1 /* 2 * Infrastructure for profiling code inserted by 'gcc -pg'. 3 * 4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 5 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 6 * 7 * Originally ported from the -rt patch by: 8 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 9 * 10 * Based on code in the latency_tracer, that is: 11 * 12 * Copyright (C) 2004-2006 Ingo Molnar 13 * Copyright (C) 2004 Nadia Yvette Chambers 14 */ 15 16 #include <linux/stop_machine.h> 17 #include <linux/clocksource.h> 18 #include <linux/sched/task.h> 19 #include <linux/kallsyms.h> 20 #include <linux/seq_file.h> 21 #include <linux/suspend.h> 22 #include <linux/tracefs.h> 23 #include <linux/hardirq.h> 24 #include <linux/kthread.h> 25 #include <linux/uaccess.h> 26 #include <linux/bsearch.h> 27 #include <linux/module.h> 28 #include <linux/ftrace.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/ctype.h> 32 #include <linux/sort.h> 33 #include <linux/list.h> 34 #include <linux/hash.h> 35 #include <linux/rcupdate.h> 36 37 #include <trace/events/sched.h> 38 39 #include <asm/sections.h> 40 #include <asm/setup.h> 41 42 #include "trace_output.h" 43 #include "trace_stat.h" 44 45 #define FTRACE_WARN_ON(cond) \ 46 ({ \ 47 int ___r = cond; \ 48 if (WARN_ON(___r)) \ 49 ftrace_kill(); \ 50 ___r; \ 51 }) 52 53 #define FTRACE_WARN_ON_ONCE(cond) \ 54 ({ \ 55 int ___r = cond; \ 56 if (WARN_ON_ONCE(___r)) \ 57 ftrace_kill(); \ 58 ___r; \ 59 }) 60 61 /* hash bits for specific function selection */ 62 #define FTRACE_HASH_BITS 7 63 #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS) 64 #define FTRACE_HASH_DEFAULT_BITS 10 65 #define FTRACE_HASH_MAX_BITS 12 66 67 #ifdef CONFIG_DYNAMIC_FTRACE 68 #define INIT_OPS_HASH(opsname) \ 69 .func_hash = &opsname.local_hash, \ 70 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 71 #define ASSIGN_OPS_HASH(opsname, val) \ 72 .func_hash = val, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #define ASSIGN_OPS_HASH(opsname, val) 77 #endif 78 79 static struct ftrace_ops ftrace_list_end __read_mostly = { 80 .func = ftrace_stub, 81 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 82 INIT_OPS_HASH(ftrace_list_end) 83 }; 84 85 /* ftrace_enabled is a method to turn ftrace on or off */ 86 int ftrace_enabled __read_mostly; 87 static int last_ftrace_enabled; 88 89 /* Current function tracing op */ 90 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 91 /* What to set function_trace_op to */ 92 static struct ftrace_ops *set_function_trace_op; 93 94 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 95 { 96 struct trace_array *tr; 97 98 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 99 return false; 100 101 tr = ops->private; 102 103 return tr->function_pids != NULL; 104 } 105 106 static void ftrace_update_trampoline(struct ftrace_ops *ops); 107 108 /* 109 * ftrace_disabled is set when an anomaly is discovered. 110 * ftrace_disabled is much stronger than ftrace_enabled. 111 */ 112 static int ftrace_disabled __read_mostly; 113 114 static DEFINE_MUTEX(ftrace_lock); 115 116 static struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 117 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 118 static struct ftrace_ops global_ops; 119 120 #if ARCH_SUPPORTS_FTRACE_OPS 121 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 122 struct ftrace_ops *op, struct pt_regs *regs); 123 #else 124 /* See comment below, where ftrace_ops_list_func is defined */ 125 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 126 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 127 #endif 128 129 /* 130 * Traverse the ftrace_global_list, invoking all entries. The reason that we 131 * can use rcu_dereference_raw_notrace() is that elements removed from this list 132 * are simply leaked, so there is no need to interact with a grace-period 133 * mechanism. The rcu_dereference_raw_notrace() calls are needed to handle 134 * concurrent insertions into the ftrace_global_list. 135 * 136 * Silly Alpha and silly pointer-speculation compiler optimizations! 137 */ 138 #define do_for_each_ftrace_op(op, list) \ 139 op = rcu_dereference_raw_notrace(list); \ 140 do 141 142 /* 143 * Optimized for just a single item in the list (as that is the normal case). 144 */ 145 #define while_for_each_ftrace_op(op) \ 146 while (likely(op = rcu_dereference_raw_notrace((op)->next)) && \ 147 unlikely((op) != &ftrace_list_end)) 148 149 static inline void ftrace_ops_init(struct ftrace_ops *ops) 150 { 151 #ifdef CONFIG_DYNAMIC_FTRACE 152 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 153 mutex_init(&ops->local_hash.regex_lock); 154 ops->func_hash = &ops->local_hash; 155 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 156 } 157 #endif 158 } 159 160 /** 161 * ftrace_nr_registered_ops - return number of ops registered 162 * 163 * Returns the number of ftrace_ops registered and tracing functions 164 */ 165 int ftrace_nr_registered_ops(void) 166 { 167 struct ftrace_ops *ops; 168 int cnt = 0; 169 170 mutex_lock(&ftrace_lock); 171 172 for (ops = rcu_dereference_protected(ftrace_ops_list, 173 lockdep_is_held(&ftrace_lock)); 174 ops != &ftrace_list_end; 175 ops = rcu_dereference_protected(ops->next, 176 lockdep_is_held(&ftrace_lock))) 177 cnt++; 178 179 mutex_unlock(&ftrace_lock); 180 181 return cnt; 182 } 183 184 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 185 struct ftrace_ops *op, struct pt_regs *regs) 186 { 187 struct trace_array *tr = op->private; 188 189 if (tr && this_cpu_read(tr->trace_buffer.data->ftrace_ignore_pid)) 190 return; 191 192 op->saved_func(ip, parent_ip, op, regs); 193 } 194 195 static void ftrace_sync(struct work_struct *work) 196 { 197 /* 198 * This function is just a stub to implement a hard force 199 * of synchronize_sched(). This requires synchronizing 200 * tasks even in userspace and idle. 201 * 202 * Yes, function tracing is rude. 203 */ 204 } 205 206 static void ftrace_sync_ipi(void *data) 207 { 208 /* Probably not needed, but do it anyway */ 209 smp_rmb(); 210 } 211 212 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 213 static void update_function_graph_func(void); 214 215 /* Both enabled by default (can be cleared by function_graph tracer flags */ 216 static bool fgraph_sleep_time = true; 217 static bool fgraph_graph_time = true; 218 219 #else 220 static inline void update_function_graph_func(void) { } 221 #endif 222 223 224 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 225 { 226 /* 227 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 228 * then it needs to call the list anyway. 229 */ 230 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 231 FTRACE_FORCE_LIST_FUNC) 232 return ftrace_ops_list_func; 233 234 return ftrace_ops_get_func(ops); 235 } 236 237 static void update_ftrace_function(void) 238 { 239 ftrace_func_t func; 240 241 /* 242 * Prepare the ftrace_ops that the arch callback will use. 243 * If there's only one ftrace_ops registered, the ftrace_ops_list 244 * will point to the ops we want. 245 */ 246 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 247 lockdep_is_held(&ftrace_lock)); 248 249 /* If there's no ftrace_ops registered, just call the stub function */ 250 if (set_function_trace_op == &ftrace_list_end) { 251 func = ftrace_stub; 252 253 /* 254 * If we are at the end of the list and this ops is 255 * recursion safe and not dynamic and the arch supports passing ops, 256 * then have the mcount trampoline call the function directly. 257 */ 258 } else if (rcu_dereference_protected(ftrace_ops_list->next, 259 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 260 func = ftrace_ops_get_list_func(ftrace_ops_list); 261 262 } else { 263 /* Just use the default ftrace_ops */ 264 set_function_trace_op = &ftrace_list_end; 265 func = ftrace_ops_list_func; 266 } 267 268 update_function_graph_func(); 269 270 /* If there's no change, then do nothing more here */ 271 if (ftrace_trace_function == func) 272 return; 273 274 /* 275 * If we are using the list function, it doesn't care 276 * about the function_trace_ops. 277 */ 278 if (func == ftrace_ops_list_func) { 279 ftrace_trace_function = func; 280 /* 281 * Don't even bother setting function_trace_ops, 282 * it would be racy to do so anyway. 283 */ 284 return; 285 } 286 287 #ifndef CONFIG_DYNAMIC_FTRACE 288 /* 289 * For static tracing, we need to be a bit more careful. 290 * The function change takes affect immediately. Thus, 291 * we need to coorditate the setting of the function_trace_ops 292 * with the setting of the ftrace_trace_function. 293 * 294 * Set the function to the list ops, which will call the 295 * function we want, albeit indirectly, but it handles the 296 * ftrace_ops and doesn't depend on function_trace_op. 297 */ 298 ftrace_trace_function = ftrace_ops_list_func; 299 /* 300 * Make sure all CPUs see this. Yes this is slow, but static 301 * tracing is slow and nasty to have enabled. 302 */ 303 schedule_on_each_cpu(ftrace_sync); 304 /* Now all cpus are using the list ops. */ 305 function_trace_op = set_function_trace_op; 306 /* Make sure the function_trace_op is visible on all CPUs */ 307 smp_wmb(); 308 /* Nasty way to force a rmb on all cpus */ 309 smp_call_function(ftrace_sync_ipi, NULL, 1); 310 /* OK, we are all set to update the ftrace_trace_function now! */ 311 #endif /* !CONFIG_DYNAMIC_FTRACE */ 312 313 ftrace_trace_function = func; 314 } 315 316 int using_ftrace_ops_list_func(void) 317 { 318 return ftrace_trace_function == ftrace_ops_list_func; 319 } 320 321 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 322 struct ftrace_ops *ops) 323 { 324 rcu_assign_pointer(ops->next, *list); 325 326 /* 327 * We are entering ops into the list but another 328 * CPU might be walking that list. We need to make sure 329 * the ops->next pointer is valid before another CPU sees 330 * the ops pointer included into the list. 331 */ 332 rcu_assign_pointer(*list, ops); 333 } 334 335 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 336 struct ftrace_ops *ops) 337 { 338 struct ftrace_ops **p; 339 340 /* 341 * If we are removing the last function, then simply point 342 * to the ftrace_stub. 343 */ 344 if (rcu_dereference_protected(*list, 345 lockdep_is_held(&ftrace_lock)) == ops && 346 rcu_dereference_protected(ops->next, 347 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 348 *list = &ftrace_list_end; 349 return 0; 350 } 351 352 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 353 if (*p == ops) 354 break; 355 356 if (*p != ops) 357 return -1; 358 359 *p = (*p)->next; 360 return 0; 361 } 362 363 static void ftrace_update_trampoline(struct ftrace_ops *ops); 364 365 static int __register_ftrace_function(struct ftrace_ops *ops) 366 { 367 if (ops->flags & FTRACE_OPS_FL_DELETED) 368 return -EINVAL; 369 370 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 371 return -EBUSY; 372 373 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 374 /* 375 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 376 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 377 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 378 */ 379 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 380 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 381 return -EINVAL; 382 383 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 384 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 385 #endif 386 387 if (!core_kernel_data((unsigned long)ops)) 388 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 389 390 add_ftrace_ops(&ftrace_ops_list, ops); 391 392 /* Always save the function, and reset at unregistering */ 393 ops->saved_func = ops->func; 394 395 if (ftrace_pids_enabled(ops)) 396 ops->func = ftrace_pid_func; 397 398 ftrace_update_trampoline(ops); 399 400 if (ftrace_enabled) 401 update_ftrace_function(); 402 403 return 0; 404 } 405 406 static int __unregister_ftrace_function(struct ftrace_ops *ops) 407 { 408 int ret; 409 410 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 411 return -EBUSY; 412 413 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 414 415 if (ret < 0) 416 return ret; 417 418 if (ftrace_enabled) 419 update_ftrace_function(); 420 421 ops->func = ops->saved_func; 422 423 return 0; 424 } 425 426 static void ftrace_update_pid_func(void) 427 { 428 struct ftrace_ops *op; 429 430 /* Only do something if we are tracing something */ 431 if (ftrace_trace_function == ftrace_stub) 432 return; 433 434 do_for_each_ftrace_op(op, ftrace_ops_list) { 435 if (op->flags & FTRACE_OPS_FL_PID) { 436 op->func = ftrace_pids_enabled(op) ? 437 ftrace_pid_func : op->saved_func; 438 ftrace_update_trampoline(op); 439 } 440 } while_for_each_ftrace_op(op); 441 442 update_ftrace_function(); 443 } 444 445 #ifdef CONFIG_FUNCTION_PROFILER 446 struct ftrace_profile { 447 struct hlist_node node; 448 unsigned long ip; 449 unsigned long counter; 450 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 451 unsigned long long time; 452 unsigned long long time_squared; 453 #endif 454 }; 455 456 struct ftrace_profile_page { 457 struct ftrace_profile_page *next; 458 unsigned long index; 459 struct ftrace_profile records[]; 460 }; 461 462 struct ftrace_profile_stat { 463 atomic_t disabled; 464 struct hlist_head *hash; 465 struct ftrace_profile_page *pages; 466 struct ftrace_profile_page *start; 467 struct tracer_stat stat; 468 }; 469 470 #define PROFILE_RECORDS_SIZE \ 471 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 472 473 #define PROFILES_PER_PAGE \ 474 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 475 476 static int ftrace_profile_enabled __read_mostly; 477 478 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 479 static DEFINE_MUTEX(ftrace_profile_lock); 480 481 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 482 483 #define FTRACE_PROFILE_HASH_BITS 10 484 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 485 486 static void * 487 function_stat_next(void *v, int idx) 488 { 489 struct ftrace_profile *rec = v; 490 struct ftrace_profile_page *pg; 491 492 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 493 494 again: 495 if (idx != 0) 496 rec++; 497 498 if ((void *)rec >= (void *)&pg->records[pg->index]) { 499 pg = pg->next; 500 if (!pg) 501 return NULL; 502 rec = &pg->records[0]; 503 if (!rec->counter) 504 goto again; 505 } 506 507 return rec; 508 } 509 510 static void *function_stat_start(struct tracer_stat *trace) 511 { 512 struct ftrace_profile_stat *stat = 513 container_of(trace, struct ftrace_profile_stat, stat); 514 515 if (!stat || !stat->start) 516 return NULL; 517 518 return function_stat_next(&stat->start->records[0], 0); 519 } 520 521 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 522 /* function graph compares on total time */ 523 static int function_stat_cmp(void *p1, void *p2) 524 { 525 struct ftrace_profile *a = p1; 526 struct ftrace_profile *b = p2; 527 528 if (a->time < b->time) 529 return -1; 530 if (a->time > b->time) 531 return 1; 532 else 533 return 0; 534 } 535 #else 536 /* not function graph compares against hits */ 537 static int function_stat_cmp(void *p1, void *p2) 538 { 539 struct ftrace_profile *a = p1; 540 struct ftrace_profile *b = p2; 541 542 if (a->counter < b->counter) 543 return -1; 544 if (a->counter > b->counter) 545 return 1; 546 else 547 return 0; 548 } 549 #endif 550 551 static int function_stat_headers(struct seq_file *m) 552 { 553 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 554 seq_puts(m, " Function " 555 "Hit Time Avg s^2\n" 556 " -------- " 557 "--- ---- --- ---\n"); 558 #else 559 seq_puts(m, " Function Hit\n" 560 " -------- ---\n"); 561 #endif 562 return 0; 563 } 564 565 static int function_stat_show(struct seq_file *m, void *v) 566 { 567 struct ftrace_profile *rec = v; 568 char str[KSYM_SYMBOL_LEN]; 569 int ret = 0; 570 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 571 static struct trace_seq s; 572 unsigned long long avg; 573 unsigned long long stddev; 574 #endif 575 mutex_lock(&ftrace_profile_lock); 576 577 /* we raced with function_profile_reset() */ 578 if (unlikely(rec->counter == 0)) { 579 ret = -EBUSY; 580 goto out; 581 } 582 583 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 584 avg = rec->time; 585 do_div(avg, rec->counter); 586 if (tracing_thresh && (avg < tracing_thresh)) 587 goto out; 588 #endif 589 590 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 591 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 592 593 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 594 seq_puts(m, " "); 595 596 /* Sample standard deviation (s^2) */ 597 if (rec->counter <= 1) 598 stddev = 0; 599 else { 600 /* 601 * Apply Welford's method: 602 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 603 */ 604 stddev = rec->counter * rec->time_squared - 605 rec->time * rec->time; 606 607 /* 608 * Divide only 1000 for ns^2 -> us^2 conversion. 609 * trace_print_graph_duration will divide 1000 again. 610 */ 611 do_div(stddev, rec->counter * (rec->counter - 1) * 1000); 612 } 613 614 trace_seq_init(&s); 615 trace_print_graph_duration(rec->time, &s); 616 trace_seq_puts(&s, " "); 617 trace_print_graph_duration(avg, &s); 618 trace_seq_puts(&s, " "); 619 trace_print_graph_duration(stddev, &s); 620 trace_print_seq(m, &s); 621 #endif 622 seq_putc(m, '\n'); 623 out: 624 mutex_unlock(&ftrace_profile_lock); 625 626 return ret; 627 } 628 629 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 630 { 631 struct ftrace_profile_page *pg; 632 633 pg = stat->pages = stat->start; 634 635 while (pg) { 636 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 637 pg->index = 0; 638 pg = pg->next; 639 } 640 641 memset(stat->hash, 0, 642 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 643 } 644 645 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 646 { 647 struct ftrace_profile_page *pg; 648 int functions; 649 int pages; 650 int i; 651 652 /* If we already allocated, do nothing */ 653 if (stat->pages) 654 return 0; 655 656 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 657 if (!stat->pages) 658 return -ENOMEM; 659 660 #ifdef CONFIG_DYNAMIC_FTRACE 661 functions = ftrace_update_tot_cnt; 662 #else 663 /* 664 * We do not know the number of functions that exist because 665 * dynamic tracing is what counts them. With past experience 666 * we have around 20K functions. That should be more than enough. 667 * It is highly unlikely we will execute every function in 668 * the kernel. 669 */ 670 functions = 20000; 671 #endif 672 673 pg = stat->start = stat->pages; 674 675 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 676 677 for (i = 1; i < pages; i++) { 678 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 679 if (!pg->next) 680 goto out_free; 681 pg = pg->next; 682 } 683 684 return 0; 685 686 out_free: 687 pg = stat->start; 688 while (pg) { 689 unsigned long tmp = (unsigned long)pg; 690 691 pg = pg->next; 692 free_page(tmp); 693 } 694 695 stat->pages = NULL; 696 stat->start = NULL; 697 698 return -ENOMEM; 699 } 700 701 static int ftrace_profile_init_cpu(int cpu) 702 { 703 struct ftrace_profile_stat *stat; 704 int size; 705 706 stat = &per_cpu(ftrace_profile_stats, cpu); 707 708 if (stat->hash) { 709 /* If the profile is already created, simply reset it */ 710 ftrace_profile_reset(stat); 711 return 0; 712 } 713 714 /* 715 * We are profiling all functions, but usually only a few thousand 716 * functions are hit. We'll make a hash of 1024 items. 717 */ 718 size = FTRACE_PROFILE_HASH_SIZE; 719 720 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 721 722 if (!stat->hash) 723 return -ENOMEM; 724 725 /* Preallocate the function profiling pages */ 726 if (ftrace_profile_pages_init(stat) < 0) { 727 kfree(stat->hash); 728 stat->hash = NULL; 729 return -ENOMEM; 730 } 731 732 return 0; 733 } 734 735 static int ftrace_profile_init(void) 736 { 737 int cpu; 738 int ret = 0; 739 740 for_each_possible_cpu(cpu) { 741 ret = ftrace_profile_init_cpu(cpu); 742 if (ret) 743 break; 744 } 745 746 return ret; 747 } 748 749 /* interrupts must be disabled */ 750 static struct ftrace_profile * 751 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 752 { 753 struct ftrace_profile *rec; 754 struct hlist_head *hhd; 755 unsigned long key; 756 757 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 758 hhd = &stat->hash[key]; 759 760 if (hlist_empty(hhd)) 761 return NULL; 762 763 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 764 if (rec->ip == ip) 765 return rec; 766 } 767 768 return NULL; 769 } 770 771 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 772 struct ftrace_profile *rec) 773 { 774 unsigned long key; 775 776 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 777 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 778 } 779 780 /* 781 * The memory is already allocated, this simply finds a new record to use. 782 */ 783 static struct ftrace_profile * 784 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 785 { 786 struct ftrace_profile *rec = NULL; 787 788 /* prevent recursion (from NMIs) */ 789 if (atomic_inc_return(&stat->disabled) != 1) 790 goto out; 791 792 /* 793 * Try to find the function again since an NMI 794 * could have added it 795 */ 796 rec = ftrace_find_profiled_func(stat, ip); 797 if (rec) 798 goto out; 799 800 if (stat->pages->index == PROFILES_PER_PAGE) { 801 if (!stat->pages->next) 802 goto out; 803 stat->pages = stat->pages->next; 804 } 805 806 rec = &stat->pages->records[stat->pages->index++]; 807 rec->ip = ip; 808 ftrace_add_profile(stat, rec); 809 810 out: 811 atomic_dec(&stat->disabled); 812 813 return rec; 814 } 815 816 static void 817 function_profile_call(unsigned long ip, unsigned long parent_ip, 818 struct ftrace_ops *ops, struct pt_regs *regs) 819 { 820 struct ftrace_profile_stat *stat; 821 struct ftrace_profile *rec; 822 unsigned long flags; 823 824 if (!ftrace_profile_enabled) 825 return; 826 827 local_irq_save(flags); 828 829 stat = this_cpu_ptr(&ftrace_profile_stats); 830 if (!stat->hash || !ftrace_profile_enabled) 831 goto out; 832 833 rec = ftrace_find_profiled_func(stat, ip); 834 if (!rec) { 835 rec = ftrace_profile_alloc(stat, ip); 836 if (!rec) 837 goto out; 838 } 839 840 rec->counter++; 841 out: 842 local_irq_restore(flags); 843 } 844 845 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 846 static int profile_graph_entry(struct ftrace_graph_ent *trace) 847 { 848 int index = trace->depth; 849 850 function_profile_call(trace->func, 0, NULL, NULL); 851 852 /* If function graph is shutting down, ret_stack can be NULL */ 853 if (!current->ret_stack) 854 return 0; 855 856 if (index >= 0 && index < FTRACE_RETFUNC_DEPTH) 857 current->ret_stack[index].subtime = 0; 858 859 return 1; 860 } 861 862 static void profile_graph_return(struct ftrace_graph_ret *trace) 863 { 864 struct ftrace_profile_stat *stat; 865 unsigned long long calltime; 866 struct ftrace_profile *rec; 867 unsigned long flags; 868 869 local_irq_save(flags); 870 stat = this_cpu_ptr(&ftrace_profile_stats); 871 if (!stat->hash || !ftrace_profile_enabled) 872 goto out; 873 874 /* If the calltime was zero'd ignore it */ 875 if (!trace->calltime) 876 goto out; 877 878 calltime = trace->rettime - trace->calltime; 879 880 if (!fgraph_graph_time) { 881 int index; 882 883 index = trace->depth; 884 885 /* Append this call time to the parent time to subtract */ 886 if (index) 887 current->ret_stack[index - 1].subtime += calltime; 888 889 if (current->ret_stack[index].subtime < calltime) 890 calltime -= current->ret_stack[index].subtime; 891 else 892 calltime = 0; 893 } 894 895 rec = ftrace_find_profiled_func(stat, trace->func); 896 if (rec) { 897 rec->time += calltime; 898 rec->time_squared += calltime * calltime; 899 } 900 901 out: 902 local_irq_restore(flags); 903 } 904 905 static int register_ftrace_profiler(void) 906 { 907 return register_ftrace_graph(&profile_graph_return, 908 &profile_graph_entry); 909 } 910 911 static void unregister_ftrace_profiler(void) 912 { 913 unregister_ftrace_graph(); 914 } 915 #else 916 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 917 .func = function_profile_call, 918 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 919 INIT_OPS_HASH(ftrace_profile_ops) 920 }; 921 922 static int register_ftrace_profiler(void) 923 { 924 return register_ftrace_function(&ftrace_profile_ops); 925 } 926 927 static void unregister_ftrace_profiler(void) 928 { 929 unregister_ftrace_function(&ftrace_profile_ops); 930 } 931 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 932 933 static ssize_t 934 ftrace_profile_write(struct file *filp, const char __user *ubuf, 935 size_t cnt, loff_t *ppos) 936 { 937 unsigned long val; 938 int ret; 939 940 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 941 if (ret) 942 return ret; 943 944 val = !!val; 945 946 mutex_lock(&ftrace_profile_lock); 947 if (ftrace_profile_enabled ^ val) { 948 if (val) { 949 ret = ftrace_profile_init(); 950 if (ret < 0) { 951 cnt = ret; 952 goto out; 953 } 954 955 ret = register_ftrace_profiler(); 956 if (ret < 0) { 957 cnt = ret; 958 goto out; 959 } 960 ftrace_profile_enabled = 1; 961 } else { 962 ftrace_profile_enabled = 0; 963 /* 964 * unregister_ftrace_profiler calls stop_machine 965 * so this acts like an synchronize_sched. 