xref: /openbmc/linux/kernel/trace/ftrace.c (revision 8e7a49e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS
129 /*
130  * Stub used to invoke the list ops without requiring a separate trampoline.
131  */
132 const struct ftrace_ops ftrace_list_ops = {
133 	.func	= ftrace_ops_list_func,
134 	.flags	= FTRACE_OPS_FL_STUB,
135 };
136 
137 static void ftrace_ops_nop_func(unsigned long ip, unsigned long parent_ip,
138 				struct ftrace_ops *op,
139 				struct ftrace_regs *fregs)
140 {
141 	/* do nothing */
142 }
143 
144 /*
145  * Stub used when a call site is disabled. May be called transiently by threads
146  * which have made it into ftrace_caller but haven't yet recovered the ops at
147  * the point the call site is disabled.
148  */
149 const struct ftrace_ops ftrace_nop_ops = {
150 	.func	= ftrace_ops_nop_func,
151 	.flags  = FTRACE_OPS_FL_STUB,
152 };
153 #endif
154 
155 static inline void ftrace_ops_init(struct ftrace_ops *ops)
156 {
157 #ifdef CONFIG_DYNAMIC_FTRACE
158 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
159 		mutex_init(&ops->local_hash.regex_lock);
160 		ops->func_hash = &ops->local_hash;
161 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
162 	}
163 #endif
164 }
165 
166 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
167 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
168 {
169 	struct trace_array *tr = op->private;
170 	int pid;
171 
172 	if (tr) {
173 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
174 		if (pid == FTRACE_PID_IGNORE)
175 			return;
176 		if (pid != FTRACE_PID_TRACE &&
177 		    pid != current->pid)
178 			return;
179 	}
180 
181 	op->saved_func(ip, parent_ip, op, fregs);
182 }
183 
184 static void ftrace_sync_ipi(void *data)
185 {
186 	/* Probably not needed, but do it anyway */
187 	smp_rmb();
188 }
189 
190 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
191 {
192 	/*
193 	 * If this is a dynamic or RCU ops, or we force list func,
194 	 * then it needs to call the list anyway.
195 	 */
196 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
197 	    FTRACE_FORCE_LIST_FUNC)
198 		return ftrace_ops_list_func;
199 
200 	return ftrace_ops_get_func(ops);
201 }
202 
203 static void update_ftrace_function(void)
204 {
205 	ftrace_func_t func;
206 
207 	/*
208 	 * Prepare the ftrace_ops that the arch callback will use.
209 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
210 	 * will point to the ops we want.
211 	 */
212 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
213 						lockdep_is_held(&ftrace_lock));
214 
215 	/* If there's no ftrace_ops registered, just call the stub function */
216 	if (set_function_trace_op == &ftrace_list_end) {
217 		func = ftrace_stub;
218 
219 	/*
220 	 * If we are at the end of the list and this ops is
221 	 * recursion safe and not dynamic and the arch supports passing ops,
222 	 * then have the mcount trampoline call the function directly.
223 	 */
224 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
225 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
226 		func = ftrace_ops_get_list_func(ftrace_ops_list);
227 
228 	} else {
229 		/* Just use the default ftrace_ops */
230 		set_function_trace_op = &ftrace_list_end;
231 		func = ftrace_ops_list_func;
232 	}
233 
234 	update_function_graph_func();
235 
236 	/* If there's no change, then do nothing more here */
237 	if (ftrace_trace_function == func)
238 		return;
239 
240 	/*
241 	 * If we are using the list function, it doesn't care
242 	 * about the function_trace_ops.
243 	 */
244 	if (func == ftrace_ops_list_func) {
245 		ftrace_trace_function = func;
246 		/*
247 		 * Don't even bother setting function_trace_ops,
248 		 * it would be racy to do so anyway.
249 		 */
250 		return;
251 	}
252 
253 #ifndef CONFIG_DYNAMIC_FTRACE
254 	/*
255 	 * For static tracing, we need to be a bit more careful.
256 	 * The function change takes affect immediately. Thus,
257 	 * we need to coordinate the setting of the function_trace_ops
258 	 * with the setting of the ftrace_trace_function.
259 	 *
260 	 * Set the function to the list ops, which will call the
261 	 * function we want, albeit indirectly, but it handles the
262 	 * ftrace_ops and doesn't depend on function_trace_op.
263 	 */
264 	ftrace_trace_function = ftrace_ops_list_func;
265 	/*
266 	 * Make sure all CPUs see this. Yes this is slow, but static
267 	 * tracing is slow and nasty to have enabled.
268 	 */
269 	synchronize_rcu_tasks_rude();
270 	/* Now all cpus are using the list ops. */
271 	function_trace_op = set_function_trace_op;
272 	/* Make sure the function_trace_op is visible on all CPUs */
273 	smp_wmb();
274 	/* Nasty way to force a rmb on all cpus */
275 	smp_call_function(ftrace_sync_ipi, NULL, 1);
276 	/* OK, we are all set to update the ftrace_trace_function now! */
277 #endif /* !CONFIG_DYNAMIC_FTRACE */
278 
279 	ftrace_trace_function = func;
280 }
281 
282 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
283 			   struct ftrace_ops *ops)
284 {
285 	rcu_assign_pointer(ops->next, *list);
286 
287 	/*
288 	 * We are entering ops into the list but another
289 	 * CPU might be walking that list. We need to make sure
290 	 * the ops->next pointer is valid before another CPU sees
291 	 * the ops pointer included into the list.
292 	 */
293 	rcu_assign_pointer(*list, ops);
294 }
295 
296 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
297 			     struct ftrace_ops *ops)
298 {
299 	struct ftrace_ops **p;
300 
301 	/*
302 	 * If we are removing the last function, then simply point
303 	 * to the ftrace_stub.
304 	 */
305 	if (rcu_dereference_protected(*list,
306 			lockdep_is_held(&ftrace_lock)) == ops &&
307 	    rcu_dereference_protected(ops->next,
308 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
309 		*list = &ftrace_list_end;
310 		return 0;
311 	}
312 
313 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
314 		if (*p == ops)
315 			break;
316 
317 	if (*p != ops)
318 		return -1;
319 
320 	*p = (*p)->next;
321 	return 0;
322 }
323 
324 static void ftrace_update_trampoline(struct ftrace_ops *ops);
325 
326 int __register_ftrace_function(struct ftrace_ops *ops)
327 {
328 	if (ops->flags & FTRACE_OPS_FL_DELETED)
329 		return -EINVAL;
330 
331 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
332 		return -EBUSY;
333 
334 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
335 	/*
336 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
337 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
338 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
339 	 */
340 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
341 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
342 		return -EINVAL;
343 
344 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
345 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
346 #endif
347 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
348 		return -EBUSY;
349 
350 	if (!is_kernel_core_data((unsigned long)ops))
351 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
352 
353 	add_ftrace_ops(&ftrace_ops_list, ops);
354 
355 	/* Always save the function, and reset at unregistering */
356 	ops->saved_func = ops->func;
357 
358 	if (ftrace_pids_enabled(ops))
359 		ops->func = ftrace_pid_func;
360 
361 	ftrace_update_trampoline(ops);
362 
363 	if (ftrace_enabled)
364 		update_ftrace_function();
365 
366 	return 0;
367 }
368 
369 int __unregister_ftrace_function(struct ftrace_ops *ops)
370 {
371 	int ret;
372 
373 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
374 		return -EBUSY;
375 
376 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
377 
378 	if (ret < 0)
379 		return ret;
380 
381 	if (ftrace_enabled)
382 		update_ftrace_function();
383 
384 	ops->func = ops->saved_func;
385 
386 	return 0;
387 }
388 
389 static void ftrace_update_pid_func(void)
390 {
391 	struct ftrace_ops *op;
392 
393 	/* Only do something if we are tracing something */
394 	if (ftrace_trace_function == ftrace_stub)
395 		return;
396 
397 	do_for_each_ftrace_op(op, ftrace_ops_list) {
398 		if (op->flags & FTRACE_OPS_FL_PID) {
399 			op->func = ftrace_pids_enabled(op) ?
400 				ftrace_pid_func : op->saved_func;
401 			ftrace_update_trampoline(op);
402 		}
403 	} while_for_each_ftrace_op(op);
404 
405 	update_ftrace_function();
406 }
407 
408 #ifdef CONFIG_FUNCTION_PROFILER
409 struct ftrace_profile {
410 	struct hlist_node		node;
411 	unsigned long			ip;
412 	unsigned long			counter;
413 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
414 	unsigned long long		time;
415 	unsigned long long		time_squared;
416 #endif
417 };
418 
419 struct ftrace_profile_page {
420 	struct ftrace_profile_page	*next;
421 	unsigned long			index;
422 	struct ftrace_profile		records[];
423 };
424 
425 struct ftrace_profile_stat {
426 	atomic_t			disabled;
427 	struct hlist_head		*hash;
428 	struct ftrace_profile_page	*pages;
429 	struct ftrace_profile_page	*start;
430 	struct tracer_stat		stat;
431 };
432 
433 #define PROFILE_RECORDS_SIZE						\
434 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
435 
436 #define PROFILES_PER_PAGE					\
437 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
438 
439 static int ftrace_profile_enabled __read_mostly;
440 
441 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
442 static DEFINE_MUTEX(ftrace_profile_lock);
443 
444 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
445 
446 #define FTRACE_PROFILE_HASH_BITS 10
447 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
448 
449 static void *
450 function_stat_next(void *v, int idx)
451 {
452 	struct ftrace_profile *rec = v;
453 	struct ftrace_profile_page *pg;
454 
455 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
456 
457  again:
458 	if (idx != 0)
459 		rec++;
460 
461 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
462 		pg = pg->next;
463 		if (!pg)
464 			return NULL;
465 		rec = &pg->records[0];
466 		if (!rec->counter)
467 			goto again;
468 	}
469 
470 	return rec;
471 }
472 
473 static void *function_stat_start(struct tracer_stat *trace)
474 {
475 	struct ftrace_profile_stat *stat =
476 		container_of(trace, struct ftrace_profile_stat, stat);
477 
478 	if (!stat || !stat->start)
479 		return NULL;
480 
481 	return function_stat_next(&stat->start->records[0], 0);
482 }
483 
484 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
485 /* function graph compares on total time */
486 static int function_stat_cmp(const void *p1, const void *p2)
487 {
488 	const struct ftrace_profile *a = p1;
489 	const struct ftrace_profile *b = p2;
490 
491 	if (a->time < b->time)
492 		return -1;
493 	if (a->time > b->time)
494 		return 1;
495 	else
496 		return 0;
497 }
498 #else
499 /* not function graph compares against hits */
500 static int function_stat_cmp(const void *p1, const void *p2)
501 {
502 	const struct ftrace_profile *a = p1;
503 	const struct ftrace_profile *b = p2;
504 
505 	if (a->counter < b->counter)
506 		return -1;
507 	if (a->counter > b->counter)
508 		return 1;
509 	else
510 		return 0;
511 }
512 #endif
513 
514 static int function_stat_headers(struct seq_file *m)
515 {
516 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
517 	seq_puts(m, "  Function                               "
518 		 "Hit    Time            Avg             s^2\n"
519 		    "  --------                               "
520 		 "---    ----            ---             ---\n");
521 #else
522 	seq_puts(m, "  Function                               Hit\n"
523 		    "  --------                               ---\n");
524 #endif
525 	return 0;
526 }
527 
528 static int function_stat_show(struct seq_file *m, void *v)
529 {
530 	struct ftrace_profile *rec = v;
531 	char str[KSYM_SYMBOL_LEN];
532 	int ret = 0;
533 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
534 	static struct trace_seq s;
535 	unsigned long long avg;
536 	unsigned long long stddev;
537 #endif
538 	mutex_lock(&ftrace_profile_lock);
539 
540 	/* we raced with function_profile_reset() */
541 	if (unlikely(rec->counter == 0)) {
542 		ret = -EBUSY;
543 		goto out;
544 	}
545 
546 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
547 	avg = div64_ul(rec->time, rec->counter);
548 	if (tracing_thresh && (avg < tracing_thresh))
549 		goto out;
550 #endif
551 
552 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
553 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
554 
555 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
556 	seq_puts(m, "    ");
557 
558 	/* Sample standard deviation (s^2) */
559 	if (rec->counter <= 1)
560 		stddev = 0;
561 	else {
562 		/*
563 		 * Apply Welford's method:
564 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
565 		 */
566 		stddev = rec->counter * rec->time_squared -
567 			 rec->time * rec->time;
568 
569 		/*
570 		 * Divide only 1000 for ns^2 -> us^2 conversion.
571 		 * trace_print_graph_duration will divide 1000 again.
572 		 */
573 		stddev = div64_ul(stddev,
574 				  rec->counter * (rec->counter - 1) * 1000);
575 	}
576 
577 	trace_seq_init(&s);
578 	trace_print_graph_duration(rec->time, &s);
579 	trace_seq_puts(&s, "    ");
580 	trace_print_graph_duration(avg, &s);
581 	trace_seq_puts(&s, "    ");
582 	trace_print_graph_duration(stddev, &s);
583 	trace_print_seq(m, &s);
584 #endif
585 	seq_putc(m, '\n');
586 out:
587 	mutex_unlock(&ftrace_profile_lock);
588 
589 	return ret;
590 }
591 
592 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
593 {
594 	struct ftrace_profile_page *pg;
595 
596 	pg = stat->pages = stat->start;
597 
598 	while (pg) {
599 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
600 		pg->index = 0;
601 		pg = pg->next;
602 	}
603 
604 	memset(stat->hash, 0,
605 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
606 }
607 
608 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
609 {
610 	struct ftrace_profile_page *pg;
611 	int functions;
612 	int pages;
613 	int i;
614 
615 	/* If we already allocated, do nothing */
616 	if (stat->pages)
617 		return 0;
618 
619 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
620 	if (!stat->pages)
621 		return -ENOMEM;
622 
623 #ifdef CONFIG_DYNAMIC_FTRACE
624 	functions = ftrace_update_tot_cnt;
625 #else
626 	/*
627 	 * We do not know the number of functions that exist because
628 	 * dynamic tracing is what counts them. With past experience
629 	 * we have around 20K functions. That should be more than enough.
630 	 * It is highly unlikely we will execute every function in
631 	 * the kernel.
632 	 */
633 	functions = 20000;
634 #endif
635 
636 	pg = stat->start = stat->pages;
637 
638 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
639 
640 	for (i = 1; i < pages; i++) {
641 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
642 		if (!pg->next)
643 			goto out_free;
644 		pg = pg->next;
645 	}
646 
647 	return 0;
648 
649  out_free:
650 	pg = stat->start;
651 	while (pg) {
652 		unsigned long tmp = (unsigned long)pg;
653 
654 		pg = pg->next;
655 		free_page(tmp);
656 	}
657 
658 	stat->pages = NULL;
659 	stat->start = NULL;
660 
661 	return -ENOMEM;
662 }
663 
664 static int ftrace_profile_init_cpu(int cpu)
665 {
666 	struct ftrace_profile_stat *stat;
667 	int size;
668 
669 	stat = &per_cpu(ftrace_profile_stats, cpu);
670 
671 	if (stat->hash) {
672 		/* If the profile is already created, simply reset it */
673 		ftrace_profile_reset(stat);
674 		return 0;
675 	}
676 
677 	/*
678 	 * We are profiling all functions, but usually only a few thousand
679 	 * functions are hit. We'll make a hash of 1024 items.
680 	 */
681 	size = FTRACE_PROFILE_HASH_SIZE;
682 
683 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
684 
685 	if (!stat->hash)
686 		return -ENOMEM;
687 
688 	/* Preallocate the function profiling pages */
689 	if (ftrace_profile_pages_init(stat) < 0) {
690 		kfree(stat->hash);
691 		stat->hash = NULL;
692 		return -ENOMEM;
693 	}
694 
695 	return 0;
696 }
697 
698 static int ftrace_profile_init(void)
699 {
700 	int cpu;
701 	int ret = 0;
702 
703 	for_each_possible_cpu(cpu) {
704 		ret = ftrace_profile_init_cpu(cpu);
705 		if (ret)
706 			break;
707 	}
708 
709 	return ret;
710 }
711 
712 /* interrupts must be disabled */
713 static struct ftrace_profile *
714 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
715 {
716 	struct ftrace_profile *rec;
717 	struct hlist_head *hhd;
718 	unsigned long key;
719 
720 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
721 	hhd = &stat->hash[key];
722 
723 	if (hlist_empty(hhd))
724 		return NULL;
725 
726 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
727 		if (rec->ip == ip)
728 			return rec;
729 	}
730 
731 	return NULL;
732 }
733 
734 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
735 			       struct ftrace_profile *rec)
736 {
737 	unsigned long key;
738 
739 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
740 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
741 }
742 
743 /*
744  * The memory is already allocated, this simply finds a new record to use.
745  */
746 static struct ftrace_profile *
747 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
748 {
749 	struct ftrace_profile *rec = NULL;
750 
751 	/* prevent recursion (from NMIs) */
752 	if (atomic_inc_return(&stat->disabled) != 1)
753 		goto out;
754 
755 	/*
756 	 * Try to find the function again since an NMI
757 	 * could have added it
758 	 */
759 	rec = ftrace_find_profiled_func(stat, ip);
760 	if (rec)
761 		goto out;
762 
763 	if (stat->pages->index == PROFILES_PER_PAGE) {
764 		if (!stat->pages->next)
765 			goto out;
766 		stat->pages = stat->pages->next;
767 	}
768 
769 	rec = &stat->pages->records[stat->pages->index++];
770 	rec->ip = ip;
771 	ftrace_add_profile(stat, rec);
772 
773  out:
774 	atomic_dec(&stat->disabled);
775 
776 	return rec;
777 }
778 
779 static void
780 function_profile_call(unsigned long ip, unsigned long parent_ip,
781 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
782 {
783 	struct ftrace_profile_stat *stat;
784 	struct ftrace_profile *rec;
785 	unsigned long flags;
786 
787 	if (!ftrace_profile_enabled)
788 		return;
789 
790 	local_irq_save(flags);
791 
792 	stat = this_cpu_ptr(&ftrace_profile_stats);
793 	if (!stat->hash || !ftrace_profile_enabled)
794 		goto out;
795 
796 	rec = ftrace_find_profiled_func(stat, ip);
797 	if (!rec) {
798 		rec = ftrace_profile_alloc(stat, ip);
799 		if (!rec)
800 			goto out;
801 	}
802 
803 	rec->counter++;
804  out:
805 	local_irq_restore(flags);
806 }
807 
808 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
809 static bool fgraph_graph_time = true;
810 
811 void ftrace_graph_graph_time_control(bool enable)
812 {
813 	fgraph_graph_time = enable;
814 }
815 
816 static int profile_graph_entry(struct ftrace_graph_ent *trace)
817 {
818 	struct ftrace_ret_stack *ret_stack;
819 
820 	function_profile_call(trace->func, 0, NULL, NULL);
821 
822 	/* If function graph is shutting down, ret_stack can be NULL */
823 	if (!current->ret_stack)
824 		return 0;
825 
826 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
827 	if (ret_stack)
828 		ret_stack->subtime = 0;
829 
830 	return 1;
831 }
832 
833 static void profile_graph_return(struct ftrace_graph_ret *trace)
834 {
835 	struct ftrace_ret_stack *ret_stack;
836 	struct ftrace_profile_stat *stat;
837 	unsigned long long calltime;
838 	struct ftrace_profile *rec;
839 	unsigned long flags;
840 
841 	local_irq_save(flags);
842 	stat = this_cpu_ptr(&ftrace_profile_stats);
843 	if (!stat->hash || !ftrace_profile_enabled)
844 		goto out;
845 
846 	/* If the calltime was zero'd ignore it */
847 	if (!trace->calltime)
848 		goto out;
849 
850 	calltime = trace->rettime - trace->calltime;
851 
852 	if (!fgraph_graph_time) {
853 
854 		/* Append this call time to the parent time to subtract */
855 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
856 		if (ret_stack)
857 			ret_stack->subtime += calltime;
858 
859 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
860 		if (ret_stack && ret_stack->subtime < calltime)
861 			calltime -= ret_stack->subtime;
862 		else
863 			calltime = 0;
864 	}
865 
866 	rec = ftrace_find_profiled_func(stat, trace->func);
867 	if (rec) {
868 		rec->time += calltime;
869 		rec->time_squared += calltime * calltime;
870 	}
871 
872  out:
873 	local_irq_restore(flags);
874 }
875 
876 static struct fgraph_ops fprofiler_ops = {
877 	.entryfunc = &profile_graph_entry,
878 	.retfunc = &profile_graph_return,
879 };
880 
881 static int register_ftrace_profiler(void)
882 {
883 	return register_ftrace_graph(&fprofiler_ops);
884 }
885 
886 static void unregister_ftrace_profiler(void)
887 {
888 	unregister_ftrace_graph(&fprofiler_ops);
889 }
890 #else
891 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
892 	.func		= function_profile_call,
893 	.flags		= FTRACE_OPS_FL_INITIALIZED,
894 	INIT_OPS_HASH(ftrace_profile_ops)
895 };
896 
897 static int register_ftrace_profiler(void)
898 {
899 	return register_ftrace_function(&ftrace_profile_ops);
900 }
901 
902 static void unregister_ftrace_profiler(void)
903 {
904 	unregister_ftrace_function(&ftrace_profile_ops);
905 }
906 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
907 
908 static ssize_t
909 ftrace_profile_write(struct file *filp, const char __user *ubuf,
910 		     size_t cnt, loff_t *ppos)
911 {
912 	unsigned long val;
913 	int ret;
914 
915 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
916 	if (ret)
917 		return ret;
918 
919 	val = !!val;
920 
921 	mutex_lock(&ftrace_profile_lock);
922 	if (ftrace_profile_enabled ^ val) {
923 		if (val) {
924 			ret = ftrace_profile_init();
925 			if (ret < 0) {
926 				cnt = ret;
927 				goto out;
928 			}
929 
930 			ret = register_ftrace_profiler();
931 			if (ret < 0) {
932 				cnt = ret;
933 				goto out;
934 			}
935 			ftrace_profile_enabled = 1;
936 		} else {
937 			ftrace_profile_enabled = 0;
938 			/*
939 			 * unregister_ftrace_profiler calls stop_machine
940 			 * so this acts like an synchronize_rcu.
941 			 */
942 			unregister_ftrace_profiler();
943 		}
944 	}
945  out:
946 	mutex_unlock(&ftrace_profile_lock);
947 
948 	*ppos += cnt;
949 
950 	return cnt;
951 }
952 
953 static ssize_t
954 ftrace_profile_read(struct file *filp, char __user *ubuf,
955 		     size_t cnt, loff_t *ppos)
956 {
957 	char buf[64];		/* big enough to hold a number */
958 	int r;
959 
960 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
961 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
962 }
963 
964 static const struct file_operations ftrace_profile_fops = {
965 	.open		= tracing_open_generic,
966 	.read		= ftrace_profile_read,
967 	.write		= ftrace_profile_write,
968 	.llseek		= default_llseek,
969 };
970 
971 /* used to initialize the real stat files */
972 static struct tracer_stat function_stats __initdata = {
973 	.name		= "functions",
974 	.stat_start	= function_stat_start,
975 	.stat_next	= function_stat_next,
976 	.stat_cmp	= function_stat_cmp,
977 	.stat_headers	= function_stat_headers,
978 	.stat_show	= function_stat_show
979 };
980 
981 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
982 {
983 	struct ftrace_profile_stat *stat;
984 	char *name;
985 	int ret;
986 	int cpu;
987 
988 	for_each_possible_cpu(cpu) {
989 		stat = &per_cpu(ftrace_profile_stats, cpu);
990 
991 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
992 		if (!name) {
993 			/*
994 			 * The files created are permanent, if something happens
995 			 * we still do not free memory.
996 			 */
997 			WARN(1,
998 			     "Could not allocate stat file for cpu %d\n",
999 			     cpu);
1000 			return;
1001 		}
1002 		stat->stat = function_stats;
1003 		stat->stat.name = name;
1004 		ret = register_stat_tracer(&stat->stat);
1005 		if (ret) {
1006 			WARN(1,
1007 			     "Could not register function stat for cpu %d\n",
1008 			     cpu);
1009 			kfree(name);
1010 			return;
1011 		}
1012 	}
1013 
1014 	trace_create_file("function_profile_enabled",
1015 			  TRACE_MODE_WRITE, d_tracer, NULL,
1016 			  &ftrace_profile_fops);
1017 }
1018 
1019 #else /* CONFIG_FUNCTION_PROFILER */
1020 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1021 {
1022 }
1023 #endif /* CONFIG_FUNCTION_PROFILER */
1024 
1025 #ifdef CONFIG_DYNAMIC_FTRACE
1026 
1027 static struct ftrace_ops *removed_ops;
1028 
1029 /*
1030  * Set when doing a global update, like enabling all recs or disabling them.
1031  * It is not set when just updating a single ftrace_ops.
1032  */
1033 static bool update_all_ops;
1034 
1035 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1036 # error Dynamic ftrace depends on MCOUNT_RECORD
1037 #endif
1038 
1039 struct ftrace_func_probe {
1040 	struct ftrace_probe_ops	*probe_ops;
1041 	struct ftrace_ops	ops;
1042 	struct trace_array	*tr;
1043 	struct list_head	list;
1044 	void			*data;
1045 	int			ref;
1046 };
1047 
1048 /*
1049  * We make these constant because no one should touch them,
1050  * but they are used as the default "empty hash", to avoid allocating
1051  * it all the time. These are in a read only section such that if
1052  * anyone does try to modify it, it will cause an exception.
1053  */
1054 static const struct hlist_head empty_buckets[1];
1055 static const struct ftrace_hash empty_hash = {
1056 	.buckets = (struct hlist_head *)empty_buckets,
1057 };
1058 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1059 
1060 struct ftrace_ops global_ops = {
1061 	.func				= ftrace_stub,
1062 	.local_hash.notrace_hash	= EMPTY_HASH,
1063 	.local_hash.filter_hash		= EMPTY_HASH,
1064 	INIT_OPS_HASH(global_ops)
1065 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1066 					  FTRACE_OPS_FL_PID,
1067 };
1068 
1069 /*
1070  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1071  */
1072 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1073 {
1074 	struct ftrace_ops *op = NULL;
1075 
1076 	/*
1077 	 * Some of the ops may be dynamically allocated,
1078 	 * they are freed after a synchronize_rcu().
1079 	 */
1080 	preempt_disable_notrace();
1081 
1082 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1083 		/*
1084 		 * This is to check for dynamically allocated trampolines.
1085 		 * Trampolines that are in kernel text will have
1086 		 * core_kernel_text() return true.
1087 		 */
1088 		if (op->trampoline && op->trampoline_size)
1089 			if (addr >= op->trampoline &&
1090 			    addr < op->trampoline + op->trampoline_size) {
1091 				preempt_enable_notrace();
1092 				return op;
1093 			}
1094 	} while_for_each_ftrace_op(op);
1095 	preempt_enable_notrace();
1096 
1097 	return NULL;
1098 }
1099 
1100 /*
1101  * This is used by __kernel_text_address() to return true if the
1102  * address is on a dynamically allocated trampoline that would
1103  * not return true for either core_kernel_text() or
1104  * is_module_text_address().
1105  */
1106 bool is_ftrace_trampoline(unsigned long addr)
1107 {
1108 	return ftrace_ops_trampoline(addr) != NULL;
1109 }
1110 
1111 struct ftrace_page {
1112 	struct ftrace_page	*next;
1113 	struct dyn_ftrace	*records;
1114 	int			index;
1115 	int			order;
1116 };
1117 
1118 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1119 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1120 
1121 static struct ftrace_page	*ftrace_pages_start;
1122 static struct ftrace_page	*ftrace_pages;
1123 
1124 static __always_inline unsigned long
1125 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1126 {
1127 	if (hash->size_bits > 0)
1128 		return hash_long(ip, hash->size_bits);
1129 
1130 	return 0;
1131 }
1132 
1133 /* Only use this function if ftrace_hash_empty() has already been tested */
1134 static __always_inline struct ftrace_func_entry *
1135 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	unsigned long key;
1138 	struct ftrace_func_entry *entry;
1139 	struct hlist_head *hhd;
1140 
1141 	key = ftrace_hash_key(hash, ip);
1142 	hhd = &hash->buckets[key];
1143 
1144 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1145 		if (entry->ip == ip)
1146 			return entry;
1147 	}
1148 	return NULL;
1149 }
1150 
1151 /**
1152  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1153  * @hash: The hash to look at
1154  * @ip: The instruction pointer to test
1155  *
1156  * Search a given @hash to see if a given instruction pointer (@ip)
1157  * exists in it.
1158  *
1159  * Returns the entry that holds the @ip if found. NULL otherwise.
