1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct pt_regs *regs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 #define FTRACE_PID_IGNORE -1 143 #define FTRACE_PID_TRACE -2 144 145 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 146 struct ftrace_ops *op, struct pt_regs *regs) 147 { 148 struct trace_array *tr = op->private; 149 int pid; 150 151 if (tr) { 152 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 153 if (pid == FTRACE_PID_IGNORE) 154 return; 155 if (pid != FTRACE_PID_TRACE && 156 pid != current->pid) 157 return; 158 } 159 160 op->saved_func(ip, parent_ip, op, regs); 161 } 162 163 static void ftrace_sync_ipi(void *data) 164 { 165 /* Probably not needed, but do it anyway */ 166 smp_rmb(); 167 } 168 169 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 170 { 171 /* 172 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 173 * then it needs to call the list anyway. 174 */ 175 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 176 FTRACE_FORCE_LIST_FUNC) 177 return ftrace_ops_list_func; 178 179 return ftrace_ops_get_func(ops); 180 } 181 182 static void update_ftrace_function(void) 183 { 184 ftrace_func_t func; 185 186 /* 187 * Prepare the ftrace_ops that the arch callback will use. 188 * If there's only one ftrace_ops registered, the ftrace_ops_list 189 * will point to the ops we want. 190 */ 191 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 192 lockdep_is_held(&ftrace_lock)); 193 194 /* If there's no ftrace_ops registered, just call the stub function */ 195 if (set_function_trace_op == &ftrace_list_end) { 196 func = ftrace_stub; 197 198 /* 199 * If we are at the end of the list and this ops is 200 * recursion safe and not dynamic and the arch supports passing ops, 201 * then have the mcount trampoline call the function directly. 202 */ 203 } else if (rcu_dereference_protected(ftrace_ops_list->next, 204 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 205 func = ftrace_ops_get_list_func(ftrace_ops_list); 206 207 } else { 208 /* Just use the default ftrace_ops */ 209 set_function_trace_op = &ftrace_list_end; 210 func = ftrace_ops_list_func; 211 } 212 213 update_function_graph_func(); 214 215 /* If there's no change, then do nothing more here */ 216 if (ftrace_trace_function == func) 217 return; 218 219 /* 220 * If we are using the list function, it doesn't care 221 * about the function_trace_ops. 222 */ 223 if (func == ftrace_ops_list_func) { 224 ftrace_trace_function = func; 225 /* 226 * Don't even bother setting function_trace_ops, 227 * it would be racy to do so anyway. 228 */ 229 return; 230 } 231 232 #ifndef CONFIG_DYNAMIC_FTRACE 233 /* 234 * For static tracing, we need to be a bit more careful. 235 * The function change takes affect immediately. Thus, 236 * we need to coorditate the setting of the function_trace_ops 237 * with the setting of the ftrace_trace_function. 238 * 239 * Set the function to the list ops, which will call the 240 * function we want, albeit indirectly, but it handles the 241 * ftrace_ops and doesn't depend on function_trace_op. 242 */ 243 ftrace_trace_function = ftrace_ops_list_func; 244 /* 245 * Make sure all CPUs see this. Yes this is slow, but static 246 * tracing is slow and nasty to have enabled. 247 */ 248 synchronize_rcu_tasks_rude(); 249 /* Now all cpus are using the list ops. */ 250 function_trace_op = set_function_trace_op; 251 /* Make sure the function_trace_op is visible on all CPUs */ 252 smp_wmb(); 253 /* Nasty way to force a rmb on all cpus */ 254 smp_call_function(ftrace_sync_ipi, NULL, 1); 255 /* OK, we are all set to update the ftrace_trace_function now! */ 256 #endif /* !CONFIG_DYNAMIC_FTRACE */ 257 258 ftrace_trace_function = func; 259 } 260 261 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 262 struct ftrace_ops *ops) 263 { 264 rcu_assign_pointer(ops->next, *list); 265 266 /* 267 * We are entering ops into the list but another 268 * CPU might be walking that list. We need to make sure 269 * the ops->next pointer is valid before another CPU sees 270 * the ops pointer included into the list. 271 */ 272 rcu_assign_pointer(*list, ops); 273 } 274 275 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 276 struct ftrace_ops *ops) 277 { 278 struct ftrace_ops **p; 279 280 /* 281 * If we are removing the last function, then simply point 282 * to the ftrace_stub. 283 */ 284 if (rcu_dereference_protected(*list, 285 lockdep_is_held(&ftrace_lock)) == ops && 286 rcu_dereference_protected(ops->next, 287 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 288 *list = &ftrace_list_end; 289 return 0; 290 } 291 292 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 293 if (*p == ops) 294 break; 295 296 if (*p != ops) 297 return -1; 298 299 *p = (*p)->next; 300 return 0; 301 } 302 303 static void ftrace_update_trampoline(struct ftrace_ops *ops); 304 305 int __register_ftrace_function(struct ftrace_ops *ops) 306 { 307 if (ops->flags & FTRACE_OPS_FL_DELETED) 308 return -EINVAL; 309 310 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 311 return -EBUSY; 312 313 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 314 /* 315 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 316 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 317 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 318 */ 319 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 320 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 321 return -EINVAL; 322 323 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 324 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 325 #endif 326 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 327 return -EBUSY; 328 329 if (!core_kernel_data((unsigned long)ops)) 330 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 331 332 add_ftrace_ops(&ftrace_ops_list, ops); 333 334 /* Always save the function, and reset at unregistering */ 335 ops->saved_func = ops->func; 336 337 if (ftrace_pids_enabled(ops)) 338 ops->func = ftrace_pid_func; 339 340 ftrace_update_trampoline(ops); 341 342 if (ftrace_enabled) 343 update_ftrace_function(); 344 345 return 0; 346 } 347 348 int __unregister_ftrace_function(struct ftrace_ops *ops) 349 { 350 int ret; 351 352 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 353 return -EBUSY; 354 355 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 356 357 if (ret < 0) 358 return ret; 359 360 if (ftrace_enabled) 361 update_ftrace_function(); 362 363 ops->func = ops->saved_func; 364 365 return 0; 366 } 367 368 static void ftrace_update_pid_func(void) 369 { 370 struct ftrace_ops *op; 371 372 /* Only do something if we are tracing something */ 373 if (ftrace_trace_function == ftrace_stub) 374 return; 375 376 do_for_each_ftrace_op(op, ftrace_ops_list) { 377 if (op->flags & FTRACE_OPS_FL_PID) { 378 op->func = ftrace_pids_enabled(op) ? 379 ftrace_pid_func : op->saved_func; 380 ftrace_update_trampoline(op); 381 } 382 } while_for_each_ftrace_op(op); 383 384 update_ftrace_function(); 385 } 386 387 #ifdef CONFIG_FUNCTION_PROFILER 388 struct ftrace_profile { 389 struct hlist_node node; 390 unsigned long ip; 391 unsigned long counter; 392 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 393 unsigned long long time; 394 unsigned long long time_squared; 395 #endif 396 }; 397 398 struct ftrace_profile_page { 399 struct ftrace_profile_page *next; 400 unsigned long index; 401 struct ftrace_profile records[]; 402 }; 403 404 struct ftrace_profile_stat { 405 atomic_t disabled; 406 struct hlist_head *hash; 407 struct ftrace_profile_page *pages; 408 struct ftrace_profile_page *start; 409 struct tracer_stat stat; 410 }; 411 412 #define PROFILE_RECORDS_SIZE \ 413 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 414 415 #define PROFILES_PER_PAGE \ 416 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 417 418 static int ftrace_profile_enabled __read_mostly; 419 420 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 421 static DEFINE_MUTEX(ftrace_profile_lock); 422 423 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 424 425 #define FTRACE_PROFILE_HASH_BITS 10 426 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 427 428 static void * 429 function_stat_next(void *v, int idx) 430 { 431 struct ftrace_profile *rec = v; 432 struct ftrace_profile_page *pg; 433 434 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 435 436 again: 437 if (idx != 0) 438 rec++; 439 440 if ((void *)rec >= (void *)&pg->records[pg->index]) { 441 pg = pg->next; 442 if (!pg) 443 return NULL; 444 rec = &pg->records[0]; 445 if (!rec->counter) 446 goto again; 447 } 448 449 return rec; 450 } 451 452 static void *function_stat_start(struct tracer_stat *trace) 453 { 454 struct ftrace_profile_stat *stat = 455 container_of(trace, struct ftrace_profile_stat, stat); 456 457 if (!stat || !stat->start) 458 return NULL; 459 460 return function_stat_next(&stat->start->records[0], 0); 461 } 462 463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 464 /* function graph compares on total time */ 465 static int function_stat_cmp(const void *p1, const void *p2) 466 { 467 const struct ftrace_profile *a = p1; 468 const struct ftrace_profile *b = p2; 469 470 if (a->time < b->time) 471 return -1; 472 if (a->time > b->time) 473 return 1; 474 else 475 return 0; 476 } 477 #else 478 /* not function graph compares against hits */ 479 static int function_stat_cmp(const void *p1, const void *p2) 480 { 481 const struct ftrace_profile *a = p1; 482 const struct ftrace_profile *b = p2; 483 484 if (a->counter < b->counter) 485 return -1; 486 if (a->counter > b->counter) 487 return 1; 488 else 489 return 0; 490 } 491 #endif 492 493 static int function_stat_headers(struct seq_file *m) 494 { 495 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 496 seq_puts(m, " Function " 497 "Hit Time Avg s^2\n" 498 " -------- " 499 "--- ---- --- ---\n"); 500 #else 501 seq_puts(m, " Function Hit\n" 502 " -------- ---\n"); 503 #endif 504 return 0; 505 } 506 507 static int function_stat_show(struct seq_file *m, void *v) 508 { 509 struct ftrace_profile *rec = v; 510 char str[KSYM_SYMBOL_LEN]; 511 int ret = 0; 512 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 513 static struct trace_seq s; 514 unsigned long long avg; 515 unsigned long long stddev; 516 #endif 517 mutex_lock(&ftrace_profile_lock); 518 519 /* we raced with function_profile_reset() */ 520 if (unlikely(rec->counter == 0)) { 521 ret = -EBUSY; 522 goto out; 523 } 524 525 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 526 avg = div64_ul(rec->time, rec->counter); 527 if (tracing_thresh && (avg < tracing_thresh)) 528 goto out; 529 #endif 530 531 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 532 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 533 534 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 535 seq_puts(m, " "); 536 537 /* Sample standard deviation (s^2) */ 538 if (rec->counter <= 1) 539 stddev = 0; 540 else { 541 /* 542 * Apply Welford's method: 543 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 544 */ 545 stddev = rec->counter * rec->time_squared - 546 rec->time * rec->time; 547 548 /* 549 * Divide only 1000 for ns^2 -> us^2 conversion. 550 * trace_print_graph_duration will divide 1000 again. 551 */ 552 stddev = div64_ul(stddev, 553 rec->counter * (rec->counter - 1) * 1000); 554 } 555 556 trace_seq_init(&s); 557 trace_print_graph_duration(rec->time, &s); 558 trace_seq_puts(&s, " "); 559 trace_print_graph_duration(avg, &s); 560 trace_seq_puts(&s, " "); 561 trace_print_graph_duration(stddev, &s); 562 trace_print_seq(m, &s); 563 #endif 564 seq_putc(m, '\n'); 565 out: 566 mutex_unlock(&ftrace_profile_lock); 567 568 return ret; 569 } 570 571 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 572 { 573 struct ftrace_profile_page *pg; 574 575 pg = stat->pages = stat->start; 576 577 while (pg) { 578 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 579 pg->index = 0; 580 pg = pg->next; 581 } 582 583 memset(stat->hash, 0, 584 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 585 } 586 587 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 588 { 589 struct ftrace_profile_page *pg; 590 int functions; 591 int pages; 592 int i; 593 594 /* If we already allocated, do nothing */ 595 if (stat->pages) 596 return 0; 597 598 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 599 if (!stat->pages) 600 return -ENOMEM; 601 602 #ifdef CONFIG_DYNAMIC_FTRACE 603 functions = ftrace_update_tot_cnt; 604 #else 605 /* 606 * We do not know the number of functions that exist because 607 * dynamic tracing is what counts them. With past experience 608 * we have around 20K functions. That should be more than enough. 609 * It is highly unlikely we will execute every function in 610 * the kernel. 611 */ 612 functions = 20000; 613 #endif 614 615 pg = stat->start = stat->pages; 616 617 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 618 619 for (i = 1; i < pages; i++) { 620 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 621 if (!pg->next) 622 goto out_free; 623 pg = pg->next; 624 } 625 626 return 0; 627 628 out_free: 629 pg = stat->start; 630 while (pg) { 631 unsigned long tmp = (unsigned long)pg; 632 633 pg = pg->next; 634 free_page(tmp); 635 } 636 637 stat->pages = NULL; 638 stat->start = NULL; 639 640 return -ENOMEM; 641 } 642 643 static int ftrace_profile_init_cpu(int cpu) 644 { 645 struct ftrace_profile_stat *stat; 646 int size; 647 648 stat = &per_cpu(ftrace_profile_stats, cpu); 649 650 if (stat->hash) { 651 /* If the profile is already created, simply reset it */ 652 ftrace_profile_reset(stat); 653 return 0; 654 } 655 656 /* 657 * We are profiling all functions, but usually only a few thousand 658 * functions are hit. We'll make a hash of 1024 items. 659 */ 660 size = FTRACE_PROFILE_HASH_SIZE; 661 662 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 663 664 if (!stat->hash) 665 return -ENOMEM; 666 667 /* Preallocate the function profiling pages */ 668 if (ftrace_profile_pages_init(stat) < 0) { 669 kfree(stat->hash); 670 stat->hash = NULL; 671 return -ENOMEM; 672 } 673 674 return 0; 675 } 676 677 static int ftrace_profile_init(void) 678 { 679 int cpu; 680 int ret = 0; 681 682 for_each_possible_cpu(cpu) { 683 ret = ftrace_profile_init_cpu(cpu); 684 if (ret) 685 break; 686 } 687 688 return ret; 689 } 690 691 /* interrupts must be disabled */ 692 static struct ftrace_profile * 693 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 694 { 695 struct ftrace_profile *rec; 696 struct hlist_head *hhd; 697 unsigned long key; 698 699 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 700 hhd = &stat->hash[key]; 701 702 if (hlist_empty(hhd)) 703 return NULL; 704 705 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 706 if (rec->ip == ip) 707 return rec; 708 } 709 710 return NULL; 711 } 712 713 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 714 struct ftrace_profile *rec) 715 { 716 unsigned long key; 717 718 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 719 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 720 } 721 722 /* 723 * The memory is already allocated, this simply finds a new record to use. 724 */ 725 static struct ftrace_profile * 726 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 727 { 728 struct ftrace_profile *rec = NULL; 729 730 /* prevent recursion (from NMIs) */ 731 if (atomic_inc_return(&stat->disabled) != 1) 732 goto out; 733 734 /* 735 * Try to find the function again since an NMI 736 * could have added it 737 */ 738 rec = ftrace_find_profiled_func(stat, ip); 739 if (rec) 740 goto out; 741 742 if (stat->pages->index == PROFILES_PER_PAGE) { 743 if (!stat->pages->next) 744 goto out; 745 stat->pages = stat->pages->next; 746 } 747 748 rec = &stat->pages->records[stat->pages->index++]; 749 rec->ip = ip; 750 ftrace_add_profile(stat, rec); 751 752 out: 753 atomic_dec(&stat->disabled); 754 755 return rec; 756 } 757 758 static void 759 function_profile_call(unsigned long ip, unsigned long parent_ip, 760 struct ftrace_ops *ops, struct pt_regs *regs) 761 { 762 struct ftrace_profile_stat *stat; 763 struct ftrace_profile *rec; 764 unsigned long flags; 765 766 if (!ftrace_profile_enabled) 767 return; 768 769 local_irq_save(flags); 770 771 stat = this_cpu_ptr(&ftrace_profile_stats); 772 if (!stat->hash || !ftrace_profile_enabled) 773 goto out; 774 775 rec = ftrace_find_profiled_func(stat, ip); 776 if (!rec) { 777 rec = ftrace_profile_alloc(stat, ip); 778 if (!rec) 779 goto out; 780 } 781 782 rec->counter++; 783 out: 784 local_irq_restore(flags); 785 } 786 787 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 788 static bool fgraph_graph_time = true; 789 790 void ftrace_graph_graph_time_control(bool enable) 791 { 792 fgraph_graph_time = enable; 793 } 794 795 static int profile_graph_entry(struct ftrace_graph_ent *trace) 796 { 797 struct ftrace_ret_stack *ret_stack; 798 799 function_profile_call(trace->func, 0, NULL, NULL); 800 801 /* If function graph is shutting down, ret_stack can be NULL */ 802 if (!current->ret_stack) 803 return 0; 804 805 ret_stack = ftrace_graph_get_ret_stack(current, 0); 806 if (ret_stack) 807 ret_stack->subtime = 0; 808 809 return 1; 810 } 811 812 static void profile_graph_return(struct ftrace_graph_ret *trace) 813 { 814 struct ftrace_ret_stack *ret_stack; 815 struct ftrace_profile_stat *stat; 816 unsigned long long calltime; 817 struct ftrace_profile *rec; 818 unsigned long flags; 819 820 local_irq_save(flags); 821 stat = this_cpu_ptr(&ftrace_profile_stats); 822 if (!stat->hash || !ftrace_profile_enabled) 823 goto out; 824 825 /* If the calltime was zero'd ignore it */ 826 if (!trace->calltime) 827 goto out; 828 829 calltime = trace->rettime - trace->calltime; 830 831 if (!fgraph_graph_time) { 832 833 /* Append this call time to the parent time to subtract */ 834 ret_stack = ftrace_graph_get_ret_stack(current, 1); 835 if (ret_stack) 836 ret_stack->subtime += calltime; 837 838 ret_stack = ftrace_graph_get_ret_stack(current, 0); 839 if (ret_stack && ret_stack->subtime < calltime) 840 calltime -= ret_stack->subtime; 841 else 842 calltime = 0; 843 } 844 845 rec = ftrace_find_profiled_func(stat, trace->func); 846 if (rec) { 847 rec->time += calltime; 848 rec->time_squared += calltime * calltime; 849 } 850 851 out: 852 local_irq_restore(flags); 853 } 854 855 static struct fgraph_ops fprofiler_ops = { 856 .entryfunc = &profile_graph_entry, 857 .retfunc = &profile_graph_return, 858 }; 859 860 static int register_ftrace_profiler(void) 861 { 862 return register_ftrace_graph(&fprofiler_ops); 863 } 864 865 static void unregister_ftrace_profiler(void) 866 { 867 unregister_ftrace_graph(&fprofiler_ops); 868 } 869 #else 870 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 871 .func = function_profile_call, 872 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 873 INIT_OPS_HASH(ftrace_profile_ops) 874 }; 875 876 static int register_ftrace_profiler(void) 877 { 878 return register_ftrace_function(&ftrace_profile_ops); 879 } 880 881 static void unregister_ftrace_profiler(void) 882 { 883 unregister_ftrace_function(&ftrace_profile_ops); 884 } 885 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 886 887 static ssize_t 888 ftrace_profile_write(struct file *filp, const char __user *ubuf, 889 size_t cnt, loff_t *ppos) 890 { 891 unsigned long val; 892 int ret; 893 894 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 895 if (ret) 896 return ret; 897 898 val = !!val; 899 900 mutex_lock(&ftrace_profile_lock); 901 if (ftrace_profile_enabled ^ val) { 902 if (val) { 903 ret = ftrace_profile_init(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 909 ret = register_ftrace_profiler(); 910 if (ret < 0) { 911 cnt = ret; 912 goto out; 913 } 914 ftrace_profile_enabled = 1; 915 } else { 916 ftrace_profile_enabled = 0; 917 /* 918 * unregister_ftrace_profiler calls stop_machine 919 * so this acts like an synchronize_rcu. 920 */ 921 unregister_ftrace_profiler(); 922 } 923 } 924 out: 925 mutex_unlock(&ftrace_profile_lock); 926 927 *ppos += cnt; 928 929 return cnt; 930 } 931 932 static ssize_t 933 ftrace_profile_read(struct file *filp, char __user *ubuf, 934 size_t cnt, loff_t *ppos) 935 { 936 char buf[64]; /* big enough to hold a number */ 937 int r; 938 939 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 940 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 941 } 942 943 static const struct file_operations ftrace_profile_fops = { 944 .open = tracing_open_generic, 945 .read = ftrace_profile_read, 946 .write = ftrace_profile_write, 947 .llseek = default_llseek, 948 }; 949 950 /* used to initialize the real stat files */ 951 static struct tracer_stat function_stats __initdata = { 952 .name = "functions", 953 .stat_start = function_stat_start, 954 .stat_next = function_stat_next, 955 .stat_cmp = function_stat_cmp, 956 .stat_headers = function_stat_headers, 957 .stat_show = function_stat_show 958 }; 959 960 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 961 { 962 struct ftrace_profile_stat *stat; 963 struct dentry *entry; 964 char *name; 965 int ret; 966 int cpu; 967 968 for_each_possible_cpu(cpu) { 969 stat = &per_cpu(ftrace_profile_stats, cpu); 970 971 name = kasprintf(GFP_KERNEL, "function%d", cpu); 972 if (!name) { 973 /* 974 * The files created are permanent, if something happens 975 * we still do not free memory. 976 */ 977 WARN(1, 978 "Could not allocate stat file for cpu %d\n", 979 cpu); 980 return; 981 } 982 stat->stat = function_stats; 983 stat->stat.name = name; 984 ret = register_stat_tracer(&stat->stat); 985 if (ret) { 986 WARN(1, 987 "Could not register function stat for cpu %d\n", 988 cpu); 989 kfree(name); 990 return; 991 } 992 } 993 994 entry = tracefs_create_file("function_profile_enabled", 0644, 995 d_tracer, NULL, &ftrace_profile_fops); 996 if (!entry) 997 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 998 } 999 1000 #else /* CONFIG_FUNCTION_PROFILER */ 1001 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1002 { 1003 } 1004 #endif /* CONFIG_FUNCTION_PROFILER */ 1005 1006 #ifdef CONFIG_DYNAMIC_FTRACE 1007 1008 static struct ftrace_ops *removed_ops; 1009 1010 /* 1011 * Set when doing a global update, like enabling all recs or disabling them. 1012 * It is not set when just updating a single ftrace_ops. 1013 */ 1014 static bool update_all_ops; 1015 1016 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1017 # error Dynamic ftrace depends on MCOUNT_RECORD 1018 #endif 1019 1020 struct ftrace_func_probe { 1021 struct ftrace_probe_ops *probe_ops; 1022 struct ftrace_ops ops; 1023 struct trace_array *tr; 1024 struct list_head list; 1025 void *data; 1026 int ref; 1027 }; 1028 1029 /* 1030 * We make these constant because no one should touch them, 1031 * but they are used as the default "empty hash", to avoid allocating 1032 * it all the time. These are in a read only section such that if 1033 * anyone does try to modify it, it will cause an exception. 1034 */ 1035 static const struct hlist_head empty_buckets[1]; 1036 static const struct ftrace_hash empty_hash = { 1037 .buckets = (struct hlist_head *)empty_buckets, 1038 }; 1039 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1040 1041 struct ftrace_ops global_ops = { 1042 .func = ftrace_stub, 1043 .local_hash.notrace_hash = EMPTY_HASH, 1044 .local_hash.filter_hash = EMPTY_HASH, 1045 INIT_OPS_HASH(global_ops) 1046 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1047 FTRACE_OPS_FL_INITIALIZED | 1048 FTRACE_OPS_FL_PID, 1049 }; 1050 1051 /* 1052 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1053 */ 1054 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1055 { 1056 struct ftrace_ops *op = NULL; 1057 1058 /* 1059 * Some of the ops may be dynamically allocated, 1060 * they are freed after a synchronize_rcu(). 1061 */ 1062 preempt_disable_notrace(); 1063 1064 do_for_each_ftrace_op(op, ftrace_ops_list) { 1065 /* 1066 * This is to check for dynamically allocated trampolines. 1067 * Trampolines that are in kernel text will have 1068 * core_kernel_text() return true. 1069 */ 1070 if (op->trampoline && op->trampoline_size) 1071 if (addr >= op->trampoline && 1072 addr < op->trampoline + op->trampoline_size) { 1073 preempt_enable_notrace(); 1074 return op; 1075 } 1076 } while_for_each_ftrace_op(op); 1077 preempt_enable_notrace(); 1078 1079 return NULL; 1080 } 1081 1082 /* 1083 * This is used by __kernel_text_address() to return true if the 1084 * address is on a dynamically allocated trampoline that would 1085 * not return true for either core_kernel_text() or 1086 * is_module_text_address(). 