1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 49 50 #define FTRACE_WARN_ON(cond) \ 51 ({ \ 52 int ___r = cond; \ 53 if (WARN_ON(___r)) \ 54 ftrace_kill(); \ 55 ___r; \ 56 }) 57 58 #define FTRACE_WARN_ON_ONCE(cond) \ 59 ({ \ 60 int ___r = cond; \ 61 if (WARN_ON_ONCE(___r)) \ 62 ftrace_kill(); \ 63 ___r; \ 64 }) 65 66 /* hash bits for specific function selection */ 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int __maybe_unused last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL || tr->function_no_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct ftrace_regs *fregs); 127 128 static inline void ftrace_ops_init(struct ftrace_ops *ops) 129 { 130 #ifdef CONFIG_DYNAMIC_FTRACE 131 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 132 mutex_init(&ops->local_hash.regex_lock); 133 ops->func_hash = &ops->local_hash; 134 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 135 } 136 #endif 137 } 138 139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 140 struct ftrace_ops *op, struct ftrace_regs *fregs) 141 { 142 struct trace_array *tr = op->private; 143 int pid; 144 145 if (tr) { 146 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 147 if (pid == FTRACE_PID_IGNORE) 148 return; 149 if (pid != FTRACE_PID_TRACE && 150 pid != current->pid) 151 return; 152 } 153 154 op->saved_func(ip, parent_ip, op, fregs); 155 } 156 157 static void ftrace_sync_ipi(void *data) 158 { 159 /* Probably not needed, but do it anyway */ 160 smp_rmb(); 161 } 162 163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 164 { 165 /* 166 * If this is a dynamic or RCU ops, or we force list func, 167 * then it needs to call the list anyway. 168 */ 169 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 170 FTRACE_FORCE_LIST_FUNC) 171 return ftrace_ops_list_func; 172 173 return ftrace_ops_get_func(ops); 174 } 175 176 static void update_ftrace_function(void) 177 { 178 ftrace_func_t func; 179 180 /* 181 * Prepare the ftrace_ops that the arch callback will use. 182 * If there's only one ftrace_ops registered, the ftrace_ops_list 183 * will point to the ops we want. 184 */ 185 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 186 lockdep_is_held(&ftrace_lock)); 187 188 /* If there's no ftrace_ops registered, just call the stub function */ 189 if (set_function_trace_op == &ftrace_list_end) { 190 func = ftrace_stub; 191 192 /* 193 * If we are at the end of the list and this ops is 194 * recursion safe and not dynamic and the arch supports passing ops, 195 * then have the mcount trampoline call the function directly. 196 */ 197 } else if (rcu_dereference_protected(ftrace_ops_list->next, 198 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 199 func = ftrace_ops_get_list_func(ftrace_ops_list); 200 201 } else { 202 /* Just use the default ftrace_ops */ 203 set_function_trace_op = &ftrace_list_end; 204 func = ftrace_ops_list_func; 205 } 206 207 update_function_graph_func(); 208 209 /* If there's no change, then do nothing more here */ 210 if (ftrace_trace_function == func) 211 return; 212 213 /* 214 * If we are using the list function, it doesn't care 215 * about the function_trace_ops. 216 */ 217 if (func == ftrace_ops_list_func) { 218 ftrace_trace_function = func; 219 /* 220 * Don't even bother setting function_trace_ops, 221 * it would be racy to do so anyway. 222 */ 223 return; 224 } 225 226 #ifndef CONFIG_DYNAMIC_FTRACE 227 /* 228 * For static tracing, we need to be a bit more careful. 229 * The function change takes affect immediately. Thus, 230 * we need to coordinate the setting of the function_trace_ops 231 * with the setting of the ftrace_trace_function. 232 * 233 * Set the function to the list ops, which will call the 234 * function we want, albeit indirectly, but it handles the 235 * ftrace_ops and doesn't depend on function_trace_op. 236 */ 237 ftrace_trace_function = ftrace_ops_list_func; 238 /* 239 * Make sure all CPUs see this. Yes this is slow, but static 240 * tracing is slow and nasty to have enabled. 241 */ 242 synchronize_rcu_tasks_rude(); 243 /* Now all cpus are using the list ops. */ 244 function_trace_op = set_function_trace_op; 245 /* Make sure the function_trace_op is visible on all CPUs */ 246 smp_wmb(); 247 /* Nasty way to force a rmb on all cpus */ 248 smp_call_function(ftrace_sync_ipi, NULL, 1); 249 /* OK, we are all set to update the ftrace_trace_function now! */ 250 #endif /* !CONFIG_DYNAMIC_FTRACE */ 251 252 ftrace_trace_function = func; 253 } 254 255 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 256 struct ftrace_ops *ops) 257 { 258 rcu_assign_pointer(ops->next, *list); 259 260 /* 261 * We are entering ops into the list but another 262 * CPU might be walking that list. We need to make sure 263 * the ops->next pointer is valid before another CPU sees 264 * the ops pointer included into the list. 265 */ 266 rcu_assign_pointer(*list, ops); 267 } 268 269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 270 struct ftrace_ops *ops) 271 { 272 struct ftrace_ops **p; 273 274 /* 275 * If we are removing the last function, then simply point 276 * to the ftrace_stub. 277 */ 278 if (rcu_dereference_protected(*list, 279 lockdep_is_held(&ftrace_lock)) == ops && 280 rcu_dereference_protected(ops->next, 281 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 282 *list = &ftrace_list_end; 283 return 0; 284 } 285 286 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 287 if (*p == ops) 288 break; 289 290 if (*p != ops) 291 return -1; 292 293 *p = (*p)->next; 294 return 0; 295 } 296 297 static void ftrace_update_trampoline(struct ftrace_ops *ops); 298 299 int __register_ftrace_function(struct ftrace_ops *ops) 300 { 301 if (ops->flags & FTRACE_OPS_FL_DELETED) 302 return -EINVAL; 303 304 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 305 return -EBUSY; 306 307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 308 /* 309 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 310 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 311 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 312 */ 313 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 314 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 315 return -EINVAL; 316 317 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 318 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 319 #endif 320 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 321 return -EBUSY; 322 323 if (!is_kernel_core_data((unsigned long)ops)) 324 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 325 326 add_ftrace_ops(&ftrace_ops_list, ops); 327 328 /* Always save the function, and reset at unregistering */ 329 ops->saved_func = ops->func; 330 331 if (ftrace_pids_enabled(ops)) 332 ops->func = ftrace_pid_func; 333 334 ftrace_update_trampoline(ops); 335 336 if (ftrace_enabled) 337 update_ftrace_function(); 338 339 return 0; 340 } 341 342 int __unregister_ftrace_function(struct ftrace_ops *ops) 343 { 344 int ret; 345 346 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 347 return -EBUSY; 348 349 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 350 351 if (ret < 0) 352 return ret; 353 354 if (ftrace_enabled) 355 update_ftrace_function(); 356 357 ops->func = ops->saved_func; 358 359 return 0; 360 } 361 362 static void ftrace_update_pid_func(void) 363 { 364 struct ftrace_ops *op; 365 366 /* Only do something if we are tracing something */ 367 if (ftrace_trace_function == ftrace_stub) 368 return; 369 370 do_for_each_ftrace_op(op, ftrace_ops_list) { 371 if (op->flags & FTRACE_OPS_FL_PID) { 372 op->func = ftrace_pids_enabled(op) ? 373 ftrace_pid_func : op->saved_func; 374 ftrace_update_trampoline(op); 375 } 376 } while_for_each_ftrace_op(op); 377 378 update_ftrace_function(); 379 } 380 381 #ifdef CONFIG_FUNCTION_PROFILER 382 struct ftrace_profile { 383 struct hlist_node node; 384 unsigned long ip; 385 unsigned long counter; 386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 387 unsigned long long time; 388 unsigned long long time_squared; 389 #endif 390 }; 391 392 struct ftrace_profile_page { 393 struct ftrace_profile_page *next; 394 unsigned long index; 395 struct ftrace_profile records[]; 396 }; 397 398 struct ftrace_profile_stat { 399 atomic_t disabled; 400 struct hlist_head *hash; 401 struct ftrace_profile_page *pages; 402 struct ftrace_profile_page *start; 403 struct tracer_stat stat; 404 }; 405 406 #define PROFILE_RECORDS_SIZE \ 407 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 408 409 #define PROFILES_PER_PAGE \ 410 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 411 412 static int ftrace_profile_enabled __read_mostly; 413 414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 415 static DEFINE_MUTEX(ftrace_profile_lock); 416 417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 418 419 #define FTRACE_PROFILE_HASH_BITS 10 420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 421 422 static void * 423 function_stat_next(void *v, int idx) 424 { 425 struct ftrace_profile *rec = v; 426 struct ftrace_profile_page *pg; 427 428 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 429 430 again: 431 if (idx != 0) 432 rec++; 433 434 if ((void *)rec >= (void *)&pg->records[pg->index]) { 435 pg = pg->next; 436 if (!pg) 437 return NULL; 438 rec = &pg->records[0]; 439 if (!rec->counter) 440 goto again; 441 } 442 443 return rec; 444 } 445 446 static void *function_stat_start(struct tracer_stat *trace) 447 { 448 struct ftrace_profile_stat *stat = 449 container_of(trace, struct ftrace_profile_stat, stat); 450 451 if (!stat || !stat->start) 452 return NULL; 453 454 return function_stat_next(&stat->start->records[0], 0); 455 } 456 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 /* function graph compares on total time */ 459 static int function_stat_cmp(const void *p1, const void *p2) 460 { 461 const struct ftrace_profile *a = p1; 462 const struct ftrace_profile *b = p2; 463 464 if (a->time < b->time) 465 return -1; 466 if (a->time > b->time) 467 return 1; 468 else 469 return 0; 470 } 471 #else 472 /* not function graph compares against hits */ 473 static int function_stat_cmp(const void *p1, const void *p2) 474 { 475 const struct ftrace_profile *a = p1; 476 const struct ftrace_profile *b = p2; 477 478 if (a->counter < b->counter) 479 return -1; 480 if (a->counter > b->counter) 481 return 1; 482 else 483 return 0; 484 } 485 #endif 486 487 static int function_stat_headers(struct seq_file *m) 488 { 489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 490 seq_puts(m, " Function " 491 "Hit Time Avg s^2\n" 492 " -------- " 493 "--- ---- --- ---\n"); 494 #else 495 seq_puts(m, " Function Hit\n" 496 " -------- ---\n"); 497 #endif 498 return 0; 499 } 500 501 static int function_stat_show(struct seq_file *m, void *v) 502 { 503 struct ftrace_profile *rec = v; 504 char str[KSYM_SYMBOL_LEN]; 505 int ret = 0; 506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 507 static struct trace_seq s; 508 unsigned long long avg; 509 unsigned long long stddev; 510 #endif 511 mutex_lock(&ftrace_profile_lock); 512 513 /* we raced with function_profile_reset() */ 514 if (unlikely(rec->counter == 0)) { 515 ret = -EBUSY; 516 goto out; 517 } 518 519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 520 avg = div64_ul(rec->time, rec->counter); 521 if (tracing_thresh && (avg < tracing_thresh)) 522 goto out; 523 #endif 524 525 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 526 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 seq_puts(m, " "); 530 531 /* Sample standard deviation (s^2) */ 532 if (rec->counter <= 1) 533 stddev = 0; 534 else { 535 /* 536 * Apply Welford's method: 537 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 538 */ 539 stddev = rec->counter * rec->time_squared - 540 rec->time * rec->time; 541 542 /* 543 * Divide only 1000 for ns^2 -> us^2 conversion. 544 * trace_print_graph_duration will divide 1000 again. 545 */ 546 stddev = div64_ul(stddev, 547 rec->counter * (rec->counter - 1) * 1000); 548 } 549 550 trace_seq_init(&s); 551 trace_print_graph_duration(rec->time, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(avg, &s); 554 trace_seq_puts(&s, " "); 555 trace_print_graph_duration(stddev, &s); 556 trace_print_seq(m, &s); 557 #endif 558 seq_putc(m, '\n'); 559 out: 560 mutex_unlock(&ftrace_profile_lock); 561 562 return ret; 563 } 564 565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 566 { 567 struct ftrace_profile_page *pg; 568 569 pg = stat->pages = stat->start; 570 571 while (pg) { 572 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 573 pg->index = 0; 574 pg = pg->next; 575 } 576 577 memset(stat->hash, 0, 578 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 579 } 580 581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 582 { 583 struct ftrace_profile_page *pg; 584 int functions; 585 int pages; 586 int i; 587 588 /* If we already allocated, do nothing */ 589 if (stat->pages) 590 return 0; 591 592 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!stat->pages) 594 return -ENOMEM; 595 596 #ifdef CONFIG_DYNAMIC_FTRACE 597 functions = ftrace_update_tot_cnt; 598 #else 599 /* 600 * We do not know the number of functions that exist because 601 * dynamic tracing is what counts them. With past experience 602 * we have around 20K functions. That should be more than enough. 603 * It is highly unlikely we will execute every function in 604 * the kernel. 605 */ 606 functions = 20000; 607 #endif 608 609 pg = stat->start = stat->pages; 610 611 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 612 613 for (i = 1; i < pages; i++) { 614 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 615 if (!pg->next) 616 goto out_free; 617 pg = pg->next; 618 } 619 620 return 0; 621 622 out_free: 623 pg = stat->start; 624 while (pg) { 625 unsigned long tmp = (unsigned long)pg; 626 627 pg = pg->next; 628 free_page(tmp); 629 } 630 631 stat->pages = NULL; 632 stat->start = NULL; 633 634 return -ENOMEM; 635 } 636 637 static int ftrace_profile_init_cpu(int cpu) 638 { 639 struct ftrace_profile_stat *stat; 640 int size; 641 642 stat = &per_cpu(ftrace_profile_stats, cpu); 643 644 if (stat->hash) { 645 /* If the profile is already created, simply reset it */ 646 ftrace_profile_reset(stat); 647 return 0; 648 } 649 650 /* 651 * We are profiling all functions, but usually only a few thousand 652 * functions are hit. We'll make a hash of 1024 items. 653 */ 654 size = FTRACE_PROFILE_HASH_SIZE; 655 656 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 657 658 if (!stat->hash) 659 return -ENOMEM; 660 661 /* Preallocate the function profiling pages */ 662 if (ftrace_profile_pages_init(stat) < 0) { 663 kfree(stat->hash); 664 stat->hash = NULL; 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static int ftrace_profile_init(void) 672 { 673 int cpu; 674 int ret = 0; 675 676 for_each_possible_cpu(cpu) { 677 ret = ftrace_profile_init_cpu(cpu); 678 if (ret) 679 break; 680 } 681 682 return ret; 683 } 684 685 /* interrupts must be disabled */ 686 static struct ftrace_profile * 687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 688 { 689 struct ftrace_profile *rec; 690 struct hlist_head *hhd; 691 unsigned long key; 692 693 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 694 hhd = &stat->hash[key]; 695 696 if (hlist_empty(hhd)) 697 return NULL; 698 699 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 700 if (rec->ip == ip) 701 return rec; 702 } 703 704 return NULL; 705 } 706 707 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 708 struct ftrace_profile *rec) 709 { 710 unsigned long key; 711 712 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 713 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 714 } 715 716 /* 717 * The memory is already allocated, this simply finds a new record to use. 718 */ 719 static struct ftrace_profile * 720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 721 { 722 struct ftrace_profile *rec = NULL; 723 724 /* prevent recursion (from NMIs) */ 725 if (atomic_inc_return(&stat->disabled) != 1) 726 goto out; 727 728 /* 729 * Try to find the function again since an NMI 730 * could have added it 731 */ 732 rec = ftrace_find_profiled_func(stat, ip); 733 if (rec) 734 goto out; 735 736 if (stat->pages->index == PROFILES_PER_PAGE) { 737 if (!stat->pages->next) 738 goto out; 739 stat->pages = stat->pages->next; 740 } 741 742 rec = &stat->pages->records[stat->pages->index++]; 743 rec->ip = ip; 744 ftrace_add_profile(stat, rec); 745 746 out: 747 atomic_dec(&stat->disabled); 748 749 return rec; 750 } 751 752 static void 753 function_profile_call(unsigned long ip, unsigned long parent_ip, 754 struct ftrace_ops *ops, struct ftrace_regs *fregs) 755 { 756 struct ftrace_profile_stat *stat; 757 struct ftrace_profile *rec; 758 unsigned long flags; 759 760 if (!ftrace_profile_enabled) 761 return; 762 763 local_irq_save(flags); 764 765 stat = this_cpu_ptr(&ftrace_profile_stats); 766 if (!stat->hash || !ftrace_profile_enabled) 767 goto out; 768 769 rec = ftrace_find_profiled_func(stat, ip); 770 if (!rec) { 771 rec = ftrace_profile_alloc(stat, ip); 772 if (!rec) 773 goto out; 774 } 775 776 rec->counter++; 777 out: 778 local_irq_restore(flags); 779 } 780 781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 782 static bool fgraph_graph_time = true; 783 784 void ftrace_graph_graph_time_control(bool enable) 785 { 786 fgraph_graph_time = enable; 787 } 788 789 static int profile_graph_entry(struct ftrace_graph_ent *trace) 790 { 791 struct ftrace_ret_stack *ret_stack; 792 793 function_profile_call(trace->func, 0, NULL, NULL); 794 795 /* If function graph is shutting down, ret_stack can be NULL */ 796 if (!current->ret_stack) 797 return 0; 798 799 ret_stack = ftrace_graph_get_ret_stack(current, 0); 800 if (ret_stack) 801 ret_stack->subtime = 0; 802 803 return 1; 804 } 805 806 static void profile_graph_return(struct ftrace_graph_ret *trace) 807 { 808 struct ftrace_ret_stack *ret_stack; 809 struct ftrace_profile_stat *stat; 810 unsigned long long calltime; 811 struct ftrace_profile *rec; 812 unsigned long flags; 813 814 local_irq_save(flags); 815 stat = this_cpu_ptr(&ftrace_profile_stats); 816 if (!stat->hash || !ftrace_profile_enabled) 817 goto out; 818 819 /* If the calltime was zero'd ignore it */ 820 if (!trace->calltime) 821 goto out; 822 823 calltime = trace->rettime - trace->calltime; 824 825 if (!fgraph_graph_time) { 826 827 /* Append this call time to the parent time to subtract */ 828 ret_stack = ftrace_graph_get_ret_stack(current, 1); 829 if (ret_stack) 830 ret_stack->subtime += calltime; 831 832 ret_stack = ftrace_graph_get_ret_stack(current, 0); 833 if (ret_stack && ret_stack->subtime < calltime) 834 calltime -= ret_stack->subtime; 835 else 836 calltime = 0; 837 } 838 839 rec = ftrace_find_profiled_func(stat, trace->func); 840 if (rec) { 841 rec->time += calltime; 842 rec->time_squared += calltime * calltime; 843 } 844 845 out: 846 local_irq_restore(flags); 847 } 848 849 static struct fgraph_ops fprofiler_ops = { 850 .entryfunc = &profile_graph_entry, 851 .retfunc = &profile_graph_return, 852 }; 853 854 static int register_ftrace_profiler(void) 855 { 856 return register_ftrace_graph(&fprofiler_ops); 857 } 858 859 static void unregister_ftrace_profiler(void) 860 { 861 unregister_ftrace_graph(&fprofiler_ops); 862 } 863 #else 864 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 865 .func = function_profile_call, 866 .flags = FTRACE_OPS_FL_INITIALIZED, 867 INIT_OPS_HASH(ftrace_profile_ops) 868 }; 869 870 static int register_ftrace_profiler(void) 871 { 872 return register_ftrace_function(&ftrace_profile_ops); 873 } 874 875 static void unregister_ftrace_profiler(void) 876 { 877 unregister_ftrace_function(&ftrace_profile_ops); 878 } 879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 880 881 static ssize_t 882 ftrace_profile_write(struct file *filp, const char __user *ubuf, 883 size_t cnt, loff_t *ppos) 884 { 885 unsigned long val; 886 int ret; 887 888 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 889 if (ret) 890 return ret; 891 892 val = !!val; 893 894 mutex_lock(&ftrace_profile_lock); 895 if (ftrace_profile_enabled ^ val) { 896 if (val) { 897 ret = ftrace_profile_init(); 898 if (ret < 0) { 899 cnt = ret; 900 goto out; 901 } 902 903 ret = register_ftrace_profiler(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 ftrace_profile_enabled = 1; 909 } else { 910 ftrace_profile_enabled = 0; 911 /* 912 * unregister_ftrace_profiler calls stop_machine 913 * so this acts like an synchronize_rcu. 914 */ 915 unregister_ftrace_profiler(); 916 } 917 } 918 out: 919 mutex_unlock(&ftrace_profile_lock); 920 921 *ppos += cnt; 922 923 return cnt; 924 } 925 926 static ssize_t 927 ftrace_profile_read(struct file *filp, char __user *ubuf, 928 size_t cnt, loff_t *ppos) 929 { 930 char buf[64]; /* big enough to hold a number */ 931 int r; 932 933 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 934 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 935 } 936 937 static const struct file_operations ftrace_profile_fops = { 938 .open = tracing_open_generic, 939 .read = ftrace_profile_read, 940 .write = ftrace_profile_write, 941 .llseek = default_llseek, 942 }; 943 944 /* used to initialize the real stat files */ 945 static struct tracer_stat function_stats __initdata = { 946 .name = "functions", 947 .stat_start = function_stat_start, 948 .stat_next = function_stat_next, 949 .stat_cmp = function_stat_cmp, 950 .stat_headers = function_stat_headers, 951 .stat_show = function_stat_show 952 }; 953 954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 955 { 956 struct ftrace_profile_stat *stat; 957 char *name; 958 int ret; 959 int cpu; 960 961 for_each_possible_cpu(cpu) { 962 stat = &per_cpu(ftrace_profile_stats, cpu); 963 964 name = kasprintf(GFP_KERNEL, "function%d", cpu); 965 if (!name) { 966 /* 967 * The files created are permanent, if something happens 968 * we still do not free memory. 969 */ 970 WARN(1, 971 "Could not allocate stat file for cpu %d\n", 972 cpu); 973 return; 974 } 975 stat->stat = function_stats; 976 stat->stat.name = name; 977 ret = register_stat_tracer(&stat->stat); 978 if (ret) { 979 WARN(1, 980 "Could not register function stat for cpu %d\n", 981 cpu); 982 kfree(name); 983 return; 984 } 985 } 986 987 trace_create_file("function_profile_enabled", 988 TRACE_MODE_WRITE, d_tracer, NULL, 989 &ftrace_profile_fops); 990 } 991 992 #else /* CONFIG_FUNCTION_PROFILER */ 993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 994 { 995 } 996 #endif /* CONFIG_FUNCTION_PROFILER */ 997 998 #ifdef CONFIG_DYNAMIC_FTRACE 999 1000 static struct ftrace_ops *removed_ops; 1001 1002 /* 1003 * Set when doing a global update, like enabling all recs or disabling them. 1004 * It is not set when just updating a single ftrace_ops. 1005 */ 1006 static bool update_all_ops; 1007 1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1009 # error Dynamic ftrace depends on MCOUNT_RECORD 1010 #endif 1011 1012 struct ftrace_func_probe { 1013 struct ftrace_probe_ops *probe_ops; 1014 struct ftrace_ops ops; 1015 struct trace_array *tr; 1016 struct list_head list; 1017 void *data; 1018 int ref; 1019 }; 1020 1021 /* 1022 * We make these constant because no one should touch them, 1023 * but they are used as the default "empty hash", to avoid allocating 1024 * it all the time. These are in a read only section such that if 1025 * anyone does try to modify it, it will cause an exception. 1026 */ 1027 static const struct hlist_head empty_buckets[1]; 1028 static const struct ftrace_hash empty_hash = { 1029 .buckets = (struct hlist_head *)empty_buckets, 1030 }; 1031 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1032 1033 struct ftrace_ops global_ops = { 1034 .func = ftrace_stub, 1035 .local_hash.notrace_hash = EMPTY_HASH, 1036 .local_hash.filter_hash = EMPTY_HASH, 1037 INIT_OPS_HASH(global_ops) 1038 .flags = FTRACE_OPS_FL_INITIALIZED | 1039 FTRACE_OPS_FL_PID, 1040 }; 1041 1042 /* 1043 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1044 */ 1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1046 { 1047 struct ftrace_ops *op = NULL; 1048 1049 /* 1050 * Some of the ops may be dynamically allocated, 1051 * they are freed after a synchronize_rcu(). 1052 */ 1053 preempt_disable_notrace(); 1054 1055 do_for_each_ftrace_op(op, ftrace_ops_list) { 1056 /* 1057 * This is to check for dynamically allocated trampolines. 1058 * Trampolines that are in kernel text will have 1059 * core_kernel_text() return true. 1060 */ 1061 if (op->trampoline && op->trampoline_size) 1062 if (addr >= op->trampoline && 1063 addr < op->trampoline + op->trampoline_size) { 1064 preempt_enable_notrace(); 1065 return op; 1066 } 1067 } while_for_each_ftrace_op(op); 1068 preempt_enable_notrace(); 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * This is used by __kernel_text_address() to return true if the 1075 * address is on a dynamically allocated trampoline that would 1076 * not return true for either core_kernel_text() or 1077 * is_module_text_address(). 1078 */ 1079 bool is_ftrace_trampoline(unsigned long addr) 1080 { 1081 return ftrace_ops_trampoline(addr) != NULL; 1082 } 1083 1084 struct ftrace_page { 1085 struct ftrace_page *next; 1086 struct dyn_ftrace *records; 1087 int index; 1088 int order; 1089 }; 1090 1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1093 1094 static struct ftrace_page *ftrace_pages_start; 1095 static struct ftrace_page *ftrace_pages; 1096 1097 static __always_inline unsigned long 1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1099 { 1100 if (hash->size_bits > 0) 1101 return hash_long(ip, hash->size_bits); 1102 1103 return 0; 1104 } 1105 1106 /* Only use this function if ftrace_hash_empty() has already been tested */ 1107 static __always_inline struct ftrace_func_entry * 1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 unsigned long key; 1111 struct ftrace_func_entry *entry; 1112 struct hlist_head *hhd; 1113 1114 key = ftrace_hash_key(hash, ip); 1115 hhd = &hash->buckets[key]; 1116 1117 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1118 if (entry->ip == ip) 1119 return entry; 1120 } 1121 return NULL; 1122 } 1123 1124 /** 1125 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1126 * @hash: The hash to look at 1127 * @ip: The instruction pointer to test 1128 * 1129 * Search a given @hash to see if a given instruction pointer (@ip) 1130 * exists in it. 1131 * 1132 * Returns the entry that holds the @ip if found. NULL otherwise. 