1160  */
1161 struct ftrace_func_entry *
1162 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1163 {
1164 	if (ftrace_hash_empty(hash))
1165 		return NULL;
1166 
1167 	return __ftrace_lookup_ip(hash, ip);
1168 }
1169 
1170 static void __add_hash_entry(struct ftrace_hash *hash,
1171 			     struct ftrace_func_entry *entry)
1172 {
1173 	struct hlist_head *hhd;
1174 	unsigned long key;
1175 
1176 	key = ftrace_hash_key(hash, entry->ip);
1177 	hhd = &hash->buckets[key];
1178 	hlist_add_head(&entry->hlist, hhd);
1179 	hash->count++;
1180 }
1181 
1182 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1183 {
1184 	struct ftrace_func_entry *entry;
1185 
1186 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1187 	if (!entry)
1188 		return -ENOMEM;
1189 
1190 	entry->ip = ip;
1191 	__add_hash_entry(hash, entry);
1192 
1193 	return 0;
1194 }
1195 
1196 static void
1197 free_hash_entry(struct ftrace_hash *hash,
1198 		  struct ftrace_func_entry *entry)
1199 {
1200 	hlist_del(&entry->hlist);
1201 	kfree(entry);
1202 	hash->count--;
1203 }
1204 
1205 static void
1206 remove_hash_entry(struct ftrace_hash *hash,
1207 		  struct ftrace_func_entry *entry)
1208 {
1209 	hlist_del_rcu(&entry->hlist);
1210 	hash->count--;
1211 }
1212 
1213 static void ftrace_hash_clear(struct ftrace_hash *hash)
1214 {
1215 	struct hlist_head *hhd;
1216 	struct hlist_node *tn;
1217 	struct ftrace_func_entry *entry;
1218 	int size = 1 << hash->size_bits;
1219 	int i;
1220 
1221 	if (!hash->count)
1222 		return;
1223 
1224 	for (i = 0; i < size; i++) {
1225 		hhd = &hash->buckets[i];
1226 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1227 			free_hash_entry(hash, entry);
1228 	}
1229 	FTRACE_WARN_ON(hash->count);
1230 }
1231 
1232 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1233 {
1234 	list_del(&ftrace_mod->list);
1235 	kfree(ftrace_mod->module);
1236 	kfree(ftrace_mod->func);
1237 	kfree(ftrace_mod);
1238 }
1239 
1240 static void clear_ftrace_mod_list(struct list_head *head)
1241 {
1242 	struct ftrace_mod_load *p, *n;
1243 
1244 	/* stack tracer isn't supported yet */
1245 	if (!head)
1246 		return;
1247 
1248 	mutex_lock(&ftrace_lock);
1249 	list_for_each_entry_safe(p, n, head, list)
1250 		free_ftrace_mod(p);
1251 	mutex_unlock(&ftrace_lock);
1252 }
1253 
1254 static void free_ftrace_hash(struct ftrace_hash *hash)
1255 {
1256 	if (!hash || hash == EMPTY_HASH)
1257 		return;
1258 	ftrace_hash_clear(hash);
1259 	kfree(hash->buckets);
1260 	kfree(hash);
1261 }
1262 
1263 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1264 {
1265 	struct ftrace_hash *hash;
1266 
1267 	hash = container_of(rcu, struct ftrace_hash, rcu);
1268 	free_ftrace_hash(hash);
1269 }
1270 
1271 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1272 {
1273 	if (!hash || hash == EMPTY_HASH)
1274 		return;
1275 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1276 }
1277 
1278 /**
1279  * ftrace_free_filter - remove all filters for an ftrace_ops
1280  * @ops - the ops to remove the filters from
1281  */
1282 void ftrace_free_filter(struct ftrace_ops *ops)
1283 {
1284 	ftrace_ops_init(ops);
1285 	free_ftrace_hash(ops->func_hash->filter_hash);
1286 	free_ftrace_hash(ops->func_hash->notrace_hash);
1287 }
1288 EXPORT_SYMBOL_GPL(ftrace_free_filter);
1289 
1290 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1291 {
1292 	struct ftrace_hash *hash;
1293 	int size;
1294 
1295 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1296 	if (!hash)
1297 		return NULL;
1298 
1299 	size = 1 << size_bits;
1300 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1301 
1302 	if (!hash->buckets) {
1303 		kfree(hash);
1304 		return NULL;
1305 	}
1306 
1307 	hash->size_bits = size_bits;
1308 
1309 	return hash;
1310 }
1311 
1312 
1313 static int ftrace_add_mod(struct trace_array *tr,
1314 			  const char *func, const char *module,
1315 			  int enable)
1316 {
1317 	struct ftrace_mod_load *ftrace_mod;
1318 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1319 
1320 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1321 	if (!ftrace_mod)
1322 		return -ENOMEM;
1323 
1324 	INIT_LIST_HEAD(&ftrace_mod->list);
1325 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1326 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1327 	ftrace_mod->enable = enable;
1328 
1329 	if (!ftrace_mod->func || !ftrace_mod->module)
1330 		goto out_free;
1331 
1332 	list_add(&ftrace_mod->list, mod_head);
1333 
1334 	return 0;
1335 
1336  out_free:
1337 	free_ftrace_mod(ftrace_mod);
1338 
1339 	return -ENOMEM;
1340 }
1341 
1342 static struct ftrace_hash *
1343 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1344 {
1345 	struct ftrace_func_entry *entry;
1346 	struct ftrace_hash *new_hash;
1347 	int size;
1348 	int ret;
1349 	int i;
1350 
1351 	new_hash = alloc_ftrace_hash(size_bits);
1352 	if (!new_hash)
1353 		return NULL;
1354 
1355 	if (hash)
1356 		new_hash->flags = hash->flags;
1357 
1358 	/* Empty hash? */
1359 	if (ftrace_hash_empty(hash))
1360 		return new_hash;
1361 
1362 	size = 1 << hash->size_bits;
1363 	for (i = 0; i < size; i++) {
1364 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1365 			ret = add_hash_entry(new_hash, entry->ip);
1366 			if (ret < 0)
1367 				goto free_hash;
1368 		}
1369 	}
1370 
1371 	FTRACE_WARN_ON(new_hash->count != hash->count);
1372 
1373 	return new_hash;
1374 
1375  free_hash:
1376 	free_ftrace_hash(new_hash);
1377 	return NULL;
1378 }
1379 
1380 static void
1381 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1382 static void
1383 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1384 
1385 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1386 				       struct ftrace_hash *new_hash);
1387 
1388 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1389 {
1390 	struct ftrace_func_entry *entry;
1391 	struct ftrace_hash *new_hash;
1392 	struct hlist_head *hhd;
1393 	struct hlist_node *tn;
1394 	int bits = 0;
1395 	int i;
1396 
1397 	/*
1398 	 * Use around half the size (max bit of it), but
1399 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1400 	 */
1401 	bits = fls(size / 2);
1402 
1403 	/* Don't allocate too much */
1404 	if (bits > FTRACE_HASH_MAX_BITS)
1405 		bits = FTRACE_HASH_MAX_BITS;
1406 
1407 	new_hash = alloc_ftrace_hash(bits);
1408 	if (!new_hash)
1409 		return NULL;
1410 
1411 	new_hash->flags = src->flags;
1412 
1413 	size = 1 << src->size_bits;
1414 	for (i = 0; i < size; i++) {
1415 		hhd = &src->buckets[i];
1416 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1417 			remove_hash_entry(src, entry);
1418 			__add_hash_entry(new_hash, entry);
1419 		}
1420 	}
1421 	return new_hash;
1422 }
1423 
1424 static struct ftrace_hash *
1425 __ftrace_hash_move(struct ftrace_hash *src)
1426 {
1427 	int size = src->count;
1428 
1429 	/*
1430 	 * If the new source is empty, just return the empty_hash.
1431 	 */
1432 	if (ftrace_hash_empty(src))
1433 		return EMPTY_HASH;
1434 
1435 	return dup_hash(src, size);
1436 }
1437 
1438 static int
1439 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1440 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1441 {
1442 	struct ftrace_hash *new_hash;
1443 	int ret;
1444 
1445 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1446 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1447 		return -EINVAL;
1448 
1449 	new_hash = __ftrace_hash_move(src);
1450 	if (!new_hash)
1451 		return -ENOMEM;
1452 
1453 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1454 	if (enable) {
1455 		/* IPMODIFY should be updated only when filter_hash updating */
1456 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1457 		if (ret < 0) {
1458 			free_ftrace_hash(new_hash);
1459 			return ret;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Remove the current set, update the hash and add
1465 	 * them back.
1466 	 */
1467 	ftrace_hash_rec_disable_modify(ops, enable);
1468 
1469 	rcu_assign_pointer(*dst, new_hash);
1470 
1471 	ftrace_hash_rec_enable_modify(ops, enable);
1472 
1473 	return 0;
1474 }
1475 
1476 static bool hash_contains_ip(unsigned long ip,
1477 			     struct ftrace_ops_hash *hash)
1478 {
1479 	/*
1480 	 * The function record is a match if it exists in the filter
1481 	 * hash and not in the notrace hash. Note, an empty hash is
1482 	 * considered a match for the filter hash, but an empty
1483 	 * notrace hash is considered not in the notrace hash.
1484 	 */
1485 	return (ftrace_hash_empty(hash->filter_hash) ||
1486 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1487 		(ftrace_hash_empty(hash->notrace_hash) ||
1488 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1489 }
1490 
1491 /*
1492  * Test the hashes for this ops to see if we want to call
1493  * the ops->func or not.
1494  *
1495  * It's a match if the ip is in the ops->filter_hash or
1496  * the filter_hash does not exist or is empty,
1497  *  AND
1498  * the ip is not in the ops->notrace_hash.
1499  *
1500  * This needs to be called with preemption disabled as
1501  * the hashes are freed with call_rcu().
1502  */
1503 int
1504 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1505 {
1506 	struct ftrace_ops_hash hash;
1507 	int ret;
1508 
1509 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1510 	/*
1511 	 * There's a small race when adding ops that the ftrace handler
1512 	 * that wants regs, may be called without them. We can not
1513 	 * allow that handler to be called if regs is NULL.
1514 	 */
1515 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1516 		return 0;
1517 #endif
1518 
1519 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1520 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1521 
1522 	if (hash_contains_ip(ip, &hash))
1523 		ret = 1;
1524 	else
1525 		ret = 0;
1526 
1527 	return ret;
1528 }
1529 
1530 /*
1531  * This is a double for. Do not use 'break' to break out of the loop,
1532  * you must use a goto.
1533  */
1534 #define do_for_each_ftrace_rec(pg, rec)					\
1535 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1536 		int _____i;						\
1537 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1538 			rec = &pg->records[_____i];
1539 
1540 #define while_for_each_ftrace_rec()		\
1541 		}				\
1542 	}
1543 
1544 
1545 static int ftrace_cmp_recs(const void *a, const void *b)
1546 {
1547 	const struct dyn_ftrace *key = a;
1548 	const struct dyn_ftrace *rec = b;
1549 
1550 	if (key->flags < rec->ip)
1551 		return -1;
1552 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1553 		return 1;
1554 	return 0;
1555 }
1556 
1557 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1558 {
1559 	struct ftrace_page *pg;
1560 	struct dyn_ftrace *rec = NULL;
1561 	struct dyn_ftrace key;
1562 
1563 	key.ip = start;
1564 	key.flags = end;	/* overload flags, as it is unsigned long */
1565 
1566 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1567 		if (end < pg->records[0].ip ||
1568 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1569 			continue;
1570 		rec = bsearch(&key, pg->records, pg->index,
1571 			      sizeof(struct dyn_ftrace),
1572 			      ftrace_cmp_recs);
1573 		if (rec)
1574 			break;
1575 	}
1576 	return rec;
1577 }
1578 
1579 /**
1580  * ftrace_location_range - return the first address of a traced location
1581  *	if it touches the given ip range
1582  * @start: start of range to search.
1583  * @end: end of range to search (inclusive). @end points to the last byte
1584  *	to check.
1585  *
1586  * Returns rec->ip if the related ftrace location is a least partly within
1587  * the given address range. That is, the first address of the instruction
1588  * that is either a NOP or call to the function tracer. It checks the ftrace
1589  * internal tables to determine if the address belongs or not.
1590  */
1591 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1592 {
1593 	struct dyn_ftrace *rec;
1594 
1595 	rec = lookup_rec(start, end);
1596 	if (rec)
1597 		return rec->ip;
1598 
1599 	return 0;
1600 }
1601 
1602 /**
1603  * ftrace_location - return the ftrace location
1604  * @ip: the instruction pointer to check
1605  *
1606  * If @ip matches the ftrace location, return @ip.
1607  * If @ip matches sym+0, return sym's ftrace location.
1608  * Otherwise, return 0.
1609  */
1610 unsigned long ftrace_location(unsigned long ip)
1611 {
1612 	struct dyn_ftrace *rec;
1613 	unsigned long offset;
1614 	unsigned long size;
1615 
1616 	rec = lookup_rec(ip, ip);
1617 	if (!rec) {
1618 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1619 			goto out;
1620 
1621 		/* map sym+0 to __fentry__ */
1622 		if (!offset)
1623 			rec = lookup_rec(ip, ip + size - 1);
1624 	}
1625 
1626 	if (rec)
1627 		return rec->ip;
1628 
1629 out:
1630 	return 0;
1631 }
1632 
1633 /**
1634  * ftrace_text_reserved - return true if range contains an ftrace location
1635  * @start: start of range to search
1636  * @end: end of range to search (inclusive). @end points to the last byte to check.
1637  *
1638  * Returns 1 if @start and @end contains a ftrace location.
1639  * That is, the instruction that is either a NOP or call to
1640  * the function tracer. It checks the ftrace internal tables to
1641  * determine if the address belongs or not.
1642  */
1643 int ftrace_text_reserved(const void *start, const void *end)
1644 {
1645 	unsigned long ret;
1646 
1647 	ret = ftrace_location_range((unsigned long)start,
1648 				    (unsigned long)end);
1649 
1650 	return (int)!!ret;
1651 }
1652 
1653 /* Test if ops registered to this rec needs regs */
1654 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1655 {
1656 	struct ftrace_ops *ops;
1657 	bool keep_regs = false;
1658 
1659 	for (ops = ftrace_ops_list;
1660 	     ops != &ftrace_list_end; ops = ops->next) {
1661 		/* pass rec in as regs to have non-NULL val */
1662 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1663 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1664 				keep_regs = true;
1665 				break;
1666 			}
1667 		}
1668 	}
1669 
1670 	return  keep_regs;
1671 }
1672 
1673 static struct ftrace_ops *
1674 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1675 static struct ftrace_ops *
1676 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1677 static struct ftrace_ops *
1678 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1679 
1680 static bool skip_record(struct dyn_ftrace *rec)
1681 {
1682 	/*
1683 	 * At boot up, weak functions are set to disable. Function tracing
1684 	 * can be enabled before they are, and they still need to be disabled now.
1685 	 * If the record is disabled, still continue if it is marked as already
1686 	 * enabled (this is needed to keep the accounting working).
1687 	 */
1688 	return rec->flags & FTRACE_FL_DISABLED &&
1689 		!(rec->flags & FTRACE_FL_ENABLED);
1690 }
1691 
1692 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1693 				     int filter_hash,
1694 				     bool inc)
1695 {
1696 	struct ftrace_hash *hash;
1697 	struct ftrace_hash *other_hash;
1698 	struct ftrace_page *pg;
1699 	struct dyn_ftrace *rec;
1700 	bool update = false;
1701 	int count = 0;
1702 	int all = false;
1703 
1704 	/* Only update if the ops has been registered */
1705 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1706 		return false;
1707 
1708 	/*
1709 	 * In the filter_hash case:
1710 	 *   If the count is zero, we update all records.
1711 	 *   Otherwise we just update the items in the hash.
1712 	 *
1713 	 * In the notrace_hash case:
1714 	 *   We enable the update in the hash.
1715 	 *   As disabling notrace means enabling the tracing,
1716 	 *   and enabling notrace means disabling, the inc variable
1717 	 *   gets inversed.
1718 	 */
1719 	if (filter_hash) {
1720 		hash = ops->func_hash->filter_hash;
1721 		other_hash = ops->func_hash->notrace_hash;
1722 		if (ftrace_hash_empty(hash))
1723 			all = true;
1724 	} else {
1725 		inc = !inc;
1726 		hash = ops->func_hash->notrace_hash;
1727 		other_hash = ops->func_hash->filter_hash;
1728 		/*
1729 		 * If the notrace hash has no items,
1730 		 * then there's nothing to do.
1731 		 */
1732 		if (ftrace_hash_empty(hash))
1733 			return false;
1734 	}
1735 
1736 	do_for_each_ftrace_rec(pg, rec) {
1737 		int in_other_hash = 0;
1738 		int in_hash = 0;
1739 		int match = 0;
1740 
1741 		if (skip_record(rec))
1742 			continue;
1743 
1744 		if (all) {
1745 			/*
1746 			 * Only the filter_hash affects all records.
1747 			 * Update if the record is not in the notrace hash.
1748 			 */
1749 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1750 				match = 1;
1751 		} else {
1752 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1753 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1754 
1755 			/*
1756 			 * If filter_hash is set, we want to match all functions
1757 			 * that are in the hash but not in the other hash.
1758 			 *
1759 			 * If filter_hash is not set, then we are decrementing.
1760 			 * That means we match anything that is in the hash
1761 			 * and also in the other_hash. That is, we need to turn
1762 			 * off functions in the other hash because they are disabled
1763 			 * by this hash.
1764 			 */
1765 			if (filter_hash && in_hash && !in_other_hash)
1766 				match = 1;
1767 			else if (!filter_hash && in_hash &&
1768 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1769 				match = 1;
1770 		}
1771 		if (!match)
1772 			continue;
1773 
1774 		if (inc) {
1775 			rec->flags++;
1776 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1777 				return false;
1778 
1779 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1780 				rec->flags |= FTRACE_FL_DIRECT;
1781 
1782 			/*
1783 			 * If there's only a single callback registered to a
1784 			 * function, and the ops has a trampoline registered
1785 			 * for it, then we can call it directly.
1786 			 */
1787 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1788 				rec->flags |= FTRACE_FL_TRAMP;
1789 			else
1790 				/*
1791 				 * If we are adding another function callback
1792 				 * to this function, and the previous had a
1793 				 * custom trampoline in use, then we need to go
1794 				 * back to the default trampoline.
1795 				 */
1796 				rec->flags &= ~FTRACE_FL_TRAMP;
1797 
1798 			/*
1799 			 * If any ops wants regs saved for this function
1800 			 * then all ops will get saved regs.
1801 			 */
1802 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1803 				rec->flags |= FTRACE_FL_REGS;
1804 		} else {
1805 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1806 				return false;
1807 			rec->flags--;
1808 
1809 			/*
1810 			 * Only the internal direct_ops should have the
1811 			 * DIRECT flag set. Thus, if it is removing a
1812 			 * function, then that function should no longer
1813 			 * be direct.
1814 			 */
1815 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1816 				rec->flags &= ~FTRACE_FL_DIRECT;
1817 
1818 			/*
1819 			 * If the rec had REGS enabled and the ops that is
1820 			 * being removed had REGS set, then see if there is
1821 			 * still any ops for this record that wants regs.
1822 			 * If not, we can stop recording them.
1823 			 */
1824 			if (ftrace_rec_count(rec) > 0 &&
1825 			    rec->flags & FTRACE_FL_REGS &&
1826 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1827 				if (!test_rec_ops_needs_regs(rec))
1828 					rec->flags &= ~FTRACE_FL_REGS;
1829 			}
1830 
1831 			/*
1832 			 * The TRAMP needs to be set only if rec count
1833 			 * is decremented to one, and the ops that is
1834 			 * left has a trampoline. As TRAMP can only be
1835 			 * enabled if there is only a single ops attached
1836 			 * to it.
1837 			 */
1838 			if (ftrace_rec_count(rec) == 1 &&
1839 			    ftrace_find_tramp_ops_any_other(rec, ops))
1840 				rec->flags |= FTRACE_FL_TRAMP;
1841 			else
1842 				rec->flags &= ~FTRACE_FL_TRAMP;
1843 
1844 			/*
1845 			 * flags will be cleared in ftrace_check_record()
1846 			 * if rec count is zero.
1847 			 */
1848 		}
1849 
1850 		/*
1851 		 * If the rec has a single associated ops, and ops->func can be
1852 		 * called directly, allow the call site to call via the ops.
1853 		 */
1854 		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS) &&
1855 		    ftrace_rec_count(rec) == 1 &&
1856 		    ftrace_ops_get_func(ops) == ops->func)
1857 			rec->flags |= FTRACE_FL_CALL_OPS;
1858 		else
1859 			rec->flags &= ~FTRACE_FL_CALL_OPS;
1860 
1861 		count++;
1862 
1863 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1864 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1865 
1866 		/* Shortcut, if we handled all records, we are done. */
1867 		if (!all && count == hash->count)
1868 			return update;
1869 	} while_for_each_ftrace_rec();
1870 
1871 	return update;
1872 }
1873 
1874 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1875 				    int filter_hash)
1876 {
1877 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1878 }
1879 
1880 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1881 				   int filter_hash)
1882 {
1883 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1884 }
1885 
1886 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1887 					  int filter_hash, int inc)
1888 {
1889 	struct ftrace_ops *op;
1890 
1891 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1892 
1893 	if (ops->func_hash != &global_ops.local_hash)
1894 		return;
1895 
1896 	/*
1897 	 * If the ops shares the global_ops hash, then we need to update
1898 	 * all ops that are enabled and use this hash.
1899 	 */
1900 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1901 		/* Already done */
1902 		if (op == ops)
1903 			continue;
1904 		if (op->func_hash == &global_ops.local_hash)
1905 			__ftrace_hash_rec_update(op, filter_hash, inc);
1906 	} while_for_each_ftrace_op(op);
1907 }
1908 
1909 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1910 					   int filter_hash)
1911 {
1912 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1913 }
1914 
1915 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1916 					  int filter_hash)
1917 {
1918 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1919 }
1920 
1921 /*
1922  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1923  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1924  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1925  * Note that old_hash and new_hash has below meanings
1926  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1927  *  - If the hash is EMPTY_HASH, it hits nothing
1928  *  - Anything else hits the recs which match the hash entries.
1929  *
1930  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1931  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1932  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1933  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1934  * the return value to the caller and eventually to the owner of the DIRECT
1935  * ops.
1936  */
1937 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1938 					 struct ftrace_hash *old_hash,
1939 					 struct ftrace_hash *new_hash)
1940 {
1941 	struct ftrace_page *pg;
1942 	struct dyn_ftrace *rec, *end = NULL;
1943 	int in_old, in_new;
1944 	bool is_ipmodify, is_direct;
1945 
1946 	/* Only update if the ops has been registered */
1947 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1948 		return 0;
1949 
1950 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1951 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1952 
1953 	/* neither IPMODIFY nor DIRECT, skip */
1954 	if (!is_ipmodify && !is_direct)
1955 		return 0;
1956 
1957 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1958 		return 0;
1959 
1960 	/*
1961 	 * Since the IPMODIFY and DIRECT are very address sensitive
1962 	 * actions, we do not allow ftrace_ops to set all functions to new
1963 	 * hash.
1964 	 */
1965 	if (!new_hash || !old_hash)
1966 		return -EINVAL;
1967 
1968 	/* Update rec->flags */
1969 	do_for_each_ftrace_rec(pg, rec) {
1970 
1971 		if (rec->flags & FTRACE_FL_DISABLED)
1972 			continue;
1973 
1974 		/* We need to update only differences of filter_hash */
1975 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1976 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1977 		if (in_old == in_new)
1978 			continue;
1979 
1980 		if (in_new) {
1981 			if (rec->flags & FTRACE_FL_IPMODIFY) {
1982 				int ret;
1983 
1984 				/* Cannot have two ipmodify on same rec */
1985 				if (is_ipmodify)
1986 					goto rollback;
1987 
1988 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
1989 
1990 				/*
1991 				 * Another ops with IPMODIFY is already
1992 				 * attached. We are now attaching a direct
1993 				 * ops. Run SHARE_IPMODIFY_SELF, to check
1994 				 * whether sharing is supported.
1995 				 */
1996 				if (!ops->ops_func)
1997 					return -EBUSY;
1998 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
1999 				if (ret)
2000 					return ret;
2001 			} else if (is_ipmodify) {
2002 				rec->flags |= FTRACE_FL_IPMODIFY;
2003 			}
2004 		} else if (is_ipmodify) {
2005 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2006 		}
2007 	} while_for_each_ftrace_rec();
2008 
2009 	return 0;
2010 
2011 rollback:
2012 	end = rec;
2013 
2014 	/* Roll back what we did above */
2015 	do_for_each_ftrace_rec(pg, rec) {
2016 
2017 		if (rec->flags & FTRACE_FL_DISABLED)
2018 			continue;
2019 
2020 		if (rec == end)
2021 			goto err_out;
2022 
2023 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
2024 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
2025 		if (in_old == in_new)
2026 			continue;
2027 
2028 		if (in_new)
2029 			rec->flags &= ~FTRACE_FL_IPMODIFY;
2030 		else
2031 			rec->flags |= FTRACE_FL_IPMODIFY;
2032 	} while_for_each_ftrace_rec();
2033 
2034 err_out:
2035 	return -EBUSY;
2036 }
2037 
2038 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
2039 {
2040 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2041 
2042 	if (ftrace_hash_empty(hash))
2043 		hash = NULL;
2044 
2045 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2046 }
2047 
2048 /* Disabling always succeeds */
2049 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2050 {
2051 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2052 
2053 	if (ftrace_hash_empty(hash))
2054 		hash = NULL;
2055 
2056 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2057 }
2058 
2059 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2060 				       struct ftrace_hash *new_hash)
2061 {
2062 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2063 
2064 	if (ftrace_hash_empty(old_hash))
2065 		old_hash = NULL;
2066 
2067 	if (ftrace_hash_empty(new_hash))
2068 		new_hash = NULL;
2069 
2070 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2071 }
2072 
2073 static void print_ip_ins(const char *fmt, const unsigned char *p)
2074 {
2075 	char ins[MCOUNT_INSN_SIZE];
2076 
2077 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2078 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2079 		return;
2080 	}
2081 
2082 	printk(KERN_CONT "%s", fmt);
2083 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2084 }
2085 
2086 enum ftrace_bug_type ftrace_bug_type;
2087 const void *ftrace_expected;
2088 
2089 static void print_bug_type(void)
2090 {
2091 	switch (ftrace_bug_type) {
2092 	case FTRACE_BUG_UNKNOWN:
2093 		break;
2094 	case FTRACE_BUG_INIT:
2095 		pr_info("Initializing ftrace call sites\n");
2096 		break;
2097 	case FTRACE_BUG_NOP:
2098 		pr_info("Setting ftrace call site to NOP\n");
2099 		break;
2100 	case FTRACE_BUG_CALL:
2101 		pr_info("Setting ftrace call site to call ftrace function\n");
2102 		break;
2103 	case FTRACE_BUG_UPDATE:
2104 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2105 		break;
2106 	}
2107 }
2108 
2109 /**
2110  * ftrace_bug - report and shutdown function tracer
2111  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2112  * @rec: The record that failed
2113  *
2114  * The arch code that enables or disables the function tracing
2115  * can call ftrace_bug() when it has detected a problem in
2116  * modifying the code. @failed should be one of either:
2117  * EFAULT - if the problem happens on reading the @ip address
2118  * EINVAL - if what is read at @ip is not what was expected
2119  * EPERM - if the problem happens on writing to the @ip address
2120  */
2121 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2122 {
2123 	unsigned long ip = rec ? rec->ip : 0;
2124 
2125 	pr_info("------------[ ftrace bug ]------------\n");
2126 
2127 	switch (failed) {
2128 	case -EFAULT:
2129 		pr_info("ftrace faulted on modifying ");
2130 		print_ip_sym(KERN_INFO, ip);
2131 		break;
2132 	case -EINVAL:
2133 		pr_info("ftrace failed to modify ");
2134 		print_ip_sym(KERN_INFO, ip);
2135 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2136 		pr_cont("\n");
2137 		if (ftrace_expected) {
2138 			print_ip_ins(" expected: ", ftrace_expected);
2139 			pr_cont("\n");
2140 		}
2141 		break;
2142 	case -EPERM:
2143 		pr_info("ftrace faulted on writing ");
2144 		print_ip_sym(KERN_INFO, ip);
2145 		break;
2146 	default:
2147 		pr_info("ftrace faulted on unknown error ");
2148 		print_ip_sym(KERN_INFO, ip);
2149 	}
2150 	print_bug_type();
2151 	if (rec) {
2152 		struct ftrace_ops *ops = NULL;
2153 
2154 		pr_info("ftrace record flags: %lx\n", rec->flags);
2155 		pr_cont(" (%ld)%s%s", ftrace_rec_count(rec),
2156 			rec->flags & FTRACE_FL_REGS ? " R" : "  ",
2157 			rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
2158 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2159 			ops = ftrace_find_tramp_ops_any(rec);
2160 			if (ops) {
2161 				do {
2162 					pr_cont("\ttramp: %pS (%pS)",
2163 						(void *)ops->trampoline,
2164 						(void *)ops->func);
2165 					ops = ftrace_find_tramp_ops_next(rec, ops);
2166 				} while (ops);
2167 			} else
2168 				pr_cont("\ttramp: ERROR!");
2169 
2170 		}
2171 		ip = ftrace_get_addr_curr(rec);
2172 		pr_cont("\n expected tramp: %lx\n", ip);
2173 	}
2174 
2175 	FTRACE_WARN_ON_ONCE(1);
2176 }
2177 
2178 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2179 {
2180 	unsigned long flag = 0UL;
2181 
2182 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2183 
2184 	if (skip_record(rec))
2185 		return FTRACE_UPDATE_IGNORE;
2186 
2187 	/*
2188 	 * If we are updating calls:
2189 	 *
2190 	 *   If the record has a ref count, then we need to enable it
2191 	 *   because someone is using it.
2192 	 *
2193 	 *   Otherwise we make sure its disabled.
2194 	 *
2195 	 * If we are disabling calls, then disable all records that
2196 	 * are enabled.
2197 	 */
2198 	if (enable && ftrace_rec_count(rec))
2199 		flag = FTRACE_FL_ENABLED;
2200 
2201 	/*
2202 	 * If enabling and the REGS flag does not match the REGS_EN, or
2203 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2204 	 * this record. Set flags to fail the compare against ENABLED.
2205 	 * Same for direct calls.
2206 	 */
2207 	if (flag) {
2208 		if (!(rec->flags & FTRACE_FL_REGS) !=
2209 		    !(rec->flags & FTRACE_FL_REGS_EN))
2210 			flag |= FTRACE_FL_REGS;
2211 
2212 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2213 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2214 			flag |= FTRACE_FL_TRAMP;
2215 
2216 		/*
2217 		 * Direct calls are special, as count matters.
2218 		 * We must test the record for direct, if the
2219 		 * DIRECT and DIRECT_EN do not match, but only
2220 		 * if the count is 1. That's because, if the
2221 		 * count is something other than one, we do not
2222 		 * want the direct enabled (it will be done via the
2223 		 * direct helper). But if DIRECT_EN is set, and
2224 		 * the count is not one, we need to clear it.
2225 		 *
2226 		 */
2227 		if (ftrace_rec_count(rec) == 1) {
2228 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2229 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2230 				flag |= FTRACE_FL_DIRECT;
2231 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2232 			flag |= FTRACE_FL_DIRECT;
2233 		}
2234 
2235 		/*
2236 		 * Ops calls are special, as count matters.
2237 		 * As with direct calls, they must only be enabled when count
2238 		 * is one, otherwise they'll be handled via the list ops.
2239 		 */
2240 		if (ftrace_rec_count(rec) == 1) {
2241 			if (!(rec->flags & FTRACE_FL_CALL_OPS) !=
2242 			    !(rec->flags & FTRACE_FL_CALL_OPS_EN))
2243 				flag |= FTRACE_FL_CALL_OPS;
2244 		} else if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
2245 			flag |= FTRACE_FL_CALL_OPS;
2246 		}
2247 	}
2248 
2249 	/* If the state of this record hasn't changed, then do nothing */
2250 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2251 		return FTRACE_UPDATE_IGNORE;
2252 
2253 	if (flag) {
2254 		/* Save off if rec is being enabled (for return value) */
2255 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2256 
2257 		if (update) {
2258 			rec->flags |= FTRACE_FL_ENABLED;
2259 			if (flag & FTRACE_FL_REGS) {
2260 				if (rec->flags & FTRACE_FL_REGS)
2261 					rec->flags |= FTRACE_FL_REGS_EN;
2262 				else
2263 					rec->flags &= ~FTRACE_FL_REGS_EN;
2264 			}
2265 			if (flag & FTRACE_FL_TRAMP) {
2266 				if (rec->flags & FTRACE_FL_TRAMP)
2267 					rec->flags |= FTRACE_FL_TRAMP_EN;
2268 				else
2269 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2270 			}
2271 
2272 			if (flag & FTRACE_FL_DIRECT) {
2273 				/*
2274 				 * If there's only one user (direct_ops helper)
2275 				 * then we can call the direct function
2276 				 * directly (no ftrace trampoline).
2277 				 */
2278 				if (ftrace_rec_count(rec) == 1) {
2279 					if (rec->flags & FTRACE_FL_DIRECT)
2280 						rec->flags |= FTRACE_FL_DIRECT_EN;
2281 					else
2282 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2283 				} else {
2284 					/*
2285 					 * Can only call directly if there's
2286 					 * only one callback to the function.
