1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 49 50 #define FTRACE_WARN_ON(cond) \ 51 ({ \ 52 int ___r = cond; \ 53 if (WARN_ON(___r)) \ 54 ftrace_kill(); \ 55 ___r; \ 56 }) 57 58 #define FTRACE_WARN_ON_ONCE(cond) \ 59 ({ \ 60 int ___r = cond; \ 61 if (WARN_ON_ONCE(___r)) \ 62 ftrace_kill(); \ 63 ___r; \ 64 }) 65 66 /* hash bits for specific function selection */ 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int __maybe_unused last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL || tr->function_no_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct ftrace_regs *fregs); 127 128 static inline void ftrace_ops_init(struct ftrace_ops *ops) 129 { 130 #ifdef CONFIG_DYNAMIC_FTRACE 131 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 132 mutex_init(&ops->local_hash.regex_lock); 133 ops->func_hash = &ops->local_hash; 134 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 135 } 136 #endif 137 } 138 139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 140 struct ftrace_ops *op, struct ftrace_regs *fregs) 141 { 142 struct trace_array *tr = op->private; 143 int pid; 144 145 if (tr) { 146 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 147 if (pid == FTRACE_PID_IGNORE) 148 return; 149 if (pid != FTRACE_PID_TRACE && 150 pid != current->pid) 151 return; 152 } 153 154 op->saved_func(ip, parent_ip, op, fregs); 155 } 156 157 static void ftrace_sync_ipi(void *data) 158 { 159 /* Probably not needed, but do it anyway */ 160 smp_rmb(); 161 } 162 163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 164 { 165 /* 166 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 167 * then it needs to call the list anyway. 168 */ 169 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 170 FTRACE_FORCE_LIST_FUNC) 171 return ftrace_ops_list_func; 172 173 return ftrace_ops_get_func(ops); 174 } 175 176 static void update_ftrace_function(void) 177 { 178 ftrace_func_t func; 179 180 /* 181 * Prepare the ftrace_ops that the arch callback will use. 182 * If there's only one ftrace_ops registered, the ftrace_ops_list 183 * will point to the ops we want. 184 */ 185 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 186 lockdep_is_held(&ftrace_lock)); 187 188 /* If there's no ftrace_ops registered, just call the stub function */ 189 if (set_function_trace_op == &ftrace_list_end) { 190 func = ftrace_stub; 191 192 /* 193 * If we are at the end of the list and this ops is 194 * recursion safe and not dynamic and the arch supports passing ops, 195 * then have the mcount trampoline call the function directly. 196 */ 197 } else if (rcu_dereference_protected(ftrace_ops_list->next, 198 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 199 func = ftrace_ops_get_list_func(ftrace_ops_list); 200 201 } else { 202 /* Just use the default ftrace_ops */ 203 set_function_trace_op = &ftrace_list_end; 204 func = ftrace_ops_list_func; 205 } 206 207 update_function_graph_func(); 208 209 /* If there's no change, then do nothing more here */ 210 if (ftrace_trace_function == func) 211 return; 212 213 /* 214 * If we are using the list function, it doesn't care 215 * about the function_trace_ops. 216 */ 217 if (func == ftrace_ops_list_func) { 218 ftrace_trace_function = func; 219 /* 220 * Don't even bother setting function_trace_ops, 221 * it would be racy to do so anyway. 222 */ 223 return; 224 } 225 226 #ifndef CONFIG_DYNAMIC_FTRACE 227 /* 228 * For static tracing, we need to be a bit more careful. 229 * The function change takes affect immediately. Thus, 230 * we need to coordinate the setting of the function_trace_ops 231 * with the setting of the ftrace_trace_function. 232 * 233 * Set the function to the list ops, which will call the 234 * function we want, albeit indirectly, but it handles the 235 * ftrace_ops and doesn't depend on function_trace_op. 236 */ 237 ftrace_trace_function = ftrace_ops_list_func; 238 /* 239 * Make sure all CPUs see this. Yes this is slow, but static 240 * tracing is slow and nasty to have enabled. 