1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct ftrace_regs *fregs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct ftrace_regs *fregs) 144 { 145 struct trace_array *tr = op->private; 146 int pid; 147 148 if (tr) { 149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 150 if (pid == FTRACE_PID_IGNORE) 151 return; 152 if (pid != FTRACE_PID_TRACE && 153 pid != current->pid) 154 return; 155 } 156 157 op->saved_func(ip, parent_ip, op, fregs); 158 } 159 160 static void ftrace_sync_ipi(void *data) 161 { 162 /* Probably not needed, but do it anyway */ 163 smp_rmb(); 164 } 165 166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 167 { 168 /* 169 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 170 * then it needs to call the list anyway. 171 */ 172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 173 FTRACE_FORCE_LIST_FUNC) 174 return ftrace_ops_list_func; 175 176 return ftrace_ops_get_func(ops); 177 } 178 179 static void update_ftrace_function(void) 180 { 181 ftrace_func_t func; 182 183 /* 184 * Prepare the ftrace_ops that the arch callback will use. 185 * If there's only one ftrace_ops registered, the ftrace_ops_list 186 * will point to the ops we want. 187 */ 188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 189 lockdep_is_held(&ftrace_lock)); 190 191 /* If there's no ftrace_ops registered, just call the stub function */ 192 if (set_function_trace_op == &ftrace_list_end) { 193 func = ftrace_stub; 194 195 /* 196 * If we are at the end of the list and this ops is 197 * recursion safe and not dynamic and the arch supports passing ops, 198 * then have the mcount trampoline call the function directly. 199 */ 200 } else if (rcu_dereference_protected(ftrace_ops_list->next, 201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 202 func = ftrace_ops_get_list_func(ftrace_ops_list); 203 204 } else { 205 /* Just use the default ftrace_ops */ 206 set_function_trace_op = &ftrace_list_end; 207 func = ftrace_ops_list_func; 208 } 209 210 update_function_graph_func(); 211 212 /* If there's no change, then do nothing more here */ 213 if (ftrace_trace_function == func) 214 return; 215 216 /* 217 * If we are using the list function, it doesn't care 218 * about the function_trace_ops. 219 */ 220 if (func == ftrace_ops_list_func) { 221 ftrace_trace_function = func; 222 /* 223 * Don't even bother setting function_trace_ops, 224 * it would be racy to do so anyway. 225 */ 226 return; 227 } 228 229 #ifndef CONFIG_DYNAMIC_FTRACE 230 /* 231 * For static tracing, we need to be a bit more careful. 232 * The function change takes affect immediately. Thus, 233 * we need to coordinate the setting of the function_trace_ops 234 * with the setting of the ftrace_trace_function. 235 * 236 * Set the function to the list ops, which will call the 237 * function we want, albeit indirectly, but it handles the 238 * ftrace_ops and doesn't depend on function_trace_op. 239 */ 240 ftrace_trace_function = ftrace_ops_list_func; 241 /* 242 * Make sure all CPUs see this. Yes this is slow, but static 243 * tracing is slow and nasty to have enabled. 244 */ 245 synchronize_rcu_tasks_rude(); 246 /* Now all cpus are using the list ops. */ 247 function_trace_op = set_function_trace_op; 248 /* Make sure the function_trace_op is visible on all CPUs */ 249 smp_wmb(); 250 /* Nasty way to force a rmb on all cpus */ 251 smp_call_function(ftrace_sync_ipi, NULL, 1); 252 /* OK, we are all set to update the ftrace_trace_function now! */ 253 #endif /* !CONFIG_DYNAMIC_FTRACE */ 254 255 ftrace_trace_function = func; 256 } 257 258 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 259 struct ftrace_ops *ops) 260 { 261 rcu_assign_pointer(ops->next, *list); 262 263 /* 264 * We are entering ops into the list but another 265 * CPU might be walking that list. We need to make sure 266 * the ops->next pointer is valid before another CPU sees 267 * the ops pointer included into the list. 268 */ 269 rcu_assign_pointer(*list, ops); 270 } 271 272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 273 struct ftrace_ops *ops) 274 { 275 struct ftrace_ops **p; 276 277 /* 278 * If we are removing the last function, then simply point 279 * to the ftrace_stub. 280 */ 281 if (rcu_dereference_protected(*list, 282 lockdep_is_held(&ftrace_lock)) == ops && 283 rcu_dereference_protected(ops->next, 284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 285 *list = &ftrace_list_end; 286 return 0; 287 } 288 289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 290 if (*p == ops) 291 break; 292 293 if (*p != ops) 294 return -1; 295 296 *p = (*p)->next; 297 return 0; 298 } 299 300 static void ftrace_update_trampoline(struct ftrace_ops *ops); 301 302 int __register_ftrace_function(struct ftrace_ops *ops) 303 { 304 if (ops->flags & FTRACE_OPS_FL_DELETED) 305 return -EINVAL; 306 307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 308 return -EBUSY; 309 310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 311 /* 312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 315 */ 316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 318 return -EINVAL; 319 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 322 #endif 323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 324 return -EBUSY; 325 326 if (!core_kernel_data((unsigned long)ops)) 327 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 328 329 add_ftrace_ops(&ftrace_ops_list, ops); 330 331 /* Always save the function, and reset at unregistering */ 332 ops->saved_func = ops->func; 333 334 if (ftrace_pids_enabled(ops)) 335 ops->func = ftrace_pid_func; 336 337 ftrace_update_trampoline(ops); 338 339 if (ftrace_enabled) 340 update_ftrace_function(); 341 342 return 0; 343 } 344 345 int __unregister_ftrace_function(struct ftrace_ops *ops) 346 { 347 int ret; 348 349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 350 return -EBUSY; 351 352 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 353 354 if (ret < 0) 355 return ret; 356 357 if (ftrace_enabled) 358 update_ftrace_function(); 359 360 ops->func = ops->saved_func; 361 362 return 0; 363 } 364 365 static void ftrace_update_pid_func(void) 366 { 367 struct ftrace_ops *op; 368 369 /* Only do something if we are tracing something */ 370 if (ftrace_trace_function == ftrace_stub) 371 return; 372 373 do_for_each_ftrace_op(op, ftrace_ops_list) { 374 if (op->flags & FTRACE_OPS_FL_PID) { 375 op->func = ftrace_pids_enabled(op) ? 376 ftrace_pid_func : op->saved_func; 377 ftrace_update_trampoline(op); 378 } 379 } while_for_each_ftrace_op(op); 380 381 update_ftrace_function(); 382 } 383 384 #ifdef CONFIG_FUNCTION_PROFILER 385 struct ftrace_profile { 386 struct hlist_node node; 387 unsigned long ip; 388 unsigned long counter; 389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 390 unsigned long long time; 391 unsigned long long time_squared; 392 #endif 393 }; 394 395 struct ftrace_profile_page { 396 struct ftrace_profile_page *next; 397 unsigned long index; 398 struct ftrace_profile records[]; 399 }; 400 401 struct ftrace_profile_stat { 402 atomic_t disabled; 403 struct hlist_head *hash; 404 struct ftrace_profile_page *pages; 405 struct ftrace_profile_page *start; 406 struct tracer_stat stat; 407 }; 408 409 #define PROFILE_RECORDS_SIZE \ 410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 411 412 #define PROFILES_PER_PAGE \ 413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 414 415 static int ftrace_profile_enabled __read_mostly; 416 417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 418 static DEFINE_MUTEX(ftrace_profile_lock); 419 420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 421 422 #define FTRACE_PROFILE_HASH_BITS 10 423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 424 425 static void * 426 function_stat_next(void *v, int idx) 427 { 428 struct ftrace_profile *rec = v; 429 struct ftrace_profile_page *pg; 430 431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 432 433 again: 434 if (idx != 0) 435 rec++; 436 437 if ((void *)rec >= (void *)&pg->records[pg->index]) { 438 pg = pg->next; 439 if (!pg) 440 return NULL; 441 rec = &pg->records[0]; 442 if (!rec->counter) 443 goto again; 444 } 445 446 return rec; 447 } 448 449 static void *function_stat_start(struct tracer_stat *trace) 450 { 451 struct ftrace_profile_stat *stat = 452 container_of(trace, struct ftrace_profile_stat, stat); 453 454 if (!stat || !stat->start) 455 return NULL; 456 457 return function_stat_next(&stat->start->records[0], 0); 458 } 459 460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 461 /* function graph compares on total time */ 462 static int function_stat_cmp(const void *p1, const void *p2) 463 { 464 const struct ftrace_profile *a = p1; 465 const struct ftrace_profile *b = p2; 466 467 if (a->time < b->time) 468 return -1; 469 if (a->time > b->time) 470 return 1; 471 else 472 return 0; 473 } 474 #else 475 /* not function graph compares against hits */ 476 static int function_stat_cmp(const void *p1, const void *p2) 477 { 478 const struct ftrace_profile *a = p1; 479 const struct ftrace_profile *b = p2; 480 481 if (a->counter < b->counter) 482 return -1; 483 if (a->counter > b->counter) 484 return 1; 485 else 486 return 0; 487 } 488 #endif 489 490 static int function_stat_headers(struct seq_file *m) 491 { 492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 493 seq_puts(m, " Function " 494 "Hit Time Avg s^2\n" 495 " -------- " 496 "--- ---- --- ---\n"); 497 #else 498 seq_puts(m, " Function Hit\n" 499 " -------- ---\n"); 500 #endif 501 return 0; 502 } 503 504 static int function_stat_show(struct seq_file *m, void *v) 505 { 506 struct ftrace_profile *rec = v; 507 char str[KSYM_SYMBOL_LEN]; 508 int ret = 0; 509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 510 static struct trace_seq s; 511 unsigned long long avg; 512 unsigned long long stddev; 513 #endif 514 mutex_lock(&ftrace_profile_lock); 515 516 /* we raced with function_profile_reset() */ 517 if (unlikely(rec->counter == 0)) { 518 ret = -EBUSY; 519 goto out; 520 } 521 522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 523 avg = div64_ul(rec->time, rec->counter); 524 if (tracing_thresh && (avg < tracing_thresh)) 525 goto out; 526 #endif 527 528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 529 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 530 531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 532 seq_puts(m, " "); 533 534 /* Sample standard deviation (s^2) */ 535 if (rec->counter <= 1) 536 stddev = 0; 537 else { 538 /* 539 * Apply Welford's method: 540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 541 */ 542 stddev = rec->counter * rec->time_squared - 543 rec->time * rec->time; 544 545 /* 546 * Divide only 1000 for ns^2 -> us^2 conversion. 547 * trace_print_graph_duration will divide 1000 again. 548 */ 549 stddev = div64_ul(stddev, 550 rec->counter * (rec->counter - 1) * 1000); 551 } 552 553 trace_seq_init(&s); 554 trace_print_graph_duration(rec->time, &s); 555 trace_seq_puts(&s, " "); 556 trace_print_graph_duration(avg, &s); 557 trace_seq_puts(&s, " "); 558 trace_print_graph_duration(stddev, &s); 559 trace_print_seq(m, &s); 560 #endif 561 seq_putc(m, '\n'); 562 out: 563 mutex_unlock(&ftrace_profile_lock); 564 565 return ret; 566 } 567 568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 569 { 570 struct ftrace_profile_page *pg; 571 572 pg = stat->pages = stat->start; 573 574 while (pg) { 575 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 576 pg->index = 0; 577 pg = pg->next; 578 } 579 580 memset(stat->hash, 0, 581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 582 } 583 584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 585 { 586 struct ftrace_profile_page *pg; 587 int functions; 588 int pages; 589 int i; 590 591 /* If we already allocated, do nothing */ 592 if (stat->pages) 593 return 0; 594 595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 596 if (!stat->pages) 597 return -ENOMEM; 598 599 #ifdef CONFIG_DYNAMIC_FTRACE 600 functions = ftrace_update_tot_cnt; 601 #else 602 /* 603 * We do not know the number of functions that exist because 604 * dynamic tracing is what counts them. With past experience 605 * we have around 20K functions. That should be more than enough. 606 * It is highly unlikely we will execute every function in 607 * the kernel. 608 */ 609 functions = 20000; 610 #endif 611 612 pg = stat->start = stat->pages; 613 614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 615 616 for (i = 1; i < pages; i++) { 617 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 618 if (!pg->next) 619 goto out_free; 620 pg = pg->next; 621 } 622 623 return 0; 624 625 out_free: 626 pg = stat->start; 627 while (pg) { 628 unsigned long tmp = (unsigned long)pg; 629 630 pg = pg->next; 631 free_page(tmp); 632 } 633 634 stat->pages = NULL; 635 stat->start = NULL; 636 637 return -ENOMEM; 638 } 639 640 static int ftrace_profile_init_cpu(int cpu) 641 { 642 struct ftrace_profile_stat *stat; 643 int size; 644 645 stat = &per_cpu(ftrace_profile_stats, cpu); 646 647 if (stat->hash) { 648 /* If the profile is already created, simply reset it */ 649 ftrace_profile_reset(stat); 650 return 0; 651 } 652 653 /* 654 * We are profiling all functions, but usually only a few thousand 655 * functions are hit. We'll make a hash of 1024 items. 656 */ 657 size = FTRACE_PROFILE_HASH_SIZE; 658 659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 660 661 if (!stat->hash) 662 return -ENOMEM; 663 664 /* Preallocate the function profiling pages */ 665 if (ftrace_profile_pages_init(stat) < 0) { 666 kfree(stat->hash); 667 stat->hash = NULL; 668 return -ENOMEM; 669 } 670 671 return 0; 672 } 673 674 static int ftrace_profile_init(void) 675 { 676 int cpu; 677 int ret = 0; 678 679 for_each_possible_cpu(cpu) { 680 ret = ftrace_profile_init_cpu(cpu); 681 if (ret) 682 break; 683 } 684 685 return ret; 686 } 687 688 /* interrupts must be disabled */ 689 static struct ftrace_profile * 690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 691 { 692 struct ftrace_profile *rec; 693 struct hlist_head *hhd; 694 unsigned long key; 695 696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 697 hhd = &stat->hash[key]; 698 699 if (hlist_empty(hhd)) 700 return NULL; 701 702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 703 if (rec->ip == ip) 704 return rec; 705 } 706 707 return NULL; 708 } 709 710 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 711 struct ftrace_profile *rec) 712 { 713 unsigned long key; 714 715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 716 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 717 } 718 719 /* 720 * The memory is already allocated, this simply finds a new record to use. 721 */ 722 static struct ftrace_profile * 723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec = NULL; 726 727 /* prevent recursion (from NMIs) */ 728 if (atomic_inc_return(&stat->disabled) != 1) 729 goto out; 730 731 /* 732 * Try to find the function again since an NMI 733 * could have added it 734 */ 735 rec = ftrace_find_profiled_func(stat, ip); 736 if (rec) 737 goto out; 738 739 if (stat->pages->index == PROFILES_PER_PAGE) { 740 if (!stat->pages->next) 741 goto out; 742 stat->pages = stat->pages->next; 743 } 744 745 rec = &stat->pages->records[stat->pages->index++]; 746 rec->ip = ip; 747 ftrace_add_profile(stat, rec); 748 749 out: 750 atomic_dec(&stat->disabled); 751 752 return rec; 753 } 754 755 static void 756 function_profile_call(unsigned long ip, unsigned long parent_ip, 757 struct ftrace_ops *ops, struct ftrace_regs *fregs) 758 { 759 struct ftrace_profile_stat *stat; 760 struct ftrace_profile *rec; 761 unsigned long flags; 762 763 if (!ftrace_profile_enabled) 764 return; 765 766 local_irq_save(flags); 767 768 stat = this_cpu_ptr(&ftrace_profile_stats); 769 if (!stat->hash || !ftrace_profile_enabled) 770 goto out; 771 772 rec = ftrace_find_profiled_func(stat, ip); 773 if (!rec) { 774 rec = ftrace_profile_alloc(stat, ip); 775 if (!rec) 776 goto out; 777 } 778 779 rec->counter++; 780 out: 781 local_irq_restore(flags); 782 } 783 784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 785 static bool fgraph_graph_time = true; 786 787 void ftrace_graph_graph_time_control(bool enable) 788 { 789 fgraph_graph_time = enable; 790 } 791 792 static int profile_graph_entry(struct ftrace_graph_ent *trace) 793 { 794 struct ftrace_ret_stack *ret_stack; 795 796 function_profile_call(trace->func, 0, NULL, NULL); 797 798 /* If function graph is shutting down, ret_stack can be NULL */ 799 if (!current->ret_stack) 800 return 0; 801 802 ret_stack = ftrace_graph_get_ret_stack(current, 0); 803 if (ret_stack) 804 ret_stack->subtime = 0; 805 806 return 1; 807 } 808 809 static void profile_graph_return(struct ftrace_graph_ret *trace) 810 { 811 struct ftrace_ret_stack *ret_stack; 812 struct ftrace_profile_stat *stat; 813 unsigned long long calltime; 814 struct ftrace_profile *rec; 815 unsigned long flags; 816 817 local_irq_save(flags); 818 stat = this_cpu_ptr(&ftrace_profile_stats); 819 if (!stat->hash || !ftrace_profile_enabled) 820 goto out; 821 822 /* If the calltime was zero'd ignore it */ 823 if (!trace->calltime) 824 goto out; 825 826 calltime = trace->rettime - trace->calltime; 827 828 if (!fgraph_graph_time) { 829 830 /* Append this call time to the parent time to subtract */ 831 ret_stack = ftrace_graph_get_ret_stack(current, 1); 832 if (ret_stack) 833 ret_stack->subtime += calltime; 834 835 ret_stack = ftrace_graph_get_ret_stack(current, 0); 836 if (ret_stack && ret_stack->subtime < calltime) 837 calltime -= ret_stack->subtime; 838 else 839 calltime = 0; 840 } 841 842 rec = ftrace_find_profiled_func(stat, trace->func); 843 if (rec) { 844 rec->time += calltime; 845 rec->time_squared += calltime * calltime; 846 } 847 848 out: 849 local_irq_restore(flags); 850 } 851 852 static struct fgraph_ops fprofiler_ops = { 853 .entryfunc = &profile_graph_entry, 854 .retfunc = &profile_graph_return, 855 }; 856 857 static int register_ftrace_profiler(void) 858 { 859 return register_ftrace_graph(&fprofiler_ops); 860 } 861 862 static void unregister_ftrace_profiler(void) 863 { 864 unregister_ftrace_graph(&fprofiler_ops); 865 } 866 #else 867 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 868 .func = function_profile_call, 869 .flags = FTRACE_OPS_FL_INITIALIZED, 870 INIT_OPS_HASH(ftrace_profile_ops) 871 }; 872 873 static int register_ftrace_profiler(void) 874 { 875 return register_ftrace_function(&ftrace_profile_ops); 876 } 877 878 static void unregister_ftrace_profiler(void) 879 { 880 unregister_ftrace_function(&ftrace_profile_ops); 881 } 882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 883 884 static ssize_t 885 ftrace_profile_write(struct file *filp, const char __user *ubuf, 886 size_t cnt, loff_t *ppos) 887 { 888 unsigned long val; 889 int ret; 890 891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 892 if (ret) 893 return ret; 894 895 val = !!val; 896 897 mutex_lock(&ftrace_profile_lock); 898 if (ftrace_profile_enabled ^ val) { 899 if (val) { 900 ret = ftrace_profile_init(); 901 if (ret < 0) { 902 cnt = ret; 903 goto out; 904 } 905 906 ret = register_ftrace_profiler(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 ftrace_profile_enabled = 1; 912 } else { 913 ftrace_profile_enabled = 0; 914 /* 915 * unregister_ftrace_profiler calls stop_machine 916 * so this acts like an synchronize_rcu. 917 */ 918 unregister_ftrace_profiler(); 919 } 920 } 921 out: 922 mutex_unlock(&ftrace_profile_lock); 923 924 *ppos += cnt; 925 926 return cnt; 927 } 928 929 static ssize_t 930 ftrace_profile_read(struct file *filp, char __user *ubuf, 931 size_t cnt, loff_t *ppos) 932 { 933 char buf[64]; /* big enough to hold a number */ 934 int r; 935 936 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 938 } 939 940 static const struct file_operations ftrace_profile_fops = { 941 .open = tracing_open_generic, 942 .read = ftrace_profile_read, 943 .write = ftrace_profile_write, 944 .llseek = default_llseek, 945 }; 946 947 /* used to initialize the real stat files */ 948 static struct tracer_stat function_stats __initdata = { 949 .name = "functions", 950 .stat_start = function_stat_start, 951 .stat_next = function_stat_next, 952 .stat_cmp = function_stat_cmp, 953 .stat_headers = function_stat_headers, 954 .stat_show = function_stat_show 955 }; 956 957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 958 { 959 struct ftrace_profile_stat *stat; 960 struct dentry *entry; 961 char *name; 962 int ret; 963 int cpu; 964 965 for_each_possible_cpu(cpu) { 966 stat = &per_cpu(ftrace_profile_stats, cpu); 967 968 name = kasprintf(GFP_KERNEL, "function%d", cpu); 969 if (!name) { 970 /* 971 * The files created are permanent, if something happens 972 * we still do not free memory. 973 */ 974 WARN(1, 975 "Could not allocate stat file for cpu %d\n", 976 cpu); 977 return; 978 } 979 stat->stat = function_stats; 980 stat->stat.name = name; 981 ret = register_stat_tracer(&stat->stat); 982 if (ret) { 983 WARN(1, 984 "Could not register function stat for cpu %d\n", 985 cpu); 986 kfree(name); 987 return; 988 } 989 } 990 991 entry = tracefs_create_file("function_profile_enabled", 0644, 992 d_tracer, NULL, &ftrace_profile_fops); 993 if (!entry) 994 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 995 } 996 997 #else /* CONFIG_FUNCTION_PROFILER */ 998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 999 { 1000 } 1001 #endif /* CONFIG_FUNCTION_PROFILER */ 1002 1003 #ifdef CONFIG_DYNAMIC_FTRACE 1004 1005 static struct ftrace_ops *removed_ops; 1006 1007 /* 1008 * Set when doing a global update, like enabling all recs or disabling them. 1009 * It is not set when just updating a single ftrace_ops. 1010 */ 1011 static bool update_all_ops; 1012 1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1014 # error Dynamic ftrace depends on MCOUNT_RECORD 1015 #endif 1016 1017 struct ftrace_func_probe { 1018 struct ftrace_probe_ops *probe_ops; 1019 struct ftrace_ops ops; 1020 struct trace_array *tr; 1021 struct list_head list; 1022 void *data; 1023 int ref; 1024 }; 1025 1026 /* 1027 * We make these constant because no one should touch them, 1028 * but they are used as the default "empty hash", to avoid allocating 1029 * it all the time. These are in a read only section such that if 1030 * anyone does try to modify it, it will cause an exception. 1031 */ 1032 static const struct hlist_head empty_buckets[1]; 1033 static const struct ftrace_hash empty_hash = { 1034 .buckets = (struct hlist_head *)empty_buckets, 1035 }; 1036 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1037 1038 struct ftrace_ops global_ops = { 1039 .func = ftrace_stub, 1040 .local_hash.notrace_hash = EMPTY_HASH, 1041 .local_hash.filter_hash = EMPTY_HASH, 1042 INIT_OPS_HASH(global_ops) 1043 .flags = FTRACE_OPS_FL_INITIALIZED | 1044 FTRACE_OPS_FL_PID, 1045 }; 1046 1047 /* 1048 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1049 */ 1050 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1051 { 1052 struct ftrace_ops *op = NULL; 1053 1054 /* 1055 * Some of the ops may be dynamically allocated, 1056 * they are freed after a synchronize_rcu(). 1057 */ 1058 preempt_disable_notrace(); 1059 1060 do_for_each_ftrace_op(op, ftrace_ops_list) { 1061 /* 1062 * This is to check for dynamically allocated trampolines. 1063 * Trampolines that are in kernel text will have 1064 * core_kernel_text() return true. 1065 */ 1066 if (op->trampoline && op->trampoline_size) 1067 if (addr >= op->trampoline && 1068 addr < op->trampoline + op->trampoline_size) { 1069 preempt_enable_notrace(); 1070 return op; 1071 } 1072 } while_for_each_ftrace_op(op); 1073 preempt_enable_notrace(); 1074 1075 return NULL; 1076 } 1077 1078 /* 1079 * This is used by __kernel_text_address() to return true if the 1080 * address is on a dynamically allocated trampoline that would 1081 * not return true for either core_kernel_text() or 1082 * is_module_text_address(). 1083 */ 1084 bool is_ftrace_trampoline(unsigned long addr) 1085 { 1086 return ftrace_ops_trampoline(addr) != NULL; 1087 } 1088 1089 struct ftrace_page { 1090 struct ftrace_page *next; 1091 struct dyn_ftrace *records; 1092 int index; 1093 int order; 1094 }; 1095 1096 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1097 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1098 1099 static struct ftrace_page *ftrace_pages_start; 1100 static struct ftrace_page *ftrace_pages; 1101 1102 static __always_inline unsigned long 1103 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1104 { 1105 if (hash->size_bits > 0) 1106 return hash_long(ip, hash->size_bits); 1107 1108 return 0; 1109 } 1110 1111 /* Only use this function if ftrace_hash_empty() has already been tested */ 1112 static __always_inline struct ftrace_func_entry * 1113 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1114 { 1115 unsigned long key; 1116 struct ftrace_func_entry *entry; 1117 struct hlist_head *hhd; 1118 1119 key = ftrace_hash_key(hash, ip); 1120 hhd = &hash->buckets[key]; 1121 1122 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1123 if (entry->ip == ip) 1124 return entry; 1125 } 1126 return NULL; 1127 } 1128 1129 /** 1130 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1131 * @hash: The hash to look at 1132 * @ip: The instruction pointer to test 1133 * 1134 * Search a given @hash to see if a given instruction pointer (@ip) 1135 * exists in it. 1136 * 1137 * Returns the entry that holds the @ip if found. NULL otherwise. 