2287 					 */
2288 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2289 				}
2290 			}
2291 
2292 			if (flag & FTRACE_FL_CALL_OPS) {
2293 				if (ftrace_rec_count(rec) == 1) {
2294 					if (rec->flags & FTRACE_FL_CALL_OPS)
2295 						rec->flags |= FTRACE_FL_CALL_OPS_EN;
2296 					else
2297 						rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2298 				} else {
2299 					/*
2300 					 * Can only call directly if there's
2301 					 * only one set of associated ops.
2302 					 */
2303 					rec->flags &= ~FTRACE_FL_CALL_OPS_EN;
2304 				}
2305 			}
2306 		}
2307 
2308 		/*
2309 		 * If this record is being updated from a nop, then
2310 		 *   return UPDATE_MAKE_CALL.
2311 		 * Otherwise,
2312 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2313 		 *   from the save regs, to a non-save regs function or
2314 		 *   vice versa, or from a trampoline call.
2315 		 */
2316 		if (flag & FTRACE_FL_ENABLED) {
2317 			ftrace_bug_type = FTRACE_BUG_CALL;
2318 			return FTRACE_UPDATE_MAKE_CALL;
2319 		}
2320 
2321 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2322 		return FTRACE_UPDATE_MODIFY_CALL;
2323 	}
2324 
2325 	if (update) {
2326 		/* If there's no more users, clear all flags */
2327 		if (!ftrace_rec_count(rec))
2328 			rec->flags &= FTRACE_FL_DISABLED;
2329 		else
2330 			/*
2331 			 * Just disable the record, but keep the ops TRAMP
2332 			 * and REGS states. The _EN flags must be disabled though.
2333 			 */
2334 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2335 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN |
2336 					FTRACE_FL_CALL_OPS_EN);
2337 	}
2338 
2339 	ftrace_bug_type = FTRACE_BUG_NOP;
2340 	return FTRACE_UPDATE_MAKE_NOP;
2341 }
2342 
2343 /**
2344  * ftrace_update_record - set a record that now is tracing or not
2345  * @rec: the record to update
2346  * @enable: set to true if the record is tracing, false to force disable
2347  *
2348  * The records that represent all functions that can be traced need
2349  * to be updated when tracing has been enabled.
2350  */
2351 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2352 {
2353 	return ftrace_check_record(rec, enable, true);
2354 }
2355 
2356 /**
2357  * ftrace_test_record - check if the record has been enabled or not
2358  * @rec: the record to test
2359  * @enable: set to true to check if enabled, false if it is disabled
2360  *
2361  * The arch code may need to test if a record is already set to
2362  * tracing to determine how to modify the function code that it
2363  * represents.
2364  */
2365 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2366 {
2367 	return ftrace_check_record(rec, enable, false);
2368 }
2369 
2370 static struct ftrace_ops *
2371 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2372 {
2373 	struct ftrace_ops *op;
2374 	unsigned long ip = rec->ip;
2375 
2376 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2377 
2378 		if (!op->trampoline)
2379 			continue;
2380 
2381 		if (hash_contains_ip(ip, op->func_hash))
2382 			return op;
2383 	} while_for_each_ftrace_op(op);
2384 
2385 	return NULL;
2386 }
2387 
2388 static struct ftrace_ops *
2389 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2390 {
2391 	struct ftrace_ops *op;
2392 	unsigned long ip = rec->ip;
2393 
2394 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2395 
2396 		if (op == op_exclude || !op->trampoline)
2397 			continue;
2398 
2399 		if (hash_contains_ip(ip, op->func_hash))
2400 			return op;
2401 	} while_for_each_ftrace_op(op);
2402 
2403 	return NULL;
2404 }
2405 
2406 static struct ftrace_ops *
2407 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2408 			   struct ftrace_ops *op)
2409 {
2410 	unsigned long ip = rec->ip;
2411 
2412 	while_for_each_ftrace_op(op) {
2413 
2414 		if (!op->trampoline)
2415 			continue;
2416 
2417 		if (hash_contains_ip(ip, op->func_hash))
2418 			return op;
2419 	}
2420 
2421 	return NULL;
2422 }
2423 
2424 static struct ftrace_ops *
2425 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2426 {
2427 	struct ftrace_ops *op;
2428 	unsigned long ip = rec->ip;
2429 
2430 	/*
2431 	 * Need to check removed ops first.
2432 	 * If they are being removed, and this rec has a tramp,
2433 	 * and this rec is in the ops list, then it would be the
2434 	 * one with the tramp.
2435 	 */
2436 	if (removed_ops) {
2437 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2438 			return removed_ops;
2439 	}
2440 
2441 	/*
2442 	 * Need to find the current trampoline for a rec.
2443 	 * Now, a trampoline is only attached to a rec if there
2444 	 * was a single 'ops' attached to it. But this can be called
2445 	 * when we are adding another op to the rec or removing the
2446 	 * current one. Thus, if the op is being added, we can
2447 	 * ignore it because it hasn't attached itself to the rec
2448 	 * yet.
2449 	 *
2450 	 * If an ops is being modified (hooking to different functions)
2451 	 * then we don't care about the new functions that are being
2452 	 * added, just the old ones (that are probably being removed).
2453 	 *
2454 	 * If we are adding an ops to a function that already is using
2455 	 * a trampoline, it needs to be removed (trampolines are only
2456 	 * for single ops connected), then an ops that is not being
2457 	 * modified also needs to be checked.
2458 	 */
2459 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2460 
2461 		if (!op->trampoline)
2462 			continue;
2463 
2464 		/*
2465 		 * If the ops is being added, it hasn't gotten to
2466 		 * the point to be removed from this tree yet.
2467 		 */
2468 		if (op->flags & FTRACE_OPS_FL_ADDING)
2469 			continue;
2470 
2471 
2472 		/*
2473 		 * If the ops is being modified and is in the old
2474 		 * hash, then it is probably being removed from this
2475 		 * function.
2476 		 */
2477 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2478 		    hash_contains_ip(ip, &op->old_hash))
2479 			return op;
2480 		/*
2481 		 * If the ops is not being added or modified, and it's
2482 		 * in its normal filter hash, then this must be the one
2483 		 * we want!
2484 		 */
2485 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2486 		    hash_contains_ip(ip, op->func_hash))
2487 			return op;
2488 
2489 	} while_for_each_ftrace_op(op);
2490 
2491 	return NULL;
2492 }
2493 
2494 static struct ftrace_ops *
2495 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2496 {
2497 	struct ftrace_ops *op;
2498 	unsigned long ip = rec->ip;
2499 
2500 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2501 		/* pass rec in as regs to have non-NULL val */
2502 		if (hash_contains_ip(ip, op->func_hash))
2503 			return op;
2504 	} while_for_each_ftrace_op(op);
2505 
2506 	return NULL;
2507 }
2508 
2509 struct ftrace_ops *
2510 ftrace_find_unique_ops(struct dyn_ftrace *rec)
2511 {
2512 	struct ftrace_ops *op, *found = NULL;
2513 	unsigned long ip = rec->ip;
2514 
2515 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2516 
2517 		if (hash_contains_ip(ip, op->func_hash)) {
2518 			if (found)
2519 				return NULL;
2520 			found = op;
2521 		}
2522 
2523 	} while_for_each_ftrace_op(op);
2524 
2525 	return found;
2526 }
2527 
2528 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2529 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2530 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2531 static DEFINE_MUTEX(direct_mutex);
2532 int ftrace_direct_func_count;
2533 
2534 /*
2535  * Search the direct_functions hash to see if the given instruction pointer
2536  * has a direct caller attached to it.
2537  */
2538 unsigned long ftrace_find_rec_direct(unsigned long ip)
2539 {
2540 	struct ftrace_func_entry *entry;
2541 
2542 	entry = __ftrace_lookup_ip(direct_functions, ip);
2543 	if (!entry)
2544 		return 0;
2545 
2546 	return entry->direct;
2547 }
2548 
2549 static struct ftrace_func_entry*
2550 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2551 		      struct ftrace_hash **free_hash)
2552 {
2553 	struct ftrace_func_entry *entry;
2554 
2555 	if (ftrace_hash_empty(direct_functions) ||
2556 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2557 		struct ftrace_hash *new_hash;
2558 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2559 			direct_functions->count + 1;
2560 
2561 		if (size < 32)
2562 			size = 32;
2563 
2564 		new_hash = dup_hash(direct_functions, size);
2565 		if (!new_hash)
2566 			return NULL;
2567 
2568 		*free_hash = direct_functions;
2569 		direct_functions = new_hash;
2570 	}
2571 
2572 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2573 	if (!entry)
2574 		return NULL;
2575 
2576 	entry->ip = ip;
2577 	entry->direct = addr;
2578 	__add_hash_entry(direct_functions, entry);
2579 	return entry;
2580 }
2581 
2582 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2583 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2584 {
2585 	unsigned long addr;
2586 
2587 	addr = ftrace_find_rec_direct(ip);
2588 	if (!addr)
2589 		return;
2590 
2591 	arch_ftrace_set_direct_caller(fregs, addr);
2592 }
2593 
2594 struct ftrace_ops direct_ops = {
2595 	.func		= call_direct_funcs,
2596 	.flags		= FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2597 			  | FTRACE_OPS_FL_PERMANENT,
2598 	/*
2599 	 * By declaring the main trampoline as this trampoline
2600 	 * it will never have one allocated for it. Allocated
2601 	 * trampolines should not call direct functions.
2602 	 * The direct_ops should only be called by the builtin
2603 	 * ftrace_regs_caller trampoline.
2604 	 */
2605 	.trampoline	= FTRACE_REGS_ADDR,
2606 };
2607 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2608 
2609 /**
2610  * ftrace_get_addr_new - Get the call address to set to
2611  * @rec:  The ftrace record descriptor
2612  *
2613  * If the record has the FTRACE_FL_REGS set, that means that it
2614  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2615  * is not set, then it wants to convert to the normal callback.
2616  *
2617  * Returns the address of the trampoline to set to
2618  */
2619 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2620 {
2621 	struct ftrace_ops *ops;
2622 	unsigned long addr;
2623 
2624 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2625 	    (ftrace_rec_count(rec) == 1)) {
2626 		addr = ftrace_find_rec_direct(rec->ip);
2627 		if (addr)
2628 			return addr;
2629 		WARN_ON_ONCE(1);
2630 	}
2631 
2632 	/* Trampolines take precedence over regs */
2633 	if (rec->flags & FTRACE_FL_TRAMP) {
2634 		ops = ftrace_find_tramp_ops_new(rec);
2635 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2636 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2637 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2638 			/* Ftrace is shutting down, return anything */
2639 			return (unsigned long)FTRACE_ADDR;
2640 		}
2641 		return ops->trampoline;
2642 	}
2643 
2644 	if (rec->flags & FTRACE_FL_REGS)
2645 		return (unsigned long)FTRACE_REGS_ADDR;
2646 	else
2647 		return (unsigned long)FTRACE_ADDR;
2648 }
2649 
2650 /**
2651  * ftrace_get_addr_curr - Get the call address that is already there
2652  * @rec:  The ftrace record descriptor
2653  *
2654  * The FTRACE_FL_REGS_EN is set when the record already points to
2655  * a function that saves all the regs. Basically the '_EN' version
2656  * represents the current state of the function.
2657  *
2658  * Returns the address of the trampoline that is currently being called
2659  */
2660 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2661 {
2662 	struct ftrace_ops *ops;
2663 	unsigned long addr;
2664 
2665 	/* Direct calls take precedence over trampolines */
2666 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2667 		addr = ftrace_find_rec_direct(rec->ip);
2668 		if (addr)
2669 			return addr;
2670 		WARN_ON_ONCE(1);
2671 	}
2672 
2673 	/* Trampolines take precedence over regs */
2674 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2675 		ops = ftrace_find_tramp_ops_curr(rec);
2676 		if (FTRACE_WARN_ON(!ops)) {
2677 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2678 				(void *)rec->ip, (void *)rec->ip);
2679 			/* Ftrace is shutting down, return anything */
2680 			return (unsigned long)FTRACE_ADDR;
2681 		}
2682 		return ops->trampoline;
2683 	}
2684 
2685 	if (rec->flags & FTRACE_FL_REGS_EN)
2686 		return (unsigned long)FTRACE_REGS_ADDR;
2687 	else
2688 		return (unsigned long)FTRACE_ADDR;
2689 }
2690 
2691 static int
2692 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2693 {
2694 	unsigned long ftrace_old_addr;
2695 	unsigned long ftrace_addr;
2696 	int ret;
2697 
2698 	ftrace_addr = ftrace_get_addr_new(rec);
2699 
2700 	/* This needs to be done before we call ftrace_update_record */
2701 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2702 
2703 	ret = ftrace_update_record(rec, enable);
2704 
2705 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2706 
2707 	switch (ret) {
2708 	case FTRACE_UPDATE_IGNORE:
2709 		return 0;
2710 
2711 	case FTRACE_UPDATE_MAKE_CALL:
2712 		ftrace_bug_type = FTRACE_BUG_CALL;
2713 		return ftrace_make_call(rec, ftrace_addr);
2714 
2715 	case FTRACE_UPDATE_MAKE_NOP:
2716 		ftrace_bug_type = FTRACE_BUG_NOP;
2717 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2718 
2719 	case FTRACE_UPDATE_MODIFY_CALL:
2720 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2721 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2722 	}
2723 
2724 	return -1; /* unknown ftrace bug */
2725 }
2726 
2727 void __weak ftrace_replace_code(int mod_flags)
2728 {
2729 	struct dyn_ftrace *rec;
2730 	struct ftrace_page *pg;
2731 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2732 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2733 	int failed;
2734 
2735 	if (unlikely(ftrace_disabled))
2736 		return;
2737 
2738 	do_for_each_ftrace_rec(pg, rec) {
2739 
2740 		if (skip_record(rec))
2741 			continue;
2742 
2743 		failed = __ftrace_replace_code(rec, enable);
2744 		if (failed) {
2745 			ftrace_bug(failed, rec);
2746 			/* Stop processing */
2747 			return;
2748 		}
2749 		if (schedulable)
2750 			cond_resched();
2751 	} while_for_each_ftrace_rec();
2752 }
2753 
2754 struct ftrace_rec_iter {
2755 	struct ftrace_page	*pg;
2756 	int			index;
2757 };
2758 
2759 /**
2760  * ftrace_rec_iter_start - start up iterating over traced functions
2761  *
2762  * Returns an iterator handle that is used to iterate over all
2763  * the records that represent address locations where functions
2764  * are traced.
2765  *
2766  * May return NULL if no records are available.
2767  */
2768 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2769 {
2770 	/*
2771 	 * We only use a single iterator.
2772 	 * Protected by the ftrace_lock mutex.
2773 	 */
2774 	static struct ftrace_rec_iter ftrace_rec_iter;
2775 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2776 
2777 	iter->pg = ftrace_pages_start;
2778 	iter->index = 0;
2779 
2780 	/* Could have empty pages */
2781 	while (iter->pg && !iter->pg->index)
2782 		iter->pg = iter->pg->next;
2783 
2784 	if (!iter->pg)
2785 		return NULL;
2786 
2787 	return iter;
2788 }
2789 
2790 /**
2791  * ftrace_rec_iter_next - get the next record to process.
2792  * @iter: The handle to the iterator.
2793  *
2794  * Returns the next iterator after the given iterator @iter.
2795  */
2796 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2797 {
2798 	iter->index++;
2799 
2800 	if (iter->index >= iter->pg->index) {
2801 		iter->pg = iter->pg->next;
2802 		iter->index = 0;
2803 
2804 		/* Could have empty pages */
2805 		while (iter->pg && !iter->pg->index)
2806 			iter->pg = iter->pg->next;
2807 	}
2808 
2809 	if (!iter->pg)
2810 		return NULL;
2811 
2812 	return iter;
2813 }
2814 
2815 /**
2816  * ftrace_rec_iter_record - get the record at the iterator location
2817  * @iter: The current iterator location
2818  *
2819  * Returns the record that the current @iter is at.
2820  */
2821 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2822 {
2823 	return &iter->pg->records[iter->index];
2824 }
2825 
2826 static int
2827 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2828 {
2829 	int ret;
2830 
2831 	if (unlikely(ftrace_disabled))
2832 		return 0;
2833 
2834 	ret = ftrace_init_nop(mod, rec);
2835 	if (ret) {
2836 		ftrace_bug_type = FTRACE_BUG_INIT;
2837 		ftrace_bug(ret, rec);
2838 		return 0;
2839 	}
2840 	return 1;
2841 }
2842 
2843 /*
2844  * archs can override this function if they must do something
2845  * before the modifying code is performed.
2846  */
2847 void __weak ftrace_arch_code_modify_prepare(void)
2848 {
2849 }
2850 
2851 /*
2852  * archs can override this function if they must do something
2853  * after the modifying code is performed.
2854  */
2855 void __weak ftrace_arch_code_modify_post_process(void)
2856 {
2857 }
2858 
2859 static int update_ftrace_func(ftrace_func_t func)
2860 {
2861 	static ftrace_func_t save_func;
2862 
2863 	/* Avoid updating if it hasn't changed */
2864 	if (func == save_func)
2865 		return 0;
2866 
2867 	save_func = func;
2868 
2869 	return ftrace_update_ftrace_func(func);
2870 }
2871 
2872 void ftrace_modify_all_code(int command)
2873 {
2874 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2875 	int mod_flags = 0;
2876 	int err = 0;
2877 
2878 	if (command & FTRACE_MAY_SLEEP)
2879 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2880 
2881 	/*
2882 	 * If the ftrace_caller calls a ftrace_ops func directly,
2883 	 * we need to make sure that it only traces functions it
2884 	 * expects to trace. When doing the switch of functions,
2885 	 * we need to update to the ftrace_ops_list_func first
2886 	 * before the transition between old and new calls are set,
2887 	 * as the ftrace_ops_list_func will check the ops hashes
2888 	 * to make sure the ops are having the right functions
2889 	 * traced.
2890 	 */
2891 	if (update) {
2892 		err = update_ftrace_func(ftrace_ops_list_func);
2893 		if (FTRACE_WARN_ON(err))
2894 			return;
2895 	}
2896 
2897 	if (command & FTRACE_UPDATE_CALLS)
2898 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2899 	else if (command & FTRACE_DISABLE_CALLS)
2900 		ftrace_replace_code(mod_flags);
2901 
2902 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2903 		function_trace_op = set_function_trace_op;
2904 		smp_wmb();
2905 		/* If irqs are disabled, we are in stop machine */
2906 		if (!irqs_disabled())
2907 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2908 		err = update_ftrace_func(ftrace_trace_function);
2909 		if (FTRACE_WARN_ON(err))
2910 			return;
2911 	}
2912 
2913 	if (command & FTRACE_START_FUNC_RET)
2914 		err = ftrace_enable_ftrace_graph_caller();
2915 	else if (command & FTRACE_STOP_FUNC_RET)
2916 		err = ftrace_disable_ftrace_graph_caller();
2917 	FTRACE_WARN_ON(err);
2918 }
2919 
2920 static int __ftrace_modify_code(void *data)
2921 {
2922 	int *command = data;
2923 
2924 	ftrace_modify_all_code(*command);
2925 
2926 	return 0;
2927 }
2928 
2929 /**
2930  * ftrace_run_stop_machine - go back to the stop machine method
2931  * @command: The command to tell ftrace what to do
2932  *
2933  * If an arch needs to fall back to the stop machine method, the
2934  * it can call this function.
2935  */
2936 void ftrace_run_stop_machine(int command)
2937 {
2938 	stop_machine(__ftrace_modify_code, &command, NULL);
2939 }
2940 
2941 /**
2942  * arch_ftrace_update_code - modify the code to trace or not trace
2943  * @command: The command that needs to be done
2944  *
2945  * Archs can override this function if it does not need to
2946  * run stop_machine() to modify code.
2947  */
2948 void __weak arch_ftrace_update_code(int command)
2949 {
2950 	ftrace_run_stop_machine(command);
2951 }
2952 
2953 static void ftrace_run_update_code(int command)
2954 {
2955 	ftrace_arch_code_modify_prepare();
2956 
2957 	/*
2958 	 * By default we use stop_machine() to modify the code.
2959 	 * But archs can do what ever they want as long as it
2960 	 * is safe. The stop_machine() is the safest, but also
2961 	 * produces the most overhead.
2962 	 */
2963 	arch_ftrace_update_code(command);
2964 
2965 	ftrace_arch_code_modify_post_process();
2966 }
2967 
2968 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2969 				   struct ftrace_ops_hash *old_hash)
2970 {
2971 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2972 	ops->old_hash.filter_hash = old_hash->filter_hash;
2973 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2974 	ftrace_run_update_code(command);
2975 	ops->old_hash.filter_hash = NULL;
2976 	ops->old_hash.notrace_hash = NULL;
2977 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2978 }
2979 
2980 static ftrace_func_t saved_ftrace_func;
2981 static int ftrace_start_up;
2982 
2983 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2984 {
2985 }
2986 
2987 /* List of trace_ops that have allocated trampolines */
2988 static LIST_HEAD(ftrace_ops_trampoline_list);
2989 
2990 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2991 {
2992 	lockdep_assert_held(&ftrace_lock);
2993 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2994 }
2995 
2996 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2997 {
2998 	lockdep_assert_held(&ftrace_lock);
2999 	list_del_rcu(&ops->list);
3000 	synchronize_rcu();
3001 }
3002 
3003 /*
3004  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
3005  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
3006  * not a module.
3007  */
3008 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
3009 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
3010 
3011 static void ftrace_trampoline_free(struct ftrace_ops *ops)
3012 {
3013 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
3014 	    ops->trampoline) {
3015 		/*
3016 		 * Record the text poke event before the ksymbol unregister
3017 		 * event.
3018 		 */
3019 		perf_event_text_poke((void *)ops->trampoline,
3020 				     (void *)ops->trampoline,
3021 				     ops->trampoline_size, NULL, 0);
3022 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
3023 				   ops->trampoline, ops->trampoline_size,
3024 				   true, FTRACE_TRAMPOLINE_SYM);
3025 		/* Remove from kallsyms after the perf events */
3026 		ftrace_remove_trampoline_from_kallsyms(ops);
3027 	}
3028 
3029 	arch_ftrace_trampoline_free(ops);
3030 }
3031 
3032 static void ftrace_startup_enable(int command)
3033 {
3034 	if (saved_ftrace_func != ftrace_trace_function) {
3035 		saved_ftrace_func = ftrace_trace_function;
3036 		command |= FTRACE_UPDATE_TRACE_FUNC;
3037 	}
3038 
3039 	if (!command || !ftrace_enabled)
3040 		return;
3041 
3042 	ftrace_run_update_code(command);
3043 }
3044 
3045 static void ftrace_startup_all(int command)
3046 {
3047 	update_all_ops = true;
3048 	ftrace_startup_enable(command);
3049 	update_all_ops = false;
3050 }
3051 
3052 int ftrace_startup(struct ftrace_ops *ops, int command)
3053 {
3054 	int ret;
3055 
3056 	if (unlikely(ftrace_disabled))
3057 		return -ENODEV;
3058 
3059 	ret = __register_ftrace_function(ops);
3060 	if (ret)
3061 		return ret;
3062 
3063 	ftrace_start_up++;
3064 
3065 	/*
3066 	 * Note that ftrace probes uses this to start up
3067 	 * and modify functions it will probe. But we still
3068 	 * set the ADDING flag for modification, as probes
3069 	 * do not have trampolines. If they add them in the
3070 	 * future, then the probes will need to distinguish
3071 	 * between adding and updating probes.
3072 	 */
3073 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
3074 
3075 	ret = ftrace_hash_ipmodify_enable(ops);
3076 	if (ret < 0) {
3077 		/* Rollback registration process */
3078 		__unregister_ftrace_function(ops);
3079 		ftrace_start_up--;
3080 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3081 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3082 			ftrace_trampoline_free(ops);
3083 		return ret;
3084 	}
3085 
3086 	if (ftrace_hash_rec_enable(ops, 1))
3087 		command |= FTRACE_UPDATE_CALLS;
3088 
3089 	ftrace_startup_enable(command);
3090 
3091 	/*
3092 	 * If ftrace is in an undefined state, we just remove ops from list
3093 	 * to prevent the NULL pointer, instead of totally rolling it back and
3094 	 * free trampoline, because those actions could cause further damage.
3095 	 */
3096 	if (unlikely(ftrace_disabled)) {
3097 		__unregister_ftrace_function(ops);
3098 		return -ENODEV;
3099 	}
3100 
3101 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
3102 
3103 	return 0;
3104 }
3105 
3106 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3107 {
3108 	int ret;
3109 
3110 	if (unlikely(ftrace_disabled))
3111 		return -ENODEV;
3112 
3113 	ret = __unregister_ftrace_function(ops);
3114 	if (ret)
3115 		return ret;
3116 
3117 	ftrace_start_up--;
3118 	/*
3119 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3120 	 * critical but the ftrace_call callers may be never nopped again after
3121 	 * further ftrace uses.
3122 	 */
3123 	WARN_ON_ONCE(ftrace_start_up < 0);
3124 
3125 	/* Disabling ipmodify never fails */
3126 	ftrace_hash_ipmodify_disable(ops);
3127 
3128 	if (ftrace_hash_rec_disable(ops, 1))
3129 		command |= FTRACE_UPDATE_CALLS;
3130 
3131 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3132 
3133 	if (saved_ftrace_func != ftrace_trace_function) {
3134 		saved_ftrace_func = ftrace_trace_function;
3135 		command |= FTRACE_UPDATE_TRACE_FUNC;
3136 	}
3137 
3138 	if (!command || !ftrace_enabled)
3139 		goto out;
3140 
3141 	/*
3142 	 * If the ops uses a trampoline, then it needs to be
3143 	 * tested first on update.
3144 	 */
3145 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3146 	removed_ops = ops;
3147 
3148 	/* The trampoline logic checks the old hashes */
3149 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3150 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3151 
3152 	ftrace_run_update_code(command);
3153 
3154 	/*
3155 	 * If there's no more ops registered with ftrace, run a
3156 	 * sanity check to make sure all rec flags are cleared.
3157 	 */
3158 	if (rcu_dereference_protected(ftrace_ops_list,
3159 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3160 		struct ftrace_page *pg;
3161 		struct dyn_ftrace *rec;
3162 
3163 		do_for_each_ftrace_rec(pg, rec) {
3164 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3165 				pr_warn("  %pS flags:%lx\n",
3166 					(void *)rec->ip, rec->flags);
3167 		} while_for_each_ftrace_rec();
3168 	}
3169 
3170 	ops->old_hash.filter_hash = NULL;
3171 	ops->old_hash.notrace_hash = NULL;
3172 
3173 	removed_ops = NULL;
3174 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3175 
3176 out:
3177 	/*
3178 	 * Dynamic ops may be freed, we must make sure that all
3179 	 * callers are done before leaving this function.
3180 	 */
3181 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3182 		/*
3183 		 * We need to do a hard force of sched synchronization.
3184 		 * This is because we use preempt_disable() to do RCU, but
3185 		 * the function tracers can be called where RCU is not watching
3186 		 * (like before user_exit()). We can not rely on the RCU
3187 		 * infrastructure to do the synchronization, thus we must do it
3188 		 * ourselves.
3189 		 */
3190 		synchronize_rcu_tasks_rude();
3191 
3192 		/*
3193 		 * When the kernel is preemptive, tasks can be preempted
3194 		 * while on a ftrace trampoline. Just scheduling a task on
3195 		 * a CPU is not good enough to flush them. Calling
3196 		 * synchronize_rcu_tasks() will wait for those tasks to
3197 		 * execute and either schedule voluntarily or enter user space.
3198 		 */
3199 		if (IS_ENABLED(CONFIG_PREEMPTION))
3200 			synchronize_rcu_tasks();
3201 
3202 		ftrace_trampoline_free(ops);
3203 	}
3204 
3205 	return 0;
3206 }
3207 
3208 static u64		ftrace_update_time;
3209 unsigned long		ftrace_update_tot_cnt;
3210 unsigned long		ftrace_number_of_pages;
3211 unsigned long		ftrace_number_of_groups;
3212 
3213 static inline int ops_traces_mod(struct ftrace_ops *ops)
3214 {
3215 	/*
3216 	 * Filter_hash being empty will default to trace module.
3217 	 * But notrace hash requires a test of individual module functions.
3218 	 */
3219 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3220 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3221 }
3222 
3223 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3224 {
3225 	bool init_nop = ftrace_need_init_nop();
3226 	struct ftrace_page *pg;
3227 	struct dyn_ftrace *p;
3228 	u64 start, stop;
3229 	unsigned long update_cnt = 0;
3230 	unsigned long rec_flags = 0;
3231 	int i;
3232 
3233 	start = ftrace_now(raw_smp_processor_id());
3234 
3235 	/*
3236 	 * When a module is loaded, this function is called to convert
3237 	 * the calls to mcount in its text to nops, and also to create
3238 	 * an entry in the ftrace data. Now, if ftrace is activated
3239 	 * after this call, but before the module sets its text to
3240 	 * read-only, the modification of enabling ftrace can fail if
3241 	 * the read-only is done while ftrace is converting the calls.
3242 	 * To prevent this, the module's records are set as disabled
3243 	 * and will be enabled after the call to set the module's text
3244 	 * to read-only.
3245 	 */
3246 	if (mod)
3247 		rec_flags |= FTRACE_FL_DISABLED;
3248 
3249 	for (pg = new_pgs; pg; pg = pg->next) {
3250 
3251 		for (i = 0; i < pg->index; i++) {
3252 
3253 			/* If something went wrong, bail without enabling anything */
3254 			if (unlikely(ftrace_disabled))
3255 				return -1;
3256 
3257 			p = &pg->records[i];
3258 			p->flags = rec_flags;
3259 
3260 			/*
3261 			 * Do the initial record conversion from mcount jump
3262 			 * to the NOP instructions.
3263 			 */
3264 			if (init_nop && !ftrace_nop_initialize(mod, p))
3265 				break;
3266 
3267 			update_cnt++;
3268 		}
3269 	}
3270 
3271 	stop = ftrace_now(raw_smp_processor_id());
3272 	ftrace_update_time = stop - start;
3273 	ftrace_update_tot_cnt += update_cnt;
3274 
3275 	return 0;
3276 }
3277 
3278 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3279 {
3280 	int order;
3281 	int pages;
3282 	int cnt;
3283 
3284 	if (WARN_ON(!count))
3285 		return -EINVAL;
3286 
3287 	/* We want to fill as much as possible, with no empty pages */
3288 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3289 	order = fls(pages) - 1;
3290 
3291  again:
3292 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3293 
3294 	if (!pg->records) {
3295 		/* if we can't allocate this size, try something smaller */
3296 		if (!order)
3297 			return -ENOMEM;
3298 		order--;
3299 		goto again;
3300 	}
3301 
3302 	ftrace_number_of_pages += 1 << order;
3303 	ftrace_number_of_groups++;
3304 
3305 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3306 	pg->order = order;
3307 
3308 	if (cnt > count)
3309 		cnt = count;
3310 
3311 	return cnt;
3312 }
3313 
3314 static struct ftrace_page *
3315 ftrace_allocate_pages(unsigned long num_to_init)
3316 {
3317 	struct ftrace_page *start_pg;
3318 	struct ftrace_page *pg;
3319 	int cnt;
3320 
3321 	if (!num_to_init)
3322 		return NULL;
3323 
3324 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3325 	if (!pg)
3326 		return NULL;
3327 
3328 	/*
3329 	 * Try to allocate as much as possible in one continues
3330 	 * location that fills in all of the space. We want to
3331 	 * waste as little space as possible.
