xref: /openbmc/linux/kernel/trace/ftrace.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 static inline void ftrace_ops_init(struct ftrace_ops *ops)
129 {
130 #ifdef CONFIG_DYNAMIC_FTRACE
131 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
132 		mutex_init(&ops->local_hash.regex_lock);
133 		ops->func_hash = &ops->local_hash;
134 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
135 	}
136 #endif
137 }
138 
139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
140 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
141 {
142 	struct trace_array *tr = op->private;
143 	int pid;
144 
145 	if (tr) {
146 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
147 		if (pid == FTRACE_PID_IGNORE)
148 			return;
149 		if (pid != FTRACE_PID_TRACE &&
150 		    pid != current->pid)
151 			return;
152 	}
153 
154 	op->saved_func(ip, parent_ip, op, fregs);
155 }
156 
157 static void ftrace_sync_ipi(void *data)
158 {
159 	/* Probably not needed, but do it anyway */
160 	smp_rmb();
161 }
162 
163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
164 {
165 	/*
166 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
167 	 * then it needs to call the list anyway.
168 	 */
169 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
170 	    FTRACE_FORCE_LIST_FUNC)
171 		return ftrace_ops_list_func;
172 
173 	return ftrace_ops_get_func(ops);
174 }
175 
176 static void update_ftrace_function(void)
177 {
178 	ftrace_func_t func;
179 
180 	/*
181 	 * Prepare the ftrace_ops that the arch callback will use.
182 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
183 	 * will point to the ops we want.
184 	 */
185 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
186 						lockdep_is_held(&ftrace_lock));
187 
188 	/* If there's no ftrace_ops registered, just call the stub function */
189 	if (set_function_trace_op == &ftrace_list_end) {
190 		func = ftrace_stub;
191 
192 	/*
193 	 * If we are at the end of the list and this ops is
194 	 * recursion safe and not dynamic and the arch supports passing ops,
195 	 * then have the mcount trampoline call the function directly.
196 	 */
197 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
198 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
199 		func = ftrace_ops_get_list_func(ftrace_ops_list);
200 
201 	} else {
202 		/* Just use the default ftrace_ops */
203 		set_function_trace_op = &ftrace_list_end;
204 		func = ftrace_ops_list_func;
205 	}
206 
207 	update_function_graph_func();
208 
209 	/* If there's no change, then do nothing more here */
210 	if (ftrace_trace_function == func)
211 		return;
212 
213 	/*
214 	 * If we are using the list function, it doesn't care
215 	 * about the function_trace_ops.
216 	 */
217 	if (func == ftrace_ops_list_func) {
218 		ftrace_trace_function = func;
219 		/*
220 		 * Don't even bother setting function_trace_ops,
221 		 * it would be racy to do so anyway.
222 		 */
223 		return;
224 	}
225 
226 #ifndef CONFIG_DYNAMIC_FTRACE
227 	/*
228 	 * For static tracing, we need to be a bit more careful.
229 	 * The function change takes affect immediately. Thus,
230 	 * we need to coordinate the setting of the function_trace_ops
231 	 * with the setting of the ftrace_trace_function.
232 	 *
233 	 * Set the function to the list ops, which will call the
234 	 * function we want, albeit indirectly, but it handles the
235 	 * ftrace_ops and doesn't depend on function_trace_op.
236 	 */
237 	ftrace_trace_function = ftrace_ops_list_func;
238 	/*
239 	 * Make sure all CPUs see this. Yes this is slow, but static
240 	 * tracing is slow and nasty to have enabled.
241 	 */
242 	synchronize_rcu_tasks_rude();
243 	/* Now all cpus are using the list ops. */
244 	function_trace_op = set_function_trace_op;
245 	/* Make sure the function_trace_op is visible on all CPUs */
246 	smp_wmb();
247 	/* Nasty way to force a rmb on all cpus */
248 	smp_call_function(ftrace_sync_ipi, NULL, 1);
249 	/* OK, we are all set to update the ftrace_trace_function now! */
250 #endif /* !CONFIG_DYNAMIC_FTRACE */
251 
252 	ftrace_trace_function = func;
253 }
254 
255 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
256 			   struct ftrace_ops *ops)
257 {
258 	rcu_assign_pointer(ops->next, *list);
259 
260 	/*
261 	 * We are entering ops into the list but another
262 	 * CPU might be walking that list. We need to make sure
263 	 * the ops->next pointer is valid before another CPU sees
264 	 * the ops pointer included into the list.
265 	 */
266 	rcu_assign_pointer(*list, ops);
267 }
268 
269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
270 			     struct ftrace_ops *ops)
271 {
272 	struct ftrace_ops **p;
273 
274 	/*
275 	 * If we are removing the last function, then simply point
276 	 * to the ftrace_stub.
277 	 */
278 	if (rcu_dereference_protected(*list,
279 			lockdep_is_held(&ftrace_lock)) == ops &&
280 	    rcu_dereference_protected(ops->next,
281 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
282 		*list = &ftrace_list_end;
283 		return 0;
284 	}
285 
286 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
287 		if (*p == ops)
288 			break;
289 
290 	if (*p != ops)
291 		return -1;
292 
293 	*p = (*p)->next;
294 	return 0;
295 }
296 
297 static void ftrace_update_trampoline(struct ftrace_ops *ops);
298 
299 int __register_ftrace_function(struct ftrace_ops *ops)
300 {
301 	if (ops->flags & FTRACE_OPS_FL_DELETED)
302 		return -EINVAL;
303 
304 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
305 		return -EBUSY;
306 
307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
308 	/*
309 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
310 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
311 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
312 	 */
313 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
314 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
315 		return -EINVAL;
316 
317 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
318 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
319 #endif
320 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
321 		return -EBUSY;
322 
323 	if (!is_kernel_core_data((unsigned long)ops))
324 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
325 
326 	add_ftrace_ops(&ftrace_ops_list, ops);
327 
328 	/* Always save the function, and reset at unregistering */
329 	ops->saved_func = ops->func;
330 
331 	if (ftrace_pids_enabled(ops))
332 		ops->func = ftrace_pid_func;
333 
334 	ftrace_update_trampoline(ops);
335 
336 	if (ftrace_enabled)
337 		update_ftrace_function();
338 
339 	return 0;
340 }
341 
342 int __unregister_ftrace_function(struct ftrace_ops *ops)
343 {
344 	int ret;
345 
346 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
347 		return -EBUSY;
348 
349 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
350 
351 	if (ret < 0)
352 		return ret;
353 
354 	if (ftrace_enabled)
355 		update_ftrace_function();
356 
357 	ops->func = ops->saved_func;
358 
359 	return 0;
360 }
361 
362 static void ftrace_update_pid_func(void)
363 {
364 	struct ftrace_ops *op;
365 
366 	/* Only do something if we are tracing something */
367 	if (ftrace_trace_function == ftrace_stub)
368 		return;
369 
370 	do_for_each_ftrace_op(op, ftrace_ops_list) {
371 		if (op->flags & FTRACE_OPS_FL_PID) {
372 			op->func = ftrace_pids_enabled(op) ?
373 				ftrace_pid_func : op->saved_func;
374 			ftrace_update_trampoline(op);
375 		}
376 	} while_for_each_ftrace_op(op);
377 
378 	update_ftrace_function();
379 }
380 
381 #ifdef CONFIG_FUNCTION_PROFILER
382 struct ftrace_profile {
383 	struct hlist_node		node;
384 	unsigned long			ip;
385 	unsigned long			counter;
386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
387 	unsigned long long		time;
388 	unsigned long long		time_squared;
389 #endif
390 };
391 
392 struct ftrace_profile_page {
393 	struct ftrace_profile_page	*next;
394 	unsigned long			index;
395 	struct ftrace_profile		records[];
396 };
397 
398 struct ftrace_profile_stat {
399 	atomic_t			disabled;
400 	struct hlist_head		*hash;
401 	struct ftrace_profile_page	*pages;
402 	struct ftrace_profile_page	*start;
403 	struct tracer_stat		stat;
404 };
405 
406 #define PROFILE_RECORDS_SIZE						\
407 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
408 
409 #define PROFILES_PER_PAGE					\
410 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
411 
412 static int ftrace_profile_enabled __read_mostly;
413 
414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
415 static DEFINE_MUTEX(ftrace_profile_lock);
416 
417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
418 
419 #define FTRACE_PROFILE_HASH_BITS 10
420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
421 
422 static void *
423 function_stat_next(void *v, int idx)
424 {
425 	struct ftrace_profile *rec = v;
426 	struct ftrace_profile_page *pg;
427 
428 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
429 
430  again:
431 	if (idx != 0)
432 		rec++;
433 
434 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
435 		pg = pg->next;
436 		if (!pg)
437 			return NULL;
438 		rec = &pg->records[0];
439 		if (!rec->counter)
440 			goto again;
441 	}
442 
443 	return rec;
444 }
445 
446 static void *function_stat_start(struct tracer_stat *trace)
447 {
448 	struct ftrace_profile_stat *stat =
449 		container_of(trace, struct ftrace_profile_stat, stat);
450 
451 	if (!stat || !stat->start)
452 		return NULL;
453 
454 	return function_stat_next(&stat->start->records[0], 0);
455 }
456 
457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 /* function graph compares on total time */
459 static int function_stat_cmp(const void *p1, const void *p2)
460 {
461 	const struct ftrace_profile *a = p1;
462 	const struct ftrace_profile *b = p2;
463 
464 	if (a->time < b->time)
465 		return -1;
466 	if (a->time > b->time)
467 		return 1;
468 	else
469 		return 0;
470 }
471 #else
472 /* not function graph compares against hits */
473 static int function_stat_cmp(const void *p1, const void *p2)
474 {
475 	const struct ftrace_profile *a = p1;
476 	const struct ftrace_profile *b = p2;
477 
478 	if (a->counter < b->counter)
479 		return -1;
480 	if (a->counter > b->counter)
481 		return 1;
482 	else
483 		return 0;
484 }
485 #endif
486 
487 static int function_stat_headers(struct seq_file *m)
488 {
489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
490 	seq_puts(m, "  Function                               "
491 		 "Hit    Time            Avg             s^2\n"
492 		    "  --------                               "
493 		 "---    ----            ---             ---\n");
494 #else
495 	seq_puts(m, "  Function                               Hit\n"
496 		    "  --------                               ---\n");
497 #endif
498 	return 0;
499 }
500 
501 static int function_stat_show(struct seq_file *m, void *v)
502 {
503 	struct ftrace_profile *rec = v;
504 	char str[KSYM_SYMBOL_LEN];
505 	int ret = 0;
506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
507 	static struct trace_seq s;
508 	unsigned long long avg;
509 	unsigned long long stddev;
510 #endif
511 	mutex_lock(&ftrace_profile_lock);
512 
513 	/* we raced with function_profile_reset() */
514 	if (unlikely(rec->counter == 0)) {
515 		ret = -EBUSY;
516 		goto out;
517 	}
518 
519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
520 	avg = div64_ul(rec->time, rec->counter);
521 	if (tracing_thresh && (avg < tracing_thresh))
522 		goto out;
523 #endif
524 
525 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
526 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
527 
528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
529 	seq_puts(m, "    ");
530 
531 	/* Sample standard deviation (s^2) */
532 	if (rec->counter <= 1)
533 		stddev = 0;
534 	else {
535 		/*
536 		 * Apply Welford's method:
537 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
538 		 */
539 		stddev = rec->counter * rec->time_squared -
540 			 rec->time * rec->time;
541 
542 		/*
543 		 * Divide only 1000 for ns^2 -> us^2 conversion.
544 		 * trace_print_graph_duration will divide 1000 again.
545 		 */
546 		stddev = div64_ul(stddev,
547 				  rec->counter * (rec->counter - 1) * 1000);
548 	}
549 
550 	trace_seq_init(&s);
551 	trace_print_graph_duration(rec->time, &s);
552 	trace_seq_puts(&s, "    ");
553 	trace_print_graph_duration(avg, &s);
554 	trace_seq_puts(&s, "    ");
555 	trace_print_graph_duration(stddev, &s);
556 	trace_print_seq(m, &s);
557 #endif
558 	seq_putc(m, '\n');
559 out:
560 	mutex_unlock(&ftrace_profile_lock);
561 
562 	return ret;
563 }
564 
565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
566 {
567 	struct ftrace_profile_page *pg;
568 
569 	pg = stat->pages = stat->start;
570 
571 	while (pg) {
572 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
573 		pg->index = 0;
574 		pg = pg->next;
575 	}
576 
577 	memset(stat->hash, 0,
578 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
579 }
580 
581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
582 {
583 	struct ftrace_profile_page *pg;
584 	int functions;
585 	int pages;
586 	int i;
587 
588 	/* If we already allocated, do nothing */
589 	if (stat->pages)
590 		return 0;
591 
592 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!stat->pages)
594 		return -ENOMEM;
595 
596 #ifdef CONFIG_DYNAMIC_FTRACE
597 	functions = ftrace_update_tot_cnt;
598 #else
599 	/*
600 	 * We do not know the number of functions that exist because
601 	 * dynamic tracing is what counts them. With past experience
602 	 * we have around 20K functions. That should be more than enough.
603 	 * It is highly unlikely we will execute every function in
604 	 * the kernel.
605 	 */
606 	functions = 20000;
607 #endif
608 
609 	pg = stat->start = stat->pages;
610 
611 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
612 
613 	for (i = 1; i < pages; i++) {
614 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
615 		if (!pg->next)
616 			goto out_free;
617 		pg = pg->next;
618 	}
619 
620 	return 0;
621 
622  out_free:
623 	pg = stat->start;
624 	while (pg) {
625 		unsigned long tmp = (unsigned long)pg;
626 
627 		pg = pg->next;
628 		free_page(tmp);
629 	}
630 
631 	stat->pages = NULL;
632 	stat->start = NULL;
633 
634 	return -ENOMEM;
635 }
636 
637 static int ftrace_profile_init_cpu(int cpu)
638 {
639 	struct ftrace_profile_stat *stat;
640 	int size;
641 
642 	stat = &per_cpu(ftrace_profile_stats, cpu);
643 
644 	if (stat->hash) {
645 		/* If the profile is already created, simply reset it */
646 		ftrace_profile_reset(stat);
647 		return 0;
648 	}
649 
650 	/*
651 	 * We are profiling all functions, but usually only a few thousand
652 	 * functions are hit. We'll make a hash of 1024 items.
653 	 */
654 	size = FTRACE_PROFILE_HASH_SIZE;
655 
656 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
657 
658 	if (!stat->hash)
659 		return -ENOMEM;
660 
661 	/* Preallocate the function profiling pages */
662 	if (ftrace_profile_pages_init(stat) < 0) {
663 		kfree(stat->hash);
664 		stat->hash = NULL;
665 		return -ENOMEM;
666 	}
667 
668 	return 0;
669 }
670 
671 static int ftrace_profile_init(void)
672 {
673 	int cpu;
674 	int ret = 0;
675 
676 	for_each_possible_cpu(cpu) {
677 		ret = ftrace_profile_init_cpu(cpu);
678 		if (ret)
679 			break;
680 	}
681 
682 	return ret;
683 }
684 
685 /* interrupts must be disabled */
686 static struct ftrace_profile *
687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
688 {
689 	struct ftrace_profile *rec;
690 	struct hlist_head *hhd;
691 	unsigned long key;
692 
693 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
694 	hhd = &stat->hash[key];
695 
696 	if (hlist_empty(hhd))
697 		return NULL;
698 
699 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
700 		if (rec->ip == ip)
701 			return rec;
702 	}
703 
704 	return NULL;
705 }
706 
707 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
708 			       struct ftrace_profile *rec)
709 {
710 	unsigned long key;
711 
712 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
713 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
714 }
715 
716 /*
717  * The memory is already allocated, this simply finds a new record to use.
718  */
719 static struct ftrace_profile *
720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
721 {
722 	struct ftrace_profile *rec = NULL;
723 
724 	/* prevent recursion (from NMIs) */
725 	if (atomic_inc_return(&stat->disabled) != 1)
726 		goto out;
727 
728 	/*
729 	 * Try to find the function again since an NMI
730 	 * could have added it
731 	 */
732 	rec = ftrace_find_profiled_func(stat, ip);
733 	if (rec)
734 		goto out;
735 
736 	if (stat->pages->index == PROFILES_PER_PAGE) {
737 		if (!stat->pages->next)
738 			goto out;
739 		stat->pages = stat->pages->next;
740 	}
741 
742 	rec = &stat->pages->records[stat->pages->index++];
743 	rec->ip = ip;
744 	ftrace_add_profile(stat, rec);
745 
746  out:
747 	atomic_dec(&stat->disabled);
748 
749 	return rec;
750 }
751 
752 static void
753 function_profile_call(unsigned long ip, unsigned long parent_ip,
754 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
755 {
756 	struct ftrace_profile_stat *stat;
757 	struct ftrace_profile *rec;
758 	unsigned long flags;
759 
760 	if (!ftrace_profile_enabled)
761 		return;
762 
763 	local_irq_save(flags);
764 
765 	stat = this_cpu_ptr(&ftrace_profile_stats);
766 	if (!stat->hash || !ftrace_profile_enabled)
767 		goto out;
768 
769 	rec = ftrace_find_profiled_func(stat, ip);
770 	if (!rec) {
771 		rec = ftrace_profile_alloc(stat, ip);
772 		if (!rec)
773 			goto out;
774 	}
775 
776 	rec->counter++;
777  out:
778 	local_irq_restore(flags);
779 }
780 
781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
782 static bool fgraph_graph_time = true;
783 
784 void ftrace_graph_graph_time_control(bool enable)
785 {
786 	fgraph_graph_time = enable;
787 }
788 
789 static int profile_graph_entry(struct ftrace_graph_ent *trace)
790 {
791 	struct ftrace_ret_stack *ret_stack;
792 
793 	function_profile_call(trace->func, 0, NULL, NULL);
794 
795 	/* If function graph is shutting down, ret_stack can be NULL */
796 	if (!current->ret_stack)
797 		return 0;
798 
799 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
800 	if (ret_stack)
801 		ret_stack->subtime = 0;
802 
803 	return 1;
804 }
805 
806 static void profile_graph_return(struct ftrace_graph_ret *trace)
807 {
808 	struct ftrace_ret_stack *ret_stack;
809 	struct ftrace_profile_stat *stat;
810 	unsigned long long calltime;
811 	struct ftrace_profile *rec;
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	stat = this_cpu_ptr(&ftrace_profile_stats);
816 	if (!stat->hash || !ftrace_profile_enabled)
817 		goto out;
818 
819 	/* If the calltime was zero'd ignore it */
820 	if (!trace->calltime)
821 		goto out;
822 
823 	calltime = trace->rettime - trace->calltime;
824 
825 	if (!fgraph_graph_time) {
826 
827 		/* Append this call time to the parent time to subtract */
828 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
829 		if (ret_stack)
830 			ret_stack->subtime += calltime;
831 
832 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
833 		if (ret_stack && ret_stack->subtime < calltime)
834 			calltime -= ret_stack->subtime;
835 		else
836 			calltime = 0;
837 	}
838 
839 	rec = ftrace_find_profiled_func(stat, trace->func);
840 	if (rec) {
841 		rec->time += calltime;
842 		rec->time_squared += calltime * calltime;
843 	}
844 
845  out:
846 	local_irq_restore(flags);
847 }
848 
849 static struct fgraph_ops fprofiler_ops = {
850 	.entryfunc = &profile_graph_entry,
851 	.retfunc = &profile_graph_return,
852 };
853 
854 static int register_ftrace_profiler(void)
855 {
856 	return register_ftrace_graph(&fprofiler_ops);
857 }
858 
859 static void unregister_ftrace_profiler(void)
860 {
861 	unregister_ftrace_graph(&fprofiler_ops);
862 }
863 #else
864 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
865 	.func		= function_profile_call,
866 	.flags		= FTRACE_OPS_FL_INITIALIZED,
867 	INIT_OPS_HASH(ftrace_profile_ops)
868 };
869 
870 static int register_ftrace_profiler(void)
871 {
872 	return register_ftrace_function(&ftrace_profile_ops);
873 }
874 
875 static void unregister_ftrace_profiler(void)
876 {
877 	unregister_ftrace_function(&ftrace_profile_ops);
878 }
879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
880 
881 static ssize_t
882 ftrace_profile_write(struct file *filp, const char __user *ubuf,
883 		     size_t cnt, loff_t *ppos)
884 {
885 	unsigned long val;
886 	int ret;
887 
888 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
889 	if (ret)
890 		return ret;
891 
892 	val = !!val;
893 
894 	mutex_lock(&ftrace_profile_lock);
895 	if (ftrace_profile_enabled ^ val) {
896 		if (val) {
897 			ret = ftrace_profile_init();
898 			if (ret < 0) {
899 				cnt = ret;
900 				goto out;
901 			}
902 
903 			ret = register_ftrace_profiler();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 			ftrace_profile_enabled = 1;
909 		} else {
910 			ftrace_profile_enabled = 0;
911 			/*
912 			 * unregister_ftrace_profiler calls stop_machine
913 			 * so this acts like an synchronize_rcu.
914 			 */
915 			unregister_ftrace_profiler();
916 		}
917 	}
918  out:
919 	mutex_unlock(&ftrace_profile_lock);
920 
921 	*ppos += cnt;
922 
923 	return cnt;
924 }
925 
926 static ssize_t
927 ftrace_profile_read(struct file *filp, char __user *ubuf,
928 		     size_t cnt, loff_t *ppos)
929 {
930 	char buf[64];		/* big enough to hold a number */
931 	int r;
932 
933 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
934 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
935 }
936 
937 static const struct file_operations ftrace_profile_fops = {
938 	.open		= tracing_open_generic,
939 	.read		= ftrace_profile_read,
940 	.write		= ftrace_profile_write,
941 	.llseek		= default_llseek,
942 };
943 
944 /* used to initialize the real stat files */
945 static struct tracer_stat function_stats __initdata = {
946 	.name		= "functions",
947 	.stat_start	= function_stat_start,
948 	.stat_next	= function_stat_next,
949 	.stat_cmp	= function_stat_cmp,
950 	.stat_headers	= function_stat_headers,
951 	.stat_show	= function_stat_show
952 };
953 
954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
955 {
956 	struct ftrace_profile_stat *stat;
957 	char *name;
958 	int ret;
959 	int cpu;
960 
961 	for_each_possible_cpu(cpu) {
962 		stat = &per_cpu(ftrace_profile_stats, cpu);
963 
964 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
965 		if (!name) {
966 			/*
967 			 * The files created are permanent, if something happens
968 			 * we still do not free memory.
969 			 */
970 			WARN(1,
971 			     "Could not allocate stat file for cpu %d\n",
972 			     cpu);
973 			return;
974 		}
975 		stat->stat = function_stats;
976 		stat->stat.name = name;
977 		ret = register_stat_tracer(&stat->stat);
978 		if (ret) {
979 			WARN(1,
980 			     "Could not register function stat for cpu %d\n",
981 			     cpu);
982 			kfree(name);
983 			return;
984 		}
985 	}
986 
987 	trace_create_file("function_profile_enabled",
988 			  TRACE_MODE_WRITE, d_tracer, NULL,
989 			  &ftrace_profile_fops);
990 }
991 
992 #else /* CONFIG_FUNCTION_PROFILER */
993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
994 {
995 }
996 #endif /* CONFIG_FUNCTION_PROFILER */
997 
998 #ifdef CONFIG_DYNAMIC_FTRACE
999 
1000 static struct ftrace_ops *removed_ops;
1001 
1002 /*
1003  * Set when doing a global update, like enabling all recs or disabling them.
1004  * It is not set when just updating a single ftrace_ops.
1005  */
1006 static bool update_all_ops;
1007 
1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1009 # error Dynamic ftrace depends on MCOUNT_RECORD
1010 #endif
1011 
1012 struct ftrace_func_probe {
1013 	struct ftrace_probe_ops	*probe_ops;
1014 	struct ftrace_ops	ops;
1015 	struct trace_array	*tr;
1016 	struct list_head	list;
1017 	void			*data;
1018 	int			ref;
1019 };
1020 
1021 /*
1022  * We make these constant because no one should touch them,
1023  * but they are used as the default "empty hash", to avoid allocating
1024  * it all the time. These are in a read only section such that if
1025  * anyone does try to modify it, it will cause an exception.
1026  */
1027 static const struct hlist_head empty_buckets[1];
1028 static const struct ftrace_hash empty_hash = {
1029 	.buckets = (struct hlist_head *)empty_buckets,
1030 };
1031 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1032 
1033 struct ftrace_ops global_ops = {
1034 	.func				= ftrace_stub,
1035 	.local_hash.notrace_hash	= EMPTY_HASH,
1036 	.local_hash.filter_hash		= EMPTY_HASH,
1037 	INIT_OPS_HASH(global_ops)
1038 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1039 					  FTRACE_OPS_FL_PID,
1040 };
1041 
1042 /*
1043  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1044  */
1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1046 {
1047 	struct ftrace_ops *op = NULL;
1048 
1049 	/*
1050 	 * Some of the ops may be dynamically allocated,
1051 	 * they are freed after a synchronize_rcu().
1052 	 */
1053 	preempt_disable_notrace();
1054 
1055 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1056 		/*
1057 		 * This is to check for dynamically allocated trampolines.
1058 		 * Trampolines that are in kernel text will have
1059 		 * core_kernel_text() return true.
1060 		 */
1061 		if (op->trampoline && op->trampoline_size)
1062 			if (addr >= op->trampoline &&
1063 			    addr < op->trampoline + op->trampoline_size) {
1064 				preempt_enable_notrace();
1065 				return op;
1066 			}
1067 	} while_for_each_ftrace_op(op);
1068 	preempt_enable_notrace();
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * This is used by __kernel_text_address() to return true if the
1075  * address is on a dynamically allocated trampoline that would
1076  * not return true for either core_kernel_text() or
1077  * is_module_text_address().
1078  */
1079 bool is_ftrace_trampoline(unsigned long addr)
1080 {
1081 	return ftrace_ops_trampoline(addr) != NULL;
1082 }
1083 
1084 struct ftrace_page {
1085 	struct ftrace_page	*next;
1086 	struct dyn_ftrace	*records;
1087 	int			index;
1088 	int			order;
1089 };
1090 
1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1093 
1094 static struct ftrace_page	*ftrace_pages_start;
1095 static struct ftrace_page	*ftrace_pages;
1096 
1097 static __always_inline unsigned long
1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1099 {
1100 	if (hash->size_bits > 0)
1101 		return hash_long(ip, hash->size_bits);
1102 
1103 	return 0;
1104 }
1105 
1106 /* Only use this function if ftrace_hash_empty() has already been tested */
1107 static __always_inline struct ftrace_func_entry *
1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1109 {
1110 	unsigned long key;
1111 	struct ftrace_func_entry *entry;
1112 	struct hlist_head *hhd;
1113 
1114 	key = ftrace_hash_key(hash, ip);
1115 	hhd = &hash->buckets[key];
1116 
1117 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1118 		if (entry->ip == ip)
1119 			return entry;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1126  * @hash: The hash to look at
1127  * @ip: The instruction pointer to test
1128  *
1129  * Search a given @hash to see if a given instruction pointer (@ip)
1130  * exists in it.
1131  *
1132  * Returns the entry that holds the @ip if found. NULL otherwise.
