5313 	 * find one earlier?
5314 	 */
5315 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5316 		goto out_unlock;
5317 
5318 	/* Make sure the ip points to the exact record */
5319 	if (ip != rec->ip) {
5320 		ip = rec->ip;
5321 		/* Need to check this ip for a direct. */
5322 		if (ftrace_find_rec_direct(ip))
5323 			goto out_unlock;
5324 	}
5325 
5326 	ret = -ENOMEM;
5327 	direct = ftrace_find_direct_func(addr);
5328 	if (!direct) {
5329 		direct = ftrace_alloc_direct_func(addr);
5330 		if (!direct)
5331 			goto out_unlock;
5332 	}
5333 
5334 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5335 	if (!entry)
5336 		goto out_unlock;
5337 
5338 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5339 
5340 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5341 		ret = register_ftrace_function_nolock(&direct_ops);
5342 		if (ret)
5343 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5344 	}
5345 
5346 	if (ret) {
5347 		remove_hash_entry(direct_functions, entry);
5348 		kfree(entry);
5349 		if (!direct->count) {
5350 			list_del_rcu(&direct->next);
5351 			synchronize_rcu_tasks();
5352 			kfree(direct);
5353 			if (free_hash)
5354 				free_ftrace_hash(free_hash);
5355 			free_hash = NULL;
5356 			ftrace_direct_func_count--;
5357 		}
5358 	} else {
5359 		direct->count++;
5360 	}
5361  out_unlock:
5362 	mutex_unlock(&direct_mutex);
5363 
5364 	if (free_hash) {
5365 		synchronize_rcu_tasks();
5366 		free_ftrace_hash(free_hash);
5367 	}
5368 
5369 	return ret;
5370 }
5371 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5372 
5373 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5374 						   struct dyn_ftrace **recp)
5375 {
5376 	struct ftrace_func_entry *entry;
5377 	struct dyn_ftrace *rec;
5378 
5379 	rec = lookup_rec(*ip, *ip);
5380 	if (!rec)
5381 		return NULL;
5382 
5383 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5384 	if (!entry) {
5385 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5386 		return NULL;
5387 	}
5388 
5389 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5390 
5391 	/* Passed in ip just needs to be on the call site */
5392 	*ip = rec->ip;
5393 
5394 	if (recp)
5395 		*recp = rec;
5396 
5397 	return entry;
5398 }
5399 
5400 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5401 {
5402 	struct ftrace_direct_func *direct;
5403 	struct ftrace_func_entry *entry;
5404 	struct ftrace_hash *hash;
5405 	int ret = -ENODEV;
5406 
5407 	mutex_lock(&direct_mutex);
5408 
5409 	ip = ftrace_location(ip);
5410 	if (!ip)
5411 		goto out_unlock;
5412 
5413 	entry = find_direct_entry(&ip, NULL);
5414 	if (!entry)
5415 		goto out_unlock;
5416 
5417 	hash = direct_ops.func_hash->filter_hash;
5418 	if (hash->count == 1)
5419 		unregister_ftrace_function(&direct_ops);
5420 
5421 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5422 
5423 	WARN_ON(ret);
5424 
5425 	remove_hash_entry(direct_functions, entry);
5426 
5427 	direct = ftrace_find_direct_func(addr);
5428 	if (!WARN_ON(!direct)) {
5429 		/* This is the good path (see the ! before WARN) */
5430 		direct->count--;
5431 		WARN_ON(direct->count < 0);
5432 		if (!direct->count) {
5433 			list_del_rcu(&direct->next);
5434 			synchronize_rcu_tasks();
5435 			kfree(direct);
5436 			kfree(entry);
5437 			ftrace_direct_func_count--;
5438 		}
5439 	}
5440  out_unlock:
5441 	mutex_unlock(&direct_mutex);
5442 
5443 	return ret;
5444 }
5445 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5446 
5447 static struct ftrace_ops stub_ops = {
5448 	.func		= ftrace_stub,
5449 };
5450 
5451 /**
5452  * ftrace_modify_direct_caller - modify ftrace nop directly
5453  * @entry: The ftrace hash entry of the direct helper for @rec
5454  * @rec: The record representing the function site to patch
5455  * @old_addr: The location that the site at @rec->ip currently calls
5456  * @new_addr: The location that the site at @rec->ip should call
5457  *
5458  * An architecture may overwrite this function to optimize the
5459  * changing of the direct callback on an ftrace nop location.
5460  * This is called with the ftrace_lock mutex held, and no other
5461  * ftrace callbacks are on the associated record (@rec). Thus,
5462  * it is safe to modify the ftrace record, where it should be
5463  * currently calling @old_addr directly, to call @new_addr.
5464  *
5465  * Safety checks should be made to make sure that the code at
5466  * @rec->ip is currently calling @old_addr. And this must
5467  * also update entry->direct to @new_addr.
5468  */
5469 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5470 				       struct dyn_ftrace *rec,
5471 				       unsigned long old_addr,
5472 				       unsigned long new_addr)
5473 {
5474 	unsigned long ip = rec->ip;
5475 	int ret;
5476 
5477 	/*
5478 	 * The ftrace_lock was used to determine if the record
5479 	 * had more than one registered user to it. If it did,
5480 	 * we needed to prevent that from changing to do the quick
5481 	 * switch. But if it did not (only a direct caller was attached)
5482 	 * then this function is called. But this function can deal
5483 	 * with attached callers to the rec that we care about, and
5484 	 * since this function uses standard ftrace calls that take
5485 	 * the ftrace_lock mutex, we need to release it.
5486 	 */
5487 	mutex_unlock(&ftrace_lock);
5488 
5489 	/*
5490 	 * By setting a stub function at the same address, we force
5491 	 * the code to call the iterator and the direct_ops helper.
5492 	 * This means that @ip does not call the direct call, and
5493 	 * we can simply modify it.
5494 	 */
5495 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5496 	if (ret)
5497 		goto out_lock;
5498 
5499 	ret = register_ftrace_function(&stub_ops);
5500 	if (ret) {
5501 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5502 		goto out_lock;
5503 	}
5504 
5505 	entry->direct = new_addr;
5506 
5507 	/*
5508 	 * By removing the stub, we put back the direct call, calling
5509 	 * the @new_addr.
5510 	 */
5511 	unregister_ftrace_function(&stub_ops);
5512 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5513 
5514  out_lock:
5515 	mutex_lock(&ftrace_lock);
5516 
5517 	return ret;
5518 }
5519 
5520 /**
5521  * modify_ftrace_direct - Modify an existing direct call to call something else
5522  * @ip: The instruction pointer to modify
5523  * @old_addr: The address that the current @ip calls directly
5524  * @new_addr: The address that the @ip should call
5525  *
5526  * This modifies a ftrace direct caller at an instruction pointer without
5527  * having to disable it first. The direct call will switch over to the
5528  * @new_addr without missing anything.
5529  *
5530  * Returns: zero on success. Non zero on error, which includes:
5531  *  -ENODEV : the @ip given has no direct caller attached
5532  *  -EINVAL : the @old_addr does not match the current direct caller
5533  */
5534 int modify_ftrace_direct(unsigned long ip,
5535 			 unsigned long old_addr, unsigned long new_addr)
5536 {
5537 	struct ftrace_direct_func *direct, *new_direct = NULL;
5538 	struct ftrace_func_entry *entry;
5539 	struct dyn_ftrace *rec;
5540 	int ret = -ENODEV;
5541 
5542 	mutex_lock(&direct_mutex);
5543 
5544 	mutex_lock(&ftrace_lock);
5545 
5546 	ip = ftrace_location(ip);
5547 	if (!ip)
5548 		goto out_unlock;
5549 
5550 	entry = find_direct_entry(&ip, &rec);
5551 	if (!entry)
5552 		goto out_unlock;
5553 
5554 	ret = -EINVAL;
5555 	if (entry->direct != old_addr)
5556 		goto out_unlock;
5557 
5558 	direct = ftrace_find_direct_func(old_addr);
5559 	if (WARN_ON(!direct))
5560 		goto out_unlock;
5561 	if (direct->count > 1) {
5562 		ret = -ENOMEM;
5563 		new_direct = ftrace_alloc_direct_func(new_addr);
5564 		if (!new_direct)
5565 			goto out_unlock;
5566 		direct->count--;
5567 		new_direct->count++;
5568 	} else {
5569 		direct->addr = new_addr;
5570 	}
5571 
5572 	/*
5573 	 * If there's no other ftrace callback on the rec->ip location,
5574 	 * then it can be changed directly by the architecture.
5575 	 * If there is another caller, then we just need to change the
5576 	 * direct caller helper to point to @new_addr.
5577 	 */
5578 	if (ftrace_rec_count(rec) == 1) {
5579 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5580 	} else {
5581 		entry->direct = new_addr;
5582 		ret = 0;
5583 	}
5584 
5585 	if (unlikely(ret && new_direct)) {
5586 		direct->count++;
5587 		list_del_rcu(&new_direct->next);
5588 		synchronize_rcu_tasks();
5589 		kfree(new_direct);
5590 		ftrace_direct_func_count--;
5591 	}
5592 
5593  out_unlock:
5594 	mutex_unlock(&ftrace_lock);
5595 	mutex_unlock(&direct_mutex);
5596 	return ret;
5597 }
5598 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5599 
5600 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5601 
5602 static int check_direct_multi(struct ftrace_ops *ops)
5603 {
5604 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5605 		return -EINVAL;
5606 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5607 		return -EINVAL;
5608 	return 0;
5609 }
5610 
5611 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5612 {
5613 	struct ftrace_func_entry *entry, *del;
5614 	int size, i;
5615 
5616 	size = 1 << hash->size_bits;
5617 	for (i = 0; i < size; i++) {
5618 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5619 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5620 			if (del && del->direct == addr) {
5621 				remove_hash_entry(direct_functions, del);
5622 				kfree(del);
5623 			}
5624 		}
5625 	}
5626 }
5627 
5628 /**
5629  * register_ftrace_direct_multi - Call a custom trampoline directly
5630  * for multiple functions registered in @ops
5631  * @ops: The address of the struct ftrace_ops object
5632  * @addr: The address of the trampoline to call at @ops functions
5633  *
5634  * This is used to connect a direct calls to @addr from the nop locations
5635  * of the functions registered in @ops (with by ftrace_set_filter_ip
5636  * function).
5637  *
5638  * The location that it calls (@addr) must be able to handle a direct call,
5639  * and save the parameters of the function being traced, and restore them
5640  * (or inject new ones if needed), before returning.
5641  *
5642  * Returns:
5643  *  0 on success
5644  *  -EINVAL  - The @ops object was already registered with this call or
5645  *             when there are no functions in @ops object.
5646  *  -EBUSY   - Another direct function is already attached (there can be only one)
5647  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5648  *  -ENOMEM  - There was an allocation failure.