1133 */ 1134 struct ftrace_func_entry * 1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (ftrace_hash_empty(hash)) 1138 return NULL; 1139 1140 return __ftrace_lookup_ip(hash, ip); 1141 } 1142 1143 static void __add_hash_entry(struct ftrace_hash *hash, 1144 struct ftrace_func_entry *entry) 1145 { 1146 struct hlist_head *hhd; 1147 unsigned long key; 1148 1149 key = ftrace_hash_key(hash, entry->ip); 1150 hhd = &hash->buckets[key]; 1151 hlist_add_head(&entry->hlist, hhd); 1152 hash->count++; 1153 } 1154 1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1156 { 1157 struct ftrace_func_entry *entry; 1158 1159 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1160 if (!entry) 1161 return -ENOMEM; 1162 1163 entry->ip = ip; 1164 __add_hash_entry(hash, entry); 1165 1166 return 0; 1167 } 1168 1169 static void 1170 free_hash_entry(struct ftrace_hash *hash, 1171 struct ftrace_func_entry *entry) 1172 { 1173 hlist_del(&entry->hlist); 1174 kfree(entry); 1175 hash->count--; 1176 } 1177 1178 static void 1179 remove_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del_rcu(&entry->hlist); 1183 hash->count--; 1184 } 1185 1186 static void ftrace_hash_clear(struct ftrace_hash *hash) 1187 { 1188 struct hlist_head *hhd; 1189 struct hlist_node *tn; 1190 struct ftrace_func_entry *entry; 1191 int size = 1 << hash->size_bits; 1192 int i; 1193 1194 if (!hash->count) 1195 return; 1196 1197 for (i = 0; i < size; i++) { 1198 hhd = &hash->buckets[i]; 1199 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1200 free_hash_entry(hash, entry); 1201 } 1202 FTRACE_WARN_ON(hash->count); 1203 } 1204 1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1206 { 1207 list_del(&ftrace_mod->list); 1208 kfree(ftrace_mod->module); 1209 kfree(ftrace_mod->func); 1210 kfree(ftrace_mod); 1211 } 1212 1213 static void clear_ftrace_mod_list(struct list_head *head) 1214 { 1215 struct ftrace_mod_load *p, *n; 1216 1217 /* stack tracer isn't supported yet */ 1218 if (!head) 1219 return; 1220 1221 mutex_lock(&ftrace_lock); 1222 list_for_each_entry_safe(p, n, head, list) 1223 free_ftrace_mod(p); 1224 mutex_unlock(&ftrace_lock); 1225 } 1226 1227 static void free_ftrace_hash(struct ftrace_hash *hash) 1228 { 1229 if (!hash || hash == EMPTY_HASH) 1230 return; 1231 ftrace_hash_clear(hash); 1232 kfree(hash->buckets); 1233 kfree(hash); 1234 } 1235 1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1237 { 1238 struct ftrace_hash *hash; 1239 1240 hash = container_of(rcu, struct ftrace_hash, rcu); 1241 free_ftrace_hash(hash); 1242 } 1243 1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1245 { 1246 if (!hash || hash == EMPTY_HASH) 1247 return; 1248 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1249 } 1250 1251 /** 1252 * ftrace_free_filter - remove all filters for an ftrace_ops 1253 * @ops - the ops to remove the filters from 1254 */ 1255 void ftrace_free_filter(struct ftrace_ops *ops) 1256 { 1257 ftrace_ops_init(ops); 1258 free_ftrace_hash(ops->func_hash->filter_hash); 1259 free_ftrace_hash(ops->func_hash->notrace_hash); 1260 } 1261 EXPORT_SYMBOL_GPL(ftrace_free_filter); 1262 1263 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1264 { 1265 struct ftrace_hash *hash; 1266 int size; 1267 1268 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1269 if (!hash) 1270 return NULL; 1271 1272 size = 1 << size_bits; 1273 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1274 1275 if (!hash->buckets) { 1276 kfree(hash); 1277 return NULL; 1278 } 1279 1280 hash->size_bits = size_bits; 1281 1282 return hash; 1283 } 1284 1285 1286 static int ftrace_add_mod(struct trace_array *tr, 1287 const char *func, const char *module, 1288 int enable) 1289 { 1290 struct ftrace_mod_load *ftrace_mod; 1291 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1292 1293 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1294 if (!ftrace_mod) 1295 return -ENOMEM; 1296 1297 INIT_LIST_HEAD(&ftrace_mod->list); 1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1300 ftrace_mod->enable = enable; 1301 1302 if (!ftrace_mod->func || !ftrace_mod->module) 1303 goto out_free; 1304 1305 list_add(&ftrace_mod->list, mod_head); 1306 1307 return 0; 1308 1309 out_free: 1310 free_ftrace_mod(ftrace_mod); 1311 1312 return -ENOMEM; 1313 } 1314 1315 static struct ftrace_hash * 1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1317 { 1318 struct ftrace_func_entry *entry; 1319 struct ftrace_hash *new_hash; 1320 int size; 1321 int ret; 1322 int i; 1323 1324 new_hash = alloc_ftrace_hash(size_bits); 1325 if (!new_hash) 1326 return NULL; 1327 1328 if (hash) 1329 new_hash->flags = hash->flags; 1330 1331 /* Empty hash? */ 1332 if (ftrace_hash_empty(hash)) 1333 return new_hash; 1334 1335 size = 1 << hash->size_bits; 1336 for (i = 0; i < size; i++) { 1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1338 ret = add_hash_entry(new_hash, entry->ip); 1339 if (ret < 0) 1340 goto free_hash; 1341 } 1342 } 1343 1344 FTRACE_WARN_ON(new_hash->count != hash->count); 1345 1346 return new_hash; 1347 1348 free_hash: 1349 free_ftrace_hash(new_hash); 1350 return NULL; 1351 } 1352 1353 static void 1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1355 static void 1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1357 1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1359 struct ftrace_hash *new_hash); 1360 1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1362 { 1363 struct ftrace_func_entry *entry; 1364 struct ftrace_hash *new_hash; 1365 struct hlist_head *hhd; 1366 struct hlist_node *tn; 1367 int bits = 0; 1368 int i; 1369 1370 /* 1371 * Use around half the size (max bit of it), but 1372 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1373 */ 1374 bits = fls(size / 2); 1375 1376 /* Don't allocate too much */ 1377 if (bits > FTRACE_HASH_MAX_BITS) 1378 bits = FTRACE_HASH_MAX_BITS; 1379 1380 new_hash = alloc_ftrace_hash(bits); 1381 if (!new_hash) 1382 return NULL; 1383 1384 new_hash->flags = src->flags; 1385 1386 size = 1 << src->size_bits; 1387 for (i = 0; i < size; i++) { 1388 hhd = &src->buckets[i]; 1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1390 remove_hash_entry(src, entry); 1391 __add_hash_entry(new_hash, entry); 1392 } 1393 } 1394 return new_hash; 1395 } 1396 1397 static struct ftrace_hash * 1398 __ftrace_hash_move(struct ftrace_hash *src) 1399 { 1400 int size = src->count; 1401 1402 /* 1403 * If the new source is empty, just return the empty_hash. 1404 */ 1405 if (ftrace_hash_empty(src)) 1406 return EMPTY_HASH; 1407 1408 return dup_hash(src, size); 1409 } 1410 1411 static int 1412 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1413 struct ftrace_hash **dst, struct ftrace_hash *src) 1414 { 1415 struct ftrace_hash *new_hash; 1416 int ret; 1417 1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1420 return -EINVAL; 1421 1422 new_hash = __ftrace_hash_move(src); 1423 if (!new_hash) 1424 return -ENOMEM; 1425 1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1427 if (enable) { 1428 /* IPMODIFY should be updated only when filter_hash updating */ 1429 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1430 if (ret < 0) { 1431 free_ftrace_hash(new_hash); 1432 return ret; 1433 } 1434 } 1435 1436 /* 1437 * Remove the current set, update the hash and add 1438 * them back. 1439 */ 1440 ftrace_hash_rec_disable_modify(ops, enable); 1441 1442 rcu_assign_pointer(*dst, new_hash); 1443 1444 ftrace_hash_rec_enable_modify(ops, enable); 1445 1446 return 0; 1447 } 1448 1449 static bool hash_contains_ip(unsigned long ip, 1450 struct ftrace_ops_hash *hash) 1451 { 1452 /* 1453 * The function record is a match if it exists in the filter 1454 * hash and not in the notrace hash. Note, an empty hash is 1455 * considered a match for the filter hash, but an empty 1456 * notrace hash is considered not in the notrace hash. 1457 */ 1458 return (ftrace_hash_empty(hash->filter_hash) || 1459 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1460 (ftrace_hash_empty(hash->notrace_hash) || 1461 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1462 } 1463 1464 /* 1465 * Test the hashes for this ops to see if we want to call 1466 * the ops->func or not. 1467 * 1468 * It's a match if the ip is in the ops->filter_hash or 1469 * the filter_hash does not exist or is empty, 1470 * AND 1471 * the ip is not in the ops->notrace_hash. 1472 * 1473 * This needs to be called with preemption disabled as 1474 * the hashes are freed with call_rcu(). 1475 */ 1476 int 1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1478 { 1479 struct ftrace_ops_hash hash; 1480 int ret; 1481 1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1483 /* 1484 * There's a small race when adding ops that the ftrace handler 1485 * that wants regs, may be called without them. We can not 1486 * allow that handler to be called if regs is NULL. 1487 */ 1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1489 return 0; 1490 #endif 1491 1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1494 1495 if (hash_contains_ip(ip, &hash)) 1496 ret = 1; 1497 else 1498 ret = 0; 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * This is a double for. Do not use 'break' to break out of the loop, 1505 * you must use a goto. 1506 */ 1507 #define do_for_each_ftrace_rec(pg, rec) \ 1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1509 int _____i; \ 1510 for (_____i = 0; _____i < pg->index; _____i++) { \ 1511 rec = &pg->records[_____i]; 1512 1513 #define while_for_each_ftrace_rec() \ 1514 } \ 1515 } 1516 1517 1518 static int ftrace_cmp_recs(const void *a, const void *b) 1519 { 1520 const struct dyn_ftrace *key = a; 1521 const struct dyn_ftrace *rec = b; 1522 1523 if (key->flags < rec->ip) 1524 return -1; 1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1526 return 1; 1527 return 0; 1528 } 1529 1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1531 { 1532 struct ftrace_page *pg; 1533 struct dyn_ftrace *rec = NULL; 1534 struct dyn_ftrace key; 1535 1536 key.ip = start; 1537 key.flags = end; /* overload flags, as it is unsigned long */ 1538 1539 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1540 if (end < pg->records[0].ip || 1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1542 continue; 1543 rec = bsearch(&key, pg->records, pg->index, 1544 sizeof(struct dyn_ftrace), 1545 ftrace_cmp_recs); 1546 if (rec) 1547 break; 1548 } 1549 return rec; 1550 } 1551 1552 /** 1553 * ftrace_location_range - return the first address of a traced location 1554 * if it touches the given ip range 1555 * @start: start of range to search. 1556 * @end: end of range to search (inclusive). @end points to the last byte 1557 * to check. 1558 * 1559 * Returns rec->ip if the related ftrace location is a least partly within 1560 * the given address range. That is, the first address of the instruction 1561 * that is either a NOP or call to the function tracer. It checks the ftrace 1562 * internal tables to determine if the address belongs or not. 1563 */ 1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1565 { 1566 struct dyn_ftrace *rec; 1567 1568 rec = lookup_rec(start, end); 1569 if (rec) 1570 return rec->ip; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * ftrace_location - return the ftrace location 1577 * @ip: the instruction pointer to check 1578 * 1579 * If @ip matches the ftrace location, return @ip. 1580 * If @ip matches sym+0, return sym's ftrace location. 1581 * Otherwise, return 0. 1582 */ 1583 unsigned long ftrace_location(unsigned long ip) 1584 { 1585 struct dyn_ftrace *rec; 1586 unsigned long offset; 1587 unsigned long size; 1588 1589 rec = lookup_rec(ip, ip); 1590 if (!rec) { 1591 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1592 goto out; 1593 1594 /* map sym+0 to __fentry__ */ 1595 if (!offset) 1596 rec = lookup_rec(ip, ip + size - 1); 1597 } 1598 1599 if (rec) 1600 return rec->ip; 1601 1602 out: 1603 return 0; 1604 } 1605 1606 /** 1607 * ftrace_text_reserved - return true if range contains an ftrace location 1608 * @start: start of range to search 1609 * @end: end of range to search (inclusive). @end points to the last byte to check. 1610 * 1611 * Returns 1 if @start and @end contains a ftrace location. 1612 * That is, the instruction that is either a NOP or call to 1613 * the function tracer. It checks the ftrace internal tables to 1614 * determine if the address belongs or not. 1615 */ 1616 int ftrace_text_reserved(const void *start, const void *end) 1617 { 1618 unsigned long ret; 1619 1620 ret = ftrace_location_range((unsigned long)start, 1621 (unsigned long)end); 1622 1623 return (int)!!ret; 1624 } 1625 1626 /* Test if ops registered to this rec needs regs */ 1627 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1628 { 1629 struct ftrace_ops *ops; 1630 bool keep_regs = false; 1631 1632 for (ops = ftrace_ops_list; 1633 ops != &ftrace_list_end; ops = ops->next) { 1634 /* pass rec in as regs to have non-NULL val */ 1635 if (ftrace_ops_test(ops, rec->ip, rec)) { 1636 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1637 keep_regs = true; 1638 break; 1639 } 1640 } 1641 } 1642 1643 return keep_regs; 1644 } 1645 1646 static struct ftrace_ops * 1647 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1648 static struct ftrace_ops * 1649 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1650 static struct ftrace_ops * 1651 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1652 1653 static bool skip_record(struct dyn_ftrace *rec) 1654 { 1655 /* 1656 * At boot up, weak functions are set to disable. Function tracing 1657 * can be enabled before they are, and they still need to be disabled now. 1658 * If the record is disabled, still continue if it is marked as already 1659 * enabled (this is needed to keep the accounting working). 1660 */ 1661 return rec->flags & FTRACE_FL_DISABLED && 1662 !(rec->flags & FTRACE_FL_ENABLED); 1663 } 1664 1665 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1666 int filter_hash, 1667 bool inc) 1668 { 1669 struct ftrace_hash *hash; 1670 struct ftrace_hash *other_hash; 1671 struct ftrace_page *pg; 1672 struct dyn_ftrace *rec; 1673 bool update = false; 1674 int count = 0; 1675 int all = false; 1676 1677 /* Only update if the ops has been registered */ 1678 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1679 return false; 1680 1681 /* 1682 * In the filter_hash case: 1683 * If the count is zero, we update all records. 1684 * Otherwise we just update the items in the hash. 1685 * 1686 * In the notrace_hash case: 1687 * We enable the update in the hash. 1688 * As disabling notrace means enabling the tracing, 1689 * and enabling notrace means disabling, the inc variable 1690 * gets inversed. 1691 */ 1692 if (filter_hash) { 1693 hash = ops->func_hash->filter_hash; 1694 other_hash = ops->func_hash->notrace_hash; 1695 if (ftrace_hash_empty(hash)) 1696 all = true; 1697 } else { 1698 inc = !inc; 1699 hash = ops->func_hash->notrace_hash; 1700 other_hash = ops->func_hash->filter_hash; 1701 /* 1702 * If the notrace hash has no items, 1703 * then there's nothing to do. 1704 */ 1705 if (ftrace_hash_empty(hash)) 1706 return false; 1707 } 1708 1709 do_for_each_ftrace_rec(pg, rec) { 1710 int in_other_hash = 0; 1711 int in_hash = 0; 1712 int match = 0; 1713 1714 if (skip_record(rec)) 1715 continue; 1716 1717 if (all) { 1718 /* 1719 * Only the filter_hash affects all records. 1720 * Update if the record is not in the notrace hash. 1721 */ 1722 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1723 match = 1; 1724 } else { 1725 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1726 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1727 1728 /* 1729 * If filter_hash is set, we want to match all functions 1730 * that are in the hash but not in the other hash. 1731 * 1732 * If filter_hash is not set, then we are decrementing. 1733 * That means we match anything that is in the hash 1734 * and also in the other_hash. That is, we need to turn 1735 * off functions in the other hash because they are disabled 1736 * by this hash. 1737 */ 1738 if (filter_hash && in_hash && !in_other_hash) 1739 match = 1; 1740 else if (!filter_hash && in_hash && 1741 (in_other_hash || ftrace_hash_empty(other_hash))) 1742 match = 1; 1743 } 1744 if (!match) 1745 continue; 1746 1747 if (inc) { 1748 rec->flags++; 1749 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1750 return false; 1751 1752 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1753 rec->flags |= FTRACE_FL_DIRECT; 1754 1755 /* 1756 * If there's only a single callback registered to a 1757 * function, and the ops has a trampoline registered 1758 * for it, then we can call it directly. 1759 */ 1760 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1761 rec->flags |= FTRACE_FL_TRAMP; 1762 else 1763 /* 1764 * If we are adding another function callback 1765 * to this function, and the previous had a 1766 * custom trampoline in use, then we need to go 1767 * back to the default trampoline. 1768 */ 1769 rec->flags &= ~FTRACE_FL_TRAMP; 1770 1771 /* 1772 * If any ops wants regs saved for this function 1773 * then all ops will get saved regs. 1774 */ 1775 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1776 rec->flags |= FTRACE_FL_REGS; 1777 } else { 1778 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1779 return false; 1780 rec->flags--; 1781 1782 /* 1783 * Only the internal direct_ops should have the 1784 * DIRECT flag set. Thus, if it is removing a 1785 * function, then that function should no longer 1786 * be direct. 1787 */ 1788 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1789 rec->flags &= ~FTRACE_FL_DIRECT; 1790 1791 /* 1792 * If the rec had REGS enabled and the ops that is 1793 * being removed had REGS set, then see if there is 1794 * still any ops for this record that wants regs. 1795 * If not, we can stop recording them. 1796 */ 1797 if (ftrace_rec_count(rec) > 0 && 1798 rec->flags & FTRACE_FL_REGS && 1799 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1800 if (!test_rec_ops_needs_regs(rec)) 1801 rec->flags &= ~FTRACE_FL_REGS; 1802 } 1803 1804 /* 1805 * The TRAMP needs to be set only if rec count 1806 * is decremented to one, and the ops that is 1807 * left has a trampoline. As TRAMP can only be 1808 * enabled if there is only a single ops attached 1809 * to it. 1810 */ 1811 if (ftrace_rec_count(rec) == 1 && 1812 ftrace_find_tramp_ops_any_other(rec, ops)) 1813 rec->flags |= FTRACE_FL_TRAMP; 1814 else 1815 rec->flags &= ~FTRACE_FL_TRAMP; 1816 1817 /* 1818 * flags will be cleared in ftrace_check_record() 1819 * if rec count is zero. 1820 */ 1821 } 1822 count++; 1823 1824 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1825 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1826 1827 /* Shortcut, if we handled all records, we are done. */ 1828 if (!all && count == hash->count) 1829 return update; 1830 } while_for_each_ftrace_rec(); 1831 1832 return update; 1833 } 1834 1835 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1836 int filter_hash) 1837 { 1838 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1839 } 1840 1841 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1842 int filter_hash) 1843 { 1844 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1845 } 1846 1847 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1848 int filter_hash, int inc) 1849 { 1850 struct ftrace_ops *op; 1851 1852 __ftrace_hash_rec_update(ops, filter_hash, inc); 1853 1854 if (ops->func_hash != &global_ops.local_hash) 1855 return; 1856 1857 /* 1858 * If the ops shares the global_ops hash, then we need to update 1859 * all ops that are enabled and use this hash. 1860 */ 1861 do_for_each_ftrace_op(op, ftrace_ops_list) { 1862 /* Already done */ 1863 if (op == ops) 1864 continue; 1865 if (op->func_hash == &global_ops.local_hash) 1866 __ftrace_hash_rec_update(op, filter_hash, inc); 1867 } while_for_each_ftrace_op(op); 1868 } 1869 1870 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1871 int filter_hash) 1872 { 1873 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1874 } 1875 1876 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1877 int filter_hash) 1878 { 1879 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1880 } 1881 1882 /* 1883 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1884 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1885 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1886 * Note that old_hash and new_hash has below meanings 1887 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1888 * - If the hash is EMPTY_HASH, it hits nothing 1889 * - Anything else hits the recs which match the hash entries. 1890 * 1891 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1892 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1893 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1894 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1895 * the return value to the caller and eventually to the owner of the DIRECT 1896 * ops. 1897 */ 1898 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1899 struct ftrace_hash *old_hash, 1900 struct ftrace_hash *new_hash) 1901 { 1902 struct ftrace_page *pg; 1903 struct dyn_ftrace *rec, *end = NULL; 1904 int in_old, in_new; 1905 bool is_ipmodify, is_direct; 1906 1907 /* Only update if the ops has been registered */ 1908 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1909 return 0; 1910 1911 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1912 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1913 1914 /* neither IPMODIFY nor DIRECT, skip */ 1915 if (!is_ipmodify && !is_direct) 1916 return 0; 1917 1918 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1919 return 0; 1920 1921 /* 1922 * Since the IPMODIFY and DIRECT are very address sensitive 1923 * actions, we do not allow ftrace_ops to set all functions to new 1924 * hash. 1925 */ 1926 if (!new_hash || !old_hash) 1927 return -EINVAL; 1928 1929 /* Update rec->flags */ 1930 do_for_each_ftrace_rec(pg, rec) { 1931 1932 if (rec->flags & FTRACE_FL_DISABLED) 1933 continue; 1934 1935 /* We need to update only differences of filter_hash */ 1936 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1937 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1938 if (in_old == in_new) 1939 continue; 1940 1941 if (in_new) { 1942 if (rec->flags & FTRACE_FL_IPMODIFY) { 1943 int ret; 1944 1945 /* Cannot have two ipmodify on same rec */ 1946 if (is_ipmodify) 1947 goto rollback; 1948 1949 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 1950 1951 /* 1952 * Another ops with IPMODIFY is already 1953 * attached. We are now attaching a direct 1954 * ops. Run SHARE_IPMODIFY_SELF, to check 1955 * whether sharing is supported. 1956 */ 1957 if (!ops->ops_func) 1958 return -EBUSY; 1959 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 1960 if (ret) 1961 return ret; 1962 } else if (is_ipmodify) { 1963 rec->flags |= FTRACE_FL_IPMODIFY; 1964 } 1965 } else if (is_ipmodify) { 1966 rec->flags &= ~FTRACE_FL_IPMODIFY; 1967 } 1968 } while_for_each_ftrace_rec(); 1969 1970 return 0; 1971 1972 rollback: 1973 end = rec; 1974 1975 /* Roll back what we did above */ 1976 do_for_each_ftrace_rec(pg, rec) { 1977 1978 if (rec->flags & FTRACE_FL_DISABLED) 1979 continue; 1980 1981 if (rec == end) 1982 goto err_out; 1983 1984 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1985 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1986 if (in_old == in_new) 1987 continue; 1988 1989 if (in_new) 1990 rec->flags &= ~FTRACE_FL_IPMODIFY; 1991 else 1992 rec->flags |= FTRACE_FL_IPMODIFY; 1993 } while_for_each_ftrace_rec(); 1994 1995 err_out: 1996 return -EBUSY; 1997 } 1998 1999 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 2000 { 2001 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2002 2003 if (ftrace_hash_empty(hash)) 2004 hash = NULL; 2005 2006 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2007 } 2008 2009 /* Disabling always succeeds */ 2010 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2011 { 2012 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2013 2014 if (ftrace_hash_empty(hash)) 2015 hash = NULL; 2016 2017 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2018 } 2019 2020 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2021 struct ftrace_hash *new_hash) 2022 { 2023 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2024 2025 if (ftrace_hash_empty(old_hash)) 2026 old_hash = NULL; 2027 2028 if (ftrace_hash_empty(new_hash)) 2029 new_hash = NULL; 2030 2031 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2032 } 2033 2034 static void print_ip_ins(const char *fmt, const unsigned char *p) 2035 { 2036 char ins[MCOUNT_INSN_SIZE]; 2037 2038 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2039 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2040 return; 2041 } 2042 2043 printk(KERN_CONT "%s", fmt); 2044 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2045 } 2046 2047 enum ftrace_bug_type ftrace_bug_type; 2048 const void *ftrace_expected; 2049 2050 static void print_bug_type(void) 2051 { 2052 switch (ftrace_bug_type) { 2053 case FTRACE_BUG_UNKNOWN: 2054 break; 2055 case FTRACE_BUG_INIT: 2056 pr_info("Initializing ftrace call sites\n"); 2057 break; 2058 case FTRACE_BUG_NOP: 2059 pr_info("Setting ftrace call site to NOP\n"); 2060 break; 2061 case FTRACE_BUG_CALL: 2062 pr_info("Setting ftrace call site to call ftrace function\n"); 2063 break; 2064 case FTRACE_BUG_UPDATE: 2065 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2066 break; 2067 } 2068 } 2069 2070 /** 2071 * ftrace_bug - report and shutdown function tracer 2072 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2073 * @rec: The record that failed 2074 * 2075 * The arch code that enables or disables the function tracing 2076 * can call ftrace_bug() when it has detected a problem in 2077 * modifying the code. @failed should be one of either: 2078 * EFAULT - if the problem happens on reading the @ip address 2079 * EINVAL - if what is read at @ip is not what was expected 2080 * EPERM - if the problem happens on writing to the @ip address 2081 */ 2082 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2083 { 2084 unsigned long ip = rec ? rec->ip : 0; 2085 2086 pr_info("------------[ ftrace bug ]------------\n"); 2087 2088 switch (failed) { 2089 case -EFAULT: 2090 pr_info("ftrace faulted on modifying "); 2091 print_ip_sym(KERN_INFO, ip); 2092 break; 2093 case -EINVAL: 2094 pr_info("ftrace failed to modify "); 2095 print_ip_sym(KERN_INFO, ip); 2096 print_ip_ins(" actual: ", (unsigned char *)ip); 2097 pr_cont("\n"); 2098 if (ftrace_expected) { 2099 print_ip_ins(" expected: ", ftrace_expected); 2100 pr_cont("\n"); 2101 } 2102 break; 2103 case -EPERM: 2104 pr_info("ftrace faulted on writing "); 2105 print_ip_sym(KERN_INFO, ip); 2106 break; 2107 default: 2108 pr_info("ftrace faulted on unknown error "); 2109 print_ip_sym(KERN_INFO, ip); 2110 } 2111 print_bug_type(); 2112 if (rec) { 2113 struct ftrace_ops *ops = NULL; 2114 2115 pr_info("ftrace record flags: %lx\n", rec->flags); 2116 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2117 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2118 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2119 ops = ftrace_find_tramp_ops_any(rec); 2120 if (ops) { 2121 do { 2122 pr_cont("\ttramp: %pS (%pS)", 2123 (void *)ops->trampoline, 2124 (void *)ops->func); 2125 ops = ftrace_find_tramp_ops_next(rec, ops); 2126 } while (ops); 2127 } else 2128 pr_cont("\ttramp: ERROR!"); 2129 2130 } 2131 ip = ftrace_get_addr_curr(rec); 2132 pr_cont("\n expected tramp: %lx\n", ip); 2133 } 2134 2135 FTRACE_WARN_ON_ONCE(1); 2136 } 2137 2138 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2139 { 2140 unsigned long flag = 0UL; 2141 2142 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2143 2144 if (skip_record(rec)) 2145 return FTRACE_UPDATE_IGNORE; 2146 2147 /* 2148 * If we are updating calls: 2149 * 2150 * If the record has a ref count, then we need to enable it 2151 * because someone is using it. 2152 * 2153 * Otherwise we make sure its disabled. 2154 * 2155 * If we are disabling calls, then disable all records that 2156 * are enabled. 2157 */ 2158 if (enable && ftrace_rec_count(rec)) 2159 flag = FTRACE_FL_ENABLED; 2160 2161 /* 2162 * If enabling and the REGS flag does not match the REGS_EN, or 2163 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2164 * this record. Set flags to fail the compare against ENABLED. 2165 * Same for direct calls. 2166 */ 2167 if (flag) { 2168 if (!(rec->flags & FTRACE_FL_REGS) != 2169 !(rec->flags & FTRACE_FL_REGS_EN)) 2170 flag |= FTRACE_FL_REGS; 2171 2172 if (!(rec->flags & FTRACE_FL_TRAMP) != 2173 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2174 flag |= FTRACE_FL_TRAMP; 2175 2176 /* 2177 * Direct calls are special, as count matters. 2178 * We must test the record for direct, if the 2179 * DIRECT and DIRECT_EN do not match, but only 2180 * if the count is 1. That's because, if the 2181 * count is something other than one, we do not 2182 * want the direct enabled (it will be done via the 2183 * direct helper). But if DIRECT_EN is set, and 2184 * the count is not one, we need to clear it. 2185 */ 2186 if (ftrace_rec_count(rec) == 1) { 2187 if (!(rec->flags & FTRACE_FL_DIRECT) != 2188 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2189 flag |= FTRACE_FL_DIRECT; 2190 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2191 flag |= FTRACE_FL_DIRECT; 2192 } 2193 } 2194 2195 /* If the state of this record hasn't changed, then do nothing */ 2196 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2197 return FTRACE_UPDATE_IGNORE; 2198 2199 if (flag) { 2200 /* Save off if rec is being enabled (for return value) */ 2201 flag ^= rec->flags & FTRACE_FL_ENABLED; 2202 2203 if (update) { 2204 rec->flags |= FTRACE_FL_ENABLED; 2205 if (flag & FTRACE_FL_REGS) { 2206 if (rec->flags & FTRACE_FL_REGS) 2207 rec->flags |= FTRACE_FL_REGS_EN; 2208 else 2209 rec->flags &= ~FTRACE_FL_REGS_EN; 2210 } 2211 if (flag & FTRACE_FL_TRAMP) { 2212 if (rec->flags & FTRACE_FL_TRAMP) 2213 rec->flags |= FTRACE_FL_TRAMP_EN; 2214 else 2215 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2216 } 2217 2218 if (flag & FTRACE_FL_DIRECT) { 2219 /* 2220 * If there's only one user (direct_ops helper) 2221 * then we can call the direct function 2222 * directly (no ftrace trampoline). 2223 */ 2224 if (ftrace_rec_count(rec) == 1) { 2225 if (rec->flags & FTRACE_FL_DIRECT) 2226 rec->flags |= FTRACE_FL_DIRECT_EN; 2227 else 2228 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2229 } else { 2230 /* 2231 * Can only call directly if there's 2232 * only one callback to the function. 