1138 */ 1139 struct ftrace_func_entry * 1140 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1141 { 1142 if (ftrace_hash_empty(hash)) 1143 return NULL; 1144 1145 return __ftrace_lookup_ip(hash, ip); 1146 } 1147 1148 static void __add_hash_entry(struct ftrace_hash *hash, 1149 struct ftrace_func_entry *entry) 1150 { 1151 struct hlist_head *hhd; 1152 unsigned long key; 1153 1154 key = ftrace_hash_key(hash, entry->ip); 1155 hhd = &hash->buckets[key]; 1156 hlist_add_head(&entry->hlist, hhd); 1157 hash->count++; 1158 } 1159 1160 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1161 { 1162 struct ftrace_func_entry *entry; 1163 1164 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1165 if (!entry) 1166 return -ENOMEM; 1167 1168 entry->ip = ip; 1169 __add_hash_entry(hash, entry); 1170 1171 return 0; 1172 } 1173 1174 static void 1175 free_hash_entry(struct ftrace_hash *hash, 1176 struct ftrace_func_entry *entry) 1177 { 1178 hlist_del(&entry->hlist); 1179 kfree(entry); 1180 hash->count--; 1181 } 1182 1183 static void 1184 remove_hash_entry(struct ftrace_hash *hash, 1185 struct ftrace_func_entry *entry) 1186 { 1187 hlist_del_rcu(&entry->hlist); 1188 hash->count--; 1189 } 1190 1191 static void ftrace_hash_clear(struct ftrace_hash *hash) 1192 { 1193 struct hlist_head *hhd; 1194 struct hlist_node *tn; 1195 struct ftrace_func_entry *entry; 1196 int size = 1 << hash->size_bits; 1197 int i; 1198 1199 if (!hash->count) 1200 return; 1201 1202 for (i = 0; i < size; i++) { 1203 hhd = &hash->buckets[i]; 1204 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1205 free_hash_entry(hash, entry); 1206 } 1207 FTRACE_WARN_ON(hash->count); 1208 } 1209 1210 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1211 { 1212 list_del(&ftrace_mod->list); 1213 kfree(ftrace_mod->module); 1214 kfree(ftrace_mod->func); 1215 kfree(ftrace_mod); 1216 } 1217 1218 static void clear_ftrace_mod_list(struct list_head *head) 1219 { 1220 struct ftrace_mod_load *p, *n; 1221 1222 /* stack tracer isn't supported yet */ 1223 if (!head) 1224 return; 1225 1226 mutex_lock(&ftrace_lock); 1227 list_for_each_entry_safe(p, n, head, list) 1228 free_ftrace_mod(p); 1229 mutex_unlock(&ftrace_lock); 1230 } 1231 1232 static void free_ftrace_hash(struct ftrace_hash *hash) 1233 { 1234 if (!hash || hash == EMPTY_HASH) 1235 return; 1236 ftrace_hash_clear(hash); 1237 kfree(hash->buckets); 1238 kfree(hash); 1239 } 1240 1241 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1242 { 1243 struct ftrace_hash *hash; 1244 1245 hash = container_of(rcu, struct ftrace_hash, rcu); 1246 free_ftrace_hash(hash); 1247 } 1248 1249 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1250 { 1251 if (!hash || hash == EMPTY_HASH) 1252 return; 1253 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1254 } 1255 1256 void ftrace_free_filter(struct ftrace_ops *ops) 1257 { 1258 ftrace_ops_init(ops); 1259 free_ftrace_hash(ops->func_hash->filter_hash); 1260 free_ftrace_hash(ops->func_hash->notrace_hash); 1261 } 1262 1263 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1264 { 1265 struct ftrace_hash *hash; 1266 int size; 1267 1268 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1269 if (!hash) 1270 return NULL; 1271 1272 size = 1 << size_bits; 1273 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1274 1275 if (!hash->buckets) { 1276 kfree(hash); 1277 return NULL; 1278 } 1279 1280 hash->size_bits = size_bits; 1281 1282 return hash; 1283 } 1284 1285 1286 static int ftrace_add_mod(struct trace_array *tr, 1287 const char *func, const char *module, 1288 int enable) 1289 { 1290 struct ftrace_mod_load *ftrace_mod; 1291 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1292 1293 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1294 if (!ftrace_mod) 1295 return -ENOMEM; 1296 1297 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1298 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1299 ftrace_mod->enable = enable; 1300 1301 if (!ftrace_mod->func || !ftrace_mod->module) 1302 goto out_free; 1303 1304 list_add(&ftrace_mod->list, mod_head); 1305 1306 return 0; 1307 1308 out_free: 1309 free_ftrace_mod(ftrace_mod); 1310 1311 return -ENOMEM; 1312 } 1313 1314 static struct ftrace_hash * 1315 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1316 { 1317 struct ftrace_func_entry *entry; 1318 struct ftrace_hash *new_hash; 1319 int size; 1320 int ret; 1321 int i; 1322 1323 new_hash = alloc_ftrace_hash(size_bits); 1324 if (!new_hash) 1325 return NULL; 1326 1327 if (hash) 1328 new_hash->flags = hash->flags; 1329 1330 /* Empty hash? */ 1331 if (ftrace_hash_empty(hash)) 1332 return new_hash; 1333 1334 size = 1 << hash->size_bits; 1335 for (i = 0; i < size; i++) { 1336 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1337 ret = add_hash_entry(new_hash, entry->ip); 1338 if (ret < 0) 1339 goto free_hash; 1340 } 1341 } 1342 1343 FTRACE_WARN_ON(new_hash->count != hash->count); 1344 1345 return new_hash; 1346 1347 free_hash: 1348 free_ftrace_hash(new_hash); 1349 return NULL; 1350 } 1351 1352 static void 1353 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1354 static void 1355 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1356 1357 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1358 struct ftrace_hash *new_hash); 1359 1360 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1361 { 1362 struct ftrace_func_entry *entry; 1363 struct ftrace_hash *new_hash; 1364 struct hlist_head *hhd; 1365 struct hlist_node *tn; 1366 int bits = 0; 1367 int i; 1368 1369 /* 1370 * Use around half the size (max bit of it), but 1371 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1372 */ 1373 bits = fls(size / 2); 1374 1375 /* Don't allocate too much */ 1376 if (bits > FTRACE_HASH_MAX_BITS) 1377 bits = FTRACE_HASH_MAX_BITS; 1378 1379 new_hash = alloc_ftrace_hash(bits); 1380 if (!new_hash) 1381 return NULL; 1382 1383 new_hash->flags = src->flags; 1384 1385 size = 1 << src->size_bits; 1386 for (i = 0; i < size; i++) { 1387 hhd = &src->buckets[i]; 1388 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1389 remove_hash_entry(src, entry); 1390 __add_hash_entry(new_hash, entry); 1391 } 1392 } 1393 return new_hash; 1394 } 1395 1396 static struct ftrace_hash * 1397 __ftrace_hash_move(struct ftrace_hash *src) 1398 { 1399 int size = src->count; 1400 1401 /* 1402 * If the new source is empty, just return the empty_hash. 1403 */ 1404 if (ftrace_hash_empty(src)) 1405 return EMPTY_HASH; 1406 1407 return dup_hash(src, size); 1408 } 1409 1410 static int 1411 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1412 struct ftrace_hash **dst, struct ftrace_hash *src) 1413 { 1414 struct ftrace_hash *new_hash; 1415 int ret; 1416 1417 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1418 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1419 return -EINVAL; 1420 1421 new_hash = __ftrace_hash_move(src); 1422 if (!new_hash) 1423 return -ENOMEM; 1424 1425 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1426 if (enable) { 1427 /* IPMODIFY should be updated only when filter_hash updating */ 1428 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1429 if (ret < 0) { 1430 free_ftrace_hash(new_hash); 1431 return ret; 1432 } 1433 } 1434 1435 /* 1436 * Remove the current set, update the hash and add 1437 * them back. 1438 */ 1439 ftrace_hash_rec_disable_modify(ops, enable); 1440 1441 rcu_assign_pointer(*dst, new_hash); 1442 1443 ftrace_hash_rec_enable_modify(ops, enable); 1444 1445 return 0; 1446 } 1447 1448 static bool hash_contains_ip(unsigned long ip, 1449 struct ftrace_ops_hash *hash) 1450 { 1451 /* 1452 * The function record is a match if it exists in the filter 1453 * hash and not in the notrace hash. Note, an empty hash is 1454 * considered a match for the filter hash, but an empty 1455 * notrace hash is considered not in the notrace hash. 1456 */ 1457 return (ftrace_hash_empty(hash->filter_hash) || 1458 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1459 (ftrace_hash_empty(hash->notrace_hash) || 1460 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1461 } 1462 1463 /* 1464 * Test the hashes for this ops to see if we want to call 1465 * the ops->func or not. 1466 * 1467 * It's a match if the ip is in the ops->filter_hash or 1468 * the filter_hash does not exist or is empty, 1469 * AND 1470 * the ip is not in the ops->notrace_hash. 1471 * 1472 * This needs to be called with preemption disabled as 1473 * the hashes are freed with call_rcu(). 1474 */ 1475 int 1476 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1477 { 1478 struct ftrace_ops_hash hash; 1479 int ret; 1480 1481 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1482 /* 1483 * There's a small race when adding ops that the ftrace handler 1484 * that wants regs, may be called without them. We can not 1485 * allow that handler to be called if regs is NULL. 1486 */ 1487 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1488 return 0; 1489 #endif 1490 1491 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1492 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1493 1494 if (hash_contains_ip(ip, &hash)) 1495 ret = 1; 1496 else 1497 ret = 0; 1498 1499 return ret; 1500 } 1501 1502 /* 1503 * This is a double for. Do not use 'break' to break out of the loop, 1504 * you must use a goto. 1505 */ 1506 #define do_for_each_ftrace_rec(pg, rec) \ 1507 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1508 int _____i; \ 1509 for (_____i = 0; _____i < pg->index; _____i++) { \ 1510 rec = &pg->records[_____i]; 1511 1512 #define while_for_each_ftrace_rec() \ 1513 } \ 1514 } 1515 1516 1517 static int ftrace_cmp_recs(const void *a, const void *b) 1518 { 1519 const struct dyn_ftrace *key = a; 1520 const struct dyn_ftrace *rec = b; 1521 1522 if (key->flags < rec->ip) 1523 return -1; 1524 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1525 return 1; 1526 return 0; 1527 } 1528 1529 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1530 { 1531 struct ftrace_page *pg; 1532 struct dyn_ftrace *rec = NULL; 1533 struct dyn_ftrace key; 1534 1535 key.ip = start; 1536 key.flags = end; /* overload flags, as it is unsigned long */ 1537 1538 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1539 if (end < pg->records[0].ip || 1540 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1541 continue; 1542 rec = bsearch(&key, pg->records, pg->index, 1543 sizeof(struct dyn_ftrace), 1544 ftrace_cmp_recs); 1545 if (rec) 1546 break; 1547 } 1548 return rec; 1549 } 1550 1551 /** 1552 * ftrace_location_range - return the first address of a traced location 1553 * if it touches the given ip range 1554 * @start: start of range to search. 1555 * @end: end of range to search (inclusive). @end points to the last byte 1556 * to check. 1557 * 1558 * Returns rec->ip if the related ftrace location is a least partly within 1559 * the given address range. That is, the first address of the instruction 1560 * that is either a NOP or call to the function tracer. It checks the ftrace 1561 * internal tables to determine if the address belongs or not. 1562 */ 1563 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1564 { 1565 struct dyn_ftrace *rec; 1566 1567 rec = lookup_rec(start, end); 1568 if (rec) 1569 return rec->ip; 1570 1571 return 0; 1572 } 1573 1574 /** 1575 * ftrace_location - return true if the ip giving is a traced location 1576 * @ip: the instruction pointer to check 1577 * 1578 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1579 * That is, the instruction that is either a NOP or call to 1580 * the function tracer. It checks the ftrace internal tables to 1581 * determine if the address belongs or not. 1582 */ 1583 unsigned long ftrace_location(unsigned long ip) 1584 { 1585 return ftrace_location_range(ip, ip); 1586 } 1587 1588 /** 1589 * ftrace_text_reserved - return true if range contains an ftrace location 1590 * @start: start of range to search 1591 * @end: end of range to search (inclusive). @end points to the last byte to check. 1592 * 1593 * Returns 1 if @start and @end contains a ftrace location. 1594 * That is, the instruction that is either a NOP or call to 1595 * the function tracer. It checks the ftrace internal tables to 1596 * determine if the address belongs or not. 1597 */ 1598 int ftrace_text_reserved(const void *start, const void *end) 1599 { 1600 unsigned long ret; 1601 1602 ret = ftrace_location_range((unsigned long)start, 1603 (unsigned long)end); 1604 1605 return (int)!!ret; 1606 } 1607 1608 /* Test if ops registered to this rec needs regs */ 1609 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1610 { 1611 struct ftrace_ops *ops; 1612 bool keep_regs = false; 1613 1614 for (ops = ftrace_ops_list; 1615 ops != &ftrace_list_end; ops = ops->next) { 1616 /* pass rec in as regs to have non-NULL val */ 1617 if (ftrace_ops_test(ops, rec->ip, rec)) { 1618 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1619 keep_regs = true; 1620 break; 1621 } 1622 } 1623 } 1624 1625 return keep_regs; 1626 } 1627 1628 static struct ftrace_ops * 1629 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1630 static struct ftrace_ops * 1631 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1632 static struct ftrace_ops * 1633 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1634 1635 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1636 int filter_hash, 1637 bool inc) 1638 { 1639 struct ftrace_hash *hash; 1640 struct ftrace_hash *other_hash; 1641 struct ftrace_page *pg; 1642 struct dyn_ftrace *rec; 1643 bool update = false; 1644 int count = 0; 1645 int all = false; 1646 1647 /* Only update if the ops has been registered */ 1648 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1649 return false; 1650 1651 /* 1652 * In the filter_hash case: 1653 * If the count is zero, we update all records. 1654 * Otherwise we just update the items in the hash. 1655 * 1656 * In the notrace_hash case: 1657 * We enable the update in the hash. 1658 * As disabling notrace means enabling the tracing, 1659 * and enabling notrace means disabling, the inc variable 1660 * gets inversed. 1661 */ 1662 if (filter_hash) { 1663 hash = ops->func_hash->filter_hash; 1664 other_hash = ops->func_hash->notrace_hash; 1665 if (ftrace_hash_empty(hash)) 1666 all = true; 1667 } else { 1668 inc = !inc; 1669 hash = ops->func_hash->notrace_hash; 1670 other_hash = ops->func_hash->filter_hash; 1671 /* 1672 * If the notrace hash has no items, 1673 * then there's nothing to do. 1674 */ 1675 if (ftrace_hash_empty(hash)) 1676 return false; 1677 } 1678 1679 do_for_each_ftrace_rec(pg, rec) { 1680 int in_other_hash = 0; 1681 int in_hash = 0; 1682 int match = 0; 1683 1684 if (rec->flags & FTRACE_FL_DISABLED) 1685 continue; 1686 1687 if (all) { 1688 /* 1689 * Only the filter_hash affects all records. 1690 * Update if the record is not in the notrace hash. 1691 */ 1692 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1693 match = 1; 1694 } else { 1695 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1696 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1697 1698 /* 1699 * If filter_hash is set, we want to match all functions 1700 * that are in the hash but not in the other hash. 1701 * 1702 * If filter_hash is not set, then we are decrementing. 1703 * That means we match anything that is in the hash 1704 * and also in the other_hash. That is, we need to turn 1705 * off functions in the other hash because they are disabled 1706 * by this hash. 1707 */ 1708 if (filter_hash && in_hash && !in_other_hash) 1709 match = 1; 1710 else if (!filter_hash && in_hash && 1711 (in_other_hash || ftrace_hash_empty(other_hash))) 1712 match = 1; 1713 } 1714 if (!match) 1715 continue; 1716 1717 if (inc) { 1718 rec->flags++; 1719 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1720 return false; 1721 1722 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1723 rec->flags |= FTRACE_FL_DIRECT; 1724 1725 /* 1726 * If there's only a single callback registered to a 1727 * function, and the ops has a trampoline registered 1728 * for it, then we can call it directly. 1729 */ 1730 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1731 rec->flags |= FTRACE_FL_TRAMP; 1732 else 1733 /* 1734 * If we are adding another function callback 1735 * to this function, and the previous had a 1736 * custom trampoline in use, then we need to go 1737 * back to the default trampoline. 1738 */ 1739 rec->flags &= ~FTRACE_FL_TRAMP; 1740 1741 /* 1742 * If any ops wants regs saved for this function 1743 * then all ops will get saved regs. 1744 */ 1745 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1746 rec->flags |= FTRACE_FL_REGS; 1747 } else { 1748 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1749 return false; 1750 rec->flags--; 1751 1752 /* 1753 * Only the internal direct_ops should have the 1754 * DIRECT flag set. Thus, if it is removing a 1755 * function, then that function should no longer 1756 * be direct. 1757 */ 1758 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1759 rec->flags &= ~FTRACE_FL_DIRECT; 1760 1761 /* 1762 * If the rec had REGS enabled and the ops that is 1763 * being removed had REGS set, then see if there is 1764 * still any ops for this record that wants regs. 1765 * If not, we can stop recording them. 1766 */ 1767 if (ftrace_rec_count(rec) > 0 && 1768 rec->flags & FTRACE_FL_REGS && 1769 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1770 if (!test_rec_ops_needs_regs(rec)) 1771 rec->flags &= ~FTRACE_FL_REGS; 1772 } 1773 1774 /* 1775 * The TRAMP needs to be set only if rec count 1776 * is decremented to one, and the ops that is 1777 * left has a trampoline. As TRAMP can only be 1778 * enabled if there is only a single ops attached 1779 * to it. 1780 */ 1781 if (ftrace_rec_count(rec) == 1 && 1782 ftrace_find_tramp_ops_any_other(rec, ops)) 1783 rec->flags |= FTRACE_FL_TRAMP; 1784 else 1785 rec->flags &= ~FTRACE_FL_TRAMP; 1786 1787 /* 1788 * flags will be cleared in ftrace_check_record() 1789 * if rec count is zero. 1790 */ 1791 } 1792 count++; 1793 1794 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1795 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1796 1797 /* Shortcut, if we handled all records, we are done. */ 1798 if (!all && count == hash->count) 1799 return update; 1800 } while_for_each_ftrace_rec(); 1801 1802 return update; 1803 } 1804 1805 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1806 int filter_hash) 1807 { 1808 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1809 } 1810 1811 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1812 int filter_hash) 1813 { 1814 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1815 } 1816 1817 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1818 int filter_hash, int inc) 1819 { 1820 struct ftrace_ops *op; 1821 1822 __ftrace_hash_rec_update(ops, filter_hash, inc); 1823 1824 if (ops->func_hash != &global_ops.local_hash) 1825 return; 1826 1827 /* 1828 * If the ops shares the global_ops hash, then we need to update 1829 * all ops that are enabled and use this hash. 1830 */ 1831 do_for_each_ftrace_op(op, ftrace_ops_list) { 1832 /* Already done */ 1833 if (op == ops) 1834 continue; 1835 if (op->func_hash == &global_ops.local_hash) 1836 __ftrace_hash_rec_update(op, filter_hash, inc); 1837 } while_for_each_ftrace_op(op); 1838 } 1839 1840 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1841 int filter_hash) 1842 { 1843 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1844 } 1845 1846 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1847 int filter_hash) 1848 { 1849 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1850 } 1851 1852 /* 1853 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1854 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1855 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1856 * Note that old_hash and new_hash has below meanings 1857 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1858 * - If the hash is EMPTY_HASH, it hits nothing 1859 * - Anything else hits the recs which match the hash entries. 1860 */ 1861 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1862 struct ftrace_hash *old_hash, 1863 struct ftrace_hash *new_hash) 1864 { 1865 struct ftrace_page *pg; 1866 struct dyn_ftrace *rec, *end = NULL; 1867 int in_old, in_new; 1868 1869 /* Only update if the ops has been registered */ 1870 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1871 return 0; 1872 1873 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1874 return 0; 1875 1876 /* 1877 * Since the IPMODIFY is a very address sensitive action, we do not 1878 * allow ftrace_ops to set all functions to new hash. 1879 */ 1880 if (!new_hash || !old_hash) 1881 return -EINVAL; 1882 1883 /* Update rec->flags */ 1884 do_for_each_ftrace_rec(pg, rec) { 1885 1886 if (rec->flags & FTRACE_FL_DISABLED) 1887 continue; 1888 1889 /* We need to update only differences of filter_hash */ 1890 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1891 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1892 if (in_old == in_new) 1893 continue; 1894 1895 if (in_new) { 1896 /* New entries must ensure no others are using it */ 1897 if (rec->flags & FTRACE_FL_IPMODIFY) 1898 goto rollback; 1899 rec->flags |= FTRACE_FL_IPMODIFY; 1900 } else /* Removed entry */ 1901 rec->flags &= ~FTRACE_FL_IPMODIFY; 1902 } while_for_each_ftrace_rec(); 1903 1904 return 0; 1905 1906 rollback: 1907 end = rec; 1908 1909 /* Roll back what we did above */ 1910 do_for_each_ftrace_rec(pg, rec) { 1911 1912 if (rec->flags & FTRACE_FL_DISABLED) 1913 continue; 1914 1915 if (rec == end) 1916 goto err_out; 1917 1918 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1919 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1920 if (in_old == in_new) 1921 continue; 1922 1923 if (in_new) 1924 rec->flags &= ~FTRACE_FL_IPMODIFY; 1925 else 1926 rec->flags |= FTRACE_FL_IPMODIFY; 1927 } while_for_each_ftrace_rec(); 1928 1929 err_out: 1930 return -EBUSY; 1931 } 1932 1933 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1934 { 1935 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1936 1937 if (ftrace_hash_empty(hash)) 1938 hash = NULL; 1939 1940 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1941 } 1942 1943 /* Disabling always succeeds */ 1944 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1945 { 1946 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1947 1948 if (ftrace_hash_empty(hash)) 1949 hash = NULL; 1950 1951 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1952 } 1953 1954 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1955 struct ftrace_hash *new_hash) 1956 { 1957 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1958 1959 if (ftrace_hash_empty(old_hash)) 1960 old_hash = NULL; 1961 1962 if (ftrace_hash_empty(new_hash)) 1963 new_hash = NULL; 1964 1965 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1966 } 1967 1968 static void print_ip_ins(const char *fmt, const unsigned char *p) 1969 { 1970 char ins[MCOUNT_INSN_SIZE]; 1971 int i; 1972 1973 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 1974 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 1975 return; 1976 } 1977 1978 printk(KERN_CONT "%s", fmt); 1979 1980 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1981 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]); 1982 } 1983 1984 enum ftrace_bug_type ftrace_bug_type; 1985 const void *ftrace_expected; 1986 1987 static void print_bug_type(void) 1988 { 1989 switch (ftrace_bug_type) { 1990 case FTRACE_BUG_UNKNOWN: 1991 break; 1992 case FTRACE_BUG_INIT: 1993 pr_info("Initializing ftrace call sites\n"); 1994 break; 1995 case FTRACE_BUG_NOP: 1996 pr_info("Setting ftrace call site to NOP\n"); 1997 break; 1998 case FTRACE_BUG_CALL: 1999 pr_info("Setting ftrace call site to call ftrace function\n"); 2000 break; 2001 case FTRACE_BUG_UPDATE: 2002 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2003 break; 2004 } 2005 } 2006 2007 /** 2008 * ftrace_bug - report and shutdown function tracer 2009 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2010 * @rec: The record that failed 2011 * 2012 * The arch code that enables or disables the function tracing 2013 * can call ftrace_bug() when it has detected a problem in 2014 * modifying the code. @failed should be one of either: 2015 * EFAULT - if the problem happens on reading the @ip address 2016 * EINVAL - if what is read at @ip is not what was expected 2017 * EPERM - if the problem happens on writing to the @ip address 2018 */ 2019 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2020 { 2021 unsigned long ip = rec ? rec->ip : 0; 2022 2023 pr_info("------------[ ftrace bug ]------------\n"); 2024 2025 switch (failed) { 2026 case -EFAULT: 2027 pr_info("ftrace faulted on modifying "); 2028 print_ip_sym(KERN_INFO, ip); 2029 break; 2030 case -EINVAL: 2031 pr_info("ftrace failed to modify "); 2032 print_ip_sym(KERN_INFO, ip); 2033 print_ip_ins(" actual: ", (unsigned char *)ip); 2034 pr_cont("\n"); 2035 if (ftrace_expected) { 2036 print_ip_ins(" expected: ", ftrace_expected); 2037 pr_cont("\n"); 2038 } 2039 break; 2040 case -EPERM: 2041 pr_info("ftrace faulted on writing "); 2042 print_ip_sym(KERN_INFO, ip); 2043 break; 2044 default: 2045 pr_info("ftrace faulted on unknown error "); 2046 print_ip_sym(KERN_INFO, ip); 2047 } 2048 print_bug_type(); 2049 if (rec) { 2050 struct ftrace_ops *ops = NULL; 2051 2052 pr_info("ftrace record flags: %lx\n", rec->flags); 2053 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2054 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2055 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2056 ops = ftrace_find_tramp_ops_any(rec); 2057 if (ops) { 2058 do { 2059 pr_cont("\ttramp: %pS (%pS)", 2060 (void *)ops->trampoline, 2061 (void *)ops->func); 2062 ops = ftrace_find_tramp_ops_next(rec, ops); 2063 } while (ops); 2064 } else 2065 pr_cont("\ttramp: ERROR!"); 2066 2067 } 2068 ip = ftrace_get_addr_curr(rec); 2069 pr_cont("\n expected tramp: %lx\n", ip); 2070 } 2071 2072 FTRACE_WARN_ON_ONCE(1); 2073 } 2074 2075 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2076 { 2077 unsigned long flag = 0UL; 2078 2079 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2080 2081 if (rec->flags & FTRACE_FL_DISABLED) 2082 return FTRACE_UPDATE_IGNORE; 2083 2084 /* 2085 * If we are updating calls: 2086 * 2087 * If the record has a ref count, then we need to enable it 2088 * because someone is using it. 2089 * 2090 * Otherwise we make sure its disabled. 