241 */ 242 synchronize_rcu_tasks_rude(); 243 /* Now all cpus are using the list ops. */ 244 function_trace_op = set_function_trace_op; 245 /* Make sure the function_trace_op is visible on all CPUs */ 246 smp_wmb(); 247 /* Nasty way to force a rmb on all cpus */ 248 smp_call_function(ftrace_sync_ipi, NULL, 1); 249 /* OK, we are all set to update the ftrace_trace_function now! */ 250 #endif /* !CONFIG_DYNAMIC_FTRACE */ 251 252 ftrace_trace_function = func; 253 } 254 255 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 256 struct ftrace_ops *ops) 257 { 258 rcu_assign_pointer(ops->next, *list); 259 260 /* 261 * We are entering ops into the list but another 262 * CPU might be walking that list. We need to make sure 263 * the ops->next pointer is valid before another CPU sees 264 * the ops pointer included into the list. 265 */ 266 rcu_assign_pointer(*list, ops); 267 } 268 269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 270 struct ftrace_ops *ops) 271 { 272 struct ftrace_ops **p; 273 274 /* 275 * If we are removing the last function, then simply point 276 * to the ftrace_stub. 277 */ 278 if (rcu_dereference_protected(*list, 279 lockdep_is_held(&ftrace_lock)) == ops && 280 rcu_dereference_protected(ops->next, 281 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 282 *list = &ftrace_list_end; 283 return 0; 284 } 285 286 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 287 if (*p == ops) 288 break; 289 290 if (*p != ops) 291 return -1; 292 293 *p = (*p)->next; 294 return 0; 295 } 296 297 static void ftrace_update_trampoline(struct ftrace_ops *ops); 298 299 int __register_ftrace_function(struct ftrace_ops *ops) 300 { 301 if (ops->flags & FTRACE_OPS_FL_DELETED) 302 return -EINVAL; 303 304 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 305 return -EBUSY; 306 307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 308 /* 309 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 310 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 311 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 312 */ 313 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 314 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 315 return -EINVAL; 316 317 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 318 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 319 #endif 320 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 321 return -EBUSY; 322 323 if (!is_kernel_core_data((unsigned long)ops)) 324 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 325 326 add_ftrace_ops(&ftrace_ops_list, ops); 327 328 /* Always save the function, and reset at unregistering */ 329 ops->saved_func = ops->func; 330 331 if (ftrace_pids_enabled(ops)) 332 ops->func = ftrace_pid_func; 333 334 ftrace_update_trampoline(ops); 335 336 if (ftrace_enabled) 337 update_ftrace_function(); 338 339 return 0; 340 } 341 342 int __unregister_ftrace_function(struct ftrace_ops *ops) 343 { 344 int ret; 345 346 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 347 return -EBUSY; 348 349 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 350 351 if (ret < 0) 352 return ret; 353 354 if (ftrace_enabled) 355 update_ftrace_function(); 356 357 ops->func = ops->saved_func; 358 359 return 0; 360 } 361 362 static void ftrace_update_pid_func(void) 363 { 364 struct ftrace_ops *op; 365 366 /* Only do something if we are tracing something */ 367 if (ftrace_trace_function == ftrace_stub) 368 return; 369 370 do_for_each_ftrace_op(op, ftrace_ops_list) { 371 if (op->flags & FTRACE_OPS_FL_PID) { 372 op->func = ftrace_pids_enabled(op) ? 373 ftrace_pid_func : op->saved_func; 374 ftrace_update_trampoline(op); 375 } 376 } while_for_each_ftrace_op(op); 377 378 update_ftrace_function(); 379 } 380 381 #ifdef CONFIG_FUNCTION_PROFILER 382 struct ftrace_profile { 383 struct hlist_node node; 384 unsigned long ip; 385 unsigned long counter; 386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 387 unsigned long long time; 388 unsigned long long time_squared; 389 #endif 390 }; 391 392 struct ftrace_profile_page { 393 struct ftrace_profile_page *next; 394 unsigned long index; 395 struct ftrace_profile records[]; 396 }; 397 398 struct ftrace_profile_stat { 399 atomic_t disabled; 