2233 */ 2234 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2235 } 2236 } 2237 } 2238 2239 /* 2240 * If this record is being updated from a nop, then 2241 * return UPDATE_MAKE_CALL. 2242 * Otherwise, 2243 * return UPDATE_MODIFY_CALL to tell the caller to convert 2244 * from the save regs, to a non-save regs function or 2245 * vice versa, or from a trampoline call. 2246 */ 2247 if (flag & FTRACE_FL_ENABLED) { 2248 ftrace_bug_type = FTRACE_BUG_CALL; 2249 return FTRACE_UPDATE_MAKE_CALL; 2250 } 2251 2252 ftrace_bug_type = FTRACE_BUG_UPDATE; 2253 return FTRACE_UPDATE_MODIFY_CALL; 2254 } 2255 2256 if (update) { 2257 /* If there's no more users, clear all flags */ 2258 if (!ftrace_rec_count(rec)) 2259 rec->flags &= FTRACE_FL_DISABLED; 2260 else 2261 /* 2262 * Just disable the record, but keep the ops TRAMP 2263 * and REGS states. The _EN flags must be disabled though. 2264 */ 2265 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2266 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2267 } 2268 2269 ftrace_bug_type = FTRACE_BUG_NOP; 2270 return FTRACE_UPDATE_MAKE_NOP; 2271 } 2272 2273 /** 2274 * ftrace_update_record - set a record that now is tracing or not 2275 * @rec: the record to update 2276 * @enable: set to true if the record is tracing, false to force disable 2277 * 2278 * The records that represent all functions that can be traced need 2279 * to be updated when tracing has been enabled. 2280 */ 2281 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2282 { 2283 return ftrace_check_record(rec, enable, true); 2284 } 2285 2286 /** 2287 * ftrace_test_record - check if the record has been enabled or not 2288 * @rec: the record to test 2289 * @enable: set to true to check if enabled, false if it is disabled 2290 * 2291 * The arch code may need to test if a record is already set to 2292 * tracing to determine how to modify the function code that it 2293 * represents. 2294 */ 2295 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2296 { 2297 return ftrace_check_record(rec, enable, false); 2298 } 2299 2300 static struct ftrace_ops * 2301 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2302 { 2303 struct ftrace_ops *op; 2304 unsigned long ip = rec->ip; 2305 2306 do_for_each_ftrace_op(op, ftrace_ops_list) { 2307 2308 if (!op->trampoline) 2309 continue; 2310 2311 if (hash_contains_ip(ip, op->func_hash)) 2312 return op; 2313 } while_for_each_ftrace_op(op); 2314 2315 return NULL; 2316 } 2317 2318 static struct ftrace_ops * 2319 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2320 { 2321 struct ftrace_ops *op; 2322 unsigned long ip = rec->ip; 2323 2324 do_for_each_ftrace_op(op, ftrace_ops_list) { 2325 2326 if (op == op_exclude || !op->trampoline) 2327 continue; 2328 2329 if (hash_contains_ip(ip, op->func_hash)) 2330 return op; 2331 } while_for_each_ftrace_op(op); 2332 2333 return NULL; 2334 } 2335 2336 static struct ftrace_ops * 2337 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2338 struct ftrace_ops *op) 2339 { 2340 unsigned long ip = rec->ip; 2341 2342 while_for_each_ftrace_op(op) { 2343 2344 if (!op->trampoline) 2345 continue; 2346 2347 if (hash_contains_ip(ip, op->func_hash)) 2348 return op; 2349 } 2350 2351 return NULL; 2352 } 2353 2354 static struct ftrace_ops * 2355 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2356 { 2357 struct ftrace_ops *op; 2358 unsigned long ip = rec->ip; 2359 2360 /* 2361 * Need to check removed ops first. 2362 * If they are being removed, and this rec has a tramp, 2363 * and this rec is in the ops list, then it would be the 2364 * one with the tramp. 2365 */ 2366 if (removed_ops) { 2367 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2368 return removed_ops; 2369 } 2370 2371 /* 2372 * Need to find the current trampoline for a rec. 2373 * Now, a trampoline is only attached to a rec if there 2374 * was a single 'ops' attached to it. But this can be called 2375 * when we are adding another op to the rec or removing the 2376 * current one. Thus, if the op is being added, we can 2377 * ignore it because it hasn't attached itself to the rec 2378 * yet. 2379 * 2380 * If an ops is being modified (hooking to different functions) 2381 * then we don't care about the new functions that are being 2382 * added, just the old ones (that are probably being removed). 2383 * 2384 * If we are adding an ops to a function that already is using 2385 * a trampoline, it needs to be removed (trampolines are only 2386 * for single ops connected), then an ops that is not being 2387 * modified also needs to be checked. 2388 */ 2389 do_for_each_ftrace_op(op, ftrace_ops_list) { 2390 2391 if (!op->trampoline) 2392 continue; 2393 2394 /* 2395 * If the ops is being added, it hasn't gotten to 2396 * the point to be removed from this tree yet. 2397 */ 2398 if (op->flags & FTRACE_OPS_FL_ADDING) 2399 continue; 2400 2401 2402 /* 2403 * If the ops is being modified and is in the old 2404 * hash, then it is probably being removed from this 2405 * function. 2406 */ 2407 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2408 hash_contains_ip(ip, &op->old_hash)) 2409 return op; 2410 /* 2411 * If the ops is not being added or modified, and it's 2412 * in its normal filter hash, then this must be the one 2413 * we want! 2414 */ 2415 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2416 hash_contains_ip(ip, op->func_hash)) 2417 return op; 2418 2419 } while_for_each_ftrace_op(op); 2420 2421 return NULL; 2422 } 2423 2424 static struct ftrace_ops * 2425 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2426 { 2427 struct ftrace_ops *op; 2428 unsigned long ip = rec->ip; 2429 2430 do_for_each_ftrace_op(op, ftrace_ops_list) { 2431 /* pass rec in as regs to have non-NULL val */ 2432 if (hash_contains_ip(ip, op->func_hash)) 2433 return op; 2434 } while_for_each_ftrace_op(op); 2435 2436 return NULL; 2437 } 2438 2439 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2440 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2441 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2442 static DEFINE_MUTEX(direct_mutex); 2443 int ftrace_direct_func_count; 2444 2445 /* 2446 * Search the direct_functions hash to see if the given instruction pointer 2447 * has a direct caller attached to it. 2448 */ 2449 unsigned long ftrace_find_rec_direct(unsigned long ip) 2450 { 2451 struct ftrace_func_entry *entry; 2452 2453 entry = __ftrace_lookup_ip(direct_functions, ip); 2454 if (!entry) 2455 return 0; 2456 2457 return entry->direct; 2458 } 2459 2460 static struct ftrace_func_entry* 2461 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2462 struct ftrace_hash **free_hash) 2463 { 2464 struct ftrace_func_entry *entry; 2465 2466 if (ftrace_hash_empty(direct_functions) || 2467 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2468 struct ftrace_hash *new_hash; 2469 int size = ftrace_hash_empty(direct_functions) ? 0 : 2470 direct_functions->count + 1; 2471 2472 if (size < 32) 2473 size = 32; 2474 2475 new_hash = dup_hash(direct_functions, size); 2476 if (!new_hash) 2477 return NULL; 2478 2479 *free_hash = direct_functions; 2480 direct_functions = new_hash; 2481 } 2482 2483 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2484 if (!entry) 2485 return NULL; 2486 2487 entry->ip = ip; 2488 entry->direct = addr; 2489 __add_hash_entry(direct_functions, entry); 2490 return entry; 2491 } 2492 2493 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2494 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2495 { 2496 unsigned long addr; 2497 2498 addr = ftrace_find_rec_direct(ip); 2499 if (!addr) 2500 return; 2501 2502 arch_ftrace_set_direct_caller(fregs, addr); 2503 } 2504 2505 struct ftrace_ops direct_ops = { 2506 .func = call_direct_funcs, 2507 .flags = FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2508 | FTRACE_OPS_FL_PERMANENT, 2509 /* 2510 * By declaring the main trampoline as this trampoline 2511 * it will never have one allocated for it. Allocated 2512 * trampolines should not call direct functions. 2513 * The direct_ops should only be called by the builtin 2514 * ftrace_regs_caller trampoline. 2515 */ 2516 .trampoline = FTRACE_REGS_ADDR, 2517 }; 2518 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2519 2520 /** 2521 * ftrace_get_addr_new - Get the call address to set to 2522 * @rec: The ftrace record descriptor 2523 * 2524 * If the record has the FTRACE_FL_REGS set, that means that it 2525 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2526 * is not set, then it wants to convert to the normal callback. 2527 * 2528 * Returns the address of the trampoline to set to 2529 */ 2530 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2531 { 2532 struct ftrace_ops *ops; 2533 unsigned long addr; 2534 2535 if ((rec->flags & FTRACE_FL_DIRECT) && 2536 (ftrace_rec_count(rec) == 1)) { 2537 addr = ftrace_find_rec_direct(rec->ip); 2538 if (addr) 2539 return addr; 2540 WARN_ON_ONCE(1); 2541 } 2542 2543 /* Trampolines take precedence over regs */ 2544 if (rec->flags & FTRACE_FL_TRAMP) { 2545 ops = ftrace_find_tramp_ops_new(rec); 2546 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2547 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2548 (void *)rec->ip, (void *)rec->ip, rec->flags); 2549 /* Ftrace is shutting down, return anything */ 2550 return (unsigned long)FTRACE_ADDR; 2551 } 2552 return ops->trampoline; 2553 } 2554 2555 if (rec->flags & FTRACE_FL_REGS) 2556 return (unsigned long)FTRACE_REGS_ADDR; 2557 else 2558 return (unsigned long)FTRACE_ADDR; 2559 } 2560 2561 /** 2562 * ftrace_get_addr_curr - Get the call address that is already there 2563 * @rec: The ftrace record descriptor 2564 * 2565 * The FTRACE_FL_REGS_EN is set when the record already points to 2566 * a function that saves all the regs. Basically the '_EN' version 2567 * represents the current state of the function. 2568 * 2569 * Returns the address of the trampoline that is currently being called 2570 */ 2571 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2572 { 2573 struct ftrace_ops *ops; 2574 unsigned long addr; 2575 2576 /* Direct calls take precedence over trampolines */ 2577 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2578 addr = ftrace_find_rec_direct(rec->ip); 2579 if (addr) 2580 return addr; 2581 WARN_ON_ONCE(1); 2582 } 2583 2584 /* Trampolines take precedence over regs */ 2585 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2586 ops = ftrace_find_tramp_ops_curr(rec); 2587 if (FTRACE_WARN_ON(!ops)) { 2588 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2589 (void *)rec->ip, (void *)rec->ip); 2590 /* Ftrace is shutting down, return anything */ 2591 return (unsigned long)FTRACE_ADDR; 2592 } 2593 return ops->trampoline; 2594 } 2595 2596 if (rec->flags & FTRACE_FL_REGS_EN) 2597 return (unsigned long)FTRACE_REGS_ADDR; 2598 else 2599 return (unsigned long)FTRACE_ADDR; 2600 } 2601 2602 static int 2603 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2604 { 2605 unsigned long ftrace_old_addr; 2606 unsigned long ftrace_addr; 2607 int ret; 2608 2609 ftrace_addr = ftrace_get_addr_new(rec); 2610 2611 /* This needs to be done before we call ftrace_update_record */ 2612 ftrace_old_addr = ftrace_get_addr_curr(rec); 2613 2614 ret = ftrace_update_record(rec, enable); 2615 2616 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2617 2618 switch (ret) { 2619 case FTRACE_UPDATE_IGNORE: 2620 return 0; 2621 2622 case FTRACE_UPDATE_MAKE_CALL: 2623 ftrace_bug_type = FTRACE_BUG_CALL; 2624 return ftrace_make_call(rec, ftrace_addr); 2625 2626 case FTRACE_UPDATE_MAKE_NOP: 2627 ftrace_bug_type = FTRACE_BUG_NOP; 2628 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2629 2630 case FTRACE_UPDATE_MODIFY_CALL: 2631 ftrace_bug_type = FTRACE_BUG_UPDATE; 2632 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2633 } 2634 2635 return -1; /* unknown ftrace bug */ 2636 } 2637 2638 void __weak ftrace_replace_code(int mod_flags) 2639 { 2640 struct dyn_ftrace *rec; 2641 struct ftrace_page *pg; 2642 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2643 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2644 int failed; 2645 2646 if (unlikely(ftrace_disabled)) 2647 return; 2648 2649 do_for_each_ftrace_rec(pg, rec) { 2650 2651 if (skip_record(rec)) 2652 continue; 2653 2654 failed = __ftrace_replace_code(rec, enable); 2655 if (failed) { 2656 ftrace_bug(failed, rec); 2657 /* Stop processing */ 2658 return; 2659 } 2660 if (schedulable) 2661 cond_resched(); 2662 } while_for_each_ftrace_rec(); 2663 } 2664 2665 struct ftrace_rec_iter { 2666 struct ftrace_page *pg; 2667 int index; 2668 }; 2669 2670 /** 2671 * ftrace_rec_iter_start - start up iterating over traced functions 2672 * 2673 * Returns an iterator handle that is used to iterate over all 2674 * the records that represent address locations where functions 2675 * are traced. 2676 * 2677 * May return NULL if no records are available. 2678 */ 2679 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2680 { 2681 /* 2682 * We only use a single iterator. 2683 * Protected by the ftrace_lock mutex. 2684 */ 2685 static struct ftrace_rec_iter ftrace_rec_iter; 2686 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2687 2688 iter->pg = ftrace_pages_start; 2689 iter->index = 0; 2690 2691 /* Could have empty pages */ 2692 while (iter->pg && !iter->pg->index) 2693 iter->pg = iter->pg->next; 2694 2695 if (!iter->pg) 2696 return NULL; 2697 2698 return iter; 2699 } 2700 2701 /** 2702 * ftrace_rec_iter_next - get the next record to process. 2703 * @iter: The handle to the iterator. 2704 * 2705 * Returns the next iterator after the given iterator @iter. 2706 */ 2707 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2708 { 2709 iter->index++; 2710 2711 if (iter->index >= iter->pg->index) { 2712 iter->pg = iter->pg->next; 2713 iter->index = 0; 2714 2715 /* Could have empty pages */ 2716 while (iter->pg && !iter->pg->index) 2717 iter->pg = iter->pg->next; 2718 } 2719 2720 if (!iter->pg) 2721 return NULL; 2722 2723 return iter; 2724 } 2725 2726 /** 2727 * ftrace_rec_iter_record - get the record at the iterator location 2728 * @iter: The current iterator location 2729 * 2730 * Returns the record that the current @iter is at. 2731 */ 2732 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2733 { 2734 return &iter->pg->records[iter->index]; 2735 } 2736 2737 static int 2738 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2739 { 2740 int ret; 2741 2742 if (unlikely(ftrace_disabled)) 2743 return 0; 2744 2745 ret = ftrace_init_nop(mod, rec); 2746 if (ret) { 2747 ftrace_bug_type = FTRACE_BUG_INIT; 2748 ftrace_bug(ret, rec); 2749 return 0; 2750 } 2751 return 1; 2752 } 2753 2754 /* 2755 * archs can override this function if they must do something 2756 * before the modifying code is performed. 2757 */ 2758 void __weak ftrace_arch_code_modify_prepare(void) 2759 { 2760 } 2761 2762 /* 2763 * archs can override this function if they must do something 2764 * after the modifying code is performed. 2765 */ 2766 void __weak ftrace_arch_code_modify_post_process(void) 2767 { 2768 } 2769 2770 static int update_ftrace_func(ftrace_func_t func) 2771 { 2772 static ftrace_func_t save_func; 2773 2774 /* Avoid updating if it hasn't changed */ 2775 if (func == save_func) 2776 return 0; 2777 2778 save_func = func; 2779 2780 return ftrace_update_ftrace_func(func); 2781 } 2782 2783 void ftrace_modify_all_code(int command) 2784 { 2785 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2786 int mod_flags = 0; 2787 int err = 0; 2788 2789 if (command & FTRACE_MAY_SLEEP) 2790 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2791 2792 /* 2793 * If the ftrace_caller calls a ftrace_ops func directly, 2794 * we need to make sure that it only traces functions it 2795 * expects to trace. When doing the switch of functions, 2796 * we need to update to the ftrace_ops_list_func first 2797 * before the transition between old and new calls are set, 2798 * as the ftrace_ops_list_func will check the ops hashes 2799 * to make sure the ops are having the right functions 2800 * traced. 2801 */ 2802 if (update) { 2803 err = update_ftrace_func(ftrace_ops_list_func); 2804 if (FTRACE_WARN_ON(err)) 2805 return; 2806 } 2807 2808 if (command & FTRACE_UPDATE_CALLS) 2809 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2810 else if (command & FTRACE_DISABLE_CALLS) 2811 ftrace_replace_code(mod_flags); 2812 2813 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2814 function_trace_op = set_function_trace_op; 2815 smp_wmb(); 2816 /* If irqs are disabled, we are in stop machine */ 2817 if (!irqs_disabled()) 2818 smp_call_function(ftrace_sync_ipi, NULL, 1); 2819 err = update_ftrace_func(ftrace_trace_function); 2820 if (FTRACE_WARN_ON(err)) 2821 return; 2822 } 2823 2824 if (command & FTRACE_START_FUNC_RET) 2825 err = ftrace_enable_ftrace_graph_caller(); 2826 else if (command & FTRACE_STOP_FUNC_RET) 2827 err = ftrace_disable_ftrace_graph_caller(); 2828 FTRACE_WARN_ON(err); 2829 } 2830 2831 static int __ftrace_modify_code(void *data) 2832 { 2833 int *command = data; 2834 2835 ftrace_modify_all_code(*command); 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * ftrace_run_stop_machine - go back to the stop machine method 2842 * @command: The command to tell ftrace what to do 2843 * 2844 * If an arch needs to fall back to the stop machine method, the 2845 * it can call this function. 2846 */ 2847 void ftrace_run_stop_machine(int command) 2848 { 2849 stop_machine(__ftrace_modify_code, &command, NULL); 2850 } 2851 2852 /** 2853 * arch_ftrace_update_code - modify the code to trace or not trace 2854 * @command: The command that needs to be done 2855 * 2856 * Archs can override this function if it does not need to 2857 * run stop_machine() to modify code. 2858 */ 2859 void __weak arch_ftrace_update_code(int command) 2860 { 2861 ftrace_run_stop_machine(command); 2862 } 2863 2864 static void ftrace_run_update_code(int command) 2865 { 2866 ftrace_arch_code_modify_prepare(); 2867 2868 /* 2869 * By default we use stop_machine() to modify the code. 2870 * But archs can do what ever they want as long as it 2871 * is safe. The stop_machine() is the safest, but also 2872 * produces the most overhead. 2873 */ 2874 arch_ftrace_update_code(command); 2875 2876 ftrace_arch_code_modify_post_process(); 2877 } 2878 2879 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2880 struct ftrace_ops_hash *old_hash) 2881 { 2882 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2883 ops->old_hash.filter_hash = old_hash->filter_hash; 2884 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2885 ftrace_run_update_code(command); 2886 ops->old_hash.filter_hash = NULL; 2887 ops->old_hash.notrace_hash = NULL; 2888 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2889 } 2890 2891 static ftrace_func_t saved_ftrace_func; 2892 static int ftrace_start_up; 2893 2894 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2895 { 2896 } 2897 2898 /* List of trace_ops that have allocated trampolines */ 2899 static LIST_HEAD(ftrace_ops_trampoline_list); 2900 2901 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2902 { 2903 lockdep_assert_held(&ftrace_lock); 2904 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2905 } 2906 2907 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2908 { 2909 lockdep_assert_held(&ftrace_lock); 2910 list_del_rcu(&ops->list); 2911 synchronize_rcu(); 2912 } 2913 2914 /* 2915 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2916 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2917 * not a module. 2918 */ 2919 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2920 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2921 2922 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2923 { 2924 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2925 ops->trampoline) { 2926 /* 2927 * Record the text poke event before the ksymbol unregister 2928 * event. 2929 */ 2930 perf_event_text_poke((void *)ops->trampoline, 2931 (void *)ops->trampoline, 2932 ops->trampoline_size, NULL, 0); 2933 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2934 ops->trampoline, ops->trampoline_size, 2935 true, FTRACE_TRAMPOLINE_SYM); 2936 /* Remove from kallsyms after the perf events */ 2937 ftrace_remove_trampoline_from_kallsyms(ops); 2938 } 2939 2940 arch_ftrace_trampoline_free(ops); 2941 } 2942 2943 static void ftrace_startup_enable(int command) 2944 { 2945 if (saved_ftrace_func != ftrace_trace_function) { 2946 saved_ftrace_func = ftrace_trace_function; 2947 command |= FTRACE_UPDATE_TRACE_FUNC; 2948 } 2949 2950 if (!command || !ftrace_enabled) 2951 return; 2952 2953 ftrace_run_update_code(command); 2954 } 2955 2956 static void ftrace_startup_all(int command) 2957 { 2958 update_all_ops = true; 2959 ftrace_startup_enable(command); 2960 update_all_ops = false; 2961 } 2962 2963 int ftrace_startup(struct ftrace_ops *ops, int command) 2964 { 2965 int ret; 2966 2967 if (unlikely(ftrace_disabled)) 2968 return -ENODEV; 2969 2970 ret = __register_ftrace_function(ops); 2971 if (ret) 2972 return ret; 2973 2974 ftrace_start_up++; 2975 2976 /* 2977 * Note that ftrace probes uses this to start up 2978 * and modify functions it will probe. But we still 2979 * set the ADDING flag for modification, as probes 2980 * do not have trampolines. If they add them in the 2981 * future, then the probes will need to distinguish 2982 * between adding and updating probes. 2983 */ 2984 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2985 2986 ret = ftrace_hash_ipmodify_enable(ops); 2987 if (ret < 0) { 2988 /* Rollback registration process */ 2989 __unregister_ftrace_function(ops); 2990 ftrace_start_up--; 2991 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2992 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2993 ftrace_trampoline_free(ops); 2994 return ret; 2995 } 2996 2997 if (ftrace_hash_rec_enable(ops, 1)) 2998 command |= FTRACE_UPDATE_CALLS; 2999 3000 ftrace_startup_enable(command); 3001 3002 /* 3003 * If ftrace is in an undefined state, we just remove ops from list 3004 * to prevent the NULL pointer, instead of totally rolling it back and 3005 * free trampoline, because those actions could cause further damage. 3006 */ 3007 if (unlikely(ftrace_disabled)) { 3008 __unregister_ftrace_function(ops); 3009 return -ENODEV; 3010 } 3011 3012 ops->flags &= ~FTRACE_OPS_FL_ADDING; 3013 3014 return 0; 3015 } 3016 3017 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3018 { 3019 int ret; 3020 3021 if (unlikely(ftrace_disabled)) 3022 return -ENODEV; 3023 3024 ret = __unregister_ftrace_function(ops); 3025 if (ret) 3026 return ret; 3027 3028 ftrace_start_up--; 3029 /* 3030 * Just warn in case of unbalance, no need to kill ftrace, it's not 3031 * critical but the ftrace_call callers may be never nopped again after 3032 * further ftrace uses. 3033 */ 3034 WARN_ON_ONCE(ftrace_start_up < 0); 3035 3036 /* Disabling ipmodify never fails */ 3037 ftrace_hash_ipmodify_disable(ops); 3038 3039 if (ftrace_hash_rec_disable(ops, 1)) 3040 command |= FTRACE_UPDATE_CALLS; 3041 3042 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3043 3044 if (saved_ftrace_func != ftrace_trace_function) { 3045 saved_ftrace_func = ftrace_trace_function; 3046 command |= FTRACE_UPDATE_TRACE_FUNC; 3047 } 3048 3049 if (!command || !ftrace_enabled) 3050 goto out; 3051 3052 /* 3053 * If the ops uses a trampoline, then it needs to be 3054 * tested first on update. 3055 */ 3056 ops->flags |= FTRACE_OPS_FL_REMOVING; 3057 removed_ops = ops; 3058 3059 /* The trampoline logic checks the old hashes */ 3060 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3061 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3062 3063 ftrace_run_update_code(command); 3064 3065 /* 3066 * If there's no more ops registered with ftrace, run a 3067 * sanity check to make sure all rec flags are cleared. 3068 */ 3069 if (rcu_dereference_protected(ftrace_ops_list, 3070 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3071 struct ftrace_page *pg; 3072 struct dyn_ftrace *rec; 3073 3074 do_for_each_ftrace_rec(pg, rec) { 3075 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3076 pr_warn(" %pS flags:%lx\n", 3077 (void *)rec->ip, rec->flags); 3078 } while_for_each_ftrace_rec(); 3079 } 3080 3081 ops->old_hash.filter_hash = NULL; 3082 ops->old_hash.notrace_hash = NULL; 3083 3084 removed_ops = NULL; 3085 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3086 3087 out: 3088 /* 3089 * Dynamic ops may be freed, we must make sure that all 3090 * callers are done before leaving this function. 3091 */ 3092 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3093 /* 3094 * We need to do a hard force of sched synchronization. 3095 * This is because we use preempt_disable() to do RCU, but 3096 * the function tracers can be called where RCU is not watching 3097 * (like before user_exit()). We can not rely on the RCU 3098 * infrastructure to do the synchronization, thus we must do it 3099 * ourselves. 3100 */ 3101 synchronize_rcu_tasks_rude(); 3102 3103 /* 3104 * When the kernel is preemptive, tasks can be preempted 3105 * while on a ftrace trampoline. Just scheduling a task on 3106 * a CPU is not good enough to flush them. Calling 3107 * synchronize_rcu_tasks() will wait for those tasks to 3108 * execute and either schedule voluntarily or enter user space. 3109 */ 3110 if (IS_ENABLED(CONFIG_PREEMPTION)) 3111 synchronize_rcu_tasks(); 3112 3113 ftrace_trampoline_free(ops); 3114 } 3115 3116 return 0; 3117 } 3118 3119 static u64 ftrace_update_time; 3120 unsigned long ftrace_update_tot_cnt; 3121 unsigned long ftrace_number_of_pages; 3122 unsigned long ftrace_number_of_groups; 3123 3124 static inline int ops_traces_mod(struct ftrace_ops *ops) 3125 { 3126 /* 3127 * Filter_hash being empty will default to trace module. 3128 * But notrace hash requires a test of individual module functions. 3129 */ 3130 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3131 ftrace_hash_empty(ops->func_hash->notrace_hash); 3132 } 3133 3134 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3135 { 3136 bool init_nop = ftrace_need_init_nop(); 3137 struct ftrace_page *pg; 3138 struct dyn_ftrace *p; 3139 u64 start, stop; 3140 unsigned long update_cnt = 0; 3141 unsigned long rec_flags = 0; 3142 int i; 3143 3144 start = ftrace_now(raw_smp_processor_id()); 3145 3146 /* 3147 * When a module is loaded, this function is called to convert 3148 * the calls to mcount in its text to nops, and also to create 3149 * an entry in the ftrace data. Now, if ftrace is activated 3150 * after this call, but before the module sets its text to 3151 * read-only, the modification of enabling ftrace can fail if 3152 * the read-only is done while ftrace is converting the calls. 3153 * To prevent this, the module's records are set as disabled 3154 * and will be enabled after the call to set the module's text 3155 * to read-only. 3156 */ 3157 if (mod) 3158 rec_flags |= FTRACE_FL_DISABLED; 3159 3160 for (pg = new_pgs; pg; pg = pg->next) { 3161 3162 for (i = 0; i < pg->index; i++) { 3163 3164 /* If something went wrong, bail without enabling anything */ 3165 if (unlikely(ftrace_disabled)) 3166 return -1; 3167 3168 p = &pg->records[i]; 3169 p->flags = rec_flags; 3170 3171 /* 3172 * Do the initial record conversion from mcount jump 3173 * to the NOP instructions. 3174 */ 3175 if (init_nop && !ftrace_nop_initialize(mod, p)) 3176 break; 3177 3178 update_cnt++; 3179 } 3180 } 3181 3182 stop = ftrace_now(raw_smp_processor_id()); 3183 ftrace_update_time = stop - start; 3184 ftrace_update_tot_cnt += update_cnt; 3185 3186 return 0; 3187 } 3188 3189 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3190 { 3191 int order; 3192 int pages; 3193 int cnt; 3194 3195 if (WARN_ON(!count)) 3196 return -EINVAL; 3197 3198 /* We want to fill as much as possible, with no empty pages */ 3199 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3200 order = fls(pages) - 1; 3201 3202 again: 3203 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3204 3205 if (!pg->records) { 3206 /* if we can't allocate this size, try something smaller */ 3207 if (!order) 3208 return -ENOMEM; 3209 order--; 3210 goto again; 3211 } 3212 3213 ftrace_number_of_pages += 1 << order; 3214 ftrace_number_of_groups++; 3215 3216 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3217 pg->order = order; 3218 3219 if (cnt > count) 3220 cnt = count; 3221 3222 return cnt; 3223 } 3224 3225 static struct ftrace_page * 3226 ftrace_allocate_pages(unsigned long num_to_init) 3227 { 3228 struct ftrace_page *start_pg; 3229 struct ftrace_page *pg; 3230 int cnt; 3231 3232 if (!num_to_init) 3233 return NULL; 3234 3235 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3236 if (!pg) 3237 return NULL; 3238 3239 /* 3240 * Try to allocate as much as possible in one continues 3241 * location that fills in all of the space. We want to 3242 * waste as little space as possible. 