2091 * 2092 * If we are disabling calls, then disable all records that 2093 * are enabled. 2094 */ 2095 if (enable && ftrace_rec_count(rec)) 2096 flag = FTRACE_FL_ENABLED; 2097 2098 /* 2099 * If enabling and the REGS flag does not match the REGS_EN, or 2100 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2101 * this record. Set flags to fail the compare against ENABLED. 2102 * Same for direct calls. 2103 */ 2104 if (flag) { 2105 if (!(rec->flags & FTRACE_FL_REGS) != 2106 !(rec->flags & FTRACE_FL_REGS_EN)) 2107 flag |= FTRACE_FL_REGS; 2108 2109 if (!(rec->flags & FTRACE_FL_TRAMP) != 2110 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2111 flag |= FTRACE_FL_TRAMP; 2112 2113 /* 2114 * Direct calls are special, as count matters. 2115 * We must test the record for direct, if the 2116 * DIRECT and DIRECT_EN do not match, but only 2117 * if the count is 1. That's because, if the 2118 * count is something other than one, we do not 2119 * want the direct enabled (it will be done via the 2120 * direct helper). But if DIRECT_EN is set, and 2121 * the count is not one, we need to clear it. 2122 */ 2123 if (ftrace_rec_count(rec) == 1) { 2124 if (!(rec->flags & FTRACE_FL_DIRECT) != 2125 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2126 flag |= FTRACE_FL_DIRECT; 2127 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2128 flag |= FTRACE_FL_DIRECT; 2129 } 2130 } 2131 2132 /* If the state of this record hasn't changed, then do nothing */ 2133 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2134 return FTRACE_UPDATE_IGNORE; 2135 2136 if (flag) { 2137 /* Save off if rec is being enabled (for return value) */ 2138 flag ^= rec->flags & FTRACE_FL_ENABLED; 2139 2140 if (update) { 2141 rec->flags |= FTRACE_FL_ENABLED; 2142 if (flag & FTRACE_FL_REGS) { 2143 if (rec->flags & FTRACE_FL_REGS) 2144 rec->flags |= FTRACE_FL_REGS_EN; 2145 else 2146 rec->flags &= ~FTRACE_FL_REGS_EN; 2147 } 2148 if (flag & FTRACE_FL_TRAMP) { 2149 if (rec->flags & FTRACE_FL_TRAMP) 2150 rec->flags |= FTRACE_FL_TRAMP_EN; 2151 else 2152 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2153 } 2154 2155 if (flag & FTRACE_FL_DIRECT) { 2156 /* 2157 * If there's only one user (direct_ops helper) 2158 * then we can call the direct function 2159 * directly (no ftrace trampoline). 2160 */ 2161 if (ftrace_rec_count(rec) == 1) { 2162 if (rec->flags & FTRACE_FL_DIRECT) 2163 rec->flags |= FTRACE_FL_DIRECT_EN; 2164 else 2165 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2166 } else { 2167 /* 2168 * Can only call directly if there's 2169 * only one callback to the function. 2170 */ 2171 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2172 } 2173 } 2174 } 2175 2176 /* 2177 * If this record is being updated from a nop, then 2178 * return UPDATE_MAKE_CALL. 2179 * Otherwise, 2180 * return UPDATE_MODIFY_CALL to tell the caller to convert 2181 * from the save regs, to a non-save regs function or 2182 * vice versa, or from a trampoline call. 2183 */ 2184 if (flag & FTRACE_FL_ENABLED) { 2185 ftrace_bug_type = FTRACE_BUG_CALL; 2186 return FTRACE_UPDATE_MAKE_CALL; 2187 } 2188 2189 ftrace_bug_type = FTRACE_BUG_UPDATE; 2190 return FTRACE_UPDATE_MODIFY_CALL; 2191 } 2192 2193 if (update) { 2194 /* If there's no more users, clear all flags */ 2195 if (!ftrace_rec_count(rec)) 2196 rec->flags = 0; 2197 else 2198 /* 2199 * Just disable the record, but keep the ops TRAMP 2200 * and REGS states. The _EN flags must be disabled though. 2201 */ 2202 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2203 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2204 } 2205 2206 ftrace_bug_type = FTRACE_BUG_NOP; 2207 return FTRACE_UPDATE_MAKE_NOP; 2208 } 2209 2210 /** 2211 * ftrace_update_record, set a record that now is tracing or not 2212 * @rec: the record to update 2213 * @enable: set to true if the record is tracing, false to force disable 2214 * 2215 * The records that represent all functions that can be traced need 2216 * to be updated when tracing has been enabled. 2217 */ 2218 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2219 { 2220 return ftrace_check_record(rec, enable, true); 2221 } 2222 2223 /** 2224 * ftrace_test_record, check if the record has been enabled or not 2225 * @rec: the record to test 2226 * @enable: set to true to check if enabled, false if it is disabled 2227 * 2228 * The arch code may need to test if a record is already set to 2229 * tracing to determine how to modify the function code that it 2230 * represents. 2231 */ 2232 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2233 { 2234 return ftrace_check_record(rec, enable, false); 2235 } 2236 2237 static struct ftrace_ops * 2238 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2239 { 2240 struct ftrace_ops *op; 2241 unsigned long ip = rec->ip; 2242 2243 do_for_each_ftrace_op(op, ftrace_ops_list) { 2244 2245 if (!op->trampoline) 2246 continue; 2247 2248 if (hash_contains_ip(ip, op->func_hash)) 2249 return op; 2250 } while_for_each_ftrace_op(op); 2251 2252 return NULL; 2253 } 2254 2255 static struct ftrace_ops * 2256 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2257 { 2258 struct ftrace_ops *op; 2259 unsigned long ip = rec->ip; 2260 2261 do_for_each_ftrace_op(op, ftrace_ops_list) { 2262 2263 if (op == op_exclude || !op->trampoline) 2264 continue; 2265 2266 if (hash_contains_ip(ip, op->func_hash)) 2267 return op; 2268 } while_for_each_ftrace_op(op); 2269 2270 return NULL; 2271 } 2272 2273 static struct ftrace_ops * 2274 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2275 struct ftrace_ops *op) 2276 { 2277 unsigned long ip = rec->ip; 2278 2279 while_for_each_ftrace_op(op) { 2280 2281 if (!op->trampoline) 2282 continue; 2283 2284 if (hash_contains_ip(ip, op->func_hash)) 2285 return op; 2286 } 2287 2288 return NULL; 2289 } 2290 2291 static struct ftrace_ops * 2292 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2293 { 2294 struct ftrace_ops *op; 2295 unsigned long ip = rec->ip; 2296 2297 /* 2298 * Need to check removed ops first. 2299 * If they are being removed, and this rec has a tramp, 2300 * and this rec is in the ops list, then it would be the 2301 * one with the tramp. 2302 */ 2303 if (removed_ops) { 2304 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2305 return removed_ops; 2306 } 2307 2308 /* 2309 * Need to find the current trampoline for a rec. 2310 * Now, a trampoline is only attached to a rec if there 2311 * was a single 'ops' attached to it. But this can be called 2312 * when we are adding another op to the rec or removing the 2313 * current one. Thus, if the op is being added, we can 2314 * ignore it because it hasn't attached itself to the rec 2315 * yet. 2316 * 2317 * If an ops is being modified (hooking to different functions) 2318 * then we don't care about the new functions that are being 2319 * added, just the old ones (that are probably being removed). 2320 * 2321 * If we are adding an ops to a function that already is using 2322 * a trampoline, it needs to be removed (trampolines are only 2323 * for single ops connected), then an ops that is not being 2324 * modified also needs to be checked. 2325 */ 2326 do_for_each_ftrace_op(op, ftrace_ops_list) { 2327 2328 if (!op->trampoline) 2329 continue; 2330 2331 /* 2332 * If the ops is being added, it hasn't gotten to 2333 * the point to be removed from this tree yet. 2334 */ 2335 if (op->flags & FTRACE_OPS_FL_ADDING) 2336 continue; 2337 2338 2339 /* 2340 * If the ops is being modified and is in the old 2341 * hash, then it is probably being removed from this 2342 * function. 2343 */ 2344 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2345 hash_contains_ip(ip, &op->old_hash)) 2346 return op; 2347 /* 2348 * If the ops is not being added or modified, and it's 2349 * in its normal filter hash, then this must be the one 2350 * we want! 2351 */ 2352 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2353 hash_contains_ip(ip, op->func_hash)) 2354 return op; 2355 2356 } while_for_each_ftrace_op(op); 2357 2358 return NULL; 2359 } 2360 2361 static struct ftrace_ops * 2362 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2363 { 2364 struct ftrace_ops *op; 2365 unsigned long ip = rec->ip; 2366 2367 do_for_each_ftrace_op(op, ftrace_ops_list) { 2368 /* pass rec in as regs to have non-NULL val */ 2369 if (hash_contains_ip(ip, op->func_hash)) 2370 return op; 2371 } while_for_each_ftrace_op(op); 2372 2373 return NULL; 2374 } 2375 2376 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2377 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2378 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2379 static DEFINE_MUTEX(direct_mutex); 2380 int ftrace_direct_func_count; 2381 2382 /* 2383 * Search the direct_functions hash to see if the given instruction pointer 2384 * has a direct caller attached to it. 2385 */ 2386 unsigned long ftrace_find_rec_direct(unsigned long ip) 2387 { 2388 struct ftrace_func_entry *entry; 2389 2390 entry = __ftrace_lookup_ip(direct_functions, ip); 2391 if (!entry) 2392 return 0; 2393 2394 return entry->direct; 2395 } 2396 2397 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2398 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2399 { 2400 struct pt_regs *regs = ftrace_get_regs(fregs); 2401 unsigned long addr; 2402 2403 addr = ftrace_find_rec_direct(ip); 2404 if (!addr) 2405 return; 2406 2407 arch_ftrace_set_direct_caller(regs, addr); 2408 } 2409 2410 struct ftrace_ops direct_ops = { 2411 .func = call_direct_funcs, 2412 .flags = FTRACE_OPS_FL_IPMODIFY 2413 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2414 | FTRACE_OPS_FL_PERMANENT, 2415 /* 2416 * By declaring the main trampoline as this trampoline 2417 * it will never have one allocated for it. Allocated 2418 * trampolines should not call direct functions. 2419 * The direct_ops should only be called by the builtin 2420 * ftrace_regs_caller trampoline. 2421 */ 2422 .trampoline = FTRACE_REGS_ADDR, 2423 }; 2424 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2425 2426 /** 2427 * ftrace_get_addr_new - Get the call address to set to 2428 * @rec: The ftrace record descriptor 2429 * 2430 * If the record has the FTRACE_FL_REGS set, that means that it 2431 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2432 * is not set, then it wants to convert to the normal callback. 2433 * 2434 * Returns the address of the trampoline to set to 2435 */ 2436 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2437 { 2438 struct ftrace_ops *ops; 2439 unsigned long addr; 2440 2441 if ((rec->flags & FTRACE_FL_DIRECT) && 2442 (ftrace_rec_count(rec) == 1)) { 2443 addr = ftrace_find_rec_direct(rec->ip); 2444 if (addr) 2445 return addr; 2446 WARN_ON_ONCE(1); 2447 } 2448 2449 /* Trampolines take precedence over regs */ 2450 if (rec->flags & FTRACE_FL_TRAMP) { 2451 ops = ftrace_find_tramp_ops_new(rec); 2452 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2453 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2454 (void *)rec->ip, (void *)rec->ip, rec->flags); 2455 /* Ftrace is shutting down, return anything */ 2456 return (unsigned long)FTRACE_ADDR; 2457 } 2458 return ops->trampoline; 2459 } 2460 2461 if (rec->flags & FTRACE_FL_REGS) 2462 return (unsigned long)FTRACE_REGS_ADDR; 2463 else 2464 return (unsigned long)FTRACE_ADDR; 2465 } 2466 2467 /** 2468 * ftrace_get_addr_curr - Get the call address that is already there 2469 * @rec: The ftrace record descriptor 2470 * 2471 * The FTRACE_FL_REGS_EN is set when the record already points to 2472 * a function that saves all the regs. Basically the '_EN' version 2473 * represents the current state of the function. 2474 * 2475 * Returns the address of the trampoline that is currently being called 2476 */ 2477 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2478 { 2479 struct ftrace_ops *ops; 2480 unsigned long addr; 2481 2482 /* Direct calls take precedence over trampolines */ 2483 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2484 addr = ftrace_find_rec_direct(rec->ip); 2485 if (addr) 2486 return addr; 2487 WARN_ON_ONCE(1); 2488 } 2489 2490 /* Trampolines take precedence over regs */ 2491 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2492 ops = ftrace_find_tramp_ops_curr(rec); 2493 if (FTRACE_WARN_ON(!ops)) { 2494 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2495 (void *)rec->ip, (void *)rec->ip); 2496 /* Ftrace is shutting down, return anything */ 2497 return (unsigned long)FTRACE_ADDR; 2498 } 2499 return ops->trampoline; 2500 } 2501 2502 if (rec->flags & FTRACE_FL_REGS_EN) 2503 return (unsigned long)FTRACE_REGS_ADDR; 2504 else 2505 return (unsigned long)FTRACE_ADDR; 2506 } 2507 2508 static int 2509 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2510 { 2511 unsigned long ftrace_old_addr; 2512 unsigned long ftrace_addr; 2513 int ret; 2514 2515 ftrace_addr = ftrace_get_addr_new(rec); 2516 2517 /* This needs to be done before we call ftrace_update_record */ 2518 ftrace_old_addr = ftrace_get_addr_curr(rec); 2519 2520 ret = ftrace_update_record(rec, enable); 2521 2522 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2523 2524 switch (ret) { 2525 case FTRACE_UPDATE_IGNORE: 2526 return 0; 2527 2528 case FTRACE_UPDATE_MAKE_CALL: 2529 ftrace_bug_type = FTRACE_BUG_CALL; 2530 return ftrace_make_call(rec, ftrace_addr); 2531 2532 case FTRACE_UPDATE_MAKE_NOP: 2533 ftrace_bug_type = FTRACE_BUG_NOP; 2534 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2535 2536 case FTRACE_UPDATE_MODIFY_CALL: 2537 ftrace_bug_type = FTRACE_BUG_UPDATE; 2538 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2539 } 2540 2541 return -1; /* unknown ftrace bug */ 2542 } 2543 2544 void __weak ftrace_replace_code(int mod_flags) 2545 { 2546 struct dyn_ftrace *rec; 2547 struct ftrace_page *pg; 2548 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2549 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2550 int failed; 2551 2552 if (unlikely(ftrace_disabled)) 2553 return; 2554 2555 do_for_each_ftrace_rec(pg, rec) { 2556 2557 if (rec->flags & FTRACE_FL_DISABLED) 2558 continue; 2559 2560 failed = __ftrace_replace_code(rec, enable); 2561 if (failed) { 2562 ftrace_bug(failed, rec); 2563 /* Stop processing */ 2564 return; 2565 } 2566 if (schedulable) 2567 cond_resched(); 2568 } while_for_each_ftrace_rec(); 2569 } 2570 2571 struct ftrace_rec_iter { 2572 struct ftrace_page *pg; 2573 int index; 2574 }; 2575 2576 /** 2577 * ftrace_rec_iter_start, start up iterating over traced functions 2578 * 2579 * Returns an iterator handle that is used to iterate over all 2580 * the records that represent address locations where functions 2581 * are traced. 2582 * 2583 * May return NULL if no records are available. 2584 */ 2585 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2586 { 2587 /* 2588 * We only use a single iterator. 2589 * Protected by the ftrace_lock mutex. 2590 */ 2591 static struct ftrace_rec_iter ftrace_rec_iter; 2592 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2593 2594 iter->pg = ftrace_pages_start; 2595 iter->index = 0; 2596 2597 /* Could have empty pages */ 2598 while (iter->pg && !iter->pg->index) 2599 iter->pg = iter->pg->next; 2600 2601 if (!iter->pg) 2602 return NULL; 2603 2604 return iter; 2605 } 2606 2607 /** 2608 * ftrace_rec_iter_next, get the next record to process. 2609 * @iter: The handle to the iterator. 2610 * 2611 * Returns the next iterator after the given iterator @iter. 2612 */ 2613 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2614 { 2615 iter->index++; 2616 2617 if (iter->index >= iter->pg->index) { 2618 iter->pg = iter->pg->next; 2619 iter->index = 0; 2620 2621 /* Could have empty pages */ 2622 while (iter->pg && !iter->pg->index) 2623 iter->pg = iter->pg->next; 2624 } 2625 2626 if (!iter->pg) 2627 return NULL; 2628 2629 return iter; 2630 } 2631 2632 /** 2633 * ftrace_rec_iter_record, get the record at the iterator location 2634 * @iter: The current iterator location 2635 * 2636 * Returns the record that the current @iter is at. 2637 */ 2638 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2639 { 2640 return &iter->pg->records[iter->index]; 2641 } 2642 2643 static int 2644 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2645 { 2646 int ret; 2647 2648 if (unlikely(ftrace_disabled)) 2649 return 0; 2650 2651 ret = ftrace_init_nop(mod, rec); 2652 if (ret) { 2653 ftrace_bug_type = FTRACE_BUG_INIT; 2654 ftrace_bug(ret, rec); 2655 return 0; 2656 } 2657 return 1; 2658 } 2659 2660 /* 2661 * archs can override this function if they must do something 2662 * before the modifying code is performed. 2663 */ 2664 int __weak ftrace_arch_code_modify_prepare(void) 2665 { 2666 return 0; 2667 } 2668 2669 /* 2670 * archs can override this function if they must do something 2671 * after the modifying code is performed. 2672 */ 2673 int __weak ftrace_arch_code_modify_post_process(void) 2674 { 2675 return 0; 2676 } 2677 2678 void ftrace_modify_all_code(int command) 2679 { 2680 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2681 int mod_flags = 0; 2682 int err = 0; 2683 2684 if (command & FTRACE_MAY_SLEEP) 2685 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2686 2687 /* 2688 * If the ftrace_caller calls a ftrace_ops func directly, 2689 * we need to make sure that it only traces functions it 2690 * expects to trace. When doing the switch of functions, 2691 * we need to update to the ftrace_ops_list_func first 2692 * before the transition between old and new calls are set, 2693 * as the ftrace_ops_list_func will check the ops hashes 2694 * to make sure the ops are having the right functions 2695 * traced. 2696 */ 2697 if (update) { 2698 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2699 if (FTRACE_WARN_ON(err)) 2700 return; 2701 } 2702 2703 if (command & FTRACE_UPDATE_CALLS) 2704 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2705 else if (command & FTRACE_DISABLE_CALLS) 2706 ftrace_replace_code(mod_flags); 2707 2708 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2709 function_trace_op = set_function_trace_op; 2710 smp_wmb(); 2711 /* If irqs are disabled, we are in stop machine */ 2712 if (!irqs_disabled()) 2713 smp_call_function(ftrace_sync_ipi, NULL, 1); 2714 err = ftrace_update_ftrace_func(ftrace_trace_function); 2715 if (FTRACE_WARN_ON(err)) 2716 return; 2717 } 2718 2719 if (command & FTRACE_START_FUNC_RET) 2720 err = ftrace_enable_ftrace_graph_caller(); 2721 else if (command & FTRACE_STOP_FUNC_RET) 2722 err = ftrace_disable_ftrace_graph_caller(); 2723 FTRACE_WARN_ON(err); 2724 } 2725 2726 static int __ftrace_modify_code(void *data) 2727 { 2728 int *command = data; 2729 2730 ftrace_modify_all_code(*command); 2731 2732 return 0; 2733 } 2734 2735 /** 2736 * ftrace_run_stop_machine, go back to the stop machine method 2737 * @command: The command to tell ftrace what to do 2738 * 2739 * If an arch needs to fall back to the stop machine method, the 2740 * it can call this function. 2741 */ 2742 void ftrace_run_stop_machine(int command) 2743 { 2744 stop_machine(__ftrace_modify_code, &command, NULL); 2745 } 2746 2747 /** 2748 * arch_ftrace_update_code, modify the code to trace or not trace 2749 * @command: The command that needs to be done 2750 * 2751 * Archs can override this function if it does not need to 2752 * run stop_machine() to modify code. 2753 */ 2754 void __weak arch_ftrace_update_code(int command) 2755 { 2756 ftrace_run_stop_machine(command); 2757 } 2758 2759 static void ftrace_run_update_code(int command) 2760 { 2761 int ret; 2762 2763 ret = ftrace_arch_code_modify_prepare(); 2764 FTRACE_WARN_ON(ret); 2765 if (ret) 2766 return; 2767 2768 /* 2769 * By default we use stop_machine() to modify the code. 2770 * But archs can do what ever they want as long as it 2771 * is safe. The stop_machine() is the safest, but also 2772 * produces the most overhead. 2773 */ 2774 arch_ftrace_update_code(command); 2775 2776 ret = ftrace_arch_code_modify_post_process(); 2777 FTRACE_WARN_ON(ret); 2778 } 2779 2780 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2781 struct ftrace_ops_hash *old_hash) 2782 { 2783 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2784 ops->old_hash.filter_hash = old_hash->filter_hash; 2785 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2786 ftrace_run_update_code(command); 2787 ops->old_hash.filter_hash = NULL; 2788 ops->old_hash.notrace_hash = NULL; 2789 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2790 } 2791 2792 static ftrace_func_t saved_ftrace_func; 2793 static int ftrace_start_up; 2794 2795 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2796 { 2797 } 2798 2799 /* List of trace_ops that have allocated trampolines */ 2800 static LIST_HEAD(ftrace_ops_trampoline_list); 2801 2802 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2803 { 2804 lockdep_assert_held(&ftrace_lock); 2805 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2806 } 2807 2808 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2809 { 2810 lockdep_assert_held(&ftrace_lock); 2811 list_del_rcu(&ops->list); 2812 synchronize_rcu(); 2813 } 2814 2815 /* 2816 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2817 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2818 * not a module. 2819 */ 2820 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2821 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2822 2823 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2824 { 2825 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2826 ops->trampoline) { 2827 /* 2828 * Record the text poke event before the ksymbol unregister 2829 * event. 2830 */ 2831 perf_event_text_poke((void *)ops->trampoline, 2832 (void *)ops->trampoline, 2833 ops->trampoline_size, NULL, 0); 2834 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2835 ops->trampoline, ops->trampoline_size, 2836 true, FTRACE_TRAMPOLINE_SYM); 2837 /* Remove from kallsyms after the perf events */ 2838 ftrace_remove_trampoline_from_kallsyms(ops); 2839 } 2840 2841 arch_ftrace_trampoline_free(ops); 2842 } 2843 2844 static void ftrace_startup_enable(int command) 2845 { 2846 if (saved_ftrace_func != ftrace_trace_function) { 2847 saved_ftrace_func = ftrace_trace_function; 2848 command |= FTRACE_UPDATE_TRACE_FUNC; 2849 } 2850 2851 if (!command || !ftrace_enabled) 2852 return; 2853 2854 ftrace_run_update_code(command); 2855 } 2856 2857 static void ftrace_startup_all(int command) 2858 { 2859 update_all_ops = true; 2860 ftrace_startup_enable(command); 2861 update_all_ops = false; 2862 } 2863 2864 int ftrace_startup(struct ftrace_ops *ops, int command) 2865 { 2866 int ret; 2867 2868 if (unlikely(ftrace_disabled)) 2869 return -ENODEV; 2870 2871 ret = __register_ftrace_function(ops); 2872 if (ret) 2873 return ret; 2874 2875 ftrace_start_up++; 2876 2877 /* 2878 * Note that ftrace probes uses this to start up 2879 * and modify functions it will probe. But we still 2880 * set the ADDING flag for modification, as probes 2881 * do not have trampolines. If they add them in the 2882 * future, then the probes will need to distinguish 2883 * between adding and updating probes. 2884 */ 2885 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2886 2887 ret = ftrace_hash_ipmodify_enable(ops); 2888 if (ret < 0) { 2889 /* Rollback registration process */ 2890 __unregister_ftrace_function(ops); 2891 ftrace_start_up--; 2892 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2893 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2894 ftrace_trampoline_free(ops); 2895 return ret; 2896 } 2897 2898 if (ftrace_hash_rec_enable(ops, 1)) 2899 command |= FTRACE_UPDATE_CALLS; 2900 2901 ftrace_startup_enable(command); 2902 2903 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2904 2905 return 0; 2906 } 2907 2908 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2909 { 2910 int ret; 2911 2912 if (unlikely(ftrace_disabled)) 2913 return -ENODEV; 2914 2915 ret = __unregister_ftrace_function(ops); 2916 if (ret) 2917 return ret; 2918 2919 ftrace_start_up--; 2920 /* 2921 * Just warn in case of unbalance, no need to kill ftrace, it's not 2922 * critical but the ftrace_call callers may be never nopped again after 2923 * further ftrace uses. 2924 */ 2925 WARN_ON_ONCE(ftrace_start_up < 0); 2926 2927 /* Disabling ipmodify never fails */ 2928 ftrace_hash_ipmodify_disable(ops); 2929 2930 if (ftrace_hash_rec_disable(ops, 1)) 2931 command |= FTRACE_UPDATE_CALLS; 2932 2933 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2934 2935 if (saved_ftrace_func != ftrace_trace_function) { 2936 saved_ftrace_func = ftrace_trace_function; 2937 command |= FTRACE_UPDATE_TRACE_FUNC; 2938 } 2939 2940 if (!command || !ftrace_enabled) { 2941 /* 2942 * If these are dynamic or per_cpu ops, they still 2943 * need their data freed. Since, function tracing is 2944 * not currently active, we can just free them 2945 * without synchronizing all CPUs. 2946 */ 2947 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2948 goto free_ops; 2949 2950 return 0; 2951 } 2952 2953 /* 2954 * If the ops uses a trampoline, then it needs to be 2955 * tested first on update. 