400 struct hlist_head *hash; 401 struct ftrace_profile_page *pages; 402 struct ftrace_profile_page *start; 403 struct tracer_stat stat; 404 }; 405 406 #define PROFILE_RECORDS_SIZE \ 407 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 408 409 #define PROFILES_PER_PAGE \ 410 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 411 412 static int ftrace_profile_enabled __read_mostly; 413 414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 415 static DEFINE_MUTEX(ftrace_profile_lock); 416 417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 418 419 #define FTRACE_PROFILE_HASH_BITS 10 420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 421 422 static void * 423 function_stat_next(void *v, int idx) 424 { 425 struct ftrace_profile *rec = v; 426 struct ftrace_profile_page *pg; 427 428 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 429 430 again: 431 if (idx != 0) 432 rec++; 433 434 if ((void *)rec >= (void *)&pg->records[pg->index]) { 435 pg = pg->next; 436 if (!pg) 437 return NULL; 438 rec = &pg->records[0]; 439 if (!rec->counter) 440 goto again; 441 } 442 443 return rec; 444 } 445 446 static void *function_stat_start(struct tracer_stat *trace) 447 { 448 struct ftrace_profile_stat *stat = 449 container_of(trace, struct ftrace_profile_stat, stat); 450 451 if (!stat || !stat->start) 452 return NULL; 453 454 return function_stat_next(&stat->start->records[0], 0); 455 } 456 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 /* function graph compares on total time */ 459 static int function_stat_cmp(const void *p1, const void *p2) 460 { 461 const struct ftrace_profile *a = p1; 462 const struct ftrace_profile *b = p2; 463 464 if (a->time < b->time) 465 return -1; 466 if (a->time > b->time) 467 return 1; 468 else 469 return 0; 470 } 471 #else 472 /* not function graph compares against hits */ 473 static int function_stat_cmp(const void *p1, const void *p2) 474 { 475 const struct ftrace_profile *a = p1; 476 const struct ftrace_profile *b = p2; 477 478 if (a->counter < b->counter) 479 return -1; 480 if (a->counter > b->counter) 481 return 1; 482 else 483 return 0; 484 } 485 #endif 486 487 static int function_stat_headers(struct seq_file *m) 488 { 489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 490 seq_puts(m, " Function " 491 "Hit Time Avg s^2\n" 492 " -------- " 493 "--- ---- --- ---\n"); 494 #else 495 seq_puts(m, " Function Hit\n" 496 " -------- ---\n"); 497 #endif 498 return 0; 499 } 500 501 static int function_stat_show(struct seq_file *m, void *v) 502 { 503 struct ftrace_profile *rec = v; 504 char str[KSYM_SYMBOL_LEN]; 505 int ret = 0; 506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 507 static struct trace_seq s; 508 unsigned long long avg; 509 unsigned long long stddev; 510 #endif 511 mutex_lock(&ftrace_profile_lock); 512 513 /* we raced with function_profile_reset() */ 514 if (unlikely(rec->counter == 0)) { 515 ret = -EBUSY; 516 goto out; 517 } 518 519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 520 avg = div64_ul(rec->time, rec->counter); 521 if (tracing_thresh && (avg < tracing_thresh)) 522 goto out; 523 #endif 524 525 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 526 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 seq_puts(m, " "); 530 531 /* Sample standard deviation (s^2) */ 532 if (rec->counter <= 1) 533 stddev = 0; 534 else { 535 /* 536 * Apply Welford's method: 537 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 538 */ 539 stddev = rec->counter * rec->time_squared - 540 rec->time * rec->time; 541 542 /* 543 * Divide only 1000 for ns^2 -> us^2 conversion. 544 * trace_print_graph_duration will divide 1000 again. 