1087 */ 1088 bool is_ftrace_trampoline(unsigned long addr) 1089 { 1090 return ftrace_ops_trampoline(addr) != NULL; 1091 } 1092 1093 struct ftrace_page { 1094 struct ftrace_page *next; 1095 struct dyn_ftrace *records; 1096 int index; 1097 int size; 1098 }; 1099 1100 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1101 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1102 1103 static struct ftrace_page *ftrace_pages_start; 1104 static struct ftrace_page *ftrace_pages; 1105 1106 static __always_inline unsigned long 1107 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1108 { 1109 if (hash->size_bits > 0) 1110 return hash_long(ip, hash->size_bits); 1111 1112 return 0; 1113 } 1114 1115 /* Only use this function if ftrace_hash_empty() has already been tested */ 1116 static __always_inline struct ftrace_func_entry * 1117 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1118 { 1119 unsigned long key; 1120 struct ftrace_func_entry *entry; 1121 struct hlist_head *hhd; 1122 1123 key = ftrace_hash_key(hash, ip); 1124 hhd = &hash->buckets[key]; 1125 1126 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1127 if (entry->ip == ip) 1128 return entry; 1129 } 1130 return NULL; 1131 } 1132 1133 /** 1134 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1135 * @hash: The hash to look at 1136 * @ip: The instruction pointer to test 1137 * 1138 * Search a given @hash to see if a given instruction pointer (@ip) 1139 * exists in it. 1140 * 1141 * Returns the entry that holds the @ip if found. NULL otherwise. 1142 */ 1143 struct ftrace_func_entry * 1144 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1145 { 1146 if (ftrace_hash_empty(hash)) 1147 return NULL; 1148 1149 return __ftrace_lookup_ip(hash, ip); 1150 } 1151 1152 static void __add_hash_entry(struct ftrace_hash *hash, 1153 struct ftrace_func_entry *entry) 1154 { 1155 struct hlist_head *hhd; 1156 unsigned long key; 1157 1158 key = ftrace_hash_key(hash, entry->ip); 1159 hhd = &hash->buckets[key]; 1160 hlist_add_head(&entry->hlist, hhd); 1161 hash->count++; 1162 } 1163 1164 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1165 { 1166 struct ftrace_func_entry *entry; 1167 1168 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1169 if (!entry) 1170 return -ENOMEM; 1171 1172 entry->ip = ip; 1173 __add_hash_entry(hash, entry); 1174 1175 return 0; 1176 } 1177 1178 static void 1179 free_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del(&entry->hlist); 1183 kfree(entry); 1184 hash->count--; 1185 } 1186 1187 static void 1188 remove_hash_entry(struct ftrace_hash *hash, 1189 struct ftrace_func_entry *entry) 1190 { 1191 hlist_del_rcu(&entry->hlist); 1192 hash->count--; 1193 } 1194 1195 static void ftrace_hash_clear(struct ftrace_hash *hash) 1196 { 1197 struct hlist_head *hhd; 1198 struct hlist_node *tn; 1199 struct ftrace_func_entry *entry; 1200 int size = 1 << hash->size_bits; 1201 int i; 1202 1203 if (!hash->count) 1204 return; 1205 1206 for (i = 0; i < size; i++) { 1207 hhd = &hash->buckets[i]; 1208 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1209 free_hash_entry(hash, entry); 1210 } 1211 FTRACE_WARN_ON(hash->count); 1212 } 1213 1214 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1215 { 1216 list_del(&ftrace_mod->list); 1217 kfree(ftrace_mod->module); 1218 kfree(ftrace_mod->func); 1219 kfree(ftrace_mod); 1220 } 1221 1222 static void clear_ftrace_mod_list(struct list_head *head) 1223 { 1224 struct ftrace_mod_load *p, *n; 1225 1226 /* stack tracer isn't supported yet */ 1227 if (!head) 1228 return; 1229 1230 mutex_lock(&ftrace_lock); 1231 list_for_each_entry_safe(p, n, head, list) 1232 free_ftrace_mod(p); 1233 mutex_unlock(&ftrace_lock); 1234 } 1235 1236 static void free_ftrace_hash(struct ftrace_hash *hash) 1237 { 1238 if (!hash || hash == EMPTY_HASH) 1239 return; 1240 ftrace_hash_clear(hash); 1241 kfree(hash->buckets); 1242 kfree(hash); 1243 } 1244 1245 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1246 { 1247 struct ftrace_hash *hash; 1248 1249 hash = container_of(rcu, struct ftrace_hash, rcu); 1250 free_ftrace_hash(hash); 1251 } 1252 1253 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1254 { 1255 if (!hash || hash == EMPTY_HASH) 1256 return; 1257 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1258 } 1259 1260 void ftrace_free_filter(struct ftrace_ops *ops) 1261 { 1262 ftrace_ops_init(ops); 1263 free_ftrace_hash(ops->func_hash->filter_hash); 1264 free_ftrace_hash(ops->func_hash->notrace_hash); 1265 } 1266 1267 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1268 { 1269 struct ftrace_hash *hash; 1270 int size; 1271 1272 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1273 if (!hash) 1274 return NULL; 1275 1276 size = 1 << size_bits; 1277 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1278 1279 if (!hash->buckets) { 1280 kfree(hash); 1281 return NULL; 1282 } 1283 1284 hash->size_bits = size_bits; 1285 1286 return hash; 1287 } 1288 1289 1290 static int ftrace_add_mod(struct trace_array *tr, 1291 const char *func, const char *module, 1292 int enable) 1293 { 1294 struct ftrace_mod_load *ftrace_mod; 1295 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1296 1297 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1298 if (!ftrace_mod) 1299 return -ENOMEM; 1300 1301 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1302 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1303 ftrace_mod->enable = enable; 1304 1305 if (!ftrace_mod->func || !ftrace_mod->module) 1306 goto out_free; 1307 1308 list_add(&ftrace_mod->list, mod_head); 1309 1310 return 0; 1311 1312 out_free: 1313 free_ftrace_mod(ftrace_mod); 1314 1315 return -ENOMEM; 1316 } 1317 1318 static struct ftrace_hash * 1319 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1320 { 1321 struct ftrace_func_entry *entry; 1322 struct ftrace_hash *new_hash; 1323 int size; 1324 int ret; 1325 int i; 1326 1327 new_hash = alloc_ftrace_hash(size_bits); 1328 if (!new_hash) 1329 return NULL; 1330 1331 if (hash) 1332 new_hash->flags = hash->flags; 1333 1334 /* Empty hash? */ 1335 if (ftrace_hash_empty(hash)) 1336 return new_hash; 1337 1338 size = 1 << hash->size_bits; 1339 for (i = 0; i < size; i++) { 1340 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1341 ret = add_hash_entry(new_hash, entry->ip); 1342 if (ret < 0) 1343 goto free_hash; 1344 } 1345 } 1346 1347 FTRACE_WARN_ON(new_hash->count != hash->count); 1348 1349 return new_hash; 1350 1351 free_hash: 1352 free_ftrace_hash(new_hash); 1353 return NULL; 1354 } 1355 1356 static void 1357 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1358 static void 1359 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1360 1361 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1362 struct ftrace_hash *new_hash); 1363 1364 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1365 { 1366 struct ftrace_func_entry *entry; 1367 struct ftrace_hash *new_hash; 1368 struct hlist_head *hhd; 1369 struct hlist_node *tn; 1370 int bits = 0; 1371 int i; 1372 1373 /* 1374 * Make the hash size about 1/2 the # found 1375 */ 1376 for (size /= 2; size; size >>= 1) 1377 bits++; 1378 1379 /* Don't allocate too much */ 1380 if (bits > FTRACE_HASH_MAX_BITS) 1381 bits = FTRACE_HASH_MAX_BITS; 1382 1383 new_hash = alloc_ftrace_hash(bits); 1384 if (!new_hash) 1385 return NULL; 1386 1387 new_hash->flags = src->flags; 1388 1389 size = 1 << src->size_bits; 1390 for (i = 0; i < size; i++) { 1391 hhd = &src->buckets[i]; 1392 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1393 remove_hash_entry(src, entry); 1394 __add_hash_entry(new_hash, entry); 1395 } 1396 } 1397 return new_hash; 1398 } 1399 1400 static struct ftrace_hash * 1401 __ftrace_hash_move(struct ftrace_hash *src) 1402 { 1403 int size = src->count; 1404 1405 /* 1406 * If the new source is empty, just return the empty_hash. 1407 */ 1408 if (ftrace_hash_empty(src)) 1409 return EMPTY_HASH; 1410 1411 return dup_hash(src, size); 1412 } 1413 1414 static int 1415 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1416 struct ftrace_hash **dst, struct ftrace_hash *src) 1417 { 1418 struct ftrace_hash *new_hash; 1419 int ret; 1420 1421 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1422 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1423 return -EINVAL; 1424 1425 new_hash = __ftrace_hash_move(src); 1426 if (!new_hash) 1427 return -ENOMEM; 1428 1429 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1430 if (enable) { 1431 /* IPMODIFY should be updated only when filter_hash updating */ 1432 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1433 if (ret < 0) { 1434 free_ftrace_hash(new_hash); 1435 return ret; 1436 } 1437 } 1438 1439 /* 1440 * Remove the current set, update the hash and add 1441 * them back. 1442 */ 1443 ftrace_hash_rec_disable_modify(ops, enable); 1444 1445 rcu_assign_pointer(*dst, new_hash); 1446 1447 ftrace_hash_rec_enable_modify(ops, enable); 1448 1449 return 0; 1450 } 1451 1452 static bool hash_contains_ip(unsigned long ip, 1453 struct ftrace_ops_hash *hash) 1454 { 1455 /* 1456 * The function record is a match if it exists in the filter 1457 * hash and not in the notrace hash. Note, an emty hash is 1458 * considered a match for the filter hash, but an empty 1459 * notrace hash is considered not in the notrace hash. 1460 */ 1461 return (ftrace_hash_empty(hash->filter_hash) || 1462 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1463 (ftrace_hash_empty(hash->notrace_hash) || 1464 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1465 } 1466 1467 /* 1468 * Test the hashes for this ops to see if we want to call 1469 * the ops->func or not. 1470 * 1471 * It's a match if the ip is in the ops->filter_hash or 1472 * the filter_hash does not exist or is empty, 1473 * AND 1474 * the ip is not in the ops->notrace_hash. 1475 * 1476 * This needs to be called with preemption disabled as 1477 * the hashes are freed with call_rcu(). 1478 */ 1479 int 1480 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1481 { 1482 struct ftrace_ops_hash hash; 1483 int ret; 1484 1485 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1486 /* 1487 * There's a small race when adding ops that the ftrace handler 1488 * that wants regs, may be called without them. We can not 1489 * allow that handler to be called if regs is NULL. 1490 */ 1491 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1492 return 0; 1493 #endif 1494 1495 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1496 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1497 1498 if (hash_contains_ip(ip, &hash)) 1499 ret = 1; 1500 else 1501 ret = 0; 1502 1503 return ret; 1504 } 1505 1506 /* 1507 * This is a double for. Do not use 'break' to break out of the loop, 1508 * you must use a goto. 1509 */ 1510 #define do_for_each_ftrace_rec(pg, rec) \ 1511 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1512 int _____i; \ 1513 for (_____i = 0; _____i < pg->index; _____i++) { \ 1514 rec = &pg->records[_____i]; 1515 1516 #define while_for_each_ftrace_rec() \ 1517 } \ 1518 } 1519 1520 1521 static int ftrace_cmp_recs(const void *a, const void *b) 1522 { 1523 const struct dyn_ftrace *key = a; 1524 const struct dyn_ftrace *rec = b; 1525 1526 if (key->flags < rec->ip) 1527 return -1; 1528 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1529 return 1; 1530 return 0; 1531 } 1532 1533 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1534 { 1535 struct ftrace_page *pg; 1536 struct dyn_ftrace *rec = NULL; 1537 struct dyn_ftrace key; 1538 1539 key.ip = start; 1540 key.flags = end; /* overload flags, as it is unsigned long */ 1541 1542 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1543 if (end < pg->records[0].ip || 1544 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1545 continue; 1546 rec = bsearch(&key, pg->records, pg->index, 1547 sizeof(struct dyn_ftrace), 1548 ftrace_cmp_recs); 1549 if (rec) 1550 break; 1551 } 1552 return rec; 1553 } 1554 1555 /** 1556 * ftrace_location_range - return the first address of a traced location 1557 * if it touches the given ip range 1558 * @start: start of range to search. 1559 * @end: end of range to search (inclusive). @end points to the last byte 1560 * to check. 1561 * 1562 * Returns rec->ip if the related ftrace location is a least partly within 1563 * the given address range. That is, the first address of the instruction 1564 * that is either a NOP or call to the function tracer. It checks the ftrace 1565 * internal tables to determine if the address belongs or not. 1566 */ 1567 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1568 { 1569 struct dyn_ftrace *rec; 1570 1571 rec = lookup_rec(start, end); 1572 if (rec) 1573 return rec->ip; 1574 1575 return 0; 1576 } 1577 1578 /** 1579 * ftrace_location - return true if the ip giving is a traced location 1580 * @ip: the instruction pointer to check 1581 * 1582 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1583 * That is, the instruction that is either a NOP or call to 1584 * the function tracer. It checks the ftrace internal tables to 1585 * determine if the address belongs or not. 1586 */ 1587 unsigned long ftrace_location(unsigned long ip) 1588 { 1589 return ftrace_location_range(ip, ip); 1590 } 1591 1592 /** 1593 * ftrace_text_reserved - return true if range contains an ftrace location 1594 * @start: start of range to search 1595 * @end: end of range to search (inclusive). @end points to the last byte to check. 1596 * 1597 * Returns 1 if @start and @end contains a ftrace location. 1598 * That is, the instruction that is either a NOP or call to 1599 * the function tracer. It checks the ftrace internal tables to 1600 * determine if the address belongs or not. 1601 */ 1602 int ftrace_text_reserved(const void *start, const void *end) 1603 { 1604 unsigned long ret; 1605 1606 ret = ftrace_location_range((unsigned long)start, 1607 (unsigned long)end); 1608 1609 return (int)!!ret; 1610 } 1611 1612 /* Test if ops registered to this rec needs regs */ 1613 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1614 { 1615 struct ftrace_ops *ops; 1616 bool keep_regs = false; 1617 1618 for (ops = ftrace_ops_list; 1619 ops != &ftrace_list_end; ops = ops->next) { 1620 /* pass rec in as regs to have non-NULL val */ 1621 if (ftrace_ops_test(ops, rec->ip, rec)) { 1622 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1623 keep_regs = true; 1624 break; 1625 } 1626 } 1627 } 1628 1629 return keep_regs; 1630 } 1631 1632 static struct ftrace_ops * 1633 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1634 static struct ftrace_ops * 1635 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1636 1637 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1638 int filter_hash, 1639 bool inc) 1640 { 1641 struct ftrace_hash *hash; 1642 struct ftrace_hash *other_hash; 1643 struct ftrace_page *pg; 1644 struct dyn_ftrace *rec; 1645 bool update = false; 1646 int count = 0; 1647 int all = false; 1648 1649 /* Only update if the ops has been registered */ 1650 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1651 return false; 1652 1653 /* 1654 * In the filter_hash case: 1655 * If the count is zero, we update all records. 1656 * Otherwise we just update the items in the hash. 1657 * 1658 * In the notrace_hash case: 1659 * We enable the update in the hash. 1660 * As disabling notrace means enabling the tracing, 1661 * and enabling notrace means disabling, the inc variable 1662 * gets inversed. 1663 */ 1664 if (filter_hash) { 1665 hash = ops->func_hash->filter_hash; 1666 other_hash = ops->func_hash->notrace_hash; 1667 if (ftrace_hash_empty(hash)) 1668 all = true; 1669 } else { 1670 inc = !inc; 1671 hash = ops->func_hash->notrace_hash; 1672 other_hash = ops->func_hash->filter_hash; 1673 /* 1674 * If the notrace hash has no items, 1675 * then there's nothing to do. 1676 */ 1677 if (ftrace_hash_empty(hash)) 1678 return false; 1679 } 1680 1681 do_for_each_ftrace_rec(pg, rec) { 1682 int in_other_hash = 0; 1683 int in_hash = 0; 1684 int match = 0; 1685 1686 if (rec->flags & FTRACE_FL_DISABLED) 1687 continue; 1688 1689 if (all) { 1690 /* 1691 * Only the filter_hash affects all records. 1692 * Update if the record is not in the notrace hash. 1693 */ 1694 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1695 match = 1; 1696 } else { 1697 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1698 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1699 1700 /* 1701 * If filter_hash is set, we want to match all functions 1702 * that are in the hash but not in the other hash. 1703 * 1704 * If filter_hash is not set, then we are decrementing. 1705 * That means we match anything that is in the hash 1706 * and also in the other_hash. That is, we need to turn 1707 * off functions in the other hash because they are disabled 1708 * by this hash. 1709 */ 1710 if (filter_hash && in_hash && !in_other_hash) 1711 match = 1; 1712 else if (!filter_hash && in_hash && 1713 (in_other_hash || ftrace_hash_empty(other_hash))) 1714 match = 1; 1715 } 1716 if (!match) 1717 continue; 1718 1719 if (inc) { 1720 rec->flags++; 1721 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1722 return false; 1723 1724 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1725 rec->flags |= FTRACE_FL_DIRECT; 1726 1727 /* 1728 * If there's only a single callback registered to a 1729 * function, and the ops has a trampoline registered 1730 * for it, then we can call it directly. 1731 */ 1732 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1733 rec->flags |= FTRACE_FL_TRAMP; 1734 else 1735 /* 1736 * If we are adding another function callback 1737 * to this function, and the previous had a 1738 * custom trampoline in use, then we need to go 1739 * back to the default trampoline. 1740 */ 1741 rec->flags &= ~FTRACE_FL_TRAMP; 1742 1743 /* 1744 * If any ops wants regs saved for this function 1745 * then all ops will get saved regs. 1746 */ 1747 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1748 rec->flags |= FTRACE_FL_REGS; 1749 } else { 1750 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1751 return false; 1752 rec->flags--; 1753 1754 /* 1755 * Only the internal direct_ops should have the 1756 * DIRECT flag set. Thus, if it is removing a 1757 * function, then that function should no longer 1758 * be direct. 1759 */ 1760 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1761 rec->flags &= ~FTRACE_FL_DIRECT; 1762 1763 /* 1764 * If the rec had REGS enabled and the ops that is 1765 * being removed had REGS set, then see if there is 1766 * still any ops for this record that wants regs. 1767 * If not, we can stop recording them. 1768 */ 1769 if (ftrace_rec_count(rec) > 0 && 1770 rec->flags & FTRACE_FL_REGS && 1771 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1772 if (!test_rec_ops_needs_regs(rec)) 1773 rec->flags &= ~FTRACE_FL_REGS; 1774 } 1775 1776 /* 1777 * The TRAMP needs to be set only if rec count 1778 * is decremented to one, and the ops that is 1779 * left has a trampoline. As TRAMP can only be 1780 * enabled if there is only a single ops attached 1781 * to it. 1782 */ 1783 if (ftrace_rec_count(rec) == 1 && 1784 ftrace_find_tramp_ops_any(rec)) 1785 rec->flags |= FTRACE_FL_TRAMP; 1786 else 1787 rec->flags &= ~FTRACE_FL_TRAMP; 1788 1789 /* 1790 * flags will be cleared in ftrace_check_record() 1791 * if rec count is zero. 1792 */ 1793 } 1794 count++; 1795 1796 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1797 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1798 1799 /* Shortcut, if we handled all records, we are done. */ 1800 if (!all && count == hash->count) 1801 return update; 1802 } while_for_each_ftrace_rec(); 1803 1804 return update; 1805 } 1806 1807 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1808 int filter_hash) 1809 { 1810 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1811 } 1812 1813 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1814 int filter_hash) 1815 { 1816 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1817 } 1818 1819 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1820 int filter_hash, int inc) 1821 { 1822 struct ftrace_ops *op; 1823 1824 __ftrace_hash_rec_update(ops, filter_hash, inc); 1825 1826 if (ops->func_hash != &global_ops.local_hash) 1827 return; 1828 1829 /* 1830 * If the ops shares the global_ops hash, then we need to update 1831 * all ops that are enabled and use this hash. 1832 */ 1833 do_for_each_ftrace_op(op, ftrace_ops_list) { 1834 /* Already done */ 1835 if (op == ops) 1836 continue; 1837 if (op->func_hash == &global_ops.local_hash) 1838 __ftrace_hash_rec_update(op, filter_hash, inc); 1839 } while_for_each_ftrace_op(op); 1840 } 1841 1842 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1843 int filter_hash) 1844 { 1845 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1846 } 1847 1848 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1849 int filter_hash) 1850 { 1851 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1852 } 1853 1854 /* 1855 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1856 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1857 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1858 * Note that old_hash and new_hash has below meanings 1859 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1860 * - If the hash is EMPTY_HASH, it hits nothing 1861 * - Anything else hits the recs which match the hash entries. 1862 */ 1863 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1864 struct ftrace_hash *old_hash, 1865 struct ftrace_hash *new_hash) 1866 { 1867 struct ftrace_page *pg; 1868 struct dyn_ftrace *rec, *end = NULL; 1869 int in_old, in_new; 1870 1871 /* Only update if the ops has been registered */ 1872 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1873 return 0; 1874 1875 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1876 return 0; 1877 1878 /* 1879 * Since the IPMODIFY is a very address sensitive action, we do not 1880 * allow ftrace_ops to set all functions to new hash. 1881 */ 1882 if (!new_hash || !old_hash) 1883 return -EINVAL; 1884 1885 /* Update rec->flags */ 1886 do_for_each_ftrace_rec(pg, rec) { 1887 1888 if (rec->flags & FTRACE_FL_DISABLED) 1889 continue; 1890 1891 /* We need to update only differences of filter_hash */ 1892 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1893 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1894 if (in_old == in_new) 1895 continue; 1896 1897 if (in_new) { 1898 /* New entries must ensure no others are using it */ 1899 if (rec->flags & FTRACE_FL_IPMODIFY) 1900 goto rollback; 1901 rec->flags |= FTRACE_FL_IPMODIFY; 1902 } else /* Removed entry */ 1903 rec->flags &= ~FTRACE_FL_IPMODIFY; 1904 } while_for_each_ftrace_rec(); 1905 1906 return 0; 1907 1908 rollback: 1909 end = rec; 1910 1911 /* Roll back what we did above */ 1912 do_for_each_ftrace_rec(pg, rec) { 1913 1914 if (rec->flags & FTRACE_FL_DISABLED) 1915 continue; 1916 1917 if (rec == end) 1918 goto err_out; 1919 1920 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1921 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1922 if (in_old == in_new) 1923 continue; 1924 1925 if (in_new) 1926 rec->flags &= ~FTRACE_FL_IPMODIFY; 1927 else 1928 rec->flags |= FTRACE_FL_IPMODIFY; 1929 } while_for_each_ftrace_rec(); 1930 1931 err_out: 1932 return -EBUSY; 1933 } 1934 1935 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1936 { 1937 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1938 1939 if (ftrace_hash_empty(hash)) 1940 hash = NULL; 1941 1942 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1943 } 1944 1945 /* Disabling always succeeds */ 1946 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1947 { 1948 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1949 1950 if (ftrace_hash_empty(hash)) 1951 hash = NULL; 1952 1953 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1954 } 1955 1956 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1957 struct ftrace_hash *new_hash) 1958 { 1959 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1960 1961 if (ftrace_hash_empty(old_hash)) 1962 old_hash = NULL; 1963 1964 if (ftrace_hash_empty(new_hash)) 1965 new_hash = NULL; 1966 1967 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1968 } 1969 1970 static void print_ip_ins(const char *fmt, const unsigned char *p) 1971 { 1972 int i; 1973 1974 printk(KERN_CONT "%s", fmt); 1975 1976 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1977 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1978 } 1979 1980 enum ftrace_bug_type ftrace_bug_type; 1981 const void *ftrace_expected; 1982 1983 static void print_bug_type(void) 1984 { 1985 switch (ftrace_bug_type) { 1986 case FTRACE_BUG_UNKNOWN: 1987 break; 1988 case FTRACE_BUG_INIT: 1989 pr_info("Initializing ftrace call sites\n"); 1990 break; 1991 case FTRACE_BUG_NOP: 1992 pr_info("Setting ftrace call site to NOP\n"); 1993 break; 1994 case FTRACE_BUG_CALL: 1995 pr_info("Setting ftrace call site to call ftrace function\n"); 1996 break; 1997 case FTRACE_BUG_UPDATE: 1998 pr_info("Updating ftrace call site to call a different ftrace function\n"); 1999 break; 2000 } 2001 } 2002 2003 /** 2004 * ftrace_bug - report and shutdown function tracer 2005 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2006 * @rec: The record that failed 2007 * 2008 * The arch code that enables or disables the function tracing 2009 * can call ftrace_bug() when it has detected a problem in 2010 * modifying the code. @failed should be one of either: 2011 * EFAULT - if the problem happens on reading the @ip address 2012 * EINVAL - if what is read at @ip is not what was expected 2013 * EPERM - if the problem happens on writing to the @ip address 2014 */ 2015 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2016 { 2017 unsigned long ip = rec ? rec->ip : 0; 2018 2019 pr_info("------------[ ftrace bug ]------------\n"); 2020 2021 switch (failed) { 2022 case -EFAULT: 2023 pr_info("ftrace faulted on modifying "); 2024 print_ip_sym(KERN_INFO, ip); 2025 break; 2026 case -EINVAL: 2027 pr_info("ftrace failed to modify "); 2028 print_ip_sym(KERN_INFO, ip); 2029 print_ip_ins(" actual: ", (unsigned char *)ip); 2030 pr_cont("\n"); 2031 if (ftrace_expected) { 2032 print_ip_ins(" expected: ", ftrace_expected); 2033 pr_cont("\n"); 2034 } 2035 break; 2036 case -EPERM: 2037 pr_info("ftrace faulted on writing "); 2038 print_ip_sym(KERN_INFO, ip); 2039 break; 2040 default: 2041 pr_info("ftrace faulted on unknown error "); 2042 print_ip_sym(KERN_INFO, ip); 2043 } 2044 print_bug_type(); 2045 if (rec) { 2046 struct ftrace_ops *ops = NULL; 2047 2048 pr_info("ftrace record flags: %lx\n", rec->flags); 2049 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2050 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2051 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2052 ops = ftrace_find_tramp_ops_any(rec); 2053 if (ops) { 2054 do { 2055 pr_cont("\ttramp: %pS (%pS)", 2056 (void *)ops->trampoline, 2057 (void *)ops->func); 2058 ops = ftrace_find_tramp_ops_next(rec, ops); 2059 } while (ops); 2060 } else 2061 pr_cont("\ttramp: ERROR!"); 2062 2063 } 2064 ip = ftrace_get_addr_curr(rec); 2065 pr_cont("\n expected tramp: %lx\n", ip); 2066 } 2067 2068 FTRACE_WARN_ON_ONCE(1); 2069 } 2070 2071 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2072 { 2073 unsigned long flag = 0UL; 2074 2075 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2076 2077 if (rec->flags & FTRACE_FL_DISABLED) 2078 return FTRACE_UPDATE_IGNORE; 2079 2080 /* 2081 * If we are updating calls: 2082 * 2083 * If the record has a ref count, then we need to enable it 2084 * because someone is using it. 2085 * 2086 * Otherwise we make sure its disabled. 