2956 */ 2957 ops->flags |= FTRACE_OPS_FL_REMOVING; 2958 removed_ops = ops; 2959 2960 /* The trampoline logic checks the old hashes */ 2961 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2962 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2963 2964 ftrace_run_update_code(command); 2965 2966 /* 2967 * If there's no more ops registered with ftrace, run a 2968 * sanity check to make sure all rec flags are cleared. 2969 */ 2970 if (rcu_dereference_protected(ftrace_ops_list, 2971 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2972 struct ftrace_page *pg; 2973 struct dyn_ftrace *rec; 2974 2975 do_for_each_ftrace_rec(pg, rec) { 2976 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2977 pr_warn(" %pS flags:%lx\n", 2978 (void *)rec->ip, rec->flags); 2979 } while_for_each_ftrace_rec(); 2980 } 2981 2982 ops->old_hash.filter_hash = NULL; 2983 ops->old_hash.notrace_hash = NULL; 2984 2985 removed_ops = NULL; 2986 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2987 2988 /* 2989 * Dynamic ops may be freed, we must make sure that all 2990 * callers are done before leaving this function. 2991 * The same goes for freeing the per_cpu data of the per_cpu 2992 * ops. 2993 */ 2994 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2995 /* 2996 * We need to do a hard force of sched synchronization. 2997 * This is because we use preempt_disable() to do RCU, but 2998 * the function tracers can be called where RCU is not watching 2999 * (like before user_exit()). We can not rely on the RCU 3000 * infrastructure to do the synchronization, thus we must do it 3001 * ourselves. 3002 */ 3003 synchronize_rcu_tasks_rude(); 3004 3005 /* 3006 * When the kernel is preemptive, tasks can be preempted 3007 * while on a ftrace trampoline. Just scheduling a task on 3008 * a CPU is not good enough to flush them. Calling 3009 * synchronize_rcu_tasks() will wait for those tasks to 3010 * execute and either schedule voluntarily or enter user space. 3011 */ 3012 if (IS_ENABLED(CONFIG_PREEMPTION)) 3013 synchronize_rcu_tasks(); 3014 3015 free_ops: 3016 ftrace_trampoline_free(ops); 3017 } 3018 3019 return 0; 3020 } 3021 3022 static void ftrace_startup_sysctl(void) 3023 { 3024 int command; 3025 3026 if (unlikely(ftrace_disabled)) 3027 return; 3028 3029 /* Force update next time */ 3030 saved_ftrace_func = NULL; 3031 /* ftrace_start_up is true if we want ftrace running */ 3032 if (ftrace_start_up) { 3033 command = FTRACE_UPDATE_CALLS; 3034 if (ftrace_graph_active) 3035 command |= FTRACE_START_FUNC_RET; 3036 ftrace_startup_enable(command); 3037 } 3038 } 3039 3040 static void ftrace_shutdown_sysctl(void) 3041 { 3042 int command; 3043 3044 if (unlikely(ftrace_disabled)) 3045 return; 3046 3047 /* ftrace_start_up is true if ftrace is running */ 3048 if (ftrace_start_up) { 3049 command = FTRACE_DISABLE_CALLS; 3050 if (ftrace_graph_active) 3051 command |= FTRACE_STOP_FUNC_RET; 3052 ftrace_run_update_code(command); 3053 } 3054 } 3055 3056 static u64 ftrace_update_time; 3057 unsigned long ftrace_update_tot_cnt; 3058 unsigned long ftrace_number_of_pages; 3059 unsigned long ftrace_number_of_groups; 3060 3061 static inline int ops_traces_mod(struct ftrace_ops *ops) 3062 { 3063 /* 3064 * Filter_hash being empty will default to trace module. 3065 * But notrace hash requires a test of individual module functions. 3066 */ 3067 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3068 ftrace_hash_empty(ops->func_hash->notrace_hash); 3069 } 3070 3071 /* 3072 * Check if the current ops references the record. 3073 * 3074 * If the ops traces all functions, then it was already accounted for. 3075 * If the ops does not trace the current record function, skip it. 3076 * If the ops ignores the function via notrace filter, skip it. 3077 */ 3078 static inline bool 3079 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3080 { 3081 /* If ops isn't enabled, ignore it */ 3082 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3083 return false; 3084 3085 /* If ops traces all then it includes this function */ 3086 if (ops_traces_mod(ops)) 3087 return true; 3088 3089 /* The function must be in the filter */ 3090 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3091 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3092 return false; 3093 3094 /* If in notrace hash, we ignore it too */ 3095 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3096 return false; 3097 3098 return true; 3099 } 3100 3101 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3102 { 3103 struct ftrace_page *pg; 3104 struct dyn_ftrace *p; 3105 u64 start, stop; 3106 unsigned long update_cnt = 0; 3107 unsigned long rec_flags = 0; 3108 int i; 3109 3110 start = ftrace_now(raw_smp_processor_id()); 3111 3112 /* 3113 * When a module is loaded, this function is called to convert 3114 * the calls to mcount in its text to nops, and also to create 3115 * an entry in the ftrace data. Now, if ftrace is activated 3116 * after this call, but before the module sets its text to 3117 * read-only, the modification of enabling ftrace can fail if 3118 * the read-only is done while ftrace is converting the calls. 3119 * To prevent this, the module's records are set as disabled 3120 * and will be enabled after the call to set the module's text 3121 * to read-only. 3122 */ 3123 if (mod) 3124 rec_flags |= FTRACE_FL_DISABLED; 3125 3126 for (pg = new_pgs; pg; pg = pg->next) { 3127 3128 for (i = 0; i < pg->index; i++) { 3129 3130 /* If something went wrong, bail without enabling anything */ 3131 if (unlikely(ftrace_disabled)) 3132 return -1; 3133 3134 p = &pg->records[i]; 3135 p->flags = rec_flags; 3136 3137 /* 3138 * Do the initial record conversion from mcount jump 3139 * to the NOP instructions. 3140 */ 3141 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3142 !ftrace_nop_initialize(mod, p)) 3143 break; 3144 3145 update_cnt++; 3146 } 3147 } 3148 3149 stop = ftrace_now(raw_smp_processor_id()); 3150 ftrace_update_time = stop - start; 3151 ftrace_update_tot_cnt += update_cnt; 3152 3153 return 0; 3154 } 3155 3156 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3157 { 3158 int order; 3159 int pages; 3160 int cnt; 3161 3162 if (WARN_ON(!count)) 3163 return -EINVAL; 3164 3165 /* We want to fill as much as possible, with no empty pages */ 3166 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3167 order = fls(pages) - 1; 3168 3169 again: 3170 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3171 3172 if (!pg->records) { 3173 /* if we can't allocate this size, try something smaller */ 3174 if (!order) 3175 return -ENOMEM; 3176 order >>= 1; 3177 goto again; 3178 } 3179 3180 ftrace_number_of_pages += 1 << order; 3181 ftrace_number_of_groups++; 3182 3183 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3184 pg->order = order; 3185 3186 if (cnt > count) 3187 cnt = count; 3188 3189 return cnt; 3190 } 3191 3192 static struct ftrace_page * 3193 ftrace_allocate_pages(unsigned long num_to_init) 3194 { 3195 struct ftrace_page *start_pg; 3196 struct ftrace_page *pg; 3197 int cnt; 3198 3199 if (!num_to_init) 3200 return NULL; 3201 3202 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3203 if (!pg) 3204 return NULL; 3205 3206 /* 3207 * Try to allocate as much as possible in one continues 3208 * location that fills in all of the space. We want to 3209 * waste as little space as possible. 3210 */ 3211 for (;;) { 3212 cnt = ftrace_allocate_records(pg, num_to_init); 3213 if (cnt < 0) 3214 goto free_pages; 3215 3216 num_to_init -= cnt; 3217 if (!num_to_init) 3218 break; 3219 3220 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3221 if (!pg->next) 3222 goto free_pages; 3223 3224 pg = pg->next; 3225 } 3226 3227 return start_pg; 3228 3229 free_pages: 3230 pg = start_pg; 3231 while (pg) { 3232 if (pg->records) { 3233 free_pages((unsigned long)pg->records, pg->order); 3234 ftrace_number_of_pages -= 1 << pg->order; 3235 } 3236 start_pg = pg->next; 3237 kfree(pg); 3238 pg = start_pg; 3239 ftrace_number_of_groups--; 3240 } 3241 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3242 return NULL; 3243 } 3244 3245 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3246 3247 struct ftrace_iterator { 3248 loff_t pos; 3249 loff_t func_pos; 3250 loff_t mod_pos; 3251 struct ftrace_page *pg; 3252 struct dyn_ftrace *func; 3253 struct ftrace_func_probe *probe; 3254 struct ftrace_func_entry *probe_entry; 3255 struct trace_parser parser; 3256 struct ftrace_hash *hash; 3257 struct ftrace_ops *ops; 3258 struct trace_array *tr; 3259 struct list_head *mod_list; 3260 int pidx; 3261 int idx; 3262 unsigned flags; 3263 }; 3264 3265 static void * 3266 t_probe_next(struct seq_file *m, loff_t *pos) 3267 { 3268 struct ftrace_iterator *iter = m->private; 3269 struct trace_array *tr = iter->ops->private; 3270 struct list_head *func_probes; 3271 struct ftrace_hash *hash; 3272 struct list_head *next; 3273 struct hlist_node *hnd = NULL; 3274 struct hlist_head *hhd; 3275 int size; 3276 3277 (*pos)++; 3278 iter->pos = *pos; 3279 3280 if (!tr) 3281 return NULL; 3282 3283 func_probes = &tr->func_probes; 3284 if (list_empty(func_probes)) 3285 return NULL; 3286 3287 if (!iter->probe) { 3288 next = func_probes->next; 3289 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3290 } 3291 3292 if (iter->probe_entry) 3293 hnd = &iter->probe_entry->hlist; 3294 3295 hash = iter->probe->ops.func_hash->filter_hash; 3296 3297 /* 3298 * A probe being registered may temporarily have an empty hash 3299 * and it's at the end of the func_probes list. 3300 */ 3301 if (!hash || hash == EMPTY_HASH) 3302 return NULL; 3303 3304 size = 1 << hash->size_bits; 3305 3306 retry: 3307 if (iter->pidx >= size) { 3308 if (iter->probe->list.next == func_probes) 3309 return NULL; 3310 next = iter->probe->list.next; 3311 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3312 hash = iter->probe->ops.func_hash->filter_hash; 3313 size = 1 << hash->size_bits; 3314 iter->pidx = 0; 3315 } 3316 3317 hhd = &hash->buckets[iter->pidx]; 3318 3319 if (hlist_empty(hhd)) { 3320 iter->pidx++; 3321 hnd = NULL; 3322 goto retry; 3323 } 3324 3325 if (!hnd) 3326 hnd = hhd->first; 3327 else { 3328 hnd = hnd->next; 3329 if (!hnd) { 3330 iter->pidx++; 3331 goto retry; 3332 } 3333 } 3334 3335 if (WARN_ON_ONCE(!hnd)) 3336 return NULL; 3337 3338 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3339 3340 return iter; 3341 } 3342 3343 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3344 { 3345 struct ftrace_iterator *iter = m->private; 3346 void *p = NULL; 3347 loff_t l; 3348 3349 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3350 return NULL; 3351 3352 if (iter->mod_pos > *pos) 3353 return NULL; 3354 3355 iter->probe = NULL; 3356 iter->probe_entry = NULL; 3357 iter->pidx = 0; 3358 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3359 p = t_probe_next(m, &l); 3360 if (!p) 3361 break; 3362 } 3363 if (!p) 3364 return NULL; 3365 3366 /* Only set this if we have an item */ 3367 iter->flags |= FTRACE_ITER_PROBE; 3368 3369 return iter; 3370 } 3371 3372 static int 3373 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3374 { 3375 struct ftrace_func_entry *probe_entry; 3376 struct ftrace_probe_ops *probe_ops; 3377 struct ftrace_func_probe *probe; 3378 3379 probe = iter->probe; 3380 probe_entry = iter->probe_entry; 3381 3382 if (WARN_ON_ONCE(!probe || !probe_entry)) 3383 return -EIO; 3384 3385 probe_ops = probe->probe_ops; 3386 3387 if (probe_ops->print) 3388 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3389 3390 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3391 (void *)probe_ops->func); 3392 3393 return 0; 3394 } 3395 3396 static void * 3397 t_mod_next(struct seq_file *m, loff_t *pos) 3398 { 3399 struct ftrace_iterator *iter = m->private; 3400 struct trace_array *tr = iter->tr; 3401 3402 (*pos)++; 3403 iter->pos = *pos; 3404 3405 iter->mod_list = iter->mod_list->next; 3406 3407 if (iter->mod_list == &tr->mod_trace || 3408 iter->mod_list == &tr->mod_notrace) { 3409 iter->flags &= ~FTRACE_ITER_MOD; 3410 return NULL; 3411 } 3412 3413 iter->mod_pos = *pos; 3414 3415 return iter; 3416 } 3417 3418 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3419 { 3420 struct ftrace_iterator *iter = m->private; 3421 void *p = NULL; 3422 loff_t l; 3423 3424 if (iter->func_pos > *pos) 3425 return NULL; 3426 3427 iter->mod_pos = iter->func_pos; 3428 3429 /* probes are only available if tr is set */ 3430 if (!iter->tr) 3431 return NULL; 3432 3433 for (l = 0; l <= (*pos - iter->func_pos); ) { 3434 p = t_mod_next(m, &l); 3435 if (!p) 3436 break; 3437 } 3438 if (!p) { 3439 iter->flags &= ~FTRACE_ITER_MOD; 3440 return t_probe_start(m, pos); 3441 } 3442 3443 /* Only set this if we have an item */ 3444 iter->flags |= FTRACE_ITER_MOD; 3445 3446 return iter; 3447 } 3448 3449 static int 3450 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3451 { 3452 struct ftrace_mod_load *ftrace_mod; 3453 struct trace_array *tr = iter->tr; 3454 3455 if (WARN_ON_ONCE(!iter->mod_list) || 3456 iter->mod_list == &tr->mod_trace || 3457 iter->mod_list == &tr->mod_notrace) 3458 return -EIO; 3459 3460 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3461 3462 if (ftrace_mod->func) 3463 seq_printf(m, "%s", ftrace_mod->func); 3464 else 3465 seq_putc(m, '*'); 3466 3467 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3468 3469 return 0; 3470 } 3471 3472 static void * 3473 t_func_next(struct seq_file *m, loff_t *pos) 3474 { 3475 struct ftrace_iterator *iter = m->private; 3476 struct dyn_ftrace *rec = NULL; 3477 3478 (*pos)++; 3479 3480 retry: 3481 if (iter->idx >= iter->pg->index) { 3482 if (iter->pg->next) { 3483 iter->pg = iter->pg->next; 3484 iter->idx = 0; 3485 goto retry; 3486 } 3487 } else { 3488 rec = &iter->pg->records[iter->idx++]; 3489 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3490 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3491 3492 ((iter->flags & FTRACE_ITER_ENABLED) && 3493 !(rec->flags & FTRACE_FL_ENABLED))) { 3494 3495 rec = NULL; 3496 goto retry; 3497 } 3498 } 3499 3500 if (!rec) 3501 return NULL; 3502 3503 iter->pos = iter->func_pos = *pos; 3504 iter->func = rec; 3505 3506 return iter; 3507 } 3508 3509 static void * 3510 t_next(struct seq_file *m, void *v, loff_t *pos) 3511 { 3512 struct ftrace_iterator *iter = m->private; 3513 loff_t l = *pos; /* t_probe_start() must use original pos */ 3514 void *ret; 3515 3516 if (unlikely(ftrace_disabled)) 3517 return NULL; 3518 3519 if (iter->flags & FTRACE_ITER_PROBE) 3520 return t_probe_next(m, pos); 3521 3522 if (iter->flags & FTRACE_ITER_MOD) 3523 return t_mod_next(m, pos); 3524 3525 if (iter->flags & FTRACE_ITER_PRINTALL) { 3526 /* next must increment pos, and t_probe_start does not */ 3527 (*pos)++; 3528 return t_mod_start(m, &l); 3529 } 3530 3531 ret = t_func_next(m, pos); 3532 3533 if (!ret) 3534 return t_mod_start(m, &l); 3535 3536 return ret; 3537 } 3538 3539 static void reset_iter_read(struct ftrace_iterator *iter) 3540 { 3541 iter->pos = 0; 3542 iter->func_pos = 0; 3543 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3544 } 3545 3546 static void *t_start(struct seq_file *m, loff_t *pos) 3547 { 3548 struct ftrace_iterator *iter = m->private; 3549 void *p = NULL; 3550 loff_t l; 3551 3552 mutex_lock(&ftrace_lock); 3553 3554 if (unlikely(ftrace_disabled)) 3555 return NULL; 3556 3557 /* 3558 * If an lseek was done, then reset and start from beginning. 3559 */ 3560 if (*pos < iter->pos) 3561 reset_iter_read(iter); 3562 3563 /* 3564 * For set_ftrace_filter reading, if we have the filter 3565 * off, we can short cut and just print out that all 3566 * functions are enabled. 3567 */ 3568 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3569 ftrace_hash_empty(iter->hash)) { 3570 iter->func_pos = 1; /* Account for the message */ 3571 if (*pos > 0) 3572 return t_mod_start(m, pos); 3573 iter->flags |= FTRACE_ITER_PRINTALL; 3574 /* reset in case of seek/pread */ 3575 iter->flags &= ~FTRACE_ITER_PROBE; 3576 return iter; 3577 } 3578 3579 if (iter->flags & FTRACE_ITER_MOD) 3580 return t_mod_start(m, pos); 3581 3582 /* 3583 * Unfortunately, we need to restart at ftrace_pages_start 3584 * every time we let go of the ftrace_mutex. This is because 3585 * those pointers can change without the lock. 3586 */ 3587 iter->pg = ftrace_pages_start; 3588 iter->idx = 0; 3589 for (l = 0; l <= *pos; ) { 3590 p = t_func_next(m, &l); 3591 if (!p) 3592 break; 3593 } 3594 3595 if (!p) 3596 return t_mod_start(m, pos); 3597 3598 return iter; 3599 } 3600 3601 static void t_stop(struct seq_file *m, void *p) 3602 { 3603 mutex_unlock(&ftrace_lock); 3604 } 3605 3606 void * __weak 3607 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3608 { 3609 return NULL; 3610 } 3611 3612 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3613 struct dyn_ftrace *rec) 3614 { 3615 void *ptr; 3616 3617 ptr = arch_ftrace_trampoline_func(ops, rec); 3618 if (ptr) 3619 seq_printf(m, " ->%pS", ptr); 3620 } 3621 3622 static int t_show(struct seq_file *m, void *v) 3623 { 3624 struct ftrace_iterator *iter = m->private; 3625 struct dyn_ftrace *rec; 3626 3627 if (iter->flags & FTRACE_ITER_PROBE) 3628 return t_probe_show(m, iter); 3629 3630 if (iter->flags & FTRACE_ITER_MOD) 3631 return t_mod_show(m, iter); 3632 3633 if (iter->flags & FTRACE_ITER_PRINTALL) { 3634 if (iter->flags & FTRACE_ITER_NOTRACE) 3635 seq_puts(m, "#### no functions disabled ####\n"); 3636 else 3637 seq_puts(m, "#### all functions enabled ####\n"); 3638 return 0; 3639 } 3640 3641 rec = iter->func; 3642 3643 if (!rec) 3644 return 0; 3645 3646 seq_printf(m, "%ps", (void *)rec->ip); 3647 if (iter->flags & FTRACE_ITER_ENABLED) { 3648 struct ftrace_ops *ops; 3649 3650 seq_printf(m, " (%ld)%s%s%s", 3651 ftrace_rec_count(rec), 3652 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3653 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3654 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3655 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3656 ops = ftrace_find_tramp_ops_any(rec); 3657 if (ops) { 3658 do { 3659 seq_printf(m, "\ttramp: %pS (%pS)", 3660 (void *)ops->trampoline, 3661 (void *)ops->func); 3662 add_trampoline_func(m, ops, rec); 3663 ops = ftrace_find_tramp_ops_next(rec, ops); 3664 } while (ops); 3665 } else 3666 seq_puts(m, "\ttramp: ERROR!"); 3667 } else { 3668 add_trampoline_func(m, NULL, rec); 3669 } 3670 if (rec->flags & FTRACE_FL_DIRECT) { 3671 unsigned long direct; 3672 3673 direct = ftrace_find_rec_direct(rec->ip); 3674 if (direct) 3675 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3676 } 3677 } 3678 3679 seq_putc(m, '\n'); 3680 3681 return 0; 3682 } 3683 3684 static const struct seq_operations show_ftrace_seq_ops = { 3685 .start = t_start, 3686 .next = t_next, 3687 .stop = t_stop, 3688 .show = t_show, 3689 }; 3690 3691 static int 3692 ftrace_avail_open(struct inode *inode, struct file *file) 3693 { 3694 struct ftrace_iterator *iter; 3695 int ret; 3696 3697 ret = security_locked_down(LOCKDOWN_TRACEFS); 3698 if (ret) 3699 return ret; 3700 3701 if (unlikely(ftrace_disabled)) 3702 return -ENODEV; 3703 3704 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3705 if (!iter) 3706 return -ENOMEM; 3707 3708 iter->pg = ftrace_pages_start; 3709 iter->ops = &global_ops; 3710 3711 return 0; 3712 } 3713 3714 static int 3715 ftrace_enabled_open(struct inode *inode, struct file *file) 3716 { 3717 struct ftrace_iterator *iter; 3718 3719 /* 3720 * This shows us what functions are currently being 3721 * traced and by what. Not sure if we want lockdown 3722 * to hide such critical information for an admin. 3723 * Although, perhaps it can show information we don't 3724 * want people to see, but if something is tracing 3725 * something, we probably want to know about it. 3726 */ 3727 3728 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3729 if (!iter) 3730 return -ENOMEM; 3731 3732 iter->pg = ftrace_pages_start; 3733 iter->flags = FTRACE_ITER_ENABLED; 3734 iter->ops = &global_ops; 3735 3736 return 0; 3737 } 3738 3739 /** 3740 * ftrace_regex_open - initialize function tracer filter files 3741 * @ops: The ftrace_ops that hold the hash filters 3742 * @flag: The type of filter to process 3743 * @inode: The inode, usually passed in to your open routine 3744 * @file: The file, usually passed in to your open routine 3745 * 3746 * ftrace_regex_open() initializes the filter files for the 3747 * @ops. Depending on @flag it may process the filter hash or 3748 * the notrace hash of @ops. With this called from the open 3749 * routine, you can use ftrace_filter_write() for the write 3750 * routine if @flag has FTRACE_ITER_FILTER set, or 3751 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3752 * tracing_lseek() should be used as the lseek routine, and 3753 * release must call ftrace_regex_release(). 3754 */ 3755 int 3756 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3757 struct inode *inode, struct file *file) 3758 { 3759 struct ftrace_iterator *iter; 3760 struct ftrace_hash *hash; 3761 struct list_head *mod_head; 3762 struct trace_array *tr = ops->private; 3763 int ret = -ENOMEM; 3764 3765 ftrace_ops_init(ops); 3766 3767 if (unlikely(ftrace_disabled)) 3768 return -ENODEV; 3769 3770 if (tracing_check_open_get_tr(tr)) 3771 return -ENODEV; 3772 3773 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3774 if (!iter) 3775 goto out; 3776 3777 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3778 goto out; 3779 3780 iter->ops = ops; 3781 iter->flags = flag; 3782 iter->tr = tr; 3783 3784 mutex_lock(&ops->func_hash->regex_lock); 3785 3786 if (flag & FTRACE_ITER_NOTRACE) { 3787 hash = ops->func_hash->notrace_hash; 3788 mod_head = tr ? &tr->mod_notrace : NULL; 3789 } else { 3790 hash = ops->func_hash->filter_hash; 3791 mod_head = tr ? &tr->mod_trace : NULL; 3792 } 3793 3794 iter->mod_list = mod_head; 3795 3796 if (file->f_mode & FMODE_WRITE) { 3797 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3798 3799 if (file->f_flags & O_TRUNC) { 3800 iter->hash = alloc_ftrace_hash(size_bits); 3801 clear_ftrace_mod_list(mod_head); 3802 } else { 3803 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3804 } 3805 3806 if (!iter->hash) { 3807 trace_parser_put(&iter->parser); 3808 goto out_unlock; 3809 } 3810 } else 3811 iter->hash = hash; 3812 3813 ret = 0; 3814 3815 if (file->f_mode & FMODE_READ) { 3816 iter->pg = ftrace_pages_start; 3817 3818 ret = seq_open(file, &show_ftrace_seq_ops); 3819 if (!ret) { 3820 struct seq_file *m = file->private_data; 3821 m->private = iter; 3822 } else { 3823 /* Failed */ 3824 free_ftrace_hash(iter->hash); 3825 trace_parser_put(&iter->parser); 3826 } 3827 } else 3828 file->private_data = iter; 3829 3830 out_unlock: 3831 mutex_unlock(&ops->func_hash->regex_lock); 3832 3833 out: 3834 if (ret) { 3835 kfree(iter); 3836 if (tr) 3837 trace_array_put(tr); 3838 } 3839 3840 return ret; 3841 } 3842 3843 static int 3844 ftrace_filter_open(struct inode *inode, struct file *file) 3845 { 3846 struct ftrace_ops *ops = inode->i_private; 3847 3848 /* Checks for tracefs lockdown */ 3849 return ftrace_regex_open(ops, 3850 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3851 inode, file); 3852 } 3853 3854 static int 3855 ftrace_notrace_open(struct inode *inode, struct file *file) 3856 { 3857 struct ftrace_ops *ops = inode->i_private; 3858 3859 /* Checks for tracefs lockdown */ 3860 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3861 inode, file); 3862 } 3863 3864 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3865 struct ftrace_glob { 3866 char *search; 3867 unsigned len; 3868 int type; 3869 }; 3870 3871 /* 3872 * If symbols in an architecture don't correspond exactly to the user-visible 3873 * name of what they represent, it is possible to define this function to 3874 * perform the necessary adjustments. 