xref: /openbmc/linux/kernel/trace/ftrace.c (revision add48ba4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct pt_regs *regs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 #define FTRACE_PID_IGNORE	-1
143 #define FTRACE_PID_TRACE	-2
144 
145 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
146 			    struct ftrace_ops *op, struct pt_regs *regs)
147 {
148 	struct trace_array *tr = op->private;
149 	int pid;
150 
151 	if (tr) {
152 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
153 		if (pid == FTRACE_PID_IGNORE)
154 			return;
155 		if (pid != FTRACE_PID_TRACE &&
156 		    pid != current->pid)
157 			return;
158 	}
159 
160 	op->saved_func(ip, parent_ip, op, regs);
161 }
162 
163 static void ftrace_sync_ipi(void *data)
164 {
165 	/* Probably not needed, but do it anyway */
166 	smp_rmb();
167 }
168 
169 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
170 {
171 	/*
172 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
173 	 * then it needs to call the list anyway.
174 	 */
175 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
176 	    FTRACE_FORCE_LIST_FUNC)
177 		return ftrace_ops_list_func;
178 
179 	return ftrace_ops_get_func(ops);
180 }
181 
182 static void update_ftrace_function(void)
183 {
184 	ftrace_func_t func;
185 
186 	/*
187 	 * Prepare the ftrace_ops that the arch callback will use.
188 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
189 	 * will point to the ops we want.
190 	 */
191 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
192 						lockdep_is_held(&ftrace_lock));
193 
194 	/* If there's no ftrace_ops registered, just call the stub function */
195 	if (set_function_trace_op == &ftrace_list_end) {
196 		func = ftrace_stub;
197 
198 	/*
199 	 * If we are at the end of the list and this ops is
200 	 * recursion safe and not dynamic and the arch supports passing ops,
201 	 * then have the mcount trampoline call the function directly.
202 	 */
203 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
204 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
205 		func = ftrace_ops_get_list_func(ftrace_ops_list);
206 
207 	} else {
208 		/* Just use the default ftrace_ops */
209 		set_function_trace_op = &ftrace_list_end;
210 		func = ftrace_ops_list_func;
211 	}
212 
213 	update_function_graph_func();
214 
215 	/* If there's no change, then do nothing more here */
216 	if (ftrace_trace_function == func)
217 		return;
218 
219 	/*
220 	 * If we are using the list function, it doesn't care
221 	 * about the function_trace_ops.
222 	 */
223 	if (func == ftrace_ops_list_func) {
224 		ftrace_trace_function = func;
225 		/*
226 		 * Don't even bother setting function_trace_ops,
227 		 * it would be racy to do so anyway.
228 		 */
229 		return;
230 	}
231 
232 #ifndef CONFIG_DYNAMIC_FTRACE
233 	/*
234 	 * For static tracing, we need to be a bit more careful.
235 	 * The function change takes affect immediately. Thus,
236 	 * we need to coorditate the setting of the function_trace_ops
237 	 * with the setting of the ftrace_trace_function.
238 	 *
239 	 * Set the function to the list ops, which will call the
240 	 * function we want, albeit indirectly, but it handles the
241 	 * ftrace_ops and doesn't depend on function_trace_op.
242 	 */
243 	ftrace_trace_function = ftrace_ops_list_func;
244 	/*
245 	 * Make sure all CPUs see this. Yes this is slow, but static
246 	 * tracing is slow and nasty to have enabled.
247 	 */
248 	synchronize_rcu_tasks_rude();
249 	/* Now all cpus are using the list ops. */
250 	function_trace_op = set_function_trace_op;
251 	/* Make sure the function_trace_op is visible on all CPUs */
252 	smp_wmb();
253 	/* Nasty way to force a rmb on all cpus */
254 	smp_call_function(ftrace_sync_ipi, NULL, 1);
255 	/* OK, we are all set to update the ftrace_trace_function now! */
256 #endif /* !CONFIG_DYNAMIC_FTRACE */
257 
258 	ftrace_trace_function = func;
259 }
260 
261 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
262 			   struct ftrace_ops *ops)
263 {
264 	rcu_assign_pointer(ops->next, *list);
265 
266 	/*
267 	 * We are entering ops into the list but another
268 	 * CPU might be walking that list. We need to make sure
269 	 * the ops->next pointer is valid before another CPU sees
270 	 * the ops pointer included into the list.
271 	 */
272 	rcu_assign_pointer(*list, ops);
273 }
274 
275 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
276 			     struct ftrace_ops *ops)
277 {
278 	struct ftrace_ops **p;
279 
280 	/*
281 	 * If we are removing the last function, then simply point
282 	 * to the ftrace_stub.
283 	 */
284 	if (rcu_dereference_protected(*list,
285 			lockdep_is_held(&ftrace_lock)) == ops &&
286 	    rcu_dereference_protected(ops->next,
287 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
288 		*list = &ftrace_list_end;
289 		return 0;
290 	}
291 
292 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
293 		if (*p == ops)
294 			break;
295 
296 	if (*p != ops)
297 		return -1;
298 
299 	*p = (*p)->next;
300 	return 0;
301 }
302 
303 static void ftrace_update_trampoline(struct ftrace_ops *ops);
304 
305 int __register_ftrace_function(struct ftrace_ops *ops)
306 {
307 	if (ops->flags & FTRACE_OPS_FL_DELETED)
308 		return -EINVAL;
309 
310 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
311 		return -EBUSY;
312 
313 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
314 	/*
315 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
316 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
317 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
318 	 */
319 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
320 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
321 		return -EINVAL;
322 
323 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
324 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
325 #endif
326 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
327 		return -EBUSY;
328 
329 	if (!core_kernel_data((unsigned long)ops))
330 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
331 
332 	add_ftrace_ops(&ftrace_ops_list, ops);
333 
334 	/* Always save the function, and reset at unregistering */
335 	ops->saved_func = ops->func;
336 
337 	if (ftrace_pids_enabled(ops))
338 		ops->func = ftrace_pid_func;
339 
340 	ftrace_update_trampoline(ops);
341 
342 	if (ftrace_enabled)
343 		update_ftrace_function();
344 
345 	return 0;
346 }
347 
348 int __unregister_ftrace_function(struct ftrace_ops *ops)
349 {
350 	int ret;
351 
352 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
353 		return -EBUSY;
354 
355 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
356 
357 	if (ret < 0)
358 		return ret;
359 
360 	if (ftrace_enabled)
361 		update_ftrace_function();
362 
363 	ops->func = ops->saved_func;
364 
365 	return 0;
366 }
367 
368 static void ftrace_update_pid_func(void)
369 {
370 	struct ftrace_ops *op;
371 
372 	/* Only do something if we are tracing something */
373 	if (ftrace_trace_function == ftrace_stub)
374 		return;
375 
376 	do_for_each_ftrace_op(op, ftrace_ops_list) {
377 		if (op->flags & FTRACE_OPS_FL_PID) {
378 			op->func = ftrace_pids_enabled(op) ?
379 				ftrace_pid_func : op->saved_func;
380 			ftrace_update_trampoline(op);
381 		}
382 	} while_for_each_ftrace_op(op);
383 
384 	update_ftrace_function();
385 }
386 
387 #ifdef CONFIG_FUNCTION_PROFILER
388 struct ftrace_profile {
389 	struct hlist_node		node;
390 	unsigned long			ip;
391 	unsigned long			counter;
392 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
393 	unsigned long long		time;
394 	unsigned long long		time_squared;
395 #endif
396 };
397 
398 struct ftrace_profile_page {
399 	struct ftrace_profile_page	*next;
400 	unsigned long			index;
401 	struct ftrace_profile		records[];
402 };
403 
404 struct ftrace_profile_stat {
405 	atomic_t			disabled;
406 	struct hlist_head		*hash;
407 	struct ftrace_profile_page	*pages;
408 	struct ftrace_profile_page	*start;
409 	struct tracer_stat		stat;
410 };
411 
412 #define PROFILE_RECORDS_SIZE						\
413 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
414 
415 #define PROFILES_PER_PAGE					\
416 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
417 
418 static int ftrace_profile_enabled __read_mostly;
419 
420 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
421 static DEFINE_MUTEX(ftrace_profile_lock);
422 
423 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
424 
425 #define FTRACE_PROFILE_HASH_BITS 10
426 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
427 
428 static void *
429 function_stat_next(void *v, int idx)
430 {
431 	struct ftrace_profile *rec = v;
432 	struct ftrace_profile_page *pg;
433 
434 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
435 
436  again:
437 	if (idx != 0)
438 		rec++;
439 
440 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
441 		pg = pg->next;
442 		if (!pg)
443 			return NULL;
444 		rec = &pg->records[0];
445 		if (!rec->counter)
446 			goto again;
447 	}
448 
449 	return rec;
450 }
451 
452 static void *function_stat_start(struct tracer_stat *trace)
453 {
454 	struct ftrace_profile_stat *stat =
455 		container_of(trace, struct ftrace_profile_stat, stat);
456 
457 	if (!stat || !stat->start)
458 		return NULL;
459 
460 	return function_stat_next(&stat->start->records[0], 0);
461 }
462 
463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
464 /* function graph compares on total time */
465 static int function_stat_cmp(const void *p1, const void *p2)
466 {
467 	const struct ftrace_profile *a = p1;
468 	const struct ftrace_profile *b = p2;
469 
470 	if (a->time < b->time)
471 		return -1;
472 	if (a->time > b->time)
473 		return 1;
474 	else
475 		return 0;
476 }
477 #else
478 /* not function graph compares against hits */
479 static int function_stat_cmp(const void *p1, const void *p2)
480 {
481 	const struct ftrace_profile *a = p1;
482 	const struct ftrace_profile *b = p2;
483 
484 	if (a->counter < b->counter)
485 		return -1;
486 	if (a->counter > b->counter)
487 		return 1;
488 	else
489 		return 0;
490 }
491 #endif
492 
493 static int function_stat_headers(struct seq_file *m)
494 {
495 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
496 	seq_puts(m, "  Function                               "
497 		 "Hit    Time            Avg             s^2\n"
498 		    "  --------                               "
499 		 "---    ----            ---             ---\n");
500 #else
501 	seq_puts(m, "  Function                               Hit\n"
502 		    "  --------                               ---\n");
503 #endif
504 	return 0;
505 }
506 
507 static int function_stat_show(struct seq_file *m, void *v)
508 {
509 	struct ftrace_profile *rec = v;
510 	char str[KSYM_SYMBOL_LEN];
511 	int ret = 0;
512 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
513 	static struct trace_seq s;
514 	unsigned long long avg;
515 	unsigned long long stddev;
516 #endif
517 	mutex_lock(&ftrace_profile_lock);
518 
519 	/* we raced with function_profile_reset() */
520 	if (unlikely(rec->counter == 0)) {
521 		ret = -EBUSY;
522 		goto out;
523 	}
524 
525 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
526 	avg = div64_ul(rec->time, rec->counter);
527 	if (tracing_thresh && (avg < tracing_thresh))
528 		goto out;
529 #endif
530 
531 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
532 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
533 
534 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
535 	seq_puts(m, "    ");
536 
537 	/* Sample standard deviation (s^2) */
538 	if (rec->counter <= 1)
539 		stddev = 0;
540 	else {
541 		/*
542 		 * Apply Welford's method:
543 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
544 		 */
545 		stddev = rec->counter * rec->time_squared -
546 			 rec->time * rec->time;
547 
548 		/*
549 		 * Divide only 1000 for ns^2 -> us^2 conversion.
550 		 * trace_print_graph_duration will divide 1000 again.
551 		 */
552 		stddev = div64_ul(stddev,
553 				  rec->counter * (rec->counter - 1) * 1000);
554 	}
555 
556 	trace_seq_init(&s);
557 	trace_print_graph_duration(rec->time, &s);
558 	trace_seq_puts(&s, "    ");
559 	trace_print_graph_duration(avg, &s);
560 	trace_seq_puts(&s, "    ");
561 	trace_print_graph_duration(stddev, &s);
562 	trace_print_seq(m, &s);
563 #endif
564 	seq_putc(m, '\n');
565 out:
566 	mutex_unlock(&ftrace_profile_lock);
567 
568 	return ret;
569 }
570 
571 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
572 {
573 	struct ftrace_profile_page *pg;
574 
575 	pg = stat->pages = stat->start;
576 
577 	while (pg) {
578 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
579 		pg->index = 0;
580 		pg = pg->next;
581 	}
582 
583 	memset(stat->hash, 0,
584 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
585 }
586 
587 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
588 {
589 	struct ftrace_profile_page *pg;
590 	int functions;
591 	int pages;
592 	int i;
593 
594 	/* If we already allocated, do nothing */
595 	if (stat->pages)
596 		return 0;
597 
598 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
599 	if (!stat->pages)
600 		return -ENOMEM;
601 
602 #ifdef CONFIG_DYNAMIC_FTRACE
603 	functions = ftrace_update_tot_cnt;
604 #else
605 	/*
606 	 * We do not know the number of functions that exist because
607 	 * dynamic tracing is what counts them. With past experience
608 	 * we have around 20K functions. That should be more than enough.
609 	 * It is highly unlikely we will execute every function in
610 	 * the kernel.
611 	 */
612 	functions = 20000;
613 #endif
614 
615 	pg = stat->start = stat->pages;
616 
617 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
618 
619 	for (i = 1; i < pages; i++) {
620 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
621 		if (!pg->next)
622 			goto out_free;
623 		pg = pg->next;
624 	}
625 
626 	return 0;
627 
628  out_free:
629 	pg = stat->start;
630 	while (pg) {
631 		unsigned long tmp = (unsigned long)pg;
632 
633 		pg = pg->next;
634 		free_page(tmp);
635 	}
636 
637 	stat->pages = NULL;
638 	stat->start = NULL;
639 
640 	return -ENOMEM;
641 }
642 
643 static int ftrace_profile_init_cpu(int cpu)
644 {
645 	struct ftrace_profile_stat *stat;
646 	int size;
647 
648 	stat = &per_cpu(ftrace_profile_stats, cpu);
649 
650 	if (stat->hash) {
651 		/* If the profile is already created, simply reset it */
652 		ftrace_profile_reset(stat);
653 		return 0;
654 	}
655 
656 	/*
657 	 * We are profiling all functions, but usually only a few thousand
658 	 * functions are hit. We'll make a hash of 1024 items.
659 	 */
660 	size = FTRACE_PROFILE_HASH_SIZE;
661 
662 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
663 
664 	if (!stat->hash)
665 		return -ENOMEM;
666 
667 	/* Preallocate the function profiling pages */
668 	if (ftrace_profile_pages_init(stat) < 0) {
669 		kfree(stat->hash);
670 		stat->hash = NULL;
671 		return -ENOMEM;
672 	}
673 
674 	return 0;
675 }
676 
677 static int ftrace_profile_init(void)
678 {
679 	int cpu;
680 	int ret = 0;
681 
682 	for_each_possible_cpu(cpu) {
683 		ret = ftrace_profile_init_cpu(cpu);
684 		if (ret)
685 			break;
686 	}
687 
688 	return ret;
689 }
690 
691 /* interrupts must be disabled */
692 static struct ftrace_profile *
693 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
694 {
695 	struct ftrace_profile *rec;
696 	struct hlist_head *hhd;
697 	unsigned long key;
698 
699 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
700 	hhd = &stat->hash[key];
701 
702 	if (hlist_empty(hhd))
703 		return NULL;
704 
705 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
706 		if (rec->ip == ip)
707 			return rec;
708 	}
709 
710 	return NULL;
711 }
712 
713 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
714 			       struct ftrace_profile *rec)
715 {
716 	unsigned long key;
717 
718 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
719 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
720 }
721 
722 /*
723  * The memory is already allocated, this simply finds a new record to use.
724  */
725 static struct ftrace_profile *
726 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
727 {
728 	struct ftrace_profile *rec = NULL;
729 
730 	/* prevent recursion (from NMIs) */
731 	if (atomic_inc_return(&stat->disabled) != 1)
732 		goto out;
733 
734 	/*
735 	 * Try to find the function again since an NMI
736 	 * could have added it
737 	 */
738 	rec = ftrace_find_profiled_func(stat, ip);
739 	if (rec)
740 		goto out;
741 
742 	if (stat->pages->index == PROFILES_PER_PAGE) {
743 		if (!stat->pages->next)
744 			goto out;
745 		stat->pages = stat->pages->next;
746 	}
747 
748 	rec = &stat->pages->records[stat->pages->index++];
749 	rec->ip = ip;
750 	ftrace_add_profile(stat, rec);
751 
752  out:
753 	atomic_dec(&stat->disabled);
754 
755 	return rec;
756 }
757 
758 static void
759 function_profile_call(unsigned long ip, unsigned long parent_ip,
760 		      struct ftrace_ops *ops, struct pt_regs *regs)
761 {
762 	struct ftrace_profile_stat *stat;
763 	struct ftrace_profile *rec;
764 	unsigned long flags;
765 
766 	if (!ftrace_profile_enabled)
767 		return;
768 
769 	local_irq_save(flags);
770 
771 	stat = this_cpu_ptr(&ftrace_profile_stats);
772 	if (!stat->hash || !ftrace_profile_enabled)
773 		goto out;
774 
775 	rec = ftrace_find_profiled_func(stat, ip);
776 	if (!rec) {
777 		rec = ftrace_profile_alloc(stat, ip);
778 		if (!rec)
779 			goto out;
780 	}
781 
782 	rec->counter++;
783  out:
784 	local_irq_restore(flags);
785 }
786 
787 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
788 static bool fgraph_graph_time = true;
789 
790 void ftrace_graph_graph_time_control(bool enable)
791 {
792 	fgraph_graph_time = enable;
793 }
794 
795 static int profile_graph_entry(struct ftrace_graph_ent *trace)
796 {
797 	struct ftrace_ret_stack *ret_stack;
798 
799 	function_profile_call(trace->func, 0, NULL, NULL);
800 
801 	/* If function graph is shutting down, ret_stack can be NULL */
802 	if (!current->ret_stack)
803 		return 0;
804 
805 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
806 	if (ret_stack)
807 		ret_stack->subtime = 0;
808 
809 	return 1;
810 }
811 
812 static void profile_graph_return(struct ftrace_graph_ret *trace)
813 {
814 	struct ftrace_ret_stack *ret_stack;
815 	struct ftrace_profile_stat *stat;
816 	unsigned long long calltime;
817 	struct ftrace_profile *rec;
818 	unsigned long flags;
819 
820 	local_irq_save(flags);
821 	stat = this_cpu_ptr(&ftrace_profile_stats);
822 	if (!stat->hash || !ftrace_profile_enabled)
823 		goto out;
824 
825 	/* If the calltime was zero'd ignore it */
826 	if (!trace->calltime)
827 		goto out;
828 
829 	calltime = trace->rettime - trace->calltime;
830 
831 	if (!fgraph_graph_time) {
832 
833 		/* Append this call time to the parent time to subtract */
834 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
835 		if (ret_stack)
836 			ret_stack->subtime += calltime;
837 
838 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
839 		if (ret_stack && ret_stack->subtime < calltime)
840 			calltime -= ret_stack->subtime;
841 		else
842 			calltime = 0;
843 	}
844 
845 	rec = ftrace_find_profiled_func(stat, trace->func);
846 	if (rec) {
847 		rec->time += calltime;
848 		rec->time_squared += calltime * calltime;
849 	}
850 
851  out:
852 	local_irq_restore(flags);
853 }
854 
855 static struct fgraph_ops fprofiler_ops = {
856 	.entryfunc = &profile_graph_entry,
857 	.retfunc = &profile_graph_return,
858 };
859 
860 static int register_ftrace_profiler(void)
861 {
862 	return register_ftrace_graph(&fprofiler_ops);
863 }
864 
865 static void unregister_ftrace_profiler(void)
866 {
867 	unregister_ftrace_graph(&fprofiler_ops);
868 }
869 #else
870 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
871 	.func		= function_profile_call,
872 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
873 	INIT_OPS_HASH(ftrace_profile_ops)
874 };
875 
876 static int register_ftrace_profiler(void)
877 {
878 	return register_ftrace_function(&ftrace_profile_ops);
879 }
880 
881 static void unregister_ftrace_profiler(void)
882 {
883 	unregister_ftrace_function(&ftrace_profile_ops);
884 }
885 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
886 
887 static ssize_t
888 ftrace_profile_write(struct file *filp, const char __user *ubuf,
889 		     size_t cnt, loff_t *ppos)
890 {
891 	unsigned long val;
892 	int ret;
893 
894 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
895 	if (ret)
896 		return ret;
897 
898 	val = !!val;
899 
900 	mutex_lock(&ftrace_profile_lock);
901 	if (ftrace_profile_enabled ^ val) {
902 		if (val) {
903 			ret = ftrace_profile_init();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 
909 			ret = register_ftrace_profiler();
910 			if (ret < 0) {
911 				cnt = ret;
912 				goto out;
913 			}
914 			ftrace_profile_enabled = 1;
915 		} else {
916 			ftrace_profile_enabled = 0;
917 			/*
918 			 * unregister_ftrace_profiler calls stop_machine
919 			 * so this acts like an synchronize_rcu.
920 			 */
921 			unregister_ftrace_profiler();
922 		}
923 	}
924  out:
925 	mutex_unlock(&ftrace_profile_lock);
926 
927 	*ppos += cnt;
928 
929 	return cnt;
930 }
931 
932 static ssize_t
933 ftrace_profile_read(struct file *filp, char __user *ubuf,
934 		     size_t cnt, loff_t *ppos)
935 {
936 	char buf[64];		/* big enough to hold a number */
937 	int r;
938 
939 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
940 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
941 }
942 
943 static const struct file_operations ftrace_profile_fops = {
944 	.open		= tracing_open_generic,
945 	.read		= ftrace_profile_read,
946 	.write		= ftrace_profile_write,
947 	.llseek		= default_llseek,
948 };
949 
950 /* used to initialize the real stat files */
951 static struct tracer_stat function_stats __initdata = {
952 	.name		= "functions",
953 	.stat_start	= function_stat_start,
954 	.stat_next	= function_stat_next,
955 	.stat_cmp	= function_stat_cmp,
956 	.stat_headers	= function_stat_headers,
957 	.stat_show	= function_stat_show
958 };
959 
960 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
961 {
962 	struct ftrace_profile_stat *stat;
963 	struct dentry *entry;
964 	char *name;
965 	int ret;
966 	int cpu;
967 
968 	for_each_possible_cpu(cpu) {
969 		stat = &per_cpu(ftrace_profile_stats, cpu);
970 
971 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
972 		if (!name) {
973 			/*
974 			 * The files created are permanent, if something happens
975 			 * we still do not free memory.
976 			 */
977 			WARN(1,
978 			     "Could not allocate stat file for cpu %d\n",
979 			     cpu);
980 			return;
981 		}
982 		stat->stat = function_stats;
983 		stat->stat.name = name;
984 		ret = register_stat_tracer(&stat->stat);
985 		if (ret) {
986 			WARN(1,
987 			     "Could not register function stat for cpu %d\n",
988 			     cpu);
989 			kfree(name);
990 			return;
991 		}
992 	}
993 
994 	entry = tracefs_create_file("function_profile_enabled", 0644,
995 				    d_tracer, NULL, &ftrace_profile_fops);
996 	if (!entry)
997 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
998 }
999 
1000 #else /* CONFIG_FUNCTION_PROFILER */
1001 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1002 {
1003 }
1004 #endif /* CONFIG_FUNCTION_PROFILER */
1005 
1006 #ifdef CONFIG_DYNAMIC_FTRACE
1007 
1008 static struct ftrace_ops *removed_ops;
1009 
1010 /*
1011  * Set when doing a global update, like enabling all recs or disabling them.
1012  * It is not set when just updating a single ftrace_ops.
1013  */
1014 static bool update_all_ops;
1015 
1016 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1017 # error Dynamic ftrace depends on MCOUNT_RECORD
1018 #endif
1019 
1020 struct ftrace_func_probe {
1021 	struct ftrace_probe_ops	*probe_ops;
1022 	struct ftrace_ops	ops;
1023 	struct trace_array	*tr;
1024 	struct list_head	list;
1025 	void			*data;
1026 	int			ref;
1027 };
1028 
1029 /*
1030  * We make these constant because no one should touch them,
1031  * but they are used as the default "empty hash", to avoid allocating
1032  * it all the time. These are in a read only section such that if
1033  * anyone does try to modify it, it will cause an exception.
1034  */
1035 static const struct hlist_head empty_buckets[1];
1036 static const struct ftrace_hash empty_hash = {
1037 	.buckets = (struct hlist_head *)empty_buckets,
1038 };
1039 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1040 
1041 struct ftrace_ops global_ops = {
1042 	.func				= ftrace_stub,
1043 	.local_hash.notrace_hash	= EMPTY_HASH,
1044 	.local_hash.filter_hash		= EMPTY_HASH,
1045 	INIT_OPS_HASH(global_ops)
1046 	.flags				= FTRACE_OPS_FL_RECURSION_SAFE |
1047 					  FTRACE_OPS_FL_INITIALIZED |
1048 					  FTRACE_OPS_FL_PID,
1049 };
1050 
1051 /*
1052  * Used by the stack undwinder to know about dynamic ftrace trampolines.
1053  */
1054 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1055 {
1056 	struct ftrace_ops *op = NULL;
1057 
1058 	/*
1059 	 * Some of the ops may be dynamically allocated,
1060 	 * they are freed after a synchronize_rcu().
1061 	 */
1062 	preempt_disable_notrace();
1063 
1064 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1065 		/*
1066 		 * This is to check for dynamically allocated trampolines.
1067 		 * Trampolines that are in kernel text will have
1068 		 * core_kernel_text() return true.
1069 		 */
1070 		if (op->trampoline && op->trampoline_size)
1071 			if (addr >= op->trampoline &&
1072 			    addr < op->trampoline + op->trampoline_size) {
1073 				preempt_enable_notrace();
1074 				return op;
1075 			}
1076 	} while_for_each_ftrace_op(op);
1077 	preempt_enable_notrace();
1078 
1079 	return NULL;
1080 }
1081 
1082 /*
1083  * This is used by __kernel_text_address() to return true if the
1084  * address is on a dynamically allocated trampoline that would
1085  * not return true for either core_kernel_text() or
1086  * is_module_text_address().
