xref: /openbmc/linux/kernel/trace/ftrace.c (revision 8fc4e4aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct ftrace_regs *fregs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
144 {
145 	struct trace_array *tr = op->private;
146 	int pid;
147 
148 	if (tr) {
149 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
150 		if (pid == FTRACE_PID_IGNORE)
151 			return;
152 		if (pid != FTRACE_PID_TRACE &&
153 		    pid != current->pid)
154 			return;
155 	}
156 
157 	op->saved_func(ip, parent_ip, op, fregs);
158 }
159 
160 static void ftrace_sync_ipi(void *data)
161 {
162 	/* Probably not needed, but do it anyway */
163 	smp_rmb();
164 }
165 
166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
167 {
168 	/*
169 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
170 	 * then it needs to call the list anyway.
171 	 */
172 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
173 	    FTRACE_FORCE_LIST_FUNC)
174 		return ftrace_ops_list_func;
175 
176 	return ftrace_ops_get_func(ops);
177 }
178 
179 static void update_ftrace_function(void)
180 {
181 	ftrace_func_t func;
182 
183 	/*
184 	 * Prepare the ftrace_ops that the arch callback will use.
185 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
186 	 * will point to the ops we want.
187 	 */
188 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
189 						lockdep_is_held(&ftrace_lock));
190 
191 	/* If there's no ftrace_ops registered, just call the stub function */
192 	if (set_function_trace_op == &ftrace_list_end) {
193 		func = ftrace_stub;
194 
195 	/*
196 	 * If we are at the end of the list and this ops is
197 	 * recursion safe and not dynamic and the arch supports passing ops,
198 	 * then have the mcount trampoline call the function directly.
199 	 */
200 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
201 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
202 		func = ftrace_ops_get_list_func(ftrace_ops_list);
203 
204 	} else {
205 		/* Just use the default ftrace_ops */
206 		set_function_trace_op = &ftrace_list_end;
207 		func = ftrace_ops_list_func;
208 	}
209 
210 	update_function_graph_func();
211 
212 	/* If there's no change, then do nothing more here */
213 	if (ftrace_trace_function == func)
214 		return;
215 
216 	/*
217 	 * If we are using the list function, it doesn't care
218 	 * about the function_trace_ops.
219 	 */
220 	if (func == ftrace_ops_list_func) {
221 		ftrace_trace_function = func;
222 		/*
223 		 * Don't even bother setting function_trace_ops,
224 		 * it would be racy to do so anyway.
225 		 */
226 		return;
227 	}
228 
229 #ifndef CONFIG_DYNAMIC_FTRACE
230 	/*
231 	 * For static tracing, we need to be a bit more careful.
232 	 * The function change takes affect immediately. Thus,
233 	 * we need to coordinate the setting of the function_trace_ops
234 	 * with the setting of the ftrace_trace_function.
235 	 *
236 	 * Set the function to the list ops, which will call the
237 	 * function we want, albeit indirectly, but it handles the
238 	 * ftrace_ops and doesn't depend on function_trace_op.
239 	 */
240 	ftrace_trace_function = ftrace_ops_list_func;
241 	/*
242 	 * Make sure all CPUs see this. Yes this is slow, but static
243 	 * tracing is slow and nasty to have enabled.
244 	 */
245 	synchronize_rcu_tasks_rude();
246 	/* Now all cpus are using the list ops. */
247 	function_trace_op = set_function_trace_op;
248 	/* Make sure the function_trace_op is visible on all CPUs */
249 	smp_wmb();
250 	/* Nasty way to force a rmb on all cpus */
251 	smp_call_function(ftrace_sync_ipi, NULL, 1);
252 	/* OK, we are all set to update the ftrace_trace_function now! */
253 #endif /* !CONFIG_DYNAMIC_FTRACE */
254 
255 	ftrace_trace_function = func;
256 }
257 
258 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
259 			   struct ftrace_ops *ops)
260 {
261 	rcu_assign_pointer(ops->next, *list);
262 
263 	/*
264 	 * We are entering ops into the list but another
265 	 * CPU might be walking that list. We need to make sure
266 	 * the ops->next pointer is valid before another CPU sees
267 	 * the ops pointer included into the list.
268 	 */
269 	rcu_assign_pointer(*list, ops);
270 }
271 
272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
273 			     struct ftrace_ops *ops)
274 {
275 	struct ftrace_ops **p;
276 
277 	/*
278 	 * If we are removing the last function, then simply point
279 	 * to the ftrace_stub.
280 	 */
281 	if (rcu_dereference_protected(*list,
282 			lockdep_is_held(&ftrace_lock)) == ops &&
283 	    rcu_dereference_protected(ops->next,
284 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
285 		*list = &ftrace_list_end;
286 		return 0;
287 	}
288 
289 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
290 		if (*p == ops)
291 			break;
292 
293 	if (*p != ops)
294 		return -1;
295 
296 	*p = (*p)->next;
297 	return 0;
298 }
299 
300 static void ftrace_update_trampoline(struct ftrace_ops *ops);
301 
302 int __register_ftrace_function(struct ftrace_ops *ops)
303 {
304 	if (ops->flags & FTRACE_OPS_FL_DELETED)
305 		return -EINVAL;
306 
307 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
308 		return -EBUSY;
309 
310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
311 	/*
312 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
313 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
314 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
315 	 */
316 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
317 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
318 		return -EINVAL;
319 
320 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
321 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
322 #endif
323 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
324 		return -EBUSY;
325 
326 	if (!core_kernel_data((unsigned long)ops))
327 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
328 
329 	add_ftrace_ops(&ftrace_ops_list, ops);
330 
331 	/* Always save the function, and reset at unregistering */
332 	ops->saved_func = ops->func;
333 
334 	if (ftrace_pids_enabled(ops))
335 		ops->func = ftrace_pid_func;
336 
337 	ftrace_update_trampoline(ops);
338 
339 	if (ftrace_enabled)
340 		update_ftrace_function();
341 
342 	return 0;
343 }
344 
345 int __unregister_ftrace_function(struct ftrace_ops *ops)
346 {
347 	int ret;
348 
349 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
350 		return -EBUSY;
351 
352 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
353 
354 	if (ret < 0)
355 		return ret;
356 
357 	if (ftrace_enabled)
358 		update_ftrace_function();
359 
360 	ops->func = ops->saved_func;
361 
362 	return 0;
363 }
364 
365 static void ftrace_update_pid_func(void)
366 {
367 	struct ftrace_ops *op;
368 
369 	/* Only do something if we are tracing something */
370 	if (ftrace_trace_function == ftrace_stub)
371 		return;
372 
373 	do_for_each_ftrace_op(op, ftrace_ops_list) {
374 		if (op->flags & FTRACE_OPS_FL_PID) {
375 			op->func = ftrace_pids_enabled(op) ?
376 				ftrace_pid_func : op->saved_func;
377 			ftrace_update_trampoline(op);
378 		}
379 	} while_for_each_ftrace_op(op);
380 
381 	update_ftrace_function();
382 }
383 
384 #ifdef CONFIG_FUNCTION_PROFILER
385 struct ftrace_profile {
386 	struct hlist_node		node;
387 	unsigned long			ip;
388 	unsigned long			counter;
389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
390 	unsigned long long		time;
391 	unsigned long long		time_squared;
392 #endif
393 };
394 
395 struct ftrace_profile_page {
396 	struct ftrace_profile_page	*next;
397 	unsigned long			index;
398 	struct ftrace_profile		records[];
399 };
400 
401 struct ftrace_profile_stat {
402 	atomic_t			disabled;
403 	struct hlist_head		*hash;
404 	struct ftrace_profile_page	*pages;
405 	struct ftrace_profile_page	*start;
406 	struct tracer_stat		stat;
407 };
408 
409 #define PROFILE_RECORDS_SIZE						\
410 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
411 
412 #define PROFILES_PER_PAGE					\
413 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
414 
415 static int ftrace_profile_enabled __read_mostly;
416 
417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
418 static DEFINE_MUTEX(ftrace_profile_lock);
419 
420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
421 
422 #define FTRACE_PROFILE_HASH_BITS 10
423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
424 
425 static void *
426 function_stat_next(void *v, int idx)
427 {
428 	struct ftrace_profile *rec = v;
429 	struct ftrace_profile_page *pg;
430 
431 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
432 
433  again:
434 	if (idx != 0)
435 		rec++;
436 
437 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
438 		pg = pg->next;
439 		if (!pg)
440 			return NULL;
441 		rec = &pg->records[0];
442 		if (!rec->counter)
443 			goto again;
444 	}
445 
446 	return rec;
447 }
448 
449 static void *function_stat_start(struct tracer_stat *trace)
450 {
451 	struct ftrace_profile_stat *stat =
452 		container_of(trace, struct ftrace_profile_stat, stat);
453 
454 	if (!stat || !stat->start)
455 		return NULL;
456 
457 	return function_stat_next(&stat->start->records[0], 0);
458 }
459 
460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
461 /* function graph compares on total time */
462 static int function_stat_cmp(const void *p1, const void *p2)
463 {
464 	const struct ftrace_profile *a = p1;
465 	const struct ftrace_profile *b = p2;
466 
467 	if (a->time < b->time)
468 		return -1;
469 	if (a->time > b->time)
470 		return 1;
471 	else
472 		return 0;
473 }
474 #else
475 /* not function graph compares against hits */
476 static int function_stat_cmp(const void *p1, const void *p2)
477 {
478 	const struct ftrace_profile *a = p1;
479 	const struct ftrace_profile *b = p2;
480 
481 	if (a->counter < b->counter)
482 		return -1;
483 	if (a->counter > b->counter)
484 		return 1;
485 	else
486 		return 0;
487 }
488 #endif
489 
490 static int function_stat_headers(struct seq_file *m)
491 {
492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
493 	seq_puts(m, "  Function                               "
494 		 "Hit    Time            Avg             s^2\n"
495 		    "  --------                               "
496 		 "---    ----            ---             ---\n");
497 #else
498 	seq_puts(m, "  Function                               Hit\n"
499 		    "  --------                               ---\n");
500 #endif
501 	return 0;
502 }
503 
504 static int function_stat_show(struct seq_file *m, void *v)
505 {
506 	struct ftrace_profile *rec = v;
507 	char str[KSYM_SYMBOL_LEN];
508 	int ret = 0;
509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
510 	static struct trace_seq s;
511 	unsigned long long avg;
512 	unsigned long long stddev;
513 #endif
514 	mutex_lock(&ftrace_profile_lock);
515 
516 	/* we raced with function_profile_reset() */
517 	if (unlikely(rec->counter == 0)) {
518 		ret = -EBUSY;
519 		goto out;
520 	}
521 
522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
523 	avg = div64_ul(rec->time, rec->counter);
524 	if (tracing_thresh && (avg < tracing_thresh))
525 		goto out;
526 #endif
527 
528 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
529 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
530 
531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
532 	seq_puts(m, "    ");
533 
534 	/* Sample standard deviation (s^2) */
535 	if (rec->counter <= 1)
536 		stddev = 0;
537 	else {
538 		/*
539 		 * Apply Welford's method:
540 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
541 		 */
542 		stddev = rec->counter * rec->time_squared -
543 			 rec->time * rec->time;
544 
545 		/*
546 		 * Divide only 1000 for ns^2 -> us^2 conversion.
547 		 * trace_print_graph_duration will divide 1000 again.
548 		 */
549 		stddev = div64_ul(stddev,
550 				  rec->counter * (rec->counter - 1) * 1000);
551 	}
552 
553 	trace_seq_init(&s);
554 	trace_print_graph_duration(rec->time, &s);
555 	trace_seq_puts(&s, "    ");
556 	trace_print_graph_duration(avg, &s);
557 	trace_seq_puts(&s, "    ");
558 	trace_print_graph_duration(stddev, &s);
559 	trace_print_seq(m, &s);
560 #endif
561 	seq_putc(m, '\n');
562 out:
563 	mutex_unlock(&ftrace_profile_lock);
564 
565 	return ret;
566 }
567 
568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
569 {
570 	struct ftrace_profile_page *pg;
571 
572 	pg = stat->pages = stat->start;
573 
574 	while (pg) {
575 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
576 		pg->index = 0;
577 		pg = pg->next;
578 	}
579 
580 	memset(stat->hash, 0,
581 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
582 }
583 
584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
585 {
586 	struct ftrace_profile_page *pg;
587 	int functions;
588 	int pages;
589 	int i;
590 
591 	/* If we already allocated, do nothing */
592 	if (stat->pages)
593 		return 0;
594 
595 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
596 	if (!stat->pages)
597 		return -ENOMEM;
598 
599 #ifdef CONFIG_DYNAMIC_FTRACE
600 	functions = ftrace_update_tot_cnt;
601 #else
602 	/*
603 	 * We do not know the number of functions that exist because
604 	 * dynamic tracing is what counts them. With past experience
605 	 * we have around 20K functions. That should be more than enough.
606 	 * It is highly unlikely we will execute every function in
607 	 * the kernel.
608 	 */
609 	functions = 20000;
610 #endif
611 
612 	pg = stat->start = stat->pages;
613 
614 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
615 
616 	for (i = 1; i < pages; i++) {
617 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
618 		if (!pg->next)
619 			goto out_free;
620 		pg = pg->next;
621 	}
622 
623 	return 0;
624 
625  out_free:
626 	pg = stat->start;
627 	while (pg) {
628 		unsigned long tmp = (unsigned long)pg;
629 
630 		pg = pg->next;
631 		free_page(tmp);
632 	}
633 
634 	stat->pages = NULL;
635 	stat->start = NULL;
636 
637 	return -ENOMEM;
638 }
639 
640 static int ftrace_profile_init_cpu(int cpu)
641 {
642 	struct ftrace_profile_stat *stat;
643 	int size;
644 
645 	stat = &per_cpu(ftrace_profile_stats, cpu);
646 
647 	if (stat->hash) {
648 		/* If the profile is already created, simply reset it */
649 		ftrace_profile_reset(stat);
650 		return 0;
651 	}
652 
653 	/*
654 	 * We are profiling all functions, but usually only a few thousand
655 	 * functions are hit. We'll make a hash of 1024 items.
656 	 */
657 	size = FTRACE_PROFILE_HASH_SIZE;
658 
659 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
660 
661 	if (!stat->hash)
662 		return -ENOMEM;
663 
664 	/* Preallocate the function profiling pages */
665 	if (ftrace_profile_pages_init(stat) < 0) {
666 		kfree(stat->hash);
667 		stat->hash = NULL;
668 		return -ENOMEM;
669 	}
670 
671 	return 0;
672 }
673 
674 static int ftrace_profile_init(void)
675 {
676 	int cpu;
677 	int ret = 0;
678 
679 	for_each_possible_cpu(cpu) {
680 		ret = ftrace_profile_init_cpu(cpu);
681 		if (ret)
682 			break;
683 	}
684 
685 	return ret;
686 }
687 
688 /* interrupts must be disabled */
689 static struct ftrace_profile *
690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
691 {
692 	struct ftrace_profile *rec;
693 	struct hlist_head *hhd;
694 	unsigned long key;
695 
696 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
697 	hhd = &stat->hash[key];
698 
699 	if (hlist_empty(hhd))
700 		return NULL;
701 
702 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
703 		if (rec->ip == ip)
704 			return rec;
705 	}
706 
707 	return NULL;
708 }
709 
710 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
711 			       struct ftrace_profile *rec)
712 {
713 	unsigned long key;
714 
715 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
716 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
717 }
718 
719 /*
720  * The memory is already allocated, this simply finds a new record to use.
721  */
722 static struct ftrace_profile *
723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
724 {
725 	struct ftrace_profile *rec = NULL;
726 
727 	/* prevent recursion (from NMIs) */
728 	if (atomic_inc_return(&stat->disabled) != 1)
729 		goto out;
730 
731 	/*
732 	 * Try to find the function again since an NMI
733 	 * could have added it
734 	 */
735 	rec = ftrace_find_profiled_func(stat, ip);
736 	if (rec)
737 		goto out;
738 
739 	if (stat->pages->index == PROFILES_PER_PAGE) {
740 		if (!stat->pages->next)
741 			goto out;
742 		stat->pages = stat->pages->next;
743 	}
744 
745 	rec = &stat->pages->records[stat->pages->index++];
746 	rec->ip = ip;
747 	ftrace_add_profile(stat, rec);
748 
749  out:
750 	atomic_dec(&stat->disabled);
751 
752 	return rec;
753 }
754 
755 static void
756 function_profile_call(unsigned long ip, unsigned long parent_ip,
757 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
758 {
759 	struct ftrace_profile_stat *stat;
760 	struct ftrace_profile *rec;
761 	unsigned long flags;
762 
763 	if (!ftrace_profile_enabled)
764 		return;
765 
766 	local_irq_save(flags);
767 
768 	stat = this_cpu_ptr(&ftrace_profile_stats);
769 	if (!stat->hash || !ftrace_profile_enabled)
770 		goto out;
771 
772 	rec = ftrace_find_profiled_func(stat, ip);
773 	if (!rec) {
774 		rec = ftrace_profile_alloc(stat, ip);
775 		if (!rec)
776 			goto out;
777 	}
778 
779 	rec->counter++;
780  out:
781 	local_irq_restore(flags);
782 }
783 
784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
785 static bool fgraph_graph_time = true;
786 
787 void ftrace_graph_graph_time_control(bool enable)
788 {
789 	fgraph_graph_time = enable;
790 }
791 
792 static int profile_graph_entry(struct ftrace_graph_ent *trace)
793 {
794 	struct ftrace_ret_stack *ret_stack;
795 
796 	function_profile_call(trace->func, 0, NULL, NULL);
797 
798 	/* If function graph is shutting down, ret_stack can be NULL */
799 	if (!current->ret_stack)
800 		return 0;
801 
802 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
803 	if (ret_stack)
804 		ret_stack->subtime = 0;
805 
806 	return 1;
807 }
808 
809 static void profile_graph_return(struct ftrace_graph_ret *trace)
810 {
811 	struct ftrace_ret_stack *ret_stack;
812 	struct ftrace_profile_stat *stat;
813 	unsigned long long calltime;
814 	struct ftrace_profile *rec;
815 	unsigned long flags;
816 
817 	local_irq_save(flags);
818 	stat = this_cpu_ptr(&ftrace_profile_stats);
819 	if (!stat->hash || !ftrace_profile_enabled)
820 		goto out;
821 
822 	/* If the calltime was zero'd ignore it */
823 	if (!trace->calltime)
824 		goto out;
825 
826 	calltime = trace->rettime - trace->calltime;
827 
828 	if (!fgraph_graph_time) {
829 
830 		/* Append this call time to the parent time to subtract */
831 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
832 		if (ret_stack)
833 			ret_stack->subtime += calltime;
834 
835 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
836 		if (ret_stack && ret_stack->subtime < calltime)
837 			calltime -= ret_stack->subtime;
838 		else
839 			calltime = 0;
840 	}
841 
842 	rec = ftrace_find_profiled_func(stat, trace->func);
843 	if (rec) {
844 		rec->time += calltime;
845 		rec->time_squared += calltime * calltime;
846 	}
847 
848  out:
849 	local_irq_restore(flags);
850 }
851 
852 static struct fgraph_ops fprofiler_ops = {
853 	.entryfunc = &profile_graph_entry,
854 	.retfunc = &profile_graph_return,
855 };
856 
857 static int register_ftrace_profiler(void)
858 {
859 	return register_ftrace_graph(&fprofiler_ops);
860 }
861 
862 static void unregister_ftrace_profiler(void)
863 {
864 	unregister_ftrace_graph(&fprofiler_ops);
865 }
866 #else
867 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
868 	.func		= function_profile_call,
869 	.flags		= FTRACE_OPS_FL_INITIALIZED,
870 	INIT_OPS_HASH(ftrace_profile_ops)
871 };
872 
873 static int register_ftrace_profiler(void)
874 {
875 	return register_ftrace_function(&ftrace_profile_ops);
876 }
877 
878 static void unregister_ftrace_profiler(void)
879 {
880 	unregister_ftrace_function(&ftrace_profile_ops);
881 }
882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
883 
884 static ssize_t
885 ftrace_profile_write(struct file *filp, const char __user *ubuf,
886 		     size_t cnt, loff_t *ppos)
887 {
888 	unsigned long val;
889 	int ret;
890 
891 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
892 	if (ret)
893 		return ret;
894 
895 	val = !!val;
896 
897 	mutex_lock(&ftrace_profile_lock);
898 	if (ftrace_profile_enabled ^ val) {
899 		if (val) {
900 			ret = ftrace_profile_init();
901 			if (ret < 0) {
902 				cnt = ret;
903 				goto out;
904 			}
905 
906 			ret = register_ftrace_profiler();
907 			if (ret < 0) {
908 				cnt = ret;
909 				goto out;
910 			}
911 			ftrace_profile_enabled = 1;
912 		} else {
913 			ftrace_profile_enabled = 0;
914 			/*
915 			 * unregister_ftrace_profiler calls stop_machine
916 			 * so this acts like an synchronize_rcu.
917 			 */
918 			unregister_ftrace_profiler();
919 		}
920 	}
921  out:
922 	mutex_unlock(&ftrace_profile_lock);
923 
924 	*ppos += cnt;
925 
926 	return cnt;
927 }
928 
929 static ssize_t
930 ftrace_profile_read(struct file *filp, char __user *ubuf,
931 		     size_t cnt, loff_t *ppos)
932 {
933 	char buf[64];		/* big enough to hold a number */
934 	int r;
935 
936 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
937 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
938 }
939 
940 static const struct file_operations ftrace_profile_fops = {
941 	.open		= tracing_open_generic,
942 	.read		= ftrace_profile_read,
943 	.write		= ftrace_profile_write,
944 	.llseek		= default_llseek,
945 };
946 
947 /* used to initialize the real stat files */
948 static struct tracer_stat function_stats __initdata = {
949 	.name		= "functions",
950 	.stat_start	= function_stat_start,
951 	.stat_next	= function_stat_next,
952 	.stat_cmp	= function_stat_cmp,
953 	.stat_headers	= function_stat_headers,
954 	.stat_show	= function_stat_show
955 };
956 
957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
958 {
959 	struct ftrace_profile_stat *stat;
960 	struct dentry *entry;
961 	char *name;
962 	int ret;
963 	int cpu;
964 
965 	for_each_possible_cpu(cpu) {
966 		stat = &per_cpu(ftrace_profile_stats, cpu);
967 
968 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
969 		if (!name) {
970 			/*
971 			 * The files created are permanent, if something happens
972 			 * we still do not free memory.
973 			 */
974 			WARN(1,
975 			     "Could not allocate stat file for cpu %d\n",
976 			     cpu);
977 			return;
978 		}
979 		stat->stat = function_stats;
980 		stat->stat.name = name;
981 		ret = register_stat_tracer(&stat->stat);
982 		if (ret) {
983 			WARN(1,
984 			     "Could not register function stat for cpu %d\n",
985 			     cpu);
986 			kfree(name);
987 			return;
988 		}
989 	}
990 
991 	entry = tracefs_create_file("function_profile_enabled", 0644,
992 				    d_tracer, NULL, &ftrace_profile_fops);
993 	if (!entry)
994 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
995 }
996 
997 #else /* CONFIG_FUNCTION_PROFILER */
998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
999 {
1000 }
1001 #endif /* CONFIG_FUNCTION_PROFILER */
1002 
1003 #ifdef CONFIG_DYNAMIC_FTRACE
1004 
1005 static struct ftrace_ops *removed_ops;
1006 
1007 /*
1008  * Set when doing a global update, like enabling all recs or disabling them.
1009  * It is not set when just updating a single ftrace_ops.
1010  */
1011 static bool update_all_ops;
1012 
1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1014 # error Dynamic ftrace depends on MCOUNT_RECORD
1015 #endif
1016 
1017 struct ftrace_func_probe {
1018 	struct ftrace_probe_ops	*probe_ops;
1019 	struct ftrace_ops	ops;
1020 	struct trace_array	*tr;
1021 	struct list_head	list;
1022 	void			*data;
1023 	int			ref;
1024 };
1025 
1026 /*
1027  * We make these constant because no one should touch them,
1028  * but they are used as the default "empty hash", to avoid allocating
1029  * it all the time. These are in a read only section such that if
1030  * anyone does try to modify it, it will cause an exception.
1031  */
1032 static const struct hlist_head empty_buckets[1];
1033 static const struct ftrace_hash empty_hash = {
1034 	.buckets = (struct hlist_head *)empty_buckets,
1035 };
1036 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1037 
1038 struct ftrace_ops global_ops = {
1039 	.func				= ftrace_stub,
1040 	.local_hash.notrace_hash	= EMPTY_HASH,
1041 	.local_hash.filter_hash		= EMPTY_HASH,
1042 	INIT_OPS_HASH(global_ops)
1043 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1044 					  FTRACE_OPS_FL_PID,
1045 };
1046 
1047 /*
1048  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1049  */
1050 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1051 {
1052 	struct ftrace_ops *op = NULL;
1053 
1054 	/*
1055 	 * Some of the ops may be dynamically allocated,
1056 	 * they are freed after a synchronize_rcu().
1057 	 */
1058 	preempt_disable_notrace();
1059 
1060 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1061 		/*
1062 		 * This is to check for dynamically allocated trampolines.
1063 		 * Trampolines that are in kernel text will have
1064 		 * core_kernel_text() return true.
1065 		 */
1066 		if (op->trampoline && op->trampoline_size)
1067 			if (addr >= op->trampoline &&
1068 			    addr < op->trampoline + op->trampoline_size) {
1069 				preempt_enable_notrace();
1070 				return op;
1071 			}
1072 	} while_for_each_ftrace_op(op);
1073 	preempt_enable_notrace();
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * This is used by __kernel_text_address() to return true if the
1080  * address is on a dynamically allocated trampoline that would
1081  * not return true for either core_kernel_text() or
1082  * is_module_text_address().
1083  */
1084 bool is_ftrace_trampoline(unsigned long addr)
1085 {
1086 	return ftrace_ops_trampoline(addr) != NULL;
1087 }
1088 
1089 struct ftrace_page {
1090 	struct ftrace_page	*next;
1091 	struct dyn_ftrace	*records;
1092 	int			index;
1093 	int			order;
1094 };
1095 
1096 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1097 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1098 
1099 static struct ftrace_page	*ftrace_pages_start;
1100 static struct ftrace_page	*ftrace_pages;
1101 
1102 static __always_inline unsigned long
1103 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1104 {
1105 	if (hash->size_bits > 0)
1106 		return hash_long(ip, hash->size_bits);
1107 
1108 	return 0;
1109 }
1110 
1111 /* Only use this function if ftrace_hash_empty() has already been tested */
1112 static __always_inline struct ftrace_func_entry *
1113 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1114 {
1115 	unsigned long key;
1116 	struct ftrace_func_entry *entry;
1117 	struct hlist_head *hhd;
1118 
1119 	key = ftrace_hash_key(hash, ip);
1120 	hhd = &hash->buckets[key];
1121 
1122 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1123 		if (entry->ip == ip)
1124 			return entry;
1125 	}
1126 	return NULL;
1127 }
1128 
1129 /**
1130  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1131  * @hash: The hash to look at
1132  * @ip: The instruction pointer to test
1133  *
1134  * Search a given @hash to see if a given instruction pointer (@ip)
1135  * exists in it.
1136  *
1137  * Returns the entry that holds the @ip if found. NULL otherwise.