966 */ 967 unregister_ftrace_profiler(); 968 } 969 } 970 out: 971 mutex_unlock(&ftrace_profile_lock); 972 973 *ppos += cnt; 974 975 return cnt; 976 } 977 978 static ssize_t 979 ftrace_profile_read(struct file *filp, char __user *ubuf, 980 size_t cnt, loff_t *ppos) 981 { 982 char buf[64]; /* big enough to hold a number */ 983 int r; 984 985 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 986 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 987 } 988 989 static const struct file_operations ftrace_profile_fops = { 990 .open = tracing_open_generic, 991 .read = ftrace_profile_read, 992 .write = ftrace_profile_write, 993 .llseek = default_llseek, 994 }; 995 996 /* used to initialize the real stat files */ 997 static struct tracer_stat function_stats __initdata = { 998 .name = "functions", 999 .stat_start = function_stat_start, 1000 .stat_next = function_stat_next, 1001 .stat_cmp = function_stat_cmp, 1002 .stat_headers = function_stat_headers, 1003 .stat_show = function_stat_show 1004 }; 1005 1006 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1007 { 1008 struct ftrace_profile_stat *stat; 1009 struct dentry *entry; 1010 char *name; 1011 int ret; 1012 int cpu; 1013 1014 for_each_possible_cpu(cpu) { 1015 stat = &per_cpu(ftrace_profile_stats, cpu); 1016 1017 name = kasprintf(GFP_KERNEL, "function%d", cpu); 1018 if (!name) { 1019 /* 1020 * The files created are permanent, if something happens 1021 * we still do not free memory. 1022 */ 1023 WARN(1, 1024 "Could not allocate stat file for cpu %d\n", 1025 cpu); 1026 return; 1027 } 1028 stat->stat = function_stats; 1029 stat->stat.name = name; 1030 ret = register_stat_tracer(&stat->stat); 1031 if (ret) { 1032 WARN(1, 1033 "Could not register function stat for cpu %d\n", 1034 cpu); 1035 kfree(name); 1036 return; 1037 } 1038 } 1039 1040 entry = tracefs_create_file("function_profile_enabled", 0644, 1041 d_tracer, NULL, &ftrace_profile_fops); 1042 if (!entry) 1043 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 1044 } 1045 1046 #else /* CONFIG_FUNCTION_PROFILER */ 1047 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1048 { 1049 } 1050 #endif /* CONFIG_FUNCTION_PROFILER */ 1051 1052 static struct pid * const ftrace_swapper_pid = &init_struct_pid; 1053 1054 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1055 static int ftrace_graph_active; 1056 #else 1057 # define ftrace_graph_active 0 1058 #endif 1059 1060 #ifdef CONFIG_DYNAMIC_FTRACE 1061 1062 static struct ftrace_ops *removed_ops; 1063 1064 /* 1065 * Set when doing a global update, like enabling all recs or disabling them. 1066 * It is not set when just updating a single ftrace_ops. 1067 */ 1068 static bool update_all_ops; 1069 1070 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1071 # error Dynamic ftrace depends on MCOUNT_RECORD 1072 #endif 1073 1074 struct ftrace_func_entry { 1075 struct hlist_node hlist; 1076 unsigned long ip; 1077 }; 1078 1079 struct ftrace_func_probe { 1080 struct ftrace_probe_ops *probe_ops; 1081 struct ftrace_ops ops; 1082 struct trace_array *tr; 1083 struct list_head list; 1084 void *data; 1085 int ref; 1086 }; 1087 1088 /* 1089 * We make these constant because no one should touch them, 1090 * but they are used as the default "empty hash", to avoid allocating 1091 * it all the time. These are in a read only section such that if 1092 * anyone does try to modify it, it will cause an exception. 1093 */ 1094 static const struct hlist_head empty_buckets[1]; 1095 static const struct ftrace_hash empty_hash = { 1096 .buckets = (struct hlist_head *)empty_buckets, 1097 }; 1098 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1099 1100 static struct ftrace_ops global_ops = { 1101 .func = ftrace_stub, 1102 .local_hash.notrace_hash = EMPTY_HASH, 1103 .local_hash.filter_hash = EMPTY_HASH, 1104 INIT_OPS_HASH(global_ops) 1105 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1106 FTRACE_OPS_FL_INITIALIZED | 1107 FTRACE_OPS_FL_PID, 1108 }; 1109 1110 /* 1111 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1112 */ 1113 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1114 { 1115 struct ftrace_ops *op = NULL; 1116 1117 /* 1118 * Some of the ops may be dynamically allocated, 1119 * they are freed after a synchronize_sched(). 1120 */ 1121 preempt_disable_notrace(); 1122 1123 do_for_each_ftrace_op(op, ftrace_ops_list) { 1124 /* 1125 * This is to check for dynamically allocated trampolines. 1126 * Trampolines that are in kernel text will have 1127 * core_kernel_text() return true. 1128 */ 1129 if (op->trampoline && op->trampoline_size) 1130 if (addr >= op->trampoline && 1131 addr < op->trampoline + op->trampoline_size) { 1132 preempt_enable_notrace(); 1133 return op; 1134 } 1135 } while_for_each_ftrace_op(op); 1136 preempt_enable_notrace(); 1137 1138 return NULL; 1139 } 1140 1141 /* 1142 * This is used by __kernel_text_address() to return true if the 1143 * address is on a dynamically allocated trampoline that would 1144 * not return true for either core_kernel_text() or 1145 * is_module_text_address(). 1146 */ 1147 bool is_ftrace_trampoline(unsigned long addr) 1148 { 1149 return ftrace_ops_trampoline(addr) != NULL; 1150 } 1151 1152 struct ftrace_page { 1153 struct ftrace_page *next; 1154 struct dyn_ftrace *records; 1155 int index; 1156 int size; 1157 }; 1158 1159 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1160 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1161 1162 /* estimate from running different kernels */ 1163 #define NR_TO_INIT 10000 1164 1165 static struct ftrace_page *ftrace_pages_start; 1166 static struct ftrace_page *ftrace_pages; 1167 1168 static __always_inline unsigned long 1169 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1170 { 1171 if (hash->size_bits > 0) 1172 return hash_long(ip, hash->size_bits); 1173 1174 return 0; 1175 } 1176 1177 /* Only use this function if ftrace_hash_empty() has already been tested */ 1178 static __always_inline struct ftrace_func_entry * 1179 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1180 { 1181 unsigned long key; 1182 struct ftrace_func_entry *entry; 1183 struct hlist_head *hhd; 1184 1185 key = ftrace_hash_key(hash, ip); 1186 hhd = &hash->buckets[key]; 1187 1188 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1189 if (entry->ip == ip) 1190 return entry; 1191 } 1192 return NULL; 1193 } 1194 1195 /** 1196 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1197 * @hash: The hash to look at 1198 * @ip: The instruction pointer to test 1199 * 1200 * Search a given @hash to see if a given instruction pointer (@ip) 1201 * exists in it. 1202 * 1203 * Returns the entry that holds the @ip if found. NULL otherwise. 1204 */ 1205 struct ftrace_func_entry * 1206 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1207 { 1208 if (ftrace_hash_empty(hash)) 1209 return NULL; 1210 1211 return __ftrace_lookup_ip(hash, ip); 1212 } 1213 1214 static void __add_hash_entry(struct ftrace_hash *hash, 1215 struct ftrace_func_entry *entry) 1216 { 1217 struct hlist_head *hhd; 1218 unsigned long key; 1219 1220 key = ftrace_hash_key(hash, entry->ip); 1221 hhd = &hash->buckets[key]; 1222 hlist_add_head(&entry->hlist, hhd); 1223 hash->count++; 1224 } 1225 1226 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1227 { 1228 struct ftrace_func_entry *entry; 1229 1230 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1231 if (!entry) 1232 return -ENOMEM; 1233 1234 entry->ip = ip; 1235 __add_hash_entry(hash, entry); 1236 1237 return 0; 1238 } 1239 1240 static void 1241 free_hash_entry(struct ftrace_hash *hash, 1242 struct ftrace_func_entry *entry) 1243 { 1244 hlist_del(&entry->hlist); 1245 kfree(entry); 1246 hash->count--; 1247 } 1248 1249 static void 1250 remove_hash_entry(struct ftrace_hash *hash, 1251 struct ftrace_func_entry *entry) 1252 { 1253 hlist_del_rcu(&entry->hlist); 1254 hash->count--; 1255 } 1256 1257 static void ftrace_hash_clear(struct ftrace_hash *hash) 1258 { 1259 struct hlist_head *hhd; 1260 struct hlist_node *tn; 1261 struct ftrace_func_entry *entry; 1262 int size = 1 << hash->size_bits; 1263 int i; 1264 1265 if (!hash->count) 1266 return; 1267 1268 for (i = 0; i < size; i++) { 1269 hhd = &hash->buckets[i]; 1270 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1271 free_hash_entry(hash, entry); 1272 } 1273 FTRACE_WARN_ON(hash->count); 1274 } 1275 1276 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1277 { 1278 list_del(&ftrace_mod->list); 1279 kfree(ftrace_mod->module); 1280 kfree(ftrace_mod->func); 1281 kfree(ftrace_mod); 1282 } 1283 1284 static void clear_ftrace_mod_list(struct list_head *head) 1285 { 1286 struct ftrace_mod_load *p, *n; 1287 1288 /* stack tracer isn't supported yet */ 1289 if (!head) 1290 return; 1291 1292 mutex_lock(&ftrace_lock); 1293 list_for_each_entry_safe(p, n, head, list) 1294 free_ftrace_mod(p); 1295 mutex_unlock(&ftrace_lock); 1296 } 1297 1298 static void free_ftrace_hash(struct ftrace_hash *hash) 1299 { 1300 if (!hash || hash == EMPTY_HASH) 1301 return; 1302 ftrace_hash_clear(hash); 1303 kfree(hash->buckets); 1304 kfree(hash); 1305 } 1306 1307 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1308 { 1309 struct ftrace_hash *hash; 1310 1311 hash = container_of(rcu, struct ftrace_hash, rcu); 1312 free_ftrace_hash(hash); 1313 } 1314 1315 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1316 { 1317 if (!hash || hash == EMPTY_HASH) 1318 return; 1319 call_rcu_sched(&hash->rcu, __free_ftrace_hash_rcu); 1320 } 1321 1322 void ftrace_free_filter(struct ftrace_ops *ops) 1323 { 1324 ftrace_ops_init(ops); 1325 free_ftrace_hash(ops->func_hash->filter_hash); 1326 free_ftrace_hash(ops->func_hash->notrace_hash); 1327 } 1328 1329 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1330 { 1331 struct ftrace_hash *hash; 1332 int size; 1333 1334 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1335 if (!hash) 1336 return NULL; 1337 1338 size = 1 << size_bits; 1339 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1340 1341 if (!hash->buckets) { 1342 kfree(hash); 1343 return NULL; 1344 } 1345 1346 hash->size_bits = size_bits; 1347 1348 return hash; 1349 } 1350 1351 1352 static int ftrace_add_mod(struct trace_array *tr, 1353 const char *func, const char *module, 1354 int enable) 1355 { 1356 struct ftrace_mod_load *ftrace_mod; 1357 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1358 1359 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1360 if (!ftrace_mod) 1361 return -ENOMEM; 1362 1363 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1364 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1365 ftrace_mod->enable = enable; 1366 1367 if (!ftrace_mod->func || !ftrace_mod->module) 1368 goto out_free; 1369 1370 list_add(&ftrace_mod->list, mod_head); 1371 1372 return 0; 1373 1374 out_free: 1375 free_ftrace_mod(ftrace_mod); 1376 1377 return -ENOMEM; 1378 } 1379 1380 static struct ftrace_hash * 1381 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1382 { 1383 struct ftrace_func_entry *entry; 1384 struct ftrace_hash *new_hash; 1385 int size; 1386 int ret; 1387 int i; 1388 1389 new_hash = alloc_ftrace_hash(size_bits); 1390 if (!new_hash) 1391 return NULL; 1392 1393 if (hash) 1394 new_hash->flags = hash->flags; 1395 1396 /* Empty hash? */ 1397 if (ftrace_hash_empty(hash)) 1398 return new_hash; 1399 1400 size = 1 << hash->size_bits; 1401 for (i = 0; i < size; i++) { 1402 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1403 ret = add_hash_entry(new_hash, entry->ip); 1404 if (ret < 0) 1405 goto free_hash; 1406 } 1407 } 1408 1409 FTRACE_WARN_ON(new_hash->count != hash->count); 1410 1411 return new_hash; 1412 1413 free_hash: 1414 free_ftrace_hash(new_hash); 1415 return NULL; 1416 } 1417 1418 static void 1419 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1420 static void 1421 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1422 1423 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1424 struct ftrace_hash *new_hash); 1425 1426 static struct ftrace_hash * 1427 __ftrace_hash_move(struct ftrace_hash *src) 1428 { 1429 struct ftrace_func_entry *entry; 1430 struct hlist_node *tn; 1431 struct hlist_head *hhd; 1432 struct ftrace_hash *new_hash; 1433 int size = src->count; 1434 int bits = 0; 1435 int i; 1436 1437 /* 1438 * If the new source is empty, just return the empty_hash. 1439 */ 1440 if (ftrace_hash_empty(src)) 1441 return EMPTY_HASH; 1442 1443 /* 1444 * Make the hash size about 1/2 the # found 1445 */ 1446 for (size /= 2; size; size >>= 1) 1447 bits++; 1448 1449 /* Don't allocate too much */ 1450 if (bits > FTRACE_HASH_MAX_BITS) 1451 bits = FTRACE_HASH_MAX_BITS; 1452 1453 new_hash = alloc_ftrace_hash(bits); 1454 if (!new_hash) 1455 return NULL; 1456 1457 new_hash->flags = src->flags; 1458 1459 size = 1 << src->size_bits; 1460 for (i = 0; i < size; i++) { 1461 hhd = &src->buckets[i]; 1462 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1463 remove_hash_entry(src, entry); 1464 __add_hash_entry(new_hash, entry); 1465 } 1466 } 1467 1468 return new_hash; 1469 } 1470 1471 static int 1472 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1473 struct ftrace_hash **dst, struct ftrace_hash *src) 1474 { 1475 struct ftrace_hash *new_hash; 1476 int ret; 1477 1478 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1479 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1480 return -EINVAL; 1481 1482 new_hash = __ftrace_hash_move(src); 1483 if (!new_hash) 1484 return -ENOMEM; 1485 1486 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1487 if (enable) { 1488 /* IPMODIFY should be updated only when filter_hash updating */ 1489 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1490 if (ret < 0) { 1491 free_ftrace_hash(new_hash); 1492 return ret; 1493 } 1494 } 1495 1496 /* 1497 * Remove the current set, update the hash and add 1498 * them back. 1499 */ 1500 ftrace_hash_rec_disable_modify(ops, enable); 1501 1502 rcu_assign_pointer(*dst, new_hash); 1503 1504 ftrace_hash_rec_enable_modify(ops, enable); 1505 1506 return 0; 1507 } 1508 1509 static bool hash_contains_ip(unsigned long ip, 1510 struct ftrace_ops_hash *hash) 1511 { 1512 /* 1513 * The function record is a match if it exists in the filter 1514 * hash and not in the notrace hash. Note, an emty hash is 1515 * considered a match for the filter hash, but an empty 1516 * notrace hash is considered not in the notrace hash. 1517 */ 1518 return (ftrace_hash_empty(hash->filter_hash) || 1519 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1520 (ftrace_hash_empty(hash->notrace_hash) || 1521 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1522 } 1523 1524 /* 1525 * Test the hashes for this ops to see if we want to call 1526 * the ops->func or not. 1527 * 1528 * It's a match if the ip is in the ops->filter_hash or 1529 * the filter_hash does not exist or is empty, 1530 * AND 1531 * the ip is not in the ops->notrace_hash. 1532 * 1533 * This needs to be called with preemption disabled as 1534 * the hashes are freed with call_rcu_sched(). 1535 */ 1536 static int 1537 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1538 { 1539 struct ftrace_ops_hash hash; 1540 int ret; 1541 1542 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1543 /* 1544 * There's a small race when adding ops that the ftrace handler 1545 * that wants regs, may be called without them. We can not 1546 * allow that handler to be called if regs is NULL. 1547 */ 1548 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1549 return 0; 1550 #endif 1551 1552 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1553 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1554 1555 if (hash_contains_ip(ip, &hash)) 1556 ret = 1; 1557 else 1558 ret = 0; 1559 1560 return ret; 1561 } 1562 1563 /* 1564 * This is a double for. Do not use 'break' to break out of the loop, 1565 * you must use a goto. 1566 */ 1567 #define do_for_each_ftrace_rec(pg, rec) \ 1568 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1569 int _____i; \ 1570 for (_____i = 0; _____i < pg->index; _____i++) { \ 1571 rec = &pg->records[_____i]; 1572 1573 #define while_for_each_ftrace_rec() \ 1574 } \ 1575 } 1576 1577 1578 static int ftrace_cmp_recs(const void *a, const void *b) 1579 { 1580 const struct dyn_ftrace *key = a; 1581 const struct dyn_ftrace *rec = b; 1582 1583 if (key->flags < rec->ip) 1584 return -1; 1585 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1586 return 1; 1587 return 0; 1588 } 1589 1590 /** 1591 * ftrace_location_range - return the first address of a traced location 1592 * if it touches the given ip range 1593 * @start: start of range to search. 1594 * @end: end of range to search (inclusive). @end points to the last byte 1595 * to check. 1596 * 1597 * Returns rec->ip if the related ftrace location is a least partly within 1598 * the given address range. That is, the first address of the instruction 1599 * that is either a NOP or call to the function tracer. It checks the ftrace 1600 * internal tables to determine if the address belongs or not. 1601 */ 1602 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1603 { 1604 struct ftrace_page *pg; 1605 struct dyn_ftrace *rec; 1606 struct dyn_ftrace key; 1607 1608 key.ip = start; 1609 key.flags = end; /* overload flags, as it is unsigned long */ 1610 1611 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1612 if (end < pg->records[0].ip || 1613 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1614 continue; 1615 rec = bsearch(&key, pg->records, pg->index, 1616 sizeof(struct dyn_ftrace), 1617 ftrace_cmp_recs); 1618 if (rec) 1619 return rec->ip; 1620 } 1621 1622 return 0; 1623 } 1624 1625 /** 1626 * ftrace_location - return true if the ip giving is a traced location 1627 * @ip: the instruction pointer to check 1628 * 1629 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1630 * That is, the instruction that is either a NOP or call to 1631 * the function tracer. It checks the ftrace internal tables to 1632 * determine if the address belongs or not. 1633 */ 1634 unsigned long ftrace_location(unsigned long ip) 1635 { 1636 return ftrace_location_range(ip, ip); 1637 } 1638 1639 /** 1640 * ftrace_text_reserved - return true if range contains an ftrace location 1641 * @start: start of range to search 1642 * @end: end of range to search (inclusive). @end points to the last byte to check. 1643 * 1644 * Returns 1 if @start and @end contains a ftrace location. 1645 * That is, the instruction that is either a NOP or call to 1646 * the function tracer. It checks the ftrace internal tables to 1647 * determine if the address belongs or not. 1648 */ 1649 int ftrace_text_reserved(const void *start, const void *end) 1650 { 1651 unsigned long ret; 1652 1653 ret = ftrace_location_range((unsigned long)start, 1654 (unsigned long)end); 1655 1656 return (int)!!ret; 1657 } 1658 1659 /* Test if ops registered to this rec needs regs */ 1660 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1661 { 1662 struct ftrace_ops *ops; 1663 bool keep_regs = false; 1664 1665 for (ops = ftrace_ops_list; 1666 ops != &ftrace_list_end; ops = ops->next) { 1667 /* pass rec in as regs to have non-NULL val */ 1668 if (ftrace_ops_test(ops, rec->ip, rec)) { 1669 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1670 keep_regs = true; 1671 break; 1672 } 1673 } 1674 } 1675 1676 return keep_regs; 1677 } 1678 1679 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1680 int filter_hash, 1681 bool inc) 1682 { 1683 struct ftrace_hash *hash; 1684 struct ftrace_hash *other_hash; 1685 struct ftrace_page *pg; 1686 struct dyn_ftrace *rec; 1687 bool update = false; 1688 int count = 0; 1689 int all = false; 1690 1691 /* Only update if the ops has been registered */ 1692 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1693 return false; 1694 1695 /* 1696 * In the filter_hash case: 1697 * If the count is zero, we update all records. 1698 * Otherwise we just update the items in the hash. 1699 * 1700 * In the notrace_hash case: 1701 * We enable the update in the hash. 1702 * As disabling notrace means enabling the tracing, 1703 * and enabling notrace means disabling, the inc variable 1704 * gets inversed. 1705 */ 1706 if (filter_hash) { 1707 hash = ops->func_hash->filter_hash; 1708 other_hash = ops->func_hash->notrace_hash; 1709 if (ftrace_hash_empty(hash)) 1710 all = true; 1711 } else { 1712 inc = !inc; 1713 hash = ops->func_hash->notrace_hash; 1714 other_hash = ops->func_hash->filter_hash; 1715 /* 1716 * If the notrace hash has no items, 1717 * then there's nothing to do. 1718 */ 1719 if (ftrace_hash_empty(hash)) 1720 return false; 1721 } 1722 1723 do_for_each_ftrace_rec(pg, rec) { 1724 int in_other_hash = 0; 1725 int in_hash = 0; 1726 int match = 0; 1727 1728 if (rec->flags & FTRACE_FL_DISABLED) 1729 continue; 1730 1731 if (all) { 1732 /* 1733 * Only the filter_hash affects all records. 1734 * Update if the record is not in the notrace hash. 1735 */ 1736 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1737 match = 1; 1738 } else { 1739 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1740 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1741 1742 /* 1743 * If filter_hash is set, we want to match all functions 1744 * that are in the hash but not in the other hash. 1745 * 1746 * If filter_hash is not set, then we are decrementing. 1747 * That means we match anything that is in the hash 1748 * and also in the other_hash. That is, we need to turn 1749 * off functions in the other hash because they are disabled 1750 * by this hash. 1751 */ 1752 if (filter_hash && in_hash && !in_other_hash) 1753 match = 1; 1754 else if (!filter_hash && in_hash && 1755 (in_other_hash || ftrace_hash_empty(other_hash))) 1756 match = 1; 1757 } 1758 if (!match) 1759 continue; 1760 1761 if (inc) { 1762 rec->flags++; 1763 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1764 return false; 1765 1766 /* 1767 * If there's only a single callback registered to a 1768 * function, and the ops has a trampoline registered 1769 * for it, then we can call it directly. 1770 */ 1771 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1772 rec->flags |= FTRACE_FL_TRAMP; 1773 else 1774 /* 1775 * If we are adding another function callback 1776 * to this function, and the previous had a 1777 * custom trampoline in use, then we need to go 1778 * back to the default trampoline. 