5649  */
5650 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5651 {
5652 	struct ftrace_hash *hash, *free_hash = NULL;
5653 	struct ftrace_func_entry *entry, *new;
5654 	int err = -EBUSY, size, i;
5655 
5656 	if (ops->func || ops->trampoline)
5657 		return -EINVAL;
5658 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5659 		return -EINVAL;
5660 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5661 		return -EINVAL;
5662 
5663 	hash = ops->func_hash->filter_hash;
5664 	if (ftrace_hash_empty(hash))
5665 		return -EINVAL;
5666 
5667 	mutex_lock(&direct_mutex);
5668 
5669 	/* Make sure requested entries are not already registered.. */
5670 	size = 1 << hash->size_bits;
5671 	for (i = 0; i < size; i++) {
5672 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5673 			if (ftrace_find_rec_direct(entry->ip))
5674 				goto out_unlock;
5675 		}
5676 	}
5677 
5678 	/* ... and insert them to direct_functions hash. */
5679 	err = -ENOMEM;
5680 	for (i = 0; i < size; i++) {
5681 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5682 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5683 			if (!new)
5684 				goto out_remove;
5685 			entry->direct = addr;
5686 		}
5687 	}
5688 
5689 	ops->func = call_direct_funcs;
5690 	ops->flags = MULTI_FLAGS;
5691 	ops->trampoline = FTRACE_REGS_ADDR;
5692 
5693 	err = register_ftrace_function_nolock(ops);
5694 
5695  out_remove:
5696 	if (err)
5697 		remove_direct_functions_hash(hash, addr);
5698 
5699  out_unlock:
5700 	mutex_unlock(&direct_mutex);
5701 
5702 	if (free_hash) {
5703 		synchronize_rcu_tasks();
5704 		free_ftrace_hash(free_hash);
5705 	}
5706 	return err;
5707 }
5708 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5709 
5710 /**
5711  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5712  * previously registered by register_ftrace_direct_multi for @ops object.
5713  * @ops: The address of the struct ftrace_ops object
5714  *
5715  * This is used to remove a direct calls to @addr from the nop locations
5716  * of the functions registered in @ops (with by ftrace_set_filter_ip
5717  * function).
5718  *
5719  * Returns:
5720  *  0 on success
5721  *  -EINVAL - The @ops object was not properly registered.
5722  */
5723 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5724 {
5725 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5726 	int err;
5727 
5728 	if (check_direct_multi(ops))
5729 		return -EINVAL;
5730 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5731 		return -EINVAL;
5732 
5733 	mutex_lock(&direct_mutex);
5734 	err = unregister_ftrace_function(ops);
5735 	remove_direct_functions_hash(hash, addr);
5736 	mutex_unlock(&direct_mutex);
5737 
5738 	/* cleanup for possible another register call */
5739 	ops->func = NULL;
5740 	ops->trampoline = 0;
5741 	return err;
5742 }
5743 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5744 
5745 static int
5746 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5747 {
5748 	struct ftrace_hash *hash;
5749 	struct ftrace_func_entry *entry, *iter;
5750 	static struct ftrace_ops tmp_ops = {
5751 		.func		= ftrace_stub,
5752 		.flags		= FTRACE_OPS_FL_STUB,
5753 	};
5754 	int i, size;
5755 	int err;
5756 
5757 	lockdep_assert_held_once(&direct_mutex);
5758 
5759 	/* Enable the tmp_ops to have the same functions as the direct ops */
5760 	ftrace_ops_init(&tmp_ops);
5761 	tmp_ops.func_hash = ops->func_hash;
5762 
5763 	err = register_ftrace_function_nolock(&tmp_ops);
5764 	if (err)
5765 		return err;
5766 
5767 	/*
5768 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5769 	 * We can safely change the direct functions attached to each entry.
5770 	 */
5771 	mutex_lock(&ftrace_lock);
5772 
5773 	hash = ops->func_hash->filter_hash;
5774 	size = 1 << hash->size_bits;
5775 	for (i = 0; i < size; i++) {
5776 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5777 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5778 			if (!entry)
5779 				continue;
5780 			entry->direct = addr;
5781 		}
5782 	}
5783 
5784 	mutex_unlock(&ftrace_lock);
5785 
5786 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5787 	unregister_ftrace_function(&tmp_ops);
5788 
5789 	return err;
5790 }
5791 
5792 /**
5793  * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call
5794  * to call something else
5795  * @ops: The address of the struct ftrace_ops object
5796  * @addr: The address of the new trampoline to call at @ops functions
5797  *
5798  * This is used to unregister currently registered direct caller and
5799  * register new one @addr on functions registered in @ops object.
5800  *
5801  * Note there's window between ftrace_shutdown and ftrace_startup calls
5802  * where there will be no callbacks called.
5803  *
5804  * Caller should already have direct_mutex locked, so we don't lock
5805  * direct_mutex here.
5806  *
5807  * Returns: zero on success. Non zero on error, which includes:
5808  *  -EINVAL - The @ops object was not properly registered.
5809  */
5810 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr)
5811 {
5812 	if (check_direct_multi(ops))
5813 		return -EINVAL;
5814 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5815 		return -EINVAL;
5816 
5817 	return __modify_ftrace_direct_multi(ops, addr);
5818 }
5819 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock);
5820 
5821 /**
5822  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5823  * to call something else
5824  * @ops: The address of the struct ftrace_ops object
5825  * @addr: The address of the new trampoline to call at @ops functions
5826  *
5827  * This is used to unregister currently registered direct caller and
5828  * register new one @addr on functions registered in @ops object.
5829  *
5830  * Note there's window between ftrace_shutdown and ftrace_startup calls
5831  * where there will be no callbacks called.
5832  *
5833  * Returns: zero on success. Non zero on error, which includes:
5834  *  -EINVAL - The @ops object was not properly registered.
5835  */
5836 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5837 {
5838 	int err;
5839 
5840 	if (check_direct_multi(ops))
5841 		return -EINVAL;
5842 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5843 		return -EINVAL;
5844 
5845 	mutex_lock(&direct_mutex);
5846 	err = __modify_ftrace_direct_multi(ops, addr);
5847 	mutex_unlock(&direct_mutex);
5848 	return err;
5849 }
5850 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5851 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5852 
5853 /**
5854  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5855  * @ops - the ops to set the filter with
5856  * @ip - the address to add to or remove from the filter.
5857  * @remove - non zero to remove the ip from the filter
5858  * @reset - non zero to reset all filters before applying this filter.
5859  *
5860  * Filters denote which functions should be enabled when tracing is enabled
5861  * If @ip is NULL, it fails to update filter.
5862  */
5863 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5864 			 int remove, int reset)
5865 {
5866 	ftrace_ops_init(ops);
5867 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5868 }
5869 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5870 
5871 /**
5872  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5873  * @ops - the ops to set the filter with
5874  * @ips - the array of addresses to add to or remove from the filter.
5875  * @cnt - the number of addresses in @ips
5876  * @remove - non zero to remove ips from the filter
5877  * @reset - non zero to reset all filters before applying this filter.
5878  *
5879  * Filters denote which functions should be enabled when tracing is enabled
5880  * If @ips array or any ip specified within is NULL , it fails to update filter.
5881  */
5882 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5883 			  unsigned int cnt, int remove, int reset)
5884 {
5885 	ftrace_ops_init(ops);
5886 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5887 }
5888 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5889 
5890 /**
5891  * ftrace_ops_set_global_filter - setup ops to use global filters
5892  * @ops - the ops which will use the global filters
5893  *
5894  * ftrace users who need global function trace filtering should call this.
5895  * It can set the global filter only if ops were not initialized before.
5896  */
5897 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5898 {
5899 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5900 		return;
5901 
5902 	ftrace_ops_init(ops);
5903 	ops->func_hash = &global_ops.local_hash;
5904 }
5905 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5906 
5907 static int
5908 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5909 		 int reset, int enable)
5910 {
5911 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
5912 }
5913 
5914 /**
5915  * ftrace_set_filter - set a function to filter on in ftrace
5916  * @ops - the ops to set the filter with
5917  * @buf - the string that holds the function filter text.
5918  * @len - the length of the string.
5919  * @reset - non zero to reset all filters before applying this filter.
5920  *
5921  * Filters denote which functions should be enabled when tracing is enabled.
5922  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5923  */
5924 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5925 		       int len, int reset)
5926 {
5927 	ftrace_ops_init(ops);
5928 	return ftrace_set_regex(ops, buf, len, reset, 1);
5929 }
5930 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5931 
5932 /**
5933  * ftrace_set_notrace - set a function to not trace in ftrace
5934  * @ops - the ops to set the notrace filter with
5935  * @buf - the string that holds the function notrace text.
5936  * @len - the length of the string.
5937  * @reset - non zero to reset all filters before applying this filter.
5938  *
5939  * Notrace Filters denote which functions should not be enabled when tracing
5940  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5941  * for tracing.
5942  */
5943 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5944 			int len, int reset)
5945 {
5946 	ftrace_ops_init(ops);
5947 	return ftrace_set_regex(ops, buf, len, reset, 0);
5948 }
5949 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5950 /**
5951  * ftrace_set_global_filter - set a function to filter on with global tracers
5952  * @buf - the string that holds the function filter text.
5953  * @len - the length of the string.
5954  * @reset - non zero to reset all filters before applying this filter.
5955  *
5956  * Filters denote which functions should be enabled when tracing is enabled.
5957  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5958  */
5959 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5960 {
5961 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5962 }
5963 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5964 
5965 /**
5966  * ftrace_set_global_notrace - set a function to not trace with global tracers
5967  * @buf - the string that holds the function notrace text.
5968  * @len - the length of the string.
5969  * @reset - non zero to reset all filters before applying this filter.
5970  *
5971  * Notrace Filters denote which functions should not be enabled when tracing
5972  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5973  * for tracing.
5974  */
5975 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5976 {
5977 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5978 }
5979 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5980 
5981 /*
5982  * command line interface to allow users to set filters on boot up.