1138  */
1139 struct ftrace_func_entry *
1140 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1141 {
1142 	if (ftrace_hash_empty(hash))
1143 		return NULL;
1144 
1145 	return __ftrace_lookup_ip(hash, ip);
1146 }
1147 
1148 static void __add_hash_entry(struct ftrace_hash *hash,
1149 			     struct ftrace_func_entry *entry)
1150 {
1151 	struct hlist_head *hhd;
1152 	unsigned long key;
1153 
1154 	key = ftrace_hash_key(hash, entry->ip);
1155 	hhd = &hash->buckets[key];
1156 	hlist_add_head(&entry->hlist, hhd);
1157 	hash->count++;
1158 }
1159 
1160 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1161 {
1162 	struct ftrace_func_entry *entry;
1163 
1164 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1165 	if (!entry)
1166 		return -ENOMEM;
1167 
1168 	entry->ip = ip;
1169 	__add_hash_entry(hash, entry);
1170 
1171 	return 0;
1172 }
1173 
1174 static void
1175 free_hash_entry(struct ftrace_hash *hash,
1176 		  struct ftrace_func_entry *entry)
1177 {
1178 	hlist_del(&entry->hlist);
1179 	kfree(entry);
1180 	hash->count--;
1181 }
1182 
1183 static void
1184 remove_hash_entry(struct ftrace_hash *hash,
1185 		  struct ftrace_func_entry *entry)
1186 {
1187 	hlist_del_rcu(&entry->hlist);
1188 	hash->count--;
1189 }
1190 
1191 static void ftrace_hash_clear(struct ftrace_hash *hash)
1192 {
1193 	struct hlist_head *hhd;
1194 	struct hlist_node *tn;
1195 	struct ftrace_func_entry *entry;
1196 	int size = 1 << hash->size_bits;
1197 	int i;
1198 
1199 	if (!hash->count)
1200 		return;
1201 
1202 	for (i = 0; i < size; i++) {
1203 		hhd = &hash->buckets[i];
1204 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1205 			free_hash_entry(hash, entry);
1206 	}
1207 	FTRACE_WARN_ON(hash->count);
1208 }
1209 
1210 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1211 {
1212 	list_del(&ftrace_mod->list);
1213 	kfree(ftrace_mod->module);
1214 	kfree(ftrace_mod->func);
1215 	kfree(ftrace_mod);
1216 }
1217 
1218 static void clear_ftrace_mod_list(struct list_head *head)
1219 {
1220 	struct ftrace_mod_load *p, *n;
1221 
1222 	/* stack tracer isn't supported yet */
1223 	if (!head)
1224 		return;
1225 
1226 	mutex_lock(&ftrace_lock);
1227 	list_for_each_entry_safe(p, n, head, list)
1228 		free_ftrace_mod(p);
1229 	mutex_unlock(&ftrace_lock);
1230 }
1231 
1232 static void free_ftrace_hash(struct ftrace_hash *hash)
1233 {
1234 	if (!hash || hash == EMPTY_HASH)
1235 		return;
1236 	ftrace_hash_clear(hash);
1237 	kfree(hash->buckets);
1238 	kfree(hash);
1239 }
1240 
1241 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1242 {
1243 	struct ftrace_hash *hash;
1244 
1245 	hash = container_of(rcu, struct ftrace_hash, rcu);
1246 	free_ftrace_hash(hash);
1247 }
1248 
1249 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1250 {
1251 	if (!hash || hash == EMPTY_HASH)
1252 		return;
1253 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1254 }
1255 
1256 void ftrace_free_filter(struct ftrace_ops *ops)
1257 {
1258 	ftrace_ops_init(ops);
1259 	free_ftrace_hash(ops->func_hash->filter_hash);
1260 	free_ftrace_hash(ops->func_hash->notrace_hash);
1261 }
1262 
1263 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1264 {
1265 	struct ftrace_hash *hash;
1266 	int size;
1267 
1268 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1269 	if (!hash)
1270 		return NULL;
1271 
1272 	size = 1 << size_bits;
1273 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1274 
1275 	if (!hash->buckets) {
1276 		kfree(hash);
1277 		return NULL;
1278 	}
1279 
1280 	hash->size_bits = size_bits;
1281 
1282 	return hash;
1283 }
1284 
1285 
1286 static int ftrace_add_mod(struct trace_array *tr,
1287 			  const char *func, const char *module,
1288 			  int enable)
1289 {
1290 	struct ftrace_mod_load *ftrace_mod;
1291 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1292 
1293 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1294 	if (!ftrace_mod)
1295 		return -ENOMEM;
1296 
1297 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1298 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1299 	ftrace_mod->enable = enable;
1300 
1301 	if (!ftrace_mod->func || !ftrace_mod->module)
1302 		goto out_free;
1303 
1304 	list_add(&ftrace_mod->list, mod_head);
1305 
1306 	return 0;
1307 
1308  out_free:
1309 	free_ftrace_mod(ftrace_mod);
1310 
1311 	return -ENOMEM;
1312 }
1313 
1314 static struct ftrace_hash *
1315 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1316 {
1317 	struct ftrace_func_entry *entry;
1318 	struct ftrace_hash *new_hash;
1319 	int size;
1320 	int ret;
1321 	int i;
1322 
1323 	new_hash = alloc_ftrace_hash(size_bits);
1324 	if (!new_hash)
1325 		return NULL;
1326 
1327 	if (hash)
1328 		new_hash->flags = hash->flags;
1329 
1330 	/* Empty hash? */
1331 	if (ftrace_hash_empty(hash))
1332 		return new_hash;
1333 
1334 	size = 1 << hash->size_bits;
1335 	for (i = 0; i < size; i++) {
1336 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1337 			ret = add_hash_entry(new_hash, entry->ip);
1338 			if (ret < 0)
1339 				goto free_hash;
1340 		}
1341 	}
1342 
1343 	FTRACE_WARN_ON(new_hash->count != hash->count);
1344 
1345 	return new_hash;
1346 
1347  free_hash:
1348 	free_ftrace_hash(new_hash);
1349 	return NULL;
1350 }
1351 
1352 static void
1353 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1354 static void
1355 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1356 
1357 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1358 				       struct ftrace_hash *new_hash);
1359 
1360 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1361 {
1362 	struct ftrace_func_entry *entry;
1363 	struct ftrace_hash *new_hash;
1364 	struct hlist_head *hhd;
1365 	struct hlist_node *tn;
1366 	int bits = 0;
1367 	int i;
1368 
1369 	/*
1370 	 * Use around half the size (max bit of it), but
1371 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1372 	 */
1373 	bits = fls(size / 2);
1374 
1375 	/* Don't allocate too much */
1376 	if (bits > FTRACE_HASH_MAX_BITS)
1377 		bits = FTRACE_HASH_MAX_BITS;
1378 
1379 	new_hash = alloc_ftrace_hash(bits);
1380 	if (!new_hash)
1381 		return NULL;
1382 
1383 	new_hash->flags = src->flags;
1384 
1385 	size = 1 << src->size_bits;
1386 	for (i = 0; i < size; i++) {
1387 		hhd = &src->buckets[i];
1388 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1389 			remove_hash_entry(src, entry);
1390 			__add_hash_entry(new_hash, entry);
1391 		}
1392 	}
1393 	return new_hash;
1394 }
1395 
1396 static struct ftrace_hash *
1397 __ftrace_hash_move(struct ftrace_hash *src)
1398 {
1399 	int size = src->count;
1400 
1401 	/*
1402 	 * If the new source is empty, just return the empty_hash.
1403 	 */
1404 	if (ftrace_hash_empty(src))
1405 		return EMPTY_HASH;
1406 
1407 	return dup_hash(src, size);
1408 }
1409 
1410 static int
1411 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1412 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1413 {
1414 	struct ftrace_hash *new_hash;
1415 	int ret;
1416 
1417 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1418 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1419 		return -EINVAL;
1420 
1421 	new_hash = __ftrace_hash_move(src);
1422 	if (!new_hash)
1423 		return -ENOMEM;
1424 
1425 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1426 	if (enable) {
1427 		/* IPMODIFY should be updated only when filter_hash updating */
1428 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1429 		if (ret < 0) {
1430 			free_ftrace_hash(new_hash);
1431 			return ret;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Remove the current set, update the hash and add
1437 	 * them back.
1438 	 */
1439 	ftrace_hash_rec_disable_modify(ops, enable);
1440 
1441 	rcu_assign_pointer(*dst, new_hash);
1442 
1443 	ftrace_hash_rec_enable_modify(ops, enable);
1444 
1445 	return 0;
1446 }
1447 
1448 static bool hash_contains_ip(unsigned long ip,
1449 			     struct ftrace_ops_hash *hash)
1450 {
1451 	/*
1452 	 * The function record is a match if it exists in the filter
1453 	 * hash and not in the notrace hash. Note, an empty hash is
1454 	 * considered a match for the filter hash, but an empty
1455 	 * notrace hash is considered not in the notrace hash.
1456 	 */
1457 	return (ftrace_hash_empty(hash->filter_hash) ||
1458 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1459 		(ftrace_hash_empty(hash->notrace_hash) ||
1460 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1461 }
1462 
1463 /*
1464  * Test the hashes for this ops to see if we want to call
1465  * the ops->func or not.
1466  *
1467  * It's a match if the ip is in the ops->filter_hash or
1468  * the filter_hash does not exist or is empty,
1469  *  AND
1470  * the ip is not in the ops->notrace_hash.
1471  *
1472  * This needs to be called with preemption disabled as
1473  * the hashes are freed with call_rcu().
1474  */
1475 int
1476 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1477 {
1478 	struct ftrace_ops_hash hash;
1479 	int ret;
1480 
1481 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1482 	/*
1483 	 * There's a small race when adding ops that the ftrace handler
1484 	 * that wants regs, may be called without them. We can not
1485 	 * allow that handler to be called if regs is NULL.
1486 	 */
1487 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1488 		return 0;
1489 #endif
1490 
1491 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1492 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1493 
1494 	if (hash_contains_ip(ip, &hash))
1495 		ret = 1;
1496 	else
1497 		ret = 0;
1498 
1499 	return ret;
1500 }
1501 
1502 /*
1503  * This is a double for. Do not use 'break' to break out of the loop,
1504  * you must use a goto.
1505  */
1506 #define do_for_each_ftrace_rec(pg, rec)					\
1507 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1508 		int _____i;						\
1509 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1510 			rec = &pg->records[_____i];
1511 
1512 #define while_for_each_ftrace_rec()		\
1513 		}				\
1514 	}
1515 
1516 
1517 static int ftrace_cmp_recs(const void *a, const void *b)
1518 {
1519 	const struct dyn_ftrace *key = a;
1520 	const struct dyn_ftrace *rec = b;
1521 
1522 	if (key->flags < rec->ip)
1523 		return -1;
1524 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1525 		return 1;
1526 	return 0;
1527 }
1528 
1529 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1530 {
1531 	struct ftrace_page *pg;
1532 	struct dyn_ftrace *rec = NULL;
1533 	struct dyn_ftrace key;
1534 
1535 	key.ip = start;
1536 	key.flags = end;	/* overload flags, as it is unsigned long */
1537 
1538 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1539 		if (end < pg->records[0].ip ||
1540 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1541 			continue;
1542 		rec = bsearch(&key, pg->records, pg->index,
1543 			      sizeof(struct dyn_ftrace),
1544 			      ftrace_cmp_recs);
1545 		if (rec)
1546 			break;
1547 	}
1548 	return rec;
1549 }
1550 
1551 /**
1552  * ftrace_location_range - return the first address of a traced location
1553  *	if it touches the given ip range
1554  * @start: start of range to search.
1555  * @end: end of range to search (inclusive). @end points to the last byte
1556  *	to check.
1557  *
1558  * Returns rec->ip if the related ftrace location is a least partly within
1559  * the given address range. That is, the first address of the instruction
1560  * that is either a NOP or call to the function tracer. It checks the ftrace
1561  * internal tables to determine if the address belongs or not.
1562  */
1563 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1564 {
1565 	struct dyn_ftrace *rec;
1566 
1567 	rec = lookup_rec(start, end);
1568 	if (rec)
1569 		return rec->ip;
1570 
1571 	return 0;
1572 }
1573 
1574 /**
1575  * ftrace_location - return true if the ip giving is a traced location
1576  * @ip: the instruction pointer to check
1577  *
1578  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1579  * That is, the instruction that is either a NOP or call to
1580  * the function tracer. It checks the ftrace internal tables to
1581  * determine if the address belongs or not.
1582  */
1583 unsigned long ftrace_location(unsigned long ip)
1584 {
1585 	return ftrace_location_range(ip, ip);
1586 }
1587 
1588 /**
1589  * ftrace_text_reserved - return true if range contains an ftrace location
1590  * @start: start of range to search
1591  * @end: end of range to search (inclusive). @end points to the last byte to check.
1592  *
1593  * Returns 1 if @start and @end contains a ftrace location.
1594  * That is, the instruction that is either a NOP or call to
1595  * the function tracer. It checks the ftrace internal tables to
1596  * determine if the address belongs or not.
1597  */
1598 int ftrace_text_reserved(const void *start, const void *end)
1599 {
1600 	unsigned long ret;
1601 
1602 	ret = ftrace_location_range((unsigned long)start,
1603 				    (unsigned long)end);
1604 
1605 	return (int)!!ret;
1606 }
1607 
1608 /* Test if ops registered to this rec needs regs */
1609 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1610 {
1611 	struct ftrace_ops *ops;
1612 	bool keep_regs = false;
1613 
1614 	for (ops = ftrace_ops_list;
1615 	     ops != &ftrace_list_end; ops = ops->next) {
1616 		/* pass rec in as regs to have non-NULL val */
1617 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1618 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1619 				keep_regs = true;
1620 				break;
1621 			}
1622 		}
1623 	}
1624 
1625 	return  keep_regs;
1626 }
1627 
1628 static struct ftrace_ops *
1629 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1630 static struct ftrace_ops *
1631 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1632 static struct ftrace_ops *
1633 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1634 
1635 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1636 				     int filter_hash,
1637 				     bool inc)
1638 {
1639 	struct ftrace_hash *hash;
1640 	struct ftrace_hash *other_hash;
1641 	struct ftrace_page *pg;
1642 	struct dyn_ftrace *rec;
1643 	bool update = false;
1644 	int count = 0;
1645 	int all = false;
1646 
1647 	/* Only update if the ops has been registered */
1648 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1649 		return false;
1650 
1651 	/*
1652 	 * In the filter_hash case:
1653 	 *   If the count is zero, we update all records.
1654 	 *   Otherwise we just update the items in the hash.
1655 	 *
1656 	 * In the notrace_hash case:
1657 	 *   We enable the update in the hash.
1658 	 *   As disabling notrace means enabling the tracing,
1659 	 *   and enabling notrace means disabling, the inc variable
1660 	 *   gets inversed.
1661 	 */
1662 	if (filter_hash) {
1663 		hash = ops->func_hash->filter_hash;
1664 		other_hash = ops->func_hash->notrace_hash;
1665 		if (ftrace_hash_empty(hash))
1666 			all = true;
1667 	} else {
1668 		inc = !inc;
1669 		hash = ops->func_hash->notrace_hash;
1670 		other_hash = ops->func_hash->filter_hash;
1671 		/*
1672 		 * If the notrace hash has no items,
1673 		 * then there's nothing to do.
1674 		 */
1675 		if (ftrace_hash_empty(hash))
1676 			return false;
1677 	}
1678 
1679 	do_for_each_ftrace_rec(pg, rec) {
1680 		int in_other_hash = 0;
1681 		int in_hash = 0;
1682 		int match = 0;
1683 
1684 		if (rec->flags & FTRACE_FL_DISABLED)
1685 			continue;
1686 
1687 		if (all) {
1688 			/*
1689 			 * Only the filter_hash affects all records.
1690 			 * Update if the record is not in the notrace hash.
1691 			 */
1692 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1693 				match = 1;
1694 		} else {
1695 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1696 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1697 
1698 			/*
1699 			 * If filter_hash is set, we want to match all functions
1700 			 * that are in the hash but not in the other hash.
1701 			 *
1702 			 * If filter_hash is not set, then we are decrementing.
1703 			 * That means we match anything that is in the hash
1704 			 * and also in the other_hash. That is, we need to turn
1705 			 * off functions in the other hash because they are disabled
1706 			 * by this hash.
1707 			 */
1708 			if (filter_hash && in_hash && !in_other_hash)
1709 				match = 1;
1710 			else if (!filter_hash && in_hash &&
1711 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1712 				match = 1;
1713 		}
1714 		if (!match)
1715 			continue;
1716 
1717 		if (inc) {
1718 			rec->flags++;
1719 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1720 				return false;
1721 
1722 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1723 				rec->flags |= FTRACE_FL_DIRECT;
1724 
1725 			/*
1726 			 * If there's only a single callback registered to a
1727 			 * function, and the ops has a trampoline registered
1728 			 * for it, then we can call it directly.
1729 			 */
1730 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1731 				rec->flags |= FTRACE_FL_TRAMP;
1732 			else
1733 				/*
1734 				 * If we are adding another function callback
1735 				 * to this function, and the previous had a
1736 				 * custom trampoline in use, then we need to go
1737 				 * back to the default trampoline.
1738 				 */
1739 				rec->flags &= ~FTRACE_FL_TRAMP;
1740 
1741 			/*
1742 			 * If any ops wants regs saved for this function
1743 			 * then all ops will get saved regs.
1744 			 */
1745 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1746 				rec->flags |= FTRACE_FL_REGS;
1747 		} else {
1748 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1749 				return false;
1750 			rec->flags--;
1751 
1752 			/*
1753 			 * Only the internal direct_ops should have the
1754 			 * DIRECT flag set. Thus, if it is removing a
1755 			 * function, then that function should no longer
1756 			 * be direct.
1757 			 */
1758 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1759 				rec->flags &= ~FTRACE_FL_DIRECT;
1760 
1761 			/*
1762 			 * If the rec had REGS enabled and the ops that is
1763 			 * being removed had REGS set, then see if there is
1764 			 * still any ops for this record that wants regs.
1765 			 * If not, we can stop recording them.
1766 			 */
1767 			if (ftrace_rec_count(rec) > 0 &&
1768 			    rec->flags & FTRACE_FL_REGS &&
1769 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1770 				if (!test_rec_ops_needs_regs(rec))
1771 					rec->flags &= ~FTRACE_FL_REGS;
1772 			}
1773 
1774 			/*
1775 			 * The TRAMP needs to be set only if rec count
1776 			 * is decremented to one, and the ops that is
1777 			 * left has a trampoline. As TRAMP can only be
1778 			 * enabled if there is only a single ops attached
1779 			 * to it.
1780 			 */
1781 			if (ftrace_rec_count(rec) == 1 &&
1782 			    ftrace_find_tramp_ops_any_other(rec, ops))
1783 				rec->flags |= FTRACE_FL_TRAMP;
1784 			else
1785 				rec->flags &= ~FTRACE_FL_TRAMP;
1786 
1787 			/*
1788 			 * flags will be cleared in ftrace_check_record()
1789 			 * if rec count is zero.
1790 			 */
1791 		}
1792 		count++;
1793 
1794 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1795 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1796 
1797 		/* Shortcut, if we handled all records, we are done. */
1798 		if (!all && count == hash->count)
1799 			return update;
1800 	} while_for_each_ftrace_rec();
1801 
1802 	return update;
1803 }
1804 
1805 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1806 				    int filter_hash)
1807 {
1808 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1809 }
1810 
1811 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1812 				   int filter_hash)
1813 {
1814 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1815 }
1816 
1817 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1818 					  int filter_hash, int inc)
1819 {
1820 	struct ftrace_ops *op;
1821 
1822 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1823 
1824 	if (ops->func_hash != &global_ops.local_hash)
1825 		return;
1826 
1827 	/*
1828 	 * If the ops shares the global_ops hash, then we need to update
1829 	 * all ops that are enabled and use this hash.
1830 	 */
1831 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1832 		/* Already done */
1833 		if (op == ops)
1834 			continue;
1835 		if (op->func_hash == &global_ops.local_hash)
1836 			__ftrace_hash_rec_update(op, filter_hash, inc);
1837 	} while_for_each_ftrace_op(op);
1838 }
1839 
1840 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1841 					   int filter_hash)
1842 {
1843 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1844 }
1845 
1846 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1847 					  int filter_hash)
1848 {
1849 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1850 }
1851 
1852 /*
1853  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1854  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1855  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1856  * Note that old_hash and new_hash has below meanings
1857  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1858  *  - If the hash is EMPTY_HASH, it hits nothing
1859  *  - Anything else hits the recs which match the hash entries.
1860  */
1861 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1862 					 struct ftrace_hash *old_hash,
1863 					 struct ftrace_hash *new_hash)
1864 {
1865 	struct ftrace_page *pg;
1866 	struct dyn_ftrace *rec, *end = NULL;
1867 	int in_old, in_new;
1868 
1869 	/* Only update if the ops has been registered */
1870 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1871 		return 0;
1872 
1873 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1874 		return 0;
1875 
1876 	/*
1877 	 * Since the IPMODIFY is a very address sensitive action, we do not
1878 	 * allow ftrace_ops to set all functions to new hash.
1879 	 */
1880 	if (!new_hash || !old_hash)
1881 		return -EINVAL;
1882 
1883 	/* Update rec->flags */
1884 	do_for_each_ftrace_rec(pg, rec) {
1885 
1886 		if (rec->flags & FTRACE_FL_DISABLED)
1887 			continue;
1888 
1889 		/* We need to update only differences of filter_hash */
1890 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1891 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1892 		if (in_old == in_new)
1893 			continue;
1894 
1895 		if (in_new) {
1896 			/* New entries must ensure no others are using it */
1897 			if (rec->flags & FTRACE_FL_IPMODIFY)
1898 				goto rollback;
1899 			rec->flags |= FTRACE_FL_IPMODIFY;
1900 		} else /* Removed entry */
1901 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1902 	} while_for_each_ftrace_rec();
1903 
1904 	return 0;
1905 
1906 rollback:
1907 	end = rec;
1908 
1909 	/* Roll back what we did above */
1910 	do_for_each_ftrace_rec(pg, rec) {
1911 
1912 		if (rec->flags & FTRACE_FL_DISABLED)
1913 			continue;
1914 
1915 		if (rec == end)
1916 			goto err_out;
1917 
1918 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1919 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1920 		if (in_old == in_new)
1921 			continue;
1922 
1923 		if (in_new)
1924 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1925 		else
1926 			rec->flags |= FTRACE_FL_IPMODIFY;
1927 	} while_for_each_ftrace_rec();
1928 
1929 err_out:
1930 	return -EBUSY;
1931 }
1932 
1933 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1934 {
1935 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1936 
1937 	if (ftrace_hash_empty(hash))
1938 		hash = NULL;
1939 
1940 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1941 }
1942 
1943 /* Disabling always succeeds */
1944 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1945 {
1946 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1947 
1948 	if (ftrace_hash_empty(hash))
1949 		hash = NULL;
1950 
1951 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1952 }
1953 
1954 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1955 				       struct ftrace_hash *new_hash)
1956 {
1957 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1958 
1959 	if (ftrace_hash_empty(old_hash))
1960 		old_hash = NULL;
1961 
1962 	if (ftrace_hash_empty(new_hash))
1963 		new_hash = NULL;
1964 
1965 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1966 }
1967 
1968 static void print_ip_ins(const char *fmt, const unsigned char *p)
1969 {
1970 	int i;
1971 
1972 	printk(KERN_CONT "%s", fmt);
1973 
1974 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1975 		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1976 }
1977 
1978 enum ftrace_bug_type ftrace_bug_type;
1979 const void *ftrace_expected;
1980 
1981 static void print_bug_type(void)
1982 {
1983 	switch (ftrace_bug_type) {
1984 	case FTRACE_BUG_UNKNOWN:
1985 		break;
1986 	case FTRACE_BUG_INIT:
1987 		pr_info("Initializing ftrace call sites\n");
1988 		break;
1989 	case FTRACE_BUG_NOP:
1990 		pr_info("Setting ftrace call site to NOP\n");
1991 		break;
1992 	case FTRACE_BUG_CALL:
1993 		pr_info("Setting ftrace call site to call ftrace function\n");
1994 		break;
1995 	case FTRACE_BUG_UPDATE:
1996 		pr_info("Updating ftrace call site to call a different ftrace function\n");
1997 		break;
1998 	}
1999 }
2000 
2001 /**
2002  * ftrace_bug - report and shutdown function tracer
2003  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2004  * @rec: The record that failed
2005  *
2006  * The arch code that enables or disables the function tracing
2007  * can call ftrace_bug() when it has detected a problem in
2008  * modifying the code. @failed should be one of either:
2009  * EFAULT - if the problem happens on reading the @ip address
2010  * EINVAL - if what is read at @ip is not what was expected
2011  * EPERM - if the problem happens on writing to the @ip address
2012  */
2013 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2014 {
2015 	unsigned long ip = rec ? rec->ip : 0;
2016 
2017 	pr_info("------------[ ftrace bug ]------------\n");
2018 
2019 	switch (failed) {
2020 	case -EFAULT:
2021 		pr_info("ftrace faulted on modifying ");
2022 		print_ip_sym(KERN_INFO, ip);
2023 		break;
2024 	case -EINVAL:
2025 		pr_info("ftrace failed to modify ");
2026 		print_ip_sym(KERN_INFO, ip);
2027 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2028 		pr_cont("\n");
2029 		if (ftrace_expected) {
2030 			print_ip_ins(" expected: ", ftrace_expected);
2031 			pr_cont("\n");
2032 		}
2033 		break;
2034 	case -EPERM:
2035 		pr_info("ftrace faulted on writing ");
2036 		print_ip_sym(KERN_INFO, ip);
2037 		break;
2038 	default:
2039 		pr_info("ftrace faulted on unknown error ");
2040 		print_ip_sym(KERN_INFO, ip);
2041 	}
2042 	print_bug_type();
2043 	if (rec) {
2044 		struct ftrace_ops *ops = NULL;
2045 
2046 		pr_info("ftrace record flags: %lx\n", rec->flags);
2047 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2048 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2049 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2050 			ops = ftrace_find_tramp_ops_any(rec);
2051 			if (ops) {
2052 				do {
2053 					pr_cont("\ttramp: %pS (%pS)",
2054 						(void *)ops->trampoline,
2055 						(void *)ops->func);
2056 					ops = ftrace_find_tramp_ops_next(rec, ops);
2057 				} while (ops);
2058 			} else
2059 				pr_cont("\ttramp: ERROR!");
2060 
2061 		}
2062 		ip = ftrace_get_addr_curr(rec);
2063 		pr_cont("\n expected tramp: %lx\n", ip);
2064 	}
2065 
2066 	FTRACE_WARN_ON_ONCE(1);
2067 }
2068 
2069 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2070 {
2071 	unsigned long flag = 0UL;
2072 
2073 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2074 
2075 	if (rec->flags & FTRACE_FL_DISABLED)
2076 		return FTRACE_UPDATE_IGNORE;
2077 
2078 	/*
2079 	 * If we are updating calls:
2080 	 *
2081 	 *   If the record has a ref count, then we need to enable it
2082 	 *   because someone is using it.
2083 	 *
2084 	 *   Otherwise we make sure its disabled.
2085 	 *
2086 	 * If we are disabling calls, then disable all records that
2087 	 * are enabled.
2088 	 */
2089 	if (enable && ftrace_rec_count(rec))
2090 		flag = FTRACE_FL_ENABLED;
2091 
2092 	/*
2093 	 * If enabling and the REGS flag does not match the REGS_EN, or
2094 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2095 	 * this record. Set flags to fail the compare against ENABLED.