1087  */
1088 bool is_ftrace_trampoline(unsigned long addr)
1089 {
1090 	return ftrace_ops_trampoline(addr) != NULL;
1091 }
1092 
1093 struct ftrace_page {
1094 	struct ftrace_page	*next;
1095 	struct dyn_ftrace	*records;
1096 	int			index;
1097 	int			size;
1098 };
1099 
1100 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1101 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1102 
1103 static struct ftrace_page	*ftrace_pages_start;
1104 static struct ftrace_page	*ftrace_pages;
1105 
1106 static __always_inline unsigned long
1107 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1108 {
1109 	if (hash->size_bits > 0)
1110 		return hash_long(ip, hash->size_bits);
1111 
1112 	return 0;
1113 }
1114 
1115 /* Only use this function if ftrace_hash_empty() has already been tested */
1116 static __always_inline struct ftrace_func_entry *
1117 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1118 {
1119 	unsigned long key;
1120 	struct ftrace_func_entry *entry;
1121 	struct hlist_head *hhd;
1122 
1123 	key = ftrace_hash_key(hash, ip);
1124 	hhd = &hash->buckets[key];
1125 
1126 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1127 		if (entry->ip == ip)
1128 			return entry;
1129 	}
1130 	return NULL;
1131 }
1132 
1133 /**
1134  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1135  * @hash: The hash to look at
1136  * @ip: The instruction pointer to test
1137  *
1138  * Search a given @hash to see if a given instruction pointer (@ip)
1139  * exists in it.
1140  *
1141  * Returns the entry that holds the @ip if found. NULL otherwise.
1142  */
1143 struct ftrace_func_entry *
1144 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1145 {
1146 	if (ftrace_hash_empty(hash))
1147 		return NULL;
1148 
1149 	return __ftrace_lookup_ip(hash, ip);
1150 }
1151 
1152 static void __add_hash_entry(struct ftrace_hash *hash,
1153 			     struct ftrace_func_entry *entry)
1154 {
1155 	struct hlist_head *hhd;
1156 	unsigned long key;
1157 
1158 	key = ftrace_hash_key(hash, entry->ip);
1159 	hhd = &hash->buckets[key];
1160 	hlist_add_head(&entry->hlist, hhd);
1161 	hash->count++;
1162 }
1163 
1164 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1165 {
1166 	struct ftrace_func_entry *entry;
1167 
1168 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1169 	if (!entry)
1170 		return -ENOMEM;
1171 
1172 	entry->ip = ip;
1173 	__add_hash_entry(hash, entry);
1174 
1175 	return 0;
1176 }
1177 
1178 static void
1179 free_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del(&entry->hlist);
1183 	kfree(entry);
1184 	hash->count--;
1185 }
1186 
1187 static void
1188 remove_hash_entry(struct ftrace_hash *hash,
1189 		  struct ftrace_func_entry *entry)
1190 {
1191 	hlist_del_rcu(&entry->hlist);
1192 	hash->count--;
1193 }
1194 
1195 static void ftrace_hash_clear(struct ftrace_hash *hash)
1196 {
1197 	struct hlist_head *hhd;
1198 	struct hlist_node *tn;
1199 	struct ftrace_func_entry *entry;
1200 	int size = 1 << hash->size_bits;
1201 	int i;
1202 
1203 	if (!hash->count)
1204 		return;
1205 
1206 	for (i = 0; i < size; i++) {
1207 		hhd = &hash->buckets[i];
1208 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1209 			free_hash_entry(hash, entry);
1210 	}
1211 	FTRACE_WARN_ON(hash->count);
1212 }
1213 
1214 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1215 {
1216 	list_del(&ftrace_mod->list);
1217 	kfree(ftrace_mod->module);
1218 	kfree(ftrace_mod->func);
1219 	kfree(ftrace_mod);
1220 }
1221 
1222 static void clear_ftrace_mod_list(struct list_head *head)
1223 {
1224 	struct ftrace_mod_load *p, *n;
1225 
1226 	/* stack tracer isn't supported yet */
1227 	if (!head)
1228 		return;
1229 
1230 	mutex_lock(&ftrace_lock);
1231 	list_for_each_entry_safe(p, n, head, list)
1232 		free_ftrace_mod(p);
1233 	mutex_unlock(&ftrace_lock);
1234 }
1235 
1236 static void free_ftrace_hash(struct ftrace_hash *hash)
1237 {
1238 	if (!hash || hash == EMPTY_HASH)
1239 		return;
1240 	ftrace_hash_clear(hash);
1241 	kfree(hash->buckets);
1242 	kfree(hash);
1243 }
1244 
1245 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1246 {
1247 	struct ftrace_hash *hash;
1248 
1249 	hash = container_of(rcu, struct ftrace_hash, rcu);
1250 	free_ftrace_hash(hash);
1251 }
1252 
1253 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1254 {
1255 	if (!hash || hash == EMPTY_HASH)
1256 		return;
1257 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1258 }
1259 
1260 void ftrace_free_filter(struct ftrace_ops *ops)
1261 {
1262 	ftrace_ops_init(ops);
1263 	free_ftrace_hash(ops->func_hash->filter_hash);
1264 	free_ftrace_hash(ops->func_hash->notrace_hash);
1265 }
1266 
1267 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1268 {
1269 	struct ftrace_hash *hash;
1270 	int size;
1271 
1272 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1273 	if (!hash)
1274 		return NULL;
1275 
1276 	size = 1 << size_bits;
1277 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1278 
1279 	if (!hash->buckets) {
1280 		kfree(hash);
1281 		return NULL;
1282 	}
1283 
1284 	hash->size_bits = size_bits;
1285 
1286 	return hash;
1287 }
1288 
1289 
1290 static int ftrace_add_mod(struct trace_array *tr,
1291 			  const char *func, const char *module,
1292 			  int enable)
1293 {
1294 	struct ftrace_mod_load *ftrace_mod;
1295 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1296 
1297 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1298 	if (!ftrace_mod)
1299 		return -ENOMEM;
1300 
1301 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1302 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1303 	ftrace_mod->enable = enable;
1304 
1305 	if (!ftrace_mod->func || !ftrace_mod->module)
1306 		goto out_free;
1307 
1308 	list_add(&ftrace_mod->list, mod_head);
1309 
1310 	return 0;
1311 
1312  out_free:
1313 	free_ftrace_mod(ftrace_mod);
1314 
1315 	return -ENOMEM;
1316 }
1317 
1318 static struct ftrace_hash *
1319 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1320 {
1321 	struct ftrace_func_entry *entry;
1322 	struct ftrace_hash *new_hash;
1323 	int size;
1324 	int ret;
1325 	int i;
1326 
1327 	new_hash = alloc_ftrace_hash(size_bits);
1328 	if (!new_hash)
1329 		return NULL;
1330 
1331 	if (hash)
1332 		new_hash->flags = hash->flags;
1333 
1334 	/* Empty hash? */
1335 	if (ftrace_hash_empty(hash))
1336 		return new_hash;
1337 
1338 	size = 1 << hash->size_bits;
1339 	for (i = 0; i < size; i++) {
1340 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1341 			ret = add_hash_entry(new_hash, entry->ip);
1342 			if (ret < 0)
1343 				goto free_hash;
1344 		}
1345 	}
1346 
1347 	FTRACE_WARN_ON(new_hash->count != hash->count);
1348 
1349 	return new_hash;
1350 
1351  free_hash:
1352 	free_ftrace_hash(new_hash);
1353 	return NULL;
1354 }
1355 
1356 static void
1357 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1358 static void
1359 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1360 
1361 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1362 				       struct ftrace_hash *new_hash);
1363 
1364 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1365 {
1366 	struct ftrace_func_entry *entry;
1367 	struct ftrace_hash *new_hash;
1368 	struct hlist_head *hhd;
1369 	struct hlist_node *tn;
1370 	int bits = 0;
1371 	int i;
1372 
1373 	/*
1374 	 * Make the hash size about 1/2 the # found
1375 	 */
1376 	for (size /= 2; size; size >>= 1)
1377 		bits++;
1378 
1379 	/* Don't allocate too much */
1380 	if (bits > FTRACE_HASH_MAX_BITS)
1381 		bits = FTRACE_HASH_MAX_BITS;
1382 
1383 	new_hash = alloc_ftrace_hash(bits);
1384 	if (!new_hash)
1385 		return NULL;
1386 
1387 	new_hash->flags = src->flags;
1388 
1389 	size = 1 << src->size_bits;
1390 	for (i = 0; i < size; i++) {
1391 		hhd = &src->buckets[i];
1392 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1393 			remove_hash_entry(src, entry);
1394 			__add_hash_entry(new_hash, entry);
1395 		}
1396 	}
1397 	return new_hash;
1398 }
1399 
1400 static struct ftrace_hash *
1401 __ftrace_hash_move(struct ftrace_hash *src)
1402 {
1403 	int size = src->count;
1404 
1405 	/*
1406 	 * If the new source is empty, just return the empty_hash.
1407 	 */
1408 	if (ftrace_hash_empty(src))
1409 		return EMPTY_HASH;
1410 
1411 	return dup_hash(src, size);
1412 }
1413 
1414 static int
1415 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1416 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1417 {
1418 	struct ftrace_hash *new_hash;
1419 	int ret;
1420 
1421 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1422 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1423 		return -EINVAL;
1424 
1425 	new_hash = __ftrace_hash_move(src);
1426 	if (!new_hash)
1427 		return -ENOMEM;
1428 
1429 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1430 	if (enable) {
1431 		/* IPMODIFY should be updated only when filter_hash updating */
1432 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1433 		if (ret < 0) {
1434 			free_ftrace_hash(new_hash);
1435 			return ret;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Remove the current set, update the hash and add
1441 	 * them back.
1442 	 */
1443 	ftrace_hash_rec_disable_modify(ops, enable);
1444 
1445 	rcu_assign_pointer(*dst, new_hash);
1446 
1447 	ftrace_hash_rec_enable_modify(ops, enable);
1448 
1449 	return 0;
1450 }
1451 
1452 static bool hash_contains_ip(unsigned long ip,
1453 			     struct ftrace_ops_hash *hash)
1454 {
1455 	/*
1456 	 * The function record is a match if it exists in the filter
1457 	 * hash and not in the notrace hash. Note, an emty hash is
1458 	 * considered a match for the filter hash, but an empty
1459 	 * notrace hash is considered not in the notrace hash.
1460 	 */
1461 	return (ftrace_hash_empty(hash->filter_hash) ||
1462 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1463 		(ftrace_hash_empty(hash->notrace_hash) ||
1464 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1465 }
1466 
1467 /*
1468  * Test the hashes for this ops to see if we want to call
1469  * the ops->func or not.
1470  *
1471  * It's a match if the ip is in the ops->filter_hash or
1472  * the filter_hash does not exist or is empty,
1473  *  AND
1474  * the ip is not in the ops->notrace_hash.
1475  *
1476  * This needs to be called with preemption disabled as
1477  * the hashes are freed with call_rcu().
1478  */
1479 int
1480 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1481 {
1482 	struct ftrace_ops_hash hash;
1483 	int ret;
1484 
1485 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1486 	/*
1487 	 * There's a small race when adding ops that the ftrace handler
1488 	 * that wants regs, may be called without them. We can not
1489 	 * allow that handler to be called if regs is NULL.
1490 	 */
1491 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1492 		return 0;
1493 #endif
1494 
1495 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1496 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1497 
1498 	if (hash_contains_ip(ip, &hash))
1499 		ret = 1;
1500 	else
1501 		ret = 0;
1502 
1503 	return ret;
1504 }
1505 
1506 /*
1507  * This is a double for. Do not use 'break' to break out of the loop,
1508  * you must use a goto.
1509  */
1510 #define do_for_each_ftrace_rec(pg, rec)					\
1511 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1512 		int _____i;						\
1513 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1514 			rec = &pg->records[_____i];
1515 
1516 #define while_for_each_ftrace_rec()		\
1517 		}				\
1518 	}
1519 
1520 
1521 static int ftrace_cmp_recs(const void *a, const void *b)
1522 {
1523 	const struct dyn_ftrace *key = a;
1524 	const struct dyn_ftrace *rec = b;
1525 
1526 	if (key->flags < rec->ip)
1527 		return -1;
1528 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1529 		return 1;
1530 	return 0;
1531 }
1532 
1533 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1534 {
1535 	struct ftrace_page *pg;
1536 	struct dyn_ftrace *rec = NULL;
1537 	struct dyn_ftrace key;
1538 
1539 	key.ip = start;
1540 	key.flags = end;	/* overload flags, as it is unsigned long */
1541 
1542 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1543 		if (end < pg->records[0].ip ||
1544 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1545 			continue;
1546 		rec = bsearch(&key, pg->records, pg->index,
1547 			      sizeof(struct dyn_ftrace),
1548 			      ftrace_cmp_recs);
1549 		if (rec)
1550 			break;
1551 	}
1552 	return rec;
1553 }
1554 
1555 /**
1556  * ftrace_location_range - return the first address of a traced location
1557  *	if it touches the given ip range
1558  * @start: start of range to search.
1559  * @end: end of range to search (inclusive). @end points to the last byte
1560  *	to check.
1561  *
1562  * Returns rec->ip if the related ftrace location is a least partly within
1563  * the given address range. That is, the first address of the instruction
1564  * that is either a NOP or call to the function tracer. It checks the ftrace
1565  * internal tables to determine if the address belongs or not.
1566  */
1567 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1568 {
1569 	struct dyn_ftrace *rec;
1570 
1571 	rec = lookup_rec(start, end);
1572 	if (rec)
1573 		return rec->ip;
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  * ftrace_location - return true if the ip giving is a traced location
1580  * @ip: the instruction pointer to check
1581  *
1582  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1583  * That is, the instruction that is either a NOP or call to
1584  * the function tracer. It checks the ftrace internal tables to
1585  * determine if the address belongs or not.
1586  */
1587 unsigned long ftrace_location(unsigned long ip)
1588 {
1589 	return ftrace_location_range(ip, ip);
1590 }
1591 
1592 /**
1593  * ftrace_text_reserved - return true if range contains an ftrace location
1594  * @start: start of range to search
1595  * @end: end of range to search (inclusive). @end points to the last byte to check.
1596  *
1597  * Returns 1 if @start and @end contains a ftrace location.
1598  * That is, the instruction that is either a NOP or call to
1599  * the function tracer. It checks the ftrace internal tables to
1600  * determine if the address belongs or not.
1601  */
1602 int ftrace_text_reserved(const void *start, const void *end)
1603 {
1604 	unsigned long ret;
1605 
1606 	ret = ftrace_location_range((unsigned long)start,
1607 				    (unsigned long)end);
1608 
1609 	return (int)!!ret;
1610 }
1611 
1612 /* Test if ops registered to this rec needs regs */
1613 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1614 {
1615 	struct ftrace_ops *ops;
1616 	bool keep_regs = false;
1617 
1618 	for (ops = ftrace_ops_list;
1619 	     ops != &ftrace_list_end; ops = ops->next) {
1620 		/* pass rec in as regs to have non-NULL val */
1621 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1622 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1623 				keep_regs = true;
1624 				break;
1625 			}
1626 		}
1627 	}
1628 
1629 	return  keep_regs;
1630 }
1631 
1632 static struct ftrace_ops *
1633 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1634 static struct ftrace_ops *
1635 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1636 
1637 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1638 				     int filter_hash,
1639 				     bool inc)
1640 {
1641 	struct ftrace_hash *hash;
1642 	struct ftrace_hash *other_hash;
1643 	struct ftrace_page *pg;
1644 	struct dyn_ftrace *rec;
1645 	bool update = false;
1646 	int count = 0;
1647 	int all = false;
1648 
1649 	/* Only update if the ops has been registered */
1650 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1651 		return false;
1652 
1653 	/*
1654 	 * In the filter_hash case:
1655 	 *   If the count is zero, we update all records.
1656 	 *   Otherwise we just update the items in the hash.
1657 	 *
1658 	 * In the notrace_hash case:
1659 	 *   We enable the update in the hash.
1660 	 *   As disabling notrace means enabling the tracing,
1661 	 *   and enabling notrace means disabling, the inc variable
1662 	 *   gets inversed.
1663 	 */
1664 	if (filter_hash) {
1665 		hash = ops->func_hash->filter_hash;
1666 		other_hash = ops->func_hash->notrace_hash;
1667 		if (ftrace_hash_empty(hash))
1668 			all = true;
1669 	} else {
1670 		inc = !inc;
1671 		hash = ops->func_hash->notrace_hash;
1672 		other_hash = ops->func_hash->filter_hash;
1673 		/*
1674 		 * If the notrace hash has no items,
1675 		 * then there's nothing to do.
1676 		 */
1677 		if (ftrace_hash_empty(hash))
1678 			return false;
1679 	}
1680 
1681 	do_for_each_ftrace_rec(pg, rec) {
1682 		int in_other_hash = 0;
1683 		int in_hash = 0;
1684 		int match = 0;
1685 
1686 		if (rec->flags & FTRACE_FL_DISABLED)
1687 			continue;
1688 
1689 		if (all) {
1690 			/*
1691 			 * Only the filter_hash affects all records.
1692 			 * Update if the record is not in the notrace hash.
1693 			 */
1694 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1695 				match = 1;
1696 		} else {
1697 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1698 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1699 
1700 			/*
1701 			 * If filter_hash is set, we want to match all functions
1702 			 * that are in the hash but not in the other hash.
1703 			 *
1704 			 * If filter_hash is not set, then we are decrementing.
1705 			 * That means we match anything that is in the hash
1706 			 * and also in the other_hash. That is, we need to turn
1707 			 * off functions in the other hash because they are disabled
1708 			 * by this hash.
1709 			 */
1710 			if (filter_hash && in_hash && !in_other_hash)
1711 				match = 1;
1712 			else if (!filter_hash && in_hash &&
1713 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1714 				match = 1;
1715 		}
1716 		if (!match)
1717 			continue;
1718 
1719 		if (inc) {
1720 			rec->flags++;
1721 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1722 				return false;
1723 
1724 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1725 				rec->flags |= FTRACE_FL_DIRECT;
1726 
1727 			/*
1728 			 * If there's only a single callback registered to a
1729 			 * function, and the ops has a trampoline registered
1730 			 * for it, then we can call it directly.
1731 			 */
1732 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1733 				rec->flags |= FTRACE_FL_TRAMP;
1734 			else
1735 				/*
1736 				 * If we are adding another function callback
1737 				 * to this function, and the previous had a
1738 				 * custom trampoline in use, then we need to go
1739 				 * back to the default trampoline.
1740 				 */
1741 				rec->flags &= ~FTRACE_FL_TRAMP;
1742 
1743 			/*
1744 			 * If any ops wants regs saved for this function
1745 			 * then all ops will get saved regs.
1746 			 */
1747 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1748 				rec->flags |= FTRACE_FL_REGS;
1749 		} else {
1750 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1751 				return false;
1752 			rec->flags--;
1753 
1754 			/*
1755 			 * Only the internal direct_ops should have the
1756 			 * DIRECT flag set. Thus, if it is removing a
1757 			 * function, then that function should no longer
1758 			 * be direct.
1759 			 */
1760 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1761 				rec->flags &= ~FTRACE_FL_DIRECT;
1762 
1763 			/*
1764 			 * If the rec had REGS enabled and the ops that is
1765 			 * being removed had REGS set, then see if there is
1766 			 * still any ops for this record that wants regs.
1767 			 * If not, we can stop recording them.
1768 			 */
1769 			if (ftrace_rec_count(rec) > 0 &&
1770 			    rec->flags & FTRACE_FL_REGS &&
1771 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1772 				if (!test_rec_ops_needs_regs(rec))
1773 					rec->flags &= ~FTRACE_FL_REGS;
1774 			}
1775 
1776 			/*
1777 			 * The TRAMP needs to be set only if rec count
1778 			 * is decremented to one, and the ops that is
1779 			 * left has a trampoline. As TRAMP can only be
1780 			 * enabled if there is only a single ops attached
1781 			 * to it.
1782 			 */
1783 			if (ftrace_rec_count(rec) == 1 &&
1784 			    ftrace_find_tramp_ops_any(rec))
1785 				rec->flags |= FTRACE_FL_TRAMP;
1786 			else
1787 				rec->flags &= ~FTRACE_FL_TRAMP;
1788 
1789 			/*
1790 			 * flags will be cleared in ftrace_check_record()
1791 			 * if rec count is zero.
1792 			 */
1793 		}
1794 		count++;
1795 
1796 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1797 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1798 
1799 		/* Shortcut, if we handled all records, we are done. */
1800 		if (!all && count == hash->count)
1801 			return update;
1802 	} while_for_each_ftrace_rec();
1803 
1804 	return update;
1805 }
1806 
1807 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1808 				    int filter_hash)
1809 {
1810 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1811 }
1812 
1813 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1814 				   int filter_hash)
1815 {
1816 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1817 }
1818 
1819 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1820 					  int filter_hash, int inc)
1821 {
1822 	struct ftrace_ops *op;
1823 
1824 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1825 
1826 	if (ops->func_hash != &global_ops.local_hash)
1827 		return;
1828 
1829 	/*
1830 	 * If the ops shares the global_ops hash, then we need to update
1831 	 * all ops that are enabled and use this hash.
1832 	 */
1833 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1834 		/* Already done */
1835 		if (op == ops)
1836 			continue;
1837 		if (op->func_hash == &global_ops.local_hash)
1838 			__ftrace_hash_rec_update(op, filter_hash, inc);
1839 	} while_for_each_ftrace_op(op);
1840 }
1841 
1842 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1843 					   int filter_hash)
1844 {
1845 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1846 }
1847 
1848 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1849 					  int filter_hash)
1850 {
1851 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1852 }
1853 
1854 /*
1855  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1856  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1857  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1858  * Note that old_hash and new_hash has below meanings
1859  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1860  *  - If the hash is EMPTY_HASH, it hits nothing
1861  *  - Anything else hits the recs which match the hash entries.
1862  */
1863 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1864 					 struct ftrace_hash *old_hash,
1865 					 struct ftrace_hash *new_hash)
1866 {
1867 	struct ftrace_page *pg;
1868 	struct dyn_ftrace *rec, *end = NULL;
1869 	int in_old, in_new;
1870 
1871 	/* Only update if the ops has been registered */
1872 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1873 		return 0;
1874 
1875 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1876 		return 0;
1877 
1878 	/*
1879 	 * Since the IPMODIFY is a very address sensitive action, we do not
1880 	 * allow ftrace_ops to set all functions to new hash.
1881 	 */
1882 	if (!new_hash || !old_hash)
1883 		return -EINVAL;
1884 
1885 	/* Update rec->flags */
1886 	do_for_each_ftrace_rec(pg, rec) {
1887 
1888 		if (rec->flags & FTRACE_FL_DISABLED)
1889 			continue;
1890 
1891 		/* We need to update only differences of filter_hash */
1892 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1893 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1894 		if (in_old == in_new)
1895 			continue;
1896 
1897 		if (in_new) {
1898 			/* New entries must ensure no others are using it */
1899 			if (rec->flags & FTRACE_FL_IPMODIFY)
1900 				goto rollback;
1901 			rec->flags |= FTRACE_FL_IPMODIFY;
1902 		} else /* Removed entry */
1903 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1904 	} while_for_each_ftrace_rec();
1905 
1906 	return 0;
1907 
1908 rollback:
1909 	end = rec;
1910 
1911 	/* Roll back what we did above */
1912 	do_for_each_ftrace_rec(pg, rec) {
1913 
1914 		if (rec->flags & FTRACE_FL_DISABLED)
1915 			continue;
1916 
1917 		if (rec == end)
1918 			goto err_out;
1919 
1920 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1921 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1922 		if (in_old == in_new)
1923 			continue;
1924 
1925 		if (in_new)
1926 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1927 		else
1928 			rec->flags |= FTRACE_FL_IPMODIFY;
1929 	} while_for_each_ftrace_rec();
1930 
1931 err_out:
1932 	return -EBUSY;
1933 }
1934 
1935 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1936 {
1937 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1938 
1939 	if (ftrace_hash_empty(hash))
1940 		hash = NULL;
1941 
1942 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1943 }
1944 
1945 /* Disabling always succeeds */
1946 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1947 {
1948 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1949 
1950 	if (ftrace_hash_empty(hash))
1951 		hash = NULL;
1952 
1953 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1954 }
1955 
1956 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1957 				       struct ftrace_hash *new_hash)
1958 {
1959 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1960 
1961 	if (ftrace_hash_empty(old_hash))
1962 		old_hash = NULL;
1963 
1964 	if (ftrace_hash_empty(new_hash))
1965 		new_hash = NULL;
1966 
1967 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1968 }
1969 
1970 static void print_ip_ins(const char *fmt, const unsigned char *p)
1971 {
1972 	int i;
1973 
1974 	printk(KERN_CONT "%s", fmt);
1975 
1976 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1977 		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1978 }
1979 
1980 enum ftrace_bug_type ftrace_bug_type;
1981 const void *ftrace_expected;
1982 
1983 static void print_bug_type(void)
1984 {
1985 	switch (ftrace_bug_type) {
1986 	case FTRACE_BUG_UNKNOWN:
1987 		break;
1988 	case FTRACE_BUG_INIT:
1989 		pr_info("Initializing ftrace call sites\n");
1990 		break;
1991 	case FTRACE_BUG_NOP:
1992 		pr_info("Setting ftrace call site to NOP\n");
1993 		break;
1994 	case FTRACE_BUG_CALL:
1995 		pr_info("Setting ftrace call site to call ftrace function\n");
1996 		break;
1997 	case FTRACE_BUG_UPDATE:
1998 		pr_info("Updating ftrace call site to call a different ftrace function\n");
1999 		break;
2000 	}
2001 }
2002 
2003 /**
2004  * ftrace_bug - report and shutdown function tracer
2005  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2006  * @rec: The record that failed
2007  *
2008  * The arch code that enables or disables the function tracing
2009  * can call ftrace_bug() when it has detected a problem in
2010  * modifying the code. @failed should be one of either:
2011  * EFAULT - if the problem happens on reading the @ip address
2012  * EINVAL - if what is read at @ip is not what was expected
2013  * EPERM - if the problem happens on writing to the @ip address
2014  */
2015 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2016 {
2017 	unsigned long ip = rec ? rec->ip : 0;
2018 
2019 	pr_info("------------[ ftrace bug ]------------\n");
2020 
2021 	switch (failed) {
2022 	case -EFAULT:
2023 		pr_info("ftrace faulted on modifying ");
2024 		print_ip_sym(KERN_INFO, ip);
2025 		break;
2026 	case -EINVAL:
2027 		pr_info("ftrace failed to modify ");
2028 		print_ip_sym(KERN_INFO, ip);
2029 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2030 		pr_cont("\n");
2031 		if (ftrace_expected) {
2032 			print_ip_ins(" expected: ", ftrace_expected);
2033 			pr_cont("\n");
2034 		}
2035 		break;
2036 	case -EPERM:
2037 		pr_info("ftrace faulted on writing ");
2038 		print_ip_sym(KERN_INFO, ip);
2039 		break;
2040 	default:
2041 		pr_info("ftrace faulted on unknown error ");
2042 		print_ip_sym(KERN_INFO, ip);
2043 	}
2044 	print_bug_type();
2045 	if (rec) {
2046 		struct ftrace_ops *ops = NULL;
2047 
2048 		pr_info("ftrace record flags: %lx\n", rec->flags);
2049 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2050 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2051 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2052 			ops = ftrace_find_tramp_ops_any(rec);
2053 			if (ops) {
2054 				do {
2055 					pr_cont("\ttramp: %pS (%pS)",
2056 						(void *)ops->trampoline,
2057 						(void *)ops->func);
2058 					ops = ftrace_find_tramp_ops_next(rec, ops);
2059 				} while (ops);
2060 			} else
2061 				pr_cont("\ttramp: ERROR!");
2062 
2063 		}
2064 		ip = ftrace_get_addr_curr(rec);
2065 		pr_cont("\n expected tramp: %lx\n", ip);
2066 	}
2067 
2068 	FTRACE_WARN_ON_ONCE(1);
2069 }
2070 
2071 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2072 {
2073 	unsigned long flag = 0UL;
2074 
2075 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2076 
2077 	if (rec->flags & FTRACE_FL_DISABLED)
2078 		return FTRACE_UPDATE_IGNORE;
2079 
2080 	/*
2081 	 * If we are updating calls:
2082 	 *
2083 	 *   If the record has a ref count, then we need to enable it
2084 	 *   because someone is using it.