1133  */
1134 struct ftrace_func_entry *
1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	if (ftrace_hash_empty(hash))
1138 		return NULL;
1139 
1140 	return __ftrace_lookup_ip(hash, ip);
1141 }
1142 
1143 static void __add_hash_entry(struct ftrace_hash *hash,
1144 			     struct ftrace_func_entry *entry)
1145 {
1146 	struct hlist_head *hhd;
1147 	unsigned long key;
1148 
1149 	key = ftrace_hash_key(hash, entry->ip);
1150 	hhd = &hash->buckets[key];
1151 	hlist_add_head(&entry->hlist, hhd);
1152 	hash->count++;
1153 }
1154 
1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1156 {
1157 	struct ftrace_func_entry *entry;
1158 
1159 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1160 	if (!entry)
1161 		return -ENOMEM;
1162 
1163 	entry->ip = ip;
1164 	__add_hash_entry(hash, entry);
1165 
1166 	return 0;
1167 }
1168 
1169 static void
1170 free_hash_entry(struct ftrace_hash *hash,
1171 		  struct ftrace_func_entry *entry)
1172 {
1173 	hlist_del(&entry->hlist);
1174 	kfree(entry);
1175 	hash->count--;
1176 }
1177 
1178 static void
1179 remove_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del_rcu(&entry->hlist);
1183 	hash->count--;
1184 }
1185 
1186 static void ftrace_hash_clear(struct ftrace_hash *hash)
1187 {
1188 	struct hlist_head *hhd;
1189 	struct hlist_node *tn;
1190 	struct ftrace_func_entry *entry;
1191 	int size = 1 << hash->size_bits;
1192 	int i;
1193 
1194 	if (!hash->count)
1195 		return;
1196 
1197 	for (i = 0; i < size; i++) {
1198 		hhd = &hash->buckets[i];
1199 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1200 			free_hash_entry(hash, entry);
1201 	}
1202 	FTRACE_WARN_ON(hash->count);
1203 }
1204 
1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1206 {
1207 	list_del(&ftrace_mod->list);
1208 	kfree(ftrace_mod->module);
1209 	kfree(ftrace_mod->func);
1210 	kfree(ftrace_mod);
1211 }
1212 
1213 static void clear_ftrace_mod_list(struct list_head *head)
1214 {
1215 	struct ftrace_mod_load *p, *n;
1216 
1217 	/* stack tracer isn't supported yet */
1218 	if (!head)
1219 		return;
1220 
1221 	mutex_lock(&ftrace_lock);
1222 	list_for_each_entry_safe(p, n, head, list)
1223 		free_ftrace_mod(p);
1224 	mutex_unlock(&ftrace_lock);
1225 }
1226 
1227 static void free_ftrace_hash(struct ftrace_hash *hash)
1228 {
1229 	if (!hash || hash == EMPTY_HASH)
1230 		return;
1231 	ftrace_hash_clear(hash);
1232 	kfree(hash->buckets);
1233 	kfree(hash);
1234 }
1235 
1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1237 {
1238 	struct ftrace_hash *hash;
1239 
1240 	hash = container_of(rcu, struct ftrace_hash, rcu);
1241 	free_ftrace_hash(hash);
1242 }
1243 
1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1245 {
1246 	if (!hash || hash == EMPTY_HASH)
1247 		return;
1248 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1249 }
1250 
1251 void ftrace_free_filter(struct ftrace_ops *ops)
1252 {
1253 	ftrace_ops_init(ops);
1254 	free_ftrace_hash(ops->func_hash->filter_hash);
1255 	free_ftrace_hash(ops->func_hash->notrace_hash);
1256 }
1257 
1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1259 {
1260 	struct ftrace_hash *hash;
1261 	int size;
1262 
1263 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1264 	if (!hash)
1265 		return NULL;
1266 
1267 	size = 1 << size_bits;
1268 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1269 
1270 	if (!hash->buckets) {
1271 		kfree(hash);
1272 		return NULL;
1273 	}
1274 
1275 	hash->size_bits = size_bits;
1276 
1277 	return hash;
1278 }
1279 
1280 
1281 static int ftrace_add_mod(struct trace_array *tr,
1282 			  const char *func, const char *module,
1283 			  int enable)
1284 {
1285 	struct ftrace_mod_load *ftrace_mod;
1286 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1287 
1288 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1289 	if (!ftrace_mod)
1290 		return -ENOMEM;
1291 
1292 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1293 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1294 	ftrace_mod->enable = enable;
1295 
1296 	if (!ftrace_mod->func || !ftrace_mod->module)
1297 		goto out_free;
1298 
1299 	list_add(&ftrace_mod->list, mod_head);
1300 
1301 	return 0;
1302 
1303  out_free:
1304 	free_ftrace_mod(ftrace_mod);
1305 
1306 	return -ENOMEM;
1307 }
1308 
1309 static struct ftrace_hash *
1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1311 {
1312 	struct ftrace_func_entry *entry;
1313 	struct ftrace_hash *new_hash;
1314 	int size;
1315 	int ret;
1316 	int i;
1317 
1318 	new_hash = alloc_ftrace_hash(size_bits);
1319 	if (!new_hash)
1320 		return NULL;
1321 
1322 	if (hash)
1323 		new_hash->flags = hash->flags;
1324 
1325 	/* Empty hash? */
1326 	if (ftrace_hash_empty(hash))
1327 		return new_hash;
1328 
1329 	size = 1 << hash->size_bits;
1330 	for (i = 0; i < size; i++) {
1331 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1332 			ret = add_hash_entry(new_hash, entry->ip);
1333 			if (ret < 0)
1334 				goto free_hash;
1335 		}
1336 	}
1337 
1338 	FTRACE_WARN_ON(new_hash->count != hash->count);
1339 
1340 	return new_hash;
1341 
1342  free_hash:
1343 	free_ftrace_hash(new_hash);
1344 	return NULL;
1345 }
1346 
1347 static void
1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1349 static void
1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1351 
1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1353 				       struct ftrace_hash *new_hash);
1354 
1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1356 {
1357 	struct ftrace_func_entry *entry;
1358 	struct ftrace_hash *new_hash;
1359 	struct hlist_head *hhd;
1360 	struct hlist_node *tn;
1361 	int bits = 0;
1362 	int i;
1363 
1364 	/*
1365 	 * Use around half the size (max bit of it), but
1366 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1367 	 */
1368 	bits = fls(size / 2);
1369 
1370 	/* Don't allocate too much */
1371 	if (bits > FTRACE_HASH_MAX_BITS)
1372 		bits = FTRACE_HASH_MAX_BITS;
1373 
1374 	new_hash = alloc_ftrace_hash(bits);
1375 	if (!new_hash)
1376 		return NULL;
1377 
1378 	new_hash->flags = src->flags;
1379 
1380 	size = 1 << src->size_bits;
1381 	for (i = 0; i < size; i++) {
1382 		hhd = &src->buckets[i];
1383 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1384 			remove_hash_entry(src, entry);
1385 			__add_hash_entry(new_hash, entry);
1386 		}
1387 	}
1388 	return new_hash;
1389 }
1390 
1391 static struct ftrace_hash *
1392 __ftrace_hash_move(struct ftrace_hash *src)
1393 {
1394 	int size = src->count;
1395 
1396 	/*
1397 	 * If the new source is empty, just return the empty_hash.
1398 	 */
1399 	if (ftrace_hash_empty(src))
1400 		return EMPTY_HASH;
1401 
1402 	return dup_hash(src, size);
1403 }
1404 
1405 static int
1406 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1407 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1408 {
1409 	struct ftrace_hash *new_hash;
1410 	int ret;
1411 
1412 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1413 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1414 		return -EINVAL;
1415 
1416 	new_hash = __ftrace_hash_move(src);
1417 	if (!new_hash)
1418 		return -ENOMEM;
1419 
1420 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1421 	if (enable) {
1422 		/* IPMODIFY should be updated only when filter_hash updating */
1423 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1424 		if (ret < 0) {
1425 			free_ftrace_hash(new_hash);
1426 			return ret;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Remove the current set, update the hash and add
1432 	 * them back.
1433 	 */
1434 	ftrace_hash_rec_disable_modify(ops, enable);
1435 
1436 	rcu_assign_pointer(*dst, new_hash);
1437 
1438 	ftrace_hash_rec_enable_modify(ops, enable);
1439 
1440 	return 0;
1441 }
1442 
1443 static bool hash_contains_ip(unsigned long ip,
1444 			     struct ftrace_ops_hash *hash)
1445 {
1446 	/*
1447 	 * The function record is a match if it exists in the filter
1448 	 * hash and not in the notrace hash. Note, an empty hash is
1449 	 * considered a match for the filter hash, but an empty
1450 	 * notrace hash is considered not in the notrace hash.
1451 	 */
1452 	return (ftrace_hash_empty(hash->filter_hash) ||
1453 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1454 		(ftrace_hash_empty(hash->notrace_hash) ||
1455 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1456 }
1457 
1458 /*
1459  * Test the hashes for this ops to see if we want to call
1460  * the ops->func or not.
1461  *
1462  * It's a match if the ip is in the ops->filter_hash or
1463  * the filter_hash does not exist or is empty,
1464  *  AND
1465  * the ip is not in the ops->notrace_hash.
1466  *
1467  * This needs to be called with preemption disabled as
1468  * the hashes are freed with call_rcu().
1469  */
1470 int
1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1472 {
1473 	struct ftrace_ops_hash hash;
1474 	int ret;
1475 
1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1477 	/*
1478 	 * There's a small race when adding ops that the ftrace handler
1479 	 * that wants regs, may be called without them. We can not
1480 	 * allow that handler to be called if regs is NULL.
1481 	 */
1482 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1483 		return 0;
1484 #endif
1485 
1486 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1487 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1488 
1489 	if (hash_contains_ip(ip, &hash))
1490 		ret = 1;
1491 	else
1492 		ret = 0;
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * This is a double for. Do not use 'break' to break out of the loop,
1499  * you must use a goto.
1500  */
1501 #define do_for_each_ftrace_rec(pg, rec)					\
1502 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1503 		int _____i;						\
1504 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1505 			rec = &pg->records[_____i];
1506 
1507 #define while_for_each_ftrace_rec()		\
1508 		}				\
1509 	}
1510 
1511 
1512 static int ftrace_cmp_recs(const void *a, const void *b)
1513 {
1514 	const struct dyn_ftrace *key = a;
1515 	const struct dyn_ftrace *rec = b;
1516 
1517 	if (key->flags < rec->ip)
1518 		return -1;
1519 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1520 		return 1;
1521 	return 0;
1522 }
1523 
1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1525 {
1526 	struct ftrace_page *pg;
1527 	struct dyn_ftrace *rec = NULL;
1528 	struct dyn_ftrace key;
1529 
1530 	key.ip = start;
1531 	key.flags = end;	/* overload flags, as it is unsigned long */
1532 
1533 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1534 		if (end < pg->records[0].ip ||
1535 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1536 			continue;
1537 		rec = bsearch(&key, pg->records, pg->index,
1538 			      sizeof(struct dyn_ftrace),
1539 			      ftrace_cmp_recs);
1540 		if (rec)
1541 			break;
1542 	}
1543 	return rec;
1544 }
1545 
1546 /**
1547  * ftrace_location_range - return the first address of a traced location
1548  *	if it touches the given ip range
1549  * @start: start of range to search.
1550  * @end: end of range to search (inclusive). @end points to the last byte
1551  *	to check.
1552  *
1553  * Returns rec->ip if the related ftrace location is a least partly within
1554  * the given address range. That is, the first address of the instruction
1555  * that is either a NOP or call to the function tracer. It checks the ftrace
1556  * internal tables to determine if the address belongs or not.
1557  */
1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1559 {
1560 	struct dyn_ftrace *rec;
1561 
1562 	rec = lookup_rec(start, end);
1563 	if (rec)
1564 		return rec->ip;
1565 
1566 	return 0;
1567 }
1568 
1569 /**
1570  * ftrace_location - return the ftrace location
1571  * @ip: the instruction pointer to check
1572  *
1573  * If @ip matches the ftrace location, return @ip.
1574  * If @ip matches sym+0, return sym's ftrace location.
1575  * Otherwise, return 0.
1576  */
1577 unsigned long ftrace_location(unsigned long ip)
1578 {
1579 	struct dyn_ftrace *rec;
1580 	unsigned long offset;
1581 	unsigned long size;
1582 
1583 	rec = lookup_rec(ip, ip);
1584 	if (!rec) {
1585 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1586 			goto out;
1587 
1588 		/* map sym+0 to __fentry__ */
1589 		if (!offset)
1590 			rec = lookup_rec(ip, ip + size - 1);
1591 	}
1592 
1593 	if (rec)
1594 		return rec->ip;
1595 
1596 out:
1597 	return 0;
1598 }
1599 
1600 /**
1601  * ftrace_text_reserved - return true if range contains an ftrace location
1602  * @start: start of range to search
1603  * @end: end of range to search (inclusive). @end points to the last byte to check.
1604  *
1605  * Returns 1 if @start and @end contains a ftrace location.
1606  * That is, the instruction that is either a NOP or call to
1607  * the function tracer. It checks the ftrace internal tables to
1608  * determine if the address belongs or not.
1609  */
1610 int ftrace_text_reserved(const void *start, const void *end)
1611 {
1612 	unsigned long ret;
1613 
1614 	ret = ftrace_location_range((unsigned long)start,
1615 				    (unsigned long)end);
1616 
1617 	return (int)!!ret;
1618 }
1619 
1620 /* Test if ops registered to this rec needs regs */
1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1622 {
1623 	struct ftrace_ops *ops;
1624 	bool keep_regs = false;
1625 
1626 	for (ops = ftrace_ops_list;
1627 	     ops != &ftrace_list_end; ops = ops->next) {
1628 		/* pass rec in as regs to have non-NULL val */
1629 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1630 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1631 				keep_regs = true;
1632 				break;
1633 			}
1634 		}
1635 	}
1636 
1637 	return  keep_regs;
1638 }
1639 
1640 static struct ftrace_ops *
1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1642 static struct ftrace_ops *
1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1644 static struct ftrace_ops *
1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1646 
1647 static bool skip_record(struct dyn_ftrace *rec)
1648 {
1649 	/*
1650 	 * At boot up, weak functions are set to disable. Function tracing
1651 	 * can be enabled before they are, and they still need to be disabled now.
1652 	 * If the record is disabled, still continue if it is marked as already
1653 	 * enabled (this is needed to keep the accounting working).
1654 	 */
1655 	return rec->flags & FTRACE_FL_DISABLED &&
1656 		!(rec->flags & FTRACE_FL_ENABLED);
1657 }
1658 
1659 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1660 				     int filter_hash,
1661 				     bool inc)
1662 {
1663 	struct ftrace_hash *hash;
1664 	struct ftrace_hash *other_hash;
1665 	struct ftrace_page *pg;
1666 	struct dyn_ftrace *rec;
1667 	bool update = false;
1668 	int count = 0;
1669 	int all = false;
1670 
1671 	/* Only update if the ops has been registered */
1672 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1673 		return false;
1674 
1675 	/*
1676 	 * In the filter_hash case:
1677 	 *   If the count is zero, we update all records.
1678 	 *   Otherwise we just update the items in the hash.
1679 	 *
1680 	 * In the notrace_hash case:
1681 	 *   We enable the update in the hash.
1682 	 *   As disabling notrace means enabling the tracing,
1683 	 *   and enabling notrace means disabling, the inc variable
1684 	 *   gets inversed.
1685 	 */
1686 	if (filter_hash) {
1687 		hash = ops->func_hash->filter_hash;
1688 		other_hash = ops->func_hash->notrace_hash;
1689 		if (ftrace_hash_empty(hash))
1690 			all = true;
1691 	} else {
1692 		inc = !inc;
1693 		hash = ops->func_hash->notrace_hash;
1694 		other_hash = ops->func_hash->filter_hash;
1695 		/*
1696 		 * If the notrace hash has no items,
1697 		 * then there's nothing to do.
1698 		 */
1699 		if (ftrace_hash_empty(hash))
1700 			return false;
1701 	}
1702 
1703 	do_for_each_ftrace_rec(pg, rec) {
1704 		int in_other_hash = 0;
1705 		int in_hash = 0;
1706 		int match = 0;
1707 
1708 		if (skip_record(rec))
1709 			continue;
1710 
1711 		if (all) {
1712 			/*
1713 			 * Only the filter_hash affects all records.
1714 			 * Update if the record is not in the notrace hash.
1715 			 */
1716 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1717 				match = 1;
1718 		} else {
1719 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1720 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1721 
1722 			/*
1723 			 * If filter_hash is set, we want to match all functions
1724 			 * that are in the hash but not in the other hash.
1725 			 *
1726 			 * If filter_hash is not set, then we are decrementing.
1727 			 * That means we match anything that is in the hash
1728 			 * and also in the other_hash. That is, we need to turn
1729 			 * off functions in the other hash because they are disabled
1730 			 * by this hash.
1731 			 */
1732 			if (filter_hash && in_hash && !in_other_hash)
1733 				match = 1;
1734 			else if (!filter_hash && in_hash &&
1735 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1736 				match = 1;
1737 		}
1738 		if (!match)
1739 			continue;
1740 
1741 		if (inc) {
1742 			rec->flags++;
1743 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1744 				return false;
1745 
1746 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1747 				rec->flags |= FTRACE_FL_DIRECT;
1748 
1749 			/*
1750 			 * If there's only a single callback registered to a
1751 			 * function, and the ops has a trampoline registered
1752 			 * for it, then we can call it directly.
1753 			 */
1754 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1755 				rec->flags |= FTRACE_FL_TRAMP;
1756 			else
1757 				/*
1758 				 * If we are adding another function callback
1759 				 * to this function, and the previous had a
1760 				 * custom trampoline in use, then we need to go
1761 				 * back to the default trampoline.
1762 				 */
1763 				rec->flags &= ~FTRACE_FL_TRAMP;
1764 
1765 			/*
1766 			 * If any ops wants regs saved for this function
1767 			 * then all ops will get saved regs.
1768 			 */
1769 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1770 				rec->flags |= FTRACE_FL_REGS;
1771 		} else {
1772 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1773 				return false;
1774 			rec->flags--;
1775 
1776 			/*
1777 			 * Only the internal direct_ops should have the
1778 			 * DIRECT flag set. Thus, if it is removing a
1779 			 * function, then that function should no longer
1780 			 * be direct.
1781 			 */
1782 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1783 				rec->flags &= ~FTRACE_FL_DIRECT;
1784 
1785 			/*
1786 			 * If the rec had REGS enabled and the ops that is
1787 			 * being removed had REGS set, then see if there is
1788 			 * still any ops for this record that wants regs.
1789 			 * If not, we can stop recording them.
1790 			 */
1791 			if (ftrace_rec_count(rec) > 0 &&
1792 			    rec->flags & FTRACE_FL_REGS &&
1793 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1794 				if (!test_rec_ops_needs_regs(rec))
1795 					rec->flags &= ~FTRACE_FL_REGS;
1796 			}
1797 
1798 			/*
1799 			 * The TRAMP needs to be set only if rec count
1800 			 * is decremented to one, and the ops that is
1801 			 * left has a trampoline. As TRAMP can only be
1802 			 * enabled if there is only a single ops attached
1803 			 * to it.
1804 			 */
1805 			if (ftrace_rec_count(rec) == 1 &&
1806 			    ftrace_find_tramp_ops_any_other(rec, ops))
1807 				rec->flags |= FTRACE_FL_TRAMP;
1808 			else
1809 				rec->flags &= ~FTRACE_FL_TRAMP;
1810 
1811 			/*
1812 			 * flags will be cleared in ftrace_check_record()
1813 			 * if rec count is zero.
1814 			 */
1815 		}
1816 		count++;
1817 
1818 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1819 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1820 
1821 		/* Shortcut, if we handled all records, we are done. */
1822 		if (!all && count == hash->count)
1823 			return update;
1824 	} while_for_each_ftrace_rec();
1825 
1826 	return update;
1827 }
1828 
1829 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1830 				    int filter_hash)
1831 {
1832 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1833 }
1834 
1835 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1836 				   int filter_hash)
1837 {
1838 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1839 }
1840 
1841 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1842 					  int filter_hash, int inc)
1843 {
1844 	struct ftrace_ops *op;
1845 
1846 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1847 
1848 	if (ops->func_hash != &global_ops.local_hash)
1849 		return;
1850 
1851 	/*
1852 	 * If the ops shares the global_ops hash, then we need to update
1853 	 * all ops that are enabled and use this hash.
1854 	 */
1855 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1856 		/* Already done */
1857 		if (op == ops)
1858 			continue;
1859 		if (op->func_hash == &global_ops.local_hash)
1860 			__ftrace_hash_rec_update(op, filter_hash, inc);
1861 	} while_for_each_ftrace_op(op);
1862 }
1863 
1864 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1865 					   int filter_hash)
1866 {
1867 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1868 }
1869 
1870 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1871 					  int filter_hash)
1872 {
1873 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1874 }
1875 
1876 /*
1877  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1878  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1879  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1880  * Note that old_hash and new_hash has below meanings
1881  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1882  *  - If the hash is EMPTY_HASH, it hits nothing
1883  *  - Anything else hits the recs which match the hash entries.
1884  *
1885  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1886  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1887  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1888  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1889  * the return value to the caller and eventually to the owner of the DIRECT
1890  * ops.
1891  */
1892 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1893 					 struct ftrace_hash *old_hash,
1894 					 struct ftrace_hash *new_hash)
1895 {
1896 	struct ftrace_page *pg;
1897 	struct dyn_ftrace *rec, *end = NULL;
1898 	int in_old, in_new;
1899 	bool is_ipmodify, is_direct;
1900 
1901 	/* Only update if the ops has been registered */
1902 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1903 		return 0;
1904 
1905 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1906 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1907 
1908 	/* neither IPMODIFY nor DIRECT, skip */
1909 	if (!is_ipmodify && !is_direct)
1910 		return 0;
1911 
1912 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1913 		return 0;
1914 
1915 	/*
1916 	 * Since the IPMODIFY and DIRECT are very address sensitive
1917 	 * actions, we do not allow ftrace_ops to set all functions to new
1918 	 * hash.
1919 	 */
1920 	if (!new_hash || !old_hash)
1921 		return -EINVAL;
1922 
1923 	/* Update rec->flags */
1924 	do_for_each_ftrace_rec(pg, rec) {
1925 
1926 		if (rec->flags & FTRACE_FL_DISABLED)
1927 			continue;
1928 
1929 		/* We need to update only differences of filter_hash */
1930 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1931 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1932 		if (in_old == in_new)
1933 			continue;
1934 
1935 		if (in_new) {
1936 			if (rec->flags & FTRACE_FL_IPMODIFY) {
1937 				int ret;
1938 
1939 				/* Cannot have two ipmodify on same rec */
1940 				if (is_ipmodify)
1941 					goto rollback;
1942 
1943 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
1944 
1945 				/*
1946 				 * Another ops with IPMODIFY is already
1947 				 * attached. We are now attaching a direct
1948 				 * ops. Run SHARE_IPMODIFY_SELF, to check
1949 				 * whether sharing is supported.
1950 				 */
1951 				if (!ops->ops_func)
1952 					return -EBUSY;
1953 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
1954 				if (ret)
1955 					return ret;
1956 			} else if (is_ipmodify) {
1957 				rec->flags |= FTRACE_FL_IPMODIFY;
1958 			}
1959 		} else if (is_ipmodify) {
1960 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1961 		}
1962 	} while_for_each_ftrace_rec();
1963 
1964 	return 0;
1965 
1966 rollback:
1967 	end = rec;
1968 
1969 	/* Roll back what we did above */
1970 	do_for_each_ftrace_rec(pg, rec) {
1971 
1972 		if (rec->flags & FTRACE_FL_DISABLED)
1973 			continue;
1974 
1975 		if (rec == end)
1976 			goto err_out;
1977 
1978 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1979 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1980 		if (in_old == in_new)
1981 			continue;
1982 
1983 		if (in_new)
1984 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1985 		else
1986 			rec->flags |= FTRACE_FL_IPMODIFY;
1987 	} while_for_each_ftrace_rec();
1988 
1989 err_out:
1990 	return -EBUSY;
1991 }
1992 
1993 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1994 {
1995 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1996 
1997 	if (ftrace_hash_empty(hash))
1998 		hash = NULL;
1999 
2000 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
2001 }
2002 
2003 /* Disabling always succeeds */
2004 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
2005 {
2006 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
2007 
2008 	if (ftrace_hash_empty(hash))
2009 		hash = NULL;
2010 
2011 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2012 }
2013 
2014 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2015 				       struct ftrace_hash *new_hash)
2016 {
2017 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2018 
2019 	if (ftrace_hash_empty(old_hash))
2020 		old_hash = NULL;
2021 
2022 	if (ftrace_hash_empty(new_hash))
2023 		new_hash = NULL;
2024 
2025 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2026 }
2027 
2028 static void print_ip_ins(const char *fmt, const unsigned char *p)
2029 {
2030 	char ins[MCOUNT_INSN_SIZE];
2031 
2032 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2033 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2034 		return;
2035 	}
2036 
2037 	printk(KERN_CONT "%s", fmt);
2038 	pr_cont("%*phC", MCOUNT_INSN_SIZE, ins);
2039 }
2040 
2041 enum ftrace_bug_type ftrace_bug_type;
2042 const void *ftrace_expected;
2043 
2044 static void print_bug_type(void)
2045 {
2046 	switch (ftrace_bug_type) {
2047 	case FTRACE_BUG_UNKNOWN:
2048 		break;
2049 	case FTRACE_BUG_INIT:
2050 		pr_info("Initializing ftrace call sites\n");
2051 		break;
2052 	case FTRACE_BUG_NOP:
2053 		pr_info("Setting ftrace call site to NOP\n");
2054 		break;
2055 	case FTRACE_BUG_CALL:
2056 		pr_info("Setting ftrace call site to call ftrace function\n");
2057 		break;
2058 	case FTRACE_BUG_UPDATE:
2059 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2060 		break;
2061 	}
2062 }
2063 
2064 /**
2065  * ftrace_bug - report and shutdown function tracer
2066  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2067  * @rec: The record that failed
2068  *
2069  * The arch code that enables or disables the function tracing
2070  * can call ftrace_bug() when it has detected a problem in
2071  * modifying the code. @failed should be one of either:
2072  * EFAULT - if the problem happens on reading the @ip address
2073  * EINVAL - if what is read at @ip is not what was expected
2074  * EPERM - if the problem happens on writing to the @ip address
2075  */
2076 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2077 {
2078 	unsigned long ip = rec ? rec->ip : 0;
2079 
2080 	pr_info("------------[ ftrace bug ]------------\n");
2081 
2082 	switch (failed) {
2083 	case -EFAULT:
2084 		pr_info("ftrace faulted on modifying ");
2085 		print_ip_sym(KERN_INFO, ip);
2086 		break;
2087 	case -EINVAL:
2088 		pr_info("ftrace failed to modify ");
2089 		print_ip_sym(KERN_INFO, ip);
2090 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2091 		pr_cont("\n");
2092 		if (ftrace_expected) {
2093 			print_ip_ins(" expected: ", ftrace_expected);
2094 			pr_cont("\n");
2095 		}
2096 		break;
2097 	case -EPERM:
2098 		pr_info("ftrace faulted on writing ");
2099 		print_ip_sym(KERN_INFO, ip);
2100 		break;
2101 	default:
2102 		pr_info("ftrace faulted on unknown error ");
2103 		print_ip_sym(KERN_INFO, ip);
2104 	}
2105 	print_bug_type();
2106 	if (rec) {
2107 		struct ftrace_ops *ops = NULL;
2108 
2109 		pr_info("ftrace record flags: %lx\n", rec->flags);
2110 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2111 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2112 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2113 			ops = ftrace_find_tramp_ops_any(rec);
2114 			if (ops) {
2115 				do {
2116 					pr_cont("\ttramp: %pS (%pS)",
2117 						(void *)ops->trampoline,
2118 						(void *)ops->func);
2119 					ops = ftrace_find_tramp_ops_next(rec, ops);
2120 				} while (ops);
2121 			} else
2122 				pr_cont("\ttramp: ERROR!");
2123 
2124 		}
2125 		ip = ftrace_get_addr_curr(rec);
2126 		pr_cont("\n expected tramp: %lx\n", ip);
2127 	}
2128 
2129 	FTRACE_WARN_ON_ONCE(1);
2130 }
2131 
2132 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2133 {
2134 	unsigned long flag = 0UL;
2135 
2136 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2137 
2138 	if (skip_record(rec))
2139 		return FTRACE_UPDATE_IGNORE;
2140 
2141 	/*
2142 	 * If we are updating calls:
2143 	 *
2144 	 *   If the record has a ref count, then we need to enable it
2145 	 *   because someone is using it.
2146 	 *
2147 	 *   Otherwise we make sure its disabled.
2148 	 *
2149 	 * If we are disabling calls, then disable all records that
2150 	 * are enabled.
2151 	 */
2152 	if (enable && ftrace_rec_count(rec))
2153 		flag = FTRACE_FL_ENABLED;
2154 
2155 	/*
2156 	 * If enabling and the REGS flag does not match the REGS_EN, or
2157 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2158 	 * this record. Set flags to fail the compare against ENABLED.
2159 	 * Same for direct calls.
2160 	 */
2161 	if (flag) {
2162 		if (!(rec->flags & FTRACE_FL_REGS) !=
2163 		    !(rec->flags & FTRACE_FL_REGS_EN))
2164 			flag |= FTRACE_FL_REGS;
2165 
2166 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2167 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2168 			flag |= FTRACE_FL_TRAMP;
2169 
2170 		/*
2171 		 * Direct calls are special, as count matters.
2172 		 * We must test the record for direct, if the
2173 		 * DIRECT and DIRECT_EN do not match, but only
2174 		 * if the count is 1. That's because, if the
2175 		 * count is something other than one, we do not
2176 		 * want the direct enabled (it will be done via the
2177 		 * direct helper). But if DIRECT_EN is set, and
2178 		 * the count is not one, we need to clear it.
2179 		 */
2180 		if (ftrace_rec_count(rec) == 1) {
2181 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2182 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2183 				flag |= FTRACE_FL_DIRECT;
2184 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2185 			flag |= FTRACE_FL_DIRECT;
2186 		}
2187 	}
2188 
2189 	/* If the state of this record hasn't changed, then do nothing */
2190 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2191 		return FTRACE_UPDATE_IGNORE;
2192 
2193 	if (flag) {
2194 		/* Save off if rec is being enabled (for return value) */
2195 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2196 
2197 		if (update) {
2198 			rec->flags |= FTRACE_FL_ENABLED;
2199 			if (flag & FTRACE_FL_REGS) {
2200 				if (rec->flags & FTRACE_FL_REGS)
2201 					rec->flags |= FTRACE_FL_REGS_EN;
2202 				else
2203 					rec->flags &= ~FTRACE_FL_REGS_EN;
2204 			}
2205 			if (flag & FTRACE_FL_TRAMP) {
2206 				if (rec->flags & FTRACE_FL_TRAMP)
2207 					rec->flags |= FTRACE_FL_TRAMP_EN;
2208 				else
2209 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2210 			}
2211 
2212 			if (flag & FTRACE_FL_DIRECT) {
2213 				/*
2214 				 * If there's only one user (direct_ops helper)
2215 				 * then we can call the direct function
2216 				 * directly (no ftrace trampoline).
2217 				 */
2218 				if (ftrace_rec_count(rec) == 1) {
2219 					if (rec->flags & FTRACE_FL_DIRECT)
2220 						rec->flags |= FTRACE_FL_DIRECT_EN;
2221 					else
2222 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2223 				} else {
2224 					/*
2225 					 * Can only call directly if there's
2226 					 * only one callback to the function.
2227 					 */
2228 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2229 				}
2230 			}
2231 		}
2232 
2233 		/*
2234 		 * If this record is being updated from a nop, then
2235 		 *   return UPDATE_MAKE_CALL.
2236 		 * Otherwise,
2237 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2238 		 *   from the save regs, to a non-save regs function or
2239 		 *   vice versa, or from a trampoline call.
2240 		 */
2241 		if (flag & FTRACE_FL_ENABLED) {
2242 			ftrace_bug_type = FTRACE_BUG_CALL;
2243 			return FTRACE_UPDATE_MAKE_CALL;
2244 		}
2245 
2246 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2247 		return FTRACE_UPDATE_MODIFY_CALL;
2248 	}
2249 
2250 	if (update) {
2251 		/* If there's no more users, clear all flags */
2252 		if (!ftrace_rec_count(rec))
2253 			rec->flags &= FTRACE_FL_DISABLED;
2254 		else
2255 			/*
2256 			 * Just disable the record, but keep the ops TRAMP
2257 			 * and REGS states. The _EN flags must be disabled though.
2258 			 */
2259 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2260 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2261 	}
2262 
2263 	ftrace_bug_type = FTRACE_BUG_NOP;
2264 	return FTRACE_UPDATE_MAKE_NOP;
2265 }
2266 
2267 /**
2268  * ftrace_update_record - set a record that now is tracing or not
2269  * @rec: the record to update
2270  * @enable: set to true if the record is tracing, false to force disable
2271  *
2272  * The records that represent all functions that can be traced need
2273  * to be updated when tracing has been enabled.