3332 	 */
3333 	for (;;) {
3334 		cnt = ftrace_allocate_records(pg, num_to_init);
3335 		if (cnt < 0)
3336 			goto free_pages;
3337 
3338 		num_to_init -= cnt;
3339 		if (!num_to_init)
3340 			break;
3341 
3342 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3343 		if (!pg->next)
3344 			goto free_pages;
3345 
3346 		pg = pg->next;
3347 	}
3348 
3349 	return start_pg;
3350 
3351  free_pages:
3352 	pg = start_pg;
3353 	while (pg) {
3354 		if (pg->records) {
3355 			free_pages((unsigned long)pg->records, pg->order);
3356 			ftrace_number_of_pages -= 1 << pg->order;
3357 		}
3358 		start_pg = pg->next;
3359 		kfree(pg);
3360 		pg = start_pg;
3361 		ftrace_number_of_groups--;
3362 	}
3363 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3364 	return NULL;
3365 }
3366 
3367 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3368 
3369 struct ftrace_iterator {
3370 	loff_t				pos;
3371 	loff_t				func_pos;
3372 	loff_t				mod_pos;
3373 	struct ftrace_page		*pg;
3374 	struct dyn_ftrace		*func;
3375 	struct ftrace_func_probe	*probe;
3376 	struct ftrace_func_entry	*probe_entry;
3377 	struct trace_parser		parser;
3378 	struct ftrace_hash		*hash;
3379 	struct ftrace_ops		*ops;
3380 	struct trace_array		*tr;
3381 	struct list_head		*mod_list;
3382 	int				pidx;
3383 	int				idx;
3384 	unsigned			flags;
3385 };
3386 
3387 static void *
3388 t_probe_next(struct seq_file *m, loff_t *pos)
3389 {
3390 	struct ftrace_iterator *iter = m->private;
3391 	struct trace_array *tr = iter->ops->private;
3392 	struct list_head *func_probes;
3393 	struct ftrace_hash *hash;
3394 	struct list_head *next;
3395 	struct hlist_node *hnd = NULL;
3396 	struct hlist_head *hhd;
3397 	int size;
3398 
3399 	(*pos)++;
3400 	iter->pos = *pos;
3401 
3402 	if (!tr)
3403 		return NULL;
3404 
3405 	func_probes = &tr->func_probes;
3406 	if (list_empty(func_probes))
3407 		return NULL;
3408 
3409 	if (!iter->probe) {
3410 		next = func_probes->next;
3411 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3412 	}
3413 
3414 	if (iter->probe_entry)
3415 		hnd = &iter->probe_entry->hlist;
3416 
3417 	hash = iter->probe->ops.func_hash->filter_hash;
3418 
3419 	/*
3420 	 * A probe being registered may temporarily have an empty hash
3421 	 * and it's at the end of the func_probes list.
3422 	 */
3423 	if (!hash || hash == EMPTY_HASH)
3424 		return NULL;
3425 
3426 	size = 1 << hash->size_bits;
3427 
3428  retry:
3429 	if (iter->pidx >= size) {
3430 		if (iter->probe->list.next == func_probes)
3431 			return NULL;
3432 		next = iter->probe->list.next;
3433 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3434 		hash = iter->probe->ops.func_hash->filter_hash;
3435 		size = 1 << hash->size_bits;
3436 		iter->pidx = 0;
3437 	}
3438 
3439 	hhd = &hash->buckets[iter->pidx];
3440 
3441 	if (hlist_empty(hhd)) {
3442 		iter->pidx++;
3443 		hnd = NULL;
3444 		goto retry;
3445 	}
3446 
3447 	if (!hnd)
3448 		hnd = hhd->first;
3449 	else {
3450 		hnd = hnd->next;
3451 		if (!hnd) {
3452 			iter->pidx++;
3453 			goto retry;
3454 		}
3455 	}
3456 
3457 	if (WARN_ON_ONCE(!hnd))
3458 		return NULL;
3459 
3460 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3461 
3462 	return iter;
3463 }
3464 
3465 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3466 {
3467 	struct ftrace_iterator *iter = m->private;
3468 	void *p = NULL;
3469 	loff_t l;
3470 
3471 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3472 		return NULL;
3473 
3474 	if (iter->mod_pos > *pos)
3475 		return NULL;
3476 
3477 	iter->probe = NULL;
3478 	iter->probe_entry = NULL;
3479 	iter->pidx = 0;
3480 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3481 		p = t_probe_next(m, &l);
3482 		if (!p)
3483 			break;
3484 	}
3485 	if (!p)
3486 		return NULL;
3487 
3488 	/* Only set this if we have an item */
3489 	iter->flags |= FTRACE_ITER_PROBE;
3490 
3491 	return iter;
3492 }
3493 
3494 static int
3495 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3496 {
3497 	struct ftrace_func_entry *probe_entry;
3498 	struct ftrace_probe_ops *probe_ops;
3499 	struct ftrace_func_probe *probe;
3500 
3501 	probe = iter->probe;
3502 	probe_entry = iter->probe_entry;
3503 
3504 	if (WARN_ON_ONCE(!probe || !probe_entry))
3505 		return -EIO;
3506 
3507 	probe_ops = probe->probe_ops;
3508 
3509 	if (probe_ops->print)
3510 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3511 
3512 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3513 		   (void *)probe_ops->func);
3514 
3515 	return 0;
3516 }
3517 
3518 static void *
3519 t_mod_next(struct seq_file *m, loff_t *pos)
3520 {
3521 	struct ftrace_iterator *iter = m->private;
3522 	struct trace_array *tr = iter->tr;
3523 
3524 	(*pos)++;
3525 	iter->pos = *pos;
3526 
3527 	iter->mod_list = iter->mod_list->next;
3528 
3529 	if (iter->mod_list == &tr->mod_trace ||
3530 	    iter->mod_list == &tr->mod_notrace) {
3531 		iter->flags &= ~FTRACE_ITER_MOD;
3532 		return NULL;
3533 	}
3534 
3535 	iter->mod_pos = *pos;
3536 
3537 	return iter;
3538 }
3539 
3540 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3541 {
3542 	struct ftrace_iterator *iter = m->private;
3543 	void *p = NULL;
3544 	loff_t l;
3545 
3546 	if (iter->func_pos > *pos)
3547 		return NULL;
3548 
3549 	iter->mod_pos = iter->func_pos;
3550 
3551 	/* probes are only available if tr is set */
3552 	if (!iter->tr)
3553 		return NULL;
3554 
3555 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3556 		p = t_mod_next(m, &l);
3557 		if (!p)
3558 			break;
3559 	}
3560 	if (!p) {
3561 		iter->flags &= ~FTRACE_ITER_MOD;
3562 		return t_probe_start(m, pos);
3563 	}
3564 
3565 	/* Only set this if we have an item */
3566 	iter->flags |= FTRACE_ITER_MOD;
3567 
3568 	return iter;
3569 }
3570 
3571 static int
3572 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3573 {
3574 	struct ftrace_mod_load *ftrace_mod;
3575 	struct trace_array *tr = iter->tr;
3576 
3577 	if (WARN_ON_ONCE(!iter->mod_list) ||
3578 			 iter->mod_list == &tr->mod_trace ||
3579 			 iter->mod_list == &tr->mod_notrace)
3580 		return -EIO;
3581 
3582 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3583 
3584 	if (ftrace_mod->func)
3585 		seq_printf(m, "%s", ftrace_mod->func);
3586 	else
3587 		seq_putc(m, '*');
3588 
3589 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3590 
3591 	return 0;
3592 }
3593 
3594 static void *
3595 t_func_next(struct seq_file *m, loff_t *pos)
3596 {
3597 	struct ftrace_iterator *iter = m->private;
3598 	struct dyn_ftrace *rec = NULL;
3599 
3600 	(*pos)++;
3601 
3602  retry:
3603 	if (iter->idx >= iter->pg->index) {
3604 		if (iter->pg->next) {
3605 			iter->pg = iter->pg->next;
3606 			iter->idx = 0;
3607 			goto retry;
3608 		}
3609 	} else {
3610 		rec = &iter->pg->records[iter->idx++];
3611 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3612 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3613 
3614 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3615 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3616 
3617 			rec = NULL;
3618 			goto retry;
3619 		}
3620 	}
3621 
3622 	if (!rec)
3623 		return NULL;
3624 
3625 	iter->pos = iter->func_pos = *pos;
3626 	iter->func = rec;
3627 
3628 	return iter;
3629 }
3630 
3631 static void *
3632 t_next(struct seq_file *m, void *v, loff_t *pos)
3633 {
3634 	struct ftrace_iterator *iter = m->private;
3635 	loff_t l = *pos; /* t_probe_start() must use original pos */
3636 	void *ret;
3637 
3638 	if (unlikely(ftrace_disabled))
3639 		return NULL;
3640 
3641 	if (iter->flags & FTRACE_ITER_PROBE)
3642 		return t_probe_next(m, pos);
3643 
3644 	if (iter->flags & FTRACE_ITER_MOD)
3645 		return t_mod_next(m, pos);
3646 
3647 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3648 		/* next must increment pos, and t_probe_start does not */
3649 		(*pos)++;
3650 		return t_mod_start(m, &l);
3651 	}
3652 
3653 	ret = t_func_next(m, pos);
3654 
3655 	if (!ret)
3656 		return t_mod_start(m, &l);
3657 
3658 	return ret;
3659 }
3660 
3661 static void reset_iter_read(struct ftrace_iterator *iter)
3662 {
3663 	iter->pos = 0;
3664 	iter->func_pos = 0;
3665 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3666 }
3667 
3668 static void *t_start(struct seq_file *m, loff_t *pos)
3669 {
3670 	struct ftrace_iterator *iter = m->private;
3671 	void *p = NULL;
3672 	loff_t l;
3673 
3674 	mutex_lock(&ftrace_lock);
3675 
3676 	if (unlikely(ftrace_disabled))
3677 		return NULL;
3678 
3679 	/*
3680 	 * If an lseek was done, then reset and start from beginning.
3681 	 */
3682 	if (*pos < iter->pos)
3683 		reset_iter_read(iter);
3684 
3685 	/*
3686 	 * For set_ftrace_filter reading, if we have the filter
3687 	 * off, we can short cut and just print out that all
3688 	 * functions are enabled.
3689 	 */
3690 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3691 	    ftrace_hash_empty(iter->hash)) {
3692 		iter->func_pos = 1; /* Account for the message */
3693 		if (*pos > 0)
3694 			return t_mod_start(m, pos);
3695 		iter->flags |= FTRACE_ITER_PRINTALL;
3696 		/* reset in case of seek/pread */
3697 		iter->flags &= ~FTRACE_ITER_PROBE;
3698 		return iter;
3699 	}
3700 
3701 	if (iter->flags & FTRACE_ITER_MOD)
3702 		return t_mod_start(m, pos);
3703 
3704 	/*
3705 	 * Unfortunately, we need to restart at ftrace_pages_start
3706 	 * every time we let go of the ftrace_mutex. This is because
3707 	 * those pointers can change without the lock.
3708 	 */
3709 	iter->pg = ftrace_pages_start;
3710 	iter->idx = 0;
3711 	for (l = 0; l <= *pos; ) {
3712 		p = t_func_next(m, &l);
3713 		if (!p)
3714 			break;
3715 	}
3716 
3717 	if (!p)
3718 		return t_mod_start(m, pos);
3719 
3720 	return iter;
3721 }
3722 
3723 static void t_stop(struct seq_file *m, void *p)
3724 {
3725 	mutex_unlock(&ftrace_lock);
3726 }
3727 
3728 void * __weak
3729 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3730 {
3731 	return NULL;
3732 }
3733 
3734 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3735 				struct dyn_ftrace *rec)
3736 {
3737 	void *ptr;
3738 
3739 	ptr = arch_ftrace_trampoline_func(ops, rec);
3740 	if (ptr)
3741 		seq_printf(m, " ->%pS", ptr);
3742 }
3743 
3744 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3745 /*
3746  * Weak functions can still have an mcount/fentry that is saved in
3747  * the __mcount_loc section. These can be detected by having a
3748  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3749  * symbol found by kallsyms is not the function that the mcount/fentry
3750  * is part of. The offset is much greater in these cases.
3751  *
3752  * Test the record to make sure that the ip points to a valid kallsyms
3753  * and if not, mark it disabled.
3754  */
3755 static int test_for_valid_rec(struct dyn_ftrace *rec)
3756 {
3757 	char str[KSYM_SYMBOL_LEN];
3758 	unsigned long offset;
3759 	const char *ret;
3760 
3761 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3762 
3763 	/* Weak functions can cause invalid addresses */
3764 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3765 		rec->flags |= FTRACE_FL_DISABLED;
3766 		return 0;
3767 	}
3768 	return 1;
3769 }
3770 
3771 static struct workqueue_struct *ftrace_check_wq __initdata;
3772 static struct work_struct ftrace_check_work __initdata;
3773 
3774 /*
3775  * Scan all the mcount/fentry entries to make sure they are valid.
3776  */
3777 static __init void ftrace_check_work_func(struct work_struct *work)
3778 {
3779 	struct ftrace_page *pg;
3780 	struct dyn_ftrace *rec;
3781 
3782 	mutex_lock(&ftrace_lock);
3783 	do_for_each_ftrace_rec(pg, rec) {
3784 		test_for_valid_rec(rec);
3785 	} while_for_each_ftrace_rec();
3786 	mutex_unlock(&ftrace_lock);
3787 }
3788 
3789 static int __init ftrace_check_for_weak_functions(void)
3790 {
3791 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3792 
3793 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3794 
3795 	queue_work(ftrace_check_wq, &ftrace_check_work);
3796 	return 0;
3797 }
3798 
3799 static int __init ftrace_check_sync(void)
3800 {
3801 	/* Make sure the ftrace_check updates are finished */
3802 	if (ftrace_check_wq)
3803 		destroy_workqueue(ftrace_check_wq);
3804 	return 0;
3805 }
3806 
3807 late_initcall_sync(ftrace_check_sync);
3808 subsys_initcall(ftrace_check_for_weak_functions);
3809 
3810 static int print_rec(struct seq_file *m, unsigned long ip)
3811 {
3812 	unsigned long offset;
3813 	char str[KSYM_SYMBOL_LEN];
3814 	char *modname;
3815 	const char *ret;
3816 
3817 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3818 	/* Weak functions can cause invalid addresses */
3819 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3820 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3821 			 FTRACE_INVALID_FUNCTION, offset);
3822 		ret = NULL;
3823 	}
3824 
3825 	seq_puts(m, str);
3826 	if (modname)
3827 		seq_printf(m, " [%s]", modname);
3828 	return ret == NULL ? -1 : 0;
3829 }
3830 #else
3831 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3832 {
3833 	return 1;
3834 }
3835 
3836 static inline int print_rec(struct seq_file *m, unsigned long ip)
3837 {
3838 	seq_printf(m, "%ps", (void *)ip);
3839 	return 0;
3840 }
3841 #endif
3842 
3843 static int t_show(struct seq_file *m, void *v)
3844 {
3845 	struct ftrace_iterator *iter = m->private;
3846 	struct dyn_ftrace *rec;
3847 
3848 	if (iter->flags & FTRACE_ITER_PROBE)
3849 		return t_probe_show(m, iter);
3850 
3851 	if (iter->flags & FTRACE_ITER_MOD)
3852 		return t_mod_show(m, iter);
3853 
3854 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3855 		if (iter->flags & FTRACE_ITER_NOTRACE)
3856 			seq_puts(m, "#### no functions disabled ####\n");
3857 		else
3858 			seq_puts(m, "#### all functions enabled ####\n");
3859 		return 0;
3860 	}
3861 
3862 	rec = iter->func;
3863 
3864 	if (!rec)
3865 		return 0;
3866 
3867 	if (print_rec(m, rec->ip)) {
3868 		/* This should only happen when a rec is disabled */
3869 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3870 		seq_putc(m, '\n');
3871 		return 0;
3872 	}
3873 
3874 	if (iter->flags & FTRACE_ITER_ENABLED) {
3875 		struct ftrace_ops *ops;
3876 
3877 		seq_printf(m, " (%ld)%s%s%s%s",
3878 			   ftrace_rec_count(rec),
3879 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3880 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3881 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ",
3882 			   rec->flags & FTRACE_FL_CALL_OPS ? " O" : "  ");
3883 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3884 			ops = ftrace_find_tramp_ops_any(rec);
3885 			if (ops) {
3886 				do {
3887 					seq_printf(m, "\ttramp: %pS (%pS)",
3888 						   (void *)ops->trampoline,
3889 						   (void *)ops->func);
3890 					add_trampoline_func(m, ops, rec);
3891 					ops = ftrace_find_tramp_ops_next(rec, ops);
3892 				} while (ops);
3893 			} else
3894 				seq_puts(m, "\ttramp: ERROR!");
3895 		} else {
3896 			add_trampoline_func(m, NULL, rec);
3897 		}
3898 		if (rec->flags & FTRACE_FL_CALL_OPS_EN) {
3899 			ops = ftrace_find_unique_ops(rec);
3900 			if (ops) {
3901 				seq_printf(m, "\tops: %pS (%pS)",
3902 					   ops, ops->func);
3903 			} else {
3904 				seq_puts(m, "\tops: ERROR!");
3905 			}
3906 		}
3907 		if (rec->flags & FTRACE_FL_DIRECT) {
3908 			unsigned long direct;
3909 
3910 			direct = ftrace_find_rec_direct(rec->ip);
3911 			if (direct)
3912 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3913 		}
3914 	}
3915 
3916 	seq_putc(m, '\n');
3917 
3918 	return 0;
3919 }
3920 
3921 static const struct seq_operations show_ftrace_seq_ops = {
3922 	.start = t_start,
3923 	.next = t_next,
3924 	.stop = t_stop,
3925 	.show = t_show,
3926 };
3927 
3928 static int
3929 ftrace_avail_open(struct inode *inode, struct file *file)
3930 {
3931 	struct ftrace_iterator *iter;
3932 	int ret;
3933 
3934 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3935 	if (ret)
3936 		return ret;
3937 
3938 	if (unlikely(ftrace_disabled))
3939 		return -ENODEV;
3940 
3941 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3942 	if (!iter)
3943 		return -ENOMEM;
3944 
3945 	iter->pg = ftrace_pages_start;
3946 	iter->ops = &global_ops;
3947 
3948 	return 0;
3949 }
3950 
3951 static int
3952 ftrace_enabled_open(struct inode *inode, struct file *file)
3953 {
3954 	struct ftrace_iterator *iter;
3955 
3956 	/*
3957 	 * This shows us what functions are currently being
3958 	 * traced and by what. Not sure if we want lockdown
3959 	 * to hide such critical information for an admin.
3960 	 * Although, perhaps it can show information we don't
3961 	 * want people to see, but if something is tracing
3962 	 * something, we probably want to know about it.
3963 	 */
3964 
3965 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3966 	if (!iter)
3967 		return -ENOMEM;
3968 
3969 	iter->pg = ftrace_pages_start;
3970 	iter->flags = FTRACE_ITER_ENABLED;
3971 	iter->ops = &global_ops;
3972 
3973 	return 0;
3974 }
3975 
3976 /**
3977  * ftrace_regex_open - initialize function tracer filter files
3978  * @ops: The ftrace_ops that hold the hash filters
3979  * @flag: The type of filter to process
3980  * @inode: The inode, usually passed in to your open routine
3981  * @file: The file, usually passed in to your open routine
3982  *
3983  * ftrace_regex_open() initializes the filter files for the
3984  * @ops. Depending on @flag it may process the filter hash or
3985  * the notrace hash of @ops. With this called from the open
3986  * routine, you can use ftrace_filter_write() for the write
3987  * routine if @flag has FTRACE_ITER_FILTER set, or
3988  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3989  * tracing_lseek() should be used as the lseek routine, and
3990  * release must call ftrace_regex_release().
3991  */
3992 int
3993 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3994 		  struct inode *inode, struct file *file)
3995 {
3996 	struct ftrace_iterator *iter;
3997 	struct ftrace_hash *hash;
3998 	struct list_head *mod_head;
3999 	struct trace_array *tr = ops->private;
4000 	int ret = -ENOMEM;
4001 
4002 	ftrace_ops_init(ops);
4003 
4004 	if (unlikely(ftrace_disabled))
4005 		return -ENODEV;
4006 
4007 	if (tracing_check_open_get_tr(tr))
4008 		return -ENODEV;
4009 
4010 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
4011 	if (!iter)
4012 		goto out;
4013 
4014 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
4015 		goto out;
4016 
4017 	iter->ops = ops;
4018 	iter->flags = flag;
4019 	iter->tr = tr;
4020 
4021 	mutex_lock(&ops->func_hash->regex_lock);
4022 
4023 	if (flag & FTRACE_ITER_NOTRACE) {
4024 		hash = ops->func_hash->notrace_hash;
4025 		mod_head = tr ? &tr->mod_notrace : NULL;
4026 	} else {
4027 		hash = ops->func_hash->filter_hash;
4028 		mod_head = tr ? &tr->mod_trace : NULL;
4029 	}
4030 
4031 	iter->mod_list = mod_head;
4032 
4033 	if (file->f_mode & FMODE_WRITE) {
4034 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
4035 
4036 		if (file->f_flags & O_TRUNC) {
4037 			iter->hash = alloc_ftrace_hash(size_bits);
4038 			clear_ftrace_mod_list(mod_head);
4039 	        } else {
4040 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
4041 		}
4042 
4043 		if (!iter->hash) {
4044 			trace_parser_put(&iter->parser);
4045 			goto out_unlock;
4046 		}
4047 	} else
4048 		iter->hash = hash;
4049 
4050 	ret = 0;
4051 
4052 	if (file->f_mode & FMODE_READ) {
4053 		iter->pg = ftrace_pages_start;
4054 
4055 		ret = seq_open(file, &show_ftrace_seq_ops);
4056 		if (!ret) {
4057 			struct seq_file *m = file->private_data;
4058 			m->private = iter;
4059 		} else {
4060 			/* Failed */
4061 			free_ftrace_hash(iter->hash);
4062 			trace_parser_put(&iter->parser);
4063 		}
4064 	} else
4065 		file->private_data = iter;
4066 
4067  out_unlock:
4068 	mutex_unlock(&ops->func_hash->regex_lock);
4069 
4070  out:
4071 	if (ret) {
4072 		kfree(iter);
4073 		if (tr)
4074 			trace_array_put(tr);
4075 	}
4076 
4077 	return ret;
4078 }
4079 
4080 static int
4081 ftrace_filter_open(struct inode *inode, struct file *file)
4082 {
4083 	struct ftrace_ops *ops = inode->i_private;
4084 
4085 	/* Checks for tracefs lockdown */
4086 	return ftrace_regex_open(ops,
4087 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4088 			inode, file);
4089 }
4090 
4091 static int
4092 ftrace_notrace_open(struct inode *inode, struct file *file)
4093 {
4094 	struct ftrace_ops *ops = inode->i_private;
4095 
4096 	/* Checks for tracefs lockdown */
4097 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4098 				 inode, file);
4099 }
4100 
4101 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4102 struct ftrace_glob {
4103 	char *search;
4104 	unsigned len;
4105 	int type;
4106 };
4107 
4108 /*
4109  * If symbols in an architecture don't correspond exactly to the user-visible
4110  * name of what they represent, it is possible to define this function to
4111  * perform the necessary adjustments.
4112 */
4113 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4114 {
4115 	return str;
4116 }
4117 
4118 static int ftrace_match(char *str, struct ftrace_glob *g)
4119 {
4120 	int matched = 0;
4121 	int slen;
4122 
4123 	str = arch_ftrace_match_adjust(str, g->search);
4124 
4125 	switch (g->type) {
4126 	case MATCH_FULL:
4127 		if (strcmp(str, g->search) == 0)
4128 			matched = 1;
4129 		break;
4130 	case MATCH_FRONT_ONLY:
4131 		if (strncmp(str, g->search, g->len) == 0)
4132 			matched = 1;
4133 		break;
4134 	case MATCH_MIDDLE_ONLY:
4135 		if (strstr(str, g->search))
4136 			matched = 1;
4137 		break;
4138 	case MATCH_END_ONLY:
4139 		slen = strlen(str);
4140 		if (slen >= g->len &&
4141 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4142 			matched = 1;
4143 		break;
4144 	case MATCH_GLOB:
4145 		if (glob_match(g->search, str))
4146 			matched = 1;
4147 		break;
4148 	}
4149 
4150 	return matched;
4151 }
4152 
4153 static int
4154 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4155 {
4156 	struct ftrace_func_entry *entry;
4157 	int ret = 0;
4158 
4159 	entry = ftrace_lookup_ip(hash, rec->ip);
4160 	if (clear_filter) {
4161 		/* Do nothing if it doesn't exist */
4162 		if (!entry)
4163 			return 0;
4164 
4165 		free_hash_entry(hash, entry);
4166 	} else {
4167 		/* Do nothing if it exists */
4168 		if (entry)
4169 			return 0;
4170 
4171 		ret = add_hash_entry(hash, rec->ip);
4172 	}
4173 	return ret;
4174 }
4175 
4176 static int
4177 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4178 		 int clear_filter)
4179 {
4180 	long index = simple_strtoul(func_g->search, NULL, 0);
4181 	struct ftrace_page *pg;
4182 	struct dyn_ftrace *rec;
4183 
4184 	/* The index starts at 1 */
4185 	if (--index < 0)
4186 		return 0;
4187 
4188 	do_for_each_ftrace_rec(pg, rec) {
4189 		if (pg->index <= index) {
4190 			index -= pg->index;
4191 			/* this is a double loop, break goes to the next page */
4192 			break;
4193 		}
4194 		rec = &pg->records[index];
4195 		enter_record(hash, rec, clear_filter);
4196 		return 1;
4197 	} while_for_each_ftrace_rec();
4198 	return 0;
4199 }
4200 
4201 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4202 static int lookup_ip(unsigned long ip, char **modname, char *str)
4203 {
4204 	unsigned long offset;
4205 
4206 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4207 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4208 		return -1;
4209 	return 0;
4210 }
4211 #else
4212 static int lookup_ip(unsigned long ip, char **modname, char *str)
4213 {
4214 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4215 	return 0;
4216 }
4217 #endif
4218 
4219 static int
4220 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4221 		struct ftrace_glob *mod_g, int exclude_mod)
4222 {
4223 	char str[KSYM_SYMBOL_LEN];
4224 	char *modname;
4225 
4226 	if (lookup_ip(rec->ip, &modname, str)) {
4227 		/* This should only happen when a rec is disabled */
4228 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4229 			     !(rec->flags & FTRACE_FL_DISABLED));
4230 		return 0;
4231 	}
4232 
4233 	if (mod_g) {
4234 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4235 
4236 		/* blank module name to match all modules */
4237 		if (!mod_g->len) {
4238 			/* blank module globbing: modname xor exclude_mod */
4239 			if (!exclude_mod != !modname)
4240 				goto func_match;
4241 			return 0;
4242 		}
4243 
4244 		/*
4245 		 * exclude_mod is set to trace everything but the given
4246 		 * module. If it is set and the module matches, then
4247 		 * return 0. If it is not set, and the module doesn't match
4248 		 * also return 0. Otherwise, check the function to see if
4249 		 * that matches.
4250 		 */
4251 		if (!mod_matches == !exclude_mod)
4252 			return 0;
4253 func_match:
4254 		/* blank search means to match all funcs in the mod */
4255 		if (!func_g->len)
4256 			return 1;
4257 	}
4258 
4259 	return ftrace_match(str, func_g);
4260 }
4261 
4262 static int
4263 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4264 {
4265 	struct ftrace_page *pg;
4266 	struct dyn_ftrace *rec;
4267 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4268 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4269 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4270 	int exclude_mod = 0;
4271 	int found = 0;
4272 	int ret;
4273 	int clear_filter = 0;
4274 
4275 	if (func) {
4276 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4277 						 &clear_filter);
4278 		func_g.len = strlen(func_g.search);
4279 	}
4280 
4281 	if (mod) {
4282 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4283 				&mod_g.search, &exclude_mod);
4284 		mod_g.len = strlen(mod_g.search);
4285 	}
4286 
4287 	mutex_lock(&ftrace_lock);
4288 
4289 	if (unlikely(ftrace_disabled))
4290 		goto out_unlock;
4291 
4292 	if (func_g.type == MATCH_INDEX) {
4293 		found = add_rec_by_index(hash, &func_g, clear_filter);
4294 		goto out_unlock;
4295 	}
4296 
4297 	do_for_each_ftrace_rec(pg, rec) {
4298 
4299 		if (rec->flags & FTRACE_FL_DISABLED)
4300 			continue;
4301 
4302 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4303 			ret = enter_record(hash, rec, clear_filter);
4304 			if (ret < 0) {
4305 				found = ret;
4306 				goto out_unlock;
4307 			}
4308 			found = 1;
4309 		}
4310 		cond_resched();
4311 	} while_for_each_ftrace_rec();
4312  out_unlock:
4313 	mutex_unlock(&ftrace_lock);
4314 
4315 	return found;
4316 }
4317 
4318 static int
4319 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4320 {
4321 	return match_records(hash, buff, len, NULL);
4322 }
4323 
4324 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4325 				   struct ftrace_ops_hash *old_hash)
4326 {
4327 	struct ftrace_ops *op;
4328 
4329 	if (!ftrace_enabled)
4330 		return;
4331 
4332 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4333 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4334 		return;
4335 	}
4336 
4337 	/*
4338 	 * If this is the shared global_ops filter, then we need to
4339 	 * check if there is another ops that shares it, is enabled.
4340 	 * If so, we still need to run the modify code.