2085 	 *
2086 	 *   Otherwise we make sure its disabled.
2087 	 *
2088 	 * If we are disabling calls, then disable all records that
2089 	 * are enabled.
2090 	 */
2091 	if (enable && ftrace_rec_count(rec))
2092 		flag = FTRACE_FL_ENABLED;
2093 
2094 	/*
2095 	 * If enabling and the REGS flag does not match the REGS_EN, or
2096 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2097 	 * this record. Set flags to fail the compare against ENABLED.
2098 	 * Same for direct calls.
2099 	 */
2100 	if (flag) {
2101 		if (!(rec->flags & FTRACE_FL_REGS) !=
2102 		    !(rec->flags & FTRACE_FL_REGS_EN))
2103 			flag |= FTRACE_FL_REGS;
2104 
2105 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2106 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2107 			flag |= FTRACE_FL_TRAMP;
2108 
2109 		/*
2110 		 * Direct calls are special, as count matters.
2111 		 * We must test the record for direct, if the
2112 		 * DIRECT and DIRECT_EN do not match, but only
2113 		 * if the count is 1. That's because, if the
2114 		 * count is something other than one, we do not
2115 		 * want the direct enabled (it will be done via the
2116 		 * direct helper). But if DIRECT_EN is set, and
2117 		 * the count is not one, we need to clear it.
2118 		 */
2119 		if (ftrace_rec_count(rec) == 1) {
2120 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2121 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2122 				flag |= FTRACE_FL_DIRECT;
2123 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2124 			flag |= FTRACE_FL_DIRECT;
2125 		}
2126 	}
2127 
2128 	/* If the state of this record hasn't changed, then do nothing */
2129 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2130 		return FTRACE_UPDATE_IGNORE;
2131 
2132 	if (flag) {
2133 		/* Save off if rec is being enabled (for return value) */
2134 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2135 
2136 		if (update) {
2137 			rec->flags |= FTRACE_FL_ENABLED;
2138 			if (flag & FTRACE_FL_REGS) {
2139 				if (rec->flags & FTRACE_FL_REGS)
2140 					rec->flags |= FTRACE_FL_REGS_EN;
2141 				else
2142 					rec->flags &= ~FTRACE_FL_REGS_EN;
2143 			}
2144 			if (flag & FTRACE_FL_TRAMP) {
2145 				if (rec->flags & FTRACE_FL_TRAMP)
2146 					rec->flags |= FTRACE_FL_TRAMP_EN;
2147 				else
2148 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2149 			}
2150 			if (flag & FTRACE_FL_DIRECT) {
2151 				/*
2152 				 * If there's only one user (direct_ops helper)
2153 				 * then we can call the direct function
2154 				 * directly (no ftrace trampoline).
2155 				 */
2156 				if (ftrace_rec_count(rec) == 1) {
2157 					if (rec->flags & FTRACE_FL_DIRECT)
2158 						rec->flags |= FTRACE_FL_DIRECT_EN;
2159 					else
2160 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2161 				} else {
2162 					/*
2163 					 * Can only call directly if there's
2164 					 * only one callback to the function.
2165 					 */
2166 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2167 				}
2168 			}
2169 		}
2170 
2171 		/*
2172 		 * If this record is being updated from a nop, then
2173 		 *   return UPDATE_MAKE_CALL.
2174 		 * Otherwise,
2175 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2176 		 *   from the save regs, to a non-save regs function or
2177 		 *   vice versa, or from a trampoline call.
2178 		 */
2179 		if (flag & FTRACE_FL_ENABLED) {
2180 			ftrace_bug_type = FTRACE_BUG_CALL;
2181 			return FTRACE_UPDATE_MAKE_CALL;
2182 		}
2183 
2184 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2185 		return FTRACE_UPDATE_MODIFY_CALL;
2186 	}
2187 
2188 	if (update) {
2189 		/* If there's no more users, clear all flags */
2190 		if (!ftrace_rec_count(rec))
2191 			rec->flags = 0;
2192 		else
2193 			/*
2194 			 * Just disable the record, but keep the ops TRAMP
2195 			 * and REGS states. The _EN flags must be disabled though.
2196 			 */
2197 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2198 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2199 	}
2200 
2201 	ftrace_bug_type = FTRACE_BUG_NOP;
2202 	return FTRACE_UPDATE_MAKE_NOP;
2203 }
2204 
2205 /**
2206  * ftrace_update_record, set a record that now is tracing or not
2207  * @rec: the record to update
2208  * @enable: set to true if the record is tracing, false to force disable
2209  *
2210  * The records that represent all functions that can be traced need
2211  * to be updated when tracing has been enabled.
2212  */
2213 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2214 {
2215 	return ftrace_check_record(rec, enable, true);
2216 }
2217 
2218 /**
2219  * ftrace_test_record, check if the record has been enabled or not
2220  * @rec: the record to test
2221  * @enable: set to true to check if enabled, false if it is disabled
2222  *
2223  * The arch code may need to test if a record is already set to
2224  * tracing to determine how to modify the function code that it
2225  * represents.
2226  */
2227 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2228 {
2229 	return ftrace_check_record(rec, enable, false);
2230 }
2231 
2232 static struct ftrace_ops *
2233 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2234 {
2235 	struct ftrace_ops *op;
2236 	unsigned long ip = rec->ip;
2237 
2238 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2239 
2240 		if (!op->trampoline)
2241 			continue;
2242 
2243 		if (hash_contains_ip(ip, op->func_hash))
2244 			return op;
2245 	} while_for_each_ftrace_op(op);
2246 
2247 	return NULL;
2248 }
2249 
2250 static struct ftrace_ops *
2251 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2252 			   struct ftrace_ops *op)
2253 {
2254 	unsigned long ip = rec->ip;
2255 
2256 	while_for_each_ftrace_op(op) {
2257 
2258 		if (!op->trampoline)
2259 			continue;
2260 
2261 		if (hash_contains_ip(ip, op->func_hash))
2262 			return op;
2263 	}
2264 
2265 	return NULL;
2266 }
2267 
2268 static struct ftrace_ops *
2269 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2270 {
2271 	struct ftrace_ops *op;
2272 	unsigned long ip = rec->ip;
2273 
2274 	/*
2275 	 * Need to check removed ops first.
2276 	 * If they are being removed, and this rec has a tramp,
2277 	 * and this rec is in the ops list, then it would be the
2278 	 * one with the tramp.
2279 	 */
2280 	if (removed_ops) {
2281 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2282 			return removed_ops;
2283 	}
2284 
2285 	/*
2286 	 * Need to find the current trampoline for a rec.
2287 	 * Now, a trampoline is only attached to a rec if there
2288 	 * was a single 'ops' attached to it. But this can be called
2289 	 * when we are adding another op to the rec or removing the
2290 	 * current one. Thus, if the op is being added, we can
2291 	 * ignore it because it hasn't attached itself to the rec
2292 	 * yet.
2293 	 *
2294 	 * If an ops is being modified (hooking to different functions)
2295 	 * then we don't care about the new functions that are being
2296 	 * added, just the old ones (that are probably being removed).
2297 	 *
2298 	 * If we are adding an ops to a function that already is using
2299 	 * a trampoline, it needs to be removed (trampolines are only
2300 	 * for single ops connected), then an ops that is not being
2301 	 * modified also needs to be checked.
2302 	 */
2303 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2304 
2305 		if (!op->trampoline)
2306 			continue;
2307 
2308 		/*
2309 		 * If the ops is being added, it hasn't gotten to
2310 		 * the point to be removed from this tree yet.
2311 		 */
2312 		if (op->flags & FTRACE_OPS_FL_ADDING)
2313 			continue;
2314 
2315 
2316 		/*
2317 		 * If the ops is being modified and is in the old
2318 		 * hash, then it is probably being removed from this
2319 		 * function.
2320 		 */
2321 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2322 		    hash_contains_ip(ip, &op->old_hash))
2323 			return op;
2324 		/*
2325 		 * If the ops is not being added or modified, and it's
2326 		 * in its normal filter hash, then this must be the one
2327 		 * we want!
2328 		 */
2329 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2330 		    hash_contains_ip(ip, op->func_hash))
2331 			return op;
2332 
2333 	} while_for_each_ftrace_op(op);
2334 
2335 	return NULL;
2336 }
2337 
2338 static struct ftrace_ops *
2339 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2340 {
2341 	struct ftrace_ops *op;
2342 	unsigned long ip = rec->ip;
2343 
2344 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2345 		/* pass rec in as regs to have non-NULL val */
2346 		if (hash_contains_ip(ip, op->func_hash))
2347 			return op;
2348 	} while_for_each_ftrace_op(op);
2349 
2350 	return NULL;
2351 }
2352 
2353 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2354 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2355 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2356 static DEFINE_MUTEX(direct_mutex);
2357 int ftrace_direct_func_count;
2358 
2359 /*
2360  * Search the direct_functions hash to see if the given instruction pointer
2361  * has a direct caller attached to it.
2362  */
2363 unsigned long ftrace_find_rec_direct(unsigned long ip)
2364 {
2365 	struct ftrace_func_entry *entry;
2366 
2367 	entry = __ftrace_lookup_ip(direct_functions, ip);
2368 	if (!entry)
2369 		return 0;
2370 
2371 	return entry->direct;
2372 }
2373 
2374 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2375 			      struct ftrace_ops *ops, struct pt_regs *regs)
2376 {
2377 	unsigned long addr;
2378 
2379 	addr = ftrace_find_rec_direct(ip);
2380 	if (!addr)
2381 		return;
2382 
2383 	arch_ftrace_set_direct_caller(regs, addr);
2384 }
2385 
2386 struct ftrace_ops direct_ops = {
2387 	.func		= call_direct_funcs,
2388 	.flags		= FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE
2389 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2390 			  | FTRACE_OPS_FL_PERMANENT,
2391 };
2392 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2393 
2394 /**
2395  * ftrace_get_addr_new - Get the call address to set to
2396  * @rec:  The ftrace record descriptor
2397  *
2398  * If the record has the FTRACE_FL_REGS set, that means that it
2399  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2400  * is not not set, then it wants to convert to the normal callback.
2401  *
2402  * Returns the address of the trampoline to set to
2403  */
2404 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2405 {
2406 	struct ftrace_ops *ops;
2407 	unsigned long addr;
2408 
2409 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2410 	    (ftrace_rec_count(rec) == 1)) {
2411 		addr = ftrace_find_rec_direct(rec->ip);
2412 		if (addr)
2413 			return addr;
2414 		WARN_ON_ONCE(1);
2415 	}
2416 
2417 	/* Trampolines take precedence over regs */
2418 	if (rec->flags & FTRACE_FL_TRAMP) {
2419 		ops = ftrace_find_tramp_ops_new(rec);
2420 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2421 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2422 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2423 			/* Ftrace is shutting down, return anything */
2424 			return (unsigned long)FTRACE_ADDR;
2425 		}
2426 		return ops->trampoline;
2427 	}
2428 
2429 	if (rec->flags & FTRACE_FL_REGS)
2430 		return (unsigned long)FTRACE_REGS_ADDR;
2431 	else
2432 		return (unsigned long)FTRACE_ADDR;
2433 }
2434 
2435 /**
2436  * ftrace_get_addr_curr - Get the call address that is already there
2437  * @rec:  The ftrace record descriptor
2438  *
2439  * The FTRACE_FL_REGS_EN is set when the record already points to
2440  * a function that saves all the regs. Basically the '_EN' version
2441  * represents the current state of the function.
2442  *
2443  * Returns the address of the trampoline that is currently being called
2444  */
2445 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2446 {
2447 	struct ftrace_ops *ops;
2448 	unsigned long addr;
2449 
2450 	/* Direct calls take precedence over trampolines */
2451 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2452 		addr = ftrace_find_rec_direct(rec->ip);
2453 		if (addr)
2454 			return addr;
2455 		WARN_ON_ONCE(1);
2456 	}
2457 
2458 	/* Trampolines take precedence over regs */
2459 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2460 		ops = ftrace_find_tramp_ops_curr(rec);
2461 		if (FTRACE_WARN_ON(!ops)) {
2462 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2463 				(void *)rec->ip, (void *)rec->ip);
2464 			/* Ftrace is shutting down, return anything */
2465 			return (unsigned long)FTRACE_ADDR;
2466 		}
2467 		return ops->trampoline;
2468 	}
2469 
2470 	if (rec->flags & FTRACE_FL_REGS_EN)
2471 		return (unsigned long)FTRACE_REGS_ADDR;
2472 	else
2473 		return (unsigned long)FTRACE_ADDR;
2474 }
2475 
2476 static int
2477 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2478 {
2479 	unsigned long ftrace_old_addr;
2480 	unsigned long ftrace_addr;
2481 	int ret;
2482 
2483 	ftrace_addr = ftrace_get_addr_new(rec);
2484 
2485 	/* This needs to be done before we call ftrace_update_record */
2486 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2487 
2488 	ret = ftrace_update_record(rec, enable);
2489 
2490 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2491 
2492 	switch (ret) {
2493 	case FTRACE_UPDATE_IGNORE:
2494 		return 0;
2495 
2496 	case FTRACE_UPDATE_MAKE_CALL:
2497 		ftrace_bug_type = FTRACE_BUG_CALL;
2498 		return ftrace_make_call(rec, ftrace_addr);
2499 
2500 	case FTRACE_UPDATE_MAKE_NOP:
2501 		ftrace_bug_type = FTRACE_BUG_NOP;
2502 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2503 
2504 	case FTRACE_UPDATE_MODIFY_CALL:
2505 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2506 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2507 	}
2508 
2509 	return -1; /* unknown ftrace bug */
2510 }
2511 
2512 void __weak ftrace_replace_code(int mod_flags)
2513 {
2514 	struct dyn_ftrace *rec;
2515 	struct ftrace_page *pg;
2516 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2517 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2518 	int failed;
2519 
2520 	if (unlikely(ftrace_disabled))
2521 		return;
2522 
2523 	do_for_each_ftrace_rec(pg, rec) {
2524 
2525 		if (rec->flags & FTRACE_FL_DISABLED)
2526 			continue;
2527 
2528 		failed = __ftrace_replace_code(rec, enable);
2529 		if (failed) {
2530 			ftrace_bug(failed, rec);
2531 			/* Stop processing */
2532 			return;
2533 		}
2534 		if (schedulable)
2535 			cond_resched();
2536 	} while_for_each_ftrace_rec();
2537 }
2538 
2539 struct ftrace_rec_iter {
2540 	struct ftrace_page	*pg;
2541 	int			index;
2542 };
2543 
2544 /**
2545  * ftrace_rec_iter_start, start up iterating over traced functions
2546  *
2547  * Returns an iterator handle that is used to iterate over all
2548  * the records that represent address locations where functions
2549  * are traced.
2550  *
2551  * May return NULL if no records are available.
2552  */
2553 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2554 {
2555 	/*
2556 	 * We only use a single iterator.
2557 	 * Protected by the ftrace_lock mutex.
2558 	 */
2559 	static struct ftrace_rec_iter ftrace_rec_iter;
2560 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2561 
2562 	iter->pg = ftrace_pages_start;
2563 	iter->index = 0;
2564 
2565 	/* Could have empty pages */
2566 	while (iter->pg && !iter->pg->index)
2567 		iter->pg = iter->pg->next;
2568 
2569 	if (!iter->pg)
2570 		return NULL;
2571 
2572 	return iter;
2573 }
2574 
2575 /**
2576  * ftrace_rec_iter_next, get the next record to process.
2577  * @iter: The handle to the iterator.
2578  *
2579  * Returns the next iterator after the given iterator @iter.
2580  */
2581 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2582 {
2583 	iter->index++;
2584 
2585 	if (iter->index >= iter->pg->index) {
2586 		iter->pg = iter->pg->next;
2587 		iter->index = 0;
2588 
2589 		/* Could have empty pages */
2590 		while (iter->pg && !iter->pg->index)
2591 			iter->pg = iter->pg->next;
2592 	}
2593 
2594 	if (!iter->pg)
2595 		return NULL;
2596 
2597 	return iter;
2598 }
2599 
2600 /**
2601  * ftrace_rec_iter_record, get the record at the iterator location
2602  * @iter: The current iterator location
2603  *
2604  * Returns the record that the current @iter is at.
2605  */
2606 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2607 {
2608 	return &iter->pg->records[iter->index];
2609 }
2610 
2611 static int
2612 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2613 {
2614 	int ret;
2615 
2616 	if (unlikely(ftrace_disabled))
2617 		return 0;
2618 
2619 	ret = ftrace_init_nop(mod, rec);
2620 	if (ret) {
2621 		ftrace_bug_type = FTRACE_BUG_INIT;
2622 		ftrace_bug(ret, rec);
2623 		return 0;
2624 	}
2625 	return 1;
2626 }
2627 
2628 /*
2629  * archs can override this function if they must do something
2630  * before the modifying code is performed.
2631  */
2632 int __weak ftrace_arch_code_modify_prepare(void)
2633 {
2634 	return 0;
2635 }
2636 
2637 /*
2638  * archs can override this function if they must do something
2639  * after the modifying code is performed.
2640  */
2641 int __weak ftrace_arch_code_modify_post_process(void)
2642 {
2643 	return 0;
2644 }
2645 
2646 void ftrace_modify_all_code(int command)
2647 {
2648 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2649 	int mod_flags = 0;
2650 	int err = 0;
2651 
2652 	if (command & FTRACE_MAY_SLEEP)
2653 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2654 
2655 	/*
2656 	 * If the ftrace_caller calls a ftrace_ops func directly,
2657 	 * we need to make sure that it only traces functions it
2658 	 * expects to trace. When doing the switch of functions,
2659 	 * we need to update to the ftrace_ops_list_func first
2660 	 * before the transition between old and new calls are set,
2661 	 * as the ftrace_ops_list_func will check the ops hashes
2662 	 * to make sure the ops are having the right functions
2663 	 * traced.
2664 	 */
2665 	if (update) {
2666 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2667 		if (FTRACE_WARN_ON(err))
2668 			return;
2669 	}
2670 
2671 	if (command & FTRACE_UPDATE_CALLS)
2672 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2673 	else if (command & FTRACE_DISABLE_CALLS)
2674 		ftrace_replace_code(mod_flags);
2675 
2676 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2677 		function_trace_op = set_function_trace_op;
2678 		smp_wmb();
2679 		/* If irqs are disabled, we are in stop machine */
2680 		if (!irqs_disabled())
2681 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2682 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2683 		if (FTRACE_WARN_ON(err))
2684 			return;
2685 	}
2686 
2687 	if (command & FTRACE_START_FUNC_RET)
2688 		err = ftrace_enable_ftrace_graph_caller();
2689 	else if (command & FTRACE_STOP_FUNC_RET)
2690 		err = ftrace_disable_ftrace_graph_caller();
2691 	FTRACE_WARN_ON(err);
2692 }
2693 
2694 static int __ftrace_modify_code(void *data)
2695 {
2696 	int *command = data;
2697 
2698 	ftrace_modify_all_code(*command);
2699 
2700 	return 0;
2701 }
2702 
2703 /**
2704  * ftrace_run_stop_machine, go back to the stop machine method
2705  * @command: The command to tell ftrace what to do
2706  *
2707  * If an arch needs to fall back to the stop machine method, the
2708  * it can call this function.
2709  */
2710 void ftrace_run_stop_machine(int command)
2711 {
2712 	stop_machine(__ftrace_modify_code, &command, NULL);
2713 }
2714 
2715 /**
2716  * arch_ftrace_update_code, modify the code to trace or not trace
2717  * @command: The command that needs to be done
2718  *
2719  * Archs can override this function if it does not need to
2720  * run stop_machine() to modify code.
2721  */
2722 void __weak arch_ftrace_update_code(int command)
2723 {
2724 	ftrace_run_stop_machine(command);
2725 }
2726 
2727 static void ftrace_run_update_code(int command)
2728 {
2729 	int ret;
2730 
2731 	ret = ftrace_arch_code_modify_prepare();
2732 	FTRACE_WARN_ON(ret);
2733 	if (ret)
2734 		return;
2735 
2736 	/*
2737 	 * By default we use stop_machine() to modify the code.
2738 	 * But archs can do what ever they want as long as it
2739 	 * is safe. The stop_machine() is the safest, but also
2740 	 * produces the most overhead.
2741 	 */
2742 	arch_ftrace_update_code(command);
2743 
2744 	ret = ftrace_arch_code_modify_post_process();
2745 	FTRACE_WARN_ON(ret);
2746 }
2747 
2748 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2749 				   struct ftrace_ops_hash *old_hash)
2750 {
2751 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2752 	ops->old_hash.filter_hash = old_hash->filter_hash;
2753 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2754 	ftrace_run_update_code(command);
2755 	ops->old_hash.filter_hash = NULL;
2756 	ops->old_hash.notrace_hash = NULL;
2757 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2758 }
2759 
2760 static ftrace_func_t saved_ftrace_func;
2761 static int ftrace_start_up;
2762 
2763 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2764 {
2765 }
2766 
2767 static void ftrace_startup_enable(int command)
2768 {
2769 	if (saved_ftrace_func != ftrace_trace_function) {
2770 		saved_ftrace_func = ftrace_trace_function;
2771 		command |= FTRACE_UPDATE_TRACE_FUNC;
2772 	}
2773 
2774 	if (!command || !ftrace_enabled)
2775 		return;
2776 
2777 	ftrace_run_update_code(command);
2778 }
2779 
2780 static void ftrace_startup_all(int command)
2781 {
2782 	update_all_ops = true;
2783 	ftrace_startup_enable(command);
2784 	update_all_ops = false;
2785 }
2786 
2787 int ftrace_startup(struct ftrace_ops *ops, int command)
2788 {
2789 	int ret;
2790 
2791 	if (unlikely(ftrace_disabled))
2792 		return -ENODEV;
2793 
2794 	ret = __register_ftrace_function(ops);
2795 	if (ret)
2796 		return ret;
2797 
2798 	ftrace_start_up++;
2799 
2800 	/*
2801 	 * Note that ftrace probes uses this to start up
2802 	 * and modify functions it will probe. But we still
2803 	 * set the ADDING flag for modification, as probes
2804 	 * do not have trampolines. If they add them in the
2805 	 * future, then the probes will need to distinguish
2806 	 * between adding and updating probes.
2807 	 */
2808 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2809 
2810 	ret = ftrace_hash_ipmodify_enable(ops);
2811 	if (ret < 0) {
2812 		/* Rollback registration process */
2813 		__unregister_ftrace_function(ops);
2814 		ftrace_start_up--;
2815 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2816 		return ret;
2817 	}
2818 
2819 	if (ftrace_hash_rec_enable(ops, 1))
2820 		command |= FTRACE_UPDATE_CALLS;
2821 
2822 	ftrace_startup_enable(command);
2823 
2824 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2825 
2826 	return 0;
2827 }
2828 
2829 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2830 {
2831 	int ret;
2832 
2833 	if (unlikely(ftrace_disabled))
2834 		return -ENODEV;
2835 
2836 	ret = __unregister_ftrace_function(ops);
2837 	if (ret)
2838 		return ret;
2839 
2840 	ftrace_start_up--;
2841 	/*
2842 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2843 	 * critical but the ftrace_call callers may be never nopped again after
2844 	 * further ftrace uses.
2845 	 */
2846 	WARN_ON_ONCE(ftrace_start_up < 0);
2847 
2848 	/* Disabling ipmodify never fails */
2849 	ftrace_hash_ipmodify_disable(ops);
2850 
2851 	if (ftrace_hash_rec_disable(ops, 1))
2852 		command |= FTRACE_UPDATE_CALLS;
2853 
2854 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2855 
2856 	if (saved_ftrace_func != ftrace_trace_function) {
2857 		saved_ftrace_func = ftrace_trace_function;
2858 		command |= FTRACE_UPDATE_TRACE_FUNC;
2859 	}
2860 
2861 	if (!command || !ftrace_enabled) {
2862 		/*
2863 		 * If these are dynamic or per_cpu ops, they still
2864 		 * need their data freed. Since, function tracing is
2865 		 * not currently active, we can just free them
2866 		 * without synchronizing all CPUs.
2867 		 */
2868 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2869 			goto free_ops;
2870 
2871 		return 0;
2872 	}
2873 
2874 	/*
2875 	 * If the ops uses a trampoline, then it needs to be
2876 	 * tested first on update.
2877 	 */
2878 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2879 	removed_ops = ops;
2880 
2881 	/* The trampoline logic checks the old hashes */
2882 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2883 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2884 
2885 	ftrace_run_update_code(command);
2886 
2887 	/*
2888 	 * If there's no more ops registered with ftrace, run a
2889 	 * sanity check to make sure all rec flags are cleared.
2890 	 */
2891 	if (rcu_dereference_protected(ftrace_ops_list,
2892 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2893 		struct ftrace_page *pg;
2894 		struct dyn_ftrace *rec;
2895 
2896 		do_for_each_ftrace_rec(pg, rec) {
2897 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2898 				pr_warn("  %pS flags:%lx\n",
2899 					(void *)rec->ip, rec->flags);
2900 		} while_for_each_ftrace_rec();
2901 	}
2902 
2903 	ops->old_hash.filter_hash = NULL;
2904 	ops->old_hash.notrace_hash = NULL;
2905 
2906 	removed_ops = NULL;
2907 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2908 
2909 	/*
2910 	 * Dynamic ops may be freed, we must make sure that all
2911 	 * callers are done before leaving this function.
2912 	 * The same goes for freeing the per_cpu data of the per_cpu
2913 	 * ops.
2914 	 */
2915 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2916 		/*
2917 		 * We need to do a hard force of sched synchronization.
2918 		 * This is because we use preempt_disable() to do RCU, but
2919 		 * the function tracers can be called where RCU is not watching
2920 		 * (like before user_exit()). We can not rely on the RCU
2921 		 * infrastructure to do the synchronization, thus we must do it
2922 		 * ourselves.
2923 		 */
2924 		synchronize_rcu_tasks_rude();
2925 
2926 		/*
2927 		 * When the kernel is preeptive, tasks can be preempted
2928 		 * while on a ftrace trampoline. Just scheduling a task on
2929 		 * a CPU is not good enough to flush them. Calling
2930 		 * synchornize_rcu_tasks() will wait for those tasks to
2931 		 * execute and either schedule voluntarily or enter user space.