3243 */ 3244 for (;;) { 3245 cnt = ftrace_allocate_records(pg, num_to_init); 3246 if (cnt < 0) 3247 goto free_pages; 3248 3249 num_to_init -= cnt; 3250 if (!num_to_init) 3251 break; 3252 3253 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3254 if (!pg->next) 3255 goto free_pages; 3256 3257 pg = pg->next; 3258 } 3259 3260 return start_pg; 3261 3262 free_pages: 3263 pg = start_pg; 3264 while (pg) { 3265 if (pg->records) { 3266 free_pages((unsigned long)pg->records, pg->order); 3267 ftrace_number_of_pages -= 1 << pg->order; 3268 } 3269 start_pg = pg->next; 3270 kfree(pg); 3271 pg = start_pg; 3272 ftrace_number_of_groups--; 3273 } 3274 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3275 return NULL; 3276 } 3277 3278 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3279 3280 struct ftrace_iterator { 3281 loff_t pos; 3282 loff_t func_pos; 3283 loff_t mod_pos; 3284 struct ftrace_page *pg; 3285 struct dyn_ftrace *func; 3286 struct ftrace_func_probe *probe; 3287 struct ftrace_func_entry *probe_entry; 3288 struct trace_parser parser; 3289 struct ftrace_hash *hash; 3290 struct ftrace_ops *ops; 3291 struct trace_array *tr; 3292 struct list_head *mod_list; 3293 int pidx; 3294 int idx; 3295 unsigned flags; 3296 }; 3297 3298 static void * 3299 t_probe_next(struct seq_file *m, loff_t *pos) 3300 { 3301 struct ftrace_iterator *iter = m->private; 3302 struct trace_array *tr = iter->ops->private; 3303 struct list_head *func_probes; 3304 struct ftrace_hash *hash; 3305 struct list_head *next; 3306 struct hlist_node *hnd = NULL; 3307 struct hlist_head *hhd; 3308 int size; 3309 3310 (*pos)++; 3311 iter->pos = *pos; 3312 3313 if (!tr) 3314 return NULL; 3315 3316 func_probes = &tr->func_probes; 3317 if (list_empty(func_probes)) 3318 return NULL; 3319 3320 if (!iter->probe) { 3321 next = func_probes->next; 3322 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3323 } 3324 3325 if (iter->probe_entry) 3326 hnd = &iter->probe_entry->hlist; 3327 3328 hash = iter->probe->ops.func_hash->filter_hash; 3329 3330 /* 3331 * A probe being registered may temporarily have an empty hash 3332 * and it's at the end of the func_probes list. 3333 */ 3334 if (!hash || hash == EMPTY_HASH) 3335 return NULL; 3336 3337 size = 1 << hash->size_bits; 3338 3339 retry: 3340 if (iter->pidx >= size) { 3341 if (iter->probe->list.next == func_probes) 3342 return NULL; 3343 next = iter->probe->list.next; 3344 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3345 hash = iter->probe->ops.func_hash->filter_hash; 3346 size = 1 << hash->size_bits; 3347 iter->pidx = 0; 3348 } 3349 3350 hhd = &hash->buckets[iter->pidx]; 3351 3352 if (hlist_empty(hhd)) { 3353 iter->pidx++; 3354 hnd = NULL; 3355 goto retry; 3356 } 3357 3358 if (!hnd) 3359 hnd = hhd->first; 3360 else { 3361 hnd = hnd->next; 3362 if (!hnd) { 3363 iter->pidx++; 3364 goto retry; 3365 } 3366 } 3367 3368 if (WARN_ON_ONCE(!hnd)) 3369 return NULL; 3370 3371 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3372 3373 return iter; 3374 } 3375 3376 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3377 { 3378 struct ftrace_iterator *iter = m->private; 3379 void *p = NULL; 3380 loff_t l; 3381 3382 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3383 return NULL; 3384 3385 if (iter->mod_pos > *pos) 3386 return NULL; 3387 3388 iter->probe = NULL; 3389 iter->probe_entry = NULL; 3390 iter->pidx = 0; 3391 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3392 p = t_probe_next(m, &l); 3393 if (!p) 3394 break; 3395 } 3396 if (!p) 3397 return NULL; 3398 3399 /* Only set this if we have an item */ 3400 iter->flags |= FTRACE_ITER_PROBE; 3401 3402 return iter; 3403 } 3404 3405 static int 3406 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3407 { 3408 struct ftrace_func_entry *probe_entry; 3409 struct ftrace_probe_ops *probe_ops; 3410 struct ftrace_func_probe *probe; 3411 3412 probe = iter->probe; 3413 probe_entry = iter->probe_entry; 3414 3415 if (WARN_ON_ONCE(!probe || !probe_entry)) 3416 return -EIO; 3417 3418 probe_ops = probe->probe_ops; 3419 3420 if (probe_ops->print) 3421 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3422 3423 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3424 (void *)probe_ops->func); 3425 3426 return 0; 3427 } 3428 3429 static void * 3430 t_mod_next(struct seq_file *m, loff_t *pos) 3431 { 3432 struct ftrace_iterator *iter = m->private; 3433 struct trace_array *tr = iter->tr; 3434 3435 (*pos)++; 3436 iter->pos = *pos; 3437 3438 iter->mod_list = iter->mod_list->next; 3439 3440 if (iter->mod_list == &tr->mod_trace || 3441 iter->mod_list == &tr->mod_notrace) { 3442 iter->flags &= ~FTRACE_ITER_MOD; 3443 return NULL; 3444 } 3445 3446 iter->mod_pos = *pos; 3447 3448 return iter; 3449 } 3450 3451 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3452 { 3453 struct ftrace_iterator *iter = m->private; 3454 void *p = NULL; 3455 loff_t l; 3456 3457 if (iter->func_pos > *pos) 3458 return NULL; 3459 3460 iter->mod_pos = iter->func_pos; 3461 3462 /* probes are only available if tr is set */ 3463 if (!iter->tr) 3464 return NULL; 3465 3466 for (l = 0; l <= (*pos - iter->func_pos); ) { 3467 p = t_mod_next(m, &l); 3468 if (!p) 3469 break; 3470 } 3471 if (!p) { 3472 iter->flags &= ~FTRACE_ITER_MOD; 3473 return t_probe_start(m, pos); 3474 } 3475 3476 /* Only set this if we have an item */ 3477 iter->flags |= FTRACE_ITER_MOD; 3478 3479 return iter; 3480 } 3481 3482 static int 3483 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3484 { 3485 struct ftrace_mod_load *ftrace_mod; 3486 struct trace_array *tr = iter->tr; 3487 3488 if (WARN_ON_ONCE(!iter->mod_list) || 3489 iter->mod_list == &tr->mod_trace || 3490 iter->mod_list == &tr->mod_notrace) 3491 return -EIO; 3492 3493 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3494 3495 if (ftrace_mod->func) 3496 seq_printf(m, "%s", ftrace_mod->func); 3497 else 3498 seq_putc(m, '*'); 3499 3500 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3501 3502 return 0; 3503 } 3504 3505 static void * 3506 t_func_next(struct seq_file *m, loff_t *pos) 3507 { 3508 struct ftrace_iterator *iter = m->private; 3509 struct dyn_ftrace *rec = NULL; 3510 3511 (*pos)++; 3512 3513 retry: 3514 if (iter->idx >= iter->pg->index) { 3515 if (iter->pg->next) { 3516 iter->pg = iter->pg->next; 3517 iter->idx = 0; 3518 goto retry; 3519 } 3520 } else { 3521 rec = &iter->pg->records[iter->idx++]; 3522 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3523 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3524 3525 ((iter->flags & FTRACE_ITER_ENABLED) && 3526 !(rec->flags & FTRACE_FL_ENABLED))) { 3527 3528 rec = NULL; 3529 goto retry; 3530 } 3531 } 3532 3533 if (!rec) 3534 return NULL; 3535 3536 iter->pos = iter->func_pos = *pos; 3537 iter->func = rec; 3538 3539 return iter; 3540 } 3541 3542 static void * 3543 t_next(struct seq_file *m, void *v, loff_t *pos) 3544 { 3545 struct ftrace_iterator *iter = m->private; 3546 loff_t l = *pos; /* t_probe_start() must use original pos */ 3547 void *ret; 3548 3549 if (unlikely(ftrace_disabled)) 3550 return NULL; 3551 3552 if (iter->flags & FTRACE_ITER_PROBE) 3553 return t_probe_next(m, pos); 3554 3555 if (iter->flags & FTRACE_ITER_MOD) 3556 return t_mod_next(m, pos); 3557 3558 if (iter->flags & FTRACE_ITER_PRINTALL) { 3559 /* next must increment pos, and t_probe_start does not */ 3560 (*pos)++; 3561 return t_mod_start(m, &l); 3562 } 3563 3564 ret = t_func_next(m, pos); 3565 3566 if (!ret) 3567 return t_mod_start(m, &l); 3568 3569 return ret; 3570 } 3571 3572 static void reset_iter_read(struct ftrace_iterator *iter) 3573 { 3574 iter->pos = 0; 3575 iter->func_pos = 0; 3576 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3577 } 3578 3579 static void *t_start(struct seq_file *m, loff_t *pos) 3580 { 3581 struct ftrace_iterator *iter = m->private; 3582 void *p = NULL; 3583 loff_t l; 3584 3585 mutex_lock(&ftrace_lock); 3586 3587 if (unlikely(ftrace_disabled)) 3588 return NULL; 3589 3590 /* 3591 * If an lseek was done, then reset and start from beginning. 3592 */ 3593 if (*pos < iter->pos) 3594 reset_iter_read(iter); 3595 3596 /* 3597 * For set_ftrace_filter reading, if we have the filter 3598 * off, we can short cut and just print out that all 3599 * functions are enabled. 3600 */ 3601 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3602 ftrace_hash_empty(iter->hash)) { 3603 iter->func_pos = 1; /* Account for the message */ 3604 if (*pos > 0) 3605 return t_mod_start(m, pos); 3606 iter->flags |= FTRACE_ITER_PRINTALL; 3607 /* reset in case of seek/pread */ 3608 iter->flags &= ~FTRACE_ITER_PROBE; 3609 return iter; 3610 } 3611 3612 if (iter->flags & FTRACE_ITER_MOD) 3613 return t_mod_start(m, pos); 3614 3615 /* 3616 * Unfortunately, we need to restart at ftrace_pages_start 3617 * every time we let go of the ftrace_mutex. This is because 3618 * those pointers can change without the lock. 3619 */ 3620 iter->pg = ftrace_pages_start; 3621 iter->idx = 0; 3622 for (l = 0; l <= *pos; ) { 3623 p = t_func_next(m, &l); 3624 if (!p) 3625 break; 3626 } 3627 3628 if (!p) 3629 return t_mod_start(m, pos); 3630 3631 return iter; 3632 } 3633 3634 static void t_stop(struct seq_file *m, void *p) 3635 { 3636 mutex_unlock(&ftrace_lock); 3637 } 3638 3639 void * __weak 3640 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3641 { 3642 return NULL; 3643 } 3644 3645 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3646 struct dyn_ftrace *rec) 3647 { 3648 void *ptr; 3649 3650 ptr = arch_ftrace_trampoline_func(ops, rec); 3651 if (ptr) 3652 seq_printf(m, " ->%pS", ptr); 3653 } 3654 3655 #ifdef FTRACE_MCOUNT_MAX_OFFSET 3656 /* 3657 * Weak functions can still have an mcount/fentry that is saved in 3658 * the __mcount_loc section. These can be detected by having a 3659 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 3660 * symbol found by kallsyms is not the function that the mcount/fentry 3661 * is part of. The offset is much greater in these cases. 3662 * 3663 * Test the record to make sure that the ip points to a valid kallsyms 3664 * and if not, mark it disabled. 3665 */ 3666 static int test_for_valid_rec(struct dyn_ftrace *rec) 3667 { 3668 char str[KSYM_SYMBOL_LEN]; 3669 unsigned long offset; 3670 const char *ret; 3671 3672 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 3673 3674 /* Weak functions can cause invalid addresses */ 3675 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3676 rec->flags |= FTRACE_FL_DISABLED; 3677 return 0; 3678 } 3679 return 1; 3680 } 3681 3682 static struct workqueue_struct *ftrace_check_wq __initdata; 3683 static struct work_struct ftrace_check_work __initdata; 3684 3685 /* 3686 * Scan all the mcount/fentry entries to make sure they are valid. 3687 */ 3688 static __init void ftrace_check_work_func(struct work_struct *work) 3689 { 3690 struct ftrace_page *pg; 3691 struct dyn_ftrace *rec; 3692 3693 mutex_lock(&ftrace_lock); 3694 do_for_each_ftrace_rec(pg, rec) { 3695 test_for_valid_rec(rec); 3696 } while_for_each_ftrace_rec(); 3697 mutex_unlock(&ftrace_lock); 3698 } 3699 3700 static int __init ftrace_check_for_weak_functions(void) 3701 { 3702 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 3703 3704 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 3705 3706 queue_work(ftrace_check_wq, &ftrace_check_work); 3707 return 0; 3708 } 3709 3710 static int __init ftrace_check_sync(void) 3711 { 3712 /* Make sure the ftrace_check updates are finished */ 3713 if (ftrace_check_wq) 3714 destroy_workqueue(ftrace_check_wq); 3715 return 0; 3716 } 3717 3718 late_initcall_sync(ftrace_check_sync); 3719 subsys_initcall(ftrace_check_for_weak_functions); 3720 3721 static int print_rec(struct seq_file *m, unsigned long ip) 3722 { 3723 unsigned long offset; 3724 char str[KSYM_SYMBOL_LEN]; 3725 char *modname; 3726 const char *ret; 3727 3728 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 3729 /* Weak functions can cause invalid addresses */ 3730 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3731 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 3732 FTRACE_INVALID_FUNCTION, offset); 3733 ret = NULL; 3734 } 3735 3736 seq_puts(m, str); 3737 if (modname) 3738 seq_printf(m, " [%s]", modname); 3739 return ret == NULL ? -1 : 0; 3740 } 3741 #else 3742 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 3743 { 3744 return 1; 3745 } 3746 3747 static inline int print_rec(struct seq_file *m, unsigned long ip) 3748 { 3749 seq_printf(m, "%ps", (void *)ip); 3750 return 0; 3751 } 3752 #endif 3753 3754 static int t_show(struct seq_file *m, void *v) 3755 { 3756 struct ftrace_iterator *iter = m->private; 3757 struct dyn_ftrace *rec; 3758 3759 if (iter->flags & FTRACE_ITER_PROBE) 3760 return t_probe_show(m, iter); 3761 3762 if (iter->flags & FTRACE_ITER_MOD) 3763 return t_mod_show(m, iter); 3764 3765 if (iter->flags & FTRACE_ITER_PRINTALL) { 3766 if (iter->flags & FTRACE_ITER_NOTRACE) 3767 seq_puts(m, "#### no functions disabled ####\n"); 3768 else 3769 seq_puts(m, "#### all functions enabled ####\n"); 3770 return 0; 3771 } 3772 3773 rec = iter->func; 3774 3775 if (!rec) 3776 return 0; 3777 3778 if (print_rec(m, rec->ip)) { 3779 /* This should only happen when a rec is disabled */ 3780 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 3781 seq_putc(m, '\n'); 3782 return 0; 3783 } 3784 3785 if (iter->flags & FTRACE_ITER_ENABLED) { 3786 struct ftrace_ops *ops; 3787 3788 seq_printf(m, " (%ld)%s%s%s", 3789 ftrace_rec_count(rec), 3790 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3791 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3792 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3793 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3794 ops = ftrace_find_tramp_ops_any(rec); 3795 if (ops) { 3796 do { 3797 seq_printf(m, "\ttramp: %pS (%pS)", 3798 (void *)ops->trampoline, 3799 (void *)ops->func); 3800 add_trampoline_func(m, ops, rec); 3801 ops = ftrace_find_tramp_ops_next(rec, ops); 3802 } while (ops); 3803 } else 3804 seq_puts(m, "\ttramp: ERROR!"); 3805 } else { 3806 add_trampoline_func(m, NULL, rec); 3807 } 3808 if (rec->flags & FTRACE_FL_DIRECT) { 3809 unsigned long direct; 3810 3811 direct = ftrace_find_rec_direct(rec->ip); 3812 if (direct) 3813 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3814 } 3815 } 3816 3817 seq_putc(m, '\n'); 3818 3819 return 0; 3820 } 3821 3822 static const struct seq_operations show_ftrace_seq_ops = { 3823 .start = t_start, 3824 .next = t_next, 3825 .stop = t_stop, 3826 .show = t_show, 3827 }; 3828 3829 static int 3830 ftrace_avail_open(struct inode *inode, struct file *file) 3831 { 3832 struct ftrace_iterator *iter; 3833 int ret; 3834 3835 ret = security_locked_down(LOCKDOWN_TRACEFS); 3836 if (ret) 3837 return ret; 3838 3839 if (unlikely(ftrace_disabled)) 3840 return -ENODEV; 3841 3842 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3843 if (!iter) 3844 return -ENOMEM; 3845 3846 iter->pg = ftrace_pages_start; 3847 iter->ops = &global_ops; 3848 3849 return 0; 3850 } 3851 3852 static int 3853 ftrace_enabled_open(struct inode *inode, struct file *file) 3854 { 3855 struct ftrace_iterator *iter; 3856 3857 /* 3858 * This shows us what functions are currently being 3859 * traced and by what. Not sure if we want lockdown 3860 * to hide such critical information for an admin. 3861 * Although, perhaps it can show information we don't 3862 * want people to see, but if something is tracing 3863 * something, we probably want to know about it. 3864 */ 3865 3866 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3867 if (!iter) 3868 return -ENOMEM; 3869 3870 iter->pg = ftrace_pages_start; 3871 iter->flags = FTRACE_ITER_ENABLED; 3872 iter->ops = &global_ops; 3873 3874 return 0; 3875 } 3876 3877 /** 3878 * ftrace_regex_open - initialize function tracer filter files 3879 * @ops: The ftrace_ops that hold the hash filters 3880 * @flag: The type of filter to process 3881 * @inode: The inode, usually passed in to your open routine 3882 * @file: The file, usually passed in to your open routine 3883 * 3884 * ftrace_regex_open() initializes the filter files for the 3885 * @ops. Depending on @flag it may process the filter hash or 3886 * the notrace hash of @ops. With this called from the open 3887 * routine, you can use ftrace_filter_write() for the write 3888 * routine if @flag has FTRACE_ITER_FILTER set, or 3889 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3890 * tracing_lseek() should be used as the lseek routine, and 3891 * release must call ftrace_regex_release(). 3892 */ 3893 int 3894 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3895 struct inode *inode, struct file *file) 3896 { 3897 struct ftrace_iterator *iter; 3898 struct ftrace_hash *hash; 3899 struct list_head *mod_head; 3900 struct trace_array *tr = ops->private; 3901 int ret = -ENOMEM; 3902 3903 ftrace_ops_init(ops); 3904 3905 if (unlikely(ftrace_disabled)) 3906 return -ENODEV; 3907 3908 if (tracing_check_open_get_tr(tr)) 3909 return -ENODEV; 3910 3911 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3912 if (!iter) 3913 goto out; 3914 3915 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3916 goto out; 3917 3918 iter->ops = ops; 3919 iter->flags = flag; 3920 iter->tr = tr; 3921 3922 mutex_lock(&ops->func_hash->regex_lock); 3923 3924 if (flag & FTRACE_ITER_NOTRACE) { 3925 hash = ops->func_hash->notrace_hash; 3926 mod_head = tr ? &tr->mod_notrace : NULL; 3927 } else { 3928 hash = ops->func_hash->filter_hash; 3929 mod_head = tr ? &tr->mod_trace : NULL; 3930 } 3931 3932 iter->mod_list = mod_head; 3933 3934 if (file->f_mode & FMODE_WRITE) { 3935 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3936 3937 if (file->f_flags & O_TRUNC) { 3938 iter->hash = alloc_ftrace_hash(size_bits); 3939 clear_ftrace_mod_list(mod_head); 3940 } else { 3941 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3942 } 3943 3944 if (!iter->hash) { 3945 trace_parser_put(&iter->parser); 3946 goto out_unlock; 3947 } 3948 } else 3949 iter->hash = hash; 3950 3951 ret = 0; 3952 3953 if (file->f_mode & FMODE_READ) { 3954 iter->pg = ftrace_pages_start; 3955 3956 ret = seq_open(file, &show_ftrace_seq_ops); 3957 if (!ret) { 3958 struct seq_file *m = file->private_data; 3959 m->private = iter; 3960 } else { 3961 /* Failed */ 3962 free_ftrace_hash(iter->hash); 3963 trace_parser_put(&iter->parser); 3964 } 3965 } else 3966 file->private_data = iter; 3967 3968 out_unlock: 3969 mutex_unlock(&ops->func_hash->regex_lock); 3970 3971 out: 3972 if (ret) { 3973 kfree(iter); 3974 if (tr) 3975 trace_array_put(tr); 3976 } 3977 3978 return ret; 3979 } 3980 3981 static int 3982 ftrace_filter_open(struct inode *inode, struct file *file) 3983 { 3984 struct ftrace_ops *ops = inode->i_private; 3985 3986 /* Checks for tracefs lockdown */ 3987 return ftrace_regex_open(ops, 3988 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3989 inode, file); 3990 } 3991 3992 static int 3993 ftrace_notrace_open(struct inode *inode, struct file *file) 3994 { 3995 struct ftrace_ops *ops = inode->i_private; 3996 3997 /* Checks for tracefs lockdown */ 3998 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3999 inode, file); 4000 } 4001 4002 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 4003 struct ftrace_glob { 4004 char *search; 4005 unsigned len; 4006 int type; 4007 }; 4008 4009 /* 4010 * If symbols in an architecture don't correspond exactly to the user-visible 4011 * name of what they represent, it is possible to define this function to 4012 * perform the necessary adjustments. 4013 */ 4014 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4015 { 4016 return str; 4017 } 4018 4019 static int ftrace_match(char *str, struct ftrace_glob *g) 4020 { 4021 int matched = 0; 4022 int slen; 4023 4024 str = arch_ftrace_match_adjust(str, g->search); 4025 4026 switch (g->type) { 4027 case MATCH_FULL: 4028 if (strcmp(str, g->search) == 0) 4029 matched = 1; 4030 break; 4031 case MATCH_FRONT_ONLY: 4032 if (strncmp(str, g->search, g->len) == 0) 4033 matched = 1; 4034 break; 4035 case MATCH_MIDDLE_ONLY: 4036 if (strstr(str, g->search)) 4037 matched = 1; 4038 break; 4039 case MATCH_END_ONLY: 4040 slen = strlen(str); 4041 if (slen >= g->len && 4042 memcmp(str + slen - g->len, g->search, g->len) == 0) 4043 matched = 1; 4044 break; 4045 case MATCH_GLOB: 4046 if (glob_match(g->search, str)) 4047 matched = 1; 4048 break; 4049 } 4050 4051 return matched; 4052 } 4053 4054 static int 4055 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4056 { 4057 struct ftrace_func_entry *entry; 4058 int ret = 0; 4059 4060 entry = ftrace_lookup_ip(hash, rec->ip); 4061 if (clear_filter) { 4062 /* Do nothing if it doesn't exist */ 4063 if (!entry) 4064 return 0; 4065 4066 free_hash_entry(hash, entry); 4067 } else { 4068 /* Do nothing if it exists */ 4069 if (entry) 4070 return 0; 4071 4072 ret = add_hash_entry(hash, rec->ip); 4073 } 4074 return ret; 4075 } 4076 4077 static int 4078 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4079 int clear_filter) 4080 { 4081 long index = simple_strtoul(func_g->search, NULL, 0); 4082 struct ftrace_page *pg; 4083 struct dyn_ftrace *rec; 4084 4085 /* The index starts at 1 */ 4086 if (--index < 0) 4087 return 0; 4088 4089 do_for_each_ftrace_rec(pg, rec) { 4090 if (pg->index <= index) { 4091 index -= pg->index; 4092 /* this is a double loop, break goes to the next page */ 4093 break; 4094 } 4095 rec = &pg->records[index]; 4096 enter_record(hash, rec, clear_filter); 4097 return 1; 4098 } while_for_each_ftrace_rec(); 4099 return 0; 4100 } 4101 4102 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4103 static int lookup_ip(unsigned long ip, char **modname, char *str) 4104 { 4105 unsigned long offset; 4106 4107 kallsyms_lookup(ip, NULL, &offset, modname, str); 4108 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4109 return -1; 4110 return 0; 4111 } 4112 #else 4113 static int lookup_ip(unsigned long ip, char **modname, char *str) 4114 { 4115 kallsyms_lookup(ip, NULL, NULL, modname, str); 4116 return 0; 4117 } 4118 #endif 4119 4120 static int 4121 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4122 struct ftrace_glob *mod_g, int exclude_mod) 4123 { 4124 char str[KSYM_SYMBOL_LEN]; 4125 char *modname; 4126 4127 if (lookup_ip(rec->ip, &modname, str)) { 4128 /* This should only happen when a rec is disabled */ 4129 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4130 !(rec->flags & FTRACE_FL_DISABLED)); 4131 return 0; 4132 } 4133 4134 if (mod_g) { 4135 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4136 4137 /* blank module name to match all modules */ 4138 if (!mod_g->len) { 4139 /* blank module globbing: modname xor exclude_mod */ 4140 if (!exclude_mod != !modname) 4141 goto func_match; 4142 return 0; 4143 } 4144 4145 /* 4146 * exclude_mod is set to trace everything but the given 4147 * module. If it is set and the module matches, then 4148 * return 0. If it is not set, and the module doesn't match 4149 * also return 0. Otherwise, check the function to see if 4150 * that matches. 4151 */ 4152 if (!mod_matches == !exclude_mod) 4153 return 0; 4154 func_match: 4155 /* blank search means to match all funcs in the mod */ 4156 if (!func_g->len) 4157 return 1; 4158 } 4159 4160 return ftrace_match(str, func_g); 4161 } 4162 4163 static int 4164 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4165 { 4166 struct ftrace_page *pg; 4167 struct dyn_ftrace *rec; 4168 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4169 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4170 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4171 int exclude_mod = 0; 4172 int found = 0; 4173 int ret; 4174 int clear_filter = 0; 4175 4176 if (func) { 4177 func_g.type = filter_parse_regex(func, len, &func_g.search, 4178 &clear_filter); 4179 func_g.len = strlen(func_g.search); 4180 } 4181 4182 if (mod) { 4183 mod_g.type = filter_parse_regex(mod, strlen(mod), 4184 &mod_g.search, &exclude_mod); 4185 mod_g.len = strlen(mod_g.search); 4186 } 4187 4188 mutex_lock(&ftrace_lock); 4189 4190 if (unlikely(ftrace_disabled)) 4191 goto out_unlock; 4192 4193 if (func_g.type == MATCH_INDEX) { 4194 found = add_rec_by_index(hash, &func_g, clear_filter); 4195 goto out_unlock; 4196 } 4197 4198 do_for_each_ftrace_rec(pg, rec) { 4199 4200 if (rec->flags & FTRACE_FL_DISABLED) 4201 continue; 4202 4203 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4204 ret = enter_record(hash, rec, clear_filter); 4205 if (ret < 0) { 4206 found = ret; 4207 goto out_unlock; 4208 } 4209 found = 1; 4210 } 4211 cond_resched(); 4212 } while_for_each_ftrace_rec(); 4213 out_unlock: 4214 mutex_unlock(&ftrace_lock); 4215 4216 return found; 4217 } 4218 4219 static int 4220 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4221 { 4222 return match_records(hash, buff, len, NULL); 4223 } 4224 4225 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4226 struct ftrace_ops_hash *old_hash) 4227 { 4228 struct ftrace_ops *op; 4229 4230 if (!ftrace_enabled) 4231 return; 4232 4233 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4234 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4235 return; 4236 } 4237 4238 /* 4239 * If this is the shared global_ops filter, then we need to 4240 * check if there is another ops that shares it, is enabled. 4241 * If so, we still need to run the modify code. 4242 */ 4243 if (ops->func_hash != &global_ops.local_hash) 4244 return; 4245 4246 do_for_each_ftrace_op(op, ftrace_ops_list) { 4247 if (op->func_hash == &global_ops.local_hash && 4248 op->flags & FTRACE_OPS_FL_ENABLED) { 4249 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4250 /* Only need to do this once */ 4251 return; 4252 } 4253 } while_for_each_ftrace_op(op); 4254 } 4255 4256 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4257 struct ftrace_hash **orig_hash, 4258 struct ftrace_hash *hash, 4259 int enable) 4260 { 4261 struct ftrace_ops_hash old_hash_ops; 4262 struct ftrace_hash *old_hash; 4263 int ret; 4264 4265 old_hash = *orig_hash; 4266 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4267 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4268 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4269 if (!ret) { 4270 ftrace_ops_update_code(ops, &old_hash_ops); 4271 free_ftrace_hash_rcu(old_hash); 4272 } 4273 return ret; 4274 } 4275 4276 static bool module_exists(const char *module) 4277 { 4278 /* All modules have the symbol __this_module */ 4279 static const char this_mod[] = "__this_module"; 4280 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4281 unsigned long val; 4282 int n; 4283 4284 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4285 4286 if (n > sizeof(modname) - 1) 4287 return false; 4288 4289 val = module_kallsyms_lookup_name(modname); 4290 return val != 0; 4291 } 4292 4293 static int cache_mod(struct trace_array *tr, 4294 const char *func, char *module, int enable) 4295 { 4296 struct ftrace_mod_load *ftrace_mod, *n; 4297 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4298 int ret; 4299 4300 mutex_lock(&ftrace_lock); 4301 4302 /* We do not cache inverse filters */ 4303 if (func[0] == '!') { 4304 func++; 4305 ret = -EINVAL; 4306 4307 /* Look to remove this hash */ 4308 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4309 if (strcmp(ftrace_mod->module, module) != 0) 4310 continue; 4311 4312 /* no func matches all */ 4313 if (strcmp(func, "*") == 0 || 4314 (ftrace_mod->func && 4315 strcmp(ftrace_mod->func, func) == 0)) { 4316 ret = 0; 4317 free_ftrace_mod(ftrace_mod); 4318 continue; 4319 } 4320 } 4321 goto out; 4322 } 4323 4324 ret = -EINVAL; 4325 /* We only care about modules that have not been loaded yet */ 4326 if (module_exists(module)) 4327 goto out; 4328 4329 /* Save this string off, and execute it when the module is loaded */ 4330 ret = ftrace_add_mod(tr, func, module, enable); 4331 out: 4332 mutex_unlock(&ftrace_lock); 4333 4334 return ret; 4335 } 4336 4337 static int 4338 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4339 int reset, int enable); 4340 4341 #ifdef CONFIG_MODULES 4342 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4343 char *mod, bool enable) 4344 { 4345 struct ftrace_mod_load *ftrace_mod, *n; 4346 struct ftrace_hash **orig_hash, *new_hash; 4347 LIST_HEAD(process_mods); 4348 char *func; 4349 4350 mutex_lock(&ops->func_hash->regex_lock); 4351 4352 if (enable) 4353 orig_hash = &ops->func_hash->filter_hash; 4354 else 4355 orig_hash = &ops->func_hash->notrace_hash; 4356 4357 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4358 *orig_hash); 4359 if (!new_hash) 4360 goto out; /* warn? */ 4361 4362 mutex_lock(&ftrace_lock); 4363 4364 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4365 4366 if (strcmp(ftrace_mod->module, mod) != 0) 4367 continue; 4368 4369 if (ftrace_mod->func) 4370 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4371 else 4372 func = kstrdup("*", GFP_KERNEL); 4373 4374 if (!func) /* warn? */ 4375 continue; 4376 4377 list_move(&ftrace_mod->list, &process_mods); 4378 4379 /* Use the newly allocated func, as it may be "*" */ 4380 kfree(ftrace_mod->func); 4381 ftrace_mod->func = func; 4382 } 4383 4384 mutex_unlock(&ftrace_lock); 4385 4386 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4387 4388 func = ftrace_mod->func; 4389 4390 /* Grabs ftrace_lock, which is why we have this extra step */ 4391 match_records(new_hash, func, strlen(func), mod); 4392 free_ftrace_mod(ftrace_mod); 4393 } 4394 4395 if (enable && list_empty(head)) 4396 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4397 4398 mutex_lock(&ftrace_lock); 4399 4400 ftrace_hash_move_and_update_ops(ops, orig_hash, 4401 new_hash, enable); 4402 mutex_unlock(&ftrace_lock); 4403 4404 out: 4405 mutex_unlock(&ops->func_hash->regex_lock); 4406 4407 free_ftrace_hash(new_hash); 4408 } 4409 4410 static void process_cached_mods(const char *mod_name) 4411 { 4412 struct trace_array *tr; 4413 char *mod; 4414 4415 mod = kstrdup(mod_name, GFP_KERNEL); 4416 if (!mod) 4417 return; 4418 4419 mutex_lock(&trace_types_lock); 4420 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4421 if (!list_empty(&tr->mod_trace)) 4422 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4423 if (!list_empty(&tr->mod_notrace)) 4424 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4425 } 4426 mutex_unlock(&trace_types_lock); 4427 4428 kfree(mod); 4429 } 4430 #endif 4431 4432 /* 4433 * We register the module command as a template to show others how 4434 * to register the a command as well. 4435 */ 4436 4437 static int 4438 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4439 char *func_orig, char *cmd, char *module, int enable) 4440 { 4441 char *func; 4442 int ret; 4443 4444 /* match_records() modifies func, and we need the original */ 4445 func = kstrdup(func_orig, GFP_KERNEL); 4446 if (!func) 4447 return -ENOMEM; 4448 4449 /* 4450 * cmd == 'mod' because we only registered this func 4451 * for the 'mod' ftrace_func_command. 