1779 */ 1780 rec->flags &= ~FTRACE_FL_TRAMP; 1781 1782 /* 1783 * If any ops wants regs saved for this function 1784 * then all ops will get saved regs. 1785 */ 1786 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1787 rec->flags |= FTRACE_FL_REGS; 1788 } else { 1789 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1790 return false; 1791 rec->flags--; 1792 1793 /* 1794 * If the rec had REGS enabled and the ops that is 1795 * being removed had REGS set, then see if there is 1796 * still any ops for this record that wants regs. 1797 * If not, we can stop recording them. 1798 */ 1799 if (ftrace_rec_count(rec) > 0 && 1800 rec->flags & FTRACE_FL_REGS && 1801 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1802 if (!test_rec_ops_needs_regs(rec)) 1803 rec->flags &= ~FTRACE_FL_REGS; 1804 } 1805 1806 /* 1807 * If the rec had TRAMP enabled, then it needs to 1808 * be cleared. As TRAMP can only be enabled iff 1809 * there is only a single ops attached to it. 1810 * In otherwords, always disable it on decrementing. 1811 * In the future, we may set it if rec count is 1812 * decremented to one, and the ops that is left 1813 * has a trampoline. 1814 */ 1815 rec->flags &= ~FTRACE_FL_TRAMP; 1816 1817 /* 1818 * flags will be cleared in ftrace_check_record() 1819 * if rec count is zero. 1820 */ 1821 } 1822 count++; 1823 1824 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1825 update |= ftrace_test_record(rec, 1) != FTRACE_UPDATE_IGNORE; 1826 1827 /* Shortcut, if we handled all records, we are done. */ 1828 if (!all && count == hash->count) 1829 return update; 1830 } while_for_each_ftrace_rec(); 1831 1832 return update; 1833 } 1834 1835 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1836 int filter_hash) 1837 { 1838 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1839 } 1840 1841 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1842 int filter_hash) 1843 { 1844 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1845 } 1846 1847 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1848 int filter_hash, int inc) 1849 { 1850 struct ftrace_ops *op; 1851 1852 __ftrace_hash_rec_update(ops, filter_hash, inc); 1853 1854 if (ops->func_hash != &global_ops.local_hash) 1855 return; 1856 1857 /* 1858 * If the ops shares the global_ops hash, then we need to update 1859 * all ops that are enabled and use this hash. 1860 */ 1861 do_for_each_ftrace_op(op, ftrace_ops_list) { 1862 /* Already done */ 1863 if (op == ops) 1864 continue; 1865 if (op->func_hash == &global_ops.local_hash) 1866 __ftrace_hash_rec_update(op, filter_hash, inc); 1867 } while_for_each_ftrace_op(op); 1868 } 1869 1870 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1871 int filter_hash) 1872 { 1873 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1874 } 1875 1876 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1877 int filter_hash) 1878 { 1879 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1880 } 1881 1882 /* 1883 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1884 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1885 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1886 * Note that old_hash and new_hash has below meanings 1887 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1888 * - If the hash is EMPTY_HASH, it hits nothing 1889 * - Anything else hits the recs which match the hash entries. 1890 */ 1891 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1892 struct ftrace_hash *old_hash, 1893 struct ftrace_hash *new_hash) 1894 { 1895 struct ftrace_page *pg; 1896 struct dyn_ftrace *rec, *end = NULL; 1897 int in_old, in_new; 1898 1899 /* Only update if the ops has been registered */ 1900 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1901 return 0; 1902 1903 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1904 return 0; 1905 1906 /* 1907 * Since the IPMODIFY is a very address sensitive action, we do not 1908 * allow ftrace_ops to set all functions to new hash. 1909 */ 1910 if (!new_hash || !old_hash) 1911 return -EINVAL; 1912 1913 /* Update rec->flags */ 1914 do_for_each_ftrace_rec(pg, rec) { 1915 1916 if (rec->flags & FTRACE_FL_DISABLED) 1917 continue; 1918 1919 /* We need to update only differences of filter_hash */ 1920 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1921 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1922 if (in_old == in_new) 1923 continue; 1924 1925 if (in_new) { 1926 /* New entries must ensure no others are using it */ 1927 if (rec->flags & FTRACE_FL_IPMODIFY) 1928 goto rollback; 1929 rec->flags |= FTRACE_FL_IPMODIFY; 1930 } else /* Removed entry */ 1931 rec->flags &= ~FTRACE_FL_IPMODIFY; 1932 } while_for_each_ftrace_rec(); 1933 1934 return 0; 1935 1936 rollback: 1937 end = rec; 1938 1939 /* Roll back what we did above */ 1940 do_for_each_ftrace_rec(pg, rec) { 1941 1942 if (rec->flags & FTRACE_FL_DISABLED) 1943 continue; 1944 1945 if (rec == end) 1946 goto err_out; 1947 1948 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1949 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1950 if (in_old == in_new) 1951 continue; 1952 1953 if (in_new) 1954 rec->flags &= ~FTRACE_FL_IPMODIFY; 1955 else 1956 rec->flags |= FTRACE_FL_IPMODIFY; 1957 } while_for_each_ftrace_rec(); 1958 1959 err_out: 1960 return -EBUSY; 1961 } 1962 1963 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1964 { 1965 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1966 1967 if (ftrace_hash_empty(hash)) 1968 hash = NULL; 1969 1970 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1971 } 1972 1973 /* Disabling always succeeds */ 1974 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1975 { 1976 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1977 1978 if (ftrace_hash_empty(hash)) 1979 hash = NULL; 1980 1981 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1982 } 1983 1984 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1985 struct ftrace_hash *new_hash) 1986 { 1987 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1988 1989 if (ftrace_hash_empty(old_hash)) 1990 old_hash = NULL; 1991 1992 if (ftrace_hash_empty(new_hash)) 1993 new_hash = NULL; 1994 1995 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1996 } 1997 1998 static void print_ip_ins(const char *fmt, const unsigned char *p) 1999 { 2000 int i; 2001 2002 printk(KERN_CONT "%s", fmt); 2003 2004 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 2005 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 2006 } 2007 2008 static struct ftrace_ops * 2009 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 2010 static struct ftrace_ops * 2011 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 2012 2013 enum ftrace_bug_type ftrace_bug_type; 2014 const void *ftrace_expected; 2015 2016 static void print_bug_type(void) 2017 { 2018 switch (ftrace_bug_type) { 2019 case FTRACE_BUG_UNKNOWN: 2020 break; 2021 case FTRACE_BUG_INIT: 2022 pr_info("Initializing ftrace call sites\n"); 2023 break; 2024 case FTRACE_BUG_NOP: 2025 pr_info("Setting ftrace call site to NOP\n"); 2026 break; 2027 case FTRACE_BUG_CALL: 2028 pr_info("Setting ftrace call site to call ftrace function\n"); 2029 break; 2030 case FTRACE_BUG_UPDATE: 2031 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2032 break; 2033 } 2034 } 2035 2036 /** 2037 * ftrace_bug - report and shutdown function tracer 2038 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2039 * @rec: The record that failed 2040 * 2041 * The arch code that enables or disables the function tracing 2042 * can call ftrace_bug() when it has detected a problem in 2043 * modifying the code. @failed should be one of either: 2044 * EFAULT - if the problem happens on reading the @ip address 2045 * EINVAL - if what is read at @ip is not what was expected 2046 * EPERM - if the problem happens on writting to the @ip address 2047 */ 2048 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2049 { 2050 unsigned long ip = rec ? rec->ip : 0; 2051 2052 switch (failed) { 2053 case -EFAULT: 2054 FTRACE_WARN_ON_ONCE(1); 2055 pr_info("ftrace faulted on modifying "); 2056 print_ip_sym(ip); 2057 break; 2058 case -EINVAL: 2059 FTRACE_WARN_ON_ONCE(1); 2060 pr_info("ftrace failed to modify "); 2061 print_ip_sym(ip); 2062 print_ip_ins(" actual: ", (unsigned char *)ip); 2063 pr_cont("\n"); 2064 if (ftrace_expected) { 2065 print_ip_ins(" expected: ", ftrace_expected); 2066 pr_cont("\n"); 2067 } 2068 break; 2069 case -EPERM: 2070 FTRACE_WARN_ON_ONCE(1); 2071 pr_info("ftrace faulted on writing "); 2072 print_ip_sym(ip); 2073 break; 2074 default: 2075 FTRACE_WARN_ON_ONCE(1); 2076 pr_info("ftrace faulted on unknown error "); 2077 print_ip_sym(ip); 2078 } 2079 print_bug_type(); 2080 if (rec) { 2081 struct ftrace_ops *ops = NULL; 2082 2083 pr_info("ftrace record flags: %lx\n", rec->flags); 2084 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2085 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2086 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2087 ops = ftrace_find_tramp_ops_any(rec); 2088 if (ops) { 2089 do { 2090 pr_cont("\ttramp: %pS (%pS)", 2091 (void *)ops->trampoline, 2092 (void *)ops->func); 2093 ops = ftrace_find_tramp_ops_next(rec, ops); 2094 } while (ops); 2095 } else 2096 pr_cont("\ttramp: ERROR!"); 2097 2098 } 2099 ip = ftrace_get_addr_curr(rec); 2100 pr_cont("\n expected tramp: %lx\n", ip); 2101 } 2102 } 2103 2104 static int ftrace_check_record(struct dyn_ftrace *rec, int enable, int update) 2105 { 2106 unsigned long flag = 0UL; 2107 2108 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2109 2110 if (rec->flags & FTRACE_FL_DISABLED) 2111 return FTRACE_UPDATE_IGNORE; 2112 2113 /* 2114 * If we are updating calls: 2115 * 2116 * If the record has a ref count, then we need to enable it 2117 * because someone is using it. 2118 * 2119 * Otherwise we make sure its disabled. 2120 * 2121 * If we are disabling calls, then disable all records that 2122 * are enabled. 2123 */ 2124 if (enable && ftrace_rec_count(rec)) 2125 flag = FTRACE_FL_ENABLED; 2126 2127 /* 2128 * If enabling and the REGS flag does not match the REGS_EN, or 2129 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2130 * this record. Set flags to fail the compare against ENABLED. 2131 */ 2132 if (flag) { 2133 if (!(rec->flags & FTRACE_FL_REGS) != 2134 !(rec->flags & FTRACE_FL_REGS_EN)) 2135 flag |= FTRACE_FL_REGS; 2136 2137 if (!(rec->flags & FTRACE_FL_TRAMP) != 2138 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2139 flag |= FTRACE_FL_TRAMP; 2140 } 2141 2142 /* If the state of this record hasn't changed, then do nothing */ 2143 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2144 return FTRACE_UPDATE_IGNORE; 2145 2146 if (flag) { 2147 /* Save off if rec is being enabled (for return value) */ 2148 flag ^= rec->flags & FTRACE_FL_ENABLED; 2149 2150 if (update) { 2151 rec->flags |= FTRACE_FL_ENABLED; 2152 if (flag & FTRACE_FL_REGS) { 2153 if (rec->flags & FTRACE_FL_REGS) 2154 rec->flags |= FTRACE_FL_REGS_EN; 2155 else 2156 rec->flags &= ~FTRACE_FL_REGS_EN; 2157 } 2158 if (flag & FTRACE_FL_TRAMP) { 2159 if (rec->flags & FTRACE_FL_TRAMP) 2160 rec->flags |= FTRACE_FL_TRAMP_EN; 2161 else 2162 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2163 } 2164 } 2165 2166 /* 2167 * If this record is being updated from a nop, then 2168 * return UPDATE_MAKE_CALL. 2169 * Otherwise, 2170 * return UPDATE_MODIFY_CALL to tell the caller to convert 2171 * from the save regs, to a non-save regs function or 2172 * vice versa, or from a trampoline call. 2173 */ 2174 if (flag & FTRACE_FL_ENABLED) { 2175 ftrace_bug_type = FTRACE_BUG_CALL; 2176 return FTRACE_UPDATE_MAKE_CALL; 2177 } 2178 2179 ftrace_bug_type = FTRACE_BUG_UPDATE; 2180 return FTRACE_UPDATE_MODIFY_CALL; 2181 } 2182 2183 if (update) { 2184 /* If there's no more users, clear all flags */ 2185 if (!ftrace_rec_count(rec)) 2186 rec->flags = 0; 2187 else 2188 /* 2189 * Just disable the record, but keep the ops TRAMP 2190 * and REGS states. The _EN flags must be disabled though. 2191 */ 2192 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2193 FTRACE_FL_REGS_EN); 2194 } 2195 2196 ftrace_bug_type = FTRACE_BUG_NOP; 2197 return FTRACE_UPDATE_MAKE_NOP; 2198 } 2199 2200 /** 2201 * ftrace_update_record, set a record that now is tracing or not 2202 * @rec: the record to update 2203 * @enable: set to 1 if the record is tracing, zero to force disable 2204 * 2205 * The records that represent all functions that can be traced need 2206 * to be updated when tracing has been enabled. 2207 */ 2208 int ftrace_update_record(struct dyn_ftrace *rec, int enable) 2209 { 2210 return ftrace_check_record(rec, enable, 1); 2211 } 2212 2213 /** 2214 * ftrace_test_record, check if the record has been enabled or not 2215 * @rec: the record to test 2216 * @enable: set to 1 to check if enabled, 0 if it is disabled 2217 * 2218 * The arch code may need to test if a record is already set to 2219 * tracing to determine how to modify the function code that it 2220 * represents. 2221 */ 2222 int ftrace_test_record(struct dyn_ftrace *rec, int enable) 2223 { 2224 return ftrace_check_record(rec, enable, 0); 2225 } 2226 2227 static struct ftrace_ops * 2228 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2229 { 2230 struct ftrace_ops *op; 2231 unsigned long ip = rec->ip; 2232 2233 do_for_each_ftrace_op(op, ftrace_ops_list) { 2234 2235 if (!op->trampoline) 2236 continue; 2237 2238 if (hash_contains_ip(ip, op->func_hash)) 2239 return op; 2240 } while_for_each_ftrace_op(op); 2241 2242 return NULL; 2243 } 2244 2245 static struct ftrace_ops * 2246 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2247 struct ftrace_ops *op) 2248 { 2249 unsigned long ip = rec->ip; 2250 2251 while_for_each_ftrace_op(op) { 2252 2253 if (!op->trampoline) 2254 continue; 2255 2256 if (hash_contains_ip(ip, op->func_hash)) 2257 return op; 2258 } 2259 2260 return NULL; 2261 } 2262 2263 static struct ftrace_ops * 2264 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2265 { 2266 struct ftrace_ops *op; 2267 unsigned long ip = rec->ip; 2268 2269 /* 2270 * Need to check removed ops first. 2271 * If they are being removed, and this rec has a tramp, 2272 * and this rec is in the ops list, then it would be the 2273 * one with the tramp. 2274 */ 2275 if (removed_ops) { 2276 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2277 return removed_ops; 2278 } 2279 2280 /* 2281 * Need to find the current trampoline for a rec. 2282 * Now, a trampoline is only attached to a rec if there 2283 * was a single 'ops' attached to it. But this can be called 2284 * when we are adding another op to the rec or removing the 2285 * current one. Thus, if the op is being added, we can 2286 * ignore it because it hasn't attached itself to the rec 2287 * yet. 2288 * 2289 * If an ops is being modified (hooking to different functions) 2290 * then we don't care about the new functions that are being 2291 * added, just the old ones (that are probably being removed). 2292 * 2293 * If we are adding an ops to a function that already is using 2294 * a trampoline, it needs to be removed (trampolines are only 2295 * for single ops connected), then an ops that is not being 2296 * modified also needs to be checked. 2297 */ 2298 do_for_each_ftrace_op(op, ftrace_ops_list) { 2299 2300 if (!op->trampoline) 2301 continue; 2302 2303 /* 2304 * If the ops is being added, it hasn't gotten to 2305 * the point to be removed from this tree yet. 2306 */ 2307 if (op->flags & FTRACE_OPS_FL_ADDING) 2308 continue; 2309 2310 2311 /* 2312 * If the ops is being modified and is in the old 2313 * hash, then it is probably being removed from this 2314 * function. 2315 */ 2316 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2317 hash_contains_ip(ip, &op->old_hash)) 2318 return op; 2319 /* 2320 * If the ops is not being added or modified, and it's 2321 * in its normal filter hash, then this must be the one 2322 * we want! 2323 */ 2324 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2325 hash_contains_ip(ip, op->func_hash)) 2326 return op; 2327 2328 } while_for_each_ftrace_op(op); 2329 2330 return NULL; 2331 } 2332 2333 static struct ftrace_ops * 2334 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2335 { 2336 struct ftrace_ops *op; 2337 unsigned long ip = rec->ip; 2338 2339 do_for_each_ftrace_op(op, ftrace_ops_list) { 2340 /* pass rec in as regs to have non-NULL val */ 2341 if (hash_contains_ip(ip, op->func_hash)) 2342 return op; 2343 } while_for_each_ftrace_op(op); 2344 2345 return NULL; 2346 } 2347 2348 /** 2349 * ftrace_get_addr_new - Get the call address to set to 2350 * @rec: The ftrace record descriptor 2351 * 2352 * If the record has the FTRACE_FL_REGS set, that means that it 2353 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2354 * is not not set, then it wants to convert to the normal callback. 2355 * 2356 * Returns the address of the trampoline to set to 2357 */ 2358 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2359 { 2360 struct ftrace_ops *ops; 2361 2362 /* Trampolines take precedence over regs */ 2363 if (rec->flags & FTRACE_FL_TRAMP) { 2364 ops = ftrace_find_tramp_ops_new(rec); 2365 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2366 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2367 (void *)rec->ip, (void *)rec->ip, rec->flags); 2368 /* Ftrace is shutting down, return anything */ 2369 return (unsigned long)FTRACE_ADDR; 2370 } 2371 return ops->trampoline; 2372 } 2373 2374 if (rec->flags & FTRACE_FL_REGS) 2375 return (unsigned long)FTRACE_REGS_ADDR; 2376 else 2377 return (unsigned long)FTRACE_ADDR; 2378 } 2379 2380 /** 2381 * ftrace_get_addr_curr - Get the call address that is already there 2382 * @rec: The ftrace record descriptor 2383 * 2384 * The FTRACE_FL_REGS_EN is set when the record already points to 2385 * a function that saves all the regs. Basically the '_EN' version 2386 * represents the current state of the function. 2387 * 2388 * Returns the address of the trampoline that is currently being called 2389 */ 2390 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2391 { 2392 struct ftrace_ops *ops; 2393 2394 /* Trampolines take precedence over regs */ 2395 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2396 ops = ftrace_find_tramp_ops_curr(rec); 2397 if (FTRACE_WARN_ON(!ops)) { 2398 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2399 (void *)rec->ip, (void *)rec->ip); 2400 /* Ftrace is shutting down, return anything */ 2401 return (unsigned long)FTRACE_ADDR; 2402 } 2403 return ops->trampoline; 2404 } 2405 2406 if (rec->flags & FTRACE_FL_REGS_EN) 2407 return (unsigned long)FTRACE_REGS_ADDR; 2408 else 2409 return (unsigned long)FTRACE_ADDR; 2410 } 2411 2412 static int 2413 __ftrace_replace_code(struct dyn_ftrace *rec, int enable) 2414 { 2415 unsigned long ftrace_old_addr; 2416 unsigned long ftrace_addr; 2417 int ret; 2418 2419 ftrace_addr = ftrace_get_addr_new(rec); 2420 2421 /* This needs to be done before we call ftrace_update_record */ 2422 ftrace_old_addr = ftrace_get_addr_curr(rec); 2423 2424 ret = ftrace_update_record(rec, enable); 2425 2426 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2427 2428 switch (ret) { 2429 case FTRACE_UPDATE_IGNORE: 2430 return 0; 2431 2432 case FTRACE_UPDATE_MAKE_CALL: 2433 ftrace_bug_type = FTRACE_BUG_CALL; 2434 return ftrace_make_call(rec, ftrace_addr); 2435 2436 case FTRACE_UPDATE_MAKE_NOP: 2437 ftrace_bug_type = FTRACE_BUG_NOP; 2438 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2439 2440 case FTRACE_UPDATE_MODIFY_CALL: 2441 ftrace_bug_type = FTRACE_BUG_UPDATE; 2442 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2443 } 2444 2445 return -1; /* unknow ftrace bug */ 2446 } 2447 2448 void __weak ftrace_replace_code(int enable) 2449 { 2450 struct dyn_ftrace *rec; 2451 struct ftrace_page *pg; 2452 int failed; 2453 2454 if (unlikely(ftrace_disabled)) 2455 return; 2456 2457 do_for_each_ftrace_rec(pg, rec) { 2458 2459 if (rec->flags & FTRACE_FL_DISABLED) 2460 continue; 2461 2462 failed = __ftrace_replace_code(rec, enable); 2463 if (failed) { 2464 ftrace_bug(failed, rec); 2465 /* Stop processing */ 2466 return; 2467 } 2468 } while_for_each_ftrace_rec(); 2469 } 2470 2471 struct ftrace_rec_iter { 2472 struct ftrace_page *pg; 2473 int index; 2474 }; 2475 2476 /** 2477 * ftrace_rec_iter_start, start up iterating over traced functions 2478 * 2479 * Returns an iterator handle that is used to iterate over all 2480 * the records that represent address locations where functions 2481 * are traced. 2482 * 2483 * May return NULL if no records are available. 2484 */ 2485 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2486 { 2487 /* 2488 * We only use a single iterator. 2489 * Protected by the ftrace_lock mutex. 2490 */ 2491 static struct ftrace_rec_iter ftrace_rec_iter; 2492 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2493 2494 iter->pg = ftrace_pages_start; 2495 iter->index = 0; 2496 2497 /* Could have empty pages */ 2498 while (iter->pg && !iter->pg->index) 2499 iter->pg = iter->pg->next; 2500 2501 if (!iter->pg) 2502 return NULL; 2503 2504 return iter; 2505 } 2506 2507 /** 2508 * ftrace_rec_iter_next, get the next record to process. 2509 * @iter: The handle to the iterator. 2510 * 2511 * Returns the next iterator after the given iterator @iter. 2512 */ 2513 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2514 { 2515 iter->index++; 2516 2517 if (iter->index >= iter->pg->index) { 2518 iter->pg = iter->pg->next; 2519 iter->index = 0; 2520 2521 /* Could have empty pages */ 2522 while (iter->pg && !iter->pg->index) 2523 iter->pg = iter->pg->next; 2524 } 2525 2526 if (!iter->pg) 2527 return NULL; 2528 2529 return iter; 2530 } 2531 2532 /** 2533 * ftrace_rec_iter_record, get the record at the iterator location 2534 * @iter: The current iterator location 2535 * 2536 * Returns the record that the current @iter is at. 2537 */ 2538 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2539 { 2540 return &iter->pg->records[iter->index]; 2541 } 2542 2543 static int 2544 ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec) 2545 { 2546 int ret; 2547 2548 if (unlikely(ftrace_disabled)) 2549 return 0; 2550 2551 ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR); 2552 if (ret) { 2553 ftrace_bug_type = FTRACE_BUG_INIT; 2554 ftrace_bug(ret, rec); 2555 return 0; 2556 } 2557 return 1; 2558 } 2559 2560 /* 2561 * archs can override this function if they must do something 2562 * before the modifying code is performed. 2563 */ 2564 int __weak ftrace_arch_code_modify_prepare(void) 2565 { 2566 return 0; 2567 } 2568 2569 /* 2570 * archs can override this function if they must do something 2571 * after the modifying code is performed. 2572 */ 2573 int __weak ftrace_arch_code_modify_post_process(void) 2574 { 2575 return 0; 2576 } 2577 2578 void ftrace_modify_all_code(int command) 2579 { 2580 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2581 int err = 0; 2582 2583 /* 2584 * If the ftrace_caller calls a ftrace_ops func directly, 2585 * we need to make sure that it only traces functions it 2586 * expects to trace. When doing the switch of functions, 2587 * we need to update to the ftrace_ops_list_func first 2588 * before the transition between old and new calls are set, 2589 * as the ftrace_ops_list_func will check the ops hashes 2590 * to make sure the ops are having the right functions 2591 * traced. 2592 */ 2593 if (update) { 2594 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2595 if (FTRACE_WARN_ON(err)) 2596 return; 2597 } 2598 2599 if (command & FTRACE_UPDATE_CALLS) 2600 ftrace_replace_code(1); 2601 else if (command & FTRACE_DISABLE_CALLS) 2602 ftrace_replace_code(0); 2603 2604 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2605 function_trace_op = set_function_trace_op; 2606 smp_wmb(); 2607 /* If irqs are disabled, we are in stop machine */ 2608 if (!irqs_disabled()) 2609 smp_call_function(ftrace_sync_ipi, NULL, 1); 2610 err = ftrace_update_ftrace_func(ftrace_trace_function); 2611 if (FTRACE_WARN_ON(err)) 2612 return; 2613 } 2614 2615 if (command & FTRACE_START_FUNC_RET) 2616 err = ftrace_enable_ftrace_graph_caller(); 2617 else if (command & FTRACE_STOP_FUNC_RET) 2618 err = ftrace_disable_ftrace_graph_caller(); 2619 FTRACE_WARN_ON(err); 2620 } 2621 2622 static int __ftrace_modify_code(void *data) 2623 { 2624 int *command = data; 2625 2626 ftrace_modify_all_code(*command); 2627 2628 return 0; 2629 } 2630 2631 /** 2632 * ftrace_run_stop_machine, go back to the stop machine method 2633 * @command: The command to tell ftrace what to do 2634 * 2635 * If an arch needs to fall back to the stop machine method, the 2636 * it can call this function. 