2274  */
2275 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2276 {
2277 	return ftrace_check_record(rec, enable, true);
2278 }
2279 
2280 /**
2281  * ftrace_test_record - check if the record has been enabled or not
2282  * @rec: the record to test
2283  * @enable: set to true to check if enabled, false if it is disabled
2284  *
2285  * The arch code may need to test if a record is already set to
2286  * tracing to determine how to modify the function code that it
2287  * represents.
2288  */
2289 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2290 {
2291 	return ftrace_check_record(rec, enable, false);
2292 }
2293 
2294 static struct ftrace_ops *
2295 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2296 {
2297 	struct ftrace_ops *op;
2298 	unsigned long ip = rec->ip;
2299 
2300 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2301 
2302 		if (!op->trampoline)
2303 			continue;
2304 
2305 		if (hash_contains_ip(ip, op->func_hash))
2306 			return op;
2307 	} while_for_each_ftrace_op(op);
2308 
2309 	return NULL;
2310 }
2311 
2312 static struct ftrace_ops *
2313 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2314 {
2315 	struct ftrace_ops *op;
2316 	unsigned long ip = rec->ip;
2317 
2318 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2319 
2320 		if (op == op_exclude || !op->trampoline)
2321 			continue;
2322 
2323 		if (hash_contains_ip(ip, op->func_hash))
2324 			return op;
2325 	} while_for_each_ftrace_op(op);
2326 
2327 	return NULL;
2328 }
2329 
2330 static struct ftrace_ops *
2331 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2332 			   struct ftrace_ops *op)
2333 {
2334 	unsigned long ip = rec->ip;
2335 
2336 	while_for_each_ftrace_op(op) {
2337 
2338 		if (!op->trampoline)
2339 			continue;
2340 
2341 		if (hash_contains_ip(ip, op->func_hash))
2342 			return op;
2343 	}
2344 
2345 	return NULL;
2346 }
2347 
2348 static struct ftrace_ops *
2349 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2350 {
2351 	struct ftrace_ops *op;
2352 	unsigned long ip = rec->ip;
2353 
2354 	/*
2355 	 * Need to check removed ops first.
2356 	 * If they are being removed, and this rec has a tramp,
2357 	 * and this rec is in the ops list, then it would be the
2358 	 * one with the tramp.
2359 	 */
2360 	if (removed_ops) {
2361 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2362 			return removed_ops;
2363 	}
2364 
2365 	/*
2366 	 * Need to find the current trampoline for a rec.
2367 	 * Now, a trampoline is only attached to a rec if there
2368 	 * was a single 'ops' attached to it. But this can be called
2369 	 * when we are adding another op to the rec or removing the
2370 	 * current one. Thus, if the op is being added, we can
2371 	 * ignore it because it hasn't attached itself to the rec
2372 	 * yet.
2373 	 *
2374 	 * If an ops is being modified (hooking to different functions)
2375 	 * then we don't care about the new functions that are being
2376 	 * added, just the old ones (that are probably being removed).
2377 	 *
2378 	 * If we are adding an ops to a function that already is using
2379 	 * a trampoline, it needs to be removed (trampolines are only
2380 	 * for single ops connected), then an ops that is not being
2381 	 * modified also needs to be checked.
2382 	 */
2383 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2384 
2385 		if (!op->trampoline)
2386 			continue;
2387 
2388 		/*
2389 		 * If the ops is being added, it hasn't gotten to
2390 		 * the point to be removed from this tree yet.
2391 		 */
2392 		if (op->flags & FTRACE_OPS_FL_ADDING)
2393 			continue;
2394 
2395 
2396 		/*
2397 		 * If the ops is being modified and is in the old
2398 		 * hash, then it is probably being removed from this
2399 		 * function.
2400 		 */
2401 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2402 		    hash_contains_ip(ip, &op->old_hash))
2403 			return op;
2404 		/*
2405 		 * If the ops is not being added or modified, and it's
2406 		 * in its normal filter hash, then this must be the one
2407 		 * we want!
2408 		 */
2409 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2410 		    hash_contains_ip(ip, op->func_hash))
2411 			return op;
2412 
2413 	} while_for_each_ftrace_op(op);
2414 
2415 	return NULL;
2416 }
2417 
2418 static struct ftrace_ops *
2419 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2420 {
2421 	struct ftrace_ops *op;
2422 	unsigned long ip = rec->ip;
2423 
2424 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2425 		/* pass rec in as regs to have non-NULL val */
2426 		if (hash_contains_ip(ip, op->func_hash))
2427 			return op;
2428 	} while_for_each_ftrace_op(op);
2429 
2430 	return NULL;
2431 }
2432 
2433 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2434 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2435 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2436 static DEFINE_MUTEX(direct_mutex);
2437 int ftrace_direct_func_count;
2438 
2439 /*
2440  * Search the direct_functions hash to see if the given instruction pointer
2441  * has a direct caller attached to it.
2442  */
2443 unsigned long ftrace_find_rec_direct(unsigned long ip)
2444 {
2445 	struct ftrace_func_entry *entry;
2446 
2447 	entry = __ftrace_lookup_ip(direct_functions, ip);
2448 	if (!entry)
2449 		return 0;
2450 
2451 	return entry->direct;
2452 }
2453 
2454 static struct ftrace_func_entry*
2455 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2456 		      struct ftrace_hash **free_hash)
2457 {
2458 	struct ftrace_func_entry *entry;
2459 
2460 	if (ftrace_hash_empty(direct_functions) ||
2461 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2462 		struct ftrace_hash *new_hash;
2463 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2464 			direct_functions->count + 1;
2465 
2466 		if (size < 32)
2467 			size = 32;
2468 
2469 		new_hash = dup_hash(direct_functions, size);
2470 		if (!new_hash)
2471 			return NULL;
2472 
2473 		*free_hash = direct_functions;
2474 		direct_functions = new_hash;
2475 	}
2476 
2477 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2478 	if (!entry)
2479 		return NULL;
2480 
2481 	entry->ip = ip;
2482 	entry->direct = addr;
2483 	__add_hash_entry(direct_functions, entry);
2484 	return entry;
2485 }
2486 
2487 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2488 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2489 {
2490 	struct pt_regs *regs = ftrace_get_regs(fregs);
2491 	unsigned long addr;
2492 
2493 	addr = ftrace_find_rec_direct(ip);
2494 	if (!addr)
2495 		return;
2496 
2497 	arch_ftrace_set_direct_caller(regs, addr);
2498 }
2499 
2500 struct ftrace_ops direct_ops = {
2501 	.func		= call_direct_funcs,
2502 	.flags		= FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2503 			  | FTRACE_OPS_FL_PERMANENT,
2504 	/*
2505 	 * By declaring the main trampoline as this trampoline
2506 	 * it will never have one allocated for it. Allocated
2507 	 * trampolines should not call direct functions.
2508 	 * The direct_ops should only be called by the builtin
2509 	 * ftrace_regs_caller trampoline.
2510 	 */
2511 	.trampoline	= FTRACE_REGS_ADDR,
2512 };
2513 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2514 
2515 /**
2516  * ftrace_get_addr_new - Get the call address to set to
2517  * @rec:  The ftrace record descriptor
2518  *
2519  * If the record has the FTRACE_FL_REGS set, that means that it
2520  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2521  * is not set, then it wants to convert to the normal callback.
2522  *
2523  * Returns the address of the trampoline to set to
2524  */
2525 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2526 {
2527 	struct ftrace_ops *ops;
2528 	unsigned long addr;
2529 
2530 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2531 	    (ftrace_rec_count(rec) == 1)) {
2532 		addr = ftrace_find_rec_direct(rec->ip);
2533 		if (addr)
2534 			return addr;
2535 		WARN_ON_ONCE(1);
2536 	}
2537 
2538 	/* Trampolines take precedence over regs */
2539 	if (rec->flags & FTRACE_FL_TRAMP) {
2540 		ops = ftrace_find_tramp_ops_new(rec);
2541 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2542 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2543 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2544 			/* Ftrace is shutting down, return anything */
2545 			return (unsigned long)FTRACE_ADDR;
2546 		}
2547 		return ops->trampoline;
2548 	}
2549 
2550 	if (rec->flags & FTRACE_FL_REGS)
2551 		return (unsigned long)FTRACE_REGS_ADDR;
2552 	else
2553 		return (unsigned long)FTRACE_ADDR;
2554 }
2555 
2556 /**
2557  * ftrace_get_addr_curr - Get the call address that is already there
2558  * @rec:  The ftrace record descriptor
2559  *
2560  * The FTRACE_FL_REGS_EN is set when the record already points to
2561  * a function that saves all the regs. Basically the '_EN' version
2562  * represents the current state of the function.
2563  *
2564  * Returns the address of the trampoline that is currently being called
2565  */
2566 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2567 {
2568 	struct ftrace_ops *ops;
2569 	unsigned long addr;
2570 
2571 	/* Direct calls take precedence over trampolines */
2572 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2573 		addr = ftrace_find_rec_direct(rec->ip);
2574 		if (addr)
2575 			return addr;
2576 		WARN_ON_ONCE(1);
2577 	}
2578 
2579 	/* Trampolines take precedence over regs */
2580 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2581 		ops = ftrace_find_tramp_ops_curr(rec);
2582 		if (FTRACE_WARN_ON(!ops)) {
2583 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2584 				(void *)rec->ip, (void *)rec->ip);
2585 			/* Ftrace is shutting down, return anything */
2586 			return (unsigned long)FTRACE_ADDR;
2587 		}
2588 		return ops->trampoline;
2589 	}
2590 
2591 	if (rec->flags & FTRACE_FL_REGS_EN)
2592 		return (unsigned long)FTRACE_REGS_ADDR;
2593 	else
2594 		return (unsigned long)FTRACE_ADDR;
2595 }
2596 
2597 static int
2598 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2599 {
2600 	unsigned long ftrace_old_addr;
2601 	unsigned long ftrace_addr;
2602 	int ret;
2603 
2604 	ftrace_addr = ftrace_get_addr_new(rec);
2605 
2606 	/* This needs to be done before we call ftrace_update_record */
2607 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2608 
2609 	ret = ftrace_update_record(rec, enable);
2610 
2611 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2612 
2613 	switch (ret) {
2614 	case FTRACE_UPDATE_IGNORE:
2615 		return 0;
2616 
2617 	case FTRACE_UPDATE_MAKE_CALL:
2618 		ftrace_bug_type = FTRACE_BUG_CALL;
2619 		return ftrace_make_call(rec, ftrace_addr);
2620 
2621 	case FTRACE_UPDATE_MAKE_NOP:
2622 		ftrace_bug_type = FTRACE_BUG_NOP;
2623 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2624 
2625 	case FTRACE_UPDATE_MODIFY_CALL:
2626 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2627 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2628 	}
2629 
2630 	return -1; /* unknown ftrace bug */
2631 }
2632 
2633 void __weak ftrace_replace_code(int mod_flags)
2634 {
2635 	struct dyn_ftrace *rec;
2636 	struct ftrace_page *pg;
2637 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2638 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2639 	int failed;
2640 
2641 	if (unlikely(ftrace_disabled))
2642 		return;
2643 
2644 	do_for_each_ftrace_rec(pg, rec) {
2645 
2646 		if (skip_record(rec))
2647 			continue;
2648 
2649 		failed = __ftrace_replace_code(rec, enable);
2650 		if (failed) {
2651 			ftrace_bug(failed, rec);
2652 			/* Stop processing */
2653 			return;
2654 		}
2655 		if (schedulable)
2656 			cond_resched();
2657 	} while_for_each_ftrace_rec();
2658 }
2659 
2660 struct ftrace_rec_iter {
2661 	struct ftrace_page	*pg;
2662 	int			index;
2663 };
2664 
2665 /**
2666  * ftrace_rec_iter_start - start up iterating over traced functions
2667  *
2668  * Returns an iterator handle that is used to iterate over all
2669  * the records that represent address locations where functions
2670  * are traced.
2671  *
2672  * May return NULL if no records are available.
2673  */
2674 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2675 {
2676 	/*
2677 	 * We only use a single iterator.
2678 	 * Protected by the ftrace_lock mutex.
2679 	 */
2680 	static struct ftrace_rec_iter ftrace_rec_iter;
2681 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2682 
2683 	iter->pg = ftrace_pages_start;
2684 	iter->index = 0;
2685 
2686 	/* Could have empty pages */
2687 	while (iter->pg && !iter->pg->index)
2688 		iter->pg = iter->pg->next;
2689 
2690 	if (!iter->pg)
2691 		return NULL;
2692 
2693 	return iter;
2694 }
2695 
2696 /**
2697  * ftrace_rec_iter_next - get the next record to process.
2698  * @iter: The handle to the iterator.
2699  *
2700  * Returns the next iterator after the given iterator @iter.
2701  */
2702 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2703 {
2704 	iter->index++;
2705 
2706 	if (iter->index >= iter->pg->index) {
2707 		iter->pg = iter->pg->next;
2708 		iter->index = 0;
2709 
2710 		/* Could have empty pages */
2711 		while (iter->pg && !iter->pg->index)
2712 			iter->pg = iter->pg->next;
2713 	}
2714 
2715 	if (!iter->pg)
2716 		return NULL;
2717 
2718 	return iter;
2719 }
2720 
2721 /**
2722  * ftrace_rec_iter_record - get the record at the iterator location
2723  * @iter: The current iterator location
2724  *
2725  * Returns the record that the current @iter is at.
2726  */
2727 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2728 {
2729 	return &iter->pg->records[iter->index];
2730 }
2731 
2732 static int
2733 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2734 {
2735 	int ret;
2736 
2737 	if (unlikely(ftrace_disabled))
2738 		return 0;
2739 
2740 	ret = ftrace_init_nop(mod, rec);
2741 	if (ret) {
2742 		ftrace_bug_type = FTRACE_BUG_INIT;
2743 		ftrace_bug(ret, rec);
2744 		return 0;
2745 	}
2746 	return 1;
2747 }
2748 
2749 /*
2750  * archs can override this function if they must do something
2751  * before the modifying code is performed.
2752  */
2753 void __weak ftrace_arch_code_modify_prepare(void)
2754 {
2755 }
2756 
2757 /*
2758  * archs can override this function if they must do something
2759  * after the modifying code is performed.
2760  */
2761 void __weak ftrace_arch_code_modify_post_process(void)
2762 {
2763 }
2764 
2765 void ftrace_modify_all_code(int command)
2766 {
2767 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2768 	int mod_flags = 0;
2769 	int err = 0;
2770 
2771 	if (command & FTRACE_MAY_SLEEP)
2772 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2773 
2774 	/*
2775 	 * If the ftrace_caller calls a ftrace_ops func directly,
2776 	 * we need to make sure that it only traces functions it
2777 	 * expects to trace. When doing the switch of functions,
2778 	 * we need to update to the ftrace_ops_list_func first
2779 	 * before the transition between old and new calls are set,
2780 	 * as the ftrace_ops_list_func will check the ops hashes
2781 	 * to make sure the ops are having the right functions
2782 	 * traced.
2783 	 */
2784 	if (update) {
2785 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2786 		if (FTRACE_WARN_ON(err))
2787 			return;
2788 	}
2789 
2790 	if (command & FTRACE_UPDATE_CALLS)
2791 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2792 	else if (command & FTRACE_DISABLE_CALLS)
2793 		ftrace_replace_code(mod_flags);
2794 
2795 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2796 		function_trace_op = set_function_trace_op;
2797 		smp_wmb();
2798 		/* If irqs are disabled, we are in stop machine */
2799 		if (!irqs_disabled())
2800 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2801 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2802 		if (FTRACE_WARN_ON(err))
2803 			return;
2804 	}
2805 
2806 	if (command & FTRACE_START_FUNC_RET)
2807 		err = ftrace_enable_ftrace_graph_caller();
2808 	else if (command & FTRACE_STOP_FUNC_RET)
2809 		err = ftrace_disable_ftrace_graph_caller();
2810 	FTRACE_WARN_ON(err);
2811 }
2812 
2813 static int __ftrace_modify_code(void *data)
2814 {
2815 	int *command = data;
2816 
2817 	ftrace_modify_all_code(*command);
2818 
2819 	return 0;
2820 }
2821 
2822 /**
2823  * ftrace_run_stop_machine - go back to the stop machine method
2824  * @command: The command to tell ftrace what to do
2825  *
2826  * If an arch needs to fall back to the stop machine method, the
2827  * it can call this function.
2828  */
2829 void ftrace_run_stop_machine(int command)
2830 {
2831 	stop_machine(__ftrace_modify_code, &command, NULL);
2832 }
2833 
2834 /**
2835  * arch_ftrace_update_code - modify the code to trace or not trace
2836  * @command: The command that needs to be done
2837  *
2838  * Archs can override this function if it does not need to
2839  * run stop_machine() to modify code.
2840  */
2841 void __weak arch_ftrace_update_code(int command)
2842 {
2843 	ftrace_run_stop_machine(command);
2844 }
2845 
2846 static void ftrace_run_update_code(int command)
2847 {
2848 	ftrace_arch_code_modify_prepare();
2849 
2850 	/*
2851 	 * By default we use stop_machine() to modify the code.
2852 	 * But archs can do what ever they want as long as it
2853 	 * is safe. The stop_machine() is the safest, but also
2854 	 * produces the most overhead.
2855 	 */
2856 	arch_ftrace_update_code(command);
2857 
2858 	ftrace_arch_code_modify_post_process();
2859 }
2860 
2861 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2862 				   struct ftrace_ops_hash *old_hash)
2863 {
2864 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2865 	ops->old_hash.filter_hash = old_hash->filter_hash;
2866 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2867 	ftrace_run_update_code(command);
2868 	ops->old_hash.filter_hash = NULL;
2869 	ops->old_hash.notrace_hash = NULL;
2870 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2871 }
2872 
2873 static ftrace_func_t saved_ftrace_func;
2874 static int ftrace_start_up;
2875 
2876 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2877 {
2878 }
2879 
2880 /* List of trace_ops that have allocated trampolines */
2881 static LIST_HEAD(ftrace_ops_trampoline_list);
2882 
2883 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2884 {
2885 	lockdep_assert_held(&ftrace_lock);
2886 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2887 }
2888 
2889 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2890 {
2891 	lockdep_assert_held(&ftrace_lock);
2892 	list_del_rcu(&ops->list);
2893 	synchronize_rcu();
2894 }
2895 
2896 /*
2897  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2898  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2899  * not a module.
2900  */
2901 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2902 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2903 
2904 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2905 {
2906 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2907 	    ops->trampoline) {
2908 		/*
2909 		 * Record the text poke event before the ksymbol unregister
2910 		 * event.
2911 		 */
2912 		perf_event_text_poke((void *)ops->trampoline,
2913 				     (void *)ops->trampoline,
2914 				     ops->trampoline_size, NULL, 0);
2915 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2916 				   ops->trampoline, ops->trampoline_size,
2917 				   true, FTRACE_TRAMPOLINE_SYM);
2918 		/* Remove from kallsyms after the perf events */
2919 		ftrace_remove_trampoline_from_kallsyms(ops);
2920 	}
2921 
2922 	arch_ftrace_trampoline_free(ops);
2923 }
2924 
2925 static void ftrace_startup_enable(int command)
2926 {
2927 	if (saved_ftrace_func != ftrace_trace_function) {
2928 		saved_ftrace_func = ftrace_trace_function;
2929 		command |= FTRACE_UPDATE_TRACE_FUNC;
2930 	}
2931 
2932 	if (!command || !ftrace_enabled)
2933 		return;
2934 
2935 	ftrace_run_update_code(command);
2936 }
2937 
2938 static void ftrace_startup_all(int command)
2939 {
2940 	update_all_ops = true;
2941 	ftrace_startup_enable(command);
2942 	update_all_ops = false;
2943 }
2944 
2945 int ftrace_startup(struct ftrace_ops *ops, int command)
2946 {
2947 	int ret;
2948 
2949 	if (unlikely(ftrace_disabled))
2950 		return -ENODEV;
2951 
2952 	ret = __register_ftrace_function(ops);
2953 	if (ret)
2954 		return ret;
2955 
2956 	ftrace_start_up++;
2957 
2958 	/*
2959 	 * Note that ftrace probes uses this to start up
2960 	 * and modify functions it will probe. But we still
2961 	 * set the ADDING flag for modification, as probes
2962 	 * do not have trampolines. If they add them in the
2963 	 * future, then the probes will need to distinguish
2964 	 * between adding and updating probes.
2965 	 */
2966 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2967 
2968 	ret = ftrace_hash_ipmodify_enable(ops);
2969 	if (ret < 0) {
2970 		/* Rollback registration process */
2971 		__unregister_ftrace_function(ops);
2972 		ftrace_start_up--;
2973 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2974 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2975 			ftrace_trampoline_free(ops);
2976 		return ret;
2977 	}
2978 
2979 	if (ftrace_hash_rec_enable(ops, 1))
2980 		command |= FTRACE_UPDATE_CALLS;
2981 
2982 	ftrace_startup_enable(command);
2983 
2984 	/*
2985 	 * If ftrace is in an undefined state, we just remove ops from list
2986 	 * to prevent the NULL pointer, instead of totally rolling it back and
2987 	 * free trampoline, because those actions could cause further damage.
2988 	 */
2989 	if (unlikely(ftrace_disabled)) {
2990 		__unregister_ftrace_function(ops);
2991 		return -ENODEV;
2992 	}
2993 
2994 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2995 
2996 	return 0;
2997 }
2998 
2999 int ftrace_shutdown(struct ftrace_ops *ops, int command)
3000 {
3001 	int ret;
3002 
3003 	if (unlikely(ftrace_disabled))
3004 		return -ENODEV;
3005 
3006 	ret = __unregister_ftrace_function(ops);
3007 	if (ret)
3008 		return ret;
3009 
3010 	ftrace_start_up--;
3011 	/*
3012 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3013 	 * critical but the ftrace_call callers may be never nopped again after
3014 	 * further ftrace uses.
3015 	 */
3016 	WARN_ON_ONCE(ftrace_start_up < 0);
3017 
3018 	/* Disabling ipmodify never fails */
3019 	ftrace_hash_ipmodify_disable(ops);
3020 
3021 	if (ftrace_hash_rec_disable(ops, 1))
3022 		command |= FTRACE_UPDATE_CALLS;
3023 
3024 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3025 
3026 	if (saved_ftrace_func != ftrace_trace_function) {
3027 		saved_ftrace_func = ftrace_trace_function;
3028 		command |= FTRACE_UPDATE_TRACE_FUNC;
3029 	}
3030 
3031 	if (!command || !ftrace_enabled)
3032 		goto out;
3033 
3034 	/*
3035 	 * If the ops uses a trampoline, then it needs to be
3036 	 * tested first on update.
3037 	 */
3038 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3039 	removed_ops = ops;
3040 
3041 	/* The trampoline logic checks the old hashes */
3042 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3043 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3044 
3045 	ftrace_run_update_code(command);
3046 
3047 	/*
3048 	 * If there's no more ops registered with ftrace, run a
3049 	 * sanity check to make sure all rec flags are cleared.
3050 	 */
3051 	if (rcu_dereference_protected(ftrace_ops_list,
3052 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3053 		struct ftrace_page *pg;
3054 		struct dyn_ftrace *rec;
3055 
3056 		do_for_each_ftrace_rec(pg, rec) {
3057 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3058 				pr_warn("  %pS flags:%lx\n",
3059 					(void *)rec->ip, rec->flags);
3060 		} while_for_each_ftrace_rec();
3061 	}
3062 
3063 	ops->old_hash.filter_hash = NULL;
3064 	ops->old_hash.notrace_hash = NULL;
3065 
3066 	removed_ops = NULL;
3067 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3068 
3069 out:
3070 	/*
3071 	 * Dynamic ops may be freed, we must make sure that all
3072 	 * callers are done before leaving this function.
3073 	 * The same goes for freeing the per_cpu data of the per_cpu
3074 	 * ops.
3075 	 */
3076 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3077 		/*
3078 		 * We need to do a hard force of sched synchronization.
3079 		 * This is because we use preempt_disable() to do RCU, but
3080 		 * the function tracers can be called where RCU is not watching
3081 		 * (like before user_exit()). We can not rely on the RCU
3082 		 * infrastructure to do the synchronization, thus we must do it
3083 		 * ourselves.
3084 		 */
3085 		synchronize_rcu_tasks_rude();
3086 
3087 		/*
3088 		 * When the kernel is preemptive, tasks can be preempted
3089 		 * while on a ftrace trampoline. Just scheduling a task on
3090 		 * a CPU is not good enough to flush them. Calling
3091 		 * synchronize_rcu_tasks() will wait for those tasks to
3092 		 * execute and either schedule voluntarily or enter user space.
3093 		 */
3094 		if (IS_ENABLED(CONFIG_PREEMPTION))
3095 			synchronize_rcu_tasks();
3096 
3097 		ftrace_trampoline_free(ops);
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static u64		ftrace_update_time;
3104 unsigned long		ftrace_update_tot_cnt;
3105 unsigned long		ftrace_number_of_pages;
3106 unsigned long		ftrace_number_of_groups;
3107 
3108 static inline int ops_traces_mod(struct ftrace_ops *ops)
3109 {
3110 	/*
3111 	 * Filter_hash being empty will default to trace module.
3112 	 * But notrace hash requires a test of individual module functions.
3113 	 */
3114 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3115 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3116 }
3117 
3118 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3119 {
3120 	bool init_nop = ftrace_need_init_nop();
3121 	struct ftrace_page *pg;
3122 	struct dyn_ftrace *p;
3123 	u64 start, stop;
3124 	unsigned long update_cnt = 0;
3125 	unsigned long rec_flags = 0;
3126 	int i;
3127 
3128 	start = ftrace_now(raw_smp_processor_id());
3129 
3130 	/*
3131 	 * When a module is loaded, this function is called to convert
3132 	 * the calls to mcount in its text to nops, and also to create
3133 	 * an entry in the ftrace data. Now, if ftrace is activated
3134 	 * after this call, but before the module sets its text to
3135 	 * read-only, the modification of enabling ftrace can fail if
3136 	 * the read-only is done while ftrace is converting the calls.
3137 	 * To prevent this, the module's records are set as disabled
3138 	 * and will be enabled after the call to set the module's text
3139 	 * to read-only.
3140 	 */
3141 	if (mod)
3142 		rec_flags |= FTRACE_FL_DISABLED;
3143 
3144 	for (pg = new_pgs; pg; pg = pg->next) {
3145 
3146 		for (i = 0; i < pg->index; i++) {
3147 
3148 			/* If something went wrong, bail without enabling anything */
3149 			if (unlikely(ftrace_disabled))
3150 				return -1;
3151 
3152 			p = &pg->records[i];
3153 			p->flags = rec_flags;
3154 
3155 			/*
3156 			 * Do the initial record conversion from mcount jump
3157 			 * to the NOP instructions.
3158 			 */
3159 			if (init_nop && !ftrace_nop_initialize(mod, p))
3160 				break;
3161 
3162 			update_cnt++;
3163 		}
3164 	}
3165 
3166 	stop = ftrace_now(raw_smp_processor_id());
3167 	ftrace_update_time = stop - start;
3168 	ftrace_update_tot_cnt += update_cnt;
3169 
3170 	return 0;
3171 }
3172 
3173 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3174 {
3175 	int order;
3176 	int pages;
3177 	int cnt;
3178 
3179 	if (WARN_ON(!count))
3180 		return -EINVAL;
3181 
3182 	/* We want to fill as much as possible, with no empty pages */
3183 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3184 	order = fls(pages) - 1;
3185 
3186  again:
3187 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3188 
3189 	if (!pg->records) {
3190 		/* if we can't allocate this size, try something smaller */
3191 		if (!order)
3192 			return -ENOMEM;
3193 		order >>= 1;
3194 		goto again;
3195 	}
3196 
3197 	ftrace_number_of_pages += 1 << order;
3198 	ftrace_number_of_groups++;
3199 
3200 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3201 	pg->order = order;
3202 
3203 	if (cnt > count)
3204 		cnt = count;
3205 
3206 	return cnt;
3207 }
3208 
3209 static struct ftrace_page *
3210 ftrace_allocate_pages(unsigned long num_to_init)
3211 {
3212 	struct ftrace_page *start_pg;
3213 	struct ftrace_page *pg;
3214 	int cnt;
3215 
3216 	if (!num_to_init)
3217 		return NULL;
3218 
3219 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3220 	if (!pg)
3221 		return NULL;
3222 
3223 	/*
3224 	 * Try to allocate as much as possible in one continues
3225 	 * location that fills in all of the space. We want to
3226 	 * waste as little space as possible.
3227 	 */
3228 	for (;;) {
3229 		cnt = ftrace_allocate_records(pg, num_to_init);
3230 		if (cnt < 0)
3231 			goto free_pages;
3232 
3233 		num_to_init -= cnt;
3234 		if (!num_to_init)
3235 			break;
3236 
3237 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3238 		if (!pg->next)
3239 			goto free_pages;
3240 
3241 		pg = pg->next;
3242 	}
3243 
3244 	return start_pg;
3245 
3246  free_pages:
3247 	pg = start_pg;
3248 	while (pg) {
3249 		if (pg->records) {
3250 			free_pages((unsigned long)pg->records, pg->order);
3251 			ftrace_number_of_pages -= 1 << pg->order;
3252 		}
3253 		start_pg = pg->next;
3254 		kfree(pg);
3255 		pg = start_pg;
3256 		ftrace_number_of_groups--;
3257 	}
3258 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3259 	return NULL;
3260 }
3261 
3262 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3263 
3264 struct ftrace_iterator {
3265 	loff_t				pos;
3266 	loff_t				func_pos;
3267 	loff_t				mod_pos;
3268 	struct ftrace_page		*pg;
3269 	struct dyn_ftrace		*func;
3270 	struct ftrace_func_probe	*probe;
3271 	struct ftrace_func_entry	*probe_entry;
3272 	struct trace_parser		parser;
3273 	struct ftrace_hash		*hash;
3274 	struct ftrace_ops		*ops;
3275 	struct trace_array		*tr;
3276 	struct list_head		*mod_list;
3277 	int				pidx;
3278 	int				idx;
3279 	unsigned			flags;
3280 };
3281 
3282 static void *
3283 t_probe_next(struct seq_file *m, loff_t *pos)
3284 {
3285 	struct ftrace_iterator *iter = m->private;
3286 	struct trace_array *tr = iter->ops->private;
3287 	struct list_head *func_probes;
3288 	struct ftrace_hash *hash;
3289 	struct list_head *next;
3290 	struct hlist_node *hnd = NULL;
3291 	struct hlist_head *hhd;
3292 	int size;
3293 
3294 	(*pos)++;
3295 	iter->pos = *pos;
3296 
3297 	if (!tr)
3298 		return NULL;
3299 
3300 	func_probes = &tr->func_probes;
3301 	if (list_empty(func_probes))
3302 		return NULL;
3303 
3304 	if (!iter->probe) {
3305 		next = func_probes->next;
3306 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3307 	}
3308 
3309 	if (iter->probe_entry)
3310 		hnd = &iter->probe_entry->hlist;
3311 
3312 	hash = iter->probe->ops.func_hash->filter_hash;
3313 
3314 	/*
3315 	 * A probe being registered may temporarily have an empty hash
3316 	 * and it's at the end of the func_probes list.