2096 	 * Same for direct calls.
2097 	 */
2098 	if (flag) {
2099 		if (!(rec->flags & FTRACE_FL_REGS) !=
2100 		    !(rec->flags & FTRACE_FL_REGS_EN))
2101 			flag |= FTRACE_FL_REGS;
2102 
2103 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2104 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2105 			flag |= FTRACE_FL_TRAMP;
2106 
2107 		/*
2108 		 * Direct calls are special, as count matters.
2109 		 * We must test the record for direct, if the
2110 		 * DIRECT and DIRECT_EN do not match, but only
2111 		 * if the count is 1. That's because, if the
2112 		 * count is something other than one, we do not
2113 		 * want the direct enabled (it will be done via the
2114 		 * direct helper). But if DIRECT_EN is set, and
2115 		 * the count is not one, we need to clear it.
2116 		 */
2117 		if (ftrace_rec_count(rec) == 1) {
2118 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2119 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2120 				flag |= FTRACE_FL_DIRECT;
2121 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2122 			flag |= FTRACE_FL_DIRECT;
2123 		}
2124 	}
2125 
2126 	/* If the state of this record hasn't changed, then do nothing */
2127 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2128 		return FTRACE_UPDATE_IGNORE;
2129 
2130 	if (flag) {
2131 		/* Save off if rec is being enabled (for return value) */
2132 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2133 
2134 		if (update) {
2135 			rec->flags |= FTRACE_FL_ENABLED;
2136 			if (flag & FTRACE_FL_REGS) {
2137 				if (rec->flags & FTRACE_FL_REGS)
2138 					rec->flags |= FTRACE_FL_REGS_EN;
2139 				else
2140 					rec->flags &= ~FTRACE_FL_REGS_EN;
2141 			}
2142 			if (flag & FTRACE_FL_TRAMP) {
2143 				if (rec->flags & FTRACE_FL_TRAMP)
2144 					rec->flags |= FTRACE_FL_TRAMP_EN;
2145 				else
2146 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2147 			}
2148 
2149 			if (flag & FTRACE_FL_DIRECT) {
2150 				/*
2151 				 * If there's only one user (direct_ops helper)
2152 				 * then we can call the direct function
2153 				 * directly (no ftrace trampoline).
2154 				 */
2155 				if (ftrace_rec_count(rec) == 1) {
2156 					if (rec->flags & FTRACE_FL_DIRECT)
2157 						rec->flags |= FTRACE_FL_DIRECT_EN;
2158 					else
2159 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2160 				} else {
2161 					/*
2162 					 * Can only call directly if there's
2163 					 * only one callback to the function.
2164 					 */
2165 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2166 				}
2167 			}
2168 		}
2169 
2170 		/*
2171 		 * If this record is being updated from a nop, then
2172 		 *   return UPDATE_MAKE_CALL.
2173 		 * Otherwise,
2174 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2175 		 *   from the save regs, to a non-save regs function or
2176 		 *   vice versa, or from a trampoline call.
2177 		 */
2178 		if (flag & FTRACE_FL_ENABLED) {
2179 			ftrace_bug_type = FTRACE_BUG_CALL;
2180 			return FTRACE_UPDATE_MAKE_CALL;
2181 		}
2182 
2183 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2184 		return FTRACE_UPDATE_MODIFY_CALL;
2185 	}
2186 
2187 	if (update) {
2188 		/* If there's no more users, clear all flags */
2189 		if (!ftrace_rec_count(rec))
2190 			rec->flags = 0;
2191 		else
2192 			/*
2193 			 * Just disable the record, but keep the ops TRAMP
2194 			 * and REGS states. The _EN flags must be disabled though.
2195 			 */
2196 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2197 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2198 	}
2199 
2200 	ftrace_bug_type = FTRACE_BUG_NOP;
2201 	return FTRACE_UPDATE_MAKE_NOP;
2202 }
2203 
2204 /**
2205  * ftrace_update_record, set a record that now is tracing or not
2206  * @rec: the record to update
2207  * @enable: set to true if the record is tracing, false to force disable
2208  *
2209  * The records that represent all functions that can be traced need
2210  * to be updated when tracing has been enabled.
2211  */
2212 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2213 {
2214 	return ftrace_check_record(rec, enable, true);
2215 }
2216 
2217 /**
2218  * ftrace_test_record, check if the record has been enabled or not
2219  * @rec: the record to test
2220  * @enable: set to true to check if enabled, false if it is disabled
2221  *
2222  * The arch code may need to test if a record is already set to
2223  * tracing to determine how to modify the function code that it
2224  * represents.
2225  */
2226 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2227 {
2228 	return ftrace_check_record(rec, enable, false);
2229 }
2230 
2231 static struct ftrace_ops *
2232 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2233 {
2234 	struct ftrace_ops *op;
2235 	unsigned long ip = rec->ip;
2236 
2237 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2238 
2239 		if (!op->trampoline)
2240 			continue;
2241 
2242 		if (hash_contains_ip(ip, op->func_hash))
2243 			return op;
2244 	} while_for_each_ftrace_op(op);
2245 
2246 	return NULL;
2247 }
2248 
2249 static struct ftrace_ops *
2250 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2251 {
2252 	struct ftrace_ops *op;
2253 	unsigned long ip = rec->ip;
2254 
2255 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2256 
2257 		if (op == op_exclude || !op->trampoline)
2258 			continue;
2259 
2260 		if (hash_contains_ip(ip, op->func_hash))
2261 			return op;
2262 	} while_for_each_ftrace_op(op);
2263 
2264 	return NULL;
2265 }
2266 
2267 static struct ftrace_ops *
2268 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2269 			   struct ftrace_ops *op)
2270 {
2271 	unsigned long ip = rec->ip;
2272 
2273 	while_for_each_ftrace_op(op) {
2274 
2275 		if (!op->trampoline)
2276 			continue;
2277 
2278 		if (hash_contains_ip(ip, op->func_hash))
2279 			return op;
2280 	}
2281 
2282 	return NULL;
2283 }
2284 
2285 static struct ftrace_ops *
2286 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2287 {
2288 	struct ftrace_ops *op;
2289 	unsigned long ip = rec->ip;
2290 
2291 	/*
2292 	 * Need to check removed ops first.
2293 	 * If they are being removed, and this rec has a tramp,
2294 	 * and this rec is in the ops list, then it would be the
2295 	 * one with the tramp.
2296 	 */
2297 	if (removed_ops) {
2298 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2299 			return removed_ops;
2300 	}
2301 
2302 	/*
2303 	 * Need to find the current trampoline for a rec.
2304 	 * Now, a trampoline is only attached to a rec if there
2305 	 * was a single 'ops' attached to it. But this can be called
2306 	 * when we are adding another op to the rec or removing the
2307 	 * current one. Thus, if the op is being added, we can
2308 	 * ignore it because it hasn't attached itself to the rec
2309 	 * yet.
2310 	 *
2311 	 * If an ops is being modified (hooking to different functions)
2312 	 * then we don't care about the new functions that are being
2313 	 * added, just the old ones (that are probably being removed).
2314 	 *
2315 	 * If we are adding an ops to a function that already is using
2316 	 * a trampoline, it needs to be removed (trampolines are only
2317 	 * for single ops connected), then an ops that is not being
2318 	 * modified also needs to be checked.
2319 	 */
2320 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2321 
2322 		if (!op->trampoline)
2323 			continue;
2324 
2325 		/*
2326 		 * If the ops is being added, it hasn't gotten to
2327 		 * the point to be removed from this tree yet.
2328 		 */
2329 		if (op->flags & FTRACE_OPS_FL_ADDING)
2330 			continue;
2331 
2332 
2333 		/*
2334 		 * If the ops is being modified and is in the old
2335 		 * hash, then it is probably being removed from this
2336 		 * function.
2337 		 */
2338 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2339 		    hash_contains_ip(ip, &op->old_hash))
2340 			return op;
2341 		/*
2342 		 * If the ops is not being added or modified, and it's
2343 		 * in its normal filter hash, then this must be the one
2344 		 * we want!
2345 		 */
2346 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2347 		    hash_contains_ip(ip, op->func_hash))
2348 			return op;
2349 
2350 	} while_for_each_ftrace_op(op);
2351 
2352 	return NULL;
2353 }
2354 
2355 static struct ftrace_ops *
2356 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2357 {
2358 	struct ftrace_ops *op;
2359 	unsigned long ip = rec->ip;
2360 
2361 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2362 		/* pass rec in as regs to have non-NULL val */
2363 		if (hash_contains_ip(ip, op->func_hash))
2364 			return op;
2365 	} while_for_each_ftrace_op(op);
2366 
2367 	return NULL;
2368 }
2369 
2370 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2371 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2372 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2373 static DEFINE_MUTEX(direct_mutex);
2374 int ftrace_direct_func_count;
2375 
2376 /*
2377  * Search the direct_functions hash to see if the given instruction pointer
2378  * has a direct caller attached to it.
2379  */
2380 unsigned long ftrace_find_rec_direct(unsigned long ip)
2381 {
2382 	struct ftrace_func_entry *entry;
2383 
2384 	entry = __ftrace_lookup_ip(direct_functions, ip);
2385 	if (!entry)
2386 		return 0;
2387 
2388 	return entry->direct;
2389 }
2390 
2391 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2392 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2393 {
2394 	struct pt_regs *regs = ftrace_get_regs(fregs);
2395 	unsigned long addr;
2396 
2397 	addr = ftrace_find_rec_direct(ip);
2398 	if (!addr)
2399 		return;
2400 
2401 	arch_ftrace_set_direct_caller(regs, addr);
2402 }
2403 
2404 struct ftrace_ops direct_ops = {
2405 	.func		= call_direct_funcs,
2406 	.flags		= FTRACE_OPS_FL_IPMODIFY
2407 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2408 			  | FTRACE_OPS_FL_PERMANENT,
2409 	/*
2410 	 * By declaring the main trampoline as this trampoline
2411 	 * it will never have one allocated for it. Allocated
2412 	 * trampolines should not call direct functions.
2413 	 * The direct_ops should only be called by the builtin
2414 	 * ftrace_regs_caller trampoline.
2415 	 */
2416 	.trampoline	= FTRACE_REGS_ADDR,
2417 };
2418 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2419 
2420 /**
2421  * ftrace_get_addr_new - Get the call address to set to
2422  * @rec:  The ftrace record descriptor
2423  *
2424  * If the record has the FTRACE_FL_REGS set, that means that it
2425  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2426  * is not set, then it wants to convert to the normal callback.
2427  *
2428  * Returns the address of the trampoline to set to
2429  */
2430 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2431 {
2432 	struct ftrace_ops *ops;
2433 	unsigned long addr;
2434 
2435 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2436 	    (ftrace_rec_count(rec) == 1)) {
2437 		addr = ftrace_find_rec_direct(rec->ip);
2438 		if (addr)
2439 			return addr;
2440 		WARN_ON_ONCE(1);
2441 	}
2442 
2443 	/* Trampolines take precedence over regs */
2444 	if (rec->flags & FTRACE_FL_TRAMP) {
2445 		ops = ftrace_find_tramp_ops_new(rec);
2446 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2447 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2448 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2449 			/* Ftrace is shutting down, return anything */
2450 			return (unsigned long)FTRACE_ADDR;
2451 		}
2452 		return ops->trampoline;
2453 	}
2454 
2455 	if (rec->flags & FTRACE_FL_REGS)
2456 		return (unsigned long)FTRACE_REGS_ADDR;
2457 	else
2458 		return (unsigned long)FTRACE_ADDR;
2459 }
2460 
2461 /**
2462  * ftrace_get_addr_curr - Get the call address that is already there
2463  * @rec:  The ftrace record descriptor
2464  *
2465  * The FTRACE_FL_REGS_EN is set when the record already points to
2466  * a function that saves all the regs. Basically the '_EN' version
2467  * represents the current state of the function.
2468  *
2469  * Returns the address of the trampoline that is currently being called
2470  */
2471 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2472 {
2473 	struct ftrace_ops *ops;
2474 	unsigned long addr;
2475 
2476 	/* Direct calls take precedence over trampolines */
2477 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2478 		addr = ftrace_find_rec_direct(rec->ip);
2479 		if (addr)
2480 			return addr;
2481 		WARN_ON_ONCE(1);
2482 	}
2483 
2484 	/* Trampolines take precedence over regs */
2485 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2486 		ops = ftrace_find_tramp_ops_curr(rec);
2487 		if (FTRACE_WARN_ON(!ops)) {
2488 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2489 				(void *)rec->ip, (void *)rec->ip);
2490 			/* Ftrace is shutting down, return anything */
2491 			return (unsigned long)FTRACE_ADDR;
2492 		}
2493 		return ops->trampoline;
2494 	}
2495 
2496 	if (rec->flags & FTRACE_FL_REGS_EN)
2497 		return (unsigned long)FTRACE_REGS_ADDR;
2498 	else
2499 		return (unsigned long)FTRACE_ADDR;
2500 }
2501 
2502 static int
2503 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2504 {
2505 	unsigned long ftrace_old_addr;
2506 	unsigned long ftrace_addr;
2507 	int ret;
2508 
2509 	ftrace_addr = ftrace_get_addr_new(rec);
2510 
2511 	/* This needs to be done before we call ftrace_update_record */
2512 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2513 
2514 	ret = ftrace_update_record(rec, enable);
2515 
2516 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2517 
2518 	switch (ret) {
2519 	case FTRACE_UPDATE_IGNORE:
2520 		return 0;
2521 
2522 	case FTRACE_UPDATE_MAKE_CALL:
2523 		ftrace_bug_type = FTRACE_BUG_CALL;
2524 		return ftrace_make_call(rec, ftrace_addr);
2525 
2526 	case FTRACE_UPDATE_MAKE_NOP:
2527 		ftrace_bug_type = FTRACE_BUG_NOP;
2528 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2529 
2530 	case FTRACE_UPDATE_MODIFY_CALL:
2531 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2532 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2533 	}
2534 
2535 	return -1; /* unknown ftrace bug */
2536 }
2537 
2538 void __weak ftrace_replace_code(int mod_flags)
2539 {
2540 	struct dyn_ftrace *rec;
2541 	struct ftrace_page *pg;
2542 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2543 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2544 	int failed;
2545 
2546 	if (unlikely(ftrace_disabled))
2547 		return;
2548 
2549 	do_for_each_ftrace_rec(pg, rec) {
2550 
2551 		if (rec->flags & FTRACE_FL_DISABLED)
2552 			continue;
2553 
2554 		failed = __ftrace_replace_code(rec, enable);
2555 		if (failed) {
2556 			ftrace_bug(failed, rec);
2557 			/* Stop processing */
2558 			return;
2559 		}
2560 		if (schedulable)
2561 			cond_resched();
2562 	} while_for_each_ftrace_rec();
2563 }
2564 
2565 struct ftrace_rec_iter {
2566 	struct ftrace_page	*pg;
2567 	int			index;
2568 };
2569 
2570 /**
2571  * ftrace_rec_iter_start, start up iterating over traced functions
2572  *
2573  * Returns an iterator handle that is used to iterate over all
2574  * the records that represent address locations where functions
2575  * are traced.
2576  *
2577  * May return NULL if no records are available.
2578  */
2579 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2580 {
2581 	/*
2582 	 * We only use a single iterator.
2583 	 * Protected by the ftrace_lock mutex.
2584 	 */
2585 	static struct ftrace_rec_iter ftrace_rec_iter;
2586 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2587 
2588 	iter->pg = ftrace_pages_start;
2589 	iter->index = 0;
2590 
2591 	/* Could have empty pages */
2592 	while (iter->pg && !iter->pg->index)
2593 		iter->pg = iter->pg->next;
2594 
2595 	if (!iter->pg)
2596 		return NULL;
2597 
2598 	return iter;
2599 }
2600 
2601 /**
2602  * ftrace_rec_iter_next, get the next record to process.
2603  * @iter: The handle to the iterator.
2604  *
2605  * Returns the next iterator after the given iterator @iter.
2606  */
2607 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2608 {
2609 	iter->index++;
2610 
2611 	if (iter->index >= iter->pg->index) {
2612 		iter->pg = iter->pg->next;
2613 		iter->index = 0;
2614 
2615 		/* Could have empty pages */
2616 		while (iter->pg && !iter->pg->index)
2617 			iter->pg = iter->pg->next;
2618 	}
2619 
2620 	if (!iter->pg)
2621 		return NULL;
2622 
2623 	return iter;
2624 }
2625 
2626 /**
2627  * ftrace_rec_iter_record, get the record at the iterator location
2628  * @iter: The current iterator location
2629  *
2630  * Returns the record that the current @iter is at.
2631  */
2632 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2633 {
2634 	return &iter->pg->records[iter->index];
2635 }
2636 
2637 static int
2638 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2639 {
2640 	int ret;
2641 
2642 	if (unlikely(ftrace_disabled))
2643 		return 0;
2644 
2645 	ret = ftrace_init_nop(mod, rec);
2646 	if (ret) {
2647 		ftrace_bug_type = FTRACE_BUG_INIT;
2648 		ftrace_bug(ret, rec);
2649 		return 0;
2650 	}
2651 	return 1;
2652 }
2653 
2654 /*
2655  * archs can override this function if they must do something
2656  * before the modifying code is performed.
2657  */
2658 int __weak ftrace_arch_code_modify_prepare(void)
2659 {
2660 	return 0;
2661 }
2662 
2663 /*
2664  * archs can override this function if they must do something
2665  * after the modifying code is performed.
2666  */
2667 int __weak ftrace_arch_code_modify_post_process(void)
2668 {
2669 	return 0;
2670 }
2671 
2672 void ftrace_modify_all_code(int command)
2673 {
2674 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2675 	int mod_flags = 0;
2676 	int err = 0;
2677 
2678 	if (command & FTRACE_MAY_SLEEP)
2679 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2680 
2681 	/*
2682 	 * If the ftrace_caller calls a ftrace_ops func directly,
2683 	 * we need to make sure that it only traces functions it
2684 	 * expects to trace. When doing the switch of functions,
2685 	 * we need to update to the ftrace_ops_list_func first
2686 	 * before the transition between old and new calls are set,
2687 	 * as the ftrace_ops_list_func will check the ops hashes
2688 	 * to make sure the ops are having the right functions
2689 	 * traced.
2690 	 */
2691 	if (update) {
2692 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2693 		if (FTRACE_WARN_ON(err))
2694 			return;
2695 	}
2696 
2697 	if (command & FTRACE_UPDATE_CALLS)
2698 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2699 	else if (command & FTRACE_DISABLE_CALLS)
2700 		ftrace_replace_code(mod_flags);
2701 
2702 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2703 		function_trace_op = set_function_trace_op;
2704 		smp_wmb();
2705 		/* If irqs are disabled, we are in stop machine */
2706 		if (!irqs_disabled())
2707 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2708 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2709 		if (FTRACE_WARN_ON(err))
2710 			return;
2711 	}
2712 
2713 	if (command & FTRACE_START_FUNC_RET)
2714 		err = ftrace_enable_ftrace_graph_caller();
2715 	else if (command & FTRACE_STOP_FUNC_RET)
2716 		err = ftrace_disable_ftrace_graph_caller();
2717 	FTRACE_WARN_ON(err);
2718 }
2719 
2720 static int __ftrace_modify_code(void *data)
2721 {
2722 	int *command = data;
2723 
2724 	ftrace_modify_all_code(*command);
2725 
2726 	return 0;
2727 }
2728 
2729 /**
2730  * ftrace_run_stop_machine, go back to the stop machine method
2731  * @command: The command to tell ftrace what to do
2732  *
2733  * If an arch needs to fall back to the stop machine method, the
2734  * it can call this function.
2735  */
2736 void ftrace_run_stop_machine(int command)
2737 {
2738 	stop_machine(__ftrace_modify_code, &command, NULL);
2739 }
2740 
2741 /**
2742  * arch_ftrace_update_code, modify the code to trace or not trace
2743  * @command: The command that needs to be done
2744  *
2745  * Archs can override this function if it does not need to
2746  * run stop_machine() to modify code.
2747  */
2748 void __weak arch_ftrace_update_code(int command)
2749 {
2750 	ftrace_run_stop_machine(command);
2751 }
2752 
2753 static void ftrace_run_update_code(int command)
2754 {
2755 	int ret;
2756 
2757 	ret = ftrace_arch_code_modify_prepare();
2758 	FTRACE_WARN_ON(ret);
2759 	if (ret)
2760 		return;
2761 
2762 	/*
2763 	 * By default we use stop_machine() to modify the code.
2764 	 * But archs can do what ever they want as long as it
2765 	 * is safe. The stop_machine() is the safest, but also
2766 	 * produces the most overhead.
2767 	 */
2768 	arch_ftrace_update_code(command);
2769 
2770 	ret = ftrace_arch_code_modify_post_process();
2771 	FTRACE_WARN_ON(ret);
2772 }
2773 
2774 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2775 				   struct ftrace_ops_hash *old_hash)
2776 {
2777 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2778 	ops->old_hash.filter_hash = old_hash->filter_hash;
2779 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2780 	ftrace_run_update_code(command);
2781 	ops->old_hash.filter_hash = NULL;
2782 	ops->old_hash.notrace_hash = NULL;
2783 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2784 }
2785 
2786 static ftrace_func_t saved_ftrace_func;
2787 static int ftrace_start_up;
2788 
2789 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2790 {
2791 }
2792 
2793 /* List of trace_ops that have allocated trampolines */
2794 static LIST_HEAD(ftrace_ops_trampoline_list);
2795 
2796 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2797 {
2798 	lockdep_assert_held(&ftrace_lock);
2799 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2800 }
2801 
2802 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2803 {
2804 	lockdep_assert_held(&ftrace_lock);
2805 	list_del_rcu(&ops->list);
2806 	synchronize_rcu();
2807 }
2808 
2809 /*
2810  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2811  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2812  * not a module.
2813  */
2814 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2815 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2816 
2817 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2818 {
2819 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2820 	    ops->trampoline) {
2821 		/*
2822 		 * Record the text poke event before the ksymbol unregister
2823 		 * event.
2824 		 */
2825 		perf_event_text_poke((void *)ops->trampoline,
2826 				     (void *)ops->trampoline,
2827 				     ops->trampoline_size, NULL, 0);
2828 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2829 				   ops->trampoline, ops->trampoline_size,
2830 				   true, FTRACE_TRAMPOLINE_SYM);
2831 		/* Remove from kallsyms after the perf events */
2832 		ftrace_remove_trampoline_from_kallsyms(ops);
2833 	}
2834 
2835 	arch_ftrace_trampoline_free(ops);
2836 }
2837 
2838 static void ftrace_startup_enable(int command)
2839 {
2840 	if (saved_ftrace_func != ftrace_trace_function) {
2841 		saved_ftrace_func = ftrace_trace_function;
2842 		command |= FTRACE_UPDATE_TRACE_FUNC;
2843 	}
2844 
2845 	if (!command || !ftrace_enabled)
2846 		return;
2847 
2848 	ftrace_run_update_code(command);
2849 }
2850 
2851 static void ftrace_startup_all(int command)
2852 {
2853 	update_all_ops = true;
2854 	ftrace_startup_enable(command);
2855 	update_all_ops = false;
2856 }
2857 
2858 int ftrace_startup(struct ftrace_ops *ops, int command)
2859 {
2860 	int ret;
2861 
2862 	if (unlikely(ftrace_disabled))
2863 		return -ENODEV;
2864 
2865 	ret = __register_ftrace_function(ops);
2866 	if (ret)
2867 		return ret;
2868 
2869 	ftrace_start_up++;
2870 
2871 	/*
2872 	 * Note that ftrace probes uses this to start up
2873 	 * and modify functions it will probe. But we still
2874 	 * set the ADDING flag for modification, as probes
2875 	 * do not have trampolines. If they add them in the
2876 	 * future, then the probes will need to distinguish
2877 	 * between adding and updating probes.
2878 	 */
2879 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2880 
2881 	ret = ftrace_hash_ipmodify_enable(ops);
2882 	if (ret < 0) {
2883 		/* Rollback registration process */
2884 		__unregister_ftrace_function(ops);
2885 		ftrace_start_up--;
2886 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2887 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2888 			ftrace_trampoline_free(ops);
2889 		return ret;
2890 	}
2891 
2892 	if (ftrace_hash_rec_enable(ops, 1))
2893 		command |= FTRACE_UPDATE_CALLS;
2894 
2895 	ftrace_startup_enable(command);
2896 
2897 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2898 
2899 	return 0;
2900 }
2901 
2902 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2903 {
2904 	int ret;
2905 
2906 	if (unlikely(ftrace_disabled))
2907 		return -ENODEV;
2908 
2909 	ret = __unregister_ftrace_function(ops);
2910 	if (ret)
2911 		return ret;
2912 
2913 	ftrace_start_up--;
2914 	/*
2915 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2916 	 * critical but the ftrace_call callers may be never nopped again after
2917 	 * further ftrace uses.
2918 	 */
2919 	WARN_ON_ONCE(ftrace_start_up < 0);
2920 
2921 	/* Disabling ipmodify never fails */
2922 	ftrace_hash_ipmodify_disable(ops);
2923 
2924 	if (ftrace_hash_rec_disable(ops, 1))
2925 		command |= FTRACE_UPDATE_CALLS;
2926 
2927 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2928 
2929 	if (saved_ftrace_func != ftrace_trace_function) {
2930 		saved_ftrace_func = ftrace_trace_function;
2931 		command |= FTRACE_UPDATE_TRACE_FUNC;
2932 	}
2933 
2934 	if (!command || !ftrace_enabled) {
2935 		/*
2936 		 * If these are dynamic or per_cpu ops, they still
2937 		 * need their data freed. Since, function tracing is
2938 		 * not currently active, we can just free them
2939 		 * without synchronizing all CPUs.
2940 		 */
2941 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2942 			goto free_ops;
2943 
2944 		return 0;
2945 	}
2946 
2947 	/*
2948 	 * If the ops uses a trampoline, then it needs to be
2949 	 * tested first on update.
2950 	 */
2951 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2952 	removed_ops = ops;
2953 
2954 	/* The trampoline logic checks the old hashes */
2955 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2956 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2957 
2958 	ftrace_run_update_code(command);
2959 
2960 	/*
2961 	 * If there's no more ops registered with ftrace, run a
2962 	 * sanity check to make sure all rec flags are cleared.
2963 	 */
2964 	if (rcu_dereference_protected(ftrace_ops_list,
2965 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2966 		struct ftrace_page *pg;
2967 		struct dyn_ftrace *rec;
2968 
2969 		do_for_each_ftrace_rec(pg, rec) {
2970 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2971 				pr_warn("  %pS flags:%lx\n",
2972 					(void *)rec->ip, rec->flags);
2973 		} while_for_each_ftrace_rec();
2974 	}
2975 
2976 	ops->old_hash.filter_hash = NULL;
2977 	ops->old_hash.notrace_hash = NULL;
2978 
2979 	removed_ops = NULL;
2980 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2981 
2982 	/*
2983 	 * Dynamic ops may be freed, we must make sure that all
2984 	 * callers are done before leaving this function.
2985 	 * The same goes for freeing the per_cpu data of the per_cpu
2986 	 * ops.
2987 	 */
2988 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2989 		/*
2990 		 * We need to do a hard force of sched synchronization.