4452 * But if you register one func with multiple commands, 4453 * you can tell which command was used by the cmd 4454 * parameter. 4455 */ 4456 ret = match_records(hash, func, strlen(func), module); 4457 kfree(func); 4458 4459 if (!ret) 4460 return cache_mod(tr, func_orig, module, enable); 4461 if (ret < 0) 4462 return ret; 4463 return 0; 4464 } 4465 4466 static struct ftrace_func_command ftrace_mod_cmd = { 4467 .name = "mod", 4468 .func = ftrace_mod_callback, 4469 }; 4470 4471 static int __init ftrace_mod_cmd_init(void) 4472 { 4473 return register_ftrace_command(&ftrace_mod_cmd); 4474 } 4475 core_initcall(ftrace_mod_cmd_init); 4476 4477 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4478 struct ftrace_ops *op, struct ftrace_regs *fregs) 4479 { 4480 struct ftrace_probe_ops *probe_ops; 4481 struct ftrace_func_probe *probe; 4482 4483 probe = container_of(op, struct ftrace_func_probe, ops); 4484 probe_ops = probe->probe_ops; 4485 4486 /* 4487 * Disable preemption for these calls to prevent a RCU grace 4488 * period. This syncs the hash iteration and freeing of items 4489 * on the hash. rcu_read_lock is too dangerous here. 4490 */ 4491 preempt_disable_notrace(); 4492 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4493 preempt_enable_notrace(); 4494 } 4495 4496 struct ftrace_func_map { 4497 struct ftrace_func_entry entry; 4498 void *data; 4499 }; 4500 4501 struct ftrace_func_mapper { 4502 struct ftrace_hash hash; 4503 }; 4504 4505 /** 4506 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4507 * 4508 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4509 */ 4510 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4511 { 4512 struct ftrace_hash *hash; 4513 4514 /* 4515 * The mapper is simply a ftrace_hash, but since the entries 4516 * in the hash are not ftrace_func_entry type, we define it 4517 * as a separate structure. 4518 */ 4519 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4520 return (struct ftrace_func_mapper *)hash; 4521 } 4522 4523 /** 4524 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4525 * @mapper: The mapper that has the ip maps 4526 * @ip: the instruction pointer to find the data for 4527 * 4528 * Returns the data mapped to @ip if found otherwise NULL. The return 4529 * is actually the address of the mapper data pointer. The address is 4530 * returned for use cases where the data is no bigger than a long, and 4531 * the user can use the data pointer as its data instead of having to 4532 * allocate more memory for the reference. 4533 */ 4534 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4535 unsigned long ip) 4536 { 4537 struct ftrace_func_entry *entry; 4538 struct ftrace_func_map *map; 4539 4540 entry = ftrace_lookup_ip(&mapper->hash, ip); 4541 if (!entry) 4542 return NULL; 4543 4544 map = (struct ftrace_func_map *)entry; 4545 return &map->data; 4546 } 4547 4548 /** 4549 * ftrace_func_mapper_add_ip - Map some data to an ip 4550 * @mapper: The mapper that has the ip maps 4551 * @ip: The instruction pointer address to map @data to 4552 * @data: The data to map to @ip 4553 * 4554 * Returns 0 on success otherwise an error. 4555 */ 4556 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4557 unsigned long ip, void *data) 4558 { 4559 struct ftrace_func_entry *entry; 4560 struct ftrace_func_map *map; 4561 4562 entry = ftrace_lookup_ip(&mapper->hash, ip); 4563 if (entry) 4564 return -EBUSY; 4565 4566 map = kmalloc(sizeof(*map), GFP_KERNEL); 4567 if (!map) 4568 return -ENOMEM; 4569 4570 map->entry.ip = ip; 4571 map->data = data; 4572 4573 __add_hash_entry(&mapper->hash, &map->entry); 4574 4575 return 0; 4576 } 4577 4578 /** 4579 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4580 * @mapper: The mapper that has the ip maps 4581 * @ip: The instruction pointer address to remove the data from 4582 * 4583 * Returns the data if it is found, otherwise NULL. 4584 * Note, if the data pointer is used as the data itself, (see 4585 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4586 * if the data pointer was set to zero. 4587 */ 4588 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4589 unsigned long ip) 4590 { 4591 struct ftrace_func_entry *entry; 4592 struct ftrace_func_map *map; 4593 void *data; 4594 4595 entry = ftrace_lookup_ip(&mapper->hash, ip); 4596 if (!entry) 4597 return NULL; 4598 4599 map = (struct ftrace_func_map *)entry; 4600 data = map->data; 4601 4602 remove_hash_entry(&mapper->hash, entry); 4603 kfree(entry); 4604 4605 return data; 4606 } 4607 4608 /** 4609 * free_ftrace_func_mapper - free a mapping of ips and data 4610 * @mapper: The mapper that has the ip maps 4611 * @free_func: A function to be called on each data item. 4612 * 4613 * This is used to free the function mapper. The @free_func is optional 4614 * and can be used if the data needs to be freed as well. 4615 */ 4616 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4617 ftrace_mapper_func free_func) 4618 { 4619 struct ftrace_func_entry *entry; 4620 struct ftrace_func_map *map; 4621 struct hlist_head *hhd; 4622 int size, i; 4623 4624 if (!mapper) 4625 return; 4626 4627 if (free_func && mapper->hash.count) { 4628 size = 1 << mapper->hash.size_bits; 4629 for (i = 0; i < size; i++) { 4630 hhd = &mapper->hash.buckets[i]; 4631 hlist_for_each_entry(entry, hhd, hlist) { 4632 map = (struct ftrace_func_map *)entry; 4633 free_func(map); 4634 } 4635 } 4636 } 4637 free_ftrace_hash(&mapper->hash); 4638 } 4639 4640 static void release_probe(struct ftrace_func_probe *probe) 4641 { 4642 struct ftrace_probe_ops *probe_ops; 4643 4644 mutex_lock(&ftrace_lock); 4645 4646 WARN_ON(probe->ref <= 0); 4647 4648 /* Subtract the ref that was used to protect this instance */ 4649 probe->ref--; 4650 4651 if (!probe->ref) { 4652 probe_ops = probe->probe_ops; 4653 /* 4654 * Sending zero as ip tells probe_ops to free 4655 * the probe->data itself 4656 */ 4657 if (probe_ops->free) 4658 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4659 list_del(&probe->list); 4660 kfree(probe); 4661 } 4662 mutex_unlock(&ftrace_lock); 4663 } 4664 4665 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4666 { 4667 /* 4668 * Add one ref to keep it from being freed when releasing the 4669 * ftrace_lock mutex. 4670 */ 4671 probe->ref++; 4672 } 4673 4674 int 4675 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4676 struct ftrace_probe_ops *probe_ops, 4677 void *data) 4678 { 4679 struct ftrace_func_probe *probe = NULL, *iter; 4680 struct ftrace_func_entry *entry; 4681 struct ftrace_hash **orig_hash; 4682 struct ftrace_hash *old_hash; 4683 struct ftrace_hash *hash; 4684 int count = 0; 4685 int size; 4686 int ret; 4687 int i; 4688 4689 if (WARN_ON(!tr)) 4690 return -EINVAL; 4691 4692 /* We do not support '!' for function probes */ 4693 if (WARN_ON(glob[0] == '!')) 4694 return -EINVAL; 4695 4696 4697 mutex_lock(&ftrace_lock); 4698 /* Check if the probe_ops is already registered */ 4699 list_for_each_entry(iter, &tr->func_probes, list) { 4700 if (iter->probe_ops == probe_ops) { 4701 probe = iter; 4702 break; 4703 } 4704 } 4705 if (!probe) { 4706 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4707 if (!probe) { 4708 mutex_unlock(&ftrace_lock); 4709 return -ENOMEM; 4710 } 4711 probe->probe_ops = probe_ops; 4712 probe->ops.func = function_trace_probe_call; 4713 probe->tr = tr; 4714 ftrace_ops_init(&probe->ops); 4715 list_add(&probe->list, &tr->func_probes); 4716 } 4717 4718 acquire_probe_locked(probe); 4719 4720 mutex_unlock(&ftrace_lock); 4721 4722 /* 4723 * Note, there's a small window here that the func_hash->filter_hash 4724 * may be NULL or empty. Need to be careful when reading the loop. 4725 */ 4726 mutex_lock(&probe->ops.func_hash->regex_lock); 4727 4728 orig_hash = &probe->ops.func_hash->filter_hash; 4729 old_hash = *orig_hash; 4730 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4731 4732 if (!hash) { 4733 ret = -ENOMEM; 4734 goto out; 4735 } 4736 4737 ret = ftrace_match_records(hash, glob, strlen(glob)); 4738 4739 /* Nothing found? */ 4740 if (!ret) 4741 ret = -EINVAL; 4742 4743 if (ret < 0) 4744 goto out; 4745 4746 size = 1 << hash->size_bits; 4747 for (i = 0; i < size; i++) { 4748 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4749 if (ftrace_lookup_ip(old_hash, entry->ip)) 4750 continue; 4751 /* 4752 * The caller might want to do something special 4753 * for each function we find. We call the callback 4754 * to give the caller an opportunity to do so. 4755 */ 4756 if (probe_ops->init) { 4757 ret = probe_ops->init(probe_ops, tr, 4758 entry->ip, data, 4759 &probe->data); 4760 if (ret < 0) { 4761 if (probe_ops->free && count) 4762 probe_ops->free(probe_ops, tr, 4763 0, probe->data); 4764 probe->data = NULL; 4765 goto out; 4766 } 4767 } 4768 count++; 4769 } 4770 } 4771 4772 mutex_lock(&ftrace_lock); 4773 4774 if (!count) { 4775 /* Nothing was added? */ 4776 ret = -EINVAL; 4777 goto out_unlock; 4778 } 4779 4780 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4781 hash, 1); 4782 if (ret < 0) 4783 goto err_unlock; 4784 4785 /* One ref for each new function traced */ 4786 probe->ref += count; 4787 4788 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4789 ret = ftrace_startup(&probe->ops, 0); 4790 4791 out_unlock: 4792 mutex_unlock(&ftrace_lock); 4793 4794 if (!ret) 4795 ret = count; 4796 out: 4797 mutex_unlock(&probe->ops.func_hash->regex_lock); 4798 free_ftrace_hash(hash); 4799 4800 release_probe(probe); 4801 4802 return ret; 4803 4804 err_unlock: 4805 if (!probe_ops->free || !count) 4806 goto out_unlock; 4807 4808 /* Failed to do the move, need to call the free functions */ 4809 for (i = 0; i < size; i++) { 4810 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4811 if (ftrace_lookup_ip(old_hash, entry->ip)) 4812 continue; 4813 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4814 } 4815 } 4816 goto out_unlock; 4817 } 4818 4819 int 4820 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4821 struct ftrace_probe_ops *probe_ops) 4822 { 4823 struct ftrace_func_probe *probe = NULL, *iter; 4824 struct ftrace_ops_hash old_hash_ops; 4825 struct ftrace_func_entry *entry; 4826 struct ftrace_glob func_g; 4827 struct ftrace_hash **orig_hash; 4828 struct ftrace_hash *old_hash; 4829 struct ftrace_hash *hash = NULL; 4830 struct hlist_node *tmp; 4831 struct hlist_head hhd; 4832 char str[KSYM_SYMBOL_LEN]; 4833 int count = 0; 4834 int i, ret = -ENODEV; 4835 int size; 4836 4837 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4838 func_g.search = NULL; 4839 else { 4840 int not; 4841 4842 func_g.type = filter_parse_regex(glob, strlen(glob), 4843 &func_g.search, ¬); 4844 func_g.len = strlen(func_g.search); 4845 4846 /* we do not support '!' for function probes */ 4847 if (WARN_ON(not)) 4848 return -EINVAL; 4849 } 4850 4851 mutex_lock(&ftrace_lock); 4852 /* Check if the probe_ops is already registered */ 4853 list_for_each_entry(iter, &tr->func_probes, list) { 4854 if (iter->probe_ops == probe_ops) { 4855 probe = iter; 4856 break; 4857 } 4858 } 4859 if (!probe) 4860 goto err_unlock_ftrace; 4861 4862 ret = -EINVAL; 4863 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4864 goto err_unlock_ftrace; 4865 4866 acquire_probe_locked(probe); 4867 4868 mutex_unlock(&ftrace_lock); 4869 4870 mutex_lock(&probe->ops.func_hash->regex_lock); 4871 4872 orig_hash = &probe->ops.func_hash->filter_hash; 4873 old_hash = *orig_hash; 4874 4875 if (ftrace_hash_empty(old_hash)) 4876 goto out_unlock; 4877 4878 old_hash_ops.filter_hash = old_hash; 4879 /* Probes only have filters */ 4880 old_hash_ops.notrace_hash = NULL; 4881 4882 ret = -ENOMEM; 4883 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4884 if (!hash) 4885 goto out_unlock; 4886 4887 INIT_HLIST_HEAD(&hhd); 4888 4889 size = 1 << hash->size_bits; 4890 for (i = 0; i < size; i++) { 4891 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4892 4893 if (func_g.search) { 4894 kallsyms_lookup(entry->ip, NULL, NULL, 4895 NULL, str); 4896 if (!ftrace_match(str, &func_g)) 4897 continue; 4898 } 4899 count++; 4900 remove_hash_entry(hash, entry); 4901 hlist_add_head(&entry->hlist, &hhd); 4902 } 4903 } 4904 4905 /* Nothing found? */ 4906 if (!count) { 4907 ret = -EINVAL; 4908 goto out_unlock; 4909 } 4910 4911 mutex_lock(&ftrace_lock); 4912 4913 WARN_ON(probe->ref < count); 4914 4915 probe->ref -= count; 4916 4917 if (ftrace_hash_empty(hash)) 4918 ftrace_shutdown(&probe->ops, 0); 4919 4920 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4921 hash, 1); 4922 4923 /* still need to update the function call sites */ 4924 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4925 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4926 &old_hash_ops); 4927 synchronize_rcu(); 4928 4929 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4930 hlist_del(&entry->hlist); 4931 if (probe_ops->free) 4932 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4933 kfree(entry); 4934 } 4935 mutex_unlock(&ftrace_lock); 4936 4937 out_unlock: 4938 mutex_unlock(&probe->ops.func_hash->regex_lock); 4939 free_ftrace_hash(hash); 4940 4941 release_probe(probe); 4942 4943 return ret; 4944 4945 err_unlock_ftrace: 4946 mutex_unlock(&ftrace_lock); 4947 return ret; 4948 } 4949 4950 void clear_ftrace_function_probes(struct trace_array *tr) 4951 { 4952 struct ftrace_func_probe *probe, *n; 4953 4954 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4955 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4956 } 4957 4958 static LIST_HEAD(ftrace_commands); 4959 static DEFINE_MUTEX(ftrace_cmd_mutex); 4960 4961 /* 4962 * Currently we only register ftrace commands from __init, so mark this 4963 * __init too. 4964 */ 4965 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4966 { 4967 struct ftrace_func_command *p; 4968 int ret = 0; 4969 4970 mutex_lock(&ftrace_cmd_mutex); 4971 list_for_each_entry(p, &ftrace_commands, list) { 4972 if (strcmp(cmd->name, p->name) == 0) { 4973 ret = -EBUSY; 4974 goto out_unlock; 4975 } 4976 } 4977 list_add(&cmd->list, &ftrace_commands); 4978 out_unlock: 4979 mutex_unlock(&ftrace_cmd_mutex); 4980 4981 return ret; 4982 } 4983 4984 /* 4985 * Currently we only unregister ftrace commands from __init, so mark 4986 * this __init too. 4987 */ 4988 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4989 { 4990 struct ftrace_func_command *p, *n; 4991 int ret = -ENODEV; 4992 4993 mutex_lock(&ftrace_cmd_mutex); 4994 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4995 if (strcmp(cmd->name, p->name) == 0) { 4996 ret = 0; 4997 list_del_init(&p->list); 4998 goto out_unlock; 4999 } 5000 } 5001 out_unlock: 5002 mutex_unlock(&ftrace_cmd_mutex); 5003 5004 return ret; 5005 } 5006 5007 static int ftrace_process_regex(struct ftrace_iterator *iter, 5008 char *buff, int len, int enable) 5009 { 5010 struct ftrace_hash *hash = iter->hash; 5011 struct trace_array *tr = iter->ops->private; 5012 char *func, *command, *next = buff; 5013 struct ftrace_func_command *p; 5014 int ret = -EINVAL; 5015 5016 func = strsep(&next, ":"); 5017 5018 if (!next) { 5019 ret = ftrace_match_records(hash, func, len); 5020 if (!ret) 5021 ret = -EINVAL; 5022 if (ret < 0) 5023 return ret; 5024 return 0; 5025 } 5026 5027 /* command found */ 5028 5029 command = strsep(&next, ":"); 5030 5031 mutex_lock(&ftrace_cmd_mutex); 5032 list_for_each_entry(p, &ftrace_commands, list) { 5033 if (strcmp(p->name, command) == 0) { 5034 ret = p->func(tr, hash, func, command, next, enable); 5035 goto out_unlock; 5036 } 5037 } 5038 out_unlock: 5039 mutex_unlock(&ftrace_cmd_mutex); 5040 5041 return ret; 5042 } 5043 5044 static ssize_t 5045 ftrace_regex_write(struct file *file, const char __user *ubuf, 5046 size_t cnt, loff_t *ppos, int enable) 5047 { 5048 struct ftrace_iterator *iter; 5049 struct trace_parser *parser; 5050 ssize_t ret, read; 5051 5052 if (!cnt) 5053 return 0; 5054 5055 if (file->f_mode & FMODE_READ) { 5056 struct seq_file *m = file->private_data; 5057 iter = m->private; 5058 } else 5059 iter = file->private_data; 5060 5061 if (unlikely(ftrace_disabled)) 5062 return -ENODEV; 5063 5064 /* iter->hash is a local copy, so we don't need regex_lock */ 5065 5066 parser = &iter->parser; 5067 read = trace_get_user(parser, ubuf, cnt, ppos); 5068 5069 if (read >= 0 && trace_parser_loaded(parser) && 5070 !trace_parser_cont(parser)) { 5071 ret = ftrace_process_regex(iter, parser->buffer, 5072 parser->idx, enable); 5073 trace_parser_clear(parser); 5074 if (ret < 0) 5075 goto out; 5076 } 5077 5078 ret = read; 5079 out: 5080 return ret; 5081 } 5082 5083 ssize_t 5084 ftrace_filter_write(struct file *file, const char __user *ubuf, 5085 size_t cnt, loff_t *ppos) 5086 { 5087 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5088 } 5089 5090 ssize_t 5091 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5092 size_t cnt, loff_t *ppos) 5093 { 5094 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5095 } 5096 5097 static int 5098 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5099 { 5100 struct ftrace_func_entry *entry; 5101 5102 ip = ftrace_location(ip); 5103 if (!ip) 5104 return -EINVAL; 5105 5106 if (remove) { 5107 entry = ftrace_lookup_ip(hash, ip); 5108 if (!entry) 5109 return -ENOENT; 5110 free_hash_entry(hash, entry); 5111 return 0; 5112 } 5113 5114 return add_hash_entry(hash, ip); 5115 } 5116 5117 static int 5118 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5119 unsigned int cnt, int remove) 5120 { 5121 unsigned int i; 5122 int err; 5123 5124 for (i = 0; i < cnt; i++) { 5125 err = __ftrace_match_addr(hash, ips[i], remove); 5126 if (err) { 5127 /* 5128 * This expects the @hash is a temporary hash and if this 5129 * fails the caller must free the @hash. 5130 */ 5131 return err; 5132 } 5133 } 5134 return 0; 5135 } 5136 5137 static int 5138 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5139 unsigned long *ips, unsigned int cnt, 5140 int remove, int reset, int enable) 5141 { 5142 struct ftrace_hash **orig_hash; 5143 struct ftrace_hash *hash; 5144 int ret; 5145 5146 if (unlikely(ftrace_disabled)) 5147 return -ENODEV; 5148 5149 mutex_lock(&ops->func_hash->regex_lock); 5150 5151 if (enable) 5152 orig_hash = &ops->func_hash->filter_hash; 5153 else 5154 orig_hash = &ops->func_hash->notrace_hash; 5155 5156 if (reset) 5157 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5158 else 5159 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5160 5161 if (!hash) { 5162 ret = -ENOMEM; 5163 goto out_regex_unlock; 5164 } 5165 5166 if (buf && !ftrace_match_records(hash, buf, len)) { 5167 ret = -EINVAL; 5168 goto out_regex_unlock; 5169 } 5170 if (ips) { 5171 ret = ftrace_match_addr(hash, ips, cnt, remove); 5172 if (ret < 0) 5173 goto out_regex_unlock; 5174 } 5175 5176 mutex_lock(&ftrace_lock); 5177 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5178 mutex_unlock(&ftrace_lock); 5179 5180 out_regex_unlock: 5181 mutex_unlock(&ops->func_hash->regex_lock); 5182 5183 free_ftrace_hash(hash); 5184 return ret; 5185 } 5186 5187 static int 5188 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5189 int remove, int reset, int enable) 5190 { 5191 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5192 } 5193 5194 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5195 5196 struct ftrace_direct_func { 5197 struct list_head next; 5198 unsigned long addr; 5199 int count; 5200 }; 5201 5202 static LIST_HEAD(ftrace_direct_funcs); 5203 5204 /** 5205 * ftrace_find_direct_func - test an address if it is a registered direct caller 5206 * @addr: The address of a registered direct caller 5207 * 5208 * This searches to see if a ftrace direct caller has been registered 5209 * at a specific address, and if so, it returns a descriptor for it. 5210 * 5211 * This can be used by architecture code to see if an address is 5212 * a direct caller (trampoline) attached to a fentry/mcount location. 5213 * This is useful for the function_graph tracer, as it may need to 5214 * do adjustments if it traced a location that also has a direct 5215 * trampoline attached to it. 5216 */ 5217 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5218 { 5219 struct ftrace_direct_func *entry; 5220 bool found = false; 5221 5222 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5223 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5224 if (entry->addr == addr) { 5225 found = true; 5226 break; 5227 } 5228 } 5229 if (found) 5230 return entry; 5231 5232 return NULL; 5233 } 5234 5235 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5236 { 5237 struct ftrace_direct_func *direct; 5238 5239 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5240 if (!direct) 5241 return NULL; 5242 direct->addr = addr; 5243 direct->count = 0; 5244 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5245 ftrace_direct_func_count++; 5246 return direct; 5247 } 5248 5249 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5250 5251 /** 5252 * register_ftrace_direct - Call a custom trampoline directly 5253 * @ip: The address of the nop at the beginning of a function 5254 * @addr: The address of the trampoline to call at @ip 5255 * 5256 * This is used to connect a direct call from the nop location (@ip) 5257 * at the start of ftrace traced functions. The location that it calls 5258 * (@addr) must be able to handle a direct call, and save the parameters 5259 * of the function being traced, and restore them (or inject new ones 5260 * if needed), before returning. 5261 * 5262 * Returns: 5263 * 0 on success 5264 * -EBUSY - Another direct function is already attached (there can be only one) 5265 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5266 * -ENOMEM - There was an allocation failure. 5267 */ 5268 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5269 { 5270 struct ftrace_direct_func *direct; 5271 struct ftrace_func_entry *entry; 5272 struct ftrace_hash *free_hash = NULL; 5273 struct dyn_ftrace *rec; 5274 int ret = -ENODEV; 5275 5276 mutex_lock(&direct_mutex); 5277 5278 ip = ftrace_location(ip); 5279 if (!ip) 5280 goto out_unlock; 5281 5282 /* See if there's a direct function at @ip already */ 5283 ret = -EBUSY; 5284 if (ftrace_find_rec_direct(ip)) 5285 goto out_unlock; 5286 5287 ret = -ENODEV; 5288 rec = lookup_rec(ip, ip); 5289 if (!rec) 5290 goto out_unlock; 5291 5292 /* 5293 * Check if the rec says it has a direct call but we didn't 5294 * find one earlier? 5295 */ 5296 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5297 goto out_unlock; 5298 5299 /* Make sure the ip points to the exact record */ 5300 if (ip != rec->ip) { 5301 ip = rec->ip; 5302 /* Need to check this ip for a direct. */ 5303 if (ftrace_find_rec_direct(ip)) 5304 goto out_unlock; 5305 } 5306 5307 ret = -ENOMEM; 5308 direct = ftrace_find_direct_func(addr); 5309 if (!direct) { 5310 direct = ftrace_alloc_direct_func(addr); 5311 if (!direct) 5312 goto out_unlock; 5313 } 5314 5315 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5316 if (!entry) 5317 goto out_unlock; 5318 5319 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5320 5321 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5322 ret = register_ftrace_function_nolock(&direct_ops); 5323 if (ret) 5324 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5325 } 5326 5327 if (ret) { 5328 remove_hash_entry(direct_functions, entry); 5329 kfree(entry); 5330 if (!direct->count) { 5331 list_del_rcu(&direct->next); 5332 synchronize_rcu_tasks(); 5333 kfree(direct); 5334 if (free_hash) 5335 free_ftrace_hash(free_hash); 5336 free_hash = NULL; 5337 ftrace_direct_func_count--; 5338 } 5339 } else { 5340 direct->count++; 5341 } 5342 out_unlock: 5343 mutex_unlock(&direct_mutex); 5344 5345 if (free_hash) { 5346 synchronize_rcu_tasks(); 5347 free_ftrace_hash(free_hash); 5348 } 5349 5350 return ret; 5351 } 5352 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5353 5354 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5355 struct dyn_ftrace **recp) 5356 { 5357 struct ftrace_func_entry *entry; 5358 struct dyn_ftrace *rec; 5359 5360 rec = lookup_rec(*ip, *ip); 5361 if (!rec) 5362 return NULL; 5363 5364 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5365 if (!entry) { 5366 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5367 return NULL; 5368 } 5369 5370 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5371 5372 /* Passed in ip just needs to be on the call site */ 5373 *ip = rec->ip; 5374 5375 if (recp) 5376 *recp = rec; 5377 5378 return entry; 5379 } 5380 5381 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5382 { 5383 struct ftrace_direct_func *direct; 5384 struct ftrace_func_entry *entry; 5385 struct ftrace_hash *hash; 5386 int ret = -ENODEV; 5387 5388 mutex_lock(&direct_mutex); 5389 5390 ip = ftrace_location(ip); 5391 if (!ip) 5392 goto out_unlock; 5393 5394 entry = find_direct_entry(&ip, NULL); 5395 if (!entry) 5396 goto out_unlock; 5397 5398 hash = direct_ops.func_hash->filter_hash; 5399 if (hash->count == 1) 5400 unregister_ftrace_function(&direct_ops); 5401 5402 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5403 5404 WARN_ON(ret); 5405 5406 remove_hash_entry(direct_functions, entry); 5407 5408 direct = ftrace_find_direct_func(addr); 5409 if (!WARN_ON(!direct)) { 5410 /* This is the good path (see the ! before WARN) */ 5411 direct->count--; 5412 WARN_ON(direct->count < 0); 5413 if (!direct->count) { 5414 list_del_rcu(&direct->next); 5415 synchronize_rcu_tasks(); 5416 kfree(direct); 5417 kfree(entry); 5418 ftrace_direct_func_count--; 5419 } 5420 } 5421 out_unlock: 5422 mutex_unlock(&direct_mutex); 5423 5424 return ret; 5425 } 5426 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5427 5428 static struct ftrace_ops stub_ops = { 5429 .func = ftrace_stub, 5430 }; 5431 5432 /** 5433 * ftrace_modify_direct_caller - modify ftrace nop directly 5434 * @entry: The ftrace hash entry of the direct helper for @rec 5435 * @rec: The record representing the function site to patch 5436 * @old_addr: The location that the site at @rec->ip currently calls 5437 * @new_addr: The location that the site at @rec->ip should call 5438 * 5439 * An architecture may overwrite this function to optimize the 5440 * changing of the direct callback on an ftrace nop location. 