3317 	 */
3318 	if (!hash || hash == EMPTY_HASH)
3319 		return NULL;
3320 
3321 	size = 1 << hash->size_bits;
3322 
3323  retry:
3324 	if (iter->pidx >= size) {
3325 		if (iter->probe->list.next == func_probes)
3326 			return NULL;
3327 		next = iter->probe->list.next;
3328 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3329 		hash = iter->probe->ops.func_hash->filter_hash;
3330 		size = 1 << hash->size_bits;
3331 		iter->pidx = 0;
3332 	}
3333 
3334 	hhd = &hash->buckets[iter->pidx];
3335 
3336 	if (hlist_empty(hhd)) {
3337 		iter->pidx++;
3338 		hnd = NULL;
3339 		goto retry;
3340 	}
3341 
3342 	if (!hnd)
3343 		hnd = hhd->first;
3344 	else {
3345 		hnd = hnd->next;
3346 		if (!hnd) {
3347 			iter->pidx++;
3348 			goto retry;
3349 		}
3350 	}
3351 
3352 	if (WARN_ON_ONCE(!hnd))
3353 		return NULL;
3354 
3355 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3356 
3357 	return iter;
3358 }
3359 
3360 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3361 {
3362 	struct ftrace_iterator *iter = m->private;
3363 	void *p = NULL;
3364 	loff_t l;
3365 
3366 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3367 		return NULL;
3368 
3369 	if (iter->mod_pos > *pos)
3370 		return NULL;
3371 
3372 	iter->probe = NULL;
3373 	iter->probe_entry = NULL;
3374 	iter->pidx = 0;
3375 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3376 		p = t_probe_next(m, &l);
3377 		if (!p)
3378 			break;
3379 	}
3380 	if (!p)
3381 		return NULL;
3382 
3383 	/* Only set this if we have an item */
3384 	iter->flags |= FTRACE_ITER_PROBE;
3385 
3386 	return iter;
3387 }
3388 
3389 static int
3390 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3391 {
3392 	struct ftrace_func_entry *probe_entry;
3393 	struct ftrace_probe_ops *probe_ops;
3394 	struct ftrace_func_probe *probe;
3395 
3396 	probe = iter->probe;
3397 	probe_entry = iter->probe_entry;
3398 
3399 	if (WARN_ON_ONCE(!probe || !probe_entry))
3400 		return -EIO;
3401 
3402 	probe_ops = probe->probe_ops;
3403 
3404 	if (probe_ops->print)
3405 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3406 
3407 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3408 		   (void *)probe_ops->func);
3409 
3410 	return 0;
3411 }
3412 
3413 static void *
3414 t_mod_next(struct seq_file *m, loff_t *pos)
3415 {
3416 	struct ftrace_iterator *iter = m->private;
3417 	struct trace_array *tr = iter->tr;
3418 
3419 	(*pos)++;
3420 	iter->pos = *pos;
3421 
3422 	iter->mod_list = iter->mod_list->next;
3423 
3424 	if (iter->mod_list == &tr->mod_trace ||
3425 	    iter->mod_list == &tr->mod_notrace) {
3426 		iter->flags &= ~FTRACE_ITER_MOD;
3427 		return NULL;
3428 	}
3429 
3430 	iter->mod_pos = *pos;
3431 
3432 	return iter;
3433 }
3434 
3435 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3436 {
3437 	struct ftrace_iterator *iter = m->private;
3438 	void *p = NULL;
3439 	loff_t l;
3440 
3441 	if (iter->func_pos > *pos)
3442 		return NULL;
3443 
3444 	iter->mod_pos = iter->func_pos;
3445 
3446 	/* probes are only available if tr is set */
3447 	if (!iter->tr)
3448 		return NULL;
3449 
3450 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3451 		p = t_mod_next(m, &l);
3452 		if (!p)
3453 			break;
3454 	}
3455 	if (!p) {
3456 		iter->flags &= ~FTRACE_ITER_MOD;
3457 		return t_probe_start(m, pos);
3458 	}
3459 
3460 	/* Only set this if we have an item */
3461 	iter->flags |= FTRACE_ITER_MOD;
3462 
3463 	return iter;
3464 }
3465 
3466 static int
3467 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3468 {
3469 	struct ftrace_mod_load *ftrace_mod;
3470 	struct trace_array *tr = iter->tr;
3471 
3472 	if (WARN_ON_ONCE(!iter->mod_list) ||
3473 			 iter->mod_list == &tr->mod_trace ||
3474 			 iter->mod_list == &tr->mod_notrace)
3475 		return -EIO;
3476 
3477 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3478 
3479 	if (ftrace_mod->func)
3480 		seq_printf(m, "%s", ftrace_mod->func);
3481 	else
3482 		seq_putc(m, '*');
3483 
3484 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3485 
3486 	return 0;
3487 }
3488 
3489 static void *
3490 t_func_next(struct seq_file *m, loff_t *pos)
3491 {
3492 	struct ftrace_iterator *iter = m->private;
3493 	struct dyn_ftrace *rec = NULL;
3494 
3495 	(*pos)++;
3496 
3497  retry:
3498 	if (iter->idx >= iter->pg->index) {
3499 		if (iter->pg->next) {
3500 			iter->pg = iter->pg->next;
3501 			iter->idx = 0;
3502 			goto retry;
3503 		}
3504 	} else {
3505 		rec = &iter->pg->records[iter->idx++];
3506 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3507 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3508 
3509 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3510 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3511 
3512 			rec = NULL;
3513 			goto retry;
3514 		}
3515 	}
3516 
3517 	if (!rec)
3518 		return NULL;
3519 
3520 	iter->pos = iter->func_pos = *pos;
3521 	iter->func = rec;
3522 
3523 	return iter;
3524 }
3525 
3526 static void *
3527 t_next(struct seq_file *m, void *v, loff_t *pos)
3528 {
3529 	struct ftrace_iterator *iter = m->private;
3530 	loff_t l = *pos; /* t_probe_start() must use original pos */
3531 	void *ret;
3532 
3533 	if (unlikely(ftrace_disabled))
3534 		return NULL;
3535 
3536 	if (iter->flags & FTRACE_ITER_PROBE)
3537 		return t_probe_next(m, pos);
3538 
3539 	if (iter->flags & FTRACE_ITER_MOD)
3540 		return t_mod_next(m, pos);
3541 
3542 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3543 		/* next must increment pos, and t_probe_start does not */
3544 		(*pos)++;
3545 		return t_mod_start(m, &l);
3546 	}
3547 
3548 	ret = t_func_next(m, pos);
3549 
3550 	if (!ret)
3551 		return t_mod_start(m, &l);
3552 
3553 	return ret;
3554 }
3555 
3556 static void reset_iter_read(struct ftrace_iterator *iter)
3557 {
3558 	iter->pos = 0;
3559 	iter->func_pos = 0;
3560 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3561 }
3562 
3563 static void *t_start(struct seq_file *m, loff_t *pos)
3564 {
3565 	struct ftrace_iterator *iter = m->private;
3566 	void *p = NULL;
3567 	loff_t l;
3568 
3569 	mutex_lock(&ftrace_lock);
3570 
3571 	if (unlikely(ftrace_disabled))
3572 		return NULL;
3573 
3574 	/*
3575 	 * If an lseek was done, then reset and start from beginning.
3576 	 */
3577 	if (*pos < iter->pos)
3578 		reset_iter_read(iter);
3579 
3580 	/*
3581 	 * For set_ftrace_filter reading, if we have the filter
3582 	 * off, we can short cut and just print out that all
3583 	 * functions are enabled.
3584 	 */
3585 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3586 	    ftrace_hash_empty(iter->hash)) {
3587 		iter->func_pos = 1; /* Account for the message */
3588 		if (*pos > 0)
3589 			return t_mod_start(m, pos);
3590 		iter->flags |= FTRACE_ITER_PRINTALL;
3591 		/* reset in case of seek/pread */
3592 		iter->flags &= ~FTRACE_ITER_PROBE;
3593 		return iter;
3594 	}
3595 
3596 	if (iter->flags & FTRACE_ITER_MOD)
3597 		return t_mod_start(m, pos);
3598 
3599 	/*
3600 	 * Unfortunately, we need to restart at ftrace_pages_start
3601 	 * every time we let go of the ftrace_mutex. This is because
3602 	 * those pointers can change without the lock.
3603 	 */
3604 	iter->pg = ftrace_pages_start;
3605 	iter->idx = 0;
3606 	for (l = 0; l <= *pos; ) {
3607 		p = t_func_next(m, &l);
3608 		if (!p)
3609 			break;
3610 	}
3611 
3612 	if (!p)
3613 		return t_mod_start(m, pos);
3614 
3615 	return iter;
3616 }
3617 
3618 static void t_stop(struct seq_file *m, void *p)
3619 {
3620 	mutex_unlock(&ftrace_lock);
3621 }
3622 
3623 void * __weak
3624 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3625 {
3626 	return NULL;
3627 }
3628 
3629 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3630 				struct dyn_ftrace *rec)
3631 {
3632 	void *ptr;
3633 
3634 	ptr = arch_ftrace_trampoline_func(ops, rec);
3635 	if (ptr)
3636 		seq_printf(m, " ->%pS", ptr);
3637 }
3638 
3639 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3640 /*
3641  * Weak functions can still have an mcount/fentry that is saved in
3642  * the __mcount_loc section. These can be detected by having a
3643  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3644  * symbol found by kallsyms is not the function that the mcount/fentry
3645  * is part of. The offset is much greater in these cases.
3646  *
3647  * Test the record to make sure that the ip points to a valid kallsyms
3648  * and if not, mark it disabled.
3649  */
3650 static int test_for_valid_rec(struct dyn_ftrace *rec)
3651 {
3652 	char str[KSYM_SYMBOL_LEN];
3653 	unsigned long offset;
3654 	const char *ret;
3655 
3656 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3657 
3658 	/* Weak functions can cause invalid addresses */
3659 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3660 		rec->flags |= FTRACE_FL_DISABLED;
3661 		return 0;
3662 	}
3663 	return 1;
3664 }
3665 
3666 static struct workqueue_struct *ftrace_check_wq __initdata;
3667 static struct work_struct ftrace_check_work __initdata;
3668 
3669 /*
3670  * Scan all the mcount/fentry entries to make sure they are valid.
3671  */
3672 static __init void ftrace_check_work_func(struct work_struct *work)
3673 {
3674 	struct ftrace_page *pg;
3675 	struct dyn_ftrace *rec;
3676 
3677 	mutex_lock(&ftrace_lock);
3678 	do_for_each_ftrace_rec(pg, rec) {
3679 		test_for_valid_rec(rec);
3680 	} while_for_each_ftrace_rec();
3681 	mutex_unlock(&ftrace_lock);
3682 }
3683 
3684 static int __init ftrace_check_for_weak_functions(void)
3685 {
3686 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3687 
3688 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3689 
3690 	queue_work(ftrace_check_wq, &ftrace_check_work);
3691 	return 0;
3692 }
3693 
3694 static int __init ftrace_check_sync(void)
3695 {
3696 	/* Make sure the ftrace_check updates are finished */
3697 	if (ftrace_check_wq)
3698 		destroy_workqueue(ftrace_check_wq);
3699 	return 0;
3700 }
3701 
3702 late_initcall_sync(ftrace_check_sync);
3703 subsys_initcall(ftrace_check_for_weak_functions);
3704 
3705 static int print_rec(struct seq_file *m, unsigned long ip)
3706 {
3707 	unsigned long offset;
3708 	char str[KSYM_SYMBOL_LEN];
3709 	char *modname;
3710 	const char *ret;
3711 
3712 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3713 	/* Weak functions can cause invalid addresses */
3714 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3715 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3716 			 FTRACE_INVALID_FUNCTION, offset);
3717 		ret = NULL;
3718 	}
3719 
3720 	seq_puts(m, str);
3721 	if (modname)
3722 		seq_printf(m, " [%s]", modname);
3723 	return ret == NULL ? -1 : 0;
3724 }
3725 #else
3726 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3727 {
3728 	return 1;
3729 }
3730 
3731 static inline int print_rec(struct seq_file *m, unsigned long ip)
3732 {
3733 	seq_printf(m, "%ps", (void *)ip);
3734 	return 0;
3735 }
3736 #endif
3737 
3738 static int t_show(struct seq_file *m, void *v)
3739 {
3740 	struct ftrace_iterator *iter = m->private;
3741 	struct dyn_ftrace *rec;
3742 
3743 	if (iter->flags & FTRACE_ITER_PROBE)
3744 		return t_probe_show(m, iter);
3745 
3746 	if (iter->flags & FTRACE_ITER_MOD)
3747 		return t_mod_show(m, iter);
3748 
3749 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3750 		if (iter->flags & FTRACE_ITER_NOTRACE)
3751 			seq_puts(m, "#### no functions disabled ####\n");
3752 		else
3753 			seq_puts(m, "#### all functions enabled ####\n");
3754 		return 0;
3755 	}
3756 
3757 	rec = iter->func;
3758 
3759 	if (!rec)
3760 		return 0;
3761 
3762 	if (print_rec(m, rec->ip)) {
3763 		/* This should only happen when a rec is disabled */
3764 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3765 		seq_putc(m, '\n');
3766 		return 0;
3767 	}
3768 
3769 	if (iter->flags & FTRACE_ITER_ENABLED) {
3770 		struct ftrace_ops *ops;
3771 
3772 		seq_printf(m, " (%ld)%s%s%s",
3773 			   ftrace_rec_count(rec),
3774 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3775 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3776 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3777 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3778 			ops = ftrace_find_tramp_ops_any(rec);
3779 			if (ops) {
3780 				do {
3781 					seq_printf(m, "\ttramp: %pS (%pS)",
3782 						   (void *)ops->trampoline,
3783 						   (void *)ops->func);
3784 					add_trampoline_func(m, ops, rec);
3785 					ops = ftrace_find_tramp_ops_next(rec, ops);
3786 				} while (ops);
3787 			} else
3788 				seq_puts(m, "\ttramp: ERROR!");
3789 		} else {
3790 			add_trampoline_func(m, NULL, rec);
3791 		}
3792 		if (rec->flags & FTRACE_FL_DIRECT) {
3793 			unsigned long direct;
3794 
3795 			direct = ftrace_find_rec_direct(rec->ip);
3796 			if (direct)
3797 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3798 		}
3799 	}
3800 
3801 	seq_putc(m, '\n');
3802 
3803 	return 0;
3804 }
3805 
3806 static const struct seq_operations show_ftrace_seq_ops = {
3807 	.start = t_start,
3808 	.next = t_next,
3809 	.stop = t_stop,
3810 	.show = t_show,
3811 };
3812 
3813 static int
3814 ftrace_avail_open(struct inode *inode, struct file *file)
3815 {
3816 	struct ftrace_iterator *iter;
3817 	int ret;
3818 
3819 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3820 	if (ret)
3821 		return ret;
3822 
3823 	if (unlikely(ftrace_disabled))
3824 		return -ENODEV;
3825 
3826 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3827 	if (!iter)
3828 		return -ENOMEM;
3829 
3830 	iter->pg = ftrace_pages_start;
3831 	iter->ops = &global_ops;
3832 
3833 	return 0;
3834 }
3835 
3836 static int
3837 ftrace_enabled_open(struct inode *inode, struct file *file)
3838 {
3839 	struct ftrace_iterator *iter;
3840 
3841 	/*
3842 	 * This shows us what functions are currently being
3843 	 * traced and by what. Not sure if we want lockdown
3844 	 * to hide such critical information for an admin.
3845 	 * Although, perhaps it can show information we don't
3846 	 * want people to see, but if something is tracing
3847 	 * something, we probably want to know about it.
3848 	 */
3849 
3850 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3851 	if (!iter)
3852 		return -ENOMEM;
3853 
3854 	iter->pg = ftrace_pages_start;
3855 	iter->flags = FTRACE_ITER_ENABLED;
3856 	iter->ops = &global_ops;
3857 
3858 	return 0;
3859 }
3860 
3861 /**
3862  * ftrace_regex_open - initialize function tracer filter files
3863  * @ops: The ftrace_ops that hold the hash filters
3864  * @flag: The type of filter to process
3865  * @inode: The inode, usually passed in to your open routine
3866  * @file: The file, usually passed in to your open routine
3867  *
3868  * ftrace_regex_open() initializes the filter files for the
3869  * @ops. Depending on @flag it may process the filter hash or
3870  * the notrace hash of @ops. With this called from the open
3871  * routine, you can use ftrace_filter_write() for the write
3872  * routine if @flag has FTRACE_ITER_FILTER set, or
3873  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3874  * tracing_lseek() should be used as the lseek routine, and
3875  * release must call ftrace_regex_release().
3876  */
3877 int
3878 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3879 		  struct inode *inode, struct file *file)
3880 {
3881 	struct ftrace_iterator *iter;
3882 	struct ftrace_hash *hash;
3883 	struct list_head *mod_head;
3884 	struct trace_array *tr = ops->private;
3885 	int ret = -ENOMEM;
3886 
3887 	ftrace_ops_init(ops);
3888 
3889 	if (unlikely(ftrace_disabled))
3890 		return -ENODEV;
3891 
3892 	if (tracing_check_open_get_tr(tr))
3893 		return -ENODEV;
3894 
3895 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3896 	if (!iter)
3897 		goto out;
3898 
3899 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3900 		goto out;
3901 
3902 	iter->ops = ops;
3903 	iter->flags = flag;
3904 	iter->tr = tr;
3905 
3906 	mutex_lock(&ops->func_hash->regex_lock);
3907 
3908 	if (flag & FTRACE_ITER_NOTRACE) {
3909 		hash = ops->func_hash->notrace_hash;
3910 		mod_head = tr ? &tr->mod_notrace : NULL;
3911 	} else {
3912 		hash = ops->func_hash->filter_hash;
3913 		mod_head = tr ? &tr->mod_trace : NULL;
3914 	}
3915 
3916 	iter->mod_list = mod_head;
3917 
3918 	if (file->f_mode & FMODE_WRITE) {
3919 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3920 
3921 		if (file->f_flags & O_TRUNC) {
3922 			iter->hash = alloc_ftrace_hash(size_bits);
3923 			clear_ftrace_mod_list(mod_head);
3924 	        } else {
3925 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3926 		}
3927 
3928 		if (!iter->hash) {
3929 			trace_parser_put(&iter->parser);
3930 			goto out_unlock;
3931 		}
3932 	} else
3933 		iter->hash = hash;
3934 
3935 	ret = 0;
3936 
3937 	if (file->f_mode & FMODE_READ) {
3938 		iter->pg = ftrace_pages_start;
3939 
3940 		ret = seq_open(file, &show_ftrace_seq_ops);
3941 		if (!ret) {
3942 			struct seq_file *m = file->private_data;
3943 			m->private = iter;
3944 		} else {
3945 			/* Failed */
3946 			free_ftrace_hash(iter->hash);
3947 			trace_parser_put(&iter->parser);
3948 		}
3949 	} else
3950 		file->private_data = iter;
3951 
3952  out_unlock:
3953 	mutex_unlock(&ops->func_hash->regex_lock);
3954 
3955  out:
3956 	if (ret) {
3957 		kfree(iter);
3958 		if (tr)
3959 			trace_array_put(tr);
3960 	}
3961 
3962 	return ret;
3963 }
3964 
3965 static int
3966 ftrace_filter_open(struct inode *inode, struct file *file)
3967 {
3968 	struct ftrace_ops *ops = inode->i_private;
3969 
3970 	/* Checks for tracefs lockdown */
3971 	return ftrace_regex_open(ops,
3972 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3973 			inode, file);
3974 }
3975 
3976 static int
3977 ftrace_notrace_open(struct inode *inode, struct file *file)
3978 {
3979 	struct ftrace_ops *ops = inode->i_private;
3980 
3981 	/* Checks for tracefs lockdown */
3982 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3983 				 inode, file);
3984 }
3985 
3986 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3987 struct ftrace_glob {
3988 	char *search;
3989 	unsigned len;
3990 	int type;
3991 };
3992 
3993 /*
3994  * If symbols in an architecture don't correspond exactly to the user-visible
3995  * name of what they represent, it is possible to define this function to
3996  * perform the necessary adjustments.
3997 */
3998 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3999 {
4000 	return str;
4001 }
4002 
4003 static int ftrace_match(char *str, struct ftrace_glob *g)
4004 {
4005 	int matched = 0;
4006 	int slen;
4007 
4008 	str = arch_ftrace_match_adjust(str, g->search);
4009 
4010 	switch (g->type) {
4011 	case MATCH_FULL:
4012 		if (strcmp(str, g->search) == 0)
4013 			matched = 1;
4014 		break;
4015 	case MATCH_FRONT_ONLY:
4016 		if (strncmp(str, g->search, g->len) == 0)
4017 			matched = 1;
4018 		break;
4019 	case MATCH_MIDDLE_ONLY:
4020 		if (strstr(str, g->search))
4021 			matched = 1;
4022 		break;
4023 	case MATCH_END_ONLY:
4024 		slen = strlen(str);
4025 		if (slen >= g->len &&
4026 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4027 			matched = 1;
4028 		break;
4029 	case MATCH_GLOB:
4030 		if (glob_match(g->search, str))
4031 			matched = 1;
4032 		break;
4033 	}
4034 
4035 	return matched;
4036 }
4037 
4038 static int
4039 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4040 {
4041 	struct ftrace_func_entry *entry;
4042 	int ret = 0;
4043 
4044 	entry = ftrace_lookup_ip(hash, rec->ip);
4045 	if (clear_filter) {
4046 		/* Do nothing if it doesn't exist */
4047 		if (!entry)
4048 			return 0;
4049 
4050 		free_hash_entry(hash, entry);
4051 	} else {
4052 		/* Do nothing if it exists */
4053 		if (entry)
4054 			return 0;
4055 
4056 		ret = add_hash_entry(hash, rec->ip);
4057 	}
4058 	return ret;
4059 }
4060 
4061 static int
4062 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4063 		 int clear_filter)
4064 {
4065 	long index = simple_strtoul(func_g->search, NULL, 0);
4066 	struct ftrace_page *pg;
4067 	struct dyn_ftrace *rec;
4068 
4069 	/* The index starts at 1 */
4070 	if (--index < 0)
4071 		return 0;
4072 
4073 	do_for_each_ftrace_rec(pg, rec) {
4074 		if (pg->index <= index) {
4075 			index -= pg->index;
4076 			/* this is a double loop, break goes to the next page */
4077 			break;
4078 		}
4079 		rec = &pg->records[index];
4080 		enter_record(hash, rec, clear_filter);
4081 		return 1;
4082 	} while_for_each_ftrace_rec();
4083 	return 0;
4084 }
4085 
4086 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4087 static int lookup_ip(unsigned long ip, char **modname, char *str)
4088 {
4089 	unsigned long offset;
4090 
4091 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4092 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4093 		return -1;
4094 	return 0;
4095 }
4096 #else
4097 static int lookup_ip(unsigned long ip, char **modname, char *str)
4098 {
4099 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4100 	return 0;
4101 }
4102 #endif
4103 
4104 static int
4105 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4106 		struct ftrace_glob *mod_g, int exclude_mod)
4107 {
4108 	char str[KSYM_SYMBOL_LEN];
4109 	char *modname;
4110 
4111 	if (lookup_ip(rec->ip, &modname, str)) {
4112 		/* This should only happen when a rec is disabled */
4113 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4114 			     !(rec->flags & FTRACE_FL_DISABLED));
4115 		return 0;
4116 	}
4117 
4118 	if (mod_g) {
4119 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4120 
4121 		/* blank module name to match all modules */
4122 		if (!mod_g->len) {
4123 			/* blank module globbing: modname xor exclude_mod */
4124 			if (!exclude_mod != !modname)
4125 				goto func_match;
4126 			return 0;
4127 		}
4128 
4129 		/*
4130 		 * exclude_mod is set to trace everything but the given
4131 		 * module. If it is set and the module matches, then
4132 		 * return 0. If it is not set, and the module doesn't match
4133 		 * also return 0. Otherwise, check the function to see if
4134 		 * that matches.
4135 		 */
4136 		if (!mod_matches == !exclude_mod)
4137 			return 0;
4138 func_match:
4139 		/* blank search means to match all funcs in the mod */
4140 		if (!func_g->len)
4141 			return 1;
4142 	}
4143 
4144 	return ftrace_match(str, func_g);
4145 }
4146 
4147 static int
4148 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4149 {
4150 	struct ftrace_page *pg;
4151 	struct dyn_ftrace *rec;
4152 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4153 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4154 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4155 	int exclude_mod = 0;
4156 	int found = 0;
4157 	int ret;
4158 	int clear_filter = 0;
4159 
4160 	if (func) {
4161 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4162 						 &clear_filter);
4163 		func_g.len = strlen(func_g.search);
4164 	}
4165 
4166 	if (mod) {
4167 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4168 				&mod_g.search, &exclude_mod);
4169 		mod_g.len = strlen(mod_g.search);
4170 	}
4171 
4172 	mutex_lock(&ftrace_lock);
4173 
4174 	if (unlikely(ftrace_disabled))
4175 		goto out_unlock;
4176 
4177 	if (func_g.type == MATCH_INDEX) {
4178 		found = add_rec_by_index(hash, &func_g, clear_filter);
4179 		goto out_unlock;
4180 	}
4181 
4182 	do_for_each_ftrace_rec(pg, rec) {
4183 
4184 		if (rec->flags & FTRACE_FL_DISABLED)
4185 			continue;
4186 
4187 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4188 			ret = enter_record(hash, rec, clear_filter);
4189 			if (ret < 0) {
4190 				found = ret;
4191 				goto out_unlock;
4192 			}
4193 			found = 1;
4194 		}
4195 	} while_for_each_ftrace_rec();
4196  out_unlock:
4197 	mutex_unlock(&ftrace_lock);
4198 
4199 	return found;
4200 }
4201 
4202 static int
4203 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4204 {
4205 	return match_records(hash, buff, len, NULL);
4206 }
4207 
4208 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4209 				   struct ftrace_ops_hash *old_hash)
4210 {
4211 	struct ftrace_ops *op;
4212 
4213 	if (!ftrace_enabled)
4214 		return;
4215 
4216 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4217 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4218 		return;
4219 	}
4220 
4221 	/*
4222 	 * If this is the shared global_ops filter, then we need to
4223 	 * check if there is another ops that shares it, is enabled.
4224 	 * If so, we still need to run the modify code.
4225 	 */
4226 	if (ops->func_hash != &global_ops.local_hash)
4227 		return;
4228 
4229 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4230 		if (op->func_hash == &global_ops.local_hash &&
4231 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4232 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4233 			/* Only need to do this once */
4234 			return;
4235 		}
4236 	} while_for_each_ftrace_op(op);
4237 }
4238 
4239 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4240 					   struct ftrace_hash **orig_hash,
4241 					   struct ftrace_hash *hash,
4242 					   int enable)
4243 {
4244 	struct ftrace_ops_hash old_hash_ops;
4245 	struct ftrace_hash *old_hash;
4246 	int ret;
4247 
4248 	old_hash = *orig_hash;
4249 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4250 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4251 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4252 	if (!ret) {
4253 		ftrace_ops_update_code(ops, &old_hash_ops);
4254 		free_ftrace_hash_rcu(old_hash);
4255 	}
4256 	return ret;
4257 }
4258 
4259 static bool module_exists(const char *module)
4260 {
4261 	/* All modules have the symbol __this_module */
4262 	static const char this_mod[] = "__this_module";
4263 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4264 	unsigned long val;
4265 	int n;
4266 
4267 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4268 
4269 	if (n > sizeof(modname) - 1)
4270 		return false;
4271 
4272 	val = module_kallsyms_lookup_name(modname);
4273 	return val != 0;
4274 }
4275 
4276 static int cache_mod(struct trace_array *tr,
4277 		     const char *func, char *module, int enable)
4278 {
4279 	struct ftrace_mod_load *ftrace_mod, *n;
4280 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4281 	int ret;
4282 
4283 	mutex_lock(&ftrace_lock);
4284 
4285 	/* We do not cache inverse filters */
4286 	if (func[0] == '!') {
4287 		func++;
4288 		ret = -EINVAL;
4289 
4290 		/* Look to remove this hash */
4291 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4292 			if (strcmp(ftrace_mod->module, module) != 0)
4293 				continue;
4294 
4295 			/* no func matches all */
4296 			if (strcmp(func, "*") == 0 ||
4297 			    (ftrace_mod->func &&
4298 			     strcmp(ftrace_mod->func, func) == 0)) {
4299 				ret = 0;
4300 				free_ftrace_mod(ftrace_mod);
4301 				continue;
4302 			}
4303 		}
4304 		goto out;
4305 	}
4306 
4307 	ret = -EINVAL;
4308 	/* We only care about modules that have not been loaded yet */
4309 	if (module_exists(module))
4310 		goto out;
4311 
4312 	/* Save this string off, and execute it when the module is loaded */
4313 	ret = ftrace_add_mod(tr, func, module, enable);
4314  out:
4315 	mutex_unlock(&ftrace_lock);
4316 
4317 	return ret;
4318 }
4319 
4320 static int
4321 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4322 		 int reset, int enable);
4323 
4324 #ifdef CONFIG_MODULES
4325 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4326 			     char *mod, bool enable)
4327 {
4328 	struct ftrace_mod_load *ftrace_mod, *n;
4329 	struct ftrace_hash **orig_hash, *new_hash;
4330 	LIST_HEAD(process_mods);
4331 	char *func;
4332 
4333 	mutex_lock(&ops->func_hash->regex_lock);
4334 
4335 	if (enable)
4336 		orig_hash = &ops->func_hash->filter_hash;
4337 	else
4338 		orig_hash = &ops->func_hash->notrace_hash;
4339 
4340 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4341 					      *orig_hash);
4342 	if (!new_hash)
4343 		goto out; /* warn? */
4344 
4345 	mutex_lock(&ftrace_lock);
4346 
4347 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4348 
4349 		if (strcmp(ftrace_mod->module, mod) != 0)
4350 			continue;
4351 
4352 		if (ftrace_mod->func)
4353 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4354 		else
4355 			func = kstrdup("*", GFP_KERNEL);
4356 
4357 		if (!func) /* warn? */
4358 			continue;
4359 
4360 		list_move(&ftrace_mod->list, &process_mods);
4361 
4362 		/* Use the newly allocated func, as it may be "*" */
4363 		kfree(ftrace_mod->func);
4364 		ftrace_mod->func = func;
4365 	}
4366 
4367 	mutex_unlock(&ftrace_lock);
4368 
4369 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4370 
4371 		func = ftrace_mod->func;
4372 
4373 		/* Grabs ftrace_lock, which is why we have this extra step */
4374 		match_records(new_hash, func, strlen(func), mod);
4375 		free_ftrace_mod(ftrace_mod);
4376 	}
4377 
4378 	if (enable && list_empty(head))
4379 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4380 
4381 	mutex_lock(&ftrace_lock);
4382 
4383 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4384 					      new_hash, enable);
4385 	mutex_unlock(&ftrace_lock);
4386 
4387  out:
4388 	mutex_unlock(&ops->func_hash->regex_lock);
4389 
4390 	free_ftrace_hash(new_hash);
4391 }
4392 
4393 static void process_cached_mods(const char *mod_name)
4394 {
4395 	struct trace_array *tr;
4396 	char *mod;
4397 
4398 	mod = kstrdup(mod_name, GFP_KERNEL);
4399 	if (!mod)
4400 		return;
4401 
4402 	mutex_lock(&trace_types_lock);
4403 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4404 		if (!list_empty(&tr->mod_trace))
4405 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4406 		if (!list_empty(&tr->mod_notrace))
4407 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4408 	}
4409 	mutex_unlock(&trace_types_lock);
4410 
4411 	kfree(mod);
4412 }
4413 #endif
4414 
4415 /*
4416  * We register the module command as a template to show others how
4417  * to register the a command as well.