2991 		 * This is because we use preempt_disable() to do RCU, but
2992 		 * the function tracers can be called where RCU is not watching
2993 		 * (like before user_exit()). We can not rely on the RCU
2994 		 * infrastructure to do the synchronization, thus we must do it
2995 		 * ourselves.
2996 		 */
2997 		synchronize_rcu_tasks_rude();
2998 
2999 		/*
3000 		 * When the kernel is preemptive, tasks can be preempted
3001 		 * while on a ftrace trampoline. Just scheduling a task on
3002 		 * a CPU is not good enough to flush them. Calling
3003 		 * synchronize_rcu_tasks() will wait for those tasks to
3004 		 * execute and either schedule voluntarily or enter user space.
3005 		 */
3006 		if (IS_ENABLED(CONFIG_PREEMPTION))
3007 			synchronize_rcu_tasks();
3008 
3009  free_ops:
3010 		ftrace_trampoline_free(ops);
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static void ftrace_startup_sysctl(void)
3017 {
3018 	int command;
3019 
3020 	if (unlikely(ftrace_disabled))
3021 		return;
3022 
3023 	/* Force update next time */
3024 	saved_ftrace_func = NULL;
3025 	/* ftrace_start_up is true if we want ftrace running */
3026 	if (ftrace_start_up) {
3027 		command = FTRACE_UPDATE_CALLS;
3028 		if (ftrace_graph_active)
3029 			command |= FTRACE_START_FUNC_RET;
3030 		ftrace_startup_enable(command);
3031 	}
3032 }
3033 
3034 static void ftrace_shutdown_sysctl(void)
3035 {
3036 	int command;
3037 
3038 	if (unlikely(ftrace_disabled))
3039 		return;
3040 
3041 	/* ftrace_start_up is true if ftrace is running */
3042 	if (ftrace_start_up) {
3043 		command = FTRACE_DISABLE_CALLS;
3044 		if (ftrace_graph_active)
3045 			command |= FTRACE_STOP_FUNC_RET;
3046 		ftrace_run_update_code(command);
3047 	}
3048 }
3049 
3050 static u64		ftrace_update_time;
3051 unsigned long		ftrace_update_tot_cnt;
3052 unsigned long		ftrace_number_of_pages;
3053 unsigned long		ftrace_number_of_groups;
3054 
3055 static inline int ops_traces_mod(struct ftrace_ops *ops)
3056 {
3057 	/*
3058 	 * Filter_hash being empty will default to trace module.
3059 	 * But notrace hash requires a test of individual module functions.
3060 	 */
3061 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3062 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3063 }
3064 
3065 /*
3066  * Check if the current ops references the record.
3067  *
3068  * If the ops traces all functions, then it was already accounted for.
3069  * If the ops does not trace the current record function, skip it.
3070  * If the ops ignores the function via notrace filter, skip it.
3071  */
3072 static inline bool
3073 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3074 {
3075 	/* If ops isn't enabled, ignore it */
3076 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3077 		return false;
3078 
3079 	/* If ops traces all then it includes this function */
3080 	if (ops_traces_mod(ops))
3081 		return true;
3082 
3083 	/* The function must be in the filter */
3084 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3085 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3086 		return false;
3087 
3088 	/* If in notrace hash, we ignore it too */
3089 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3090 		return false;
3091 
3092 	return true;
3093 }
3094 
3095 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3096 {
3097 	struct ftrace_page *pg;
3098 	struct dyn_ftrace *p;
3099 	u64 start, stop;
3100 	unsigned long update_cnt = 0;
3101 	unsigned long rec_flags = 0;
3102 	int i;
3103 
3104 	start = ftrace_now(raw_smp_processor_id());
3105 
3106 	/*
3107 	 * When a module is loaded, this function is called to convert
3108 	 * the calls to mcount in its text to nops, and also to create
3109 	 * an entry in the ftrace data. Now, if ftrace is activated
3110 	 * after this call, but before the module sets its text to
3111 	 * read-only, the modification of enabling ftrace can fail if
3112 	 * the read-only is done while ftrace is converting the calls.
3113 	 * To prevent this, the module's records are set as disabled
3114 	 * and will be enabled after the call to set the module's text
3115 	 * to read-only.
3116 	 */
3117 	if (mod)
3118 		rec_flags |= FTRACE_FL_DISABLED;
3119 
3120 	for (pg = new_pgs; pg; pg = pg->next) {
3121 
3122 		for (i = 0; i < pg->index; i++) {
3123 
3124 			/* If something went wrong, bail without enabling anything */
3125 			if (unlikely(ftrace_disabled))
3126 				return -1;
3127 
3128 			p = &pg->records[i];
3129 			p->flags = rec_flags;
3130 
3131 			/*
3132 			 * Do the initial record conversion from mcount jump
3133 			 * to the NOP instructions.
3134 			 */
3135 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3136 			    !ftrace_nop_initialize(mod, p))
3137 				break;
3138 
3139 			update_cnt++;
3140 		}
3141 	}
3142 
3143 	stop = ftrace_now(raw_smp_processor_id());
3144 	ftrace_update_time = stop - start;
3145 	ftrace_update_tot_cnt += update_cnt;
3146 
3147 	return 0;
3148 }
3149 
3150 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3151 {
3152 	int order;
3153 	int pages;
3154 	int cnt;
3155 
3156 	if (WARN_ON(!count))
3157 		return -EINVAL;
3158 
3159 	/* We want to fill as much as possible, with no empty pages */
3160 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3161 	order = fls(pages) - 1;
3162 
3163  again:
3164 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3165 
3166 	if (!pg->records) {
3167 		/* if we can't allocate this size, try something smaller */
3168 		if (!order)
3169 			return -ENOMEM;
3170 		order >>= 1;
3171 		goto again;
3172 	}
3173 
3174 	ftrace_number_of_pages += 1 << order;
3175 	ftrace_number_of_groups++;
3176 
3177 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3178 	pg->order = order;
3179 
3180 	if (cnt > count)
3181 		cnt = count;
3182 
3183 	return cnt;
3184 }
3185 
3186 static struct ftrace_page *
3187 ftrace_allocate_pages(unsigned long num_to_init)
3188 {
3189 	struct ftrace_page *start_pg;
3190 	struct ftrace_page *pg;
3191 	int cnt;
3192 
3193 	if (!num_to_init)
3194 		return NULL;
3195 
3196 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3197 	if (!pg)
3198 		return NULL;
3199 
3200 	/*
3201 	 * Try to allocate as much as possible in one continues
3202 	 * location that fills in all of the space. We want to
3203 	 * waste as little space as possible.
3204 	 */
3205 	for (;;) {
3206 		cnt = ftrace_allocate_records(pg, num_to_init);
3207 		if (cnt < 0)
3208 			goto free_pages;
3209 
3210 		num_to_init -= cnt;
3211 		if (!num_to_init)
3212 			break;
3213 
3214 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3215 		if (!pg->next)
3216 			goto free_pages;
3217 
3218 		pg = pg->next;
3219 	}
3220 
3221 	return start_pg;
3222 
3223  free_pages:
3224 	pg = start_pg;
3225 	while (pg) {
3226 		if (pg->records) {
3227 			free_pages((unsigned long)pg->records, pg->order);
3228 			ftrace_number_of_pages -= 1 << pg->order;
3229 		}
3230 		start_pg = pg->next;
3231 		kfree(pg);
3232 		pg = start_pg;
3233 		ftrace_number_of_groups--;
3234 	}
3235 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3236 	return NULL;
3237 }
3238 
3239 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3240 
3241 struct ftrace_iterator {
3242 	loff_t				pos;
3243 	loff_t				func_pos;
3244 	loff_t				mod_pos;
3245 	struct ftrace_page		*pg;
3246 	struct dyn_ftrace		*func;
3247 	struct ftrace_func_probe	*probe;
3248 	struct ftrace_func_entry	*probe_entry;
3249 	struct trace_parser		parser;
3250 	struct ftrace_hash		*hash;
3251 	struct ftrace_ops		*ops;
3252 	struct trace_array		*tr;
3253 	struct list_head		*mod_list;
3254 	int				pidx;
3255 	int				idx;
3256 	unsigned			flags;
3257 };
3258 
3259 static void *
3260 t_probe_next(struct seq_file *m, loff_t *pos)
3261 {
3262 	struct ftrace_iterator *iter = m->private;
3263 	struct trace_array *tr = iter->ops->private;
3264 	struct list_head *func_probes;
3265 	struct ftrace_hash *hash;
3266 	struct list_head *next;
3267 	struct hlist_node *hnd = NULL;
3268 	struct hlist_head *hhd;
3269 	int size;
3270 
3271 	(*pos)++;
3272 	iter->pos = *pos;
3273 
3274 	if (!tr)
3275 		return NULL;
3276 
3277 	func_probes = &tr->func_probes;
3278 	if (list_empty(func_probes))
3279 		return NULL;
3280 
3281 	if (!iter->probe) {
3282 		next = func_probes->next;
3283 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3284 	}
3285 
3286 	if (iter->probe_entry)
3287 		hnd = &iter->probe_entry->hlist;
3288 
3289 	hash = iter->probe->ops.func_hash->filter_hash;
3290 
3291 	/*
3292 	 * A probe being registered may temporarily have an empty hash
3293 	 * and it's at the end of the func_probes list.
3294 	 */
3295 	if (!hash || hash == EMPTY_HASH)
3296 		return NULL;
3297 
3298 	size = 1 << hash->size_bits;
3299 
3300  retry:
3301 	if (iter->pidx >= size) {
3302 		if (iter->probe->list.next == func_probes)
3303 			return NULL;
3304 		next = iter->probe->list.next;
3305 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3306 		hash = iter->probe->ops.func_hash->filter_hash;
3307 		size = 1 << hash->size_bits;
3308 		iter->pidx = 0;
3309 	}
3310 
3311 	hhd = &hash->buckets[iter->pidx];
3312 
3313 	if (hlist_empty(hhd)) {
3314 		iter->pidx++;
3315 		hnd = NULL;
3316 		goto retry;
3317 	}
3318 
3319 	if (!hnd)
3320 		hnd = hhd->first;
3321 	else {
3322 		hnd = hnd->next;
3323 		if (!hnd) {
3324 			iter->pidx++;
3325 			goto retry;
3326 		}
3327 	}
3328 
3329 	if (WARN_ON_ONCE(!hnd))
3330 		return NULL;
3331 
3332 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3333 
3334 	return iter;
3335 }
3336 
3337 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3338 {
3339 	struct ftrace_iterator *iter = m->private;
3340 	void *p = NULL;
3341 	loff_t l;
3342 
3343 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3344 		return NULL;
3345 
3346 	if (iter->mod_pos > *pos)
3347 		return NULL;
3348 
3349 	iter->probe = NULL;
3350 	iter->probe_entry = NULL;
3351 	iter->pidx = 0;
3352 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3353 		p = t_probe_next(m, &l);
3354 		if (!p)
3355 			break;
3356 	}
3357 	if (!p)
3358 		return NULL;
3359 
3360 	/* Only set this if we have an item */
3361 	iter->flags |= FTRACE_ITER_PROBE;
3362 
3363 	return iter;
3364 }
3365 
3366 static int
3367 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3368 {
3369 	struct ftrace_func_entry *probe_entry;
3370 	struct ftrace_probe_ops *probe_ops;
3371 	struct ftrace_func_probe *probe;
3372 
3373 	probe = iter->probe;
3374 	probe_entry = iter->probe_entry;
3375 
3376 	if (WARN_ON_ONCE(!probe || !probe_entry))
3377 		return -EIO;
3378 
3379 	probe_ops = probe->probe_ops;
3380 
3381 	if (probe_ops->print)
3382 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3383 
3384 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3385 		   (void *)probe_ops->func);
3386 
3387 	return 0;
3388 }
3389 
3390 static void *
3391 t_mod_next(struct seq_file *m, loff_t *pos)
3392 {
3393 	struct ftrace_iterator *iter = m->private;
3394 	struct trace_array *tr = iter->tr;
3395 
3396 	(*pos)++;
3397 	iter->pos = *pos;
3398 
3399 	iter->mod_list = iter->mod_list->next;
3400 
3401 	if (iter->mod_list == &tr->mod_trace ||
3402 	    iter->mod_list == &tr->mod_notrace) {
3403 		iter->flags &= ~FTRACE_ITER_MOD;
3404 		return NULL;
3405 	}
3406 
3407 	iter->mod_pos = *pos;
3408 
3409 	return iter;
3410 }
3411 
3412 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3413 {
3414 	struct ftrace_iterator *iter = m->private;
3415 	void *p = NULL;
3416 	loff_t l;
3417 
3418 	if (iter->func_pos > *pos)
3419 		return NULL;
3420 
3421 	iter->mod_pos = iter->func_pos;
3422 
3423 	/* probes are only available if tr is set */
3424 	if (!iter->tr)
3425 		return NULL;
3426 
3427 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3428 		p = t_mod_next(m, &l);
3429 		if (!p)
3430 			break;
3431 	}
3432 	if (!p) {
3433 		iter->flags &= ~FTRACE_ITER_MOD;
3434 		return t_probe_start(m, pos);
3435 	}
3436 
3437 	/* Only set this if we have an item */
3438 	iter->flags |= FTRACE_ITER_MOD;
3439 
3440 	return iter;
3441 }
3442 
3443 static int
3444 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3445 {
3446 	struct ftrace_mod_load *ftrace_mod;
3447 	struct trace_array *tr = iter->tr;
3448 
3449 	if (WARN_ON_ONCE(!iter->mod_list) ||
3450 			 iter->mod_list == &tr->mod_trace ||
3451 			 iter->mod_list == &tr->mod_notrace)
3452 		return -EIO;
3453 
3454 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3455 
3456 	if (ftrace_mod->func)
3457 		seq_printf(m, "%s", ftrace_mod->func);
3458 	else
3459 		seq_putc(m, '*');
3460 
3461 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3462 
3463 	return 0;
3464 }
3465 
3466 static void *
3467 t_func_next(struct seq_file *m, loff_t *pos)
3468 {
3469 	struct ftrace_iterator *iter = m->private;
3470 	struct dyn_ftrace *rec = NULL;
3471 
3472 	(*pos)++;
3473 
3474  retry:
3475 	if (iter->idx >= iter->pg->index) {
3476 		if (iter->pg->next) {
3477 			iter->pg = iter->pg->next;
3478 			iter->idx = 0;
3479 			goto retry;
3480 		}
3481 	} else {
3482 		rec = &iter->pg->records[iter->idx++];
3483 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3484 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3485 
3486 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3487 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3488 
3489 			rec = NULL;
3490 			goto retry;
3491 		}
3492 	}
3493 
3494 	if (!rec)
3495 		return NULL;
3496 
3497 	iter->pos = iter->func_pos = *pos;
3498 	iter->func = rec;
3499 
3500 	return iter;
3501 }
3502 
3503 static void *
3504 t_next(struct seq_file *m, void *v, loff_t *pos)
3505 {
3506 	struct ftrace_iterator *iter = m->private;
3507 	loff_t l = *pos; /* t_probe_start() must use original pos */
3508 	void *ret;
3509 
3510 	if (unlikely(ftrace_disabled))
3511 		return NULL;
3512 
3513 	if (iter->flags & FTRACE_ITER_PROBE)
3514 		return t_probe_next(m, pos);
3515 
3516 	if (iter->flags & FTRACE_ITER_MOD)
3517 		return t_mod_next(m, pos);
3518 
3519 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3520 		/* next must increment pos, and t_probe_start does not */
3521 		(*pos)++;
3522 		return t_mod_start(m, &l);
3523 	}
3524 
3525 	ret = t_func_next(m, pos);
3526 
3527 	if (!ret)
3528 		return t_mod_start(m, &l);
3529 
3530 	return ret;
3531 }
3532 
3533 static void reset_iter_read(struct ftrace_iterator *iter)
3534 {
3535 	iter->pos = 0;
3536 	iter->func_pos = 0;
3537 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3538 }
3539 
3540 static void *t_start(struct seq_file *m, loff_t *pos)
3541 {
3542 	struct ftrace_iterator *iter = m->private;
3543 	void *p = NULL;
3544 	loff_t l;
3545 
3546 	mutex_lock(&ftrace_lock);
3547 
3548 	if (unlikely(ftrace_disabled))
3549 		return NULL;
3550 
3551 	/*
3552 	 * If an lseek was done, then reset and start from beginning.
3553 	 */
3554 	if (*pos < iter->pos)
3555 		reset_iter_read(iter);
3556 
3557 	/*
3558 	 * For set_ftrace_filter reading, if we have the filter
3559 	 * off, we can short cut and just print out that all
3560 	 * functions are enabled.
3561 	 */
3562 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3563 	    ftrace_hash_empty(iter->hash)) {
3564 		iter->func_pos = 1; /* Account for the message */
3565 		if (*pos > 0)
3566 			return t_mod_start(m, pos);
3567 		iter->flags |= FTRACE_ITER_PRINTALL;
3568 		/* reset in case of seek/pread */
3569 		iter->flags &= ~FTRACE_ITER_PROBE;
3570 		return iter;
3571 	}
3572 
3573 	if (iter->flags & FTRACE_ITER_MOD)
3574 		return t_mod_start(m, pos);
3575 
3576 	/*
3577 	 * Unfortunately, we need to restart at ftrace_pages_start
3578 	 * every time we let go of the ftrace_mutex. This is because
3579 	 * those pointers can change without the lock.
3580 	 */
3581 	iter->pg = ftrace_pages_start;
3582 	iter->idx = 0;
3583 	for (l = 0; l <= *pos; ) {
3584 		p = t_func_next(m, &l);
3585 		if (!p)
3586 			break;
3587 	}
3588 
3589 	if (!p)
3590 		return t_mod_start(m, pos);
3591 
3592 	return iter;
3593 }
3594 
3595 static void t_stop(struct seq_file *m, void *p)
3596 {
3597 	mutex_unlock(&ftrace_lock);
3598 }
3599 
3600 void * __weak
3601 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3602 {
3603 	return NULL;
3604 }
3605 
3606 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3607 				struct dyn_ftrace *rec)
3608 {
3609 	void *ptr;
3610 
3611 	ptr = arch_ftrace_trampoline_func(ops, rec);
3612 	if (ptr)
3613 		seq_printf(m, " ->%pS", ptr);
3614 }
3615 
3616 static int t_show(struct seq_file *m, void *v)
3617 {
3618 	struct ftrace_iterator *iter = m->private;
3619 	struct dyn_ftrace *rec;
3620 
3621 	if (iter->flags & FTRACE_ITER_PROBE)
3622 		return t_probe_show(m, iter);
3623 
3624 	if (iter->flags & FTRACE_ITER_MOD)
3625 		return t_mod_show(m, iter);
3626 
3627 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3628 		if (iter->flags & FTRACE_ITER_NOTRACE)
3629 			seq_puts(m, "#### no functions disabled ####\n");
3630 		else
3631 			seq_puts(m, "#### all functions enabled ####\n");
3632 		return 0;
3633 	}
3634 
3635 	rec = iter->func;
3636 
3637 	if (!rec)
3638 		return 0;
3639 
3640 	seq_printf(m, "%ps", (void *)rec->ip);
3641 	if (iter->flags & FTRACE_ITER_ENABLED) {
3642 		struct ftrace_ops *ops;
3643 
3644 		seq_printf(m, " (%ld)%s%s%s",
3645 			   ftrace_rec_count(rec),
3646 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3647 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3648 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3649 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3650 			ops = ftrace_find_tramp_ops_any(rec);
3651 			if (ops) {
3652 				do {
3653 					seq_printf(m, "\ttramp: %pS (%pS)",
3654 						   (void *)ops->trampoline,
3655 						   (void *)ops->func);
3656 					add_trampoline_func(m, ops, rec);
3657 					ops = ftrace_find_tramp_ops_next(rec, ops);
3658 				} while (ops);
3659 			} else
3660 				seq_puts(m, "\ttramp: ERROR!");
3661 		} else {
3662 			add_trampoline_func(m, NULL, rec);
3663 		}
3664 		if (rec->flags & FTRACE_FL_DIRECT) {
3665 			unsigned long direct;
3666 
3667 			direct = ftrace_find_rec_direct(rec->ip);
3668 			if (direct)
3669 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3670 		}
3671 	}
3672 
3673 	seq_putc(m, '\n');
3674 
3675 	return 0;
3676 }
3677 
3678 static const struct seq_operations show_ftrace_seq_ops = {
3679 	.start = t_start,
3680 	.next = t_next,
3681 	.stop = t_stop,
3682 	.show = t_show,
3683 };
3684 
3685 static int
3686 ftrace_avail_open(struct inode *inode, struct file *file)
3687 {
3688 	struct ftrace_iterator *iter;
3689 	int ret;
3690 
3691 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3692 	if (ret)
3693 		return ret;
3694 
3695 	if (unlikely(ftrace_disabled))
3696 		return -ENODEV;
3697 
3698 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3699 	if (!iter)
3700 		return -ENOMEM;
3701 
3702 	iter->pg = ftrace_pages_start;
3703 	iter->ops = &global_ops;
3704 
3705 	return 0;
3706 }
3707 
3708 static int
3709 ftrace_enabled_open(struct inode *inode, struct file *file)
3710 {
3711 	struct ftrace_iterator *iter;
3712 
3713 	/*
3714 	 * This shows us what functions are currently being
3715 	 * traced and by what. Not sure if we want lockdown
3716 	 * to hide such critical information for an admin.
3717 	 * Although, perhaps it can show information we don't
3718 	 * want people to see, but if something is tracing
3719 	 * something, we probably want to know about it.
3720 	 */
3721 
3722 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3723 	if (!iter)
3724 		return -ENOMEM;
3725 
3726 	iter->pg = ftrace_pages_start;
3727 	iter->flags = FTRACE_ITER_ENABLED;
3728 	iter->ops = &global_ops;
3729 
3730 	return 0;
3731 }
3732 
3733 /**
3734  * ftrace_regex_open - initialize function tracer filter files
3735  * @ops: The ftrace_ops that hold the hash filters
3736  * @flag: The type of filter to process
3737  * @inode: The inode, usually passed in to your open routine
3738  * @file: The file, usually passed in to your open routine
3739  *
3740  * ftrace_regex_open() initializes the filter files for the
3741  * @ops. Depending on @flag it may process the filter hash or
3742  * the notrace hash of @ops. With this called from the open
3743  * routine, you can use ftrace_filter_write() for the write
3744  * routine if @flag has FTRACE_ITER_FILTER set, or
3745  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3746  * tracing_lseek() should be used as the lseek routine, and
3747  * release must call ftrace_regex_release().
3748  */
3749 int
3750 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3751 		  struct inode *inode, struct file *file)
3752 {
3753 	struct ftrace_iterator *iter;
3754 	struct ftrace_hash *hash;
3755 	struct list_head *mod_head;
3756 	struct trace_array *tr = ops->private;
3757 	int ret = -ENOMEM;
3758 
3759 	ftrace_ops_init(ops);
3760 
3761 	if (unlikely(ftrace_disabled))
3762 		return -ENODEV;
3763 
3764 	if (tracing_check_open_get_tr(tr))
3765 		return -ENODEV;
3766 
3767 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3768 	if (!iter)
3769 		goto out;
3770 
3771 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3772 		goto out;
3773 
3774 	iter->ops = ops;
3775 	iter->flags = flag;
3776 	iter->tr = tr;
3777 
3778 	mutex_lock(&ops->func_hash->regex_lock);
3779 
3780 	if (flag & FTRACE_ITER_NOTRACE) {
3781 		hash = ops->func_hash->notrace_hash;
3782 		mod_head = tr ? &tr->mod_notrace : NULL;
3783 	} else {
3784 		hash = ops->func_hash->filter_hash;
3785 		mod_head = tr ? &tr->mod_trace : NULL;
3786 	}
3787 
3788 	iter->mod_list = mod_head;
3789 
3790 	if (file->f_mode & FMODE_WRITE) {
3791 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3792 
3793 		if (file->f_flags & O_TRUNC) {
3794 			iter->hash = alloc_ftrace_hash(size_bits);
3795 			clear_ftrace_mod_list(mod_head);
3796 	        } else {
3797 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3798 		}
3799 
3800 		if (!iter->hash) {
3801 			trace_parser_put(&iter->parser);
3802 			goto out_unlock;
3803 		}
3804 	} else
3805 		iter->hash = hash;
3806 
3807 	ret = 0;
3808 
3809 	if (file->f_mode & FMODE_READ) {
3810 		iter->pg = ftrace_pages_start;
3811 
3812 		ret = seq_open(file, &show_ftrace_seq_ops);
3813 		if (!ret) {
3814 			struct seq_file *m = file->private_data;
3815 			m->private = iter;
3816 		} else {
3817 			/* Failed */
3818 			free_ftrace_hash(iter->hash);
3819 			trace_parser_put(&iter->parser);
3820 		}
3821 	} else
3822 		file->private_data = iter;
3823 
3824  out_unlock:
3825 	mutex_unlock(&ops->func_hash->regex_lock);
3826 
3827  out:
3828 	if (ret) {
3829 		kfree(iter);
3830 		if (tr)
3831 			trace_array_put(tr);
3832 	}
3833 
3834 	return ret;
3835 }
3836 
3837 static int
3838 ftrace_filter_open(struct inode *inode, struct file *file)
3839 {
3840 	struct ftrace_ops *ops = inode->i_private;
3841 
3842 	/* Checks for tracefs lockdown */
3843 	return ftrace_regex_open(ops,
3844 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3845 			inode, file);
3846 }
3847 
3848 static int
3849 ftrace_notrace_open(struct inode *inode, struct file *file)
3850 {
3851 	struct ftrace_ops *ops = inode->i_private;
3852 
3853 	/* Checks for tracefs lockdown */
3854 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3855 				 inode, file);
3856 }
3857 
3858 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3859 struct ftrace_glob {
3860 	char *search;
3861 	unsigned len;
3862 	int type;
3863 };
3864 
3865 /*
3866  * If symbols in an architecture don't correspond exactly to the user-visible
3867  * name of what they represent, it is possible to define this function to
3868  * perform the necessary adjustments.