5983  */
5984 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5985 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5986 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5987 
5988 /* Used by function selftest to not test if filter is set */
5989 bool ftrace_filter_param __initdata;
5990 
5991 static int __init set_ftrace_notrace(char *str)
5992 {
5993 	ftrace_filter_param = true;
5994 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5995 	return 1;
5996 }
5997 __setup("ftrace_notrace=", set_ftrace_notrace);
5998 
5999 static int __init set_ftrace_filter(char *str)
6000 {
6001 	ftrace_filter_param = true;
6002 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6003 	return 1;
6004 }
6005 __setup("ftrace_filter=", set_ftrace_filter);
6006 
6007 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6008 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6009 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6010 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6011 
6012 static int __init set_graph_function(char *str)
6013 {
6014 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6015 	return 1;
6016 }
6017 __setup("ftrace_graph_filter=", set_graph_function);
6018 
6019 static int __init set_graph_notrace_function(char *str)
6020 {
6021 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6022 	return 1;
6023 }
6024 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6025 
6026 static int __init set_graph_max_depth_function(char *str)
6027 {
6028 	if (!str)
6029 		return 0;
6030 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
6031 	return 1;
6032 }
6033 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6034 
6035 static void __init set_ftrace_early_graph(char *buf, int enable)
6036 {
6037 	int ret;
6038 	char *func;
6039 	struct ftrace_hash *hash;
6040 
6041 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6042 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6043 		return;
6044 
6045 	while (buf) {
6046 		func = strsep(&buf, ",");
6047 		/* we allow only one expression at a time */
6048 		ret = ftrace_graph_set_hash(hash, func);
6049 		if (ret)
6050 			printk(KERN_DEBUG "ftrace: function %s not "
6051 					  "traceable\n", func);
6052 	}
6053 
6054 	if (enable)
6055 		ftrace_graph_hash = hash;
6056 	else
6057 		ftrace_graph_notrace_hash = hash;
6058 }
6059 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6060 
6061 void __init
6062 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6063 {
6064 	char *func;
6065 
6066 	ftrace_ops_init(ops);
6067 
6068 	while (buf) {
6069 		func = strsep(&buf, ",");
6070 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6071 	}
6072 }
6073 
6074 static void __init set_ftrace_early_filters(void)
6075 {
6076 	if (ftrace_filter_buf[0])
6077 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6078 	if (ftrace_notrace_buf[0])
6079 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6081 	if (ftrace_graph_buf[0])
6082 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6083 	if (ftrace_graph_notrace_buf[0])
6084 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6085 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6086 }
6087 
6088 int ftrace_regex_release(struct inode *inode, struct file *file)
6089 {
6090 	struct seq_file *m = (struct seq_file *)file->private_data;
6091 	struct ftrace_iterator *iter;
6092 	struct ftrace_hash **orig_hash;
6093 	struct trace_parser *parser;
6094 	int filter_hash;
6095 
6096 	if (file->f_mode & FMODE_READ) {
6097 		iter = m->private;
6098 		seq_release(inode, file);
6099 	} else
6100 		iter = file->private_data;
6101 
6102 	parser = &iter->parser;
6103 	if (trace_parser_loaded(parser)) {
6104 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6105 
6106 		ftrace_process_regex(iter, parser->buffer,
6107 				     parser->idx, enable);
6108 	}
6109 
6110 	trace_parser_put(parser);
6111 
6112 	mutex_lock(&iter->ops->func_hash->regex_lock);
6113 
6114 	if (file->f_mode & FMODE_WRITE) {
6115 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6116 
6117 		if (filter_hash) {
6118 			orig_hash = &iter->ops->func_hash->filter_hash;
6119 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
6120 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
6121 		} else
6122 			orig_hash = &iter->ops->func_hash->notrace_hash;
6123 
6124 		mutex_lock(&ftrace_lock);
6125 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6126 						      iter->hash, filter_hash);
6127 		mutex_unlock(&ftrace_lock);
6128 	} else {
6129 		/* For read only, the hash is the ops hash */
6130 		iter->hash = NULL;
6131 	}
6132 
6133 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6134 	free_ftrace_hash(iter->hash);
6135 	if (iter->tr)
6136 		trace_array_put(iter->tr);
6137 	kfree(iter);
6138 
6139 	return 0;
6140 }
6141 
6142 static const struct file_operations ftrace_avail_fops = {
6143 	.open = ftrace_avail_open,
6144 	.read = seq_read,
6145 	.llseek = seq_lseek,
6146 	.release = seq_release_private,
6147 };
6148 
6149 static const struct file_operations ftrace_enabled_fops = {
6150 	.open = ftrace_enabled_open,
6151 	.read = seq_read,
6152 	.llseek = seq_lseek,
6153 	.release = seq_release_private,
6154 };
6155 
6156 static const struct file_operations ftrace_filter_fops = {
6157 	.open = ftrace_filter_open,
6158 	.read = seq_read,
6159 	.write = ftrace_filter_write,
6160 	.llseek = tracing_lseek,
6161 	.release = ftrace_regex_release,
6162 };
6163 
6164 static const struct file_operations ftrace_notrace_fops = {
6165 	.open = ftrace_notrace_open,
6166 	.read = seq_read,
6167 	.write = ftrace_notrace_write,
6168 	.llseek = tracing_lseek,
6169 	.release = ftrace_regex_release,
6170 };
6171 
6172 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6173 
6174 static DEFINE_MUTEX(graph_lock);
6175 
6176 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6177 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6178 
6179 enum graph_filter_type {
6180 	GRAPH_FILTER_NOTRACE	= 0,
6181 	GRAPH_FILTER_FUNCTION,
6182 };
6183 
6184 #define FTRACE_GRAPH_EMPTY	((void *)1)
6185 
6186 struct ftrace_graph_data {
6187 	struct ftrace_hash		*hash;
6188 	struct ftrace_func_entry	*entry;
6189 	int				idx;   /* for hash table iteration */
6190 	enum graph_filter_type		type;
6191 	struct ftrace_hash		*new_hash;
6192 	const struct seq_operations	*seq_ops;
6193 	struct trace_parser		parser;
6194 };
6195 
6196 static void *
6197 __g_next(struct seq_file *m, loff_t *pos)
6198 {
6199 	struct ftrace_graph_data *fgd = m->private;
6200 	struct ftrace_func_entry *entry = fgd->entry;
6201 	struct hlist_head *head;
6202 	int i, idx = fgd->idx;
6203 
6204 	if (*pos >= fgd->hash->count)
6205 		return NULL;
6206 
6207 	if (entry) {
6208 		hlist_for_each_entry_continue(entry, hlist) {
6209 			fgd->entry = entry;
6210 			return entry;
6211 		}
6212 
6213 		idx++;
6214 	}
6215 
6216 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6217 		head = &fgd->hash->buckets[i];
6218 		hlist_for_each_entry(entry, head, hlist) {
6219 			fgd->entry = entry;
6220 			fgd->idx = i;
6221 			return entry;
6222 		}
6223 	}
6224 	return NULL;
6225 }
6226 
6227 static void *
6228 g_next(struct seq_file *m, void *v, loff_t *pos)
6229 {
6230 	(*pos)++;
6231 	return __g_next(m, pos);
6232 }
6233 
6234 static void *g_start(struct seq_file *m, loff_t *pos)
6235 {
6236 	struct ftrace_graph_data *fgd = m->private;
6237 
6238 	mutex_lock(&graph_lock);
6239 
6240 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6241 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6242 					lockdep_is_held(&graph_lock));
6243 	else
6244 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6245 					lockdep_is_held(&graph_lock));
6246 
6247 	/* Nothing, tell g_show to print all functions are enabled */
6248 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6249 		return FTRACE_GRAPH_EMPTY;
6250 
6251 	fgd->idx = 0;
6252 	fgd->entry = NULL;
6253 	return __g_next(m, pos);
6254 }
6255 
6256 static void g_stop(struct seq_file *m, void *p)
6257 {
6258 	mutex_unlock(&graph_lock);
6259 }
6260 
6261 static int g_show(struct seq_file *m, void *v)
6262 {
6263 	struct ftrace_func_entry *entry = v;
6264 
6265 	if (!entry)
6266 		return 0;
6267 
6268 	if (entry == FTRACE_GRAPH_EMPTY) {
6269 		struct ftrace_graph_data *fgd = m->private;
6270 
6271 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6272 			seq_puts(m, "#### all functions enabled ####\n");
6273 		else
6274 			seq_puts(m, "#### no functions disabled ####\n");
6275 		return 0;
6276 	}
6277 
6278 	seq_printf(m, "%ps\n", (void *)entry->ip);
6279 
6280 	return 0;
6281 }
6282 
6283 static const struct seq_operations ftrace_graph_seq_ops = {
6284 	.start = g_start,
6285 	.next = g_next,
6286 	.stop = g_stop,
6287 	.show = g_show,
6288 };
6289 
6290 static int
6291 __ftrace_graph_open(struct inode *inode, struct file *file,
6292 		    struct ftrace_graph_data *fgd)
6293 {
6294 	int ret;
6295 	struct ftrace_hash *new_hash = NULL;
6296 
6297 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6298 	if (ret)
6299 		return ret;
6300 
6301 	if (file->f_mode & FMODE_WRITE) {
6302 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6303 
6304 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6305 			return -ENOMEM;
6306 
6307 		if (file->f_flags & O_TRUNC)
6308 			new_hash = alloc_ftrace_hash(size_bits);
6309 		else
6310 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6311 							      fgd->hash);
6312 		if (!new_hash) {
6313 			ret = -ENOMEM;
6314 			goto out;
6315 		}
6316 	}
6317 
6318 	if (file->f_mode & FMODE_READ) {
6319 		ret = seq_open(file, &ftrace_graph_seq_ops);
6320 		if (!ret) {
6321 			struct seq_file *m = file->private_data;
6322 			m->private = fgd;
6323 		} else {
6324 			/* Failed */
6325 			free_ftrace_hash(new_hash);
6326 			new_hash = NULL;
6327 		}
6328 	} else
6329 		file->private_data = fgd;
6330 
6331 out:
6332 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6333 		trace_parser_put(&fgd->parser);
6334 
6335 	fgd->new_hash = new_hash;
6336 
6337 	/*
6338 	 * All uses of fgd->hash must be taken with the graph_lock
6339 	 * held. The graph_lock is going to be released, so force
6340 	 * fgd->hash to be reinitialized when it is taken again.
6341 	 */
6342 	fgd->hash = NULL;
6343 
6344 	return ret;
6345 }
6346 
6347 static int
6348 ftrace_graph_open(struct inode *inode, struct file *file)
6349 {
6350 	struct ftrace_graph_data *fgd;
6351 	int ret;
6352 
6353 	if (unlikely(ftrace_disabled))
6354 		return -ENODEV;
6355 
6356 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6357 	if (fgd == NULL)
6358 		return -ENOMEM;
6359 
6360 	mutex_lock(&graph_lock);
6361 
6362 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6363 					lockdep_is_held(&graph_lock));
6364 	fgd->type = GRAPH_FILTER_FUNCTION;
6365 	fgd->seq_ops = &ftrace_graph_seq_ops;
6366 
6367 	ret = __ftrace_graph_open(inode, file, fgd);
6368 	if (ret < 0)
6369 		kfree(fgd);
6370 
6371 	mutex_unlock(&graph_lock);
6372 	return ret;
6373 }
6374 
6375 static int
6376 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6377 {
6378 	struct ftrace_graph_data *fgd;
6379 	int ret;
6380 
6381 	if (unlikely(ftrace_disabled))
6382 		return -ENODEV;
6383 
6384 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6385 	if (fgd == NULL)
6386 		return -ENOMEM;
6387 
6388 	mutex_lock(&graph_lock);
6389 
6390 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6391 					lockdep_is_held(&graph_lock));
6392 	fgd->type = GRAPH_FILTER_NOTRACE;
6393 	fgd->seq_ops = &ftrace_graph_seq_ops;
6394 
6395 	ret = __ftrace_graph_open(inode, file, fgd);
6396 	if (ret < 0)
6397 		kfree(fgd);
6398 
6399 	mutex_unlock(&graph_lock);
6400 	return ret;
6401 }
6402 
6403 static int
6404 ftrace_graph_release(struct inode *inode, struct file *file)
6405 {
6406 	struct ftrace_graph_data *fgd;
6407 	struct ftrace_hash *old_hash, *new_hash;
6408 	struct trace_parser *parser;
6409 	int ret = 0;
6410 
6411 	if (file->f_mode & FMODE_READ) {
6412 		struct seq_file *m = file->private_data;
6413 
6414 		fgd = m->private;
6415 		seq_release(inode, file);
6416 	} else {
6417 		fgd = file->private_data;
6418 	}
6419 
6420 
6421 	if (file->f_mode & FMODE_WRITE) {
6422 
6423 		parser = &fgd->parser;
6424 
6425 		if (trace_parser_loaded((parser))) {
6426 			ret = ftrace_graph_set_hash(fgd->new_hash,
6427 						    parser->buffer);
6428 		}
6429 
6430 		trace_parser_put(parser);
6431 
6432 		new_hash = __ftrace_hash_move(fgd->new_hash);
6433 		if (!new_hash) {
6434 			ret = -ENOMEM;
6435 			goto out;
6436 		}
6437 
6438 		mutex_lock(&graph_lock);
6439 
6440 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6441 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6442 					lockdep_is_held(&graph_lock));
6443 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6444 		} else {
6445 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6446 					lockdep_is_held(&graph_lock));
6447 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6448 		}
6449 
6450 		mutex_unlock(&graph_lock);
6451 
6452 		/*
6453 		 * We need to do a hard force of sched synchronization.
6454 		 * This is because we use preempt_disable() to do RCU, but
6455 		 * the function tracers can be called where RCU is not watching
6456 		 * (like before user_exit()). We can not rely on the RCU
6457 		 * infrastructure to do the synchronization, thus we must do it
6458 		 * ourselves.