2637 */ 2638 void ftrace_run_stop_machine(int command) 2639 { 2640 stop_machine(__ftrace_modify_code, &command, NULL); 2641 } 2642 2643 /** 2644 * arch_ftrace_update_code, modify the code to trace or not trace 2645 * @command: The command that needs to be done 2646 * 2647 * Archs can override this function if it does not need to 2648 * run stop_machine() to modify code. 2649 */ 2650 void __weak arch_ftrace_update_code(int command) 2651 { 2652 ftrace_run_stop_machine(command); 2653 } 2654 2655 static void ftrace_run_update_code(int command) 2656 { 2657 int ret; 2658 2659 ret = ftrace_arch_code_modify_prepare(); 2660 FTRACE_WARN_ON(ret); 2661 if (ret) 2662 return; 2663 2664 /* 2665 * By default we use stop_machine() to modify the code. 2666 * But archs can do what ever they want as long as it 2667 * is safe. The stop_machine() is the safest, but also 2668 * produces the most overhead. 2669 */ 2670 arch_ftrace_update_code(command); 2671 2672 ret = ftrace_arch_code_modify_post_process(); 2673 FTRACE_WARN_ON(ret); 2674 } 2675 2676 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2677 struct ftrace_ops_hash *old_hash) 2678 { 2679 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2680 ops->old_hash.filter_hash = old_hash->filter_hash; 2681 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2682 ftrace_run_update_code(command); 2683 ops->old_hash.filter_hash = NULL; 2684 ops->old_hash.notrace_hash = NULL; 2685 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2686 } 2687 2688 static ftrace_func_t saved_ftrace_func; 2689 static int ftrace_start_up; 2690 2691 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2692 { 2693 } 2694 2695 static void ftrace_startup_enable(int command) 2696 { 2697 if (saved_ftrace_func != ftrace_trace_function) { 2698 saved_ftrace_func = ftrace_trace_function; 2699 command |= FTRACE_UPDATE_TRACE_FUNC; 2700 } 2701 2702 if (!command || !ftrace_enabled) 2703 return; 2704 2705 ftrace_run_update_code(command); 2706 } 2707 2708 static void ftrace_startup_all(int command) 2709 { 2710 update_all_ops = true; 2711 ftrace_startup_enable(command); 2712 update_all_ops = false; 2713 } 2714 2715 static int ftrace_startup(struct ftrace_ops *ops, int command) 2716 { 2717 int ret; 2718 2719 if (unlikely(ftrace_disabled)) 2720 return -ENODEV; 2721 2722 ret = __register_ftrace_function(ops); 2723 if (ret) 2724 return ret; 2725 2726 ftrace_start_up++; 2727 2728 /* 2729 * Note that ftrace probes uses this to start up 2730 * and modify functions it will probe. But we still 2731 * set the ADDING flag for modification, as probes 2732 * do not have trampolines. If they add them in the 2733 * future, then the probes will need to distinguish 2734 * between adding and updating probes. 2735 */ 2736 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2737 2738 ret = ftrace_hash_ipmodify_enable(ops); 2739 if (ret < 0) { 2740 /* Rollback registration process */ 2741 __unregister_ftrace_function(ops); 2742 ftrace_start_up--; 2743 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2744 return ret; 2745 } 2746 2747 if (ftrace_hash_rec_enable(ops, 1)) 2748 command |= FTRACE_UPDATE_CALLS; 2749 2750 ftrace_startup_enable(command); 2751 2752 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2753 2754 return 0; 2755 } 2756 2757 static int ftrace_shutdown(struct ftrace_ops *ops, int command) 2758 { 2759 int ret; 2760 2761 if (unlikely(ftrace_disabled)) 2762 return -ENODEV; 2763 2764 ret = __unregister_ftrace_function(ops); 2765 if (ret) 2766 return ret; 2767 2768 ftrace_start_up--; 2769 /* 2770 * Just warn in case of unbalance, no need to kill ftrace, it's not 2771 * critical but the ftrace_call callers may be never nopped again after 2772 * further ftrace uses. 2773 */ 2774 WARN_ON_ONCE(ftrace_start_up < 0); 2775 2776 /* Disabling ipmodify never fails */ 2777 ftrace_hash_ipmodify_disable(ops); 2778 2779 if (ftrace_hash_rec_disable(ops, 1)) 2780 command |= FTRACE_UPDATE_CALLS; 2781 2782 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2783 2784 if (saved_ftrace_func != ftrace_trace_function) { 2785 saved_ftrace_func = ftrace_trace_function; 2786 command |= FTRACE_UPDATE_TRACE_FUNC; 2787 } 2788 2789 if (!command || !ftrace_enabled) { 2790 /* 2791 * If these are dynamic or per_cpu ops, they still 2792 * need their data freed. Since, function tracing is 2793 * not currently active, we can just free them 2794 * without synchronizing all CPUs. 2795 */ 2796 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2797 goto free_ops; 2798 2799 return 0; 2800 } 2801 2802 /* 2803 * If the ops uses a trampoline, then it needs to be 2804 * tested first on update. 2805 */ 2806 ops->flags |= FTRACE_OPS_FL_REMOVING; 2807 removed_ops = ops; 2808 2809 /* The trampoline logic checks the old hashes */ 2810 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2811 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2812 2813 ftrace_run_update_code(command); 2814 2815 /* 2816 * If there's no more ops registered with ftrace, run a 2817 * sanity check to make sure all rec flags are cleared. 2818 */ 2819 if (rcu_dereference_protected(ftrace_ops_list, 2820 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2821 struct ftrace_page *pg; 2822 struct dyn_ftrace *rec; 2823 2824 do_for_each_ftrace_rec(pg, rec) { 2825 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2826 pr_warn(" %pS flags:%lx\n", 2827 (void *)rec->ip, rec->flags); 2828 } while_for_each_ftrace_rec(); 2829 } 2830 2831 ops->old_hash.filter_hash = NULL; 2832 ops->old_hash.notrace_hash = NULL; 2833 2834 removed_ops = NULL; 2835 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2836 2837 /* 2838 * Dynamic ops may be freed, we must make sure that all 2839 * callers are done before leaving this function. 2840 * The same goes for freeing the per_cpu data of the per_cpu 2841 * ops. 2842 */ 2843 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2844 /* 2845 * We need to do a hard force of sched synchronization. 2846 * This is because we use preempt_disable() to do RCU, but 2847 * the function tracers can be called where RCU is not watching 2848 * (like before user_exit()). We can not rely on the RCU 2849 * infrastructure to do the synchronization, thus we must do it 2850 * ourselves. 2851 */ 2852 schedule_on_each_cpu(ftrace_sync); 2853 2854 /* 2855 * When the kernel is preeptive, tasks can be preempted 2856 * while on a ftrace trampoline. Just scheduling a task on 2857 * a CPU is not good enough to flush them. Calling 2858 * synchornize_rcu_tasks() will wait for those tasks to 2859 * execute and either schedule voluntarily or enter user space. 2860 */ 2861 if (IS_ENABLED(CONFIG_PREEMPT)) 2862 synchronize_rcu_tasks(); 2863 2864 free_ops: 2865 arch_ftrace_trampoline_free(ops); 2866 } 2867 2868 return 0; 2869 } 2870 2871 static void ftrace_startup_sysctl(void) 2872 { 2873 int command; 2874 2875 if (unlikely(ftrace_disabled)) 2876 return; 2877 2878 /* Force update next time */ 2879 saved_ftrace_func = NULL; 2880 /* ftrace_start_up is true if we want ftrace running */ 2881 if (ftrace_start_up) { 2882 command = FTRACE_UPDATE_CALLS; 2883 if (ftrace_graph_active) 2884 command |= FTRACE_START_FUNC_RET; 2885 ftrace_startup_enable(command); 2886 } 2887 } 2888 2889 static void ftrace_shutdown_sysctl(void) 2890 { 2891 int command; 2892 2893 if (unlikely(ftrace_disabled)) 2894 return; 2895 2896 /* ftrace_start_up is true if ftrace is running */ 2897 if (ftrace_start_up) { 2898 command = FTRACE_DISABLE_CALLS; 2899 if (ftrace_graph_active) 2900 command |= FTRACE_STOP_FUNC_RET; 2901 ftrace_run_update_code(command); 2902 } 2903 } 2904 2905 static u64 ftrace_update_time; 2906 unsigned long ftrace_update_tot_cnt; 2907 2908 static inline int ops_traces_mod(struct ftrace_ops *ops) 2909 { 2910 /* 2911 * Filter_hash being empty will default to trace module. 2912 * But notrace hash requires a test of individual module functions. 2913 */ 2914 return ftrace_hash_empty(ops->func_hash->filter_hash) && 2915 ftrace_hash_empty(ops->func_hash->notrace_hash); 2916 } 2917 2918 /* 2919 * Check if the current ops references the record. 2920 * 2921 * If the ops traces all functions, then it was already accounted for. 2922 * If the ops does not trace the current record function, skip it. 2923 * If the ops ignores the function via notrace filter, skip it. 2924 */ 2925 static inline bool 2926 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 2927 { 2928 /* If ops isn't enabled, ignore it */ 2929 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 2930 return 0; 2931 2932 /* If ops traces all then it includes this function */ 2933 if (ops_traces_mod(ops)) 2934 return 1; 2935 2936 /* The function must be in the filter */ 2937 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 2938 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 2939 return 0; 2940 2941 /* If in notrace hash, we ignore it too */ 2942 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 2943 return 0; 2944 2945 return 1; 2946 } 2947 2948 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 2949 { 2950 struct ftrace_page *pg; 2951 struct dyn_ftrace *p; 2952 u64 start, stop; 2953 unsigned long update_cnt = 0; 2954 unsigned long rec_flags = 0; 2955 int i; 2956 2957 start = ftrace_now(raw_smp_processor_id()); 2958 2959 /* 2960 * When a module is loaded, this function is called to convert 2961 * the calls to mcount in its text to nops, and also to create 2962 * an entry in the ftrace data. Now, if ftrace is activated 2963 * after this call, but before the module sets its text to 2964 * read-only, the modification of enabling ftrace can fail if 2965 * the read-only is done while ftrace is converting the calls. 2966 * To prevent this, the module's records are set as disabled 2967 * and will be enabled after the call to set the module's text 2968 * to read-only. 2969 */ 2970 if (mod) 2971 rec_flags |= FTRACE_FL_DISABLED; 2972 2973 for (pg = new_pgs; pg; pg = pg->next) { 2974 2975 for (i = 0; i < pg->index; i++) { 2976 2977 /* If something went wrong, bail without enabling anything */ 2978 if (unlikely(ftrace_disabled)) 2979 return -1; 2980 2981 p = &pg->records[i]; 2982 p->flags = rec_flags; 2983 2984 /* 2985 * Do the initial record conversion from mcount jump 2986 * to the NOP instructions. 2987 */ 2988 if (!ftrace_code_disable(mod, p)) 2989 break; 2990 2991 update_cnt++; 2992 } 2993 } 2994 2995 stop = ftrace_now(raw_smp_processor_id()); 2996 ftrace_update_time = stop - start; 2997 ftrace_update_tot_cnt += update_cnt; 2998 2999 return 0; 3000 } 3001 3002 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3003 { 3004 int order; 3005 int cnt; 3006 3007 if (WARN_ON(!count)) 3008 return -EINVAL; 3009 3010 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3011 3012 /* 3013 * We want to fill as much as possible. No more than a page 3014 * may be empty. 3015 */ 3016 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3017 order--; 3018 3019 again: 3020 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3021 3022 if (!pg->records) { 3023 /* if we can't allocate this size, try something smaller */ 3024 if (!order) 3025 return -ENOMEM; 3026 order >>= 1; 3027 goto again; 3028 } 3029 3030 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3031 pg->size = cnt; 3032 3033 if (cnt > count) 3034 cnt = count; 3035 3036 return cnt; 3037 } 3038 3039 static struct ftrace_page * 3040 ftrace_allocate_pages(unsigned long num_to_init) 3041 { 3042 struct ftrace_page *start_pg; 3043 struct ftrace_page *pg; 3044 int order; 3045 int cnt; 3046 3047 if (!num_to_init) 3048 return 0; 3049 3050 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3051 if (!pg) 3052 return NULL; 3053 3054 /* 3055 * Try to allocate as much as possible in one continues 3056 * location that fills in all of the space. We want to 3057 * waste as little space as possible. 3058 */ 3059 for (;;) { 3060 cnt = ftrace_allocate_records(pg, num_to_init); 3061 if (cnt < 0) 3062 goto free_pages; 3063 3064 num_to_init -= cnt; 3065 if (!num_to_init) 3066 break; 3067 3068 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3069 if (!pg->next) 3070 goto free_pages; 3071 3072 pg = pg->next; 3073 } 3074 3075 return start_pg; 3076 3077 free_pages: 3078 pg = start_pg; 3079 while (pg) { 3080 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3081 free_pages((unsigned long)pg->records, order); 3082 start_pg = pg->next; 3083 kfree(pg); 3084 pg = start_pg; 3085 } 3086 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3087 return NULL; 3088 } 3089 3090 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3091 3092 struct ftrace_iterator { 3093 loff_t pos; 3094 loff_t func_pos; 3095 loff_t mod_pos; 3096 struct ftrace_page *pg; 3097 struct dyn_ftrace *func; 3098 struct ftrace_func_probe *probe; 3099 struct ftrace_func_entry *probe_entry; 3100 struct trace_parser parser; 3101 struct ftrace_hash *hash; 3102 struct ftrace_ops *ops; 3103 struct trace_array *tr; 3104 struct list_head *mod_list; 3105 int pidx; 3106 int idx; 3107 unsigned flags; 3108 }; 3109 3110 static void * 3111 t_probe_next(struct seq_file *m, loff_t *pos) 3112 { 3113 struct ftrace_iterator *iter = m->private; 3114 struct trace_array *tr = iter->ops->private; 3115 struct list_head *func_probes; 3116 struct ftrace_hash *hash; 3117 struct list_head *next; 3118 struct hlist_node *hnd = NULL; 3119 struct hlist_head *hhd; 3120 int size; 3121 3122 (*pos)++; 3123 iter->pos = *pos; 3124 3125 if (!tr) 3126 return NULL; 3127 3128 func_probes = &tr->func_probes; 3129 if (list_empty(func_probes)) 3130 return NULL; 3131 3132 if (!iter->probe) { 3133 next = func_probes->next; 3134 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3135 } 3136 3137 if (iter->probe_entry) 3138 hnd = &iter->probe_entry->hlist; 3139 3140 hash = iter->probe->ops.func_hash->filter_hash; 3141 size = 1 << hash->size_bits; 3142 3143 retry: 3144 if (iter->pidx >= size) { 3145 if (iter->probe->list.next == func_probes) 3146 return NULL; 3147 next = iter->probe->list.next; 3148 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3149 hash = iter->probe->ops.func_hash->filter_hash; 3150 size = 1 << hash->size_bits; 3151 iter->pidx = 0; 3152 } 3153 3154 hhd = &hash->buckets[iter->pidx]; 3155 3156 if (hlist_empty(hhd)) { 3157 iter->pidx++; 3158 hnd = NULL; 3159 goto retry; 3160 } 3161 3162 if (!hnd) 3163 hnd = hhd->first; 3164 else { 3165 hnd = hnd->next; 3166 if (!hnd) { 3167 iter->pidx++; 3168 goto retry; 3169 } 3170 } 3171 3172 if (WARN_ON_ONCE(!hnd)) 3173 return NULL; 3174 3175 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3176 3177 return iter; 3178 } 3179 3180 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3181 { 3182 struct ftrace_iterator *iter = m->private; 3183 void *p = NULL; 3184 loff_t l; 3185 3186 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3187 return NULL; 3188 3189 if (iter->mod_pos > *pos) 3190 return NULL; 3191 3192 iter->probe = NULL; 3193 iter->probe_entry = NULL; 3194 iter->pidx = 0; 3195 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3196 p = t_probe_next(m, &l); 3197 if (!p) 3198 break; 3199 } 3200 if (!p) 3201 return NULL; 3202 3203 /* Only set this if we have an item */ 3204 iter->flags |= FTRACE_ITER_PROBE; 3205 3206 return iter; 3207 } 3208 3209 static int 3210 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3211 { 3212 struct ftrace_func_entry *probe_entry; 3213 struct ftrace_probe_ops *probe_ops; 3214 struct ftrace_func_probe *probe; 3215 3216 probe = iter->probe; 3217 probe_entry = iter->probe_entry; 3218 3219 if (WARN_ON_ONCE(!probe || !probe_entry)) 3220 return -EIO; 3221 3222 probe_ops = probe->probe_ops; 3223 3224 if (probe_ops->print) 3225 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3226 3227 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3228 (void *)probe_ops->func); 3229 3230 return 0; 3231 } 3232 3233 static void * 3234 t_mod_next(struct seq_file *m, loff_t *pos) 3235 { 3236 struct ftrace_iterator *iter = m->private; 3237 struct trace_array *tr = iter->tr; 3238 3239 (*pos)++; 3240 iter->pos = *pos; 3241 3242 iter->mod_list = iter->mod_list->next; 3243 3244 if (iter->mod_list == &tr->mod_trace || 3245 iter->mod_list == &tr->mod_notrace) { 3246 iter->flags &= ~FTRACE_ITER_MOD; 3247 return NULL; 3248 } 3249 3250 iter->mod_pos = *pos; 3251 3252 return iter; 3253 } 3254 3255 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3256 { 3257 struct ftrace_iterator *iter = m->private; 3258 void *p = NULL; 3259 loff_t l; 3260 3261 if (iter->func_pos > *pos) 3262 return NULL; 3263 3264 iter->mod_pos = iter->func_pos; 3265 3266 /* probes are only available if tr is set */ 3267 if (!iter->tr) 3268 return NULL; 3269 3270 for (l = 0; l <= (*pos - iter->func_pos); ) { 3271 p = t_mod_next(m, &l); 3272 if (!p) 3273 break; 3274 } 3275 if (!p) { 3276 iter->flags &= ~FTRACE_ITER_MOD; 3277 return t_probe_start(m, pos); 3278 } 3279 3280 /* Only set this if we have an item */ 3281 iter->flags |= FTRACE_ITER_MOD; 3282 3283 return iter; 3284 } 3285 3286 static int 3287 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3288 { 3289 struct ftrace_mod_load *ftrace_mod; 3290 struct trace_array *tr = iter->tr; 3291 3292 if (WARN_ON_ONCE(!iter->mod_list) || 3293 iter->mod_list == &tr->mod_trace || 3294 iter->mod_list == &tr->mod_notrace) 3295 return -EIO; 3296 3297 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3298 3299 if (ftrace_mod->func) 3300 seq_printf(m, "%s", ftrace_mod->func); 3301 else 3302 seq_putc(m, '*'); 3303 3304 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3305 3306 return 0; 3307 } 3308 3309 static void * 3310 t_func_next(struct seq_file *m, loff_t *pos) 3311 { 3312 struct ftrace_iterator *iter = m->private; 3313 struct dyn_ftrace *rec = NULL; 3314 3315 (*pos)++; 3316 3317 retry: 3318 if (iter->idx >= iter->pg->index) { 3319 if (iter->pg->next) { 3320 iter->pg = iter->pg->next; 3321 iter->idx = 0; 3322 goto retry; 3323 } 3324 } else { 3325 rec = &iter->pg->records[iter->idx++]; 3326 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3327 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3328 3329 ((iter->flags & FTRACE_ITER_ENABLED) && 3330 !(rec->flags & FTRACE_FL_ENABLED))) { 3331 3332 rec = NULL; 3333 goto retry; 3334 } 3335 } 3336 3337 if (!rec) 3338 return NULL; 3339 3340 iter->pos = iter->func_pos = *pos; 3341 iter->func = rec; 3342 3343 return iter; 3344 } 3345 3346 static void * 3347 t_next(struct seq_file *m, void *v, loff_t *pos) 3348 { 3349 struct ftrace_iterator *iter = m->private; 3350 loff_t l = *pos; /* t_probe_start() must use original pos */ 3351 void *ret; 3352 3353 if (unlikely(ftrace_disabled)) 3354 return NULL; 3355 3356 if (iter->flags & FTRACE_ITER_PROBE) 3357 return t_probe_next(m, pos); 3358 3359 if (iter->flags & FTRACE_ITER_MOD) 3360 return t_mod_next(m, pos); 3361 3362 if (iter->flags & FTRACE_ITER_PRINTALL) { 3363 /* next must increment pos, and t_probe_start does not */ 3364 (*pos)++; 3365 return t_mod_start(m, &l); 3366 } 3367 3368 ret = t_func_next(m, pos); 3369 3370 if (!ret) 3371 return t_mod_start(m, &l); 3372 3373 return ret; 3374 } 3375 3376 static void reset_iter_read(struct ftrace_iterator *iter) 3377 { 3378 iter->pos = 0; 3379 iter->func_pos = 0; 3380 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3381 } 3382 3383 static void *t_start(struct seq_file *m, loff_t *pos) 3384 { 3385 struct ftrace_iterator *iter = m->private; 3386 void *p = NULL; 3387 loff_t l; 3388 3389 mutex_lock(&ftrace_lock); 3390 3391 if (unlikely(ftrace_disabled)) 3392 return NULL; 3393 3394 /* 3395 * If an lseek was done, then reset and start from beginning. 3396 */ 3397 if (*pos < iter->pos) 3398 reset_iter_read(iter); 3399 3400 /* 3401 * For set_ftrace_filter reading, if we have the filter 3402 * off, we can short cut and just print out that all 3403 * functions are enabled. 3404 */ 3405 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3406 ftrace_hash_empty(iter->hash)) { 3407 iter->func_pos = 1; /* Account for the message */ 3408 if (*pos > 0) 3409 return t_mod_start(m, pos); 3410 iter->flags |= FTRACE_ITER_PRINTALL; 3411 /* reset in case of seek/pread */ 3412 iter->flags &= ~FTRACE_ITER_PROBE; 3413 return iter; 3414 } 3415 3416 if (iter->flags & FTRACE_ITER_MOD) 3417 return t_mod_start(m, pos); 3418 3419 /* 3420 * Unfortunately, we need to restart at ftrace_pages_start 3421 * every time we let go of the ftrace_mutex. This is because 3422 * those pointers can change without the lock. 3423 */ 3424 iter->pg = ftrace_pages_start; 3425 iter->idx = 0; 3426 for (l = 0; l <= *pos; ) { 3427 p = t_func_next(m, &l); 3428 if (!p) 3429 break; 3430 } 3431 3432 if (!p) 3433 return t_mod_start(m, pos); 3434 3435 return iter; 3436 } 3437 3438 static void t_stop(struct seq_file *m, void *p) 3439 { 3440 mutex_unlock(&ftrace_lock); 3441 } 3442 3443 void * __weak 3444 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3445 { 3446 return NULL; 3447 } 3448 3449 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3450 struct dyn_ftrace *rec) 3451 { 3452 void *ptr; 3453 3454 ptr = arch_ftrace_trampoline_func(ops, rec); 3455 if (ptr) 3456 seq_printf(m, " ->%pS", ptr); 3457 } 3458 3459 static int t_show(struct seq_file *m, void *v) 3460 { 3461 struct ftrace_iterator *iter = m->private; 3462 struct dyn_ftrace *rec; 3463 3464 if (iter->flags & FTRACE_ITER_PROBE) 3465 return t_probe_show(m, iter); 3466 3467 if (iter->flags & FTRACE_ITER_MOD) 3468 return t_mod_show(m, iter); 3469 3470 if (iter->flags & FTRACE_ITER_PRINTALL) { 3471 if (iter->flags & FTRACE_ITER_NOTRACE) 3472 seq_puts(m, "#### no functions disabled ####\n"); 3473 else 3474 seq_puts(m, "#### all functions enabled ####\n"); 3475 return 0; 3476 } 3477 3478 rec = iter->func; 3479 3480 if (!rec) 3481 return 0; 3482 3483 seq_printf(m, "%ps", (void *)rec->ip); 3484 if (iter->flags & FTRACE_ITER_ENABLED) { 3485 struct ftrace_ops *ops; 3486 3487 seq_printf(m, " (%ld)%s%s", 3488 ftrace_rec_count(rec), 3489 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3490 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " "); 3491 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3492 ops = ftrace_find_tramp_ops_any(rec); 3493 if (ops) { 3494 do { 3495 seq_printf(m, "\ttramp: %pS (%pS)", 3496 (void *)ops->trampoline, 3497 (void *)ops->func); 3498 add_trampoline_func(m, ops, rec); 3499 ops = ftrace_find_tramp_ops_next(rec, ops); 3500 } while (ops); 3501 } else 3502 seq_puts(m, "\ttramp: ERROR!"); 3503 } else { 3504 add_trampoline_func(m, NULL, rec); 3505 } 3506 } 3507 3508 seq_putc(m, '\n'); 3509 3510 return 0; 3511 } 3512 3513 static const struct seq_operations show_ftrace_seq_ops = { 3514 .start = t_start, 3515 .next = t_next, 3516 .stop = t_stop, 3517 .show = t_show, 3518 }; 3519 3520 static int 3521 ftrace_avail_open(struct inode *inode, struct file *file) 3522 { 3523 struct ftrace_iterator *iter; 3524 3525 if (unlikely(ftrace_disabled)) 3526 return -ENODEV; 3527 3528 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3529 if (!iter) 3530 return -ENOMEM; 3531 3532 iter->pg = ftrace_pages_start; 3533 iter->ops = &global_ops; 3534 3535 return 0; 3536 } 3537 3538 static int 3539 ftrace_enabled_open(struct inode *inode, struct file *file) 3540 { 3541 struct ftrace_iterator *iter; 3542 3543 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3544 if (!iter) 3545 return -ENOMEM; 3546 3547 iter->pg = ftrace_pages_start; 3548 iter->flags = FTRACE_ITER_ENABLED; 3549 iter->ops = &global_ops; 3550 3551 return 0; 3552 } 3553 3554 /** 3555 * ftrace_regex_open - initialize function tracer filter files 3556 * @ops: The ftrace_ops that hold the hash filters 3557 * @flag: The type of filter to process 3558 * @inode: The inode, usually passed in to your open routine 3559 * @file: The file, usually passed in to your open routine 3560 * 3561 * ftrace_regex_open() initializes the filter files for the 3562 * @ops. Depending on @flag it may process the filter hash or 3563 * the notrace hash of @ops. With this called from the open 3564 * routine, you can use ftrace_filter_write() for the write 3565 * routine if @flag has FTRACE_ITER_FILTER set, or 3566 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3567 * tracing_lseek() should be used as the lseek routine, and 3568 * release must call ftrace_regex_release(). 