3869 */
3870 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3871 {
3872 	return str;
3873 }
3874 
3875 static int ftrace_match(char *str, struct ftrace_glob *g)
3876 {
3877 	int matched = 0;
3878 	int slen;
3879 
3880 	str = arch_ftrace_match_adjust(str, g->search);
3881 
3882 	switch (g->type) {
3883 	case MATCH_FULL:
3884 		if (strcmp(str, g->search) == 0)
3885 			matched = 1;
3886 		break;
3887 	case MATCH_FRONT_ONLY:
3888 		if (strncmp(str, g->search, g->len) == 0)
3889 			matched = 1;
3890 		break;
3891 	case MATCH_MIDDLE_ONLY:
3892 		if (strstr(str, g->search))
3893 			matched = 1;
3894 		break;
3895 	case MATCH_END_ONLY:
3896 		slen = strlen(str);
3897 		if (slen >= g->len &&
3898 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3899 			matched = 1;
3900 		break;
3901 	case MATCH_GLOB:
3902 		if (glob_match(g->search, str))
3903 			matched = 1;
3904 		break;
3905 	}
3906 
3907 	return matched;
3908 }
3909 
3910 static int
3911 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3912 {
3913 	struct ftrace_func_entry *entry;
3914 	int ret = 0;
3915 
3916 	entry = ftrace_lookup_ip(hash, rec->ip);
3917 	if (clear_filter) {
3918 		/* Do nothing if it doesn't exist */
3919 		if (!entry)
3920 			return 0;
3921 
3922 		free_hash_entry(hash, entry);
3923 	} else {
3924 		/* Do nothing if it exists */
3925 		if (entry)
3926 			return 0;
3927 
3928 		ret = add_hash_entry(hash, rec->ip);
3929 	}
3930 	return ret;
3931 }
3932 
3933 static int
3934 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3935 		 int clear_filter)
3936 {
3937 	long index = simple_strtoul(func_g->search, NULL, 0);
3938 	struct ftrace_page *pg;
3939 	struct dyn_ftrace *rec;
3940 
3941 	/* The index starts at 1 */
3942 	if (--index < 0)
3943 		return 0;
3944 
3945 	do_for_each_ftrace_rec(pg, rec) {
3946 		if (pg->index <= index) {
3947 			index -= pg->index;
3948 			/* this is a double loop, break goes to the next page */
3949 			break;
3950 		}
3951 		rec = &pg->records[index];
3952 		enter_record(hash, rec, clear_filter);
3953 		return 1;
3954 	} while_for_each_ftrace_rec();
3955 	return 0;
3956 }
3957 
3958 static int
3959 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3960 		struct ftrace_glob *mod_g, int exclude_mod)
3961 {
3962 	char str[KSYM_SYMBOL_LEN];
3963 	char *modname;
3964 
3965 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3966 
3967 	if (mod_g) {
3968 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3969 
3970 		/* blank module name to match all modules */
3971 		if (!mod_g->len) {
3972 			/* blank module globbing: modname xor exclude_mod */
3973 			if (!exclude_mod != !modname)
3974 				goto func_match;
3975 			return 0;
3976 		}
3977 
3978 		/*
3979 		 * exclude_mod is set to trace everything but the given
3980 		 * module. If it is set and the module matches, then
3981 		 * return 0. If it is not set, and the module doesn't match
3982 		 * also return 0. Otherwise, check the function to see if
3983 		 * that matches.
3984 		 */
3985 		if (!mod_matches == !exclude_mod)
3986 			return 0;
3987 func_match:
3988 		/* blank search means to match all funcs in the mod */
3989 		if (!func_g->len)
3990 			return 1;
3991 	}
3992 
3993 	return ftrace_match(str, func_g);
3994 }
3995 
3996 static int
3997 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3998 {
3999 	struct ftrace_page *pg;
4000 	struct dyn_ftrace *rec;
4001 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4002 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4003 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4004 	int exclude_mod = 0;
4005 	int found = 0;
4006 	int ret;
4007 	int clear_filter = 0;
4008 
4009 	if (func) {
4010 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4011 						 &clear_filter);
4012 		func_g.len = strlen(func_g.search);
4013 	}
4014 
4015 	if (mod) {
4016 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4017 				&mod_g.search, &exclude_mod);
4018 		mod_g.len = strlen(mod_g.search);
4019 	}
4020 
4021 	mutex_lock(&ftrace_lock);
4022 
4023 	if (unlikely(ftrace_disabled))
4024 		goto out_unlock;
4025 
4026 	if (func_g.type == MATCH_INDEX) {
4027 		found = add_rec_by_index(hash, &func_g, clear_filter);
4028 		goto out_unlock;
4029 	}
4030 
4031 	do_for_each_ftrace_rec(pg, rec) {
4032 
4033 		if (rec->flags & FTRACE_FL_DISABLED)
4034 			continue;
4035 
4036 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4037 			ret = enter_record(hash, rec, clear_filter);
4038 			if (ret < 0) {
4039 				found = ret;
4040 				goto out_unlock;
4041 			}
4042 			found = 1;
4043 		}
4044 	} while_for_each_ftrace_rec();
4045  out_unlock:
4046 	mutex_unlock(&ftrace_lock);
4047 
4048 	return found;
4049 }
4050 
4051 static int
4052 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4053 {
4054 	return match_records(hash, buff, len, NULL);
4055 }
4056 
4057 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4058 				   struct ftrace_ops_hash *old_hash)
4059 {
4060 	struct ftrace_ops *op;
4061 
4062 	if (!ftrace_enabled)
4063 		return;
4064 
4065 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4066 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4067 		return;
4068 	}
4069 
4070 	/*
4071 	 * If this is the shared global_ops filter, then we need to
4072 	 * check if there is another ops that shares it, is enabled.
4073 	 * If so, we still need to run the modify code.
4074 	 */
4075 	if (ops->func_hash != &global_ops.local_hash)
4076 		return;
4077 
4078 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4079 		if (op->func_hash == &global_ops.local_hash &&
4080 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4081 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4082 			/* Only need to do this once */
4083 			return;
4084 		}
4085 	} while_for_each_ftrace_op(op);
4086 }
4087 
4088 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4089 					   struct ftrace_hash **orig_hash,
4090 					   struct ftrace_hash *hash,
4091 					   int enable)
4092 {
4093 	struct ftrace_ops_hash old_hash_ops;
4094 	struct ftrace_hash *old_hash;
4095 	int ret;
4096 
4097 	old_hash = *orig_hash;
4098 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4099 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4100 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4101 	if (!ret) {
4102 		ftrace_ops_update_code(ops, &old_hash_ops);
4103 		free_ftrace_hash_rcu(old_hash);
4104 	}
4105 	return ret;
4106 }
4107 
4108 static bool module_exists(const char *module)
4109 {
4110 	/* All modules have the symbol __this_module */
4111 	static const char this_mod[] = "__this_module";
4112 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4113 	unsigned long val;
4114 	int n;
4115 
4116 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4117 
4118 	if (n > sizeof(modname) - 1)
4119 		return false;
4120 
4121 	val = module_kallsyms_lookup_name(modname);
4122 	return val != 0;
4123 }
4124 
4125 static int cache_mod(struct trace_array *tr,
4126 		     const char *func, char *module, int enable)
4127 {
4128 	struct ftrace_mod_load *ftrace_mod, *n;
4129 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4130 	int ret;
4131 
4132 	mutex_lock(&ftrace_lock);
4133 
4134 	/* We do not cache inverse filters */
4135 	if (func[0] == '!') {
4136 		func++;
4137 		ret = -EINVAL;
4138 
4139 		/* Look to remove this hash */
4140 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4141 			if (strcmp(ftrace_mod->module, module) != 0)
4142 				continue;
4143 
4144 			/* no func matches all */
4145 			if (strcmp(func, "*") == 0 ||
4146 			    (ftrace_mod->func &&
4147 			     strcmp(ftrace_mod->func, func) == 0)) {
4148 				ret = 0;
4149 				free_ftrace_mod(ftrace_mod);
4150 				continue;
4151 			}
4152 		}
4153 		goto out;
4154 	}
4155 
4156 	ret = -EINVAL;
4157 	/* We only care about modules that have not been loaded yet */
4158 	if (module_exists(module))
4159 		goto out;
4160 
4161 	/* Save this string off, and execute it when the module is loaded */
4162 	ret = ftrace_add_mod(tr, func, module, enable);
4163  out:
4164 	mutex_unlock(&ftrace_lock);
4165 
4166 	return ret;
4167 }
4168 
4169 static int
4170 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4171 		 int reset, int enable);
4172 
4173 #ifdef CONFIG_MODULES
4174 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4175 			     char *mod, bool enable)
4176 {
4177 	struct ftrace_mod_load *ftrace_mod, *n;
4178 	struct ftrace_hash **orig_hash, *new_hash;
4179 	LIST_HEAD(process_mods);
4180 	char *func;
4181 
4182 	mutex_lock(&ops->func_hash->regex_lock);
4183 
4184 	if (enable)
4185 		orig_hash = &ops->func_hash->filter_hash;
4186 	else
4187 		orig_hash = &ops->func_hash->notrace_hash;
4188 
4189 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4190 					      *orig_hash);
4191 	if (!new_hash)
4192 		goto out; /* warn? */
4193 
4194 	mutex_lock(&ftrace_lock);
4195 
4196 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4197 
4198 		if (strcmp(ftrace_mod->module, mod) != 0)
4199 			continue;
4200 
4201 		if (ftrace_mod->func)
4202 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4203 		else
4204 			func = kstrdup("*", GFP_KERNEL);
4205 
4206 		if (!func) /* warn? */
4207 			continue;
4208 
4209 		list_del(&ftrace_mod->list);
4210 		list_add(&ftrace_mod->list, &process_mods);
4211 
4212 		/* Use the newly allocated func, as it may be "*" */
4213 		kfree(ftrace_mod->func);
4214 		ftrace_mod->func = func;
4215 	}
4216 
4217 	mutex_unlock(&ftrace_lock);
4218 
4219 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4220 
4221 		func = ftrace_mod->func;
4222 
4223 		/* Grabs ftrace_lock, which is why we have this extra step */
4224 		match_records(new_hash, func, strlen(func), mod);
4225 		free_ftrace_mod(ftrace_mod);
4226 	}
4227 
4228 	if (enable && list_empty(head))
4229 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4230 
4231 	mutex_lock(&ftrace_lock);
4232 
4233 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4234 					      new_hash, enable);
4235 	mutex_unlock(&ftrace_lock);
4236 
4237  out:
4238 	mutex_unlock(&ops->func_hash->regex_lock);
4239 
4240 	free_ftrace_hash(new_hash);
4241 }
4242 
4243 static void process_cached_mods(const char *mod_name)
4244 {
4245 	struct trace_array *tr;
4246 	char *mod;
4247 
4248 	mod = kstrdup(mod_name, GFP_KERNEL);
4249 	if (!mod)
4250 		return;
4251 
4252 	mutex_lock(&trace_types_lock);
4253 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4254 		if (!list_empty(&tr->mod_trace))
4255 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4256 		if (!list_empty(&tr->mod_notrace))
4257 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4258 	}
4259 	mutex_unlock(&trace_types_lock);
4260 
4261 	kfree(mod);
4262 }
4263 #endif
4264 
4265 /*
4266  * We register the module command as a template to show others how
4267  * to register the a command as well.
4268  */
4269 
4270 static int
4271 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4272 		    char *func_orig, char *cmd, char *module, int enable)
4273 {
4274 	char *func;
4275 	int ret;
4276 
4277 	/* match_records() modifies func, and we need the original */
4278 	func = kstrdup(func_orig, GFP_KERNEL);
4279 	if (!func)
4280 		return -ENOMEM;
4281 
4282 	/*
4283 	 * cmd == 'mod' because we only registered this func
4284 	 * for the 'mod' ftrace_func_command.
4285 	 * But if you register one func with multiple commands,
4286 	 * you can tell which command was used by the cmd
4287 	 * parameter.
4288 	 */
4289 	ret = match_records(hash, func, strlen(func), module);
4290 	kfree(func);
4291 
4292 	if (!ret)
4293 		return cache_mod(tr, func_orig, module, enable);
4294 	if (ret < 0)
4295 		return ret;
4296 	return 0;
4297 }
4298 
4299 static struct ftrace_func_command ftrace_mod_cmd = {
4300 	.name			= "mod",
4301 	.func			= ftrace_mod_callback,
4302 };
4303 
4304 static int __init ftrace_mod_cmd_init(void)
4305 {
4306 	return register_ftrace_command(&ftrace_mod_cmd);
4307 }
4308 core_initcall(ftrace_mod_cmd_init);
4309 
4310 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4311 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4312 {
4313 	struct ftrace_probe_ops *probe_ops;
4314 	struct ftrace_func_probe *probe;
4315 
4316 	probe = container_of(op, struct ftrace_func_probe, ops);
4317 	probe_ops = probe->probe_ops;
4318 
4319 	/*
4320 	 * Disable preemption for these calls to prevent a RCU grace
4321 	 * period. This syncs the hash iteration and freeing of items
4322 	 * on the hash. rcu_read_lock is too dangerous here.
4323 	 */
4324 	preempt_disable_notrace();
4325 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4326 	preempt_enable_notrace();
4327 }
4328 
4329 struct ftrace_func_map {
4330 	struct ftrace_func_entry	entry;
4331 	void				*data;
4332 };
4333 
4334 struct ftrace_func_mapper {
4335 	struct ftrace_hash		hash;
4336 };
4337 
4338 /**
4339  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4340  *
4341  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4342  */
4343 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4344 {
4345 	struct ftrace_hash *hash;
4346 
4347 	/*
4348 	 * The mapper is simply a ftrace_hash, but since the entries
4349 	 * in the hash are not ftrace_func_entry type, we define it
4350 	 * as a separate structure.
4351 	 */
4352 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4353 	return (struct ftrace_func_mapper *)hash;
4354 }
4355 
4356 /**
4357  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4358  * @mapper: The mapper that has the ip maps
4359  * @ip: the instruction pointer to find the data for
4360  *
4361  * Returns the data mapped to @ip if found otherwise NULL. The return
4362  * is actually the address of the mapper data pointer. The address is
4363  * returned for use cases where the data is no bigger than a long, and
4364  * the user can use the data pointer as its data instead of having to
4365  * allocate more memory for the reference.
4366  */
4367 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4368 				  unsigned long ip)
4369 {
4370 	struct ftrace_func_entry *entry;
4371 	struct ftrace_func_map *map;
4372 
4373 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4374 	if (!entry)
4375 		return NULL;
4376 
4377 	map = (struct ftrace_func_map *)entry;
4378 	return &map->data;
4379 }
4380 
4381 /**
4382  * ftrace_func_mapper_add_ip - Map some data to an ip
4383  * @mapper: The mapper that has the ip maps
4384  * @ip: The instruction pointer address to map @data to
4385  * @data: The data to map to @ip
4386  *
4387  * Returns 0 on success otherwise an error.
4388  */
4389 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4390 			      unsigned long ip, void *data)
4391 {
4392 	struct ftrace_func_entry *entry;
4393 	struct ftrace_func_map *map;
4394 
4395 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4396 	if (entry)
4397 		return -EBUSY;
4398 
4399 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4400 	if (!map)
4401 		return -ENOMEM;
4402 
4403 	map->entry.ip = ip;
4404 	map->data = data;
4405 
4406 	__add_hash_entry(&mapper->hash, &map->entry);
4407 
4408 	return 0;
4409 }
4410 
4411 /**
4412  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4413  * @mapper: The mapper that has the ip maps
4414  * @ip: The instruction pointer address to remove the data from
4415  *
4416  * Returns the data if it is found, otherwise NULL.
4417  * Note, if the data pointer is used as the data itself, (see
4418  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4419  * if the data pointer was set to zero.
4420  */
4421 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4422 				   unsigned long ip)
4423 {
4424 	struct ftrace_func_entry *entry;
4425 	struct ftrace_func_map *map;
4426 	void *data;
4427 
4428 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4429 	if (!entry)
4430 		return NULL;
4431 
4432 	map = (struct ftrace_func_map *)entry;
4433 	data = map->data;
4434 
4435 	remove_hash_entry(&mapper->hash, entry);
4436 	kfree(entry);
4437 
4438 	return data;
4439 }
4440 
4441 /**
4442  * free_ftrace_func_mapper - free a mapping of ips and data
4443  * @mapper: The mapper that has the ip maps
4444  * @free_func: A function to be called on each data item.
4445  *
4446  * This is used to free the function mapper. The @free_func is optional
4447  * and can be used if the data needs to be freed as well.
4448  */
4449 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4450 			     ftrace_mapper_func free_func)
4451 {
4452 	struct ftrace_func_entry *entry;
4453 	struct ftrace_func_map *map;
4454 	struct hlist_head *hhd;
4455 	int size, i;
4456 
4457 	if (!mapper)
4458 		return;
4459 
4460 	if (free_func && mapper->hash.count) {
4461 		size = 1 << mapper->hash.size_bits;
4462 		for (i = 0; i < size; i++) {
4463 			hhd = &mapper->hash.buckets[i];
4464 			hlist_for_each_entry(entry, hhd, hlist) {
4465 				map = (struct ftrace_func_map *)entry;
4466 				free_func(map);
4467 			}
4468 		}
4469 	}
4470 	free_ftrace_hash(&mapper->hash);
4471 }
4472 
4473 static void release_probe(struct ftrace_func_probe *probe)
4474 {
4475 	struct ftrace_probe_ops *probe_ops;
4476 
4477 	mutex_lock(&ftrace_lock);
4478 
4479 	WARN_ON(probe->ref <= 0);
4480 
4481 	/* Subtract the ref that was used to protect this instance */
4482 	probe->ref--;
4483 
4484 	if (!probe->ref) {
4485 		probe_ops = probe->probe_ops;
4486 		/*
4487 		 * Sending zero as ip tells probe_ops to free
4488 		 * the probe->data itself
4489 		 */
4490 		if (probe_ops->free)
4491 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4492 		list_del(&probe->list);
4493 		kfree(probe);
4494 	}
4495 	mutex_unlock(&ftrace_lock);
4496 }
4497 
4498 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4499 {
4500 	/*
4501 	 * Add one ref to keep it from being freed when releasing the
4502 	 * ftrace_lock mutex.
4503 	 */
4504 	probe->ref++;
4505 }
4506 
4507 int
4508 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4509 			       struct ftrace_probe_ops *probe_ops,
4510 			       void *data)
4511 {
4512 	struct ftrace_func_entry *entry;
4513 	struct ftrace_func_probe *probe;
4514 	struct ftrace_hash **orig_hash;
4515 	struct ftrace_hash *old_hash;
4516 	struct ftrace_hash *hash;
4517 	int count = 0;
4518 	int size;
4519 	int ret;
4520 	int i;
4521 
4522 	if (WARN_ON(!tr))
4523 		return -EINVAL;
4524 
4525 	/* We do not support '!' for function probes */
4526 	if (WARN_ON(glob[0] == '!'))
4527 		return -EINVAL;
4528 
4529 
4530 	mutex_lock(&ftrace_lock);
4531 	/* Check if the probe_ops is already registered */
4532 	list_for_each_entry(probe, &tr->func_probes, list) {
4533 		if (probe->probe_ops == probe_ops)
4534 			break;
4535 	}
4536 	if (&probe->list == &tr->func_probes) {
4537 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4538 		if (!probe) {
4539 			mutex_unlock(&ftrace_lock);
4540 			return -ENOMEM;
4541 		}
4542 		probe->probe_ops = probe_ops;
4543 		probe->ops.func = function_trace_probe_call;
4544 		probe->tr = tr;
4545 		ftrace_ops_init(&probe->ops);
4546 		list_add(&probe->list, &tr->func_probes);
4547 	}
4548 
4549 	acquire_probe_locked(probe);
4550 
4551 	mutex_unlock(&ftrace_lock);
4552 
4553 	/*
4554 	 * Note, there's a small window here that the func_hash->filter_hash
4555 	 * may be NULL or empty. Need to be careful when reading the loop.
4556 	 */
4557 	mutex_lock(&probe->ops.func_hash->regex_lock);
4558 
4559 	orig_hash = &probe->ops.func_hash->filter_hash;
4560 	old_hash = *orig_hash;
4561 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4562 
4563 	if (!hash) {
4564 		ret = -ENOMEM;
4565 		goto out;
4566 	}
4567 
4568 	ret = ftrace_match_records(hash, glob, strlen(glob));
4569 
4570 	/* Nothing found? */
4571 	if (!ret)
4572 		ret = -EINVAL;
4573 
4574 	if (ret < 0)
4575 		goto out;
4576 
4577 	size = 1 << hash->size_bits;
4578 	for (i = 0; i < size; i++) {
4579 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4580 			if (ftrace_lookup_ip(old_hash, entry->ip))
4581 				continue;
4582 			/*
4583 			 * The caller might want to do something special
4584 			 * for each function we find. We call the callback
4585 			 * to give the caller an opportunity to do so.
4586 			 */
4587 			if (probe_ops->init) {
4588 				ret = probe_ops->init(probe_ops, tr,
4589 						      entry->ip, data,
4590 						      &probe->data);
4591 				if (ret < 0) {
4592 					if (probe_ops->free && count)
4593 						probe_ops->free(probe_ops, tr,
4594 								0, probe->data);
4595 					probe->data = NULL;
4596 					goto out;
4597 				}
4598 			}
4599 			count++;
4600 		}
4601 	}
4602 
4603 	mutex_lock(&ftrace_lock);
4604 
4605 	if (!count) {
4606 		/* Nothing was added? */
4607 		ret = -EINVAL;
4608 		goto out_unlock;
4609 	}
4610 
4611 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4612 					      hash, 1);
4613 	if (ret < 0)
4614 		goto err_unlock;
4615 
4616 	/* One ref for each new function traced */
4617 	probe->ref += count;
4618 
4619 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4620 		ret = ftrace_startup(&probe->ops, 0);
4621 
4622  out_unlock:
4623 	mutex_unlock(&ftrace_lock);
4624 
4625 	if (!ret)
4626 		ret = count;
4627  out:
4628 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4629 	free_ftrace_hash(hash);
4630 
4631 	release_probe(probe);
4632 
4633 	return ret;
4634 
4635  err_unlock:
4636 	if (!probe_ops->free || !count)
4637 		goto out_unlock;
4638 
4639 	/* Failed to do the move, need to call the free functions */
4640 	for (i = 0; i < size; i++) {
4641 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4642 			if (ftrace_lookup_ip(old_hash, entry->ip))
4643 				continue;
4644 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4645 		}
4646 	}
4647 	goto out_unlock;
4648 }
4649 
4650 int
4651 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4652 				      struct ftrace_probe_ops *probe_ops)
4653 {
4654 	struct ftrace_ops_hash old_hash_ops;
4655 	struct ftrace_func_entry *entry;
4656 	struct ftrace_func_probe *probe;
4657 	struct ftrace_glob func_g;
4658 	struct ftrace_hash **orig_hash;
4659 	struct ftrace_hash *old_hash;
4660 	struct ftrace_hash *hash = NULL;
4661 	struct hlist_node *tmp;
4662 	struct hlist_head hhd;
4663 	char str[KSYM_SYMBOL_LEN];
4664 	int count = 0;
4665 	int i, ret = -ENODEV;
4666 	int size;
4667 
4668 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4669 		func_g.search = NULL;
4670 	else {
4671 		int not;
4672 
4673 		func_g.type = filter_parse_regex(glob, strlen(glob),
4674 						 &func_g.search, &not);
4675 		func_g.len = strlen(func_g.search);
4676 
4677 		/* we do not support '!' for function probes */
4678 		if (WARN_ON(not))
4679 			return -EINVAL;
4680 	}
4681 
4682 	mutex_lock(&ftrace_lock);
4683 	/* Check if the probe_ops is already registered */
4684 	list_for_each_entry(probe, &tr->func_probes, list) {
4685 		if (probe->probe_ops == probe_ops)
4686 			break;
4687 	}
4688 	if (&probe->list == &tr->func_probes)
4689 		goto err_unlock_ftrace;
4690 
4691 	ret = -EINVAL;
4692 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4693 		goto err_unlock_ftrace;
4694 
4695 	acquire_probe_locked(probe);
4696 
4697 	mutex_unlock(&ftrace_lock);
4698 
4699 	mutex_lock(&probe->ops.func_hash->regex_lock);
4700 
4701 	orig_hash = &probe->ops.func_hash->filter_hash;
4702 	old_hash = *orig_hash;
4703 
4704 	if (ftrace_hash_empty(old_hash))
4705 		goto out_unlock;
4706 
4707 	old_hash_ops.filter_hash = old_hash;
4708 	/* Probes only have filters */
4709 	old_hash_ops.notrace_hash = NULL;
4710 
4711 	ret = -ENOMEM;
4712 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4713 	if (!hash)
4714 		goto out_unlock;
4715 
4716 	INIT_HLIST_HEAD(&hhd);
4717 
4718 	size = 1 << hash->size_bits;
4719 	for (i = 0; i < size; i++) {
4720 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4721 
4722 			if (func_g.search) {
4723 				kallsyms_lookup(entry->ip, NULL, NULL,
4724 						NULL, str);
4725 				if (!ftrace_match(str, &func_g))
4726 					continue;
4727 			}
4728 			count++;
4729 			remove_hash_entry(hash, entry);
4730 			hlist_add_head(&entry->hlist, &hhd);
4731 		}
4732 	}
4733 
4734 	/* Nothing found? */
4735 	if (!count) {
4736 		ret = -EINVAL;
4737 		goto out_unlock;
4738 	}
4739 
4740 	mutex_lock(&ftrace_lock);
4741 
4742 	WARN_ON(probe->ref < count);
4743 
4744 	probe->ref -= count;
4745 
4746 	if (ftrace_hash_empty(hash))
4747 		ftrace_shutdown(&probe->ops, 0);
4748 
4749 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4750 					      hash, 1);
4751 
4752 	/* still need to update the function call sites */
4753 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4754 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4755 				       &old_hash_ops);
4756 	synchronize_rcu();
4757 
4758 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4759 		hlist_del(&entry->hlist);
4760 		if (probe_ops->free)
4761 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4762 		kfree(entry);
4763 	}
4764 	mutex_unlock(&ftrace_lock);
4765 
4766  out_unlock:
4767 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4768 	free_ftrace_hash(hash);
4769 
4770 	release_probe(probe);
4771 
4772 	return ret;
4773 
4774  err_unlock_ftrace:
4775 	mutex_unlock(&ftrace_lock);
4776 	return ret;
4777 }
4778 
4779 void clear_ftrace_function_probes(struct trace_array *tr)
4780 {
4781 	struct ftrace_func_probe *probe, *n;
4782 
4783 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4784 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4785 }
4786 
4787 static LIST_HEAD(ftrace_commands);
4788 static DEFINE_MUTEX(ftrace_cmd_mutex);
4789 
4790 /*
4791  * Currently we only register ftrace commands from __init, so mark this
4792  * __init too.
4793  */
4794 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4795 {
4796 	struct ftrace_func_command *p;
4797 	int ret = 0;
4798 
4799 	mutex_lock(&ftrace_cmd_mutex);
4800 	list_for_each_entry(p, &ftrace_commands, list) {
4801 		if (strcmp(cmd->name, p->name) == 0) {
4802 			ret = -EBUSY;
4803 			goto out_unlock;
4804 		}
4805 	}
4806 	list_add(&cmd->list, &ftrace_commands);
4807  out_unlock:
4808 	mutex_unlock(&ftrace_cmd_mutex);
4809 
4810 	return ret;
4811 }
4812 
4813 /*
4814  * Currently we only unregister ftrace commands from __init, so mark
4815  * this __init too.