2932 		 */
2933 		if (IS_ENABLED(CONFIG_PREEMPTION))
2934 			synchronize_rcu_tasks();
2935 
2936  free_ops:
2937 		arch_ftrace_trampoline_free(ops);
2938 	}
2939 
2940 	return 0;
2941 }
2942 
2943 static void ftrace_startup_sysctl(void)
2944 {
2945 	int command;
2946 
2947 	if (unlikely(ftrace_disabled))
2948 		return;
2949 
2950 	/* Force update next time */
2951 	saved_ftrace_func = NULL;
2952 	/* ftrace_start_up is true if we want ftrace running */
2953 	if (ftrace_start_up) {
2954 		command = FTRACE_UPDATE_CALLS;
2955 		if (ftrace_graph_active)
2956 			command |= FTRACE_START_FUNC_RET;
2957 		ftrace_startup_enable(command);
2958 	}
2959 }
2960 
2961 static void ftrace_shutdown_sysctl(void)
2962 {
2963 	int command;
2964 
2965 	if (unlikely(ftrace_disabled))
2966 		return;
2967 
2968 	/* ftrace_start_up is true if ftrace is running */
2969 	if (ftrace_start_up) {
2970 		command = FTRACE_DISABLE_CALLS;
2971 		if (ftrace_graph_active)
2972 			command |= FTRACE_STOP_FUNC_RET;
2973 		ftrace_run_update_code(command);
2974 	}
2975 }
2976 
2977 static u64		ftrace_update_time;
2978 unsigned long		ftrace_update_tot_cnt;
2979 unsigned long		ftrace_number_of_pages;
2980 unsigned long		ftrace_number_of_groups;
2981 
2982 static inline int ops_traces_mod(struct ftrace_ops *ops)
2983 {
2984 	/*
2985 	 * Filter_hash being empty will default to trace module.
2986 	 * But notrace hash requires a test of individual module functions.
2987 	 */
2988 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
2989 		ftrace_hash_empty(ops->func_hash->notrace_hash);
2990 }
2991 
2992 /*
2993  * Check if the current ops references the record.
2994  *
2995  * If the ops traces all functions, then it was already accounted for.
2996  * If the ops does not trace the current record function, skip it.
2997  * If the ops ignores the function via notrace filter, skip it.
2998  */
2999 static inline bool
3000 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3001 {
3002 	/* If ops isn't enabled, ignore it */
3003 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3004 		return false;
3005 
3006 	/* If ops traces all then it includes this function */
3007 	if (ops_traces_mod(ops))
3008 		return true;
3009 
3010 	/* The function must be in the filter */
3011 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3012 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3013 		return false;
3014 
3015 	/* If in notrace hash, we ignore it too */
3016 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3017 		return false;
3018 
3019 	return true;
3020 }
3021 
3022 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3023 {
3024 	struct ftrace_page *pg;
3025 	struct dyn_ftrace *p;
3026 	u64 start, stop;
3027 	unsigned long update_cnt = 0;
3028 	unsigned long rec_flags = 0;
3029 	int i;
3030 
3031 	start = ftrace_now(raw_smp_processor_id());
3032 
3033 	/*
3034 	 * When a module is loaded, this function is called to convert
3035 	 * the calls to mcount in its text to nops, and also to create
3036 	 * an entry in the ftrace data. Now, if ftrace is activated
3037 	 * after this call, but before the module sets its text to
3038 	 * read-only, the modification of enabling ftrace can fail if
3039 	 * the read-only is done while ftrace is converting the calls.
3040 	 * To prevent this, the module's records are set as disabled
3041 	 * and will be enabled after the call to set the module's text
3042 	 * to read-only.
3043 	 */
3044 	if (mod)
3045 		rec_flags |= FTRACE_FL_DISABLED;
3046 
3047 	for (pg = new_pgs; pg; pg = pg->next) {
3048 
3049 		for (i = 0; i < pg->index; i++) {
3050 
3051 			/* If something went wrong, bail without enabling anything */
3052 			if (unlikely(ftrace_disabled))
3053 				return -1;
3054 
3055 			p = &pg->records[i];
3056 			p->flags = rec_flags;
3057 
3058 			/*
3059 			 * Do the initial record conversion from mcount jump
3060 			 * to the NOP instructions.
3061 			 */
3062 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3063 			    !ftrace_nop_initialize(mod, p))
3064 				break;
3065 
3066 			update_cnt++;
3067 		}
3068 	}
3069 
3070 	stop = ftrace_now(raw_smp_processor_id());
3071 	ftrace_update_time = stop - start;
3072 	ftrace_update_tot_cnt += update_cnt;
3073 
3074 	return 0;
3075 }
3076 
3077 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3078 {
3079 	int order;
3080 	int cnt;
3081 
3082 	if (WARN_ON(!count))
3083 		return -EINVAL;
3084 
3085 	order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
3086 
3087 	/*
3088 	 * We want to fill as much as possible. No more than a page
3089 	 * may be empty.
3090 	 */
3091 	while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
3092 		order--;
3093 
3094  again:
3095 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3096 
3097 	if (!pg->records) {
3098 		/* if we can't allocate this size, try something smaller */
3099 		if (!order)
3100 			return -ENOMEM;
3101 		order >>= 1;
3102 		goto again;
3103 	}
3104 
3105 	ftrace_number_of_pages += 1 << order;
3106 	ftrace_number_of_groups++;
3107 
3108 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3109 	pg->size = cnt;
3110 
3111 	if (cnt > count)
3112 		cnt = count;
3113 
3114 	return cnt;
3115 }
3116 
3117 static struct ftrace_page *
3118 ftrace_allocate_pages(unsigned long num_to_init)
3119 {
3120 	struct ftrace_page *start_pg;
3121 	struct ftrace_page *pg;
3122 	int order;
3123 	int cnt;
3124 
3125 	if (!num_to_init)
3126 		return NULL;
3127 
3128 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3129 	if (!pg)
3130 		return NULL;
3131 
3132 	/*
3133 	 * Try to allocate as much as possible in one continues
3134 	 * location that fills in all of the space. We want to
3135 	 * waste as little space as possible.
3136 	 */
3137 	for (;;) {
3138 		cnt = ftrace_allocate_records(pg, num_to_init);
3139 		if (cnt < 0)
3140 			goto free_pages;
3141 
3142 		num_to_init -= cnt;
3143 		if (!num_to_init)
3144 			break;
3145 
3146 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3147 		if (!pg->next)
3148 			goto free_pages;
3149 
3150 		pg = pg->next;
3151 	}
3152 
3153 	return start_pg;
3154 
3155  free_pages:
3156 	pg = start_pg;
3157 	while (pg) {
3158 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3159 		free_pages((unsigned long)pg->records, order);
3160 		start_pg = pg->next;
3161 		kfree(pg);
3162 		pg = start_pg;
3163 		ftrace_number_of_pages -= 1 << order;
3164 		ftrace_number_of_groups--;
3165 	}
3166 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3167 	return NULL;
3168 }
3169 
3170 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3171 
3172 struct ftrace_iterator {
3173 	loff_t				pos;
3174 	loff_t				func_pos;
3175 	loff_t				mod_pos;
3176 	struct ftrace_page		*pg;
3177 	struct dyn_ftrace		*func;
3178 	struct ftrace_func_probe	*probe;
3179 	struct ftrace_func_entry	*probe_entry;
3180 	struct trace_parser		parser;
3181 	struct ftrace_hash		*hash;
3182 	struct ftrace_ops		*ops;
3183 	struct trace_array		*tr;
3184 	struct list_head		*mod_list;
3185 	int				pidx;
3186 	int				idx;
3187 	unsigned			flags;
3188 };
3189 
3190 static void *
3191 t_probe_next(struct seq_file *m, loff_t *pos)
3192 {
3193 	struct ftrace_iterator *iter = m->private;
3194 	struct trace_array *tr = iter->ops->private;
3195 	struct list_head *func_probes;
3196 	struct ftrace_hash *hash;
3197 	struct list_head *next;
3198 	struct hlist_node *hnd = NULL;
3199 	struct hlist_head *hhd;
3200 	int size;
3201 
3202 	(*pos)++;
3203 	iter->pos = *pos;
3204 
3205 	if (!tr)
3206 		return NULL;
3207 
3208 	func_probes = &tr->func_probes;
3209 	if (list_empty(func_probes))
3210 		return NULL;
3211 
3212 	if (!iter->probe) {
3213 		next = func_probes->next;
3214 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3215 	}
3216 
3217 	if (iter->probe_entry)
3218 		hnd = &iter->probe_entry->hlist;
3219 
3220 	hash = iter->probe->ops.func_hash->filter_hash;
3221 
3222 	/*
3223 	 * A probe being registered may temporarily have an empty hash
3224 	 * and it's at the end of the func_probes list.
3225 	 */
3226 	if (!hash || hash == EMPTY_HASH)
3227 		return NULL;
3228 
3229 	size = 1 << hash->size_bits;
3230 
3231  retry:
3232 	if (iter->pidx >= size) {
3233 		if (iter->probe->list.next == func_probes)
3234 			return NULL;
3235 		next = iter->probe->list.next;
3236 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3237 		hash = iter->probe->ops.func_hash->filter_hash;
3238 		size = 1 << hash->size_bits;
3239 		iter->pidx = 0;
3240 	}
3241 
3242 	hhd = &hash->buckets[iter->pidx];
3243 
3244 	if (hlist_empty(hhd)) {
3245 		iter->pidx++;
3246 		hnd = NULL;
3247 		goto retry;
3248 	}
3249 
3250 	if (!hnd)
3251 		hnd = hhd->first;
3252 	else {
3253 		hnd = hnd->next;
3254 		if (!hnd) {
3255 			iter->pidx++;
3256 			goto retry;
3257 		}
3258 	}
3259 
3260 	if (WARN_ON_ONCE(!hnd))
3261 		return NULL;
3262 
3263 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3264 
3265 	return iter;
3266 }
3267 
3268 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3269 {
3270 	struct ftrace_iterator *iter = m->private;
3271 	void *p = NULL;
3272 	loff_t l;
3273 
3274 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3275 		return NULL;
3276 
3277 	if (iter->mod_pos > *pos)
3278 		return NULL;
3279 
3280 	iter->probe = NULL;
3281 	iter->probe_entry = NULL;
3282 	iter->pidx = 0;
3283 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3284 		p = t_probe_next(m, &l);
3285 		if (!p)
3286 			break;
3287 	}
3288 	if (!p)
3289 		return NULL;
3290 
3291 	/* Only set this if we have an item */
3292 	iter->flags |= FTRACE_ITER_PROBE;
3293 
3294 	return iter;
3295 }
3296 
3297 static int
3298 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3299 {
3300 	struct ftrace_func_entry *probe_entry;
3301 	struct ftrace_probe_ops *probe_ops;
3302 	struct ftrace_func_probe *probe;
3303 
3304 	probe = iter->probe;
3305 	probe_entry = iter->probe_entry;
3306 
3307 	if (WARN_ON_ONCE(!probe || !probe_entry))
3308 		return -EIO;
3309 
3310 	probe_ops = probe->probe_ops;
3311 
3312 	if (probe_ops->print)
3313 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3314 
3315 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3316 		   (void *)probe_ops->func);
3317 
3318 	return 0;
3319 }
3320 
3321 static void *
3322 t_mod_next(struct seq_file *m, loff_t *pos)
3323 {
3324 	struct ftrace_iterator *iter = m->private;
3325 	struct trace_array *tr = iter->tr;
3326 
3327 	(*pos)++;
3328 	iter->pos = *pos;
3329 
3330 	iter->mod_list = iter->mod_list->next;
3331 
3332 	if (iter->mod_list == &tr->mod_trace ||
3333 	    iter->mod_list == &tr->mod_notrace) {
3334 		iter->flags &= ~FTRACE_ITER_MOD;
3335 		return NULL;
3336 	}
3337 
3338 	iter->mod_pos = *pos;
3339 
3340 	return iter;
3341 }
3342 
3343 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3344 {
3345 	struct ftrace_iterator *iter = m->private;
3346 	void *p = NULL;
3347 	loff_t l;
3348 
3349 	if (iter->func_pos > *pos)
3350 		return NULL;
3351 
3352 	iter->mod_pos = iter->func_pos;
3353 
3354 	/* probes are only available if tr is set */
3355 	if (!iter->tr)
3356 		return NULL;
3357 
3358 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3359 		p = t_mod_next(m, &l);
3360 		if (!p)
3361 			break;
3362 	}
3363 	if (!p) {
3364 		iter->flags &= ~FTRACE_ITER_MOD;
3365 		return t_probe_start(m, pos);
3366 	}
3367 
3368 	/* Only set this if we have an item */
3369 	iter->flags |= FTRACE_ITER_MOD;
3370 
3371 	return iter;
3372 }
3373 
3374 static int
3375 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3376 {
3377 	struct ftrace_mod_load *ftrace_mod;
3378 	struct trace_array *tr = iter->tr;
3379 
3380 	if (WARN_ON_ONCE(!iter->mod_list) ||
3381 			 iter->mod_list == &tr->mod_trace ||
3382 			 iter->mod_list == &tr->mod_notrace)
3383 		return -EIO;
3384 
3385 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3386 
3387 	if (ftrace_mod->func)
3388 		seq_printf(m, "%s", ftrace_mod->func);
3389 	else
3390 		seq_putc(m, '*');
3391 
3392 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3393 
3394 	return 0;
3395 }
3396 
3397 static void *
3398 t_func_next(struct seq_file *m, loff_t *pos)
3399 {
3400 	struct ftrace_iterator *iter = m->private;
3401 	struct dyn_ftrace *rec = NULL;
3402 
3403 	(*pos)++;
3404 
3405  retry:
3406 	if (iter->idx >= iter->pg->index) {
3407 		if (iter->pg->next) {
3408 			iter->pg = iter->pg->next;
3409 			iter->idx = 0;
3410 			goto retry;
3411 		}
3412 	} else {
3413 		rec = &iter->pg->records[iter->idx++];
3414 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3415 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3416 
3417 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3418 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3419 
3420 			rec = NULL;
3421 			goto retry;
3422 		}
3423 	}
3424 
3425 	if (!rec)
3426 		return NULL;
3427 
3428 	iter->pos = iter->func_pos = *pos;
3429 	iter->func = rec;
3430 
3431 	return iter;
3432 }
3433 
3434 static void *
3435 t_next(struct seq_file *m, void *v, loff_t *pos)
3436 {
3437 	struct ftrace_iterator *iter = m->private;
3438 	loff_t l = *pos; /* t_probe_start() must use original pos */
3439 	void *ret;
3440 
3441 	if (unlikely(ftrace_disabled))
3442 		return NULL;
3443 
3444 	if (iter->flags & FTRACE_ITER_PROBE)
3445 		return t_probe_next(m, pos);
3446 
3447 	if (iter->flags & FTRACE_ITER_MOD)
3448 		return t_mod_next(m, pos);
3449 
3450 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3451 		/* next must increment pos, and t_probe_start does not */
3452 		(*pos)++;
3453 		return t_mod_start(m, &l);
3454 	}
3455 
3456 	ret = t_func_next(m, pos);
3457 
3458 	if (!ret)
3459 		return t_mod_start(m, &l);
3460 
3461 	return ret;
3462 }
3463 
3464 static void reset_iter_read(struct ftrace_iterator *iter)
3465 {
3466 	iter->pos = 0;
3467 	iter->func_pos = 0;
3468 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3469 }
3470 
3471 static void *t_start(struct seq_file *m, loff_t *pos)
3472 {
3473 	struct ftrace_iterator *iter = m->private;
3474 	void *p = NULL;
3475 	loff_t l;
3476 
3477 	mutex_lock(&ftrace_lock);
3478 
3479 	if (unlikely(ftrace_disabled))
3480 		return NULL;
3481 
3482 	/*
3483 	 * If an lseek was done, then reset and start from beginning.
3484 	 */
3485 	if (*pos < iter->pos)
3486 		reset_iter_read(iter);
3487 
3488 	/*
3489 	 * For set_ftrace_filter reading, if we have the filter
3490 	 * off, we can short cut and just print out that all
3491 	 * functions are enabled.
3492 	 */
3493 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3494 	    ftrace_hash_empty(iter->hash)) {
3495 		iter->func_pos = 1; /* Account for the message */
3496 		if (*pos > 0)
3497 			return t_mod_start(m, pos);
3498 		iter->flags |= FTRACE_ITER_PRINTALL;
3499 		/* reset in case of seek/pread */
3500 		iter->flags &= ~FTRACE_ITER_PROBE;
3501 		return iter;
3502 	}
3503 
3504 	if (iter->flags & FTRACE_ITER_MOD)
3505 		return t_mod_start(m, pos);
3506 
3507 	/*
3508 	 * Unfortunately, we need to restart at ftrace_pages_start
3509 	 * every time we let go of the ftrace_mutex. This is because
3510 	 * those pointers can change without the lock.
3511 	 */
3512 	iter->pg = ftrace_pages_start;
3513 	iter->idx = 0;
3514 	for (l = 0; l <= *pos; ) {
3515 		p = t_func_next(m, &l);
3516 		if (!p)
3517 			break;
3518 	}
3519 
3520 	if (!p)
3521 		return t_mod_start(m, pos);
3522 
3523 	return iter;
3524 }
3525 
3526 static void t_stop(struct seq_file *m, void *p)
3527 {
3528 	mutex_unlock(&ftrace_lock);
3529 }
3530 
3531 void * __weak
3532 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3533 {
3534 	return NULL;
3535 }
3536 
3537 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3538 				struct dyn_ftrace *rec)
3539 {
3540 	void *ptr;
3541 
3542 	ptr = arch_ftrace_trampoline_func(ops, rec);
3543 	if (ptr)
3544 		seq_printf(m, " ->%pS", ptr);
3545 }
3546 
3547 static int t_show(struct seq_file *m, void *v)
3548 {
3549 	struct ftrace_iterator *iter = m->private;
3550 	struct dyn_ftrace *rec;
3551 
3552 	if (iter->flags & FTRACE_ITER_PROBE)
3553 		return t_probe_show(m, iter);
3554 
3555 	if (iter->flags & FTRACE_ITER_MOD)
3556 		return t_mod_show(m, iter);
3557 
3558 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3559 		if (iter->flags & FTRACE_ITER_NOTRACE)
3560 			seq_puts(m, "#### no functions disabled ####\n");
3561 		else
3562 			seq_puts(m, "#### all functions enabled ####\n");
3563 		return 0;
3564 	}
3565 
3566 	rec = iter->func;
3567 
3568 	if (!rec)
3569 		return 0;
3570 
3571 	seq_printf(m, "%ps", (void *)rec->ip);
3572 	if (iter->flags & FTRACE_ITER_ENABLED) {
3573 		struct ftrace_ops *ops;
3574 
3575 		seq_printf(m, " (%ld)%s%s%s",
3576 			   ftrace_rec_count(rec),
3577 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3578 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3579 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3580 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3581 			ops = ftrace_find_tramp_ops_any(rec);
3582 			if (ops) {
3583 				do {
3584 					seq_printf(m, "\ttramp: %pS (%pS)",
3585 						   (void *)ops->trampoline,
3586 						   (void *)ops->func);
3587 					add_trampoline_func(m, ops, rec);
3588 					ops = ftrace_find_tramp_ops_next(rec, ops);
3589 				} while (ops);
3590 			} else
3591 				seq_puts(m, "\ttramp: ERROR!");
3592 		} else {
3593 			add_trampoline_func(m, NULL, rec);
3594 		}
3595 		if (rec->flags & FTRACE_FL_DIRECT) {
3596 			unsigned long direct;
3597 
3598 			direct = ftrace_find_rec_direct(rec->ip);
3599 			if (direct)
3600 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3601 		}
3602 	}
3603 
3604 	seq_putc(m, '\n');
3605 
3606 	return 0;
3607 }
3608 
3609 static const struct seq_operations show_ftrace_seq_ops = {
3610 	.start = t_start,
3611 	.next = t_next,
3612 	.stop = t_stop,
3613 	.show = t_show,
3614 };
3615 
3616 static int
3617 ftrace_avail_open(struct inode *inode, struct file *file)
3618 {
3619 	struct ftrace_iterator *iter;
3620 	int ret;
3621 
3622 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3623 	if (ret)
3624 		return ret;
3625 
3626 	if (unlikely(ftrace_disabled))
3627 		return -ENODEV;
3628 
3629 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3630 	if (!iter)
3631 		return -ENOMEM;
3632 
3633 	iter->pg = ftrace_pages_start;
3634 	iter->ops = &global_ops;
3635 
3636 	return 0;
3637 }
3638 
3639 static int
3640 ftrace_enabled_open(struct inode *inode, struct file *file)
3641 {
3642 	struct ftrace_iterator *iter;
3643 
3644 	/*
3645 	 * This shows us what functions are currently being
3646 	 * traced and by what. Not sure if we want lockdown
3647 	 * to hide such critical information for an admin.
3648 	 * Although, perhaps it can show information we don't
3649 	 * want people to see, but if something is tracing
3650 	 * something, we probably want to know about it.
3651 	 */
3652 
3653 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3654 	if (!iter)
3655 		return -ENOMEM;
3656 
3657 	iter->pg = ftrace_pages_start;
3658 	iter->flags = FTRACE_ITER_ENABLED;
3659 	iter->ops = &global_ops;
3660 
3661 	return 0;
3662 }
3663 
3664 /**
3665  * ftrace_regex_open - initialize function tracer filter files
3666  * @ops: The ftrace_ops that hold the hash filters
3667  * @flag: The type of filter to process
3668  * @inode: The inode, usually passed in to your open routine
3669  * @file: The file, usually passed in to your open routine
3670  *
3671  * ftrace_regex_open() initializes the filter files for the
3672  * @ops. Depending on @flag it may process the filter hash or
3673  * the notrace hash of @ops. With this called from the open
3674  * routine, you can use ftrace_filter_write() for the write
3675  * routine if @flag has FTRACE_ITER_FILTER set, or
3676  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3677  * tracing_lseek() should be used as the lseek routine, and
3678  * release must call ftrace_regex_release().
3679  */
3680 int
3681 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3682 		  struct inode *inode, struct file *file)
3683 {
3684 	struct ftrace_iterator *iter;
3685 	struct ftrace_hash *hash;
3686 	struct list_head *mod_head;
3687 	struct trace_array *tr = ops->private;
3688 	int ret = -ENOMEM;
3689 
3690 	ftrace_ops_init(ops);
3691 
3692 	if (unlikely(ftrace_disabled))
3693 		return -ENODEV;
3694 
3695 	if (tracing_check_open_get_tr(tr))
3696 		return -ENODEV;
3697 
3698 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3699 	if (!iter)
3700 		goto out;
3701 
3702 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3703 		goto out;
3704 
3705 	iter->ops = ops;
3706 	iter->flags = flag;
3707 	iter->tr = tr;
3708 
3709 	mutex_lock(&ops->func_hash->regex_lock);
3710 
3711 	if (flag & FTRACE_ITER_NOTRACE) {
3712 		hash = ops->func_hash->notrace_hash;
3713 		mod_head = tr ? &tr->mod_notrace : NULL;
3714 	} else {
3715 		hash = ops->func_hash->filter_hash;
3716 		mod_head = tr ? &tr->mod_trace : NULL;
3717 	}
3718 
3719 	iter->mod_list = mod_head;
3720 
3721 	if (file->f_mode & FMODE_WRITE) {
3722 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3723 
3724 		if (file->f_flags & O_TRUNC) {
3725 			iter->hash = alloc_ftrace_hash(size_bits);
3726 			clear_ftrace_mod_list(mod_head);
3727 	        } else {
3728 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3729 		}
3730 
3731 		if (!iter->hash) {
3732 			trace_parser_put(&iter->parser);
3733 			goto out_unlock;
3734 		}
3735 	} else
3736 		iter->hash = hash;
3737 
3738 	ret = 0;
3739 
3740 	if (file->f_mode & FMODE_READ) {
3741 		iter->pg = ftrace_pages_start;
3742 
3743 		ret = seq_open(file, &show_ftrace_seq_ops);
3744 		if (!ret) {
3745 			struct seq_file *m = file->private_data;
3746 			m->private = iter;
3747 		} else {
3748 			/* Failed */
3749 			free_ftrace_hash(iter->hash);
3750 			trace_parser_put(&iter->parser);
3751 		}
3752 	} else
3753 		file->private_data = iter;
3754 
3755  out_unlock:
3756 	mutex_unlock(&ops->func_hash->regex_lock);
3757 
3758  out:
3759 	if (ret) {
3760 		kfree(iter);
3761 		if (tr)
3762 			trace_array_put(tr);
3763 	}
3764 
3765 	return ret;
3766 }
3767 
3768 static int
3769 ftrace_filter_open(struct inode *inode, struct file *file)
3770 {
3771 	struct ftrace_ops *ops = inode->i_private;
3772 
3773 	/* Checks for tracefs lockdown */
3774 	return ftrace_regex_open(ops,
3775 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3776 			inode, file);
3777 }
3778 
3779 static int
3780 ftrace_notrace_open(struct inode *inode, struct file *file)
3781 {
3782 	struct ftrace_ops *ops = inode->i_private;
3783 
3784 	/* Checks for tracefs lockdown */
3785 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3786 				 inode, file);
3787 }
3788 
3789 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3790 struct ftrace_glob {
3791 	char *search;
3792 	unsigned len;
3793 	int type;
3794 };
3795 
3796 /*
3797  * If symbols in an architecture don't correspond exactly to the user-visible
3798  * name of what they represent, it is possible to define this function to
3799  * perform the necessary adjustments.