2087 * 2088 * If we are disabling calls, then disable all records that 2089 * are enabled. 2090 */ 2091 if (enable && ftrace_rec_count(rec)) 2092 flag = FTRACE_FL_ENABLED; 2093 2094 /* 2095 * If enabling and the REGS flag does not match the REGS_EN, or 2096 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2097 * this record. Set flags to fail the compare against ENABLED. 2098 * Same for direct calls. 2099 */ 2100 if (flag) { 2101 if (!(rec->flags & FTRACE_FL_REGS) != 2102 !(rec->flags & FTRACE_FL_REGS_EN)) 2103 flag |= FTRACE_FL_REGS; 2104 2105 if (!(rec->flags & FTRACE_FL_TRAMP) != 2106 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2107 flag |= FTRACE_FL_TRAMP; 2108 2109 /* 2110 * Direct calls are special, as count matters. 2111 * We must test the record for direct, if the 2112 * DIRECT and DIRECT_EN do not match, but only 2113 * if the count is 1. That's because, if the 2114 * count is something other than one, we do not 2115 * want the direct enabled (it will be done via the 2116 * direct helper). But if DIRECT_EN is set, and 2117 * the count is not one, we need to clear it. 2118 */ 2119 if (ftrace_rec_count(rec) == 1) { 2120 if (!(rec->flags & FTRACE_FL_DIRECT) != 2121 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2122 flag |= FTRACE_FL_DIRECT; 2123 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2124 flag |= FTRACE_FL_DIRECT; 2125 } 2126 } 2127 2128 /* If the state of this record hasn't changed, then do nothing */ 2129 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2130 return FTRACE_UPDATE_IGNORE; 2131 2132 if (flag) { 2133 /* Save off if rec is being enabled (for return value) */ 2134 flag ^= rec->flags & FTRACE_FL_ENABLED; 2135 2136 if (update) { 2137 rec->flags |= FTRACE_FL_ENABLED; 2138 if (flag & FTRACE_FL_REGS) { 2139 if (rec->flags & FTRACE_FL_REGS) 2140 rec->flags |= FTRACE_FL_REGS_EN; 2141 else 2142 rec->flags &= ~FTRACE_FL_REGS_EN; 2143 } 2144 if (flag & FTRACE_FL_TRAMP) { 2145 if (rec->flags & FTRACE_FL_TRAMP) 2146 rec->flags |= FTRACE_FL_TRAMP_EN; 2147 else 2148 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2149 } 2150 if (flag & FTRACE_FL_DIRECT) { 2151 /* 2152 * If there's only one user (direct_ops helper) 2153 * then we can call the direct function 2154 * directly (no ftrace trampoline). 2155 */ 2156 if (ftrace_rec_count(rec) == 1) { 2157 if (rec->flags & FTRACE_FL_DIRECT) 2158 rec->flags |= FTRACE_FL_DIRECT_EN; 2159 else 2160 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2161 } else { 2162 /* 2163 * Can only call directly if there's 2164 * only one callback to the function. 2165 */ 2166 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2167 } 2168 } 2169 } 2170 2171 /* 2172 * If this record is being updated from a nop, then 2173 * return UPDATE_MAKE_CALL. 2174 * Otherwise, 2175 * return UPDATE_MODIFY_CALL to tell the caller to convert 2176 * from the save regs, to a non-save regs function or 2177 * vice versa, or from a trampoline call. 2178 */ 2179 if (flag & FTRACE_FL_ENABLED) { 2180 ftrace_bug_type = FTRACE_BUG_CALL; 2181 return FTRACE_UPDATE_MAKE_CALL; 2182 } 2183 2184 ftrace_bug_type = FTRACE_BUG_UPDATE; 2185 return FTRACE_UPDATE_MODIFY_CALL; 2186 } 2187 2188 if (update) { 2189 /* If there's no more users, clear all flags */ 2190 if (!ftrace_rec_count(rec)) 2191 rec->flags = 0; 2192 else 2193 /* 2194 * Just disable the record, but keep the ops TRAMP 2195 * and REGS states. The _EN flags must be disabled though. 2196 */ 2197 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2198 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2199 } 2200 2201 ftrace_bug_type = FTRACE_BUG_NOP; 2202 return FTRACE_UPDATE_MAKE_NOP; 2203 } 2204 2205 /** 2206 * ftrace_update_record, set a record that now is tracing or not 2207 * @rec: the record to update 2208 * @enable: set to true if the record is tracing, false to force disable 2209 * 2210 * The records that represent all functions that can be traced need 2211 * to be updated when tracing has been enabled. 2212 */ 2213 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2214 { 2215 return ftrace_check_record(rec, enable, true); 2216 } 2217 2218 /** 2219 * ftrace_test_record, check if the record has been enabled or not 2220 * @rec: the record to test 2221 * @enable: set to true to check if enabled, false if it is disabled 2222 * 2223 * The arch code may need to test if a record is already set to 2224 * tracing to determine how to modify the function code that it 2225 * represents. 2226 */ 2227 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2228 { 2229 return ftrace_check_record(rec, enable, false); 2230 } 2231 2232 static struct ftrace_ops * 2233 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2234 { 2235 struct ftrace_ops *op; 2236 unsigned long ip = rec->ip; 2237 2238 do_for_each_ftrace_op(op, ftrace_ops_list) { 2239 2240 if (!op->trampoline) 2241 continue; 2242 2243 if (hash_contains_ip(ip, op->func_hash)) 2244 return op; 2245 } while_for_each_ftrace_op(op); 2246 2247 return NULL; 2248 } 2249 2250 static struct ftrace_ops * 2251 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2252 struct ftrace_ops *op) 2253 { 2254 unsigned long ip = rec->ip; 2255 2256 while_for_each_ftrace_op(op) { 2257 2258 if (!op->trampoline) 2259 continue; 2260 2261 if (hash_contains_ip(ip, op->func_hash)) 2262 return op; 2263 } 2264 2265 return NULL; 2266 } 2267 2268 static struct ftrace_ops * 2269 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2270 { 2271 struct ftrace_ops *op; 2272 unsigned long ip = rec->ip; 2273 2274 /* 2275 * Need to check removed ops first. 2276 * If they are being removed, and this rec has a tramp, 2277 * and this rec is in the ops list, then it would be the 2278 * one with the tramp. 2279 */ 2280 if (removed_ops) { 2281 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2282 return removed_ops; 2283 } 2284 2285 /* 2286 * Need to find the current trampoline for a rec. 2287 * Now, a trampoline is only attached to a rec if there 2288 * was a single 'ops' attached to it. But this can be called 2289 * when we are adding another op to the rec or removing the 2290 * current one. Thus, if the op is being added, we can 2291 * ignore it because it hasn't attached itself to the rec 2292 * yet. 2293 * 2294 * If an ops is being modified (hooking to different functions) 2295 * then we don't care about the new functions that are being 2296 * added, just the old ones (that are probably being removed). 2297 * 2298 * If we are adding an ops to a function that already is using 2299 * a trampoline, it needs to be removed (trampolines are only 2300 * for single ops connected), then an ops that is not being 2301 * modified also needs to be checked. 2302 */ 2303 do_for_each_ftrace_op(op, ftrace_ops_list) { 2304 2305 if (!op->trampoline) 2306 continue; 2307 2308 /* 2309 * If the ops is being added, it hasn't gotten to 2310 * the point to be removed from this tree yet. 2311 */ 2312 if (op->flags & FTRACE_OPS_FL_ADDING) 2313 continue; 2314 2315 2316 /* 2317 * If the ops is being modified and is in the old 2318 * hash, then it is probably being removed from this 2319 * function. 2320 */ 2321 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2322 hash_contains_ip(ip, &op->old_hash)) 2323 return op; 2324 /* 2325 * If the ops is not being added or modified, and it's 2326 * in its normal filter hash, then this must be the one 2327 * we want! 2328 */ 2329 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2330 hash_contains_ip(ip, op->func_hash)) 2331 return op; 2332 2333 } while_for_each_ftrace_op(op); 2334 2335 return NULL; 2336 } 2337 2338 static struct ftrace_ops * 2339 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2340 { 2341 struct ftrace_ops *op; 2342 unsigned long ip = rec->ip; 2343 2344 do_for_each_ftrace_op(op, ftrace_ops_list) { 2345 /* pass rec in as regs to have non-NULL val */ 2346 if (hash_contains_ip(ip, op->func_hash)) 2347 return op; 2348 } while_for_each_ftrace_op(op); 2349 2350 return NULL; 2351 } 2352 2353 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2354 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2355 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2356 static DEFINE_MUTEX(direct_mutex); 2357 int ftrace_direct_func_count; 2358 2359 /* 2360 * Search the direct_functions hash to see if the given instruction pointer 2361 * has a direct caller attached to it. 2362 */ 2363 unsigned long ftrace_find_rec_direct(unsigned long ip) 2364 { 2365 struct ftrace_func_entry *entry; 2366 2367 entry = __ftrace_lookup_ip(direct_functions, ip); 2368 if (!entry) 2369 return 0; 2370 2371 return entry->direct; 2372 } 2373 2374 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2375 struct ftrace_ops *ops, struct pt_regs *regs) 2376 { 2377 unsigned long addr; 2378 2379 addr = ftrace_find_rec_direct(ip); 2380 if (!addr) 2381 return; 2382 2383 arch_ftrace_set_direct_caller(regs, addr); 2384 } 2385 2386 struct ftrace_ops direct_ops = { 2387 .func = call_direct_funcs, 2388 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2389 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2390 | FTRACE_OPS_FL_PERMANENT, 2391 }; 2392 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2393 2394 /** 2395 * ftrace_get_addr_new - Get the call address to set to 2396 * @rec: The ftrace record descriptor 2397 * 2398 * If the record has the FTRACE_FL_REGS set, that means that it 2399 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2400 * is not not set, then it wants to convert to the normal callback. 2401 * 2402 * Returns the address of the trampoline to set to 2403 */ 2404 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2405 { 2406 struct ftrace_ops *ops; 2407 unsigned long addr; 2408 2409 if ((rec->flags & FTRACE_FL_DIRECT) && 2410 (ftrace_rec_count(rec) == 1)) { 2411 addr = ftrace_find_rec_direct(rec->ip); 2412 if (addr) 2413 return addr; 2414 WARN_ON_ONCE(1); 2415 } 2416 2417 /* Trampolines take precedence over regs */ 2418 if (rec->flags & FTRACE_FL_TRAMP) { 2419 ops = ftrace_find_tramp_ops_new(rec); 2420 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2421 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2422 (void *)rec->ip, (void *)rec->ip, rec->flags); 2423 /* Ftrace is shutting down, return anything */ 2424 return (unsigned long)FTRACE_ADDR; 2425 } 2426 return ops->trampoline; 2427 } 2428 2429 if (rec->flags & FTRACE_FL_REGS) 2430 return (unsigned long)FTRACE_REGS_ADDR; 2431 else 2432 return (unsigned long)FTRACE_ADDR; 2433 } 2434 2435 /** 2436 * ftrace_get_addr_curr - Get the call address that is already there 2437 * @rec: The ftrace record descriptor 2438 * 2439 * The FTRACE_FL_REGS_EN is set when the record already points to 2440 * a function that saves all the regs. Basically the '_EN' version 2441 * represents the current state of the function. 2442 * 2443 * Returns the address of the trampoline that is currently being called 2444 */ 2445 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2446 { 2447 struct ftrace_ops *ops; 2448 unsigned long addr; 2449 2450 /* Direct calls take precedence over trampolines */ 2451 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2452 addr = ftrace_find_rec_direct(rec->ip); 2453 if (addr) 2454 return addr; 2455 WARN_ON_ONCE(1); 2456 } 2457 2458 /* Trampolines take precedence over regs */ 2459 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2460 ops = ftrace_find_tramp_ops_curr(rec); 2461 if (FTRACE_WARN_ON(!ops)) { 2462 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2463 (void *)rec->ip, (void *)rec->ip); 2464 /* Ftrace is shutting down, return anything */ 2465 return (unsigned long)FTRACE_ADDR; 2466 } 2467 return ops->trampoline; 2468 } 2469 2470 if (rec->flags & FTRACE_FL_REGS_EN) 2471 return (unsigned long)FTRACE_REGS_ADDR; 2472 else 2473 return (unsigned long)FTRACE_ADDR; 2474 } 2475 2476 static int 2477 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2478 { 2479 unsigned long ftrace_old_addr; 2480 unsigned long ftrace_addr; 2481 int ret; 2482 2483 ftrace_addr = ftrace_get_addr_new(rec); 2484 2485 /* This needs to be done before we call ftrace_update_record */ 2486 ftrace_old_addr = ftrace_get_addr_curr(rec); 2487 2488 ret = ftrace_update_record(rec, enable); 2489 2490 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2491 2492 switch (ret) { 2493 case FTRACE_UPDATE_IGNORE: 2494 return 0; 2495 2496 case FTRACE_UPDATE_MAKE_CALL: 2497 ftrace_bug_type = FTRACE_BUG_CALL; 2498 return ftrace_make_call(rec, ftrace_addr); 2499 2500 case FTRACE_UPDATE_MAKE_NOP: 2501 ftrace_bug_type = FTRACE_BUG_NOP; 2502 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2503 2504 case FTRACE_UPDATE_MODIFY_CALL: 2505 ftrace_bug_type = FTRACE_BUG_UPDATE; 2506 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2507 } 2508 2509 return -1; /* unknown ftrace bug */ 2510 } 2511 2512 void __weak ftrace_replace_code(int mod_flags) 2513 { 2514 struct dyn_ftrace *rec; 2515 struct ftrace_page *pg; 2516 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2517 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2518 int failed; 2519 2520 if (unlikely(ftrace_disabled)) 2521 return; 2522 2523 do_for_each_ftrace_rec(pg, rec) { 2524 2525 if (rec->flags & FTRACE_FL_DISABLED) 2526 continue; 2527 2528 failed = __ftrace_replace_code(rec, enable); 2529 if (failed) { 2530 ftrace_bug(failed, rec); 2531 /* Stop processing */ 2532 return; 2533 } 2534 if (schedulable) 2535 cond_resched(); 2536 } while_for_each_ftrace_rec(); 2537 } 2538 2539 struct ftrace_rec_iter { 2540 struct ftrace_page *pg; 2541 int index; 2542 }; 2543 2544 /** 2545 * ftrace_rec_iter_start, start up iterating over traced functions 2546 * 2547 * Returns an iterator handle that is used to iterate over all 2548 * the records that represent address locations where functions 2549 * are traced. 2550 * 2551 * May return NULL if no records are available. 2552 */ 2553 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2554 { 2555 /* 2556 * We only use a single iterator. 2557 * Protected by the ftrace_lock mutex. 2558 */ 2559 static struct ftrace_rec_iter ftrace_rec_iter; 2560 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2561 2562 iter->pg = ftrace_pages_start; 2563 iter->index = 0; 2564 2565 /* Could have empty pages */ 2566 while (iter->pg && !iter->pg->index) 2567 iter->pg = iter->pg->next; 2568 2569 if (!iter->pg) 2570 return NULL; 2571 2572 return iter; 2573 } 2574 2575 /** 2576 * ftrace_rec_iter_next, get the next record to process. 2577 * @iter: The handle to the iterator. 2578 * 2579 * Returns the next iterator after the given iterator @iter. 2580 */ 2581 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2582 { 2583 iter->index++; 2584 2585 if (iter->index >= iter->pg->index) { 2586 iter->pg = iter->pg->next; 2587 iter->index = 0; 2588 2589 /* Could have empty pages */ 2590 while (iter->pg && !iter->pg->index) 2591 iter->pg = iter->pg->next; 2592 } 2593 2594 if (!iter->pg) 2595 return NULL; 2596 2597 return iter; 2598 } 2599 2600 /** 2601 * ftrace_rec_iter_record, get the record at the iterator location 2602 * @iter: The current iterator location 2603 * 2604 * Returns the record that the current @iter is at. 2605 */ 2606 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2607 { 2608 return &iter->pg->records[iter->index]; 2609 } 2610 2611 static int 2612 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2613 { 2614 int ret; 2615 2616 if (unlikely(ftrace_disabled)) 2617 return 0; 2618 2619 ret = ftrace_init_nop(mod, rec); 2620 if (ret) { 2621 ftrace_bug_type = FTRACE_BUG_INIT; 2622 ftrace_bug(ret, rec); 2623 return 0; 2624 } 2625 return 1; 2626 } 2627 2628 /* 2629 * archs can override this function if they must do something 2630 * before the modifying code is performed. 2631 */ 2632 int __weak ftrace_arch_code_modify_prepare(void) 2633 { 2634 return 0; 2635 } 2636 2637 /* 2638 * archs can override this function if they must do something 2639 * after the modifying code is performed. 2640 */ 2641 int __weak ftrace_arch_code_modify_post_process(void) 2642 { 2643 return 0; 2644 } 2645 2646 void ftrace_modify_all_code(int command) 2647 { 2648 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2649 int mod_flags = 0; 2650 int err = 0; 2651 2652 if (command & FTRACE_MAY_SLEEP) 2653 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2654 2655 /* 2656 * If the ftrace_caller calls a ftrace_ops func directly, 2657 * we need to make sure that it only traces functions it 2658 * expects to trace. When doing the switch of functions, 2659 * we need to update to the ftrace_ops_list_func first 2660 * before the transition between old and new calls are set, 2661 * as the ftrace_ops_list_func will check the ops hashes 2662 * to make sure the ops are having the right functions 2663 * traced. 2664 */ 2665 if (update) { 2666 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2667 if (FTRACE_WARN_ON(err)) 2668 return; 2669 } 2670 2671 if (command & FTRACE_UPDATE_CALLS) 2672 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2673 else if (command & FTRACE_DISABLE_CALLS) 2674 ftrace_replace_code(mod_flags); 2675 2676 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2677 function_trace_op = set_function_trace_op; 2678 smp_wmb(); 2679 /* If irqs are disabled, we are in stop machine */ 2680 if (!irqs_disabled()) 2681 smp_call_function(ftrace_sync_ipi, NULL, 1); 2682 err = ftrace_update_ftrace_func(ftrace_trace_function); 2683 if (FTRACE_WARN_ON(err)) 2684 return; 2685 } 2686 2687 if (command & FTRACE_START_FUNC_RET) 2688 err = ftrace_enable_ftrace_graph_caller(); 2689 else if (command & FTRACE_STOP_FUNC_RET) 2690 err = ftrace_disable_ftrace_graph_caller(); 2691 FTRACE_WARN_ON(err); 2692 } 2693 2694 static int __ftrace_modify_code(void *data) 2695 { 2696 int *command = data; 2697 2698 ftrace_modify_all_code(*command); 2699 2700 return 0; 2701 } 2702 2703 /** 2704 * ftrace_run_stop_machine, go back to the stop machine method 2705 * @command: The command to tell ftrace what to do 2706 * 2707 * If an arch needs to fall back to the stop machine method, the 2708 * it can call this function. 2709 */ 2710 void ftrace_run_stop_machine(int command) 2711 { 2712 stop_machine(__ftrace_modify_code, &command, NULL); 2713 } 2714 2715 /** 2716 * arch_ftrace_update_code, modify the code to trace or not trace 2717 * @command: The command that needs to be done 2718 * 2719 * Archs can override this function if it does not need to 2720 * run stop_machine() to modify code. 2721 */ 2722 void __weak arch_ftrace_update_code(int command) 2723 { 2724 ftrace_run_stop_machine(command); 2725 } 2726 2727 static void ftrace_run_update_code(int command) 2728 { 2729 int ret; 2730 2731 ret = ftrace_arch_code_modify_prepare(); 2732 FTRACE_WARN_ON(ret); 2733 if (ret) 2734 return; 2735 2736 /* 2737 * By default we use stop_machine() to modify the code. 2738 * But archs can do what ever they want as long as it 2739 * is safe. The stop_machine() is the safest, but also 2740 * produces the most overhead. 2741 */ 2742 arch_ftrace_update_code(command); 2743 2744 ret = ftrace_arch_code_modify_post_process(); 2745 FTRACE_WARN_ON(ret); 2746 } 2747 2748 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2749 struct ftrace_ops_hash *old_hash) 2750 { 2751 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2752 ops->old_hash.filter_hash = old_hash->filter_hash; 2753 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2754 ftrace_run_update_code(command); 2755 ops->old_hash.filter_hash = NULL; 2756 ops->old_hash.notrace_hash = NULL; 2757 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2758 } 2759 2760 static ftrace_func_t saved_ftrace_func; 2761 static int ftrace_start_up; 2762 2763 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2764 { 2765 } 2766 2767 static void ftrace_startup_enable(int command) 2768 { 2769 if (saved_ftrace_func != ftrace_trace_function) { 2770 saved_ftrace_func = ftrace_trace_function; 2771 command |= FTRACE_UPDATE_TRACE_FUNC; 2772 } 2773 2774 if (!command || !ftrace_enabled) 2775 return; 2776 2777 ftrace_run_update_code(command); 2778 } 2779 2780 static void ftrace_startup_all(int command) 2781 { 2782 update_all_ops = true; 2783 ftrace_startup_enable(command); 2784 update_all_ops = false; 2785 } 2786 2787 int ftrace_startup(struct ftrace_ops *ops, int command) 2788 { 2789 int ret; 2790 2791 if (unlikely(ftrace_disabled)) 2792 return -ENODEV; 2793 2794 ret = __register_ftrace_function(ops); 2795 if (ret) 2796 return ret; 2797 2798 ftrace_start_up++; 2799 2800 /* 2801 * Note that ftrace probes uses this to start up 2802 * and modify functions it will probe. But we still 2803 * set the ADDING flag for modification, as probes 2804 * do not have trampolines. If they add them in the 2805 * future, then the probes will need to distinguish 2806 * between adding and updating probes. 2807 */ 2808 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2809 2810 ret = ftrace_hash_ipmodify_enable(ops); 2811 if (ret < 0) { 2812 /* Rollback registration process */ 2813 __unregister_ftrace_function(ops); 2814 ftrace_start_up--; 2815 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2816 return ret; 2817 } 2818 2819 if (ftrace_hash_rec_enable(ops, 1)) 2820 command |= FTRACE_UPDATE_CALLS; 2821 2822 ftrace_startup_enable(command); 2823 2824 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2825 2826 return 0; 2827 } 2828 2829 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2830 { 2831 int ret; 2832 2833 if (unlikely(ftrace_disabled)) 2834 return -ENODEV; 2835 2836 ret = __unregister_ftrace_function(ops); 2837 if (ret) 2838 return ret; 2839 2840 ftrace_start_up--; 2841 /* 2842 * Just warn in case of unbalance, no need to kill ftrace, it's not 2843 * critical but the ftrace_call callers may be never nopped again after 2844 * further ftrace uses. 2845 */ 2846 WARN_ON_ONCE(ftrace_start_up < 0); 2847 2848 /* Disabling ipmodify never fails */ 2849 ftrace_hash_ipmodify_disable(ops); 2850 2851 if (ftrace_hash_rec_disable(ops, 1)) 2852 command |= FTRACE_UPDATE_CALLS; 2853 2854 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2855 2856 if (saved_ftrace_func != ftrace_trace_function) { 2857 saved_ftrace_func = ftrace_trace_function; 2858 command |= FTRACE_UPDATE_TRACE_FUNC; 2859 } 2860 2861 if (!command || !ftrace_enabled) { 2862 /* 2863 * If these are dynamic or per_cpu ops, they still 2864 * need their data freed. Since, function tracing is 2865 * not currently active, we can just free them 2866 * without synchronizing all CPUs. 2867 */ 2868 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2869 goto free_ops; 2870 2871 return 0; 2872 } 2873 2874 /* 2875 * If the ops uses a trampoline, then it needs to be 2876 * tested first on update. 