4816  */
4817 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4818 {
4819 	struct ftrace_func_command *p, *n;
4820 	int ret = -ENODEV;
4821 
4822 	mutex_lock(&ftrace_cmd_mutex);
4823 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4824 		if (strcmp(cmd->name, p->name) == 0) {
4825 			ret = 0;
4826 			list_del_init(&p->list);
4827 			goto out_unlock;
4828 		}
4829 	}
4830  out_unlock:
4831 	mutex_unlock(&ftrace_cmd_mutex);
4832 
4833 	return ret;
4834 }
4835 
4836 static int ftrace_process_regex(struct ftrace_iterator *iter,
4837 				char *buff, int len, int enable)
4838 {
4839 	struct ftrace_hash *hash = iter->hash;
4840 	struct trace_array *tr = iter->ops->private;
4841 	char *func, *command, *next = buff;
4842 	struct ftrace_func_command *p;
4843 	int ret = -EINVAL;
4844 
4845 	func = strsep(&next, ":");
4846 
4847 	if (!next) {
4848 		ret = ftrace_match_records(hash, func, len);
4849 		if (!ret)
4850 			ret = -EINVAL;
4851 		if (ret < 0)
4852 			return ret;
4853 		return 0;
4854 	}
4855 
4856 	/* command found */
4857 
4858 	command = strsep(&next, ":");
4859 
4860 	mutex_lock(&ftrace_cmd_mutex);
4861 	list_for_each_entry(p, &ftrace_commands, list) {
4862 		if (strcmp(p->name, command) == 0) {
4863 			ret = p->func(tr, hash, func, command, next, enable);
4864 			goto out_unlock;
4865 		}
4866 	}
4867  out_unlock:
4868 	mutex_unlock(&ftrace_cmd_mutex);
4869 
4870 	return ret;
4871 }
4872 
4873 static ssize_t
4874 ftrace_regex_write(struct file *file, const char __user *ubuf,
4875 		   size_t cnt, loff_t *ppos, int enable)
4876 {
4877 	struct ftrace_iterator *iter;
4878 	struct trace_parser *parser;
4879 	ssize_t ret, read;
4880 
4881 	if (!cnt)
4882 		return 0;
4883 
4884 	if (file->f_mode & FMODE_READ) {
4885 		struct seq_file *m = file->private_data;
4886 		iter = m->private;
4887 	} else
4888 		iter = file->private_data;
4889 
4890 	if (unlikely(ftrace_disabled))
4891 		return -ENODEV;
4892 
4893 	/* iter->hash is a local copy, so we don't need regex_lock */
4894 
4895 	parser = &iter->parser;
4896 	read = trace_get_user(parser, ubuf, cnt, ppos);
4897 
4898 	if (read >= 0 && trace_parser_loaded(parser) &&
4899 	    !trace_parser_cont(parser)) {
4900 		ret = ftrace_process_regex(iter, parser->buffer,
4901 					   parser->idx, enable);
4902 		trace_parser_clear(parser);
4903 		if (ret < 0)
4904 			goto out;
4905 	}
4906 
4907 	ret = read;
4908  out:
4909 	return ret;
4910 }
4911 
4912 ssize_t
4913 ftrace_filter_write(struct file *file, const char __user *ubuf,
4914 		    size_t cnt, loff_t *ppos)
4915 {
4916 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4917 }
4918 
4919 ssize_t
4920 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4921 		     size_t cnt, loff_t *ppos)
4922 {
4923 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4924 }
4925 
4926 static int
4927 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4928 {
4929 	struct ftrace_func_entry *entry;
4930 
4931 	if (!ftrace_location(ip))
4932 		return -EINVAL;
4933 
4934 	if (remove) {
4935 		entry = ftrace_lookup_ip(hash, ip);
4936 		if (!entry)
4937 			return -ENOENT;
4938 		free_hash_entry(hash, entry);
4939 		return 0;
4940 	}
4941 
4942 	return add_hash_entry(hash, ip);
4943 }
4944 
4945 static int
4946 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4947 		unsigned long ip, int remove, int reset, int enable)
4948 {
4949 	struct ftrace_hash **orig_hash;
4950 	struct ftrace_hash *hash;
4951 	int ret;
4952 
4953 	if (unlikely(ftrace_disabled))
4954 		return -ENODEV;
4955 
4956 	mutex_lock(&ops->func_hash->regex_lock);
4957 
4958 	if (enable)
4959 		orig_hash = &ops->func_hash->filter_hash;
4960 	else
4961 		orig_hash = &ops->func_hash->notrace_hash;
4962 
4963 	if (reset)
4964 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4965 	else
4966 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4967 
4968 	if (!hash) {
4969 		ret = -ENOMEM;
4970 		goto out_regex_unlock;
4971 	}
4972 
4973 	if (buf && !ftrace_match_records(hash, buf, len)) {
4974 		ret = -EINVAL;
4975 		goto out_regex_unlock;
4976 	}
4977 	if (ip) {
4978 		ret = ftrace_match_addr(hash, ip, remove);
4979 		if (ret < 0)
4980 			goto out_regex_unlock;
4981 	}
4982 
4983 	mutex_lock(&ftrace_lock);
4984 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4985 	mutex_unlock(&ftrace_lock);
4986 
4987  out_regex_unlock:
4988 	mutex_unlock(&ops->func_hash->regex_lock);
4989 
4990 	free_ftrace_hash(hash);
4991 	return ret;
4992 }
4993 
4994 static int
4995 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4996 		int reset, int enable)
4997 {
4998 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
4999 }
5000 
5001 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5002 
5003 struct ftrace_direct_func {
5004 	struct list_head	next;
5005 	unsigned long		addr;
5006 	int			count;
5007 };
5008 
5009 static LIST_HEAD(ftrace_direct_funcs);
5010 
5011 /**
5012  * ftrace_find_direct_func - test an address if it is a registered direct caller
5013  * @addr: The address of a registered direct caller
5014  *
5015  * This searches to see if a ftrace direct caller has been registered
5016  * at a specific address, and if so, it returns a descriptor for it.
5017  *
5018  * This can be used by architecture code to see if an address is
5019  * a direct caller (trampoline) attached to a fentry/mcount location.
5020  * This is useful for the function_graph tracer, as it may need to
5021  * do adjustments if it traced a location that also has a direct
5022  * trampoline attached to it.
5023  */
5024 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5025 {
5026 	struct ftrace_direct_func *entry;
5027 	bool found = false;
5028 
5029 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5030 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5031 		if (entry->addr == addr) {
5032 			found = true;
5033 			break;
5034 		}
5035 	}
5036 	if (found)
5037 		return entry;
5038 
5039 	return NULL;
5040 }
5041 
5042 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5043 {
5044 	struct ftrace_direct_func *direct;
5045 
5046 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5047 	if (!direct)
5048 		return NULL;
5049 	direct->addr = addr;
5050 	direct->count = 0;
5051 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5052 	ftrace_direct_func_count++;
5053 	return direct;
5054 }
5055 
5056 /**
5057  * register_ftrace_direct - Call a custom trampoline directly
5058  * @ip: The address of the nop at the beginning of a function
5059  * @addr: The address of the trampoline to call at @ip
5060  *
5061  * This is used to connect a direct call from the nop location (@ip)
5062  * at the start of ftrace traced functions. The location that it calls
5063  * (@addr) must be able to handle a direct call, and save the parameters
5064  * of the function being traced, and restore them (or inject new ones
5065  * if needed), before returning.
5066  *
5067  * Returns:
5068  *  0 on success
5069  *  -EBUSY - Another direct function is already attached (there can be only one)
5070  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5071  *  -ENOMEM - There was an allocation failure.
5072  */
5073 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5074 {
5075 	struct ftrace_direct_func *direct;
5076 	struct ftrace_func_entry *entry;
5077 	struct ftrace_hash *free_hash = NULL;
5078 	struct dyn_ftrace *rec;
5079 	int ret = -EBUSY;
5080 
5081 	mutex_lock(&direct_mutex);
5082 
5083 	/* See if there's a direct function at @ip already */
5084 	if (ftrace_find_rec_direct(ip))
5085 		goto out_unlock;
5086 
5087 	ret = -ENODEV;
5088 	rec = lookup_rec(ip, ip);
5089 	if (!rec)
5090 		goto out_unlock;
5091 
5092 	/*
5093 	 * Check if the rec says it has a direct call but we didn't
5094 	 * find one earlier?
5095 	 */
5096 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5097 		goto out_unlock;
5098 
5099 	/* Make sure the ip points to the exact record */
5100 	if (ip != rec->ip) {
5101 		ip = rec->ip;
5102 		/* Need to check this ip for a direct. */
5103 		if (ftrace_find_rec_direct(ip))
5104 			goto out_unlock;
5105 	}
5106 
5107 	ret = -ENOMEM;
5108 	if (ftrace_hash_empty(direct_functions) ||
5109 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5110 		struct ftrace_hash *new_hash;
5111 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5112 			direct_functions->count + 1;
5113 
5114 		if (size < 32)
5115 			size = 32;
5116 
5117 		new_hash = dup_hash(direct_functions, size);
5118 		if (!new_hash)
5119 			goto out_unlock;
5120 
5121 		free_hash = direct_functions;
5122 		direct_functions = new_hash;
5123 	}
5124 
5125 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5126 	if (!entry)
5127 		goto out_unlock;
5128 
5129 	direct = ftrace_find_direct_func(addr);
5130 	if (!direct) {
5131 		direct = ftrace_alloc_direct_func(addr);
5132 		if (!direct) {
5133 			kfree(entry);
5134 			goto out_unlock;
5135 		}
5136 	}
5137 
5138 	entry->ip = ip;
5139 	entry->direct = addr;
5140 	__add_hash_entry(direct_functions, entry);
5141 
5142 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5143 	if (ret)
5144 		remove_hash_entry(direct_functions, entry);
5145 
5146 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5147 		ret = register_ftrace_function(&direct_ops);
5148 		if (ret)
5149 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5150 	}
5151 
5152 	if (ret) {
5153 		kfree(entry);
5154 		if (!direct->count) {
5155 			list_del_rcu(&direct->next);
5156 			synchronize_rcu_tasks();
5157 			kfree(direct);
5158 			if (free_hash)
5159 				free_ftrace_hash(free_hash);
5160 			free_hash = NULL;
5161 			ftrace_direct_func_count--;
5162 		}
5163 	} else {
5164 		direct->count++;
5165 	}
5166  out_unlock:
5167 	mutex_unlock(&direct_mutex);
5168 
5169 	if (free_hash) {
5170 		synchronize_rcu_tasks();
5171 		free_ftrace_hash(free_hash);
5172 	}
5173 
5174 	return ret;
5175 }
5176 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5177 
5178 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5179 						   struct dyn_ftrace **recp)
5180 {
5181 	struct ftrace_func_entry *entry;
5182 	struct dyn_ftrace *rec;
5183 
5184 	rec = lookup_rec(*ip, *ip);
5185 	if (!rec)
5186 		return NULL;
5187 
5188 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5189 	if (!entry) {
5190 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5191 		return NULL;
5192 	}
5193 
5194 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5195 
5196 	/* Passed in ip just needs to be on the call site */
5197 	*ip = rec->ip;
5198 
5199 	if (recp)
5200 		*recp = rec;
5201 
5202 	return entry;
5203 }
5204 
5205 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5206 {
5207 	struct ftrace_direct_func *direct;
5208 	struct ftrace_func_entry *entry;
5209 	int ret = -ENODEV;
5210 
5211 	mutex_lock(&direct_mutex);
5212 
5213 	entry = find_direct_entry(&ip, NULL);
5214 	if (!entry)
5215 		goto out_unlock;
5216 
5217 	if (direct_functions->count == 1)
5218 		unregister_ftrace_function(&direct_ops);
5219 
5220 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5221 
5222 	WARN_ON(ret);
5223 
5224 	remove_hash_entry(direct_functions, entry);
5225 
5226 	direct = ftrace_find_direct_func(addr);
5227 	if (!WARN_ON(!direct)) {
5228 		/* This is the good path (see the ! before WARN) */
5229 		direct->count--;
5230 		WARN_ON(direct->count < 0);
5231 		if (!direct->count) {
5232 			list_del_rcu(&direct->next);
5233 			synchronize_rcu_tasks();
5234 			kfree(direct);
5235 			kfree(entry);
5236 			ftrace_direct_func_count--;
5237 		}
5238 	}
5239  out_unlock:
5240 	mutex_unlock(&direct_mutex);
5241 
5242 	return ret;
5243 }
5244 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5245 
5246 static struct ftrace_ops stub_ops = {
5247 	.func		= ftrace_stub,
5248 };
5249 
5250 /**
5251  * ftrace_modify_direct_caller - modify ftrace nop directly
5252  * @entry: The ftrace hash entry of the direct helper for @rec
5253  * @rec: The record representing the function site to patch
5254  * @old_addr: The location that the site at @rec->ip currently calls
5255  * @new_addr: The location that the site at @rec->ip should call
5256  *
5257  * An architecture may overwrite this function to optimize the
5258  * changing of the direct callback on an ftrace nop location.
5259  * This is called with the ftrace_lock mutex held, and no other
5260  * ftrace callbacks are on the associated record (@rec). Thus,
5261  * it is safe to modify the ftrace record, where it should be
5262  * currently calling @old_addr directly, to call @new_addr.
5263  *
5264  * Safety checks should be made to make sure that the code at
5265  * @rec->ip is currently calling @old_addr. And this must
5266  * also update entry->direct to @new_addr.
5267  */
5268 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5269 				       struct dyn_ftrace *rec,
5270 				       unsigned long old_addr,
5271 				       unsigned long new_addr)
5272 {
5273 	unsigned long ip = rec->ip;
5274 	int ret;
5275 
5276 	/*
5277 	 * The ftrace_lock was used to determine if the record
5278 	 * had more than one registered user to it. If it did,
5279 	 * we needed to prevent that from changing to do the quick
5280 	 * switch. But if it did not (only a direct caller was attached)
5281 	 * then this function is called. But this function can deal
5282 	 * with attached callers to the rec that we care about, and
5283 	 * since this function uses standard ftrace calls that take
5284 	 * the ftrace_lock mutex, we need to release it.
5285 	 */
5286 	mutex_unlock(&ftrace_lock);
5287 
5288 	/*
5289 	 * By setting a stub function at the same address, we force
5290 	 * the code to call the iterator and the direct_ops helper.
5291 	 * This means that @ip does not call the direct call, and
5292 	 * we can simply modify it.
5293 	 */
5294 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5295 	if (ret)
5296 		goto out_lock;
5297 
5298 	ret = register_ftrace_function(&stub_ops);
5299 	if (ret) {
5300 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5301 		goto out_lock;
5302 	}
5303 
5304 	entry->direct = new_addr;
5305 
5306 	/*
5307 	 * By removing the stub, we put back the direct call, calling
5308 	 * the @new_addr.
5309 	 */
5310 	unregister_ftrace_function(&stub_ops);
5311 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5312 
5313  out_lock:
5314 	mutex_lock(&ftrace_lock);
5315 
5316 	return ret;
5317 }
5318 
5319 /**
5320  * modify_ftrace_direct - Modify an existing direct call to call something else
5321  * @ip: The instruction pointer to modify
5322  * @old_addr: The address that the current @ip calls directly
5323  * @new_addr: The address that the @ip should call
5324  *
5325  * This modifies a ftrace direct caller at an instruction pointer without
5326  * having to disable it first. The direct call will switch over to the
5327  * @new_addr without missing anything.
5328  *
5329  * Returns: zero on success. Non zero on error, which includes:
5330  *  -ENODEV : the @ip given has no direct caller attached
5331  *  -EINVAL : the @old_addr does not match the current direct caller
5332  */
5333 int modify_ftrace_direct(unsigned long ip,
5334 			 unsigned long old_addr, unsigned long new_addr)
5335 {
5336 	struct ftrace_direct_func *direct, *new_direct = NULL;
5337 	struct ftrace_func_entry *entry;
5338 	struct dyn_ftrace *rec;
5339 	int ret = -ENODEV;
5340 
5341 	mutex_lock(&direct_mutex);
5342 
5343 	mutex_lock(&ftrace_lock);
5344 	entry = find_direct_entry(&ip, &rec);
5345 	if (!entry)
5346 		goto out_unlock;
5347 
5348 	ret = -EINVAL;
5349 	if (entry->direct != old_addr)
5350 		goto out_unlock;
5351 
5352 	direct = ftrace_find_direct_func(old_addr);
5353 	if (WARN_ON(!direct))
5354 		goto out_unlock;
5355 	if (direct->count > 1) {
5356 		ret = -ENOMEM;
5357 		new_direct = ftrace_alloc_direct_func(new_addr);
5358 		if (!new_direct)
5359 			goto out_unlock;
5360 		direct->count--;
5361 		new_direct->count++;
5362 	} else {
5363 		direct->addr = new_addr;
5364 	}
5365 
5366 	/*
5367 	 * If there's no other ftrace callback on the rec->ip location,
5368 	 * then it can be changed directly by the architecture.
5369 	 * If there is another caller, then we just need to change the
5370 	 * direct caller helper to point to @new_addr.
5371 	 */
5372 	if (ftrace_rec_count(rec) == 1) {
5373 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5374 	} else {
5375 		entry->direct = new_addr;
5376 		ret = 0;
5377 	}
5378 
5379 	if (unlikely(ret && new_direct)) {
5380 		direct->count++;
5381 		list_del_rcu(&new_direct->next);
5382 		synchronize_rcu_tasks();
5383 		kfree(new_direct);
5384 		ftrace_direct_func_count--;
5385 	}
5386 
5387  out_unlock:
5388 	mutex_unlock(&ftrace_lock);
5389 	mutex_unlock(&direct_mutex);
5390 	return ret;
5391 }
5392 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5393 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5394 
5395 /**
5396  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5397  * @ops - the ops to set the filter with
5398  * @ip - the address to add to or remove from the filter.
5399  * @remove - non zero to remove the ip from the filter
5400  * @reset - non zero to reset all filters before applying this filter.
5401  *
5402  * Filters denote which functions should be enabled when tracing is enabled
5403  * If @ip is NULL, it fails to update filter.
5404  */
5405 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5406 			 int remove, int reset)
5407 {
5408 	ftrace_ops_init(ops);
5409 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5410 }
5411 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5412 
5413 /**
5414  * ftrace_ops_set_global_filter - setup ops to use global filters
5415  * @ops - the ops which will use the global filters
5416  *
5417  * ftrace users who need global function trace filtering should call this.
5418  * It can set the global filter only if ops were not initialized before.
5419  */
5420 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5421 {
5422 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5423 		return;
5424 
5425 	ftrace_ops_init(ops);
5426 	ops->func_hash = &global_ops.local_hash;
5427 }
5428 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5429 
5430 static int
5431 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5432 		 int reset, int enable)
5433 {
5434 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5435 }
5436 
5437 /**
5438  * ftrace_set_filter - set a function to filter on in ftrace
5439  * @ops - the ops to set the filter with
5440  * @buf - the string that holds the function filter text.
5441  * @len - the length of the string.
5442  * @reset - non zero to reset all filters before applying this filter.
5443  *
5444  * Filters denote which functions should be enabled when tracing is enabled.
5445  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5446  */
5447 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5448 		       int len, int reset)
5449 {
5450 	ftrace_ops_init(ops);
5451 	return ftrace_set_regex(ops, buf, len, reset, 1);
5452 }
5453 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5454 
5455 /**
5456  * ftrace_set_notrace - set a function to not trace in ftrace
5457  * @ops - the ops to set the notrace filter with
5458  * @buf - the string that holds the function notrace text.
5459  * @len - the length of the string.
5460  * @reset - non zero to reset all filters before applying this filter.
5461  *
5462  * Notrace Filters denote which functions should not be enabled when tracing
5463  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5464  * for tracing.
5465  */
5466 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5467 			int len, int reset)
5468 {
5469 	ftrace_ops_init(ops);
5470 	return ftrace_set_regex(ops, buf, len, reset, 0);
5471 }
5472 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5473 /**
5474  * ftrace_set_global_filter - set a function to filter on with global tracers
5475  * @buf - the string that holds the function filter text.
5476  * @len - the length of the string.
5477  * @reset - non zero to reset all filters before applying this filter.
5478  *
5479  * Filters denote which functions should be enabled when tracing is enabled.
5480  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5481  */
5482 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5483 {
5484 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5485 }
5486 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5487 
5488 /**
5489  * ftrace_set_global_notrace - set a function to not trace with global tracers
5490  * @buf - the string that holds the function notrace text.
5491  * @len - the length of the string.
5492  * @reset - non zero to reset all filters before applying this filter.
5493  *
5494  * Notrace Filters denote which functions should not be enabled when tracing
5495  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5496  * for tracing.
5497  */
5498 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5499 {
5500 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5501 }
5502 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5503 
5504 /*
5505  * command line interface to allow users to set filters on boot up.
5506  */
5507 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5508 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5509 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5510 
5511 /* Used by function selftest to not test if filter is set */
5512 bool ftrace_filter_param __initdata;
5513 
5514 static int __init set_ftrace_notrace(char *str)
5515 {
5516 	ftrace_filter_param = true;
5517 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5518 	return 1;
5519 }
5520 __setup("ftrace_notrace=", set_ftrace_notrace);
5521 
5522 static int __init set_ftrace_filter(char *str)
5523 {
5524 	ftrace_filter_param = true;
5525 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5526 	return 1;
5527 }
5528 __setup("ftrace_filter=", set_ftrace_filter);
5529 
5530 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5531 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5532 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5533 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5534 
5535 static int __init set_graph_function(char *str)
5536 {
5537 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5538 	return 1;
5539 }
5540 __setup("ftrace_graph_filter=", set_graph_function);
5541 
5542 static int __init set_graph_notrace_function(char *str)
5543 {
5544 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5545 	return 1;
5546 }
5547 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5548 
5549 static int __init set_graph_max_depth_function(char *str)
5550 {
5551 	if (!str)
5552 		return 0;
5553 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5554 	return 1;
5555 }
5556 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5557 
5558 static void __init set_ftrace_early_graph(char *buf, int enable)
5559 {
5560 	int ret;
5561 	char *func;
5562 	struct ftrace_hash *hash;
5563 
5564 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5565 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5566 		return;
5567 
5568 	while (buf) {
5569 		func = strsep(&buf, ",");
5570 		/* we allow only one expression at a time */
5571 		ret = ftrace_graph_set_hash(hash, func);
5572 		if (ret)
5573 			printk(KERN_DEBUG "ftrace: function %s not "
5574 					  "traceable\n", func);
5575 	}
5576 
5577 	if (enable)
5578 		ftrace_graph_hash = hash;
5579 	else
5580 		ftrace_graph_notrace_hash = hash;
5581 }
5582 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5583 
5584 void __init
5585 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5586 {
5587 	char *func;
5588 
5589 	ftrace_ops_init(ops);
5590 
5591 	while (buf) {
5592 		func = strsep(&buf, ",");
5593 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5594 	}
5595 }
5596 
5597 static void __init set_ftrace_early_filters(void)
5598 {
5599 	if (ftrace_filter_buf[0])
5600 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5601 	if (ftrace_notrace_buf[0])
5602 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5603 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5604 	if (ftrace_graph_buf[0])
5605 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5606 	if (ftrace_graph_notrace_buf[0])
5607 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5608 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5609 }
5610 
5611 int ftrace_regex_release(struct inode *inode, struct file *file)
5612 {
5613 	struct seq_file *m = (struct seq_file *)file->private_data;
5614 	struct ftrace_iterator *iter;
5615 	struct ftrace_hash **orig_hash;
5616 	struct trace_parser *parser;
5617 	int filter_hash;
5618 
5619 	if (file->f_mode & FMODE_READ) {
5620 		iter = m->private;
5621 		seq_release(inode, file);
5622 	} else
5623 		iter = file->private_data;
5624 
5625 	parser = &iter->parser;
5626 	if (trace_parser_loaded(parser)) {
5627 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
5628 
5629 		ftrace_process_regex(iter, parser->buffer,
5630 				     parser->idx, enable);
5631 	}
5632 
5633 	trace_parser_put(parser);
5634 
5635 	mutex_lock(&iter->ops->func_hash->regex_lock);
5636 
5637 	if (file->f_mode & FMODE_WRITE) {
5638 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5639 
5640 		if (filter_hash) {
5641 			orig_hash = &iter->ops->func_hash->filter_hash;
5642 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5643 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5644 		} else
5645 			orig_hash = &iter->ops->func_hash->notrace_hash;
5646 
5647 		mutex_lock(&ftrace_lock);
5648 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5649 						      iter->hash, filter_hash);
5650 		mutex_unlock(&ftrace_lock);
5651 	} else {
5652 		/* For read only, the hash is the ops hash */
5653 		iter->hash = NULL;
5654 	}
5655 
5656 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5657 	free_ftrace_hash(iter->hash);
5658 	if (iter->tr)
5659 		trace_array_put(iter->tr);
5660 	kfree(iter);
5661 
5662 	return 0;
5663 }
5664 
5665 static const struct file_operations ftrace_avail_fops = {
5666 	.open = ftrace_avail_open,
5667 	.read = seq_read,
5668 	.llseek = seq_lseek,
5669 	.release = seq_release_private,
5670 };
5671 
5672 static const struct file_operations ftrace_enabled_fops = {
5673 	.open = ftrace_enabled_open,
5674 	.read = seq_read,
5675 	.llseek = seq_lseek,
5676 	.release = seq_release_private,
5677 };
5678 
5679 static const struct file_operations ftrace_filter_fops = {
5680 	.open = ftrace_filter_open,
5681 	.read = seq_read,
5682 	.write = ftrace_filter_write,
5683 	.llseek = tracing_lseek,
5684 	.release = ftrace_regex_release,
5685 };
5686 
5687 static const struct file_operations ftrace_notrace_fops = {
5688 	.open = ftrace_notrace_open,
5689 	.read = seq_read,
5690 	.write = ftrace_notrace_write,
5691 	.llseek = tracing_lseek,
5692 	.release = ftrace_regex_release,
5693 };
5694 
5695 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5696 
5697 static DEFINE_MUTEX(graph_lock);
5698 
5699 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5700 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5701 
5702 enum graph_filter_type {
5703 	GRAPH_FILTER_NOTRACE	= 0,
5704 	GRAPH_FILTER_FUNCTION,
5705 };
5706 
5707 #define FTRACE_GRAPH_EMPTY	((void *)1)
5708 
5709 struct ftrace_graph_data {
5710 	struct ftrace_hash		*hash;
5711 	struct ftrace_func_entry	*entry;
5712 	int				idx;   /* for hash table iteration */
5713 	enum graph_filter_type		type;
5714 	struct ftrace_hash		*new_hash;
5715 	const struct seq_operations	*seq_ops;
5716 	struct trace_parser		parser;
5717 };
5718 
5719 static void *
5720 __g_next(struct seq_file *m, loff_t *pos)
5721 {
5722 	struct ftrace_graph_data *fgd = m->private;
5723 	struct ftrace_func_entry *entry = fgd->entry;
5724 	struct hlist_head *head;
5725 	int i, idx = fgd->idx;
5726 
5727 	if (*pos >= fgd->hash->count)
5728 		return NULL;
5729 
5730 	if (entry) {
5731 		hlist_for_each_entry_continue(entry, hlist) {
5732 			fgd->entry = entry;
5733 			return entry;
5734 		}
5735 
5736 		idx++;
5737 	}
5738 
5739 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5740 		head = &fgd->hash->buckets[i];
5741 		hlist_for_each_entry(entry, head, hlist) {
5742 			fgd->entry = entry;
5743 			fgd->idx = i;
5744 			return entry;
5745 		}
5746 	}
5747 	return NULL;
5748 }
5749 
5750 static void *
5751 g_next(struct seq_file *m, void *v, loff_t *pos)
5752 {
5753 	(*pos)++;
5754 	return __g_next(m, pos);
5755 }
5756 
5757 static void *g_start(struct seq_file *m, loff_t *pos)
5758 {
5759 	struct ftrace_graph_data *fgd = m->private;
5760 
5761 	mutex_lock(&graph_lock);
5762 
5763 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5764 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5765 					lockdep_is_held(&graph_lock));
5766 	else
5767 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5768 					lockdep_is_held(&graph_lock));
5769 
5770 	/* Nothing, tell g_show to print all functions are enabled */
5771 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5772 		return FTRACE_GRAPH_EMPTY;
5773 
5774 	fgd->idx = 0;
5775 	fgd->entry = NULL;
5776 	return __g_next(m, pos);
5777 }
5778 
5779 static void g_stop(struct seq_file *m, void *p)
5780 {
5781 	mutex_unlock(&graph_lock);
5782 }
5783 
5784 static int g_show(struct seq_file *m, void *v)
5785 {
5786 	struct ftrace_func_entry *entry = v;
5787 
5788 	if (!entry)
5789 		return 0;
5790 
5791 	if (entry == FTRACE_GRAPH_EMPTY) {
5792 		struct ftrace_graph_data *fgd = m->private;
5793 
5794 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5795 			seq_puts(m, "#### all functions enabled ####\n");
5796 		else
5797 			seq_puts(m, "#### no functions disabled ####\n");
5798 		return 0;
5799 	}
5800 
5801 	seq_printf(m, "%ps\n", (void *)entry->ip);
5802 
5803 	return 0;
5804 }
5805 
5806 static const struct seq_operations ftrace_graph_seq_ops = {
5807 	.start = g_start,
5808 	.next = g_next,
5809 	.stop = g_stop,
5810 	.show = g_show,
5811 };
5812 
5813 static int
5814 __ftrace_graph_open(struct inode *inode, struct file *file,
5815 		    struct ftrace_graph_data *fgd)
5816 {
5817 	int ret;
5818 	struct ftrace_hash *new_hash = NULL;
5819 
5820 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5821 	if (ret)
5822 		return ret;
5823 
5824 	if (file->f_mode & FMODE_WRITE) {
5825 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5826 
5827 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5828 			return -ENOMEM;
5829 
5830 		if (file->f_flags & O_TRUNC)
5831 			new_hash = alloc_ftrace_hash(size_bits);
5832 		else
5833 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5834 							      fgd->hash);
5835 		if (!new_hash) {
5836 			ret = -ENOMEM;
5837 			goto out;
5838 		}
5839 	}
5840 
5841 	if (file->f_mode & FMODE_READ) {
5842 		ret = seq_open(file, &ftrace_graph_seq_ops);
5843 		if (!ret) {
5844 			struct seq_file *m = file->private_data;
5845 			m->private = fgd;
5846 		} else {
5847 			/* Failed */
5848 			free_ftrace_hash(new_hash);
5849 			new_hash = NULL;
5850 		}
5851 	} else
5852 		file->private_data = fgd;
5853 
5854 out:
5855 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5856 		trace_parser_put(&fgd->parser);
5857 
5858 	fgd->new_hash = new_hash;
5859 
5860 	/*
5861 	 * All uses of fgd->hash must be taken with the graph_lock
5862 	 * held. The graph_lock is going to be released, so force
5863 	 * fgd->hash to be reinitialized when it is taken again.