6459 		 */
6460 		if (old_hash != EMPTY_HASH)
6461 			synchronize_rcu_tasks_rude();
6462 
6463 		free_ftrace_hash(old_hash);
6464 	}
6465 
6466  out:
6467 	free_ftrace_hash(fgd->new_hash);
6468 	kfree(fgd);
6469 
6470 	return ret;
6471 }
6472 
6473 static int
6474 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6475 {
6476 	struct ftrace_glob func_g;
6477 	struct dyn_ftrace *rec;
6478 	struct ftrace_page *pg;
6479 	struct ftrace_func_entry *entry;
6480 	int fail = 1;
6481 	int not;
6482 
6483 	/* decode regex */
6484 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6485 					 &func_g.search, &not);
6486 
6487 	func_g.len = strlen(func_g.search);
6488 
6489 	mutex_lock(&ftrace_lock);
6490 
6491 	if (unlikely(ftrace_disabled)) {
6492 		mutex_unlock(&ftrace_lock);
6493 		return -ENODEV;
6494 	}
6495 
6496 	do_for_each_ftrace_rec(pg, rec) {
6497 
6498 		if (rec->flags & FTRACE_FL_DISABLED)
6499 			continue;
6500 
6501 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6502 			entry = ftrace_lookup_ip(hash, rec->ip);
6503 
6504 			if (!not) {
6505 				fail = 0;
6506 
6507 				if (entry)
6508 					continue;
6509 				if (add_hash_entry(hash, rec->ip) < 0)
6510 					goto out;
6511 			} else {
6512 				if (entry) {
6513 					free_hash_entry(hash, entry);
6514 					fail = 0;
6515 				}
6516 			}
6517 		}
6518 	} while_for_each_ftrace_rec();
6519 out:
6520 	mutex_unlock(&ftrace_lock);
6521 
6522 	if (fail)
6523 		return -EINVAL;
6524 
6525 	return 0;
6526 }
6527 
6528 static ssize_t
6529 ftrace_graph_write(struct file *file, const char __user *ubuf,
6530 		   size_t cnt, loff_t *ppos)
6531 {
6532 	ssize_t read, ret = 0;
6533 	struct ftrace_graph_data *fgd = file->private_data;
6534 	struct trace_parser *parser;
6535 
6536 	if (!cnt)
6537 		return 0;
6538 
6539 	/* Read mode uses seq functions */
6540 	if (file->f_mode & FMODE_READ) {
6541 		struct seq_file *m = file->private_data;
6542 		fgd = m->private;
6543 	}
6544 
6545 	parser = &fgd->parser;
6546 
6547 	read = trace_get_user(parser, ubuf, cnt, ppos);
6548 
6549 	if (read >= 0 && trace_parser_loaded(parser) &&
6550 	    !trace_parser_cont(parser)) {
6551 
6552 		ret = ftrace_graph_set_hash(fgd->new_hash,
6553 					    parser->buffer);
6554 		trace_parser_clear(parser);
6555 	}
6556 
6557 	if (!ret)
6558 		ret = read;
6559 
6560 	return ret;
6561 }
6562 
6563 static const struct file_operations ftrace_graph_fops = {
6564 	.open		= ftrace_graph_open,
6565 	.read		= seq_read,
6566 	.write		= ftrace_graph_write,
6567 	.llseek		= tracing_lseek,
6568 	.release	= ftrace_graph_release,
6569 };
6570 
6571 static const struct file_operations ftrace_graph_notrace_fops = {
6572 	.open		= ftrace_graph_notrace_open,
6573 	.read		= seq_read,
6574 	.write		= ftrace_graph_write,
6575 	.llseek		= tracing_lseek,
6576 	.release	= ftrace_graph_release,
6577 };
6578 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6579 
6580 void ftrace_create_filter_files(struct ftrace_ops *ops,
6581 				struct dentry *parent)
6582 {
6583 
6584 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6585 			  ops, &ftrace_filter_fops);
6586 
6587 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6588 			  ops, &ftrace_notrace_fops);
6589 }
6590 
6591 /*
6592  * The name "destroy_filter_files" is really a misnomer. Although
6593  * in the future, it may actually delete the files, but this is
6594  * really intended to make sure the ops passed in are disabled
6595  * and that when this function returns, the caller is free to
6596  * free the ops.
6597  *
6598  * The "destroy" name is only to match the "create" name that this
6599  * should be paired with.
6600  */
6601 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6602 {
6603 	mutex_lock(&ftrace_lock);
6604 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6605 		ftrace_shutdown(ops, 0);
6606 	ops->flags |= FTRACE_OPS_FL_DELETED;
6607 	ftrace_free_filter(ops);
6608 	mutex_unlock(&ftrace_lock);
6609 }
6610 
6611 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6612 {
6613 
6614 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6615 			d_tracer, NULL, &ftrace_avail_fops);
6616 
6617 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6618 			d_tracer, NULL, &ftrace_enabled_fops);
6619 
6620 	ftrace_create_filter_files(&global_ops, d_tracer);
6621 
6622 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6623 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6624 				    NULL,
6625 				    &ftrace_graph_fops);
6626 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6627 				    NULL,
6628 				    &ftrace_graph_notrace_fops);
6629 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6630 
6631 	return 0;
6632 }
6633 
6634 static int ftrace_cmp_ips(const void *a, const void *b)
6635 {
6636 	const unsigned long *ipa = a;
6637 	const unsigned long *ipb = b;
6638 
6639 	if (*ipa > *ipb)
6640 		return 1;
6641 	if (*ipa < *ipb)
6642 		return -1;
6643 	return 0;
6644 }
6645 
6646 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6647 static void test_is_sorted(unsigned long *start, unsigned long count)
6648 {
6649 	int i;
6650 
6651 	for (i = 1; i < count; i++) {
6652 		if (WARN(start[i - 1] > start[i],
6653 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6654 			 (void *)start[i - 1], start[i - 1],
6655 			 (void *)start[i], start[i]))
6656 			break;
6657 	}
6658 	if (i == count)
6659 		pr_info("ftrace section at %px sorted properly\n", start);
6660 }
6661 #else
6662 static void test_is_sorted(unsigned long *start, unsigned long count)
6663 {
6664 }
6665 #endif
6666 
6667 static int ftrace_process_locs(struct module *mod,
6668 			       unsigned long *start,
6669 			       unsigned long *end)
6670 {
6671 	struct ftrace_page *start_pg;
6672 	struct ftrace_page *pg;
6673 	struct dyn_ftrace *rec;
6674 	unsigned long count;
6675 	unsigned long *p;
6676 	unsigned long addr;
6677 	unsigned long flags = 0; /* Shut up gcc */
6678 	int ret = -ENOMEM;
6679 
6680 	count = end - start;
6681 
6682 	if (!count)
6683 		return 0;
6684 
6685 	/*
6686 	 * Sorting mcount in vmlinux at build time depend on
6687 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6688 	 * modules can not be sorted at build time.
6689 	 */
6690 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6691 		sort(start, count, sizeof(*start),
6692 		     ftrace_cmp_ips, NULL);
6693 	} else {
6694 		test_is_sorted(start, count);
6695 	}
6696 
6697 	start_pg = ftrace_allocate_pages(count);
6698 	if (!start_pg)
6699 		return -ENOMEM;
6700 
6701 	mutex_lock(&ftrace_lock);
6702 
6703 	/*
6704 	 * Core and each module needs their own pages, as
6705 	 * modules will free them when they are removed.
6706 	 * Force a new page to be allocated for modules.
6707 	 */
6708 	if (!mod) {
6709 		WARN_ON(ftrace_pages || ftrace_pages_start);
6710 		/* First initialization */
6711 		ftrace_pages = ftrace_pages_start = start_pg;
6712 	} else {
6713 		if (!ftrace_pages)
6714 			goto out;
6715 
6716 		if (WARN_ON(ftrace_pages->next)) {
6717 			/* Hmm, we have free pages? */
6718 			while (ftrace_pages->next)
6719 				ftrace_pages = ftrace_pages->next;
6720 		}
6721 
6722 		ftrace_pages->next = start_pg;
6723 	}
6724 
6725 	p = start;
6726 	pg = start_pg;
6727 	while (p < end) {
6728 		unsigned long end_offset;
6729 		addr = ftrace_call_adjust(*p++);
6730 		/*
6731 		 * Some architecture linkers will pad between
6732 		 * the different mcount_loc sections of different
6733 		 * object files to satisfy alignments.
6734 		 * Skip any NULL pointers.
6735 		 */
6736 		if (!addr)
6737 			continue;
6738 
6739 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6740 		if (end_offset > PAGE_SIZE << pg->order) {
6741 			/* We should have allocated enough */
6742 			if (WARN_ON(!pg->next))
6743 				break;
6744 			pg = pg->next;
6745 		}
6746 
6747 		rec = &pg->records[pg->index++];
6748 		rec->ip = addr;
6749 	}
6750 
6751 	/* We should have used all pages */
6752 	WARN_ON(pg->next);
6753 
6754 	/* Assign the last page to ftrace_pages */
6755 	ftrace_pages = pg;
6756 
6757 	/*
6758 	 * We only need to disable interrupts on start up
6759 	 * because we are modifying code that an interrupt
6760 	 * may execute, and the modification is not atomic.
6761 	 * But for modules, nothing runs the code we modify
6762 	 * until we are finished with it, and there's no
6763 	 * reason to cause large interrupt latencies while we do it.
6764 	 */
6765 	if (!mod)
6766 		local_irq_save(flags);
6767 	ftrace_update_code(mod, start_pg);
6768 	if (!mod)
6769 		local_irq_restore(flags);
6770 	ret = 0;
6771  out:
6772 	mutex_unlock(&ftrace_lock);
6773 
6774 	return ret;
6775 }
6776 
6777 struct ftrace_mod_func {
6778 	struct list_head	list;
6779 	char			*name;
6780 	unsigned long		ip;
6781 	unsigned int		size;
6782 };
6783 
6784 struct ftrace_mod_map {
6785 	struct rcu_head		rcu;
6786 	struct list_head	list;
6787 	struct module		*mod;
6788 	unsigned long		start_addr;
6789 	unsigned long		end_addr;
6790 	struct list_head	funcs;
6791 	unsigned int		num_funcs;
6792 };
6793 
6794 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6795 					 unsigned long *value, char *type,
6796 					 char *name, char *module_name,
6797 					 int *exported)
6798 {
6799 	struct ftrace_ops *op;
6800 
6801 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6802 		if (!op->trampoline || symnum--)
6803 			continue;
6804 		*value = op->trampoline;
6805 		*type = 't';
6806 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6807 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6808 		*exported = 0;
6809 		return 0;
6810 	}
6811 
6812 	return -ERANGE;
6813 }
6814 
6815 #ifdef CONFIG_MODULES
6816 
6817 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6818 
6819 static LIST_HEAD(ftrace_mod_maps);
6820 
6821 static int referenced_filters(struct dyn_ftrace *rec)
6822 {
6823 	struct ftrace_ops *ops;
6824 	int cnt = 0;
6825 
6826 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6827 		if (ops_references_rec(ops, rec)) {
6828 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6829 				continue;
6830 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6831 				continue;
6832 			cnt++;
6833 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6834 				rec->flags |= FTRACE_FL_REGS;
6835 			if (cnt == 1 && ops->trampoline)
6836 				rec->flags |= FTRACE_FL_TRAMP;
6837 			else
6838 				rec->flags &= ~FTRACE_FL_TRAMP;
6839 		}
6840 	}
6841 
6842 	return cnt;
6843 }
6844 
6845 static void
6846 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6847 {
6848 	struct ftrace_func_entry *entry;
6849 	struct dyn_ftrace *rec;
6850 	int i;
6851 
6852 	if (ftrace_hash_empty(hash))
6853 		return;
6854 
6855 	for (i = 0; i < pg->index; i++) {
6856 		rec = &pg->records[i];
6857 		entry = __ftrace_lookup_ip(hash, rec->ip);
6858 		/*
6859 		 * Do not allow this rec to match again.