4341 	 */
4342 	if (ops->func_hash != &global_ops.local_hash)
4343 		return;
4344 
4345 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4346 		if (op->func_hash == &global_ops.local_hash &&
4347 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4348 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4349 			/* Only need to do this once */
4350 			return;
4351 		}
4352 	} while_for_each_ftrace_op(op);
4353 }
4354 
4355 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4356 					   struct ftrace_hash **orig_hash,
4357 					   struct ftrace_hash *hash,
4358 					   int enable)
4359 {
4360 	struct ftrace_ops_hash old_hash_ops;
4361 	struct ftrace_hash *old_hash;
4362 	int ret;
4363 
4364 	old_hash = *orig_hash;
4365 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4366 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4367 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4368 	if (!ret) {
4369 		ftrace_ops_update_code(ops, &old_hash_ops);
4370 		free_ftrace_hash_rcu(old_hash);
4371 	}
4372 	return ret;
4373 }
4374 
4375 static bool module_exists(const char *module)
4376 {
4377 	/* All modules have the symbol __this_module */
4378 	static const char this_mod[] = "__this_module";
4379 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4380 	unsigned long val;
4381 	int n;
4382 
4383 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4384 
4385 	if (n > sizeof(modname) - 1)
4386 		return false;
4387 
4388 	val = module_kallsyms_lookup_name(modname);
4389 	return val != 0;
4390 }
4391 
4392 static int cache_mod(struct trace_array *tr,
4393 		     const char *func, char *module, int enable)
4394 {
4395 	struct ftrace_mod_load *ftrace_mod, *n;
4396 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4397 	int ret;
4398 
4399 	mutex_lock(&ftrace_lock);
4400 
4401 	/* We do not cache inverse filters */
4402 	if (func[0] == '!') {
4403 		func++;
4404 		ret = -EINVAL;
4405 
4406 		/* Look to remove this hash */
4407 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4408 			if (strcmp(ftrace_mod->module, module) != 0)
4409 				continue;
4410 
4411 			/* no func matches all */
4412 			if (strcmp(func, "*") == 0 ||
4413 			    (ftrace_mod->func &&
4414 			     strcmp(ftrace_mod->func, func) == 0)) {
4415 				ret = 0;
4416 				free_ftrace_mod(ftrace_mod);
4417 				continue;
4418 			}
4419 		}
4420 		goto out;
4421 	}
4422 
4423 	ret = -EINVAL;
4424 	/* We only care about modules that have not been loaded yet */
4425 	if (module_exists(module))
4426 		goto out;
4427 
4428 	/* Save this string off, and execute it when the module is loaded */
4429 	ret = ftrace_add_mod(tr, func, module, enable);
4430  out:
4431 	mutex_unlock(&ftrace_lock);
4432 
4433 	return ret;
4434 }
4435 
4436 static int
4437 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4438 		 int reset, int enable);
4439 
4440 #ifdef CONFIG_MODULES
4441 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4442 			     char *mod, bool enable)
4443 {
4444 	struct ftrace_mod_load *ftrace_mod, *n;
4445 	struct ftrace_hash **orig_hash, *new_hash;
4446 	LIST_HEAD(process_mods);
4447 	char *func;
4448 
4449 	mutex_lock(&ops->func_hash->regex_lock);
4450 
4451 	if (enable)
4452 		orig_hash = &ops->func_hash->filter_hash;
4453 	else
4454 		orig_hash = &ops->func_hash->notrace_hash;
4455 
4456 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4457 					      *orig_hash);
4458 	if (!new_hash)
4459 		goto out; /* warn? */
4460 
4461 	mutex_lock(&ftrace_lock);
4462 
4463 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4464 
4465 		if (strcmp(ftrace_mod->module, mod) != 0)
4466 			continue;
4467 
4468 		if (ftrace_mod->func)
4469 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4470 		else
4471 			func = kstrdup("*", GFP_KERNEL);
4472 
4473 		if (!func) /* warn? */
4474 			continue;
4475 
4476 		list_move(&ftrace_mod->list, &process_mods);
4477 
4478 		/* Use the newly allocated func, as it may be "*" */
4479 		kfree(ftrace_mod->func);
4480 		ftrace_mod->func = func;
4481 	}
4482 
4483 	mutex_unlock(&ftrace_lock);
4484 
4485 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4486 
4487 		func = ftrace_mod->func;
4488 
4489 		/* Grabs ftrace_lock, which is why we have this extra step */
4490 		match_records(new_hash, func, strlen(func), mod);
4491 		free_ftrace_mod(ftrace_mod);
4492 	}
4493 
4494 	if (enable && list_empty(head))
4495 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4496 
4497 	mutex_lock(&ftrace_lock);
4498 
4499 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4500 					      new_hash, enable);
4501 	mutex_unlock(&ftrace_lock);
4502 
4503  out:
4504 	mutex_unlock(&ops->func_hash->regex_lock);
4505 
4506 	free_ftrace_hash(new_hash);
4507 }
4508 
4509 static void process_cached_mods(const char *mod_name)
4510 {
4511 	struct trace_array *tr;
4512 	char *mod;
4513 
4514 	mod = kstrdup(mod_name, GFP_KERNEL);
4515 	if (!mod)
4516 		return;
4517 
4518 	mutex_lock(&trace_types_lock);
4519 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4520 		if (!list_empty(&tr->mod_trace))
4521 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4522 		if (!list_empty(&tr->mod_notrace))
4523 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4524 	}
4525 	mutex_unlock(&trace_types_lock);
4526 
4527 	kfree(mod);
4528 }
4529 #endif
4530 
4531 /*
4532  * We register the module command as a template to show others how
4533  * to register the a command as well.
4534  */
4535 
4536 static int
4537 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4538 		    char *func_orig, char *cmd, char *module, int enable)
4539 {
4540 	char *func;
4541 	int ret;
4542 
4543 	/* match_records() modifies func, and we need the original */
4544 	func = kstrdup(func_orig, GFP_KERNEL);
4545 	if (!func)
4546 		return -ENOMEM;
4547 
4548 	/*
4549 	 * cmd == 'mod' because we only registered this func
4550 	 * for the 'mod' ftrace_func_command.
4551 	 * But if you register one func with multiple commands,
4552 	 * you can tell which command was used by the cmd
4553 	 * parameter.
4554 	 */
4555 	ret = match_records(hash, func, strlen(func), module);
4556 	kfree(func);
4557 
4558 	if (!ret)
4559 		return cache_mod(tr, func_orig, module, enable);
4560 	if (ret < 0)
4561 		return ret;
4562 	return 0;
4563 }
4564 
4565 static struct ftrace_func_command ftrace_mod_cmd = {
4566 	.name			= "mod",
4567 	.func			= ftrace_mod_callback,
4568 };
4569 
4570 static int __init ftrace_mod_cmd_init(void)
4571 {
4572 	return register_ftrace_command(&ftrace_mod_cmd);
4573 }
4574 core_initcall(ftrace_mod_cmd_init);
4575 
4576 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4577 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4578 {
4579 	struct ftrace_probe_ops *probe_ops;
4580 	struct ftrace_func_probe *probe;
4581 
4582 	probe = container_of(op, struct ftrace_func_probe, ops);
4583 	probe_ops = probe->probe_ops;
4584 
4585 	/*
4586 	 * Disable preemption for these calls to prevent a RCU grace
4587 	 * period. This syncs the hash iteration and freeing of items
4588 	 * on the hash. rcu_read_lock is too dangerous here.
4589 	 */
4590 	preempt_disable_notrace();
4591 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4592 	preempt_enable_notrace();
4593 }
4594 
4595 struct ftrace_func_map {
4596 	struct ftrace_func_entry	entry;
4597 	void				*data;
4598 };
4599 
4600 struct ftrace_func_mapper {
4601 	struct ftrace_hash		hash;
4602 };
4603 
4604 /**
4605  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4606  *
4607  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4608  */
4609 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4610 {
4611 	struct ftrace_hash *hash;
4612 
4613 	/*
4614 	 * The mapper is simply a ftrace_hash, but since the entries
4615 	 * in the hash are not ftrace_func_entry type, we define it
4616 	 * as a separate structure.
4617 	 */
4618 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4619 	return (struct ftrace_func_mapper *)hash;
4620 }
4621 
4622 /**
4623  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4624  * @mapper: The mapper that has the ip maps
4625  * @ip: the instruction pointer to find the data for
4626  *
4627  * Returns the data mapped to @ip if found otherwise NULL. The return
4628  * is actually the address of the mapper data pointer. The address is
4629  * returned for use cases where the data is no bigger than a long, and
4630  * the user can use the data pointer as its data instead of having to
4631  * allocate more memory for the reference.
4632  */
4633 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4634 				  unsigned long ip)
4635 {
4636 	struct ftrace_func_entry *entry;
4637 	struct ftrace_func_map *map;
4638 
4639 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4640 	if (!entry)
4641 		return NULL;
4642 
4643 	map = (struct ftrace_func_map *)entry;
4644 	return &map->data;
4645 }
4646 
4647 /**
4648  * ftrace_func_mapper_add_ip - Map some data to an ip
4649  * @mapper: The mapper that has the ip maps
4650  * @ip: The instruction pointer address to map @data to
4651  * @data: The data to map to @ip
4652  *
4653  * Returns 0 on success otherwise an error.
4654  */
4655 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4656 			      unsigned long ip, void *data)
4657 {
4658 	struct ftrace_func_entry *entry;
4659 	struct ftrace_func_map *map;
4660 
4661 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4662 	if (entry)
4663 		return -EBUSY;
4664 
4665 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4666 	if (!map)
4667 		return -ENOMEM;
4668 
4669 	map->entry.ip = ip;
4670 	map->data = data;
4671 
4672 	__add_hash_entry(&mapper->hash, &map->entry);
4673 
4674 	return 0;
4675 }
4676 
4677 /**
4678  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4679  * @mapper: The mapper that has the ip maps
4680  * @ip: The instruction pointer address to remove the data from
4681  *
4682  * Returns the data if it is found, otherwise NULL.
4683  * Note, if the data pointer is used as the data itself, (see
4684  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4685  * if the data pointer was set to zero.
4686  */
4687 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4688 				   unsigned long ip)
4689 {
4690 	struct ftrace_func_entry *entry;
4691 	struct ftrace_func_map *map;
4692 	void *data;
4693 
4694 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4695 	if (!entry)
4696 		return NULL;
4697 
4698 	map = (struct ftrace_func_map *)entry;
4699 	data = map->data;
4700 
4701 	remove_hash_entry(&mapper->hash, entry);
4702 	kfree(entry);
4703 
4704 	return data;
4705 }
4706 
4707 /**
4708  * free_ftrace_func_mapper - free a mapping of ips and data
4709  * @mapper: The mapper that has the ip maps
4710  * @free_func: A function to be called on each data item.
4711  *
4712  * This is used to free the function mapper. The @free_func is optional
4713  * and can be used if the data needs to be freed as well.
4714  */
4715 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4716 			     ftrace_mapper_func free_func)
4717 {
4718 	struct ftrace_func_entry *entry;
4719 	struct ftrace_func_map *map;
4720 	struct hlist_head *hhd;
4721 	int size, i;
4722 
4723 	if (!mapper)
4724 		return;
4725 
4726 	if (free_func && mapper->hash.count) {
4727 		size = 1 << mapper->hash.size_bits;
4728 		for (i = 0; i < size; i++) {
4729 			hhd = &mapper->hash.buckets[i];
4730 			hlist_for_each_entry(entry, hhd, hlist) {
4731 				map = (struct ftrace_func_map *)entry;
4732 				free_func(map);
4733 			}
4734 		}
4735 	}
4736 	free_ftrace_hash(&mapper->hash);
4737 }
4738 
4739 static void release_probe(struct ftrace_func_probe *probe)
4740 {
4741 	struct ftrace_probe_ops *probe_ops;
4742 
4743 	mutex_lock(&ftrace_lock);
4744 
4745 	WARN_ON(probe->ref <= 0);
4746 
4747 	/* Subtract the ref that was used to protect this instance */
4748 	probe->ref--;
4749 
4750 	if (!probe->ref) {
4751 		probe_ops = probe->probe_ops;
4752 		/*
4753 		 * Sending zero as ip tells probe_ops to free
4754 		 * the probe->data itself
4755 		 */
4756 		if (probe_ops->free)
4757 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4758 		list_del(&probe->list);
4759 		kfree(probe);
4760 	}
4761 	mutex_unlock(&ftrace_lock);
4762 }
4763 
4764 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4765 {
4766 	/*
4767 	 * Add one ref to keep it from being freed when releasing the
4768 	 * ftrace_lock mutex.
4769 	 */
4770 	probe->ref++;
4771 }
4772 
4773 int
4774 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4775 			       struct ftrace_probe_ops *probe_ops,
4776 			       void *data)
4777 {
4778 	struct ftrace_func_probe *probe = NULL, *iter;
4779 	struct ftrace_func_entry *entry;
4780 	struct ftrace_hash **orig_hash;
4781 	struct ftrace_hash *old_hash;
4782 	struct ftrace_hash *hash;
4783 	int count = 0;
4784 	int size;
4785 	int ret;
4786 	int i;
4787 
4788 	if (WARN_ON(!tr))
4789 		return -EINVAL;
4790 
4791 	/* We do not support '!' for function probes */
4792 	if (WARN_ON(glob[0] == '!'))
4793 		return -EINVAL;
4794 
4795 
4796 	mutex_lock(&ftrace_lock);
4797 	/* Check if the probe_ops is already registered */
4798 	list_for_each_entry(iter, &tr->func_probes, list) {
4799 		if (iter->probe_ops == probe_ops) {
4800 			probe = iter;
4801 			break;
4802 		}
4803 	}
4804 	if (!probe) {
4805 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4806 		if (!probe) {
4807 			mutex_unlock(&ftrace_lock);
4808 			return -ENOMEM;
4809 		}
4810 		probe->probe_ops = probe_ops;
4811 		probe->ops.func = function_trace_probe_call;
4812 		probe->tr = tr;
4813 		ftrace_ops_init(&probe->ops);
4814 		list_add(&probe->list, &tr->func_probes);
4815 	}
4816 
4817 	acquire_probe_locked(probe);
4818 
4819 	mutex_unlock(&ftrace_lock);
4820 
4821 	/*
4822 	 * Note, there's a small window here that the func_hash->filter_hash
4823 	 * may be NULL or empty. Need to be careful when reading the loop.
4824 	 */
4825 	mutex_lock(&probe->ops.func_hash->regex_lock);
4826 
4827 	orig_hash = &probe->ops.func_hash->filter_hash;
4828 	old_hash = *orig_hash;
4829 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4830 
4831 	if (!hash) {
4832 		ret = -ENOMEM;
4833 		goto out;
4834 	}
4835 
4836 	ret = ftrace_match_records(hash, glob, strlen(glob));
4837 
4838 	/* Nothing found? */
4839 	if (!ret)
4840 		ret = -EINVAL;
4841 
4842 	if (ret < 0)
4843 		goto out;
4844 
4845 	size = 1 << hash->size_bits;
4846 	for (i = 0; i < size; i++) {
4847 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4848 			if (ftrace_lookup_ip(old_hash, entry->ip))
4849 				continue;
4850 			/*
4851 			 * The caller might want to do something special
4852 			 * for each function we find. We call the callback
4853 			 * to give the caller an opportunity to do so.
4854 			 */
4855 			if (probe_ops->init) {
4856 				ret = probe_ops->init(probe_ops, tr,
4857 						      entry->ip, data,
4858 						      &probe->data);
4859 				if (ret < 0) {
4860 					if (probe_ops->free && count)
4861 						probe_ops->free(probe_ops, tr,
4862 								0, probe->data);
4863 					probe->data = NULL;
4864 					goto out;
4865 				}
4866 			}
4867 			count++;
4868 		}
4869 	}
4870 
4871 	mutex_lock(&ftrace_lock);
4872 
4873 	if (!count) {
4874 		/* Nothing was added? */
4875 		ret = -EINVAL;
4876 		goto out_unlock;
4877 	}
4878 
4879 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4880 					      hash, 1);
4881 	if (ret < 0)
4882 		goto err_unlock;
4883 
4884 	/* One ref for each new function traced */
4885 	probe->ref += count;
4886 
4887 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4888 		ret = ftrace_startup(&probe->ops, 0);
4889 
4890  out_unlock:
4891 	mutex_unlock(&ftrace_lock);
4892 
4893 	if (!ret)
4894 		ret = count;
4895  out:
4896 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4897 	free_ftrace_hash(hash);
4898 
4899 	release_probe(probe);
4900 
4901 	return ret;
4902 
4903  err_unlock:
4904 	if (!probe_ops->free || !count)
4905 		goto out_unlock;
4906 
4907 	/* Failed to do the move, need to call the free functions */
4908 	for (i = 0; i < size; i++) {
4909 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4910 			if (ftrace_lookup_ip(old_hash, entry->ip))
4911 				continue;
4912 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4913 		}
4914 	}
4915 	goto out_unlock;
4916 }
4917 
4918 int
4919 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4920 				      struct ftrace_probe_ops *probe_ops)
4921 {
4922 	struct ftrace_func_probe *probe = NULL, *iter;
4923 	struct ftrace_ops_hash old_hash_ops;
4924 	struct ftrace_func_entry *entry;
4925 	struct ftrace_glob func_g;
4926 	struct ftrace_hash **orig_hash;
4927 	struct ftrace_hash *old_hash;
4928 	struct ftrace_hash *hash = NULL;
4929 	struct hlist_node *tmp;
4930 	struct hlist_head hhd;
4931 	char str[KSYM_SYMBOL_LEN];
4932 	int count = 0;
4933 	int i, ret = -ENODEV;
4934 	int size;
4935 
4936 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4937 		func_g.search = NULL;
4938 	else {
4939 		int not;
4940 
4941 		func_g.type = filter_parse_regex(glob, strlen(glob),
4942 						 &func_g.search, &not);
4943 		func_g.len = strlen(func_g.search);
4944 
4945 		/* we do not support '!' for function probes */
4946 		if (WARN_ON(not))
4947 			return -EINVAL;
4948 	}
4949 
4950 	mutex_lock(&ftrace_lock);
4951 	/* Check if the probe_ops is already registered */
4952 	list_for_each_entry(iter, &tr->func_probes, list) {
4953 		if (iter->probe_ops == probe_ops) {
4954 			probe = iter;
4955 			break;
4956 		}
4957 	}
4958 	if (!probe)
4959 		goto err_unlock_ftrace;
4960 
4961 	ret = -EINVAL;
4962 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4963 		goto err_unlock_ftrace;
4964 
4965 	acquire_probe_locked(probe);
4966 
4967 	mutex_unlock(&ftrace_lock);
4968 
4969 	mutex_lock(&probe->ops.func_hash->regex_lock);
4970 
4971 	orig_hash = &probe->ops.func_hash->filter_hash;
4972 	old_hash = *orig_hash;
4973 
4974 	if (ftrace_hash_empty(old_hash))
4975 		goto out_unlock;
4976 
4977 	old_hash_ops.filter_hash = old_hash;
4978 	/* Probes only have filters */
4979 	old_hash_ops.notrace_hash = NULL;
4980 
4981 	ret = -ENOMEM;
4982 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4983 	if (!hash)
4984 		goto out_unlock;
4985 
4986 	INIT_HLIST_HEAD(&hhd);
4987 
4988 	size = 1 << hash->size_bits;
4989 	for (i = 0; i < size; i++) {
4990 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4991 
4992 			if (func_g.search) {
4993 				kallsyms_lookup(entry->ip, NULL, NULL,
4994 						NULL, str);
4995 				if (!ftrace_match(str, &func_g))
4996 					continue;
4997 			}
4998 			count++;
4999 			remove_hash_entry(hash, entry);
5000 			hlist_add_head(&entry->hlist, &hhd);
5001 		}
5002 	}
5003 
5004 	/* Nothing found? */
5005 	if (!count) {
5006 		ret = -EINVAL;
5007 		goto out_unlock;
5008 	}
5009 
5010 	mutex_lock(&ftrace_lock);
5011 
5012 	WARN_ON(probe->ref < count);
5013 
5014 	probe->ref -= count;
5015 
5016 	if (ftrace_hash_empty(hash))
5017 		ftrace_shutdown(&probe->ops, 0);
5018 
5019 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
5020 					      hash, 1);
5021 
5022 	/* still need to update the function call sites */
5023 	if (ftrace_enabled && !ftrace_hash_empty(hash))
5024 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
5025 				       &old_hash_ops);
5026 	synchronize_rcu();
5027 
5028 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
5029 		hlist_del(&entry->hlist);
5030 		if (probe_ops->free)
5031 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
5032 		kfree(entry);
5033 	}
5034 	mutex_unlock(&ftrace_lock);
5035 
5036  out_unlock:
5037 	mutex_unlock(&probe->ops.func_hash->regex_lock);
5038 	free_ftrace_hash(hash);
5039 
5040 	release_probe(probe);
5041 
5042 	return ret;
5043 
5044  err_unlock_ftrace:
5045 	mutex_unlock(&ftrace_lock);
5046 	return ret;
5047 }
5048 
5049 void clear_ftrace_function_probes(struct trace_array *tr)
5050 {
5051 	struct ftrace_func_probe *probe, *n;
5052 
5053 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
5054 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
5055 }
5056 
5057 static LIST_HEAD(ftrace_commands);
5058 static DEFINE_MUTEX(ftrace_cmd_mutex);
5059 
5060 /*
5061  * Currently we only register ftrace commands from __init, so mark this
5062  * __init too.
5063  */
5064 __init int register_ftrace_command(struct ftrace_func_command *cmd)
5065 {
5066 	struct ftrace_func_command *p;
5067 	int ret = 0;
5068 
5069 	mutex_lock(&ftrace_cmd_mutex);
5070 	list_for_each_entry(p, &ftrace_commands, list) {
5071 		if (strcmp(cmd->name, p->name) == 0) {
5072 			ret = -EBUSY;
5073 			goto out_unlock;
5074 		}
5075 	}
5076 	list_add(&cmd->list, &ftrace_commands);
5077  out_unlock:
5078 	mutex_unlock(&ftrace_cmd_mutex);
5079 
5080 	return ret;
5081 }
5082 
5083 /*
5084  * Currently we only unregister ftrace commands from __init, so mark
5085  * this __init too.
5086  */
5087 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5088 {
5089 	struct ftrace_func_command *p, *n;
5090 	int ret = -ENODEV;
5091 
5092 	mutex_lock(&ftrace_cmd_mutex);
5093 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5094 		if (strcmp(cmd->name, p->name) == 0) {
5095 			ret = 0;
5096 			list_del_init(&p->list);
5097 			goto out_unlock;
5098 		}
5099 	}
5100  out_unlock:
5101 	mutex_unlock(&ftrace_cmd_mutex);
5102 
5103 	return ret;
5104 }
5105 
5106 static int ftrace_process_regex(struct ftrace_iterator *iter,
5107 				char *buff, int len, int enable)
5108 {
5109 	struct ftrace_hash *hash = iter->hash;
5110 	struct trace_array *tr = iter->ops->private;
5111 	char *func, *command, *next = buff;
5112 	struct ftrace_func_command *p;
5113 	int ret = -EINVAL;
5114 
5115 	func = strsep(&next, ":");
5116 
5117 	if (!next) {
5118 		ret = ftrace_match_records(hash, func, len);
5119 		if (!ret)
5120 			ret = -EINVAL;
5121 		if (ret < 0)
5122 			return ret;
5123 		return 0;
5124 	}
5125 
5126 	/* command found */
5127 
5128 	command = strsep(&next, ":");
5129 
5130 	mutex_lock(&ftrace_cmd_mutex);
5131 	list_for_each_entry(p, &ftrace_commands, list) {
5132 		if (strcmp(p->name, command) == 0) {
5133 			ret = p->func(tr, hash, func, command, next, enable);
5134 			goto out_unlock;
5135 		}
5136 	}
5137  out_unlock:
5138 	mutex_unlock(&ftrace_cmd_mutex);
5139 
5140 	return ret;
5141 }
5142 
5143 static ssize_t
5144 ftrace_regex_write(struct file *file, const char __user *ubuf,
5145 		   size_t cnt, loff_t *ppos, int enable)
5146 {
5147 	struct ftrace_iterator *iter;
5148 	struct trace_parser *parser;
5149 	ssize_t ret, read;
5150 
5151 	if (!cnt)
5152 		return 0;
5153 
5154 	if (file->f_mode & FMODE_READ) {
5155 		struct seq_file *m = file->private_data;
5156 		iter = m->private;
5157 	} else
5158 		iter = file->private_data;
5159 
5160 	if (unlikely(ftrace_disabled))
5161 		return -ENODEV;
5162 
5163 	/* iter->hash is a local copy, so we don't need regex_lock */
5164 
5165 	parser = &iter->parser;
5166 	read = trace_get_user(parser, ubuf, cnt, ppos);
5167 
5168 	if (read >= 0 && trace_parser_loaded(parser) &&
5169 	    !trace_parser_cont(parser)) {
5170 		ret = ftrace_process_regex(iter, parser->buffer,
5171 					   parser->idx, enable);
5172 		trace_parser_clear(parser);
5173 		if (ret < 0)
5174 			goto out;
5175 	}
5176 
5177 	ret = read;
5178  out:
5179 	return ret;
5180 }
5181 
5182 ssize_t
5183 ftrace_filter_write(struct file *file, const char __user *ubuf,
5184 		    size_t cnt, loff_t *ppos)
5185 {
5186 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5187 }
5188 
5189 ssize_t
5190 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5191 		     size_t cnt, loff_t *ppos)
5192 {
5193 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5194 }
5195 
5196 static int
5197 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5198 {
5199 	struct ftrace_func_entry *entry;
5200 
5201 	ip = ftrace_location(ip);
5202 	if (!ip)
5203 		return -EINVAL;
5204 
5205 	if (remove) {
5206 		entry = ftrace_lookup_ip(hash, ip);
5207 		if (!entry)
5208 			return -ENOENT;
5209 		free_hash_entry(hash, entry);
5210 		return 0;
5211 	}
5212 
5213 	return add_hash_entry(hash, ip);
5214 }
5215 
5216 static int
5217 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5218 		  unsigned int cnt, int remove)
5219 {
5220 	unsigned int i;
5221 	int err;
5222 
5223 	for (i = 0; i < cnt; i++) {
5224 		err = __ftrace_match_addr(hash, ips[i], remove);
5225 		if (err) {
5226 			/*
5227 			 * This expects the @hash is a temporary hash and if this
5228 			 * fails the caller must free the @hash.
5229 			 */
5230 			return err;
5231 		}
5232 	}
5233 	return 0;
5234 }
5235 
5236 static int
5237 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5238 		unsigned long *ips, unsigned int cnt,
5239 		int remove, int reset, int enable)
5240 {
5241 	struct ftrace_hash **orig_hash;
5242 	struct ftrace_hash *hash;
5243 	int ret;
5244 
5245 	if (unlikely(ftrace_disabled))
5246 		return -ENODEV;
5247 
5248 	mutex_lock(&ops->func_hash->regex_lock);
5249 
5250 	if (enable)
5251 		orig_hash = &ops->func_hash->filter_hash;
5252 	else
5253 		orig_hash = &ops->func_hash->notrace_hash;
5254 
5255 	if (reset)
5256 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5257 	else
5258 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5259 
5260 	if (!hash) {
5261 		ret = -ENOMEM;
5262 		goto out_regex_unlock;
5263 	}
5264 
5265 	if (buf && !ftrace_match_records(hash, buf, len)) {
5266 		ret = -EINVAL;
5267 		goto out_regex_unlock;
5268 	}
5269 	if (ips) {
5270 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5271 		if (ret < 0)
5272 			goto out_regex_unlock;
5273 	}
5274 
5275 	mutex_lock(&ftrace_lock);
5276 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5277 	mutex_unlock(&ftrace_lock);
5278 
5279  out_regex_unlock:
5280 	mutex_unlock(&ops->func_hash->regex_lock);
5281 
5282 	free_ftrace_hash(hash);
5283 	return ret;
5284 }
5285 
5286 static int
5287 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5288 		int remove, int reset, int enable)
5289 {
5290 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5291 }
5292 
5293 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5294 
5295 struct ftrace_direct_func {
5296 	struct list_head	next;
5297 	unsigned long		addr;
5298 	int			count;
5299 };
5300 
5301 static LIST_HEAD(ftrace_direct_funcs);
5302 
5303 /**
5304  * ftrace_find_direct_func - test an address if it is a registered direct caller
5305  * @addr: The address of a registered direct caller
5306  *
5307  * This searches to see if a ftrace direct caller has been registered
5308  * at a specific address, and if so, it returns a descriptor for it.
5309  *
5310  * This can be used by architecture code to see if an address is
5311  * a direct caller (trampoline) attached to a fentry/mcount location.
5312  * This is useful for the function_graph tracer, as it may need to
5313  * do adjustments if it traced a location that also has a direct
5314  * trampoline attached to it.
5315  */
5316 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5317 {
5318 	struct ftrace_direct_func *entry;
5319 	bool found = false;
5320 
5321 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5322 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5323 		if (entry->addr == addr) {
5324 			found = true;
5325 			break;
5326 		}
5327 	}
5328 	if (found)
5329 		return entry;
5330 
5331 	return NULL;
5332 }
5333 
5334 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5335 {
5336 	struct ftrace_direct_func *direct;
5337 
5338 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5339 	if (!direct)
5340 		return NULL;
5341 	direct->addr = addr;
5342 	direct->count = 0;
5343 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5344 	ftrace_direct_func_count++;
5345 	return direct;
5346 }
5347 
5348 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5349 
5350 /**
5351  * register_ftrace_direct - Call a custom trampoline directly
5352  * @ip: The address of the nop at the beginning of a function
5353  * @addr: The address of the trampoline to call at @ip
5354  *
5355  * This is used to connect a direct call from the nop location (@ip)
5356  * at the start of ftrace traced functions. The location that it calls
5357  * (@addr) must be able to handle a direct call, and save the parameters
5358  * of the function being traced, and restore them (or inject new ones
5359  * if needed), before returning.
5360  *
5361  * Returns:
5362  *  0 on success
5363  *  -EBUSY - Another direct function is already attached (there can be only one)
5364  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5365  *  -ENOMEM - There was an allocation failure.
5366  */
5367 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5368 {
5369 	struct ftrace_direct_func *direct;
5370 	struct ftrace_func_entry *entry;
5371 	struct ftrace_hash *free_hash = NULL;
5372 	struct dyn_ftrace *rec;
5373 	int ret = -ENODEV;
5374 
5375 	mutex_lock(&direct_mutex);
5376 
5377 	ip = ftrace_location(ip);
5378 	if (!ip)
5379 		goto out_unlock;
5380 
5381 	/* See if there's a direct function at @ip already */
5382 	ret = -EBUSY;
5383 	if (ftrace_find_rec_direct(ip))
5384 		goto out_unlock;
5385 
5386 	ret = -ENODEV;
5387 	rec = lookup_rec(ip, ip);
5388 	if (!rec)
5389 		goto out_unlock;
5390 
5391 	/*
5392 	 * Check if the rec says it has a direct call but we didn't
5393 	 * find one earlier?