2877 */ 2878 ops->flags |= FTRACE_OPS_FL_REMOVING; 2879 removed_ops = ops; 2880 2881 /* The trampoline logic checks the old hashes */ 2882 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2883 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2884 2885 ftrace_run_update_code(command); 2886 2887 /* 2888 * If there's no more ops registered with ftrace, run a 2889 * sanity check to make sure all rec flags are cleared. 2890 */ 2891 if (rcu_dereference_protected(ftrace_ops_list, 2892 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2893 struct ftrace_page *pg; 2894 struct dyn_ftrace *rec; 2895 2896 do_for_each_ftrace_rec(pg, rec) { 2897 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2898 pr_warn(" %pS flags:%lx\n", 2899 (void *)rec->ip, rec->flags); 2900 } while_for_each_ftrace_rec(); 2901 } 2902 2903 ops->old_hash.filter_hash = NULL; 2904 ops->old_hash.notrace_hash = NULL; 2905 2906 removed_ops = NULL; 2907 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2908 2909 /* 2910 * Dynamic ops may be freed, we must make sure that all 2911 * callers are done before leaving this function. 2912 * The same goes for freeing the per_cpu data of the per_cpu 2913 * ops. 2914 */ 2915 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2916 /* 2917 * We need to do a hard force of sched synchronization. 2918 * This is because we use preempt_disable() to do RCU, but 2919 * the function tracers can be called where RCU is not watching 2920 * (like before user_exit()). We can not rely on the RCU 2921 * infrastructure to do the synchronization, thus we must do it 2922 * ourselves. 2923 */ 2924 synchronize_rcu_tasks_rude(); 2925 2926 /* 2927 * When the kernel is preeptive, tasks can be preempted 2928 * while on a ftrace trampoline. Just scheduling a task on 2929 * a CPU is not good enough to flush them. Calling 2930 * synchornize_rcu_tasks() will wait for those tasks to 2931 * execute and either schedule voluntarily or enter user space. 2932 */ 2933 if (IS_ENABLED(CONFIG_PREEMPTION)) 2934 synchronize_rcu_tasks(); 2935 2936 free_ops: 2937 arch_ftrace_trampoline_free(ops); 2938 } 2939 2940 return 0; 2941 } 2942 2943 static void ftrace_startup_sysctl(void) 2944 { 2945 int command; 2946 2947 if (unlikely(ftrace_disabled)) 2948 return; 2949 2950 /* Force update next time */ 2951 saved_ftrace_func = NULL; 2952 /* ftrace_start_up is true if we want ftrace running */ 2953 if (ftrace_start_up) { 2954 command = FTRACE_UPDATE_CALLS; 2955 if (ftrace_graph_active) 2956 command |= FTRACE_START_FUNC_RET; 2957 ftrace_startup_enable(command); 2958 } 2959 } 2960 2961 static void ftrace_shutdown_sysctl(void) 2962 { 2963 int command; 2964 2965 if (unlikely(ftrace_disabled)) 2966 return; 2967 2968 /* ftrace_start_up is true if ftrace is running */ 2969 if (ftrace_start_up) { 2970 command = FTRACE_DISABLE_CALLS; 2971 if (ftrace_graph_active) 2972 command |= FTRACE_STOP_FUNC_RET; 2973 ftrace_run_update_code(command); 2974 } 2975 } 2976 2977 static u64 ftrace_update_time; 2978 unsigned long ftrace_update_tot_cnt; 2979 unsigned long ftrace_number_of_pages; 2980 unsigned long ftrace_number_of_groups; 2981 2982 static inline int ops_traces_mod(struct ftrace_ops *ops) 2983 { 2984 /* 2985 * Filter_hash being empty will default to trace module. 2986 * But notrace hash requires a test of individual module functions. 2987 */ 2988 return ftrace_hash_empty(ops->func_hash->filter_hash) && 2989 ftrace_hash_empty(ops->func_hash->notrace_hash); 2990 } 2991 2992 /* 2993 * Check if the current ops references the record. 2994 * 2995 * If the ops traces all functions, then it was already accounted for. 2996 * If the ops does not trace the current record function, skip it. 2997 * If the ops ignores the function via notrace filter, skip it. 2998 */ 2999 static inline bool 3000 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3001 { 3002 /* If ops isn't enabled, ignore it */ 3003 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3004 return false; 3005 3006 /* If ops traces all then it includes this function */ 3007 if (ops_traces_mod(ops)) 3008 return true; 3009 3010 /* The function must be in the filter */ 3011 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3012 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3013 return false; 3014 3015 /* If in notrace hash, we ignore it too */ 3016 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3017 return false; 3018 3019 return true; 3020 } 3021 3022 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3023 { 3024 struct ftrace_page *pg; 3025 struct dyn_ftrace *p; 3026 u64 start, stop; 3027 unsigned long update_cnt = 0; 3028 unsigned long rec_flags = 0; 3029 int i; 3030 3031 start = ftrace_now(raw_smp_processor_id()); 3032 3033 /* 3034 * When a module is loaded, this function is called to convert 3035 * the calls to mcount in its text to nops, and also to create 3036 * an entry in the ftrace data. Now, if ftrace is activated 3037 * after this call, but before the module sets its text to 3038 * read-only, the modification of enabling ftrace can fail if 3039 * the read-only is done while ftrace is converting the calls. 3040 * To prevent this, the module's records are set as disabled 3041 * and will be enabled after the call to set the module's text 3042 * to read-only. 3043 */ 3044 if (mod) 3045 rec_flags |= FTRACE_FL_DISABLED; 3046 3047 for (pg = new_pgs; pg; pg = pg->next) { 3048 3049 for (i = 0; i < pg->index; i++) { 3050 3051 /* If something went wrong, bail without enabling anything */ 3052 if (unlikely(ftrace_disabled)) 3053 return -1; 3054 3055 p = &pg->records[i]; 3056 p->flags = rec_flags; 3057 3058 /* 3059 * Do the initial record conversion from mcount jump 3060 * to the NOP instructions. 3061 */ 3062 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3063 !ftrace_nop_initialize(mod, p)) 3064 break; 3065 3066 update_cnt++; 3067 } 3068 } 3069 3070 stop = ftrace_now(raw_smp_processor_id()); 3071 ftrace_update_time = stop - start; 3072 ftrace_update_tot_cnt += update_cnt; 3073 3074 return 0; 3075 } 3076 3077 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3078 { 3079 int order; 3080 int cnt; 3081 3082 if (WARN_ON(!count)) 3083 return -EINVAL; 3084 3085 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3086 3087 /* 3088 * We want to fill as much as possible. No more than a page 3089 * may be empty. 3090 */ 3091 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3092 order--; 3093 3094 again: 3095 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3096 3097 if (!pg->records) { 3098 /* if we can't allocate this size, try something smaller */ 3099 if (!order) 3100 return -ENOMEM; 3101 order >>= 1; 3102 goto again; 3103 } 3104 3105 ftrace_number_of_pages += 1 << order; 3106 ftrace_number_of_groups++; 3107 3108 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3109 pg->size = cnt; 3110 3111 if (cnt > count) 3112 cnt = count; 3113 3114 return cnt; 3115 } 3116 3117 static struct ftrace_page * 3118 ftrace_allocate_pages(unsigned long num_to_init) 3119 { 3120 struct ftrace_page *start_pg; 3121 struct ftrace_page *pg; 3122 int order; 3123 int cnt; 3124 3125 if (!num_to_init) 3126 return NULL; 3127 3128 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3129 if (!pg) 3130 return NULL; 3131 3132 /* 3133 * Try to allocate as much as possible in one continues 3134 * location that fills in all of the space. We want to 3135 * waste as little space as possible. 3136 */ 3137 for (;;) { 3138 cnt = ftrace_allocate_records(pg, num_to_init); 3139 if (cnt < 0) 3140 goto free_pages; 3141 3142 num_to_init -= cnt; 3143 if (!num_to_init) 3144 break; 3145 3146 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3147 if (!pg->next) 3148 goto free_pages; 3149 3150 pg = pg->next; 3151 } 3152 3153 return start_pg; 3154 3155 free_pages: 3156 pg = start_pg; 3157 while (pg) { 3158 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3159 free_pages((unsigned long)pg->records, order); 3160 start_pg = pg->next; 3161 kfree(pg); 3162 pg = start_pg; 3163 ftrace_number_of_pages -= 1 << order; 3164 ftrace_number_of_groups--; 3165 } 3166 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3167 return NULL; 3168 } 3169 3170 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3171 3172 struct ftrace_iterator { 3173 loff_t pos; 3174 loff_t func_pos; 3175 loff_t mod_pos; 3176 struct ftrace_page *pg; 3177 struct dyn_ftrace *func; 3178 struct ftrace_func_probe *probe; 3179 struct ftrace_func_entry *probe_entry; 3180 struct trace_parser parser; 3181 struct ftrace_hash *hash; 3182 struct ftrace_ops *ops; 3183 struct trace_array *tr; 3184 struct list_head *mod_list; 3185 int pidx; 3186 int idx; 3187 unsigned flags; 3188 }; 3189 3190 static void * 3191 t_probe_next(struct seq_file *m, loff_t *pos) 3192 { 3193 struct ftrace_iterator *iter = m->private; 3194 struct trace_array *tr = iter->ops->private; 3195 struct list_head *func_probes; 3196 struct ftrace_hash *hash; 3197 struct list_head *next; 3198 struct hlist_node *hnd = NULL; 3199 struct hlist_head *hhd; 3200 int size; 3201 3202 (*pos)++; 3203 iter->pos = *pos; 3204 3205 if (!tr) 3206 return NULL; 3207 3208 func_probes = &tr->func_probes; 3209 if (list_empty(func_probes)) 3210 return NULL; 3211 3212 if (!iter->probe) { 3213 next = func_probes->next; 3214 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3215 } 3216 3217 if (iter->probe_entry) 3218 hnd = &iter->probe_entry->hlist; 3219 3220 hash = iter->probe->ops.func_hash->filter_hash; 3221 3222 /* 3223 * A probe being registered may temporarily have an empty hash 3224 * and it's at the end of the func_probes list. 3225 */ 3226 if (!hash || hash == EMPTY_HASH) 3227 return NULL; 3228 3229 size = 1 << hash->size_bits; 3230 3231 retry: 3232 if (iter->pidx >= size) { 3233 if (iter->probe->list.next == func_probes) 3234 return NULL; 3235 next = iter->probe->list.next; 3236 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3237 hash = iter->probe->ops.func_hash->filter_hash; 3238 size = 1 << hash->size_bits; 3239 iter->pidx = 0; 3240 } 3241 3242 hhd = &hash->buckets[iter->pidx]; 3243 3244 if (hlist_empty(hhd)) { 3245 iter->pidx++; 3246 hnd = NULL; 3247 goto retry; 3248 } 3249 3250 if (!hnd) 3251 hnd = hhd->first; 3252 else { 3253 hnd = hnd->next; 3254 if (!hnd) { 3255 iter->pidx++; 3256 goto retry; 3257 } 3258 } 3259 3260 if (WARN_ON_ONCE(!hnd)) 3261 return NULL; 3262 3263 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3264 3265 return iter; 3266 } 3267 3268 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3269 { 3270 struct ftrace_iterator *iter = m->private; 3271 void *p = NULL; 3272 loff_t l; 3273 3274 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3275 return NULL; 3276 3277 if (iter->mod_pos > *pos) 3278 return NULL; 3279 3280 iter->probe = NULL; 3281 iter->probe_entry = NULL; 3282 iter->pidx = 0; 3283 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3284 p = t_probe_next(m, &l); 3285 if (!p) 3286 break; 3287 } 3288 if (!p) 3289 return NULL; 3290 3291 /* Only set this if we have an item */ 3292 iter->flags |= FTRACE_ITER_PROBE; 3293 3294 return iter; 3295 } 3296 3297 static int 3298 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3299 { 3300 struct ftrace_func_entry *probe_entry; 3301 struct ftrace_probe_ops *probe_ops; 3302 struct ftrace_func_probe *probe; 3303 3304 probe = iter->probe; 3305 probe_entry = iter->probe_entry; 3306 3307 if (WARN_ON_ONCE(!probe || !probe_entry)) 3308 return -EIO; 3309 3310 probe_ops = probe->probe_ops; 3311 3312 if (probe_ops->print) 3313 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3314 3315 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3316 (void *)probe_ops->func); 3317 3318 return 0; 3319 } 3320 3321 static void * 3322 t_mod_next(struct seq_file *m, loff_t *pos) 3323 { 3324 struct ftrace_iterator *iter = m->private; 3325 struct trace_array *tr = iter->tr; 3326 3327 (*pos)++; 3328 iter->pos = *pos; 3329 3330 iter->mod_list = iter->mod_list->next; 3331 3332 if (iter->mod_list == &tr->mod_trace || 3333 iter->mod_list == &tr->mod_notrace) { 3334 iter->flags &= ~FTRACE_ITER_MOD; 3335 return NULL; 3336 } 3337 3338 iter->mod_pos = *pos; 3339 3340 return iter; 3341 } 3342 3343 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3344 { 3345 struct ftrace_iterator *iter = m->private; 3346 void *p = NULL; 3347 loff_t l; 3348 3349 if (iter->func_pos > *pos) 3350 return NULL; 3351 3352 iter->mod_pos = iter->func_pos; 3353 3354 /* probes are only available if tr is set */ 3355 if (!iter->tr) 3356 return NULL; 3357 3358 for (l = 0; l <= (*pos - iter->func_pos); ) { 3359 p = t_mod_next(m, &l); 3360 if (!p) 3361 break; 3362 } 3363 if (!p) { 3364 iter->flags &= ~FTRACE_ITER_MOD; 3365 return t_probe_start(m, pos); 3366 } 3367 3368 /* Only set this if we have an item */ 3369 iter->flags |= FTRACE_ITER_MOD; 3370 3371 return iter; 3372 } 3373 3374 static int 3375 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3376 { 3377 struct ftrace_mod_load *ftrace_mod; 3378 struct trace_array *tr = iter->tr; 3379 3380 if (WARN_ON_ONCE(!iter->mod_list) || 3381 iter->mod_list == &tr->mod_trace || 3382 iter->mod_list == &tr->mod_notrace) 3383 return -EIO; 3384 3385 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3386 3387 if (ftrace_mod->func) 3388 seq_printf(m, "%s", ftrace_mod->func); 3389 else 3390 seq_putc(m, '*'); 3391 3392 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3393 3394 return 0; 3395 } 3396 3397 static void * 3398 t_func_next(struct seq_file *m, loff_t *pos) 3399 { 3400 struct ftrace_iterator *iter = m->private; 3401 struct dyn_ftrace *rec = NULL; 3402 3403 (*pos)++; 3404 3405 retry: 3406 if (iter->idx >= iter->pg->index) { 3407 if (iter->pg->next) { 3408 iter->pg = iter->pg->next; 3409 iter->idx = 0; 3410 goto retry; 3411 } 3412 } else { 3413 rec = &iter->pg->records[iter->idx++]; 3414 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3415 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3416 3417 ((iter->flags & FTRACE_ITER_ENABLED) && 3418 !(rec->flags & FTRACE_FL_ENABLED))) { 3419 3420 rec = NULL; 3421 goto retry; 3422 } 3423 } 3424 3425 if (!rec) 3426 return NULL; 3427 3428 iter->pos = iter->func_pos = *pos; 3429 iter->func = rec; 3430 3431 return iter; 3432 } 3433 3434 static void * 3435 t_next(struct seq_file *m, void *v, loff_t *pos) 3436 { 3437 struct ftrace_iterator *iter = m->private; 3438 loff_t l = *pos; /* t_probe_start() must use original pos */ 3439 void *ret; 3440 3441 if (unlikely(ftrace_disabled)) 3442 return NULL; 3443 3444 if (iter->flags & FTRACE_ITER_PROBE) 3445 return t_probe_next(m, pos); 3446 3447 if (iter->flags & FTRACE_ITER_MOD) 3448 return t_mod_next(m, pos); 3449 3450 if (iter->flags & FTRACE_ITER_PRINTALL) { 3451 /* next must increment pos, and t_probe_start does not */ 3452 (*pos)++; 3453 return t_mod_start(m, &l); 3454 } 3455 3456 ret = t_func_next(m, pos); 3457 3458 if (!ret) 3459 return t_mod_start(m, &l); 3460 3461 return ret; 3462 } 3463 3464 static void reset_iter_read(struct ftrace_iterator *iter) 3465 { 3466 iter->pos = 0; 3467 iter->func_pos = 0; 3468 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3469 } 3470 3471 static void *t_start(struct seq_file *m, loff_t *pos) 3472 { 3473 struct ftrace_iterator *iter = m->private; 3474 void *p = NULL; 3475 loff_t l; 3476 3477 mutex_lock(&ftrace_lock); 3478 3479 if (unlikely(ftrace_disabled)) 3480 return NULL; 3481 3482 /* 3483 * If an lseek was done, then reset and start from beginning. 3484 */ 3485 if (*pos < iter->pos) 3486 reset_iter_read(iter); 3487 3488 /* 3489 * For set_ftrace_filter reading, if we have the filter 3490 * off, we can short cut and just print out that all 3491 * functions are enabled. 3492 */ 3493 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3494 ftrace_hash_empty(iter->hash)) { 3495 iter->func_pos = 1; /* Account for the message */ 3496 if (*pos > 0) 3497 return t_mod_start(m, pos); 3498 iter->flags |= FTRACE_ITER_PRINTALL; 3499 /* reset in case of seek/pread */ 3500 iter->flags &= ~FTRACE_ITER_PROBE; 3501 return iter; 3502 } 3503 3504 if (iter->flags & FTRACE_ITER_MOD) 3505 return t_mod_start(m, pos); 3506 3507 /* 3508 * Unfortunately, we need to restart at ftrace_pages_start 3509 * every time we let go of the ftrace_mutex. This is because 3510 * those pointers can change without the lock. 3511 */ 3512 iter->pg = ftrace_pages_start; 3513 iter->idx = 0; 3514 for (l = 0; l <= *pos; ) { 3515 p = t_func_next(m, &l); 3516 if (!p) 3517 break; 3518 } 3519 3520 if (!p) 3521 return t_mod_start(m, pos); 3522 3523 return iter; 3524 } 3525 3526 static void t_stop(struct seq_file *m, void *p) 3527 { 3528 mutex_unlock(&ftrace_lock); 3529 } 3530 3531 void * __weak 3532 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3533 { 3534 return NULL; 3535 } 3536 3537 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3538 struct dyn_ftrace *rec) 3539 { 3540 void *ptr; 3541 3542 ptr = arch_ftrace_trampoline_func(ops, rec); 3543 if (ptr) 3544 seq_printf(m, " ->%pS", ptr); 3545 } 3546 3547 static int t_show(struct seq_file *m, void *v) 3548 { 3549 struct ftrace_iterator *iter = m->private; 3550 struct dyn_ftrace *rec; 3551 3552 if (iter->flags & FTRACE_ITER_PROBE) 3553 return t_probe_show(m, iter); 3554 3555 if (iter->flags & FTRACE_ITER_MOD) 3556 return t_mod_show(m, iter); 3557 3558 if (iter->flags & FTRACE_ITER_PRINTALL) { 3559 if (iter->flags & FTRACE_ITER_NOTRACE) 3560 seq_puts(m, "#### no functions disabled ####\n"); 3561 else 3562 seq_puts(m, "#### all functions enabled ####\n"); 3563 return 0; 3564 } 3565 3566 rec = iter->func; 3567 3568 if (!rec) 3569 return 0; 3570 3571 seq_printf(m, "%ps", (void *)rec->ip); 3572 if (iter->flags & FTRACE_ITER_ENABLED) { 3573 struct ftrace_ops *ops; 3574 3575 seq_printf(m, " (%ld)%s%s%s", 3576 ftrace_rec_count(rec), 3577 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3578 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3579 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3580 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3581 ops = ftrace_find_tramp_ops_any(rec); 3582 if (ops) { 3583 do { 3584 seq_printf(m, "\ttramp: %pS (%pS)", 3585 (void *)ops->trampoline, 3586 (void *)ops->func); 3587 add_trampoline_func(m, ops, rec); 3588 ops = ftrace_find_tramp_ops_next(rec, ops); 3589 } while (ops); 3590 } else 3591 seq_puts(m, "\ttramp: ERROR!"); 3592 } else { 3593 add_trampoline_func(m, NULL, rec); 3594 } 3595 if (rec->flags & FTRACE_FL_DIRECT) { 3596 unsigned long direct; 3597 3598 direct = ftrace_find_rec_direct(rec->ip); 3599 if (direct) 3600 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3601 } 3602 } 3603 3604 seq_putc(m, '\n'); 3605 3606 return 0; 3607 } 3608 3609 static const struct seq_operations show_ftrace_seq_ops = { 3610 .start = t_start, 3611 .next = t_next, 3612 .stop = t_stop, 3613 .show = t_show, 3614 }; 3615 3616 static int 3617 ftrace_avail_open(struct inode *inode, struct file *file) 3618 { 3619 struct ftrace_iterator *iter; 3620 int ret; 3621 3622 ret = security_locked_down(LOCKDOWN_TRACEFS); 3623 if (ret) 3624 return ret; 3625 3626 if (unlikely(ftrace_disabled)) 3627 return -ENODEV; 3628 3629 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3630 if (!iter) 3631 return -ENOMEM; 3632 3633 iter->pg = ftrace_pages_start; 3634 iter->ops = &global_ops; 3635 3636 return 0; 3637 } 3638 3639 static int 3640 ftrace_enabled_open(struct inode *inode, struct file *file) 3641 { 3642 struct ftrace_iterator *iter; 3643 3644 /* 3645 * This shows us what functions are currently being 3646 * traced and by what. Not sure if we want lockdown 3647 * to hide such critical information for an admin. 3648 * Although, perhaps it can show information we don't 3649 * want people to see, but if something is tracing 3650 * something, we probably want to know about it. 3651 */ 3652 3653 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3654 if (!iter) 3655 return -ENOMEM; 3656 3657 iter->pg = ftrace_pages_start; 3658 iter->flags = FTRACE_ITER_ENABLED; 3659 iter->ops = &global_ops; 3660 3661 return 0; 3662 } 3663 3664 /** 3665 * ftrace_regex_open - initialize function tracer filter files 3666 * @ops: The ftrace_ops that hold the hash filters 3667 * @flag: The type of filter to process 3668 * @inode: The inode, usually passed in to your open routine 3669 * @file: The file, usually passed in to your open routine 3670 * 3671 * ftrace_regex_open() initializes the filter files for the 3672 * @ops. Depending on @flag it may process the filter hash or 3673 * the notrace hash of @ops. With this called from the open 3674 * routine, you can use ftrace_filter_write() for the write 3675 * routine if @flag has FTRACE_ITER_FILTER set, or 3676 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3677 * tracing_lseek() should be used as the lseek routine, and 3678 * release must call ftrace_regex_release(). 3679 */ 3680 int 3681 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3682 struct inode *inode, struct file *file) 3683 { 3684 struct ftrace_iterator *iter; 3685 struct ftrace_hash *hash; 3686 struct list_head *mod_head; 3687 struct trace_array *tr = ops->private; 3688 int ret = -ENOMEM; 3689 3690 ftrace_ops_init(ops); 3691 3692 if (unlikely(ftrace_disabled)) 3693 return -ENODEV; 3694 3695 if (tracing_check_open_get_tr(tr)) 3696 return -ENODEV; 3697 3698 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3699 if (!iter) 3700 goto out; 3701 3702 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3703 goto out; 3704 3705 iter->ops = ops; 3706 iter->flags = flag; 3707 iter->tr = tr; 3708 3709 mutex_lock(&ops->func_hash->regex_lock); 3710 3711 if (flag & FTRACE_ITER_NOTRACE) { 3712 hash = ops->func_hash->notrace_hash; 3713 mod_head = tr ? &tr->mod_notrace : NULL; 3714 } else { 3715 hash = ops->func_hash->filter_hash; 3716 mod_head = tr ? &tr->mod_trace : NULL; 3717 } 3718 3719 iter->mod_list = mod_head; 3720 3721 if (file->f_mode & FMODE_WRITE) { 3722 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3723 3724 if (file->f_flags & O_TRUNC) { 3725 iter->hash = alloc_ftrace_hash(size_bits); 3726 clear_ftrace_mod_list(mod_head); 3727 } else { 3728 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3729 } 3730 3731 if (!iter->hash) { 3732 trace_parser_put(&iter->parser); 3733 goto out_unlock; 3734 } 3735 } else 3736 iter->hash = hash; 3737 3738 ret = 0; 3739 3740 if (file->f_mode & FMODE_READ) { 3741 iter->pg = ftrace_pages_start; 3742 3743 ret = seq_open(file, &show_ftrace_seq_ops); 3744 if (!ret) { 3745 struct seq_file *m = file->private_data; 3746 m->private = iter; 3747 } else { 3748 /* Failed */ 3749 free_ftrace_hash(iter->hash); 3750 trace_parser_put(&iter->parser); 3751 } 3752 } else 3753 file->private_data = iter; 3754 3755 out_unlock: 3756 mutex_unlock(&ops->func_hash->regex_lock); 3757 3758 out: 3759 if (ret) { 3760 kfree(iter); 3761 if (tr) 3762 trace_array_put(tr); 3763 } 3764 3765 return ret; 3766 } 3767 3768 static int 3769 ftrace_filter_open(struct inode *inode, struct file *file) 3770 { 3771 struct ftrace_ops *ops = inode->i_private; 3772 3773 /* Checks for tracefs lockdown */ 3774 return ftrace_regex_open(ops, 3775 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3776 inode, file); 3777 } 3778 3779 static int 3780 ftrace_notrace_open(struct inode *inode, struct file *file) 3781 { 3782 struct ftrace_ops *ops = inode->i_private; 3783 3784 /* Checks for tracefs lockdown */ 3785 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3786 inode, file); 3787 } 3788 3789 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3790 struct ftrace_glob { 3791 char *search; 3792 unsigned len; 3793 int type; 3794 }; 3795 3796 /* 3797 * If symbols in an architecture don't correspond exactly to the user-visible 3798 * name of what they represent, it is possible to define this function to 3799 * perform the necessary adjustments. 