6860 		 * Yeah, it may waste some memory, but will be removed
6861 		 * if/when the hash is modified again.
6862 		 */
6863 		if (entry)
6864 			entry->ip = 0;
6865 	}
6866 }
6867 
6868 /* Clear any records from hashes */
6869 static void clear_mod_from_hashes(struct ftrace_page *pg)
6870 {
6871 	struct trace_array *tr;
6872 
6873 	mutex_lock(&trace_types_lock);
6874 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6875 		if (!tr->ops || !tr->ops->func_hash)
6876 			continue;
6877 		mutex_lock(&tr->ops->func_hash->regex_lock);
6878 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6879 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6880 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6881 	}
6882 	mutex_unlock(&trace_types_lock);
6883 }
6884 
6885 static void ftrace_free_mod_map(struct rcu_head *rcu)
6886 {
6887 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6888 	struct ftrace_mod_func *mod_func;
6889 	struct ftrace_mod_func *n;
6890 
6891 	/* All the contents of mod_map are now not visible to readers */
6892 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6893 		kfree(mod_func->name);
6894 		list_del(&mod_func->list);
6895 		kfree(mod_func);
6896 	}
6897 
6898 	kfree(mod_map);
6899 }
6900 
6901 void ftrace_release_mod(struct module *mod)
6902 {
6903 	struct ftrace_mod_map *mod_map;
6904 	struct ftrace_mod_map *n;
6905 	struct dyn_ftrace *rec;
6906 	struct ftrace_page **last_pg;
6907 	struct ftrace_page *tmp_page = NULL;
6908 	struct ftrace_page *pg;
6909 
6910 	mutex_lock(&ftrace_lock);
6911 
6912 	if (ftrace_disabled)
6913 		goto out_unlock;
6914 
6915 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6916 		if (mod_map->mod == mod) {
6917 			list_del_rcu(&mod_map->list);
6918 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6919 			break;
6920 		}
6921 	}
6922 
6923 	/*
6924 	 * Each module has its own ftrace_pages, remove
6925 	 * them from the list.
6926 	 */
6927 	last_pg = &ftrace_pages_start;
6928 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6929 		rec = &pg->records[0];
6930 		if (within_module_core(rec->ip, mod) ||
6931 		    within_module_init(rec->ip, mod)) {
6932 			/*
6933 			 * As core pages are first, the first
6934 			 * page should never be a module page.
6935 			 */
6936 			if (WARN_ON(pg == ftrace_pages_start))
6937 				goto out_unlock;
6938 
6939 			/* Check if we are deleting the last page */
6940 			if (pg == ftrace_pages)
6941 				ftrace_pages = next_to_ftrace_page(last_pg);
6942 
6943 			ftrace_update_tot_cnt -= pg->index;
6944 			*last_pg = pg->next;
6945 
6946 			pg->next = tmp_page;
6947 			tmp_page = pg;
6948 		} else
6949 			last_pg = &pg->next;
6950 	}
6951  out_unlock:
6952 	mutex_unlock(&ftrace_lock);
6953 
6954 	for (pg = tmp_page; pg; pg = tmp_page) {
6955 
6956 		/* Needs to be called outside of ftrace_lock */
6957 		clear_mod_from_hashes(pg);
6958 
6959 		if (pg->records) {
6960 			free_pages((unsigned long)pg->records, pg->order);
6961 			ftrace_number_of_pages -= 1 << pg->order;
6962 		}
6963 		tmp_page = pg->next;
6964 		kfree(pg);
6965 		ftrace_number_of_groups--;
6966 	}
6967 }
6968 
6969 void ftrace_module_enable(struct module *mod)
6970 {
6971 	struct dyn_ftrace *rec;
6972 	struct ftrace_page *pg;
6973 
6974 	mutex_lock(&ftrace_lock);
6975 
6976 	if (ftrace_disabled)
6977 		goto out_unlock;
6978 
6979 	/*
6980 	 * If the tracing is enabled, go ahead and enable the record.
6981 	 *
6982 	 * The reason not to enable the record immediately is the
6983 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6984 	 * correct previous instructions.  Making first the NOP
6985 	 * conversion puts the module to the correct state, thus
6986 	 * passing the ftrace_make_call check.
6987 	 *
6988 	 * We also delay this to after the module code already set the
6989 	 * text to read-only, as we now need to set it back to read-write
6990 	 * so that we can modify the text.
6991 	 */
6992 	if (ftrace_start_up)
6993 		ftrace_arch_code_modify_prepare();
6994 
6995 	do_for_each_ftrace_rec(pg, rec) {
6996 		int cnt;
6997 		/*
6998 		 * do_for_each_ftrace_rec() is a double loop.
6999 		 * module text shares the pg. If a record is
7000 		 * not part of this module, then skip this pg,
7001 		 * which the "break" will do.
7002 		 */
7003 		if (!within_module_core(rec->ip, mod) &&
7004 		    !within_module_init(rec->ip, mod))
7005 			break;
7006 
7007 		/* Weak functions should still be ignored */
7008 		if (!test_for_valid_rec(rec)) {
7009 			/* Clear all other flags. Should not be enabled anyway */
7010 			rec->flags = FTRACE_FL_DISABLED;
7011 			continue;
7012 		}
7013 
7014 		cnt = 0;
7015 
7016 		/*
7017 		 * When adding a module, we need to check if tracers are
7018 		 * currently enabled and if they are, and can trace this record,
7019 		 * we need to enable the module functions as well as update the
7020 		 * reference counts for those function records.
7021 		 */
7022 		if (ftrace_start_up)
7023 			cnt += referenced_filters(rec);
7024 
7025 		rec->flags &= ~FTRACE_FL_DISABLED;
7026 		rec->flags += cnt;
7027 
7028 		if (ftrace_start_up && cnt) {
7029 			int failed = __ftrace_replace_code(rec, 1);
7030 			if (failed) {
7031 				ftrace_bug(failed, rec);
7032 				goto out_loop;
7033 			}
7034 		}
7035 
7036 	} while_for_each_ftrace_rec();
7037 
7038  out_loop:
7039 	if (ftrace_start_up)
7040 		ftrace_arch_code_modify_post_process();
7041 
7042  out_unlock:
7043 	mutex_unlock(&ftrace_lock);
7044 
7045 	process_cached_mods(mod->name);
7046 }
7047 
7048 void ftrace_module_init(struct module *mod)
7049 {
7050 	int ret;
7051 
7052 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7053 		return;
7054 
7055 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7056 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7057 	if (ret)
7058 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7059 			mod->name);
7060 }
7061 
7062 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7063 				struct dyn_ftrace *rec)
7064 {
7065 	struct ftrace_mod_func *mod_func;
7066 	unsigned long symsize;
7067 	unsigned long offset;
7068 	char str[KSYM_SYMBOL_LEN];
7069 	char *modname;
7070 	const char *ret;
7071 
7072 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7073 	if (!ret)
7074 		return;
7075 
7076 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7077 	if (!mod_func)
7078 		return;
7079 
7080 	mod_func->name = kstrdup(str, GFP_KERNEL);
7081 	if (!mod_func->name) {
7082 		kfree(mod_func);
7083 		return;
7084 	}
7085 
7086 	mod_func->ip = rec->ip - offset;
7087 	mod_func->size = symsize;
7088 
7089 	mod_map->num_funcs++;
7090 
7091 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7092 }
7093 
7094 static struct ftrace_mod_map *
7095 allocate_ftrace_mod_map(struct module *mod,
7096 			unsigned long start, unsigned long end)
7097 {
7098 	struct ftrace_mod_map *mod_map;
7099 
7100 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7101 	if (!mod_map)
7102 		return NULL;
7103 
7104 	mod_map->mod = mod;
7105 	mod_map->start_addr = start;
7106 	mod_map->end_addr = end;
7107 	mod_map->num_funcs = 0;
7108 
7109 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7110 
7111 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7112 
7113 	return mod_map;
7114 }
7115 
7116 static const char *
7117 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7118 			   unsigned long addr, unsigned long *size,
7119 			   unsigned long *off, char *sym)
7120 {
7121 	struct ftrace_mod_func *found_func =  NULL;
7122 	struct ftrace_mod_func *mod_func;
7123 
7124 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7125 		if (addr >= mod_func->ip &&
7126 		    addr < mod_func->ip + mod_func->size) {
7127 			found_func = mod_func;
7128 			break;
7129 		}
7130 	}
7131 
7132 	if (found_func) {
7133 		if (size)
7134 			*size = found_func->size;
7135 		if (off)
7136 			*off = addr - found_func->ip;
7137 		if (sym)
7138 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7139 
7140 		return found_func->name;
7141 	}
7142 
7143 	return NULL;
7144 }
7145 
7146 const char *
7147 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7148 		   unsigned long *off, char **modname, char *sym)
7149 {
7150 	struct ftrace_mod_map *mod_map;
7151 	const char *ret = NULL;
7152 
7153 	/* mod_map is freed via call_rcu() */
7154 	preempt_disable();
7155 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7156 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7157 		if (ret) {
7158 			if (modname)
7159 				*modname = mod_map->mod->name;
7160 			break;
7161 		}
7162 	}
7163 	preempt_enable();
7164 
7165 	return ret;
7166 }
7167 
7168 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7169 			   char *type, char *name,
7170 			   char *module_name, int *exported)
7171 {
7172 	struct ftrace_mod_map *mod_map;
7173 	struct ftrace_mod_func *mod_func;
7174 	int ret;
7175 
7176 	preempt_disable();
7177 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7178 
7179 		if (symnum >= mod_map->num_funcs) {
7180 			symnum -= mod_map->num_funcs;
7181 			continue;
7182 		}
7183 
7184 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7185 			if (symnum > 1) {
7186 				symnum--;
7187 				continue;
7188 			}
7189 
7190 			*value = mod_func->ip;
7191 			*type = 'T';
7192 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7193 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7194 			*exported = 1;
7195 			preempt_enable();
7196 			return 0;
7197 		}
7198 		WARN_ON(1);
7199 		break;
7200 	}
7201 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7202 					    module_name, exported);
7203 	preempt_enable();
7204 	return ret;
7205 }
7206 
7207 #else
7208 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7209 				struct dyn_ftrace *rec) { }
7210 static inline struct ftrace_mod_map *
7211 allocate_ftrace_mod_map(struct module *mod,
7212 			unsigned long start, unsigned long end)
7213 {
7214 	return NULL;
7215 }
7216 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7217 			   char *type, char *name, char *module_name,
7218 			   int *exported)
7219 {
7220 	int ret;
7221 
7222 	preempt_disable();
7223 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7224 					    module_name, exported);
7225 	preempt_enable();
7226 	return ret;
7227 }
7228 #endif /* CONFIG_MODULES */
7229 
7230 struct ftrace_init_func {
7231 	struct list_head list;
7232 	unsigned long ip;
7233 };
7234 
7235 /* Clear any init ips from hashes */
7236 static void
7237 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7238 {
7239 	struct ftrace_func_entry *entry;
7240 
7241 	entry = ftrace_lookup_ip(hash, func->ip);
7242 	/*
7243 	 * Do not allow this rec to match again.
7244 	 * Yeah, it may waste some memory, but will be removed
7245 	 * if/when the hash is modified again.