3875 */ 3876 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3877 { 3878 return str; 3879 } 3880 3881 static int ftrace_match(char *str, struct ftrace_glob *g) 3882 { 3883 int matched = 0; 3884 int slen; 3885 3886 str = arch_ftrace_match_adjust(str, g->search); 3887 3888 switch (g->type) { 3889 case MATCH_FULL: 3890 if (strcmp(str, g->search) == 0) 3891 matched = 1; 3892 break; 3893 case MATCH_FRONT_ONLY: 3894 if (strncmp(str, g->search, g->len) == 0) 3895 matched = 1; 3896 break; 3897 case MATCH_MIDDLE_ONLY: 3898 if (strstr(str, g->search)) 3899 matched = 1; 3900 break; 3901 case MATCH_END_ONLY: 3902 slen = strlen(str); 3903 if (slen >= g->len && 3904 memcmp(str + slen - g->len, g->search, g->len) == 0) 3905 matched = 1; 3906 break; 3907 case MATCH_GLOB: 3908 if (glob_match(g->search, str)) 3909 matched = 1; 3910 break; 3911 } 3912 3913 return matched; 3914 } 3915 3916 static int 3917 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3918 { 3919 struct ftrace_func_entry *entry; 3920 int ret = 0; 3921 3922 entry = ftrace_lookup_ip(hash, rec->ip); 3923 if (clear_filter) { 3924 /* Do nothing if it doesn't exist */ 3925 if (!entry) 3926 return 0; 3927 3928 free_hash_entry(hash, entry); 3929 } else { 3930 /* Do nothing if it exists */ 3931 if (entry) 3932 return 0; 3933 3934 ret = add_hash_entry(hash, rec->ip); 3935 } 3936 return ret; 3937 } 3938 3939 static int 3940 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3941 int clear_filter) 3942 { 3943 long index = simple_strtoul(func_g->search, NULL, 0); 3944 struct ftrace_page *pg; 3945 struct dyn_ftrace *rec; 3946 3947 /* The index starts at 1 */ 3948 if (--index < 0) 3949 return 0; 3950 3951 do_for_each_ftrace_rec(pg, rec) { 3952 if (pg->index <= index) { 3953 index -= pg->index; 3954 /* this is a double loop, break goes to the next page */ 3955 break; 3956 } 3957 rec = &pg->records[index]; 3958 enter_record(hash, rec, clear_filter); 3959 return 1; 3960 } while_for_each_ftrace_rec(); 3961 return 0; 3962 } 3963 3964 static int 3965 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3966 struct ftrace_glob *mod_g, int exclude_mod) 3967 { 3968 char str[KSYM_SYMBOL_LEN]; 3969 char *modname; 3970 3971 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3972 3973 if (mod_g) { 3974 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3975 3976 /* blank module name to match all modules */ 3977 if (!mod_g->len) { 3978 /* blank module globbing: modname xor exclude_mod */ 3979 if (!exclude_mod != !modname) 3980 goto func_match; 3981 return 0; 3982 } 3983 3984 /* 3985 * exclude_mod is set to trace everything but the given 3986 * module. If it is set and the module matches, then 3987 * return 0. If it is not set, and the module doesn't match 3988 * also return 0. Otherwise, check the function to see if 3989 * that matches. 3990 */ 3991 if (!mod_matches == !exclude_mod) 3992 return 0; 3993 func_match: 3994 /* blank search means to match all funcs in the mod */ 3995 if (!func_g->len) 3996 return 1; 3997 } 3998 3999 return ftrace_match(str, func_g); 4000 } 4001 4002 static int 4003 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4004 { 4005 struct ftrace_page *pg; 4006 struct dyn_ftrace *rec; 4007 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4008 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4009 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4010 int exclude_mod = 0; 4011 int found = 0; 4012 int ret; 4013 int clear_filter = 0; 4014 4015 if (func) { 4016 func_g.type = filter_parse_regex(func, len, &func_g.search, 4017 &clear_filter); 4018 func_g.len = strlen(func_g.search); 4019 } 4020 4021 if (mod) { 4022 mod_g.type = filter_parse_regex(mod, strlen(mod), 4023 &mod_g.search, &exclude_mod); 4024 mod_g.len = strlen(mod_g.search); 4025 } 4026 4027 mutex_lock(&ftrace_lock); 4028 4029 if (unlikely(ftrace_disabled)) 4030 goto out_unlock; 4031 4032 if (func_g.type == MATCH_INDEX) { 4033 found = add_rec_by_index(hash, &func_g, clear_filter); 4034 goto out_unlock; 4035 } 4036 4037 do_for_each_ftrace_rec(pg, rec) { 4038 4039 if (rec->flags & FTRACE_FL_DISABLED) 4040 continue; 4041 4042 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4043 ret = enter_record(hash, rec, clear_filter); 4044 if (ret < 0) { 4045 found = ret; 4046 goto out_unlock; 4047 } 4048 found = 1; 4049 } 4050 } while_for_each_ftrace_rec(); 4051 out_unlock: 4052 mutex_unlock(&ftrace_lock); 4053 4054 return found; 4055 } 4056 4057 static int 4058 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4059 { 4060 return match_records(hash, buff, len, NULL); 4061 } 4062 4063 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4064 struct ftrace_ops_hash *old_hash) 4065 { 4066 struct ftrace_ops *op; 4067 4068 if (!ftrace_enabled) 4069 return; 4070 4071 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4072 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4073 return; 4074 } 4075 4076 /* 4077 * If this is the shared global_ops filter, then we need to 4078 * check if there is another ops that shares it, is enabled. 4079 * If so, we still need to run the modify code. 4080 */ 4081 if (ops->func_hash != &global_ops.local_hash) 4082 return; 4083 4084 do_for_each_ftrace_op(op, ftrace_ops_list) { 4085 if (op->func_hash == &global_ops.local_hash && 4086 op->flags & FTRACE_OPS_FL_ENABLED) { 4087 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4088 /* Only need to do this once */ 4089 return; 4090 } 4091 } while_for_each_ftrace_op(op); 4092 } 4093 4094 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4095 struct ftrace_hash **orig_hash, 4096 struct ftrace_hash *hash, 4097 int enable) 4098 { 4099 struct ftrace_ops_hash old_hash_ops; 4100 struct ftrace_hash *old_hash; 4101 int ret; 4102 4103 old_hash = *orig_hash; 4104 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4105 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4106 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4107 if (!ret) { 4108 ftrace_ops_update_code(ops, &old_hash_ops); 4109 free_ftrace_hash_rcu(old_hash); 4110 } 4111 return ret; 4112 } 4113 4114 static bool module_exists(const char *module) 4115 { 4116 /* All modules have the symbol __this_module */ 4117 static const char this_mod[] = "__this_module"; 4118 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4119 unsigned long val; 4120 int n; 4121 4122 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4123 4124 if (n > sizeof(modname) - 1) 4125 return false; 4126 4127 val = module_kallsyms_lookup_name(modname); 4128 return val != 0; 4129 } 4130 4131 static int cache_mod(struct trace_array *tr, 4132 const char *func, char *module, int enable) 4133 { 4134 struct ftrace_mod_load *ftrace_mod, *n; 4135 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4136 int ret; 4137 4138 mutex_lock(&ftrace_lock); 4139 4140 /* We do not cache inverse filters */ 4141 if (func[0] == '!') { 4142 func++; 4143 ret = -EINVAL; 4144 4145 /* Look to remove this hash */ 4146 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4147 if (strcmp(ftrace_mod->module, module) != 0) 4148 continue; 4149 4150 /* no func matches all */ 4151 if (strcmp(func, "*") == 0 || 4152 (ftrace_mod->func && 4153 strcmp(ftrace_mod->func, func) == 0)) { 4154 ret = 0; 4155 free_ftrace_mod(ftrace_mod); 4156 continue; 4157 } 4158 } 4159 goto out; 4160 } 4161 4162 ret = -EINVAL; 4163 /* We only care about modules that have not been loaded yet */ 4164 if (module_exists(module)) 4165 goto out; 4166 4167 /* Save this string off, and execute it when the module is loaded */ 4168 ret = ftrace_add_mod(tr, func, module, enable); 4169 out: 4170 mutex_unlock(&ftrace_lock); 4171 4172 return ret; 4173 } 4174 4175 static int 4176 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4177 int reset, int enable); 4178 4179 #ifdef CONFIG_MODULES 4180 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4181 char *mod, bool enable) 4182 { 4183 struct ftrace_mod_load *ftrace_mod, *n; 4184 struct ftrace_hash **orig_hash, *new_hash; 4185 LIST_HEAD(process_mods); 4186 char *func; 4187 4188 mutex_lock(&ops->func_hash->regex_lock); 4189 4190 if (enable) 4191 orig_hash = &ops->func_hash->filter_hash; 4192 else 4193 orig_hash = &ops->func_hash->notrace_hash; 4194 4195 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4196 *orig_hash); 4197 if (!new_hash) 4198 goto out; /* warn? */ 4199 4200 mutex_lock(&ftrace_lock); 4201 4202 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4203 4204 if (strcmp(ftrace_mod->module, mod) != 0) 4205 continue; 4206 4207 if (ftrace_mod->func) 4208 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4209 else 4210 func = kstrdup("*", GFP_KERNEL); 4211 4212 if (!func) /* warn? */ 4213 continue; 4214 4215 list_move(&ftrace_mod->list, &process_mods); 4216 4217 /* Use the newly allocated func, as it may be "*" */ 4218 kfree(ftrace_mod->func); 4219 ftrace_mod->func = func; 4220 } 4221 4222 mutex_unlock(&ftrace_lock); 4223 4224 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4225 4226 func = ftrace_mod->func; 4227 4228 /* Grabs ftrace_lock, which is why we have this extra step */ 4229 match_records(new_hash, func, strlen(func), mod); 4230 free_ftrace_mod(ftrace_mod); 4231 } 4232 4233 if (enable && list_empty(head)) 4234 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4235 4236 mutex_lock(&ftrace_lock); 4237 4238 ftrace_hash_move_and_update_ops(ops, orig_hash, 4239 new_hash, enable); 4240 mutex_unlock(&ftrace_lock); 4241 4242 out: 4243 mutex_unlock(&ops->func_hash->regex_lock); 4244 4245 free_ftrace_hash(new_hash); 4246 } 4247 4248 static void process_cached_mods(const char *mod_name) 4249 { 4250 struct trace_array *tr; 4251 char *mod; 4252 4253 mod = kstrdup(mod_name, GFP_KERNEL); 4254 if (!mod) 4255 return; 4256 4257 mutex_lock(&trace_types_lock); 4258 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4259 if (!list_empty(&tr->mod_trace)) 4260 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4261 if (!list_empty(&tr->mod_notrace)) 4262 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4263 } 4264 mutex_unlock(&trace_types_lock); 4265 4266 kfree(mod); 4267 } 4268 #endif 4269 4270 /* 4271 * We register the module command as a template to show others how 4272 * to register the a command as well. 4273 */ 4274 4275 static int 4276 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4277 char *func_orig, char *cmd, char *module, int enable) 4278 { 4279 char *func; 4280 int ret; 4281 4282 /* match_records() modifies func, and we need the original */ 4283 func = kstrdup(func_orig, GFP_KERNEL); 4284 if (!func) 4285 return -ENOMEM; 4286 4287 /* 4288 * cmd == 'mod' because we only registered this func 4289 * for the 'mod' ftrace_func_command. 4290 * But if you register one func with multiple commands, 4291 * you can tell which command was used by the cmd 4292 * parameter. 4293 */ 4294 ret = match_records(hash, func, strlen(func), module); 4295 kfree(func); 4296 4297 if (!ret) 4298 return cache_mod(tr, func_orig, module, enable); 4299 if (ret < 0) 4300 return ret; 4301 return 0; 4302 } 4303 4304 static struct ftrace_func_command ftrace_mod_cmd = { 4305 .name = "mod", 4306 .func = ftrace_mod_callback, 4307 }; 4308 4309 static int __init ftrace_mod_cmd_init(void) 4310 { 4311 return register_ftrace_command(&ftrace_mod_cmd); 4312 } 4313 core_initcall(ftrace_mod_cmd_init); 4314 4315 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4316 struct ftrace_ops *op, struct ftrace_regs *fregs) 4317 { 4318 struct ftrace_probe_ops *probe_ops; 4319 struct ftrace_func_probe *probe; 4320 4321 probe = container_of(op, struct ftrace_func_probe, ops); 4322 probe_ops = probe->probe_ops; 4323 4324 /* 4325 * Disable preemption for these calls to prevent a RCU grace 4326 * period. This syncs the hash iteration and freeing of items 4327 * on the hash. rcu_read_lock is too dangerous here. 4328 */ 4329 preempt_disable_notrace(); 4330 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4331 preempt_enable_notrace(); 4332 } 4333 4334 struct ftrace_func_map { 4335 struct ftrace_func_entry entry; 4336 void *data; 4337 }; 4338 4339 struct ftrace_func_mapper { 4340 struct ftrace_hash hash; 4341 }; 4342 4343 /** 4344 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4345 * 4346 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4347 */ 4348 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4349 { 4350 struct ftrace_hash *hash; 4351 4352 /* 4353 * The mapper is simply a ftrace_hash, but since the entries 4354 * in the hash are not ftrace_func_entry type, we define it 4355 * as a separate structure. 4356 */ 4357 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4358 return (struct ftrace_func_mapper *)hash; 4359 } 4360 4361 /** 4362 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4363 * @mapper: The mapper that has the ip maps 4364 * @ip: the instruction pointer to find the data for 4365 * 4366 * Returns the data mapped to @ip if found otherwise NULL. The return 4367 * is actually the address of the mapper data pointer. The address is 4368 * returned for use cases where the data is no bigger than a long, and 4369 * the user can use the data pointer as its data instead of having to 4370 * allocate more memory for the reference. 4371 */ 4372 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4373 unsigned long ip) 4374 { 4375 struct ftrace_func_entry *entry; 4376 struct ftrace_func_map *map; 4377 4378 entry = ftrace_lookup_ip(&mapper->hash, ip); 4379 if (!entry) 4380 return NULL; 4381 4382 map = (struct ftrace_func_map *)entry; 4383 return &map->data; 4384 } 4385 4386 /** 4387 * ftrace_func_mapper_add_ip - Map some data to an ip 4388 * @mapper: The mapper that has the ip maps 4389 * @ip: The instruction pointer address to map @data to 4390 * @data: The data to map to @ip 4391 * 4392 * Returns 0 on success otherwise an error. 4393 */ 4394 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4395 unsigned long ip, void *data) 4396 { 4397 struct ftrace_func_entry *entry; 4398 struct ftrace_func_map *map; 4399 4400 entry = ftrace_lookup_ip(&mapper->hash, ip); 4401 if (entry) 4402 return -EBUSY; 4403 4404 map = kmalloc(sizeof(*map), GFP_KERNEL); 4405 if (!map) 4406 return -ENOMEM; 4407 4408 map->entry.ip = ip; 4409 map->data = data; 4410 4411 __add_hash_entry(&mapper->hash, &map->entry); 4412 4413 return 0; 4414 } 4415 4416 /** 4417 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4418 * @mapper: The mapper that has the ip maps 4419 * @ip: The instruction pointer address to remove the data from 4420 * 4421 * Returns the data if it is found, otherwise NULL. 4422 * Note, if the data pointer is used as the data itself, (see 4423 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4424 * if the data pointer was set to zero. 4425 */ 4426 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4427 unsigned long ip) 4428 { 4429 struct ftrace_func_entry *entry; 4430 struct ftrace_func_map *map; 4431 void *data; 4432 4433 entry = ftrace_lookup_ip(&mapper->hash, ip); 4434 if (!entry) 4435 return NULL; 4436 4437 map = (struct ftrace_func_map *)entry; 4438 data = map->data; 4439 4440 remove_hash_entry(&mapper->hash, entry); 4441 kfree(entry); 4442 4443 return data; 4444 } 4445 4446 /** 4447 * free_ftrace_func_mapper - free a mapping of ips and data 4448 * @mapper: The mapper that has the ip maps 4449 * @free_func: A function to be called on each data item. 4450 * 4451 * This is used to free the function mapper. The @free_func is optional 4452 * and can be used if the data needs to be freed as well. 4453 */ 4454 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4455 ftrace_mapper_func free_func) 4456 { 4457 struct ftrace_func_entry *entry; 4458 struct ftrace_func_map *map; 4459 struct hlist_head *hhd; 4460 int size, i; 4461 4462 if (!mapper) 4463 return; 4464 4465 if (free_func && mapper->hash.count) { 4466 size = 1 << mapper->hash.size_bits; 4467 for (i = 0; i < size; i++) { 4468 hhd = &mapper->hash.buckets[i]; 4469 hlist_for_each_entry(entry, hhd, hlist) { 4470 map = (struct ftrace_func_map *)entry; 4471 free_func(map); 4472 } 4473 } 4474 } 4475 free_ftrace_hash(&mapper->hash); 4476 } 4477 4478 static void release_probe(struct ftrace_func_probe *probe) 4479 { 4480 struct ftrace_probe_ops *probe_ops; 4481 4482 mutex_lock(&ftrace_lock); 4483 4484 WARN_ON(probe->ref <= 0); 4485 4486 /* Subtract the ref that was used to protect this instance */ 4487 probe->ref--; 4488 4489 if (!probe->ref) { 4490 probe_ops = probe->probe_ops; 4491 /* 4492 * Sending zero as ip tells probe_ops to free 4493 * the probe->data itself 4494 */ 4495 if (probe_ops->free) 4496 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4497 list_del(&probe->list); 4498 kfree(probe); 4499 } 4500 mutex_unlock(&ftrace_lock); 4501 } 4502 4503 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4504 { 4505 /* 4506 * Add one ref to keep it from being freed when releasing the 4507 * ftrace_lock mutex. 4508 */ 4509 probe->ref++; 4510 } 4511 4512 int 4513 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4514 struct ftrace_probe_ops *probe_ops, 4515 void *data) 4516 { 4517 struct ftrace_func_entry *entry; 4518 struct ftrace_func_probe *probe; 4519 struct ftrace_hash **orig_hash; 4520 struct ftrace_hash *old_hash; 4521 struct ftrace_hash *hash; 4522 int count = 0; 4523 int size; 4524 int ret; 4525 int i; 4526 4527 if (WARN_ON(!tr)) 4528 return -EINVAL; 4529 4530 /* We do not support '!' for function probes */ 4531 if (WARN_ON(glob[0] == '!')) 4532 return -EINVAL; 4533 4534 4535 mutex_lock(&ftrace_lock); 4536 /* Check if the probe_ops is already registered */ 4537 list_for_each_entry(probe, &tr->func_probes, list) { 4538 if (probe->probe_ops == probe_ops) 4539 break; 4540 } 4541 if (&probe->list == &tr->func_probes) { 4542 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4543 if (!probe) { 4544 mutex_unlock(&ftrace_lock); 4545 return -ENOMEM; 4546 } 4547 probe->probe_ops = probe_ops; 4548 probe->ops.func = function_trace_probe_call; 4549 probe->tr = tr; 4550 ftrace_ops_init(&probe->ops); 4551 list_add(&probe->list, &tr->func_probes); 4552 } 4553 4554 acquire_probe_locked(probe); 4555 4556 mutex_unlock(&ftrace_lock); 4557 4558 /* 4559 * Note, there's a small window here that the func_hash->filter_hash 4560 * may be NULL or empty. Need to be careful when reading the loop. 4561 */ 4562 mutex_lock(&probe->ops.func_hash->regex_lock); 4563 4564 orig_hash = &probe->ops.func_hash->filter_hash; 4565 old_hash = *orig_hash; 4566 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4567 4568 if (!hash) { 4569 ret = -ENOMEM; 4570 goto out; 4571 } 4572 4573 ret = ftrace_match_records(hash, glob, strlen(glob)); 4574 4575 /* Nothing found? */ 4576 if (!ret) 4577 ret = -EINVAL; 4578 4579 if (ret < 0) 4580 goto out; 4581 4582 size = 1 << hash->size_bits; 4583 for (i = 0; i < size; i++) { 4584 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4585 if (ftrace_lookup_ip(old_hash, entry->ip)) 4586 continue; 4587 /* 4588 * The caller might want to do something special 4589 * for each function we find. We call the callback 4590 * to give the caller an opportunity to do so. 4591 */ 4592 if (probe_ops->init) { 4593 ret = probe_ops->init(probe_ops, tr, 4594 entry->ip, data, 4595 &probe->data); 4596 if (ret < 0) { 4597 if (probe_ops->free && count) 4598 probe_ops->free(probe_ops, tr, 4599 0, probe->data); 4600 probe->data = NULL; 4601 goto out; 4602 } 4603 } 4604 count++; 4605 } 4606 } 4607 4608 mutex_lock(&ftrace_lock); 4609 4610 if (!count) { 4611 /* Nothing was added? */ 4612 ret = -EINVAL; 4613 goto out_unlock; 4614 } 4615 4616 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4617 hash, 1); 4618 if (ret < 0) 4619 goto err_unlock; 4620 4621 /* One ref for each new function traced */ 4622 probe->ref += count; 4623 4624 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4625 ret = ftrace_startup(&probe->ops, 0); 4626 4627 out_unlock: 4628 mutex_unlock(&ftrace_lock); 4629 4630 if (!ret) 4631 ret = count; 4632 out: 4633 mutex_unlock(&probe->ops.func_hash->regex_lock); 4634 free_ftrace_hash(hash); 4635 4636 release_probe(probe); 4637 4638 return ret; 4639 4640 err_unlock: 4641 if (!probe_ops->free || !count) 4642 goto out_unlock; 4643 4644 /* Failed to do the move, need to call the free functions */ 4645 for (i = 0; i < size; i++) { 4646 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4647 if (ftrace_lookup_ip(old_hash, entry->ip)) 4648 continue; 4649 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4650 } 4651 } 4652 goto out_unlock; 4653 } 4654 4655 int 4656 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4657 struct ftrace_probe_ops *probe_ops) 4658 { 4659 struct ftrace_ops_hash old_hash_ops; 4660 struct ftrace_func_entry *entry; 4661 struct ftrace_func_probe *probe; 4662 struct ftrace_glob func_g; 4663 struct ftrace_hash **orig_hash; 4664 struct ftrace_hash *old_hash; 4665 struct ftrace_hash *hash = NULL; 4666 struct hlist_node *tmp; 4667 struct hlist_head hhd; 4668 char str[KSYM_SYMBOL_LEN]; 4669 int count = 0; 4670 int i, ret = -ENODEV; 4671 int size; 4672 4673 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4674 func_g.search = NULL; 4675 else { 4676 int not; 4677 4678 func_g.type = filter_parse_regex(glob, strlen(glob), 4679 &func_g.search, ¬); 4680 func_g.len = strlen(func_g.search); 4681 4682 /* we do not support '!' for function probes */ 4683 if (WARN_ON(not)) 4684 return -EINVAL; 4685 } 4686 4687 mutex_lock(&ftrace_lock); 4688 /* Check if the probe_ops is already registered */ 4689 list_for_each_entry(probe, &tr->func_probes, list) { 4690 if (probe->probe_ops == probe_ops) 4691 break; 4692 } 4693 if (&probe->list == &tr->func_probes) 4694 goto err_unlock_ftrace; 4695 4696 ret = -EINVAL; 4697 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4698 goto err_unlock_ftrace; 4699 4700 acquire_probe_locked(probe); 4701 4702 mutex_unlock(&ftrace_lock); 4703 4704 mutex_lock(&probe->ops.func_hash->regex_lock); 4705 4706 orig_hash = &probe->ops.func_hash->filter_hash; 4707 old_hash = *orig_hash; 4708 4709 if (ftrace_hash_empty(old_hash)) 4710 goto out_unlock; 4711 4712 old_hash_ops.filter_hash = old_hash; 4713 /* Probes only have filters */ 4714 old_hash_ops.notrace_hash = NULL; 4715 4716 ret = -ENOMEM; 4717 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4718 if (!hash) 4719 goto out_unlock; 4720 4721 INIT_HLIST_HEAD(&hhd); 4722 4723 size = 1 << hash->size_bits; 4724 for (i = 0; i < size; i++) { 4725 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4726 4727 if (func_g.search) { 4728 kallsyms_lookup(entry->ip, NULL, NULL, 4729 NULL, str); 4730 if (!ftrace_match(str, &func_g)) 4731 continue; 4732 } 4733 count++; 4734 remove_hash_entry(hash, entry); 4735 hlist_add_head(&entry->hlist, &hhd); 4736 } 4737 } 4738 4739 /* Nothing found? */ 4740 if (!count) { 4741 ret = -EINVAL; 4742 goto out_unlock; 4743 } 4744 4745 mutex_lock(&ftrace_lock); 4746 4747 WARN_ON(probe->ref < count); 4748 4749 probe->ref -= count; 4750 4751 if (ftrace_hash_empty(hash)) 4752 ftrace_shutdown(&probe->ops, 0); 4753 4754 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4755 hash, 1); 4756 4757 /* still need to update the function call sites */ 4758 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4759 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4760 &old_hash_ops); 4761 synchronize_rcu(); 4762 4763 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4764 hlist_del(&entry->hlist); 4765 if (probe_ops->free) 4766 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4767 kfree(entry); 4768 } 4769 mutex_unlock(&ftrace_lock); 4770 4771 out_unlock: 4772 mutex_unlock(&probe->ops.func_hash->regex_lock); 4773 free_ftrace_hash(hash); 4774 4775 release_probe(probe); 4776 4777 return ret; 4778 4779 err_unlock_ftrace: 4780 mutex_unlock(&ftrace_lock); 4781 return ret; 4782 } 4783 4784 void clear_ftrace_function_probes(struct trace_array *tr) 4785 { 4786 struct ftrace_func_probe *probe, *n; 4787 4788 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4789 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4790 } 4791 4792 static LIST_HEAD(ftrace_commands); 4793 static DEFINE_MUTEX(ftrace_cmd_mutex); 4794 4795 /* 4796 * Currently we only register ftrace commands from __init, so mark this 4797 * __init too. 4798 */ 4799 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4800 { 4801 struct ftrace_func_command *p; 4802 int ret = 0; 4803 4804 mutex_lock(&ftrace_cmd_mutex); 4805 list_for_each_entry(p, &ftrace_commands, list) { 4806 if (strcmp(cmd->name, p->name) == 0) { 4807 ret = -EBUSY; 4808 goto out_unlock; 4809 } 4810 } 4811 list_add(&cmd->list, &ftrace_commands); 4812 out_unlock: 4813 mutex_unlock(&ftrace_cmd_mutex); 4814 4815 return ret; 4816 } 4817 4818 /* 4819 * Currently we only unregister ftrace commands from __init, so mark 4820 * this __init too. 4821 */ 4822 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4823 { 4824 struct ftrace_func_command *p, *n; 4825 int ret = -ENODEV; 4826 4827 mutex_lock(&ftrace_cmd_mutex); 4828 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4829 if (strcmp(cmd->name, p->name) == 0) { 4830 ret = 0; 4831 list_del_init(&p->list); 4832 goto out_unlock; 4833 } 4834 } 4835 out_unlock: 4836 mutex_unlock(&ftrace_cmd_mutex); 4837 4838 return ret; 4839 } 4840 4841 static int ftrace_process_regex(struct ftrace_iterator *iter, 4842 char *buff, int len, int enable) 4843 { 4844 struct ftrace_hash *hash = iter->hash; 4845 struct trace_array *tr = iter->ops->private; 4846 char *func, *command, *next = buff; 4847 struct ftrace_func_command *p; 4848 int ret = -EINVAL; 4849 4850 func = strsep(&next, ":"); 4851 4852 if (!next) { 4853 ret = ftrace_match_records(hash, func, len); 4854 if (!ret) 4855 ret = -EINVAL; 4856 if (ret < 0) 4857 return ret; 4858 return 0; 4859 } 4860 4861 /* command found */ 4862 4863 command = strsep(&next, ":"); 4864 4865 mutex_lock(&ftrace_cmd_mutex); 4866 list_for_each_entry(p, &ftrace_commands, list) { 4867 if (strcmp(p->name, command) == 0) { 4868 ret = p->func(tr, hash, func, command, next, enable); 4869 goto out_unlock; 4870 } 4871 } 4872 out_unlock: 4873 mutex_unlock(&ftrace_cmd_mutex); 4874 4875 return ret; 4876 } 4877 4878 static ssize_t 4879 ftrace_regex_write(struct file *file, const char __user *ubuf, 4880 size_t cnt, loff_t *ppos, int enable) 4881 { 4882 struct ftrace_iterator *iter; 4883 struct trace_parser *parser; 4884 ssize_t ret, read; 4885 4886 if (!cnt) 4887 return 0; 4888 4889 if (file->f_mode & FMODE_READ) { 4890 struct seq_file *m = file->private_data; 4891 iter = m->private; 4892 } else 4893 iter = file->private_data; 4894 4895 if (unlikely(ftrace_disabled)) 4896 return -ENODEV; 4897 4898 /* iter->hash is a local copy, so we don't need regex_lock */ 4899 4900 parser = &iter->parser; 4901 read = trace_get_user(parser, ubuf, cnt, ppos); 4902 4903 if (read >= 0 && trace_parser_loaded(parser) && 4904 !trace_parser_cont(parser)) { 4905 ret = ftrace_process_regex(iter, parser->buffer, 4906 parser->idx, enable); 4907 trace_parser_clear(parser); 4908 if (ret < 0) 4909 goto out; 4910 } 4911 4912 ret = read; 4913 out: 4914 return ret; 4915 } 4916 4917 ssize_t 4918 ftrace_filter_write(struct file *file, const char __user *ubuf, 4919 size_t cnt, loff_t *ppos) 4920 { 4921 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4922 } 4923 4924 ssize_t 4925 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4926 size_t cnt, loff_t *ppos) 4927 { 4928 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4929 } 4930 4931 static int 4932 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4933 { 4934 struct ftrace_func_entry *entry; 4935 4936 if (!ftrace_location(ip)) 4937 return -EINVAL; 4938 4939 if (remove) { 4940 entry = ftrace_lookup_ip(hash, ip); 4941 if (!entry) 4942 return -ENOENT; 4943 free_hash_entry(hash, entry); 4944 return 0; 4945 } 4946 4947 return add_hash_entry(hash, ip); 4948 } 4949 4950 static int 4951 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4952 unsigned long ip, int remove, int reset, int enable) 4953 { 4954 struct ftrace_hash **orig_hash; 4955 struct ftrace_hash *hash; 4956 int ret; 4957 4958 if (unlikely(ftrace_disabled)) 4959 return -ENODEV; 4960 4961 mutex_lock(&ops->func_hash->regex_lock); 4962 4963 if (enable) 4964 orig_hash = &ops->func_hash->filter_hash; 4965 else 4966 orig_hash = &ops->func_hash->notrace_hash; 4967 4968 if (reset) 4969 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4970 else 4971 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4972 4973 if (!hash) { 4974 ret = -ENOMEM; 4975 goto out_regex_unlock; 4976 } 4977 4978 if (buf && !ftrace_match_records(hash, buf, len)) { 4979 ret = -EINVAL; 4980 goto out_regex_unlock; 4981 } 4982 if (ip) { 4983 ret = ftrace_match_addr(hash, ip, remove); 4984 if (ret < 0) 4985 goto out_regex_unlock; 4986 } 4987 4988 mutex_lock(&ftrace_lock); 4989 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4990 mutex_unlock(&ftrace_lock); 4991 4992 out_regex_unlock: 4993 mutex_unlock(&ops->func_hash->regex_lock); 4994 4995 free_ftrace_hash(hash); 4996 return ret; 4997 } 4998 4999 static int 5000 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 5001 int reset, int enable) 5002 { 5003 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 5004 } 5005 5006 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5007 5008 struct ftrace_direct_func { 5009 struct list_head next; 5010 unsigned long addr; 5011 int count; 5012 }; 5013 5014 static LIST_HEAD(ftrace_direct_funcs); 5015 5016 /** 5017 * ftrace_find_direct_func - test an address if it is a registered direct caller 5018 * @addr: The address of a registered direct caller 5019 * 5020 * This searches to see if a ftrace direct caller has been registered 5021 * at a specific address, and if so, it returns a descriptor for it. 5022 * 5023 * This can be used by architecture code to see if an address is 5024 * a direct caller (trampoline) attached to a fentry/mcount location. 