3569 */ 3570 int 3571 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3572 struct inode *inode, struct file *file) 3573 { 3574 struct ftrace_iterator *iter; 3575 struct ftrace_hash *hash; 3576 struct list_head *mod_head; 3577 struct trace_array *tr = ops->private; 3578 int ret = 0; 3579 3580 ftrace_ops_init(ops); 3581 3582 if (unlikely(ftrace_disabled)) 3583 return -ENODEV; 3584 3585 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3586 if (!iter) 3587 return -ENOMEM; 3588 3589 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) { 3590 kfree(iter); 3591 return -ENOMEM; 3592 } 3593 3594 iter->ops = ops; 3595 iter->flags = flag; 3596 iter->tr = tr; 3597 3598 mutex_lock(&ops->func_hash->regex_lock); 3599 3600 if (flag & FTRACE_ITER_NOTRACE) { 3601 hash = ops->func_hash->notrace_hash; 3602 mod_head = tr ? &tr->mod_notrace : NULL; 3603 } else { 3604 hash = ops->func_hash->filter_hash; 3605 mod_head = tr ? &tr->mod_trace : NULL; 3606 } 3607 3608 iter->mod_list = mod_head; 3609 3610 if (file->f_mode & FMODE_WRITE) { 3611 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3612 3613 if (file->f_flags & O_TRUNC) { 3614 iter->hash = alloc_ftrace_hash(size_bits); 3615 clear_ftrace_mod_list(mod_head); 3616 } else { 3617 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3618 } 3619 3620 if (!iter->hash) { 3621 trace_parser_put(&iter->parser); 3622 kfree(iter); 3623 ret = -ENOMEM; 3624 goto out_unlock; 3625 } 3626 } else 3627 iter->hash = hash; 3628 3629 if (file->f_mode & FMODE_READ) { 3630 iter->pg = ftrace_pages_start; 3631 3632 ret = seq_open(file, &show_ftrace_seq_ops); 3633 if (!ret) { 3634 struct seq_file *m = file->private_data; 3635 m->private = iter; 3636 } else { 3637 /* Failed */ 3638 free_ftrace_hash(iter->hash); 3639 trace_parser_put(&iter->parser); 3640 kfree(iter); 3641 } 3642 } else 3643 file->private_data = iter; 3644 3645 out_unlock: 3646 mutex_unlock(&ops->func_hash->regex_lock); 3647 3648 return ret; 3649 } 3650 3651 static int 3652 ftrace_filter_open(struct inode *inode, struct file *file) 3653 { 3654 struct ftrace_ops *ops = inode->i_private; 3655 3656 return ftrace_regex_open(ops, 3657 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3658 inode, file); 3659 } 3660 3661 static int 3662 ftrace_notrace_open(struct inode *inode, struct file *file) 3663 { 3664 struct ftrace_ops *ops = inode->i_private; 3665 3666 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3667 inode, file); 3668 } 3669 3670 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3671 struct ftrace_glob { 3672 char *search; 3673 unsigned len; 3674 int type; 3675 }; 3676 3677 /* 3678 * If symbols in an architecture don't correspond exactly to the user-visible 3679 * name of what they represent, it is possible to define this function to 3680 * perform the necessary adjustments. 3681 */ 3682 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3683 { 3684 return str; 3685 } 3686 3687 static int ftrace_match(char *str, struct ftrace_glob *g) 3688 { 3689 int matched = 0; 3690 int slen; 3691 3692 str = arch_ftrace_match_adjust(str, g->search); 3693 3694 switch (g->type) { 3695 case MATCH_FULL: 3696 if (strcmp(str, g->search) == 0) 3697 matched = 1; 3698 break; 3699 case MATCH_FRONT_ONLY: 3700 if (strncmp(str, g->search, g->len) == 0) 3701 matched = 1; 3702 break; 3703 case MATCH_MIDDLE_ONLY: 3704 if (strstr(str, g->search)) 3705 matched = 1; 3706 break; 3707 case MATCH_END_ONLY: 3708 slen = strlen(str); 3709 if (slen >= g->len && 3710 memcmp(str + slen - g->len, g->search, g->len) == 0) 3711 matched = 1; 3712 break; 3713 case MATCH_GLOB: 3714 if (glob_match(g->search, str)) 3715 matched = 1; 3716 break; 3717 } 3718 3719 return matched; 3720 } 3721 3722 static int 3723 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3724 { 3725 struct ftrace_func_entry *entry; 3726 int ret = 0; 3727 3728 entry = ftrace_lookup_ip(hash, rec->ip); 3729 if (clear_filter) { 3730 /* Do nothing if it doesn't exist */ 3731 if (!entry) 3732 return 0; 3733 3734 free_hash_entry(hash, entry); 3735 } else { 3736 /* Do nothing if it exists */ 3737 if (entry) 3738 return 0; 3739 3740 ret = add_hash_entry(hash, rec->ip); 3741 } 3742 return ret; 3743 } 3744 3745 static int 3746 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3747 struct ftrace_glob *mod_g, int exclude_mod) 3748 { 3749 char str[KSYM_SYMBOL_LEN]; 3750 char *modname; 3751 3752 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3753 3754 if (mod_g) { 3755 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3756 3757 /* blank module name to match all modules */ 3758 if (!mod_g->len) { 3759 /* blank module globbing: modname xor exclude_mod */ 3760 if (!exclude_mod != !modname) 3761 goto func_match; 3762 return 0; 3763 } 3764 3765 /* 3766 * exclude_mod is set to trace everything but the given 3767 * module. If it is set and the module matches, then 3768 * return 0. If it is not set, and the module doesn't match 3769 * also return 0. Otherwise, check the function to see if 3770 * that matches. 3771 */ 3772 if (!mod_matches == !exclude_mod) 3773 return 0; 3774 func_match: 3775 /* blank search means to match all funcs in the mod */ 3776 if (!func_g->len) 3777 return 1; 3778 } 3779 3780 return ftrace_match(str, func_g); 3781 } 3782 3783 static int 3784 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3785 { 3786 struct ftrace_page *pg; 3787 struct dyn_ftrace *rec; 3788 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3789 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3790 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3791 int exclude_mod = 0; 3792 int found = 0; 3793 int ret; 3794 int clear_filter = 0; 3795 3796 if (func) { 3797 func_g.type = filter_parse_regex(func, len, &func_g.search, 3798 &clear_filter); 3799 func_g.len = strlen(func_g.search); 3800 } 3801 3802 if (mod) { 3803 mod_g.type = filter_parse_regex(mod, strlen(mod), 3804 &mod_g.search, &exclude_mod); 3805 mod_g.len = strlen(mod_g.search); 3806 } 3807 3808 mutex_lock(&ftrace_lock); 3809 3810 if (unlikely(ftrace_disabled)) 3811 goto out_unlock; 3812 3813 do_for_each_ftrace_rec(pg, rec) { 3814 3815 if (rec->flags & FTRACE_FL_DISABLED) 3816 continue; 3817 3818 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 3819 ret = enter_record(hash, rec, clear_filter); 3820 if (ret < 0) { 3821 found = ret; 3822 goto out_unlock; 3823 } 3824 found = 1; 3825 } 3826 } while_for_each_ftrace_rec(); 3827 out_unlock: 3828 mutex_unlock(&ftrace_lock); 3829 3830 return found; 3831 } 3832 3833 static int 3834 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 3835 { 3836 return match_records(hash, buff, len, NULL); 3837 } 3838 3839 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3840 struct ftrace_ops_hash *old_hash) 3841 { 3842 struct ftrace_ops *op; 3843 3844 if (!ftrace_enabled) 3845 return; 3846 3847 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 3848 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 3849 return; 3850 } 3851 3852 /* 3853 * If this is the shared global_ops filter, then we need to 3854 * check if there is another ops that shares it, is enabled. 3855 * If so, we still need to run the modify code. 3856 */ 3857 if (ops->func_hash != &global_ops.local_hash) 3858 return; 3859 3860 do_for_each_ftrace_op(op, ftrace_ops_list) { 3861 if (op->func_hash == &global_ops.local_hash && 3862 op->flags & FTRACE_OPS_FL_ENABLED) { 3863 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 3864 /* Only need to do this once */ 3865 return; 3866 } 3867 } while_for_each_ftrace_op(op); 3868 } 3869 3870 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3871 struct ftrace_hash **orig_hash, 3872 struct ftrace_hash *hash, 3873 int enable) 3874 { 3875 struct ftrace_ops_hash old_hash_ops; 3876 struct ftrace_hash *old_hash; 3877 int ret; 3878 3879 old_hash = *orig_hash; 3880 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3881 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3882 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3883 if (!ret) { 3884 ftrace_ops_update_code(ops, &old_hash_ops); 3885 free_ftrace_hash_rcu(old_hash); 3886 } 3887 return ret; 3888 } 3889 3890 static bool module_exists(const char *module) 3891 { 3892 /* All modules have the symbol __this_module */ 3893 const char this_mod[] = "__this_module"; 3894 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 3895 unsigned long val; 3896 int n; 3897 3898 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 3899 3900 if (n > sizeof(modname) - 1) 3901 return false; 3902 3903 val = module_kallsyms_lookup_name(modname); 3904 return val != 0; 3905 } 3906 3907 static int cache_mod(struct trace_array *tr, 3908 const char *func, char *module, int enable) 3909 { 3910 struct ftrace_mod_load *ftrace_mod, *n; 3911 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 3912 int ret; 3913 3914 mutex_lock(&ftrace_lock); 3915 3916 /* We do not cache inverse filters */ 3917 if (func[0] == '!') { 3918 func++; 3919 ret = -EINVAL; 3920 3921 /* Look to remove this hash */ 3922 list_for_each_entry_safe(ftrace_mod, n, head, list) { 3923 if (strcmp(ftrace_mod->module, module) != 0) 3924 continue; 3925 3926 /* no func matches all */ 3927 if (strcmp(func, "*") == 0 || 3928 (ftrace_mod->func && 3929 strcmp(ftrace_mod->func, func) == 0)) { 3930 ret = 0; 3931 free_ftrace_mod(ftrace_mod); 3932 continue; 3933 } 3934 } 3935 goto out; 3936 } 3937 3938 ret = -EINVAL; 3939 /* We only care about modules that have not been loaded yet */ 3940 if (module_exists(module)) 3941 goto out; 3942 3943 /* Save this string off, and execute it when the module is loaded */ 3944 ret = ftrace_add_mod(tr, func, module, enable); 3945 out: 3946 mutex_unlock(&ftrace_lock); 3947 3948 return ret; 3949 } 3950 3951 static int 3952 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 3953 int reset, int enable); 3954 3955 #ifdef CONFIG_MODULES 3956 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 3957 char *mod, bool enable) 3958 { 3959 struct ftrace_mod_load *ftrace_mod, *n; 3960 struct ftrace_hash **orig_hash, *new_hash; 3961 LIST_HEAD(process_mods); 3962 char *func; 3963 int ret; 3964 3965 mutex_lock(&ops->func_hash->regex_lock); 3966 3967 if (enable) 3968 orig_hash = &ops->func_hash->filter_hash; 3969 else 3970 orig_hash = &ops->func_hash->notrace_hash; 3971 3972 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 3973 *orig_hash); 3974 if (!new_hash) 3975 goto out; /* warn? */ 3976 3977 mutex_lock(&ftrace_lock); 3978 3979 list_for_each_entry_safe(ftrace_mod, n, head, list) { 3980 3981 if (strcmp(ftrace_mod->module, mod) != 0) 3982 continue; 3983 3984 if (ftrace_mod->func) 3985 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 3986 else 3987 func = kstrdup("*", GFP_KERNEL); 3988 3989 if (!func) /* warn? */ 3990 continue; 3991 3992 list_del(&ftrace_mod->list); 3993 list_add(&ftrace_mod->list, &process_mods); 3994 3995 /* Use the newly allocated func, as it may be "*" */ 3996 kfree(ftrace_mod->func); 3997 ftrace_mod->func = func; 3998 } 3999 4000 mutex_unlock(&ftrace_lock); 4001 4002 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4003 4004 func = ftrace_mod->func; 4005 4006 /* Grabs ftrace_lock, which is why we have this extra step */ 4007 match_records(new_hash, func, strlen(func), mod); 4008 free_ftrace_mod(ftrace_mod); 4009 } 4010 4011 if (enable && list_empty(head)) 4012 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4013 4014 mutex_lock(&ftrace_lock); 4015 4016 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4017 new_hash, enable); 4018 mutex_unlock(&ftrace_lock); 4019 4020 out: 4021 mutex_unlock(&ops->func_hash->regex_lock); 4022 4023 free_ftrace_hash(new_hash); 4024 } 4025 4026 static void process_cached_mods(const char *mod_name) 4027 { 4028 struct trace_array *tr; 4029 char *mod; 4030 4031 mod = kstrdup(mod_name, GFP_KERNEL); 4032 if (!mod) 4033 return; 4034 4035 mutex_lock(&trace_types_lock); 4036 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4037 if (!list_empty(&tr->mod_trace)) 4038 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4039 if (!list_empty(&tr->mod_notrace)) 4040 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4041 } 4042 mutex_unlock(&trace_types_lock); 4043 4044 kfree(mod); 4045 } 4046 #endif 4047 4048 /* 4049 * We register the module command as a template to show others how 4050 * to register the a command as well. 4051 */ 4052 4053 static int 4054 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4055 char *func_orig, char *cmd, char *module, int enable) 4056 { 4057 char *func; 4058 int ret; 4059 4060 /* match_records() modifies func, and we need the original */ 4061 func = kstrdup(func_orig, GFP_KERNEL); 4062 if (!func) 4063 return -ENOMEM; 4064 4065 /* 4066 * cmd == 'mod' because we only registered this func 4067 * for the 'mod' ftrace_func_command. 4068 * But if you register one func with multiple commands, 4069 * you can tell which command was used by the cmd 4070 * parameter. 4071 */ 4072 ret = match_records(hash, func, strlen(func), module); 4073 kfree(func); 4074 4075 if (!ret) 4076 return cache_mod(tr, func_orig, module, enable); 4077 if (ret < 0) 4078 return ret; 4079 return 0; 4080 } 4081 4082 static struct ftrace_func_command ftrace_mod_cmd = { 4083 .name = "mod", 4084 .func = ftrace_mod_callback, 4085 }; 4086 4087 static int __init ftrace_mod_cmd_init(void) 4088 { 4089 return register_ftrace_command(&ftrace_mod_cmd); 4090 } 4091 core_initcall(ftrace_mod_cmd_init); 4092 4093 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4094 struct ftrace_ops *op, struct pt_regs *pt_regs) 4095 { 4096 struct ftrace_probe_ops *probe_ops; 4097 struct ftrace_func_probe *probe; 4098 4099 probe = container_of(op, struct ftrace_func_probe, ops); 4100 probe_ops = probe->probe_ops; 4101 4102 /* 4103 * Disable preemption for these calls to prevent a RCU grace 4104 * period. This syncs the hash iteration and freeing of items 4105 * on the hash. rcu_read_lock is too dangerous here. 4106 */ 4107 preempt_disable_notrace(); 4108 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4109 preempt_enable_notrace(); 4110 } 4111 4112 struct ftrace_func_map { 4113 struct ftrace_func_entry entry; 4114 void *data; 4115 }; 4116 4117 struct ftrace_func_mapper { 4118 struct ftrace_hash hash; 4119 }; 4120 4121 /** 4122 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4123 * 4124 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4125 */ 4126 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4127 { 4128 struct ftrace_hash *hash; 4129 4130 /* 4131 * The mapper is simply a ftrace_hash, but since the entries 4132 * in the hash are not ftrace_func_entry type, we define it 4133 * as a separate structure. 4134 */ 4135 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4136 return (struct ftrace_func_mapper *)hash; 4137 } 4138 4139 /** 4140 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4141 * @mapper: The mapper that has the ip maps 4142 * @ip: the instruction pointer to find the data for 4143 * 4144 * Returns the data mapped to @ip if found otherwise NULL. The return 4145 * is actually the address of the mapper data pointer. The address is 4146 * returned for use cases where the data is no bigger than a long, and 4147 * the user can use the data pointer as its data instead of having to 4148 * allocate more memory for the reference. 4149 */ 4150 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4151 unsigned long ip) 4152 { 4153 struct ftrace_func_entry *entry; 4154 struct ftrace_func_map *map; 4155 4156 entry = ftrace_lookup_ip(&mapper->hash, ip); 4157 if (!entry) 4158 return NULL; 4159 4160 map = (struct ftrace_func_map *)entry; 4161 return &map->data; 4162 } 4163 4164 /** 4165 * ftrace_func_mapper_add_ip - Map some data to an ip 4166 * @mapper: The mapper that has the ip maps 4167 * @ip: The instruction pointer address to map @data to 4168 * @data: The data to map to @ip 4169 * 4170 * Returns 0 on succes otherwise an error. 4171 */ 4172 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4173 unsigned long ip, void *data) 4174 { 4175 struct ftrace_func_entry *entry; 4176 struct ftrace_func_map *map; 4177 4178 entry = ftrace_lookup_ip(&mapper->hash, ip); 4179 if (entry) 4180 return -EBUSY; 4181 4182 map = kmalloc(sizeof(*map), GFP_KERNEL); 4183 if (!map) 4184 return -ENOMEM; 4185 4186 map->entry.ip = ip; 4187 map->data = data; 4188 4189 __add_hash_entry(&mapper->hash, &map->entry); 4190 4191 return 0; 4192 } 4193 4194 /** 4195 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4196 * @mapper: The mapper that has the ip maps 4197 * @ip: The instruction pointer address to remove the data from 4198 * 4199 * Returns the data if it is found, otherwise NULL. 4200 * Note, if the data pointer is used as the data itself, (see 4201 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4202 * if the data pointer was set to zero. 4203 */ 4204 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4205 unsigned long ip) 4206 { 4207 struct ftrace_func_entry *entry; 4208 struct ftrace_func_map *map; 4209 void *data; 4210 4211 entry = ftrace_lookup_ip(&mapper->hash, ip); 4212 if (!entry) 4213 return NULL; 4214 4215 map = (struct ftrace_func_map *)entry; 4216 data = map->data; 4217 4218 remove_hash_entry(&mapper->hash, entry); 4219 kfree(entry); 4220 4221 return data; 4222 } 4223 4224 /** 4225 * free_ftrace_func_mapper - free a mapping of ips and data 4226 * @mapper: The mapper that has the ip maps 4227 * @free_func: A function to be called on each data item. 4228 * 4229 * This is used to free the function mapper. The @free_func is optional 4230 * and can be used if the data needs to be freed as well. 4231 */ 4232 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4233 ftrace_mapper_func free_func) 4234 { 4235 struct ftrace_func_entry *entry; 4236 struct ftrace_func_map *map; 4237 struct hlist_head *hhd; 4238 int size = 1 << mapper->hash.size_bits; 4239 int i; 4240 4241 if (free_func && mapper->hash.count) { 4242 for (i = 0; i < size; i++) { 4243 hhd = &mapper->hash.buckets[i]; 4244 hlist_for_each_entry(entry, hhd, hlist) { 4245 map = (struct ftrace_func_map *)entry; 4246 free_func(map); 4247 } 4248 } 4249 } 4250 free_ftrace_hash(&mapper->hash); 4251 } 4252 4253 static void release_probe(struct ftrace_func_probe *probe) 4254 { 4255 struct ftrace_probe_ops *probe_ops; 4256 4257 mutex_lock(&ftrace_lock); 4258 4259 WARN_ON(probe->ref <= 0); 4260 4261 /* Subtract the ref that was used to protect this instance */ 4262 probe->ref--; 4263 4264 if (!probe->ref) { 4265 probe_ops = probe->probe_ops; 4266 /* 4267 * Sending zero as ip tells probe_ops to free 4268 * the probe->data itself 4269 */ 4270 if (probe_ops->free) 4271 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4272 list_del(&probe->list); 4273 kfree(probe); 4274 } 4275 mutex_unlock(&ftrace_lock); 4276 } 4277 4278 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4279 { 4280 /* 4281 * Add one ref to keep it from being freed when releasing the 4282 * ftrace_lock mutex. 4283 */ 4284 probe->ref++; 4285 } 4286 4287 int 4288 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4289 struct ftrace_probe_ops *probe_ops, 4290 void *data) 4291 { 4292 struct ftrace_func_entry *entry; 4293 struct ftrace_func_probe *probe; 4294 struct ftrace_hash **orig_hash; 4295 struct ftrace_hash *old_hash; 4296 struct ftrace_hash *hash; 4297 int count = 0; 4298 int size; 4299 int ret; 4300 int i; 4301 4302 if (WARN_ON(!tr)) 4303 return -EINVAL; 4304 4305 /* We do not support '!' for function probes */ 4306 if (WARN_ON(glob[0] == '!')) 4307 return -EINVAL; 4308 4309 4310 mutex_lock(&ftrace_lock); 4311 /* Check if the probe_ops is already registered */ 4312 list_for_each_entry(probe, &tr->func_probes, list) { 4313 if (probe->probe_ops == probe_ops) 4314 break; 4315 } 4316 if (&probe->list == &tr->func_probes) { 4317 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4318 if (!probe) { 4319 mutex_unlock(&ftrace_lock); 4320 return -ENOMEM; 4321 } 4322 probe->probe_ops = probe_ops; 4323 probe->ops.func = function_trace_probe_call; 4324 probe->tr = tr; 4325 ftrace_ops_init(&probe->ops); 4326 list_add(&probe->list, &tr->func_probes); 4327 } 4328 4329 acquire_probe_locked(probe); 4330 4331 mutex_unlock(&ftrace_lock); 4332 4333 mutex_lock(&probe->ops.func_hash->regex_lock); 4334 4335 orig_hash = &probe->ops.func_hash->filter_hash; 4336 old_hash = *orig_hash; 4337 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4338 4339 ret = ftrace_match_records(hash, glob, strlen(glob)); 4340 4341 /* Nothing found? */ 4342 if (!ret) 4343 ret = -EINVAL; 4344 4345 if (ret < 0) 4346 goto out; 4347 4348 size = 1 << hash->size_bits; 4349 for (i = 0; i < size; i++) { 4350 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4351 if (ftrace_lookup_ip(old_hash, entry->ip)) 4352 continue; 4353 /* 4354 * The caller might want to do something special 4355 * for each function we find. We call the callback 4356 * to give the caller an opportunity to do so. 4357 */ 4358 if (probe_ops->init) { 4359 ret = probe_ops->init(probe_ops, tr, 4360 entry->ip, data, 4361 &probe->data); 4362 if (ret < 0) { 4363 if (probe_ops->free && count) 4364 probe_ops->free(probe_ops, tr, 4365 0, probe->data); 4366 probe->data = NULL; 4367 goto out; 4368 } 4369 } 4370 count++; 4371 } 4372 } 4373 4374 mutex_lock(&ftrace_lock); 4375 4376 if (!count) { 4377 /* Nothing was added? */ 4378 ret = -EINVAL; 4379 goto out_unlock; 4380 } 4381 4382 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4383 hash, 1); 4384 if (ret < 0) 4385 goto err_unlock; 4386 4387 /* One ref for each new function traced */ 4388 probe->ref += count; 4389 4390 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4391 ret = ftrace_startup(&probe->ops, 0); 4392 4393 out_unlock: 4394 mutex_unlock(&ftrace_lock); 4395 4396 if (!ret) 4397 ret = count; 4398 out: 4399 mutex_unlock(&probe->ops.func_hash->regex_lock); 4400 free_ftrace_hash(hash); 4401 4402 release_probe(probe); 4403 4404 return ret; 4405 4406 err_unlock: 4407 if (!probe_ops->free || !count) 4408 goto out_unlock; 4409 4410 /* Failed to do the move, need to call the free functions */ 4411 for (i = 0; i < size; i++) { 4412 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4413 if (ftrace_lookup_ip(old_hash, entry->ip)) 4414 continue; 4415 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4416 } 4417 } 4418 goto out_unlock; 4419 } 4420 4421 int 4422 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4423 struct ftrace_probe_ops *probe_ops) 4424 { 4425 struct ftrace_ops_hash old_hash_ops; 4426 struct ftrace_func_entry *entry; 4427 struct ftrace_func_probe *probe; 4428 struct ftrace_glob func_g; 4429 struct ftrace_hash **orig_hash; 4430 struct ftrace_hash *old_hash; 4431 struct ftrace_hash *hash = NULL; 4432 struct hlist_node *tmp; 4433 struct hlist_head hhd; 4434 char str[KSYM_SYMBOL_LEN]; 4435 int count = 0; 4436 int i, ret = -ENODEV; 4437 int size; 4438 4439 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4440 func_g.search = NULL; 4441 else { 4442 int not; 4443 4444 func_g.type = filter_parse_regex(glob, strlen(glob), 4445 &func_g.search, ¬); 4446 func_g.len = strlen(func_g.search); 4447 4448 /* we do not support '!' for function probes */ 4449 if (WARN_ON(not)) 4450 return -EINVAL; 4451 } 4452 4453 mutex_lock(&ftrace_lock); 4454 /* Check if the probe_ops is already registered */ 4455 list_for_each_entry(probe, &tr->func_probes, list) { 4456 if (probe->probe_ops == probe_ops) 4457 break; 4458 } 4459 if (&probe->list == &tr->func_probes) 4460 goto err_unlock_ftrace; 4461 4462 ret = -EINVAL; 4463 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4464 goto err_unlock_ftrace; 4465 4466 acquire_probe_locked(probe); 4467 4468 mutex_unlock(&ftrace_lock); 4469 4470 mutex_lock(&probe->ops.func_hash->regex_lock); 4471 4472 orig_hash = &probe->ops.func_hash->filter_hash; 4473 old_hash = *orig_hash; 4474 4475 if (ftrace_hash_empty(old_hash)) 4476 goto out_unlock; 4477 4478 old_hash_ops.filter_hash = old_hash; 4479 /* Probes only have filters */ 4480 old_hash_ops.notrace_hash = NULL; 4481 4482 ret = -ENOMEM; 4483 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4484 if (!hash) 4485 goto out_unlock; 4486 4487 INIT_HLIST_HEAD(&hhd); 4488 4489 size = 1 << hash->size_bits; 4490 for (i = 0; i < size; i++) { 4491 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4492 4493 if (func_g.search) { 4494 kallsyms_lookup(entry->ip, NULL, NULL, 4495 NULL, str); 4496 if (!ftrace_match(str, &func_g)) 4497 continue; 4498 } 4499 count++; 4500 remove_hash_entry(hash, entry); 4501 hlist_add_head(&entry->hlist, &hhd); 4502 } 4503 } 4504 4505 /* Nothing found? */ 4506 if (!count) { 4507 ret = -EINVAL; 4508 goto out_unlock; 4509 } 4510 4511 mutex_lock(&ftrace_lock); 4512 4513 WARN_ON(probe->ref < count); 4514 4515 probe->ref -= count; 4516 4517 if (ftrace_hash_empty(hash)) 4518 ftrace_shutdown(&probe->ops, 0); 4519 4520 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4521 hash, 1); 4522 4523 /* still need to update the function call sites */ 4524 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4525 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4526 &old_hash_ops); 4527 synchronize_sched(); 4528 4529 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4530 hlist_del(&entry->hlist); 4531 if (probe_ops->free) 4532 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4533 kfree(entry); 4534 } 4535 mutex_unlock(&ftrace_lock); 4536 4537 out_unlock: 4538 mutex_unlock(&probe->ops.func_hash->regex_lock); 4539 free_ftrace_hash(hash); 4540 4541 release_probe(probe); 4542 4543 return ret; 4544 4545 err_unlock_ftrace: 4546 mutex_unlock(&ftrace_lock); 4547 return ret; 4548 } 4549 4550 void clear_ftrace_function_probes(struct trace_array *tr) 4551 { 4552 struct ftrace_func_probe *probe, *n; 4553 4554 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4555 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4556 } 4557 4558 static LIST_HEAD(ftrace_commands); 4559 static DEFINE_MUTEX(ftrace_cmd_mutex); 4560 4561 /* 4562 * Currently we only register ftrace commands from __init, so mark this 4563 * __init too. 4564 */ 4565 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4566 { 4567 struct ftrace_func_command *p; 4568 int ret = 0; 4569 4570 mutex_lock(&ftrace_cmd_mutex); 4571 list_for_each_entry(p, &ftrace_commands, list) { 4572 if (strcmp(cmd->name, p->name) == 0) { 4573 ret = -EBUSY; 4574 goto out_unlock; 4575 } 4576 } 4577 list_add(&cmd->list, &ftrace_commands); 4578 out_unlock: 4579 mutex_unlock(&ftrace_cmd_mutex); 4580 4581 return ret; 4582 } 4583 4584 /* 4585 * Currently we only unregister ftrace commands from __init, so mark 4586 * this __init too. 4587 */ 4588 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4589 { 4590 struct ftrace_func_command *p, *n; 4591 int ret = -ENODEV; 4592 4593 mutex_lock(&ftrace_cmd_mutex); 4594 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4595 if (strcmp(cmd->name, p->name) == 0) { 4596 ret = 0; 4597 list_del_init(&p->list); 4598 goto out_unlock; 4599 } 4600 } 4601 out_unlock: 4602 mutex_unlock(&ftrace_cmd_mutex); 4603 4604 return ret; 4605 } 4606 4607 static int ftrace_process_regex(struct ftrace_iterator *iter, 4608 char *buff, int len, int enable) 4609 { 4610 struct ftrace_hash *hash = iter->hash; 4611 struct trace_array *tr = iter->ops->private; 4612 char *func, *command, *next = buff; 4613 struct ftrace_func_command *p; 4614 int ret = -EINVAL; 4615 4616 func = strsep(&next, ":"); 4617 4618 if (!next) { 4619 ret = ftrace_match_records(hash, func, len); 4620 if (!ret) 4621 ret = -EINVAL; 4622 if (ret < 0) 4623 return ret; 4624 return 0; 4625 } 4626 4627 /* command found */ 4628 4629 command = strsep(&next, ":"); 4630 4631 mutex_lock(&ftrace_cmd_mutex); 4632 list_for_each_entry(p, &ftrace_commands, list) { 4633 if (strcmp(p->name, command) == 0) { 4634 ret = p->func(tr, hash, func, command, next, enable); 4635 goto out_unlock; 4636 } 4637 } 4638 out_unlock: 4639 mutex_unlock(&ftrace_cmd_mutex); 4640 4641 return ret; 4642 } 4643 4644 static ssize_t 4645 ftrace_regex_write(struct file *file, const char __user *ubuf, 4646 size_t cnt, loff_t *ppos, int enable) 4647 { 4648 struct ftrace_iterator *iter; 4649 struct trace_parser *parser; 4650 ssize_t ret, read; 4651 4652 if (!cnt) 4653 return 0; 4654 4655 if (file->f_mode & FMODE_READ) { 4656 struct seq_file *m = file->private_data; 4657 iter = m->private; 4658 } else 4659 iter = file->private_data; 4660 4661 if (unlikely(ftrace_disabled)) 4662 return -ENODEV; 4663 4664 /* iter->hash is a local copy, so we don't need regex_lock */ 4665 4666 parser = &iter->parser; 4667 read = trace_get_user(parser, ubuf, cnt, ppos); 4668 4669 if (read >= 0 && trace_parser_loaded(parser) && 4670 !trace_parser_cont(parser)) { 4671 ret = ftrace_process_regex(iter, parser->buffer, 4672 parser->idx, enable); 4673 trace_parser_clear(parser); 4674 if (ret < 0) 4675 goto out; 4676 } 4677 4678 ret = read; 4679 out: 4680 return ret; 4681 } 4682 4683 ssize_t 4684 ftrace_filter_write(struct file *file, const char __user *ubuf, 4685 size_t cnt, loff_t *ppos) 4686 { 4687 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4688 } 4689 4690 ssize_t 4691 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4692 size_t cnt, loff_t *ppos) 4693 { 4694 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4695 } 4696 4697 static int 4698 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4699 { 4700 struct ftrace_func_entry *entry; 4701 4702 if (!ftrace_location(ip)) 4703 return -EINVAL; 4704 4705 if (remove) { 4706 entry = ftrace_lookup_ip(hash, ip); 4707 if (!entry) 4708 return -ENOENT; 4709 free_hash_entry(hash, entry); 4710 return 0; 4711 } 4712 4713 return add_hash_entry(hash, ip); 4714 } 4715 4716 static int 4717 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4718 unsigned long ip, int remove, int reset, int enable) 4719 { 4720 struct ftrace_hash **orig_hash; 4721 struct ftrace_hash *hash; 4722 int ret; 4723 4724 if (unlikely(ftrace_disabled)) 4725 return -ENODEV; 4726 4727 mutex_lock(&ops->func_hash->regex_lock); 4728 4729 if (enable) 4730 orig_hash = &ops->func_hash->filter_hash; 4731 else 4732 orig_hash = &ops->func_hash->notrace_hash; 4733 4734 if (reset) 4735 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4736 else 4737 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4738 4739 if (!hash) { 4740 ret = -ENOMEM; 4741 goto out_regex_unlock; 4742 } 4743 4744 if (buf && !ftrace_match_records(hash, buf, len)) { 4745 ret = -EINVAL; 4746 goto out_regex_unlock; 4747 } 4748 if (ip) { 4749 ret = ftrace_match_addr(hash, ip, remove); 4750 if (ret < 0) 4751 goto out_regex_unlock; 4752 } 4753 4754 mutex_lock(&ftrace_lock); 4755 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4756 mutex_unlock(&ftrace_lock); 4757 4758 out_regex_unlock: 4759 mutex_unlock(&ops->func_hash->regex_lock); 4760 4761 free_ftrace_hash(hash); 4762 return ret; 4763 } 4764 4765 static int 4766 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4767 int reset, int enable) 4768 { 4769 return ftrace_set_hash(ops, 0, 0, ip, remove, reset, enable); 4770 } 4771 4772 /** 4773 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 4774 * @ops - the ops to set the filter with 4775 * @ip - the address to add to or remove from the filter. 4776 * @remove - non zero to remove the ip from the filter 4777 * @reset - non zero to reset all filters before applying this filter. 4778 * 4779 * Filters denote which functions should be enabled when tracing is enabled 4780 * If @ip is NULL, it failes to update filter. 4781 */ 4782 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 4783 int remove, int reset) 4784 { 4785 ftrace_ops_init(ops); 4786 return ftrace_set_addr(ops, ip, remove, reset, 1); 4787 } 4788 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 4789 4790 /** 4791 * ftrace_ops_set_global_filter - setup ops to use global filters 4792 * @ops - the ops which will use the global filters 4793 * 4794 * ftrace users who need global function trace filtering should call this. 4795 * It can set the global filter only if ops were not initialized before. 4796 */ 4797 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 4798 { 4799 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 4800 return; 4801 4802 ftrace_ops_init(ops); 4803 ops->func_hash = &global_ops.local_hash; 4804 } 4805 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 4806 4807 static int 4808 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4809 int reset, int enable) 4810 { 4811 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 4812 } 4813 4814 /** 4815 * ftrace_set_filter - set a function to filter on in ftrace 4816 * @ops - the ops to set the filter with 4817 * @buf - the string that holds the function filter text. 4818 * @len - the length of the string. 4819 * @reset - non zero to reset all filters before applying this filter. 4820 * 4821 * Filters denote which functions should be enabled when tracing is enabled. 4822 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 4823 */ 4824 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 4825 int len, int reset) 4826 { 4827 ftrace_ops_init(ops); 4828 return ftrace_set_regex(ops, buf, len, reset, 1); 4829 } 4830 EXPORT_SYMBOL_GPL(ftrace_set_filter); 4831 4832 /** 4833 * ftrace_set_notrace - set a function to not trace in ftrace 4834 * @ops - the ops to set the notrace filter with 4835 * @buf - the string that holds the function notrace text. 4836 * @len - the length of the string. 4837 * @reset - non zero to reset all filters before applying this filter. 4838 * 4839 * Notrace Filters denote which functions should not be enabled when tracing 4840 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 4841 * for tracing. 4842 */ 4843 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 4844 int len, int reset) 4845 { 4846 ftrace_ops_init(ops); 4847 return ftrace_set_regex(ops, buf, len, reset, 0); 4848 } 4849 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 4850 /** 4851 * ftrace_set_global_filter - set a function to filter on with global tracers 4852 * @buf - the string that holds the function filter text. 4853 * @len - the length of the string. 4854 * @reset - non zero to reset all filters before applying this filter. 4855 * 4856 * Filters denote which functions should be enabled when tracing is enabled. 4857 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 4858 */ 4859 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 4860 { 4861 ftrace_set_regex(&global_ops, buf, len, reset, 1); 4862 } 4863 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 4864 4865 /** 4866 * ftrace_set_global_notrace - set a function to not trace with global tracers 4867 * @buf - the string that holds the function notrace text. 4868 * @len - the length of the string. 4869 * @reset - non zero to reset all filters before applying this filter. 4870 * 4871 * Notrace Filters denote which functions should not be enabled when tracing 4872 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 4873 * for tracing. 4874 */ 4875 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 4876 { 4877 ftrace_set_regex(&global_ops, buf, len, reset, 0); 4878 } 4879 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 4880 4881 /* 4882 * command line interface to allow users to set filters on boot up. 4883 */ 4884 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 4885 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 4886 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 4887 4888 /* Used by function selftest to not test if filter is set */ 4889 bool ftrace_filter_param __initdata; 4890 4891 static int __init set_ftrace_notrace(char *str) 4892 { 4893 ftrace_filter_param = true; 4894 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 4895 return 1; 4896 } 4897 __setup("ftrace_notrace=", set_ftrace_notrace); 4898 4899 static int __init set_ftrace_filter(char *str) 4900 { 4901 ftrace_filter_param = true; 4902 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 4903 return 1; 4904 } 4905 __setup("ftrace_filter=", set_ftrace_filter); 4906 4907 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 4908 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 4909 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 4910 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 4911 4912 static int __init set_graph_function(char *str) 4913 { 4914 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 4915 return 1; 4916 } 4917 __setup("ftrace_graph_filter=", set_graph_function); 4918 4919 static int __init set_graph_notrace_function(char *str) 4920 { 4921 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 4922 return 1; 4923 } 4924 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 4925 4926 static int __init set_graph_max_depth_function(char *str) 4927 { 4928 if (!str) 4929 return 0; 4930 fgraph_max_depth = simple_strtoul(str, NULL, 0); 4931 return 1; 4932 } 4933 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 4934 4935 static void __init set_ftrace_early_graph(char *buf, int enable) 4936 { 4937 int ret; 4938 char *func; 4939 struct ftrace_hash *hash; 4940 4941 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4942 if (WARN_ON(!hash)) 4943 return; 4944 4945 while (buf) { 4946 func = strsep(&buf, ","); 4947 /* we allow only one expression at a time */ 4948 ret = ftrace_graph_set_hash(hash, func); 4949 if (ret) 4950 printk(KERN_DEBUG "ftrace: function %s not " 4951 "traceable\n", func); 4952 } 4953 4954 if (enable) 4955 ftrace_graph_hash = hash; 4956 else 4957 ftrace_graph_notrace_hash = hash; 4958 } 4959 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 4960 4961 void __init 4962 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 4963 { 4964 char *func; 4965 4966 ftrace_ops_init(ops); 4967 4968 while (buf) { 4969 func = strsep(&buf, ","); 4970 ftrace_set_regex(ops, func, strlen(func), 0, enable); 4971 } 4972 } 4973 4974 static void __init set_ftrace_early_filters(void) 4975 { 4976 if (ftrace_filter_buf[0]) 4977 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 4978 if (ftrace_notrace_buf[0]) 4979 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 4980 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 4981 if (ftrace_graph_buf[0]) 4982 set_ftrace_early_graph(ftrace_graph_buf, 1); 4983 if (ftrace_graph_notrace_buf[0]) 4984 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 4985 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 4986 } 4987 4988 int ftrace_regex_release(struct inode *inode, struct file *file) 4989 { 4990 struct seq_file *m = (struct seq_file *)file->private_data; 4991 struct ftrace_iterator *iter; 4992 struct ftrace_hash **orig_hash; 4993 struct trace_parser *parser; 4994 int filter_hash; 4995 int ret; 4996 4997 if (file->f_mode & FMODE_READ) { 4998 iter = m->private; 4999 seq_release(inode, file); 5000 } else 5001 iter = file->private_data; 5002 5003 parser = &iter->parser; 5004 if (trace_parser_loaded(parser)) { 5005 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5006 } 5007 5008 trace_parser_put(parser); 5009 5010 mutex_lock(&iter->ops->func_hash->regex_lock); 5011 5012 if (file->f_mode & FMODE_WRITE) { 5013 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5014 5015 if (filter_hash) { 5016 orig_hash = &iter->ops->func_hash->filter_hash; 5017 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5018 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5019 } else 5020 orig_hash = &iter->ops->func_hash->notrace_hash; 5021 5022 mutex_lock(&ftrace_lock); 5023 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5024 iter->hash, filter_hash); 5025 mutex_unlock(&ftrace_lock); 5026 } else { 5027 /* For read only, the hash is the ops hash */ 5028 iter->hash = NULL; 5029 } 5030 5031 mutex_unlock(&iter->ops->func_hash->regex_lock); 5032 free_ftrace_hash(iter->hash); 5033 kfree(iter); 5034 5035 return 0; 5036 } 5037 5038 static const struct file_operations ftrace_avail_fops = { 5039 .open = ftrace_avail_open, 5040 .read = seq_read, 5041 .llseek = seq_lseek, 5042 .release = seq_release_private, 5043 }; 5044 5045 static const struct file_operations ftrace_enabled_fops = { 5046 .open = ftrace_enabled_open, 5047 .read = seq_read, 5048 .llseek = seq_lseek, 5049 .release = seq_release_private, 5050 }; 5051 5052 static const struct file_operations ftrace_filter_fops = { 5053 .open = ftrace_filter_open, 5054 .read = seq_read, 5055 .write = ftrace_filter_write, 5056 .llseek = tracing_lseek, 5057 .release = ftrace_regex_release, 5058 }; 5059 5060 static const struct file_operations ftrace_notrace_fops = { 5061 .open = ftrace_notrace_open, 5062 .read = seq_read, 5063 .write = ftrace_notrace_write, 5064 .llseek = tracing_lseek, 5065 .release = ftrace_regex_release, 5066 }; 5067 5068 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5069 5070 static DEFINE_MUTEX(graph_lock); 5071 5072 struct ftrace_hash *ftrace_graph_hash = EMPTY_HASH; 5073 struct ftrace_hash *ftrace_graph_notrace_hash = EMPTY_HASH; 5074 5075 enum graph_filter_type { 5076 GRAPH_FILTER_NOTRACE = 0, 5077 GRAPH_FILTER_FUNCTION, 5078 }; 5079 5080 #define FTRACE_GRAPH_EMPTY ((void *)1) 5081 5082 struct ftrace_graph_data { 5083 struct ftrace_hash *hash; 5084 struct ftrace_func_entry *entry; 5085 int idx; /* for hash table iteration */ 5086 enum graph_filter_type type; 5087 struct ftrace_hash *new_hash; 5088 const struct seq_operations *seq_ops; 5089 struct trace_parser parser; 5090 }; 5091 5092 static void * 5093 __g_next(struct seq_file *m, loff_t *pos) 5094 { 5095 struct ftrace_graph_data *fgd = m->private; 5096 struct ftrace_func_entry *entry = fgd->entry; 5097 struct hlist_head *head; 5098 int i, idx = fgd->idx; 5099 5100 if (*pos >= fgd->hash->count) 5101 return NULL; 5102 5103 if (entry) { 5104 hlist_for_each_entry_continue(entry, hlist) { 5105 fgd->entry = entry; 5106 return entry; 5107 } 5108 5109 idx++; 5110 } 5111 5112 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5113 head = &fgd->hash->buckets[i]; 5114 hlist_for_each_entry(entry, head, hlist) { 5115 fgd->entry = entry; 5116 fgd->idx = i; 5117 return entry; 5118 } 5119 } 5120 return NULL; 5121 } 5122 5123 static void * 5124 g_next(struct seq_file *m, void *v, loff_t *pos) 5125 { 5126 (*pos)++; 5127 return __g_next(m, pos); 5128 } 5129 5130 static void *g_start(struct seq_file *m, loff_t *pos) 5131 { 5132 struct ftrace_graph_data *fgd = m->private; 5133 5134 mutex_lock(&graph_lock); 5135 5136 if (fgd->type == GRAPH_FILTER_FUNCTION) 5137 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5138 lockdep_is_held(&graph_lock)); 5139 else 5140 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5141 lockdep_is_held(&graph_lock)); 5142 5143 /* Nothing, tell g_show to print all functions are enabled */ 5144 if (ftrace_hash_empty(fgd->hash) && !*pos) 5145 return FTRACE_GRAPH_EMPTY; 5146 5147 fgd->idx = 0; 5148 fgd->entry = NULL; 5149 return __g_next(m, pos); 5150 } 5151 5152 static void g_stop(struct seq_file *m, void *p) 5153 { 5154 mutex_unlock(&graph_lock); 5155 } 5156 5157 static int g_show(struct seq_file *m, void *v) 5158 { 5159 struct ftrace_func_entry *entry = v; 5160 5161 if (!entry) 5162 return 0; 5163 5164 if (entry == FTRACE_GRAPH_EMPTY) { 5165 struct ftrace_graph_data *fgd = m->private; 5166 5167 if (fgd->type == GRAPH_FILTER_FUNCTION) 5168 seq_puts(m, "#### all functions enabled ####\n"); 5169 else 5170 seq_puts(m, "#### no functions disabled ####\n"); 5171 return 0; 5172 } 5173 5174 seq_printf(m, "%ps\n", (void *)entry->ip); 5175 5176 return 0; 5177 } 5178 5179 static const struct seq_operations ftrace_graph_seq_ops = { 5180 .start = g_start, 5181 .next = g_next, 5182 .stop = g_stop, 5183 .show = g_show, 5184 }; 5185 5186 static int 5187 __ftrace_graph_open(struct inode *inode, struct file *file, 5188 struct ftrace_graph_data *fgd) 5189 { 5190 int ret = 0; 5191 struct ftrace_hash *new_hash = NULL; 5192 5193 if (file->f_mode & FMODE_WRITE) { 5194 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5195 5196 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5197 return -ENOMEM; 5198 5199 if (file->f_flags & O_TRUNC) 5200 new_hash = alloc_ftrace_hash(size_bits); 5201 else 5202 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5203 fgd->hash); 5204 if (!new_hash) { 5205 ret = -ENOMEM; 5206 goto out; 5207 } 5208 } 5209 5210 if (file->f_mode & FMODE_READ) { 5211 ret = seq_open(file, &ftrace_graph_seq_ops); 5212 if (!ret) { 5213 struct seq_file *m = file->private_data; 5214 m->private = fgd; 5215 } else { 5216 /* Failed */ 5217 free_ftrace_hash(new_hash); 5218 new_hash = NULL; 5219 } 5220 } else 5221 file->private_data = fgd; 5222 5223 out: 5224 if (ret < 0 && file->f_mode & FMODE_WRITE) 5225 trace_parser_put(&fgd->parser); 5226 5227 fgd->new_hash = new_hash; 5228 5229 /* 5230 * All uses of fgd->hash must be taken with the graph_lock 5231 * held. The graph_lock is going to be released, so force 5232 * fgd->hash to be reinitialized when it is taken again. 