3800 */
3801 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3802 {
3803 	return str;
3804 }
3805 
3806 static int ftrace_match(char *str, struct ftrace_glob *g)
3807 {
3808 	int matched = 0;
3809 	int slen;
3810 
3811 	str = arch_ftrace_match_adjust(str, g->search);
3812 
3813 	switch (g->type) {
3814 	case MATCH_FULL:
3815 		if (strcmp(str, g->search) == 0)
3816 			matched = 1;
3817 		break;
3818 	case MATCH_FRONT_ONLY:
3819 		if (strncmp(str, g->search, g->len) == 0)
3820 			matched = 1;
3821 		break;
3822 	case MATCH_MIDDLE_ONLY:
3823 		if (strstr(str, g->search))
3824 			matched = 1;
3825 		break;
3826 	case MATCH_END_ONLY:
3827 		slen = strlen(str);
3828 		if (slen >= g->len &&
3829 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3830 			matched = 1;
3831 		break;
3832 	case MATCH_GLOB:
3833 		if (glob_match(g->search, str))
3834 			matched = 1;
3835 		break;
3836 	}
3837 
3838 	return matched;
3839 }
3840 
3841 static int
3842 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3843 {
3844 	struct ftrace_func_entry *entry;
3845 	int ret = 0;
3846 
3847 	entry = ftrace_lookup_ip(hash, rec->ip);
3848 	if (clear_filter) {
3849 		/* Do nothing if it doesn't exist */
3850 		if (!entry)
3851 			return 0;
3852 
3853 		free_hash_entry(hash, entry);
3854 	} else {
3855 		/* Do nothing if it exists */
3856 		if (entry)
3857 			return 0;
3858 
3859 		ret = add_hash_entry(hash, rec->ip);
3860 	}
3861 	return ret;
3862 }
3863 
3864 static int
3865 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3866 		 int clear_filter)
3867 {
3868 	long index = simple_strtoul(func_g->search, NULL, 0);
3869 	struct ftrace_page *pg;
3870 	struct dyn_ftrace *rec;
3871 
3872 	/* The index starts at 1 */
3873 	if (--index < 0)
3874 		return 0;
3875 
3876 	do_for_each_ftrace_rec(pg, rec) {
3877 		if (pg->index <= index) {
3878 			index -= pg->index;
3879 			/* this is a double loop, break goes to the next page */
3880 			break;
3881 		}
3882 		rec = &pg->records[index];
3883 		enter_record(hash, rec, clear_filter);
3884 		return 1;
3885 	} while_for_each_ftrace_rec();
3886 	return 0;
3887 }
3888 
3889 static int
3890 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3891 		struct ftrace_glob *mod_g, int exclude_mod)
3892 {
3893 	char str[KSYM_SYMBOL_LEN];
3894 	char *modname;
3895 
3896 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3897 
3898 	if (mod_g) {
3899 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3900 
3901 		/* blank module name to match all modules */
3902 		if (!mod_g->len) {
3903 			/* blank module globbing: modname xor exclude_mod */
3904 			if (!exclude_mod != !modname)
3905 				goto func_match;
3906 			return 0;
3907 		}
3908 
3909 		/*
3910 		 * exclude_mod is set to trace everything but the given
3911 		 * module. If it is set and the module matches, then
3912 		 * return 0. If it is not set, and the module doesn't match
3913 		 * also return 0. Otherwise, check the function to see if
3914 		 * that matches.
3915 		 */
3916 		if (!mod_matches == !exclude_mod)
3917 			return 0;
3918 func_match:
3919 		/* blank search means to match all funcs in the mod */
3920 		if (!func_g->len)
3921 			return 1;
3922 	}
3923 
3924 	return ftrace_match(str, func_g);
3925 }
3926 
3927 static int
3928 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3929 {
3930 	struct ftrace_page *pg;
3931 	struct dyn_ftrace *rec;
3932 	struct ftrace_glob func_g = { .type = MATCH_FULL };
3933 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
3934 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
3935 	int exclude_mod = 0;
3936 	int found = 0;
3937 	int ret;
3938 	int clear_filter = 0;
3939 
3940 	if (func) {
3941 		func_g.type = filter_parse_regex(func, len, &func_g.search,
3942 						 &clear_filter);
3943 		func_g.len = strlen(func_g.search);
3944 	}
3945 
3946 	if (mod) {
3947 		mod_g.type = filter_parse_regex(mod, strlen(mod),
3948 				&mod_g.search, &exclude_mod);
3949 		mod_g.len = strlen(mod_g.search);
3950 	}
3951 
3952 	mutex_lock(&ftrace_lock);
3953 
3954 	if (unlikely(ftrace_disabled))
3955 		goto out_unlock;
3956 
3957 	if (func_g.type == MATCH_INDEX) {
3958 		found = add_rec_by_index(hash, &func_g, clear_filter);
3959 		goto out_unlock;
3960 	}
3961 
3962 	do_for_each_ftrace_rec(pg, rec) {
3963 
3964 		if (rec->flags & FTRACE_FL_DISABLED)
3965 			continue;
3966 
3967 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
3968 			ret = enter_record(hash, rec, clear_filter);
3969 			if (ret < 0) {
3970 				found = ret;
3971 				goto out_unlock;
3972 			}
3973 			found = 1;
3974 		}
3975 	} while_for_each_ftrace_rec();
3976  out_unlock:
3977 	mutex_unlock(&ftrace_lock);
3978 
3979 	return found;
3980 }
3981 
3982 static int
3983 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
3984 {
3985 	return match_records(hash, buff, len, NULL);
3986 }
3987 
3988 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3989 				   struct ftrace_ops_hash *old_hash)
3990 {
3991 	struct ftrace_ops *op;
3992 
3993 	if (!ftrace_enabled)
3994 		return;
3995 
3996 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
3997 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
3998 		return;
3999 	}
4000 
4001 	/*
4002 	 * If this is the shared global_ops filter, then we need to
4003 	 * check if there is another ops that shares it, is enabled.
4004 	 * If so, we still need to run the modify code.
4005 	 */
4006 	if (ops->func_hash != &global_ops.local_hash)
4007 		return;
4008 
4009 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4010 		if (op->func_hash == &global_ops.local_hash &&
4011 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4012 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4013 			/* Only need to do this once */
4014 			return;
4015 		}
4016 	} while_for_each_ftrace_op(op);
4017 }
4018 
4019 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4020 					   struct ftrace_hash **orig_hash,
4021 					   struct ftrace_hash *hash,
4022 					   int enable)
4023 {
4024 	struct ftrace_ops_hash old_hash_ops;
4025 	struct ftrace_hash *old_hash;
4026 	int ret;
4027 
4028 	old_hash = *orig_hash;
4029 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4030 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4031 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4032 	if (!ret) {
4033 		ftrace_ops_update_code(ops, &old_hash_ops);
4034 		free_ftrace_hash_rcu(old_hash);
4035 	}
4036 	return ret;
4037 }
4038 
4039 static bool module_exists(const char *module)
4040 {
4041 	/* All modules have the symbol __this_module */
4042 	static const char this_mod[] = "__this_module";
4043 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4044 	unsigned long val;
4045 	int n;
4046 
4047 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4048 
4049 	if (n > sizeof(modname) - 1)
4050 		return false;
4051 
4052 	val = module_kallsyms_lookup_name(modname);
4053 	return val != 0;
4054 }
4055 
4056 static int cache_mod(struct trace_array *tr,
4057 		     const char *func, char *module, int enable)
4058 {
4059 	struct ftrace_mod_load *ftrace_mod, *n;
4060 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4061 	int ret;
4062 
4063 	mutex_lock(&ftrace_lock);
4064 
4065 	/* We do not cache inverse filters */
4066 	if (func[0] == '!') {
4067 		func++;
4068 		ret = -EINVAL;
4069 
4070 		/* Look to remove this hash */
4071 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4072 			if (strcmp(ftrace_mod->module, module) != 0)
4073 				continue;
4074 
4075 			/* no func matches all */
4076 			if (strcmp(func, "*") == 0 ||
4077 			    (ftrace_mod->func &&
4078 			     strcmp(ftrace_mod->func, func) == 0)) {
4079 				ret = 0;
4080 				free_ftrace_mod(ftrace_mod);
4081 				continue;
4082 			}
4083 		}
4084 		goto out;
4085 	}
4086 
4087 	ret = -EINVAL;
4088 	/* We only care about modules that have not been loaded yet */
4089 	if (module_exists(module))
4090 		goto out;
4091 
4092 	/* Save this string off, and execute it when the module is loaded */
4093 	ret = ftrace_add_mod(tr, func, module, enable);
4094  out:
4095 	mutex_unlock(&ftrace_lock);
4096 
4097 	return ret;
4098 }
4099 
4100 static int
4101 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4102 		 int reset, int enable);
4103 
4104 #ifdef CONFIG_MODULES
4105 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4106 			     char *mod, bool enable)
4107 {
4108 	struct ftrace_mod_load *ftrace_mod, *n;
4109 	struct ftrace_hash **orig_hash, *new_hash;
4110 	LIST_HEAD(process_mods);
4111 	char *func;
4112 	int ret;
4113 
4114 	mutex_lock(&ops->func_hash->regex_lock);
4115 
4116 	if (enable)
4117 		orig_hash = &ops->func_hash->filter_hash;
4118 	else
4119 		orig_hash = &ops->func_hash->notrace_hash;
4120 
4121 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4122 					      *orig_hash);
4123 	if (!new_hash)
4124 		goto out; /* warn? */
4125 
4126 	mutex_lock(&ftrace_lock);
4127 
4128 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4129 
4130 		if (strcmp(ftrace_mod->module, mod) != 0)
4131 			continue;
4132 
4133 		if (ftrace_mod->func)
4134 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4135 		else
4136 			func = kstrdup("*", GFP_KERNEL);
4137 
4138 		if (!func) /* warn? */
4139 			continue;
4140 
4141 		list_del(&ftrace_mod->list);
4142 		list_add(&ftrace_mod->list, &process_mods);
4143 
4144 		/* Use the newly allocated func, as it may be "*" */
4145 		kfree(ftrace_mod->func);
4146 		ftrace_mod->func = func;
4147 	}
4148 
4149 	mutex_unlock(&ftrace_lock);
4150 
4151 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4152 
4153 		func = ftrace_mod->func;
4154 
4155 		/* Grabs ftrace_lock, which is why we have this extra step */
4156 		match_records(new_hash, func, strlen(func), mod);
4157 		free_ftrace_mod(ftrace_mod);
4158 	}
4159 
4160 	if (enable && list_empty(head))
4161 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4162 
4163 	mutex_lock(&ftrace_lock);
4164 
4165 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
4166 					      new_hash, enable);
4167 	mutex_unlock(&ftrace_lock);
4168 
4169  out:
4170 	mutex_unlock(&ops->func_hash->regex_lock);
4171 
4172 	free_ftrace_hash(new_hash);
4173 }
4174 
4175 static void process_cached_mods(const char *mod_name)
4176 {
4177 	struct trace_array *tr;
4178 	char *mod;
4179 
4180 	mod = kstrdup(mod_name, GFP_KERNEL);
4181 	if (!mod)
4182 		return;
4183 
4184 	mutex_lock(&trace_types_lock);
4185 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4186 		if (!list_empty(&tr->mod_trace))
4187 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4188 		if (!list_empty(&tr->mod_notrace))
4189 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4190 	}
4191 	mutex_unlock(&trace_types_lock);
4192 
4193 	kfree(mod);
4194 }
4195 #endif
4196 
4197 /*
4198  * We register the module command as a template to show others how
4199  * to register the a command as well.
4200  */
4201 
4202 static int
4203 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4204 		    char *func_orig, char *cmd, char *module, int enable)
4205 {
4206 	char *func;
4207 	int ret;
4208 
4209 	/* match_records() modifies func, and we need the original */
4210 	func = kstrdup(func_orig, GFP_KERNEL);
4211 	if (!func)
4212 		return -ENOMEM;
4213 
4214 	/*
4215 	 * cmd == 'mod' because we only registered this func
4216 	 * for the 'mod' ftrace_func_command.
4217 	 * But if you register one func with multiple commands,
4218 	 * you can tell which command was used by the cmd
4219 	 * parameter.
4220 	 */
4221 	ret = match_records(hash, func, strlen(func), module);
4222 	kfree(func);
4223 
4224 	if (!ret)
4225 		return cache_mod(tr, func_orig, module, enable);
4226 	if (ret < 0)
4227 		return ret;
4228 	return 0;
4229 }
4230 
4231 static struct ftrace_func_command ftrace_mod_cmd = {
4232 	.name			= "mod",
4233 	.func			= ftrace_mod_callback,
4234 };
4235 
4236 static int __init ftrace_mod_cmd_init(void)
4237 {
4238 	return register_ftrace_command(&ftrace_mod_cmd);
4239 }
4240 core_initcall(ftrace_mod_cmd_init);
4241 
4242 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4243 				      struct ftrace_ops *op, struct pt_regs *pt_regs)
4244 {
4245 	struct ftrace_probe_ops *probe_ops;
4246 	struct ftrace_func_probe *probe;
4247 
4248 	probe = container_of(op, struct ftrace_func_probe, ops);
4249 	probe_ops = probe->probe_ops;
4250 
4251 	/*
4252 	 * Disable preemption for these calls to prevent a RCU grace
4253 	 * period. This syncs the hash iteration and freeing of items
4254 	 * on the hash. rcu_read_lock is too dangerous here.
4255 	 */
4256 	preempt_disable_notrace();
4257 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4258 	preempt_enable_notrace();
4259 }
4260 
4261 struct ftrace_func_map {
4262 	struct ftrace_func_entry	entry;
4263 	void				*data;
4264 };
4265 
4266 struct ftrace_func_mapper {
4267 	struct ftrace_hash		hash;
4268 };
4269 
4270 /**
4271  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4272  *
4273  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4274  */
4275 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4276 {
4277 	struct ftrace_hash *hash;
4278 
4279 	/*
4280 	 * The mapper is simply a ftrace_hash, but since the entries
4281 	 * in the hash are not ftrace_func_entry type, we define it
4282 	 * as a separate structure.
4283 	 */
4284 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4285 	return (struct ftrace_func_mapper *)hash;
4286 }
4287 
4288 /**
4289  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4290  * @mapper: The mapper that has the ip maps
4291  * @ip: the instruction pointer to find the data for
4292  *
4293  * Returns the data mapped to @ip if found otherwise NULL. The return
4294  * is actually the address of the mapper data pointer. The address is
4295  * returned for use cases where the data is no bigger than a long, and
4296  * the user can use the data pointer as its data instead of having to
4297  * allocate more memory for the reference.
4298  */
4299 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4300 				  unsigned long ip)
4301 {
4302 	struct ftrace_func_entry *entry;
4303 	struct ftrace_func_map *map;
4304 
4305 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4306 	if (!entry)
4307 		return NULL;
4308 
4309 	map = (struct ftrace_func_map *)entry;
4310 	return &map->data;
4311 }
4312 
4313 /**
4314  * ftrace_func_mapper_add_ip - Map some data to an ip
4315  * @mapper: The mapper that has the ip maps
4316  * @ip: The instruction pointer address to map @data to
4317  * @data: The data to map to @ip
4318  *
4319  * Returns 0 on succes otherwise an error.
4320  */
4321 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4322 			      unsigned long ip, void *data)
4323 {
4324 	struct ftrace_func_entry *entry;
4325 	struct ftrace_func_map *map;
4326 
4327 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4328 	if (entry)
4329 		return -EBUSY;
4330 
4331 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4332 	if (!map)
4333 		return -ENOMEM;
4334 
4335 	map->entry.ip = ip;
4336 	map->data = data;
4337 
4338 	__add_hash_entry(&mapper->hash, &map->entry);
4339 
4340 	return 0;
4341 }
4342 
4343 /**
4344  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4345  * @mapper: The mapper that has the ip maps
4346  * @ip: The instruction pointer address to remove the data from
4347  *
4348  * Returns the data if it is found, otherwise NULL.
4349  * Note, if the data pointer is used as the data itself, (see
4350  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4351  * if the data pointer was set to zero.
4352  */
4353 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4354 				   unsigned long ip)
4355 {
4356 	struct ftrace_func_entry *entry;
4357 	struct ftrace_func_map *map;
4358 	void *data;
4359 
4360 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4361 	if (!entry)
4362 		return NULL;
4363 
4364 	map = (struct ftrace_func_map *)entry;
4365 	data = map->data;
4366 
4367 	remove_hash_entry(&mapper->hash, entry);
4368 	kfree(entry);
4369 
4370 	return data;
4371 }
4372 
4373 /**
4374  * free_ftrace_func_mapper - free a mapping of ips and data
4375  * @mapper: The mapper that has the ip maps
4376  * @free_func: A function to be called on each data item.
4377  *
4378  * This is used to free the function mapper. The @free_func is optional
4379  * and can be used if the data needs to be freed as well.
4380  */
4381 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4382 			     ftrace_mapper_func free_func)
4383 {
4384 	struct ftrace_func_entry *entry;
4385 	struct ftrace_func_map *map;
4386 	struct hlist_head *hhd;
4387 	int size, i;
4388 
4389 	if (!mapper)
4390 		return;
4391 
4392 	if (free_func && mapper->hash.count) {
4393 		size = 1 << mapper->hash.size_bits;
4394 		for (i = 0; i < size; i++) {
4395 			hhd = &mapper->hash.buckets[i];
4396 			hlist_for_each_entry(entry, hhd, hlist) {
4397 				map = (struct ftrace_func_map *)entry;
4398 				free_func(map);
4399 			}
4400 		}
4401 	}
4402 	free_ftrace_hash(&mapper->hash);
4403 }
4404 
4405 static void release_probe(struct ftrace_func_probe *probe)
4406 {
4407 	struct ftrace_probe_ops *probe_ops;
4408 
4409 	mutex_lock(&ftrace_lock);
4410 
4411 	WARN_ON(probe->ref <= 0);
4412 
4413 	/* Subtract the ref that was used to protect this instance */
4414 	probe->ref--;
4415 
4416 	if (!probe->ref) {
4417 		probe_ops = probe->probe_ops;
4418 		/*
4419 		 * Sending zero as ip tells probe_ops to free
4420 		 * the probe->data itself
4421 		 */
4422 		if (probe_ops->free)
4423 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4424 		list_del(&probe->list);
4425 		kfree(probe);
4426 	}
4427 	mutex_unlock(&ftrace_lock);
4428 }
4429 
4430 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4431 {
4432 	/*
4433 	 * Add one ref to keep it from being freed when releasing the
4434 	 * ftrace_lock mutex.
4435 	 */
4436 	probe->ref++;
4437 }
4438 
4439 int
4440 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4441 			       struct ftrace_probe_ops *probe_ops,
4442 			       void *data)
4443 {
4444 	struct ftrace_func_entry *entry;
4445 	struct ftrace_func_probe *probe;
4446 	struct ftrace_hash **orig_hash;
4447 	struct ftrace_hash *old_hash;
4448 	struct ftrace_hash *hash;
4449 	int count = 0;
4450 	int size;
4451 	int ret;
4452 	int i;
4453 
4454 	if (WARN_ON(!tr))
4455 		return -EINVAL;
4456 
4457 	/* We do not support '!' for function probes */
4458 	if (WARN_ON(glob[0] == '!'))
4459 		return -EINVAL;
4460 
4461 
4462 	mutex_lock(&ftrace_lock);
4463 	/* Check if the probe_ops is already registered */
4464 	list_for_each_entry(probe, &tr->func_probes, list) {
4465 		if (probe->probe_ops == probe_ops)
4466 			break;
4467 	}
4468 	if (&probe->list == &tr->func_probes) {
4469 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4470 		if (!probe) {
4471 			mutex_unlock(&ftrace_lock);
4472 			return -ENOMEM;
4473 		}
4474 		probe->probe_ops = probe_ops;
4475 		probe->ops.func = function_trace_probe_call;
4476 		probe->tr = tr;
4477 		ftrace_ops_init(&probe->ops);
4478 		list_add(&probe->list, &tr->func_probes);
4479 	}
4480 
4481 	acquire_probe_locked(probe);
4482 
4483 	mutex_unlock(&ftrace_lock);
4484 
4485 	/*
4486 	 * Note, there's a small window here that the func_hash->filter_hash
4487 	 * may be NULL or empty. Need to be carefule when reading the loop.
4488 	 */
4489 	mutex_lock(&probe->ops.func_hash->regex_lock);
4490 
4491 	orig_hash = &probe->ops.func_hash->filter_hash;
4492 	old_hash = *orig_hash;
4493 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4494 
4495 	if (!hash) {
4496 		ret = -ENOMEM;
4497 		goto out;
4498 	}
4499 
4500 	ret = ftrace_match_records(hash, glob, strlen(glob));
4501 
4502 	/* Nothing found? */
4503 	if (!ret)
4504 		ret = -EINVAL;
4505 
4506 	if (ret < 0)
4507 		goto out;
4508 
4509 	size = 1 << hash->size_bits;
4510 	for (i = 0; i < size; i++) {
4511 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4512 			if (ftrace_lookup_ip(old_hash, entry->ip))
4513 				continue;
4514 			/*
4515 			 * The caller might want to do something special
4516 			 * for each function we find. We call the callback
4517 			 * to give the caller an opportunity to do so.
4518 			 */
4519 			if (probe_ops->init) {
4520 				ret = probe_ops->init(probe_ops, tr,
4521 						      entry->ip, data,
4522 						      &probe->data);
4523 				if (ret < 0) {
4524 					if (probe_ops->free && count)
4525 						probe_ops->free(probe_ops, tr,
4526 								0, probe->data);
4527 					probe->data = NULL;
4528 					goto out;
4529 				}
4530 			}
4531 			count++;
4532 		}
4533 	}
4534 
4535 	mutex_lock(&ftrace_lock);
4536 
4537 	if (!count) {
4538 		/* Nothing was added? */
4539 		ret = -EINVAL;
4540 		goto out_unlock;
4541 	}
4542 
4543 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4544 					      hash, 1);
4545 	if (ret < 0)
4546 		goto err_unlock;
4547 
4548 	/* One ref for each new function traced */
4549 	probe->ref += count;
4550 
4551 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4552 		ret = ftrace_startup(&probe->ops, 0);
4553 
4554  out_unlock:
4555 	mutex_unlock(&ftrace_lock);
4556 
4557 	if (!ret)
4558 		ret = count;
4559  out:
4560 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4561 	free_ftrace_hash(hash);
4562 
4563 	release_probe(probe);
4564 
4565 	return ret;
4566 
4567  err_unlock:
4568 	if (!probe_ops->free || !count)
4569 		goto out_unlock;
4570 
4571 	/* Failed to do the move, need to call the free functions */
4572 	for (i = 0; i < size; i++) {
4573 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4574 			if (ftrace_lookup_ip(old_hash, entry->ip))
4575 				continue;
4576 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4577 		}
4578 	}
4579 	goto out_unlock;
4580 }
4581 
4582 int
4583 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4584 				      struct ftrace_probe_ops *probe_ops)
4585 {
4586 	struct ftrace_ops_hash old_hash_ops;
4587 	struct ftrace_func_entry *entry;
4588 	struct ftrace_func_probe *probe;
4589 	struct ftrace_glob func_g;
4590 	struct ftrace_hash **orig_hash;
4591 	struct ftrace_hash *old_hash;
4592 	struct ftrace_hash *hash = NULL;
4593 	struct hlist_node *tmp;
4594 	struct hlist_head hhd;
4595 	char str[KSYM_SYMBOL_LEN];
4596 	int count = 0;
4597 	int i, ret = -ENODEV;
4598 	int size;
4599 
4600 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4601 		func_g.search = NULL;
4602 	else {
4603 		int not;
4604 
4605 		func_g.type = filter_parse_regex(glob, strlen(glob),
4606 						 &func_g.search, &not);
4607 		func_g.len = strlen(func_g.search);
4608 
4609 		/* we do not support '!' for function probes */
4610 		if (WARN_ON(not))
4611 			return -EINVAL;
4612 	}
4613 
4614 	mutex_lock(&ftrace_lock);
4615 	/* Check if the probe_ops is already registered */
4616 	list_for_each_entry(probe, &tr->func_probes, list) {
4617 		if (probe->probe_ops == probe_ops)
4618 			break;
4619 	}
4620 	if (&probe->list == &tr->func_probes)
4621 		goto err_unlock_ftrace;
4622 
4623 	ret = -EINVAL;
4624 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4625 		goto err_unlock_ftrace;
4626 
4627 	acquire_probe_locked(probe);
4628 
4629 	mutex_unlock(&ftrace_lock);
4630 
4631 	mutex_lock(&probe->ops.func_hash->regex_lock);
4632 
4633 	orig_hash = &probe->ops.func_hash->filter_hash;
4634 	old_hash = *orig_hash;
4635 
4636 	if (ftrace_hash_empty(old_hash))
4637 		goto out_unlock;
4638 
4639 	old_hash_ops.filter_hash = old_hash;
4640 	/* Probes only have filters */
4641 	old_hash_ops.notrace_hash = NULL;
4642 
4643 	ret = -ENOMEM;
4644 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4645 	if (!hash)
4646 		goto out_unlock;
4647 
4648 	INIT_HLIST_HEAD(&hhd);
4649 
4650 	size = 1 << hash->size_bits;
4651 	for (i = 0; i < size; i++) {
4652 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4653 
4654 			if (func_g.search) {
4655 				kallsyms_lookup(entry->ip, NULL, NULL,
4656 						NULL, str);
4657 				if (!ftrace_match(str, &func_g))
4658 					continue;
4659 			}
4660 			count++;
4661 			remove_hash_entry(hash, entry);
4662 			hlist_add_head(&entry->hlist, &hhd);
4663 		}
4664 	}
4665 
4666 	/* Nothing found? */
4667 	if (!count) {
4668 		ret = -EINVAL;
4669 		goto out_unlock;
4670 	}
4671 
4672 	mutex_lock(&ftrace_lock);
4673 
4674 	WARN_ON(probe->ref < count);
4675 
4676 	probe->ref -= count;
4677 
4678 	if (ftrace_hash_empty(hash))
4679 		ftrace_shutdown(&probe->ops, 0);
4680 
4681 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4682 					      hash, 1);
4683 
4684 	/* still need to update the function call sites */
4685 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4686 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4687 				       &old_hash_ops);
4688 	synchronize_rcu();
4689 
4690 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4691 		hlist_del(&entry->hlist);
4692 		if (probe_ops->free)
4693 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4694 		kfree(entry);
4695 	}
4696 	mutex_unlock(&ftrace_lock);
4697 
4698  out_unlock:
4699 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4700 	free_ftrace_hash(hash);
4701 
4702 	release_probe(probe);
4703 
4704 	return ret;
4705 
4706  err_unlock_ftrace:
4707 	mutex_unlock(&ftrace_lock);
4708 	return ret;
4709 }
4710 
4711 void clear_ftrace_function_probes(struct trace_array *tr)
4712 {
4713 	struct ftrace_func_probe *probe, *n;
4714 
4715 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4716 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4717 }
4718 
4719 static LIST_HEAD(ftrace_commands);
4720 static DEFINE_MUTEX(ftrace_cmd_mutex);
4721 
4722 /*
4723  * Currently we only register ftrace commands from __init, so mark this
4724  * __init too.
4725  */
4726 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4727 {
4728 	struct ftrace_func_command *p;
4729 	int ret = 0;
4730 
4731 	mutex_lock(&ftrace_cmd_mutex);
4732 	list_for_each_entry(p, &ftrace_commands, list) {
4733 		if (strcmp(cmd->name, p->name) == 0) {
4734 			ret = -EBUSY;
4735 			goto out_unlock;
4736 		}
4737 	}
4738 	list_add(&cmd->list, &ftrace_commands);
4739  out_unlock:
4740 	mutex_unlock(&ftrace_cmd_mutex);
4741 
4742 	return ret;
4743 }
4744 
4745 /*
4746  * Currently we only unregister ftrace commands from __init, so mark
4747  * this __init too.