3800 */ 3801 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3802 { 3803 return str; 3804 } 3805 3806 static int ftrace_match(char *str, struct ftrace_glob *g) 3807 { 3808 int matched = 0; 3809 int slen; 3810 3811 str = arch_ftrace_match_adjust(str, g->search); 3812 3813 switch (g->type) { 3814 case MATCH_FULL: 3815 if (strcmp(str, g->search) == 0) 3816 matched = 1; 3817 break; 3818 case MATCH_FRONT_ONLY: 3819 if (strncmp(str, g->search, g->len) == 0) 3820 matched = 1; 3821 break; 3822 case MATCH_MIDDLE_ONLY: 3823 if (strstr(str, g->search)) 3824 matched = 1; 3825 break; 3826 case MATCH_END_ONLY: 3827 slen = strlen(str); 3828 if (slen >= g->len && 3829 memcmp(str + slen - g->len, g->search, g->len) == 0) 3830 matched = 1; 3831 break; 3832 case MATCH_GLOB: 3833 if (glob_match(g->search, str)) 3834 matched = 1; 3835 break; 3836 } 3837 3838 return matched; 3839 } 3840 3841 static int 3842 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3843 { 3844 struct ftrace_func_entry *entry; 3845 int ret = 0; 3846 3847 entry = ftrace_lookup_ip(hash, rec->ip); 3848 if (clear_filter) { 3849 /* Do nothing if it doesn't exist */ 3850 if (!entry) 3851 return 0; 3852 3853 free_hash_entry(hash, entry); 3854 } else { 3855 /* Do nothing if it exists */ 3856 if (entry) 3857 return 0; 3858 3859 ret = add_hash_entry(hash, rec->ip); 3860 } 3861 return ret; 3862 } 3863 3864 static int 3865 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3866 int clear_filter) 3867 { 3868 long index = simple_strtoul(func_g->search, NULL, 0); 3869 struct ftrace_page *pg; 3870 struct dyn_ftrace *rec; 3871 3872 /* The index starts at 1 */ 3873 if (--index < 0) 3874 return 0; 3875 3876 do_for_each_ftrace_rec(pg, rec) { 3877 if (pg->index <= index) { 3878 index -= pg->index; 3879 /* this is a double loop, break goes to the next page */ 3880 break; 3881 } 3882 rec = &pg->records[index]; 3883 enter_record(hash, rec, clear_filter); 3884 return 1; 3885 } while_for_each_ftrace_rec(); 3886 return 0; 3887 } 3888 3889 static int 3890 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3891 struct ftrace_glob *mod_g, int exclude_mod) 3892 { 3893 char str[KSYM_SYMBOL_LEN]; 3894 char *modname; 3895 3896 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3897 3898 if (mod_g) { 3899 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3900 3901 /* blank module name to match all modules */ 3902 if (!mod_g->len) { 3903 /* blank module globbing: modname xor exclude_mod */ 3904 if (!exclude_mod != !modname) 3905 goto func_match; 3906 return 0; 3907 } 3908 3909 /* 3910 * exclude_mod is set to trace everything but the given 3911 * module. If it is set and the module matches, then 3912 * return 0. If it is not set, and the module doesn't match 3913 * also return 0. Otherwise, check the function to see if 3914 * that matches. 3915 */ 3916 if (!mod_matches == !exclude_mod) 3917 return 0; 3918 func_match: 3919 /* blank search means to match all funcs in the mod */ 3920 if (!func_g->len) 3921 return 1; 3922 } 3923 3924 return ftrace_match(str, func_g); 3925 } 3926 3927 static int 3928 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3929 { 3930 struct ftrace_page *pg; 3931 struct dyn_ftrace *rec; 3932 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3933 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3934 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3935 int exclude_mod = 0; 3936 int found = 0; 3937 int ret; 3938 int clear_filter = 0; 3939 3940 if (func) { 3941 func_g.type = filter_parse_regex(func, len, &func_g.search, 3942 &clear_filter); 3943 func_g.len = strlen(func_g.search); 3944 } 3945 3946 if (mod) { 3947 mod_g.type = filter_parse_regex(mod, strlen(mod), 3948 &mod_g.search, &exclude_mod); 3949 mod_g.len = strlen(mod_g.search); 3950 } 3951 3952 mutex_lock(&ftrace_lock); 3953 3954 if (unlikely(ftrace_disabled)) 3955 goto out_unlock; 3956 3957 if (func_g.type == MATCH_INDEX) { 3958 found = add_rec_by_index(hash, &func_g, clear_filter); 3959 goto out_unlock; 3960 } 3961 3962 do_for_each_ftrace_rec(pg, rec) { 3963 3964 if (rec->flags & FTRACE_FL_DISABLED) 3965 continue; 3966 3967 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 3968 ret = enter_record(hash, rec, clear_filter); 3969 if (ret < 0) { 3970 found = ret; 3971 goto out_unlock; 3972 } 3973 found = 1; 3974 } 3975 } while_for_each_ftrace_rec(); 3976 out_unlock: 3977 mutex_unlock(&ftrace_lock); 3978 3979 return found; 3980 } 3981 3982 static int 3983 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 3984 { 3985 return match_records(hash, buff, len, NULL); 3986 } 3987 3988 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3989 struct ftrace_ops_hash *old_hash) 3990 { 3991 struct ftrace_ops *op; 3992 3993 if (!ftrace_enabled) 3994 return; 3995 3996 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 3997 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 3998 return; 3999 } 4000 4001 /* 4002 * If this is the shared global_ops filter, then we need to 4003 * check if there is another ops that shares it, is enabled. 4004 * If so, we still need to run the modify code. 4005 */ 4006 if (ops->func_hash != &global_ops.local_hash) 4007 return; 4008 4009 do_for_each_ftrace_op(op, ftrace_ops_list) { 4010 if (op->func_hash == &global_ops.local_hash && 4011 op->flags & FTRACE_OPS_FL_ENABLED) { 4012 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4013 /* Only need to do this once */ 4014 return; 4015 } 4016 } while_for_each_ftrace_op(op); 4017 } 4018 4019 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4020 struct ftrace_hash **orig_hash, 4021 struct ftrace_hash *hash, 4022 int enable) 4023 { 4024 struct ftrace_ops_hash old_hash_ops; 4025 struct ftrace_hash *old_hash; 4026 int ret; 4027 4028 old_hash = *orig_hash; 4029 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4030 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4031 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4032 if (!ret) { 4033 ftrace_ops_update_code(ops, &old_hash_ops); 4034 free_ftrace_hash_rcu(old_hash); 4035 } 4036 return ret; 4037 } 4038 4039 static bool module_exists(const char *module) 4040 { 4041 /* All modules have the symbol __this_module */ 4042 static const char this_mod[] = "__this_module"; 4043 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4044 unsigned long val; 4045 int n; 4046 4047 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4048 4049 if (n > sizeof(modname) - 1) 4050 return false; 4051 4052 val = module_kallsyms_lookup_name(modname); 4053 return val != 0; 4054 } 4055 4056 static int cache_mod(struct trace_array *tr, 4057 const char *func, char *module, int enable) 4058 { 4059 struct ftrace_mod_load *ftrace_mod, *n; 4060 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4061 int ret; 4062 4063 mutex_lock(&ftrace_lock); 4064 4065 /* We do not cache inverse filters */ 4066 if (func[0] == '!') { 4067 func++; 4068 ret = -EINVAL; 4069 4070 /* Look to remove this hash */ 4071 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4072 if (strcmp(ftrace_mod->module, module) != 0) 4073 continue; 4074 4075 /* no func matches all */ 4076 if (strcmp(func, "*") == 0 || 4077 (ftrace_mod->func && 4078 strcmp(ftrace_mod->func, func) == 0)) { 4079 ret = 0; 4080 free_ftrace_mod(ftrace_mod); 4081 continue; 4082 } 4083 } 4084 goto out; 4085 } 4086 4087 ret = -EINVAL; 4088 /* We only care about modules that have not been loaded yet */ 4089 if (module_exists(module)) 4090 goto out; 4091 4092 /* Save this string off, and execute it when the module is loaded */ 4093 ret = ftrace_add_mod(tr, func, module, enable); 4094 out: 4095 mutex_unlock(&ftrace_lock); 4096 4097 return ret; 4098 } 4099 4100 static int 4101 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4102 int reset, int enable); 4103 4104 #ifdef CONFIG_MODULES 4105 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4106 char *mod, bool enable) 4107 { 4108 struct ftrace_mod_load *ftrace_mod, *n; 4109 struct ftrace_hash **orig_hash, *new_hash; 4110 LIST_HEAD(process_mods); 4111 char *func; 4112 int ret; 4113 4114 mutex_lock(&ops->func_hash->regex_lock); 4115 4116 if (enable) 4117 orig_hash = &ops->func_hash->filter_hash; 4118 else 4119 orig_hash = &ops->func_hash->notrace_hash; 4120 4121 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4122 *orig_hash); 4123 if (!new_hash) 4124 goto out; /* warn? */ 4125 4126 mutex_lock(&ftrace_lock); 4127 4128 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4129 4130 if (strcmp(ftrace_mod->module, mod) != 0) 4131 continue; 4132 4133 if (ftrace_mod->func) 4134 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4135 else 4136 func = kstrdup("*", GFP_KERNEL); 4137 4138 if (!func) /* warn? */ 4139 continue; 4140 4141 list_del(&ftrace_mod->list); 4142 list_add(&ftrace_mod->list, &process_mods); 4143 4144 /* Use the newly allocated func, as it may be "*" */ 4145 kfree(ftrace_mod->func); 4146 ftrace_mod->func = func; 4147 } 4148 4149 mutex_unlock(&ftrace_lock); 4150 4151 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4152 4153 func = ftrace_mod->func; 4154 4155 /* Grabs ftrace_lock, which is why we have this extra step */ 4156 match_records(new_hash, func, strlen(func), mod); 4157 free_ftrace_mod(ftrace_mod); 4158 } 4159 4160 if (enable && list_empty(head)) 4161 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4162 4163 mutex_lock(&ftrace_lock); 4164 4165 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4166 new_hash, enable); 4167 mutex_unlock(&ftrace_lock); 4168 4169 out: 4170 mutex_unlock(&ops->func_hash->regex_lock); 4171 4172 free_ftrace_hash(new_hash); 4173 } 4174 4175 static void process_cached_mods(const char *mod_name) 4176 { 4177 struct trace_array *tr; 4178 char *mod; 4179 4180 mod = kstrdup(mod_name, GFP_KERNEL); 4181 if (!mod) 4182 return; 4183 4184 mutex_lock(&trace_types_lock); 4185 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4186 if (!list_empty(&tr->mod_trace)) 4187 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4188 if (!list_empty(&tr->mod_notrace)) 4189 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4190 } 4191 mutex_unlock(&trace_types_lock); 4192 4193 kfree(mod); 4194 } 4195 #endif 4196 4197 /* 4198 * We register the module command as a template to show others how 4199 * to register the a command as well. 4200 */ 4201 4202 static int 4203 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4204 char *func_orig, char *cmd, char *module, int enable) 4205 { 4206 char *func; 4207 int ret; 4208 4209 /* match_records() modifies func, and we need the original */ 4210 func = kstrdup(func_orig, GFP_KERNEL); 4211 if (!func) 4212 return -ENOMEM; 4213 4214 /* 4215 * cmd == 'mod' because we only registered this func 4216 * for the 'mod' ftrace_func_command. 4217 * But if you register one func with multiple commands, 4218 * you can tell which command was used by the cmd 4219 * parameter. 4220 */ 4221 ret = match_records(hash, func, strlen(func), module); 4222 kfree(func); 4223 4224 if (!ret) 4225 return cache_mod(tr, func_orig, module, enable); 4226 if (ret < 0) 4227 return ret; 4228 return 0; 4229 } 4230 4231 static struct ftrace_func_command ftrace_mod_cmd = { 4232 .name = "mod", 4233 .func = ftrace_mod_callback, 4234 }; 4235 4236 static int __init ftrace_mod_cmd_init(void) 4237 { 4238 return register_ftrace_command(&ftrace_mod_cmd); 4239 } 4240 core_initcall(ftrace_mod_cmd_init); 4241 4242 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4243 struct ftrace_ops *op, struct pt_regs *pt_regs) 4244 { 4245 struct ftrace_probe_ops *probe_ops; 4246 struct ftrace_func_probe *probe; 4247 4248 probe = container_of(op, struct ftrace_func_probe, ops); 4249 probe_ops = probe->probe_ops; 4250 4251 /* 4252 * Disable preemption for these calls to prevent a RCU grace 4253 * period. This syncs the hash iteration and freeing of items 4254 * on the hash. rcu_read_lock is too dangerous here. 4255 */ 4256 preempt_disable_notrace(); 4257 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4258 preempt_enable_notrace(); 4259 } 4260 4261 struct ftrace_func_map { 4262 struct ftrace_func_entry entry; 4263 void *data; 4264 }; 4265 4266 struct ftrace_func_mapper { 4267 struct ftrace_hash hash; 4268 }; 4269 4270 /** 4271 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4272 * 4273 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4274 */ 4275 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4276 { 4277 struct ftrace_hash *hash; 4278 4279 /* 4280 * The mapper is simply a ftrace_hash, but since the entries 4281 * in the hash are not ftrace_func_entry type, we define it 4282 * as a separate structure. 4283 */ 4284 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4285 return (struct ftrace_func_mapper *)hash; 4286 } 4287 4288 /** 4289 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4290 * @mapper: The mapper that has the ip maps 4291 * @ip: the instruction pointer to find the data for 4292 * 4293 * Returns the data mapped to @ip if found otherwise NULL. The return 4294 * is actually the address of the mapper data pointer. The address is 4295 * returned for use cases where the data is no bigger than a long, and 4296 * the user can use the data pointer as its data instead of having to 4297 * allocate more memory for the reference. 4298 */ 4299 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4300 unsigned long ip) 4301 { 4302 struct ftrace_func_entry *entry; 4303 struct ftrace_func_map *map; 4304 4305 entry = ftrace_lookup_ip(&mapper->hash, ip); 4306 if (!entry) 4307 return NULL; 4308 4309 map = (struct ftrace_func_map *)entry; 4310 return &map->data; 4311 } 4312 4313 /** 4314 * ftrace_func_mapper_add_ip - Map some data to an ip 4315 * @mapper: The mapper that has the ip maps 4316 * @ip: The instruction pointer address to map @data to 4317 * @data: The data to map to @ip 4318 * 4319 * Returns 0 on succes otherwise an error. 4320 */ 4321 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4322 unsigned long ip, void *data) 4323 { 4324 struct ftrace_func_entry *entry; 4325 struct ftrace_func_map *map; 4326 4327 entry = ftrace_lookup_ip(&mapper->hash, ip); 4328 if (entry) 4329 return -EBUSY; 4330 4331 map = kmalloc(sizeof(*map), GFP_KERNEL); 4332 if (!map) 4333 return -ENOMEM; 4334 4335 map->entry.ip = ip; 4336 map->data = data; 4337 4338 __add_hash_entry(&mapper->hash, &map->entry); 4339 4340 return 0; 4341 } 4342 4343 /** 4344 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4345 * @mapper: The mapper that has the ip maps 4346 * @ip: The instruction pointer address to remove the data from 4347 * 4348 * Returns the data if it is found, otherwise NULL. 4349 * Note, if the data pointer is used as the data itself, (see 4350 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4351 * if the data pointer was set to zero. 4352 */ 4353 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4354 unsigned long ip) 4355 { 4356 struct ftrace_func_entry *entry; 4357 struct ftrace_func_map *map; 4358 void *data; 4359 4360 entry = ftrace_lookup_ip(&mapper->hash, ip); 4361 if (!entry) 4362 return NULL; 4363 4364 map = (struct ftrace_func_map *)entry; 4365 data = map->data; 4366 4367 remove_hash_entry(&mapper->hash, entry); 4368 kfree(entry); 4369 4370 return data; 4371 } 4372 4373 /** 4374 * free_ftrace_func_mapper - free a mapping of ips and data 4375 * @mapper: The mapper that has the ip maps 4376 * @free_func: A function to be called on each data item. 4377 * 4378 * This is used to free the function mapper. The @free_func is optional 4379 * and can be used if the data needs to be freed as well. 4380 */ 4381 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4382 ftrace_mapper_func free_func) 4383 { 4384 struct ftrace_func_entry *entry; 4385 struct ftrace_func_map *map; 4386 struct hlist_head *hhd; 4387 int size, i; 4388 4389 if (!mapper) 4390 return; 4391 4392 if (free_func && mapper->hash.count) { 4393 size = 1 << mapper->hash.size_bits; 4394 for (i = 0; i < size; i++) { 4395 hhd = &mapper->hash.buckets[i]; 4396 hlist_for_each_entry(entry, hhd, hlist) { 4397 map = (struct ftrace_func_map *)entry; 4398 free_func(map); 4399 } 4400 } 4401 } 4402 free_ftrace_hash(&mapper->hash); 4403 } 4404 4405 static void release_probe(struct ftrace_func_probe *probe) 4406 { 4407 struct ftrace_probe_ops *probe_ops; 4408 4409 mutex_lock(&ftrace_lock); 4410 4411 WARN_ON(probe->ref <= 0); 4412 4413 /* Subtract the ref that was used to protect this instance */ 4414 probe->ref--; 4415 4416 if (!probe->ref) { 4417 probe_ops = probe->probe_ops; 4418 /* 4419 * Sending zero as ip tells probe_ops to free 4420 * the probe->data itself 4421 */ 4422 if (probe_ops->free) 4423 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4424 list_del(&probe->list); 4425 kfree(probe); 4426 } 4427 mutex_unlock(&ftrace_lock); 4428 } 4429 4430 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4431 { 4432 /* 4433 * Add one ref to keep it from being freed when releasing the 4434 * ftrace_lock mutex. 4435 */ 4436 probe->ref++; 4437 } 4438 4439 int 4440 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4441 struct ftrace_probe_ops *probe_ops, 4442 void *data) 4443 { 4444 struct ftrace_func_entry *entry; 4445 struct ftrace_func_probe *probe; 4446 struct ftrace_hash **orig_hash; 4447 struct ftrace_hash *old_hash; 4448 struct ftrace_hash *hash; 4449 int count = 0; 4450 int size; 4451 int ret; 4452 int i; 4453 4454 if (WARN_ON(!tr)) 4455 return -EINVAL; 4456 4457 /* We do not support '!' for function probes */ 4458 if (WARN_ON(glob[0] == '!')) 4459 return -EINVAL; 4460 4461 4462 mutex_lock(&ftrace_lock); 4463 /* Check if the probe_ops is already registered */ 4464 list_for_each_entry(probe, &tr->func_probes, list) { 4465 if (probe->probe_ops == probe_ops) 4466 break; 4467 } 4468 if (&probe->list == &tr->func_probes) { 4469 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4470 if (!probe) { 4471 mutex_unlock(&ftrace_lock); 4472 return -ENOMEM; 4473 } 4474 probe->probe_ops = probe_ops; 4475 probe->ops.func = function_trace_probe_call; 4476 probe->tr = tr; 4477 ftrace_ops_init(&probe->ops); 4478 list_add(&probe->list, &tr->func_probes); 4479 } 4480 4481 acquire_probe_locked(probe); 4482 4483 mutex_unlock(&ftrace_lock); 4484 4485 /* 4486 * Note, there's a small window here that the func_hash->filter_hash 4487 * may be NULL or empty. Need to be carefule when reading the loop. 4488 */ 4489 mutex_lock(&probe->ops.func_hash->regex_lock); 4490 4491 orig_hash = &probe->ops.func_hash->filter_hash; 4492 old_hash = *orig_hash; 4493 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4494 4495 if (!hash) { 4496 ret = -ENOMEM; 4497 goto out; 4498 } 4499 4500 ret = ftrace_match_records(hash, glob, strlen(glob)); 4501 4502 /* Nothing found? */ 4503 if (!ret) 4504 ret = -EINVAL; 4505 4506 if (ret < 0) 4507 goto out; 4508 4509 size = 1 << hash->size_bits; 4510 for (i = 0; i < size; i++) { 4511 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4512 if (ftrace_lookup_ip(old_hash, entry->ip)) 4513 continue; 4514 /* 4515 * The caller might want to do something special 4516 * for each function we find. We call the callback 4517 * to give the caller an opportunity to do so. 4518 */ 4519 if (probe_ops->init) { 4520 ret = probe_ops->init(probe_ops, tr, 4521 entry->ip, data, 4522 &probe->data); 4523 if (ret < 0) { 4524 if (probe_ops->free && count) 4525 probe_ops->free(probe_ops, tr, 4526 0, probe->data); 4527 probe->data = NULL; 4528 goto out; 4529 } 4530 } 4531 count++; 4532 } 4533 } 4534 4535 mutex_lock(&ftrace_lock); 4536 4537 if (!count) { 4538 /* Nothing was added? */ 4539 ret = -EINVAL; 4540 goto out_unlock; 4541 } 4542 4543 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4544 hash, 1); 4545 if (ret < 0) 4546 goto err_unlock; 4547 4548 /* One ref for each new function traced */ 4549 probe->ref += count; 4550 4551 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4552 ret = ftrace_startup(&probe->ops, 0); 4553 4554 out_unlock: 4555 mutex_unlock(&ftrace_lock); 4556 4557 if (!ret) 4558 ret = count; 4559 out: 4560 mutex_unlock(&probe->ops.func_hash->regex_lock); 4561 free_ftrace_hash(hash); 4562 4563 release_probe(probe); 4564 4565 return ret; 4566 4567 err_unlock: 4568 if (!probe_ops->free || !count) 4569 goto out_unlock; 4570 4571 /* Failed to do the move, need to call the free functions */ 4572 for (i = 0; i < size; i++) { 4573 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4574 if (ftrace_lookup_ip(old_hash, entry->ip)) 4575 continue; 4576 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4577 } 4578 } 4579 goto out_unlock; 4580 } 4581 4582 int 4583 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4584 struct ftrace_probe_ops *probe_ops) 4585 { 4586 struct ftrace_ops_hash old_hash_ops; 4587 struct ftrace_func_entry *entry; 4588 struct ftrace_func_probe *probe; 4589 struct ftrace_glob func_g; 4590 struct ftrace_hash **orig_hash; 4591 struct ftrace_hash *old_hash; 4592 struct ftrace_hash *hash = NULL; 4593 struct hlist_node *tmp; 4594 struct hlist_head hhd; 4595 char str[KSYM_SYMBOL_LEN]; 4596 int count = 0; 4597 int i, ret = -ENODEV; 4598 int size; 4599 4600 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4601 func_g.search = NULL; 4602 else { 4603 int not; 4604 4605 func_g.type = filter_parse_regex(glob, strlen(glob), 4606 &func_g.search, ¬); 4607 func_g.len = strlen(func_g.search); 4608 4609 /* we do not support '!' for function probes */ 4610 if (WARN_ON(not)) 4611 return -EINVAL; 4612 } 4613 4614 mutex_lock(&ftrace_lock); 4615 /* Check if the probe_ops is already registered */ 4616 list_for_each_entry(probe, &tr->func_probes, list) { 4617 if (probe->probe_ops == probe_ops) 4618 break; 4619 } 4620 if (&probe->list == &tr->func_probes) 4621 goto err_unlock_ftrace; 4622 4623 ret = -EINVAL; 4624 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4625 goto err_unlock_ftrace; 4626 4627 acquire_probe_locked(probe); 4628 4629 mutex_unlock(&ftrace_lock); 4630 4631 mutex_lock(&probe->ops.func_hash->regex_lock); 4632 4633 orig_hash = &probe->ops.func_hash->filter_hash; 4634 old_hash = *orig_hash; 4635 4636 if (ftrace_hash_empty(old_hash)) 4637 goto out_unlock; 4638 4639 old_hash_ops.filter_hash = old_hash; 4640 /* Probes only have filters */ 4641 old_hash_ops.notrace_hash = NULL; 4642 4643 ret = -ENOMEM; 4644 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4645 if (!hash) 4646 goto out_unlock; 4647 4648 INIT_HLIST_HEAD(&hhd); 4649 4650 size = 1 << hash->size_bits; 4651 for (i = 0; i < size; i++) { 4652 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4653 4654 if (func_g.search) { 4655 kallsyms_lookup(entry->ip, NULL, NULL, 4656 NULL, str); 4657 if (!ftrace_match(str, &func_g)) 4658 continue; 4659 } 4660 count++; 4661 remove_hash_entry(hash, entry); 4662 hlist_add_head(&entry->hlist, &hhd); 4663 } 4664 } 4665 4666 /* Nothing found? */ 4667 if (!count) { 4668 ret = -EINVAL; 4669 goto out_unlock; 4670 } 4671 4672 mutex_lock(&ftrace_lock); 4673 4674 WARN_ON(probe->ref < count); 4675 4676 probe->ref -= count; 4677 4678 if (ftrace_hash_empty(hash)) 4679 ftrace_shutdown(&probe->ops, 0); 4680 4681 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4682 hash, 1); 4683 4684 /* still need to update the function call sites */ 4685 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4686 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4687 &old_hash_ops); 4688 synchronize_rcu(); 4689 4690 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4691 hlist_del(&entry->hlist); 4692 if (probe_ops->free) 4693 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4694 kfree(entry); 4695 } 4696 mutex_unlock(&ftrace_lock); 4697 4698 out_unlock: 4699 mutex_unlock(&probe->ops.func_hash->regex_lock); 4700 free_ftrace_hash(hash); 4701 4702 release_probe(probe); 4703 4704 return ret; 4705 4706 err_unlock_ftrace: 4707 mutex_unlock(&ftrace_lock); 4708 return ret; 4709 } 4710 4711 void clear_ftrace_function_probes(struct trace_array *tr) 4712 { 4713 struct ftrace_func_probe *probe, *n; 4714 4715 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4716 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4717 } 4718 4719 static LIST_HEAD(ftrace_commands); 4720 static DEFINE_MUTEX(ftrace_cmd_mutex); 4721 4722 /* 4723 * Currently we only register ftrace commands from __init, so mark this 4724 * __init too. 4725 */ 4726 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4727 { 4728 struct ftrace_func_command *p; 4729 int ret = 0; 4730 4731 mutex_lock(&ftrace_cmd_mutex); 4732 list_for_each_entry(p, &ftrace_commands, list) { 4733 if (strcmp(cmd->name, p->name) == 0) { 4734 ret = -EBUSY; 4735 goto out_unlock; 4736 } 4737 } 4738 list_add(&cmd->list, &ftrace_commands); 4739 out_unlock: 4740 mutex_unlock(&ftrace_cmd_mutex); 4741 4742 return ret; 4743 } 4744 4745 /* 4746 * Currently we only unregister ftrace commands from __init, so mark 4747 * this __init too. 4748 */ 4749 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4750 { 4751 struct ftrace_func_command *p, *n; 4752 int ret = -ENODEV; 4753 4754 mutex_lock(&ftrace_cmd_mutex); 4755 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4756 if (strcmp(cmd->name, p->name) == 0) { 4757 ret = 0; 4758 list_del_init(&p->list); 4759 goto out_unlock; 4760 } 4761 } 4762 out_unlock: 4763 