5025 * This is useful for the function_graph tracer, as it may need to 5026 * do adjustments if it traced a location that also has a direct 5027 * trampoline attached to it. 5028 */ 5029 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5030 { 5031 struct ftrace_direct_func *entry; 5032 bool found = false; 5033 5034 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5035 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5036 if (entry->addr == addr) { 5037 found = true; 5038 break; 5039 } 5040 } 5041 if (found) 5042 return entry; 5043 5044 return NULL; 5045 } 5046 5047 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5048 { 5049 struct ftrace_direct_func *direct; 5050 5051 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5052 if (!direct) 5053 return NULL; 5054 direct->addr = addr; 5055 direct->count = 0; 5056 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5057 ftrace_direct_func_count++; 5058 return direct; 5059 } 5060 5061 /** 5062 * register_ftrace_direct - Call a custom trampoline directly 5063 * @ip: The address of the nop at the beginning of a function 5064 * @addr: The address of the trampoline to call at @ip 5065 * 5066 * This is used to connect a direct call from the nop location (@ip) 5067 * at the start of ftrace traced functions. The location that it calls 5068 * (@addr) must be able to handle a direct call, and save the parameters 5069 * of the function being traced, and restore them (or inject new ones 5070 * if needed), before returning. 5071 * 5072 * Returns: 5073 * 0 on success 5074 * -EBUSY - Another direct function is already attached (there can be only one) 5075 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5076 * -ENOMEM - There was an allocation failure. 5077 */ 5078 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5079 { 5080 struct ftrace_direct_func *direct; 5081 struct ftrace_func_entry *entry; 5082 struct ftrace_hash *free_hash = NULL; 5083 struct dyn_ftrace *rec; 5084 int ret = -EBUSY; 5085 5086 mutex_lock(&direct_mutex); 5087 5088 /* See if there's a direct function at @ip already */ 5089 if (ftrace_find_rec_direct(ip)) 5090 goto out_unlock; 5091 5092 ret = -ENODEV; 5093 rec = lookup_rec(ip, ip); 5094 if (!rec) 5095 goto out_unlock; 5096 5097 /* 5098 * Check if the rec says it has a direct call but we didn't 5099 * find one earlier? 5100 */ 5101 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5102 goto out_unlock; 5103 5104 /* Make sure the ip points to the exact record */ 5105 if (ip != rec->ip) { 5106 ip = rec->ip; 5107 /* Need to check this ip for a direct. */ 5108 if (ftrace_find_rec_direct(ip)) 5109 goto out_unlock; 5110 } 5111 5112 ret = -ENOMEM; 5113 if (ftrace_hash_empty(direct_functions) || 5114 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5115 struct ftrace_hash *new_hash; 5116 int size = ftrace_hash_empty(direct_functions) ? 0 : 5117 direct_functions->count + 1; 5118 5119 if (size < 32) 5120 size = 32; 5121 5122 new_hash = dup_hash(direct_functions, size); 5123 if (!new_hash) 5124 goto out_unlock; 5125 5126 free_hash = direct_functions; 5127 direct_functions = new_hash; 5128 } 5129 5130 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5131 if (!entry) 5132 goto out_unlock; 5133 5134 direct = ftrace_find_direct_func(addr); 5135 if (!direct) { 5136 direct = ftrace_alloc_direct_func(addr); 5137 if (!direct) { 5138 kfree(entry); 5139 goto out_unlock; 5140 } 5141 } 5142 5143 entry->ip = ip; 5144 entry->direct = addr; 5145 __add_hash_entry(direct_functions, entry); 5146 5147 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5148 if (ret) 5149 remove_hash_entry(direct_functions, entry); 5150 5151 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5152 ret = register_ftrace_function(&direct_ops); 5153 if (ret) 5154 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5155 } 5156 5157 if (ret) { 5158 kfree(entry); 5159 if (!direct->count) { 5160 list_del_rcu(&direct->next); 5161 synchronize_rcu_tasks(); 5162 kfree(direct); 5163 if (free_hash) 5164 free_ftrace_hash(free_hash); 5165 free_hash = NULL; 5166 ftrace_direct_func_count--; 5167 } 5168 } else { 5169 direct->count++; 5170 } 5171 out_unlock: 5172 mutex_unlock(&direct_mutex); 5173 5174 if (free_hash) { 5175 synchronize_rcu_tasks(); 5176 free_ftrace_hash(free_hash); 5177 } 5178 5179 return ret; 5180 } 5181 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5182 5183 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5184 struct dyn_ftrace **recp) 5185 { 5186 struct ftrace_func_entry *entry; 5187 struct dyn_ftrace *rec; 5188 5189 rec = lookup_rec(*ip, *ip); 5190 if (!rec) 5191 return NULL; 5192 5193 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5194 if (!entry) { 5195 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5196 return NULL; 5197 } 5198 5199 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5200 5201 /* Passed in ip just needs to be on the call site */ 5202 *ip = rec->ip; 5203 5204 if (recp) 5205 *recp = rec; 5206 5207 return entry; 5208 } 5209 5210 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5211 { 5212 struct ftrace_direct_func *direct; 5213 struct ftrace_func_entry *entry; 5214 int ret = -ENODEV; 5215 5216 mutex_lock(&direct_mutex); 5217 5218 entry = find_direct_entry(&ip, NULL); 5219 if (!entry) 5220 goto out_unlock; 5221 5222 if (direct_functions->count == 1) 5223 unregister_ftrace_function(&direct_ops); 5224 5225 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5226 5227 WARN_ON(ret); 5228 5229 remove_hash_entry(direct_functions, entry); 5230 5231 direct = ftrace_find_direct_func(addr); 5232 if (!WARN_ON(!direct)) { 5233 /* This is the good path (see the ! before WARN) */ 5234 direct->count--; 5235 WARN_ON(direct->count < 0); 5236 if (!direct->count) { 5237 list_del_rcu(&direct->next); 5238 synchronize_rcu_tasks(); 5239 kfree(direct); 5240 kfree(entry); 5241 ftrace_direct_func_count--; 5242 } 5243 } 5244 out_unlock: 5245 mutex_unlock(&direct_mutex); 5246 5247 return ret; 5248 } 5249 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5250 5251 static struct ftrace_ops stub_ops = { 5252 .func = ftrace_stub, 5253 }; 5254 5255 /** 5256 * ftrace_modify_direct_caller - modify ftrace nop directly 5257 * @entry: The ftrace hash entry of the direct helper for @rec 5258 * @rec: The record representing the function site to patch 5259 * @old_addr: The location that the site at @rec->ip currently calls 5260 * @new_addr: The location that the site at @rec->ip should call 5261 * 5262 * An architecture may overwrite this function to optimize the 5263 * changing of the direct callback on an ftrace nop location. 5264 * This is called with the ftrace_lock mutex held, and no other 5265 * ftrace callbacks are on the associated record (@rec). Thus, 5266 * it is safe to modify the ftrace record, where it should be 5267 * currently calling @old_addr directly, to call @new_addr. 5268 * 5269 * Safety checks should be made to make sure that the code at 5270 * @rec->ip is currently calling @old_addr. And this must 5271 * also update entry->direct to @new_addr. 5272 */ 5273 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5274 struct dyn_ftrace *rec, 5275 unsigned long old_addr, 5276 unsigned long new_addr) 5277 { 5278 unsigned long ip = rec->ip; 5279 int ret; 5280 5281 /* 5282 * The ftrace_lock was used to determine if the record 5283 * had more than one registered user to it. If it did, 5284 * we needed to prevent that from changing to do the quick 5285 * switch. But if it did not (only a direct caller was attached) 5286 * then this function is called. But this function can deal 5287 * with attached callers to the rec that we care about, and 5288 * since this function uses standard ftrace calls that take 5289 * the ftrace_lock mutex, we need to release it. 5290 */ 5291 mutex_unlock(&ftrace_lock); 5292 5293 /* 5294 * By setting a stub function at the same address, we force 5295 * the code to call the iterator and the direct_ops helper. 5296 * This means that @ip does not call the direct call, and 5297 * we can simply modify it. 5298 */ 5299 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5300 if (ret) 5301 goto out_lock; 5302 5303 ret = register_ftrace_function(&stub_ops); 5304 if (ret) { 5305 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5306 goto out_lock; 5307 } 5308 5309 entry->direct = new_addr; 5310 5311 /* 5312 * By removing the stub, we put back the direct call, calling 5313 * the @new_addr. 5314 */ 5315 unregister_ftrace_function(&stub_ops); 5316 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5317 5318 out_lock: 5319 mutex_lock(&ftrace_lock); 5320 5321 return ret; 5322 } 5323 5324 /** 5325 * modify_ftrace_direct - Modify an existing direct call to call something else 5326 * @ip: The instruction pointer to modify 5327 * @old_addr: The address that the current @ip calls directly 5328 * @new_addr: The address that the @ip should call 5329 * 5330 * This modifies a ftrace direct caller at an instruction pointer without 5331 * having to disable it first. The direct call will switch over to the 5332 * @new_addr without missing anything. 5333 * 5334 * Returns: zero on success. Non zero on error, which includes: 5335 * -ENODEV : the @ip given has no direct caller attached 5336 * -EINVAL : the @old_addr does not match the current direct caller 5337 */ 5338 int modify_ftrace_direct(unsigned long ip, 5339 unsigned long old_addr, unsigned long new_addr) 5340 { 5341 struct ftrace_direct_func *direct, *new_direct = NULL; 5342 struct ftrace_func_entry *entry; 5343 struct dyn_ftrace *rec; 5344 int ret = -ENODEV; 5345 5346 mutex_lock(&direct_mutex); 5347 5348 mutex_lock(&ftrace_lock); 5349 entry = find_direct_entry(&ip, &rec); 5350 if (!entry) 5351 goto out_unlock; 5352 5353 ret = -EINVAL; 5354 if (entry->direct != old_addr) 5355 goto out_unlock; 5356 5357 direct = ftrace_find_direct_func(old_addr); 5358 if (WARN_ON(!direct)) 5359 goto out_unlock; 5360 if (direct->count > 1) { 5361 ret = -ENOMEM; 5362 new_direct = ftrace_alloc_direct_func(new_addr); 5363 if (!new_direct) 5364 goto out_unlock; 5365 direct->count--; 5366 new_direct->count++; 5367 } else { 5368 direct->addr = new_addr; 5369 } 5370 5371 /* 5372 * If there's no other ftrace callback on the rec->ip location, 5373 * then it can be changed directly by the architecture. 5374 * If there is another caller, then we just need to change the 5375 * direct caller helper to point to @new_addr. 5376 */ 5377 if (ftrace_rec_count(rec) == 1) { 5378 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5379 } else { 5380 entry->direct = new_addr; 5381 ret = 0; 5382 } 5383 5384 if (unlikely(ret && new_direct)) { 5385 direct->count++; 5386 list_del_rcu(&new_direct->next); 5387 synchronize_rcu_tasks(); 5388 kfree(new_direct); 5389 ftrace_direct_func_count--; 5390 } 5391 5392 out_unlock: 5393 mutex_unlock(&ftrace_lock); 5394 mutex_unlock(&direct_mutex); 5395 return ret; 5396 } 5397 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5398 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5399 5400 /** 5401 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5402 * @ops - the ops to set the filter with 5403 * @ip - the address to add to or remove from the filter. 5404 * @remove - non zero to remove the ip from the filter 5405 * @reset - non zero to reset all filters before applying this filter. 5406 * 5407 * Filters denote which functions should be enabled when tracing is enabled 5408 * If @ip is NULL, it fails to update filter. 5409 */ 5410 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5411 int remove, int reset) 5412 { 5413 ftrace_ops_init(ops); 5414 return ftrace_set_addr(ops, ip, remove, reset, 1); 5415 } 5416 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5417 5418 /** 5419 * ftrace_ops_set_global_filter - setup ops to use global filters 5420 * @ops - the ops which will use the global filters 5421 * 5422 * ftrace users who need global function trace filtering should call this. 5423 * It can set the global filter only if ops were not initialized before. 5424 */ 5425 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5426 { 5427 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5428 return; 5429 5430 ftrace_ops_init(ops); 5431 ops->func_hash = &global_ops.local_hash; 5432 } 5433 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5434 5435 static int 5436 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5437 int reset, int enable) 5438 { 5439 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5440 } 5441 5442 /** 5443 * ftrace_set_filter - set a function to filter on in ftrace 5444 * @ops - the ops to set the filter with 5445 * @buf - the string that holds the function filter text. 5446 * @len - the length of the string. 5447 * @reset - non zero to reset all filters before applying this filter. 5448 * 5449 * Filters denote which functions should be enabled when tracing is enabled. 5450 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5451 */ 5452 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5453 int len, int reset) 5454 { 5455 ftrace_ops_init(ops); 5456 return ftrace_set_regex(ops, buf, len, reset, 1); 5457 } 5458 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5459 5460 /** 5461 * ftrace_set_notrace - set a function to not trace in ftrace 5462 * @ops - the ops to set the notrace filter with 5463 * @buf - the string that holds the function notrace text. 5464 * @len - the length of the string. 5465 * @reset - non zero to reset all filters before applying this filter. 5466 * 5467 * Notrace Filters denote which functions should not be enabled when tracing 5468 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5469 * for tracing. 5470 */ 5471 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5472 int len, int reset) 5473 { 5474 ftrace_ops_init(ops); 5475 return ftrace_set_regex(ops, buf, len, reset, 0); 5476 } 5477 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5478 /** 5479 * ftrace_set_global_filter - set a function to filter on with global tracers 5480 * @buf - the string that holds the function filter text. 5481 * @len - the length of the string. 5482 * @reset - non zero to reset all filters before applying this filter. 5483 * 5484 * Filters denote which functions should be enabled when tracing is enabled. 5485 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5486 */ 5487 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5488 { 5489 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5490 } 5491 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5492 5493 /** 5494 * ftrace_set_global_notrace - set a function to not trace with global tracers 5495 * @buf - the string that holds the function notrace text. 5496 * @len - the length of the string. 5497 * @reset - non zero to reset all filters before applying this filter. 5498 * 5499 * Notrace Filters denote which functions should not be enabled when tracing 5500 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5501 * for tracing. 5502 */ 5503 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5504 { 5505 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5506 } 5507 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5508 5509 /* 5510 * command line interface to allow users to set filters on boot up. 5511 */ 5512 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5513 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5514 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5515 5516 /* Used by function selftest to not test if filter is set */ 5517 bool ftrace_filter_param __initdata; 5518 5519 static int __init set_ftrace_notrace(char *str) 5520 { 5521 ftrace_filter_param = true; 5522 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5523 return 1; 5524 } 5525 __setup("ftrace_notrace=", set_ftrace_notrace); 5526 5527 static int __init set_ftrace_filter(char *str) 5528 { 5529 ftrace_filter_param = true; 5530 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5531 return 1; 5532 } 5533 __setup("ftrace_filter=", set_ftrace_filter); 5534 5535 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5536 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5537 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5538 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5539 5540 static int __init set_graph_function(char *str) 5541 { 5542 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5543 return 1; 5544 } 5545 __setup("ftrace_graph_filter=", set_graph_function); 5546 5547 static int __init set_graph_notrace_function(char *str) 5548 { 5549 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5550 return 1; 5551 } 5552 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5553 5554 static int __init set_graph_max_depth_function(char *str) 5555 { 5556 if (!str) 5557 return 0; 5558 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5559 return 1; 5560 } 5561 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5562 5563 static void __init set_ftrace_early_graph(char *buf, int enable) 5564 { 5565 int ret; 5566 char *func; 5567 struct ftrace_hash *hash; 5568 5569 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5570 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5571 return; 5572 5573 while (buf) { 5574 func = strsep(&buf, ","); 5575 /* we allow only one expression at a time */ 5576 ret = ftrace_graph_set_hash(hash, func); 5577 if (ret) 5578 printk(KERN_DEBUG "ftrace: function %s not " 5579 "traceable\n", func); 5580 } 5581 5582 if (enable) 5583 ftrace_graph_hash = hash; 5584 else 5585 ftrace_graph_notrace_hash = hash; 5586 } 5587 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5588 5589 void __init 5590 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5591 { 5592 char *func; 5593 5594 ftrace_ops_init(ops); 5595 5596 while (buf) { 5597 func = strsep(&buf, ","); 5598 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5599 } 5600 } 5601 5602 static void __init set_ftrace_early_filters(void) 5603 { 5604 if (ftrace_filter_buf[0]) 5605 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5606 if (ftrace_notrace_buf[0]) 5607 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5608 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5609 if (ftrace_graph_buf[0]) 5610 set_ftrace_early_graph(ftrace_graph_buf, 1); 5611 if (ftrace_graph_notrace_buf[0]) 5612 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5613 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5614 } 5615 5616 int ftrace_regex_release(struct inode *inode, struct file *file) 5617 { 5618 struct seq_file *m = (struct seq_file *)file->private_data; 5619 struct ftrace_iterator *iter; 5620 struct ftrace_hash **orig_hash; 5621 struct trace_parser *parser; 5622 int filter_hash; 5623 5624 if (file->f_mode & FMODE_READ) { 5625 iter = m->private; 5626 seq_release(inode, file); 5627 } else 5628 iter = file->private_data; 5629 5630 parser = &iter->parser; 5631 if (trace_parser_loaded(parser)) { 5632 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 5633 5634 ftrace_process_regex(iter, parser->buffer, 5635 parser->idx, enable); 5636 } 5637 5638 trace_parser_put(parser); 5639 5640 mutex_lock(&iter->ops->func_hash->regex_lock); 5641 5642 if (file->f_mode & FMODE_WRITE) { 5643 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5644 5645 if (filter_hash) { 5646 orig_hash = &iter->ops->func_hash->filter_hash; 5647 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5648 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5649 } else 5650 orig_hash = &iter->ops->func_hash->notrace_hash; 5651 5652 mutex_lock(&ftrace_lock); 5653 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5654 iter->hash, filter_hash); 5655 mutex_unlock(&ftrace_lock); 5656 } else { 5657 /* For read only, the hash is the ops hash */ 5658 iter->hash = NULL; 5659 } 5660 5661 mutex_unlock(&iter->ops->func_hash->regex_lock); 5662 free_ftrace_hash(iter->hash); 5663 if (iter->tr) 5664 trace_array_put(iter->tr); 5665 kfree(iter); 5666 5667 return 0; 5668 } 5669 5670 static const struct file_operations ftrace_avail_fops = { 5671 .open = ftrace_avail_open, 5672 .read = seq_read, 5673 .llseek = seq_lseek, 5674 .release = seq_release_private, 5675 }; 5676 5677 static const struct file_operations ftrace_enabled_fops = { 5678 .open = ftrace_enabled_open, 5679 .read = seq_read, 5680 .llseek = seq_lseek, 5681 .release = seq_release_private, 5682 }; 5683 5684 static const struct file_operations ftrace_filter_fops = { 5685 .open = ftrace_filter_open, 5686 .read = seq_read, 5687 .write = ftrace_filter_write, 5688 .llseek = tracing_lseek, 5689 .release = ftrace_regex_release, 5690 }; 5691 5692 static const struct file_operations ftrace_notrace_fops = { 5693 .open = ftrace_notrace_open, 5694 .read = seq_read, 5695 .write = ftrace_notrace_write, 5696 .llseek = tracing_lseek, 5697 .release = ftrace_regex_release, 5698 }; 5699 5700 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5701 5702 static DEFINE_MUTEX(graph_lock); 5703 5704 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5705 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5706 5707 enum graph_filter_type { 5708 GRAPH_FILTER_NOTRACE = 0, 5709 GRAPH_FILTER_FUNCTION, 5710 }; 5711 5712 #define FTRACE_GRAPH_EMPTY ((void *)1) 5713 5714 struct ftrace_graph_data { 5715 struct ftrace_hash *hash; 5716 struct ftrace_func_entry *entry; 5717 int idx; /* for hash table iteration */ 5718 enum graph_filter_type type; 5719 struct ftrace_hash *new_hash; 5720 const struct seq_operations *seq_ops; 5721 struct trace_parser parser; 5722 }; 5723 5724 static void * 5725 __g_next(struct seq_file *m, loff_t *pos) 5726 { 5727 struct ftrace_graph_data *fgd = m->private; 5728 struct ftrace_func_entry *entry = fgd->entry; 5729 struct hlist_head *head; 5730 int i, idx = fgd->idx; 5731 5732 if (*pos >= fgd->hash->count) 5733 return NULL; 5734 5735 if (entry) { 5736 hlist_for_each_entry_continue(entry, hlist) { 5737 fgd->entry = entry; 5738 return entry; 5739 } 5740 5741 idx++; 5742 } 5743 5744 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5745 head = &fgd->hash->buckets[i]; 5746 hlist_for_each_entry(entry, head, hlist) { 5747 fgd->entry = entry; 5748 fgd->idx = i; 5749 return entry; 5750 } 5751 } 5752 return NULL; 5753 } 5754 5755 static void * 5756 g_next(struct seq_file *m, void *v, loff_t *pos) 5757 { 5758 (*pos)++; 5759 return __g_next(m, pos); 5760 } 5761 5762 static void *g_start(struct seq_file *m, loff_t *pos) 5763 { 5764 struct ftrace_graph_data *fgd = m->private; 5765 5766 mutex_lock(&graph_lock); 5767 5768 if (fgd->type == GRAPH_FILTER_FUNCTION) 5769 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5770 lockdep_is_held(&graph_lock)); 5771 else 5772 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5773 lockdep_is_held(&graph_lock)); 5774 5775 /* Nothing, tell g_show to print all functions are enabled */ 5776 if (ftrace_hash_empty(fgd->hash) && !