4748  */
4749 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4750 {
4751 	struct ftrace_func_command *p, *n;
4752 	int ret = -ENODEV;
4753 
4754 	mutex_lock(&ftrace_cmd_mutex);
4755 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4756 		if (strcmp(cmd->name, p->name) == 0) {
4757 			ret = 0;
4758 			list_del_init(&p->list);
4759 			goto out_unlock;
4760 		}
4761 	}
4762  out_unlock:
4763 	mutex_unlock(&ftrace_cmd_mutex);
4764 
4765 	return ret;
4766 }
4767 
4768 static int ftrace_process_regex(struct ftrace_iterator *iter,
4769 				char *buff, int len, int enable)
4770 {
4771 	struct ftrace_hash *hash = iter->hash;
4772 	struct trace_array *tr = iter->ops->private;
4773 	char *func, *command, *next = buff;
4774 	struct ftrace_func_command *p;
4775 	int ret = -EINVAL;
4776 
4777 	func = strsep(&next, ":");
4778 
4779 	if (!next) {
4780 		ret = ftrace_match_records(hash, func, len);
4781 		if (!ret)
4782 			ret = -EINVAL;
4783 		if (ret < 0)
4784 			return ret;
4785 		return 0;
4786 	}
4787 
4788 	/* command found */
4789 
4790 	command = strsep(&next, ":");
4791 
4792 	mutex_lock(&ftrace_cmd_mutex);
4793 	list_for_each_entry(p, &ftrace_commands, list) {
4794 		if (strcmp(p->name, command) == 0) {
4795 			ret = p->func(tr, hash, func, command, next, enable);
4796 			goto out_unlock;
4797 		}
4798 	}
4799  out_unlock:
4800 	mutex_unlock(&ftrace_cmd_mutex);
4801 
4802 	return ret;
4803 }
4804 
4805 static ssize_t
4806 ftrace_regex_write(struct file *file, const char __user *ubuf,
4807 		   size_t cnt, loff_t *ppos, int enable)
4808 {
4809 	struct ftrace_iterator *iter;
4810 	struct trace_parser *parser;
4811 	ssize_t ret, read;
4812 
4813 	if (!cnt)
4814 		return 0;
4815 
4816 	if (file->f_mode & FMODE_READ) {
4817 		struct seq_file *m = file->private_data;
4818 		iter = m->private;
4819 	} else
4820 		iter = file->private_data;
4821 
4822 	if (unlikely(ftrace_disabled))
4823 		return -ENODEV;
4824 
4825 	/* iter->hash is a local copy, so we don't need regex_lock */
4826 
4827 	parser = &iter->parser;
4828 	read = trace_get_user(parser, ubuf, cnt, ppos);
4829 
4830 	if (read >= 0 && trace_parser_loaded(parser) &&
4831 	    !trace_parser_cont(parser)) {
4832 		ret = ftrace_process_regex(iter, parser->buffer,
4833 					   parser->idx, enable);
4834 		trace_parser_clear(parser);
4835 		if (ret < 0)
4836 			goto out;
4837 	}
4838 
4839 	ret = read;
4840  out:
4841 	return ret;
4842 }
4843 
4844 ssize_t
4845 ftrace_filter_write(struct file *file, const char __user *ubuf,
4846 		    size_t cnt, loff_t *ppos)
4847 {
4848 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4849 }
4850 
4851 ssize_t
4852 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4853 		     size_t cnt, loff_t *ppos)
4854 {
4855 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4856 }
4857 
4858 static int
4859 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4860 {
4861 	struct ftrace_func_entry *entry;
4862 
4863 	if (!ftrace_location(ip))
4864 		return -EINVAL;
4865 
4866 	if (remove) {
4867 		entry = ftrace_lookup_ip(hash, ip);
4868 		if (!entry)
4869 			return -ENOENT;
4870 		free_hash_entry(hash, entry);
4871 		return 0;
4872 	}
4873 
4874 	return add_hash_entry(hash, ip);
4875 }
4876 
4877 static int
4878 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4879 		unsigned long ip, int remove, int reset, int enable)
4880 {
4881 	struct ftrace_hash **orig_hash;
4882 	struct ftrace_hash *hash;
4883 	int ret;
4884 
4885 	if (unlikely(ftrace_disabled))
4886 		return -ENODEV;
4887 
4888 	mutex_lock(&ops->func_hash->regex_lock);
4889 
4890 	if (enable)
4891 		orig_hash = &ops->func_hash->filter_hash;
4892 	else
4893 		orig_hash = &ops->func_hash->notrace_hash;
4894 
4895 	if (reset)
4896 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4897 	else
4898 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4899 
4900 	if (!hash) {
4901 		ret = -ENOMEM;
4902 		goto out_regex_unlock;
4903 	}
4904 
4905 	if (buf && !ftrace_match_records(hash, buf, len)) {
4906 		ret = -EINVAL;
4907 		goto out_regex_unlock;
4908 	}
4909 	if (ip) {
4910 		ret = ftrace_match_addr(hash, ip, remove);
4911 		if (ret < 0)
4912 			goto out_regex_unlock;
4913 	}
4914 
4915 	mutex_lock(&ftrace_lock);
4916 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4917 	mutex_unlock(&ftrace_lock);
4918 
4919  out_regex_unlock:
4920 	mutex_unlock(&ops->func_hash->regex_lock);
4921 
4922 	free_ftrace_hash(hash);
4923 	return ret;
4924 }
4925 
4926 static int
4927 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4928 		int reset, int enable)
4929 {
4930 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
4931 }
4932 
4933 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
4934 
4935 struct ftrace_direct_func {
4936 	struct list_head	next;
4937 	unsigned long		addr;
4938 	int			count;
4939 };
4940 
4941 static LIST_HEAD(ftrace_direct_funcs);
4942 
4943 /**
4944  * ftrace_find_direct_func - test an address if it is a registered direct caller
4945  * @addr: The address of a registered direct caller
4946  *
4947  * This searches to see if a ftrace direct caller has been registered
4948  * at a specific address, and if so, it returns a descriptor for it.
4949  *
4950  * This can be used by architecture code to see if an address is
4951  * a direct caller (trampoline) attached to a fentry/mcount location.
4952  * This is useful for the function_graph tracer, as it may need to
4953  * do adjustments if it traced a location that also has a direct
4954  * trampoline attached to it.
4955  */
4956 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
4957 {
4958 	struct ftrace_direct_func *entry;
4959 	bool found = false;
4960 
4961 	/* May be called by fgraph trampoline (protected by rcu tasks) */
4962 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
4963 		if (entry->addr == addr) {
4964 			found = true;
4965 			break;
4966 		}
4967 	}
4968 	if (found)
4969 		return entry;
4970 
4971 	return NULL;
4972 }
4973 
4974 /**
4975  * register_ftrace_direct - Call a custom trampoline directly
4976  * @ip: The address of the nop at the beginning of a function
4977  * @addr: The address of the trampoline to call at @ip
4978  *
4979  * This is used to connect a direct call from the nop location (@ip)
4980  * at the start of ftrace traced functions. The location that it calls
4981  * (@addr) must be able to handle a direct call, and save the parameters
4982  * of the function being traced, and restore them (or inject new ones
4983  * if needed), before returning.
4984  *
4985  * Returns:
4986  *  0 on success
4987  *  -EBUSY - Another direct function is already attached (there can be only one)
4988  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
4989  *  -ENOMEM - There was an allocation failure.
4990  */
4991 int register_ftrace_direct(unsigned long ip, unsigned long addr)
4992 {
4993 	struct ftrace_direct_func *direct;
4994 	struct ftrace_func_entry *entry;
4995 	struct ftrace_hash *free_hash = NULL;
4996 	struct dyn_ftrace *rec;
4997 	int ret = -EBUSY;
4998 
4999 	mutex_lock(&direct_mutex);
5000 
5001 	/* See if there's a direct function at @ip already */
5002 	if (ftrace_find_rec_direct(ip))
5003 		goto out_unlock;
5004 
5005 	ret = -ENODEV;
5006 	rec = lookup_rec(ip, ip);
5007 	if (!rec)
5008 		goto out_unlock;
5009 
5010 	/*
5011 	 * Check if the rec says it has a direct call but we didn't
5012 	 * find one earlier?
5013 	 */
5014 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5015 		goto out_unlock;
5016 
5017 	/* Make sure the ip points to the exact record */
5018 	if (ip != rec->ip) {
5019 		ip = rec->ip;
5020 		/* Need to check this ip for a direct. */
5021 		if (ftrace_find_rec_direct(ip))
5022 			goto out_unlock;
5023 	}
5024 
5025 	ret = -ENOMEM;
5026 	if (ftrace_hash_empty(direct_functions) ||
5027 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5028 		struct ftrace_hash *new_hash;
5029 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5030 			direct_functions->count + 1;
5031 
5032 		if (size < 32)
5033 			size = 32;
5034 
5035 		new_hash = dup_hash(direct_functions, size);
5036 		if (!new_hash)
5037 			goto out_unlock;
5038 
5039 		free_hash = direct_functions;
5040 		direct_functions = new_hash;
5041 	}
5042 
5043 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5044 	if (!entry)
5045 		goto out_unlock;
5046 
5047 	direct = ftrace_find_direct_func(addr);
5048 	if (!direct) {
5049 		direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5050 		if (!direct) {
5051 			kfree(entry);
5052 			goto out_unlock;
5053 		}
5054 		direct->addr = addr;
5055 		direct->count = 0;
5056 		list_add_rcu(&direct->next, &ftrace_direct_funcs);
5057 		ftrace_direct_func_count++;
5058 	}
5059 
5060 	entry->ip = ip;
5061 	entry->direct = addr;
5062 	__add_hash_entry(direct_functions, entry);
5063 
5064 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5065 	if (ret)
5066 		remove_hash_entry(direct_functions, entry);
5067 
5068 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5069 		ret = register_ftrace_function(&direct_ops);
5070 		if (ret)
5071 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5072 	}
5073 
5074 	if (ret) {
5075 		kfree(entry);
5076 		if (!direct->count) {
5077 			list_del_rcu(&direct->next);
5078 			synchronize_rcu_tasks();
5079 			kfree(direct);
5080 			if (free_hash)
5081 				free_ftrace_hash(free_hash);
5082 			free_hash = NULL;
5083 			ftrace_direct_func_count--;
5084 		}
5085 	} else {
5086 		direct->count++;
5087 	}
5088  out_unlock:
5089 	mutex_unlock(&direct_mutex);
5090 
5091 	if (free_hash) {
5092 		synchronize_rcu_tasks();
5093 		free_ftrace_hash(free_hash);
5094 	}
5095 
5096 	return ret;
5097 }
5098 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5099 
5100 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5101 						   struct dyn_ftrace **recp)
5102 {
5103 	struct ftrace_func_entry *entry;
5104 	struct dyn_ftrace *rec;
5105 
5106 	rec = lookup_rec(*ip, *ip);
5107 	if (!rec)
5108 		return NULL;
5109 
5110 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5111 	if (!entry) {
5112 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5113 		return NULL;
5114 	}
5115 
5116 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5117 
5118 	/* Passed in ip just needs to be on the call site */
5119 	*ip = rec->ip;
5120 
5121 	if (recp)
5122 		*recp = rec;
5123 
5124 	return entry;
5125 }
5126 
5127 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5128 {
5129 	struct ftrace_direct_func *direct;
5130 	struct ftrace_func_entry *entry;
5131 	int ret = -ENODEV;
5132 
5133 	mutex_lock(&direct_mutex);
5134 
5135 	entry = find_direct_entry(&ip, NULL);
5136 	if (!entry)
5137 		goto out_unlock;
5138 
5139 	if (direct_functions->count == 1)
5140 		unregister_ftrace_function(&direct_ops);
5141 
5142 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5143 
5144 	WARN_ON(ret);
5145 
5146 	remove_hash_entry(direct_functions, entry);
5147 
5148 	direct = ftrace_find_direct_func(addr);
5149 	if (!WARN_ON(!direct)) {
5150 		/* This is the good path (see the ! before WARN) */
5151 		direct->count--;
5152 		WARN_ON(direct->count < 0);
5153 		if (!direct->count) {
5154 			list_del_rcu(&direct->next);
5155 			synchronize_rcu_tasks();
5156 			kfree(direct);
5157 			kfree(entry);
5158 			ftrace_direct_func_count--;
5159 		}
5160 	}
5161  out_unlock:
5162 	mutex_unlock(&direct_mutex);
5163 
5164 	return ret;
5165 }
5166 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5167 
5168 static struct ftrace_ops stub_ops = {
5169 	.func		= ftrace_stub,
5170 };
5171 
5172 /**
5173  * ftrace_modify_direct_caller - modify ftrace nop directly
5174  * @entry: The ftrace hash entry of the direct helper for @rec
5175  * @rec: The record representing the function site to patch
5176  * @old_addr: The location that the site at @rec->ip currently calls
5177  * @new_addr: The location that the site at @rec->ip should call
5178  *
5179  * An architecture may overwrite this function to optimize the
5180  * changing of the direct callback on an ftrace nop location.
5181  * This is called with the ftrace_lock mutex held, and no other
5182  * ftrace callbacks are on the associated record (@rec). Thus,
5183  * it is safe to modify the ftrace record, where it should be
5184  * currently calling @old_addr directly, to call @new_addr.
5185  *
5186  * Safety checks should be made to make sure that the code at
5187  * @rec->ip is currently calling @old_addr. And this must
5188  * also update entry->direct to @new_addr.
5189  */
5190 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5191 				       struct dyn_ftrace *rec,
5192 				       unsigned long old_addr,
5193 				       unsigned long new_addr)
5194 {
5195 	unsigned long ip = rec->ip;
5196 	int ret;
5197 
5198 	/*
5199 	 * The ftrace_lock was used to determine if the record
5200 	 * had more than one registered user to it. If it did,
5201 	 * we needed to prevent that from changing to do the quick
5202 	 * switch. But if it did not (only a direct caller was attached)
5203 	 * then this function is called. But this function can deal
5204 	 * with attached callers to the rec that we care about, and
5205 	 * since this function uses standard ftrace calls that take
5206 	 * the ftrace_lock mutex, we need to release it.
5207 	 */
5208 	mutex_unlock(&ftrace_lock);
5209 
5210 	/*
5211 	 * By setting a stub function at the same address, we force
5212 	 * the code to call the iterator and the direct_ops helper.
5213 	 * This means that @ip does not call the direct call, and
5214 	 * we can simply modify it.
5215 	 */
5216 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5217 	if (ret)
5218 		goto out_lock;
5219 
5220 	ret = register_ftrace_function(&stub_ops);
5221 	if (ret) {
5222 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5223 		goto out_lock;
5224 	}
5225 
5226 	entry->direct = new_addr;
5227 
5228 	/*
5229 	 * By removing the stub, we put back the direct call, calling
5230 	 * the @new_addr.
5231 	 */
5232 	unregister_ftrace_function(&stub_ops);
5233 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5234 
5235  out_lock:
5236 	mutex_lock(&ftrace_lock);
5237 
5238 	return ret;
5239 }
5240 
5241 /**
5242  * modify_ftrace_direct - Modify an existing direct call to call something else
5243  * @ip: The instruction pointer to modify
5244  * @old_addr: The address that the current @ip calls directly
5245  * @new_addr: The address that the @ip should call
5246  *
5247  * This modifies a ftrace direct caller at an instruction pointer without
5248  * having to disable it first. The direct call will switch over to the
5249  * @new_addr without missing anything.
5250  *
5251  * Returns: zero on success. Non zero on error, which includes:
5252  *  -ENODEV : the @ip given has no direct caller attached
5253  *  -EINVAL : the @old_addr does not match the current direct caller
5254  */
5255 int modify_ftrace_direct(unsigned long ip,
5256 			 unsigned long old_addr, unsigned long new_addr)
5257 {
5258 	struct ftrace_func_entry *entry;
5259 	struct dyn_ftrace *rec;
5260 	int ret = -ENODEV;
5261 
5262 	mutex_lock(&direct_mutex);
5263 
5264 	mutex_lock(&ftrace_lock);
5265 	entry = find_direct_entry(&ip, &rec);
5266 	if (!entry)
5267 		goto out_unlock;
5268 
5269 	ret = -EINVAL;
5270 	if (entry->direct != old_addr)
5271 		goto out_unlock;
5272 
5273 	/*
5274 	 * If there's no other ftrace callback on the rec->ip location,
5275 	 * then it can be changed directly by the architecture.
5276 	 * If there is another caller, then we just need to change the
5277 	 * direct caller helper to point to @new_addr.
5278 	 */
5279 	if (ftrace_rec_count(rec) == 1) {
5280 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5281 	} else {
5282 		entry->direct = new_addr;
5283 		ret = 0;
5284 	}
5285 
5286  out_unlock:
5287 	mutex_unlock(&ftrace_lock);
5288 	mutex_unlock(&direct_mutex);
5289 	return ret;
5290 }
5291 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5292 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5293 
5294 /**
5295  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5296  * @ops - the ops to set the filter with
5297  * @ip - the address to add to or remove from the filter.
5298  * @remove - non zero to remove the ip from the filter
5299  * @reset - non zero to reset all filters before applying this filter.
5300  *
5301  * Filters denote which functions should be enabled when tracing is enabled
5302  * If @ip is NULL, it failes to update filter.
5303  */
5304 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5305 			 int remove, int reset)
5306 {
5307 	ftrace_ops_init(ops);
5308 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5309 }
5310 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5311 
5312 /**
5313  * ftrace_ops_set_global_filter - setup ops to use global filters
5314  * @ops - the ops which will use the global filters
5315  *
5316  * ftrace users who need global function trace filtering should call this.
5317  * It can set the global filter only if ops were not initialized before.
5318  */
5319 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5320 {
5321 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5322 		return;
5323 
5324 	ftrace_ops_init(ops);
5325 	ops->func_hash = &global_ops.local_hash;
5326 }
5327 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5328 
5329 static int
5330 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5331 		 int reset, int enable)
5332 {
5333 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5334 }
5335 
5336 /**
5337  * ftrace_set_filter - set a function to filter on in ftrace
5338  * @ops - the ops to set the filter with
5339  * @buf - the string that holds the function filter text.
5340  * @len - the length of the string.
5341  * @reset - non zero to reset all filters before applying this filter.
5342  *
5343  * Filters denote which functions should be enabled when tracing is enabled.
5344  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5345  */
5346 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5347 		       int len, int reset)
5348 {
5349 	ftrace_ops_init(ops);
5350 	return ftrace_set_regex(ops, buf, len, reset, 1);
5351 }
5352 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5353 
5354 /**
5355  * ftrace_set_notrace - set a function to not trace in ftrace
5356  * @ops - the ops to set the notrace filter with
5357  * @buf - the string that holds the function notrace text.
5358  * @len - the length of the string.
5359  * @reset - non zero to reset all filters before applying this filter.
5360  *
5361  * Notrace Filters denote which functions should not be enabled when tracing
5362  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5363  * for tracing.
5364  */
5365 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5366 			int len, int reset)
5367 {
5368 	ftrace_ops_init(ops);
5369 	return ftrace_set_regex(ops, buf, len, reset, 0);
5370 }
5371 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5372 /**
5373  * ftrace_set_global_filter - set a function to filter on with global tracers
5374  * @buf - the string that holds the function filter text.
5375  * @len - the length of the string.
5376  * @reset - non zero to reset all filters before applying this filter.
5377  *
5378  * Filters denote which functions should be enabled when tracing is enabled.
5379  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5380  */
5381 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5382 {
5383 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5384 }
5385 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5386 
5387 /**
5388  * ftrace_set_global_notrace - set a function to not trace with global tracers
5389  * @buf - the string that holds the function notrace text.
5390  * @len - the length of the string.
5391  * @reset - non zero to reset all filters before applying this filter.
5392  *
5393  * Notrace Filters denote which functions should not be enabled when tracing
5394  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5395  * for tracing.
5396  */
5397 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5398 {
5399 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5400 }
5401 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5402 
5403 /*
5404  * command line interface to allow users to set filters on boot up.
5405  */
5406 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5407 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5408 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5409 
5410 /* Used by function selftest to not test if filter is set */
5411 bool ftrace_filter_param __initdata;
5412 
5413 static int __init set_ftrace_notrace(char *str)
5414 {
5415 	ftrace_filter_param = true;
5416 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5417 	return 1;
5418 }
5419 __setup("ftrace_notrace=", set_ftrace_notrace);
5420 
5421 static int __init set_ftrace_filter(char *str)
5422 {
5423 	ftrace_filter_param = true;
5424 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5425 	return 1;
5426 }
5427 __setup("ftrace_filter=", set_ftrace_filter);
5428 
5429 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5430 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5431 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5432 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5433 
5434 static int __init set_graph_function(char *str)
5435 {
5436 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5437 	return 1;
5438 }
5439 __setup("ftrace_graph_filter=", set_graph_function);
5440 
5441 static int __init set_graph_notrace_function(char *str)
5442 {
5443 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5444 	return 1;
5445 }
5446 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5447 
5448 static int __init set_graph_max_depth_function(char *str)
5449 {
5450 	if (!str)
5451 		return 0;
5452 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5453 	return 1;
5454 }
5455 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5456 
5457 static void __init set_ftrace_early_graph(char *buf, int enable)
5458 {
5459 	int ret;
5460 	char *func;
5461 	struct ftrace_hash *hash;
5462 
5463 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5464 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5465 		return;
5466 
5467 	while (buf) {
5468 		func = strsep(&buf, ",");
5469 		/* we allow only one expression at a time */
5470 		ret = ftrace_graph_set_hash(hash, func);
5471 		if (ret)
5472 			printk(KERN_DEBUG "ftrace: function %s not "
5473 					  "traceable\n", func);
5474 	}
5475 
5476 	if (enable)
5477 		ftrace_graph_hash = hash;
5478 	else
5479 		ftrace_graph_notrace_hash = hash;
5480 }
5481 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5482 
5483 void __init
5484 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5485 {
5486 	char *func;
5487 
5488 	ftrace_ops_init(ops);
5489 
5490 	while (buf) {
5491 		func = strsep(&buf, ",");
5492 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5493 	}
5494 }
5495 
5496 static void __init set_ftrace_early_filters(void)
5497 {
5498 	if (ftrace_filter_buf[0])
5499 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5500 	if (ftrace_notrace_buf[0])
5501 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5503 	if (ftrace_graph_buf[0])
5504 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5505 	if (ftrace_graph_notrace_buf[0])
5506 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5507 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5508 }
5509 
5510 int ftrace_regex_release(struct inode *inode, struct file *file)
5511 {
5512 	struct seq_file *m = (struct seq_file *)file->private_data;
5513 	struct ftrace_iterator *iter;
5514 	struct ftrace_hash **orig_hash;
5515 	struct trace_parser *parser;
5516 	int filter_hash;
5517 	int ret;
5518 
5519 	if (file->f_mode & FMODE_READ) {
5520 		iter = m->private;
5521 		seq_release(inode, file);
5522 	} else
5523 		iter = file->private_data;
5524 
5525 	parser = &iter->parser;
5526 	if (trace_parser_loaded(parser)) {
5527 		ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5528 	}
5529 
5530 	trace_parser_put(parser);
5531 
5532 	mutex_lock(&iter->ops->func_hash->regex_lock);
5533 
5534 	if (file->f_mode & FMODE_WRITE) {
5535 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5536 
5537 		if (filter_hash) {
5538 			orig_hash = &iter->ops->func_hash->filter_hash;
5539 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5540 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5541 		} else
5542 			orig_hash = &iter->ops->func_hash->notrace_hash;
5543 
5544 		mutex_lock(&ftrace_lock);
5545 		ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5546 						      iter->hash, filter_hash);
5547 		mutex_unlock(&ftrace_lock);
5548 	} else {
5549 		/* For read only, the hash is the ops hash */
5550 		iter->hash = NULL;
5551 	}
5552 
5553 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5554 	free_ftrace_hash(iter->hash);
5555 	if (iter->tr)
5556 		trace_array_put(iter->tr);
5557 	kfree(iter);
5558 
5559 	return 0;
5560 }
5561 
5562 static const struct file_operations ftrace_avail_fops = {
5563 	.open = ftrace_avail_open,
5564 	.read = seq_read,
5565 	.llseek = seq_lseek,
5566 	.release = seq_release_private,
5567 };
5568 
5569 static const struct file_operations ftrace_enabled_fops = {
5570 	.open = ftrace_enabled_open,
5571 	.read = seq_read,
5572 	.llseek = seq_lseek,
5573 	.release = seq_release_private,
5574 };
5575 
5576 static const struct file_operations ftrace_filter_fops = {
5577 	.open = ftrace_filter_open,
5578 	.read = seq_read,
5579 	.write = ftrace_filter_write,
5580 	.llseek = tracing_lseek,
5581 	.release = ftrace_regex_release,
5582 };
5583 
5584 static const struct file_operations ftrace_notrace_fops = {
5585 	.open = ftrace_notrace_open,
5586 	.read = seq_read,
5587 	.write = ftrace_notrace_write,
5588 	.llseek = tracing_lseek,
5589 	.release = ftrace_regex_release,
5590 };
5591 
5592 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5593 
5594 static DEFINE_MUTEX(graph_lock);
5595 
5596 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5597 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5598 
5599 enum graph_filter_type {
5600 	GRAPH_FILTER_NOTRACE	= 0,
5601 	GRAPH_FILTER_FUNCTION,
5602 };
5603 
5604 #define FTRACE_GRAPH_EMPTY	((void *)1)
5605 
5606 struct ftrace_graph_data {
5607 	struct ftrace_hash		*hash;
5608 	struct ftrace_func_entry	*entry;
5609 	int				idx;   /* for hash table iteration */
5610 	enum graph_filter_type		type;
5611 	struct ftrace_hash		*new_hash;
5612 	const struct seq_operations	*seq_ops;
5613 	struct trace_parser		parser;
5614 };
5615 
5616 static void *
5617 __g_next(struct seq_file *m, loff_t *pos)
5618 {
5619 	struct ftrace_graph_data *fgd = m->private;
5620 	struct ftrace_func_entry *entry = fgd->entry;
5621 	struct hlist_head *head;
5622 	int i, idx = fgd->idx;
5623 
5624 	if (*pos >= fgd->hash->count)
5625 		return NULL;
5626 
5627 	if (entry) {
5628 		hlist_for_each_entry_continue(entry, hlist) {
5629 			fgd->entry = entry;
5630 			return entry;
5631 		}
5632 
5633 		idx++;
5634 	}
5635 
5636 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5637 		head = &fgd->hash->buckets[i];
5638 		hlist_for_each_entry(entry, head, hlist) {
5639 			fgd->entry = entry;
5640 			fgd->idx = i;
5641 			return entry;
5642 		}
5643 	}
5644 	return NULL;
5645 }
5646 
5647 static void *
5648 g_next(struct seq_file *m, void *v, loff_t *pos)
5649 {
5650 	(*pos)++;
5651 	return __g_next(m, pos);
5652 }
5653 
5654 static void *g_start(struct seq_file *m, loff_t *pos)
5655 {
5656 	struct ftrace_graph_data *fgd = m->private;
5657 
5658 	mutex_lock(&graph_lock);
5659 
5660 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5661 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5662 					lockdep_is_held(&graph_lock));
5663 	else
5664 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5665 					lockdep_is_held(&graph_lock));
5666 
5667 	/* Nothing, tell g_show to print all functions are enabled */
5668 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5669 		return FTRACE_GRAPH_EMPTY;
5670 
5671 	fgd->idx = 0;
5672 	fgd->entry = NULL;
5673 	return __g_next(m, pos);
5674 }
5675 
5676 static void g_stop(struct seq_file *m, void *p)
5677 {
5678 	mutex_unlock(&graph_lock);
5679 }
5680 
5681 static int g_show(struct seq_file *m, void *v)
5682 {
5683 	struct ftrace_func_entry *entry = v;
5684 
5685 	if (!entry)
5686 		return 0;
5687 
5688 	if (entry == FTRACE_GRAPH_EMPTY) {
5689 		struct ftrace_graph_data *fgd = m->private;
5690 
5691 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5692 			seq_puts(m, "#### all functions enabled ####\n");
5693 		else
5694 			seq_puts(m, "#### no functions disabled ####\n");
5695 		return 0;
5696 	}
5697 
5698 	seq_printf(m, "%ps\n", (void *)entry->ip);
5699 
5700 	return 0;
5701 }
5702 
5703 static const struct seq_operations ftrace_graph_seq_ops = {
5704 	.start = g_start,
5705 	.next = g_next,
5706 	.stop = g_stop,
5707 	.show = g_show,
5708 };
5709 
5710 static int
5711 __ftrace_graph_open(struct inode *inode, struct file *file,
5712 		    struct ftrace_graph_data *fgd)
5713 {
5714 	int ret;
5715 	struct ftrace_hash *new_hash = NULL;
5716 
5717 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5718 	if (ret)
5719 		return ret;
5720 
5721 	if (file->f_mode & FMODE_WRITE) {
5722 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5723 
5724 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5725 			return -ENOMEM;
5726 
5727 		if (file->f_flags & O_TRUNC)
5728 			new_hash = alloc_ftrace_hash(size_bits);
5729 		else
5730 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5731 							      fgd->hash);
5732 		if (!new_hash) {
5733 			ret = -ENOMEM;
5734 			goto out;
5735 		}
5736 	}
5737 
5738 	if (file->f_mode & FMODE_READ) {
5739 		ret = seq_open(file, &ftrace_graph_seq_ops);
5740 		if (!ret) {
5741 			struct seq_file *m = file->private_data;
5742 			m->private = fgd;
5743 		} else {
5744 			/* Failed */
5745 			free_ftrace_hash(new_hash);
5746 			new_hash = NULL;
5747 		}
5748 	} else
5749 		file->private_data = fgd;
5750 
5751 out:
5752 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5753 		trace_parser_put(&fgd->parser);
5754 
5755 	fgd->new_hash = new_hash;
5756 
5757 	/*
5758 	 * All uses of fgd->hash must be taken with the graph_lock
5759 	 * held. The graph_lock is going to be released, so force
5760 	 * fgd->hash to be reinitialized when it is taken again.