5441 * This is called with the ftrace_lock mutex held, and no other 5442 * ftrace callbacks are on the associated record (@rec). Thus, 5443 * it is safe to modify the ftrace record, where it should be 5444 * currently calling @old_addr directly, to call @new_addr. 5445 * 5446 * This is called with direct_mutex locked. 5447 * 5448 * Safety checks should be made to make sure that the code at 5449 * @rec->ip is currently calling @old_addr. And this must 5450 * also update entry->direct to @new_addr. 5451 */ 5452 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5453 struct dyn_ftrace *rec, 5454 unsigned long old_addr, 5455 unsigned long new_addr) 5456 { 5457 unsigned long ip = rec->ip; 5458 int ret; 5459 5460 lockdep_assert_held(&direct_mutex); 5461 5462 /* 5463 * The ftrace_lock was used to determine if the record 5464 * had more than one registered user to it. If it did, 5465 * we needed to prevent that from changing to do the quick 5466 * switch. But if it did not (only a direct caller was attached) 5467 * then this function is called. But this function can deal 5468 * with attached callers to the rec that we care about, and 5469 * since this function uses standard ftrace calls that take 5470 * the ftrace_lock mutex, we need to release it. 5471 */ 5472 mutex_unlock(&ftrace_lock); 5473 5474 /* 5475 * By setting a stub function at the same address, we force 5476 * the code to call the iterator and the direct_ops helper. 5477 * This means that @ip does not call the direct call, and 5478 * we can simply modify it. 5479 */ 5480 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5481 if (ret) 5482 goto out_lock; 5483 5484 ret = register_ftrace_function_nolock(&stub_ops); 5485 if (ret) { 5486 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5487 goto out_lock; 5488 } 5489 5490 entry->direct = new_addr; 5491 5492 /* 5493 * By removing the stub, we put back the direct call, calling 5494 * the @new_addr. 5495 */ 5496 unregister_ftrace_function(&stub_ops); 5497 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5498 5499 out_lock: 5500 mutex_lock(&ftrace_lock); 5501 5502 return ret; 5503 } 5504 5505 /** 5506 * modify_ftrace_direct - Modify an existing direct call to call something else 5507 * @ip: The instruction pointer to modify 5508 * @old_addr: The address that the current @ip calls directly 5509 * @new_addr: The address that the @ip should call 5510 * 5511 * This modifies a ftrace direct caller at an instruction pointer without 5512 * having to disable it first. The direct call will switch over to the 5513 * @new_addr without missing anything. 5514 * 5515 * Returns: zero on success. Non zero on error, which includes: 5516 * -ENODEV : the @ip given has no direct caller attached 5517 * -EINVAL : the @old_addr does not match the current direct caller 5518 */ 5519 int modify_ftrace_direct(unsigned long ip, 5520 unsigned long old_addr, unsigned long new_addr) 5521 { 5522 struct ftrace_direct_func *direct, *new_direct = NULL; 5523 struct ftrace_func_entry *entry; 5524 struct dyn_ftrace *rec; 5525 int ret = -ENODEV; 5526 5527 mutex_lock(&direct_mutex); 5528 5529 mutex_lock(&ftrace_lock); 5530 5531 ip = ftrace_location(ip); 5532 if (!ip) 5533 goto out_unlock; 5534 5535 entry = find_direct_entry(&ip, &rec); 5536 if (!entry) 5537 goto out_unlock; 5538 5539 ret = -EINVAL; 5540 if (entry->direct != old_addr) 5541 goto out_unlock; 5542 5543 direct = ftrace_find_direct_func(old_addr); 5544 if (WARN_ON(!direct)) 5545 goto out_unlock; 5546 if (direct->count > 1) { 5547 ret = -ENOMEM; 5548 new_direct = ftrace_alloc_direct_func(new_addr); 5549 if (!new_direct) 5550 goto out_unlock; 5551 direct->count--; 5552 new_direct->count++; 5553 } else { 5554 direct->addr = new_addr; 5555 } 5556 5557 /* 5558 * If there's no other ftrace callback on the rec->ip location, 5559 * then it can be changed directly by the architecture. 5560 * If there is another caller, then we just need to change the 5561 * direct caller helper to point to @new_addr. 5562 */ 5563 if (ftrace_rec_count(rec) == 1) { 5564 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5565 } else { 5566 entry->direct = new_addr; 5567 ret = 0; 5568 } 5569 5570 if (unlikely(ret && new_direct)) { 5571 direct->count++; 5572 list_del_rcu(&new_direct->next); 5573 synchronize_rcu_tasks(); 5574 kfree(new_direct); 5575 ftrace_direct_func_count--; 5576 } 5577 5578 out_unlock: 5579 mutex_unlock(&ftrace_lock); 5580 mutex_unlock(&direct_mutex); 5581 return ret; 5582 } 5583 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5584 5585 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5586 5587 static int check_direct_multi(struct ftrace_ops *ops) 5588 { 5589 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5590 return -EINVAL; 5591 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5592 return -EINVAL; 5593 return 0; 5594 } 5595 5596 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5597 { 5598 struct ftrace_func_entry *entry, *del; 5599 int size, i; 5600 5601 size = 1 << hash->size_bits; 5602 for (i = 0; i < size; i++) { 5603 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5604 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5605 if (del && del->direct == addr) { 5606 remove_hash_entry(direct_functions, del); 5607 kfree(del); 5608 } 5609 } 5610 } 5611 } 5612 5613 /** 5614 * register_ftrace_direct_multi - Call a custom trampoline directly 5615 * for multiple functions registered in @ops 5616 * @ops: The address of the struct ftrace_ops object 5617 * @addr: The address of the trampoline to call at @ops functions 5618 * 5619 * This is used to connect a direct calls to @addr from the nop locations 5620 * of the functions registered in @ops (with by ftrace_set_filter_ip 5621 * function). 5622 * 5623 * The location that it calls (@addr) must be able to handle a direct call, 5624 * and save the parameters of the function being traced, and restore them 5625 * (or inject new ones if needed), before returning. 5626 * 5627 * Returns: 5628 * 0 on success 5629 * -EINVAL - The @ops object was already registered with this call or 5630 * when there are no functions in @ops object. 5631 * -EBUSY - Another direct function is already attached (there can be only one) 5632 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5633 * -ENOMEM - There was an allocation failure. 5634 */ 5635 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5636 { 5637 struct ftrace_hash *hash, *free_hash = NULL; 5638 struct ftrace_func_entry *entry, *new; 5639 int err = -EBUSY, size, i; 5640 5641 if (ops->func || ops->trampoline) 5642 return -EINVAL; 5643 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5644 return -EINVAL; 5645 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5646 return -EINVAL; 5647 5648 hash = ops->func_hash->filter_hash; 5649 if (ftrace_hash_empty(hash)) 5650 return -EINVAL; 5651 5652 mutex_lock(&direct_mutex); 5653 5654 /* Make sure requested entries are not already registered.. */ 5655 size = 1 << hash->size_bits; 5656 for (i = 0; i < size; i++) { 5657 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5658 if (ftrace_find_rec_direct(entry->ip)) 5659 goto out_unlock; 5660 } 5661 } 5662 5663 /* ... and insert them to direct_functions hash. */ 5664 err = -ENOMEM; 5665 for (i = 0; i < size; i++) { 5666 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5667 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5668 if (!new) 5669 goto out_remove; 5670 entry->direct = addr; 5671 } 5672 } 5673 5674 ops->func = call_direct_funcs; 5675 ops->flags = MULTI_FLAGS; 5676 ops->trampoline = FTRACE_REGS_ADDR; 5677 5678 err = register_ftrace_function_nolock(ops); 5679 5680 out_remove: 5681 if (err) 5682 remove_direct_functions_hash(hash, addr); 5683 5684 out_unlock: 5685 mutex_unlock(&direct_mutex); 5686 5687 if (free_hash) { 5688 synchronize_rcu_tasks(); 5689 free_ftrace_hash(free_hash); 5690 } 5691 return err; 5692 } 5693 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5694 5695 /** 5696 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5697 * previously registered by register_ftrace_direct_multi for @ops object. 5698 * @ops: The address of the struct ftrace_ops object 5699 * 5700 * This is used to remove a direct calls to @addr from the nop locations 5701 * of the functions registered in @ops (with by ftrace_set_filter_ip 5702 * function). 5703 * 5704 * Returns: 5705 * 0 on success 5706 * -EINVAL - The @ops object was not properly registered. 5707 */ 5708 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5709 { 5710 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5711 int err; 5712 5713 if (check_direct_multi(ops)) 5714 return -EINVAL; 5715 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5716 return -EINVAL; 5717 5718 mutex_lock(&direct_mutex); 5719 err = unregister_ftrace_function(ops); 5720 remove_direct_functions_hash(hash, addr); 5721 mutex_unlock(&direct_mutex); 5722 5723 /* cleanup for possible another register call */ 5724 ops->func = NULL; 5725 ops->trampoline = 0; 5726 return err; 5727 } 5728 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5729 5730 static int 5731 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5732 { 5733 struct ftrace_hash *hash; 5734 struct ftrace_func_entry *entry, *iter; 5735 static struct ftrace_ops tmp_ops = { 5736 .func = ftrace_stub, 5737 .flags = FTRACE_OPS_FL_STUB, 5738 }; 5739 int i, size; 5740 int err; 5741 5742 lockdep_assert_held_once(&direct_mutex); 5743 5744 /* Enable the tmp_ops to have the same functions as the direct ops */ 5745 ftrace_ops_init(&tmp_ops); 5746 tmp_ops.func_hash = ops->func_hash; 5747 5748 err = register_ftrace_function_nolock(&tmp_ops); 5749 if (err) 5750 return err; 5751 5752 /* 5753 * Now the ftrace_ops_list_func() is called to do the direct callers. 5754 * We can safely change the direct functions attached to each entry. 5755 */ 5756 mutex_lock(&ftrace_lock); 5757 5758 hash = ops->func_hash->filter_hash; 5759 size = 1 << hash->size_bits; 5760 for (i = 0; i < size; i++) { 5761 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5762 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5763 if (!entry) 5764 continue; 5765 entry->direct = addr; 5766 } 5767 } 5768 5769 mutex_unlock(&ftrace_lock); 5770 5771 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5772 unregister_ftrace_function(&tmp_ops); 5773 5774 return err; 5775 } 5776 5777 /** 5778 * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call 5779 * to call something else 5780 * @ops: The address of the struct ftrace_ops object 5781 * @addr: The address of the new trampoline to call at @ops functions 5782 * 5783 * This is used to unregister currently registered direct caller and 5784 * register new one @addr on functions registered in @ops object. 5785 * 5786 * Note there's window between ftrace_shutdown and ftrace_startup calls 5787 * where there will be no callbacks called. 5788 * 5789 * Caller should already have direct_mutex locked, so we don't lock 5790 * direct_mutex here. 5791 * 5792 * Returns: zero on success. Non zero on error, which includes: 5793 * -EINVAL - The @ops object was not properly registered. 5794 */ 5795 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr) 5796 { 5797 if (check_direct_multi(ops)) 5798 return -EINVAL; 5799 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5800 return -EINVAL; 5801 5802 return __modify_ftrace_direct_multi(ops, addr); 5803 } 5804 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock); 5805 5806 /** 5807 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5808 * to call something else 5809 * @ops: The address of the struct ftrace_ops object 5810 * @addr: The address of the new trampoline to call at @ops functions 5811 * 5812 * This is used to unregister currently registered direct caller and 5813 * register new one @addr on functions registered in @ops object. 5814 * 5815 * Note there's window between ftrace_shutdown and ftrace_startup calls 5816 * where there will be no callbacks called. 5817 * 5818 * Returns: zero on success. Non zero on error, which includes: 5819 * -EINVAL - The @ops object was not properly registered. 5820 */ 5821 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5822 { 5823 int err; 5824 5825 if (check_direct_multi(ops)) 5826 return -EINVAL; 5827 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5828 return -EINVAL; 5829 5830 mutex_lock(&direct_mutex); 5831 err = __modify_ftrace_direct_multi(ops, addr); 5832 mutex_unlock(&direct_mutex); 5833 return err; 5834 } 5835 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5836 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5837 5838 /** 5839 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5840 * @ops - the ops to set the filter with 5841 * @ip - the address to add to or remove from the filter. 5842 * @remove - non zero to remove the ip from the filter 5843 * @reset - non zero to reset all filters before applying this filter. 5844 * 5845 * Filters denote which functions should be enabled when tracing is enabled 5846 * If @ip is NULL, it fails to update filter. 5847 * 5848 * This can allocate memory which must be freed before @ops can be freed, 5849 * either by removing each filtered addr or by using 5850 * ftrace_free_filter(@ops). 5851 */ 5852 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5853 int remove, int reset) 5854 { 5855 ftrace_ops_init(ops); 5856 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5857 } 5858 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5859 5860 /** 5861 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5862 * @ops - the ops to set the filter with 5863 * @ips - the array of addresses to add to or remove from the filter. 5864 * @cnt - the number of addresses in @ips 5865 * @remove - non zero to remove ips from the filter 5866 * @reset - non zero to reset all filters before applying this filter. 5867 * 5868 * Filters denote which functions should be enabled when tracing is enabled 5869 * If @ips array or any ip specified within is NULL , it fails to update filter. 5870 * 5871 * This can allocate memory which must be freed before @ops can be freed, 5872 * either by removing each filtered addr or by using 5873 * ftrace_free_filter(@ops). 5874 */ 5875 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5876 unsigned int cnt, int remove, int reset) 5877 { 5878 ftrace_ops_init(ops); 5879 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5880 } 5881 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5882 5883 /** 5884 * ftrace_ops_set_global_filter - setup ops to use global filters 5885 * @ops - the ops which will use the global filters 5886 * 5887 * ftrace users who need global function trace filtering should call this. 5888 * It can set the global filter only if ops were not initialized before. 5889 */ 5890 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5891 { 5892 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5893 return; 5894 5895 ftrace_ops_init(ops); 5896 ops->func_hash = &global_ops.local_hash; 5897 } 5898 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5899 5900 static int 5901 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5902 int reset, int enable) 5903 { 5904 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5905 } 5906 5907 /** 5908 * ftrace_set_filter - set a function to filter on in ftrace 5909 * @ops - the ops to set the filter with 5910 * @buf - the string that holds the function filter text. 5911 * @len - the length of the string. 5912 * @reset - non zero to reset all filters before applying this filter. 5913 * 5914 * Filters denote which functions should be enabled when tracing is enabled. 5915 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5916 * 5917 * This can allocate memory which must be freed before @ops can be freed, 5918 * either by removing each filtered addr or by using 5919 * ftrace_free_filter(@ops). 5920 */ 5921 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5922 int len, int reset) 5923 { 5924 ftrace_ops_init(ops); 5925 return ftrace_set_regex(ops, buf, len, reset, 1); 5926 } 5927 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5928 5929 /** 5930 * ftrace_set_notrace - set a function to not trace in ftrace 5931 * @ops - the ops to set the notrace filter with 5932 * @buf - the string that holds the function notrace text. 5933 * @len - the length of the string. 5934 * @reset - non zero to reset all filters before applying this filter. 5935 * 5936 * Notrace Filters denote which functions should not be enabled when tracing 5937 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5938 * for tracing. 5939 * 5940 * This can allocate memory which must be freed before @ops can be freed, 5941 * either by removing each filtered addr or by using 5942 * ftrace_free_filter(@ops). 5943 */ 5944 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5945 int len, int reset) 5946 { 5947 ftrace_ops_init(ops); 5948 return ftrace_set_regex(ops, buf, len, reset, 0); 5949 } 5950 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5951 /** 5952 * ftrace_set_global_filter - set a function to filter on with global tracers 5953 * @buf - the string that holds the function filter text. 5954 * @len - the length of the string. 5955 * @reset - non zero to reset all filters before applying this filter. 5956 * 5957 * Filters denote which functions should be enabled when tracing is enabled. 5958 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5959 */ 5960 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5961 { 5962 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5963 } 5964 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5965 5966 /** 5967 * ftrace_set_global_notrace - set a function to not trace with global tracers 5968 * @buf - the string that holds the function notrace text. 5969 * @len - the length of the string. 5970 * @reset - non zero to reset all filters before applying this filter. 5971 * 5972 * Notrace Filters denote which functions should not be enabled when tracing 5973 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5974 * for tracing. 5975 */ 5976 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5977 { 5978 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5979 } 5980 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5981 5982 /* 5983 * command line interface to allow users to set filters on boot up. 5984 */ 5985 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5986 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5987 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5988 5989 /* Used by function selftest to not test if filter is set */ 5990 bool ftrace_filter_param __initdata; 5991 5992 static int __init set_ftrace_notrace(char *str) 5993 { 5994 ftrace_filter_param = true; 5995 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5996 return 1; 5997 } 5998 __setup("ftrace_notrace=", set_ftrace_notrace); 5999 6000 static int __init set_ftrace_filter(char *str) 6001 { 6002 ftrace_filter_param = true; 6003 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 6004 return 1; 6005 } 6006 __setup("ftrace_filter=", set_ftrace_filter); 6007 6008 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6009 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 6010 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 6011 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 6012 6013 static int __init set_graph_function(char *str) 6014 { 6015 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 6016 return 1; 6017 } 6018 __setup("ftrace_graph_filter=", set_graph_function); 6019 6020 static int __init set_graph_notrace_function(char *str) 6021 { 6022 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 6023 return 1; 6024 } 6025 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 6026 6027 static int __init set_graph_max_depth_function(char *str) 6028 { 6029 if (!str) 6030 return 0; 6031 fgraph_max_depth = simple_strtoul(str, NULL, 0); 6032 return 1; 6033 } 6034 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6035 6036 static void __init set_ftrace_early_graph(char *buf, int enable) 6037 { 6038 int ret; 6039 char *func; 6040 struct ftrace_hash *hash; 6041 6042 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6043 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6044 return; 6045 6046 while (buf) { 6047 func = strsep(&buf, ","); 6048 /* we allow only one expression at a time */ 6049 ret = ftrace_graph_set_hash(hash, func); 6050 if (ret) 6051 printk(KERN_DEBUG "ftrace: function %s not " 6052 "traceable\n", func); 6053 } 6054 6055 if (enable) 6056 ftrace_graph_hash = hash; 6057 else 6058 ftrace_graph_notrace_hash = hash; 6059 } 6060 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6061 6062 void __init 6063 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6064 { 6065 char *func; 6066 6067 ftrace_ops_init(ops); 6068 6069 while (buf) { 6070 func = strsep(&buf, ","); 6071 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6072 } 6073 } 6074 6075 static void __init set_ftrace_early_filters(void) 6076 { 6077 if (ftrace_filter_buf[0]) 6078 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6079 if (ftrace_notrace_buf[0]) 6080 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6081 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6082 if (ftrace_graph_buf[0]) 6083 set_ftrace_early_graph(ftrace_graph_buf, 1); 6084 if (ftrace_graph_notrace_buf[0]) 6085 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6086 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6087 } 6088 6089 int ftrace_regex_release(struct inode *inode, struct file *file) 6090 { 6091 struct seq_file *m = (struct seq_file *)file->private_data; 6092 struct ftrace_iterator *iter; 6093 struct ftrace_hash **orig_hash; 6094 struct trace_parser *parser; 6095 int filter_hash; 6096 6097 if (file->f_mode & FMODE_READ) { 6098 iter = m->private; 6099 seq_release(inode, file); 6100 } else 6101 iter = file->private_data; 6102 6103 parser = &iter->parser; 6104 if (trace_parser_loaded(parser)) { 6105 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6106 6107 ftrace_process_regex(iter, parser->buffer, 6108 parser->idx, enable); 6109 } 6110 6111 trace_parser_put(parser); 6112 6113 mutex_lock(&iter->ops->func_hash->regex_lock); 6114 6115 if (file->f_mode & FMODE_WRITE) { 6116 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6117 6118 if (filter_hash) { 6119 orig_hash = &iter->ops->func_hash->filter_hash; 6120 if (iter->tr) { 6121 if (list_empty(&iter->tr->mod_trace)) 6122 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6123 else 6124 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6125 } 6126 } else 6127 orig_hash = &iter->ops->func_hash->notrace_hash; 6128 6129 mutex_lock(&ftrace_lock); 6130 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6131 iter->hash, filter_hash); 6132 mutex_unlock(&ftrace_lock); 6133 } else { 6134 /* For read only, the hash is the ops hash */ 6135 iter->hash = NULL; 6136 } 6137 6138 mutex_unlock(&iter->ops->func_hash->regex_lock); 6139 free_ftrace_hash(iter->hash); 6140 if (iter->tr) 6141 trace_array_put(iter->tr); 6142 kfree(iter); 6143 6144 return 0; 6145 } 6146 6147 static const struct file_operations ftrace_avail_fops = { 6148 .open = ftrace_avail_open, 6149 .read = seq_read, 6150 .llseek = seq_lseek, 6151 .release = seq_release_private, 6152 }; 6153 6154 static const struct file_operations ftrace_enabled_fops = { 6155 .open = ftrace_enabled_open, 6156 .read = seq_read, 6157 .llseek = seq_lseek, 6158 .release = seq_release_private, 6159 }; 6160 6161 static const struct file_operations ftrace_filter_fops = { 6162 .open = ftrace_filter_open, 6163 .read = seq_read, 6164 .write = ftrace_filter_write, 6165 .llseek = tracing_lseek, 6166 .release = ftrace_regex_release, 6167 }; 6168 6169 static const struct file_operations ftrace_notrace_fops = { 6170 .open = ftrace_notrace_open, 6171 .read = seq_read, 6172 .write = ftrace_notrace_write, 6173 .llseek = tracing_lseek, 6174 .release = ftrace_regex_release, 6175 }; 6176 6177 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6178 6179 static DEFINE_MUTEX(graph_lock); 6180 6181 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6182 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6183 6184 enum graph_filter_type { 6185 GRAPH_FILTER_NOTRACE = 0, 6186 GRAPH_FILTER_FUNCTION, 6187 }; 6188 6189 #define FTRACE_GRAPH_EMPTY ((void *)1) 6190 6191 struct ftrace_graph_data { 6192 struct ftrace_hash *hash; 6193 struct ftrace_func_entry *entry; 6194 int idx; /* for hash table iteration */ 6195 enum graph_filter_type type; 6196 struct ftrace_hash *new_hash; 6197 const struct seq_operations *seq_ops; 6198 struct trace_parser parser; 6199 }; 6200 6201 static void * 6202 __g_next(struct seq_file *m, loff_t *pos) 6203 { 6204 struct ftrace_graph_data *fgd = m->private; 6205 struct ftrace_func_entry *entry = fgd->entry; 6206 struct hlist_head *head; 6207 int i, idx = fgd->idx; 6208 6209 if (*pos >= fgd->hash->count) 6210 return NULL; 6211 6212 if (entry) { 6213 hlist_for_each_entry_continue(entry, hlist) { 6214 fgd->entry = entry; 6215 return entry; 6216 } 6217 6218 idx++; 6219 } 6220 6221 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6222 head = &fgd->hash->buckets[i]; 6223 hlist_for_each_entry(entry, head, hlist) { 6224 fgd->entry = entry; 6225 fgd->idx = i; 6226 return entry; 6227 } 6228 } 6229 return NULL; 6230 } 6231 6232 static void * 6233 g_next(struct seq_file *m, void *v, loff_t *pos) 6234 { 6235 (*pos)++; 6236 return __g_next(m, pos); 6237 } 6238 6239 static void *g_start(struct seq_file *m, loff_t *pos) 6240 { 6241 struct ftrace_graph_data *fgd = m->private; 6242 6243 mutex_lock(&graph_lock); 6244 6245 if (fgd->type == GRAPH_FILTER_FUNCTION) 6246 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6247 lockdep_is_held(&graph_lock)); 6248 else 6249 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6250 lockdep_is_held(&graph_lock)); 6251 6252 /* Nothing, tell g_show to print all functions are enabled */ 6253 if (ftrace_hash_empty(fgd->hash) && !*pos) 6254 return FTRACE_GRAPH_EMPTY; 6255 6256 fgd->idx = 0; 6257 fgd->entry = NULL; 6258 return __g_next(m, pos); 6259 } 6260 6261 static void g_stop(struct seq_file *m, void *p) 6262 { 6263 mutex_unlock(&graph_lock); 6264 } 6265 6266 static int g_show(struct seq_file *m, void *v) 6267 { 6268 struct ftrace_func_entry *entry = v; 6269 6270 if (!entry) 6271 return 0; 6272 6273 if (entry == FTRACE_GRAPH_EMPTY) { 6274 struct ftrace_graph_data *fgd = m->private; 6275 6276 if (fgd->type == GRAPH_FILTER_FUNCTION) 6277 seq_puts(m, "#### all functions enabled ####\n"); 6278 else 6279 seq_puts(m, "#### no functions disabled ####\n"); 6280 return 0; 6281 } 6282 6283 seq_printf(m, "%ps\n", (void *)entry->ip); 6284 6285 return 0; 6286 } 6287 6288 static const struct seq_operations ftrace_graph_seq_ops = { 6289 .start = g_start, 6290 .next = g_next, 6291 .stop = g_stop, 6292 .show = g_show, 6293 }; 6294 6295 static int 6296 __ftrace_graph_open(struct inode *inode, struct file *file, 6297 struct ftrace_graph_data *fgd) 6298 { 6299 int ret; 6300 struct ftrace_hash *new_hash = NULL; 6301 6302 ret = security_locked_down(LOCKDOWN_TRACEFS); 6303 if (ret) 6304 return ret; 6305 6306 if (file->f_mode & FMODE_WRITE) { 6307 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6308 6309 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6310 return -ENOMEM; 6311 6312 if (file->f_flags & O_TRUNC) 6313 new_hash = alloc_ftrace_hash(size_bits); 6314 else 6315 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6316 fgd->hash); 6317 if (!new_hash) { 6318 ret = -ENOMEM; 6319 goto out; 6320 } 6321 } 6322 6323 if (file->f_mode & FMODE_READ) { 6324 ret = seq_open(file, &ftrace_graph_seq_ops); 6325 if (!ret) { 6326 struct seq_file *m = file->private_data; 6327 m->private = fgd; 6328 } else { 6329 /* Failed */ 6330 free_ftrace_hash(new_hash); 6331 new_hash = NULL; 6332 } 6333 } else 6334 file->private_data = fgd; 6335 6336 out: 6337 if (ret < 0 && file->f_mode & FMODE_WRITE) 6338 trace_parser_put(&fgd->parser); 6339 6340 fgd->new_hash = new_hash; 6341 6342 /* 6343 * All uses of fgd->hash must be taken with the graph_lock 6344 * held. The graph_lock is going to be released, so force 6345 * fgd->hash to be reinitialized when it is taken again. 