*pos) 5777 return FTRACE_GRAPH_EMPTY; 5778 5779 fgd->idx = 0; 5780 fgd->entry = NULL; 5781 return __g_next(m, pos); 5782 } 5783 5784 static void g_stop(struct seq_file *m, void *p) 5785 { 5786 mutex_unlock(&graph_lock); 5787 } 5788 5789 static int g_show(struct seq_file *m, void *v) 5790 { 5791 struct ftrace_func_entry *entry = v; 5792 5793 if (!entry) 5794 return 0; 5795 5796 if (entry == FTRACE_GRAPH_EMPTY) { 5797 struct ftrace_graph_data *fgd = m->private; 5798 5799 if (fgd->type == GRAPH_FILTER_FUNCTION) 5800 seq_puts(m, "#### all functions enabled ####\n"); 5801 else 5802 seq_puts(m, "#### no functions disabled ####\n"); 5803 return 0; 5804 } 5805 5806 seq_printf(m, "%ps\n", (void *)entry->ip); 5807 5808 return 0; 5809 } 5810 5811 static const struct seq_operations ftrace_graph_seq_ops = { 5812 .start = g_start, 5813 .next = g_next, 5814 .stop = g_stop, 5815 .show = g_show, 5816 }; 5817 5818 static int 5819 __ftrace_graph_open(struct inode *inode, struct file *file, 5820 struct ftrace_graph_data *fgd) 5821 { 5822 int ret; 5823 struct ftrace_hash *new_hash = NULL; 5824 5825 ret = security_locked_down(LOCKDOWN_TRACEFS); 5826 if (ret) 5827 return ret; 5828 5829 if (file->f_mode & FMODE_WRITE) { 5830 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5831 5832 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5833 return -ENOMEM; 5834 5835 if (file->f_flags & O_TRUNC) 5836 new_hash = alloc_ftrace_hash(size_bits); 5837 else 5838 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5839 fgd->hash); 5840 if (!new_hash) { 5841 ret = -ENOMEM; 5842 goto out; 5843 } 5844 } 5845 5846 if (file->f_mode & FMODE_READ) { 5847 ret = seq_open(file, &ftrace_graph_seq_ops); 5848 if (!ret) { 5849 struct seq_file *m = file->private_data; 5850 m->private = fgd; 5851 } else { 5852 /* Failed */ 5853 free_ftrace_hash(new_hash); 5854 new_hash = NULL; 5855 } 5856 } else 5857 file->private_data = fgd; 5858 5859 out: 5860 if (ret < 0 && file->f_mode & FMODE_WRITE) 5861 trace_parser_put(&fgd->parser); 5862 5863 fgd->new_hash = new_hash; 5864 5865 /* 5866 * All uses of fgd->hash must be taken with the graph_lock 5867 * held. The graph_lock is going to be released, so force 5868 * fgd->hash to be reinitialized when it is taken again. 5869 */ 5870 fgd->hash = NULL; 5871 5872 return ret; 5873 } 5874 5875 static int 5876 ftrace_graph_open(struct inode *inode, struct file *file) 5877 { 5878 struct ftrace_graph_data *fgd; 5879 int ret; 5880 5881 if (unlikely(ftrace_disabled)) 5882 return -ENODEV; 5883 5884 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5885 if (fgd == NULL) 5886 return -ENOMEM; 5887 5888 mutex_lock(&graph_lock); 5889 5890 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5891 lockdep_is_held(&graph_lock)); 5892 fgd->type = GRAPH_FILTER_FUNCTION; 5893 fgd->seq_ops = &ftrace_graph_seq_ops; 5894 5895 ret = __ftrace_graph_open(inode, file, fgd); 5896 if (ret < 0) 5897 kfree(fgd); 5898 5899 mutex_unlock(&graph_lock); 5900 return ret; 5901 } 5902 5903 static int 5904 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5905 { 5906 struct ftrace_graph_data *fgd; 5907 int ret; 5908 5909 if (unlikely(ftrace_disabled)) 5910 return -ENODEV; 5911 5912 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5913 if (fgd == NULL) 5914 return -ENOMEM; 5915 5916 mutex_lock(&graph_lock); 5917 5918 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5919 lockdep_is_held(&graph_lock)); 5920 fgd->type = GRAPH_FILTER_NOTRACE; 5921 fgd->seq_ops = &ftrace_graph_seq_ops; 5922 5923 ret = __ftrace_graph_open(inode, file, fgd); 5924 if (ret < 0) 5925 kfree(fgd); 5926 5927 mutex_unlock(&graph_lock); 5928 return ret; 5929 } 5930 5931 static int 5932 ftrace_graph_release(struct inode *inode, struct file *file) 5933 { 5934 struct ftrace_graph_data *fgd; 5935 struct ftrace_hash *old_hash, *new_hash; 5936 struct trace_parser *parser; 5937 int ret = 0; 5938 5939 if (file->f_mode & FMODE_READ) { 5940 struct seq_file *m = file->private_data; 5941 5942 fgd = m->private; 5943 seq_release(inode, file); 5944 } else { 5945 fgd = file->private_data; 5946 } 5947 5948 5949 if (file->f_mode & FMODE_WRITE) { 5950 5951 parser = &fgd->parser; 5952 5953 if (trace_parser_loaded((parser))) { 5954 ret = ftrace_graph_set_hash(fgd->new_hash, 5955 parser->buffer); 5956 } 5957 5958 trace_parser_put(parser); 5959 5960 new_hash = __ftrace_hash_move(fgd->new_hash); 5961 if (!new_hash) { 5962 ret = -ENOMEM; 5963 goto out; 5964 } 5965 5966 mutex_lock(&graph_lock); 5967 5968 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5969 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5970 lockdep_is_held(&graph_lock)); 5971 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5972 } else { 5973 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5974 lockdep_is_held(&graph_lock)); 5975 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5976 } 5977 5978 mutex_unlock(&graph_lock); 5979 5980 /* 5981 * We need to do a hard force of sched synchronization. 5982 * This is because we use preempt_disable() to do RCU, but 5983 * the function tracers can be called where RCU is not watching 5984 * (like before user_exit()). We can not rely on the RCU 5985 * infrastructure to do the synchronization, thus we must do it 5986 * ourselves. 5987 */ 5988 synchronize_rcu_tasks_rude(); 5989 5990 free_ftrace_hash(old_hash); 5991 } 5992 5993 out: 5994 free_ftrace_hash(fgd->new_hash); 5995 kfree(fgd); 5996 5997 return ret; 5998 } 5999 6000 static int 6001 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6002 { 6003 struct ftrace_glob func_g; 6004 struct dyn_ftrace *rec; 6005 struct ftrace_page *pg; 6006 struct ftrace_func_entry *entry; 6007 int fail = 1; 6008 int not; 6009 6010 /* decode regex */ 6011 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6012 &func_g.search, ¬); 6013 6014 func_g.len = strlen(func_g.search); 6015 6016 mutex_lock(&ftrace_lock); 6017 6018 if (unlikely(ftrace_disabled)) { 6019 mutex_unlock(&ftrace_lock); 6020 return -ENODEV; 6021 } 6022 6023 do_for_each_ftrace_rec(pg, rec) { 6024 6025 if (rec->flags & FTRACE_FL_DISABLED) 6026 continue; 6027 6028 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6029 entry = ftrace_lookup_ip(hash, rec->ip); 6030 6031 if (!not) { 6032 fail = 0; 6033 6034 if (entry) 6035 continue; 6036 if (add_hash_entry(hash, rec->ip) < 0) 6037 goto out; 6038 } else { 6039 if (entry) { 6040 free_hash_entry(hash, entry); 6041 fail = 0; 6042 } 6043 } 6044 } 6045 } while_for_each_ftrace_rec(); 6046 out: 6047 mutex_unlock(&ftrace_lock); 6048 6049 if (fail) 6050 return -EINVAL; 6051 6052 return 0; 6053 } 6054 6055 static ssize_t 6056 ftrace_graph_write(struct file *file, const char __user *ubuf, 6057 size_t cnt, loff_t *ppos) 6058 { 6059 ssize_t read, ret = 0; 6060 struct ftrace_graph_data *fgd = file->private_data; 6061 struct trace_parser *parser; 6062 6063 if (!cnt) 6064 return 0; 6065 6066 /* Read mode uses seq functions */ 6067 if (file->f_mode & FMODE_READ) { 6068 struct seq_file *m = file->private_data; 6069 fgd = m->private; 6070 } 6071 6072 parser = &fgd->parser; 6073 6074 read = trace_get_user(parser, ubuf, cnt, ppos); 6075 6076 if (read >= 0 && trace_parser_loaded(parser) && 6077 !trace_parser_cont(parser)) { 6078 6079 ret = ftrace_graph_set_hash(fgd->new_hash, 6080 parser->buffer); 6081 trace_parser_clear(parser); 6082 } 6083 6084 if (!ret) 6085 ret = read; 6086 6087 return ret; 6088 } 6089 6090 static const struct file_operations ftrace_graph_fops = { 6091 .open = ftrace_graph_open, 6092 .read = seq_read, 6093 .write = ftrace_graph_write, 6094 .llseek = tracing_lseek, 6095 .release = ftrace_graph_release, 6096 }; 6097 6098 static const struct file_operations ftrace_graph_notrace_fops = { 6099 .open = ftrace_graph_notrace_open, 6100 .read = seq_read, 6101 .write = ftrace_graph_write, 6102 .llseek = tracing_lseek, 6103 .release = ftrace_graph_release, 6104 }; 6105 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6106 6107 void ftrace_create_filter_files(struct ftrace_ops *ops, 6108 struct dentry *parent) 6109 { 6110 6111 trace_create_file("set_ftrace_filter", 0644, parent, 6112 ops, &ftrace_filter_fops); 6113 6114 trace_create_file("set_ftrace_notrace", 0644, parent, 6115 ops, &ftrace_notrace_fops); 6116 } 6117 6118 /* 6119 * The name "destroy_filter_files" is really a misnomer. Although 6120 * in the future, it may actually delete the files, but this is 6121 * really intended to make sure the ops passed in are disabled 6122 * and that when this function returns, the caller is free to 6123 * free the ops. 6124 * 6125 * The "destroy" name is only to match the "create" name that this 6126 * should be paired with. 6127 */ 6128 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6129 { 6130 mutex_lock(&ftrace_lock); 6131 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6132 ftrace_shutdown(ops, 0); 6133 ops->flags |= FTRACE_OPS_FL_DELETED; 6134 ftrace_free_filter(ops); 6135 mutex_unlock(&ftrace_lock); 6136 } 6137 6138 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6139 { 6140 6141 trace_create_file("available_filter_functions", 0444, 6142 d_tracer, NULL, &ftrace_avail_fops); 6143 6144 trace_create_file("enabled_functions", 0444, 6145 d_tracer, NULL, &ftrace_enabled_fops); 6146 6147 ftrace_create_filter_files(&global_ops, d_tracer); 6148 6149 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6150 trace_create_file("set_graph_function", 0644, d_tracer, 6151 NULL, 6152 &ftrace_graph_fops); 6153 trace_create_file("set_graph_notrace", 0644, d_tracer, 6154 NULL, 6155 &ftrace_graph_notrace_fops); 6156 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6157 6158 return 0; 6159 } 6160 6161 static int ftrace_cmp_ips(const void *a, const void *b) 6162 { 6163 const unsigned long *ipa = a; 6164 const unsigned long *ipb = b; 6165 6166 if (*ipa > *ipb) 6167 return 1; 6168 if (*ipa < *ipb) 6169 return -1; 6170 return 0; 6171 } 6172 6173 static int ftrace_process_locs(struct module *mod, 6174 unsigned long *start, 6175 unsigned long *end) 6176 { 6177 struct ftrace_page *start_pg; 6178 struct ftrace_page *pg; 6179 struct dyn_ftrace *rec; 6180 unsigned long count; 6181 unsigned long *p; 6182 unsigned long addr; 6183 unsigned long flags = 0; /* Shut up gcc */ 6184 int ret = -ENOMEM; 6185 6186 count = end - start; 6187 6188 if (!count) 6189 return 0; 6190 6191 sort(start, count, sizeof(*start), 6192 ftrace_cmp_ips, NULL); 6193 6194 start_pg = ftrace_allocate_pages(count); 6195 if (!start_pg) 6196 return -ENOMEM; 6197 6198 mutex_lock(&ftrace_lock); 6199 6200 /* 6201 * Core and each module needs their own pages, as 6202 * modules will free them when they are removed. 6203 * Force a new page to be allocated for modules. 6204 */ 6205 if (!mod) { 6206 WARN_ON(ftrace_pages || ftrace_pages_start); 6207 /* First initialization */ 6208 ftrace_pages = ftrace_pages_start = start_pg; 6209 } else { 6210 if (!ftrace_pages) 6211 goto out; 6212 6213 if (WARN_ON(ftrace_pages->next)) { 6214 /* Hmm, we have free pages? */ 6215 while (ftrace_pages->next) 6216 ftrace_pages = ftrace_pages->next; 6217 } 6218 6219 ftrace_pages->next = start_pg; 6220 } 6221 6222 p = start; 6223 pg = start_pg; 6224 while (p < end) { 6225 unsigned long end_offset; 6226 addr = ftrace_call_adjust(*p++); 6227 /* 6228 * Some architecture linkers will pad between 6229 * the different mcount_loc sections of different 6230 * object files to satisfy alignments. 6231 * Skip any NULL pointers. 6232 */ 6233 if (!addr) 6234 continue; 6235 6236 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6237 if (end_offset > PAGE_SIZE << pg->order) { 6238 /* We should have allocated enough */ 6239 if (WARN_ON(!pg->next)) 6240 break; 6241 pg = pg->next; 6242 } 6243 6244 rec = &pg->records[pg->index++]; 6245 rec->ip = addr; 6246 } 6247 6248 /* We should have used all pages */ 6249 WARN_ON(pg->next); 6250 6251 /* Assign the last page to ftrace_pages */ 6252 ftrace_pages = pg; 6253 6254 /* 6255 * We only need to disable interrupts on start up 6256 * because we are modifying code that an interrupt 6257 * may execute, and the modification is not atomic. 6258 * But for modules, nothing runs the code we modify 6259 * until we are finished with it, and there's no 6260 * reason to cause large interrupt latencies while we do it. 6261 */ 6262 if (!mod) 6263 local_irq_save(flags); 6264 ftrace_update_code(mod, start_pg); 6265 if (!mod) 6266 local_irq_restore(flags); 6267 ret = 0; 6268 out: 6269 mutex_unlock(&ftrace_lock); 6270 6271 return ret; 6272 } 6273 6274 struct ftrace_mod_func { 6275 struct list_head list; 6276 char *name; 6277 unsigned long ip; 6278 unsigned int size; 6279 }; 6280 6281 struct ftrace_mod_map { 6282 struct rcu_head rcu; 6283 struct list_head list; 6284 struct module *mod; 6285 unsigned long start_addr; 6286 unsigned long end_addr; 6287 struct list_head funcs; 6288 unsigned int num_funcs; 6289 }; 6290 6291 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6292 unsigned long *value, char *type, 6293 char *name, char *module_name, 6294 int *exported) 6295 { 6296 struct ftrace_ops *op; 6297 6298 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6299 if (!op->trampoline || symnum--) 6300 continue; 6301 *value = op->trampoline; 6302 *type = 't'; 6303 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6304 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6305 *exported = 0; 6306 return 0; 6307 } 6308 6309 return -ERANGE; 6310 } 6311 6312 #ifdef CONFIG_MODULES 6313 6314 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6315 6316 static LIST_HEAD(ftrace_mod_maps); 6317 6318 static int referenced_filters(struct dyn_ftrace *rec) 6319 { 6320 struct ftrace_ops *ops; 6321 int cnt = 0; 6322 6323 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6324 if (ops_references_rec(ops, rec)) { 6325 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6326 continue; 6327 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6328 continue; 6329 cnt++; 6330 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6331 rec->flags |= FTRACE_FL_REGS; 6332 if (cnt == 1 && ops->trampoline) 6333 rec->flags |= FTRACE_FL_TRAMP; 6334 else 6335 rec->flags &= ~FTRACE_FL_TRAMP; 6336 } 6337 } 6338 6339 return cnt; 6340 } 6341 6342 static void 6343 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6344 { 6345 struct ftrace_func_entry *entry; 6346 struct dyn_ftrace *rec; 6347 int i; 6348 6349 if (ftrace_hash_empty(hash)) 6350 return; 6351 6352 for (i = 0; i < pg->index; i++) { 6353 rec = &pg->records[i]; 6354 entry = __ftrace_lookup_ip(hash, rec->ip); 6355 /* 6356 * Do not allow this rec to match again. 6357 * Yeah, it may waste some memory, but will be removed 6358 * if/when the hash is modified again. 6359 */ 6360 if (entry) 6361 entry->ip = 0; 6362 } 6363 } 6364 6365 /* Clear any records from hashes */ 6366 static void clear_mod_from_hashes(struct ftrace_page *pg) 6367 { 6368 struct trace_array *tr; 6369 6370 mutex_lock(&trace_types_lock); 6371 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6372 if (!tr->ops || !tr->ops->func_hash) 6373 continue; 6374 mutex_lock(&tr->ops->func_hash->regex_lock); 6375 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6376 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6377 mutex_unlock(&tr->ops->func_hash->regex_lock); 6378 } 6379 mutex_unlock(&trace_types_lock); 6380 } 6381 6382 static void ftrace_free_mod_map(struct rcu_head *rcu) 6383 { 6384 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6385 struct ftrace_mod_func *mod_func; 6386 struct ftrace_mod_func *n; 6387 6388 /* All the contents of mod_map are now not visible to readers */ 6389 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6390 kfree(mod_func->name); 6391 list_del(&mod_func->list); 6392 kfree(mod_func); 6393 } 6394 6395 kfree(mod_map); 6396 } 6397 6398 void ftrace_release_mod(struct module *mod) 6399 { 6400 struct ftrace_mod_map *mod_map; 6401 struct ftrace_mod_map *n; 6402 struct dyn_ftrace *rec; 6403 struct ftrace_page **last_pg; 6404 struct ftrace_page *tmp_page = NULL; 6405 struct ftrace_page *pg; 6406 6407 mutex_lock(&ftrace_lock); 6408 6409 if (ftrace_disabled) 6410 goto out_unlock; 6411 6412 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6413 if (mod_map->mod == mod) { 6414 list_del_rcu(&mod_map->list); 6415 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6416 break; 6417 } 6418 } 6419 6420 /* 6421 * Each module has its own ftrace_pages, remove 6422 * them from the list. 6423 */ 6424 last_pg = &ftrace_pages_start; 6425 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6426 rec = &pg->records[0]; 6427 if (within_module_core(rec->ip, mod) || 6428 within_module_init(rec->ip, mod)) { 6429 /* 6430 * As core pages are first, the first 6431 * page should never be a module page. 6432 */ 6433 if (WARN_ON(pg == ftrace_pages_start)) 6434 goto out_unlock; 6435 6436 /* Check if we are deleting the last page */ 6437 if (pg == ftrace_pages) 6438 ftrace_pages = next_to_ftrace_page(last_pg); 6439 6440 ftrace_update_tot_cnt -= pg->index; 6441 *last_pg = pg->next; 6442 6443 pg->next = tmp_page; 6444 tmp_page = pg; 6445 } else 6446 last_pg = &pg->next; 6447 } 6448 out_unlock: 6449 mutex_unlock(&ftrace_lock); 6450 6451 for (pg = tmp_page; pg; pg = tmp_page) { 6452 6453 /* Needs to be called outside of ftrace_lock */ 6454 clear_mod_from_hashes(pg); 6455 6456 if (pg->records) { 6457 free_pages((unsigned long)pg->records, pg->order); 6458 ftrace_number_of_pages -= 1 << pg->order; 6459 } 6460 tmp_page = pg->next; 6461 kfree(pg); 6462 ftrace_number_of_groups--; 6463 } 6464 } 6465 6466 void ftrace_module_enable(struct module *mod) 6467 { 6468 struct dyn_ftrace *rec; 6469 struct ftrace_page *pg; 6470 6471 mutex_lock(&ftrace_lock); 6472 6473 if (ftrace_disabled) 6474 goto out_unlock; 6475 6476 /* 6477 * If the tracing is enabled, go ahead and enable the record. 6478 * 6479 * The reason not to enable the record immediately is the 6480 * inherent check of ftrace_make_nop/ftrace_make_call for 6481 * correct previous instructions. Making first the NOP 6482 * conversion puts the module to the correct state, thus 6483 * passing the ftrace_make_call check. 6484 * 6485 * We also delay this to after the module code already set the 6486 * text to read-only, as we now need to set it back to read-write 6487 * so that we can modify the text. 6488 */ 6489 if (ftrace_start_up) 6490 ftrace_arch_code_modify_prepare(); 6491 6492 do_for_each_ftrace_rec(pg, rec) { 6493 int cnt; 6494 /* 6495 * do_for_each_ftrace_rec() is a double loop. 6496 * module text shares the pg. If a record is 6497 * not part of this module, then skip this pg, 6498 * which the "break" will do. 6499 */ 6500 if (!within_module_core(rec->ip, mod) && 6501 !within_module_init(rec->ip, mod)) 6502 break; 6503 6504 cnt = 0; 6505 6506 /* 6507 * When adding a module, we need to check if tracers are 6508 * currently enabled and if they are, and can trace this record, 6509 * we need to enable the module functions as well as update the 6510 * reference counts for those function records. 6511 */ 6512 if (ftrace_start_up) 6513 cnt += referenced_filters(rec); 6514 6515 rec->flags &= ~FTRACE_FL_DISABLED; 6516 rec->flags += cnt; 6517 6518 if (ftrace_start_up && cnt) { 6519 int failed = __ftrace_replace_code(rec, 1); 6520 if (failed) { 6521 ftrace_bug(failed, rec); 6522 goto out_loop; 6523 } 6524 } 6525 6526 } while_for_each_ftrace_rec(); 6527 6528 out_loop: 6529 if (ftrace_start_up) 6530 ftrace_arch_code_modify_post_process(); 6531 6532 out_unlock: 6533 mutex_unlock(&ftrace_lock); 6534 6535 process_cached_mods(mod->name); 6536 } 6537 6538 void ftrace_module_init(struct module *mod) 6539 { 6540 if (ftrace_disabled || !mod->num_ftrace_callsites) 6541 return; 6542 6543 ftrace_process_locs(mod, mod->ftrace_callsites, 6544 mod->ftrace_callsites + mod->num_ftrace_callsites); 6545 } 6546 6547 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6548 struct dyn_ftrace *rec) 6549 { 6550 struct ftrace_mod_func *mod_func; 6551 unsigned long symsize; 6552 unsigned long offset; 6553 char str[KSYM_SYMBOL_LEN]; 6554 char *modname; 6555 const char *ret; 6556 6557 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6558 if (!ret) 6559 return; 6560 6561 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6562 if (!mod_func) 6563 return; 6564 6565 mod_func->name = kstrdup(str, GFP_KERNEL); 6566 if (!mod_func->name) { 6567 kfree(mod_func); 6568 return; 6569 } 6570 6571 mod_func->ip = rec->ip - offset; 6572 mod_func->size = symsize; 6573 6574 mod_map->num_funcs++; 6575 6576 list_add_rcu(&mod_func->list, &mod_map->funcs); 6577 } 6578 6579 static struct ftrace_mod_map * 6580 allocate_ftrace_mod_map(struct module *mod, 6581 unsigned long start, unsigned long end) 6582 { 6583 struct ftrace_mod_map *mod_map; 6584 6585 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6586 if (!mod_map) 6587 return NULL; 6588 6589 mod_map->mod = mod; 6590 mod_map->start_addr = start; 6591 mod_map->end_addr = end; 6592 mod_map->num_funcs = 0; 6593 6594 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6595 6596 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6597 6598 return mod_map; 6599 } 6600 6601 static const char * 6602 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6603 unsigned long addr, unsigned long *size, 6604 unsigned long *off, char *sym) 6605 { 6606 struct ftrace_mod_func *found_func = NULL; 6607 struct ftrace_mod_func *mod_func; 6608 6609 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6610 if (addr >= mod_func->ip && 6611 addr < mod_func->ip + mod_func->size) { 6612 found_func = mod_func; 6613 break; 6614 } 6615 } 6616 6617 if (found_func) { 6618 if (size) 6619 *size = found_func->size; 6620 if (off) 6621 *off = addr - found_func->ip; 6622 if (sym) 6623 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6624 6625 return found_func->name; 6626 } 6627 6628 return NULL; 6629 } 6630 6631 const char * 6632 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6633 unsigned long *off, char **modname, char *sym) 6634 { 6635 struct ftrace_mod_map *mod_map; 6636 const char *ret = NULL; 6637 6638 /* mod_map is freed via call_rcu() */ 6639 preempt_disable(); 6640 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6641 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6642 if (ret) { 6643 if (modname) 6644 *modname = mod_map->mod->name; 6645 break; 6646 } 6647 } 6648 preempt_enable(); 6649 6650 return ret; 6651 } 6652 6653 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6654 char *type, char *name, 6655 char *module_name, int *exported) 6656 { 6657 struct ftrace_mod_map *mod_map; 6658 struct ftrace_mod_func *mod_func; 6659 int ret; 6660 6661 preempt_disable(); 6662 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6663 6664 if (symnum >= mod_map->num_funcs) { 6665 symnum -= mod_map->num_funcs; 6666 continue; 6667 } 6668 6669 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6670 if (symnum > 1) { 6671 symnum--; 6672 continue; 6673 } 6674 6675 *value = mod_func->ip; 6676 *type = 'T'; 6677 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6678 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6679 *exported = 1; 6680 preempt_enable(); 6681 return 0; 6682 } 6683 WARN_ON(1); 6684 break; 6685 } 6686 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6687 module_name, exported); 6688 preempt_enable(); 6689 return ret; 6690 } 6691 6692 #else 6693 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6694 struct dyn_ftrace *rec) { } 6695 static inline struct ftrace_mod_map * 6696 allocate_ftrace_mod_map(struct module *mod, 6697 unsigned long start, unsigned long end) 6698 { 6699 return NULL; 6700 } 6701 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6702 char *type, char *name, char *module_name, 6703 int *exported) 6704 { 6705 int ret; 6706 6707 preempt_disable(); 6708 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6709 module_name, exported); 6710 preempt_enable(); 6711 return ret; 6712 } 6713 #endif /* CONFIG_MODULES */ 6714 6715 struct ftrace_init_func { 6716 struct list_head list; 6717 unsigned long ip; 6718 }; 6719 6720 /* Clear any init ips from hashes */ 6721 static void 6722 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6723 { 6724 struct ftrace_func_entry *entry; 6725 6726 entry = ftrace_lookup_ip(hash, func->ip); 6727 /* 6728 * Do not allow this rec to match again. 6729 * Yeah, it may waste some memory, but will be removed 6730 * if/when the hash is modified again. 