mutex_unlock(&ftrace_cmd_mutex); 4764 4765 return ret; 4766 } 4767 4768 static int ftrace_process_regex(struct ftrace_iterator *iter, 4769 char *buff, int len, int enable) 4770 { 4771 struct ftrace_hash *hash = iter->hash; 4772 struct trace_array *tr = iter->ops->private; 4773 char *func, *command, *next = buff; 4774 struct ftrace_func_command *p; 4775 int ret = -EINVAL; 4776 4777 func = strsep(&next, ":"); 4778 4779 if (!next) { 4780 ret = ftrace_match_records(hash, func, len); 4781 if (!ret) 4782 ret = -EINVAL; 4783 if (ret < 0) 4784 return ret; 4785 return 0; 4786 } 4787 4788 /* command found */ 4789 4790 command = strsep(&next, ":"); 4791 4792 mutex_lock(&ftrace_cmd_mutex); 4793 list_for_each_entry(p, &ftrace_commands, list) { 4794 if (strcmp(p->name, command) == 0) { 4795 ret = p->func(tr, hash, func, command, next, enable); 4796 goto out_unlock; 4797 } 4798 } 4799 out_unlock: 4800 mutex_unlock(&ftrace_cmd_mutex); 4801 4802 return ret; 4803 } 4804 4805 static ssize_t 4806 ftrace_regex_write(struct file *file, const char __user *ubuf, 4807 size_t cnt, loff_t *ppos, int enable) 4808 { 4809 struct ftrace_iterator *iter; 4810 struct trace_parser *parser; 4811 ssize_t ret, read; 4812 4813 if (!cnt) 4814 return 0; 4815 4816 if (file->f_mode & FMODE_READ) { 4817 struct seq_file *m = file->private_data; 4818 iter = m->private; 4819 } else 4820 iter = file->private_data; 4821 4822 if (unlikely(ftrace_disabled)) 4823 return -ENODEV; 4824 4825 /* iter->hash is a local copy, so we don't need regex_lock */ 4826 4827 parser = &iter->parser; 4828 read = trace_get_user(parser, ubuf, cnt, ppos); 4829 4830 if (read >= 0 && trace_parser_loaded(parser) && 4831 !trace_parser_cont(parser)) { 4832 ret = ftrace_process_regex(iter, parser->buffer, 4833 parser->idx, enable); 4834 trace_parser_clear(parser); 4835 if (ret < 0) 4836 goto out; 4837 } 4838 4839 ret = read; 4840 out: 4841 return ret; 4842 } 4843 4844 ssize_t 4845 ftrace_filter_write(struct file *file, const char __user *ubuf, 4846 size_t cnt, loff_t *ppos) 4847 { 4848 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4849 } 4850 4851 ssize_t 4852 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4853 size_t cnt, loff_t *ppos) 4854 { 4855 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4856 } 4857 4858 static int 4859 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4860 { 4861 struct ftrace_func_entry *entry; 4862 4863 if (!ftrace_location(ip)) 4864 return -EINVAL; 4865 4866 if (remove) { 4867 entry = ftrace_lookup_ip(hash, ip); 4868 if (!entry) 4869 return -ENOENT; 4870 free_hash_entry(hash, entry); 4871 return 0; 4872 } 4873 4874 return add_hash_entry(hash, ip); 4875 } 4876 4877 static int 4878 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4879 unsigned long ip, int remove, int reset, int enable) 4880 { 4881 struct ftrace_hash **orig_hash; 4882 struct ftrace_hash *hash; 4883 int ret; 4884 4885 if (unlikely(ftrace_disabled)) 4886 return -ENODEV; 4887 4888 mutex_lock(&ops->func_hash->regex_lock); 4889 4890 if (enable) 4891 orig_hash = &ops->func_hash->filter_hash; 4892 else 4893 orig_hash = &ops->func_hash->notrace_hash; 4894 4895 if (reset) 4896 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4897 else 4898 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4899 4900 if (!hash) { 4901 ret = -ENOMEM; 4902 goto out_regex_unlock; 4903 } 4904 4905 if (buf && !ftrace_match_records(hash, buf, len)) { 4906 ret = -EINVAL; 4907 goto out_regex_unlock; 4908 } 4909 if (ip) { 4910 ret = ftrace_match_addr(hash, ip, remove); 4911 if (ret < 0) 4912 goto out_regex_unlock; 4913 } 4914 4915 mutex_lock(&ftrace_lock); 4916 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4917 mutex_unlock(&ftrace_lock); 4918 4919 out_regex_unlock: 4920 mutex_unlock(&ops->func_hash->regex_lock); 4921 4922 free_ftrace_hash(hash); 4923 return ret; 4924 } 4925 4926 static int 4927 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4928 int reset, int enable) 4929 { 4930 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4931 } 4932 4933 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4934 4935 struct ftrace_direct_func { 4936 struct list_head next; 4937 unsigned long addr; 4938 int count; 4939 }; 4940 4941 static LIST_HEAD(ftrace_direct_funcs); 4942 4943 /** 4944 * ftrace_find_direct_func - test an address if it is a registered direct caller 4945 * @addr: The address of a registered direct caller 4946 * 4947 * This searches to see if a ftrace direct caller has been registered 4948 * at a specific address, and if so, it returns a descriptor for it. 4949 * 4950 * This can be used by architecture code to see if an address is 4951 * a direct caller (trampoline) attached to a fentry/mcount location. 4952 * This is useful for the function_graph tracer, as it may need to 4953 * do adjustments if it traced a location that also has a direct 4954 * trampoline attached to it. 4955 */ 4956 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 4957 { 4958 struct ftrace_direct_func *entry; 4959 bool found = false; 4960 4961 /* May be called by fgraph trampoline (protected by rcu tasks) */ 4962 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 4963 if (entry->addr == addr) { 4964 found = true; 4965 break; 4966 } 4967 } 4968 if (found) 4969 return entry; 4970 4971 return NULL; 4972 } 4973 4974 /** 4975 * register_ftrace_direct - Call a custom trampoline directly 4976 * @ip: The address of the nop at the beginning of a function 4977 * @addr: The address of the trampoline to call at @ip 4978 * 4979 * This is used to connect a direct call from the nop location (@ip) 4980 * at the start of ftrace traced functions. The location that it calls 4981 * (@addr) must be able to handle a direct call, and save the parameters 4982 * of the function being traced, and restore them (or inject new ones 4983 * if needed), before returning. 4984 * 4985 * Returns: 4986 * 0 on success 4987 * -EBUSY - Another direct function is already attached (there can be only one) 4988 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 4989 * -ENOMEM - There was an allocation failure. 4990 */ 4991 int register_ftrace_direct(unsigned long ip, unsigned long addr) 4992 { 4993 struct ftrace_direct_func *direct; 4994 struct ftrace_func_entry *entry; 4995 struct ftrace_hash *free_hash = NULL; 4996 struct dyn_ftrace *rec; 4997 int ret = -EBUSY; 4998 4999 mutex_lock(&direct_mutex); 5000 5001 /* See if there's a direct function at @ip already */ 5002 if (ftrace_find_rec_direct(ip)) 5003 goto out_unlock; 5004 5005 ret = -ENODEV; 5006 rec = lookup_rec(ip, ip); 5007 if (!rec) 5008 goto out_unlock; 5009 5010 /* 5011 * Check if the rec says it has a direct call but we didn't 5012 * find one earlier? 5013 */ 5014 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5015 goto out_unlock; 5016 5017 /* Make sure the ip points to the exact record */ 5018 if (ip != rec->ip) { 5019 ip = rec->ip; 5020 /* Need to check this ip for a direct. */ 5021 if (ftrace_find_rec_direct(ip)) 5022 goto out_unlock; 5023 } 5024 5025 ret = -ENOMEM; 5026 if (ftrace_hash_empty(direct_functions) || 5027 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5028 struct ftrace_hash *new_hash; 5029 int size = ftrace_hash_empty(direct_functions) ? 0 : 5030 direct_functions->count + 1; 5031 5032 if (size < 32) 5033 size = 32; 5034 5035 new_hash = dup_hash(direct_functions, size); 5036 if (!new_hash) 5037 goto out_unlock; 5038 5039 free_hash = direct_functions; 5040 direct_functions = new_hash; 5041 } 5042 5043 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5044 if (!entry) 5045 goto out_unlock; 5046 5047 direct = ftrace_find_direct_func(addr); 5048 if (!direct) { 5049 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5050 if (!direct) { 5051 kfree(entry); 5052 goto out_unlock; 5053 } 5054 direct->addr = addr; 5055 direct->count = 0; 5056 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5057 ftrace_direct_func_count++; 5058 } 5059 5060 entry->ip = ip; 5061 entry->direct = addr; 5062 __add_hash_entry(direct_functions, entry); 5063 5064 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5065 if (ret) 5066 remove_hash_entry(direct_functions, entry); 5067 5068 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5069 ret = register_ftrace_function(&direct_ops); 5070 if (ret) 5071 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5072 } 5073 5074 if (ret) { 5075 kfree(entry); 5076 if (!direct->count) { 5077 list_del_rcu(&direct->next); 5078 synchronize_rcu_tasks(); 5079 kfree(direct); 5080 if (free_hash) 5081 free_ftrace_hash(free_hash); 5082 free_hash = NULL; 5083 ftrace_direct_func_count--; 5084 } 5085 } else { 5086 direct->count++; 5087 } 5088 out_unlock: 5089 mutex_unlock(&direct_mutex); 5090 5091 if (free_hash) { 5092 synchronize_rcu_tasks(); 5093 free_ftrace_hash(free_hash); 5094 } 5095 5096 return ret; 5097 } 5098 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5099 5100 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5101 struct dyn_ftrace **recp) 5102 { 5103 struct ftrace_func_entry *entry; 5104 struct dyn_ftrace *rec; 5105 5106 rec = lookup_rec(*ip, *ip); 5107 if (!rec) 5108 return NULL; 5109 5110 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5111 if (!entry) { 5112 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5113 return NULL; 5114 } 5115 5116 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5117 5118 /* Passed in ip just needs to be on the call site */ 5119 *ip = rec->ip; 5120 5121 if (recp) 5122 *recp = rec; 5123 5124 return entry; 5125 } 5126 5127 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5128 { 5129 struct ftrace_direct_func *direct; 5130 struct ftrace_func_entry *entry; 5131 int ret = -ENODEV; 5132 5133 mutex_lock(&direct_mutex); 5134 5135 entry = find_direct_entry(&ip, NULL); 5136 if (!entry) 5137 goto out_unlock; 5138 5139 if (direct_functions->count == 1) 5140 unregister_ftrace_function(&direct_ops); 5141 5142 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5143 5144 WARN_ON(ret); 5145 5146 remove_hash_entry(direct_functions, entry); 5147 5148 direct = ftrace_find_direct_func(addr); 5149 if (!WARN_ON(!direct)) { 5150 /* This is the good path (see the ! before WARN) */ 5151 direct->count--; 5152 WARN_ON(direct->count < 0); 5153 if (!direct->count) { 5154 list_del_rcu(&direct->next); 5155 synchronize_rcu_tasks(); 5156 kfree(direct); 5157 kfree(entry); 5158 ftrace_direct_func_count--; 5159 } 5160 } 5161 out_unlock: 5162 mutex_unlock(&direct_mutex); 5163 5164 return ret; 5165 } 5166 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5167 5168 static struct ftrace_ops stub_ops = { 5169 .func = ftrace_stub, 5170 }; 5171 5172 /** 5173 * ftrace_modify_direct_caller - modify ftrace nop directly 5174 * @entry: The ftrace hash entry of the direct helper for @rec 5175 * @rec: The record representing the function site to patch 5176 * @old_addr: The location that the site at @rec->ip currently calls 5177 * @new_addr: The location that the site at @rec->ip should call 5178 * 5179 * An architecture may overwrite this function to optimize the 5180 * changing of the direct callback on an ftrace nop location. 5181 * This is called with the ftrace_lock mutex held, and no other 5182 * ftrace callbacks are on the associated record (@rec). Thus, 5183 * it is safe to modify the ftrace record, where it should be 5184 * currently calling @old_addr directly, to call @new_addr. 5185 * 5186 * Safety checks should be made to make sure that the code at 5187 * @rec->ip is currently calling @old_addr. And this must 5188 * also update entry->direct to @new_addr. 5189 */ 5190 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5191 struct dyn_ftrace *rec, 5192 unsigned long old_addr, 5193 unsigned long new_addr) 5194 { 5195 unsigned long ip = rec->ip; 5196 int ret; 5197 5198 /* 5199 * The ftrace_lock was used to determine if the record 5200 * had more than one registered user to it. If it did, 5201 * we needed to prevent that from changing to do the quick 5202 * switch. But if it did not (only a direct caller was attached) 5203 * then this function is called. But this function can deal 5204 * with attached callers to the rec that we care about, and 5205 * since this function uses standard ftrace calls that take 5206 * the ftrace_lock mutex, we need to release it. 5207 */ 5208 mutex_unlock(&ftrace_lock); 5209 5210 /* 5211 * By setting a stub function at the same address, we force 5212 * the code to call the iterator and the direct_ops helper. 5213 * This means that @ip does not call the direct call, and 5214 * we can simply modify it. 5215 */ 5216 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5217 if (ret) 5218 goto out_lock; 5219 5220 ret = register_ftrace_function(&stub_ops); 5221 if (ret) { 5222 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5223 goto out_lock; 5224 } 5225 5226 entry->direct = new_addr; 5227 5228 /* 5229 * By removing the stub, we put back the direct call, calling 5230 * the @new_addr. 5231 */ 5232 unregister_ftrace_function(&stub_ops); 5233 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5234 5235 out_lock: 5236 mutex_lock(&ftrace_lock); 5237 5238 return ret; 5239 } 5240 5241 /** 5242 * modify_ftrace_direct - Modify an existing direct call to call something else 5243 * @ip: The instruction pointer to modify 5244 * @old_addr: The address that the current @ip calls directly 5245 * @new_addr: The address that the @ip should call 5246 * 5247 * This modifies a ftrace direct caller at an instruction pointer without 5248 * having to disable it first. The direct call will switch over to the 5249 * @new_addr without missing anything. 5250 * 5251 * Returns: zero on success. Non zero on error, which includes: 5252 * -ENODEV : the @ip given has no direct caller attached 5253 * -EINVAL : the @old_addr does not match the current direct caller 5254 */ 5255 int modify_ftrace_direct(unsigned long ip, 5256 unsigned long old_addr, unsigned long new_addr) 5257 { 5258 struct ftrace_func_entry *entry; 5259 struct dyn_ftrace *rec; 5260 int ret = -ENODEV; 5261 5262 mutex_lock(&direct_mutex); 5263 5264 mutex_lock(&ftrace_lock); 5265 entry = find_direct_entry(&ip, &rec); 5266 if (!entry) 5267 goto out_unlock; 5268 5269 ret = -EINVAL; 5270 if (entry->direct != old_addr) 5271 goto out_unlock; 5272 5273 /* 5274 * If there's no other ftrace callback on the rec->ip location, 5275 * then it can be changed directly by the architecture. 5276 * If there is another caller, then we just need to change the 5277 * direct caller helper to point to @new_addr. 5278 */ 5279 if (ftrace_rec_count(rec) == 1) { 5280 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5281 } else { 5282 entry->direct = new_addr; 5283 ret = 0; 5284 } 5285 5286 out_unlock: 5287 mutex_unlock(&ftrace_lock); 5288 mutex_unlock(&direct_mutex); 5289 return ret; 5290 } 5291 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5292 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5293 5294 /** 5295 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5296 * @ops - the ops to set the filter with 5297 * @ip - the address to add to or remove from the filter. 5298 * @remove - non zero to remove the ip from the filter 5299 * @reset - non zero to reset all filters before applying this filter. 5300 * 5301 * Filters denote which functions should be enabled when tracing is enabled 5302 * If @ip is NULL, it failes to update filter. 5303 */ 5304 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5305 int remove, int reset) 5306 { 5307 ftrace_ops_init(ops); 5308 return ftrace_set_addr(ops, ip, remove, reset, 1); 5309 } 5310 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5311 5312 /** 5313 * ftrace_ops_set_global_filter - setup ops to use global filters 5314 * @ops - the ops which will use the global filters 5315 * 5316 * ftrace users who need global function trace filtering should call this. 5317 * It can set the global filter only if ops were not initialized before. 5318 */ 5319 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5320 { 5321 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5322 return; 5323 5324 ftrace_ops_init(ops); 5325 ops->func_hash = &global_ops.local_hash; 5326 } 5327 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5328 5329 static int 5330 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5331 int reset, int enable) 5332 { 5333 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5334 } 5335 5336 /** 5337 * ftrace_set_filter - set a function to filter on in ftrace 5338 * @ops - the ops to set the filter with 5339 * @buf - the string that holds the function filter text. 5340 * @len - the length of the string. 5341 * @reset - non zero to reset all filters before applying this filter. 5342 * 5343 * Filters denote which functions should be enabled when tracing is enabled. 5344 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5345 */ 5346 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5347 int len, int reset) 5348 { 5349 ftrace_ops_init(ops); 5350 return ftrace_set_regex(ops, buf, len, reset, 1); 5351 } 5352 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5353 5354 /** 5355 * ftrace_set_notrace - set a function to not trace in ftrace 5356 * @ops - the ops to set the notrace filter with 5357 * @buf - the string that holds the function notrace text. 5358 * @len - the length of the string. 5359 * @reset - non zero to reset all filters before applying this filter. 5360 * 5361 * Notrace Filters denote which functions should not be enabled when tracing 5362 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5363 * for tracing. 5364 */ 5365 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5366 int len, int reset) 5367 { 5368 ftrace_ops_init(ops); 5369 return ftrace_set_regex(ops, buf, len, reset, 0); 5370 } 5371 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5372 /** 5373 * ftrace_set_global_filter - set a function to filter on with global tracers 5374 * @buf - the string that holds the function filter text. 5375 * @len - the length of the string. 5376 * @reset - non zero to reset all filters before applying this filter. 5377 * 5378 * Filters denote which functions should be enabled when tracing is enabled. 5379 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5380 */ 5381 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5382 { 5383 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5384 } 5385 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5386 5387 /** 5388 * ftrace_set_global_notrace - set a function to not trace with global tracers 5389 * @buf - the string that holds the function notrace text. 5390 * @len - the length of the string. 5391 * @reset - non zero to reset all filters before applying this filter. 5392 * 5393 * Notrace Filters denote which functions should not be enabled when tracing 5394 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5395 * for tracing. 5396 */ 5397 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5398 { 5399 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5400 } 5401 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5402 5403 /* 5404 * command line interface to allow users to set filters on boot up. 5405 */ 5406 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5407 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5408 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5409 5410 /* Used by function selftest to not test if filter is set */ 5411 bool ftrace_filter_param __initdata; 5412 5413 static int __init set_ftrace_notrace(char *str) 5414 { 5415 ftrace_filter_param = true; 5416 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5417 return 1; 5418 } 5419 __setup("ftrace_notrace=", set_ftrace_notrace); 5420 5421 static int __init set_ftrace_filter(char *str) 5422 { 5423 ftrace_filter_param = true; 5424 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5425 return 1; 5426 } 5427 __setup("ftrace_filter=", set_ftrace_filter); 5428 5429 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5430 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5431 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5432 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5433 5434 static int __init set_graph_function(char *str) 5435 { 5436 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5437 return 1; 5438 } 5439 __setup("ftrace_graph_filter=", set_graph_function); 5440 5441 static int __init set_graph_notrace_function(char *str) 5442 { 5443 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5444 return 1; 5445 } 5446 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5447 5448 static int __init set_graph_max_depth_function(char *str) 5449 { 5450 if (!str) 5451 return 0; 5452 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5453 return 1; 5454 } 5455 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5456 5457 static void __init set_ftrace_early_graph(char *buf, int enable) 5458 { 5459 int ret; 5460 char *func; 5461 struct ftrace_hash *hash; 5462 5463 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5464 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5465 return; 5466 5467 while (buf) { 5468 func = strsep(&buf, ","); 5469 /* we allow only one expression at a time */ 5470 ret = ftrace_graph_set_hash(hash, func); 5471 if (ret) 5472 printk(KERN_DEBUG "ftrace: function %s not " 5473 "traceable\n", func); 5474 } 5475 5476 if (enable) 5477 ftrace_graph_hash = hash; 5478 else 5479 ftrace_graph_notrace_hash = hash; 5480 } 5481 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5482 5483 void __init 5484 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5485 { 5486 char *func; 5487 5488 ftrace_ops_init(ops); 5489 5490 while (buf) { 5491 func = strsep(&buf, ","); 5492 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5493 } 5494 } 5495 5496 static void __init set_ftrace_early_filters(void) 5497 { 5498 if (ftrace_filter_buf[0]) 5499 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5500 if (ftrace_notrace_buf[0]) 5501 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5503 if (ftrace_graph_buf[0]) 5504 set_ftrace_early_graph(ftrace_graph_buf, 1); 5505 if (ftrace_graph_notrace_buf[0]) 5506 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5507 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5508 } 5509 5510 int ftrace_regex_release(struct inode *inode, struct file *file) 5511 { 5512 struct seq_file *m = (struct seq_file *)file->private_data; 5513 struct ftrace_iterator *iter; 5514 struct ftrace_hash **orig_hash; 5515 struct trace_parser *parser; 5516 int filter_hash; 5517 int ret; 5518 5519 if (file->f_mode & FMODE_READ) { 5520 iter = m->private; 5521 seq_release(inode, file); 5522 } else 5523 iter = file->private_data; 5524 5525 parser = &iter->parser; 5526 if (trace_parser_loaded(parser)) { 5527 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5528 } 5529 5530 trace_parser_put(parser); 5531 5532 mutex_lock(&iter->ops->func_hash->regex_lock); 5533 5534 if (file->f_mode & FMODE_WRITE) { 5535 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5536 5537 if (filter_hash) { 5538 orig_hash = &iter->ops->func_hash->filter_hash; 5539 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5540 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5541 } else 5542 orig_hash = &iter->ops->func_hash->notrace_hash; 5543 5544 mutex_lock(&ftrace_lock); 5545 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5546 iter->hash, filter_hash); 5547 mutex_unlock(&ftrace_lock); 5548 } else { 5549 /* For read only, the hash is the ops hash */ 5550 iter->hash = NULL; 5551 } 5552 5553 mutex_unlock(&iter->ops->func_hash->regex_lock); 5554 free_ftrace_hash(iter->hash); 5555 if (iter->tr) 5556 trace_array_put(iter->tr); 5557 kfree(iter); 5558 5559 return 0; 5560 } 5561 5562 static const struct file_operations ftrace_avail_fops = { 5563 .open = ftrace_avail_open, 5564 .read = seq_read, 5565 .llseek = seq_lseek, 5566 .release = seq_release_private, 5567 }; 5568 5569 static const struct file_operations ftrace_enabled_fops = { 5570 .open = ftrace_enabled_open, 5571 .read = seq_read, 5572 .llseek = seq_lseek, 5573 .release = seq_release_private, 5574 }; 5575 5576 static const struct file_operations ftrace_filter_fops = { 5577 .open = ftrace_filter_open, 5578 .read = seq_read, 5579 .write = ftrace_filter_write, 5580 .llseek = tracing_lseek, 5581 .release = ftrace_regex_release, 5582 }; 5583 5584 static const struct file_operations ftrace_notrace_fops = { 5585 .open = ftrace_notrace_open, 5586 .read = seq_read, 5587 .write = ftrace_notrace_write, 5588 .llseek = tracing_lseek, 5589 .release = ftrace_regex_release, 5590 }; 5591 5592 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5593 5594 static DEFINE_MUTEX(graph_lock); 5595 5596 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5597 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5598 5599 enum graph_filter_type { 5600 GRAPH_FILTER_NOTRACE = 0, 5601 GRAPH_FILTER_FUNCTION, 5602 }; 5603 5604 #define FTRACE_GRAPH_EMPTY ((void *)1) 5605 5606 struct ftrace_graph_data { 5607 struct ftrace_hash *hash; 5608 struct ftrace_func_entry *entry; 5609 int idx; /* for hash table iteration */ 5610 enum graph_filter_type type; 5611 struct ftrace_hash *new_hash; 5612 const struct seq_operations *seq_ops; 5613 struct trace_parser parser; 5614 }; 5615 5616 static void * 5617 __g_next(struct seq_file *m, loff_t *pos) 5618 { 5619 struct ftrace_graph_data *fgd = m->private; 5620 struct ftrace_func_entry *entry = fgd->entry; 5621 struct hlist_head *head; 5622 int i, idx = fgd->idx; 5623 5624 if (*pos >= fgd->hash->count) 5625 return NULL; 5626 5627 if (entry) { 5628 hlist_for_each_entry_continue(entry, hlist) { 5629 fgd->entry = entry; 5630 return entry; 5631 } 5632 5633 idx++; 5634 } 5635 5636 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5637 head = &fgd->hash->buckets[i]; 5638 hlist_for_each_entry(entry, head, hlist) { 5639 fgd->entry = entry; 5640 fgd->idx = i; 5641 return entry; 5642 } 5643 } 5644 return NULL; 5645 } 5646 5647 static void * 5648 g_next(struct seq_file *m, void *v, loff_t *pos) 5649 { 5650 (*pos)++; 5651 return __g_next(m, pos); 5652 } 5653 5654 static void *g_start(struct seq_file *m, loff_t *pos) 5655 { 5656 struct ftrace_graph_data *fgd = m->private; 5657 5658 mutex_lock(&graph_lock); 5659 5660 if (fgd->type == GRAPH_FILTER_FUNCTION) 5661 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5662 lockdep_is_held(&graph_lock)); 5663 else 5664 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5665 lockdep_is_held(&graph_lock)); 5666 5667 /* Nothing, tell g_show to print all functions are enabled */ 5668 if (ftrace_hash_empty(fgd->hash) && !