5394 	 */
5395 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5396 		goto out_unlock;
5397 
5398 	/* Make sure the ip points to the exact record */
5399 	if (ip != rec->ip) {
5400 		ip = rec->ip;
5401 		/* Need to check this ip for a direct. */
5402 		if (ftrace_find_rec_direct(ip))
5403 			goto out_unlock;
5404 	}
5405 
5406 	ret = -ENOMEM;
5407 	direct = ftrace_find_direct_func(addr);
5408 	if (!direct) {
5409 		direct = ftrace_alloc_direct_func(addr);
5410 		if (!direct)
5411 			goto out_unlock;
5412 	}
5413 
5414 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5415 	if (!entry)
5416 		goto out_unlock;
5417 
5418 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5419 
5420 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5421 		ret = register_ftrace_function_nolock(&direct_ops);
5422 		if (ret)
5423 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5424 	}
5425 
5426 	if (ret) {
5427 		remove_hash_entry(direct_functions, entry);
5428 		kfree(entry);
5429 		if (!direct->count) {
5430 			list_del_rcu(&direct->next);
5431 			synchronize_rcu_tasks();
5432 			kfree(direct);
5433 			if (free_hash)
5434 				free_ftrace_hash(free_hash);
5435 			free_hash = NULL;
5436 			ftrace_direct_func_count--;
5437 		}
5438 	} else {
5439 		direct->count++;
5440 	}
5441  out_unlock:
5442 	mutex_unlock(&direct_mutex);
5443 
5444 	if (free_hash) {
5445 		synchronize_rcu_tasks();
5446 		free_ftrace_hash(free_hash);
5447 	}
5448 
5449 	return ret;
5450 }
5451 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5452 
5453 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5454 						   struct dyn_ftrace **recp)
5455 {
5456 	struct ftrace_func_entry *entry;
5457 	struct dyn_ftrace *rec;
5458 
5459 	rec = lookup_rec(*ip, *ip);
5460 	if (!rec)
5461 		return NULL;
5462 
5463 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5464 	if (!entry) {
5465 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5466 		return NULL;
5467 	}
5468 
5469 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5470 
5471 	/* Passed in ip just needs to be on the call site */
5472 	*ip = rec->ip;
5473 
5474 	if (recp)
5475 		*recp = rec;
5476 
5477 	return entry;
5478 }
5479 
5480 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5481 {
5482 	struct ftrace_direct_func *direct;
5483 	struct ftrace_func_entry *entry;
5484 	struct ftrace_hash *hash;
5485 	int ret = -ENODEV;
5486 
5487 	mutex_lock(&direct_mutex);
5488 
5489 	ip = ftrace_location(ip);
5490 	if (!ip)
5491 		goto out_unlock;
5492 
5493 	entry = find_direct_entry(&ip, NULL);
5494 	if (!entry)
5495 		goto out_unlock;
5496 
5497 	hash = direct_ops.func_hash->filter_hash;
5498 	if (hash->count == 1)
5499 		unregister_ftrace_function(&direct_ops);
5500 
5501 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5502 
5503 	WARN_ON(ret);
5504 
5505 	remove_hash_entry(direct_functions, entry);
5506 
5507 	direct = ftrace_find_direct_func(addr);
5508 	if (!WARN_ON(!direct)) {
5509 		/* This is the good path (see the ! before WARN) */
5510 		direct->count--;
5511 		WARN_ON(direct->count < 0);
5512 		if (!direct->count) {
5513 			list_del_rcu(&direct->next);
5514 			synchronize_rcu_tasks();
5515 			kfree(direct);
5516 			kfree(entry);
5517 			ftrace_direct_func_count--;
5518 		}
5519 	}
5520  out_unlock:
5521 	mutex_unlock(&direct_mutex);
5522 
5523 	return ret;
5524 }
5525 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5526 
5527 static struct ftrace_ops stub_ops = {
5528 	.func		= ftrace_stub,
5529 };
5530 
5531 /**
5532  * ftrace_modify_direct_caller - modify ftrace nop directly
5533  * @entry: The ftrace hash entry of the direct helper for @rec
5534  * @rec: The record representing the function site to patch
5535  * @old_addr: The location that the site at @rec->ip currently calls
5536  * @new_addr: The location that the site at @rec->ip should call
5537  *
5538  * An architecture may overwrite this function to optimize the
5539  * changing of the direct callback on an ftrace nop location.
5540  * This is called with the ftrace_lock mutex held, and no other
5541  * ftrace callbacks are on the associated record (@rec). Thus,
5542  * it is safe to modify the ftrace record, where it should be
5543  * currently calling @old_addr directly, to call @new_addr.
5544  *
5545  * This is called with direct_mutex locked.
5546  *
5547  * Safety checks should be made to make sure that the code at
5548  * @rec->ip is currently calling @old_addr. And this must
5549  * also update entry->direct to @new_addr.
5550  */
5551 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5552 				       struct dyn_ftrace *rec,
5553 				       unsigned long old_addr,
5554 				       unsigned long new_addr)
5555 {
5556 	unsigned long ip = rec->ip;
5557 	int ret;
5558 
5559 	lockdep_assert_held(&direct_mutex);
5560 
5561 	/*
5562 	 * The ftrace_lock was used to determine if the record
5563 	 * had more than one registered user to it. If it did,
5564 	 * we needed to prevent that from changing to do the quick
5565 	 * switch. But if it did not (only a direct caller was attached)
5566 	 * then this function is called. But this function can deal
5567 	 * with attached callers to the rec that we care about, and
5568 	 * since this function uses standard ftrace calls that take
5569 	 * the ftrace_lock mutex, we need to release it.
5570 	 */
5571 	mutex_unlock(&ftrace_lock);
5572 
5573 	/*
5574 	 * By setting a stub function at the same address, we force
5575 	 * the code to call the iterator and the direct_ops helper.
5576 	 * This means that @ip does not call the direct call, and
5577 	 * we can simply modify it.
5578 	 */
5579 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5580 	if (ret)
5581 		goto out_lock;
5582 
5583 	ret = register_ftrace_function_nolock(&stub_ops);
5584 	if (ret) {
5585 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5586 		goto out_lock;
5587 	}
5588 
5589 	entry->direct = new_addr;
5590 
5591 	/*
5592 	 * By removing the stub, we put back the direct call, calling
5593 	 * the @new_addr.
5594 	 */
5595 	unregister_ftrace_function(&stub_ops);
5596 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5597 
5598  out_lock:
5599 	mutex_lock(&ftrace_lock);
5600 
5601 	return ret;
5602 }
5603 
5604 /**
5605  * modify_ftrace_direct - Modify an existing direct call to call something else
5606  * @ip: The instruction pointer to modify
5607  * @old_addr: The address that the current @ip calls directly
5608  * @new_addr: The address that the @ip should call
5609  *
5610  * This modifies a ftrace direct caller at an instruction pointer without
5611  * having to disable it first. The direct call will switch over to the
5612  * @new_addr without missing anything.
5613  *
5614  * Returns: zero on success. Non zero on error, which includes:
5615  *  -ENODEV : the @ip given has no direct caller attached
5616  *  -EINVAL : the @old_addr does not match the current direct caller
5617  */
5618 int modify_ftrace_direct(unsigned long ip,
5619 			 unsigned long old_addr, unsigned long new_addr)
5620 {
5621 	struct ftrace_direct_func *direct, *new_direct = NULL;
5622 	struct ftrace_func_entry *entry;
5623 	struct dyn_ftrace *rec;
5624 	int ret = -ENODEV;
5625 
5626 	mutex_lock(&direct_mutex);
5627 
5628 	mutex_lock(&ftrace_lock);
5629 
5630 	ip = ftrace_location(ip);
5631 	if (!ip)
5632 		goto out_unlock;
5633 
5634 	entry = find_direct_entry(&ip, &rec);
5635 	if (!entry)
5636 		goto out_unlock;
5637 
5638 	ret = -EINVAL;
5639 	if (entry->direct != old_addr)
5640 		goto out_unlock;
5641 
5642 	direct = ftrace_find_direct_func(old_addr);
5643 	if (WARN_ON(!direct))
5644 		goto out_unlock;
5645 	if (direct->count > 1) {
5646 		ret = -ENOMEM;
5647 		new_direct = ftrace_alloc_direct_func(new_addr);
5648 		if (!new_direct)
5649 			goto out_unlock;
5650 		direct->count--;
5651 		new_direct->count++;
5652 	} else {
5653 		direct->addr = new_addr;
5654 	}
5655 
5656 	/*
5657 	 * If there's no other ftrace callback on the rec->ip location,
5658 	 * then it can be changed directly by the architecture.
5659 	 * If there is another caller, then we just need to change the
5660 	 * direct caller helper to point to @new_addr.
5661 	 */
5662 	if (ftrace_rec_count(rec) == 1) {
5663 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5664 	} else {
5665 		entry->direct = new_addr;
5666 		ret = 0;
5667 	}
5668 
5669 	if (unlikely(ret && new_direct)) {
5670 		direct->count++;
5671 		list_del_rcu(&new_direct->next);
5672 		synchronize_rcu_tasks();
5673 		kfree(new_direct);
5674 		ftrace_direct_func_count--;
5675 	}
5676 
5677  out_unlock:
5678 	mutex_unlock(&ftrace_lock);
5679 	mutex_unlock(&direct_mutex);
5680 	return ret;
5681 }
5682 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5683 
5684 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5685 
5686 static int check_direct_multi(struct ftrace_ops *ops)
5687 {
5688 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5689 		return -EINVAL;
5690 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5691 		return -EINVAL;
5692 	return 0;
5693 }
5694 
5695 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5696 {
5697 	struct ftrace_func_entry *entry, *del;
5698 	int size, i;
5699 
5700 	size = 1 << hash->size_bits;
5701 	for (i = 0; i < size; i++) {
5702 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5703 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5704 			if (del && del->direct == addr) {
5705 				remove_hash_entry(direct_functions, del);
5706 				kfree(del);
5707 			}
5708 		}
5709 	}
5710 }
5711 
5712 /**
5713  * register_ftrace_direct_multi - Call a custom trampoline directly
5714  * for multiple functions registered in @ops
5715  * @ops: The address of the struct ftrace_ops object
5716  * @addr: The address of the trampoline to call at @ops functions
5717  *
5718  * This is used to connect a direct calls to @addr from the nop locations
5719  * of the functions registered in @ops (with by ftrace_set_filter_ip
5720  * function).
5721  *
5722  * The location that it calls (@addr) must be able to handle a direct call,
5723  * and save the parameters of the function being traced, and restore them
5724  * (or inject new ones if needed), before returning.
5725  *
5726  * Returns:
5727  *  0 on success
5728  *  -EINVAL  - The @ops object was already registered with this call or
5729  *             when there are no functions in @ops object.
5730  *  -EBUSY   - Another direct function is already attached (there can be only one)
5731  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5732  *  -ENOMEM  - There was an allocation failure.
5733  */
5734 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5735 {
5736 	struct ftrace_hash *hash, *free_hash = NULL;
5737 	struct ftrace_func_entry *entry, *new;
5738 	int err = -EBUSY, size, i;
5739 
5740 	if (ops->func || ops->trampoline)
5741 		return -EINVAL;
5742 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5743 		return -EINVAL;
5744 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5745 		return -EINVAL;
5746 
5747 	hash = ops->func_hash->filter_hash;
5748 	if (ftrace_hash_empty(hash))
5749 		return -EINVAL;
5750 
5751 	mutex_lock(&direct_mutex);
5752 
5753 	/* Make sure requested entries are not already registered.. */
5754 	size = 1 << hash->size_bits;
5755 	for (i = 0; i < size; i++) {
5756 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5757 			if (ftrace_find_rec_direct(entry->ip))
5758 				goto out_unlock;
5759 		}
5760 	}
5761 
5762 	/* ... and insert them to direct_functions hash. */
5763 	err = -ENOMEM;
5764 	for (i = 0; i < size; i++) {
5765 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5766 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5767 			if (!new)
5768 				goto out_remove;
5769 			entry->direct = addr;
5770 		}
5771 	}
5772 
5773 	ops->func = call_direct_funcs;
5774 	ops->flags = MULTI_FLAGS;
5775 	ops->trampoline = FTRACE_REGS_ADDR;
5776 
5777 	err = register_ftrace_function_nolock(ops);
5778 
5779  out_remove:
5780 	if (err)
5781 		remove_direct_functions_hash(hash, addr);
5782 
5783  out_unlock:
5784 	mutex_unlock(&direct_mutex);
5785 
5786 	if (free_hash) {
5787 		synchronize_rcu_tasks();
5788 		free_ftrace_hash(free_hash);
5789 	}
5790 	return err;
5791 }
5792 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5793 
5794 /**
5795  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5796  * previously registered by register_ftrace_direct_multi for @ops object.
5797  * @ops: The address of the struct ftrace_ops object
5798  *
5799  * This is used to remove a direct calls to @addr from the nop locations
5800  * of the functions registered in @ops (with by ftrace_set_filter_ip
5801  * function).
5802  *
5803  * Returns:
5804  *  0 on success
5805  *  -EINVAL - The @ops object was not properly registered.
5806  */
5807 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5808 {
5809 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5810 	int err;
5811 
5812 	if (check_direct_multi(ops))
5813 		return -EINVAL;
5814 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5815 		return -EINVAL;
5816 
5817 	mutex_lock(&direct_mutex);
5818 	err = unregister_ftrace_function(ops);
5819 	remove_direct_functions_hash(hash, addr);
5820 	mutex_unlock(&direct_mutex);
5821 
5822 	/* cleanup for possible another register call */
5823 	ops->func = NULL;
5824 	ops->trampoline = 0;
5825 	return err;
5826 }
5827 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5828 
5829 static int
5830 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5831 {
5832 	struct ftrace_hash *hash;
5833 	struct ftrace_func_entry *entry, *iter;
5834 	static struct ftrace_ops tmp_ops = {
5835 		.func		= ftrace_stub,
5836 		.flags		= FTRACE_OPS_FL_STUB,
5837 	};
5838 	int i, size;
5839 	int err;
5840 
5841 	lockdep_assert_held_once(&direct_mutex);
5842 
5843 	/* Enable the tmp_ops to have the same functions as the direct ops */
5844 	ftrace_ops_init(&tmp_ops);
5845 	tmp_ops.func_hash = ops->func_hash;
5846 
5847 	err = register_ftrace_function_nolock(&tmp_ops);
5848 	if (err)
5849 		return err;
5850 
5851 	/*
5852 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5853 	 * We can safely change the direct functions attached to each entry.
5854 	 */
5855 	mutex_lock(&ftrace_lock);
5856 
5857 	hash = ops->func_hash->filter_hash;
5858 	size = 1 << hash->size_bits;
5859 	for (i = 0; i < size; i++) {
5860 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5861 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5862 			if (!entry)
5863 				continue;
5864 			entry->direct = addr;
5865 		}
5866 	}
5867 
5868 	mutex_unlock(&ftrace_lock);
5869 
5870 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5871 	unregister_ftrace_function(&tmp_ops);
5872 
5873 	return err;
5874 }
5875 
5876 /**
5877  * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call
5878  * to call something else
5879  * @ops: The address of the struct ftrace_ops object
5880  * @addr: The address of the new trampoline to call at @ops functions
5881  *
5882  * This is used to unregister currently registered direct caller and
5883  * register new one @addr on functions registered in @ops object.
5884  *
5885  * Note there's window between ftrace_shutdown and ftrace_startup calls
5886  * where there will be no callbacks called.
5887  *
5888  * Caller should already have direct_mutex locked, so we don't lock
5889  * direct_mutex here.
5890  *
5891  * Returns: zero on success. Non zero on error, which includes:
5892  *  -EINVAL - The @ops object was not properly registered.
5893  */
5894 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr)
5895 {
5896 	if (check_direct_multi(ops))
5897 		return -EINVAL;
5898 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5899 		return -EINVAL;
5900 
5901 	return __modify_ftrace_direct_multi(ops, addr);
5902 }
5903 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock);
5904 
5905 /**
5906  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5907  * to call something else
5908  * @ops: The address of the struct ftrace_ops object
5909  * @addr: The address of the new trampoline to call at @ops functions
5910  *
5911  * This is used to unregister currently registered direct caller and
5912  * register new one @addr on functions registered in @ops object.
5913  *
5914  * Note there's window between ftrace_shutdown and ftrace_startup calls
5915  * where there will be no callbacks called.
5916  *
5917  * Returns: zero on success. Non zero on error, which includes:
5918  *  -EINVAL - The @ops object was not properly registered.
5919  */
5920 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5921 {
5922 	int err;
5923 
5924 	if (check_direct_multi(ops))
5925 		return -EINVAL;
5926 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5927 		return -EINVAL;
5928 
5929 	mutex_lock(&direct_mutex);
5930 	err = __modify_ftrace_direct_multi(ops, addr);
5931 	mutex_unlock(&direct_mutex);
5932 	return err;
5933 }
5934 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5935 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5936 
5937 /**
5938  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5939  * @ops - the ops to set the filter with
5940  * @ip - the address to add to or remove from the filter.
5941  * @remove - non zero to remove the ip from the filter
5942  * @reset - non zero to reset all filters before applying this filter.
5943  *
5944  * Filters denote which functions should be enabled when tracing is enabled
5945  * If @ip is NULL, it fails to update filter.
5946  *
5947  * This can allocate memory which must be freed before @ops can be freed,
5948  * either by removing each filtered addr or by using
5949  * ftrace_free_filter(@ops).
5950  */
5951 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5952 			 int remove, int reset)
5953 {
5954 	ftrace_ops_init(ops);
5955 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5956 }
5957 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5958 
5959 /**
5960  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5961  * @ops - the ops to set the filter with
5962  * @ips - the array of addresses to add to or remove from the filter.
5963  * @cnt - the number of addresses in @ips
5964  * @remove - non zero to remove ips from the filter
5965  * @reset - non zero to reset all filters before applying this filter.
5966  *
5967  * Filters denote which functions should be enabled when tracing is enabled
5968  * If @ips array or any ip specified within is NULL , it fails to update filter.
5969  *
5970  * This can allocate memory which must be freed before @ops can be freed,
5971  * either by removing each filtered addr or by using
5972  * ftrace_free_filter(@ops).
5973 */
5974 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5975 			  unsigned int cnt, int remove, int reset)
5976 {
5977 	ftrace_ops_init(ops);
5978 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5979 }
5980 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5981 
5982 /**
5983  * ftrace_ops_set_global_filter - setup ops to use global filters
5984  * @ops - the ops which will use the global filters
5985  *
5986  * ftrace users who need global function trace filtering should call this.
5987  * It can set the global filter only if ops were not initialized before.
5988  */
5989 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5990 {
5991 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5992 		return;
5993 
5994 	ftrace_ops_init(ops);
5995 	ops->func_hash = &global_ops.local_hash;
5996 }
5997 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5998 
5999 static int
6000 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
6001 		 int reset, int enable)
6002 {
6003 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
6004 }
6005 
6006 /**
6007  * ftrace_set_filter - set a function to filter on in ftrace
6008  * @ops - the ops to set the filter with
6009  * @buf - the string that holds the function filter text.
6010  * @len - the length of the string.
6011  * @reset - non zero to reset all filters before applying this filter.
6012  *
6013  * Filters denote which functions should be enabled when tracing is enabled.
6014  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6015  *
6016  * This can allocate memory which must be freed before @ops can be freed,
6017  * either by removing each filtered addr or by using
6018  * ftrace_free_filter(@ops).
6019  */
6020 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
6021 		       int len, int reset)
6022 {
6023 	ftrace_ops_init(ops);
6024 	return ftrace_set_regex(ops, buf, len, reset, 1);
6025 }
6026 EXPORT_SYMBOL_GPL(ftrace_set_filter);
6027 
6028 /**
6029  * ftrace_set_notrace - set a function to not trace in ftrace
6030  * @ops - the ops to set the notrace filter with
6031  * @buf - the string that holds the function notrace text.
6032  * @len - the length of the string.
6033  * @reset - non zero to reset all filters before applying this filter.
6034  *
6035  * Notrace Filters denote which functions should not be enabled when tracing
6036  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6037  * for tracing.
6038  *
6039  * This can allocate memory which must be freed before @ops can be freed,
6040  * either by removing each filtered addr or by using
6041  * ftrace_free_filter(@ops).
6042  */
6043 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
6044 			int len, int reset)
6045 {
6046 	ftrace_ops_init(ops);
6047 	return ftrace_set_regex(ops, buf, len, reset, 0);
6048 }
6049 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
6050 /**
6051  * ftrace_set_global_filter - set a function to filter on with global tracers
6052  * @buf - the string that holds the function filter text.
6053  * @len - the length of the string.
6054  * @reset - non zero to reset all filters before applying this filter.
6055  *
6056  * Filters denote which functions should be enabled when tracing is enabled.
6057  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
6058  */
6059 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
6060 {
6061 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
6062 }
6063 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
6064 
6065 /**
6066  * ftrace_set_global_notrace - set a function to not trace with global tracers
6067  * @buf - the string that holds the function notrace text.
6068  * @len - the length of the string.
6069  * @reset - non zero to reset all filters before applying this filter.
6070  *
6071  * Notrace Filters denote which functions should not be enabled when tracing
6072  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
6073  * for tracing.
6074  */
6075 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
6076 {
6077 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
6078 }
6079 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
6080 
6081 /*
6082  * command line interface to allow users to set filters on boot up.
6083  */
6084 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
6085 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6086 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
6087 
6088 /* Used by function selftest to not test if filter is set */
6089 bool ftrace_filter_param __initdata;
6090 
6091 static int __init set_ftrace_notrace(char *str)
6092 {
6093 	ftrace_filter_param = true;
6094 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6095 	return 1;
6096 }
6097 __setup("ftrace_notrace=", set_ftrace_notrace);
6098 
6099 static int __init set_ftrace_filter(char *str)
6100 {
6101 	ftrace_filter_param = true;
6102 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6103 	return 1;
6104 }
6105 __setup("ftrace_filter=", set_ftrace_filter);
6106 
6107 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6108 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6109 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6110 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6111 
6112 static int __init set_graph_function(char *str)
6113 {
6114 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6115 	return 1;
6116 }
6117 __setup("ftrace_graph_filter=", set_graph_function);
6118 
6119 static int __init set_graph_notrace_function(char *str)
6120 {
6121 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6122 	return 1;
6123 }
6124 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6125 
6126 static int __init set_graph_max_depth_function(char *str)
6127 {
6128 	if (!str)
6129 		return 0;
6130 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
6131 	return 1;
6132 }
6133 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6134 
6135 static void __init set_ftrace_early_graph(char *buf, int enable)
6136 {
6137 	int ret;
6138 	char *func;
6139 	struct ftrace_hash *hash;
6140 
6141 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6142 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6143 		return;
6144 
6145 	while (buf) {
6146 		func = strsep(&buf, ",");
6147 		/* we allow only one expression at a time */
6148 		ret = ftrace_graph_set_hash(hash, func);
6149 		if (ret)
6150 			printk(KERN_DEBUG "ftrace: function %s not "
6151 					  "traceable\n", func);
6152 	}
6153 
6154 	if (enable)
6155 		ftrace_graph_hash = hash;
6156 	else
6157 		ftrace_graph_notrace_hash = hash;
6158 }
6159 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6160 
6161 void __init
6162 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6163 {
6164 	char *func;
6165 
6166 	ftrace_ops_init(ops);
6167 
6168 	while (buf) {
6169 		func = strsep(&buf, ",");
6170 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6171 	}
6172 }
6173 
6174 static void __init set_ftrace_early_filters(void)
6175 {
6176 	if (ftrace_filter_buf[0])
6177 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6178 	if (ftrace_notrace_buf[0])
6179 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6180 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6181 	if (ftrace_graph_buf[0])
6182 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6183 	if (ftrace_graph_notrace_buf[0])
6184 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6185 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6186 }
6187 
6188 int ftrace_regex_release(struct inode *inode, struct file *file)
6189 {
6190 	struct seq_file *m = (struct seq_file *)file->private_data;
6191 	struct ftrace_iterator *iter;
6192 	struct ftrace_hash **orig_hash;
6193 	struct trace_parser *parser;
6194 	int filter_hash;
6195 
6196 	if (file->f_mode & FMODE_READ) {
6197 		iter = m->private;
6198 		seq_release(inode, file);
6199 	} else
6200 		iter = file->private_data;
6201 
6202 	parser = &iter->parser;
6203 	if (trace_parser_loaded(parser)) {
6204 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6205 
6206 		ftrace_process_regex(iter, parser->buffer,
6207 				     parser->idx, enable);
6208 	}
6209 
6210 	trace_parser_put(parser);
6211 
6212 	mutex_lock(&iter->ops->func_hash->regex_lock);
6213 
6214 	if (file->f_mode & FMODE_WRITE) {
6215 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6216 
6217 		if (filter_hash) {
6218 			orig_hash = &iter->ops->func_hash->filter_hash;
6219 			if (iter->tr) {
6220 				if (list_empty(&iter->tr->mod_trace))
6221 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6222 				else
6223 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6224 			}
6225 		} else
6226 			orig_hash = &iter->ops->func_hash->notrace_hash;
6227 
6228 		mutex_lock(&ftrace_lock);
6229 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6230 						      iter->hash, filter_hash);
6231 		mutex_unlock(&ftrace_lock);
6232 	} else {
6233 		/* For read only, the hash is the ops hash */
6234 		iter->hash = NULL;
6235 	}
6236 
6237 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6238 	free_ftrace_hash(iter->hash);
6239 	if (iter->tr)
6240 		trace_array_put(iter->tr);
6241 	kfree(iter);
6242 
6243 	return 0;
6244 }
6245 
6246 static const struct file_operations ftrace_avail_fops = {
6247 	.open = ftrace_avail_open,
6248 	.read = seq_read,
6249 	.llseek = seq_lseek,
6250 	.release = seq_release_private,
6251 };
6252 
6253 static const struct file_operations ftrace_enabled_fops = {
6254 	.open = ftrace_enabled_open,
6255 	.read = seq_read,
6256 	.llseek = seq_lseek,
6257 	.release = seq_release_private,
6258 };
6259 
6260 static const struct file_operations ftrace_filter_fops = {
6261 	.open = ftrace_filter_open,
6262 	.read = seq_read,
6263 	.write = ftrace_filter_write,
6264 	.llseek = tracing_lseek,
6265 	.release = ftrace_regex_release,
6266 };
6267 
6268 static const struct file_operations ftrace_notrace_fops = {
6269 	.open = ftrace_notrace_open,
6270 	.read = seq_read,
6271 	.write = ftrace_notrace_write,
6272 	.llseek = tracing_lseek,
6273 	.release = ftrace_regex_release,
6274 };
6275 
6276 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6277 
6278 static DEFINE_MUTEX(graph_lock);
6279 
6280 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6281 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6282 
6283 enum graph_filter_type {
6284 	GRAPH_FILTER_NOTRACE	= 0,
6285 	GRAPH_FILTER_FUNCTION,
6286 };
6287 
6288 #define FTRACE_GRAPH_EMPTY	((void *)1)
6289 
6290 struct ftrace_graph_data {
6291 	struct ftrace_hash		*hash;
6292 	struct ftrace_func_entry	*entry;
6293 	int				idx;   /* for hash table iteration */
6294 	enum graph_filter_type		type;
6295 	struct ftrace_hash		*new_hash;
6296 	const struct seq_operations	*seq_ops;
6297 	struct trace_parser		parser;
6298 };
6299 
6300 static void *
6301 __g_next(struct seq_file *m, loff_t *pos)
6302 {
6303 	struct ftrace_graph_data *fgd = m->private;
6304 	struct ftrace_func_entry *entry = fgd->entry;
6305 	struct hlist_head *head;
6306 	int i, idx = fgd->idx;
6307 
6308 	if (*pos >= fgd->hash->count)
6309 		return NULL;
6310 
6311 	if (entry) {
6312 		hlist_for_each_entry_continue(entry, hlist) {
6313 			fgd->entry = entry;
6314 			return entry;
6315 		}
6316 
6317 		idx++;
6318 	}
6319 
6320 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6321 		head = &fgd->hash->buckets[i];
6322 		hlist_for_each_entry(entry, head, hlist) {
6323 			fgd->entry = entry;
6324 			fgd->idx = i;
6325 			return entry;
6326 		}
6327 	}
6328 	return NULL;
6329 }
6330 
6331 static void *
6332 g_next(struct seq_file *m, void *v, loff_t *pos)
6333 {
6334 	(*pos)++;
6335 	return __g_next(m, pos);
6336 }
6337 
6338 static void *g_start(struct seq_file *m, loff_t *pos)
6339 {
6340 	struct ftrace_graph_data *fgd = m->private;
6341 
6342 	mutex_lock(&graph_lock);
6343 
6344 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6345 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6346 					lockdep_is_held(&graph_lock));
6347 	else
6348 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6349 					lockdep_is_held(&graph_lock));
6350 
6351 	/* Nothing, tell g_show to print all functions are enabled */
6352 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6353 		return FTRACE_GRAPH_EMPTY;
6354 
6355 	fgd->idx = 0;
6356 	fgd->entry = NULL;
6357 	return __g_next(m, pos);
6358 }
6359 
6360 static void g_stop(struct seq_file *m, void *p)
6361 {
6362 	mutex_unlock(&graph_lock);
6363 }
6364 
6365 static int g_show(struct seq_file *m, void *v)
6366 {
6367 	struct ftrace_func_entry *entry = v;
6368 
6369 	if (!entry)
6370 		return 0;
6371 
6372 	if (entry == FTRACE_GRAPH_EMPTY) {
6373 		struct ftrace_graph_data *fgd = m->private;
6374 
6375 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6376 			seq_puts(m, "#### all functions enabled ####\n");
6377 		else
6378 			seq_puts(m, "#### no functions disabled ####\n");
6379 		return 0;
6380 	}
6381 
6382 	seq_printf(m, "%ps\n", (void *)entry->ip);
6383 
6384 	return 0;
6385 }
6386 
6387 static const struct seq_operations ftrace_graph_seq_ops = {
6388 	.start = g_start,
6389 	.next = g_next,
6390 	.stop = g_stop,
6391 	.show = g_show,
6392 };
6393 
6394 static int
6395 __ftrace_graph_open(struct inode *inode, struct file *file,
6396 		    struct ftrace_graph_data *fgd)
6397 {
6398 	int ret;
6399 	struct ftrace_hash *new_hash = NULL;
6400 
6401 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6402 	if (ret)
6403 		return ret;
6404 
6405 	if (file->f_mode & FMODE_WRITE) {
6406 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6407 
6408 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6409 			return -ENOMEM;
6410 
6411 		if (file->f_flags & O_TRUNC)
6412 			new_hash = alloc_ftrace_hash(size_bits);
6413 		else
6414 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6415 							      fgd->hash);
6416 		if (!new_hash) {
6417 			ret = -ENOMEM;
6418 			goto out;
6419 		}
6420 	}
6421 
6422 	if (file->f_mode & FMODE_READ) {
6423 		ret = seq_open(file, &ftrace_graph_seq_ops);
6424 		if (!ret) {
6425 			struct seq_file *m = file->private_data;
6426 			m->private = fgd;
6427 		} else {
6428 			/* Failed */
6429 			free_ftrace_hash(new_hash);
6430 			new_hash = NULL;
6431 		}
6432 	} else
6433 		file->private_data = fgd;
6434 
6435 out:
6436 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6437 		trace_parser_put(&fgd->parser);
6438 
6439 	fgd->new_hash = new_hash;
6440 
6441 	/*
6442 	 * All uses of fgd->hash must be taken with the graph_lock
6443 	 * held. The graph_lock is going to be released, so force
6444 	 * fgd->hash to be reinitialized when it is taken again.