5761 	 */
5762 	fgd->hash = NULL;
5763 
5764 	return ret;
5765 }
5766 
5767 static int
5768 ftrace_graph_open(struct inode *inode, struct file *file)
5769 {
5770 	struct ftrace_graph_data *fgd;
5771 	int ret;
5772 
5773 	if (unlikely(ftrace_disabled))
5774 		return -ENODEV;
5775 
5776 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5777 	if (fgd == NULL)
5778 		return -ENOMEM;
5779 
5780 	mutex_lock(&graph_lock);
5781 
5782 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5783 					lockdep_is_held(&graph_lock));
5784 	fgd->type = GRAPH_FILTER_FUNCTION;
5785 	fgd->seq_ops = &ftrace_graph_seq_ops;
5786 
5787 	ret = __ftrace_graph_open(inode, file, fgd);
5788 	if (ret < 0)
5789 		kfree(fgd);
5790 
5791 	mutex_unlock(&graph_lock);
5792 	return ret;
5793 }
5794 
5795 static int
5796 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5797 {
5798 	struct ftrace_graph_data *fgd;
5799 	int ret;
5800 
5801 	if (unlikely(ftrace_disabled))
5802 		return -ENODEV;
5803 
5804 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5805 	if (fgd == NULL)
5806 		return -ENOMEM;
5807 
5808 	mutex_lock(&graph_lock);
5809 
5810 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5811 					lockdep_is_held(&graph_lock));
5812 	fgd->type = GRAPH_FILTER_NOTRACE;
5813 	fgd->seq_ops = &ftrace_graph_seq_ops;
5814 
5815 	ret = __ftrace_graph_open(inode, file, fgd);
5816 	if (ret < 0)
5817 		kfree(fgd);
5818 
5819 	mutex_unlock(&graph_lock);
5820 	return ret;
5821 }
5822 
5823 static int
5824 ftrace_graph_release(struct inode *inode, struct file *file)
5825 {
5826 	struct ftrace_graph_data *fgd;
5827 	struct ftrace_hash *old_hash, *new_hash;
5828 	struct trace_parser *parser;
5829 	int ret = 0;
5830 
5831 	if (file->f_mode & FMODE_READ) {
5832 		struct seq_file *m = file->private_data;
5833 
5834 		fgd = m->private;
5835 		seq_release(inode, file);
5836 	} else {
5837 		fgd = file->private_data;
5838 	}
5839 
5840 
5841 	if (file->f_mode & FMODE_WRITE) {
5842 
5843 		parser = &fgd->parser;
5844 
5845 		if (trace_parser_loaded((parser))) {
5846 			ret = ftrace_graph_set_hash(fgd->new_hash,
5847 						    parser->buffer);
5848 		}
5849 
5850 		trace_parser_put(parser);
5851 
5852 		new_hash = __ftrace_hash_move(fgd->new_hash);
5853 		if (!new_hash) {
5854 			ret = -ENOMEM;
5855 			goto out;
5856 		}
5857 
5858 		mutex_lock(&graph_lock);
5859 
5860 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5861 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5862 					lockdep_is_held(&graph_lock));
5863 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5864 		} else {
5865 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5866 					lockdep_is_held(&graph_lock));
5867 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5868 		}
5869 
5870 		mutex_unlock(&graph_lock);
5871 
5872 		/*
5873 		 * We need to do a hard force of sched synchronization.
5874 		 * This is because we use preempt_disable() to do RCU, but
5875 		 * the function tracers can be called where RCU is not watching
5876 		 * (like before user_exit()). We can not rely on the RCU
5877 		 * infrastructure to do the synchronization, thus we must do it
5878 		 * ourselves.
5879 		 */
5880 		synchronize_rcu_tasks_rude();
5881 
5882 		free_ftrace_hash(old_hash);
5883 	}
5884 
5885  out:
5886 	free_ftrace_hash(fgd->new_hash);
5887 	kfree(fgd);
5888 
5889 	return ret;
5890 }
5891 
5892 static int
5893 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5894 {
5895 	struct ftrace_glob func_g;
5896 	struct dyn_ftrace *rec;
5897 	struct ftrace_page *pg;
5898 	struct ftrace_func_entry *entry;
5899 	int fail = 1;
5900 	int not;
5901 
5902 	/* decode regex */
5903 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
5904 					 &func_g.search, &not);
5905 
5906 	func_g.len = strlen(func_g.search);
5907 
5908 	mutex_lock(&ftrace_lock);
5909 
5910 	if (unlikely(ftrace_disabled)) {
5911 		mutex_unlock(&ftrace_lock);
5912 		return -ENODEV;
5913 	}
5914 
5915 	do_for_each_ftrace_rec(pg, rec) {
5916 
5917 		if (rec->flags & FTRACE_FL_DISABLED)
5918 			continue;
5919 
5920 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
5921 			entry = ftrace_lookup_ip(hash, rec->ip);
5922 
5923 			if (!not) {
5924 				fail = 0;
5925 
5926 				if (entry)
5927 					continue;
5928 				if (add_hash_entry(hash, rec->ip) < 0)
5929 					goto out;
5930 			} else {
5931 				if (entry) {
5932 					free_hash_entry(hash, entry);
5933 					fail = 0;
5934 				}
5935 			}
5936 		}
5937 	} while_for_each_ftrace_rec();
5938 out:
5939 	mutex_unlock(&ftrace_lock);
5940 
5941 	if (fail)
5942 		return -EINVAL;
5943 
5944 	return 0;
5945 }
5946 
5947 static ssize_t
5948 ftrace_graph_write(struct file *file, const char __user *ubuf,
5949 		   size_t cnt, loff_t *ppos)
5950 {
5951 	ssize_t read, ret = 0;
5952 	struct ftrace_graph_data *fgd = file->private_data;
5953 	struct trace_parser *parser;
5954 
5955 	if (!cnt)
5956 		return 0;
5957 
5958 	/* Read mode uses seq functions */
5959 	if (file->f_mode & FMODE_READ) {
5960 		struct seq_file *m = file->private_data;
5961 		fgd = m->private;
5962 	}
5963 
5964 	parser = &fgd->parser;
5965 
5966 	read = trace_get_user(parser, ubuf, cnt, ppos);
5967 
5968 	if (read >= 0 && trace_parser_loaded(parser) &&
5969 	    !trace_parser_cont(parser)) {
5970 
5971 		ret = ftrace_graph_set_hash(fgd->new_hash,
5972 					    parser->buffer);
5973 		trace_parser_clear(parser);
5974 	}
5975 
5976 	if (!ret)
5977 		ret = read;
5978 
5979 	return ret;
5980 }
5981 
5982 static const struct file_operations ftrace_graph_fops = {
5983 	.open		= ftrace_graph_open,
5984 	.read		= seq_read,
5985 	.write		= ftrace_graph_write,
5986 	.llseek		= tracing_lseek,
5987 	.release	= ftrace_graph_release,
5988 };
5989 
5990 static const struct file_operations ftrace_graph_notrace_fops = {
5991 	.open		= ftrace_graph_notrace_open,
5992 	.read		= seq_read,
5993 	.write		= ftrace_graph_write,
5994 	.llseek		= tracing_lseek,
5995 	.release	= ftrace_graph_release,
5996 };
5997 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5998 
5999 void ftrace_create_filter_files(struct ftrace_ops *ops,
6000 				struct dentry *parent)
6001 {
6002 
6003 	trace_create_file("set_ftrace_filter", 0644, parent,
6004 			  ops, &ftrace_filter_fops);
6005 
6006 	trace_create_file("set_ftrace_notrace", 0644, parent,
6007 			  ops, &ftrace_notrace_fops);
6008 }
6009 
6010 /*
6011  * The name "destroy_filter_files" is really a misnomer. Although
6012  * in the future, it may actually delete the files, but this is
6013  * really intended to make sure the ops passed in are disabled
6014  * and that when this function returns, the caller is free to
6015  * free the ops.
6016  *
6017  * The "destroy" name is only to match the "create" name that this
6018  * should be paired with.
6019  */
6020 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6021 {
6022 	mutex_lock(&ftrace_lock);
6023 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6024 		ftrace_shutdown(ops, 0);
6025 	ops->flags |= FTRACE_OPS_FL_DELETED;
6026 	ftrace_free_filter(ops);
6027 	mutex_unlock(&ftrace_lock);
6028 }
6029 
6030 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6031 {
6032 
6033 	trace_create_file("available_filter_functions", 0444,
6034 			d_tracer, NULL, &ftrace_avail_fops);
6035 
6036 	trace_create_file("enabled_functions", 0444,
6037 			d_tracer, NULL, &ftrace_enabled_fops);
6038 
6039 	ftrace_create_filter_files(&global_ops, d_tracer);
6040 
6041 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6042 	trace_create_file("set_graph_function", 0644, d_tracer,
6043 				    NULL,
6044 				    &ftrace_graph_fops);
6045 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6046 				    NULL,
6047 				    &ftrace_graph_notrace_fops);
6048 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6049 
6050 	return 0;
6051 }
6052 
6053 static int ftrace_cmp_ips(const void *a, const void *b)
6054 {
6055 	const unsigned long *ipa = a;
6056 	const unsigned long *ipb = b;
6057 
6058 	if (*ipa > *ipb)
6059 		return 1;
6060 	if (*ipa < *ipb)
6061 		return -1;
6062 	return 0;
6063 }
6064 
6065 static int ftrace_process_locs(struct module *mod,
6066 			       unsigned long *start,
6067 			       unsigned long *end)
6068 {
6069 	struct ftrace_page *start_pg;
6070 	struct ftrace_page *pg;
6071 	struct dyn_ftrace *rec;
6072 	unsigned long count;
6073 	unsigned long *p;
6074 	unsigned long addr;
6075 	unsigned long flags = 0; /* Shut up gcc */
6076 	int ret = -ENOMEM;
6077 
6078 	count = end - start;
6079 
6080 	if (!count)
6081 		return 0;
6082 
6083 	sort(start, count, sizeof(*start),
6084 	     ftrace_cmp_ips, NULL);
6085 
6086 	start_pg = ftrace_allocate_pages(count);
6087 	if (!start_pg)
6088 		return -ENOMEM;
6089 
6090 	mutex_lock(&ftrace_lock);
6091 
6092 	/*
6093 	 * Core and each module needs their own pages, as
6094 	 * modules will free them when they are removed.
6095 	 * Force a new page to be allocated for modules.
6096 	 */
6097 	if (!mod) {
6098 		WARN_ON(ftrace_pages || ftrace_pages_start);
6099 		/* First initialization */
6100 		ftrace_pages = ftrace_pages_start = start_pg;
6101 	} else {
6102 		if (!ftrace_pages)
6103 			goto out;
6104 
6105 		if (WARN_ON(ftrace_pages->next)) {
6106 			/* Hmm, we have free pages? */
6107 			while (ftrace_pages->next)
6108 				ftrace_pages = ftrace_pages->next;
6109 		}
6110 
6111 		ftrace_pages->next = start_pg;
6112 	}
6113 
6114 	p = start;
6115 	pg = start_pg;
6116 	while (p < end) {
6117 		addr = ftrace_call_adjust(*p++);
6118 		/*
6119 		 * Some architecture linkers will pad between
6120 		 * the different mcount_loc sections of different
6121 		 * object files to satisfy alignments.
6122 		 * Skip any NULL pointers.
6123 		 */
6124 		if (!addr)
6125 			continue;
6126 
6127 		if (pg->index == pg->size) {
6128 			/* We should have allocated enough */
6129 			if (WARN_ON(!pg->next))
6130 				break;
6131 			pg = pg->next;
6132 		}
6133 
6134 		rec = &pg->records[pg->index++];
6135 		rec->ip = addr;
6136 	}
6137 
6138 	/* We should have used all pages */
6139 	WARN_ON(pg->next);
6140 
6141 	/* Assign the last page to ftrace_pages */
6142 	ftrace_pages = pg;
6143 
6144 	/*
6145 	 * We only need to disable interrupts on start up
6146 	 * because we are modifying code that an interrupt
6147 	 * may execute, and the modification is not atomic.
6148 	 * But for modules, nothing runs the code we modify
6149 	 * until we are finished with it, and there's no
6150 	 * reason to cause large interrupt latencies while we do it.
6151 	 */
6152 	if (!mod)
6153 		local_irq_save(flags);
6154 	ftrace_update_code(mod, start_pg);
6155 	if (!mod)
6156 		local_irq_restore(flags);
6157 	ret = 0;
6158  out:
6159 	mutex_unlock(&ftrace_lock);
6160 
6161 	return ret;
6162 }
6163 
6164 struct ftrace_mod_func {
6165 	struct list_head	list;
6166 	char			*name;
6167 	unsigned long		ip;
6168 	unsigned int		size;
6169 };
6170 
6171 struct ftrace_mod_map {
6172 	struct rcu_head		rcu;
6173 	struct list_head	list;
6174 	struct module		*mod;
6175 	unsigned long		start_addr;
6176 	unsigned long		end_addr;
6177 	struct list_head	funcs;
6178 	unsigned int		num_funcs;
6179 };
6180 
6181 #ifdef CONFIG_MODULES
6182 
6183 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6184 
6185 static LIST_HEAD(ftrace_mod_maps);
6186 
6187 static int referenced_filters(struct dyn_ftrace *rec)
6188 {
6189 	struct ftrace_ops *ops;
6190 	int cnt = 0;
6191 
6192 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6193 		if (ops_references_rec(ops, rec))
6194 		    cnt++;
6195 	}
6196 
6197 	return cnt;
6198 }
6199 
6200 static void
6201 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6202 {
6203 	struct ftrace_func_entry *entry;
6204 	struct dyn_ftrace *rec;
6205 	int i;
6206 
6207 	if (ftrace_hash_empty(hash))
6208 		return;
6209 
6210 	for (i = 0; i < pg->index; i++) {
6211 		rec = &pg->records[i];
6212 		entry = __ftrace_lookup_ip(hash, rec->ip);
6213 		/*
6214 		 * Do not allow this rec to match again.
6215 		 * Yeah, it may waste some memory, but will be removed
6216 		 * if/when the hash is modified again.
6217 		 */
6218 		if (entry)
6219 			entry->ip = 0;
6220 	}
6221 }
6222 
6223 /* Clear any records from hashs */
6224 static void clear_mod_from_hashes(struct ftrace_page *pg)
6225 {
6226 	struct trace_array *tr;
6227 
6228 	mutex_lock(&trace_types_lock);
6229 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6230 		if (!tr->ops || !tr->ops->func_hash)
6231 			continue;
6232 		mutex_lock(&tr->ops->func_hash->regex_lock);
6233 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6234 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6235 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6236 	}
6237 	mutex_unlock(&trace_types_lock);
6238 }
6239 
6240 static void ftrace_free_mod_map(struct rcu_head *rcu)
6241 {
6242 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6243 	struct ftrace_mod_func *mod_func;
6244 	struct ftrace_mod_func *n;
6245 
6246 	/* All the contents of mod_map are now not visible to readers */
6247 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6248 		kfree(mod_func->name);
6249 		list_del(&mod_func->list);
6250 		kfree(mod_func);
6251 	}
6252 
6253 	kfree(mod_map);
6254 }
6255 
6256 void ftrace_release_mod(struct module *mod)
6257 {
6258 	struct ftrace_mod_map *mod_map;
6259 	struct ftrace_mod_map *n;
6260 	struct dyn_ftrace *rec;
6261 	struct ftrace_page **last_pg;
6262 	struct ftrace_page *tmp_page = NULL;
6263 	struct ftrace_page *pg;
6264 	int order;
6265 
6266 	mutex_lock(&ftrace_lock);
6267 
6268 	if (ftrace_disabled)
6269 		goto out_unlock;
6270 
6271 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6272 		if (mod_map->mod == mod) {
6273 			list_del_rcu(&mod_map->list);
6274 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6275 			break;
6276 		}
6277 	}
6278 
6279 	/*
6280 	 * Each module has its own ftrace_pages, remove
6281 	 * them from the list.
6282 	 */
6283 	last_pg = &ftrace_pages_start;
6284 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6285 		rec = &pg->records[0];
6286 		if (within_module_core(rec->ip, mod) ||
6287 		    within_module_init(rec->ip, mod)) {
6288 			/*
6289 			 * As core pages are first, the first
6290 			 * page should never be a module page.
6291 			 */
6292 			if (WARN_ON(pg == ftrace_pages_start))
6293 				goto out_unlock;
6294 
6295 			/* Check if we are deleting the last page */
6296 			if (pg == ftrace_pages)
6297 				ftrace_pages = next_to_ftrace_page(last_pg);
6298 
6299 			ftrace_update_tot_cnt -= pg->index;
6300 			*last_pg = pg->next;
6301 
6302 			pg->next = tmp_page;
6303 			tmp_page = pg;
6304 		} else
6305 			last_pg = &pg->next;
6306 	}
6307  out_unlock:
6308 	mutex_unlock(&ftrace_lock);
6309 
6310 	for (pg = tmp_page; pg; pg = tmp_page) {
6311 
6312 		/* Needs to be called outside of ftrace_lock */
6313 		clear_mod_from_hashes(pg);
6314 
6315 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6316 		free_pages((unsigned long)pg->records, order);
6317 		tmp_page = pg->next;
6318 		kfree(pg);
6319 		ftrace_number_of_pages -= 1 << order;
6320 		ftrace_number_of_groups--;
6321 	}
6322 }
6323 
6324 void ftrace_module_enable(struct module *mod)
6325 {
6326 	struct dyn_ftrace *rec;
6327 	struct ftrace_page *pg;
6328 
6329 	mutex_lock(&ftrace_lock);
6330 
6331 	if (ftrace_disabled)
6332 		goto out_unlock;
6333 
6334 	/*
6335 	 * If the tracing is enabled, go ahead and enable the record.
6336 	 *
6337 	 * The reason not to enable the record immediately is the
6338 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6339 	 * correct previous instructions.  Making first the NOP
6340 	 * conversion puts the module to the correct state, thus
6341 	 * passing the ftrace_make_call check.
6342 	 *
6343 	 * We also delay this to after the module code already set the
6344 	 * text to read-only, as we now need to set it back to read-write
6345 	 * so that we can modify the text.
6346 	 */
6347 	if (ftrace_start_up)
6348 		ftrace_arch_code_modify_prepare();
6349 
6350 	do_for_each_ftrace_rec(pg, rec) {
6351 		int cnt;
6352 		/*
6353 		 * do_for_each_ftrace_rec() is a double loop.
6354 		 * module text shares the pg. If a record is
6355 		 * not part of this module, then skip this pg,
6356 		 * which the "break" will do.
6357 		 */
6358 		if (!within_module_core(rec->ip, mod) &&
6359 		    !within_module_init(rec->ip, mod))
6360 			break;
6361 
6362 		cnt = 0;
6363 
6364 		/*
6365 		 * When adding a module, we need to check if tracers are
6366 		 * currently enabled and if they are, and can trace this record,
6367 		 * we need to enable the module functions as well as update the
6368 		 * reference counts for those function records.
6369 		 */
6370 		if (ftrace_start_up)
6371 			cnt += referenced_filters(rec);
6372 
6373 		/* This clears FTRACE_FL_DISABLED */
6374 		rec->flags = cnt;
6375 
6376 		if (ftrace_start_up && cnt) {
6377 			int failed = __ftrace_replace_code(rec, 1);
6378 			if (failed) {
6379 				ftrace_bug(failed, rec);
6380 				goto out_loop;
6381 			}
6382 		}
6383 
6384 	} while_for_each_ftrace_rec();
6385 
6386  out_loop:
6387 	if (ftrace_start_up)
6388 		ftrace_arch_code_modify_post_process();
6389 
6390  out_unlock:
6391 	mutex_unlock(&ftrace_lock);
6392 
6393 	process_cached_mods(mod->name);
6394 }
6395 
6396 void ftrace_module_init(struct module *mod)
6397 {
6398 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6399 		return;
6400 
6401 	ftrace_process_locs(mod, mod->ftrace_callsites,
6402 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6403 }
6404 
6405 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6406 				struct dyn_ftrace *rec)
6407 {
6408 	struct ftrace_mod_func *mod_func;
6409 	unsigned long symsize;
6410 	unsigned long offset;
6411 	char str[KSYM_SYMBOL_LEN];
6412 	char *modname;
6413 	const char *ret;
6414 
6415 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6416 	if (!ret)
6417 		return;
6418 
6419 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6420 	if (!mod_func)
6421 		return;
6422 
6423 	mod_func->name = kstrdup(str, GFP_KERNEL);
6424 	if (!mod_func->name) {
6425 		kfree(mod_func);
6426 		return;
6427 	}
6428 
6429 	mod_func->ip = rec->ip - offset;
6430 	mod_func->size = symsize;
6431 
6432 	mod_map->num_funcs++;
6433 
6434 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6435 }
6436 
6437 static struct ftrace_mod_map *
6438 allocate_ftrace_mod_map(struct module *mod,
6439 			unsigned long start, unsigned long end)
6440 {
6441 	struct ftrace_mod_map *mod_map;
6442 
6443 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6444 	if (!mod_map)
6445 		return NULL;
6446 
6447 	mod_map->mod = mod;
6448 	mod_map->start_addr = start;
6449 	mod_map->end_addr = end;
6450 	mod_map->num_funcs = 0;
6451 
6452 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6453 
6454 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6455 
6456 	return mod_map;
6457 }
6458 
6459 static const char *
6460 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6461 			   unsigned long addr, unsigned long *size,
6462 			   unsigned long *off, char *sym)
6463 {
6464 	struct ftrace_mod_func *found_func =  NULL;
6465 	struct ftrace_mod_func *mod_func;
6466 
6467 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6468 		if (addr >= mod_func->ip &&
6469 		    addr < mod_func->ip + mod_func->size) {
6470 			found_func = mod_func;
6471 			break;
6472 		}
6473 	}
6474 
6475 	if (found_func) {
6476 		if (size)
6477 			*size = found_func->size;
6478 		if (off)
6479 			*off = addr - found_func->ip;
6480 		if (sym)
6481 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6482 
6483 		return found_func->name;
6484 	}
6485 
6486 	return NULL;
6487 }
6488 
6489 const char *
6490 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6491 		   unsigned long *off, char **modname, char *sym)
6492 {
6493 	struct ftrace_mod_map *mod_map;
6494 	const char *ret = NULL;
6495 
6496 	/* mod_map is freed via call_rcu() */
6497 	preempt_disable();
6498 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6499 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6500 		if (ret) {
6501 			if (modname)
6502 				*modname = mod_map->mod->name;
6503 			break;
6504 		}
6505 	}
6506 	preempt_enable();
6507 
6508 	return ret;
6509 }
6510 
6511 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6512 			   char *type, char *name,
6513 			   char *module_name, int *exported)
6514 {
6515 	struct ftrace_mod_map *mod_map;
6516 	struct ftrace_mod_func *mod_func;
6517 
6518 	preempt_disable();
6519 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6520 
6521 		if (symnum >= mod_map->num_funcs) {
6522 			symnum -= mod_map->num_funcs;
6523 			continue;
6524 		}
6525 
6526 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6527 			if (symnum > 1) {
6528 				symnum--;
6529 				continue;
6530 			}
6531 
6532 			*value = mod_func->ip;
6533 			*type = 'T';
6534 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6535 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6536 			*exported = 1;
6537 			preempt_enable();
6538 			return 0;
6539 		}
6540 		WARN_ON(1);
6541 		break;
6542 	}
6543 	preempt_enable();
6544 	return -ERANGE;
6545 }
6546 
6547 #else
6548 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6549 				struct dyn_ftrace *rec) { }
6550 static inline struct ftrace_mod_map *
6551 allocate_ftrace_mod_map(struct module *mod,
6552 			unsigned long start, unsigned long end)
6553 {
6554 	return NULL;
6555 }
6556 #endif /* CONFIG_MODULES */
6557 
6558 struct ftrace_init_func {
6559 	struct list_head list;
6560 	unsigned long ip;
6561 };
6562 
6563 /* Clear any init ips from hashes */
6564 static void
6565 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6566 {
6567 	struct ftrace_func_entry *entry;
6568 
6569 	entry = ftrace_lookup_ip(hash, func->ip);
6570 	/*
6571 	 * Do not allow this rec to match again.