6346 */ 6347 fgd->hash = NULL; 6348 6349 return ret; 6350 } 6351 6352 static int 6353 ftrace_graph_open(struct inode *inode, struct file *file) 6354 { 6355 struct ftrace_graph_data *fgd; 6356 int ret; 6357 6358 if (unlikely(ftrace_disabled)) 6359 return -ENODEV; 6360 6361 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6362 if (fgd == NULL) 6363 return -ENOMEM; 6364 6365 mutex_lock(&graph_lock); 6366 6367 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6368 lockdep_is_held(&graph_lock)); 6369 fgd->type = GRAPH_FILTER_FUNCTION; 6370 fgd->seq_ops = &ftrace_graph_seq_ops; 6371 6372 ret = __ftrace_graph_open(inode, file, fgd); 6373 if (ret < 0) 6374 kfree(fgd); 6375 6376 mutex_unlock(&graph_lock); 6377 return ret; 6378 } 6379 6380 static int 6381 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6382 { 6383 struct ftrace_graph_data *fgd; 6384 int ret; 6385 6386 if (unlikely(ftrace_disabled)) 6387 return -ENODEV; 6388 6389 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6390 if (fgd == NULL) 6391 return -ENOMEM; 6392 6393 mutex_lock(&graph_lock); 6394 6395 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6396 lockdep_is_held(&graph_lock)); 6397 fgd->type = GRAPH_FILTER_NOTRACE; 6398 fgd->seq_ops = &ftrace_graph_seq_ops; 6399 6400 ret = __ftrace_graph_open(inode, file, fgd); 6401 if (ret < 0) 6402 kfree(fgd); 6403 6404 mutex_unlock(&graph_lock); 6405 return ret; 6406 } 6407 6408 static int 6409 ftrace_graph_release(struct inode *inode, struct file *file) 6410 { 6411 struct ftrace_graph_data *fgd; 6412 struct ftrace_hash *old_hash, *new_hash; 6413 struct trace_parser *parser; 6414 int ret = 0; 6415 6416 if (file->f_mode & FMODE_READ) { 6417 struct seq_file *m = file->private_data; 6418 6419 fgd = m->private; 6420 seq_release(inode, file); 6421 } else { 6422 fgd = file->private_data; 6423 } 6424 6425 6426 if (file->f_mode & FMODE_WRITE) { 6427 6428 parser = &fgd->parser; 6429 6430 if (trace_parser_loaded((parser))) { 6431 ret = ftrace_graph_set_hash(fgd->new_hash, 6432 parser->buffer); 6433 } 6434 6435 trace_parser_put(parser); 6436 6437 new_hash = __ftrace_hash_move(fgd->new_hash); 6438 if (!new_hash) { 6439 ret = -ENOMEM; 6440 goto out; 6441 } 6442 6443 mutex_lock(&graph_lock); 6444 6445 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6446 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6447 lockdep_is_held(&graph_lock)); 6448 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6449 } else { 6450 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6451 lockdep_is_held(&graph_lock)); 6452 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6453 } 6454 6455 mutex_unlock(&graph_lock); 6456 6457 /* 6458 * We need to do a hard force of sched synchronization. 6459 * This is because we use preempt_disable() to do RCU, but 6460 * the function tracers can be called where RCU is not watching 6461 * (like before user_exit()). We can not rely on the RCU 6462 * infrastructure to do the synchronization, thus we must do it 6463 * ourselves. 6464 */ 6465 if (old_hash != EMPTY_HASH) 6466 synchronize_rcu_tasks_rude(); 6467 6468 free_ftrace_hash(old_hash); 6469 } 6470 6471 out: 6472 free_ftrace_hash(fgd->new_hash); 6473 kfree(fgd); 6474 6475 return ret; 6476 } 6477 6478 static int 6479 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6480 { 6481 struct ftrace_glob func_g; 6482 struct dyn_ftrace *rec; 6483 struct ftrace_page *pg; 6484 struct ftrace_func_entry *entry; 6485 int fail = 1; 6486 int not; 6487 6488 /* decode regex */ 6489 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6490 &func_g.search, ¬); 6491 6492 func_g.len = strlen(func_g.search); 6493 6494 mutex_lock(&ftrace_lock); 6495 6496 if (unlikely(ftrace_disabled)) { 6497 mutex_unlock(&ftrace_lock); 6498 return -ENODEV; 6499 } 6500 6501 do_for_each_ftrace_rec(pg, rec) { 6502 6503 if (rec->flags & FTRACE_FL_DISABLED) 6504 continue; 6505 6506 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6507 entry = ftrace_lookup_ip(hash, rec->ip); 6508 6509 if (!not) { 6510 fail = 0; 6511 6512 if (entry) 6513 continue; 6514 if (add_hash_entry(hash, rec->ip) < 0) 6515 goto out; 6516 } else { 6517 if (entry) { 6518 free_hash_entry(hash, entry); 6519 fail = 0; 6520 } 6521 } 6522 } 6523 } while_for_each_ftrace_rec(); 6524 out: 6525 mutex_unlock(&ftrace_lock); 6526 6527 if (fail) 6528 return -EINVAL; 6529 6530 return 0; 6531 } 6532 6533 static ssize_t 6534 ftrace_graph_write(struct file *file, const char __user *ubuf, 6535 size_t cnt, loff_t *ppos) 6536 { 6537 ssize_t read, ret = 0; 6538 struct ftrace_graph_data *fgd = file->private_data; 6539 struct trace_parser *parser; 6540 6541 if (!cnt) 6542 return 0; 6543 6544 /* Read mode uses seq functions */ 6545 if (file->f_mode & FMODE_READ) { 6546 struct seq_file *m = file->private_data; 6547 fgd = m->private; 6548 } 6549 6550 parser = &fgd->parser; 6551 6552 read = trace_get_user(parser, ubuf, cnt, ppos); 6553 6554 if (read >= 0 && trace_parser_loaded(parser) && 6555 !trace_parser_cont(parser)) { 6556 6557 ret = ftrace_graph_set_hash(fgd->new_hash, 6558 parser->buffer); 6559 trace_parser_clear(parser); 6560 } 6561 6562 if (!ret) 6563 ret = read; 6564 6565 return ret; 6566 } 6567 6568 static const struct file_operations ftrace_graph_fops = { 6569 .open = ftrace_graph_open, 6570 .read = seq_read, 6571 .write = ftrace_graph_write, 6572 .llseek = tracing_lseek, 6573 .release = ftrace_graph_release, 6574 }; 6575 6576 static const struct file_operations ftrace_graph_notrace_fops = { 6577 .open = ftrace_graph_notrace_open, 6578 .read = seq_read, 6579 .write = ftrace_graph_write, 6580 .llseek = tracing_lseek, 6581 .release = ftrace_graph_release, 6582 }; 6583 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6584 6585 void ftrace_create_filter_files(struct ftrace_ops *ops, 6586 struct dentry *parent) 6587 { 6588 6589 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6590 ops, &ftrace_filter_fops); 6591 6592 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6593 ops, &ftrace_notrace_fops); 6594 } 6595 6596 /* 6597 * The name "destroy_filter_files" is really a misnomer. Although 6598 * in the future, it may actually delete the files, but this is 6599 * really intended to make sure the ops passed in are disabled 6600 * and that when this function returns, the caller is free to 6601 * free the ops. 6602 * 6603 * The "destroy" name is only to match the "create" name that this 6604 * should be paired with. 6605 */ 6606 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6607 { 6608 mutex_lock(&ftrace_lock); 6609 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6610 ftrace_shutdown(ops, 0); 6611 ops->flags |= FTRACE_OPS_FL_DELETED; 6612 ftrace_free_filter(ops); 6613 mutex_unlock(&ftrace_lock); 6614 } 6615 6616 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6617 { 6618 6619 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6620 d_tracer, NULL, &ftrace_avail_fops); 6621 6622 trace_create_file("enabled_functions", TRACE_MODE_READ, 6623 d_tracer, NULL, &ftrace_enabled_fops); 6624 6625 ftrace_create_filter_files(&global_ops, d_tracer); 6626 6627 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6628 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6629 NULL, 6630 &ftrace_graph_fops); 6631 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6632 NULL, 6633 &ftrace_graph_notrace_fops); 6634 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6635 6636 return 0; 6637 } 6638 6639 static int ftrace_cmp_ips(const void *a, const void *b) 6640 { 6641 const unsigned long *ipa = a; 6642 const unsigned long *ipb = b; 6643 6644 if (*ipa > *ipb) 6645 return 1; 6646 if (*ipa < *ipb) 6647 return -1; 6648 return 0; 6649 } 6650 6651 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6652 static void test_is_sorted(unsigned long *start, unsigned long count) 6653 { 6654 int i; 6655 6656 for (i = 1; i < count; i++) { 6657 if (WARN(start[i - 1] > start[i], 6658 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6659 (void *)start[i - 1], start[i - 1], 6660 (void *)start[i], start[i])) 6661 break; 6662 } 6663 if (i == count) 6664 pr_info("ftrace section at %px sorted properly\n", start); 6665 } 6666 #else 6667 static void test_is_sorted(unsigned long *start, unsigned long count) 6668 { 6669 } 6670 #endif 6671 6672 static int ftrace_process_locs(struct module *mod, 6673 unsigned long *start, 6674 unsigned long *end) 6675 { 6676 struct ftrace_page *start_pg; 6677 struct ftrace_page *pg; 6678 struct dyn_ftrace *rec; 6679 unsigned long count; 6680 unsigned long *p; 6681 unsigned long addr; 6682 unsigned long flags = 0; /* Shut up gcc */ 6683 int ret = -ENOMEM; 6684 6685 count = end - start; 6686 6687 if (!count) 6688 return 0; 6689 6690 /* 6691 * Sorting mcount in vmlinux at build time depend on 6692 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6693 * modules can not be sorted at build time. 6694 */ 6695 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6696 sort(start, count, sizeof(*start), 6697 ftrace_cmp_ips, NULL); 6698 } else { 6699 test_is_sorted(start, count); 6700 } 6701 6702 start_pg = ftrace_allocate_pages(count); 6703 if (!start_pg) 6704 return -ENOMEM; 6705 6706 mutex_lock(&ftrace_lock); 6707 6708 /* 6709 * Core and each module needs their own pages, as 6710 * modules will free them when they are removed. 6711 * Force a new page to be allocated for modules. 6712 */ 6713 if (!mod) { 6714 WARN_ON(ftrace_pages || ftrace_pages_start); 6715 /* First initialization */ 6716 ftrace_pages = ftrace_pages_start = start_pg; 6717 } else { 6718 if (!ftrace_pages) 6719 goto out; 6720 6721 if (WARN_ON(ftrace_pages->next)) { 6722 /* Hmm, we have free pages? */ 6723 while (ftrace_pages->next) 6724 ftrace_pages = ftrace_pages->next; 6725 } 6726 6727 ftrace_pages->next = start_pg; 6728 } 6729 6730 p = start; 6731 pg = start_pg; 6732 while (p < end) { 6733 unsigned long end_offset; 6734 addr = ftrace_call_adjust(*p++); 6735 /* 6736 * Some architecture linkers will pad between 6737 * the different mcount_loc sections of different 6738 * object files to satisfy alignments. 6739 * Skip any NULL pointers. 6740 */ 6741 if (!addr) 6742 continue; 6743 6744 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6745 if (end_offset > PAGE_SIZE << pg->order) { 6746 /* We should have allocated enough */ 6747 if (WARN_ON(!pg->next)) 6748 break; 6749 pg = pg->next; 6750 } 6751 6752 rec = &pg->records[pg->index++]; 6753 rec->ip = addr; 6754 } 6755 6756 /* We should have used all pages */ 6757 WARN_ON(pg->next); 6758 6759 /* Assign the last page to ftrace_pages */ 6760 ftrace_pages = pg; 6761 6762 /* 6763 * We only need to disable interrupts on start up 6764 * because we are modifying code that an interrupt 6765 * may execute, and the modification is not atomic. 6766 * But for modules, nothing runs the code we modify 6767 * until we are finished with it, and there's no 6768 * reason to cause large interrupt latencies while we do it. 6769 */ 6770 if (!mod) 6771 local_irq_save(flags); 6772 ftrace_update_code(mod, start_pg); 6773 if (!mod) 6774 local_irq_restore(flags); 6775 ret = 0; 6776 out: 6777 mutex_unlock(&ftrace_lock); 6778 6779 return ret; 6780 } 6781 6782 struct ftrace_mod_func { 6783 struct list_head list; 6784 char *name; 6785 unsigned long ip; 6786 unsigned int size; 6787 }; 6788 6789 struct ftrace_mod_map { 6790 struct rcu_head rcu; 6791 struct list_head list; 6792 struct module *mod; 6793 unsigned long start_addr; 6794 unsigned long end_addr; 6795 struct list_head funcs; 6796 unsigned int num_funcs; 6797 }; 6798 6799 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6800 unsigned long *value, char *type, 6801 char *name, char *module_name, 6802 int *exported) 6803 { 6804 struct ftrace_ops *op; 6805 6806 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6807 if (!op->trampoline || symnum--) 6808 continue; 6809 *value = op->trampoline; 6810 *type = 't'; 6811 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6812 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6813 *exported = 0; 6814 return 0; 6815 } 6816 6817 return -ERANGE; 6818 } 6819 6820 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 6821 /* 6822 * Check if the current ops references the given ip. 6823 * 6824 * If the ops traces all functions, then it was already accounted for. 6825 * If the ops does not trace the current record function, skip it. 6826 * If the ops ignores the function via notrace filter, skip it. 6827 */ 6828 static bool 6829 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 6830 { 6831 /* If ops isn't enabled, ignore it */ 6832 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6833 return false; 6834 6835 /* If ops traces all then it includes this function */ 6836 if (ops_traces_mod(ops)) 6837 return true; 6838 6839 /* The function must be in the filter */ 6840 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 6841 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 6842 return false; 6843 6844 /* If in notrace hash, we ignore it too */ 6845 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 6846 return false; 6847 6848 return true; 6849 } 6850 #endif 6851 6852 #ifdef CONFIG_MODULES 6853 6854 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6855 6856 static LIST_HEAD(ftrace_mod_maps); 6857 6858 static int referenced_filters(struct dyn_ftrace *rec) 6859 { 6860 struct ftrace_ops *ops; 6861 int cnt = 0; 6862 6863 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6864 if (ops_references_ip(ops, rec->ip)) { 6865 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6866 continue; 6867 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6868 continue; 6869 cnt++; 6870 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6871 rec->flags |= FTRACE_FL_REGS; 6872 if (cnt == 1 && ops->trampoline) 6873 rec->flags |= FTRACE_FL_TRAMP; 6874 else 6875 rec->flags &= ~FTRACE_FL_TRAMP; 6876 } 6877 } 6878 6879 return cnt; 6880 } 6881 6882 static void 6883 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6884 { 6885 struct ftrace_func_entry *entry; 6886 struct dyn_ftrace *rec; 6887 int i; 6888 6889 if (ftrace_hash_empty(hash)) 6890 return; 6891 6892 for (i = 0; i < pg->index; i++) { 6893 rec = &pg->records[i]; 6894 entry = __ftrace_lookup_ip(hash, rec->ip); 6895 /* 6896 * Do not allow this rec to match again. 6897 * Yeah, it may waste some memory, but will be removed 6898 * if/when the hash is modified again. 6899 */ 6900 if (entry) 6901 entry->ip = 0; 6902 } 6903 } 6904 6905 /* Clear any records from hashes */ 6906 static void clear_mod_from_hashes(struct ftrace_page *pg) 6907 { 6908 struct trace_array *tr; 6909 6910 mutex_lock(&trace_types_lock); 6911 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6912 if (!tr->ops || !tr->ops->func_hash) 6913 continue; 6914 mutex_lock(&tr->ops->func_hash->regex_lock); 6915 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6916 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6917 mutex_unlock(&tr->ops->func_hash->regex_lock); 6918 } 6919 mutex_unlock(&trace_types_lock); 6920 } 6921 6922 static void ftrace_free_mod_map(struct rcu_head *rcu) 6923 { 6924 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6925 struct ftrace_mod_func *mod_func; 6926 struct ftrace_mod_func *n; 6927 6928 /* All the contents of mod_map are now not visible to readers */ 6929 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6930 kfree(mod_func->name); 6931 list_del(&mod_func->list); 6932 kfree(mod_func); 6933 } 6934 6935 kfree(mod_map); 6936 } 6937 6938 void ftrace_release_mod(struct module *mod) 6939 { 6940 struct ftrace_mod_map *mod_map; 6941 struct ftrace_mod_map *n; 6942 struct dyn_ftrace *rec; 6943 struct ftrace_page **last_pg; 6944 struct ftrace_page *tmp_page = NULL; 6945 struct ftrace_page *pg; 6946 6947 mutex_lock(&ftrace_lock); 6948 6949 if (ftrace_disabled) 6950 goto out_unlock; 6951 6952 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6953 if (mod_map->mod == mod) { 6954 list_del_rcu(&mod_map->list); 6955 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6956 break; 6957 } 6958 } 6959 6960 /* 6961 * Each module has its own ftrace_pages, remove 6962 * them from the list. 6963 */ 6964 last_pg = &ftrace_pages_start; 6965 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6966 rec = &pg->records[0]; 6967 if (within_module_core(rec->ip, mod) || 6968 within_module_init(rec->ip, mod)) { 6969 /* 6970 * As core pages are first, the first 6971 * page should never be a module page. 6972 */ 6973 if (WARN_ON(pg == ftrace_pages_start)) 6974 goto out_unlock; 6975 6976 /* Check if we are deleting the last page */ 6977 if (pg == ftrace_pages) 6978 ftrace_pages = next_to_ftrace_page(last_pg); 6979 6980 ftrace_update_tot_cnt -= pg->index; 6981 *last_pg = pg->next; 6982 6983 pg->next = tmp_page; 6984 tmp_page = pg; 6985 } else 6986 last_pg = &pg->next; 6987 } 6988 out_unlock: 6989 mutex_unlock(&ftrace_lock); 6990 6991 for (pg = tmp_page; pg; pg = tmp_page) { 6992 6993 /* Needs to be called outside of ftrace_lock */ 6994 clear_mod_from_hashes(pg); 6995 6996 if (pg->records) { 6997 free_pages((unsigned long)pg->records, pg->order); 6998 ftrace_number_of_pages -= 1 << pg->order; 6999 } 7000 tmp_page = pg->next; 7001 kfree(pg); 7002 ftrace_number_of_groups--; 7003 } 7004 } 7005 7006 void ftrace_module_enable(struct module *mod) 7007 { 7008 struct dyn_ftrace *rec; 7009 struct ftrace_page *pg; 7010 7011 mutex_lock(&ftrace_lock); 7012 7013 if (ftrace_disabled) 7014 goto out_unlock; 7015 7016 /* 7017 * If the tracing is enabled, go ahead and enable the record. 7018 * 7019 * The reason not to enable the record immediately is the 7020 * inherent check of ftrace_make_nop/ftrace_make_call for 7021 * correct previous instructions. Making first the NOP 7022 * conversion puts the module to the correct state, thus 7023 * passing the ftrace_make_call check. 7024 * 7025 * We also delay this to after the module code already set the 7026 * text to read-only, as we now need to set it back to read-write 7027 * so that we can modify the text. 7028 */ 7029 if (ftrace_start_up) 7030 ftrace_arch_code_modify_prepare(); 7031 7032 do_for_each_ftrace_rec(pg, rec) { 7033 int cnt; 7034 /* 7035 * do_for_each_ftrace_rec() is a double loop. 7036 * module text shares the pg. If a record is 7037 * not part of this module, then skip this pg, 7038 * which the "break" will do. 7039 */ 7040 if (!within_module_core(rec->ip, mod) && 7041 !within_module_init(rec->ip, mod)) 7042 break; 7043 7044 /* Weak functions should still be ignored */ 7045 if (!test_for_valid_rec(rec)) { 7046 /* Clear all other flags. Should not be enabled anyway */ 7047 rec->flags = FTRACE_FL_DISABLED; 7048 continue; 7049 } 7050 7051 cnt = 0; 7052 7053 /* 7054 * When adding a module, we need to check if tracers are 7055 * currently enabled and if they are, and can trace this record, 7056 * we need to enable the module functions as well as update the 7057 * reference counts for those function records. 7058 */ 7059 if (ftrace_start_up) 7060 cnt += referenced_filters(rec); 7061 7062 rec->flags &= ~FTRACE_FL_DISABLED; 7063 rec->flags += cnt; 7064 7065 if (ftrace_start_up && cnt) { 7066 int failed = __ftrace_replace_code(rec, 1); 7067 if (failed) { 7068 ftrace_bug(failed, rec); 7069 goto out_loop; 7070 } 7071 } 7072 7073 } while_for_each_ftrace_rec(); 7074 7075 out_loop: 7076 if (ftrace_start_up) 7077 ftrace_arch_code_modify_post_process(); 7078 7079 out_unlock: 7080 mutex_unlock(&ftrace_lock); 7081 7082 process_cached_mods(mod->name); 7083 } 7084 7085 void ftrace_module_init(struct module *mod) 7086 { 7087 int ret; 7088 7089 if (ftrace_disabled || !mod->num_ftrace_callsites) 7090 return; 7091 7092 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7093 mod->ftrace_callsites + mod->num_ftrace_callsites); 7094 if (ret) 7095 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7096 mod->name); 7097 } 7098 7099 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7100 struct dyn_ftrace *rec) 7101 { 7102 struct ftrace_mod_func *mod_func; 7103 unsigned long symsize; 7104 unsigned long offset; 7105 char str[KSYM_SYMBOL_LEN]; 7106 char *modname; 7107 const char *ret; 7108 7109 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7110 if (!ret) 7111 return; 7112 7113 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7114 if (!mod_func) 7115 return; 7116 7117 mod_func->name = kstrdup(str, GFP_KERNEL); 7118 if (!mod_func->name) { 7119 kfree(mod_func); 7120 return; 7121 } 7122 7123 mod_func->ip = rec->ip - offset; 7124 mod_func->size = symsize; 7125 7126 mod_map->num_funcs++; 7127 7128 list_add_rcu(&mod_func->list, &mod_map->funcs); 7129 } 7130 7131 static struct ftrace_mod_map * 7132 allocate_ftrace_mod_map(struct module *mod, 7133 unsigned long start, unsigned long end) 7134 { 7135 struct ftrace_mod_map *mod_map; 7136 7137 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7138 if (!mod_map) 7139 return NULL; 7140 7141 mod_map->mod = mod; 7142 mod_map->start_addr = start; 7143 mod_map->end_addr = end; 7144 mod_map->num_funcs = 0; 7145 7146 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7147 7148 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7149 7150 return mod_map; 7151 } 7152 7153 static const char * 7154 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7155 unsigned long addr, unsigned long *size, 7156 unsigned long *off, char *sym) 7157 { 7158 struct ftrace_mod_func *found_func = NULL; 7159 struct ftrace_mod_func *mod_func; 7160 7161 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7162 if (addr >= mod_func->ip && 7163 addr < mod_func->ip + mod_func->size) { 7164 found_func = mod_func; 7165 break; 7166 } 7167 } 7168 7169 if (found_func) { 7170 if (size) 7171 *size = found_func->size; 7172 if (off) 7173 *off = addr - found_func->ip; 7174 if (sym) 7175 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 7176 7177 return found_func->name; 7178 } 7179 7180 return NULL; 7181 } 7182 7183 const char * 7184 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7185 unsigned long *off, char **modname, char *sym) 7186 { 7187 struct ftrace_mod_map *mod_map; 7188 const char *ret = NULL; 7189 7190 /* mod_map is freed via call_rcu() */ 7191 preempt_disable(); 7192 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7193 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7194 if (ret) { 7195 if (modname) 7196 *modname = mod_map->mod->name; 7197 break; 7198 } 7199 } 7200 preempt_enable(); 7201 7202 return ret; 7203 } 7204 7205 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7206 char *type, char *name, 7207 char *module_name, int *exported) 7208 { 7209 struct ftrace_mod_map *mod_map; 7210 struct ftrace_mod_func *mod_func; 7211 int ret; 7212 7213 preempt_disable(); 7214 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7215 7216 if (symnum >= mod_map->num_funcs) { 7217 symnum -= mod_map->num_funcs; 7218 continue; 7219 } 7220 7221 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7222 if (symnum > 1) { 7223 symnum--; 7224 continue; 7225 } 7226 7227 *value = mod_func->ip; 7228 *type = 'T'; 7229 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7230 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7231 *exported = 1; 7232 preempt_enable(); 7233 return 0; 7234 } 7235 WARN_ON(1); 7236 break; 7237 } 7238 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7239 module_name, exported); 7240 preempt_enable(); 7241 return ret; 7242 } 7243 7244 #else 7245 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7246 struct dyn_ftrace *rec) { } 7247 static inline struct ftrace_mod_map * 7248 allocate_ftrace_mod_map(struct module *mod, 7249 unsigned long start, unsigned long end) 7250 { 7251 return NULL; 7252 } 7253 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7254 char *type, char *name, char *module_name, 7255 int *exported) 7256 { 7257 int ret; 7258 7259 preempt_disable(); 7260 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7261 module_name, exported); 7262 preempt_enable(); 7263 return ret; 7264 } 7265 #endif /* CONFIG_MODULES */ 7266 7267 struct ftrace_init_func { 7268 struct list_head list; 7269 unsigned long ip; 7270 }; 7271 7272 /* Clear any init ips from hashes */ 7273 static void 7274 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7275 { 7276 struct ftrace_func_entry *entry; 7277 7278 entry = ftrace_lookup_ip(hash, func->ip); 7279 /* 7280 * Do not allow this rec to match again. 7281 * Yeah, it may waste some memory, but will be removed 7282 * if/when the hash is modified again. 7283 */ 7284 if (entry) 7285 entry->ip = 0; 7286 } 7287 7288 static void 7289 clear_func_from_hashes(struct ftrace_init_func *func) 7290 { 7291 struct trace_array *tr; 7292 7293 mutex_lock(&trace_types_lock); 7294 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7295 if (!tr->ops || !tr->ops->func_hash) 7296 continue; 7297 mutex_lock(&tr->ops->func_hash->regex_lock); 7298 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7299 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7300 mutex_unlock(&tr->ops->func_hash->regex_lock); 7301 } 7302 mutex_unlock(&trace_types_lock); 7303 } 7304 7305 static void add_to_clear_hash_list(struct list_head *clear_list, 7306 struct dyn_ftrace *rec) 7307 { 7308 struct ftrace_init_func *func; 7309 7310 func = kmalloc(sizeof(*func), GFP_KERNEL); 7311 if (!func) { 7312 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7313 return; 7314 } 7315 7316 func->ip = rec->ip; 7317 list_add(&func->list, clear_list); 7318 } 7319 7320 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7321 { 7322 unsigned long start = (unsigned long)(start_ptr); 7323 unsigned long end = (unsigned long)(end_ptr); 7324 struct ftrace_page **last_pg = &ftrace_pages_start; 7325 struct ftrace_page *pg; 7326 struct dyn_ftrace *rec; 7327 struct dyn_ftrace key; 7328 struct ftrace_mod_map *mod_map = NULL; 7329 struct ftrace_init_func *func, *func_next; 7330 struct list_head clear_hash; 7331 7332 INIT_LIST_HEAD(&clear_hash); 7333 7334 key.ip = start; 7335 key.flags = end; /* overload flags, as it is unsigned long */ 7336 7337 mutex_lock(&ftrace_lock); 7338 7339 /* 7340 * If we are freeing module init memory, then check if 7341 * any tracer is active. If so, we need to save a mapping of 7342 * the module functions being freed with the address. 7343 */ 7344 if (mod && ftrace_ops_list != &ftrace_list_end) 7345 mod_map = allocate_ftrace_mod_map(mod, start, end); 7346 7347 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7348 if (end < pg->records[0].ip || 7349 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7350 continue; 7351 again: 7352 rec = bsearch(&key, pg->records, pg->index, 7353 sizeof(struct dyn_ftrace), 7354 ftrace_cmp_recs); 7355 if (!rec) 7356 continue; 7357 7358 /* rec will be cleared from hashes after ftrace_lock unlock */ 7359 add_to_clear_hash_list(&clear_hash, rec); 7360 7361 if (mod_map) 7362 save_ftrace_mod_rec(mod_map, rec); 7363 7364 pg->index--; 7365 ftrace_update_tot_cnt--; 7366 if (!pg->index) { 7367 *last_pg = pg->next; 7368 if (pg->records) { 7369 free_pages((unsigned long)pg->records, pg->order); 7370 ftrace_number_of_pages -= 1 << pg->order; 7371 } 7372 ftrace_number_of_groups--; 7373 kfree(pg); 7374 pg = container_of(last_pg, struct ftrace_page, next); 7375 if (!(*last_pg)) 7376 ftrace_pages = pg; 7377 continue; 7378 } 7379 memmove(rec, rec + 1, 7380 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7381 /* More than one function may be in this block */ 7382 goto again; 7383 } 7384 mutex_unlock(&ftrace_lock); 7385 7386 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7387 clear_func_from_hashes(func); 7388 kfree(func); 7389 } 7390 } 7391 7392 void __init ftrace_free_init_mem(void) 7393 { 7394 void *start = (void *)(&__init_begin); 7395 void *end = (void *)(&__init_end); 7396 7397 ftrace_boot_snapshot(); 7398 7399 ftrace_free_mem(NULL, start, end); 7400 } 7401 7402 int __init __weak ftrace_dyn_arch_init(void) 7403 { 7404 return 0; 7405 } 7406 7407 void __init ftrace_init(void) 7408 { 7409 extern unsigned long __start_mcount_loc[]; 7410 extern unsigned long __stop_mcount_loc[]; 7411 unsigned long count, flags; 7412 int ret; 7413 7414 local_irq_save(flags); 7415 ret = ftrace_dyn_arch_init(); 7416 local_irq_restore(flags); 7417 if (ret) 7418 goto failed; 7419 7420 count = __stop_mcount_loc - __start_mcount_loc; 7421 if (!count) { 7422 pr_info("ftrace: No functions to be traced?