*pos) 5669 return FTRACE_GRAPH_EMPTY; 5670 5671 fgd->idx = 0; 5672 fgd->entry = NULL; 5673 return __g_next(m, pos); 5674 } 5675 5676 static void g_stop(struct seq_file *m, void *p) 5677 { 5678 mutex_unlock(&graph_lock); 5679 } 5680 5681 static int g_show(struct seq_file *m, void *v) 5682 { 5683 struct ftrace_func_entry *entry = v; 5684 5685 if (!entry) 5686 return 0; 5687 5688 if (entry == FTRACE_GRAPH_EMPTY) { 5689 struct ftrace_graph_data *fgd = m->private; 5690 5691 if (fgd->type == GRAPH_FILTER_FUNCTION) 5692 seq_puts(m, "#### all functions enabled ####\n"); 5693 else 5694 seq_puts(m, "#### no functions disabled ####\n"); 5695 return 0; 5696 } 5697 5698 seq_printf(m, "%ps\n", (void *)entry->ip); 5699 5700 return 0; 5701 } 5702 5703 static const struct seq_operations ftrace_graph_seq_ops = { 5704 .start = g_start, 5705 .next = g_next, 5706 .stop = g_stop, 5707 .show = g_show, 5708 }; 5709 5710 static int 5711 __ftrace_graph_open(struct inode *inode, struct file *file, 5712 struct ftrace_graph_data *fgd) 5713 { 5714 int ret; 5715 struct ftrace_hash *new_hash = NULL; 5716 5717 ret = security_locked_down(LOCKDOWN_TRACEFS); 5718 if (ret) 5719 return ret; 5720 5721 if (file->f_mode & FMODE_WRITE) { 5722 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5723 5724 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5725 return -ENOMEM; 5726 5727 if (file->f_flags & O_TRUNC) 5728 new_hash = alloc_ftrace_hash(size_bits); 5729 else 5730 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5731 fgd->hash); 5732 if (!new_hash) { 5733 ret = -ENOMEM; 5734 goto out; 5735 } 5736 } 5737 5738 if (file->f_mode & FMODE_READ) { 5739 ret = seq_open(file, &ftrace_graph_seq_ops); 5740 if (!ret) { 5741 struct seq_file *m = file->private_data; 5742 m->private = fgd; 5743 } else { 5744 /* Failed */ 5745 free_ftrace_hash(new_hash); 5746 new_hash = NULL; 5747 } 5748 } else 5749 file->private_data = fgd; 5750 5751 out: 5752 if (ret < 0 && file->f_mode & FMODE_WRITE) 5753 trace_parser_put(&fgd->parser); 5754 5755 fgd->new_hash = new_hash; 5756 5757 /* 5758 * All uses of fgd->hash must be taken with the graph_lock 5759 * held. The graph_lock is going to be released, so force 5760 * fgd->hash to be reinitialized when it is taken again. 5761 */ 5762 fgd->hash = NULL; 5763 5764 return ret; 5765 } 5766 5767 static int 5768 ftrace_graph_open(struct inode *inode, struct file *file) 5769 { 5770 struct ftrace_graph_data *fgd; 5771 int ret; 5772 5773 if (unlikely(ftrace_disabled)) 5774 return -ENODEV; 5775 5776 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5777 if (fgd == NULL) 5778 return -ENOMEM; 5779 5780 mutex_lock(&graph_lock); 5781 5782 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5783 lockdep_is_held(&graph_lock)); 5784 fgd->type = GRAPH_FILTER_FUNCTION; 5785 fgd->seq_ops = &ftrace_graph_seq_ops; 5786 5787 ret = __ftrace_graph_open(inode, file, fgd); 5788 if (ret < 0) 5789 kfree(fgd); 5790 5791 mutex_unlock(&graph_lock); 5792 return ret; 5793 } 5794 5795 static int 5796 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5797 { 5798 struct ftrace_graph_data *fgd; 5799 int ret; 5800 5801 if (unlikely(ftrace_disabled)) 5802 return -ENODEV; 5803 5804 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5805 if (fgd == NULL) 5806 return -ENOMEM; 5807 5808 mutex_lock(&graph_lock); 5809 5810 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5811 lockdep_is_held(&graph_lock)); 5812 fgd->type = GRAPH_FILTER_NOTRACE; 5813 fgd->seq_ops = &ftrace_graph_seq_ops; 5814 5815 ret = __ftrace_graph_open(inode, file, fgd); 5816 if (ret < 0) 5817 kfree(fgd); 5818 5819 mutex_unlock(&graph_lock); 5820 return ret; 5821 } 5822 5823 static int 5824 ftrace_graph_release(struct inode *inode, struct file *file) 5825 { 5826 struct ftrace_graph_data *fgd; 5827 struct ftrace_hash *old_hash, *new_hash; 5828 struct trace_parser *parser; 5829 int ret = 0; 5830 5831 if (file->f_mode & FMODE_READ) { 5832 struct seq_file *m = file->private_data; 5833 5834 fgd = m->private; 5835 seq_release(inode, file); 5836 } else { 5837 fgd = file->private_data; 5838 } 5839 5840 5841 if (file->f_mode & FMODE_WRITE) { 5842 5843 parser = &fgd->parser; 5844 5845 if (trace_parser_loaded((parser))) { 5846 ret = ftrace_graph_set_hash(fgd->new_hash, 5847 parser->buffer); 5848 } 5849 5850 trace_parser_put(parser); 5851 5852 new_hash = __ftrace_hash_move(fgd->new_hash); 5853 if (!new_hash) { 5854 ret = -ENOMEM; 5855 goto out; 5856 } 5857 5858 mutex_lock(&graph_lock); 5859 5860 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5861 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5862 lockdep_is_held(&graph_lock)); 5863 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5864 } else { 5865 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5866 lockdep_is_held(&graph_lock)); 5867 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5868 } 5869 5870 mutex_unlock(&graph_lock); 5871 5872 /* 5873 * We need to do a hard force of sched synchronization. 5874 * This is because we use preempt_disable() to do RCU, but 5875 * the function tracers can be called where RCU is not watching 5876 * (like before user_exit()). We can not rely on the RCU 5877 * infrastructure to do the synchronization, thus we must do it 5878 * ourselves. 5879 */ 5880 synchronize_rcu_tasks_rude(); 5881 5882 free_ftrace_hash(old_hash); 5883 } 5884 5885 out: 5886 free_ftrace_hash(fgd->new_hash); 5887 kfree(fgd); 5888 5889 return ret; 5890 } 5891 5892 static int 5893 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5894 { 5895 struct ftrace_glob func_g; 5896 struct dyn_ftrace *rec; 5897 struct ftrace_page *pg; 5898 struct ftrace_func_entry *entry; 5899 int fail = 1; 5900 int not; 5901 5902 /* decode regex */ 5903 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5904 &func_g.search, ¬); 5905 5906 func_g.len = strlen(func_g.search); 5907 5908 mutex_lock(&ftrace_lock); 5909 5910 if (unlikely(ftrace_disabled)) { 5911 mutex_unlock(&ftrace_lock); 5912 return -ENODEV; 5913 } 5914 5915 do_for_each_ftrace_rec(pg, rec) { 5916 5917 if (rec->flags & FTRACE_FL_DISABLED) 5918 continue; 5919 5920 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5921 entry = ftrace_lookup_ip(hash, rec->ip); 5922 5923 if (!not) { 5924 fail = 0; 5925 5926 if (entry) 5927 continue; 5928 if (add_hash_entry(hash, rec->ip) < 0) 5929 goto out; 5930 } else { 5931 if (entry) { 5932 free_hash_entry(hash, entry); 5933 fail = 0; 5934 } 5935 } 5936 } 5937 } while_for_each_ftrace_rec(); 5938 out: 5939 mutex_unlock(&ftrace_lock); 5940 5941 if (fail) 5942 return -EINVAL; 5943 5944 return 0; 5945 } 5946 5947 static ssize_t 5948 ftrace_graph_write(struct file *file, const char __user *ubuf, 5949 size_t cnt, loff_t *ppos) 5950 { 5951 ssize_t read, ret = 0; 5952 struct ftrace_graph_data *fgd = file->private_data; 5953 struct trace_parser *parser; 5954 5955 if (!cnt) 5956 return 0; 5957 5958 /* Read mode uses seq functions */ 5959 if (file->f_mode & FMODE_READ) { 5960 struct seq_file *m = file->private_data; 5961 fgd = m->private; 5962 } 5963 5964 parser = &fgd->parser; 5965 5966 read = trace_get_user(parser, ubuf, cnt, ppos); 5967 5968 if (read >= 0 && trace_parser_loaded(parser) && 5969 !trace_parser_cont(parser)) { 5970 5971 ret = ftrace_graph_set_hash(fgd->new_hash, 5972 parser->buffer); 5973 trace_parser_clear(parser); 5974 } 5975 5976 if (!ret) 5977 ret = read; 5978 5979 return ret; 5980 } 5981 5982 static const struct file_operations ftrace_graph_fops = { 5983 .open = ftrace_graph_open, 5984 .read = seq_read, 5985 .write = ftrace_graph_write, 5986 .llseek = tracing_lseek, 5987 .release = ftrace_graph_release, 5988 }; 5989 5990 static const struct file_operations ftrace_graph_notrace_fops = { 5991 .open = ftrace_graph_notrace_open, 5992 .read = seq_read, 5993 .write = ftrace_graph_write, 5994 .llseek = tracing_lseek, 5995 .release = ftrace_graph_release, 5996 }; 5997 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5998 5999 void ftrace_create_filter_files(struct ftrace_ops *ops, 6000 struct dentry *parent) 6001 { 6002 6003 trace_create_file("set_ftrace_filter", 0644, parent, 6004 ops, &ftrace_filter_fops); 6005 6006 trace_create_file("set_ftrace_notrace", 0644, parent, 6007 ops, &ftrace_notrace_fops); 6008 } 6009 6010 /* 6011 * The name "destroy_filter_files" is really a misnomer. Although 6012 * in the future, it may actually delete the files, but this is 6013 * really intended to make sure the ops passed in are disabled 6014 * and that when this function returns, the caller is free to 6015 * free the ops. 6016 * 6017 * The "destroy" name is only to match the "create" name that this 6018 * should be paired with. 6019 */ 6020 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6021 { 6022 mutex_lock(&ftrace_lock); 6023 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6024 ftrace_shutdown(ops, 0); 6025 ops->flags |= FTRACE_OPS_FL_DELETED; 6026 ftrace_free_filter(ops); 6027 mutex_unlock(&ftrace_lock); 6028 } 6029 6030 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6031 { 6032 6033 trace_create_file("available_filter_functions", 0444, 6034 d_tracer, NULL, &ftrace_avail_fops); 6035 6036 trace_create_file("enabled_functions", 0444, 6037 d_tracer, NULL, &ftrace_enabled_fops); 6038 6039 ftrace_create_filter_files(&global_ops, d_tracer); 6040 6041 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6042 trace_create_file("set_graph_function", 0644, d_tracer, 6043 NULL, 6044 &ftrace_graph_fops); 6045 trace_create_file("set_graph_notrace", 0644, d_tracer, 6046 NULL, 6047 &ftrace_graph_notrace_fops); 6048 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6049 6050 return 0; 6051 } 6052 6053 static int ftrace_cmp_ips(const void *a, const void *b) 6054 { 6055 const unsigned long *ipa = a; 6056 const unsigned long *ipb = b; 6057 6058 if (*ipa > *ipb) 6059 return 1; 6060 if (*ipa < *ipb) 6061 return -1; 6062 return 0; 6063 } 6064 6065 static int ftrace_process_locs(struct module *mod, 6066 unsigned long *start, 6067 unsigned long *end) 6068 { 6069 struct ftrace_page *start_pg; 6070 struct ftrace_page *pg; 6071 struct dyn_ftrace *rec; 6072 unsigned long count; 6073 unsigned long *p; 6074 unsigned long addr; 6075 unsigned long flags = 0; /* Shut up gcc */ 6076 int ret = -ENOMEM; 6077 6078 count = end - start; 6079 6080 if (!count) 6081 return 0; 6082 6083 sort(start, count, sizeof(*start), 6084 ftrace_cmp_ips, NULL); 6085 6086 start_pg = ftrace_allocate_pages(count); 6087 if (!start_pg) 6088 return -ENOMEM; 6089 6090 mutex_lock(&ftrace_lock); 6091 6092 /* 6093 * Core and each module needs their own pages, as 6094 * modules will free them when they are removed. 6095 * Force a new page to be allocated for modules. 6096 */ 6097 if (!mod) { 6098 WARN_ON(ftrace_pages || ftrace_pages_start); 6099 /* First initialization */ 6100 ftrace_pages = ftrace_pages_start = start_pg; 6101 } else { 6102 if (!ftrace_pages) 6103 goto out; 6104 6105 if (WARN_ON(ftrace_pages->next)) { 6106 /* Hmm, we have free pages? */ 6107 while (ftrace_pages->next) 6108 ftrace_pages = ftrace_pages->next; 6109 } 6110 6111 ftrace_pages->next = start_pg; 6112 } 6113 6114 p = start; 6115 pg = start_pg; 6116 while (p < end) { 6117 addr = ftrace_call_adjust(*p++); 6118 /* 6119 * Some architecture linkers will pad between 6120 * the different mcount_loc sections of different 6121 * object files to satisfy alignments. 6122 * Skip any NULL pointers. 6123 */ 6124 if (!addr) 6125 continue; 6126 6127 if (pg->index == pg->size) { 6128 /* We should have allocated enough */ 6129 if (WARN_ON(!pg->next)) 6130 break; 6131 pg = pg->next; 6132 } 6133 6134 rec = &pg->records[pg->index++]; 6135 rec->ip = addr; 6136 } 6137 6138 /* We should have used all pages */ 6139 WARN_ON(pg->next); 6140 6141 /* Assign the last page to ftrace_pages */ 6142 ftrace_pages = pg; 6143 6144 /* 6145 * We only need to disable interrupts on start up 6146 * because we are modifying code that an interrupt 6147 * may execute, and the modification is not atomic. 6148 * But for modules, nothing runs the code we modify 6149 * until we are finished with it, and there's no 6150 * reason to cause large interrupt latencies while we do it. 6151 */ 6152 if (!mod) 6153 local_irq_save(flags); 6154 ftrace_update_code(mod, start_pg); 6155 if (!mod) 6156 local_irq_restore(flags); 6157 ret = 0; 6158 out: 6159 mutex_unlock(&ftrace_lock); 6160 6161 return ret; 6162 } 6163 6164 struct ftrace_mod_func { 6165 struct list_head list; 6166 char *name; 6167 unsigned long ip; 6168 unsigned int size; 6169 }; 6170 6171 struct ftrace_mod_map { 6172 struct rcu_head rcu; 6173 struct list_head list; 6174 struct module *mod; 6175 unsigned long start_addr; 6176 unsigned long end_addr; 6177 struct list_head funcs; 6178 unsigned int num_funcs; 6179 }; 6180 6181 #ifdef CONFIG_MODULES 6182 6183 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6184 6185 static LIST_HEAD(ftrace_mod_maps); 6186 6187 static int referenced_filters(struct dyn_ftrace *rec) 6188 { 6189 struct ftrace_ops *ops; 6190 int cnt = 0; 6191 6192 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6193 if (ops_references_rec(ops, rec)) 6194 cnt++; 6195 } 6196 6197 return cnt; 6198 } 6199 6200 static void 6201 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6202 { 6203 struct ftrace_func_entry *entry; 6204 struct dyn_ftrace *rec; 6205 int i; 6206 6207 if (ftrace_hash_empty(hash)) 6208 return; 6209 6210 for (i = 0; i < pg->index; i++) { 6211 rec = &pg->records[i]; 6212 entry = __ftrace_lookup_ip(hash, rec->ip); 6213 /* 6214 * Do not allow this rec to match again. 6215 * Yeah, it may waste some memory, but will be removed 6216 * if/when the hash is modified again. 6217 */ 6218 if (entry) 6219 entry->ip = 0; 6220 } 6221 } 6222 6223 /* Clear any records from hashs */ 6224 static void clear_mod_from_hashes(struct ftrace_page *pg) 6225 { 6226 struct trace_array *tr; 6227 6228 mutex_lock(&trace_types_lock); 6229 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6230 if (!tr->ops || !tr->ops->func_hash) 6231 continue; 6232 mutex_lock(&tr->ops->func_hash->regex_lock); 6233 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6234 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6235 mutex_unlock(&tr->ops->func_hash->regex_lock); 6236 } 6237 mutex_unlock(&trace_types_lock); 6238 } 6239 6240 static void ftrace_free_mod_map(struct rcu_head *rcu) 6241 { 6242 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6243 struct ftrace_mod_func *mod_func; 6244 struct ftrace_mod_func *n; 6245 6246 /* All the contents of mod_map are now not visible to readers */ 6247 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6248 kfree(mod_func->name); 6249 list_del(&mod_func->list); 6250 kfree(mod_func); 6251 } 6252 6253 kfree(mod_map); 6254 } 6255 6256 void ftrace_release_mod(struct module *mod) 6257 { 6258 struct ftrace_mod_map *mod_map; 6259 struct ftrace_mod_map *n; 6260 struct dyn_ftrace *rec; 6261 struct ftrace_page **last_pg; 6262 struct ftrace_page *tmp_page = NULL; 6263 struct ftrace_page *pg; 6264 int order; 6265 6266 mutex_lock(&ftrace_lock); 6267 6268 if (ftrace_disabled) 6269 goto out_unlock; 6270 6271 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6272 if (mod_map->mod == mod) { 6273 list_del_rcu(&mod_map->list); 6274 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6275 break; 6276 } 6277 } 6278 6279 /* 6280 * Each module has its own ftrace_pages, remove 6281 * them from the list. 6282 */ 6283 last_pg = &ftrace_pages_start; 6284 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6285 rec = &pg->records[0]; 6286 if (within_module_core(rec->ip, mod) || 6287 within_module_init(rec->ip, mod)) { 6288 /* 6289 * As core pages are first, the first 6290 * page should never be a module page. 6291 */ 6292 if (WARN_ON(pg == ftrace_pages_start)) 6293 goto out_unlock; 6294 6295 /* Check if we are deleting the last page */ 6296 if (pg == ftrace_pages) 6297 ftrace_pages = next_to_ftrace_page(last_pg); 6298 6299 ftrace_update_tot_cnt -= pg->index; 6300 *last_pg = pg->next; 6301 6302 pg->next = tmp_page; 6303 tmp_page = pg; 6304 } else 6305 last_pg = &pg->next; 6306 } 6307 out_unlock: 6308 mutex_unlock(&ftrace_lock); 6309 6310 for (pg = tmp_page; pg; pg = tmp_page) { 6311 6312 /* Needs to be called outside of ftrace_lock */ 6313 clear_mod_from_hashes(pg); 6314 6315 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6316 free_pages((unsigned long)pg->records, order); 6317 tmp_page = pg->next; 6318 kfree(pg); 6319 ftrace_number_of_pages -= 1 << order; 6320 ftrace_number_of_groups--; 6321 } 6322 } 6323 6324 void ftrace_module_enable(struct module *mod) 6325 { 6326 struct dyn_ftrace *rec; 6327 struct ftrace_page *pg; 6328 6329 mutex_lock(&ftrace_lock); 6330 6331 if (ftrace_disabled) 6332 goto out_unlock; 6333 6334 /* 6335 * If the tracing is enabled, go ahead and enable the record. 6336 * 6337 * The reason not to enable the record immediately is the 6338 * inherent check of ftrace_make_nop/ftrace_make_call for 6339 * correct previous instructions. Making first the NOP 6340 * conversion puts the module to the correct state, thus 6341 * passing the ftrace_make_call check. 6342 * 6343 * We also delay this to after the module code already set the 6344 * text to read-only, as we now need to set it back to read-write 6345 * so that we can modify the text. 6346 */ 6347 if (ftrace_start_up) 6348 ftrace_arch_code_modify_prepare(); 6349 6350 do_for_each_ftrace_rec(pg, rec) { 6351 int cnt; 6352 /* 6353 * do_for_each_ftrace_rec() is a double loop. 6354 * module text shares the pg. If a record is 6355 * not part of this module, then skip this pg, 6356 * which the "break" will do. 6357 */ 6358 if (!within_module_core(rec->ip, mod) && 6359 !within_module_init(rec->ip, mod)) 6360 break; 6361 6362 cnt = 0; 6363 6364 /* 6365 * When adding a module, we need to check if tracers are 6366 * currently enabled and if they are, and can trace this record, 6367 * we need to enable the module functions as well as update the 6368 * reference counts for those function records. 6369 */ 6370 if (ftrace_start_up) 6371 cnt += referenced_filters(rec); 6372 6373 /* This clears FTRACE_FL_DISABLED */ 6374 rec->flags = cnt; 6375 6376 if (ftrace_start_up && cnt) { 6377 int failed = __ftrace_replace_code(rec, 1); 6378 if (failed) { 6379 ftrace_bug(failed, rec); 6380 goto out_loop; 6381 } 6382 } 6383 6384 } while_for_each_ftrace_rec(); 6385 6386 out_loop: 6387 if (ftrace_start_up) 6388 ftrace_arch_code_modify_post_process(); 6389 6390 out_unlock: 6391 mutex_unlock(&ftrace_lock); 6392 6393 process_cached_mods(mod->name); 6394 } 6395 6396 void ftrace_module_init(struct module *mod) 6397 { 6398 if (ftrace_disabled || !mod->num_ftrace_callsites) 6399 return; 6400 6401 ftrace_process_locs(mod, mod->ftrace_callsites, 6402 mod->ftrace_callsites + mod->num_ftrace_callsites); 6403 } 6404 6405 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6406 struct dyn_ftrace *rec) 6407 { 6408 struct ftrace_mod_func *mod_func; 6409 unsigned long symsize; 6410 unsigned long offset; 6411 char str[KSYM_SYMBOL_LEN]; 6412 char *modname; 6413 const char *ret; 6414 6415 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6416 if (!ret) 6417 return; 6418 6419 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6420 if (!mod_func) 6421 return; 6422 6423 mod_func->name = kstrdup(str, GFP_KERNEL); 6424 if (!mod_func->name) { 6425 kfree(mod_func); 6426 return; 6427 } 6428 6429 mod_func->ip = rec->ip - offset; 6430 mod_func->size = symsize; 6431 6432 mod_map->num_funcs++; 6433 6434 list_add_rcu(&mod_func->list, &mod_map->funcs); 6435 } 6436 6437 static struct ftrace_mod_map * 6438 allocate_ftrace_mod_map(struct module *mod, 6439 unsigned long start, unsigned long end) 6440 { 6441 struct ftrace_mod_map *mod_map; 6442 6443 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6444 if (!mod_map) 6445 return NULL; 6446 6447 mod_map->mod = mod; 6448 mod_map->start_addr = start; 6449 mod_map->end_addr = end; 6450 mod_map->num_funcs = 0; 6451 6452 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6453 6454 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6455 6456 return mod_map; 6457 } 6458 6459 static const char * 6460 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6461 unsigned long addr, unsigned long *size, 6462 unsigned long *off, char *sym) 6463 { 6464 struct ftrace_mod_func *found_func = NULL; 6465 struct ftrace_mod_func *mod_func; 6466 6467 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6468 if (addr >= mod_func->ip && 6469 addr < mod_func->ip + mod_func->size) { 6470 found_func = mod_func; 6471 break; 6472 } 6473 } 6474 6475 if (found_func) { 6476 if (size) 6477 *size = found_func->size; 6478 if (off) 6479 *off = addr - found_func->ip; 6480 if (sym) 6481 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6482 6483 return found_func->name; 6484 } 6485 6486 return NULL; 6487 } 6488 6489 const char * 6490 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6491 unsigned long *off, char **modname, char *sym) 6492 { 6493 struct ftrace_mod_map *mod_map; 6494 const char *ret = NULL; 6495 6496 /* mod_map is freed via call_rcu() */ 6497 preempt_disable(); 6498 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6499 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6500 if (ret) { 6501 if (modname) 6502 *modname = mod_map->mod->name; 6503 break; 6504 } 6505 } 6506 preempt_enable(); 6507 6508 return ret; 6509 } 6510 6511 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6512 char *type, char *name, 6513 char *module_name, int *exported) 6514 { 6515 struct ftrace_mod_map *mod_map; 6516 struct ftrace_mod_func *mod_func; 6517 6518 preempt_disable(); 6519 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6520 6521 if (symnum >= mod_map->num_funcs) { 6522 symnum -= mod_map->num_funcs; 6523 continue; 6524 } 6525 6526 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6527 if (symnum > 1) { 6528 symnum--; 6529 continue; 6530 } 6531 6532 *value = mod_func->ip; 6533 *type = 'T'; 6534 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6535 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6536 *exported = 1; 6537 preempt_enable(); 6538 return 0; 6539 } 6540 WARN_ON(1); 6541 break; 6542 } 6543 preempt_enable(); 6544 return -ERANGE; 6545 } 6546 6547 #else 6548 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6549 struct dyn_ftrace *rec) { } 6550 static inline struct ftrace_mod_map * 6551 allocate_ftrace_mod_map(struct module *mod, 6552 unsigned long start, unsigned long end) 6553 { 6554 return NULL; 6555 } 6556 #endif /* CONFIG_MODULES */ 6557 6558 struct ftrace_init_func { 6559 struct list_head list; 6560 unsigned long ip; 6561 }; 6562 6563 /* Clear any init ips from hashes */ 6564 static void 6565 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6566 { 6567 struct ftrace_func_entry *entry; 6568 6569 entry = ftrace_lookup_ip(hash, func->ip); 6570 /* 6571 * Do not allow this rec to match again. 