7246 	 */
7247 	if (entry)
7248 		entry->ip = 0;
7249 }
7250 
7251 static void
7252 clear_func_from_hashes(struct ftrace_init_func *func)
7253 {
7254 	struct trace_array *tr;
7255 
7256 	mutex_lock(&trace_types_lock);
7257 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7258 		if (!tr->ops || !tr->ops->func_hash)
7259 			continue;
7260 		mutex_lock(&tr->ops->func_hash->regex_lock);
7261 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7262 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7263 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7264 	}
7265 	mutex_unlock(&trace_types_lock);
7266 }
7267 
7268 static void add_to_clear_hash_list(struct list_head *clear_list,
7269 				   struct dyn_ftrace *rec)
7270 {
7271 	struct ftrace_init_func *func;
7272 
7273 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7274 	if (!func) {
7275 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7276 		return;
7277 	}
7278 
7279 	func->ip = rec->ip;
7280 	list_add(&func->list, clear_list);
7281 }
7282 
7283 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7284 {
7285 	unsigned long start = (unsigned long)(start_ptr);
7286 	unsigned long end = (unsigned long)(end_ptr);
7287 	struct ftrace_page **last_pg = &ftrace_pages_start;
7288 	struct ftrace_page *pg;
7289 	struct dyn_ftrace *rec;
7290 	struct dyn_ftrace key;
7291 	struct ftrace_mod_map *mod_map = NULL;
7292 	struct ftrace_init_func *func, *func_next;
7293 	struct list_head clear_hash;
7294 
7295 	INIT_LIST_HEAD(&clear_hash);
7296 
7297 	key.ip = start;
7298 	key.flags = end;	/* overload flags, as it is unsigned long */
7299 
7300 	mutex_lock(&ftrace_lock);
7301 
7302 	/*
7303 	 * If we are freeing module init memory, then check if
7304 	 * any tracer is active. If so, we need to save a mapping of
7305 	 * the module functions being freed with the address.
7306 	 */
7307 	if (mod && ftrace_ops_list != &ftrace_list_end)
7308 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7309 
7310 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7311 		if (end < pg->records[0].ip ||
7312 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7313 			continue;
7314  again:
7315 		rec = bsearch(&key, pg->records, pg->index,
7316 			      sizeof(struct dyn_ftrace),
7317 			      ftrace_cmp_recs);
7318 		if (!rec)
7319 			continue;
7320 
7321 		/* rec will be cleared from hashes after ftrace_lock unlock */
7322 		add_to_clear_hash_list(&clear_hash, rec);
7323 
7324 		if (mod_map)
7325 			save_ftrace_mod_rec(mod_map, rec);
7326 
7327 		pg->index--;
7328 		ftrace_update_tot_cnt--;
7329 		if (!pg->index) {
7330 			*last_pg = pg->next;
7331 			if (pg->records) {
7332 				free_pages((unsigned long)pg->records, pg->order);
7333 				ftrace_number_of_pages -= 1 << pg->order;
7334 			}
7335 			ftrace_number_of_groups--;
7336 			kfree(pg);
7337 			pg = container_of(last_pg, struct ftrace_page, next);
7338 			if (!(*last_pg))
7339 				ftrace_pages = pg;
7340 			continue;
7341 		}
7342 		memmove(rec, rec + 1,
7343 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7344 		/* More than one function may be in this block */
7345 		goto again;
7346 	}
7347 	mutex_unlock(&ftrace_lock);
7348 
7349 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7350 		clear_func_from_hashes(func);
7351 		kfree(func);
7352 	}
7353 }
7354 
7355 void __init ftrace_free_init_mem(void)
7356 {
7357 	void *start = (void *)(&__init_begin);
7358 	void *end = (void *)(&__init_end);
7359 
7360 	ftrace_boot_snapshot();
7361 
7362 	ftrace_free_mem(NULL, start, end);
7363 }
7364 
7365 int __init __weak ftrace_dyn_arch_init(void)
7366 {
7367 	return 0;
7368 }
7369 
7370 void __init ftrace_init(void)
7371 {
7372 	extern unsigned long __start_mcount_loc[];
7373 	extern unsigned long __stop_mcount_loc[];
7374 	unsigned long count, flags;
7375 	int ret;
7376 
7377 	local_irq_save(flags);
7378 	ret = ftrace_dyn_arch_init();
7379 	local_irq_restore(flags);
7380 	if (ret)
7381 		goto failed;
7382 
7383 	count = __stop_mcount_loc - __start_mcount_loc;
7384 	if (!count) {
7385 		pr_info("ftrace: No functions to be traced?\n");
7386 		goto failed;
7387 	}
7388 
7389 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7390 		count, count / ENTRIES_PER_PAGE + 1);
7391 
7392 	ret = ftrace_process_locs(NULL,
7393 				  __start_mcount_loc,
7394 				  __stop_mcount_loc);
7395 	if (ret) {
7396 		pr_warn("ftrace: failed to allocate entries for functions\n");
7397 		goto failed;
7398 	}
7399 
7400 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7401 		ftrace_number_of_pages, ftrace_number_of_groups);
7402 
7403 	last_ftrace_enabled = ftrace_enabled = 1;
7404 
7405 	set_ftrace_early_filters();
7406 
7407 	return;
7408  failed:
7409 	ftrace_disabled = 1;
7410 }
7411 
7412 /* Do nothing if arch does not support this */
7413 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7414 {
7415 }
7416 
7417 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7418 {
7419 	unsigned long trampoline = ops->trampoline;
7420 
7421 	arch_ftrace_update_trampoline(ops);
7422 	if (ops->trampoline && ops->trampoline != trampoline &&
7423 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7424 		/* Add to kallsyms before the perf events */
7425 		ftrace_add_trampoline_to_kallsyms(ops);
7426 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7427 				   ops->trampoline, ops->trampoline_size, false,
7428 				   FTRACE_TRAMPOLINE_SYM);
7429 		/*
7430 		 * Record the perf text poke event after the ksymbol register
7431 		 * event.
7432 		 */
7433 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7434 				     (void *)ops->trampoline,
7435 				     ops->trampoline_size);
7436 	}
7437 }
7438 
7439 void ftrace_init_trace_array(struct trace_array *tr)
7440 {
7441 	INIT_LIST_HEAD(&tr->func_probes);
7442 	INIT_LIST_HEAD(&tr->mod_trace);
7443 	INIT_LIST_HEAD(&tr->mod_notrace);
7444 }
7445 #else
7446 
7447 struct ftrace_ops global_ops = {
7448 	.func			= ftrace_stub,
7449 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7450 				  FTRACE_OPS_FL_PID,
7451 };
7452 
7453 static int __init ftrace_nodyn_init(void)
7454 {
7455 	ftrace_enabled = 1;
7456 	return 0;
7457 }
7458 core_initcall(ftrace_nodyn_init);
7459 
7460 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7461 static inline void ftrace_startup_all(int command) { }
7462 
7463 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7464 {
7465 }
7466 
7467 #endif /* CONFIG_DYNAMIC_FTRACE */
7468 
7469 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7470 {
7471 	tr->ops = &global_ops;
7472 	tr->ops->private = tr;
7473 	ftrace_init_trace_array(tr);
7474 }
7475 
7476 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7477 {
7478 	/* If we filter on pids, update to use the pid function */
7479 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7480 		if (WARN_ON(tr->ops->func != ftrace_stub))
7481 			printk("ftrace ops had %pS for function\n",
7482 			       tr->ops->func);
7483 	}
7484 	tr->ops->func = func;
7485 	tr->ops->private = tr;
7486 }
7487 
7488 void ftrace_reset_array_ops(struct trace_array *tr)
7489 {
7490 	tr->ops->func = ftrace_stub;
7491 }
7492 
7493 static nokprobe_inline void
7494 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7495 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7496 {
7497 	struct pt_regs *regs = ftrace_get_regs(fregs);
7498 	struct ftrace_ops *op;
7499 	int bit;
7500 
7501 	/*
7502 	 * The ftrace_test_and_set_recursion() will disable preemption,
7503 	 * which is required since some of the ops may be dynamically
7504 	 * allocated, they must be freed after a synchronize_rcu().
7505 	 */
7506 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7507 	if (bit < 0)
7508 		return;
7509 
7510 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7511 		/* Stub functions don't need to be called nor tested */
7512 		if (op->flags & FTRACE_OPS_FL_STUB)
7513 			continue;
7514 		/*
7515 		 * Check the following for each ops before calling their func:
7516 		 *  if RCU flag is set, then rcu_is_watching() must be true
7517 		 *  if PER_CPU is set, then ftrace_function_local_disable()
7518 		 *                          must be false
7519 		 *  Otherwise test if the ip matches the ops filter
7520 		 *
7521 		 * If any of the above fails then the op->func() is not executed.
7522 		 */
7523 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7524 		    ftrace_ops_test(op, ip, regs)) {
7525 			if (FTRACE_WARN_ON(!op->func)) {
7526 				pr_warn("op=%p %pS\n", op, op);
7527 				goto out;
7528 			}
7529 			op->func(ip, parent_ip, op, fregs);
7530 		}
7531 	} while_for_each_ftrace_op(op);
7532 out:
7533 	trace_clear_recursion(bit);
7534 }
7535 
7536 /*
7537  * Some archs only support passing ip and parent_ip. Even though
7538  * the list function ignores the op parameter, we do not want any
7539  * C side effects, where a function is called without the caller
7540  * sending a third parameter.
7541  * Archs are to support both the regs and ftrace_ops at the same time.
7542  * If they support ftrace_ops, it is assumed they support regs.
7543  * If call backs want to use regs, they must either check for regs
7544  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7545  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7546  * An architecture can pass partial regs with ftrace_ops and still
7547  * set the ARCH_SUPPORTS_FTRACE_OPS.
7548  *
7549  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7550  * arch_ftrace_ops_list_func.
7551  */
7552 #if ARCH_SUPPORTS_FTRACE_OPS
7553 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7554 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7555 {
7556 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7557 }
7558 #else
7559 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7560 {
7561 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7562 }
7563 #endif
7564 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7565 
7566 /*
7567  * If there's only one function registered but it does not support
7568  * recursion, needs RCU protection and/or requires per cpu handling, then
7569  * this function will be called by the mcount trampoline.
7570  */
7571 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7572 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7573 {
7574 	int bit;
7575 
7576 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7577 	if (bit < 0)
7578 		return;
7579 
7580 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7581 		op->func(ip, parent_ip, op, fregs);
7582 
7583 	trace_clear_recursion(bit);
7584 }
7585 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7586 
7587 /**
7588  * ftrace_ops_get_func - get the function a trampoline should call
7589  * @ops: the ops to get the function for
7590  *
7591  * Normally the mcount trampoline will call the ops->func, but there
7592  * are times that it should not. For example, if the ops does not
7593  * have its own recursion protection, then it should call the
7594  * ftrace_ops_assist_func() instead.
7595  *
7596  * Returns the function that the trampoline should call for @ops.
7597  */
7598 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7599 {
7600 	/*
7601 	 * If the function does not handle recursion or needs to be RCU safe,
7602 	 * then we need to call the assist handler.