5233 */ 5234 fgd->hash = NULL; 5235 5236 return ret; 5237 } 5238 5239 static int 5240 ftrace_graph_open(struct inode *inode, struct file *file) 5241 { 5242 struct ftrace_graph_data *fgd; 5243 int ret; 5244 5245 if (unlikely(ftrace_disabled)) 5246 return -ENODEV; 5247 5248 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5249 if (fgd == NULL) 5250 return -ENOMEM; 5251 5252 mutex_lock(&graph_lock); 5253 5254 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5255 lockdep_is_held(&graph_lock)); 5256 fgd->type = GRAPH_FILTER_FUNCTION; 5257 fgd->seq_ops = &ftrace_graph_seq_ops; 5258 5259 ret = __ftrace_graph_open(inode, file, fgd); 5260 if (ret < 0) 5261 kfree(fgd); 5262 5263 mutex_unlock(&graph_lock); 5264 return ret; 5265 } 5266 5267 static int 5268 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5269 { 5270 struct ftrace_graph_data *fgd; 5271 int ret; 5272 5273 if (unlikely(ftrace_disabled)) 5274 return -ENODEV; 5275 5276 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5277 if (fgd == NULL) 5278 return -ENOMEM; 5279 5280 mutex_lock(&graph_lock); 5281 5282 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5283 lockdep_is_held(&graph_lock)); 5284 fgd->type = GRAPH_FILTER_NOTRACE; 5285 fgd->seq_ops = &ftrace_graph_seq_ops; 5286 5287 ret = __ftrace_graph_open(inode, file, fgd); 5288 if (ret < 0) 5289 kfree(fgd); 5290 5291 mutex_unlock(&graph_lock); 5292 return ret; 5293 } 5294 5295 static int 5296 ftrace_graph_release(struct inode *inode, struct file *file) 5297 { 5298 struct ftrace_graph_data *fgd; 5299 struct ftrace_hash *old_hash, *new_hash; 5300 struct trace_parser *parser; 5301 int ret = 0; 5302 5303 if (file->f_mode & FMODE_READ) { 5304 struct seq_file *m = file->private_data; 5305 5306 fgd = m->private; 5307 seq_release(inode, file); 5308 } else { 5309 fgd = file->private_data; 5310 } 5311 5312 5313 if (file->f_mode & FMODE_WRITE) { 5314 5315 parser = &fgd->parser; 5316 5317 if (trace_parser_loaded((parser))) { 5318 ret = ftrace_graph_set_hash(fgd->new_hash, 5319 parser->buffer); 5320 } 5321 5322 trace_parser_put(parser); 5323 5324 new_hash = __ftrace_hash_move(fgd->new_hash); 5325 if (!new_hash) { 5326 ret = -ENOMEM; 5327 goto out; 5328 } 5329 5330 mutex_lock(&graph_lock); 5331 5332 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5333 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5334 lockdep_is_held(&graph_lock)); 5335 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5336 } else { 5337 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5338 lockdep_is_held(&graph_lock)); 5339 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5340 } 5341 5342 mutex_unlock(&graph_lock); 5343 5344 /* Wait till all users are no longer using the old hash */ 5345 synchronize_sched(); 5346 5347 free_ftrace_hash(old_hash); 5348 } 5349 5350 out: 5351 free_ftrace_hash(fgd->new_hash); 5352 kfree(fgd); 5353 5354 return ret; 5355 } 5356 5357 static int 5358 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5359 { 5360 struct ftrace_glob func_g; 5361 struct dyn_ftrace *rec; 5362 struct ftrace_page *pg; 5363 struct ftrace_func_entry *entry; 5364 int fail = 1; 5365 int not; 5366 5367 /* decode regex */ 5368 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5369 &func_g.search, ¬); 5370 5371 func_g.len = strlen(func_g.search); 5372 5373 mutex_lock(&ftrace_lock); 5374 5375 if (unlikely(ftrace_disabled)) { 5376 mutex_unlock(&ftrace_lock); 5377 return -ENODEV; 5378 } 5379 5380 do_for_each_ftrace_rec(pg, rec) { 5381 5382 if (rec->flags & FTRACE_FL_DISABLED) 5383 continue; 5384 5385 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5386 entry = ftrace_lookup_ip(hash, rec->ip); 5387 5388 if (!not) { 5389 fail = 0; 5390 5391 if (entry) 5392 continue; 5393 if (add_hash_entry(hash, rec->ip) < 0) 5394 goto out; 5395 } else { 5396 if (entry) { 5397 free_hash_entry(hash, entry); 5398 fail = 0; 5399 } 5400 } 5401 } 5402 } while_for_each_ftrace_rec(); 5403 out: 5404 mutex_unlock(&ftrace_lock); 5405 5406 if (fail) 5407 return -EINVAL; 5408 5409 return 0; 5410 } 5411 5412 static ssize_t 5413 ftrace_graph_write(struct file *file, const char __user *ubuf, 5414 size_t cnt, loff_t *ppos) 5415 { 5416 ssize_t read, ret = 0; 5417 struct ftrace_graph_data *fgd = file->private_data; 5418 struct trace_parser *parser; 5419 5420 if (!cnt) 5421 return 0; 5422 5423 /* Read mode uses seq functions */ 5424 if (file->f_mode & FMODE_READ) { 5425 struct seq_file *m = file->private_data; 5426 fgd = m->private; 5427 } 5428 5429 parser = &fgd->parser; 5430 5431 read = trace_get_user(parser, ubuf, cnt, ppos); 5432 5433 if (read >= 0 && trace_parser_loaded(parser) && 5434 !trace_parser_cont(parser)) { 5435 5436 ret = ftrace_graph_set_hash(fgd->new_hash, 5437 parser->buffer); 5438 trace_parser_clear(parser); 5439 } 5440 5441 if (!ret) 5442 ret = read; 5443 5444 return ret; 5445 } 5446 5447 static const struct file_operations ftrace_graph_fops = { 5448 .open = ftrace_graph_open, 5449 .read = seq_read, 5450 .write = ftrace_graph_write, 5451 .llseek = tracing_lseek, 5452 .release = ftrace_graph_release, 5453 }; 5454 5455 static const struct file_operations ftrace_graph_notrace_fops = { 5456 .open = ftrace_graph_notrace_open, 5457 .read = seq_read, 5458 .write = ftrace_graph_write, 5459 .llseek = tracing_lseek, 5460 .release = ftrace_graph_release, 5461 }; 5462 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5463 5464 void ftrace_create_filter_files(struct ftrace_ops *ops, 5465 struct dentry *parent) 5466 { 5467 5468 trace_create_file("set_ftrace_filter", 0644, parent, 5469 ops, &ftrace_filter_fops); 5470 5471 trace_create_file("set_ftrace_notrace", 0644, parent, 5472 ops, &ftrace_notrace_fops); 5473 } 5474 5475 /* 5476 * The name "destroy_filter_files" is really a misnomer. Although 5477 * in the future, it may actualy delete the files, but this is 5478 * really intended to make sure the ops passed in are disabled 5479 * and that when this function returns, the caller is free to 5480 * free the ops. 5481 * 5482 * The "destroy" name is only to match the "create" name that this 5483 * should be paired with. 5484 */ 5485 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 5486 { 5487 mutex_lock(&ftrace_lock); 5488 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5489 ftrace_shutdown(ops, 0); 5490 ops->flags |= FTRACE_OPS_FL_DELETED; 5491 mutex_unlock(&ftrace_lock); 5492 } 5493 5494 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 5495 { 5496 5497 trace_create_file("available_filter_functions", 0444, 5498 d_tracer, NULL, &ftrace_avail_fops); 5499 5500 trace_create_file("enabled_functions", 0444, 5501 d_tracer, NULL, &ftrace_enabled_fops); 5502 5503 ftrace_create_filter_files(&global_ops, d_tracer); 5504 5505 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5506 trace_create_file("set_graph_function", 0644, d_tracer, 5507 NULL, 5508 &ftrace_graph_fops); 5509 trace_create_file("set_graph_notrace", 0644, d_tracer, 5510 NULL, 5511 &ftrace_graph_notrace_fops); 5512 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5513 5514 return 0; 5515 } 5516 5517 static int ftrace_cmp_ips(const void *a, const void *b) 5518 { 5519 const unsigned long *ipa = a; 5520 const unsigned long *ipb = b; 5521 5522 if (*ipa > *ipb) 5523 return 1; 5524 if (*ipa < *ipb) 5525 return -1; 5526 return 0; 5527 } 5528 5529 static int ftrace_process_locs(struct module *mod, 5530 unsigned long *start, 5531 unsigned long *end) 5532 { 5533 struct ftrace_page *start_pg; 5534 struct ftrace_page *pg; 5535 struct dyn_ftrace *rec; 5536 unsigned long count; 5537 unsigned long *p; 5538 unsigned long addr; 5539 unsigned long flags = 0; /* Shut up gcc */ 5540 int ret = -ENOMEM; 5541 5542 count = end - start; 5543 5544 if (!count) 5545 return 0; 5546 5547 sort(start, count, sizeof(*start), 5548 ftrace_cmp_ips, NULL); 5549 5550 start_pg = ftrace_allocate_pages(count); 5551 if (!start_pg) 5552 return -ENOMEM; 5553 5554 mutex_lock(&ftrace_lock); 5555 5556 /* 5557 * Core and each module needs their own pages, as 5558 * modules will free them when they are removed. 5559 * Force a new page to be allocated for modules. 5560 */ 5561 if (!mod) { 5562 WARN_ON(ftrace_pages || ftrace_pages_start); 5563 /* First initialization */ 5564 ftrace_pages = ftrace_pages_start = start_pg; 5565 } else { 5566 if (!ftrace_pages) 5567 goto out; 5568 5569 if (WARN_ON(ftrace_pages->next)) { 5570 /* Hmm, we have free pages? */ 5571 while (ftrace_pages->next) 5572 ftrace_pages = ftrace_pages->next; 5573 } 5574 5575 ftrace_pages->next = start_pg; 5576 } 5577 5578 p = start; 5579 pg = start_pg; 5580 while (p < end) { 5581 addr = ftrace_call_adjust(*p++); 5582 /* 5583 * Some architecture linkers will pad between 5584 * the different mcount_loc sections of different 5585 * object files to satisfy alignments. 5586 * Skip any NULL pointers. 5587 */ 5588 if (!addr) 5589 continue; 5590 5591 if (pg->index == pg->size) { 5592 /* We should have allocated enough */ 5593 if (WARN_ON(!pg->next)) 5594 break; 5595 pg = pg->next; 5596 } 5597 5598 rec = &pg->records[pg->index++]; 5599 rec->ip = addr; 5600 } 5601 5602 /* We should have used all pages */ 5603 WARN_ON(pg->next); 5604 5605 /* Assign the last page to ftrace_pages */ 5606 ftrace_pages = pg; 5607 5608 /* 5609 * We only need to disable interrupts on start up 5610 * because we are modifying code that an interrupt 5611 * may execute, and the modification is not atomic. 5612 * But for modules, nothing runs the code we modify 5613 * until we are finished with it, and there's no 5614 * reason to cause large interrupt latencies while we do it. 5615 */ 5616 if (!mod) 5617 local_irq_save(flags); 5618 ftrace_update_code(mod, start_pg); 5619 if (!mod) 5620 local_irq_restore(flags); 5621 ret = 0; 5622 out: 5623 mutex_unlock(&ftrace_lock); 5624 5625 return ret; 5626 } 5627 5628 struct ftrace_mod_func { 5629 struct list_head list; 5630 char *name; 5631 unsigned long ip; 5632 unsigned int size; 5633 }; 5634 5635 struct ftrace_mod_map { 5636 struct rcu_head rcu; 5637 struct list_head list; 5638 struct module *mod; 5639 unsigned long start_addr; 5640 unsigned long end_addr; 5641 struct list_head funcs; 5642 unsigned int num_funcs; 5643 }; 5644 5645 #ifdef CONFIG_MODULES 5646 5647 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 5648 5649 static LIST_HEAD(ftrace_mod_maps); 5650 5651 static int referenced_filters(struct dyn_ftrace *rec) 5652 { 5653 struct ftrace_ops *ops; 5654 int cnt = 0; 5655 5656 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 5657 if (ops_references_rec(ops, rec)) 5658 cnt++; 5659 } 5660 5661 return cnt; 5662 } 5663 5664 static void 5665 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 5666 { 5667 struct ftrace_func_entry *entry; 5668 struct dyn_ftrace *rec; 5669 int i; 5670 5671 if (ftrace_hash_empty(hash)) 5672 return; 5673 5674 for (i = 0; i < pg->index; i++) { 5675 rec = &pg->records[i]; 5676 entry = __ftrace_lookup_ip(hash, rec->ip); 5677 /* 5678 * Do not allow this rec to match again. 5679 * Yeah, it may waste some memory, but will be removed 5680 * if/when the hash is modified again. 5681 */ 5682 if (entry) 5683 entry->ip = 0; 5684 } 5685 } 5686 5687 /* Clear any records from hashs */ 5688 static void clear_mod_from_hashes(struct ftrace_page *pg) 5689 { 5690 struct trace_array *tr; 5691 5692 mutex_lock(&trace_types_lock); 5693 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5694 if (!tr->ops || !tr->ops->func_hash) 5695 continue; 5696 mutex_lock(&tr->ops->func_hash->regex_lock); 5697 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 5698 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 5699 mutex_unlock(&tr->ops->func_hash->regex_lock); 5700 } 5701 mutex_unlock(&trace_types_lock); 5702 } 5703 5704 static void ftrace_free_mod_map(struct rcu_head *rcu) 5705 { 5706 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 5707 struct ftrace_mod_func *mod_func; 5708 struct ftrace_mod_func *n; 5709 5710 /* All the contents of mod_map are now not visible to readers */ 5711 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 5712 kfree(mod_func->name); 5713 list_del(&mod_func->list); 5714 kfree(mod_func); 5715 } 5716 5717 kfree(mod_map); 5718 } 5719 5720 void ftrace_release_mod(struct module *mod) 5721 { 5722 struct ftrace_mod_map *mod_map; 5723 struct ftrace_mod_map *n; 5724 struct dyn_ftrace *rec; 5725 struct ftrace_page **last_pg; 5726 struct ftrace_page *tmp_page = NULL; 5727 struct ftrace_page *pg; 5728 int order; 5729 5730 mutex_lock(&ftrace_lock); 5731 5732 if (ftrace_disabled) 5733 goto out_unlock; 5734 5735 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 5736 if (mod_map->mod == mod) { 5737 list_del_rcu(&mod_map->list); 5738 call_rcu_sched(&mod_map->rcu, ftrace_free_mod_map); 5739 break; 5740 } 5741 } 5742 5743 /* 5744 * Each module has its own ftrace_pages, remove 5745 * them from the list. 5746 */ 5747 last_pg = &ftrace_pages_start; 5748 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 5749 rec = &pg->records[0]; 5750 if (within_module_core(rec->ip, mod) || 5751 within_module_init(rec->ip, mod)) { 5752 /* 5753 * As core pages are first, the first 5754 * page should never be a module page. 5755 */ 5756 if (WARN_ON(pg == ftrace_pages_start)) 5757 goto out_unlock; 5758 5759 /* Check if we are deleting the last page */ 5760 if (pg == ftrace_pages) 5761 ftrace_pages = next_to_ftrace_page(last_pg); 5762 5763 ftrace_update_tot_cnt -= pg->index; 5764 *last_pg = pg->next; 5765 5766 pg->next = tmp_page; 5767 tmp_page = pg; 5768 } else 5769 last_pg = &pg->next; 5770 } 5771 out_unlock: 5772 mutex_unlock(&ftrace_lock); 5773 5774 for (pg = tmp_page; pg; pg = tmp_page) { 5775 5776 /* Needs to be called outside of ftrace_lock */ 5777 clear_mod_from_hashes(pg); 5778 5779 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 5780 free_pages((unsigned long)pg->records, order); 5781 tmp_page = pg->next; 5782 kfree(pg); 5783 } 5784 } 5785 5786 void ftrace_module_enable(struct module *mod) 5787 { 5788 struct dyn_ftrace *rec; 5789 struct ftrace_page *pg; 5790 5791 mutex_lock(&ftrace_lock); 5792 5793 if (ftrace_disabled) 5794 goto out_unlock; 5795 5796 /* 5797 * If the tracing is enabled, go ahead and enable the record. 5798 * 5799 * The reason not to enable the record immediatelly is the 5800 * inherent check of ftrace_make_nop/ftrace_make_call for 5801 * correct previous instructions. Making first the NOP 5802 * conversion puts the module to the correct state, thus 5803 * passing the ftrace_make_call check. 5804 * 5805 * We also delay this to after the module code already set the 5806 * text to read-only, as we now need to set it back to read-write 5807 * so that we can modify the text. 5808 */ 5809 if (ftrace_start_up) 5810 ftrace_arch_code_modify_prepare(); 5811 5812 do_for_each_ftrace_rec(pg, rec) { 5813 int cnt; 5814 /* 5815 * do_for_each_ftrace_rec() is a double loop. 5816 * module text shares the pg. If a record is 5817 * not part of this module, then skip this pg, 5818 * which the "break" will do. 5819 */ 5820 if (!within_module_core(rec->ip, mod) && 5821 !within_module_init(rec->ip, mod)) 5822 break; 5823 5824 cnt = 0; 5825 5826 /* 5827 * When adding a module, we need to check if tracers are 5828 * currently enabled and if they are, and can trace this record, 5829 * we need to enable the module functions as well as update the 5830 * reference counts for those function records. 5831 */ 5832 if (ftrace_start_up) 5833 cnt += referenced_filters(rec); 5834 5835 /* This clears FTRACE_FL_DISABLED */ 5836 rec->flags = cnt; 5837 5838 if (ftrace_start_up && cnt) { 5839 int failed = __ftrace_replace_code(rec, 1); 5840 if (failed) { 5841 ftrace_bug(failed, rec); 5842 goto out_loop; 5843 } 5844 } 5845 5846 } while_for_each_ftrace_rec(); 5847 5848 out_loop: 5849 if (ftrace_start_up) 5850 ftrace_arch_code_modify_post_process(); 5851 5852 out_unlock: 5853 mutex_unlock(&ftrace_lock); 5854 5855 process_cached_mods(mod->name); 5856 } 5857 5858 void ftrace_module_init(struct module *mod) 5859 { 5860 if (ftrace_disabled || !mod->num_ftrace_callsites) 5861 return; 5862 5863 ftrace_process_locs(mod, mod->ftrace_callsites, 5864 mod->ftrace_callsites + mod->num_ftrace_callsites); 5865 } 5866 5867 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 5868 struct dyn_ftrace *rec) 5869 { 5870 struct ftrace_mod_func *mod_func; 5871 unsigned long symsize; 5872 unsigned long offset; 5873 char str[KSYM_SYMBOL_LEN]; 5874 char *modname; 5875 const char *ret; 5876 5877 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 5878 if (!ret) 5879 return; 5880 5881 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 5882 if (!mod_func) 5883 return; 5884 5885 mod_func->name = kstrdup(str, GFP_KERNEL); 5886 if (!mod_func->name) { 5887 kfree(mod_func); 5888 return; 5889 } 5890 5891 mod_func->ip = rec->ip - offset; 5892 mod_func->size = symsize; 5893 5894 mod_map->num_funcs++; 5895 5896 list_add_rcu(&mod_func->list, &mod_map->funcs); 5897 } 5898 5899 static struct ftrace_mod_map * 5900 allocate_ftrace_mod_map(struct module *mod, 5901 unsigned long start, unsigned long end) 5902 { 5903 struct ftrace_mod_map *mod_map; 5904 5905 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 5906 if (!mod_map) 5907 return NULL; 5908 5909 mod_map->mod = mod; 5910 mod_map->start_addr = start; 5911 mod_map->end_addr = end; 5912 mod_map->num_funcs = 0; 5913 5914 INIT_LIST_HEAD_RCU(&mod_map->funcs); 5915 5916 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 5917 5918 return mod_map; 5919 } 5920 5921 static const char * 5922 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 5923 unsigned long addr, unsigned long *size, 5924 unsigned long *off, char *sym) 5925 { 5926 struct ftrace_mod_func *found_func = NULL; 5927 struct ftrace_mod_func *mod_func; 5928 5929 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 5930 if (addr >= mod_func->ip && 5931 addr < mod_func->ip + mod_func->size) { 5932 found_func = mod_func; 5933 break; 5934 } 5935 } 5936 5937 if (found_func) { 5938 if (size) 5939 *size = found_func->size; 5940 if (off) 5941 *off = addr - found_func->ip; 5942 if (sym) 5943 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 5944 5945 return found_func->name; 5946 } 5947 5948 return NULL; 5949 } 5950 5951 const char * 5952 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 5953 unsigned long *off, char **modname, char *sym) 5954 { 5955 struct ftrace_mod_map *mod_map; 5956 const char *ret = NULL; 5957 5958 /* mod_map is freed via call_rcu_sched() */ 5959 preempt_disable(); 5960 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 5961 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 5962 if (ret) { 5963 if (modname) 5964 *modname = mod_map->mod->name; 5965 break; 5966 } 5967 } 5968 preempt_enable(); 5969 5970 return ret; 5971 } 5972 5973 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 5974 char *type, char *name, 5975 char *module_name, int *exported) 5976 { 5977 struct ftrace_mod_map *mod_map; 5978 struct ftrace_mod_func *mod_func; 5979 5980 preempt_disable(); 5981 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 5982 5983 if (symnum >= mod_map->num_funcs) { 5984 symnum -= mod_map->num_funcs; 5985 continue; 5986 } 5987 5988 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 5989 if (symnum > 1) { 5990 symnum--; 5991 continue; 5992 } 5993 5994 *value = mod_func->ip; 5995 *type = 'T'; 5996 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 5997 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 5998 *exported = 1; 5999 preempt_enable(); 6000 return 0; 6001 } 6002 WARN_ON(1); 6003 break; 6004 } 6005 preempt_enable(); 6006 return -ERANGE; 6007 } 6008 6009 #else 6010 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6011 struct dyn_ftrace *rec) { } 6012 static inline struct ftrace_mod_map * 6013 allocate_ftrace_mod_map(struct module *mod, 6014 unsigned long start, unsigned long end) 6015 { 6016 return NULL; 6017 } 6018 #endif /* CONFIG_MODULES */ 6019 6020 struct ftrace_init_func { 6021 struct list_head list; 6022 unsigned long ip; 6023 }; 6024 6025 /* Clear any init ips from hashes */ 6026 static void 6027 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6028 { 6029 struct ftrace_func_entry *entry; 6030 6031 if (ftrace_hash_empty(hash)) 6032 return; 6033 6034 entry = __ftrace_lookup_ip(hash, func->ip); 6035 6036 /* 6037 * Do not allow this rec to match again. 6038 * Yeah, it may waste some memory, but will be removed 6039 * if/when the hash is modified again. 6040 */ 6041 if (entry) 6042 entry->ip = 0; 6043 } 6044 6045 static void 6046 clear_func_from_hashes(struct ftrace_init_func *func) 6047 { 6048 struct trace_array *tr; 6049 6050 mutex_lock(&trace_types_lock); 6051 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6052 if (!tr->ops || !tr->ops->func_hash) 6053 continue; 6054 mutex_lock(&tr->ops->func_hash->regex_lock); 6055 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6056 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6057 mutex_unlock(&tr->ops->func_hash->regex_lock); 6058 } 6059 mutex_unlock(&trace_types_lock); 6060 } 6061 6062 static void add_to_clear_hash_list(struct list_head *clear_list, 6063 struct dyn_ftrace *rec) 6064 { 6065 struct ftrace_init_func *func; 6066 6067 func = kmalloc(sizeof(*func), GFP_KERNEL); 6068 if (!func) { 6069 WARN_ONCE(1, "alloc failure, ftrace filter could be stale\n"); 6070 return; 6071 } 6072 6073 func->ip = rec->ip; 6074 list_add(&func->list, clear_list); 6075 } 6076 6077 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6078 { 6079 unsigned long start = (unsigned long)(start_ptr); 6080 unsigned long end = (unsigned long)(end_ptr); 6081 struct ftrace_page **last_pg = &ftrace_pages_start; 6082 struct ftrace_page *pg; 6083 struct dyn_ftrace *rec; 6084 struct dyn_ftrace key; 6085 struct ftrace_mod_map *mod_map = NULL; 6086 struct ftrace_init_func *func, *func_next; 6087 struct list_head clear_hash; 6088 int order; 6089 6090 INIT_LIST_HEAD(&clear_hash); 6091 6092 key.ip = start; 6093 key.flags = end; /* overload flags, as it is unsigned long */ 6094 6095 mutex_lock(&ftrace_lock); 6096 6097 /* 6098 * If we are freeing module init memory, then check if 6099 * any tracer is active. If so, we need to save a mapping of 6100 * the module functions being freed with the address. 6101 */ 6102 if (mod && ftrace_ops_list != &ftrace_list_end) 6103 mod_map = allocate_ftrace_mod_map(mod, start, end); 6104 6105 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6106 if (end < pg->records[0].ip || 6107 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6108 continue; 6109 again: 6110 rec = bsearch(&key, pg->records, pg->index, 6111 sizeof(struct dyn_ftrace), 6112 ftrace_cmp_recs); 6113 if (!rec) 6114 continue; 6115 6116 /* rec will be cleared from hashes after ftrace_lock unlock */ 6117 add_to_clear_hash_list(&clear_hash, rec); 6118 6119 if (mod_map) 6120 save_ftrace_mod_rec(mod_map, rec); 6121 6122 pg->index--; 6123 ftrace_update_tot_cnt--; 6124 if (!pg->index) { 6125 *last_pg = pg->next; 6126 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6127 free_pages((unsigned long)pg->records, order); 6128 kfree(pg); 6129 pg = container_of(last_pg, struct ftrace_page, next); 6130 if (!(*last_pg)) 6131 ftrace_pages = pg; 6132 continue; 6133 } 6134 memmove(rec, rec + 1, 6135 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6136 /* More than one function may be in this block */ 6137 goto again; 6138 } 6139 mutex_unlock(&ftrace_lock); 6140 6141 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6142 clear_func_from_hashes(func); 6143 kfree(func); 6144 } 6145 } 6146 6147 void __init ftrace_free_init_mem(void) 6148 { 6149 void *start = (void *)(&__init_begin); 6150 void *end = (void *)(&__init_end); 6151 6152 ftrace_free_mem(NULL, start, end); 6153 } 6154 6155 void __init ftrace_init(void) 6156 { 6157 extern unsigned long __start_mcount_loc[]; 6158 extern unsigned long __stop_mcount_loc[]; 6159 unsigned long count, flags; 6160 int ret; 6161 6162 local_irq_save(flags); 6163 ret = ftrace_dyn_arch_init(); 6164 local_irq_restore(flags); 6165 if (ret) 6166 goto failed; 6167 6168 count = __stop_mcount_loc - __start_mcount_loc; 6169 if (!count) { 6170 pr_info("ftrace: No functions to be traced?\n"); 6171 goto failed; 6172 } 6173 6174 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6175 count, count / ENTRIES_PER_PAGE + 1); 6176 6177 last_ftrace_enabled = ftrace_enabled = 1; 6178 6179 ret = ftrace_process_locs(NULL, 6180 __start_mcount_loc, 6181 __stop_mcount_loc); 6182 6183 set_ftrace_early_filters(); 6184 6185 return; 6186 failed: 6187 ftrace_disabled = 1; 6188 } 6189 6190 /* Do nothing if arch does not support this */ 6191 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6192 { 6193 } 6194 6195 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6196 { 6197 arch_ftrace_update_trampoline(ops); 6198 } 6199 6200 void ftrace_init_trace_array(struct trace_array *tr) 6201 { 6202 INIT_LIST_HEAD(&tr->func_probes); 6203 INIT_LIST_HEAD(&tr->mod_trace); 6204 INIT_LIST_HEAD(&tr->mod_notrace); 6205 } 6206 #else 6207 6208 static struct ftrace_ops global_ops = { 6209 .func = ftrace_stub, 6210 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6211 FTRACE_OPS_FL_INITIALIZED | 6212 FTRACE_OPS_FL_PID, 6213 }; 6214 6215 static int __init ftrace_nodyn_init(void) 6216 { 6217 ftrace_enabled = 1; 6218 return 0; 6219 } 6220 core_initcall(ftrace_nodyn_init); 6221 6222 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6223 static inline void ftrace_startup_enable(int command) { } 6224 static inline void ftrace_startup_all(int command) { } 6225 /* Keep as macros so we do not need to define the commands */ 6226 # define ftrace_startup(ops, command) \ 6227 ({ \ 6228 int ___ret = __register_ftrace_function(ops); \ 6229 if (!___ret) \ 6230 (ops)->flags |= FTRACE_OPS_FL_ENABLED; \ 6231 ___ret; \ 6232 }) 6233 # define ftrace_shutdown(ops, command) \ 6234 ({ \ 6235 int ___ret = __unregister_ftrace_function(ops); \ 6236 if (!