6731 */ 6732 if (entry) 6733 entry->ip = 0; 6734 } 6735 6736 static void 6737 clear_func_from_hashes(struct ftrace_init_func *func) 6738 { 6739 struct trace_array *tr; 6740 6741 mutex_lock(&trace_types_lock); 6742 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6743 if (!tr->ops || !tr->ops->func_hash) 6744 continue; 6745 mutex_lock(&tr->ops->func_hash->regex_lock); 6746 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6747 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6748 mutex_unlock(&tr->ops->func_hash->regex_lock); 6749 } 6750 mutex_unlock(&trace_types_lock); 6751 } 6752 6753 static void add_to_clear_hash_list(struct list_head *clear_list, 6754 struct dyn_ftrace *rec) 6755 { 6756 struct ftrace_init_func *func; 6757 6758 func = kmalloc(sizeof(*func), GFP_KERNEL); 6759 if (!func) { 6760 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6761 return; 6762 } 6763 6764 func->ip = rec->ip; 6765 list_add(&func->list, clear_list); 6766 } 6767 6768 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6769 { 6770 unsigned long start = (unsigned long)(start_ptr); 6771 unsigned long end = (unsigned long)(end_ptr); 6772 struct ftrace_page **last_pg = &ftrace_pages_start; 6773 struct ftrace_page *pg; 6774 struct dyn_ftrace *rec; 6775 struct dyn_ftrace key; 6776 struct ftrace_mod_map *mod_map = NULL; 6777 struct ftrace_init_func *func, *func_next; 6778 struct list_head clear_hash; 6779 6780 INIT_LIST_HEAD(&clear_hash); 6781 6782 key.ip = start; 6783 key.flags = end; /* overload flags, as it is unsigned long */ 6784 6785 mutex_lock(&ftrace_lock); 6786 6787 /* 6788 * If we are freeing module init memory, then check if 6789 * any tracer is active. If so, we need to save a mapping of 6790 * the module functions being freed with the address. 6791 */ 6792 if (mod && ftrace_ops_list != &ftrace_list_end) 6793 mod_map = allocate_ftrace_mod_map(mod, start, end); 6794 6795 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6796 if (end < pg->records[0].ip || 6797 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6798 continue; 6799 again: 6800 rec = bsearch(&key, pg->records, pg->index, 6801 sizeof(struct dyn_ftrace), 6802 ftrace_cmp_recs); 6803 if (!rec) 6804 continue; 6805 6806 /* rec will be cleared from hashes after ftrace_lock unlock */ 6807 add_to_clear_hash_list(&clear_hash, rec); 6808 6809 if (mod_map) 6810 save_ftrace_mod_rec(mod_map, rec); 6811 6812 pg->index--; 6813 ftrace_update_tot_cnt--; 6814 if (!pg->index) { 6815 *last_pg = pg->next; 6816 if (pg->records) { 6817 free_pages((unsigned long)pg->records, pg->order); 6818 ftrace_number_of_pages -= 1 << pg->order; 6819 } 6820 ftrace_number_of_groups--; 6821 kfree(pg); 6822 pg = container_of(last_pg, struct ftrace_page, next); 6823 if (!(*last_pg)) 6824 ftrace_pages = pg; 6825 continue; 6826 } 6827 memmove(rec, rec + 1, 6828 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6829 /* More than one function may be in this block */ 6830 goto again; 6831 } 6832 mutex_unlock(&ftrace_lock); 6833 6834 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6835 clear_func_from_hashes(func); 6836 kfree(func); 6837 } 6838 } 6839 6840 void __init ftrace_free_init_mem(void) 6841 { 6842 void *start = (void *)(&__init_begin); 6843 void *end = (void *)(&__init_end); 6844 6845 ftrace_free_mem(NULL, start, end); 6846 } 6847 6848 void __init ftrace_init(void) 6849 { 6850 extern unsigned long __start_mcount_loc[]; 6851 extern unsigned long __stop_mcount_loc[]; 6852 unsigned long count, flags; 6853 int ret; 6854 6855 local_irq_save(flags); 6856 ret = ftrace_dyn_arch_init(); 6857 local_irq_restore(flags); 6858 if (ret) 6859 goto failed; 6860 6861 count = __stop_mcount_loc - __start_mcount_loc; 6862 if (!count) { 6863 pr_info("ftrace: No functions to be traced?\n"); 6864 goto failed; 6865 } 6866 6867 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6868 count, count / ENTRIES_PER_PAGE + 1); 6869 6870 last_ftrace_enabled = ftrace_enabled = 1; 6871 6872 ret = ftrace_process_locs(NULL, 6873 __start_mcount_loc, 6874 __stop_mcount_loc); 6875 6876 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6877 ftrace_number_of_pages, ftrace_number_of_groups); 6878 6879 set_ftrace_early_filters(); 6880 6881 return; 6882 failed: 6883 ftrace_disabled = 1; 6884 } 6885 6886 /* Do nothing if arch does not support this */ 6887 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6888 { 6889 } 6890 6891 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6892 { 6893 unsigned long trampoline = ops->trampoline; 6894 6895 arch_ftrace_update_trampoline(ops); 6896 if (ops->trampoline && ops->trampoline != trampoline && 6897 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 6898 /* Add to kallsyms before the perf events */ 6899 ftrace_add_trampoline_to_kallsyms(ops); 6900 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 6901 ops->trampoline, ops->trampoline_size, false, 6902 FTRACE_TRAMPOLINE_SYM); 6903 /* 6904 * Record the perf text poke event after the ksymbol register 6905 * event. 6906 */ 6907 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 6908 (void *)ops->trampoline, 6909 ops->trampoline_size); 6910 } 6911 } 6912 6913 void ftrace_init_trace_array(struct trace_array *tr) 6914 { 6915 INIT_LIST_HEAD(&tr->func_probes); 6916 INIT_LIST_HEAD(&tr->mod_trace); 6917 INIT_LIST_HEAD(&tr->mod_notrace); 6918 } 6919 #else 6920 6921 struct ftrace_ops global_ops = { 6922 .func = ftrace_stub, 6923 .flags = FTRACE_OPS_FL_INITIALIZED | 6924 FTRACE_OPS_FL_PID, 6925 }; 6926 6927 static int __init ftrace_nodyn_init(void) 6928 { 6929 ftrace_enabled = 1; 6930 return 0; 6931 } 6932 core_initcall(ftrace_nodyn_init); 6933 6934 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6935 static inline void ftrace_startup_enable(int command) { } 6936 static inline void ftrace_startup_all(int command) { } 6937 6938 # define ftrace_startup_sysctl() do { } while (0) 6939 # define ftrace_shutdown_sysctl() do { } while (0) 6940 6941 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6942 { 6943 } 6944 6945 #endif /* CONFIG_DYNAMIC_FTRACE */ 6946 6947 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6948 { 6949 tr->ops = &global_ops; 6950 tr->ops->private = tr; 6951 ftrace_init_trace_array(tr); 6952 } 6953 6954 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6955 { 6956 /* If we filter on pids, update to use the pid function */ 6957 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6958 if (WARN_ON(tr->ops->func != ftrace_stub)) 6959 printk("ftrace ops had %pS for function\n", 6960 tr->ops->func); 6961 } 6962 tr->ops->func = func; 6963 tr->ops->private = tr; 6964 } 6965 6966 void ftrace_reset_array_ops(struct trace_array *tr) 6967 { 6968 tr->ops->func = ftrace_stub; 6969 } 6970 6971 static nokprobe_inline void 6972 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6973 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 6974 { 6975 struct pt_regs *regs = ftrace_get_regs(fregs); 6976 struct ftrace_ops *op; 6977 int bit; 6978 6979 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX); 6980 if (bit < 0) 6981 return; 6982 6983 /* 6984 * Some of the ops may be dynamically allocated, 6985 * they must be freed after a synchronize_rcu(). 6986 */ 6987 preempt_disable_notrace(); 6988 6989 do_for_each_ftrace_op(op, ftrace_ops_list) { 6990 /* Stub functions don't need to be called nor tested */ 6991 if (op->flags & FTRACE_OPS_FL_STUB) 6992 continue; 6993 /* 6994 * Check the following for each ops before calling their func: 6995 * if RCU flag is set, then rcu_is_watching() must be true 6996 * if PER_CPU is set, then ftrace_function_local_disable() 6997 * must be false 6998 * Otherwise test if the ip matches the ops filter 6999 * 7000 * If any of the above fails then the op->func() is not executed. 7001 */ 7002 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7003 ftrace_ops_test(op, ip, regs)) { 7004 if (FTRACE_WARN_ON(!op->func)) { 7005 pr_warn("op=%p %pS\n", op, op); 7006 goto out; 7007 } 7008 op->func(ip, parent_ip, op, fregs); 7009 } 7010 } while_for_each_ftrace_op(op); 7011 out: 7012 preempt_enable_notrace(); 7013 trace_clear_recursion(bit); 7014 } 7015 7016 /* 7017 * Some archs only support passing ip and parent_ip. Even though 7018 * the list function ignores the op parameter, we do not want any 7019 * C side effects, where a function is called without the caller 7020 * sending a third parameter. 7021 * Archs are to support both the regs and ftrace_ops at the same time. 7022 * If they support ftrace_ops, it is assumed they support regs. 7023 * If call backs want to use regs, they must either check for regs 7024 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7025 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7026 * An architecture can pass partial regs with ftrace_ops and still 7027 * set the ARCH_SUPPORTS_FTRACE_OPS. 7028 */ 7029 #if ARCH_SUPPORTS_FTRACE_OPS 7030 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7031 struct ftrace_ops *op, struct ftrace_regs *fregs) 7032 { 7033 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7034 } 7035 NOKPROBE_SYMBOL(ftrace_ops_list_func); 7036 #else 7037 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 7038 { 7039 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7040 } 7041 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 7042 #endif 7043 7044 /* 7045 * If there's only one function registered but it does not support 7046 * recursion, needs RCU protection and/or requires per cpu handling, then 7047 * this function will be called by the mcount trampoline. 7048 */ 7049 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7050 struct ftrace_ops *op, struct ftrace_regs *fregs) 7051 { 7052 int bit; 7053 7054 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX); 7055 if (bit < 0) 7056 return; 7057 7058 preempt_disable_notrace(); 7059 7060 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7061 op->func(ip, parent_ip, op, fregs); 7062 7063 preempt_enable_notrace(); 7064 trace_clear_recursion(bit); 7065 } 7066 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7067 7068 /** 7069 * ftrace_ops_get_func - get the function a trampoline should call 7070 * @ops: the ops to get the function for 7071 * 7072 * Normally the mcount trampoline will call the ops->func, but there 7073 * are times that it should not. For example, if the ops does not 7074 * have its own recursion protection, then it should call the 7075 * ftrace_ops_assist_func() instead. 7076 * 7077 * Returns the function that the trampoline should call for @ops. 7078 */ 7079 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7080 { 7081 /* 7082 * If the function does not handle recursion or needs to be RCU safe, 7083 * then we need to call the assist handler. 7084 */ 7085 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7086 FTRACE_OPS_FL_RCU)) 7087 return ftrace_ops_assist_func; 7088 7089 return ops->func; 7090 } 7091 7092 static void 7093 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7094 struct task_struct *prev, struct task_struct *next) 7095 { 7096 struct trace_array *tr = data; 7097 struct trace_pid_list *pid_list; 7098 struct trace_pid_list *no_pid_list; 7099 7100 pid_list = rcu_dereference_sched(tr->function_pids); 7101 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7102 7103 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7104 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7105 FTRACE_PID_IGNORE); 7106 else 7107 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7108 next->pid); 7109 } 7110 7111 static void 7112 ftrace_pid_follow_sched_process_fork(void *data, 7113 struct task_struct *self, 7114 struct task_struct *task) 7115 { 7116 struct trace_pid_list *pid_list; 7117 struct trace_array *tr = data; 7118 7119 pid_list = rcu_dereference_sched(tr->function_pids); 7120 trace_filter_add_remove_task(pid_list, self, task); 7121 7122 pid_list = rcu_dereference_sched(tr->function_no_pids); 7123 trace_filter_add_remove_task(pid_list, self, task); 7124 } 7125 7126 static void 7127 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7128 { 7129 struct trace_pid_list *pid_list; 7130 struct trace_array *tr = data; 7131 7132 pid_list = rcu_dereference_sched(tr->function_pids); 7133 trace_filter_add_remove_task(pid_list, NULL, task); 7134 7135 pid_list = rcu_dereference_sched(tr->function_no_pids); 7136 trace_filter_add_remove_task(pid_list, NULL, task); 7137 } 7138 7139 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7140 { 7141 if (enable) { 7142 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7143 tr); 7144 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7145 tr); 7146 } else { 7147 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7148 tr); 7149 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7150 tr); 7151 } 7152 } 7153 7154 static void clear_ftrace_pids(struct trace_array *tr, int type) 7155 { 7156 struct trace_pid_list *pid_list; 7157 struct trace_pid_list *no_pid_list; 7158 int cpu; 7159 7160 pid_list = rcu_dereference_protected(tr->function_pids, 7161 lockdep_is_held(&ftrace_lock)); 7162 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7163 lockdep_is_held(&ftrace_lock)); 7164 7165 /* Make sure there's something to do */ 7166 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7167 return; 7168 7169 /* See if the pids still need to be checked after this */ 7170 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7171 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7172 for_each_possible_cpu(cpu) 7173 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7174 } 7175 7176 if (type & TRACE_PIDS) 7177 rcu_assign_pointer(tr->function_pids, NULL); 7178 7179 if (type & TRACE_NO_PIDS) 7180 rcu_assign_pointer(tr->function_no_pids, NULL); 7181 7182 /* Wait till all users are no longer using pid filtering */ 7183 synchronize_rcu(); 7184 7185 if ((type & TRACE_PIDS) && pid_list) 7186 trace_free_pid_list(pid_list); 7187 7188 if ((type & TRACE_NO_PIDS) && no_pid_list) 7189 trace_free_pid_list(no_pid_list); 7190 } 7191 7192 void ftrace_clear_pids(struct trace_array *tr) 7193 { 7194 mutex_lock(&ftrace_lock); 7195 7196 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7197 7198 mutex_unlock(&ftrace_lock); 7199 } 7200 7201 static void ftrace_pid_reset(struct trace_array *tr, int type) 7202 { 7203 mutex_lock(&ftrace_lock); 7204 clear_ftrace_pids(tr, type); 7205 7206 ftrace_update_pid_func(); 7207 ftrace_startup_all(0); 7208 7209 mutex_unlock(&ftrace_lock); 7210 } 7211 7212 /* Greater than any max PID */ 7213 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7214 7215 static void *fpid_start(struct seq_file *m, loff_t *pos) 7216 __acquires(RCU) 7217 { 7218 struct trace_pid_list *pid_list; 7219 struct trace_array *tr = m->private; 7220 7221 mutex_lock(&ftrace_lock); 7222 rcu_read_lock_sched(); 7223 7224 pid_list = rcu_dereference_sched(tr->function_pids); 7225 7226 if (!pid_list) 7227 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7228 7229 return trace_pid_start(pid_list, pos); 7230 } 7231 7232 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7233 { 7234 struct trace_array *tr = m->private; 7235 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7236 7237 if (v == FTRACE_NO_PIDS) { 7238 (*pos)++; 7239 return NULL; 7240 } 7241 return trace_pid_next(pid_list, v, pos); 7242 } 7243 7244 static void fpid_stop(struct seq_file *m, void *p) 7245 __releases(RCU) 7246 { 7247 rcu_read_unlock_sched(); 7248 mutex_unlock(&ftrace_lock); 7249 } 7250 7251 static int fpid_show(struct seq_file *m, void *v) 7252 { 7253 if (v == FTRACE_NO_PIDS) { 7254 seq_puts(m, "no pid\n"); 7255 return 0; 7256 } 7257 7258 return trace_pid_show(m, v); 7259 } 7260 7261 static const struct seq_operations ftrace_pid_sops = { 7262 .start = fpid_start, 7263 .next = fpid_next, 7264 .stop = fpid_stop, 7265 .show = fpid_show, 7266 }; 7267 7268 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7269 __acquires(RCU) 7270 { 7271 struct trace_pid_list *pid_list; 7272 struct trace_array *tr = m->private; 7273 7274 mutex_lock(&ftrace_lock); 7275 rcu_read_lock_sched(); 7276 7277 pid_list = rcu_dereference_sched(tr->function_no_pids); 7278 7279 if (!pid_list) 7280 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7281 7282 return trace_pid_start(pid_list, pos); 7283 } 7284 7285 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7286 { 7287 struct trace_array *tr = m->private; 7288 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7289 7290 if (v == FTRACE_NO_PIDS) { 7291 (*pos)++; 7292 return NULL; 7293 } 7294 return trace_pid_next(pid_list, v, pos); 7295 } 7296 7297 static const struct seq_operations ftrace_no_pid_sops = { 7298 .start = fnpid_start, 7299 .next = fnpid_next, 7300 .stop = fpid_stop, 7301 .show = fpid_show, 7302 }; 7303 7304 static int pid_open(struct inode *inode, struct file *file, int type) 7305 { 7306 const struct seq_operations *seq_ops; 7307 struct trace_array *tr = inode->i_private; 7308 struct seq_file *m; 7309 int ret = 0; 7310 7311 ret = tracing_check_open_get_tr(tr); 7312 if (ret) 7313 return ret; 7314 7315 if ((file->f_mode & FMODE_WRITE) && 7316 (file->f_flags & O_TRUNC)) 7317 ftrace_pid_reset(tr, type); 7318 7319 switch (type) { 7320 case TRACE_PIDS: 7321 seq_ops = &ftrace_pid_sops; 7322 break; 7323 case TRACE_NO_PIDS: 7324 seq_ops = &ftrace_no_pid_sops; 7325 break; 7326 default: 7327 trace_array_put(tr); 7328 WARN_ON_ONCE(1); 7329 return -EINVAL; 7330 } 7331 7332 ret = seq_open(file, seq_ops); 7333 if (ret < 0) { 7334 trace_array_put(tr); 7335 } else { 7336 m = file->private_data; 7337 /* copy tr over to seq ops */ 7338 m->private = tr; 7339 } 7340 7341 return ret; 7342 } 7343 7344 static int 7345 ftrace_pid_open(struct inode *inode, struct file *file) 7346 { 7347 return pid_open(inode, file, TRACE_PIDS); 7348 } 7349 7350 static int 7351 ftrace_no_pid_open(struct inode *inode, struct file *file) 7352 { 7353 return pid_open(inode, file, TRACE_NO_PIDS); 7354 } 7355 7356 static void ignore_task_cpu(void *data) 7357 { 7358 struct trace_array *tr = data; 7359 struct trace_pid_list *pid_list; 7360 struct trace_pid_list *no_pid_list; 7361 7362 /* 7363 * This function is called by on_each_cpu() while the 7364 * event_mutex is held. 7365 */ 7366 pid_list = rcu_dereference_protected(tr->function_pids, 7367 mutex_is_locked(&ftrace_lock)); 7368 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7369 mutex_is_locked(&ftrace_lock)); 7370 7371 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7372 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7373 FTRACE_PID_IGNORE); 7374 else 7375 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7376 current->pid); 7377 } 7378 7379 static ssize_t 7380 pid_write(struct file *filp, const char __user *ubuf, 7381 size_t cnt, loff_t *ppos, int type) 7382 { 7383 struct seq_file *m = filp->private_data; 7384 struct trace_array *tr = m->private; 7385 struct trace_pid_list *filtered_pids; 7386 struct trace_pid_list *other_pids; 7387 struct trace_pid_list *pid_list; 7388 ssize_t ret; 7389 7390 if (!cnt) 7391 return 0; 7392 7393 mutex_lock(&ftrace_lock); 7394 7395 switch (type) { 7396 case TRACE_PIDS: 7397 filtered_pids = rcu_dereference_protected(tr->function_pids, 7398 lockdep_is_held(&ftrace_lock)); 7399 other_pids = rcu_dereference_protected(tr->function_no_pids, 7400 lockdep_is_held(&ftrace_lock)); 7401 break; 7402 case TRACE_NO_PIDS: 7403 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7404 lockdep_is_held(&ftrace_lock)); 7405 other_pids = rcu_dereference_protected(tr->function_pids, 7406 lockdep_is_held(&ftrace_lock)); 7407 break; 7408 default: 7409 ret = -EINVAL; 7410 WARN_ON_ONCE(1); 7411 goto out; 7412 } 7413 7414 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7415 if (ret < 0) 7416 goto out; 7417 7418 switch (type) { 7419 case TRACE_PIDS: 7420 rcu_assign_pointer(tr->function_pids, pid_list); 7421 break; 7422 case TRACE_NO_PIDS: 7423 rcu_assign_pointer(tr->function_no_pids, pid_list); 7424 break; 7425 } 7426 7427 7428 if (filtered_pids) { 7429 synchronize_rcu(); 7430 trace_free_pid_list(filtered_pids); 7431 } else if (pid_list && !other_pids) { 7432 /* Register a probe to set whether to ignore the tracing of a task */ 7433 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7434 } 7435 7436 /* 7437 * Ignoring of pids is done at task switch. But we have to 7438 * check for those tasks that are currently running. 7439 * Always do this in case a pid was appended or removed. 7440 */ 7441 on_each_cpu(ignore_task_cpu, tr, 1); 7442 7443 ftrace_update_pid_func(); 7444 ftrace_startup_all(0); 7445 out: 7446 mutex_unlock(&ftrace_lock); 7447 7448 if (ret > 0) 7449 *ppos += ret; 7450 7451 return ret; 7452 } 7453 7454 static ssize_t 7455 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7456 size_t cnt, loff_t *ppos) 7457 { 7458 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7459 } 7460 7461 static ssize_t 7462 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7463 size_t cnt, loff_t *ppos) 7464 { 7465 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7466 } 7467 7468 static int 7469 ftrace_pid_release(struct inode *inode, struct file *file) 7470 { 7471 struct trace_array *tr = inode->i_private; 7472 7473 trace_array_put(tr); 7474 7475 return seq_release(inode, file); 7476 } 7477 7478 static const struct file_operations ftrace_pid_fops = { 7479 .open = ftrace_pid_open, 7480 .write = ftrace_pid_write, 7481 .read = seq_read, 7482 .llseek = tracing_lseek, 7483 .release = ftrace_pid_release, 7484 }; 7485 7486 static const struct file_operations ftrace_no_pid_fops = { 7487 .open = ftrace_no_pid_open, 7488 .write = ftrace_no_pid_write, 7489 .read = seq_read, 7490 .llseek = tracing_lseek, 7491 .release = ftrace_pid_release, 7492 }; 7493 7494 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7495 { 7496 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7497 tr, &ftrace_pid_fops); 7498 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer, 7499 tr, &ftrace_no_pid_fops); 7500 } 7501 7502 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7503 struct dentry *d_tracer) 7504 { 7505 /* Only the top level directory has the dyn_tracefs and profile */ 7506 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7507 7508 ftrace_init_dyn_tracefs(d_tracer); 7509 ftrace_profile_tracefs(d_tracer); 7510 } 7511 7512 /** 7513 * ftrace_kill - kill ftrace 7514 * 7515 * This function should be used by panic code. It stops ftrace 7516 * but in a not so nice way. If you need to simply kill ftrace 7517 * from a non-atomic section, use ftrace_kill. 7518 */ 7519 void ftrace_kill(void) 7520 { 7521 ftrace_disabled = 1; 7522 ftrace_enabled = 0; 7523 ftrace_trace_function = ftrace_stub; 7524 } 7525 7526 /** 7527 * Test if ftrace is dead or not. 7528 */ 7529 int ftrace_is_dead(void) 7530 { 7531 return ftrace_disabled; 7532 } 7533 7534 /** 7535 * register_ftrace_function - register a function for profiling 7536 * @ops - ops structure that holds the function for profiling. 7537 * 7538 * Register a function to be called by all functions in the 7539 * kernel. 7540 * 7541 * Note: @ops->func and all the functions it calls must be labeled 7542 * with "notrace", otherwise it will go into a 7543 * recursive loop. 7544 */ 7545 int register_ftrace_function(struct ftrace_ops *ops) 7546 { 7547 int ret = -1; 7548 7549 ftrace_ops_init(ops); 7550 7551 mutex_lock(&ftrace_lock); 7552 7553 ret = ftrace_startup(ops, 0); 7554 7555 mutex_unlock(&ftrace_lock); 7556 7557 return ret; 7558 } 7559 EXPORT_SYMBOL_GPL(register_ftrace_function); 7560 7561 /** 7562 * unregister_ftrace_function - unregister a function for profiling. 7563 * @ops - ops structure that holds the function to unregister 7564 * 7565 * Unregister a function that was added to be called by ftrace profiling. 7566 */ 7567 int unregister_ftrace_function(struct ftrace_ops *ops) 7568 { 7569 int ret; 7570 7571 mutex_lock(&ftrace_lock); 7572 ret = ftrace_shutdown(ops, 0); 7573 mutex_unlock(&ftrace_lock); 7574 7575 return ret; 7576 } 7577 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7578 7579 static bool is_permanent_ops_registered(void) 7580 { 7581 struct ftrace_ops *op; 7582 7583 do_for_each_ftrace_op(op, ftrace_ops_list) { 7584 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7585 return true; 7586 } while_for_each_ftrace_op(op); 7587 7588 return false; 7589 } 7590 7591 int 7592 ftrace_enable_sysctl(struct ctl_table *table, int write, 7593 void *buffer, size_t *lenp, loff_t *ppos) 7594 { 7595 int ret = -ENODEV; 7596 7597 mutex_lock(&ftrace_lock); 7598 7599 if (unlikely(ftrace_disabled)) 7600 goto out; 7601 7602 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7603 7604 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7605 goto out; 7606 7607 if (ftrace_enabled) { 7608 7609 /* we are starting ftrace again */ 7610 if (rcu_dereference_protected(ftrace_ops_list, 7611 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7612 update_ftrace_function(); 7613 7614 ftrace_startup_sysctl(); 7615 7616 } else { 7617 if (is_permanent_ops_registered()) { 7618 ftrace_enabled = true; 7619 ret = -EBUSY; 7620 goto out; 7621 } 7622 7623 /* stopping ftrace calls (just send to ftrace_stub) */ 7624 ftrace_trace_function = ftrace_stub; 7625 7626 ftrace_shutdown_sysctl(); 7627 } 7628 7629 last_ftrace_enabled = !!ftrace_enabled; 7630 out: 7631 mutex_unlock(&ftrace_lock); 7632 return ret; 7633 } 7634