6445 	 */
6446 	fgd->hash = NULL;
6447 
6448 	return ret;
6449 }
6450 
6451 static int
6452 ftrace_graph_open(struct inode *inode, struct file *file)
6453 {
6454 	struct ftrace_graph_data *fgd;
6455 	int ret;
6456 
6457 	if (unlikely(ftrace_disabled))
6458 		return -ENODEV;
6459 
6460 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6461 	if (fgd == NULL)
6462 		return -ENOMEM;
6463 
6464 	mutex_lock(&graph_lock);
6465 
6466 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6467 					lockdep_is_held(&graph_lock));
6468 	fgd->type = GRAPH_FILTER_FUNCTION;
6469 	fgd->seq_ops = &ftrace_graph_seq_ops;
6470 
6471 	ret = __ftrace_graph_open(inode, file, fgd);
6472 	if (ret < 0)
6473 		kfree(fgd);
6474 
6475 	mutex_unlock(&graph_lock);
6476 	return ret;
6477 }
6478 
6479 static int
6480 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6481 {
6482 	struct ftrace_graph_data *fgd;
6483 	int ret;
6484 
6485 	if (unlikely(ftrace_disabled))
6486 		return -ENODEV;
6487 
6488 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6489 	if (fgd == NULL)
6490 		return -ENOMEM;
6491 
6492 	mutex_lock(&graph_lock);
6493 
6494 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6495 					lockdep_is_held(&graph_lock));
6496 	fgd->type = GRAPH_FILTER_NOTRACE;
6497 	fgd->seq_ops = &ftrace_graph_seq_ops;
6498 
6499 	ret = __ftrace_graph_open(inode, file, fgd);
6500 	if (ret < 0)
6501 		kfree(fgd);
6502 
6503 	mutex_unlock(&graph_lock);
6504 	return ret;
6505 }
6506 
6507 static int
6508 ftrace_graph_release(struct inode *inode, struct file *file)
6509 {
6510 	struct ftrace_graph_data *fgd;
6511 	struct ftrace_hash *old_hash, *new_hash;
6512 	struct trace_parser *parser;
6513 	int ret = 0;
6514 
6515 	if (file->f_mode & FMODE_READ) {
6516 		struct seq_file *m = file->private_data;
6517 
6518 		fgd = m->private;
6519 		seq_release(inode, file);
6520 	} else {
6521 		fgd = file->private_data;
6522 	}
6523 
6524 
6525 	if (file->f_mode & FMODE_WRITE) {
6526 
6527 		parser = &fgd->parser;
6528 
6529 		if (trace_parser_loaded((parser))) {
6530 			ret = ftrace_graph_set_hash(fgd->new_hash,
6531 						    parser->buffer);
6532 		}
6533 
6534 		trace_parser_put(parser);
6535 
6536 		new_hash = __ftrace_hash_move(fgd->new_hash);
6537 		if (!new_hash) {
6538 			ret = -ENOMEM;
6539 			goto out;
6540 		}
6541 
6542 		mutex_lock(&graph_lock);
6543 
6544 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6545 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6546 					lockdep_is_held(&graph_lock));
6547 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6548 		} else {
6549 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6550 					lockdep_is_held(&graph_lock));
6551 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6552 		}
6553 
6554 		mutex_unlock(&graph_lock);
6555 
6556 		/*
6557 		 * We need to do a hard force of sched synchronization.
6558 		 * This is because we use preempt_disable() to do RCU, but
6559 		 * the function tracers can be called where RCU is not watching
6560 		 * (like before user_exit()). We can not rely on the RCU
6561 		 * infrastructure to do the synchronization, thus we must do it
6562 		 * ourselves.
6563 		 */
6564 		if (old_hash != EMPTY_HASH)
6565 			synchronize_rcu_tasks_rude();
6566 
6567 		free_ftrace_hash(old_hash);
6568 	}
6569 
6570  out:
6571 	free_ftrace_hash(fgd->new_hash);
6572 	kfree(fgd);
6573 
6574 	return ret;
6575 }
6576 
6577 static int
6578 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6579 {
6580 	struct ftrace_glob func_g;
6581 	struct dyn_ftrace *rec;
6582 	struct ftrace_page *pg;
6583 	struct ftrace_func_entry *entry;
6584 	int fail = 1;
6585 	int not;
6586 
6587 	/* decode regex */
6588 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6589 					 &func_g.search, &not);
6590 
6591 	func_g.len = strlen(func_g.search);
6592 
6593 	mutex_lock(&ftrace_lock);
6594 
6595 	if (unlikely(ftrace_disabled)) {
6596 		mutex_unlock(&ftrace_lock);
6597 		return -ENODEV;
6598 	}
6599 
6600 	do_for_each_ftrace_rec(pg, rec) {
6601 
6602 		if (rec->flags & FTRACE_FL_DISABLED)
6603 			continue;
6604 
6605 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6606 			entry = ftrace_lookup_ip(hash, rec->ip);
6607 
6608 			if (!not) {
6609 				fail = 0;
6610 
6611 				if (entry)
6612 					continue;
6613 				if (add_hash_entry(hash, rec->ip) < 0)
6614 					goto out;
6615 			} else {
6616 				if (entry) {
6617 					free_hash_entry(hash, entry);
6618 					fail = 0;
6619 				}
6620 			}
6621 		}
6622 	} while_for_each_ftrace_rec();
6623 out:
6624 	mutex_unlock(&ftrace_lock);
6625 
6626 	if (fail)
6627 		return -EINVAL;
6628 
6629 	return 0;
6630 }
6631 
6632 static ssize_t
6633 ftrace_graph_write(struct file *file, const char __user *ubuf,
6634 		   size_t cnt, loff_t *ppos)
6635 {
6636 	ssize_t read, ret = 0;
6637 	struct ftrace_graph_data *fgd = file->private_data;
6638 	struct trace_parser *parser;
6639 
6640 	if (!cnt)
6641 		return 0;
6642 
6643 	/* Read mode uses seq functions */
6644 	if (file->f_mode & FMODE_READ) {
6645 		struct seq_file *m = file->private_data;
6646 		fgd = m->private;
6647 	}
6648 
6649 	parser = &fgd->parser;
6650 
6651 	read = trace_get_user(parser, ubuf, cnt, ppos);
6652 
6653 	if (read >= 0 && trace_parser_loaded(parser) &&
6654 	    !trace_parser_cont(parser)) {
6655 
6656 		ret = ftrace_graph_set_hash(fgd->new_hash,
6657 					    parser->buffer);
6658 		trace_parser_clear(parser);
6659 	}
6660 
6661 	if (!ret)
6662 		ret = read;
6663 
6664 	return ret;
6665 }
6666 
6667 static const struct file_operations ftrace_graph_fops = {
6668 	.open		= ftrace_graph_open,
6669 	.read		= seq_read,
6670 	.write		= ftrace_graph_write,
6671 	.llseek		= tracing_lseek,
6672 	.release	= ftrace_graph_release,
6673 };
6674 
6675 static const struct file_operations ftrace_graph_notrace_fops = {
6676 	.open		= ftrace_graph_notrace_open,
6677 	.read		= seq_read,
6678 	.write		= ftrace_graph_write,
6679 	.llseek		= tracing_lseek,
6680 	.release	= ftrace_graph_release,
6681 };
6682 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6683 
6684 void ftrace_create_filter_files(struct ftrace_ops *ops,
6685 				struct dentry *parent)
6686 {
6687 
6688 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6689 			  ops, &ftrace_filter_fops);
6690 
6691 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6692 			  ops, &ftrace_notrace_fops);
6693 }
6694 
6695 /*
6696  * The name "destroy_filter_files" is really a misnomer. Although
6697  * in the future, it may actually delete the files, but this is
6698  * really intended to make sure the ops passed in are disabled
6699  * and that when this function returns, the caller is free to
6700  * free the ops.
6701  *
6702  * The "destroy" name is only to match the "create" name that this
6703  * should be paired with.
6704  */
6705 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6706 {
6707 	mutex_lock(&ftrace_lock);
6708 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6709 		ftrace_shutdown(ops, 0);
6710 	ops->flags |= FTRACE_OPS_FL_DELETED;
6711 	ftrace_free_filter(ops);
6712 	mutex_unlock(&ftrace_lock);
6713 }
6714 
6715 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6716 {
6717 
6718 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6719 			d_tracer, NULL, &ftrace_avail_fops);
6720 
6721 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6722 			d_tracer, NULL, &ftrace_enabled_fops);
6723 
6724 	ftrace_create_filter_files(&global_ops, d_tracer);
6725 
6726 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6727 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6728 				    NULL,
6729 				    &ftrace_graph_fops);
6730 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6731 				    NULL,
6732 				    &ftrace_graph_notrace_fops);
6733 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6734 
6735 	return 0;
6736 }
6737 
6738 static int ftrace_cmp_ips(const void *a, const void *b)
6739 {
6740 	const unsigned long *ipa = a;
6741 	const unsigned long *ipb = b;
6742 
6743 	if (*ipa > *ipb)
6744 		return 1;
6745 	if (*ipa < *ipb)
6746 		return -1;
6747 	return 0;
6748 }
6749 
6750 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6751 static void test_is_sorted(unsigned long *start, unsigned long count)
6752 {
6753 	int i;
6754 
6755 	for (i = 1; i < count; i++) {
6756 		if (WARN(start[i - 1] > start[i],
6757 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6758 			 (void *)start[i - 1], start[i - 1],
6759 			 (void *)start[i], start[i]))
6760 			break;
6761 	}
6762 	if (i == count)
6763 		pr_info("ftrace section at %px sorted properly\n", start);
6764 }
6765 #else
6766 static void test_is_sorted(unsigned long *start, unsigned long count)
6767 {
6768 }
6769 #endif
6770 
6771 static int ftrace_process_locs(struct module *mod,
6772 			       unsigned long *start,
6773 			       unsigned long *end)
6774 {
6775 	struct ftrace_page *start_pg;
6776 	struct ftrace_page *pg;
6777 	struct dyn_ftrace *rec;
6778 	unsigned long count;
6779 	unsigned long *p;
6780 	unsigned long addr;
6781 	unsigned long flags = 0; /* Shut up gcc */
6782 	int ret = -ENOMEM;
6783 
6784 	count = end - start;
6785 
6786 	if (!count)
6787 		return 0;
6788 
6789 	/*
6790 	 * Sorting mcount in vmlinux at build time depend on
6791 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6792 	 * modules can not be sorted at build time.
6793 	 */
6794 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6795 		sort(start, count, sizeof(*start),
6796 		     ftrace_cmp_ips, NULL);
6797 	} else {
6798 		test_is_sorted(start, count);
6799 	}
6800 
6801 	start_pg = ftrace_allocate_pages(count);
6802 	if (!start_pg)
6803 		return -ENOMEM;
6804 
6805 	mutex_lock(&ftrace_lock);
6806 
6807 	/*
6808 	 * Core and each module needs their own pages, as
6809 	 * modules will free them when they are removed.
6810 	 * Force a new page to be allocated for modules.
6811 	 */
6812 	if (!mod) {
6813 		WARN_ON(ftrace_pages || ftrace_pages_start);
6814 		/* First initialization */
6815 		ftrace_pages = ftrace_pages_start = start_pg;
6816 	} else {
6817 		if (!ftrace_pages)
6818 			goto out;
6819 
6820 		if (WARN_ON(ftrace_pages->next)) {
6821 			/* Hmm, we have free pages? */
6822 			while (ftrace_pages->next)
6823 				ftrace_pages = ftrace_pages->next;
6824 		}
6825 
6826 		ftrace_pages->next = start_pg;
6827 	}
6828 
6829 	p = start;
6830 	pg = start_pg;
6831 	while (p < end) {
6832 		unsigned long end_offset;
6833 		addr = ftrace_call_adjust(*p++);
6834 		/*
6835 		 * Some architecture linkers will pad between
6836 		 * the different mcount_loc sections of different
6837 		 * object files to satisfy alignments.
6838 		 * Skip any NULL pointers.
6839 		 */
6840 		if (!addr)
6841 			continue;
6842 
6843 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6844 		if (end_offset > PAGE_SIZE << pg->order) {
6845 			/* We should have allocated enough */
6846 			if (WARN_ON(!pg->next))
6847 				break;
6848 			pg = pg->next;
6849 		}
6850 
6851 		rec = &pg->records[pg->index++];
6852 		rec->ip = addr;
6853 	}
6854 
6855 	/* We should have used all pages */
6856 	WARN_ON(pg->next);
6857 
6858 	/* Assign the last page to ftrace_pages */
6859 	ftrace_pages = pg;
6860 
6861 	/*
6862 	 * We only need to disable interrupts on start up
6863 	 * because we are modifying code that an interrupt
6864 	 * may execute, and the modification is not atomic.
6865 	 * But for modules, nothing runs the code we modify
6866 	 * until we are finished with it, and there's no
6867 	 * reason to cause large interrupt latencies while we do it.
6868 	 */
6869 	if (!mod)
6870 		local_irq_save(flags);
6871 	ftrace_update_code(mod, start_pg);
6872 	if (!mod)
6873 		local_irq_restore(flags);
6874 	ret = 0;
6875  out:
6876 	mutex_unlock(&ftrace_lock);
6877 
6878 	return ret;
6879 }
6880 
6881 struct ftrace_mod_func {
6882 	struct list_head	list;
6883 	char			*name;
6884 	unsigned long		ip;
6885 	unsigned int		size;
6886 };
6887 
6888 struct ftrace_mod_map {
6889 	struct rcu_head		rcu;
6890 	struct list_head	list;
6891 	struct module		*mod;
6892 	unsigned long		start_addr;
6893 	unsigned long		end_addr;
6894 	struct list_head	funcs;
6895 	unsigned int		num_funcs;
6896 };
6897 
6898 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6899 					 unsigned long *value, char *type,
6900 					 char *name, char *module_name,
6901 					 int *exported)
6902 {
6903 	struct ftrace_ops *op;
6904 
6905 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6906 		if (!op->trampoline || symnum--)
6907 			continue;
6908 		*value = op->trampoline;
6909 		*type = 't';
6910 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6911 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6912 		*exported = 0;
6913 		return 0;
6914 	}
6915 
6916 	return -ERANGE;
6917 }
6918 
6919 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
6920 /*
6921  * Check if the current ops references the given ip.
6922  *
6923  * If the ops traces all functions, then it was already accounted for.
6924  * If the ops does not trace the current record function, skip it.
6925  * If the ops ignores the function via notrace filter, skip it.
6926  */
6927 static bool
6928 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
6929 {
6930 	/* If ops isn't enabled, ignore it */
6931 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6932 		return false;
6933 
6934 	/* If ops traces all then it includes this function */
6935 	if (ops_traces_mod(ops))
6936 		return true;
6937 
6938 	/* The function must be in the filter */
6939 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
6940 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
6941 		return false;
6942 
6943 	/* If in notrace hash, we ignore it too */
6944 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
6945 		return false;
6946 
6947 	return true;
6948 }
6949 #endif
6950 
6951 #ifdef CONFIG_MODULES
6952 
6953 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6954 
6955 static LIST_HEAD(ftrace_mod_maps);
6956 
6957 static int referenced_filters(struct dyn_ftrace *rec)
6958 {
6959 	struct ftrace_ops *ops;
6960 	int cnt = 0;
6961 
6962 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6963 		if (ops_references_ip(ops, rec->ip)) {
6964 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6965 				continue;
6966 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6967 				continue;
6968 			cnt++;
6969 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6970 				rec->flags |= FTRACE_FL_REGS;
6971 			if (cnt == 1 && ops->trampoline)
6972 				rec->flags |= FTRACE_FL_TRAMP;
6973 			else
6974 				rec->flags &= ~FTRACE_FL_TRAMP;
6975 		}
6976 	}
6977 
6978 	return cnt;
6979 }
6980 
6981 static void
6982 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6983 {
6984 	struct ftrace_func_entry *entry;
6985 	struct dyn_ftrace *rec;
6986 	int i;
6987 
6988 	if (ftrace_hash_empty(hash))
6989 		return;
6990 
6991 	for (i = 0; i < pg->index; i++) {
6992 		rec = &pg->records[i];
6993 		entry = __ftrace_lookup_ip(hash, rec->ip);
6994 		/*
6995 		 * Do not allow this rec to match again.
6996 		 * Yeah, it may waste some memory, but will be removed
6997 		 * if/when the hash is modified again.
6998 		 */
6999 		if (entry)
7000 			entry->ip = 0;
7001 	}
7002 }
7003 
7004 /* Clear any records from hashes */
7005 static void clear_mod_from_hashes(struct ftrace_page *pg)
7006 {
7007 	struct trace_array *tr;
7008 
7009 	mutex_lock(&trace_types_lock);
7010 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7011 		if (!tr->ops || !tr->ops->func_hash)
7012 			continue;
7013 		mutex_lock(&tr->ops->func_hash->regex_lock);
7014 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
7015 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
7016 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7017 	}
7018 	mutex_unlock(&trace_types_lock);
7019 }
7020 
7021 static void ftrace_free_mod_map(struct rcu_head *rcu)
7022 {
7023 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
7024 	struct ftrace_mod_func *mod_func;
7025 	struct ftrace_mod_func *n;
7026 
7027 	/* All the contents of mod_map are now not visible to readers */
7028 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
7029 		kfree(mod_func->name);
7030 		list_del(&mod_func->list);
7031 		kfree(mod_func);
7032 	}
7033 
7034 	kfree(mod_map);
7035 }
7036 
7037 void ftrace_release_mod(struct module *mod)
7038 {
7039 	struct ftrace_mod_map *mod_map;
7040 	struct ftrace_mod_map *n;
7041 	struct dyn_ftrace *rec;
7042 	struct ftrace_page **last_pg;
7043 	struct ftrace_page *tmp_page = NULL;
7044 	struct ftrace_page *pg;
7045 
7046 	mutex_lock(&ftrace_lock);
7047 
7048 	if (ftrace_disabled)
7049 		goto out_unlock;
7050 
7051 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
7052 		if (mod_map->mod == mod) {
7053 			list_del_rcu(&mod_map->list);
7054 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
7055 			break;
7056 		}
7057 	}
7058 
7059 	/*
7060 	 * Each module has its own ftrace_pages, remove
7061 	 * them from the list.
7062 	 */
7063 	last_pg = &ftrace_pages_start;
7064 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
7065 		rec = &pg->records[0];
7066 		if (within_module_core(rec->ip, mod) ||
7067 		    within_module_init(rec->ip, mod)) {
7068 			/*
7069 			 * As core pages are first, the first
7070 			 * page should never be a module page.
7071 			 */
7072 			if (WARN_ON(pg == ftrace_pages_start))
7073 				goto out_unlock;
7074 
7075 			/* Check if we are deleting the last page */
7076 			if (pg == ftrace_pages)
7077 				ftrace_pages = next_to_ftrace_page(last_pg);
7078 
7079 			ftrace_update_tot_cnt -= pg->index;
7080 			*last_pg = pg->next;
7081 
7082 			pg->next = tmp_page;
7083 			tmp_page = pg;
7084 		} else
7085 			last_pg = &pg->next;
7086 	}
7087  out_unlock:
7088 	mutex_unlock(&ftrace_lock);
7089 
7090 	for (pg = tmp_page; pg; pg = tmp_page) {
7091 
7092 		/* Needs to be called outside of ftrace_lock */
7093 		clear_mod_from_hashes(pg);
7094 
7095 		if (pg->records) {
7096 			free_pages((unsigned long)pg->records, pg->order);
7097 			ftrace_number_of_pages -= 1 << pg->order;
7098 		}
7099 		tmp_page = pg->next;
7100 		kfree(pg);
7101 		ftrace_number_of_groups--;
7102 	}
7103 }
7104 
7105 void ftrace_module_enable(struct module *mod)
7106 {
7107 	struct dyn_ftrace *rec;
7108 	struct ftrace_page *pg;
7109 
7110 	mutex_lock(&ftrace_lock);
7111 
7112 	if (ftrace_disabled)
7113 		goto out_unlock;
7114 
7115 	/*
7116 	 * If the tracing is enabled, go ahead and enable the record.
7117 	 *
7118 	 * The reason not to enable the record immediately is the
7119 	 * inherent check of ftrace_make_nop/ftrace_make_call for
7120 	 * correct previous instructions.  Making first the NOP
7121 	 * conversion puts the module to the correct state, thus
7122 	 * passing the ftrace_make_call check.
7123 	 *
7124 	 * We also delay this to after the module code already set the
7125 	 * text to read-only, as we now need to set it back to read-write
7126 	 * so that we can modify the text.
7127 	 */
7128 	if (ftrace_start_up)
7129 		ftrace_arch_code_modify_prepare();
7130 
7131 	do_for_each_ftrace_rec(pg, rec) {
7132 		int cnt;
7133 		/*
7134 		 * do_for_each_ftrace_rec() is a double loop.
7135 		 * module text shares the pg. If a record is
7136 		 * not part of this module, then skip this pg,
7137 		 * which the "break" will do.
7138 		 */
7139 		if (!within_module_core(rec->ip, mod) &&
7140 		    !within_module_init(rec->ip, mod))
7141 			break;
7142 
7143 		/* Weak functions should still be ignored */
7144 		if (!test_for_valid_rec(rec)) {
7145 			/* Clear all other flags. Should not be enabled anyway */
7146 			rec->flags = FTRACE_FL_DISABLED;
7147 			continue;
7148 		}
7149 
7150 		cnt = 0;
7151 
7152 		/*
7153 		 * When adding a module, we need to check if tracers are
7154 		 * currently enabled and if they are, and can trace this record,
7155 		 * we need to enable the module functions as well as update the
7156 		 * reference counts for those function records.
7157 		 */
7158 		if (ftrace_start_up)
7159 			cnt += referenced_filters(rec);
7160 
7161 		rec->flags &= ~FTRACE_FL_DISABLED;
7162 		rec->flags += cnt;
7163 
7164 		if (ftrace_start_up && cnt) {
7165 			int failed = __ftrace_replace_code(rec, 1);
7166 			if (failed) {
7167 				ftrace_bug(failed, rec);
7168 				goto out_loop;
7169 			}
7170 		}
7171 
7172 	} while_for_each_ftrace_rec();
7173 
7174  out_loop:
7175 	if (ftrace_start_up)
7176 		ftrace_arch_code_modify_post_process();
7177 
7178  out_unlock:
7179 	mutex_unlock(&ftrace_lock);
7180 
7181 	process_cached_mods(mod->name);
7182 }
7183 
7184 void ftrace_module_init(struct module *mod)
7185 {
7186 	int ret;
7187 
7188 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7189 		return;
7190 
7191 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7192 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7193 	if (ret)
7194 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7195 			mod->name);
7196 }
7197 
7198 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7199 				struct dyn_ftrace *rec)
7200 {
7201 	struct ftrace_mod_func *mod_func;
7202 	unsigned long symsize;
7203 	unsigned long offset;
7204 	char str[KSYM_SYMBOL_LEN];
7205 	char *modname;
7206 	const char *ret;
7207 
7208 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7209 	if (!ret)
7210 		return;
7211 
7212 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7213 	if (!mod_func)
7214 		return;
7215 
7216 	mod_func->name = kstrdup(str, GFP_KERNEL);
7217 	if (!mod_func->name) {
7218 		kfree(mod_func);
7219 		return;
7220 	}
7221 
7222 	mod_func->ip = rec->ip - offset;
7223 	mod_func->size = symsize;
7224 
7225 	mod_map->num_funcs++;
7226 
7227 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7228 }
7229 
7230 static struct ftrace_mod_map *
7231 allocate_ftrace_mod_map(struct module *mod,
7232 			unsigned long start, unsigned long end)
7233 {
7234 	struct ftrace_mod_map *mod_map;
7235 
7236 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7237 	if (!mod_map)
7238 		return NULL;
7239 
7240 	mod_map->mod = mod;
7241 	mod_map->start_addr = start;
7242 	mod_map->end_addr = end;
7243 	mod_map->num_funcs = 0;
7244 
7245 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7246 
7247 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7248 
7249 	return mod_map;
7250 }
7251 
7252 static const char *
7253 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7254 			   unsigned long addr, unsigned long *size,
7255 			   unsigned long *off, char *sym)
7256 {
7257 	struct ftrace_mod_func *found_func =  NULL;
7258 	struct ftrace_mod_func *mod_func;
7259 
7260 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7261 		if (addr >= mod_func->ip &&
7262 		    addr < mod_func->ip + mod_func->size) {
7263 			found_func = mod_func;
7264 			break;
7265 		}
7266 	}
7267 
7268 	if (found_func) {
7269 		if (size)
7270 			*size = found_func->size;
7271 		if (off)
7272 			*off = addr - found_func->ip;
7273 		if (sym)
7274 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7275 
7276 		return found_func->name;
7277 	}
7278 
7279 	return NULL;
7280 }
7281 
7282 const char *
7283 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7284 		   unsigned long *off, char **modname, char *sym)
7285 {
7286 	struct ftrace_mod_map *mod_map;
7287 	const char *ret = NULL;
7288 
7289 	/* mod_map is freed via call_rcu() */
7290 	preempt_disable();
7291 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7292 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7293 		if (ret) {
7294 			if (modname)
7295 				*modname = mod_map->mod->name;
7296 			break;
7297 		}
7298 	}
7299 	preempt_enable();
7300 
7301 	return ret;
7302 }
7303 
7304 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7305 			   char *type, char *name,
7306 			   char *module_name, int *exported)
7307 {
7308 	struct ftrace_mod_map *mod_map;
7309 	struct ftrace_mod_func *mod_func;
7310 	int ret;
7311 
7312 	preempt_disable();
7313 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7314 
7315 		if (symnum >= mod_map->num_funcs) {
7316 			symnum -= mod_map->num_funcs;
7317 			continue;
7318 		}
7319 
7320 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7321 			if (symnum > 1) {
7322 				symnum--;
7323 				continue;
7324 			}
7325 
7326 			*value = mod_func->ip;
7327 			*type = 'T';
7328 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7329 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7330 			*exported = 1;
7331 			preempt_enable();
7332 			return 0;
7333 		}
7334 		WARN_ON(1);
7335 		break;
7336 	}
7337 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7338 					    module_name, exported);
7339 	preempt_enable();
7340 	return ret;
7341 }
7342 
7343 #else
7344 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7345 				struct dyn_ftrace *rec) { }
7346 static inline struct ftrace_mod_map *
7347 allocate_ftrace_mod_map(struct module *mod,
7348 			unsigned long start, unsigned long end)
7349 {
7350 	return NULL;
7351 }
7352 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7353 			   char *type, char *name, char *module_name,
7354 			   int *exported)
7355 {
7356 	int ret;
7357 
7358 	preempt_disable();
7359 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7360 					    module_name, exported);
7361 	preempt_enable();
7362 	return ret;
7363 }
7364 #endif /* CONFIG_MODULES */
7365 
7366 struct ftrace_init_func {
7367 	struct list_head list;
7368 	unsigned long ip;
7369 };
7370 
7371 /* Clear any init ips from hashes */
7372 static void
7373 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7374 {
7375 	struct ftrace_func_entry *entry;
7376 
7377 	entry = ftrace_lookup_ip(hash, func->ip);
7378 	/*
7379 	 * Do not allow this rec to match again.
7380 	 * Yeah, it may waste some memory, but will be removed
7381 	 * if/when the hash is modified again.
7382 	 */
7383 	if (entry)
7384 		entry->ip = 0;
7385 }
7386 
7387 static void
7388 clear_func_from_hashes(struct ftrace_init_func *func)
7389 {
7390 	struct trace_array *tr;
7391 
7392 	mutex_lock(&trace_types_lock);
7393 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7394 		if (!tr->ops || !tr->ops->func_hash)
7395 			continue;
7396 		mutex_lock(&tr->ops->func_hash->regex_lock);
7397 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7398 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7399 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7400 	}
7401 	mutex_unlock(&trace_types_lock);
7402 }
7403 
7404 static void add_to_clear_hash_list(struct list_head *clear_list,
7405 				   struct dyn_ftrace *rec)
7406 {
7407 	struct ftrace_init_func *func;
7408 
7409 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7410 	if (!func) {
7411 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7412 		return;
7413 	}
7414 
7415 	func->ip = rec->ip;
7416 	list_add(&func->list, clear_list);
7417 }
7418 
7419 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7420 {
7421 	unsigned long start = (unsigned long)(start_ptr);
7422 	unsigned long end = (unsigned long)(end_ptr);
7423 	struct ftrace_page **last_pg = &ftrace_pages_start;
7424 	struct ftrace_page *pg;
7425 	struct dyn_ftrace *rec;
7426 	struct dyn_ftrace key;
7427 	struct ftrace_mod_map *mod_map = NULL;
7428 	struct ftrace_init_func *func, *func_next;
7429 	struct list_head clear_hash;
7430 
7431 	INIT_LIST_HEAD(&clear_hash);
7432 
7433 	key.ip = start;
7434 	key.flags = end;	/* overload flags, as it is unsigned long */
7435 
7436 	mutex_lock(&ftrace_lock);
7437 
7438 	/*
7439 	 * If we are freeing module init memory, then check if
7440 	 * any tracer is active. If so, we need to save a mapping of
7441 	 * the module functions being freed with the address.
7442 	 */
7443 	if (mod && ftrace_ops_list != &ftrace_list_end)
7444 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7445 
7446 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7447 		if (end < pg->records[0].ip ||
7448 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7449 			continue;
7450  again:
7451 		rec = bsearch(&key, pg->records, pg->index,
7452 			      sizeof(struct dyn_ftrace),
7453 			      ftrace_cmp_recs);
7454 		if (!rec)
7455 			continue;
7456 
7457 		/* rec will be cleared from hashes after ftrace_lock unlock */
7458 		add_to_clear_hash_list(&clear_hash, rec);
7459 
7460 		if (mod_map)
7461 			save_ftrace_mod_rec(mod_map, rec);
7462 
7463 		pg->index--;
7464 		ftrace_update_tot_cnt--;
7465 		if (!pg->index) {
7466 			*last_pg = pg->next;
7467 			if (pg->records) {
7468 				free_pages((unsigned long)pg->records, pg->order);
7469 				ftrace_number_of_pages -= 1 << pg->order;
7470 			}
7471 			ftrace_number_of_groups--;
7472 			kfree(pg);
7473 			pg = container_of(last_pg, struct ftrace_page, next);
7474 			if (!(*last_pg))
7475 				ftrace_pages = pg;
7476 			continue;
7477 		}
7478 		memmove(rec, rec + 1,
7479 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7480 		/* More than one function may be in this block */
7481 		goto again;
7482 	}
7483 	mutex_unlock(&ftrace_lock);
7484 
7485 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7486 		clear_func_from_hashes(func);
7487 		kfree(func);
7488 	}
7489 }
7490 
7491 void __init ftrace_free_init_mem(void)
7492 {
7493 	void *start = (void *)(&__init_begin);
7494 	void *end = (void *)(&__init_end);
7495 
7496 	ftrace_boot_snapshot();
7497 
7498 	ftrace_free_mem(NULL, start, end);
7499 }
7500 
7501 int __init __weak ftrace_dyn_arch_init(void)
7502 {
7503 	return 0;
7504 }
7505 
7506 void __init ftrace_init(void)
7507 {
7508 	extern unsigned long __start_mcount_loc[];
7509 	extern unsigned long __stop_mcount_loc[];
7510 	unsigned long count, flags;
7511 	int ret;
7512 
7513 	local_irq_save(flags);
7514 	ret = ftrace_dyn_arch_init();
7515 	local_irq_restore(flags);
7516 	if (ret)
7517 		goto failed;
7518 
7519 	count = __stop_mcount_loc - __start_mcount_loc;
7520 	if (!count) {
7521 		pr_info("ftrace: No functions to be traced?\n");
7522 		goto failed;
7523 	}
7524 
7525 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7526 		count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
7527 
7528 	ret = ftrace_process_locs(NULL,
7529 				  __start_mcount_loc,
7530 				  __stop_mcount_loc);
7531 	if (ret) {
7532 		pr_warn("ftrace: failed to allocate entries for functions\n");
7533 		goto failed;
7534 	}
7535 
7536 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7537 		ftrace_number_of_pages, ftrace_number_of_groups);
7538 
7539 	last_ftrace_enabled = ftrace_enabled = 1;
7540 
7541 	set_ftrace_early_filters();
7542 
7543 	return;
7544  failed:
7545 	ftrace_disabled = 1;
7546 }
7547 
7548 /* Do nothing if arch does not support this */
7549 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7550 {
7551 }
7552 
7553 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7554 {
7555 	unsigned long trampoline = ops->trampoline;
7556 
7557 	arch_ftrace_update_trampoline(ops);
7558 	if (ops->trampoline && ops->trampoline != trampoline &&
7559 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7560 		/* Add to kallsyms before the perf events */
7561 		ftrace_add_trampoline_to_kallsyms(ops);
7562 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7563 				   ops->trampoline, ops->trampoline_size, false,
7564 				   FTRACE_TRAMPOLINE_SYM);
7565 		/*
7566 		 * Record the perf text poke event after the ksymbol register
7567 		 * event.