6572 	 * Yeah, it may waste some memory, but will be removed
6573 	 * if/when the hash is modified again.
6574 	 */
6575 	if (entry)
6576 		entry->ip = 0;
6577 }
6578 
6579 static void
6580 clear_func_from_hashes(struct ftrace_init_func *func)
6581 {
6582 	struct trace_array *tr;
6583 
6584 	mutex_lock(&trace_types_lock);
6585 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6586 		if (!tr->ops || !tr->ops->func_hash)
6587 			continue;
6588 		mutex_lock(&tr->ops->func_hash->regex_lock);
6589 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6590 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6591 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6592 	}
6593 	mutex_unlock(&trace_types_lock);
6594 }
6595 
6596 static void add_to_clear_hash_list(struct list_head *clear_list,
6597 				   struct dyn_ftrace *rec)
6598 {
6599 	struct ftrace_init_func *func;
6600 
6601 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6602 	if (!func) {
6603 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6604 		return;
6605 	}
6606 
6607 	func->ip = rec->ip;
6608 	list_add(&func->list, clear_list);
6609 }
6610 
6611 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6612 {
6613 	unsigned long start = (unsigned long)(start_ptr);
6614 	unsigned long end = (unsigned long)(end_ptr);
6615 	struct ftrace_page **last_pg = &ftrace_pages_start;
6616 	struct ftrace_page *pg;
6617 	struct dyn_ftrace *rec;
6618 	struct dyn_ftrace key;
6619 	struct ftrace_mod_map *mod_map = NULL;
6620 	struct ftrace_init_func *func, *func_next;
6621 	struct list_head clear_hash;
6622 	int order;
6623 
6624 	INIT_LIST_HEAD(&clear_hash);
6625 
6626 	key.ip = start;
6627 	key.flags = end;	/* overload flags, as it is unsigned long */
6628 
6629 	mutex_lock(&ftrace_lock);
6630 
6631 	/*
6632 	 * If we are freeing module init memory, then check if
6633 	 * any tracer is active. If so, we need to save a mapping of
6634 	 * the module functions being freed with the address.
6635 	 */
6636 	if (mod && ftrace_ops_list != &ftrace_list_end)
6637 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6638 
6639 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6640 		if (end < pg->records[0].ip ||
6641 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6642 			continue;
6643  again:
6644 		rec = bsearch(&key, pg->records, pg->index,
6645 			      sizeof(struct dyn_ftrace),
6646 			      ftrace_cmp_recs);
6647 		if (!rec)
6648 			continue;
6649 
6650 		/* rec will be cleared from hashes after ftrace_lock unlock */
6651 		add_to_clear_hash_list(&clear_hash, rec);
6652 
6653 		if (mod_map)
6654 			save_ftrace_mod_rec(mod_map, rec);
6655 
6656 		pg->index--;
6657 		ftrace_update_tot_cnt--;
6658 		if (!pg->index) {
6659 			*last_pg = pg->next;
6660 			order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6661 			free_pages((unsigned long)pg->records, order);
6662 			ftrace_number_of_pages -= 1 << order;
6663 			ftrace_number_of_groups--;
6664 			kfree(pg);
6665 			pg = container_of(last_pg, struct ftrace_page, next);
6666 			if (!(*last_pg))
6667 				ftrace_pages = pg;
6668 			continue;
6669 		}
6670 		memmove(rec, rec + 1,
6671 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6672 		/* More than one function may be in this block */
6673 		goto again;
6674 	}
6675 	mutex_unlock(&ftrace_lock);
6676 
6677 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6678 		clear_func_from_hashes(func);
6679 		kfree(func);
6680 	}
6681 }
6682 
6683 void __init ftrace_free_init_mem(void)
6684 {
6685 	void *start = (void *)(&__init_begin);
6686 	void *end = (void *)(&__init_end);
6687 
6688 	ftrace_free_mem(NULL, start, end);
6689 }
6690 
6691 void __init ftrace_init(void)
6692 {
6693 	extern unsigned long __start_mcount_loc[];
6694 	extern unsigned long __stop_mcount_loc[];
6695 	unsigned long count, flags;
6696 	int ret;
6697 
6698 	local_irq_save(flags);
6699 	ret = ftrace_dyn_arch_init();
6700 	local_irq_restore(flags);
6701 	if (ret)
6702 		goto failed;
6703 
6704 	count = __stop_mcount_loc - __start_mcount_loc;
6705 	if (!count) {
6706 		pr_info("ftrace: No functions to be traced?\n");
6707 		goto failed;
6708 	}
6709 
6710 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6711 		count, count / ENTRIES_PER_PAGE + 1);
6712 
6713 	last_ftrace_enabled = ftrace_enabled = 1;
6714 
6715 	ret = ftrace_process_locs(NULL,
6716 				  __start_mcount_loc,
6717 				  __stop_mcount_loc);
6718 
6719 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6720 		ftrace_number_of_pages, ftrace_number_of_groups);
6721 
6722 	set_ftrace_early_filters();
6723 
6724 	return;
6725  failed:
6726 	ftrace_disabled = 1;
6727 }
6728 
6729 /* Do nothing if arch does not support this */
6730 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6731 {
6732 }
6733 
6734 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6735 {
6736 	arch_ftrace_update_trampoline(ops);
6737 }
6738 
6739 void ftrace_init_trace_array(struct trace_array *tr)
6740 {
6741 	INIT_LIST_HEAD(&tr->func_probes);
6742 	INIT_LIST_HEAD(&tr->mod_trace);
6743 	INIT_LIST_HEAD(&tr->mod_notrace);
6744 }
6745 #else
6746 
6747 struct ftrace_ops global_ops = {
6748 	.func			= ftrace_stub,
6749 	.flags			= FTRACE_OPS_FL_RECURSION_SAFE |
6750 				  FTRACE_OPS_FL_INITIALIZED |
6751 				  FTRACE_OPS_FL_PID,
6752 };
6753 
6754 static int __init ftrace_nodyn_init(void)
6755 {
6756 	ftrace_enabled = 1;
6757 	return 0;
6758 }
6759 core_initcall(ftrace_nodyn_init);
6760 
6761 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6762 static inline void ftrace_startup_enable(int command) { }
6763 static inline void ftrace_startup_all(int command) { }
6764 
6765 # define ftrace_startup_sysctl()	do { } while (0)
6766 # define ftrace_shutdown_sysctl()	do { } while (0)
6767 
6768 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6769 {
6770 }
6771 
6772 #endif /* CONFIG_DYNAMIC_FTRACE */
6773 
6774 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6775 {
6776 	tr->ops = &global_ops;
6777 	tr->ops->private = tr;
6778 	ftrace_init_trace_array(tr);
6779 }
6780 
6781 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6782 {
6783 	/* If we filter on pids, update to use the pid function */
6784 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6785 		if (WARN_ON(tr->ops->func != ftrace_stub))
6786 			printk("ftrace ops had %pS for function\n",
6787 			       tr->ops->func);
6788 	}
6789 	tr->ops->func = func;
6790 	tr->ops->private = tr;
6791 }
6792 
6793 void ftrace_reset_array_ops(struct trace_array *tr)
6794 {
6795 	tr->ops->func = ftrace_stub;
6796 }
6797 
6798 static nokprobe_inline void
6799 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6800 		       struct ftrace_ops *ignored, struct pt_regs *regs)
6801 {
6802 	struct ftrace_ops *op;
6803 	int bit;
6804 
6805 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6806 	if (bit < 0)
6807 		return;
6808 
6809 	/*
6810 	 * Some of the ops may be dynamically allocated,
6811 	 * they must be freed after a synchronize_rcu().
6812 	 */
6813 	preempt_disable_notrace();
6814 
6815 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6816 		/* Stub functions don't need to be called nor tested */
6817 		if (op->flags & FTRACE_OPS_FL_STUB)
6818 			continue;
6819 		/*
6820 		 * Check the following for each ops before calling their func:
6821 		 *  if RCU flag is set, then rcu_is_watching() must be true
6822 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6823 		 *                          must be false
6824 		 *  Otherwise test if the ip matches the ops filter
6825 		 *
6826 		 * If any of the above fails then the op->func() is not executed.
6827 		 */
6828 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6829 		    ftrace_ops_test(op, ip, regs)) {
6830 			if (FTRACE_WARN_ON(!op->func)) {
6831 				pr_warn("op=%p %pS\n", op, op);
6832 				goto out;
6833 			}
6834 			op->func(ip, parent_ip, op, regs);
6835 		}
6836 	} while_for_each_ftrace_op(op);
6837 out:
6838 	preempt_enable_notrace();
6839 	trace_clear_recursion(bit);
6840 }
6841 
6842 /*
6843  * Some archs only support passing ip and parent_ip. Even though
6844  * the list function ignores the op parameter, we do not want any
6845  * C side effects, where a function is called without the caller
6846  * sending a third parameter.
6847  * Archs are to support both the regs and ftrace_ops at the same time.
6848  * If they support ftrace_ops, it is assumed they support regs.
6849  * If call backs want to use regs, they must either check for regs
6850  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
6851  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
6852  * An architecture can pass partial regs with ftrace_ops and still
6853  * set the ARCH_SUPPORTS_FTRACE_OPS.
6854  */
6855 #if ARCH_SUPPORTS_FTRACE_OPS
6856 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6857 				 struct ftrace_ops *op, struct pt_regs *regs)
6858 {
6859 	__ftrace_ops_list_func(ip, parent_ip, NULL, regs);
6860 }
6861 NOKPROBE_SYMBOL(ftrace_ops_list_func);
6862 #else
6863 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
6864 {
6865 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
6866 }
6867 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
6868 #endif
6869 
6870 /*
6871  * If there's only one function registered but it does not support
6872  * recursion, needs RCU protection and/or requires per cpu handling, then
6873  * this function will be called by the mcount trampoline.
6874  */
6875 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
6876 				   struct ftrace_ops *op, struct pt_regs *regs)
6877 {
6878 	int bit;
6879 
6880 	if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching())
6881 		return;
6882 
6883 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6884 	if (bit < 0)
6885 		return;
6886 
6887 	preempt_disable_notrace();
6888 
6889 	op->func(ip, parent_ip, op, regs);
6890 
6891 	preempt_enable_notrace();
6892 	trace_clear_recursion(bit);
6893 }
6894 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
6895 
6896 /**
6897  * ftrace_ops_get_func - get the function a trampoline should call
6898  * @ops: the ops to get the function for
6899  *
6900  * Normally the mcount trampoline will call the ops->func, but there
6901  * are times that it should not. For example, if the ops does not
6902  * have its own recursion protection, then it should call the
6903  * ftrace_ops_assist_func() instead.
6904  *
6905  * Returns the function that the trampoline should call for @ops.
6906  */
6907 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
6908 {
6909 	/*
6910 	 * If the function does not handle recursion, needs to be RCU safe,
6911 	 * or does per cpu logic, then we need to call the assist handler.
6912 	 */
6913 	if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
6914 	    ops->flags & FTRACE_OPS_FL_RCU)
6915 		return ftrace_ops_assist_func;
6916 
6917 	return ops->func;
6918 }
6919 
6920 static void
6921 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
6922 		    struct task_struct *prev, struct task_struct *next)
6923 {
6924 	struct trace_array *tr = data;
6925 	struct trace_pid_list *pid_list;
6926 	struct trace_pid_list *no_pid_list;
6927 
6928 	pid_list = rcu_dereference_sched(tr->function_pids);
6929 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
6930 
6931 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
6932 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
6933 			       FTRACE_PID_IGNORE);
6934 	else
6935 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
6936 			       next->pid);
6937 }
6938 
6939 static void
6940 ftrace_pid_follow_sched_process_fork(void *data,
6941 				     struct task_struct *self,
6942 				     struct task_struct *task)
6943 {
6944 	struct trace_pid_list *pid_list;
6945 	struct trace_array *tr = data;
6946 
6947 	pid_list = rcu_dereference_sched(tr->function_pids);
6948 	trace_filter_add_remove_task(pid_list, self, task);
6949 
6950 	pid_list = rcu_dereference_sched(tr->function_no_pids);
6951 	trace_filter_add_remove_task(pid_list, self, task);
6952 }
6953 
6954 static void
6955 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
6956 {
6957 	struct trace_pid_list *pid_list;
6958 	struct trace_array *tr = data;
6959 
6960 	pid_list = rcu_dereference_sched(tr->function_pids);
6961 	trace_filter_add_remove_task(pid_list, NULL, task);
6962 
6963 	pid_list = rcu_dereference_sched(tr->function_no_pids);
6964 	trace_filter_add_remove_task(pid_list, NULL, task);
6965 }
6966 
6967 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
6968 {
6969 	if (enable) {
6970 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6971 						  tr);
6972 		register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6973 						  tr);
6974 	} else {
6975 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6976 						    tr);
6977 		unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6978 						    tr);
6979 	}
6980 }
6981 
6982 static void clear_ftrace_pids(struct trace_array *tr, int type)
6983 {
6984 	struct trace_pid_list *pid_list;
6985 	struct trace_pid_list *no_pid_list;
6986 	int cpu;
6987 
6988 	pid_list = rcu_dereference_protected(tr->function_pids,
6989 					     lockdep_is_held(&ftrace_lock));
6990 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
6991 						lockdep_is_held(&ftrace_lock));
6992 
6993 	/* Make sure there's something to do */
6994 	if (!pid_type_enabled(type, pid_list, no_pid_list))
6995 		return;
6996 
6997 	/* See if the pids still need to be checked after this */
6998 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
6999 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7000 		for_each_possible_cpu(cpu)
7001 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7002 	}
7003 
7004 	if (type & TRACE_PIDS)
7005 		rcu_assign_pointer(tr->function_pids, NULL);
7006 
7007 	if (type & TRACE_NO_PIDS)
7008 		rcu_assign_pointer(tr->function_no_pids, NULL);
7009 
7010 	/* Wait till all users are no longer using pid filtering */
7011 	synchronize_rcu();
7012 
7013 	if ((type & TRACE_PIDS) && pid_list)
7014 		trace_free_pid_list(pid_list);
7015 
7016 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7017 		trace_free_pid_list(no_pid_list);
7018 }
7019 
7020 void ftrace_clear_pids(struct trace_array *tr)
7021 {
7022 	mutex_lock(&ftrace_lock);
7023 
7024 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7025 
7026 	mutex_unlock(&ftrace_lock);
7027 }
7028 
7029 static void ftrace_pid_reset(struct trace_array *tr, int type)
7030 {
7031 	mutex_lock(&ftrace_lock);
7032 	clear_ftrace_pids(tr, type);
7033 
7034 	ftrace_update_pid_func();
7035 	ftrace_startup_all(0);
7036 
7037 	mutex_unlock(&ftrace_lock);
7038 }
7039 
7040 /* Greater than any max PID */
7041 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7042 
7043 static void *fpid_start(struct seq_file *m, loff_t *pos)
7044 	__acquires(RCU)
7045 {
7046 	struct trace_pid_list *pid_list;
7047 	struct trace_array *tr = m->private;
7048 
7049 	mutex_lock(&ftrace_lock);
7050 	rcu_read_lock_sched();
7051 
7052 	pid_list = rcu_dereference_sched(tr->function_pids);
7053 
7054 	if (!pid_list)
7055 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7056 
7057 	return trace_pid_start(pid_list, pos);
7058 }
7059 
7060 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7061 {
7062 	struct trace_array *tr = m->private;
7063 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7064 
7065 	if (v == FTRACE_NO_PIDS) {
7066 		(*pos)++;
7067 		return NULL;
7068 	}
7069 	return trace_pid_next(pid_list, v, pos);
7070 }
7071 
7072 static void fpid_stop(struct seq_file *m, void *p)
7073 	__releases(RCU)
7074 {
7075 	rcu_read_unlock_sched();
7076 	mutex_unlock(&ftrace_lock);
7077 }
7078 
7079 static int fpid_show(struct seq_file *m, void *v)
7080 {
7081 	if (v == FTRACE_NO_PIDS) {
7082 		seq_puts(m, "no pid\n");
7083 		return 0;
7084 	}
7085 
7086 	return trace_pid_show(m, v);
7087 }
7088 
7089 static const struct seq_operations ftrace_pid_sops = {
7090 	.start = fpid_start,
7091 	.next = fpid_next,
7092 	.stop = fpid_stop,
7093 	.show = fpid_show,
7094 };
7095 
7096 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7097 	__acquires(RCU)
7098 {
7099 	struct trace_pid_list *pid_list;
7100 	struct trace_array *tr = m->private;
7101 
7102 	mutex_lock(&ftrace_lock);
7103 	rcu_read_lock_sched();
7104 
7105 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7106 
7107 	if (!pid_list)
7108 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7109 
7110 	return trace_pid_start(pid_list, pos);
7111 }
7112 
7113 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7114 {
7115 	struct trace_array *tr = m->private;
7116 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7117 
7118 	if (v == FTRACE_NO_PIDS) {
7119 		(*pos)++;
7120 		return NULL;
7121 	}
7122 	return trace_pid_next(pid_list, v, pos);
7123 }
7124 
7125 static const struct seq_operations ftrace_no_pid_sops = {
7126 	.start = fnpid_start,
7127 	.next = fnpid_next,
7128 	.stop = fpid_stop,
7129 	.show = fpid_show,
7130 };
7131 
7132 static int pid_open(struct inode *inode, struct file *file, int type)
7133 {
7134 	const struct seq_operations *seq_ops;
7135 	struct trace_array *tr = inode->i_private;
7136 	struct seq_file *m;
7137 	int ret = 0;
7138 
7139 	ret = tracing_check_open_get_tr(tr);
7140 	if (ret)
7141 		return ret;
7142 
7143 	if ((file->f_mode & FMODE_WRITE) &&
7144 	    (file->f_flags & O_TRUNC))
7145 		ftrace_pid_reset(tr, type);
7146 
7147 	switch (type) {
7148 	case TRACE_PIDS:
7149 		seq_ops = &ftrace_pid_sops;
7150 		break;
7151 	case TRACE_NO_PIDS:
7152 		seq_ops = &ftrace_no_pid_sops;
7153 		break;
7154 	}
7155 
7156 	ret = seq_open(file, seq_ops);
7157 	if (ret < 0) {
7158 		trace_array_put(tr);
7159 	} else {
7160 		m = file->private_data;
7161 		/* copy tr over to seq ops */
7162 		m->private = tr;
7163 	}
7164 
7165 	return ret;
7166 }
7167 
7168 static int
7169 ftrace_pid_open(struct inode *inode, struct file *file)
7170 {
7171 	return pid_open(inode, file, TRACE_PIDS);
7172 }
7173 
7174 static int
7175 ftrace_no_pid_open(struct inode *inode, struct file *file)
7176 {
7177 	return pid_open(inode, file, TRACE_NO_PIDS);
7178 }
7179 
7180 static void ignore_task_cpu(void *data)
7181 {
7182 	struct trace_array *tr = data;
7183 	struct trace_pid_list *pid_list;
7184 	struct trace_pid_list *no_pid_list;
7185 
7186 	/*
7187 	 * This function is called by on_each_cpu() while the
7188 	 * event_mutex is held.
7189 	 */
7190 	pid_list = rcu_dereference_protected(tr->function_pids,
7191 					     mutex_is_locked(&ftrace_lock));
7192 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7193 						mutex_is_locked(&ftrace_lock));
7194 
7195 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7196 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7197 			       FTRACE_PID_IGNORE);
7198 	else
7199 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7200 			       current->pid);
7201 }
7202 
7203 static ssize_t
7204 pid_write(struct file *filp, const char __user *ubuf,
7205 	  size_t cnt, loff_t *ppos, int type)
7206 {
7207 	struct seq_file *m = filp->private_data;
7208 	struct trace_array *tr = m->private;
7209 	struct trace_pid_list *filtered_pids;
7210 	struct trace_pid_list *other_pids;
7211 	struct trace_pid_list *pid_list;
7212 	ssize_t ret;
7213 
7214 	if (!cnt)
7215 		return 0;
7216 
7217 	mutex_lock(&ftrace_lock);
7218 
7219 	switch (type) {
7220 	case TRACE_PIDS:
7221 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7222 					     lockdep_is_held(&ftrace_lock));
7223 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7224 					     lockdep_is_held(&ftrace_lock));
7225 		break;
7226 	case TRACE_NO_PIDS:
7227 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7228 					     lockdep_is_held(&ftrace_lock));
7229 		other_pids = rcu_dereference_protected(tr->function_pids,
7230 					     lockdep_is_held(&ftrace_lock));
7231 		break;
7232 	}
7233 
7234 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7235 	if (ret < 0)
7236 		goto out;
7237 
7238 	switch (type) {
7239 	case TRACE_PIDS:
7240 		rcu_assign_pointer(tr->function_pids, pid_list);
7241 		break;
7242 	case TRACE_NO_PIDS:
7243 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7244 		break;
7245 	}
7246 
7247 
7248 	if (filtered_pids) {
7249 		synchronize_rcu();
7250 		trace_free_pid_list(filtered_pids);
7251 	} else if (pid_list && !other_pids) {
7252 		/* Register a probe to set whether to ignore the tracing of a task */
7253 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7254 	}
7255 
7256 	/*
7257 	 * Ignoring of pids is done at task switch. But we have to
7258 	 * check for those tasks that are currently running.
7259 	 * Always do this in case a pid was appended or removed.
7260 	 */
7261 	on_each_cpu(ignore_task_cpu, tr, 1);
7262 
7263 	ftrace_update_pid_func();
7264 	ftrace_startup_all(0);
7265  out:
7266 	mutex_unlock(&ftrace_lock);
7267 
7268 	if (ret > 0)
7269 		*ppos += ret;
7270 
7271 	return ret;
7272 }
7273 
7274 static ssize_t
7275 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7276 		 size_t cnt, loff_t *ppos)
7277 {
7278 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7279 }
7280 
7281 static ssize_t
7282 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7283 		    size_t cnt, loff_t *ppos)
7284 {
7285 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7286 }
7287 
7288 static int
7289 ftrace_pid_release(struct inode *inode, struct file *file)
7290 {
7291 	struct trace_array *tr = inode->i_private;
7292 
7293 	trace_array_put(tr);
7294 
7295 	return seq_release(inode, file);
7296 }
7297 
7298 static const struct file_operations ftrace_pid_fops = {
7299 	.open		= ftrace_pid_open,
7300 	.write		= ftrace_pid_write,
7301 	.read		= seq_read,
7302 	.llseek		= tracing_lseek,
7303 	.release	= ftrace_pid_release,
7304 };
7305 
7306 static const struct file_operations ftrace_no_pid_fops = {
7307 	.open		= ftrace_no_pid_open,
7308 	.write		= ftrace_no_pid_write,
7309 	.read		= seq_read,
7310 	.llseek		= tracing_lseek,
7311 	.release	= ftrace_pid_release,
7312 };
7313 
7314 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7315 {
7316 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7317 			    tr, &ftrace_pid_fops);
7318 	trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7319 			    tr, &ftrace_no_pid_fops);
7320 }
7321 
7322 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7323 					 struct dentry *d_tracer)
7324 {
7325 	/* Only the top level directory has the dyn_tracefs and profile */
7326 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7327 
7328 	ftrace_init_dyn_tracefs(d_tracer);
7329 	ftrace_profile_tracefs(d_tracer);
7330 }
7331 
7332 /**
7333  * ftrace_kill - kill ftrace
7334  *
7335  * This function should be used by panic code. It stops ftrace
7336  * but in a not so nice way. If you need to simply kill ftrace
7337  * from a non-atomic section, use ftrace_kill.
7338  */
7339 void ftrace_kill(void)
7340 {
7341 	ftrace_disabled = 1;
7342 	ftrace_enabled = 0;
7343 	ftrace_trace_function = ftrace_stub;
7344 }
7345 
7346 /**
7347  * Test if ftrace is dead or not.
7348  */
7349 int ftrace_is_dead(void)
7350 {
7351 	return ftrace_disabled;
7352 }
7353 
7354 /**
7355  * register_ftrace_function - register a function for profiling
7356  * @ops - ops structure that holds the function for profiling.
7357  *
7358  * Register a function to be called by all functions in the
7359  * kernel.
7360  *
7361  * Note: @ops->func and all the functions it calls must be labeled
7362  *       with "notrace", otherwise it will go into a
7363  *       recursive loop.
7364  */
7365 int register_ftrace_function(struct ftrace_ops *ops)
7366 {
7367 	int ret = -1;
7368 
7369 	ftrace_ops_init(ops);
7370 
7371 	mutex_lock(&ftrace_lock);
7372 
7373 	ret = ftrace_startup(ops, 0);
7374 
7375 	mutex_unlock(&ftrace_lock);
7376 
7377 	return ret;
7378 }
7379 EXPORT_SYMBOL_GPL(register_ftrace_function);
7380 
7381 /**
7382  * unregister_ftrace_function - unregister a function for profiling.
7383  * @ops - ops structure that holds the function to unregister
7384  *
7385  * Unregister a function that was added to be called by ftrace profiling.
7386  */
7387 int unregister_ftrace_function(struct ftrace_ops *ops)
7388 {
7389 	int ret;
7390 
7391 	mutex_lock(&ftrace_lock);
7392 	ret = ftrace_shutdown(ops, 0);
7393 	mutex_unlock(&ftrace_lock);
7394 
7395 	return ret;
7396 }
7397 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7398 
7399 static bool is_permanent_ops_registered(void)
7400 {
7401 	struct ftrace_ops *op;
7402 
7403 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7404 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7405 			return true;
7406 	} while_for_each_ftrace_op(op);
7407 
7408 	return false;
7409 }
7410 
7411 int
7412 ftrace_enable_sysctl(struct ctl_table *table, int write,
7413 		     void __user *buffer, size_t *lenp,
7414 		     loff_t *ppos)
7415 {
7416 	int ret = -ENODEV;
7417 
7418 	mutex_lock(&ftrace_lock);
7419 
7420 	if (unlikely(ftrace_disabled))
7421 		goto out;
7422 
7423 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7424 
7425 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7426 		goto out;
7427 
7428 	if (ftrace_enabled) {
7429 
7430 		/* we are starting ftrace again */
7431 		if (rcu_dereference_protected(ftrace_ops_list,
7432 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7433 			update_ftrace_function();
7434 
7435 		ftrace_startup_sysctl();
7436 
7437 	} else {
7438 		if (is_permanent_ops_registered()) {
7439 			ftrace_enabled = true;
7440 			ret = -EBUSY;
7441 			goto out;
7442 		}
7443 
7444 		/* stopping ftrace calls (just send to ftrace_stub) */
7445 		ftrace_trace_function = ftrace_stub;
7446 
7447 		ftrace_shutdown_sysctl();
7448 	}
7449 
7450 	last_ftrace_enabled = !!ftrace_enabled;
7451  out:
7452 	mutex_unlock(&ftrace_lock);
7453 	return ret;
7454 }
7455