6572 * Yeah, it may waste some memory, but will be removed 6573 * if/when the hash is modified again. 6574 */ 6575 if (entry) 6576 entry->ip = 0; 6577 } 6578 6579 static void 6580 clear_func_from_hashes(struct ftrace_init_func *func) 6581 { 6582 struct trace_array *tr; 6583 6584 mutex_lock(&trace_types_lock); 6585 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6586 if (!tr->ops || !tr->ops->func_hash) 6587 continue; 6588 mutex_lock(&tr->ops->func_hash->regex_lock); 6589 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6590 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6591 mutex_unlock(&tr->ops->func_hash->regex_lock); 6592 } 6593 mutex_unlock(&trace_types_lock); 6594 } 6595 6596 static void add_to_clear_hash_list(struct list_head *clear_list, 6597 struct dyn_ftrace *rec) 6598 { 6599 struct ftrace_init_func *func; 6600 6601 func = kmalloc(sizeof(*func), GFP_KERNEL); 6602 if (!func) { 6603 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6604 return; 6605 } 6606 6607 func->ip = rec->ip; 6608 list_add(&func->list, clear_list); 6609 } 6610 6611 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6612 { 6613 unsigned long start = (unsigned long)(start_ptr); 6614 unsigned long end = (unsigned long)(end_ptr); 6615 struct ftrace_page **last_pg = &ftrace_pages_start; 6616 struct ftrace_page *pg; 6617 struct dyn_ftrace *rec; 6618 struct dyn_ftrace key; 6619 struct ftrace_mod_map *mod_map = NULL; 6620 struct ftrace_init_func *func, *func_next; 6621 struct list_head clear_hash; 6622 int order; 6623 6624 INIT_LIST_HEAD(&clear_hash); 6625 6626 key.ip = start; 6627 key.flags = end; /* overload flags, as it is unsigned long */ 6628 6629 mutex_lock(&ftrace_lock); 6630 6631 /* 6632 * If we are freeing module init memory, then check if 6633 * any tracer is active. If so, we need to save a mapping of 6634 * the module functions being freed with the address. 6635 */ 6636 if (mod && ftrace_ops_list != &ftrace_list_end) 6637 mod_map = allocate_ftrace_mod_map(mod, start, end); 6638 6639 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6640 if (end < pg->records[0].ip || 6641 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6642 continue; 6643 again: 6644 rec = bsearch(&key, pg->records, pg->index, 6645 sizeof(struct dyn_ftrace), 6646 ftrace_cmp_recs); 6647 if (!rec) 6648 continue; 6649 6650 /* rec will be cleared from hashes after ftrace_lock unlock */ 6651 add_to_clear_hash_list(&clear_hash, rec); 6652 6653 if (mod_map) 6654 save_ftrace_mod_rec(mod_map, rec); 6655 6656 pg->index--; 6657 ftrace_update_tot_cnt--; 6658 if (!pg->index) { 6659 *last_pg = pg->next; 6660 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6661 free_pages((unsigned long)pg->records, order); 6662 ftrace_number_of_pages -= 1 << order; 6663 ftrace_number_of_groups--; 6664 kfree(pg); 6665 pg = container_of(last_pg, struct ftrace_page, next); 6666 if (!(*last_pg)) 6667 ftrace_pages = pg; 6668 continue; 6669 } 6670 memmove(rec, rec + 1, 6671 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6672 /* More than one function may be in this block */ 6673 goto again; 6674 } 6675 mutex_unlock(&ftrace_lock); 6676 6677 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6678 clear_func_from_hashes(func); 6679 kfree(func); 6680 } 6681 } 6682 6683 void __init ftrace_free_init_mem(void) 6684 { 6685 void *start = (void *)(&__init_begin); 6686 void *end = (void *)(&__init_end); 6687 6688 ftrace_free_mem(NULL, start, end); 6689 } 6690 6691 void __init ftrace_init(void) 6692 { 6693 extern unsigned long __start_mcount_loc[]; 6694 extern unsigned long __stop_mcount_loc[]; 6695 unsigned long count, flags; 6696 int ret; 6697 6698 local_irq_save(flags); 6699 ret = ftrace_dyn_arch_init(); 6700 local_irq_restore(flags); 6701 if (ret) 6702 goto failed; 6703 6704 count = __stop_mcount_loc - __start_mcount_loc; 6705 if (!count) { 6706 pr_info("ftrace: No functions to be traced?\n"); 6707 goto failed; 6708 } 6709 6710 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6711 count, count / ENTRIES_PER_PAGE + 1); 6712 6713 last_ftrace_enabled = ftrace_enabled = 1; 6714 6715 ret = ftrace_process_locs(NULL, 6716 __start_mcount_loc, 6717 __stop_mcount_loc); 6718 6719 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6720 ftrace_number_of_pages, ftrace_number_of_groups); 6721 6722 set_ftrace_early_filters(); 6723 6724 return; 6725 failed: 6726 ftrace_disabled = 1; 6727 } 6728 6729 /* Do nothing if arch does not support this */ 6730 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6731 { 6732 } 6733 6734 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6735 { 6736 arch_ftrace_update_trampoline(ops); 6737 } 6738 6739 void ftrace_init_trace_array(struct trace_array *tr) 6740 { 6741 INIT_LIST_HEAD(&tr->func_probes); 6742 INIT_LIST_HEAD(&tr->mod_trace); 6743 INIT_LIST_HEAD(&tr->mod_notrace); 6744 } 6745 #else 6746 6747 struct ftrace_ops global_ops = { 6748 .func = ftrace_stub, 6749 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6750 FTRACE_OPS_FL_INITIALIZED | 6751 FTRACE_OPS_FL_PID, 6752 }; 6753 6754 static int __init ftrace_nodyn_init(void) 6755 { 6756 ftrace_enabled = 1; 6757 return 0; 6758 } 6759 core_initcall(ftrace_nodyn_init); 6760 6761 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6762 static inline void ftrace_startup_enable(int command) { } 6763 static inline void ftrace_startup_all(int command) { } 6764 6765 # define ftrace_startup_sysctl() do { } while (0) 6766 # define ftrace_shutdown_sysctl() do { } while (0) 6767 6768 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6769 { 6770 } 6771 6772 #endif /* CONFIG_DYNAMIC_FTRACE */ 6773 6774 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6775 { 6776 tr->ops = &global_ops; 6777 tr->ops->private = tr; 6778 ftrace_init_trace_array(tr); 6779 } 6780 6781 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6782 { 6783 /* If we filter on pids, update to use the pid function */ 6784 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6785 if (WARN_ON(tr->ops->func != ftrace_stub)) 6786 printk("ftrace ops had %pS for function\n", 6787 tr->ops->func); 6788 } 6789 tr->ops->func = func; 6790 tr->ops->private = tr; 6791 } 6792 6793 void ftrace_reset_array_ops(struct trace_array *tr) 6794 { 6795 tr->ops->func = ftrace_stub; 6796 } 6797 6798 static nokprobe_inline void 6799 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6800 struct ftrace_ops *ignored, struct pt_regs *regs) 6801 { 6802 struct ftrace_ops *op; 6803 int bit; 6804 6805 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6806 if (bit < 0) 6807 return; 6808 6809 /* 6810 * Some of the ops may be dynamically allocated, 6811 * they must be freed after a synchronize_rcu(). 6812 */ 6813 preempt_disable_notrace(); 6814 6815 do_for_each_ftrace_op(op, ftrace_ops_list) { 6816 /* Stub functions don't need to be called nor tested */ 6817 if (op->flags & FTRACE_OPS_FL_STUB) 6818 continue; 6819 /* 6820 * Check the following for each ops before calling their func: 6821 * if RCU flag is set, then rcu_is_watching() must be true 6822 * if PER_CPU is set, then ftrace_function_local_disable() 6823 * must be false 6824 * Otherwise test if the ip matches the ops filter 6825 * 6826 * If any of the above fails then the op->func() is not executed. 6827 */ 6828 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6829 ftrace_ops_test(op, ip, regs)) { 6830 if (FTRACE_WARN_ON(!op->func)) { 6831 pr_warn("op=%p %pS\n", op, op); 6832 goto out; 6833 } 6834 op->func(ip, parent_ip, op, regs); 6835 } 6836 } while_for_each_ftrace_op(op); 6837 out: 6838 preempt_enable_notrace(); 6839 trace_clear_recursion(bit); 6840 } 6841 6842 /* 6843 * Some archs only support passing ip and parent_ip. Even though 6844 * the list function ignores the op parameter, we do not want any 6845 * C side effects, where a function is called without the caller 6846 * sending a third parameter. 6847 * Archs are to support both the regs and ftrace_ops at the same time. 6848 * If they support ftrace_ops, it is assumed they support regs. 6849 * If call backs want to use regs, they must either check for regs 6850 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6851 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6852 * An architecture can pass partial regs with ftrace_ops and still 6853 * set the ARCH_SUPPORTS_FTRACE_OPS. 6854 */ 6855 #if ARCH_SUPPORTS_FTRACE_OPS 6856 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6857 struct ftrace_ops *op, struct pt_regs *regs) 6858 { 6859 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6860 } 6861 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6862 #else 6863 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6864 { 6865 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6866 } 6867 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6868 #endif 6869 6870 /* 6871 * If there's only one function registered but it does not support 6872 * recursion, needs RCU protection and/or requires per cpu handling, then 6873 * this function will be called by the mcount trampoline. 6874 */ 6875 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6876 struct ftrace_ops *op, struct pt_regs *regs) 6877 { 6878 int bit; 6879 6880 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6881 return; 6882 6883 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6884 if (bit < 0) 6885 return; 6886 6887 preempt_disable_notrace(); 6888 6889 op->func(ip, parent_ip, op, regs); 6890 6891 preempt_enable_notrace(); 6892 trace_clear_recursion(bit); 6893 } 6894 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 6895 6896 /** 6897 * ftrace_ops_get_func - get the function a trampoline should call 6898 * @ops: the ops to get the function for 6899 * 6900 * Normally the mcount trampoline will call the ops->func, but there 6901 * are times that it should not. For example, if the ops does not 6902 * have its own recursion protection, then it should call the 6903 * ftrace_ops_assist_func() instead. 6904 * 6905 * Returns the function that the trampoline should call for @ops. 6906 */ 6907 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 6908 { 6909 /* 6910 * If the function does not handle recursion, needs to be RCU safe, 6911 * or does per cpu logic, then we need to call the assist handler. 6912 */ 6913 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 6914 ops->flags & FTRACE_OPS_FL_RCU) 6915 return ftrace_ops_assist_func; 6916 6917 return ops->func; 6918 } 6919 6920 static void 6921 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 6922 struct task_struct *prev, struct task_struct *next) 6923 { 6924 struct trace_array *tr = data; 6925 struct trace_pid_list *pid_list; 6926 struct trace_pid_list *no_pid_list; 6927 6928 pid_list = rcu_dereference_sched(tr->function_pids); 6929 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 6930 6931 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 6932 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 6933 FTRACE_PID_IGNORE); 6934 else 6935 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 6936 next->pid); 6937 } 6938 6939 static void 6940 ftrace_pid_follow_sched_process_fork(void *data, 6941 struct task_struct *self, 6942 struct task_struct *task) 6943 { 6944 struct trace_pid_list *pid_list; 6945 struct trace_array *tr = data; 6946 6947 pid_list = rcu_dereference_sched(tr->function_pids); 6948 trace_filter_add_remove_task(pid_list, self, task); 6949 6950 pid_list = rcu_dereference_sched(tr->function_no_pids); 6951 trace_filter_add_remove_task(pid_list, self, task); 6952 } 6953 6954 static void 6955 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 6956 { 6957 struct trace_pid_list *pid_list; 6958 struct trace_array *tr = data; 6959 6960 pid_list = rcu_dereference_sched(tr->function_pids); 6961 trace_filter_add_remove_task(pid_list, NULL, task); 6962 6963 pid_list = rcu_dereference_sched(tr->function_no_pids); 6964 trace_filter_add_remove_task(pid_list, NULL, task); 6965 } 6966 6967 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 6968 { 6969 if (enable) { 6970 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6971 tr); 6972 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6973 tr); 6974 } else { 6975 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6976 tr); 6977 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6978 tr); 6979 } 6980 } 6981 6982 static void clear_ftrace_pids(struct trace_array *tr, int type) 6983 { 6984 struct trace_pid_list *pid_list; 6985 struct trace_pid_list *no_pid_list; 6986 int cpu; 6987 6988 pid_list = rcu_dereference_protected(tr->function_pids, 6989 lockdep_is_held(&ftrace_lock)); 6990 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 6991 lockdep_is_held(&ftrace_lock)); 6992 6993 /* Make sure there's something to do */ 6994 if (!pid_type_enabled(type, pid_list, no_pid_list)) 6995 return; 6996 6997 /* See if the pids still need to be checked after this */ 6998 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 6999 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7000 for_each_possible_cpu(cpu) 7001 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7002 } 7003 7004 if (type & TRACE_PIDS) 7005 rcu_assign_pointer(tr->function_pids, NULL); 7006 7007 if (type & TRACE_NO_PIDS) 7008 rcu_assign_pointer(tr->function_no_pids, NULL); 7009 7010 /* Wait till all users are no longer using pid filtering */ 7011 synchronize_rcu(); 7012 7013 if ((type & TRACE_PIDS) && pid_list) 7014 trace_free_pid_list(pid_list); 7015 7016 if ((type & TRACE_NO_PIDS) && no_pid_list) 7017 trace_free_pid_list(no_pid_list); 7018 } 7019 7020 void ftrace_clear_pids(struct trace_array *tr) 7021 { 7022 mutex_lock(&ftrace_lock); 7023 7024 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7025 7026 mutex_unlock(&ftrace_lock); 7027 } 7028 7029 static void ftrace_pid_reset(struct trace_array *tr, int type) 7030 { 7031 mutex_lock(&ftrace_lock); 7032 clear_ftrace_pids(tr, type); 7033 7034 ftrace_update_pid_func(); 7035 ftrace_startup_all(0); 7036 7037 mutex_unlock(&ftrace_lock); 7038 } 7039 7040 /* Greater than any max PID */ 7041 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7042 7043 static void *fpid_start(struct seq_file *m, loff_t *pos) 7044 __acquires(RCU) 7045 { 7046 struct trace_pid_list *pid_list; 7047 struct trace_array *tr = m->private; 7048 7049 mutex_lock(&ftrace_lock); 7050 rcu_read_lock_sched(); 7051 7052 pid_list = rcu_dereference_sched(tr->function_pids); 7053 7054 if (!pid_list) 7055 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7056 7057 return trace_pid_start(pid_list, pos); 7058 } 7059 7060 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7061 { 7062 struct trace_array *tr = m->private; 7063 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7064 7065 if (v == FTRACE_NO_PIDS) { 7066 (*pos)++; 7067 return NULL; 7068 } 7069 return trace_pid_next(pid_list, v, pos); 7070 } 7071 7072 static void fpid_stop(struct seq_file *m, void *p) 7073 __releases(RCU) 7074 { 7075 rcu_read_unlock_sched(); 7076 mutex_unlock(&ftrace_lock); 7077 } 7078 7079 static int fpid_show(struct seq_file *m, void *v) 7080 { 7081 if (v == FTRACE_NO_PIDS) { 7082 seq_puts(m, "no pid\n"); 7083 return 0; 7084 } 7085 7086 return trace_pid_show(m, v); 7087 } 7088 7089 static const struct seq_operations ftrace_pid_sops = { 7090 .start = fpid_start, 7091 .next = fpid_next, 7092 .stop = fpid_stop, 7093 .show = fpid_show, 7094 }; 7095 7096 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7097 __acquires(RCU) 7098 { 7099 struct trace_pid_list *pid_list; 7100 struct trace_array *tr = m->private; 7101 7102 mutex_lock(&ftrace_lock); 7103 rcu_read_lock_sched(); 7104 7105 pid_list = rcu_dereference_sched(tr->function_no_pids); 7106 7107 if (!pid_list) 7108 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7109 7110 return trace_pid_start(pid_list, pos); 7111 } 7112 7113 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7114 { 7115 struct trace_array *tr = m->private; 7116 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7117 7118 if (v == FTRACE_NO_PIDS) { 7119 (*pos)++; 7120 return NULL; 7121 } 7122 return trace_pid_next(pid_list, v, pos); 7123 } 7124 7125 static const struct seq_operations ftrace_no_pid_sops = { 7126 .start = fnpid_start, 7127 .next = fnpid_next, 7128 .stop = fpid_stop, 7129 .show = fpid_show, 7130 }; 7131 7132 static int pid_open(struct inode *inode, struct file *file, int type) 7133 { 7134 const struct seq_operations *seq_ops; 7135 struct trace_array *tr = inode->i_private; 7136 struct seq_file *m; 7137 int ret = 0; 7138 7139 ret = tracing_check_open_get_tr(tr); 7140 if (ret) 7141 return ret; 7142 7143 if ((file->f_mode & FMODE_WRITE) && 7144 (file->f_flags & O_TRUNC)) 7145 ftrace_pid_reset(tr, type); 7146 7147 switch (type) { 7148 case TRACE_PIDS: 7149 seq_ops = &ftrace_pid_sops; 7150 break; 7151 case TRACE_NO_PIDS: 7152 seq_ops = &ftrace_no_pid_sops; 7153 break; 7154 } 7155 7156 ret = seq_open(file, seq_ops); 7157 if (ret < 0) { 7158 trace_array_put(tr); 7159 } else { 7160 m = file->private_data; 7161 /* copy tr over to seq ops */ 7162 m->private = tr; 7163 } 7164 7165 return ret; 7166 } 7167 7168 static int 7169 ftrace_pid_open(struct inode *inode, struct file *file) 7170 { 7171 return pid_open(inode, file, TRACE_PIDS); 7172 } 7173 7174 static int 7175 ftrace_no_pid_open(struct inode *inode, struct file *file) 7176 { 7177 return pid_open(inode, file, TRACE_NO_PIDS); 7178 } 7179 7180 static void ignore_task_cpu(void *data) 7181 { 7182 struct trace_array *tr = data; 7183 struct trace_pid_list *pid_list; 7184 struct trace_pid_list *no_pid_list; 7185 7186 /* 7187 * This function is called by on_each_cpu() while the 7188 * event_mutex is held. 7189 */ 7190 pid_list = rcu_dereference_protected(tr->function_pids, 7191 mutex_is_locked(&ftrace_lock)); 7192 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7193 mutex_is_locked(&ftrace_lock)); 7194 7195 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7196 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7197 FTRACE_PID_IGNORE); 7198 else 7199 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7200 current->pid); 7201 } 7202 7203 static ssize_t 7204 pid_write(struct file *filp, const char __user *ubuf, 7205 size_t cnt, loff_t *ppos, int type) 7206 { 7207 struct seq_file *m = filp->private_data; 7208 struct trace_array *tr = m->private; 7209 struct trace_pid_list *filtered_pids; 7210 struct trace_pid_list *other_pids; 7211 struct trace_pid_list *pid_list; 7212 ssize_t ret; 7213 7214 if (!cnt) 7215 return 0; 7216 7217 mutex_lock(&ftrace_lock); 7218 7219 switch (type) { 7220 case TRACE_PIDS: 7221 filtered_pids = rcu_dereference_protected(tr->function_pids, 7222 lockdep_is_held(&ftrace_lock)); 7223 other_pids = rcu_dereference_protected(tr->function_no_pids, 7224 lockdep_is_held(&ftrace_lock)); 7225 break; 7226 case TRACE_NO_PIDS: 7227 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7228 lockdep_is_held(&ftrace_lock)); 7229 other_pids = rcu_dereference_protected(tr->function_pids, 7230 lockdep_is_held(&ftrace_lock)); 7231 break; 7232 } 7233 7234 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7235 if (ret < 0) 7236 goto out; 7237 7238 switch (type) { 7239 case TRACE_PIDS: 7240 rcu_assign_pointer(tr->function_pids, pid_list); 7241 break; 7242 case TRACE_NO_PIDS: 7243 rcu_assign_pointer(tr->function_no_pids, pid_list); 7244 break; 7245 } 7246 7247 7248 if (filtered_pids) { 7249 synchronize_rcu(); 7250 trace_free_pid_list(filtered_pids); 7251 } else if (pid_list && !other_pids) { 7252 /* Register a probe to set whether to ignore the tracing of a task */ 7253 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7254 } 7255 7256 /* 7257 * Ignoring of pids is done at task switch. But we have to 7258 * check for those tasks that are currently running. 7259 * Always do this in case a pid was appended or removed. 7260 */ 7261 on_each_cpu(ignore_task_cpu, tr, 1); 7262 7263 ftrace_update_pid_func(); 7264 ftrace_startup_all(0); 7265 out: 7266 mutex_unlock(&ftrace_lock); 7267 7268 if (ret > 0) 7269 *ppos += ret; 7270 7271 return ret; 7272 } 7273 7274 static ssize_t 7275 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7276 size_t cnt, loff_t *ppos) 7277 { 7278 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7279 } 7280 7281 static ssize_t 7282 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7283 size_t cnt, loff_t *ppos) 7284 { 7285 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7286 } 7287 7288 static int 7289 ftrace_pid_release(struct inode *inode, struct file *file) 7290 { 7291 struct trace_array *tr = inode->i_private; 7292 7293 trace_array_put(tr); 7294 7295 return seq_release(inode, file); 7296 } 7297 7298 static const struct file_operations ftrace_pid_fops = { 7299 .open = ftrace_pid_open, 7300 .write = ftrace_pid_write, 7301 .read = seq_read, 7302 .llseek = tracing_lseek, 7303 .release = ftrace_pid_release, 7304 }; 7305 7306 static const struct file_operations ftrace_no_pid_fops = { 7307 .open = ftrace_no_pid_open, 7308 .write = ftrace_no_pid_write, 7309 .read = seq_read, 7310 .llseek = tracing_lseek, 7311 .release = ftrace_pid_release, 7312 }; 7313 7314 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7315 { 7316 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7317 tr, &ftrace_pid_fops); 7318 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer, 7319 tr, &ftrace_no_pid_fops); 7320 } 7321 7322 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7323 struct dentry *d_tracer) 7324 { 7325 /* Only the top level directory has the dyn_tracefs and profile */ 7326 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7327 7328 ftrace_init_dyn_tracefs(d_tracer); 7329 ftrace_profile_tracefs(d_tracer); 7330 } 7331 7332 /** 7333 * ftrace_kill - kill ftrace 7334 * 7335 * This function should be used by panic code. It stops ftrace 7336 * but in a not so nice way. If you need to simply kill ftrace 7337 * from a non-atomic section, use ftrace_kill. 7338 */ 7339 void ftrace_kill(void) 7340 { 7341 ftrace_disabled = 1; 7342 ftrace_enabled = 0; 7343 ftrace_trace_function = ftrace_stub; 7344 } 7345 7346 /** 7347 * Test if ftrace is dead or not. 7348 */ 7349 int ftrace_is_dead(void) 7350 { 7351 return ftrace_disabled; 7352 } 7353 7354 /** 7355 * register_ftrace_function - register a function for profiling 7356 * @ops - ops structure that holds the function for profiling. 7357 * 7358 * Register a function to be called by all functions in the 7359 * kernel. 7360 * 7361 * Note: @ops->func and all the functions it calls must be labeled 7362 * with "notrace", otherwise it will go into a 7363 * recursive loop. 7364 */ 7365 int register_ftrace_function(struct ftrace_ops *ops) 7366 { 7367 int ret = -1; 7368 7369 ftrace_ops_init(ops); 7370 7371 mutex_lock(&ftrace_lock); 7372 7373 ret = ftrace_startup(ops, 0); 7374 7375 mutex_unlock(&ftrace_lock); 7376 7377 return ret; 7378 } 7379 EXPORT_SYMBOL_GPL(register_ftrace_function); 7380 7381 /** 7382 * unregister_ftrace_function - unregister a function for profiling. 7383 * @ops - ops structure that holds the function to unregister 7384 * 7385 * Unregister a function that was added to be called by ftrace profiling. 7386 */ 7387 int unregister_ftrace_function(struct ftrace_ops *ops) 7388 { 7389 int ret; 7390 7391 mutex_lock(&ftrace_lock); 7392 ret = ftrace_shutdown(ops, 0); 7393 mutex_unlock(&ftrace_lock); 7394 7395 return ret; 7396 } 7397 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7398 7399 static bool is_permanent_ops_registered(void) 7400 { 7401 struct ftrace_ops *op; 7402 7403 do_for_each_ftrace_op(op, ftrace_ops_list) { 7404 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7405 return true; 7406 } while_for_each_ftrace_op(op); 7407 7408 return false; 7409 } 7410 7411 int 7412 ftrace_enable_sysctl(struct ctl_table *table, int write, 7413 void __user *buffer, size_t *lenp, 7414 loff_t *ppos) 7415 { 7416 int ret = -ENODEV; 7417 7418 mutex_lock(&ftrace_lock); 7419 7420 if (unlikely(ftrace_disabled)) 7421 goto out; 7422 7423 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7424 7425 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7426 goto out; 7427 7428 if (ftrace_enabled) { 7429 7430 /* we are starting ftrace again */ 7431 if (rcu_dereference_protected(ftrace_ops_list, 7432 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7433 update_ftrace_function(); 7434 7435 ftrace_startup_sysctl(); 7436 7437 } else { 7438 if (is_permanent_ops_registered()) { 7439 ftrace_enabled = true; 7440 ret = -EBUSY; 7441 goto out; 7442 } 7443 7444 /* stopping ftrace calls (just send to ftrace_stub) */ 7445 ftrace_trace_function = ftrace_stub; 7446 7447 ftrace_shutdown_sysctl(); 7448 } 7449 7450 last_ftrace_enabled = !!ftrace_enabled; 7451 out: 7452 mutex_unlock(&ftrace_lock); 7453 return ret; 7454 } 7455