5864 	 */
5865 	fgd->hash = NULL;
5866 
5867 	return ret;
5868 }
5869 
5870 static int
5871 ftrace_graph_open(struct inode *inode, struct file *file)
5872 {
5873 	struct ftrace_graph_data *fgd;
5874 	int ret;
5875 
5876 	if (unlikely(ftrace_disabled))
5877 		return -ENODEV;
5878 
5879 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5880 	if (fgd == NULL)
5881 		return -ENOMEM;
5882 
5883 	mutex_lock(&graph_lock);
5884 
5885 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5886 					lockdep_is_held(&graph_lock));
5887 	fgd->type = GRAPH_FILTER_FUNCTION;
5888 	fgd->seq_ops = &ftrace_graph_seq_ops;
5889 
5890 	ret = __ftrace_graph_open(inode, file, fgd);
5891 	if (ret < 0)
5892 		kfree(fgd);
5893 
5894 	mutex_unlock(&graph_lock);
5895 	return ret;
5896 }
5897 
5898 static int
5899 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5900 {
5901 	struct ftrace_graph_data *fgd;
5902 	int ret;
5903 
5904 	if (unlikely(ftrace_disabled))
5905 		return -ENODEV;
5906 
5907 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5908 	if (fgd == NULL)
5909 		return -ENOMEM;
5910 
5911 	mutex_lock(&graph_lock);
5912 
5913 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5914 					lockdep_is_held(&graph_lock));
5915 	fgd->type = GRAPH_FILTER_NOTRACE;
5916 	fgd->seq_ops = &ftrace_graph_seq_ops;
5917 
5918 	ret = __ftrace_graph_open(inode, file, fgd);
5919 	if (ret < 0)
5920 		kfree(fgd);
5921 
5922 	mutex_unlock(&graph_lock);
5923 	return ret;
5924 }
5925 
5926 static int
5927 ftrace_graph_release(struct inode *inode, struct file *file)
5928 {
5929 	struct ftrace_graph_data *fgd;
5930 	struct ftrace_hash *old_hash, *new_hash;
5931 	struct trace_parser *parser;
5932 	int ret = 0;
5933 
5934 	if (file->f_mode & FMODE_READ) {
5935 		struct seq_file *m = file->private_data;
5936 
5937 		fgd = m->private;
5938 		seq_release(inode, file);
5939 	} else {
5940 		fgd = file->private_data;
5941 	}
5942 
5943 
5944 	if (file->f_mode & FMODE_WRITE) {
5945 
5946 		parser = &fgd->parser;
5947 
5948 		if (trace_parser_loaded((parser))) {
5949 			ret = ftrace_graph_set_hash(fgd->new_hash,
5950 						    parser->buffer);
5951 		}
5952 
5953 		trace_parser_put(parser);
5954 
5955 		new_hash = __ftrace_hash_move(fgd->new_hash);
5956 		if (!new_hash) {
5957 			ret = -ENOMEM;
5958 			goto out;
5959 		}
5960 
5961 		mutex_lock(&graph_lock);
5962 
5963 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5964 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5965 					lockdep_is_held(&graph_lock));
5966 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5967 		} else {
5968 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5969 					lockdep_is_held(&graph_lock));
5970 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5971 		}
5972 
5973 		mutex_unlock(&graph_lock);
5974 
5975 		/*
5976 		 * We need to do a hard force of sched synchronization.
5977 		 * This is because we use preempt_disable() to do RCU, but
5978 		 * the function tracers can be called where RCU is not watching
5979 		 * (like before user_exit()). We can not rely on the RCU
5980 		 * infrastructure to do the synchronization, thus we must do it
5981 		 * ourselves.
5982 		 */
5983 		synchronize_rcu_tasks_rude();
5984 
5985 		free_ftrace_hash(old_hash);
5986 	}
5987 
5988  out:
5989 	free_ftrace_hash(fgd->new_hash);
5990 	kfree(fgd);
5991 
5992 	return ret;
5993 }
5994 
5995 static int
5996 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5997 {
5998 	struct ftrace_glob func_g;
5999 	struct dyn_ftrace *rec;
6000 	struct ftrace_page *pg;
6001 	struct ftrace_func_entry *entry;
6002 	int fail = 1;
6003 	int not;
6004 
6005 	/* decode regex */
6006 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6007 					 &func_g.search, &not);
6008 
6009 	func_g.len = strlen(func_g.search);
6010 
6011 	mutex_lock(&ftrace_lock);
6012 
6013 	if (unlikely(ftrace_disabled)) {
6014 		mutex_unlock(&ftrace_lock);
6015 		return -ENODEV;
6016 	}
6017 
6018 	do_for_each_ftrace_rec(pg, rec) {
6019 
6020 		if (rec->flags & FTRACE_FL_DISABLED)
6021 			continue;
6022 
6023 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6024 			entry = ftrace_lookup_ip(hash, rec->ip);
6025 
6026 			if (!not) {
6027 				fail = 0;
6028 
6029 				if (entry)
6030 					continue;
6031 				if (add_hash_entry(hash, rec->ip) < 0)
6032 					goto out;
6033 			} else {
6034 				if (entry) {
6035 					free_hash_entry(hash, entry);
6036 					fail = 0;
6037 				}
6038 			}
6039 		}
6040 	} while_for_each_ftrace_rec();
6041 out:
6042 	mutex_unlock(&ftrace_lock);
6043 
6044 	if (fail)
6045 		return -EINVAL;
6046 
6047 	return 0;
6048 }
6049 
6050 static ssize_t
6051 ftrace_graph_write(struct file *file, const char __user *ubuf,
6052 		   size_t cnt, loff_t *ppos)
6053 {
6054 	ssize_t read, ret = 0;
6055 	struct ftrace_graph_data *fgd = file->private_data;
6056 	struct trace_parser *parser;
6057 
6058 	if (!cnt)
6059 		return 0;
6060 
6061 	/* Read mode uses seq functions */
6062 	if (file->f_mode & FMODE_READ) {
6063 		struct seq_file *m = file->private_data;
6064 		fgd = m->private;
6065 	}
6066 
6067 	parser = &fgd->parser;
6068 
6069 	read = trace_get_user(parser, ubuf, cnt, ppos);
6070 
6071 	if (read >= 0 && trace_parser_loaded(parser) &&
6072 	    !trace_parser_cont(parser)) {
6073 
6074 		ret = ftrace_graph_set_hash(fgd->new_hash,
6075 					    parser->buffer);
6076 		trace_parser_clear(parser);
6077 	}
6078 
6079 	if (!ret)
6080 		ret = read;
6081 
6082 	return ret;
6083 }
6084 
6085 static const struct file_operations ftrace_graph_fops = {
6086 	.open		= ftrace_graph_open,
6087 	.read		= seq_read,
6088 	.write		= ftrace_graph_write,
6089 	.llseek		= tracing_lseek,
6090 	.release	= ftrace_graph_release,
6091 };
6092 
6093 static const struct file_operations ftrace_graph_notrace_fops = {
6094 	.open		= ftrace_graph_notrace_open,
6095 	.read		= seq_read,
6096 	.write		= ftrace_graph_write,
6097 	.llseek		= tracing_lseek,
6098 	.release	= ftrace_graph_release,
6099 };
6100 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6101 
6102 void ftrace_create_filter_files(struct ftrace_ops *ops,
6103 				struct dentry *parent)
6104 {
6105 
6106 	trace_create_file("set_ftrace_filter", 0644, parent,
6107 			  ops, &ftrace_filter_fops);
6108 
6109 	trace_create_file("set_ftrace_notrace", 0644, parent,
6110 			  ops, &ftrace_notrace_fops);
6111 }
6112 
6113 /*
6114  * The name "destroy_filter_files" is really a misnomer. Although
6115  * in the future, it may actually delete the files, but this is
6116  * really intended to make sure the ops passed in are disabled
6117  * and that when this function returns, the caller is free to
6118  * free the ops.
6119  *
6120  * The "destroy" name is only to match the "create" name that this
6121  * should be paired with.
6122  */
6123 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6124 {
6125 	mutex_lock(&ftrace_lock);
6126 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6127 		ftrace_shutdown(ops, 0);
6128 	ops->flags |= FTRACE_OPS_FL_DELETED;
6129 	ftrace_free_filter(ops);
6130 	mutex_unlock(&ftrace_lock);
6131 }
6132 
6133 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6134 {
6135 
6136 	trace_create_file("available_filter_functions", 0444,
6137 			d_tracer, NULL, &ftrace_avail_fops);
6138 
6139 	trace_create_file("enabled_functions", 0444,
6140 			d_tracer, NULL, &ftrace_enabled_fops);
6141 
6142 	ftrace_create_filter_files(&global_ops, d_tracer);
6143 
6144 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6145 	trace_create_file("set_graph_function", 0644, d_tracer,
6146 				    NULL,
6147 				    &ftrace_graph_fops);
6148 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6149 				    NULL,
6150 				    &ftrace_graph_notrace_fops);
6151 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6152 
6153 	return 0;
6154 }
6155 
6156 static int ftrace_cmp_ips(const void *a, const void *b)
6157 {
6158 	const unsigned long *ipa = a;
6159 	const unsigned long *ipb = b;
6160 
6161 	if (*ipa > *ipb)
6162 		return 1;
6163 	if (*ipa < *ipb)
6164 		return -1;
6165 	return 0;
6166 }
6167 
6168 static int ftrace_process_locs(struct module *mod,
6169 			       unsigned long *start,
6170 			       unsigned long *end)
6171 {
6172 	struct ftrace_page *start_pg;
6173 	struct ftrace_page *pg;
6174 	struct dyn_ftrace *rec;
6175 	unsigned long count;
6176 	unsigned long *p;
6177 	unsigned long addr;
6178 	unsigned long flags = 0; /* Shut up gcc */
6179 	int ret = -ENOMEM;
6180 
6181 	count = end - start;
6182 
6183 	if (!count)
6184 		return 0;
6185 
6186 	sort(start, count, sizeof(*start),
6187 	     ftrace_cmp_ips, NULL);
6188 
6189 	start_pg = ftrace_allocate_pages(count);
6190 	if (!start_pg)
6191 		return -ENOMEM;
6192 
6193 	mutex_lock(&ftrace_lock);
6194 
6195 	/*
6196 	 * Core and each module needs their own pages, as
6197 	 * modules will free them when they are removed.
6198 	 * Force a new page to be allocated for modules.
6199 	 */
6200 	if (!mod) {
6201 		WARN_ON(ftrace_pages || ftrace_pages_start);
6202 		/* First initialization */
6203 		ftrace_pages = ftrace_pages_start = start_pg;
6204 	} else {
6205 		if (!ftrace_pages)
6206 			goto out;
6207 
6208 		if (WARN_ON(ftrace_pages->next)) {
6209 			/* Hmm, we have free pages? */
6210 			while (ftrace_pages->next)
6211 				ftrace_pages = ftrace_pages->next;
6212 		}
6213 
6214 		ftrace_pages->next = start_pg;
6215 	}
6216 
6217 	p = start;
6218 	pg = start_pg;
6219 	while (p < end) {
6220 		unsigned long end_offset;
6221 		addr = ftrace_call_adjust(*p++);
6222 		/*
6223 		 * Some architecture linkers will pad between
6224 		 * the different mcount_loc sections of different
6225 		 * object files to satisfy alignments.
6226 		 * Skip any NULL pointers.
6227 		 */
6228 		if (!addr)
6229 			continue;
6230 
6231 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6232 		if (end_offset > PAGE_SIZE << pg->order) {
6233 			/* We should have allocated enough */
6234 			if (WARN_ON(!pg->next))
6235 				break;
6236 			pg = pg->next;
6237 		}
6238 
6239 		rec = &pg->records[pg->index++];
6240 		rec->ip = addr;
6241 	}
6242 
6243 	/* We should have used all pages */
6244 	WARN_ON(pg->next);
6245 
6246 	/* Assign the last page to ftrace_pages */
6247 	ftrace_pages = pg;
6248 
6249 	/*
6250 	 * We only need to disable interrupts on start up
6251 	 * because we are modifying code that an interrupt
6252 	 * may execute, and the modification is not atomic.
6253 	 * But for modules, nothing runs the code we modify
6254 	 * until we are finished with it, and there's no
6255 	 * reason to cause large interrupt latencies while we do it.
6256 	 */
6257 	if (!mod)
6258 		local_irq_save(flags);
6259 	ftrace_update_code(mod, start_pg);
6260 	if (!mod)
6261 		local_irq_restore(flags);
6262 	ret = 0;
6263  out:
6264 	mutex_unlock(&ftrace_lock);
6265 
6266 	return ret;
6267 }
6268 
6269 struct ftrace_mod_func {
6270 	struct list_head	list;
6271 	char			*name;
6272 	unsigned long		ip;
6273 	unsigned int		size;
6274 };
6275 
6276 struct ftrace_mod_map {
6277 	struct rcu_head		rcu;
6278 	struct list_head	list;
6279 	struct module		*mod;
6280 	unsigned long		start_addr;
6281 	unsigned long		end_addr;
6282 	struct list_head	funcs;
6283 	unsigned int		num_funcs;
6284 };
6285 
6286 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6287 					 unsigned long *value, char *type,
6288 					 char *name, char *module_name,
6289 					 int *exported)
6290 {
6291 	struct ftrace_ops *op;
6292 
6293 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6294 		if (!op->trampoline || symnum--)
6295 			continue;
6296 		*value = op->trampoline;
6297 		*type = 't';
6298 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6299 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6300 		*exported = 0;
6301 		return 0;
6302 	}
6303 
6304 	return -ERANGE;
6305 }
6306 
6307 #ifdef CONFIG_MODULES
6308 
6309 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6310 
6311 static LIST_HEAD(ftrace_mod_maps);
6312 
6313 static int referenced_filters(struct dyn_ftrace *rec)
6314 {
6315 	struct ftrace_ops *ops;
6316 	int cnt = 0;
6317 
6318 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6319 		if (ops_references_rec(ops, rec)) {
6320 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6321 				continue;
6322 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6323 				continue;
6324 			cnt++;
6325 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6326 				rec->flags |= FTRACE_FL_REGS;
6327 			if (cnt == 1 && ops->trampoline)
6328 				rec->flags |= FTRACE_FL_TRAMP;
6329 			else
6330 				rec->flags &= ~FTRACE_FL_TRAMP;
6331 		}
6332 	}
6333 
6334 	return cnt;
6335 }
6336 
6337 static void
6338 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6339 {
6340 	struct ftrace_func_entry *entry;
6341 	struct dyn_ftrace *rec;
6342 	int i;
6343 
6344 	if (ftrace_hash_empty(hash))
6345 		return;
6346 
6347 	for (i = 0; i < pg->index; i++) {
6348 		rec = &pg->records[i];
6349 		entry = __ftrace_lookup_ip(hash, rec->ip);
6350 		/*
6351 		 * Do not allow this rec to match again.
6352 		 * Yeah, it may waste some memory, but will be removed
6353 		 * if/when the hash is modified again.
6354 		 */
6355 		if (entry)
6356 			entry->ip = 0;
6357 	}
6358 }
6359 
6360 /* Clear any records from hashes */
6361 static void clear_mod_from_hashes(struct ftrace_page *pg)
6362 {
6363 	struct trace_array *tr;
6364 
6365 	mutex_lock(&trace_types_lock);
6366 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6367 		if (!tr->ops || !tr->ops->func_hash)
6368 			continue;
6369 		mutex_lock(&tr->ops->func_hash->regex_lock);
6370 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6371 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6372 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6373 	}
6374 	mutex_unlock(&trace_types_lock);
6375 }
6376 
6377 static void ftrace_free_mod_map(struct rcu_head *rcu)
6378 {
6379 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6380 	struct ftrace_mod_func *mod_func;
6381 	struct ftrace_mod_func *n;
6382 
6383 	/* All the contents of mod_map are now not visible to readers */
6384 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6385 		kfree(mod_func->name);
6386 		list_del(&mod_func->list);
6387 		kfree(mod_func);
6388 	}
6389 
6390 	kfree(mod_map);
6391 }
6392 
6393 void ftrace_release_mod(struct module *mod)
6394 {
6395 	struct ftrace_mod_map *mod_map;
6396 	struct ftrace_mod_map *n;
6397 	struct dyn_ftrace *rec;
6398 	struct ftrace_page **last_pg;
6399 	struct ftrace_page *tmp_page = NULL;
6400 	struct ftrace_page *pg;
6401 
6402 	mutex_lock(&ftrace_lock);
6403 
6404 	if (ftrace_disabled)
6405 		goto out_unlock;
6406 
6407 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6408 		if (mod_map->mod == mod) {
6409 			list_del_rcu(&mod_map->list);
6410 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6411 			break;
6412 		}
6413 	}
6414 
6415 	/*
6416 	 * Each module has its own ftrace_pages, remove
6417 	 * them from the list.
6418 	 */
6419 	last_pg = &ftrace_pages_start;
6420 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6421 		rec = &pg->records[0];
6422 		if (within_module_core(rec->ip, mod) ||
6423 		    within_module_init(rec->ip, mod)) {
6424 			/*
6425 			 * As core pages are first, the first
6426 			 * page should never be a module page.
6427 			 */
6428 			if (WARN_ON(pg == ftrace_pages_start))
6429 				goto out_unlock;
6430 
6431 			/* Check if we are deleting the last page */
6432 			if (pg == ftrace_pages)
6433 				ftrace_pages = next_to_ftrace_page(last_pg);
6434 
6435 			ftrace_update_tot_cnt -= pg->index;
6436 			*last_pg = pg->next;
6437 
6438 			pg->next = tmp_page;
6439 			tmp_page = pg;
6440 		} else
6441 			last_pg = &pg->next;
6442 	}
6443  out_unlock:
6444 	mutex_unlock(&ftrace_lock);
6445 
6446 	for (pg = tmp_page; pg; pg = tmp_page) {
6447 
6448 		/* Needs to be called outside of ftrace_lock */
6449 		clear_mod_from_hashes(pg);
6450 
6451 		if (pg->records) {
6452 			free_pages((unsigned long)pg->records, pg->order);
6453 			ftrace_number_of_pages -= 1 << pg->order;
6454 		}
6455 		tmp_page = pg->next;
6456 		kfree(pg);
6457 		ftrace_number_of_groups--;
6458 	}
6459 }
6460 
6461 void ftrace_module_enable(struct module *mod)
6462 {
6463 	struct dyn_ftrace *rec;
6464 	struct ftrace_page *pg;
6465 
6466 	mutex_lock(&ftrace_lock);
6467 
6468 	if (ftrace_disabled)
6469 		goto out_unlock;
6470 
6471 	/*
6472 	 * If the tracing is enabled, go ahead and enable the record.
6473 	 *
6474 	 * The reason not to enable the record immediately is the
6475 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6476 	 * correct previous instructions.  Making first the NOP
6477 	 * conversion puts the module to the correct state, thus
6478 	 * passing the ftrace_make_call check.
6479 	 *
6480 	 * We also delay this to after the module code already set the
6481 	 * text to read-only, as we now need to set it back to read-write
6482 	 * so that we can modify the text.
6483 	 */
6484 	if (ftrace_start_up)
6485 		ftrace_arch_code_modify_prepare();
6486 
6487 	do_for_each_ftrace_rec(pg, rec) {
6488 		int cnt;
6489 		/*
6490 		 * do_for_each_ftrace_rec() is a double loop.
6491 		 * module text shares the pg. If a record is
6492 		 * not part of this module, then skip this pg,
6493 		 * which the "break" will do.
6494 		 */
6495 		if (!within_module_core(rec->ip, mod) &&
6496 		    !within_module_init(rec->ip, mod))
6497 			break;
6498 
6499 		cnt = 0;
6500 
6501 		/*
6502 		 * When adding a module, we need to check if tracers are
6503 		 * currently enabled and if they are, and can trace this record,
6504 		 * we need to enable the module functions as well as update the
6505 		 * reference counts for those function records.
6506 		 */
6507 		if (ftrace_start_up)
6508 			cnt += referenced_filters(rec);
6509 
6510 		rec->flags &= ~FTRACE_FL_DISABLED;
6511 		rec->flags += cnt;
6512 
6513 		if (ftrace_start_up && cnt) {
6514 			int failed = __ftrace_replace_code(rec, 1);
6515 			if (failed) {
6516 				ftrace_bug(failed, rec);
6517 				goto out_loop;
6518 			}
6519 		}
6520 
6521 	} while_for_each_ftrace_rec();
6522 
6523  out_loop:
6524 	if (ftrace_start_up)
6525 		ftrace_arch_code_modify_post_process();
6526 
6527  out_unlock:
6528 	mutex_unlock(&ftrace_lock);
6529 
6530 	process_cached_mods(mod->name);
6531 }
6532 
6533 void ftrace_module_init(struct module *mod)
6534 {
6535 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6536 		return;
6537 
6538 	ftrace_process_locs(mod, mod->ftrace_callsites,
6539 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6540 }
6541 
6542 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6543 				struct dyn_ftrace *rec)
6544 {
6545 	struct ftrace_mod_func *mod_func;
6546 	unsigned long symsize;
6547 	unsigned long offset;
6548 	char str[KSYM_SYMBOL_LEN];
6549 	char *modname;
6550 	const char *ret;
6551 
6552 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6553 	if (!ret)
6554 		return;
6555 
6556 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6557 	if (!mod_func)
6558 		return;
6559 
6560 	mod_func->name = kstrdup(str, GFP_KERNEL);
6561 	if (!mod_func->name) {
6562 		kfree(mod_func);
6563 		return;
6564 	}
6565 
6566 	mod_func->ip = rec->ip - offset;
6567 	mod_func->size = symsize;
6568 
6569 	mod_map->num_funcs++;
6570 
6571 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6572 }
6573 
6574 static struct ftrace_mod_map *
6575 allocate_ftrace_mod_map(struct module *mod,
6576 			unsigned long start, unsigned long end)
6577 {
6578 	struct ftrace_mod_map *mod_map;
6579 
6580 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6581 	if (!mod_map)
6582 		return NULL;
6583 
6584 	mod_map->mod = mod;
6585 	mod_map->start_addr = start;
6586 	mod_map->end_addr = end;
6587 	mod_map->num_funcs = 0;
6588 
6589 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6590 
6591 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6592 
6593 	return mod_map;
6594 }
6595 
6596 static const char *
6597 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6598 			   unsigned long addr, unsigned long *size,
6599 			   unsigned long *off, char *sym)
6600 {
6601 	struct ftrace_mod_func *found_func =  NULL;
6602 	struct ftrace_mod_func *mod_func;
6603 
6604 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6605 		if (addr >= mod_func->ip &&
6606 		    addr < mod_func->ip + mod_func->size) {
6607 			found_func = mod_func;
6608 			break;
6609 		}
6610 	}
6611 
6612 	if (found_func) {
6613 		if (size)
6614 			*size = found_func->size;
6615 		if (off)
6616 			*off = addr - found_func->ip;
6617 		if (sym)
6618 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6619 
6620 		return found_func->name;
6621 	}
6622 
6623 	return NULL;
6624 }
6625 
6626 const char *
6627 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6628 		   unsigned long *off, char **modname, char *sym)
6629 {
6630 	struct ftrace_mod_map *mod_map;
6631 	const char *ret = NULL;
6632 
6633 	/* mod_map is freed via call_rcu() */
6634 	preempt_disable();
6635 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6636 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6637 		if (ret) {
6638 			if (modname)
6639 				*modname = mod_map->mod->name;
6640 			break;
6641 		}
6642 	}
6643 	preempt_enable();
6644 
6645 	return ret;
6646 }
6647 
6648 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6649 			   char *type, char *name,
6650 			   char *module_name, int *exported)
6651 {
6652 	struct ftrace_mod_map *mod_map;
6653 	struct ftrace_mod_func *mod_func;
6654 	int ret;
6655 
6656 	preempt_disable();
6657 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6658 
6659 		if (symnum >= mod_map->num_funcs) {
6660 			symnum -= mod_map->num_funcs;
6661 			continue;
6662 		}
6663 
6664 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6665 			if (symnum > 1) {
6666 				symnum--;
6667 				continue;
6668 			}
6669 
6670 			*value = mod_func->ip;
6671 			*type = 'T';
6672 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6673 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6674 			*exported = 1;
6675 			preempt_enable();
6676 			return 0;
6677 		}
6678 		WARN_ON(1);
6679 		break;
6680 	}
6681 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6682 					    module_name, exported);
6683 	preempt_enable();
6684 	return ret;
6685 }
6686 
6687 #else
6688 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6689 				struct dyn_ftrace *rec) { }
6690 static inline struct ftrace_mod_map *
6691 allocate_ftrace_mod_map(struct module *mod,
6692 			unsigned long start, unsigned long end)
6693 {
6694 	return NULL;
6695 }
6696 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6697 			   char *type, char *name, char *module_name,
6698 			   int *exported)
6699 {
6700 	int ret;
6701 
6702 	preempt_disable();
6703 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6704 					    module_name, exported);
6705 	preempt_enable();
6706 	return ret;
6707 }
6708 #endif /* CONFIG_MODULES */
6709 
6710 struct ftrace_init_func {
6711 	struct list_head list;
6712 	unsigned long ip;
6713 };
6714 
6715 /* Clear any init ips from hashes */
6716 static void
6717 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6718 {
6719 	struct ftrace_func_entry *entry;
6720 
6721 	entry = ftrace_lookup_ip(hash, func->ip);
6722 	/*
6723 	 * Do not allow this rec to match again.