4418  */
4419 
4420 static int
4421 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4422 		    char *func_orig, char *cmd, char *module, int enable)
4423 {
4424 	char *func;
4425 	int ret;
4426 
4427 	/* match_records() modifies func, and we need the original */
4428 	func = kstrdup(func_orig, GFP_KERNEL);
4429 	if (!func)
4430 		return -ENOMEM;
4431 
4432 	/*
4433 	 * cmd == 'mod' because we only registered this func
4434 	 * for the 'mod' ftrace_func_command.
4435 	 * But if you register one func with multiple commands,
4436 	 * you can tell which command was used by the cmd
4437 	 * parameter.
4438 	 */
4439 	ret = match_records(hash, func, strlen(func), module);
4440 	kfree(func);
4441 
4442 	if (!ret)
4443 		return cache_mod(tr, func_orig, module, enable);
4444 	if (ret < 0)
4445 		return ret;
4446 	return 0;
4447 }
4448 
4449 static struct ftrace_func_command ftrace_mod_cmd = {
4450 	.name			= "mod",
4451 	.func			= ftrace_mod_callback,
4452 };
4453 
4454 static int __init ftrace_mod_cmd_init(void)
4455 {
4456 	return register_ftrace_command(&ftrace_mod_cmd);
4457 }
4458 core_initcall(ftrace_mod_cmd_init);
4459 
4460 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4461 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4462 {
4463 	struct ftrace_probe_ops *probe_ops;
4464 	struct ftrace_func_probe *probe;
4465 
4466 	probe = container_of(op, struct ftrace_func_probe, ops);
4467 	probe_ops = probe->probe_ops;
4468 
4469 	/*
4470 	 * Disable preemption for these calls to prevent a RCU grace
4471 	 * period. This syncs the hash iteration and freeing of items
4472 	 * on the hash. rcu_read_lock is too dangerous here.
4473 	 */
4474 	preempt_disable_notrace();
4475 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4476 	preempt_enable_notrace();
4477 }
4478 
4479 struct ftrace_func_map {
4480 	struct ftrace_func_entry	entry;
4481 	void				*data;
4482 };
4483 
4484 struct ftrace_func_mapper {
4485 	struct ftrace_hash		hash;
4486 };
4487 
4488 /**
4489  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4490  *
4491  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4492  */
4493 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4494 {
4495 	struct ftrace_hash *hash;
4496 
4497 	/*
4498 	 * The mapper is simply a ftrace_hash, but since the entries
4499 	 * in the hash are not ftrace_func_entry type, we define it
4500 	 * as a separate structure.
4501 	 */
4502 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4503 	return (struct ftrace_func_mapper *)hash;
4504 }
4505 
4506 /**
4507  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4508  * @mapper: The mapper that has the ip maps
4509  * @ip: the instruction pointer to find the data for
4510  *
4511  * Returns the data mapped to @ip if found otherwise NULL. The return
4512  * is actually the address of the mapper data pointer. The address is
4513  * returned for use cases where the data is no bigger than a long, and
4514  * the user can use the data pointer as its data instead of having to
4515  * allocate more memory for the reference.
4516  */
4517 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4518 				  unsigned long ip)
4519 {
4520 	struct ftrace_func_entry *entry;
4521 	struct ftrace_func_map *map;
4522 
4523 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4524 	if (!entry)
4525 		return NULL;
4526 
4527 	map = (struct ftrace_func_map *)entry;
4528 	return &map->data;
4529 }
4530 
4531 /**
4532  * ftrace_func_mapper_add_ip - Map some data to an ip
4533  * @mapper: The mapper that has the ip maps
4534  * @ip: The instruction pointer address to map @data to
4535  * @data: The data to map to @ip
4536  *
4537  * Returns 0 on success otherwise an error.
4538  */
4539 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4540 			      unsigned long ip, void *data)
4541 {
4542 	struct ftrace_func_entry *entry;
4543 	struct ftrace_func_map *map;
4544 
4545 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4546 	if (entry)
4547 		return -EBUSY;
4548 
4549 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4550 	if (!map)
4551 		return -ENOMEM;
4552 
4553 	map->entry.ip = ip;
4554 	map->data = data;
4555 
4556 	__add_hash_entry(&mapper->hash, &map->entry);
4557 
4558 	return 0;
4559 }
4560 
4561 /**
4562  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4563  * @mapper: The mapper that has the ip maps
4564  * @ip: The instruction pointer address to remove the data from
4565  *
4566  * Returns the data if it is found, otherwise NULL.
4567  * Note, if the data pointer is used as the data itself, (see
4568  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4569  * if the data pointer was set to zero.
4570  */
4571 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4572 				   unsigned long ip)
4573 {
4574 	struct ftrace_func_entry *entry;
4575 	struct ftrace_func_map *map;
4576 	void *data;
4577 
4578 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4579 	if (!entry)
4580 		return NULL;
4581 
4582 	map = (struct ftrace_func_map *)entry;
4583 	data = map->data;
4584 
4585 	remove_hash_entry(&mapper->hash, entry);
4586 	kfree(entry);
4587 
4588 	return data;
4589 }
4590 
4591 /**
4592  * free_ftrace_func_mapper - free a mapping of ips and data
4593  * @mapper: The mapper that has the ip maps
4594  * @free_func: A function to be called on each data item.
4595  *
4596  * This is used to free the function mapper. The @free_func is optional
4597  * and can be used if the data needs to be freed as well.
4598  */
4599 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4600 			     ftrace_mapper_func free_func)
4601 {
4602 	struct ftrace_func_entry *entry;
4603 	struct ftrace_func_map *map;
4604 	struct hlist_head *hhd;
4605 	int size, i;
4606 
4607 	if (!mapper)
4608 		return;
4609 
4610 	if (free_func && mapper->hash.count) {
4611 		size = 1 << mapper->hash.size_bits;
4612 		for (i = 0; i < size; i++) {
4613 			hhd = &mapper->hash.buckets[i];
4614 			hlist_for_each_entry(entry, hhd, hlist) {
4615 				map = (struct ftrace_func_map *)entry;
4616 				free_func(map);
4617 			}
4618 		}
4619 	}
4620 	free_ftrace_hash(&mapper->hash);
4621 }
4622 
4623 static void release_probe(struct ftrace_func_probe *probe)
4624 {
4625 	struct ftrace_probe_ops *probe_ops;
4626 
4627 	mutex_lock(&ftrace_lock);
4628 
4629 	WARN_ON(probe->ref <= 0);
4630 
4631 	/* Subtract the ref that was used to protect this instance */
4632 	probe->ref--;
4633 
4634 	if (!probe->ref) {
4635 		probe_ops = probe->probe_ops;
4636 		/*
4637 		 * Sending zero as ip tells probe_ops to free
4638 		 * the probe->data itself
4639 		 */
4640 		if (probe_ops->free)
4641 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4642 		list_del(&probe->list);
4643 		kfree(probe);
4644 	}
4645 	mutex_unlock(&ftrace_lock);
4646 }
4647 
4648 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4649 {
4650 	/*
4651 	 * Add one ref to keep it from being freed when releasing the
4652 	 * ftrace_lock mutex.
4653 	 */
4654 	probe->ref++;
4655 }
4656 
4657 int
4658 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4659 			       struct ftrace_probe_ops *probe_ops,
4660 			       void *data)
4661 {
4662 	struct ftrace_func_probe *probe = NULL, *iter;
4663 	struct ftrace_func_entry *entry;
4664 	struct ftrace_hash **orig_hash;
4665 	struct ftrace_hash *old_hash;
4666 	struct ftrace_hash *hash;
4667 	int count = 0;
4668 	int size;
4669 	int ret;
4670 	int i;
4671 
4672 	if (WARN_ON(!tr))
4673 		return -EINVAL;
4674 
4675 	/* We do not support '!' for function probes */
4676 	if (WARN_ON(glob[0] == '!'))
4677 		return -EINVAL;
4678 
4679 
4680 	mutex_lock(&ftrace_lock);
4681 	/* Check if the probe_ops is already registered */
4682 	list_for_each_entry(iter, &tr->func_probes, list) {
4683 		if (iter->probe_ops == probe_ops) {
4684 			probe = iter;
4685 			break;
4686 		}
4687 	}
4688 	if (!probe) {
4689 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4690 		if (!probe) {
4691 			mutex_unlock(&ftrace_lock);
4692 			return -ENOMEM;
4693 		}
4694 		probe->probe_ops = probe_ops;
4695 		probe->ops.func = function_trace_probe_call;
4696 		probe->tr = tr;
4697 		ftrace_ops_init(&probe->ops);
4698 		list_add(&probe->list, &tr->func_probes);
4699 	}
4700 
4701 	acquire_probe_locked(probe);
4702 
4703 	mutex_unlock(&ftrace_lock);
4704 
4705 	/*
4706 	 * Note, there's a small window here that the func_hash->filter_hash
4707 	 * may be NULL or empty. Need to be careful when reading the loop.
4708 	 */
4709 	mutex_lock(&probe->ops.func_hash->regex_lock);
4710 
4711 	orig_hash = &probe->ops.func_hash->filter_hash;
4712 	old_hash = *orig_hash;
4713 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4714 
4715 	if (!hash) {
4716 		ret = -ENOMEM;
4717 		goto out;
4718 	}
4719 
4720 	ret = ftrace_match_records(hash, glob, strlen(glob));
4721 
4722 	/* Nothing found? */
4723 	if (!ret)
4724 		ret = -EINVAL;
4725 
4726 	if (ret < 0)
4727 		goto out;
4728 
4729 	size = 1 << hash->size_bits;
4730 	for (i = 0; i < size; i++) {
4731 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4732 			if (ftrace_lookup_ip(old_hash, entry->ip))
4733 				continue;
4734 			/*
4735 			 * The caller might want to do something special
4736 			 * for each function we find. We call the callback
4737 			 * to give the caller an opportunity to do so.
4738 			 */
4739 			if (probe_ops->init) {
4740 				ret = probe_ops->init(probe_ops, tr,
4741 						      entry->ip, data,
4742 						      &probe->data);
4743 				if (ret < 0) {
4744 					if (probe_ops->free && count)
4745 						probe_ops->free(probe_ops, tr,
4746 								0, probe->data);
4747 					probe->data = NULL;
4748 					goto out;
4749 				}
4750 			}
4751 			count++;
4752 		}
4753 	}
4754 
4755 	mutex_lock(&ftrace_lock);
4756 
4757 	if (!count) {
4758 		/* Nothing was added? */
4759 		ret = -EINVAL;
4760 		goto out_unlock;
4761 	}
4762 
4763 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4764 					      hash, 1);
4765 	if (ret < 0)
4766 		goto err_unlock;
4767 
4768 	/* One ref for each new function traced */
4769 	probe->ref += count;
4770 
4771 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4772 		ret = ftrace_startup(&probe->ops, 0);
4773 
4774  out_unlock:
4775 	mutex_unlock(&ftrace_lock);
4776 
4777 	if (!ret)
4778 		ret = count;
4779  out:
4780 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4781 	free_ftrace_hash(hash);
4782 
4783 	release_probe(probe);
4784 
4785 	return ret;
4786 
4787  err_unlock:
4788 	if (!probe_ops->free || !count)
4789 		goto out_unlock;
4790 
4791 	/* Failed to do the move, need to call the free functions */
4792 	for (i = 0; i < size; i++) {
4793 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4794 			if (ftrace_lookup_ip(old_hash, entry->ip))
4795 				continue;
4796 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4797 		}
4798 	}
4799 	goto out_unlock;
4800 }
4801 
4802 int
4803 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4804 				      struct ftrace_probe_ops *probe_ops)
4805 {
4806 	struct ftrace_func_probe *probe = NULL, *iter;
4807 	struct ftrace_ops_hash old_hash_ops;
4808 	struct ftrace_func_entry *entry;
4809 	struct ftrace_glob func_g;
4810 	struct ftrace_hash **orig_hash;
4811 	struct ftrace_hash *old_hash;
4812 	struct ftrace_hash *hash = NULL;
4813 	struct hlist_node *tmp;
4814 	struct hlist_head hhd;
4815 	char str[KSYM_SYMBOL_LEN];
4816 	int count = 0;
4817 	int i, ret = -ENODEV;
4818 	int size;
4819 
4820 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4821 		func_g.search = NULL;
4822 	else {
4823 		int not;
4824 
4825 		func_g.type = filter_parse_regex(glob, strlen(glob),
4826 						 &func_g.search, &not);
4827 		func_g.len = strlen(func_g.search);
4828 
4829 		/* we do not support '!' for function probes */
4830 		if (WARN_ON(not))
4831 			return -EINVAL;
4832 	}
4833 
4834 	mutex_lock(&ftrace_lock);
4835 	/* Check if the probe_ops is already registered */
4836 	list_for_each_entry(iter, &tr->func_probes, list) {
4837 		if (iter->probe_ops == probe_ops) {
4838 			probe = iter;
4839 			break;
4840 		}
4841 	}
4842 	if (!probe)
4843 		goto err_unlock_ftrace;
4844 
4845 	ret = -EINVAL;
4846 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4847 		goto err_unlock_ftrace;
4848 
4849 	acquire_probe_locked(probe);
4850 
4851 	mutex_unlock(&ftrace_lock);
4852 
4853 	mutex_lock(&probe->ops.func_hash->regex_lock);
4854 
4855 	orig_hash = &probe->ops.func_hash->filter_hash;
4856 	old_hash = *orig_hash;
4857 
4858 	if (ftrace_hash_empty(old_hash))
4859 		goto out_unlock;
4860 
4861 	old_hash_ops.filter_hash = old_hash;
4862 	/* Probes only have filters */
4863 	old_hash_ops.notrace_hash = NULL;
4864 
4865 	ret = -ENOMEM;
4866 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4867 	if (!hash)
4868 		goto out_unlock;
4869 
4870 	INIT_HLIST_HEAD(&hhd);
4871 
4872 	size = 1 << hash->size_bits;
4873 	for (i = 0; i < size; i++) {
4874 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4875 
4876 			if (func_g.search) {
4877 				kallsyms_lookup(entry->ip, NULL, NULL,
4878 						NULL, str);
4879 				if (!ftrace_match(str, &func_g))
4880 					continue;
4881 			}
4882 			count++;
4883 			remove_hash_entry(hash, entry);
4884 			hlist_add_head(&entry->hlist, &hhd);
4885 		}
4886 	}
4887 
4888 	/* Nothing found? */
4889 	if (!count) {
4890 		ret = -EINVAL;
4891 		goto out_unlock;
4892 	}
4893 
4894 	mutex_lock(&ftrace_lock);
4895 
4896 	WARN_ON(probe->ref < count);
4897 
4898 	probe->ref -= count;
4899 
4900 	if (ftrace_hash_empty(hash))
4901 		ftrace_shutdown(&probe->ops, 0);
4902 
4903 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4904 					      hash, 1);
4905 
4906 	/* still need to update the function call sites */
4907 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4908 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4909 				       &old_hash_ops);
4910 	synchronize_rcu();
4911 
4912 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4913 		hlist_del(&entry->hlist);
4914 		if (probe_ops->free)
4915 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4916 		kfree(entry);
4917 	}
4918 	mutex_unlock(&ftrace_lock);
4919 
4920  out_unlock:
4921 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4922 	free_ftrace_hash(hash);
4923 
4924 	release_probe(probe);
4925 
4926 	return ret;
4927 
4928  err_unlock_ftrace:
4929 	mutex_unlock(&ftrace_lock);
4930 	return ret;
4931 }
4932 
4933 void clear_ftrace_function_probes(struct trace_array *tr)
4934 {
4935 	struct ftrace_func_probe *probe, *n;
4936 
4937 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4938 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4939 }
4940 
4941 static LIST_HEAD(ftrace_commands);
4942 static DEFINE_MUTEX(ftrace_cmd_mutex);
4943 
4944 /*
4945  * Currently we only register ftrace commands from __init, so mark this
4946  * __init too.
4947  */
4948 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4949 {
4950 	struct ftrace_func_command *p;
4951 	int ret = 0;
4952 
4953 	mutex_lock(&ftrace_cmd_mutex);
4954 	list_for_each_entry(p, &ftrace_commands, list) {
4955 		if (strcmp(cmd->name, p->name) == 0) {
4956 			ret = -EBUSY;
4957 			goto out_unlock;
4958 		}
4959 	}
4960 	list_add(&cmd->list, &ftrace_commands);
4961  out_unlock:
4962 	mutex_unlock(&ftrace_cmd_mutex);
4963 
4964 	return ret;
4965 }
4966 
4967 /*
4968  * Currently we only unregister ftrace commands from __init, so mark
4969  * this __init too.
4970  */
4971 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4972 {
4973 	struct ftrace_func_command *p, *n;
4974 	int ret = -ENODEV;
4975 
4976 	mutex_lock(&ftrace_cmd_mutex);
4977 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4978 		if (strcmp(cmd->name, p->name) == 0) {
4979 			ret = 0;
4980 			list_del_init(&p->list);
4981 			goto out_unlock;
4982 		}
4983 	}
4984  out_unlock:
4985 	mutex_unlock(&ftrace_cmd_mutex);
4986 
4987 	return ret;
4988 }
4989 
4990 static int ftrace_process_regex(struct ftrace_iterator *iter,
4991 				char *buff, int len, int enable)
4992 {
4993 	struct ftrace_hash *hash = iter->hash;
4994 	struct trace_array *tr = iter->ops->private;
4995 	char *func, *command, *next = buff;
4996 	struct ftrace_func_command *p;
4997 	int ret = -EINVAL;
4998 
4999 	func = strsep(&next, ":");
5000 
5001 	if (!next) {
5002 		ret = ftrace_match_records(hash, func, len);
5003 		if (!ret)
5004 			ret = -EINVAL;
5005 		if (ret < 0)
5006 			return ret;
5007 		return 0;
5008 	}
5009 
5010 	/* command found */
5011 
5012 	command = strsep(&next, ":");
5013 
5014 	mutex_lock(&ftrace_cmd_mutex);
5015 	list_for_each_entry(p, &ftrace_commands, list) {
5016 		if (strcmp(p->name, command) == 0) {
5017 			ret = p->func(tr, hash, func, command, next, enable);
5018 			goto out_unlock;
5019 		}
5020 	}
5021  out_unlock:
5022 	mutex_unlock(&ftrace_cmd_mutex);
5023 
5024 	return ret;
5025 }
5026 
5027 static ssize_t
5028 ftrace_regex_write(struct file *file, const char __user *ubuf,
5029 		   size_t cnt, loff_t *ppos, int enable)
5030 {
5031 	struct ftrace_iterator *iter;
5032 	struct trace_parser *parser;
5033 	ssize_t ret, read;
5034 
5035 	if (!cnt)
5036 		return 0;
5037 
5038 	if (file->f_mode & FMODE_READ) {
5039 		struct seq_file *m = file->private_data;
5040 		iter = m->private;
5041 	} else
5042 		iter = file->private_data;
5043 
5044 	if (unlikely(ftrace_disabled))
5045 		return -ENODEV;
5046 
5047 	/* iter->hash is a local copy, so we don't need regex_lock */
5048 
5049 	parser = &iter->parser;
5050 	read = trace_get_user(parser, ubuf, cnt, ppos);
5051 
5052 	if (read >= 0 && trace_parser_loaded(parser) &&
5053 	    !trace_parser_cont(parser)) {
5054 		ret = ftrace_process_regex(iter, parser->buffer,
5055 					   parser->idx, enable);
5056 		trace_parser_clear(parser);
5057 		if (ret < 0)
5058 			goto out;
5059 	}
5060 
5061 	ret = read;
5062  out:
5063 	return ret;
5064 }
5065 
5066 ssize_t
5067 ftrace_filter_write(struct file *file, const char __user *ubuf,
5068 		    size_t cnt, loff_t *ppos)
5069 {
5070 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5071 }
5072 
5073 ssize_t
5074 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5075 		     size_t cnt, loff_t *ppos)
5076 {
5077 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5078 }
5079 
5080 static int
5081 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5082 {
5083 	struct ftrace_func_entry *entry;
5084 
5085 	ip = ftrace_location(ip);
5086 	if (!ip)
5087 		return -EINVAL;
5088 
5089 	if (remove) {
5090 		entry = ftrace_lookup_ip(hash, ip);
5091 		if (!entry)
5092 			return -ENOENT;
5093 		free_hash_entry(hash, entry);
5094 		return 0;
5095 	}
5096 
5097 	return add_hash_entry(hash, ip);
5098 }
5099 
5100 static int
5101 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5102 		  unsigned int cnt, int remove)
5103 {
5104 	unsigned int i;
5105 	int err;
5106 
5107 	for (i = 0; i < cnt; i++) {
5108 		err = __ftrace_match_addr(hash, ips[i], remove);
5109 		if (err) {
5110 			/*
5111 			 * This expects the @hash is a temporary hash and if this
5112 			 * fails the caller must free the @hash.
5113 			 */
5114 			return err;
5115 		}
5116 	}
5117 	return 0;
5118 }
5119 
5120 static int
5121 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5122 		unsigned long *ips, unsigned int cnt,
5123 		int remove, int reset, int enable)
5124 {
5125 	struct ftrace_hash **orig_hash;
5126 	struct ftrace_hash *hash;
5127 	int ret;
5128 
5129 	if (unlikely(ftrace_disabled))
5130 		return -ENODEV;
5131 
5132 	mutex_lock(&ops->func_hash->regex_lock);
5133 
5134 	if (enable)
5135 		orig_hash = &ops->func_hash->filter_hash;
5136 	else
5137 		orig_hash = &ops->func_hash->notrace_hash;
5138 
5139 	if (reset)
5140 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5141 	else
5142 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5143 
5144 	if (!hash) {
5145 		ret = -ENOMEM;
5146 		goto out_regex_unlock;
5147 	}
5148 
5149 	if (buf && !ftrace_match_records(hash, buf, len)) {
5150 		ret = -EINVAL;
5151 		goto out_regex_unlock;
5152 	}
5153 	if (ips) {
5154 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5155 		if (ret < 0)
5156 			goto out_regex_unlock;
5157 	}
5158 
5159 	mutex_lock(&ftrace_lock);
5160 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5161 	mutex_unlock(&ftrace_lock);
5162 
5163  out_regex_unlock:
5164 	mutex_unlock(&ops->func_hash->regex_lock);
5165 
5166 	free_ftrace_hash(hash);
5167 	return ret;
5168 }
5169 
5170 static int
5171 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5172 		int remove, int reset, int enable)
5173 {
5174 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5175 }
5176 
5177 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5178 
5179 struct ftrace_direct_func {
5180 	struct list_head	next;
5181 	unsigned long		addr;
5182 	int			count;
5183 };
5184 
5185 static LIST_HEAD(ftrace_direct_funcs);
5186 
5187 /**
5188  * ftrace_find_direct_func - test an address if it is a registered direct caller
5189  * @addr: The address of a registered direct caller
5190  *
5191  * This searches to see if a ftrace direct caller has been registered
5192  * at a specific address, and if so, it returns a descriptor for it.
5193  *
5194  * This can be used by architecture code to see if an address is
5195  * a direct caller (trampoline) attached to a fentry/mcount location.
5196  * This is useful for the function_graph tracer, as it may need to
5197  * do adjustments if it traced a location that also has a direct
5198  * trampoline attached to it.
5199  */
5200 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5201 {
5202 	struct ftrace_direct_func *entry;
5203 	bool found = false;
5204 
5205 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5206 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5207 		if (entry->addr == addr) {
5208 			found = true;
5209 			break;
5210 		}
5211 	}
5212 	if (found)
5213 		return entry;
5214 
5215 	return NULL;
5216 }
5217 
5218 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5219 {
5220 	struct ftrace_direct_func *direct;
5221 
5222 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5223 	if (!direct)
5224 		return NULL;
5225 	direct->addr = addr;
5226 	direct->count = 0;
5227 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5228 	ftrace_direct_func_count++;
5229 	return direct;
5230 }
5231 
5232 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5233 
5234 /**
5235  * register_ftrace_direct - Call a custom trampoline directly
5236  * @ip: The address of the nop at the beginning of a function
5237  * @addr: The address of the trampoline to call at @ip
5238  *
5239  * This is used to connect a direct call from the nop location (@ip)
5240  * at the start of ftrace traced functions. The location that it calls
5241  * (@addr) must be able to handle a direct call, and save the parameters
5242  * of the function being traced, and restore them (or inject new ones
5243  * if needed), before returning.
5244  *
5245  * Returns:
5246  *  0 on success
5247  *  -EBUSY - Another direct function is already attached (there can be only one)
5248  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5249  *  -ENOMEM - There was an allocation failure.
5250  */
5251 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5252 {
5253 	struct ftrace_direct_func *direct;
5254 	struct ftrace_func_entry *entry;
5255 	struct ftrace_hash *free_hash = NULL;
5256 	struct dyn_ftrace *rec;
5257 	int ret = -ENODEV;
5258 
5259 	mutex_lock(&direct_mutex);
5260 
5261 	ip = ftrace_location(ip);
5262 	if (!ip)
5263 		goto out_unlock;
5264 
5265 	/* See if there's a direct function at @ip already */
5266 	ret = -EBUSY;
5267 	if (ftrace_find_rec_direct(ip))
5268 		goto out_unlock;
5269 
5270 	ret = -ENODEV;
5271 	rec = lookup_rec(ip, ip);
5272 	if (!rec)
5273 		goto out_unlock;
5274 
5275 	/*
5276 	 * Check if the rec says it has a direct call but we didn't
5277 	 * find one earlier?
5278 	 */
5279 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5280 		goto out_unlock;
5281 
5282 	/* Make sure the ip points to the exact record */
5283 	if (ip != rec->ip) {
5284 		ip = rec->ip;
5285 		/* Need to check this ip for a direct. */
5286 		if (ftrace_find_rec_direct(ip))
5287 			goto out_unlock;
5288 	}
5289 
5290 	ret = -ENOMEM;
5291 	direct = ftrace_find_direct_func(addr);
5292 	if (!direct) {
5293 		direct = ftrace_alloc_direct_func(addr);
5294 		if (!direct)
5295 			goto out_unlock;
5296 	}
5297 
5298 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5299 	if (!entry)
5300 		goto out_unlock;
5301 
5302 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5303 
5304 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5305 		ret = register_ftrace_function_nolock(&direct_ops);
5306 		if (ret)
5307 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5308 	}
5309 
5310 	if (ret) {
5311 		remove_hash_entry(direct_functions, entry);
5312 		kfree(entry);
5313 		if (!direct->count) {
5314 			list_del_rcu(&direct->next);
5315 			synchronize_rcu_tasks();
5316 			kfree(direct);
5317 			if (free_hash)
5318 				free_ftrace_hash(free_hash);
5319 			free_hash = NULL;
5320 			ftrace_direct_func_count--;
5321 		}
5322 	} else {
5323 		direct->count++;
5324 	}
5325  out_unlock:
5326 	mutex_unlock(&direct_mutex);
5327 
5328 	if (free_hash) {
5329 		synchronize_rcu_tasks();
5330 		free_ftrace_hash(free_hash);
5331 	}
5332 
5333 	return ret;
5334 }
5335 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5336 
5337 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5338 						   struct dyn_ftrace **recp)
5339 {
5340 	struct ftrace_func_entry *entry;
5341 	struct dyn_ftrace *rec;
5342 
5343 	rec = lookup_rec(*ip, *ip);
5344 	if (!rec)
5345 		return NULL;
5346 
5347 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5348 	if (!entry) {
5349 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5350 		return NULL;
5351 	}
5352 
5353 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5354 
5355 	/* Passed in ip just needs to be on the call site */
5356 	*ip = rec->ip;
5357 
5358 	if (recp)
5359 		*recp = rec;
5360 
5361 	return entry;
5362 }
5363 
5364 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5365 {
5366 	struct ftrace_direct_func *direct;
5367 	struct ftrace_func_entry *entry;
5368 	struct ftrace_hash *hash;
5369 	int ret = -ENODEV;
5370 
5371 	mutex_lock(&direct_mutex);
5372 
5373 	ip = ftrace_location(ip);
5374 	if (!ip)
5375 		goto out_unlock;
5376 
5377 	entry = find_direct_entry(&ip, NULL);
5378 	if (!entry)
5379 		goto out_unlock;
5380 
5381 	hash = direct_ops.func_hash->filter_hash;
5382 	if (hash->count == 1)
5383 		unregister_ftrace_function(&direct_ops);
5384 
5385 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5386 
5387 	WARN_ON(ret);
5388 
5389 	remove_hash_entry(direct_functions, entry);
5390 
5391 	direct = ftrace_find_direct_func(addr);
5392 	if (!WARN_ON(!direct)) {
5393 		/* This is the good path (see the ! before WARN) */
5394 		direct->count--;
5395 		WARN_ON(direct->count < 0);
5396 		if (!direct->count) {
5397 			list_del_rcu(&direct->next);
5398 			synchronize_rcu_tasks();
5399 			kfree(direct);
5400 			kfree(entry);
5401 			ftrace_direct_func_count--;
5402 		}
5403 	}
5404  out_unlock:
5405 	mutex_unlock(&direct_mutex);
5406 
5407 	return ret;
5408 }
5409 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5410 
5411 static struct ftrace_ops stub_ops = {
5412 	.func		= ftrace_stub,
5413 };
5414 
5415 /**
5416  * ftrace_modify_direct_caller - modify ftrace nop directly
5417  * @entry: The ftrace hash entry of the direct helper for @rec
5418  * @rec: The record representing the function site to patch
5419  * @old_addr: The location that the site at @rec->ip currently calls
5420  * @new_addr: The location that the site at @rec->ip should call
5421  *
5422  * An architecture may overwrite this function to optimize the
5423  * changing of the direct callback on an ftrace nop location.