___ret) \ 6237 (ops)->flags &= ~FTRACE_OPS_FL_ENABLED; \ 6238 ___ret; \ 6239 }) 6240 6241 # define ftrace_startup_sysctl() do { } while (0) 6242 # define ftrace_shutdown_sysctl() do { } while (0) 6243 6244 static inline int 6245 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 6246 { 6247 return 1; 6248 } 6249 6250 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6251 { 6252 } 6253 6254 #endif /* CONFIG_DYNAMIC_FTRACE */ 6255 6256 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6257 { 6258 tr->ops = &global_ops; 6259 tr->ops->private = tr; 6260 ftrace_init_trace_array(tr); 6261 } 6262 6263 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6264 { 6265 /* If we filter on pids, update to use the pid function */ 6266 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6267 if (WARN_ON(tr->ops->func != ftrace_stub)) 6268 printk("ftrace ops had %pS for function\n", 6269 tr->ops->func); 6270 } 6271 tr->ops->func = func; 6272 tr->ops->private = tr; 6273 } 6274 6275 void ftrace_reset_array_ops(struct trace_array *tr) 6276 { 6277 tr->ops->func = ftrace_stub; 6278 } 6279 6280 static inline void 6281 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6282 struct ftrace_ops *ignored, struct pt_regs *regs) 6283 { 6284 struct ftrace_ops *op; 6285 int bit; 6286 6287 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6288 if (bit < 0) 6289 return; 6290 6291 /* 6292 * Some of the ops may be dynamically allocated, 6293 * they must be freed after a synchronize_sched(). 6294 */ 6295 preempt_disable_notrace(); 6296 6297 do_for_each_ftrace_op(op, ftrace_ops_list) { 6298 /* 6299 * Check the following for each ops before calling their func: 6300 * if RCU flag is set, then rcu_is_watching() must be true 6301 * if PER_CPU is set, then ftrace_function_local_disable() 6302 * must be false 6303 * Otherwise test if the ip matches the ops filter 6304 * 6305 * If any of the above fails then the op->func() is not executed. 6306 */ 6307 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6308 ftrace_ops_test(op, ip, regs)) { 6309 if (FTRACE_WARN_ON(!op->func)) { 6310 pr_warn("op=%p %pS\n", op, op); 6311 goto out; 6312 } 6313 op->func(ip, parent_ip, op, regs); 6314 } 6315 } while_for_each_ftrace_op(op); 6316 out: 6317 preempt_enable_notrace(); 6318 trace_clear_recursion(bit); 6319 } 6320 6321 /* 6322 * Some archs only support passing ip and parent_ip. Even though 6323 * the list function ignores the op parameter, we do not want any 6324 * C side effects, where a function is called without the caller 6325 * sending a third parameter. 6326 * Archs are to support both the regs and ftrace_ops at the same time. 6327 * If they support ftrace_ops, it is assumed they support regs. 6328 * If call backs want to use regs, they must either check for regs 6329 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6330 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6331 * An architecture can pass partial regs with ftrace_ops and still 6332 * set the ARCH_SUPPORTS_FTRACE_OPS. 6333 */ 6334 #if ARCH_SUPPORTS_FTRACE_OPS 6335 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6336 struct ftrace_ops *op, struct pt_regs *regs) 6337 { 6338 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6339 } 6340 #else 6341 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6342 { 6343 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6344 } 6345 #endif 6346 6347 /* 6348 * If there's only one function registered but it does not support 6349 * recursion, needs RCU protection and/or requires per cpu handling, then 6350 * this function will be called by the mcount trampoline. 6351 */ 6352 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6353 struct ftrace_ops *op, struct pt_regs *regs) 6354 { 6355 int bit; 6356 6357 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6358 return; 6359 6360 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6361 if (bit < 0) 6362 return; 6363 6364 preempt_disable_notrace(); 6365 6366 op->func(ip, parent_ip, op, regs); 6367 6368 preempt_enable_notrace(); 6369 trace_clear_recursion(bit); 6370 } 6371 6372 /** 6373 * ftrace_ops_get_func - get the function a trampoline should call 6374 * @ops: the ops to get the function for 6375 * 6376 * Normally the mcount trampoline will call the ops->func, but there 6377 * are times that it should not. For example, if the ops does not 6378 * have its own recursion protection, then it should call the 6379 * ftrace_ops_assist_func() instead. 6380 * 6381 * Returns the function that the trampoline should call for @ops. 6382 */ 6383 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 6384 { 6385 /* 6386 * If the function does not handle recursion, needs to be RCU safe, 6387 * or does per cpu logic, then we need to call the assist handler. 6388 */ 6389 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 6390 ops->flags & FTRACE_OPS_FL_RCU) 6391 return ftrace_ops_assist_func; 6392 6393 return ops->func; 6394 } 6395 6396 static void 6397 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 6398 struct task_struct *prev, struct task_struct *next) 6399 { 6400 struct trace_array *tr = data; 6401 struct trace_pid_list *pid_list; 6402 6403 pid_list = rcu_dereference_sched(tr->function_pids); 6404 6405 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 6406 trace_ignore_this_task(pid_list, next)); 6407 } 6408 6409 static void 6410 ftrace_pid_follow_sched_process_fork(void *data, 6411 struct task_struct *self, 6412 struct task_struct *task) 6413 { 6414 struct trace_pid_list *pid_list; 6415 struct trace_array *tr = data; 6416 6417 pid_list = rcu_dereference_sched(tr->function_pids); 6418 trace_filter_add_remove_task(pid_list, self, task); 6419 } 6420 6421 static void 6422 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 6423 { 6424 struct trace_pid_list *pid_list; 6425 struct trace_array *tr = data; 6426 6427 pid_list = rcu_dereference_sched(tr->function_pids); 6428 trace_filter_add_remove_task(pid_list, NULL, task); 6429 } 6430 6431 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 6432 { 6433 if (enable) { 6434 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6435 tr); 6436 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6437 tr); 6438 } else { 6439 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6440 tr); 6441 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6442 tr); 6443 } 6444 } 6445 6446 static void clear_ftrace_pids(struct trace_array *tr) 6447 { 6448 struct trace_pid_list *pid_list; 6449 int cpu; 6450 6451 pid_list = rcu_dereference_protected(tr->function_pids, 6452 lockdep_is_held(&ftrace_lock)); 6453 if (!pid_list) 6454 return; 6455 6456 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6457 6458 for_each_possible_cpu(cpu) 6459 per_cpu_ptr(tr->trace_buffer.data, cpu)->ftrace_ignore_pid = false; 6460 6461 rcu_assign_pointer(tr->function_pids, NULL); 6462 6463 /* Wait till all users are no longer using pid filtering */ 6464 synchronize_sched(); 6465 6466 trace_free_pid_list(pid_list); 6467 } 6468 6469 void ftrace_clear_pids(struct trace_array *tr) 6470 { 6471 mutex_lock(&ftrace_lock); 6472 6473 clear_ftrace_pids(tr); 6474 6475 mutex_unlock(&ftrace_lock); 6476 } 6477 6478 static void ftrace_pid_reset(struct trace_array *tr) 6479 { 6480 mutex_lock(&ftrace_lock); 6481 clear_ftrace_pids(tr); 6482 6483 ftrace_update_pid_func(); 6484 ftrace_startup_all(0); 6485 6486 mutex_unlock(&ftrace_lock); 6487 } 6488 6489 /* Greater than any max PID */ 6490 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 6491 6492 static void *fpid_start(struct seq_file *m, loff_t *pos) 6493 __acquires(RCU) 6494 { 6495 struct trace_pid_list *pid_list; 6496 struct trace_array *tr = m->private; 6497 6498 mutex_lock(&ftrace_lock); 6499 rcu_read_lock_sched(); 6500 6501 pid_list = rcu_dereference_sched(tr->function_pids); 6502 6503 if (!pid_list) 6504 return !(*pos) ? FTRACE_NO_PIDS : NULL; 6505 6506 return trace_pid_start(pid_list, pos); 6507 } 6508 6509 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 6510 { 6511 struct trace_array *tr = m->private; 6512 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 6513 6514 if (v == FTRACE_NO_PIDS) 6515 return NULL; 6516 6517 return trace_pid_next(pid_list, v, pos); 6518 } 6519 6520 static void fpid_stop(struct seq_file *m, void *p) 6521 __releases(RCU) 6522 { 6523 rcu_read_unlock_sched(); 6524 mutex_unlock(&ftrace_lock); 6525 } 6526 6527 static int fpid_show(struct seq_file *m, void *v) 6528 { 6529 if (v == FTRACE_NO_PIDS) { 6530 seq_puts(m, "no pid\n"); 6531 return 0; 6532 } 6533 6534 return trace_pid_show(m, v); 6535 } 6536 6537 static const struct seq_operations ftrace_pid_sops = { 6538 .start = fpid_start, 6539 .next = fpid_next, 6540 .stop = fpid_stop, 6541 .show = fpid_show, 6542 }; 6543 6544 static int 6545 ftrace_pid_open(struct inode *inode, struct file *file) 6546 { 6547 struct trace_array *tr = inode->i_private; 6548 struct seq_file *m; 6549 int ret = 0; 6550 6551 if (trace_array_get(tr) < 0) 6552 return -ENODEV; 6553 6554 if ((file->f_mode & FMODE_WRITE) && 6555 (file->f_flags & O_TRUNC)) 6556 ftrace_pid_reset(tr); 6557 6558 ret = seq_open(file, &ftrace_pid_sops); 6559 if (ret < 0) { 6560 trace_array_put(tr); 6561 } else { 6562 m = file->private_data; 6563 /* copy tr over to seq ops */ 6564 m->private = tr; 6565 } 6566 6567 return ret; 6568 } 6569 6570 static void ignore_task_cpu(void *data) 6571 { 6572 struct trace_array *tr = data; 6573 struct trace_pid_list *pid_list; 6574 6575 /* 6576 * This function is called by on_each_cpu() while the 6577 * event_mutex is held. 6578 */ 6579 pid_list = rcu_dereference_protected(tr->function_pids, 6580 mutex_is_locked(&ftrace_lock)); 6581 6582 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 6583 trace_ignore_this_task(pid_list, current)); 6584 } 6585 6586 static ssize_t 6587 ftrace_pid_write(struct file *filp, const char __user *ubuf, 6588 size_t cnt, loff_t *ppos) 6589 { 6590 struct seq_file *m = filp->private_data; 6591 struct trace_array *tr = m->private; 6592 struct trace_pid_list *filtered_pids = NULL; 6593 struct trace_pid_list *pid_list; 6594 ssize_t ret; 6595 6596 if (!cnt) 6597 return 0; 6598 6599 mutex_lock(&ftrace_lock); 6600 6601 filtered_pids = rcu_dereference_protected(tr->function_pids, 6602 lockdep_is_held(&ftrace_lock)); 6603 6604 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 6605 if (ret < 0) 6606 goto out; 6607 6608 rcu_assign_pointer(tr->function_pids, pid_list); 6609 6610 if (filtered_pids) { 6611 synchronize_sched(); 6612 trace_free_pid_list(filtered_pids); 6613 } else if (pid_list) { 6614 /* Register a probe to set whether to ignore the tracing of a task */ 6615 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6616 } 6617 6618 /* 6619 * Ignoring of pids is done at task switch. But we have to 6620 * check for those tasks that are currently running. 6621 * Always do this in case a pid was appended or removed. 6622 */ 6623 on_each_cpu(ignore_task_cpu, tr, 1); 6624 6625 ftrace_update_pid_func(); 6626 ftrace_startup_all(0); 6627 out: 6628 mutex_unlock(&ftrace_lock); 6629 6630 if (ret > 0) 6631 *ppos += ret; 6632 6633 return ret; 6634 } 6635 6636 static int 6637 ftrace_pid_release(struct inode *inode, struct file *file) 6638 { 6639 struct trace_array *tr = inode->i_private; 6640 6641 trace_array_put(tr); 6642 6643 return seq_release(inode, file); 6644 } 6645 6646 static const struct file_operations ftrace_pid_fops = { 6647 .open = ftrace_pid_open, 6648 .write = ftrace_pid_write, 6649 .read = seq_read, 6650 .llseek = tracing_lseek, 6651 .release = ftrace_pid_release, 6652 }; 6653 6654 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 6655 { 6656 trace_create_file("set_ftrace_pid", 0644, d_tracer, 6657 tr, &ftrace_pid_fops); 6658 } 6659 6660 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 6661 struct dentry *d_tracer) 6662 { 6663 /* Only the top level directory has the dyn_tracefs and profile */ 6664 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 6665 6666 ftrace_init_dyn_tracefs(d_tracer); 6667 ftrace_profile_tracefs(d_tracer); 6668 } 6669 6670 /** 6671 * ftrace_kill - kill ftrace 6672 * 6673 * This function should be used by panic code. It stops ftrace 6674 * but in a not so nice way. If you need to simply kill ftrace 6675 * from a non-atomic section, use ftrace_kill. 6676 */ 6677 void ftrace_kill(void) 6678 { 6679 ftrace_disabled = 1; 6680 ftrace_enabled = 0; 6681 ftrace_trace_function = ftrace_stub; 6682 } 6683 6684 /** 6685 * Test if ftrace is dead or not. 6686 */ 6687 int ftrace_is_dead(void) 6688 { 6689 return ftrace_disabled; 6690 } 6691 6692 /** 6693 * register_ftrace_function - register a function for profiling 6694 * @ops - ops structure that holds the function for profiling. 6695 * 6696 * Register a function to be called by all functions in the 6697 * kernel. 6698 * 6699 * Note: @ops->func and all the functions it calls must be labeled 6700 * with "notrace", otherwise it will go into a 6701 * recursive loop. 6702 */ 6703 int register_ftrace_function(struct ftrace_ops *ops) 6704 { 6705 int ret = -1; 6706 6707 ftrace_ops_init(ops); 6708 6709 mutex_lock(&ftrace_lock); 6710 6711 ret = ftrace_startup(ops, 0); 6712 6713 mutex_unlock(&ftrace_lock); 6714 6715 return ret; 6716 } 6717 EXPORT_SYMBOL_GPL(register_ftrace_function); 6718 6719 /** 6720 * unregister_ftrace_function - unregister a function for profiling. 6721 * @ops - ops structure that holds the function to unregister 6722 * 6723 * Unregister a function that was added to be called by ftrace profiling. 6724 */ 6725 int unregister_ftrace_function(struct ftrace_ops *ops) 6726 { 6727 int ret; 6728 6729 mutex_lock(&ftrace_lock); 6730 ret = ftrace_shutdown(ops, 0); 6731 mutex_unlock(&ftrace_lock); 6732 6733 return ret; 6734 } 6735 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 6736 6737 int 6738 ftrace_enable_sysctl(struct ctl_table *table, int write, 6739 void __user *buffer, size_t *lenp, 6740 loff_t *ppos) 6741 { 6742 int ret = -ENODEV; 6743 6744 mutex_lock(&ftrace_lock); 6745 6746 if (unlikely(ftrace_disabled)) 6747 goto out; 6748 6749 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6750 6751 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 6752 goto out; 6753 6754 last_ftrace_enabled = !!ftrace_enabled; 6755 6756 if (ftrace_enabled) { 6757 6758 /* we are starting ftrace again */ 6759 if (rcu_dereference_protected(ftrace_ops_list, 6760 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 6761 update_ftrace_function(); 6762 6763 ftrace_startup_sysctl(); 6764 6765 } else { 6766 /* stopping ftrace calls (just send to ftrace_stub) */ 6767 ftrace_trace_function = ftrace_stub; 6768 6769 ftrace_shutdown_sysctl(); 6770 } 6771 6772 out: 6773 mutex_unlock(&ftrace_lock); 6774 return ret; 6775 } 6776 6777 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6778 6779 static struct ftrace_ops graph_ops = { 6780 .func = ftrace_stub, 6781 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6782 FTRACE_OPS_FL_INITIALIZED | 6783 FTRACE_OPS_FL_PID | 6784 FTRACE_OPS_FL_STUB, 6785 #ifdef FTRACE_GRAPH_TRAMP_ADDR 6786 .trampoline = FTRACE_GRAPH_TRAMP_ADDR, 6787 /* trampoline_size is only needed for dynamically allocated tramps */ 6788 #endif 6789 ASSIGN_OPS_HASH(graph_ops, &global_ops.local_hash) 6790 }; 6791 6792 void ftrace_graph_sleep_time_control(bool enable) 6793 { 6794 fgraph_sleep_time = enable; 6795 } 6796 6797 void ftrace_graph_graph_time_control(bool enable) 6798 { 6799 fgraph_graph_time = enable; 6800 } 6801 6802 int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace) 6803 { 6804 return 0; 6805 } 6806 6807 /* The callbacks that hook a function */ 6808 trace_func_graph_ret_t ftrace_graph_return = 6809 (trace_func_graph_ret_t)ftrace_stub; 6810 trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub; 6811 static trace_func_graph_ent_t __ftrace_graph_entry = ftrace_graph_entry_stub; 6812 6813 /* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */ 6814 static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list) 6815 { 6816 int i; 6817 int ret = 0; 6818 int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE; 6819 struct task_struct *g, *t; 6820 6821 for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) { 6822 ret_stack_list[i] = 6823 kmalloc_array(FTRACE_RETFUNC_DEPTH, 6824 sizeof(struct ftrace_ret_stack), 6825 GFP_KERNEL); 6826 if (!ret_stack_list[i]) { 6827 start = 0; 6828 end = i; 6829 ret = -ENOMEM; 6830 goto free; 6831 } 6832 } 6833 6834 read_lock(&tasklist_lock); 6835 do_each_thread(g, t) { 6836 if (start == end) { 6837 ret = -EAGAIN; 6838 goto unlock; 6839 } 6840 6841 if (t->ret_stack == NULL) { 6842 atomic_set(&t->tracing_graph_pause, 0); 6843 atomic_set(&t->trace_overrun, 0); 6844 t->curr_ret_stack = -1; 6845 /* Make sure the tasks see the -1 first: */ 6846 smp_wmb(); 6847 t->ret_stack = ret_stack_list[start++]; 6848 } 6849 } while_each_thread(g, t); 6850 6851 unlock: 6852 read_unlock(&tasklist_lock); 6853 free: 6854 for (i = start; i < end; i++) 6855 kfree(ret_stack_list[i]); 6856 return ret; 6857 } 6858 6859 static void 6860 ftrace_graph_probe_sched_switch(void *ignore, bool preempt, 6861 struct task_struct *prev, struct task_struct *next) 6862 { 6863 unsigned long long timestamp; 6864 int index; 6865 6866 /* 6867 * Does the user want to count the time a function was asleep. 6868 * If so, do not update the time stamps. 6869 */ 6870 if (fgraph_sleep_time) 6871 return; 6872 6873 timestamp = trace_clock_local(); 6874 6875 prev->ftrace_timestamp = timestamp; 6876 6877 /* only process tasks that we timestamped */ 6878 if (!next->ftrace_timestamp) 6879 return; 6880 6881 /* 6882 * Update all the counters in next to make up for the 6883 * time next was sleeping. 6884 */ 6885 timestamp -= next->ftrace_timestamp; 6886 6887 for (index = next->curr_ret_stack; index >= 0; index--) 6888 next->ret_stack[index].calltime += timestamp; 6889 } 6890 6891 /* Allocate a return stack for each task */ 6892 static int start_graph_tracing(void) 6893 { 6894 struct ftrace_ret_stack **ret_stack_list; 6895 int ret, cpu; 6896 6897 ret_stack_list = kmalloc_array(FTRACE_RETSTACK_ALLOC_SIZE, 6898 sizeof(struct ftrace_ret_stack *), 6899 GFP_KERNEL); 6900 6901 if (!ret_stack_list) 6902 return -ENOMEM; 6903 6904 /* The cpu_boot init_task->ret_stack will never be freed */ 6905 for_each_online_cpu(cpu) { 6906 if (!idle_task(cpu)->ret_stack) 6907 ftrace_graph_init_idle_task(idle_task(cpu), cpu); 6908 } 6909 6910 do { 6911 ret = alloc_retstack_tasklist(ret_stack_list); 6912 } while (ret == -EAGAIN); 6913 6914 if (!ret) { 6915 ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL); 6916 if (ret) 6917 pr_info("ftrace_graph: Couldn't activate tracepoint" 6918 " probe to kernel_sched_switch\n"); 6919 } 6920 6921 kfree(ret_stack_list); 6922 return ret; 6923 } 6924 6925 /* 6926 * Hibernation protection. 6927 * The state of the current task is too much unstable during 6928 * suspend/restore to disk. We want to protect against that. 6929 */ 6930 static int 6931 ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state, 6932 void *unused) 6933 { 6934 switch (state) { 6935 case PM_HIBERNATION_PREPARE: 6936 pause_graph_tracing(); 6937 break; 6938 6939 case PM_POST_HIBERNATION: 6940 unpause_graph_tracing(); 6941 break; 6942 } 6943 return NOTIFY_DONE; 6944 } 6945 6946 static int ftrace_graph_entry_test(struct ftrace_graph_ent *trace) 6947 { 6948 if (!ftrace_ops_test(&global_ops, trace->func, NULL)) 6949 return 0; 6950 return __ftrace_graph_entry(trace); 6951 } 6952 6953 /* 6954 * The function graph tracer should only trace the functions defined 6955 * by set_ftrace_filter and set_ftrace_notrace. If another function 6956 * tracer ops is registered, the graph tracer requires testing the 6957 * function against the global ops, and not just trace any function 6958 * that any ftrace_ops registered. 6959 */ 6960 static void update_function_graph_func(void) 6961 { 6962 struct ftrace_ops *op; 6963 bool do_test = false; 6964 6965 /* 6966 * The graph and global ops share the same set of functions 6967 * to test. If any other ops is on the list, then 6968 * the graph tracing needs to test if its the function 6969 * it should call. 6970 */ 6971 do_for_each_ftrace_op(op, ftrace_ops_list) { 6972 if (op != &global_ops && op != &graph_ops && 6973 op != &ftrace_list_end) { 6974 do_test = true; 6975 /* in double loop, break out with goto */ 6976 goto out; 6977 } 6978 } while_for_each_ftrace_op(op); 6979 out: 6980 if (do_test) 6981 ftrace_graph_entry = ftrace_graph_entry_test; 6982 else 6983 ftrace_graph_entry = __ftrace_graph_entry; 6984 } 6985 6986 static struct notifier_block ftrace_suspend_notifier = { 6987 .notifier_call = ftrace_suspend_notifier_call, 6988 }; 6989 6990 int register_ftrace_graph(trace_func_graph_ret_t retfunc, 6991 trace_func_graph_ent_t entryfunc) 6992 { 6993 int ret = 0; 6994 6995 mutex_lock(&ftrace_lock); 6996 6997 /* we currently allow only one tracer registered at a time */ 6998 if (ftrace_graph_active) { 6999 ret = -EBUSY; 7000 goto out; 7001 } 7002 7003 register_pm_notifier(&ftrace_suspend_notifier); 7004 7005 ftrace_graph_active++; 7006 ret = start_graph_tracing(); 7007 if (ret) { 7008 ftrace_graph_active--; 7009 goto out; 7010 } 7011 7012 ftrace_graph_return = retfunc; 7013 7014 /* 7015 * Update the indirect function to the entryfunc, and the 7016 * function that gets called to the entry_test first. Then 7017 * call the update fgraph entry function to determine if 7018 * the entryfunc should be called directly or not. 7019 */ 7020 __ftrace_graph_entry = entryfunc; 7021 ftrace_graph_entry = ftrace_graph_entry_test; 7022 update_function_graph_func(); 7023 7024 ret = ftrace_startup(&graph_ops, FTRACE_START_FUNC_RET); 7025 out: 7026 mutex_unlock(&ftrace_lock); 7027 return ret; 7028 } 7029 7030 void unregister_ftrace_graph(void) 7031 { 7032 mutex_lock(&ftrace_lock); 7033 7034 if (unlikely(!ftrace_graph_active)) 7035 goto out; 7036 7037 ftrace_graph_active--; 7038 ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; 7039 ftrace_graph_entry = ftrace_graph_entry_stub; 7040 __ftrace_graph_entry = ftrace_graph_entry_stub; 7041 ftrace_shutdown(&graph_ops, FTRACE_STOP_FUNC_RET); 7042 unregister_pm_notifier(&ftrace_suspend_notifier); 7043 unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL); 7044 7045 out: 7046 mutex_unlock(&ftrace_lock); 7047 } 7048 7049 static DEFINE_PER_CPU(struct ftrace_ret_stack *, idle_ret_stack); 7050 7051 static void 7052 graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack) 7053 { 7054 atomic_set(&t->tracing_graph_pause, 0); 7055 atomic_set(&t->trace_overrun, 0); 7056 t->ftrace_timestamp = 0; 7057 /* make curr_ret_stack visible before we add the ret_stack */ 7058 smp_wmb(); 7059 t->ret_stack = ret_stack; 7060 } 7061 7062 /* 7063 * Allocate a return stack for the idle task. May be the first 7064 * time through, or it may be done by CPU hotplug online. 7065 */ 7066 void ftrace_graph_init_idle_task(struct task_struct *t, int cpu) 7067 { 7068 t->curr_ret_stack = -1; 7069 /* 7070 * The idle task has no parent, it either has its own 7071 * stack or no stack at all. 7072 */ 7073 if (t->ret_stack) 7074 WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu)); 7075 7076 if (ftrace_graph_active) { 7077 struct ftrace_ret_stack *ret_stack; 7078 7079 ret_stack = per_cpu(idle_ret_stack, cpu); 7080 if (!ret_stack) { 7081 ret_stack = 7082 kmalloc_array(FTRACE_RETFUNC_DEPTH, 7083 sizeof(struct ftrace_ret_stack), 7084 GFP_KERNEL); 7085 if (!ret_stack) 7086 return; 7087 per_cpu(idle_ret_stack, cpu) = ret_stack; 7088 } 7089 graph_init_task(t, ret_stack); 7090 } 7091 } 7092 7093 /* Allocate a return stack for newly created task */ 7094 void ftrace_graph_init_task(struct task_struct *t) 7095 { 7096 /* Make sure we do not use the parent ret_stack */ 7097 t->ret_stack = NULL; 7098 t->curr_ret_stack = -1; 7099 7100 if (ftrace_graph_active) { 7101 struct ftrace_ret_stack *ret_stack; 7102 7103 ret_stack = kmalloc_array(FTRACE_RETFUNC_DEPTH, 7104 sizeof(struct ftrace_ret_stack), 7105 GFP_KERNEL); 7106 if (!ret_stack) 7107 return; 7108 graph_init_task(t, ret_stack); 7109 } 7110 } 7111 7112 void ftrace_graph_exit_task(struct task_struct *t) 7113 { 7114 struct ftrace_ret_stack *ret_stack = t->ret_stack; 7115 7116 t->ret_stack = NULL; 7117 /* NULL must become visible to IRQs before we free it: */ 7118 barrier(); 7119 7120 kfree(ret_stack); 7121 } 7122 #endif 7123