7603 	 */
7604 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7605 			  FTRACE_OPS_FL_RCU))
7606 		return ftrace_ops_assist_func;
7607 
7608 	return ops->func;
7609 }
7610 
7611 static void
7612 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7613 				     struct task_struct *prev,
7614 				     struct task_struct *next,
7615 				     unsigned int prev_state)
7616 {
7617 	struct trace_array *tr = data;
7618 	struct trace_pid_list *pid_list;
7619 	struct trace_pid_list *no_pid_list;
7620 
7621 	pid_list = rcu_dereference_sched(tr->function_pids);
7622 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7623 
7624 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7625 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7626 			       FTRACE_PID_IGNORE);
7627 	else
7628 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7629 			       next->pid);
7630 }
7631 
7632 static void
7633 ftrace_pid_follow_sched_process_fork(void *data,
7634 				     struct task_struct *self,
7635 				     struct task_struct *task)
7636 {
7637 	struct trace_pid_list *pid_list;
7638 	struct trace_array *tr = data;
7639 
7640 	pid_list = rcu_dereference_sched(tr->function_pids);
7641 	trace_filter_add_remove_task(pid_list, self, task);
7642 
7643 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7644 	trace_filter_add_remove_task(pid_list, self, task);
7645 }
7646 
7647 static void
7648 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7649 {
7650 	struct trace_pid_list *pid_list;
7651 	struct trace_array *tr = data;
7652 
7653 	pid_list = rcu_dereference_sched(tr->function_pids);
7654 	trace_filter_add_remove_task(pid_list, NULL, task);
7655 
7656 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7657 	trace_filter_add_remove_task(pid_list, NULL, task);
7658 }
7659 
7660 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7661 {
7662 	if (enable) {
7663 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7664 						  tr);
7665 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7666 						  tr);
7667 	} else {
7668 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7669 						    tr);
7670 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7671 						    tr);
7672 	}
7673 }
7674 
7675 static void clear_ftrace_pids(struct trace_array *tr, int type)
7676 {
7677 	struct trace_pid_list *pid_list;
7678 	struct trace_pid_list *no_pid_list;
7679 	int cpu;
7680 
7681 	pid_list = rcu_dereference_protected(tr->function_pids,
7682 					     lockdep_is_held(&ftrace_lock));
7683 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7684 						lockdep_is_held(&ftrace_lock));
7685 
7686 	/* Make sure there's something to do */
7687 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7688 		return;
7689 
7690 	/* See if the pids still need to be checked after this */
7691 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7692 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7693 		for_each_possible_cpu(cpu)
7694 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7695 	}
7696 
7697 	if (type & TRACE_PIDS)
7698 		rcu_assign_pointer(tr->function_pids, NULL);
7699 
7700 	if (type & TRACE_NO_PIDS)
7701 		rcu_assign_pointer(tr->function_no_pids, NULL);
7702 
7703 	/* Wait till all users are no longer using pid filtering */
7704 	synchronize_rcu();
7705 
7706 	if ((type & TRACE_PIDS) && pid_list)
7707 		trace_pid_list_free(pid_list);
7708 
7709 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7710 		trace_pid_list_free(no_pid_list);
7711 }
7712 
7713 void ftrace_clear_pids(struct trace_array *tr)
7714 {
7715 	mutex_lock(&ftrace_lock);
7716 
7717 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7718 
7719 	mutex_unlock(&ftrace_lock);
7720 }
7721 
7722 static void ftrace_pid_reset(struct trace_array *tr, int type)
7723 {
7724 	mutex_lock(&ftrace_lock);
7725 	clear_ftrace_pids(tr, type);
7726 
7727 	ftrace_update_pid_func();
7728 	ftrace_startup_all(0);
7729 
7730 	mutex_unlock(&ftrace_lock);
7731 }
7732 
7733 /* Greater than any max PID */
7734 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7735 
7736 static void *fpid_start(struct seq_file *m, loff_t *pos)
7737 	__acquires(RCU)
7738 {
7739 	struct trace_pid_list *pid_list;
7740 	struct trace_array *tr = m->private;
7741 
7742 	mutex_lock(&ftrace_lock);
7743 	rcu_read_lock_sched();
7744 
7745 	pid_list = rcu_dereference_sched(tr->function_pids);
7746 
7747 	if (!pid_list)
7748 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7749 
7750 	return trace_pid_start(pid_list, pos);
7751 }
7752 
7753 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7754 {
7755 	struct trace_array *tr = m->private;
7756 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7757 
7758 	if (v == FTRACE_NO_PIDS) {
7759 		(*pos)++;
7760 		return NULL;
7761 	}
7762 	return trace_pid_next(pid_list, v, pos);
7763 }
7764 
7765 static void fpid_stop(struct seq_file *m, void *p)
7766 	__releases(RCU)
7767 {
7768 	rcu_read_unlock_sched();
7769 	mutex_unlock(&ftrace_lock);
7770 }
7771 
7772 static int fpid_show(struct seq_file *m, void *v)
7773 {
7774 	if (v == FTRACE_NO_PIDS) {
7775 		seq_puts(m, "no pid\n");
7776 		return 0;
7777 	}
7778 
7779 	return trace_pid_show(m, v);
7780 }
7781 
7782 static const struct seq_operations ftrace_pid_sops = {
7783 	.start = fpid_start,
7784 	.next = fpid_next,
7785 	.stop = fpid_stop,
7786 	.show = fpid_show,
7787 };
7788 
7789 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7790 	__acquires(RCU)
7791 {
7792 	struct trace_pid_list *pid_list;
7793 	struct trace_array *tr = m->private;
7794 
7795 	mutex_lock(&ftrace_lock);
7796 	rcu_read_lock_sched();
7797 
7798 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7799 
7800 	if (!pid_list)
7801 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7802 
7803 	return trace_pid_start(pid_list, pos);
7804 }
7805 
7806 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7807 {
7808 	struct trace_array *tr = m->private;
7809 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7810 
7811 	if (v == FTRACE_NO_PIDS) {
7812 		(*pos)++;
7813 		return NULL;
7814 	}
7815 	return trace_pid_next(pid_list, v, pos);
7816 }
7817 
7818 static const struct seq_operations ftrace_no_pid_sops = {
7819 	.start = fnpid_start,
7820 	.next = fnpid_next,
7821 	.stop = fpid_stop,
7822 	.show = fpid_show,
7823 };
7824 
7825 static int pid_open(struct inode *inode, struct file *file, int type)
7826 {
7827 	const struct seq_operations *seq_ops;
7828 	struct trace_array *tr = inode->i_private;
7829 	struct seq_file *m;
7830 	int ret = 0;
7831 
7832 	ret = tracing_check_open_get_tr(tr);
7833 	if (ret)
7834 		return ret;
7835 
7836 	if ((file->f_mode & FMODE_WRITE) &&
7837 	    (file->f_flags & O_TRUNC))
7838 		ftrace_pid_reset(tr, type);
7839 
7840 	switch (type) {
7841 	case TRACE_PIDS:
7842 		seq_ops = &ftrace_pid_sops;
7843 		break;
7844 	case TRACE_NO_PIDS:
7845 		seq_ops = &ftrace_no_pid_sops;
7846 		break;
7847 	default:
7848 		trace_array_put(tr);
7849 		WARN_ON_ONCE(1);
7850 		return -EINVAL;
7851 	}
7852 
7853 	ret = seq_open(file, seq_ops);
7854 	if (ret < 0) {
7855 		trace_array_put(tr);
7856 	} else {
7857 		m = file->private_data;
7858 		/* copy tr over to seq ops */
7859 		m->private = tr;
7860 	}
7861 
7862 	return ret;
7863 }
7864 
7865 static int
7866 ftrace_pid_open(struct inode *inode, struct file *file)
7867 {
7868 	return pid_open(inode, file, TRACE_PIDS);
7869 }
7870 
7871 static int
7872 ftrace_no_pid_open(struct inode *inode, struct file *file)
7873 {
7874 	return pid_open(inode, file, TRACE_NO_PIDS);
7875 }
7876 
7877 static void ignore_task_cpu(void *data)
7878 {
7879 	struct trace_array *tr = data;
7880 	struct trace_pid_list *pid_list;
7881 	struct trace_pid_list *no_pid_list;
7882 
7883 	/*
7884 	 * This function is called by on_each_cpu() while the
7885 	 * event_mutex is held.
7886 	 */
7887 	pid_list = rcu_dereference_protected(tr->function_pids,
7888 					     mutex_is_locked(&ftrace_lock));
7889 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7890 						mutex_is_locked(&ftrace_lock));
7891 
7892 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7893 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7894 			       FTRACE_PID_IGNORE);
7895 	else
7896 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7897 			       current->pid);
7898 }
7899 
7900 static ssize_t
7901 pid_write(struct file *filp, const char __user *ubuf,
7902 	  size_t cnt, loff_t *ppos, int type)
7903 {
7904 	struct seq_file *m = filp->private_data;
7905 	struct trace_array *tr = m->private;
7906 	struct trace_pid_list *filtered_pids;
7907 	struct trace_pid_list *other_pids;
7908 	struct trace_pid_list *pid_list;
7909 	ssize_t ret;
7910 
7911 	if (!cnt)
7912 		return 0;
7913 
7914 	mutex_lock(&ftrace_lock);
7915 
7916 	switch (type) {
7917 	case TRACE_PIDS:
7918 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7919 					     lockdep_is_held(&ftrace_lock));
7920 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7921 					     lockdep_is_held(&ftrace_lock));
7922 		break;
7923 	case TRACE_NO_PIDS:
7924 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7925 					     lockdep_is_held(&ftrace_lock));
7926 		other_pids = rcu_dereference_protected(tr->function_pids,
7927 					     lockdep_is_held(&ftrace_lock));
7928 		break;
7929 	default:
7930 		ret = -EINVAL;
7931 		WARN_ON_ONCE(1);
7932 		goto out;
7933 	}
7934 
7935 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7936 	if (ret < 0)
7937 		goto out;
7938 
7939 	switch (type) {
7940 	case TRACE_PIDS:
7941 		rcu_assign_pointer(tr->function_pids, pid_list);
7942 		break;
7943 	case TRACE_NO_PIDS:
7944 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7945 		break;
7946 	}
7947 
7948 
7949 	if (filtered_pids) {
7950 		synchronize_rcu();
7951 		trace_pid_list_free(filtered_pids);
7952 	} else if (pid_list && !other_pids) {
7953 		/* Register a probe to set whether to ignore the tracing of a task */
7954 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7955 	}
7956 
7957 	/*
7958 	 * Ignoring of pids is done at task switch. But we have to
7959 	 * check for those tasks that are currently running.
7960 	 * Always do this in case a pid was appended or removed.
7961 	 */
7962 	on_each_cpu(ignore_task_cpu, tr, 1);
7963 
7964 	ftrace_update_pid_func();
7965 	ftrace_startup_all(0);
7966  out:
7967 	mutex_unlock(&ftrace_lock);
7968 
7969 	if (ret > 0)
7970 		*ppos += ret;
7971 
7972 	return ret;
7973 }
7974 
7975 static ssize_t
7976 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7977 		 size_t cnt, loff_t *ppos)
7978 {
7979 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7980 }
7981 
7982 static ssize_t
7983 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7984 		    size_t cnt, loff_t *ppos)
7985 {
7986 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7987 }
7988 
7989 static int
7990 ftrace_pid_release(struct inode *inode, struct file *file)
7991 {
7992 	struct trace_array *tr = inode->i_private;
7993 
7994 	trace_array_put(tr);
7995 
7996 	return seq_release(inode, file);
7997 }
7998 
7999 static const struct file_operations ftrace_pid_fops = {
8000 	.open		= ftrace_pid_open,
8001 	.write		= ftrace_pid_write,
8002 	.read		= seq_read,
8003 	.llseek		= tracing_lseek,
8004 	.release	= ftrace_pid_release,
8005 };
8006 
8007 static const struct file_operations ftrace_no_pid_fops = {
8008 	.open		= ftrace_no_pid_open,
8009 	.write		= ftrace_no_pid_write,
8010 	.read		= seq_read,
8011 	.llseek		= tracing_lseek,
8012 	.release	= ftrace_pid_release,
8013 };
8014 
8015 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8016 {
8017 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8018 			    tr, &ftrace_pid_fops);
8019 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8020 			  d_tracer, tr, &ftrace_no_pid_fops);
8021 }
8022 
8023 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8024 					 struct dentry *d_tracer)
8025 {
8026 	/* Only the top level directory has the dyn_tracefs and profile */
8027 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8028 
8029 	ftrace_init_dyn_tracefs(d_tracer);
8030 	ftrace_profile_tracefs(d_tracer);
8031 }
8032 
8033 /**
8034  * ftrace_kill - kill ftrace
8035  *
8036  * This function should be used by panic code. It stops ftrace
8037  * but in a not so nice way. If you need to simply kill ftrace
8038  * from a non-atomic section, use ftrace_kill.