5424  * This is called with the ftrace_lock mutex held, and no other
5425  * ftrace callbacks are on the associated record (@rec). Thus,
5426  * it is safe to modify the ftrace record, where it should be
5427  * currently calling @old_addr directly, to call @new_addr.
5428  *
5429  * This is called with direct_mutex locked.
5430  *
5431  * Safety checks should be made to make sure that the code at
5432  * @rec->ip is currently calling @old_addr. And this must
5433  * also update entry->direct to @new_addr.
5434  */
5435 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5436 				       struct dyn_ftrace *rec,
5437 				       unsigned long old_addr,
5438 				       unsigned long new_addr)
5439 {
5440 	unsigned long ip = rec->ip;
5441 	int ret;
5442 
5443 	lockdep_assert_held(&direct_mutex);
5444 
5445 	/*
5446 	 * The ftrace_lock was used to determine if the record
5447 	 * had more than one registered user to it. If it did,
5448 	 * we needed to prevent that from changing to do the quick
5449 	 * switch. But if it did not (only a direct caller was attached)
5450 	 * then this function is called. But this function can deal
5451 	 * with attached callers to the rec that we care about, and
5452 	 * since this function uses standard ftrace calls that take
5453 	 * the ftrace_lock mutex, we need to release it.
5454 	 */
5455 	mutex_unlock(&ftrace_lock);
5456 
5457 	/*
5458 	 * By setting a stub function at the same address, we force
5459 	 * the code to call the iterator and the direct_ops helper.
5460 	 * This means that @ip does not call the direct call, and
5461 	 * we can simply modify it.
5462 	 */
5463 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5464 	if (ret)
5465 		goto out_lock;
5466 
5467 	ret = register_ftrace_function_nolock(&stub_ops);
5468 	if (ret) {
5469 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5470 		goto out_lock;
5471 	}
5472 
5473 	entry->direct = new_addr;
5474 
5475 	/*
5476 	 * By removing the stub, we put back the direct call, calling
5477 	 * the @new_addr.
5478 	 */
5479 	unregister_ftrace_function(&stub_ops);
5480 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5481 
5482  out_lock:
5483 	mutex_lock(&ftrace_lock);
5484 
5485 	return ret;
5486 }
5487 
5488 /**
5489  * modify_ftrace_direct - Modify an existing direct call to call something else
5490  * @ip: The instruction pointer to modify
5491  * @old_addr: The address that the current @ip calls directly
5492  * @new_addr: The address that the @ip should call
5493  *
5494  * This modifies a ftrace direct caller at an instruction pointer without
5495  * having to disable it first. The direct call will switch over to the
5496  * @new_addr without missing anything.
5497  *
5498  * Returns: zero on success. Non zero on error, which includes:
5499  *  -ENODEV : the @ip given has no direct caller attached
5500  *  -EINVAL : the @old_addr does not match the current direct caller
5501  */
5502 int modify_ftrace_direct(unsigned long ip,
5503 			 unsigned long old_addr, unsigned long new_addr)
5504 {
5505 	struct ftrace_direct_func *direct, *new_direct = NULL;
5506 	struct ftrace_func_entry *entry;
5507 	struct dyn_ftrace *rec;
5508 	int ret = -ENODEV;
5509 
5510 	mutex_lock(&direct_mutex);
5511 
5512 	mutex_lock(&ftrace_lock);
5513 
5514 	ip = ftrace_location(ip);
5515 	if (!ip)
5516 		goto out_unlock;
5517 
5518 	entry = find_direct_entry(&ip, &rec);
5519 	if (!entry)
5520 		goto out_unlock;
5521 
5522 	ret = -EINVAL;
5523 	if (entry->direct != old_addr)
5524 		goto out_unlock;
5525 
5526 	direct = ftrace_find_direct_func(old_addr);
5527 	if (WARN_ON(!direct))
5528 		goto out_unlock;
5529 	if (direct->count > 1) {
5530 		ret = -ENOMEM;
5531 		new_direct = ftrace_alloc_direct_func(new_addr);
5532 		if (!new_direct)
5533 			goto out_unlock;
5534 		direct->count--;
5535 		new_direct->count++;
5536 	} else {
5537 		direct->addr = new_addr;
5538 	}
5539 
5540 	/*
5541 	 * If there's no other ftrace callback on the rec->ip location,
5542 	 * then it can be changed directly by the architecture.
5543 	 * If there is another caller, then we just need to change the
5544 	 * direct caller helper to point to @new_addr.
5545 	 */
5546 	if (ftrace_rec_count(rec) == 1) {
5547 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5548 	} else {
5549 		entry->direct = new_addr;
5550 		ret = 0;
5551 	}
5552 
5553 	if (unlikely(ret && new_direct)) {
5554 		direct->count++;
5555 		list_del_rcu(&new_direct->next);
5556 		synchronize_rcu_tasks();
5557 		kfree(new_direct);
5558 		ftrace_direct_func_count--;
5559 	}
5560 
5561  out_unlock:
5562 	mutex_unlock(&ftrace_lock);
5563 	mutex_unlock(&direct_mutex);
5564 	return ret;
5565 }
5566 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5567 
5568 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5569 
5570 static int check_direct_multi(struct ftrace_ops *ops)
5571 {
5572 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5573 		return -EINVAL;
5574 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5575 		return -EINVAL;
5576 	return 0;
5577 }
5578 
5579 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5580 {
5581 	struct ftrace_func_entry *entry, *del;
5582 	int size, i;
5583 
5584 	size = 1 << hash->size_bits;
5585 	for (i = 0; i < size; i++) {
5586 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5587 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5588 			if (del && del->direct == addr) {
5589 				remove_hash_entry(direct_functions, del);
5590 				kfree(del);
5591 			}
5592 		}
5593 	}
5594 }
5595 
5596 /**
5597  * register_ftrace_direct_multi - Call a custom trampoline directly
5598  * for multiple functions registered in @ops
5599  * @ops: The address of the struct ftrace_ops object
5600  * @addr: The address of the trampoline to call at @ops functions
5601  *
5602  * This is used to connect a direct calls to @addr from the nop locations
5603  * of the functions registered in @ops (with by ftrace_set_filter_ip
5604  * function).
5605  *
5606  * The location that it calls (@addr) must be able to handle a direct call,
5607  * and save the parameters of the function being traced, and restore them
5608  * (or inject new ones if needed), before returning.
5609  *
5610  * Returns:
5611  *  0 on success
5612  *  -EINVAL  - The @ops object was already registered with this call or
5613  *             when there are no functions in @ops object.
5614  *  -EBUSY   - Another direct function is already attached (there can be only one)
5615  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5616  *  -ENOMEM  - There was an allocation failure.
5617  */
5618 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5619 {
5620 	struct ftrace_hash *hash, *free_hash = NULL;
5621 	struct ftrace_func_entry *entry, *new;
5622 	int err = -EBUSY, size, i;
5623 
5624 	if (ops->func || ops->trampoline)
5625 		return -EINVAL;
5626 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5627 		return -EINVAL;
5628 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5629 		return -EINVAL;
5630 
5631 	hash = ops->func_hash->filter_hash;
5632 	if (ftrace_hash_empty(hash))
5633 		return -EINVAL;
5634 
5635 	mutex_lock(&direct_mutex);
5636 
5637 	/* Make sure requested entries are not already registered.. */
5638 	size = 1 << hash->size_bits;
5639 	for (i = 0; i < size; i++) {
5640 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5641 			if (ftrace_find_rec_direct(entry->ip))
5642 				goto out_unlock;
5643 		}
5644 	}
5645 
5646 	/* ... and insert them to direct_functions hash. */
5647 	err = -ENOMEM;
5648 	for (i = 0; i < size; i++) {
5649 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5650 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5651 			if (!new)
5652 				goto out_remove;
5653 			entry->direct = addr;
5654 		}
5655 	}
5656 
5657 	ops->func = call_direct_funcs;
5658 	ops->flags = MULTI_FLAGS;
5659 	ops->trampoline = FTRACE_REGS_ADDR;
5660 
5661 	err = register_ftrace_function_nolock(ops);
5662 
5663  out_remove:
5664 	if (err)
5665 		remove_direct_functions_hash(hash, addr);
5666 
5667  out_unlock:
5668 	mutex_unlock(&direct_mutex);
5669 
5670 	if (free_hash) {
5671 		synchronize_rcu_tasks();
5672 		free_ftrace_hash(free_hash);
5673 	}
5674 	return err;
5675 }
5676 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5677 
5678 /**
5679  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5680  * previously registered by register_ftrace_direct_multi for @ops object.
5681  * @ops: The address of the struct ftrace_ops object
5682  *
5683  * This is used to remove a direct calls to @addr from the nop locations
5684  * of the functions registered in @ops (with by ftrace_set_filter_ip
5685  * function).
5686  *
5687  * Returns:
5688  *  0 on success
5689  *  -EINVAL - The @ops object was not properly registered.
5690  */
5691 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5692 {
5693 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5694 	int err;
5695 
5696 	if (check_direct_multi(ops))
5697 		return -EINVAL;
5698 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5699 		return -EINVAL;
5700 
5701 	mutex_lock(&direct_mutex);
5702 	err = unregister_ftrace_function(ops);
5703 	remove_direct_functions_hash(hash, addr);
5704 	mutex_unlock(&direct_mutex);
5705 
5706 	/* cleanup for possible another register call */
5707 	ops->func = NULL;
5708 	ops->trampoline = 0;
5709 	return err;
5710 }
5711 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5712 
5713 static int
5714 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5715 {
5716 	struct ftrace_hash *hash;
5717 	struct ftrace_func_entry *entry, *iter;
5718 	static struct ftrace_ops tmp_ops = {
5719 		.func		= ftrace_stub,
5720 		.flags		= FTRACE_OPS_FL_STUB,
5721 	};
5722 	int i, size;
5723 	int err;
5724 
5725 	lockdep_assert_held_once(&direct_mutex);
5726 
5727 	/* Enable the tmp_ops to have the same functions as the direct ops */
5728 	ftrace_ops_init(&tmp_ops);
5729 	tmp_ops.func_hash = ops->func_hash;
5730 
5731 	err = register_ftrace_function_nolock(&tmp_ops);
5732 	if (err)
5733 		return err;
5734 
5735 	/*
5736 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5737 	 * We can safely change the direct functions attached to each entry.
5738 	 */
5739 	mutex_lock(&ftrace_lock);
5740 
5741 	hash = ops->func_hash->filter_hash;
5742 	size = 1 << hash->size_bits;
5743 	for (i = 0; i < size; i++) {
5744 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5745 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5746 			if (!entry)
5747 				continue;
5748 			entry->direct = addr;
5749 		}
5750 	}
5751 
5752 	mutex_unlock(&ftrace_lock);
5753 
5754 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5755 	unregister_ftrace_function(&tmp_ops);
5756 
5757 	return err;
5758 }
5759 
5760 /**
5761  * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call
5762  * to call something else
5763  * @ops: The address of the struct ftrace_ops object
5764  * @addr: The address of the new trampoline to call at @ops functions
5765  *
5766  * This is used to unregister currently registered direct caller and
5767  * register new one @addr on functions registered in @ops object.
5768  *
5769  * Note there's window between ftrace_shutdown and ftrace_startup calls
5770  * where there will be no callbacks called.
5771  *
5772  * Caller should already have direct_mutex locked, so we don't lock
5773  * direct_mutex here.
5774  *
5775  * Returns: zero on success. Non zero on error, which includes:
5776  *  -EINVAL - The @ops object was not properly registered.
5777  */
5778 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr)
5779 {
5780 	if (check_direct_multi(ops))
5781 		return -EINVAL;
5782 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5783 		return -EINVAL;
5784 
5785 	return __modify_ftrace_direct_multi(ops, addr);
5786 }
5787 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock);
5788 
5789 /**
5790  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5791  * to call something else
5792  * @ops: The address of the struct ftrace_ops object
5793  * @addr: The address of the new trampoline to call at @ops functions
5794  *
5795  * This is used to unregister currently registered direct caller and
5796  * register new one @addr on functions registered in @ops object.
5797  *
5798  * Note there's window between ftrace_shutdown and ftrace_startup calls
5799  * where there will be no callbacks called.
5800  *
5801  * Returns: zero on success. Non zero on error, which includes:
5802  *  -EINVAL - The @ops object was not properly registered.
5803  */
5804 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5805 {
5806 	int err;
5807 
5808 	if (check_direct_multi(ops))
5809 		return -EINVAL;
5810 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5811 		return -EINVAL;
5812 
5813 	mutex_lock(&direct_mutex);
5814 	err = __modify_ftrace_direct_multi(ops, addr);
5815 	mutex_unlock(&direct_mutex);
5816 	return err;
5817 }
5818 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5819 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5820 
5821 /**
5822  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5823  * @ops - the ops to set the filter with
5824  * @ip - the address to add to or remove from the filter.
5825  * @remove - non zero to remove the ip from the filter
5826  * @reset - non zero to reset all filters before applying this filter.
5827  *
5828  * Filters denote which functions should be enabled when tracing is enabled
5829  * If @ip is NULL, it fails to update filter.
5830  */
5831 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5832 			 int remove, int reset)
5833 {
5834 	ftrace_ops_init(ops);
5835 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5836 }
5837 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5838 
5839 /**
5840  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5841  * @ops - the ops to set the filter with
5842  * @ips - the array of addresses to add to or remove from the filter.
5843  * @cnt - the number of addresses in @ips
5844  * @remove - non zero to remove ips from the filter
5845  * @reset - non zero to reset all filters before applying this filter.
5846  *
5847  * Filters denote which functions should be enabled when tracing is enabled
5848  * If @ips array or any ip specified within is NULL , it fails to update filter.
5849  */
5850 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5851 			  unsigned int cnt, int remove, int reset)
5852 {
5853 	ftrace_ops_init(ops);
5854 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5855 }
5856 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5857 
5858 /**
5859  * ftrace_ops_set_global_filter - setup ops to use global filters
5860  * @ops - the ops which will use the global filters
5861  *
5862  * ftrace users who need global function trace filtering should call this.
5863  * It can set the global filter only if ops were not initialized before.
5864  */
5865 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5866 {
5867 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5868 		return;
5869 
5870 	ftrace_ops_init(ops);
5871 	ops->func_hash = &global_ops.local_hash;
5872 }
5873 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5874 
5875 static int
5876 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5877 		 int reset, int enable)
5878 {
5879 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
5880 }
5881 
5882 /**
5883  * ftrace_set_filter - set a function to filter on in ftrace
5884  * @ops - the ops to set the filter with
5885  * @buf - the string that holds the function filter text.
5886  * @len - the length of the string.
5887  * @reset - non zero to reset all filters before applying this filter.
5888  *
5889  * Filters denote which functions should be enabled when tracing is enabled.
5890  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5891  */
5892 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5893 		       int len, int reset)
5894 {
5895 	ftrace_ops_init(ops);
5896 	return ftrace_set_regex(ops, buf, len, reset, 1);
5897 }
5898 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5899 
5900 /**
5901  * ftrace_set_notrace - set a function to not trace in ftrace
5902  * @ops - the ops to set the notrace filter with
5903  * @buf - the string that holds the function notrace text.
5904  * @len - the length of the string.
5905  * @reset - non zero to reset all filters before applying this filter.
5906  *
5907  * Notrace Filters denote which functions should not be enabled when tracing
5908  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5909  * for tracing.
5910  */
5911 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5912 			int len, int reset)
5913 {
5914 	ftrace_ops_init(ops);
5915 	return ftrace_set_regex(ops, buf, len, reset, 0);
5916 }
5917 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5918 /**
5919  * ftrace_set_global_filter - set a function to filter on with global tracers
5920  * @buf - the string that holds the function filter text.
5921  * @len - the length of the string.
5922  * @reset - non zero to reset all filters before applying this filter.
5923  *
5924  * Filters denote which functions should be enabled when tracing is enabled.
5925  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5926  */
5927 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5928 {
5929 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5930 }
5931 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5932 
5933 /**
5934  * ftrace_set_global_notrace - set a function to not trace with global tracers
5935  * @buf - the string that holds the function notrace text.
5936  * @len - the length of the string.
5937  * @reset - non zero to reset all filters before applying this filter.
5938  *
5939  * Notrace Filters denote which functions should not be enabled when tracing
5940  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5941  * for tracing.
5942  */
5943 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5944 {
5945 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5946 }
5947 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5948 
5949 /*
5950  * command line interface to allow users to set filters on boot up.
5951  */
5952 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5953 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5954 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5955 
5956 /* Used by function selftest to not test if filter is set */
5957 bool ftrace_filter_param __initdata;
5958 
5959 static int __init set_ftrace_notrace(char *str)
5960 {
5961 	ftrace_filter_param = true;
5962 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5963 	return 1;
5964 }
5965 __setup("ftrace_notrace=", set_ftrace_notrace);
5966 
5967 static int __init set_ftrace_filter(char *str)
5968 {
5969 	ftrace_filter_param = true;
5970 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5971 	return 1;
5972 }
5973 __setup("ftrace_filter=", set_ftrace_filter);
5974 
5975 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5976 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5977 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5978 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5979 
5980 static int __init set_graph_function(char *str)
5981 {
5982 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5983 	return 1;
5984 }
5985 __setup("ftrace_graph_filter=", set_graph_function);
5986 
5987 static int __init set_graph_notrace_function(char *str)
5988 {
5989 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5990 	return 1;
5991 }
5992 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5993 
5994 static int __init set_graph_max_depth_function(char *str)
5995 {
5996 	if (!str)
5997 		return 0;
5998 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5999 	return 1;
6000 }
6001 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6002 
6003 static void __init set_ftrace_early_graph(char *buf, int enable)
6004 {
6005 	int ret;
6006 	char *func;
6007 	struct ftrace_hash *hash;
6008 
6009 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6010 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6011 		return;
6012 
6013 	while (buf) {
6014 		func = strsep(&buf, ",");
6015 		/* we allow only one expression at a time */
6016 		ret = ftrace_graph_set_hash(hash, func);
6017 		if (ret)
6018 			printk(KERN_DEBUG "ftrace: function %s not "
6019 					  "traceable\n", func);
6020 	}
6021 
6022 	if (enable)
6023 		ftrace_graph_hash = hash;
6024 	else
6025 		ftrace_graph_notrace_hash = hash;
6026 }
6027 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6028 
6029 void __init
6030 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6031 {
6032 	char *func;
6033 
6034 	ftrace_ops_init(ops);
6035 
6036 	while (buf) {
6037 		func = strsep(&buf, ",");
6038 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6039 	}
6040 }
6041 
6042 static void __init set_ftrace_early_filters(void)
6043 {
6044 	if (ftrace_filter_buf[0])
6045 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6046 	if (ftrace_notrace_buf[0])
6047 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6048 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6049 	if (ftrace_graph_buf[0])
6050 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6051 	if (ftrace_graph_notrace_buf[0])
6052 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6053 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6054 }
6055 
6056 int ftrace_regex_release(struct inode *inode, struct file *file)
6057 {
6058 	struct seq_file *m = (struct seq_file *)file->private_data;
6059 	struct ftrace_iterator *iter;
6060 	struct ftrace_hash **orig_hash;
6061 	struct trace_parser *parser;
6062 	int filter_hash;
6063 
6064 	if (file->f_mode & FMODE_READ) {
6065 		iter = m->private;
6066 		seq_release(inode, file);
6067 	} else
6068 		iter = file->private_data;
6069 
6070 	parser = &iter->parser;
6071 	if (trace_parser_loaded(parser)) {
6072 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6073 
6074 		ftrace_process_regex(iter, parser->buffer,
6075 				     parser->idx, enable);
6076 	}
6077 
6078 	trace_parser_put(parser);
6079 
6080 	mutex_lock(&iter->ops->func_hash->regex_lock);
6081 
6082 	if (file->f_mode & FMODE_WRITE) {
6083 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6084 
6085 		if (filter_hash) {
6086 			orig_hash = &iter->ops->func_hash->filter_hash;
6087 			if (iter->tr) {
6088 				if (list_empty(&iter->tr->mod_trace))
6089 					iter->hash->flags &= ~FTRACE_HASH_FL_MOD;
6090 				else
6091 					iter->hash->flags |= FTRACE_HASH_FL_MOD;
6092 			}
6093 		} else
6094 			orig_hash = &iter->ops->func_hash->notrace_hash;
6095 
6096 		mutex_lock(&ftrace_lock);
6097 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6098 						      iter->hash, filter_hash);
6099 		mutex_unlock(&ftrace_lock);
6100 	} else {
6101 		/* For read only, the hash is the ops hash */
6102 		iter->hash = NULL;
6103 	}
6104 
6105 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6106 	free_ftrace_hash(iter->hash);
6107 	if (iter->tr)
6108 		trace_array_put(iter->tr);
6109 	kfree(iter);
6110 
6111 	return 0;
6112 }
6113 
6114 static const struct file_operations ftrace_avail_fops = {
6115 	.open = ftrace_avail_open,
6116 	.read = seq_read,
6117 	.llseek = seq_lseek,
6118 	.release = seq_release_private,
6119 };
6120 
6121 static const struct file_operations ftrace_enabled_fops = {
6122 	.open = ftrace_enabled_open,
6123 	.read = seq_read,
6124 	.llseek = seq_lseek,
6125 	.release = seq_release_private,
6126 };
6127 
6128 static const struct file_operations ftrace_filter_fops = {
6129 	.open = ftrace_filter_open,
6130 	.read = seq_read,
6131 	.write = ftrace_filter_write,
6132 	.llseek = tracing_lseek,
6133 	.release = ftrace_regex_release,
6134 };
6135 
6136 static const struct file_operations ftrace_notrace_fops = {
6137 	.open = ftrace_notrace_open,
6138 	.read = seq_read,
6139 	.write = ftrace_notrace_write,
6140 	.llseek = tracing_lseek,
6141 	.release = ftrace_regex_release,
6142 };
6143 
6144 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6145 
6146 static DEFINE_MUTEX(graph_lock);
6147 
6148 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6149 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6150 
6151 enum graph_filter_type {
6152 	GRAPH_FILTER_NOTRACE	= 0,
6153 	GRAPH_FILTER_FUNCTION,
6154 };
6155 
6156 #define FTRACE_GRAPH_EMPTY	((void *)1)
6157 
6158 struct ftrace_graph_data {
6159 	struct ftrace_hash		*hash;
6160 	struct ftrace_func_entry	*entry;
6161 	int				idx;   /* for hash table iteration */
6162 	enum graph_filter_type		type;
6163 	struct ftrace_hash		*new_hash;
6164 	const struct seq_operations	*seq_ops;
6165 	struct trace_parser		parser;
6166 };
6167 
6168 static void *
6169 __g_next(struct seq_file *m, loff_t *pos)
6170 {
6171 	struct ftrace_graph_data *fgd = m->private;
6172 	struct ftrace_func_entry *entry = fgd->entry;
6173 	struct hlist_head *head;
6174 	int i, idx = fgd->idx;
6175 
6176 	if (*pos >= fgd->hash->count)
6177 		return NULL;
6178 
6179 	if (entry) {
6180 		hlist_for_each_entry_continue(entry, hlist) {
6181 			fgd->entry = entry;
6182 			return entry;
6183 		}
6184 
6185 		idx++;
6186 	}
6187 
6188 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6189 		head = &fgd->hash->buckets[i];
6190 		hlist_for_each_entry(entry, head, hlist) {
6191 			fgd->entry = entry;
6192 			fgd->idx = i;
6193 			return entry;
6194 		}
6195 	}
6196 	return NULL;
6197 }
6198 
6199 static void *
6200 g_next(struct seq_file *m, void *v, loff_t *pos)
6201 {
6202 	(*pos)++;
6203 	return __g_next(m, pos);
6204 }
6205 
6206 static void *g_start(struct seq_file *m, loff_t *pos)
6207 {
6208 	struct ftrace_graph_data *fgd = m->private;
6209 
6210 	mutex_lock(&graph_lock);
6211 
6212 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6213 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6214 					lockdep_is_held(&graph_lock));
6215 	else
6216 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6217 					lockdep_is_held(&graph_lock));
6218 
6219 	/* Nothing, tell g_show to print all functions are enabled */
6220 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6221 		return FTRACE_GRAPH_EMPTY;
6222 
6223 	fgd->idx = 0;
6224 	fgd->entry = NULL;
6225 	return __g_next(m, pos);
6226 }
6227 
6228 static void g_stop(struct seq_file *m, void *p)
6229 {
6230 	mutex_unlock(&graph_lock);
6231 }
6232 
6233 static int g_show(struct seq_file *m, void *v)
6234 {
6235 	struct ftrace_func_entry *entry = v;
6236 
6237 	if (!entry)
6238 		return 0;
6239 
6240 	if (entry == FTRACE_GRAPH_EMPTY) {
6241 		struct ftrace_graph_data *fgd = m->private;
6242 
6243 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6244 			seq_puts(m, "#### all functions enabled ####\n");
6245 		else
6246 			seq_puts(m, "#### no functions disabled ####\n");
6247 		return 0;
6248 	}
6249 
6250 	seq_printf(m, "%ps\n", (void *)entry->ip);
6251 
6252 	return 0;
6253 }
6254 
6255 static const struct seq_operations ftrace_graph_seq_ops = {
6256 	.start = g_start,
6257 	.next = g_next,
6258 	.stop = g_stop,
6259 	.show = g_show,
6260 };
6261 
6262 static int
6263 __ftrace_graph_open(struct inode *inode, struct file *file,
6264 		    struct ftrace_graph_data *fgd)
6265 {
6266 	int ret;
6267 	struct ftrace_hash *new_hash = NULL;
6268 
6269 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6270 	if (ret)
6271 		return ret;
6272 
6273 	if (file->f_mode & FMODE_WRITE) {
6274 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6275 
6276 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6277 			return -ENOMEM;
6278 
6279 		if (file->f_flags & O_TRUNC)
6280 			new_hash = alloc_ftrace_hash(size_bits);
6281 		else
6282 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6283 							      fgd->hash);
6284 		if (!new_hash) {
6285 			ret = -ENOMEM;
6286 			goto out;
6287 		}
6288 	}
6289 
6290 	if (file->f_mode & FMODE_READ) {
6291 		ret = seq_open(file, &ftrace_graph_seq_ops);
6292 		if (!ret) {
6293 			struct seq_file *m = file->private_data;
6294 			m->private = fgd;
6295 		} else {
6296 			/* Failed */
6297 			free_ftrace_hash(new_hash);
6298 			new_hash = NULL;
6299 		}
6300 	} else
6301 		file->private_data = fgd;
6302 
6303 out:
6304 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6305 		trace_parser_put(&fgd->parser);
6306 
6307 	fgd->new_hash = new_hash;
6308 
6309 	/*
6310 	 * All uses of fgd->hash must be taken with the graph_lock
6311 	 * held. The graph_lock is going to be released, so force
6312 	 * fgd->hash to be reinitialized when it is taken again.