\n"); 7423 goto failed; 7424 } 7425 7426 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7427 count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 7428 7429 ret = ftrace_process_locs(NULL, 7430 __start_mcount_loc, 7431 __stop_mcount_loc); 7432 if (ret) { 7433 pr_warn("ftrace: failed to allocate entries for functions\n"); 7434 goto failed; 7435 } 7436 7437 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7438 ftrace_number_of_pages, ftrace_number_of_groups); 7439 7440 last_ftrace_enabled = ftrace_enabled = 1; 7441 7442 set_ftrace_early_filters(); 7443 7444 return; 7445 failed: 7446 ftrace_disabled = 1; 7447 } 7448 7449 /* Do nothing if arch does not support this */ 7450 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7451 { 7452 } 7453 7454 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7455 { 7456 unsigned long trampoline = ops->trampoline; 7457 7458 arch_ftrace_update_trampoline(ops); 7459 if (ops->trampoline && ops->trampoline != trampoline && 7460 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7461 /* Add to kallsyms before the perf events */ 7462 ftrace_add_trampoline_to_kallsyms(ops); 7463 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7464 ops->trampoline, ops->trampoline_size, false, 7465 FTRACE_TRAMPOLINE_SYM); 7466 /* 7467 * Record the perf text poke event after the ksymbol register 7468 * event. 7469 */ 7470 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7471 (void *)ops->trampoline, 7472 ops->trampoline_size); 7473 } 7474 } 7475 7476 void ftrace_init_trace_array(struct trace_array *tr) 7477 { 7478 INIT_LIST_HEAD(&tr->func_probes); 7479 INIT_LIST_HEAD(&tr->mod_trace); 7480 INIT_LIST_HEAD(&tr->mod_notrace); 7481 } 7482 #else 7483 7484 struct ftrace_ops global_ops = { 7485 .func = ftrace_stub, 7486 .flags = FTRACE_OPS_FL_INITIALIZED | 7487 FTRACE_OPS_FL_PID, 7488 }; 7489 7490 static int __init ftrace_nodyn_init(void) 7491 { 7492 ftrace_enabled = 1; 7493 return 0; 7494 } 7495 core_initcall(ftrace_nodyn_init); 7496 7497 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7498 static inline void ftrace_startup_all(int command) { } 7499 7500 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7501 { 7502 } 7503 7504 #endif /* CONFIG_DYNAMIC_FTRACE */ 7505 7506 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7507 { 7508 tr->ops = &global_ops; 7509 tr->ops->private = tr; 7510 ftrace_init_trace_array(tr); 7511 } 7512 7513 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7514 { 7515 /* If we filter on pids, update to use the pid function */ 7516 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7517 if (WARN_ON(tr->ops->func != ftrace_stub)) 7518 printk("ftrace ops had %pS for function\n", 7519 tr->ops->func); 7520 } 7521 tr->ops->func = func; 7522 tr->ops->private = tr; 7523 } 7524 7525 void ftrace_reset_array_ops(struct trace_array *tr) 7526 { 7527 tr->ops->func = ftrace_stub; 7528 } 7529 7530 static nokprobe_inline void 7531 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7532 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7533 { 7534 struct pt_regs *regs = ftrace_get_regs(fregs); 7535 struct ftrace_ops *op; 7536 int bit; 7537 7538 /* 7539 * The ftrace_test_and_set_recursion() will disable preemption, 7540 * which is required since some of the ops may be dynamically 7541 * allocated, they must be freed after a synchronize_rcu(). 7542 */ 7543 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7544 if (bit < 0) 7545 return; 7546 7547 do_for_each_ftrace_op(op, ftrace_ops_list) { 7548 /* Stub functions don't need to be called nor tested */ 7549 if (op->flags & FTRACE_OPS_FL_STUB) 7550 continue; 7551 /* 7552 * Check the following for each ops before calling their func: 7553 * if RCU flag is set, then rcu_is_watching() must be true 7554 * Otherwise test if the ip matches the ops filter 7555 * 7556 * If any of the above fails then the op->func() is not executed. 7557 */ 7558 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7559 ftrace_ops_test(op, ip, regs)) { 7560 if (FTRACE_WARN_ON(!op->func)) { 7561 pr_warn("op=%p %pS\n", op, op); 7562 goto out; 7563 } 7564 op->func(ip, parent_ip, op, fregs); 7565 } 7566 } while_for_each_ftrace_op(op); 7567 out: 7568 trace_clear_recursion(bit); 7569 } 7570 7571 /* 7572 * Some archs only support passing ip and parent_ip. Even though 7573 * the list function ignores the op parameter, we do not want any 7574 * C side effects, where a function is called without the caller 7575 * sending a third parameter. 7576 * Archs are to support both the regs and ftrace_ops at the same time. 7577 * If they support ftrace_ops, it is assumed they support regs. 7578 * If call backs want to use regs, they must either check for regs 7579 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7580 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7581 * An architecture can pass partial regs with ftrace_ops and still 7582 * set the ARCH_SUPPORTS_FTRACE_OPS. 7583 * 7584 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7585 * arch_ftrace_ops_list_func. 7586 */ 7587 #if ARCH_SUPPORTS_FTRACE_OPS 7588 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7589 struct ftrace_ops *op, struct ftrace_regs *fregs) 7590 { 7591 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7592 } 7593 #else 7594 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7595 { 7596 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7597 } 7598 #endif 7599 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7600 7601 /* 7602 * If there's only one function registered but it does not support 7603 * recursion, needs RCU protection, then this function will be called 7604 * by the mcount trampoline. 7605 */ 7606 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7607 struct ftrace_ops *op, struct ftrace_regs *fregs) 7608 { 7609 int bit; 7610 7611 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7612 if (bit < 0) 7613 return; 7614 7615 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7616 op->func(ip, parent_ip, op, fregs); 7617 7618 trace_clear_recursion(bit); 7619 } 7620 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7621 7622 /** 7623 * ftrace_ops_get_func - get the function a trampoline should call 7624 * @ops: the ops to get the function for 7625 * 7626 * Normally the mcount trampoline will call the ops->func, but there 7627 * are times that it should not. For example, if the ops does not 7628 * have its own recursion protection, then it should call the 7629 * ftrace_ops_assist_func() instead. 7630 * 7631 * Returns the function that the trampoline should call for @ops. 7632 */ 7633 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7634 { 7635 /* 7636 * If the function does not handle recursion or needs to be RCU safe, 7637 * then we need to call the assist handler. 7638 */ 7639 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7640 FTRACE_OPS_FL_RCU)) 7641 return ftrace_ops_assist_func; 7642 7643 return ops->func; 7644 } 7645 7646 static void 7647 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7648 struct task_struct *prev, 7649 struct task_struct *next, 7650 unsigned int prev_state) 7651 { 7652 struct trace_array *tr = data; 7653 struct trace_pid_list *pid_list; 7654 struct trace_pid_list *no_pid_list; 7655 7656 pid_list = rcu_dereference_sched(tr->function_pids); 7657 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7658 7659 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7660 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7661 FTRACE_PID_IGNORE); 7662 else 7663 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7664 next->pid); 7665 } 7666 7667 static void 7668 ftrace_pid_follow_sched_process_fork(void *data, 7669 struct task_struct *self, 7670 struct task_struct *task) 7671 { 7672 struct trace_pid_list *pid_list; 7673 struct trace_array *tr = data; 7674 7675 pid_list = rcu_dereference_sched(tr->function_pids); 7676 trace_filter_add_remove_task(pid_list, self, task); 7677 7678 pid_list = rcu_dereference_sched(tr->function_no_pids); 7679 trace_filter_add_remove_task(pid_list, self, task); 7680 } 7681 7682 static void 7683 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7684 { 7685 struct trace_pid_list *pid_list; 7686 struct trace_array *tr = data; 7687 7688 pid_list = rcu_dereference_sched(tr->function_pids); 7689 trace_filter_add_remove_task(pid_list, NULL, task); 7690 7691 pid_list = rcu_dereference_sched(tr->function_no_pids); 7692 trace_filter_add_remove_task(pid_list, NULL, task); 7693 } 7694 7695 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7696 { 7697 if (enable) { 7698 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7699 tr); 7700 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7701 tr); 7702 } else { 7703 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7704 tr); 7705 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7706 tr); 7707 } 7708 } 7709 7710 static void clear_ftrace_pids(struct trace_array *tr, int type) 7711 { 7712 struct trace_pid_list *pid_list; 7713 struct trace_pid_list *no_pid_list; 7714 int cpu; 7715 7716 pid_list = rcu_dereference_protected(tr->function_pids, 7717 lockdep_is_held(&ftrace_lock)); 7718 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7719 lockdep_is_held(&ftrace_lock)); 7720 7721 /* Make sure there's something to do */ 7722 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7723 return; 7724 7725 /* See if the pids still need to be checked after this */ 7726 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7727 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7728 for_each_possible_cpu(cpu) 7729 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7730 } 7731 7732 if (type & TRACE_PIDS) 7733 rcu_assign_pointer(tr->function_pids, NULL); 7734 7735 if (type & TRACE_NO_PIDS) 7736 rcu_assign_pointer(tr->function_no_pids, NULL); 7737 7738 /* Wait till all users are no longer using pid filtering */ 7739 synchronize_rcu(); 7740 7741 if ((type & TRACE_PIDS) && pid_list) 7742 trace_pid_list_free(pid_list); 7743 7744 if ((type & TRACE_NO_PIDS) && no_pid_list) 7745 trace_pid_list_free(no_pid_list); 7746 } 7747 7748 void ftrace_clear_pids(struct trace_array *tr) 7749 { 7750 mutex_lock(&ftrace_lock); 7751 7752 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7753 7754 mutex_unlock(&ftrace_lock); 7755 } 7756 7757 static void ftrace_pid_reset(struct trace_array *tr, int type) 7758 { 7759 mutex_lock(&ftrace_lock); 7760 clear_ftrace_pids(tr, type); 7761 7762 ftrace_update_pid_func(); 7763 ftrace_startup_all(0); 7764 7765 mutex_unlock(&ftrace_lock); 7766 } 7767 7768 /* Greater than any max PID */ 7769 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7770 7771 static void *fpid_start(struct seq_file *m, loff_t *pos) 7772 __acquires(RCU) 7773 { 7774 struct trace_pid_list *pid_list; 7775 struct trace_array *tr = m->private; 7776 7777 mutex_lock(&ftrace_lock); 7778 rcu_read_lock_sched(); 7779 7780 pid_list = rcu_dereference_sched(tr->function_pids); 7781 7782 if (!pid_list) 7783 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7784 7785 return trace_pid_start(pid_list, pos); 7786 } 7787 7788 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7789 { 7790 struct trace_array *tr = m->private; 7791 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7792 7793 if (v == FTRACE_NO_PIDS) { 7794 (*pos)++; 7795 return NULL; 7796 } 7797 return trace_pid_next(pid_list, v, pos); 7798 } 7799 7800 static void fpid_stop(struct seq_file *m, void *p) 7801 __releases(RCU) 7802 { 7803 rcu_read_unlock_sched(); 7804 mutex_unlock(&ftrace_lock); 7805 } 7806 7807 static int fpid_show(struct seq_file *m, void *v) 7808 { 7809 if (v == FTRACE_NO_PIDS) { 7810 seq_puts(m, "no pid\n"); 7811 return 0; 7812 } 7813 7814 return trace_pid_show(m, v); 7815 } 7816 7817 static const struct seq_operations ftrace_pid_sops = { 7818 .start = fpid_start, 7819 .next = fpid_next, 7820 .stop = fpid_stop, 7821 .show = fpid_show, 7822 }; 7823 7824 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7825 __acquires(RCU) 7826 { 7827 struct trace_pid_list *pid_list; 7828 struct trace_array *tr = m->private; 7829 7830 mutex_lock(&ftrace_lock); 7831 rcu_read_lock_sched(); 7832 7833 pid_list = rcu_dereference_sched(tr->function_no_pids); 7834 7835 if (!pid_list) 7836 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7837 7838 return trace_pid_start(pid_list, pos); 7839 } 7840 7841 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7842 { 7843 struct trace_array *tr = m->private; 7844 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7845 7846 if (v == FTRACE_NO_PIDS) { 7847 (*pos)++; 7848 return NULL; 7849 } 7850 return trace_pid_next(pid_list, v, pos); 7851 } 7852 7853 static const struct seq_operations ftrace_no_pid_sops = { 7854 .start = fnpid_start, 7855 .next = fnpid_next, 7856 .stop = fpid_stop, 7857 .show = fpid_show, 7858 }; 7859 7860 static int pid_open(struct inode *inode, struct file *file, int type) 7861 { 7862 const struct seq_operations *seq_ops; 7863 struct trace_array *tr = inode->i_private; 7864 struct seq_file *m; 7865 int ret = 0; 7866 7867 ret = tracing_check_open_get_tr(tr); 7868 if (ret) 7869 return ret; 7870 7871 if ((file->f_mode & FMODE_WRITE) && 7872 (file->f_flags & O_TRUNC)) 7873 ftrace_pid_reset(tr, type); 7874 7875 switch (type) { 7876 case TRACE_PIDS: 7877 seq_ops = &ftrace_pid_sops; 7878 break; 7879 case TRACE_NO_PIDS: 7880 seq_ops = &ftrace_no_pid_sops; 7881 break; 7882 default: 7883 trace_array_put(tr); 7884 WARN_ON_ONCE(1); 7885 return -EINVAL; 7886 } 7887 7888 ret = seq_open(file, seq_ops); 7889 if (ret < 0) { 7890 trace_array_put(tr); 7891 } else { 7892 m = file->private_data; 7893 /* copy tr over to seq ops */ 7894 m->private = tr; 7895 } 7896 7897 return ret; 7898 } 7899 7900 static int 7901 ftrace_pid_open(struct inode *inode, struct file *file) 7902 { 7903 return pid_open(inode, file, TRACE_PIDS); 7904 } 7905 7906 static int 7907 ftrace_no_pid_open(struct inode *inode, struct file *file) 7908 { 7909 return pid_open(inode, file, TRACE_NO_PIDS); 7910 } 7911 7912 static void ignore_task_cpu(void *data) 7913 { 7914 struct trace_array *tr = data; 7915 struct trace_pid_list *pid_list; 7916 struct trace_pid_list *no_pid_list; 7917 7918 /* 7919 * This function is called by on_each_cpu() while the 7920 * event_mutex is held. 7921 */ 7922 pid_list = rcu_dereference_protected(tr->function_pids, 7923 mutex_is_locked(&ftrace_lock)); 7924 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7925 mutex_is_locked(&ftrace_lock)); 7926 7927 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7928 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7929 FTRACE_PID_IGNORE); 7930 else 7931 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7932 current->pid); 7933 } 7934 7935 static ssize_t 7936 pid_write(struct file *filp, const char __user *ubuf, 7937 size_t cnt, loff_t *ppos, int type) 7938 { 7939 struct seq_file *m = filp->private_data; 7940 struct trace_array *tr = m->private; 7941 struct trace_pid_list *filtered_pids; 7942 struct trace_pid_list *other_pids; 7943 struct trace_pid_list *pid_list; 7944 ssize_t ret; 7945 7946 if (!cnt) 7947 return 0; 7948 7949 mutex_lock(&ftrace_lock); 7950 7951 switch (type) { 7952 case TRACE_PIDS: 7953 filtered_pids = rcu_dereference_protected(tr->function_pids, 7954 lockdep_is_held(&ftrace_lock)); 7955 other_pids = rcu_dereference_protected(tr->function_no_pids, 7956 lockdep_is_held(&ftrace_lock)); 7957 break; 7958 case TRACE_NO_PIDS: 7959 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7960 lockdep_is_held(&ftrace_lock)); 7961 other_pids = rcu_dereference_protected(tr->function_pids, 7962 lockdep_is_held(&ftrace_lock)); 7963 break; 7964 default: 7965 ret = -EINVAL; 7966 WARN_ON_ONCE(1); 7967 goto out; 7968 } 7969 7970 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7971 if (ret < 0) 7972 goto out; 7973 7974 switch (type) { 7975 case TRACE_PIDS: 7976 rcu_assign_pointer(tr->function_pids, pid_list); 7977 break; 7978 case TRACE_NO_PIDS: 7979 rcu_assign_pointer(tr->function_no_pids, pid_list); 7980 break; 7981 } 7982 7983 7984 if (filtered_pids) { 7985 synchronize_rcu(); 7986 trace_pid_list_free(filtered_pids); 7987 } else if (pid_list && !other_pids) { 7988 /* Register a probe to set whether to ignore the tracing of a task */ 7989 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7990 } 7991 7992 /* 7993 * Ignoring of pids is done at task switch. But we have to 7994 * check for those tasks that are currently running. 7995 * Always do this in case a pid was appended or removed. 7996 */ 7997 on_each_cpu(ignore_task_cpu, tr, 1); 7998 7999 ftrace_update_pid_func(); 8000 ftrace_startup_all(0); 8001 out: 8002 mutex_unlock(&ftrace_lock); 8003 8004 if (ret > 0) 8005 *ppos += ret; 8006 8007 return ret; 8008 } 8009 8010 static ssize_t 8011 ftrace_pid_write(struct file *filp, const char __user *ubuf, 8012 size_t cnt, loff_t *ppos) 8013 { 8014 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 8015 } 8016 8017 static ssize_t 8018 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 8019 size_t cnt, loff_t *ppos) 8020 { 8021 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 8022 } 8023 8024 static int 8025 ftrace_pid_release(struct inode *inode, struct file *file) 8026 { 8027 struct trace_array *tr = inode->i_private; 8028 8029 trace_array_put(tr); 8030 8031 return seq_release(inode, file); 8032 } 8033 8034 static const struct file_operations ftrace_pid_fops = { 8035 .open = ftrace_pid_open, 8036 .write = ftrace_pid_write, 8037 .read = seq_read, 8038 .llseek = tracing_lseek, 8039 .release = ftrace_pid_release, 8040 }; 8041 8042 static const struct file_operations ftrace_no_pid_fops = { 8043 .open = ftrace_no_pid_open, 8044 .write = ftrace_no_pid_write, 8045 .read = seq_read, 8046 .llseek = tracing_lseek, 8047 .release = ftrace_pid_release, 8048 }; 8049 8050 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8051 { 8052 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8053 tr, &ftrace_pid_fops); 8054 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8055 d_tracer, tr, &ftrace_no_pid_fops); 8056 } 8057 8058 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8059 struct dentry *d_tracer) 8060 { 8061 /* Only the top level directory has the dyn_tracefs and profile */ 8062 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8063 8064 ftrace_init_dyn_tracefs(d_tracer); 8065 ftrace_profile_tracefs(d_tracer); 8066 } 8067 8068 /** 8069 * ftrace_kill - kill ftrace 8070 * 8071 * This function should be used by panic code. It stops ftrace 8072 * but in a not so nice way. If you need to simply kill ftrace 8073 * from a non-atomic section, use ftrace_kill. 8074 */ 8075 void ftrace_kill(void) 8076 { 8077 ftrace_disabled = 1; 8078 ftrace_enabled = 0; 8079 ftrace_trace_function = ftrace_stub; 8080 } 8081 8082 /** 8083 * ftrace_is_dead - Test if ftrace is dead or not. 8084 * 8085 * Returns 1 if ftrace is "dead", zero otherwise. 8086 */ 8087 int ftrace_is_dead(void) 8088 { 8089 return ftrace_disabled; 8090 } 8091 8092 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8093 /* 8094 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8095 * it doesn't conflict with any direct ftrace_ops. If there is existing 8096 * direct ftrace_ops on a kernel function being patched, call 8097 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8098 * 8099 * @ops: ftrace_ops being registered. 8100 * 8101 * Returns: 8102 * 0 on success; 8103 * Negative on failure. 8104 */ 8105 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8106 { 8107 struct ftrace_func_entry *entry; 8108 struct ftrace_hash *hash; 8109 struct ftrace_ops *op; 8110 int size, i, ret; 8111 8112 lockdep_assert_held_once(&direct_mutex); 8113 8114 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8115 return 0; 8116 8117 hash = ops->func_hash->filter_hash; 8118 size = 1 << hash->size_bits; 8119 for (i = 0; i < size; i++) { 8120 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8121 unsigned long ip = entry->ip; 8122 bool found_op = false; 8123 8124 mutex_lock(&ftrace_lock); 8125 do_for_each_ftrace_op(op, ftrace_ops_list) { 8126 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8127 continue; 8128 if (ops_references_ip(op, ip)) { 8129 found_op = true; 8130 break; 8131 } 8132 } while_for_each_ftrace_op(op); 8133 mutex_unlock(&ftrace_lock); 8134 8135 if (found_op) { 8136 if (!op->ops_func) 8137 return -EBUSY; 8138 8139 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8140 if (ret) 8141 return ret; 8142 } 8143 } 8144 } 8145 8146 return 0; 8147 } 8148 8149 /* 8150 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8151 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8152 * ops. 8153 */ 8154 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8155 { 8156 struct ftrace_func_entry *entry; 8157 struct ftrace_hash *hash; 8158 struct ftrace_ops *op; 8159 int size, i; 8160 8161 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8162 return; 8163 8164 mutex_lock(&direct_mutex); 8165 8166 hash = ops->func_hash->filter_hash; 8167 size = 1 << hash->size_bits; 8168 for (i = 0; i < size; i++) { 8169 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8170 unsigned long ip = entry->ip; 8171 bool found_op = false; 8172 8173 mutex_lock(&ftrace_lock); 8174 do_for_each_ftrace_op(op, ftrace_ops_list) { 8175 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8176 continue; 8177 if (ops_references_ip(op, ip)) { 8178 found_op = true; 8179 break; 8180 } 8181 } while_for_each_ftrace_op(op); 8182 mutex_unlock(&ftrace_lock); 8183 8184 /* The cleanup is optional, ignore any errors */ 8185 if (found_op && op->ops_func) 8186 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8187 } 8188 } 8189 mutex_unlock(&direct_mutex); 8190 } 8191 8192 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8193 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8194 8195 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8196 8197 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8198 { 8199 return 0; 8200 } 8201 8202 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8203 { 8204 } 8205 8206 #define lock_direct_mutex() do { } while (0) 8207 #define unlock_direct_mutex() do { } while (0) 8208 8209 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8210 8211 /* 8212 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8213 */ 8214 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8215 { 8216 int ret; 8217 8218 ftrace_ops_init(ops); 8219 8220 mutex_lock(&ftrace_lock); 8221 8222 ret = ftrace_startup(ops, 0); 8223 8224 mutex_unlock(&ftrace_lock); 8225 8226 return ret; 8227 } 8228 8229 /** 8230 * register_ftrace_function - register a function for profiling 8231 * @ops: ops structure that holds the function for profiling. 8232 * 8233 * Register a function to be called by all functions in the 8234 * kernel. 8235 * 8236 * Note: @ops->func and all the functions it calls must be labeled 8237 * with "notrace", otherwise it will go into a 8238 * recursive loop. 8239 */ 8240 int register_ftrace_function(struct ftrace_ops *ops) 8241 { 8242 int ret; 8243 8244 lock_direct_mutex(); 8245 ret = prepare_direct_functions_for_ipmodify(ops); 8246 if (ret < 0) 8247 goto out_unlock; 8248 8249 ret = register_ftrace_function_nolock(ops); 8250 8251 out_unlock: 8252 unlock_direct_mutex(); 8253 return ret; 8254 } 8255 EXPORT_SYMBOL_GPL(register_ftrace_function); 8256 8257 /** 8258 * unregister_ftrace_function - unregister a function for profiling. 8259 * @ops: ops structure that holds the function to unregister 8260 * 8261 * Unregister a function that was added to be called by ftrace profiling. 8262 */ 8263 int unregister_ftrace_function(struct ftrace_ops *ops) 8264 { 8265 int ret; 8266 8267 mutex_lock(&ftrace_lock); 8268 ret = ftrace_shutdown(ops, 0); 8269 mutex_unlock(&ftrace_lock); 8270 8271 cleanup_direct_functions_after_ipmodify(ops); 8272 return ret; 8273 } 8274 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8275 8276 static int symbols_cmp(const void *a, const void *b) 8277 { 8278 const char **str_a = (const char **) a; 8279 const char **str_b = (const char **) b; 8280 8281 return strcmp(*str_a, *str_b); 8282 } 8283 8284 struct kallsyms_data { 8285 unsigned long *addrs; 8286 const char **syms; 8287 size_t cnt; 8288 size_t found; 8289 }; 8290 8291 /* This function gets called for all kernel and module symbols 8292 * and returns 1 in case we resolved all the requested symbols, 8293 * 0 otherwise. 8294 */ 8295 static int kallsyms_callback(void *data, const char *name, 8296 struct module *mod, unsigned long addr) 8297 { 8298 struct kallsyms_data *args = data; 8299 const char **sym; 8300 int idx; 8301 8302 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8303 if (!sym) 8304 return 0; 8305 8306 idx = sym - args->syms; 8307 if (args->addrs[idx]) 8308 return 0; 8309 8310 if (!ftrace_location(addr)) 8311 return 0; 8312 8313 args->addrs[idx] = addr; 8314 args->found++; 8315 return args->found == args->cnt ? 1 : 0; 8316 } 8317 8318 /** 8319 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8320 * 8321 * @sorted_syms: array of symbols pointers symbols to resolve, 8322 * must be alphabetically sorted 8323 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8324 * @addrs: array for storing resulting addresses 8325 * 8326 * This function looks up addresses for array of symbols provided in 8327 * @syms array (must be alphabetically sorted) and stores them in 8328 * @addrs array, which needs to be big enough to store at least @cnt 8329 * addresses. 8330 * 8331 * This function returns 0 if all provided symbols are found, 8332 * -ESRCH otherwise. 8333 */ 8334 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8335 { 8336 struct kallsyms_data args; 8337 int found_all; 8338 8339 memset(addrs, 0, sizeof(*addrs) * cnt); 8340 args.addrs = addrs; 8341 args.syms = sorted_syms; 8342 args.cnt = cnt; 8343 args.found = 0; 8344 8345 found_all = kallsyms_on_each_symbol(kallsyms_callback, &args); 8346 if (found_all) 8347 return 0; 8348 found_all = module_kallsyms_on_each_symbol(kallsyms_callback, &args); 8349 return found_all ? 0 : -ESRCH; 8350 } 8351 8352 #ifdef CONFIG_SYSCTL 8353 8354 #ifdef CONFIG_DYNAMIC_FTRACE 8355 static void ftrace_startup_sysctl(void) 8356 { 8357 int command; 8358 8359 if (unlikely(ftrace_disabled)) 8360 return; 8361 8362 /* Force update next time */ 8363 saved_ftrace_func = NULL; 8364 /* ftrace_start_up is true if we want ftrace running */ 8365 if (ftrace_start_up) { 8366 command = FTRACE_UPDATE_CALLS; 8367 if (ftrace_graph_active) 8368 command |= FTRACE_START_FUNC_RET; 8369 ftrace_startup_enable(command); 8370 } 8371 } 8372 8373 static void ftrace_shutdown_sysctl(void) 8374 { 8375 int command; 8376 8377 if (unlikely(ftrace_disabled)) 8378 return; 8379 8380 /* ftrace_start_up is true if ftrace is running */ 8381 if (ftrace_start_up) { 8382 command = FTRACE_DISABLE_CALLS; 8383 if (ftrace_graph_active) 8384 command |= FTRACE_STOP_FUNC_RET; 8385 ftrace_run_update_code(command); 8386 } 8387 } 8388 #else 8389 # define ftrace_startup_sysctl() do { } while (0) 8390 # define ftrace_shutdown_sysctl() do { } while (0) 8391 #endif /* CONFIG_DYNAMIC_FTRACE */ 8392 8393 static bool is_permanent_ops_registered(void) 8394 { 8395 struct ftrace_ops *op; 8396 8397 do_for_each_ftrace_op(op, ftrace_ops_list) { 8398 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8399 return true; 8400 } while_for_each_ftrace_op(op); 8401 8402 return false; 8403 } 8404 8405 static int 8406 ftrace_enable_sysctl(struct ctl_table *table, int write, 8407 void *buffer, size_t *lenp, loff_t *ppos) 8408 { 8409 int ret = -ENODEV; 8410 8411 mutex_lock(&ftrace_lock); 8412 8413 if (unlikely(ftrace_disabled)) 8414 goto out; 8415 8416 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8417 8418 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8419 goto out; 8420 8421 if (ftrace_enabled) { 8422 8423 /* we are starting ftrace again */ 8424 if (rcu_dereference_protected(ftrace_ops_list, 8425 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8426 update_ftrace_function(); 8427 8428 ftrace_startup_sysctl(); 8429 8430 } else { 8431 if (is_permanent_ops_registered()) { 8432 ftrace_enabled = true; 8433 ret = -EBUSY; 8434 goto out; 8435 } 8436 8437 /* stopping ftrace calls (just send to ftrace_stub) */ 8438 ftrace_trace_function = ftrace_stub; 8439 8440 ftrace_shutdown_sysctl(); 8441 } 8442 8443 last_ftrace_enabled = !!ftrace_enabled; 8444 out: 8445 mutex_unlock(&ftrace_lock); 8446 return ret; 8447 } 8448 8449 static struct ctl_table ftrace_sysctls[] = { 8450 { 8451 .procname = "ftrace_enabled", 8452 .data = &ftrace_enabled, 8453 .maxlen = sizeof(int), 8454 .mode = 0644, 8455 .proc_handler = ftrace_enable_sysctl, 8456 }, 8457 {} 8458 }; 8459 8460 static int __init ftrace_sysctl_init(void) 8461 { 8462 register_sysctl_init("kernel", ftrace_sysctls); 8463 return 0; 8464 } 8465 late_initcall(ftrace_sysctl_init); 8466 #endif 8467