8039  */
8040 void ftrace_kill(void)
8041 {
8042 	ftrace_disabled = 1;
8043 	ftrace_enabled = 0;
8044 	ftrace_trace_function = ftrace_stub;
8045 }
8046 
8047 /**
8048  * ftrace_is_dead - Test if ftrace is dead or not.
8049  *
8050  * Returns 1 if ftrace is "dead", zero otherwise.
8051  */
8052 int ftrace_is_dead(void)
8053 {
8054 	return ftrace_disabled;
8055 }
8056 
8057 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8058 /*
8059  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8060  * it doesn't conflict with any direct ftrace_ops. If there is existing
8061  * direct ftrace_ops on a kernel function being patched, call
8062  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8063  *
8064  * @ops:     ftrace_ops being registered.
8065  *
8066  * Returns:
8067  *         0 on success;
8068  *         Negative on failure.
8069  */
8070 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8071 {
8072 	struct ftrace_func_entry *entry;
8073 	struct ftrace_hash *hash;
8074 	struct ftrace_ops *op;
8075 	int size, i, ret;
8076 
8077 	lockdep_assert_held_once(&direct_mutex);
8078 
8079 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8080 		return 0;
8081 
8082 	hash = ops->func_hash->filter_hash;
8083 	size = 1 << hash->size_bits;
8084 	for (i = 0; i < size; i++) {
8085 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8086 			unsigned long ip = entry->ip;
8087 			bool found_op = false;
8088 
8089 			mutex_lock(&ftrace_lock);
8090 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8091 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8092 					continue;
8093 				if (ops_references_ip(op, ip)) {
8094 					found_op = true;
8095 					break;
8096 				}
8097 			} while_for_each_ftrace_op(op);
8098 			mutex_unlock(&ftrace_lock);
8099 
8100 			if (found_op) {
8101 				if (!op->ops_func)
8102 					return -EBUSY;
8103 
8104 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8105 				if (ret)
8106 					return ret;
8107 			}
8108 		}
8109 	}
8110 
8111 	return 0;
8112 }
8113 
8114 /*
8115  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8116  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8117  * ops.
8118  */
8119 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8120 {
8121 	struct ftrace_func_entry *entry;
8122 	struct ftrace_hash *hash;
8123 	struct ftrace_ops *op;
8124 	int size, i;
8125 
8126 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8127 		return;
8128 
8129 	mutex_lock(&direct_mutex);
8130 
8131 	hash = ops->func_hash->filter_hash;
8132 	size = 1 << hash->size_bits;
8133 	for (i = 0; i < size; i++) {
8134 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8135 			unsigned long ip = entry->ip;
8136 			bool found_op = false;
8137 
8138 			mutex_lock(&ftrace_lock);
8139 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8140 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8141 					continue;
8142 				if (ops_references_ip(op, ip)) {
8143 					found_op = true;
8144 					break;
8145 				}
8146 			} while_for_each_ftrace_op(op);
8147 			mutex_unlock(&ftrace_lock);
8148 
8149 			/* The cleanup is optional, ignore any errors */
8150 			if (found_op && op->ops_func)
8151 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8152 		}
8153 	}
8154 	mutex_unlock(&direct_mutex);
8155 }
8156 
8157 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8158 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8159 
8160 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8161 
8162 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8163 {
8164 	return 0;
8165 }
8166 
8167 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8168 {
8169 }
8170 
8171 #define lock_direct_mutex()	do { } while (0)
8172 #define unlock_direct_mutex()	do { } while (0)
8173 
8174 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8175 
8176 /*
8177  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8178  */
8179 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8180 {
8181 	int ret;
8182 
8183 	ftrace_ops_init(ops);
8184 
8185 	mutex_lock(&ftrace_lock);
8186 
8187 	ret = ftrace_startup(ops, 0);
8188 
8189 	mutex_unlock(&ftrace_lock);
8190 
8191 	return ret;
8192 }
8193 
8194 /**
8195  * register_ftrace_function - register a function for profiling
8196  * @ops:	ops structure that holds the function for profiling.
8197  *
8198  * Register a function to be called by all functions in the
8199  * kernel.
8200  *
8201  * Note: @ops->func and all the functions it calls must be labeled
8202  *       with "notrace", otherwise it will go into a
8203  *       recursive loop.
8204  */
8205 int register_ftrace_function(struct ftrace_ops *ops)
8206 {
8207 	int ret;
8208 
8209 	lock_direct_mutex();
8210 	ret = prepare_direct_functions_for_ipmodify(ops);
8211 	if (ret < 0)
8212 		goto out_unlock;
8213 
8214 	ret = register_ftrace_function_nolock(ops);
8215 
8216 out_unlock:
8217 	unlock_direct_mutex();
8218 	return ret;
8219 }
8220 EXPORT_SYMBOL_GPL(register_ftrace_function);
8221 
8222 /**
8223  * unregister_ftrace_function - unregister a function for profiling.
8224  * @ops:	ops structure that holds the function to unregister
8225  *
8226  * Unregister a function that was added to be called by ftrace profiling.
8227  */
8228 int unregister_ftrace_function(struct ftrace_ops *ops)
8229 {
8230 	int ret;
8231 
8232 	mutex_lock(&ftrace_lock);
8233 	ret = ftrace_shutdown(ops, 0);
8234 	mutex_unlock(&ftrace_lock);
8235 
8236 	cleanup_direct_functions_after_ipmodify(ops);
8237 	return ret;
8238 }
8239 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8240 
8241 static int symbols_cmp(const void *a, const void *b)
8242 {
8243 	const char **str_a = (const char **) a;
8244 	const char **str_b = (const char **) b;
8245 
8246 	return strcmp(*str_a, *str_b);
8247 }
8248 
8249 struct kallsyms_data {
8250 	unsigned long *addrs;
8251 	const char **syms;
8252 	size_t cnt;
8253 	size_t found;
8254 };
8255 
8256 static int kallsyms_callback(void *data, const char *name,
8257 			     struct module *mod, unsigned long addr)
8258 {
8259 	struct kallsyms_data *args = data;
8260 	const char **sym;
8261 	int idx;
8262 
8263 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8264 	if (!sym)
8265 		return 0;
8266 
8267 	idx = sym - args->syms;
8268 	if (args->addrs[idx])
8269 		return 0;
8270 
8271 	addr = ftrace_location(addr);
8272 	if (!addr)
8273 		return 0;
8274 
8275 	args->addrs[idx] = addr;
8276 	args->found++;
8277 	return args->found == args->cnt ? 1 : 0;
8278 }
8279 
8280 /**
8281  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8282  *
8283  * @sorted_syms: array of symbols pointers symbols to resolve,
8284  * must be alphabetically sorted
8285  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8286  * @addrs: array for storing resulting addresses
8287  *
8288  * This function looks up addresses for array of symbols provided in
8289  * @syms array (must be alphabetically sorted) and stores them in
8290  * @addrs array, which needs to be big enough to store at least @cnt
8291  * addresses.
8292  *
8293  * This function returns 0 if all provided symbols are found,
8294  * -ESRCH otherwise.
8295  */
8296 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8297 {
8298 	struct kallsyms_data args;
8299 	int err;
8300 
8301 	memset(addrs, 0, sizeof(*addrs) * cnt);
8302 	args.addrs = addrs;
8303 	args.syms = sorted_syms;
8304 	args.cnt = cnt;
8305 	args.found = 0;
8306 	err = kallsyms_on_each_symbol(kallsyms_callback, &args);
8307 	if (err < 0)
8308 		return err;
8309 	return args.found == args.cnt ? 0 : -ESRCH;
8310 }
8311 
8312 #ifdef CONFIG_SYSCTL
8313 
8314 #ifdef CONFIG_DYNAMIC_FTRACE
8315 static void ftrace_startup_sysctl(void)
8316 {
8317 	int command;
8318 
8319 	if (unlikely(ftrace_disabled))
8320 		return;
8321 
8322 	/* Force update next time */
8323 	saved_ftrace_func = NULL;
8324 	/* ftrace_start_up is true if we want ftrace running */
8325 	if (ftrace_start_up) {
8326 		command = FTRACE_UPDATE_CALLS;
8327 		if (ftrace_graph_active)
8328 			command |= FTRACE_START_FUNC_RET;
8329 		ftrace_startup_enable(command);
8330 	}
8331 }
8332 
8333 static void ftrace_shutdown_sysctl(void)
8334 {
8335 	int command;
8336 
8337 	if (unlikely(ftrace_disabled))
8338 		return;
8339 
8340 	/* ftrace_start_up is true if ftrace is running */
8341 	if (ftrace_start_up) {
8342 		command = FTRACE_DISABLE_CALLS;
8343 		if (ftrace_graph_active)
8344 			command |= FTRACE_STOP_FUNC_RET;
8345 		ftrace_run_update_code(command);
8346 	}
8347 }
8348 #else
8349 # define ftrace_startup_sysctl()       do { } while (0)
8350 # define ftrace_shutdown_sysctl()      do { } while (0)
8351 #endif /* CONFIG_DYNAMIC_FTRACE */
8352 
8353 static bool is_permanent_ops_registered(void)
8354 {
8355 	struct ftrace_ops *op;
8356 
8357 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8358 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8359 			return true;
8360 	} while_for_each_ftrace_op(op);
8361 
8362 	return false;
8363 }
8364 
8365 static int
8366 ftrace_enable_sysctl(struct ctl_table *table, int write,
8367 		     void *buffer, size_t *lenp, loff_t *ppos)
8368 {
8369 	int ret = -ENODEV;
8370 
8371 	mutex_lock(&ftrace_lock);
8372 
8373 	if (unlikely(ftrace_disabled))
8374 		goto out;
8375 
8376 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8377 
8378 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8379 		goto out;
8380 
8381 	if (ftrace_enabled) {
8382 
8383 		/* we are starting ftrace again */
8384 		if (rcu_dereference_protected(ftrace_ops_list,
8385 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8386 			update_ftrace_function();
8387 
8388 		ftrace_startup_sysctl();
8389 
8390 	} else {
8391 		if (is_permanent_ops_registered()) {
8392 			ftrace_enabled = true;
8393 			ret = -EBUSY;
8394 			goto out;
8395 		}
8396 
8397 		/* stopping ftrace calls (just send to ftrace_stub) */
8398 		ftrace_trace_function = ftrace_stub;
8399 
8400 		ftrace_shutdown_sysctl();
8401 	}
8402 
8403 	last_ftrace_enabled = !!ftrace_enabled;
8404  out:
8405 	mutex_unlock(&ftrace_lock);
8406 	return ret;
8407 }
8408 
8409 static struct ctl_table ftrace_sysctls[] = {
8410 	{
8411 		.procname       = "ftrace_enabled",
8412 		.data           = &ftrace_enabled,
8413 		.maxlen         = sizeof(int),
8414 		.mode           = 0644,
8415 		.proc_handler   = ftrace_enable_sysctl,
8416 	},
8417 	{}
8418 };
8419 
8420 static int __init ftrace_sysctl_init(void)
8421 {
8422 	register_sysctl_init("kernel", ftrace_sysctls);
8423 	return 0;
8424 }
8425 late_initcall(ftrace_sysctl_init);
8426 #endif
8427