7568 		 */
7569 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7570 				     (void *)ops->trampoline,
7571 				     ops->trampoline_size);
7572 	}
7573 }
7574 
7575 void ftrace_init_trace_array(struct trace_array *tr)
7576 {
7577 	INIT_LIST_HEAD(&tr->func_probes);
7578 	INIT_LIST_HEAD(&tr->mod_trace);
7579 	INIT_LIST_HEAD(&tr->mod_notrace);
7580 }
7581 #else
7582 
7583 struct ftrace_ops global_ops = {
7584 	.func			= ftrace_stub,
7585 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7586 				  FTRACE_OPS_FL_PID,
7587 };
7588 
7589 static int __init ftrace_nodyn_init(void)
7590 {
7591 	ftrace_enabled = 1;
7592 	return 0;
7593 }
7594 core_initcall(ftrace_nodyn_init);
7595 
7596 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7597 static inline void ftrace_startup_all(int command) { }
7598 
7599 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7600 {
7601 }
7602 
7603 #endif /* CONFIG_DYNAMIC_FTRACE */
7604 
7605 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7606 {
7607 	tr->ops = &global_ops;
7608 	tr->ops->private = tr;
7609 	ftrace_init_trace_array(tr);
7610 }
7611 
7612 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7613 {
7614 	/* If we filter on pids, update to use the pid function */
7615 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7616 		if (WARN_ON(tr->ops->func != ftrace_stub))
7617 			printk("ftrace ops had %pS for function\n",
7618 			       tr->ops->func);
7619 	}
7620 	tr->ops->func = func;
7621 	tr->ops->private = tr;
7622 }
7623 
7624 void ftrace_reset_array_ops(struct trace_array *tr)
7625 {
7626 	tr->ops->func = ftrace_stub;
7627 }
7628 
7629 static nokprobe_inline void
7630 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7631 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7632 {
7633 	struct pt_regs *regs = ftrace_get_regs(fregs);
7634 	struct ftrace_ops *op;
7635 	int bit;
7636 
7637 	/*
7638 	 * The ftrace_test_and_set_recursion() will disable preemption,
7639 	 * which is required since some of the ops may be dynamically
7640 	 * allocated, they must be freed after a synchronize_rcu().
7641 	 */
7642 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7643 	if (bit < 0)
7644 		return;
7645 
7646 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7647 		/* Stub functions don't need to be called nor tested */
7648 		if (op->flags & FTRACE_OPS_FL_STUB)
7649 			continue;
7650 		/*
7651 		 * Check the following for each ops before calling their func:
7652 		 *  if RCU flag is set, then rcu_is_watching() must be true
7653 		 *  Otherwise test if the ip matches the ops filter
7654 		 *
7655 		 * If any of the above fails then the op->func() is not executed.
7656 		 */
7657 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7658 		    ftrace_ops_test(op, ip, regs)) {
7659 			if (FTRACE_WARN_ON(!op->func)) {
7660 				pr_warn("op=%p %pS\n", op, op);
7661 				goto out;
7662 			}
7663 			op->func(ip, parent_ip, op, fregs);
7664 		}
7665 	} while_for_each_ftrace_op(op);
7666 out:
7667 	trace_clear_recursion(bit);
7668 }
7669 
7670 /*
7671  * Some archs only support passing ip and parent_ip. Even though
7672  * the list function ignores the op parameter, we do not want any
7673  * C side effects, where a function is called without the caller
7674  * sending a third parameter.
7675  * Archs are to support both the regs and ftrace_ops at the same time.
7676  * If they support ftrace_ops, it is assumed they support regs.
7677  * If call backs want to use regs, they must either check for regs
7678  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7679  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7680  * An architecture can pass partial regs with ftrace_ops and still
7681  * set the ARCH_SUPPORTS_FTRACE_OPS.
7682  *
7683  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7684  * arch_ftrace_ops_list_func.
7685  */
7686 #if ARCH_SUPPORTS_FTRACE_OPS
7687 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7688 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7689 {
7690 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7691 }
7692 #else
7693 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7694 {
7695 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7696 }
7697 #endif
7698 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7699 
7700 /*
7701  * If there's only one function registered but it does not support
7702  * recursion, needs RCU protection, then this function will be called
7703  * by the mcount trampoline.
7704  */
7705 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7706 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7707 {
7708 	int bit;
7709 
7710 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7711 	if (bit < 0)
7712 		return;
7713 
7714 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7715 		op->func(ip, parent_ip, op, fregs);
7716 
7717 	trace_clear_recursion(bit);
7718 }
7719 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7720 
7721 /**
7722  * ftrace_ops_get_func - get the function a trampoline should call
7723  * @ops: the ops to get the function for
7724  *
7725  * Normally the mcount trampoline will call the ops->func, but there
7726  * are times that it should not. For example, if the ops does not
7727  * have its own recursion protection, then it should call the
7728  * ftrace_ops_assist_func() instead.
7729  *
7730  * Returns the function that the trampoline should call for @ops.
7731  */
7732 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7733 {
7734 	/*
7735 	 * If the function does not handle recursion or needs to be RCU safe,
7736 	 * then we need to call the assist handler.
7737 	 */
7738 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7739 			  FTRACE_OPS_FL_RCU))
7740 		return ftrace_ops_assist_func;
7741 
7742 	return ops->func;
7743 }
7744 
7745 static void
7746 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7747 				     struct task_struct *prev,
7748 				     struct task_struct *next,
7749 				     unsigned int prev_state)
7750 {
7751 	struct trace_array *tr = data;
7752 	struct trace_pid_list *pid_list;
7753 	struct trace_pid_list *no_pid_list;
7754 
7755 	pid_list = rcu_dereference_sched(tr->function_pids);
7756 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7757 
7758 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7759 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7760 			       FTRACE_PID_IGNORE);
7761 	else
7762 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7763 			       next->pid);
7764 }
7765 
7766 static void
7767 ftrace_pid_follow_sched_process_fork(void *data,
7768 				     struct task_struct *self,
7769 				     struct task_struct *task)
7770 {
7771 	struct trace_pid_list *pid_list;
7772 	struct trace_array *tr = data;
7773 
7774 	pid_list = rcu_dereference_sched(tr->function_pids);
7775 	trace_filter_add_remove_task(pid_list, self, task);
7776 
7777 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7778 	trace_filter_add_remove_task(pid_list, self, task);
7779 }
7780 
7781 static void
7782 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7783 {
7784 	struct trace_pid_list *pid_list;
7785 	struct trace_array *tr = data;
7786 
7787 	pid_list = rcu_dereference_sched(tr->function_pids);
7788 	trace_filter_add_remove_task(pid_list, NULL, task);
7789 
7790 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7791 	trace_filter_add_remove_task(pid_list, NULL, task);
7792 }
7793 
7794 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7795 {
7796 	if (enable) {
7797 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7798 						  tr);
7799 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7800 						  tr);
7801 	} else {
7802 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7803 						    tr);
7804 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7805 						    tr);
7806 	}
7807 }
7808 
7809 static void clear_ftrace_pids(struct trace_array *tr, int type)
7810 {
7811 	struct trace_pid_list *pid_list;
7812 	struct trace_pid_list *no_pid_list;
7813 	int cpu;
7814 
7815 	pid_list = rcu_dereference_protected(tr->function_pids,
7816 					     lockdep_is_held(&ftrace_lock));
7817 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7818 						lockdep_is_held(&ftrace_lock));
7819 
7820 	/* Make sure there's something to do */
7821 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7822 		return;
7823 
7824 	/* See if the pids still need to be checked after this */
7825 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7826 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7827 		for_each_possible_cpu(cpu)
7828 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7829 	}
7830 
7831 	if (type & TRACE_PIDS)
7832 		rcu_assign_pointer(tr->function_pids, NULL);
7833 
7834 	if (type & TRACE_NO_PIDS)
7835 		rcu_assign_pointer(tr->function_no_pids, NULL);
7836 
7837 	/* Wait till all users are no longer using pid filtering */
7838 	synchronize_rcu();
7839 
7840 	if ((type & TRACE_PIDS) && pid_list)
7841 		trace_pid_list_free(pid_list);
7842 
7843 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7844 		trace_pid_list_free(no_pid_list);
7845 }
7846 
7847 void ftrace_clear_pids(struct trace_array *tr)
7848 {
7849 	mutex_lock(&ftrace_lock);
7850 
7851 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7852 
7853 	mutex_unlock(&ftrace_lock);
7854 }
7855 
7856 static void ftrace_pid_reset(struct trace_array *tr, int type)
7857 {
7858 	mutex_lock(&ftrace_lock);
7859 	clear_ftrace_pids(tr, type);
7860 
7861 	ftrace_update_pid_func();
7862 	ftrace_startup_all(0);
7863 
7864 	mutex_unlock(&ftrace_lock);
7865 }
7866 
7867 /* Greater than any max PID */
7868 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7869 
7870 static void *fpid_start(struct seq_file *m, loff_t *pos)
7871 	__acquires(RCU)
7872 {
7873 	struct trace_pid_list *pid_list;
7874 	struct trace_array *tr = m->private;
7875 
7876 	mutex_lock(&ftrace_lock);
7877 	rcu_read_lock_sched();
7878 
7879 	pid_list = rcu_dereference_sched(tr->function_pids);
7880 
7881 	if (!pid_list)
7882 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7883 
7884 	return trace_pid_start(pid_list, pos);
7885 }
7886 
7887 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7888 {
7889 	struct trace_array *tr = m->private;
7890 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7891 
7892 	if (v == FTRACE_NO_PIDS) {
7893 		(*pos)++;
7894 		return NULL;
7895 	}
7896 	return trace_pid_next(pid_list, v, pos);
7897 }
7898 
7899 static void fpid_stop(struct seq_file *m, void *p)
7900 	__releases(RCU)
7901 {
7902 	rcu_read_unlock_sched();
7903 	mutex_unlock(&ftrace_lock);
7904 }
7905 
7906 static int fpid_show(struct seq_file *m, void *v)
7907 {
7908 	if (v == FTRACE_NO_PIDS) {
7909 		seq_puts(m, "no pid\n");
7910 		return 0;
7911 	}
7912 
7913 	return trace_pid_show(m, v);
7914 }
7915 
7916 static const struct seq_operations ftrace_pid_sops = {
7917 	.start = fpid_start,
7918 	.next = fpid_next,
7919 	.stop = fpid_stop,
7920 	.show = fpid_show,
7921 };
7922 
7923 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7924 	__acquires(RCU)
7925 {
7926 	struct trace_pid_list *pid_list;
7927 	struct trace_array *tr = m->private;
7928 
7929 	mutex_lock(&ftrace_lock);
7930 	rcu_read_lock_sched();
7931 
7932 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7933 
7934 	if (!pid_list)
7935 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7936 
7937 	return trace_pid_start(pid_list, pos);
7938 }
7939 
7940 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7941 {
7942 	struct trace_array *tr = m->private;
7943 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7944 
7945 	if (v == FTRACE_NO_PIDS) {
7946 		(*pos)++;
7947 		return NULL;
7948 	}
7949 	return trace_pid_next(pid_list, v, pos);
7950 }
7951 
7952 static const struct seq_operations ftrace_no_pid_sops = {
7953 	.start = fnpid_start,
7954 	.next = fnpid_next,
7955 	.stop = fpid_stop,
7956 	.show = fpid_show,
7957 };
7958 
7959 static int pid_open(struct inode *inode, struct file *file, int type)
7960 {
7961 	const struct seq_operations *seq_ops;
7962 	struct trace_array *tr = inode->i_private;
7963 	struct seq_file *m;
7964 	int ret = 0;
7965 
7966 	ret = tracing_check_open_get_tr(tr);
7967 	if (ret)
7968 		return ret;
7969 
7970 	if ((file->f_mode & FMODE_WRITE) &&
7971 	    (file->f_flags & O_TRUNC))
7972 		ftrace_pid_reset(tr, type);
7973 
7974 	switch (type) {
7975 	case TRACE_PIDS:
7976 		seq_ops = &ftrace_pid_sops;
7977 		break;
7978 	case TRACE_NO_PIDS:
7979 		seq_ops = &ftrace_no_pid_sops;
7980 		break;
7981 	default:
7982 		trace_array_put(tr);
7983 		WARN_ON_ONCE(1);
7984 		return -EINVAL;
7985 	}
7986 
7987 	ret = seq_open(file, seq_ops);
7988 	if (ret < 0) {
7989 		trace_array_put(tr);
7990 	} else {
7991 		m = file->private_data;
7992 		/* copy tr over to seq ops */
7993 		m->private = tr;
7994 	}
7995 
7996 	return ret;
7997 }
7998 
7999 static int
8000 ftrace_pid_open(struct inode *inode, struct file *file)
8001 {
8002 	return pid_open(inode, file, TRACE_PIDS);
8003 }
8004 
8005 static int
8006 ftrace_no_pid_open(struct inode *inode, struct file *file)
8007 {
8008 	return pid_open(inode, file, TRACE_NO_PIDS);
8009 }
8010 
8011 static void ignore_task_cpu(void *data)
8012 {
8013 	struct trace_array *tr = data;
8014 	struct trace_pid_list *pid_list;
8015 	struct trace_pid_list *no_pid_list;
8016 
8017 	/*
8018 	 * This function is called by on_each_cpu() while the
8019 	 * event_mutex is held.
8020 	 */
8021 	pid_list = rcu_dereference_protected(tr->function_pids,
8022 					     mutex_is_locked(&ftrace_lock));
8023 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
8024 						mutex_is_locked(&ftrace_lock));
8025 
8026 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
8027 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8028 			       FTRACE_PID_IGNORE);
8029 	else
8030 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
8031 			       current->pid);
8032 }
8033 
8034 static ssize_t
8035 pid_write(struct file *filp, const char __user *ubuf,
8036 	  size_t cnt, loff_t *ppos, int type)
8037 {
8038 	struct seq_file *m = filp->private_data;
8039 	struct trace_array *tr = m->private;
8040 	struct trace_pid_list *filtered_pids;
8041 	struct trace_pid_list *other_pids;
8042 	struct trace_pid_list *pid_list;
8043 	ssize_t ret;
8044 
8045 	if (!cnt)
8046 		return 0;
8047 
8048 	mutex_lock(&ftrace_lock);
8049 
8050 	switch (type) {
8051 	case TRACE_PIDS:
8052 		filtered_pids = rcu_dereference_protected(tr->function_pids,
8053 					     lockdep_is_held(&ftrace_lock));
8054 		other_pids = rcu_dereference_protected(tr->function_no_pids,
8055 					     lockdep_is_held(&ftrace_lock));
8056 		break;
8057 	case TRACE_NO_PIDS:
8058 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
8059 					     lockdep_is_held(&ftrace_lock));
8060 		other_pids = rcu_dereference_protected(tr->function_pids,
8061 					     lockdep_is_held(&ftrace_lock));
8062 		break;
8063 	default:
8064 		ret = -EINVAL;
8065 		WARN_ON_ONCE(1);
8066 		goto out;
8067 	}
8068 
8069 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
8070 	if (ret < 0)
8071 		goto out;
8072 
8073 	switch (type) {
8074 	case TRACE_PIDS:
8075 		rcu_assign_pointer(tr->function_pids, pid_list);
8076 		break;
8077 	case TRACE_NO_PIDS:
8078 		rcu_assign_pointer(tr->function_no_pids, pid_list);
8079 		break;
8080 	}
8081 
8082 
8083 	if (filtered_pids) {
8084 		synchronize_rcu();
8085 		trace_pid_list_free(filtered_pids);
8086 	} else if (pid_list && !other_pids) {
8087 		/* Register a probe to set whether to ignore the tracing of a task */
8088 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
8089 	}
8090 
8091 	/*
8092 	 * Ignoring of pids is done at task switch. But we have to
8093 	 * check for those tasks that are currently running.
8094 	 * Always do this in case a pid was appended or removed.
8095 	 */
8096 	on_each_cpu(ignore_task_cpu, tr, 1);
8097 
8098 	ftrace_update_pid_func();
8099 	ftrace_startup_all(0);
8100  out:
8101 	mutex_unlock(&ftrace_lock);
8102 
8103 	if (ret > 0)
8104 		*ppos += ret;
8105 
8106 	return ret;
8107 }
8108 
8109 static ssize_t
8110 ftrace_pid_write(struct file *filp, const char __user *ubuf,
8111 		 size_t cnt, loff_t *ppos)
8112 {
8113 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
8114 }
8115 
8116 static ssize_t
8117 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
8118 		    size_t cnt, loff_t *ppos)
8119 {
8120 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
8121 }
8122 
8123 static int
8124 ftrace_pid_release(struct inode *inode, struct file *file)
8125 {
8126 	struct trace_array *tr = inode->i_private;
8127 
8128 	trace_array_put(tr);
8129 
8130 	return seq_release(inode, file);
8131 }
8132 
8133 static const struct file_operations ftrace_pid_fops = {
8134 	.open		= ftrace_pid_open,
8135 	.write		= ftrace_pid_write,
8136 	.read		= seq_read,
8137 	.llseek		= tracing_lseek,
8138 	.release	= ftrace_pid_release,
8139 };
8140 
8141 static const struct file_operations ftrace_no_pid_fops = {
8142 	.open		= ftrace_no_pid_open,
8143 	.write		= ftrace_no_pid_write,
8144 	.read		= seq_read,
8145 	.llseek		= tracing_lseek,
8146 	.release	= ftrace_pid_release,
8147 };
8148 
8149 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8150 {
8151 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8152 			    tr, &ftrace_pid_fops);
8153 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8154 			  d_tracer, tr, &ftrace_no_pid_fops);
8155 }
8156 
8157 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8158 					 struct dentry *d_tracer)
8159 {
8160 	/* Only the top level directory has the dyn_tracefs and profile */
8161 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8162 
8163 	ftrace_init_dyn_tracefs(d_tracer);
8164 	ftrace_profile_tracefs(d_tracer);
8165 }
8166 
8167 /**
8168  * ftrace_kill - kill ftrace
8169  *
8170  * This function should be used by panic code. It stops ftrace
8171  * but in a not so nice way. If you need to simply kill ftrace
8172  * from a non-atomic section, use ftrace_kill.
8173  */
8174 void ftrace_kill(void)
8175 {
8176 	ftrace_disabled = 1;
8177 	ftrace_enabled = 0;
8178 	ftrace_trace_function = ftrace_stub;
8179 }
8180 
8181 /**
8182  * ftrace_is_dead - Test if ftrace is dead or not.
8183  *
8184  * Returns 1 if ftrace is "dead", zero otherwise.
8185  */
8186 int ftrace_is_dead(void)
8187 {
8188 	return ftrace_disabled;
8189 }
8190 
8191 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8192 /*
8193  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8194  * it doesn't conflict with any direct ftrace_ops. If there is existing
8195  * direct ftrace_ops on a kernel function being patched, call
8196  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8197  *
8198  * @ops:     ftrace_ops being registered.
8199  *
8200  * Returns:
8201  *         0 on success;
8202  *         Negative on failure.
8203  */
8204 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8205 {
8206 	struct ftrace_func_entry *entry;
8207 	struct ftrace_hash *hash;
8208 	struct ftrace_ops *op;
8209 	int size, i, ret;
8210 
8211 	lockdep_assert_held_once(&direct_mutex);
8212 
8213 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8214 		return 0;
8215 
8216 	hash = ops->func_hash->filter_hash;
8217 	size = 1 << hash->size_bits;
8218 	for (i = 0; i < size; i++) {
8219 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8220 			unsigned long ip = entry->ip;
8221 			bool found_op = false;
8222 
8223 			mutex_lock(&ftrace_lock);
8224 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8225 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8226 					continue;
8227 				if (ops_references_ip(op, ip)) {
8228 					found_op = true;
8229 					break;
8230 				}
8231 			} while_for_each_ftrace_op(op);
8232 			mutex_unlock(&ftrace_lock);
8233 
8234 			if (found_op) {
8235 				if (!op->ops_func)
8236 					return -EBUSY;
8237 
8238 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8239 				if (ret)
8240 					return ret;
8241 			}
8242 		}
8243 	}
8244 
8245 	return 0;
8246 }
8247 
8248 /*
8249  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8250  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8251  * ops.
8252  */
8253 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8254 {
8255 	struct ftrace_func_entry *entry;
8256 	struct ftrace_hash *hash;
8257 	struct ftrace_ops *op;
8258 	int size, i;
8259 
8260 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8261 		return;
8262 
8263 	mutex_lock(&direct_mutex);
8264 
8265 	hash = ops->func_hash->filter_hash;
8266 	size = 1 << hash->size_bits;
8267 	for (i = 0; i < size; i++) {
8268 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8269 			unsigned long ip = entry->ip;
8270 			bool found_op = false;
8271 
8272 			mutex_lock(&ftrace_lock);
8273 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8274 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8275 					continue;
8276 				if (ops_references_ip(op, ip)) {
8277 					found_op = true;
8278 					break;
8279 				}
8280 			} while_for_each_ftrace_op(op);
8281 			mutex_unlock(&ftrace_lock);
8282 
8283 			/* The cleanup is optional, ignore any errors */
8284 			if (found_op && op->ops_func)
8285 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8286 		}
8287 	}
8288 	mutex_unlock(&direct_mutex);
8289 }
8290 
8291 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8292 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8293 
8294 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8295 
8296 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8297 {
8298 	return 0;
8299 }
8300 
8301 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8302 {
8303 }
8304 
8305 #define lock_direct_mutex()	do { } while (0)
8306 #define unlock_direct_mutex()	do { } while (0)
8307 
8308 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8309 
8310 /*
8311  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8312  */
8313 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8314 {
8315 	int ret;
8316 
8317 	ftrace_ops_init(ops);
8318 
8319 	mutex_lock(&ftrace_lock);
8320 
8321 	ret = ftrace_startup(ops, 0);
8322 
8323 	mutex_unlock(&ftrace_lock);
8324 
8325 	return ret;
8326 }
8327 
8328 /**
8329  * register_ftrace_function - register a function for profiling
8330  * @ops:	ops structure that holds the function for profiling.
8331  *
8332  * Register a function to be called by all functions in the
8333  * kernel.
8334  *
8335  * Note: @ops->func and all the functions it calls must be labeled
8336  *       with "notrace", otherwise it will go into a
8337  *       recursive loop.
8338  */
8339 int register_ftrace_function(struct ftrace_ops *ops)
8340 {
8341 	int ret;
8342 
8343 	lock_direct_mutex();
8344 	ret = prepare_direct_functions_for_ipmodify(ops);
8345 	if (ret < 0)
8346 		goto out_unlock;
8347 
8348 	ret = register_ftrace_function_nolock(ops);
8349 
8350 out_unlock:
8351 	unlock_direct_mutex();
8352 	return ret;
8353 }
8354 EXPORT_SYMBOL_GPL(register_ftrace_function);
8355 
8356 /**
8357  * unregister_ftrace_function - unregister a function for profiling.
8358  * @ops:	ops structure that holds the function to unregister
8359  *
8360  * Unregister a function that was added to be called by ftrace profiling.
8361  */
8362 int unregister_ftrace_function(struct ftrace_ops *ops)
8363 {
8364 	int ret;
8365 
8366 	mutex_lock(&ftrace_lock);
8367 	ret = ftrace_shutdown(ops, 0);
8368 	mutex_unlock(&ftrace_lock);
8369 
8370 	cleanup_direct_functions_after_ipmodify(ops);
8371 	return ret;
8372 }
8373 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8374 
8375 static int symbols_cmp(const void *a, const void *b)
8376 {
8377 	const char **str_a = (const char **) a;
8378 	const char **str_b = (const char **) b;
8379 
8380 	return strcmp(*str_a, *str_b);
8381 }
8382 
8383 struct kallsyms_data {
8384 	unsigned long *addrs;
8385 	const char **syms;
8386 	size_t cnt;
8387 	size_t found;
8388 };
8389 
8390 /* This function gets called for all kernel and module symbols
8391  * and returns 1 in case we resolved all the requested symbols,
8392  * 0 otherwise.
8393  */
8394 static int kallsyms_callback(void *data, const char *name,
8395 			     struct module *mod, unsigned long addr)
8396 {
8397 	struct kallsyms_data *args = data;
8398 	const char **sym;
8399 	int idx;
8400 
8401 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8402 	if (!sym)
8403 		return 0;
8404 
8405 	idx = sym - args->syms;
8406 	if (args->addrs[idx])
8407 		return 0;
8408 
8409 	if (!ftrace_location(addr))
8410 		return 0;
8411 
8412 	args->addrs[idx] = addr;
8413 	args->found++;
8414 	return args->found == args->cnt ? 1 : 0;
8415 }
8416 
8417 /**
8418  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8419  *
8420  * @sorted_syms: array of symbols pointers symbols to resolve,
8421  * must be alphabetically sorted
8422  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8423  * @addrs: array for storing resulting addresses
8424  *
8425  * This function looks up addresses for array of symbols provided in
8426  * @syms array (must be alphabetically sorted) and stores them in
8427  * @addrs array, which needs to be big enough to store at least @cnt
8428  * addresses.
8429  *
8430  * This function returns 0 if all provided symbols are found,
8431  * -ESRCH otherwise.
8432  */
8433 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8434 {
8435 	struct kallsyms_data args;
8436 	int found_all;
8437 
8438 	memset(addrs, 0, sizeof(*addrs) * cnt);
8439 	args.addrs = addrs;
8440 	args.syms = sorted_syms;
8441 	args.cnt = cnt;
8442 	args.found = 0;
8443 
8444 	found_all = kallsyms_on_each_symbol(kallsyms_callback, &args);
8445 	if (found_all)
8446 		return 0;
8447 	found_all = module_kallsyms_on_each_symbol(NULL, kallsyms_callback, &args);
8448 	return found_all ? 0 : -ESRCH;
8449 }
8450 
8451 #ifdef CONFIG_SYSCTL
8452 
8453 #ifdef CONFIG_DYNAMIC_FTRACE
8454 static void ftrace_startup_sysctl(void)
8455 {
8456 	int command;
8457 
8458 	if (unlikely(ftrace_disabled))
8459 		return;
8460 
8461 	/* Force update next time */
8462 	saved_ftrace_func = NULL;
8463 	/* ftrace_start_up is true if we want ftrace running */
8464 	if (ftrace_start_up) {
8465 		command = FTRACE_UPDATE_CALLS;
8466 		if (ftrace_graph_active)
8467 			command |= FTRACE_START_FUNC_RET;
8468 		ftrace_startup_enable(command);
8469 	}
8470 }
8471 
8472 static void ftrace_shutdown_sysctl(void)
8473 {
8474 	int command;
8475 
8476 	if (unlikely(ftrace_disabled))
8477 		return;
8478 
8479 	/* ftrace_start_up is true if ftrace is running */
8480 	if (ftrace_start_up) {
8481 		command = FTRACE_DISABLE_CALLS;
8482 		if (ftrace_graph_active)
8483 			command |= FTRACE_STOP_FUNC_RET;
8484 		ftrace_run_update_code(command);
8485 	}
8486 }
8487 #else
8488 # define ftrace_startup_sysctl()       do { } while (0)
8489 # define ftrace_shutdown_sysctl()      do { } while (0)
8490 #endif /* CONFIG_DYNAMIC_FTRACE */
8491 
8492 static bool is_permanent_ops_registered(void)
8493 {
8494 	struct ftrace_ops *op;
8495 
8496 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8497 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8498 			return true;
8499 	} while_for_each_ftrace_op(op);
8500 
8501 	return false;
8502 }
8503 
8504 static int
8505 ftrace_enable_sysctl(struct ctl_table *table, int write,
8506 		     void *buffer, size_t *lenp, loff_t *ppos)
8507 {
8508 	int ret = -ENODEV;
8509 
8510 	mutex_lock(&ftrace_lock);
8511 
8512 	if (unlikely(ftrace_disabled))
8513 		goto out;
8514 
8515 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8516 
8517 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8518 		goto out;
8519 
8520 	if (ftrace_enabled) {
8521 
8522 		/* we are starting ftrace again */
8523 		if (rcu_dereference_protected(ftrace_ops_list,
8524 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8525 			update_ftrace_function();
8526 
8527 		ftrace_startup_sysctl();
8528 
8529 	} else {
8530 		if (is_permanent_ops_registered()) {
8531 			ftrace_enabled = true;
8532 			ret = -EBUSY;
8533 			goto out;
8534 		}
8535 
8536 		/* stopping ftrace calls (just send to ftrace_stub) */
8537 		ftrace_trace_function = ftrace_stub;
8538 
8539 		ftrace_shutdown_sysctl();
8540 	}
8541 
8542 	last_ftrace_enabled = !!ftrace_enabled;
8543  out:
8544 	mutex_unlock(&ftrace_lock);
8545 	return ret;
8546 }
8547 
8548 static struct ctl_table ftrace_sysctls[] = {
8549 	{
8550 		.procname       = "ftrace_enabled",
8551 		.data           = &ftrace_enabled,
8552 		.maxlen         = sizeof(int),
8553 		.mode           = 0644,
8554 		.proc_handler   = ftrace_enable_sysctl,
8555 	},
8556 	{}
8557 };
8558 
8559 static int __init ftrace_sysctl_init(void)
8560 {
8561 	register_sysctl_init("kernel", ftrace_sysctls);
8562 	return 0;
8563 }
8564 late_initcall(ftrace_sysctl_init);
8565 #endif
8566