6313 	 */
6314 	fgd->hash = NULL;
6315 
6316 	return ret;
6317 }
6318 
6319 static int
6320 ftrace_graph_open(struct inode *inode, struct file *file)
6321 {
6322 	struct ftrace_graph_data *fgd;
6323 	int ret;
6324 
6325 	if (unlikely(ftrace_disabled))
6326 		return -ENODEV;
6327 
6328 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6329 	if (fgd == NULL)
6330 		return -ENOMEM;
6331 
6332 	mutex_lock(&graph_lock);
6333 
6334 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6335 					lockdep_is_held(&graph_lock));
6336 	fgd->type = GRAPH_FILTER_FUNCTION;
6337 	fgd->seq_ops = &ftrace_graph_seq_ops;
6338 
6339 	ret = __ftrace_graph_open(inode, file, fgd);
6340 	if (ret < 0)
6341 		kfree(fgd);
6342 
6343 	mutex_unlock(&graph_lock);
6344 	return ret;
6345 }
6346 
6347 static int
6348 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6349 {
6350 	struct ftrace_graph_data *fgd;
6351 	int ret;
6352 
6353 	if (unlikely(ftrace_disabled))
6354 		return -ENODEV;
6355 
6356 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6357 	if (fgd == NULL)
6358 		return -ENOMEM;
6359 
6360 	mutex_lock(&graph_lock);
6361 
6362 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6363 					lockdep_is_held(&graph_lock));
6364 	fgd->type = GRAPH_FILTER_NOTRACE;
6365 	fgd->seq_ops = &ftrace_graph_seq_ops;
6366 
6367 	ret = __ftrace_graph_open(inode, file, fgd);
6368 	if (ret < 0)
6369 		kfree(fgd);
6370 
6371 	mutex_unlock(&graph_lock);
6372 	return ret;
6373 }
6374 
6375 static int
6376 ftrace_graph_release(struct inode *inode, struct file *file)
6377 {
6378 	struct ftrace_graph_data *fgd;
6379 	struct ftrace_hash *old_hash, *new_hash;
6380 	struct trace_parser *parser;
6381 	int ret = 0;
6382 
6383 	if (file->f_mode & FMODE_READ) {
6384 		struct seq_file *m = file->private_data;
6385 
6386 		fgd = m->private;
6387 		seq_release(inode, file);
6388 	} else {
6389 		fgd = file->private_data;
6390 	}
6391 
6392 
6393 	if (file->f_mode & FMODE_WRITE) {
6394 
6395 		parser = &fgd->parser;
6396 
6397 		if (trace_parser_loaded((parser))) {
6398 			ret = ftrace_graph_set_hash(fgd->new_hash,
6399 						    parser->buffer);
6400 		}
6401 
6402 		trace_parser_put(parser);
6403 
6404 		new_hash = __ftrace_hash_move(fgd->new_hash);
6405 		if (!new_hash) {
6406 			ret = -ENOMEM;
6407 			goto out;
6408 		}
6409 
6410 		mutex_lock(&graph_lock);
6411 
6412 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6413 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6414 					lockdep_is_held(&graph_lock));
6415 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6416 		} else {
6417 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6418 					lockdep_is_held(&graph_lock));
6419 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6420 		}
6421 
6422 		mutex_unlock(&graph_lock);
6423 
6424 		/*
6425 		 * We need to do a hard force of sched synchronization.
6426 		 * This is because we use preempt_disable() to do RCU, but
6427 		 * the function tracers can be called where RCU is not watching
6428 		 * (like before user_exit()). We can not rely on the RCU
6429 		 * infrastructure to do the synchronization, thus we must do it
6430 		 * ourselves.
6431 		 */
6432 		if (old_hash != EMPTY_HASH)
6433 			synchronize_rcu_tasks_rude();
6434 
6435 		free_ftrace_hash(old_hash);
6436 	}
6437 
6438  out:
6439 	free_ftrace_hash(fgd->new_hash);
6440 	kfree(fgd);
6441 
6442 	return ret;
6443 }
6444 
6445 static int
6446 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6447 {
6448 	struct ftrace_glob func_g;
6449 	struct dyn_ftrace *rec;
6450 	struct ftrace_page *pg;
6451 	struct ftrace_func_entry *entry;
6452 	int fail = 1;
6453 	int not;
6454 
6455 	/* decode regex */
6456 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6457 					 &func_g.search, &not);
6458 
6459 	func_g.len = strlen(func_g.search);
6460 
6461 	mutex_lock(&ftrace_lock);
6462 
6463 	if (unlikely(ftrace_disabled)) {
6464 		mutex_unlock(&ftrace_lock);
6465 		return -ENODEV;
6466 	}
6467 
6468 	do_for_each_ftrace_rec(pg, rec) {
6469 
6470 		if (rec->flags & FTRACE_FL_DISABLED)
6471 			continue;
6472 
6473 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6474 			entry = ftrace_lookup_ip(hash, rec->ip);
6475 
6476 			if (!not) {
6477 				fail = 0;
6478 
6479 				if (entry)
6480 					continue;
6481 				if (add_hash_entry(hash, rec->ip) < 0)
6482 					goto out;
6483 			} else {
6484 				if (entry) {
6485 					free_hash_entry(hash, entry);
6486 					fail = 0;
6487 				}
6488 			}
6489 		}
6490 	} while_for_each_ftrace_rec();
6491 out:
6492 	mutex_unlock(&ftrace_lock);
6493 
6494 	if (fail)
6495 		return -EINVAL;
6496 
6497 	return 0;
6498 }
6499 
6500 static ssize_t
6501 ftrace_graph_write(struct file *file, const char __user *ubuf,
6502 		   size_t cnt, loff_t *ppos)
6503 {
6504 	ssize_t read, ret = 0;
6505 	struct ftrace_graph_data *fgd = file->private_data;
6506 	struct trace_parser *parser;
6507 
6508 	if (!cnt)
6509 		return 0;
6510 
6511 	/* Read mode uses seq functions */
6512 	if (file->f_mode & FMODE_READ) {
6513 		struct seq_file *m = file->private_data;
6514 		fgd = m->private;
6515 	}
6516 
6517 	parser = &fgd->parser;
6518 
6519 	read = trace_get_user(parser, ubuf, cnt, ppos);
6520 
6521 	if (read >= 0 && trace_parser_loaded(parser) &&
6522 	    !trace_parser_cont(parser)) {
6523 
6524 		ret = ftrace_graph_set_hash(fgd->new_hash,
6525 					    parser->buffer);
6526 		trace_parser_clear(parser);
6527 	}
6528 
6529 	if (!ret)
6530 		ret = read;
6531 
6532 	return ret;
6533 }
6534 
6535 static const struct file_operations ftrace_graph_fops = {
6536 	.open		= ftrace_graph_open,
6537 	.read		= seq_read,
6538 	.write		= ftrace_graph_write,
6539 	.llseek		= tracing_lseek,
6540 	.release	= ftrace_graph_release,
6541 };
6542 
6543 static const struct file_operations ftrace_graph_notrace_fops = {
6544 	.open		= ftrace_graph_notrace_open,
6545 	.read		= seq_read,
6546 	.write		= ftrace_graph_write,
6547 	.llseek		= tracing_lseek,
6548 	.release	= ftrace_graph_release,
6549 };
6550 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6551 
6552 void ftrace_create_filter_files(struct ftrace_ops *ops,
6553 				struct dentry *parent)
6554 {
6555 
6556 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6557 			  ops, &ftrace_filter_fops);
6558 
6559 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6560 			  ops, &ftrace_notrace_fops);
6561 }
6562 
6563 /*
6564  * The name "destroy_filter_files" is really a misnomer. Although
6565  * in the future, it may actually delete the files, but this is
6566  * really intended to make sure the ops passed in are disabled
6567  * and that when this function returns, the caller is free to
6568  * free the ops.
6569  *
6570  * The "destroy" name is only to match the "create" name that this
6571  * should be paired with.
6572  */
6573 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6574 {
6575 	mutex_lock(&ftrace_lock);
6576 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6577 		ftrace_shutdown(ops, 0);
6578 	ops->flags |= FTRACE_OPS_FL_DELETED;
6579 	ftrace_free_filter(ops);
6580 	mutex_unlock(&ftrace_lock);
6581 }
6582 
6583 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6584 {
6585 
6586 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6587 			d_tracer, NULL, &ftrace_avail_fops);
6588 
6589 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6590 			d_tracer, NULL, &ftrace_enabled_fops);
6591 
6592 	ftrace_create_filter_files(&global_ops, d_tracer);
6593 
6594 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6595 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6596 				    NULL,
6597 				    &ftrace_graph_fops);
6598 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6599 				    NULL,
6600 				    &ftrace_graph_notrace_fops);
6601 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6602 
6603 	return 0;
6604 }
6605 
6606 static int ftrace_cmp_ips(const void *a, const void *b)
6607 {
6608 	const unsigned long *ipa = a;
6609 	const unsigned long *ipb = b;
6610 
6611 	if (*ipa > *ipb)
6612 		return 1;
6613 	if (*ipa < *ipb)
6614 		return -1;
6615 	return 0;
6616 }
6617 
6618 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6619 static void test_is_sorted(unsigned long *start, unsigned long count)
6620 {
6621 	int i;
6622 
6623 	for (i = 1; i < count; i++) {
6624 		if (WARN(start[i - 1] > start[i],
6625 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6626 			 (void *)start[i - 1], start[i - 1],
6627 			 (void *)start[i], start[i]))
6628 			break;
6629 	}
6630 	if (i == count)
6631 		pr_info("ftrace section at %px sorted properly\n", start);
6632 }
6633 #else
6634 static void test_is_sorted(unsigned long *start, unsigned long count)
6635 {
6636 }
6637 #endif
6638 
6639 static int ftrace_process_locs(struct module *mod,
6640 			       unsigned long *start,
6641 			       unsigned long *end)
6642 {
6643 	struct ftrace_page *start_pg;
6644 	struct ftrace_page *pg;
6645 	struct dyn_ftrace *rec;
6646 	unsigned long count;
6647 	unsigned long *p;
6648 	unsigned long addr;
6649 	unsigned long flags = 0; /* Shut up gcc */
6650 	int ret = -ENOMEM;
6651 
6652 	count = end - start;
6653 
6654 	if (!count)
6655 		return 0;
6656 
6657 	/*
6658 	 * Sorting mcount in vmlinux at build time depend on
6659 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6660 	 * modules can not be sorted at build time.
6661 	 */
6662 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6663 		sort(start, count, sizeof(*start),
6664 		     ftrace_cmp_ips, NULL);
6665 	} else {
6666 		test_is_sorted(start, count);
6667 	}
6668 
6669 	start_pg = ftrace_allocate_pages(count);
6670 	if (!start_pg)
6671 		return -ENOMEM;
6672 
6673 	mutex_lock(&ftrace_lock);
6674 
6675 	/*
6676 	 * Core and each module needs their own pages, as
6677 	 * modules will free them when they are removed.
6678 	 * Force a new page to be allocated for modules.
6679 	 */
6680 	if (!mod) {
6681 		WARN_ON(ftrace_pages || ftrace_pages_start);
6682 		/* First initialization */
6683 		ftrace_pages = ftrace_pages_start = start_pg;
6684 	} else {
6685 		if (!ftrace_pages)
6686 			goto out;
6687 
6688 		if (WARN_ON(ftrace_pages->next)) {
6689 			/* Hmm, we have free pages? */
6690 			while (ftrace_pages->next)
6691 				ftrace_pages = ftrace_pages->next;
6692 		}
6693 
6694 		ftrace_pages->next = start_pg;
6695 	}
6696 
6697 	p = start;
6698 	pg = start_pg;
6699 	while (p < end) {
6700 		unsigned long end_offset;
6701 		addr = ftrace_call_adjust(*p++);
6702 		/*
6703 		 * Some architecture linkers will pad between
6704 		 * the different mcount_loc sections of different
6705 		 * object files to satisfy alignments.
6706 		 * Skip any NULL pointers.
6707 		 */
6708 		if (!addr)
6709 			continue;
6710 
6711 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6712 		if (end_offset > PAGE_SIZE << pg->order) {
6713 			/* We should have allocated enough */
6714 			if (WARN_ON(!pg->next))
6715 				break;
6716 			pg = pg->next;
6717 		}
6718 
6719 		rec = &pg->records[pg->index++];
6720 		rec->ip = addr;
6721 	}
6722 
6723 	/* We should have used all pages */
6724 	WARN_ON(pg->next);
6725 
6726 	/* Assign the last page to ftrace_pages */
6727 	ftrace_pages = pg;
6728 
6729 	/*
6730 	 * We only need to disable interrupts on start up
6731 	 * because we are modifying code that an interrupt
6732 	 * may execute, and the modification is not atomic.
6733 	 * But for modules, nothing runs the code we modify
6734 	 * until we are finished with it, and there's no
6735 	 * reason to cause large interrupt latencies while we do it.
6736 	 */
6737 	if (!mod)
6738 		local_irq_save(flags);
6739 	ftrace_update_code(mod, start_pg);
6740 	if (!mod)
6741 		local_irq_restore(flags);
6742 	ret = 0;
6743  out:
6744 	mutex_unlock(&ftrace_lock);
6745 
6746 	return ret;
6747 }
6748 
6749 struct ftrace_mod_func {
6750 	struct list_head	list;
6751 	char			*name;
6752 	unsigned long		ip;
6753 	unsigned int		size;
6754 };
6755 
6756 struct ftrace_mod_map {
6757 	struct rcu_head		rcu;
6758 	struct list_head	list;
6759 	struct module		*mod;
6760 	unsigned long		start_addr;
6761 	unsigned long		end_addr;
6762 	struct list_head	funcs;
6763 	unsigned int		num_funcs;
6764 };
6765 
6766 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6767 					 unsigned long *value, char *type,
6768 					 char *name, char *module_name,
6769 					 int *exported)
6770 {
6771 	struct ftrace_ops *op;
6772 
6773 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6774 		if (!op->trampoline || symnum--)
6775 			continue;
6776 		*value = op->trampoline;
6777 		*type = 't';
6778 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6779 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6780 		*exported = 0;
6781 		return 0;
6782 	}
6783 
6784 	return -ERANGE;
6785 }
6786 
6787 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES)
6788 /*
6789  * Check if the current ops references the given ip.
6790  *
6791  * If the ops traces all functions, then it was already accounted for.
6792  * If the ops does not trace the current record function, skip it.
6793  * If the ops ignores the function via notrace filter, skip it.
6794  */
6795 static bool
6796 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
6797 {
6798 	/* If ops isn't enabled, ignore it */
6799 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
6800 		return false;
6801 
6802 	/* If ops traces all then it includes this function */
6803 	if (ops_traces_mod(ops))
6804 		return true;
6805 
6806 	/* The function must be in the filter */
6807 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
6808 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
6809 		return false;
6810 
6811 	/* If in notrace hash, we ignore it too */
6812 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
6813 		return false;
6814 
6815 	return true;
6816 }
6817 #endif
6818 
6819 #ifdef CONFIG_MODULES
6820 
6821 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6822 
6823 static LIST_HEAD(ftrace_mod_maps);
6824 
6825 static int referenced_filters(struct dyn_ftrace *rec)
6826 {
6827 	struct ftrace_ops *ops;
6828 	int cnt = 0;
6829 
6830 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6831 		if (ops_references_ip(ops, rec->ip)) {
6832 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6833 				continue;
6834 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6835 				continue;
6836 			cnt++;
6837 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6838 				rec->flags |= FTRACE_FL_REGS;
6839 			if (cnt == 1 && ops->trampoline)
6840 				rec->flags |= FTRACE_FL_TRAMP;
6841 			else
6842 				rec->flags &= ~FTRACE_FL_TRAMP;
6843 		}
6844 	}
6845 
6846 	return cnt;
6847 }
6848 
6849 static void
6850 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6851 {
6852 	struct ftrace_func_entry *entry;
6853 	struct dyn_ftrace *rec;
6854 	int i;
6855 
6856 	if (ftrace_hash_empty(hash))
6857 		return;
6858 
6859 	for (i = 0; i < pg->index; i++) {
6860 		rec = &pg->records[i];
6861 		entry = __ftrace_lookup_ip(hash, rec->ip);
6862 		/*
6863 		 * Do not allow this rec to match again.
6864 		 * Yeah, it may waste some memory, but will be removed
6865 		 * if/when the hash is modified again.
6866 		 */
6867 		if (entry)
6868 			entry->ip = 0;
6869 	}
6870 }
6871 
6872 /* Clear any records from hashes */
6873 static void clear_mod_from_hashes(struct ftrace_page *pg)
6874 {
6875 	struct trace_array *tr;
6876 
6877 	mutex_lock(&trace_types_lock);
6878 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6879 		if (!tr->ops || !tr->ops->func_hash)
6880 			continue;
6881 		mutex_lock(&tr->ops->func_hash->regex_lock);
6882 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6883 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6884 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6885 	}
6886 	mutex_unlock(&trace_types_lock);
6887 }
6888 
6889 static void ftrace_free_mod_map(struct rcu_head *rcu)
6890 {
6891 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6892 	struct ftrace_mod_func *mod_func;
6893 	struct ftrace_mod_func *n;
6894 
6895 	/* All the contents of mod_map are now not visible to readers */
6896 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6897 		kfree(mod_func->name);
6898 		list_del(&mod_func->list);
6899 		kfree(mod_func);
6900 	}
6901 
6902 	kfree(mod_map);
6903 }
6904 
6905 void ftrace_release_mod(struct module *mod)
6906 {
6907 	struct ftrace_mod_map *mod_map;
6908 	struct ftrace_mod_map *n;
6909 	struct dyn_ftrace *rec;
6910 	struct ftrace_page **last_pg;
6911 	struct ftrace_page *tmp_page = NULL;
6912 	struct ftrace_page *pg;
6913 
6914 	mutex_lock(&ftrace_lock);
6915 
6916 	if (ftrace_disabled)
6917 		goto out_unlock;
6918 
6919 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6920 		if (mod_map->mod == mod) {
6921 			list_del_rcu(&mod_map->list);
6922 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6923 			break;
6924 		}
6925 	}
6926 
6927 	/*
6928 	 * Each module has its own ftrace_pages, remove
6929 	 * them from the list.
6930 	 */
6931 	last_pg = &ftrace_pages_start;
6932 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6933 		rec = &pg->records[0];
6934 		if (within_module_core(rec->ip, mod) ||
6935 		    within_module_init(rec->ip, mod)) {
6936 			/*
6937 			 * As core pages are first, the first
6938 			 * page should never be a module page.
6939 			 */
6940 			if (WARN_ON(pg == ftrace_pages_start))
6941 				goto out_unlock;
6942 
6943 			/* Check if we are deleting the last page */
6944 			if (pg == ftrace_pages)
6945 				ftrace_pages = next_to_ftrace_page(last_pg);
6946 
6947 			ftrace_update_tot_cnt -= pg->index;
6948 			*last_pg = pg->next;
6949 
6950 			pg->next = tmp_page;
6951 			tmp_page = pg;
6952 		} else
6953 			last_pg = &pg->next;
6954 	}
6955  out_unlock:
6956 	mutex_unlock(&ftrace_lock);
6957 
6958 	for (pg = tmp_page; pg; pg = tmp_page) {
6959 
6960 		/* Needs to be called outside of ftrace_lock */
6961 		clear_mod_from_hashes(pg);
6962 
6963 		if (pg->records) {
6964 			free_pages((unsigned long)pg->records, pg->order);
6965 			ftrace_number_of_pages -= 1 << pg->order;
6966 		}
6967 		tmp_page = pg->next;
6968 		kfree(pg);
6969 		ftrace_number_of_groups--;
6970 	}
6971 }
6972 
6973 void ftrace_module_enable(struct module *mod)
6974 {
6975 	struct dyn_ftrace *rec;
6976 	struct ftrace_page *pg;
6977 
6978 	mutex_lock(&ftrace_lock);
6979 
6980 	if (ftrace_disabled)
6981 		goto out_unlock;
6982 
6983 	/*
6984 	 * If the tracing is enabled, go ahead and enable the record.
6985 	 *
6986 	 * The reason not to enable the record immediately is the
6987 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6988 	 * correct previous instructions.  Making first the NOP
6989 	 * conversion puts the module to the correct state, thus
6990 	 * passing the ftrace_make_call check.
6991 	 *
6992 	 * We also delay this to after the module code already set the
6993 	 * text to read-only, as we now need to set it back to read-write
6994 	 * so that we can modify the text.
6995 	 */
6996 	if (ftrace_start_up)
6997 		ftrace_arch_code_modify_prepare();
6998 
6999 	do_for_each_ftrace_rec(pg, rec) {
7000 		int cnt;
7001 		/*
7002 		 * do_for_each_ftrace_rec() is a double loop.
7003 		 * module text shares the pg. If a record is
7004 		 * not part of this module, then skip this pg,
7005 		 * which the "break" will do.
7006 		 */
7007 		if (!within_module_core(rec->ip, mod) &&
7008 		    !within_module_init(rec->ip, mod))
7009 			break;
7010 
7011 		/* Weak functions should still be ignored */
7012 		if (!test_for_valid_rec(rec)) {
7013 			/* Clear all other flags. Should not be enabled anyway */
7014 			rec->flags = FTRACE_FL_DISABLED;
7015 			continue;
7016 		}
7017 
7018 		cnt = 0;
7019 
7020 		/*
7021 		 * When adding a module, we need to check if tracers are
7022 		 * currently enabled and if they are, and can trace this record,
7023 		 * we need to enable the module functions as well as update the
7024 		 * reference counts for those function records.
7025 		 */
7026 		if (ftrace_start_up)
7027 			cnt += referenced_filters(rec);
7028 
7029 		rec->flags &= ~FTRACE_FL_DISABLED;
7030 		rec->flags += cnt;
7031 
7032 		if (ftrace_start_up && cnt) {
7033 			int failed = __ftrace_replace_code(rec, 1);
7034 			if (failed) {
7035 				ftrace_bug(failed, rec);
7036 				goto out_loop;
7037 			}
7038 		}
7039 
7040 	} while_for_each_ftrace_rec();
7041 
7042  out_loop:
7043 	if (ftrace_start_up)
7044 		ftrace_arch_code_modify_post_process();
7045 
7046  out_unlock:
7047 	mutex_unlock(&ftrace_lock);
7048 
7049 	process_cached_mods(mod->name);
7050 }
7051 
7052 void ftrace_module_init(struct module *mod)
7053 {
7054 	int ret;
7055 
7056 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7057 		return;
7058 
7059 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7060 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7061 	if (ret)
7062 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7063 			mod->name);
7064 }
7065 
7066 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7067 				struct dyn_ftrace *rec)
7068 {
7069 	struct ftrace_mod_func *mod_func;
7070 	unsigned long symsize;
7071 	unsigned long offset;
7072 	char str[KSYM_SYMBOL_LEN];
7073 	char *modname;
7074 	const char *ret;
7075 
7076 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7077 	if (!ret)
7078 		return;
7079 
7080 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7081 	if (!mod_func)
7082 		return;
7083 
7084 	mod_func->name = kstrdup(str, GFP_KERNEL);
7085 	if (!mod_func->name) {
7086 		kfree(mod_func);
7087 		return;
7088 	}
7089 
7090 	mod_func->ip = rec->ip - offset;
7091 	mod_func->size = symsize;
7092 
7093 	mod_map->num_funcs++;
7094 
7095 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7096 }
7097 
7098 static struct ftrace_mod_map *
7099 allocate_ftrace_mod_map(struct module *mod,
7100 			unsigned long start, unsigned long end)
7101 {
7102 	struct ftrace_mod_map *mod_map;
7103 
7104 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7105 	if (!mod_map)
7106 		return NULL;
7107 
7108 	mod_map->mod = mod;
7109 	mod_map->start_addr = start;
7110 	mod_map->end_addr = end;
7111 	mod_map->num_funcs = 0;
7112 
7113 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7114 
7115 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7116 
7117 	return mod_map;
7118 }
7119 
7120 static const char *
7121 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7122 			   unsigned long addr, unsigned long *size,
7123 			   unsigned long *off, char *sym)
7124 {
7125 	struct ftrace_mod_func *found_func =  NULL;
7126 	struct ftrace_mod_func *mod_func;
7127 
7128 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7129 		if (addr >= mod_func->ip &&
7130 		    addr < mod_func->ip + mod_func->size) {
7131 			found_func = mod_func;
7132 			break;
7133 		}
7134 	}
7135 
7136 	if (found_func) {
7137 		if (size)
7138 			*size = found_func->size;
7139 		if (off)
7140 			*off = addr - found_func->ip;
7141 		if (sym)
7142 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7143 
7144 		return found_func->name;
7145 	}
7146 
7147 	return NULL;
7148 }
7149 
7150 const char *
7151 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7152 		   unsigned long *off, char **modname, char *sym)
7153 {
7154 	struct ftrace_mod_map *mod_map;
7155 	const char *ret = NULL;
7156 
7157 	/* mod_map is freed via call_rcu() */
7158 	preempt_disable();
7159 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7160 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7161 		if (ret) {
7162 			if (modname)
7163 				*modname = mod_map->mod->name;
7164 			break;
7165 		}
7166 	}
7167 	preempt_enable();
7168 
7169 	return ret;
7170 }
7171 
7172 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7173 			   char *type, char *name,
7174 			   char *module_name, int *exported)
7175 {
7176 	struct ftrace_mod_map *mod_map;
7177 	struct ftrace_mod_func *mod_func;
7178 	int ret;
7179 
7180 	preempt_disable();
7181 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7182 
7183 		if (symnum >= mod_map->num_funcs) {
7184 			symnum -= mod_map->num_funcs;
7185 			continue;
7186 		}
7187 
7188 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7189 			if (symnum > 1) {
7190 				symnum--;
7191 				continue;
7192 			}
7193 
7194 			*value = mod_func->ip;
7195 			*type = 'T';
7196 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7197 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7198 			*exported = 1;
7199 			preempt_enable();
7200 			return 0;
7201 		}
7202 		WARN_ON(1);
7203 		break;
7204 	}
7205 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7206 					    module_name, exported);
7207 	preempt_enable();
7208 	return ret;
7209 }
7210 
7211 #else
7212 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7213 				struct dyn_ftrace *rec) { }
7214 static inline struct ftrace_mod_map *
7215 allocate_ftrace_mod_map(struct module *mod,
7216 			unsigned long start, unsigned long end)
7217 {
7218 	return NULL;
7219 }
7220 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7221 			   char *type, char *name, char *module_name,
7222 			   int *exported)
7223 {
7224 	int ret;
7225 
7226 	preempt_disable();
7227 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7228 					    module_name, exported);
7229 	preempt_enable();
7230 	return ret;
7231 }
7232 #endif /* CONFIG_MODULES */
7233 
7234 struct ftrace_init_func {
7235 	struct list_head list;
7236 	unsigned long ip;
7237 };
7238 
7239 /* Clear any init ips from hashes */
7240 static void
7241 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7242 {
7243 	struct ftrace_func_entry *entry;
7244 
7245 	entry = ftrace_lookup_ip(hash, func->ip);
7246 	/*
7247 	 * Do not allow this rec to match again.
7248 	 * Yeah, it may waste some memory, but will be removed
7249 	 * if/when the hash is modified again.
7250 	 */
7251 	if (entry)
7252 		entry->ip = 0;
7253 }
7254 
7255 static void
7256 clear_func_from_hashes(struct ftrace_init_func *func)
7257 {
7258 	struct trace_array *tr;
7259 
7260 	mutex_lock(&trace_types_lock);
7261 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7262 		if (!tr->ops || !tr->ops->func_hash)
7263 			continue;
7264 		mutex_lock(&tr->ops->func_hash->regex_lock);
7265 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7266 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7267 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7268 	}
7269 	mutex_unlock(&trace_types_lock);
7270 }
7271 
7272 static void add_to_clear_hash_list(struct list_head *clear_list,
7273 				   struct dyn_ftrace *rec)
7274 {
7275 	struct ftrace_init_func *func;
7276 
7277 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7278 	if (!func) {
7279 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7280 		return;
7281 	}
7282 
7283 	func->ip = rec->ip;
7284 	list_add(&func->list, clear_list);
7285 }
7286 
7287 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7288 {
7289 	unsigned long start = (unsigned long)(start_ptr);
7290 	unsigned long end = (unsigned long)(end_ptr);
7291 	struct ftrace_page **last_pg = &ftrace_pages_start;
7292 	struct ftrace_page *pg;
7293 	struct dyn_ftrace *rec;
7294 	struct dyn_ftrace key;
7295 	struct ftrace_mod_map *mod_map = NULL;
7296 	struct ftrace_init_func *func, *func_next;
7297 	struct list_head clear_hash;
7298 
7299 	INIT_LIST_HEAD(&clear_hash);
7300 
7301 	key.ip = start;
7302 	key.flags = end;	/* overload flags, as it is unsigned long */
7303 
7304 	mutex_lock(&ftrace_lock);
7305 
7306 	/*
7307 	 * If we are freeing module init memory, then check if
7308 	 * any tracer is active. If so, we need to save a mapping of
7309 	 * the module functions being freed with the address.
7310 	 */
7311 	if (mod && ftrace_ops_list != &ftrace_list_end)
7312 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7313 
7314 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7315 		if (end < pg->records[0].ip ||
7316 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7317 			continue;
7318  again:
7319 		rec = bsearch(&key, pg->records, pg->index,
7320 			      sizeof(struct dyn_ftrace),
7321 			      ftrace_cmp_recs);
7322 		if (!rec)
7323 			continue;
7324 
7325 		/* rec will be cleared from hashes after ftrace_lock unlock */
7326 		add_to_clear_hash_list(&clear_hash, rec);
7327 
7328 		if (mod_map)
7329 			save_ftrace_mod_rec(mod_map, rec);
7330 
7331 		pg->index--;
7332 		ftrace_update_tot_cnt--;
7333 		if (!pg->index) {
7334 			*last_pg = pg->next;
7335 			if (pg->records) {
7336 				free_pages((unsigned long)pg->records, pg->order);
7337 				ftrace_number_of_pages -= 1 << pg->order;
7338 			}
7339 			ftrace_number_of_groups--;
7340 			kfree(pg);
7341 			pg = container_of(last_pg, struct ftrace_page, next);
7342 			if (!(*last_pg))
7343 				ftrace_pages = pg;
7344 			continue;
7345 		}
7346 		memmove(rec, rec + 1,
7347 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7348 		/* More than one function may be in this block */
7349 		goto again;
7350 	}
7351 	mutex_unlock(&ftrace_lock);
7352 
7353 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7354 		clear_func_from_hashes(func);
7355 		kfree(func);
7356 	}
7357 }
7358 
7359 void __init ftrace_free_init_mem(void)
7360 {
7361 	void *start = (void *)(&__init_begin);
7362 	void *end = (void *)(&__init_end);
7363 
7364 	ftrace_boot_snapshot();
7365 
7366 	ftrace_free_mem(NULL, start, end);
7367 }
7368 
7369 int __init __weak ftrace_dyn_arch_init(void)
7370 {
7371 	return 0;
7372 }
7373 
7374 void __init ftrace_init(void)
7375 {
7376 	extern unsigned long __start_mcount_loc[];
7377 	extern unsigned long __stop_mcount_loc[];
7378 	unsigned long count, flags;
7379 	int ret;
7380 
7381 	local_irq_save(flags);
7382 	ret = ftrace_dyn_arch_init();
7383 	local_irq_restore(flags);
7384 	if (ret)
7385 		goto failed;
7386 
7387 	count = __stop_mcount_loc - __start_mcount_loc;
7388 	if (!count) {
7389 		pr_info("ftrace: No functions to be traced?\n");
7390 		goto failed;
7391 	}
7392 
7393 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7394 		count, count / ENTRIES_PER_PAGE + 1);
7395 
7396 	ret = ftrace_process_locs(NULL,
7397 				  __start_mcount_loc,
7398 				  __stop_mcount_loc);
7399 	if (ret) {
7400 		pr_warn("ftrace: failed to allocate entries for functions\n");
7401 		goto failed;
7402 	}
7403 
7404 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7405 		ftrace_number_of_pages, ftrace_number_of_groups);
7406 
7407 	last_ftrace_enabled = ftrace_enabled = 1;
7408 
7409 	set_ftrace_early_filters();
7410 
7411 	return;
7412  failed:
7413 	ftrace_disabled = 1;
7414 }
7415 
7416 /* Do nothing if arch does not support this */
7417 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7418 {
7419 }
7420 
7421 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7422 {
7423 	unsigned long trampoline = ops->trampoline;
7424 
7425 	arch_ftrace_update_trampoline(ops);
7426 	if (ops->trampoline && ops->trampoline != trampoline &&
7427 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7428 		/* Add to kallsyms before the perf events */
7429 		ftrace_add_trampoline_to_kallsyms(ops);
7430 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7431 				   ops->trampoline, ops->trampoline_size, false,
7432 				   FTRACE_TRAMPOLINE_SYM);
7433 		/*
7434 		 * Record the perf text poke event after the ksymbol register
7435 		 * event.