6724 	 * Yeah, it may waste some memory, but will be removed
6725 	 * if/when the hash is modified again.
6726 	 */
6727 	if (entry)
6728 		entry->ip = 0;
6729 }
6730 
6731 static void
6732 clear_func_from_hashes(struct ftrace_init_func *func)
6733 {
6734 	struct trace_array *tr;
6735 
6736 	mutex_lock(&trace_types_lock);
6737 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6738 		if (!tr->ops || !tr->ops->func_hash)
6739 			continue;
6740 		mutex_lock(&tr->ops->func_hash->regex_lock);
6741 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6742 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6743 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6744 	}
6745 	mutex_unlock(&trace_types_lock);
6746 }
6747 
6748 static void add_to_clear_hash_list(struct list_head *clear_list,
6749 				   struct dyn_ftrace *rec)
6750 {
6751 	struct ftrace_init_func *func;
6752 
6753 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6754 	if (!func) {
6755 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6756 		return;
6757 	}
6758 
6759 	func->ip = rec->ip;
6760 	list_add(&func->list, clear_list);
6761 }
6762 
6763 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6764 {
6765 	unsigned long start = (unsigned long)(start_ptr);
6766 	unsigned long end = (unsigned long)(end_ptr);
6767 	struct ftrace_page **last_pg = &ftrace_pages_start;
6768 	struct ftrace_page *pg;
6769 	struct dyn_ftrace *rec;
6770 	struct dyn_ftrace key;
6771 	struct ftrace_mod_map *mod_map = NULL;
6772 	struct ftrace_init_func *func, *func_next;
6773 	struct list_head clear_hash;
6774 
6775 	INIT_LIST_HEAD(&clear_hash);
6776 
6777 	key.ip = start;
6778 	key.flags = end;	/* overload flags, as it is unsigned long */
6779 
6780 	mutex_lock(&ftrace_lock);
6781 
6782 	/*
6783 	 * If we are freeing module init memory, then check if
6784 	 * any tracer is active. If so, we need to save a mapping of
6785 	 * the module functions being freed with the address.
6786 	 */
6787 	if (mod && ftrace_ops_list != &ftrace_list_end)
6788 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6789 
6790 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6791 		if (end < pg->records[0].ip ||
6792 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6793 			continue;
6794  again:
6795 		rec = bsearch(&key, pg->records, pg->index,
6796 			      sizeof(struct dyn_ftrace),
6797 			      ftrace_cmp_recs);
6798 		if (!rec)
6799 			continue;
6800 
6801 		/* rec will be cleared from hashes after ftrace_lock unlock */
6802 		add_to_clear_hash_list(&clear_hash, rec);
6803 
6804 		if (mod_map)
6805 			save_ftrace_mod_rec(mod_map, rec);
6806 
6807 		pg->index--;
6808 		ftrace_update_tot_cnt--;
6809 		if (!pg->index) {
6810 			*last_pg = pg->next;
6811 			if (pg->records) {
6812 				free_pages((unsigned long)pg->records, pg->order);
6813 				ftrace_number_of_pages -= 1 << pg->order;
6814 			}
6815 			ftrace_number_of_groups--;
6816 			kfree(pg);
6817 			pg = container_of(last_pg, struct ftrace_page, next);
6818 			if (!(*last_pg))
6819 				ftrace_pages = pg;
6820 			continue;
6821 		}
6822 		memmove(rec, rec + 1,
6823 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6824 		/* More than one function may be in this block */
6825 		goto again;
6826 	}
6827 	mutex_unlock(&ftrace_lock);
6828 
6829 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6830 		clear_func_from_hashes(func);
6831 		kfree(func);
6832 	}
6833 }
6834 
6835 void __init ftrace_free_init_mem(void)
6836 {
6837 	void *start = (void *)(&__init_begin);
6838 	void *end = (void *)(&__init_end);
6839 
6840 	ftrace_free_mem(NULL, start, end);
6841 }
6842 
6843 void __init ftrace_init(void)
6844 {
6845 	extern unsigned long __start_mcount_loc[];
6846 	extern unsigned long __stop_mcount_loc[];
6847 	unsigned long count, flags;
6848 	int ret;
6849 
6850 	local_irq_save(flags);
6851 	ret = ftrace_dyn_arch_init();
6852 	local_irq_restore(flags);
6853 	if (ret)
6854 		goto failed;
6855 
6856 	count = __stop_mcount_loc - __start_mcount_loc;
6857 	if (!count) {
6858 		pr_info("ftrace: No functions to be traced?\n");
6859 		goto failed;
6860 	}
6861 
6862 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6863 		count, count / ENTRIES_PER_PAGE + 1);
6864 
6865 	last_ftrace_enabled = ftrace_enabled = 1;
6866 
6867 	ret = ftrace_process_locs(NULL,
6868 				  __start_mcount_loc,
6869 				  __stop_mcount_loc);
6870 
6871 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6872 		ftrace_number_of_pages, ftrace_number_of_groups);
6873 
6874 	set_ftrace_early_filters();
6875 
6876 	return;
6877  failed:
6878 	ftrace_disabled = 1;
6879 }
6880 
6881 /* Do nothing if arch does not support this */
6882 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6883 {
6884 }
6885 
6886 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6887 {
6888 	unsigned long trampoline = ops->trampoline;
6889 
6890 	arch_ftrace_update_trampoline(ops);
6891 	if (ops->trampoline && ops->trampoline != trampoline &&
6892 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6893 		/* Add to kallsyms before the perf events */
6894 		ftrace_add_trampoline_to_kallsyms(ops);
6895 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6896 				   ops->trampoline, ops->trampoline_size, false,
6897 				   FTRACE_TRAMPOLINE_SYM);
6898 		/*
6899 		 * Record the perf text poke event after the ksymbol register
6900 		 * event.
6901 		 */
6902 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6903 				     (void *)ops->trampoline,
6904 				     ops->trampoline_size);
6905 	}
6906 }
6907 
6908 void ftrace_init_trace_array(struct trace_array *tr)
6909 {
6910 	INIT_LIST_HEAD(&tr->func_probes);
6911 	INIT_LIST_HEAD(&tr->mod_trace);
6912 	INIT_LIST_HEAD(&tr->mod_notrace);
6913 }
6914 #else
6915 
6916 struct ftrace_ops global_ops = {
6917 	.func			= ftrace_stub,
6918 	.flags			= FTRACE_OPS_FL_INITIALIZED |
6919 				  FTRACE_OPS_FL_PID,
6920 };
6921 
6922 static int __init ftrace_nodyn_init(void)
6923 {
6924 	ftrace_enabled = 1;
6925 	return 0;
6926 }
6927 core_initcall(ftrace_nodyn_init);
6928 
6929 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6930 static inline void ftrace_startup_enable(int command) { }
6931 static inline void ftrace_startup_all(int command) { }
6932 
6933 # define ftrace_startup_sysctl()	do { } while (0)
6934 # define ftrace_shutdown_sysctl()	do { } while (0)
6935 
6936 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6937 {
6938 }
6939 
6940 #endif /* CONFIG_DYNAMIC_FTRACE */
6941 
6942 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6943 {
6944 	tr->ops = &global_ops;
6945 	tr->ops->private = tr;
6946 	ftrace_init_trace_array(tr);
6947 }
6948 
6949 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6950 {
6951 	/* If we filter on pids, update to use the pid function */
6952 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6953 		if (WARN_ON(tr->ops->func != ftrace_stub))
6954 			printk("ftrace ops had %pS for function\n",
6955 			       tr->ops->func);
6956 	}
6957 	tr->ops->func = func;
6958 	tr->ops->private = tr;
6959 }
6960 
6961 void ftrace_reset_array_ops(struct trace_array *tr)
6962 {
6963 	tr->ops->func = ftrace_stub;
6964 }
6965 
6966 static nokprobe_inline void
6967 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6968 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
6969 {
6970 	struct pt_regs *regs = ftrace_get_regs(fregs);
6971 	struct ftrace_ops *op;
6972 	int bit;
6973 
6974 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
6975 	if (bit < 0)
6976 		return;
6977 
6978 	/*
6979 	 * Some of the ops may be dynamically allocated,
6980 	 * they must be freed after a synchronize_rcu().
6981 	 */
6982 	preempt_disable_notrace();
6983 
6984 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6985 		/* Stub functions don't need to be called nor tested */
6986 		if (op->flags & FTRACE_OPS_FL_STUB)
6987 			continue;
6988 		/*
6989 		 * Check the following for each ops before calling their func:
6990 		 *  if RCU flag is set, then rcu_is_watching() must be true
6991 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6992 		 *                          must be false
6993 		 *  Otherwise test if the ip matches the ops filter
6994 		 *
6995 		 * If any of the above fails then the op->func() is not executed.
6996 		 */
6997 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6998 		    ftrace_ops_test(op, ip, regs)) {
6999 			if (FTRACE_WARN_ON(!op->func)) {
7000 				pr_warn("op=%p %pS\n", op, op);
7001 				goto out;
7002 			}
7003 			op->func(ip, parent_ip, op, fregs);
7004 		}
7005 	} while_for_each_ftrace_op(op);
7006 out:
7007 	preempt_enable_notrace();
7008 	trace_clear_recursion(bit);
7009 }
7010 
7011 /*
7012  * Some archs only support passing ip and parent_ip. Even though
7013  * the list function ignores the op parameter, we do not want any
7014  * C side effects, where a function is called without the caller
7015  * sending a third parameter.
7016  * Archs are to support both the regs and ftrace_ops at the same time.
7017  * If they support ftrace_ops, it is assumed they support regs.
7018  * If call backs want to use regs, they must either check for regs
7019  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7020  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7021  * An architecture can pass partial regs with ftrace_ops and still
7022  * set the ARCH_SUPPORTS_FTRACE_OPS.
7023  */
7024 #if ARCH_SUPPORTS_FTRACE_OPS
7025 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7026 				 struct ftrace_ops *op, struct ftrace_regs *fregs)
7027 {
7028 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7029 }
7030 NOKPROBE_SYMBOL(ftrace_ops_list_func);
7031 #else
7032 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
7033 {
7034 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7035 }
7036 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
7037 #endif
7038 
7039 /*
7040  * If there's only one function registered but it does not support
7041  * recursion, needs RCU protection and/or requires per cpu handling, then
7042  * this function will be called by the mcount trampoline.
7043  */
7044 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7045 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7046 {
7047 	int bit;
7048 
7049 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
7050 	if (bit < 0)
7051 		return;
7052 
7053 	preempt_disable_notrace();
7054 
7055 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7056 		op->func(ip, parent_ip, op, fregs);
7057 
7058 	preempt_enable_notrace();
7059 	trace_clear_recursion(bit);
7060 }
7061 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7062 
7063 /**
7064  * ftrace_ops_get_func - get the function a trampoline should call
7065  * @ops: the ops to get the function for
7066  *
7067  * Normally the mcount trampoline will call the ops->func, but there
7068  * are times that it should not. For example, if the ops does not
7069  * have its own recursion protection, then it should call the
7070  * ftrace_ops_assist_func() instead.
7071  *
7072  * Returns the function that the trampoline should call for @ops.
7073  */
7074 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7075 {
7076 	/*
7077 	 * If the function does not handle recursion or needs to be RCU safe,
7078 	 * then we need to call the assist handler.
7079 	 */
7080 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7081 			  FTRACE_OPS_FL_RCU))
7082 		return ftrace_ops_assist_func;
7083 
7084 	return ops->func;
7085 }
7086 
7087 static void
7088 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7089 		    struct task_struct *prev, struct task_struct *next)
7090 {
7091 	struct trace_array *tr = data;
7092 	struct trace_pid_list *pid_list;
7093 	struct trace_pid_list *no_pid_list;
7094 
7095 	pid_list = rcu_dereference_sched(tr->function_pids);
7096 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7097 
7098 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7099 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7100 			       FTRACE_PID_IGNORE);
7101 	else
7102 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7103 			       next->pid);
7104 }
7105 
7106 static void
7107 ftrace_pid_follow_sched_process_fork(void *data,
7108 				     struct task_struct *self,
7109 				     struct task_struct *task)
7110 {
7111 	struct trace_pid_list *pid_list;
7112 	struct trace_array *tr = data;
7113 
7114 	pid_list = rcu_dereference_sched(tr->function_pids);
7115 	trace_filter_add_remove_task(pid_list, self, task);
7116 
7117 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7118 	trace_filter_add_remove_task(pid_list, self, task);
7119 }
7120 
7121 static void
7122 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7123 {
7124 	struct trace_pid_list *pid_list;
7125 	struct trace_array *tr = data;
7126 
7127 	pid_list = rcu_dereference_sched(tr->function_pids);
7128 	trace_filter_add_remove_task(pid_list, NULL, task);
7129 
7130 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7131 	trace_filter_add_remove_task(pid_list, NULL, task);
7132 }
7133 
7134 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7135 {
7136 	if (enable) {
7137 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7138 						  tr);
7139 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7140 						  tr);
7141 	} else {
7142 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7143 						    tr);
7144 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7145 						    tr);
7146 	}
7147 }
7148 
7149 static void clear_ftrace_pids(struct trace_array *tr, int type)
7150 {
7151 	struct trace_pid_list *pid_list;
7152 	struct trace_pid_list *no_pid_list;
7153 	int cpu;
7154 
7155 	pid_list = rcu_dereference_protected(tr->function_pids,
7156 					     lockdep_is_held(&ftrace_lock));
7157 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7158 						lockdep_is_held(&ftrace_lock));
7159 
7160 	/* Make sure there's something to do */
7161 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7162 		return;
7163 
7164 	/* See if the pids still need to be checked after this */
7165 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7166 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7167 		for_each_possible_cpu(cpu)
7168 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7169 	}
7170 
7171 	if (type & TRACE_PIDS)
7172 		rcu_assign_pointer(tr->function_pids, NULL);
7173 
7174 	if (type & TRACE_NO_PIDS)
7175 		rcu_assign_pointer(tr->function_no_pids, NULL);
7176 
7177 	/* Wait till all users are no longer using pid filtering */
7178 	synchronize_rcu();
7179 
7180 	if ((type & TRACE_PIDS) && pid_list)
7181 		trace_free_pid_list(pid_list);
7182 
7183 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7184 		trace_free_pid_list(no_pid_list);
7185 }
7186 
7187 void ftrace_clear_pids(struct trace_array *tr)
7188 {
7189 	mutex_lock(&ftrace_lock);
7190 
7191 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7192 
7193 	mutex_unlock(&ftrace_lock);
7194 }
7195 
7196 static void ftrace_pid_reset(struct trace_array *tr, int type)
7197 {
7198 	mutex_lock(&ftrace_lock);
7199 	clear_ftrace_pids(tr, type);
7200 
7201 	ftrace_update_pid_func();
7202 	ftrace_startup_all(0);
7203 
7204 	mutex_unlock(&ftrace_lock);
7205 }
7206 
7207 /* Greater than any max PID */
7208 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7209 
7210 static void *fpid_start(struct seq_file *m, loff_t *pos)
7211 	__acquires(RCU)
7212 {
7213 	struct trace_pid_list *pid_list;
7214 	struct trace_array *tr = m->private;
7215 
7216 	mutex_lock(&ftrace_lock);
7217 	rcu_read_lock_sched();
7218 
7219 	pid_list = rcu_dereference_sched(tr->function_pids);
7220 
7221 	if (!pid_list)
7222 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7223 
7224 	return trace_pid_start(pid_list, pos);
7225 }
7226 
7227 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7228 {
7229 	struct trace_array *tr = m->private;
7230 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7231 
7232 	if (v == FTRACE_NO_PIDS) {
7233 		(*pos)++;
7234 		return NULL;
7235 	}
7236 	return trace_pid_next(pid_list, v, pos);
7237 }
7238 
7239 static void fpid_stop(struct seq_file *m, void *p)
7240 	__releases(RCU)
7241 {
7242 	rcu_read_unlock_sched();
7243 	mutex_unlock(&ftrace_lock);
7244 }
7245 
7246 static int fpid_show(struct seq_file *m, void *v)
7247 {
7248 	if (v == FTRACE_NO_PIDS) {
7249 		seq_puts(m, "no pid\n");
7250 		return 0;
7251 	}
7252 
7253 	return trace_pid_show(m, v);
7254 }
7255 
7256 static const struct seq_operations ftrace_pid_sops = {
7257 	.start = fpid_start,
7258 	.next = fpid_next,
7259 	.stop = fpid_stop,
7260 	.show = fpid_show,
7261 };
7262 
7263 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7264 	__acquires(RCU)
7265 {
7266 	struct trace_pid_list *pid_list;
7267 	struct trace_array *tr = m->private;
7268 
7269 	mutex_lock(&ftrace_lock);
7270 	rcu_read_lock_sched();
7271 
7272 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7273 
7274 	if (!pid_list)
7275 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7276 
7277 	return trace_pid_start(pid_list, pos);
7278 }
7279 
7280 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7281 {
7282 	struct trace_array *tr = m->private;
7283 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7284 
7285 	if (v == FTRACE_NO_PIDS) {
7286 		(*pos)++;
7287 		return NULL;
7288 	}
7289 	return trace_pid_next(pid_list, v, pos);
7290 }
7291 
7292 static const struct seq_operations ftrace_no_pid_sops = {
7293 	.start = fnpid_start,
7294 	.next = fnpid_next,
7295 	.stop = fpid_stop,
7296 	.show = fpid_show,
7297 };
7298 
7299 static int pid_open(struct inode *inode, struct file *file, int type)
7300 {
7301 	const struct seq_operations *seq_ops;
7302 	struct trace_array *tr = inode->i_private;
7303 	struct seq_file *m;
7304 	int ret = 0;
7305 
7306 	ret = tracing_check_open_get_tr(tr);
7307 	if (ret)
7308 		return ret;
7309 
7310 	if ((file->f_mode & FMODE_WRITE) &&
7311 	    (file->f_flags & O_TRUNC))
7312 		ftrace_pid_reset(tr, type);
7313 
7314 	switch (type) {
7315 	case TRACE_PIDS:
7316 		seq_ops = &ftrace_pid_sops;
7317 		break;
7318 	case TRACE_NO_PIDS:
7319 		seq_ops = &ftrace_no_pid_sops;
7320 		break;
7321 	default:
7322 		trace_array_put(tr);
7323 		WARN_ON_ONCE(1);
7324 		return -EINVAL;
7325 	}
7326 
7327 	ret = seq_open(file, seq_ops);
7328 	if (ret < 0) {
7329 		trace_array_put(tr);
7330 	} else {
7331 		m = file->private_data;
7332 		/* copy tr over to seq ops */
7333 		m->private = tr;
7334 	}
7335 
7336 	return ret;
7337 }
7338 
7339 static int
7340 ftrace_pid_open(struct inode *inode, struct file *file)
7341 {
7342 	return pid_open(inode, file, TRACE_PIDS);
7343 }
7344 
7345 static int
7346 ftrace_no_pid_open(struct inode *inode, struct file *file)
7347 {
7348 	return pid_open(inode, file, TRACE_NO_PIDS);
7349 }
7350 
7351 static void ignore_task_cpu(void *data)
7352 {
7353 	struct trace_array *tr = data;
7354 	struct trace_pid_list *pid_list;
7355 	struct trace_pid_list *no_pid_list;
7356 
7357 	/*
7358 	 * This function is called by on_each_cpu() while the
7359 	 * event_mutex is held.
7360 	 */
7361 	pid_list = rcu_dereference_protected(tr->function_pids,
7362 					     mutex_is_locked(&ftrace_lock));
7363 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7364 						mutex_is_locked(&ftrace_lock));
7365 
7366 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7367 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7368 			       FTRACE_PID_IGNORE);
7369 	else
7370 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7371 			       current->pid);
7372 }
7373 
7374 static ssize_t
7375 pid_write(struct file *filp, const char __user *ubuf,
7376 	  size_t cnt, loff_t *ppos, int type)
7377 {
7378 	struct seq_file *m = filp->private_data;
7379 	struct trace_array *tr = m->private;
7380 	struct trace_pid_list *filtered_pids;
7381 	struct trace_pid_list *other_pids;
7382 	struct trace_pid_list *pid_list;
7383 	ssize_t ret;
7384 
7385 	if (!cnt)
7386 		return 0;
7387 
7388 	mutex_lock(&ftrace_lock);
7389 
7390 	switch (type) {
7391 	case TRACE_PIDS:
7392 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7393 					     lockdep_is_held(&ftrace_lock));
7394 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7395 					     lockdep_is_held(&ftrace_lock));
7396 		break;
7397 	case TRACE_NO_PIDS:
7398 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7399 					     lockdep_is_held(&ftrace_lock));
7400 		other_pids = rcu_dereference_protected(tr->function_pids,
7401 					     lockdep_is_held(&ftrace_lock));
7402 		break;
7403 	default:
7404 		ret = -EINVAL;
7405 		WARN_ON_ONCE(1);
7406 		goto out;
7407 	}
7408 
7409 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7410 	if (ret < 0)
7411 		goto out;
7412 
7413 	switch (type) {
7414 	case TRACE_PIDS:
7415 		rcu_assign_pointer(tr->function_pids, pid_list);
7416 		break;
7417 	case TRACE_NO_PIDS:
7418 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7419 		break;
7420 	}
7421 
7422 
7423 	if (filtered_pids) {
7424 		synchronize_rcu();
7425 		trace_free_pid_list(filtered_pids);
7426 	} else if (pid_list && !other_pids) {
7427 		/* Register a probe to set whether to ignore the tracing of a task */
7428 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7429 	}
7430 
7431 	/*
7432 	 * Ignoring of pids is done at task switch. But we have to
7433 	 * check for those tasks that are currently running.
7434 	 * Always do this in case a pid was appended or removed.
7435 	 */
7436 	on_each_cpu(ignore_task_cpu, tr, 1);
7437 
7438 	ftrace_update_pid_func();
7439 	ftrace_startup_all(0);
7440  out:
7441 	mutex_unlock(&ftrace_lock);
7442 
7443 	if (ret > 0)
7444 		*ppos += ret;
7445 
7446 	return ret;
7447 }
7448 
7449 static ssize_t
7450 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7451 		 size_t cnt, loff_t *ppos)
7452 {
7453 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7454 }
7455 
7456 static ssize_t
7457 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7458 		    size_t cnt, loff_t *ppos)
7459 {
7460 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7461 }
7462 
7463 static int
7464 ftrace_pid_release(struct inode *inode, struct file *file)
7465 {
7466 	struct trace_array *tr = inode->i_private;
7467 
7468 	trace_array_put(tr);
7469 
7470 	return seq_release(inode, file);
7471 }
7472 
7473 static const struct file_operations ftrace_pid_fops = {
7474 	.open		= ftrace_pid_open,
7475 	.write		= ftrace_pid_write,
7476 	.read		= seq_read,
7477 	.llseek		= tracing_lseek,
7478 	.release	= ftrace_pid_release,
7479 };
7480 
7481 static const struct file_operations ftrace_no_pid_fops = {
7482 	.open		= ftrace_no_pid_open,
7483 	.write		= ftrace_no_pid_write,
7484 	.read		= seq_read,
7485 	.llseek		= tracing_lseek,
7486 	.release	= ftrace_pid_release,
7487 };
7488 
7489 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7490 {
7491 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7492 			    tr, &ftrace_pid_fops);
7493 	trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7494 			    tr, &ftrace_no_pid_fops);
7495 }
7496 
7497 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7498 					 struct dentry *d_tracer)
7499 {
7500 	/* Only the top level directory has the dyn_tracefs and profile */
7501 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7502 
7503 	ftrace_init_dyn_tracefs(d_tracer);
7504 	ftrace_profile_tracefs(d_tracer);
7505 }
7506 
7507 /**
7508  * ftrace_kill - kill ftrace
7509  *
7510  * This function should be used by panic code. It stops ftrace
7511  * but in a not so nice way. If you need to simply kill ftrace
7512  * from a non-atomic section, use ftrace_kill.
7513  */
7514 void ftrace_kill(void)
7515 {
7516 	ftrace_disabled = 1;
7517 	ftrace_enabled = 0;
7518 	ftrace_trace_function = ftrace_stub;
7519 }
7520 
7521 /**
7522  * Test if ftrace is dead or not.
7523  */
7524 int ftrace_is_dead(void)
7525 {
7526 	return ftrace_disabled;
7527 }
7528 
7529 /**
7530  * register_ftrace_function - register a function for profiling
7531  * @ops - ops structure that holds the function for profiling.
7532  *
7533  * Register a function to be called by all functions in the
7534  * kernel.
7535  *
7536  * Note: @ops->func and all the functions it calls must be labeled
7537  *       with "notrace", otherwise it will go into a
7538  *       recursive loop.
7539  */
7540 int register_ftrace_function(struct ftrace_ops *ops)
7541 {
7542 	int ret = -1;
7543 
7544 	ftrace_ops_init(ops);
7545 
7546 	mutex_lock(&ftrace_lock);
7547 
7548 	ret = ftrace_startup(ops, 0);
7549 
7550 	mutex_unlock(&ftrace_lock);
7551 
7552 	return ret;
7553 }
7554 EXPORT_SYMBOL_GPL(register_ftrace_function);
7555 
7556 /**
7557  * unregister_ftrace_function - unregister a function for profiling.
7558  * @ops - ops structure that holds the function to unregister
7559  *
7560  * Unregister a function that was added to be called by ftrace profiling.
7561  */
7562 int unregister_ftrace_function(struct ftrace_ops *ops)
7563 {
7564 	int ret;
7565 
7566 	mutex_lock(&ftrace_lock);
7567 	ret = ftrace_shutdown(ops, 0);
7568 	mutex_unlock(&ftrace_lock);
7569 
7570 	return ret;
7571 }
7572 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7573 
7574 static bool is_permanent_ops_registered(void)
7575 {
7576 	struct ftrace_ops *op;
7577 
7578 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7579 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7580 			return true;
7581 	} while_for_each_ftrace_op(op);
7582 
7583 	return false;
7584 }
7585 
7586 int
7587 ftrace_enable_sysctl(struct ctl_table *table, int write,
7588 		     void *buffer, size_t *lenp, loff_t *ppos)
7589 {
7590 	int ret = -ENODEV;
7591 
7592 	mutex_lock(&ftrace_lock);
7593 
7594 	if (unlikely(ftrace_disabled))
7595 		goto out;
7596 
7597 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7598 
7599 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7600 		goto out;
7601 
7602 	if (ftrace_enabled) {
7603 
7604 		/* we are starting ftrace again */
7605 		if (rcu_dereference_protected(ftrace_ops_list,
7606 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7607 			update_ftrace_function();
7608 
7609 		ftrace_startup_sysctl();
7610 
7611 	} else {
7612 		if (is_permanent_ops_registered()) {
7613 			ftrace_enabled = true;
7614 			ret = -EBUSY;
7615 			goto out;
7616 		}
7617 
7618 		/* stopping ftrace calls (just send to ftrace_stub) */
7619 		ftrace_trace_function = ftrace_stub;
7620 
7621 		ftrace_shutdown_sysctl();
7622 	}
7623 
7624 	last_ftrace_enabled = !!ftrace_enabled;
7625  out:
7626 	mutex_unlock(&ftrace_lock);
7627 	return ret;
7628 }
7629