7436 		 */
7437 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7438 				     (void *)ops->trampoline,
7439 				     ops->trampoline_size);
7440 	}
7441 }
7442 
7443 void ftrace_init_trace_array(struct trace_array *tr)
7444 {
7445 	INIT_LIST_HEAD(&tr->func_probes);
7446 	INIT_LIST_HEAD(&tr->mod_trace);
7447 	INIT_LIST_HEAD(&tr->mod_notrace);
7448 }
7449 #else
7450 
7451 struct ftrace_ops global_ops = {
7452 	.func			= ftrace_stub,
7453 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7454 				  FTRACE_OPS_FL_PID,
7455 };
7456 
7457 static int __init ftrace_nodyn_init(void)
7458 {
7459 	ftrace_enabled = 1;
7460 	return 0;
7461 }
7462 core_initcall(ftrace_nodyn_init);
7463 
7464 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7465 static inline void ftrace_startup_all(int command) { }
7466 
7467 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7468 {
7469 }
7470 
7471 #endif /* CONFIG_DYNAMIC_FTRACE */
7472 
7473 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7474 {
7475 	tr->ops = &global_ops;
7476 	tr->ops->private = tr;
7477 	ftrace_init_trace_array(tr);
7478 }
7479 
7480 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7481 {
7482 	/* If we filter on pids, update to use the pid function */
7483 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7484 		if (WARN_ON(tr->ops->func != ftrace_stub))
7485 			printk("ftrace ops had %pS for function\n",
7486 			       tr->ops->func);
7487 	}
7488 	tr->ops->func = func;
7489 	tr->ops->private = tr;
7490 }
7491 
7492 void ftrace_reset_array_ops(struct trace_array *tr)
7493 {
7494 	tr->ops->func = ftrace_stub;
7495 }
7496 
7497 static nokprobe_inline void
7498 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7499 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7500 {
7501 	struct pt_regs *regs = ftrace_get_regs(fregs);
7502 	struct ftrace_ops *op;
7503 	int bit;
7504 
7505 	/*
7506 	 * The ftrace_test_and_set_recursion() will disable preemption,
7507 	 * which is required since some of the ops may be dynamically
7508 	 * allocated, they must be freed after a synchronize_rcu().
7509 	 */
7510 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7511 	if (bit < 0)
7512 		return;
7513 
7514 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7515 		/* Stub functions don't need to be called nor tested */
7516 		if (op->flags & FTRACE_OPS_FL_STUB)
7517 			continue;
7518 		/*
7519 		 * Check the following for each ops before calling their func:
7520 		 *  if RCU flag is set, then rcu_is_watching() must be true
7521 		 *  if PER_CPU is set, then ftrace_function_local_disable()
7522 		 *                          must be false
7523 		 *  Otherwise test if the ip matches the ops filter
7524 		 *
7525 		 * If any of the above fails then the op->func() is not executed.
7526 		 */
7527 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7528 		    ftrace_ops_test(op, ip, regs)) {
7529 			if (FTRACE_WARN_ON(!op->func)) {
7530 				pr_warn("op=%p %pS\n", op, op);
7531 				goto out;
7532 			}
7533 			op->func(ip, parent_ip, op, fregs);
7534 		}
7535 	} while_for_each_ftrace_op(op);
7536 out:
7537 	trace_clear_recursion(bit);
7538 }
7539 
7540 /*
7541  * Some archs only support passing ip and parent_ip. Even though
7542  * the list function ignores the op parameter, we do not want any
7543  * C side effects, where a function is called without the caller
7544  * sending a third parameter.
7545  * Archs are to support both the regs and ftrace_ops at the same time.
7546  * If they support ftrace_ops, it is assumed they support regs.
7547  * If call backs want to use regs, they must either check for regs
7548  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7549  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7550  * An architecture can pass partial regs with ftrace_ops and still
7551  * set the ARCH_SUPPORTS_FTRACE_OPS.
7552  *
7553  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7554  * arch_ftrace_ops_list_func.
7555  */
7556 #if ARCH_SUPPORTS_FTRACE_OPS
7557 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7558 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7559 {
7560 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7561 }
7562 #else
7563 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7564 {
7565 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7566 }
7567 #endif
7568 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7569 
7570 /*
7571  * If there's only one function registered but it does not support
7572  * recursion, needs RCU protection and/or requires per cpu handling, then
7573  * this function will be called by the mcount trampoline.
7574  */
7575 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7576 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7577 {
7578 	int bit;
7579 
7580 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7581 	if (bit < 0)
7582 		return;
7583 
7584 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7585 		op->func(ip, parent_ip, op, fregs);
7586 
7587 	trace_clear_recursion(bit);
7588 }
7589 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7590 
7591 /**
7592  * ftrace_ops_get_func - get the function a trampoline should call
7593  * @ops: the ops to get the function for
7594  *
7595  * Normally the mcount trampoline will call the ops->func, but there
7596  * are times that it should not. For example, if the ops does not
7597  * have its own recursion protection, then it should call the
7598  * ftrace_ops_assist_func() instead.
7599  *
7600  * Returns the function that the trampoline should call for @ops.
7601  */
7602 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7603 {
7604 	/*
7605 	 * If the function does not handle recursion or needs to be RCU safe,
7606 	 * then we need to call the assist handler.
7607 	 */
7608 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7609 			  FTRACE_OPS_FL_RCU))
7610 		return ftrace_ops_assist_func;
7611 
7612 	return ops->func;
7613 }
7614 
7615 static void
7616 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7617 				     struct task_struct *prev,
7618 				     struct task_struct *next,
7619 				     unsigned int prev_state)
7620 {
7621 	struct trace_array *tr = data;
7622 	struct trace_pid_list *pid_list;
7623 	struct trace_pid_list *no_pid_list;
7624 
7625 	pid_list = rcu_dereference_sched(tr->function_pids);
7626 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7627 
7628 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7629 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7630 			       FTRACE_PID_IGNORE);
7631 	else
7632 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7633 			       next->pid);
7634 }
7635 
7636 static void
7637 ftrace_pid_follow_sched_process_fork(void *data,
7638 				     struct task_struct *self,
7639 				     struct task_struct *task)
7640 {
7641 	struct trace_pid_list *pid_list;
7642 	struct trace_array *tr = data;
7643 
7644 	pid_list = rcu_dereference_sched(tr->function_pids);
7645 	trace_filter_add_remove_task(pid_list, self, task);
7646 
7647 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7648 	trace_filter_add_remove_task(pid_list, self, task);
7649 }
7650 
7651 static void
7652 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7653 {
7654 	struct trace_pid_list *pid_list;
7655 	struct trace_array *tr = data;
7656 
7657 	pid_list = rcu_dereference_sched(tr->function_pids);
7658 	trace_filter_add_remove_task(pid_list, NULL, task);
7659 
7660 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7661 	trace_filter_add_remove_task(pid_list, NULL, task);
7662 }
7663 
7664 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7665 {
7666 	if (enable) {
7667 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7668 						  tr);
7669 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7670 						  tr);
7671 	} else {
7672 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7673 						    tr);
7674 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7675 						    tr);
7676 	}
7677 }
7678 
7679 static void clear_ftrace_pids(struct trace_array *tr, int type)
7680 {
7681 	struct trace_pid_list *pid_list;
7682 	struct trace_pid_list *no_pid_list;
7683 	int cpu;
7684 
7685 	pid_list = rcu_dereference_protected(tr->function_pids,
7686 					     lockdep_is_held(&ftrace_lock));
7687 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7688 						lockdep_is_held(&ftrace_lock));
7689 
7690 	/* Make sure there's something to do */
7691 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7692 		return;
7693 
7694 	/* See if the pids still need to be checked after this */
7695 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7696 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7697 		for_each_possible_cpu(cpu)
7698 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7699 	}
7700 
7701 	if (type & TRACE_PIDS)
7702 		rcu_assign_pointer(tr->function_pids, NULL);
7703 
7704 	if (type & TRACE_NO_PIDS)
7705 		rcu_assign_pointer(tr->function_no_pids, NULL);
7706 
7707 	/* Wait till all users are no longer using pid filtering */
7708 	synchronize_rcu();
7709 
7710 	if ((type & TRACE_PIDS) && pid_list)
7711 		trace_pid_list_free(pid_list);
7712 
7713 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7714 		trace_pid_list_free(no_pid_list);
7715 }
7716 
7717 void ftrace_clear_pids(struct trace_array *tr)
7718 {
7719 	mutex_lock(&ftrace_lock);
7720 
7721 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7722 
7723 	mutex_unlock(&ftrace_lock);
7724 }
7725 
7726 static void ftrace_pid_reset(struct trace_array *tr, int type)
7727 {
7728 	mutex_lock(&ftrace_lock);
7729 	clear_ftrace_pids(tr, type);
7730 
7731 	ftrace_update_pid_func();
7732 	ftrace_startup_all(0);
7733 
7734 	mutex_unlock(&ftrace_lock);
7735 }
7736 
7737 /* Greater than any max PID */
7738 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7739 
7740 static void *fpid_start(struct seq_file *m, loff_t *pos)
7741 	__acquires(RCU)
7742 {
7743 	struct trace_pid_list *pid_list;
7744 	struct trace_array *tr = m->private;
7745 
7746 	mutex_lock(&ftrace_lock);
7747 	rcu_read_lock_sched();
7748 
7749 	pid_list = rcu_dereference_sched(tr->function_pids);
7750 
7751 	if (!pid_list)
7752 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7753 
7754 	return trace_pid_start(pid_list, pos);
7755 }
7756 
7757 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7758 {
7759 	struct trace_array *tr = m->private;
7760 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7761 
7762 	if (v == FTRACE_NO_PIDS) {
7763 		(*pos)++;
7764 		return NULL;
7765 	}
7766 	return trace_pid_next(pid_list, v, pos);
7767 }
7768 
7769 static void fpid_stop(struct seq_file *m, void *p)
7770 	__releases(RCU)
7771 {
7772 	rcu_read_unlock_sched();
7773 	mutex_unlock(&ftrace_lock);
7774 }
7775 
7776 static int fpid_show(struct seq_file *m, void *v)
7777 {
7778 	if (v == FTRACE_NO_PIDS) {
7779 		seq_puts(m, "no pid\n");
7780 		return 0;
7781 	}
7782 
7783 	return trace_pid_show(m, v);
7784 }
7785 
7786 static const struct seq_operations ftrace_pid_sops = {
7787 	.start = fpid_start,
7788 	.next = fpid_next,
7789 	.stop = fpid_stop,
7790 	.show = fpid_show,
7791 };
7792 
7793 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7794 	__acquires(RCU)
7795 {
7796 	struct trace_pid_list *pid_list;
7797 	struct trace_array *tr = m->private;
7798 
7799 	mutex_lock(&ftrace_lock);
7800 	rcu_read_lock_sched();
7801 
7802 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7803 
7804 	if (!pid_list)
7805 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7806 
7807 	return trace_pid_start(pid_list, pos);
7808 }
7809 
7810 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7811 {
7812 	struct trace_array *tr = m->private;
7813 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7814 
7815 	if (v == FTRACE_NO_PIDS) {
7816 		(*pos)++;
7817 		return NULL;
7818 	}
7819 	return trace_pid_next(pid_list, v, pos);
7820 }
7821 
7822 static const struct seq_operations ftrace_no_pid_sops = {
7823 	.start = fnpid_start,
7824 	.next = fnpid_next,
7825 	.stop = fpid_stop,
7826 	.show = fpid_show,
7827 };
7828 
7829 static int pid_open(struct inode *inode, struct file *file, int type)
7830 {
7831 	const struct seq_operations *seq_ops;
7832 	struct trace_array *tr = inode->i_private;
7833 	struct seq_file *m;
7834 	int ret = 0;
7835 
7836 	ret = tracing_check_open_get_tr(tr);
7837 	if (ret)
7838 		return ret;
7839 
7840 	if ((file->f_mode & FMODE_WRITE) &&
7841 	    (file->f_flags & O_TRUNC))
7842 		ftrace_pid_reset(tr, type);
7843 
7844 	switch (type) {
7845 	case TRACE_PIDS:
7846 		seq_ops = &ftrace_pid_sops;
7847 		break;
7848 	case TRACE_NO_PIDS:
7849 		seq_ops = &ftrace_no_pid_sops;
7850 		break;
7851 	default:
7852 		trace_array_put(tr);
7853 		WARN_ON_ONCE(1);
7854 		return -EINVAL;
7855 	}
7856 
7857 	ret = seq_open(file, seq_ops);
7858 	if (ret < 0) {
7859 		trace_array_put(tr);
7860 	} else {
7861 		m = file->private_data;
7862 		/* copy tr over to seq ops */
7863 		m->private = tr;
7864 	}
7865 
7866 	return ret;
7867 }
7868 
7869 static int
7870 ftrace_pid_open(struct inode *inode, struct file *file)
7871 {
7872 	return pid_open(inode, file, TRACE_PIDS);
7873 }
7874 
7875 static int
7876 ftrace_no_pid_open(struct inode *inode, struct file *file)
7877 {
7878 	return pid_open(inode, file, TRACE_NO_PIDS);
7879 }
7880 
7881 static void ignore_task_cpu(void *data)
7882 {
7883 	struct trace_array *tr = data;
7884 	struct trace_pid_list *pid_list;
7885 	struct trace_pid_list *no_pid_list;
7886 
7887 	/*
7888 	 * This function is called by on_each_cpu() while the
7889 	 * event_mutex is held.
7890 	 */
7891 	pid_list = rcu_dereference_protected(tr->function_pids,
7892 					     mutex_is_locked(&ftrace_lock));
7893 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7894 						mutex_is_locked(&ftrace_lock));
7895 
7896 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7897 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7898 			       FTRACE_PID_IGNORE);
7899 	else
7900 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7901 			       current->pid);
7902 }
7903 
7904 static ssize_t
7905 pid_write(struct file *filp, const char __user *ubuf,
7906 	  size_t cnt, loff_t *ppos, int type)
7907 {
7908 	struct seq_file *m = filp->private_data;
7909 	struct trace_array *tr = m->private;
7910 	struct trace_pid_list *filtered_pids;
7911 	struct trace_pid_list *other_pids;
7912 	struct trace_pid_list *pid_list;
7913 	ssize_t ret;
7914 
7915 	if (!cnt)
7916 		return 0;
7917 
7918 	mutex_lock(&ftrace_lock);
7919 
7920 	switch (type) {
7921 	case TRACE_PIDS:
7922 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7923 					     lockdep_is_held(&ftrace_lock));
7924 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7925 					     lockdep_is_held(&ftrace_lock));
7926 		break;
7927 	case TRACE_NO_PIDS:
7928 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7929 					     lockdep_is_held(&ftrace_lock));
7930 		other_pids = rcu_dereference_protected(tr->function_pids,
7931 					     lockdep_is_held(&ftrace_lock));
7932 		break;
7933 	default:
7934 		ret = -EINVAL;
7935 		WARN_ON_ONCE(1);
7936 		goto out;
7937 	}
7938 
7939 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7940 	if (ret < 0)
7941 		goto out;
7942 
7943 	switch (type) {
7944 	case TRACE_PIDS:
7945 		rcu_assign_pointer(tr->function_pids, pid_list);
7946 		break;
7947 	case TRACE_NO_PIDS:
7948 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7949 		break;
7950 	}
7951 
7952 
7953 	if (filtered_pids) {
7954 		synchronize_rcu();
7955 		trace_pid_list_free(filtered_pids);
7956 	} else if (pid_list && !other_pids) {
7957 		/* Register a probe to set whether to ignore the tracing of a task */
7958 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7959 	}
7960 
7961 	/*
7962 	 * Ignoring of pids is done at task switch. But we have to
7963 	 * check for those tasks that are currently running.
7964 	 * Always do this in case a pid was appended or removed.
7965 	 */
7966 	on_each_cpu(ignore_task_cpu, tr, 1);
7967 
7968 	ftrace_update_pid_func();
7969 	ftrace_startup_all(0);
7970  out:
7971 	mutex_unlock(&ftrace_lock);
7972 
7973 	if (ret > 0)
7974 		*ppos += ret;
7975 
7976 	return ret;
7977 }
7978 
7979 static ssize_t
7980 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7981 		 size_t cnt, loff_t *ppos)
7982 {
7983 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7984 }
7985 
7986 static ssize_t
7987 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7988 		    size_t cnt, loff_t *ppos)
7989 {
7990 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7991 }
7992 
7993 static int
7994 ftrace_pid_release(struct inode *inode, struct file *file)
7995 {
7996 	struct trace_array *tr = inode->i_private;
7997 
7998 	trace_array_put(tr);
7999 
8000 	return seq_release(inode, file);
8001 }
8002 
8003 static const struct file_operations ftrace_pid_fops = {
8004 	.open		= ftrace_pid_open,
8005 	.write		= ftrace_pid_write,
8006 	.read		= seq_read,
8007 	.llseek		= tracing_lseek,
8008 	.release	= ftrace_pid_release,
8009 };
8010 
8011 static const struct file_operations ftrace_no_pid_fops = {
8012 	.open		= ftrace_no_pid_open,
8013 	.write		= ftrace_no_pid_write,
8014 	.read		= seq_read,
8015 	.llseek		= tracing_lseek,
8016 	.release	= ftrace_pid_release,
8017 };
8018 
8019 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8020 {
8021 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8022 			    tr, &ftrace_pid_fops);
8023 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8024 			  d_tracer, tr, &ftrace_no_pid_fops);
8025 }
8026 
8027 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8028 					 struct dentry *d_tracer)
8029 {
8030 	/* Only the top level directory has the dyn_tracefs and profile */
8031 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8032 
8033 	ftrace_init_dyn_tracefs(d_tracer);
8034 	ftrace_profile_tracefs(d_tracer);
8035 }
8036 
8037 /**
8038  * ftrace_kill - kill ftrace
8039  *
8040  * This function should be used by panic code. It stops ftrace
8041  * but in a not so nice way. If you need to simply kill ftrace
8042  * from a non-atomic section, use ftrace_kill.
8043  */
8044 void ftrace_kill(void)
8045 {
8046 	ftrace_disabled = 1;
8047 	ftrace_enabled = 0;
8048 	ftrace_trace_function = ftrace_stub;
8049 }
8050 
8051 /**
8052  * ftrace_is_dead - Test if ftrace is dead or not.
8053  *
8054  * Returns 1 if ftrace is "dead", zero otherwise.
8055  */
8056 int ftrace_is_dead(void)
8057 {
8058 	return ftrace_disabled;
8059 }
8060 
8061 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8062 /*
8063  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8064  * it doesn't conflict with any direct ftrace_ops. If there is existing
8065  * direct ftrace_ops on a kernel function being patched, call
8066  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8067  *
8068  * @ops:     ftrace_ops being registered.
8069  *
8070  * Returns:
8071  *         0 on success;
8072  *         Negative on failure.
8073  */
8074 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8075 {
8076 	struct ftrace_func_entry *entry;
8077 	struct ftrace_hash *hash;
8078 	struct ftrace_ops *op;
8079 	int size, i, ret;
8080 
8081 	lockdep_assert_held_once(&direct_mutex);
8082 
8083 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8084 		return 0;
8085 
8086 	hash = ops->func_hash->filter_hash;
8087 	size = 1 << hash->size_bits;
8088 	for (i = 0; i < size; i++) {
8089 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8090 			unsigned long ip = entry->ip;
8091 			bool found_op = false;
8092 
8093 			mutex_lock(&ftrace_lock);
8094 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8095 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8096 					continue;
8097 				if (ops_references_ip(op, ip)) {
8098 					found_op = true;
8099 					break;
8100 				}
8101 			} while_for_each_ftrace_op(op);
8102 			mutex_unlock(&ftrace_lock);
8103 
8104 			if (found_op) {
8105 				if (!op->ops_func)
8106 					return -EBUSY;
8107 
8108 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8109 				if (ret)
8110 					return ret;
8111 			}
8112 		}
8113 	}
8114 
8115 	return 0;
8116 }
8117 
8118 /*
8119  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8120  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8121  * ops.
8122  */
8123 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8124 {
8125 	struct ftrace_func_entry *entry;
8126 	struct ftrace_hash *hash;
8127 	struct ftrace_ops *op;
8128 	int size, i;
8129 
8130 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8131 		return;
8132 
8133 	mutex_lock(&direct_mutex);
8134 
8135 	hash = ops->func_hash->filter_hash;
8136 	size = 1 << hash->size_bits;
8137 	for (i = 0; i < size; i++) {
8138 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8139 			unsigned long ip = entry->ip;
8140 			bool found_op = false;
8141 
8142 			mutex_lock(&ftrace_lock);
8143 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8144 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8145 					continue;
8146 				if (ops_references_ip(op, ip)) {
8147 					found_op = true;
8148 					break;
8149 				}
8150 			} while_for_each_ftrace_op(op);
8151 			mutex_unlock(&ftrace_lock);
8152 
8153 			/* The cleanup is optional, ignore any errors */
8154 			if (found_op && op->ops_func)
8155 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8156 		}
8157 	}
8158 	mutex_unlock(&direct_mutex);
8159 }
8160 
8161 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8162 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8163 
8164 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8165 
8166 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8167 {
8168 	return 0;
8169 }
8170 
8171 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8172 {
8173 }
8174 
8175 #define lock_direct_mutex()	do { } while (0)
8176 #define unlock_direct_mutex()	do { } while (0)
8177 
8178 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8179 
8180 /*
8181  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8182  */
8183 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8184 {
8185 	int ret;
8186 
8187 	ftrace_ops_init(ops);
8188 
8189 	mutex_lock(&ftrace_lock);
8190 
8191 	ret = ftrace_startup(ops, 0);
8192 
8193 	mutex_unlock(&ftrace_lock);
8194 
8195 	return ret;
8196 }
8197 
8198 /**
8199  * register_ftrace_function - register a function for profiling
8200  * @ops:	ops structure that holds the function for profiling.
8201  *
8202  * Register a function to be called by all functions in the
8203  * kernel.
8204  *
8205  * Note: @ops->func and all the functions it calls must be labeled
8206  *       with "notrace", otherwise it will go into a
8207  *       recursive loop.
8208  */
8209 int register_ftrace_function(struct ftrace_ops *ops)
8210 {
8211 	int ret;
8212 
8213 	lock_direct_mutex();
8214 	ret = prepare_direct_functions_for_ipmodify(ops);
8215 	if (ret < 0)
8216 		goto out_unlock;
8217 
8218 	ret = register_ftrace_function_nolock(ops);
8219 
8220 out_unlock:
8221 	unlock_direct_mutex();
8222 	return ret;
8223 }
8224 EXPORT_SYMBOL_GPL(register_ftrace_function);
8225 
8226 /**
8227  * unregister_ftrace_function - unregister a function for profiling.
8228  * @ops:	ops structure that holds the function to unregister
8229  *
8230  * Unregister a function that was added to be called by ftrace profiling.
8231  */
8232 int unregister_ftrace_function(struct ftrace_ops *ops)
8233 {
8234 	int ret;
8235 
8236 	mutex_lock(&ftrace_lock);
8237 	ret = ftrace_shutdown(ops, 0);
8238 	mutex_unlock(&ftrace_lock);
8239 
8240 	cleanup_direct_functions_after_ipmodify(ops);
8241 	return ret;
8242 }
8243 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8244 
8245 static int symbols_cmp(const void *a, const void *b)
8246 {
8247 	const char **str_a = (const char **) a;
8248 	const char **str_b = (const char **) b;
8249 
8250 	return strcmp(*str_a, *str_b);
8251 }
8252 
8253 struct kallsyms_data {
8254 	unsigned long *addrs;
8255 	const char **syms;
8256 	size_t cnt;
8257 	size_t found;
8258 };
8259 
8260 static int kallsyms_callback(void *data, const char *name,
8261 			     struct module *mod, unsigned long addr)
8262 {
8263 	struct kallsyms_data *args = data;
8264 	const char **sym;
8265 	int idx;
8266 
8267 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8268 	if (!sym)
8269 		return 0;
8270 
8271 	idx = sym - args->syms;
8272 	if (args->addrs[idx])
8273 		return 0;
8274 
8275 	if (!ftrace_location(addr))
8276 		return 0;
8277 
8278 	args->addrs[idx] = addr;
8279 	args->found++;
8280 	return args->found == args->cnt ? 1 : 0;
8281 }
8282 
8283 /**
8284  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8285  *
8286  * @sorted_syms: array of symbols pointers symbols to resolve,
8287  * must be alphabetically sorted
8288  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8289  * @addrs: array for storing resulting addresses
8290  *
8291  * This function looks up addresses for array of symbols provided in
8292  * @syms array (must be alphabetically sorted) and stores them in
8293  * @addrs array, which needs to be big enough to store at least @cnt
8294  * addresses.
8295  *
8296  * This function returns 0 if all provided symbols are found,
8297  * -ESRCH otherwise.
8298  */
8299 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8300 {
8301 	struct kallsyms_data args;
8302 	int err;
8303 
8304 	memset(addrs, 0, sizeof(*addrs) * cnt);
8305 	args.addrs = addrs;
8306 	args.syms = sorted_syms;
8307 	args.cnt = cnt;
8308 	args.found = 0;
8309 	err = kallsyms_on_each_symbol(kallsyms_callback, &args);
8310 	if (err < 0)
8311 		return err;
8312 	return args.found == args.cnt ? 0 : -ESRCH;
8313 }
8314 
8315 #ifdef CONFIG_SYSCTL
8316 
8317 #ifdef CONFIG_DYNAMIC_FTRACE
8318 static void ftrace_startup_sysctl(void)
8319 {
8320 	int command;
8321 
8322 	if (unlikely(ftrace_disabled))
8323 		return;
8324 
8325 	/* Force update next time */
8326 	saved_ftrace_func = NULL;
8327 	/* ftrace_start_up is true if we want ftrace running */
8328 	if (ftrace_start_up) {
8329 		command = FTRACE_UPDATE_CALLS;
8330 		if (ftrace_graph_active)
8331 			command |= FTRACE_START_FUNC_RET;
8332 		ftrace_startup_enable(command);
8333 	}
8334 }
8335 
8336 static void ftrace_shutdown_sysctl(void)
8337 {
8338 	int command;
8339 
8340 	if (unlikely(ftrace_disabled))
8341 		return;
8342 
8343 	/* ftrace_start_up is true if ftrace is running */
8344 	if (ftrace_start_up) {
8345 		command = FTRACE_DISABLE_CALLS;
8346 		if (ftrace_graph_active)
8347 			command |= FTRACE_STOP_FUNC_RET;
8348 		ftrace_run_update_code(command);
8349 	}
8350 }
8351 #else
8352 # define ftrace_startup_sysctl()       do { } while (0)
8353 # define ftrace_shutdown_sysctl()      do { } while (0)
8354 #endif /* CONFIG_DYNAMIC_FTRACE */
8355 
8356 static bool is_permanent_ops_registered(void)
8357 {
8358 	struct ftrace_ops *op;
8359 
8360 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8361 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8362 			return true;
8363 	} while_for_each_ftrace_op(op);
8364 
8365 	return false;
8366 }
8367 
8368 static int
8369 ftrace_enable_sysctl(struct ctl_table *table, int write,
8370 		     void *buffer, size_t *lenp, loff_t *ppos)
8371 {
8372 	int ret = -ENODEV;
8373 
8374 	mutex_lock(&ftrace_lock);
8375 
8376 	if (unlikely(ftrace_disabled))
8377 		goto out;
8378 
8379 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8380 
8381 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8382 		goto out;
8383 
8384 	if (ftrace_enabled) {
8385 
8386 		/* we are starting ftrace again */
8387 		if (rcu_dereference_protected(ftrace_ops_list,
8388 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8389 			update_ftrace_function();
8390 
8391 		ftrace_startup_sysctl();
8392 
8393 	} else {
8394 		if (is_permanent_ops_registered()) {
8395 			ftrace_enabled = true;
8396 			ret = -EBUSY;
8397 			goto out;
8398 		}
8399 
8400 		/* stopping ftrace calls (just send to ftrace_stub) */
8401 		ftrace_trace_function = ftrace_stub;
8402 
8403 		ftrace_shutdown_sysctl();
8404 	}
8405 
8406 	last_ftrace_enabled = !!ftrace_enabled;
8407  out:
8408 	mutex_unlock(&ftrace_lock);
8409 	return ret;
8410 }
8411 
8412 static struct ctl_table ftrace_sysctls[] = {
8413 	{
8414 		.procname       = "ftrace_enabled",
8415 		.data           = &ftrace_enabled,
8416 		.maxlen         = sizeof(int),
8417 		.mode           = 0644,
8418 		.proc_handler   = ftrace_enable_sysctl,
8419 	},
8420 	{}
8421 };
8422 
8423 static int __init ftrace_sysctl_init(void)
8424 {
8425 	register_sysctl_init("kernel", ftrace_sysctls);
8426 	return 0;
8427 }
8428 late_initcall(ftrace_sysctl_init);
8429 #endif
8430