545 */ 546 stddev = div64_ul(stddev, 547 rec->counter * (rec->counter - 1) * 1000); 548 } 549 550 trace_seq_init(&s); 551 trace_print_graph_duration(rec->time, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(avg, &s); 554 trace_seq_puts(&s, " "); 555 trace_print_graph_duration(stddev, &s); 556 trace_print_seq(m, &s); 557 #endif 558 seq_putc(m, '\n'); 559 out: 560 mutex_unlock(&ftrace_profile_lock); 561 562 return ret; 563 } 564 565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 566 { 567 struct ftrace_profile_page *pg; 568 569 pg = stat->pages = stat->start; 570 571 while (pg) { 572 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 573 pg->index = 0; 574 pg = pg->next; 575 } 576 577 memset(stat->hash, 0, 578 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 579 } 580 581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 582 { 583 struct ftrace_profile_page *pg; 584 int functions; 585 int pages; 586 int i; 587 588 /* If we already allocated, do nothing */ 589 if (stat->pages) 590 return 0; 591 592 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!stat->pages) 594 return -ENOMEM; 595 596 #ifdef CONFIG_DYNAMIC_FTRACE 597 functions = ftrace_update_tot_cnt; 598 #else 599 /* 600 * We do not know the number of functions that exist because 601 * dynamic tracing is what counts them. With past experience 602 * we have around 20K functions. That should be more than enough. 603 * It is highly unlikely we will execute every function in 604 * the kernel. 605 */ 606 functions = 20000; 607 #endif 608 609 pg = stat->start = stat->pages; 610 611 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 612 613 for (i = 1; i < pages; i++) { 614 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 615 if (!pg->next) 616 goto out_free; 617 pg = pg->next; 618 } 619 620 return 0; 621 622 out_free: 623 pg = stat->start; 624 while (pg) { 625 unsigned long tmp = (unsigned long)pg; 626 627 pg = pg->next; 628 free_page(tmp); 629 } 630 631 stat->pages = NULL; 632 stat->start = NULL; 633 634 return -ENOMEM; 635 } 636 637 static int ftrace_profile_init_cpu(int cpu) 638 { 639 struct ftrace_profile_stat *stat; 640 int size; 641 642 stat = &per_cpu(ftrace_profile_stats, cpu); 643 644 if (stat->hash) { 645 /* If the profile is already created, simply reset it */ 646 ftrace_profile_reset(stat); 647 return 0; 648 } 649 650 /* 651 * We are profiling all functions, but usually only a few thousand 652 * functions are hit. We'll make a hash of 1024 items. 653 */ 654 size = FTRACE_PROFILE_HASH_SIZE; 655 656 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 657 658 if (!stat->hash) 659 return -ENOMEM; 660 661 /* Preallocate the function profiling pages */ 662 if (ftrace_profile_pages_init(stat) < 0) { 663 kfree(stat->hash); 664 stat->hash = NULL; 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static int ftrace_profile_init(void) 672 { 673 int cpu; 674 int ret = 0; 675 676 for_each_possible_cpu(cpu) { 677 ret = ftrace_profile_init_cpu(cpu); 678 if (ret) 679 break; 680 } 681 682 return ret; 683 } 684 685 /* interrupts must be disabled */ 686 static struct ftrace_profile * 687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 688 { 689 struct ftrace_profile *rec; 690 struct hlist_head *hhd; 691 unsigned long key; 692 693 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 694 hhd = &stat->hash[key]; 695 696 if (hlist_empty(hhd)) 697 return NULL; 698 699 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 700 if (rec->ip == ip) 701 return rec; 702 } 703 704 return NULL; 705 } 706 707 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 708 struct ftrace_profile *rec) 709 { 710 unsigned long key; 711 712 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 713 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 714 } 715 716 /* 717 * The memory is already allocated, this simply finds a new record to use. 718 */ 719 static struct ftrace_profile * 720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 721 { 722 struct ftrace_profile *rec = NULL; 723 724 /* prevent recursion (from NMIs) */ 725 if (atomic_inc_return(&stat->disabled) != 1) 726 goto out; 727 728 /* 729 * Try to find the function again since an NMI 730 * could have added it 731 */ 732 rec = ftrace_find_profiled_func(stat, ip); 733 if (rec) 734 goto out; 735 736 if (stat->pages->index == PROFILES_PER_PAGE) { 737 if (!stat->pages->next) 738 goto out; 739 stat->pages = stat->pages->next; 740 } 741 742 rec = &stat->pages->records[stat->pages->index++]; 743 rec->ip = ip; 744 ftrace_add_profile(stat, rec); 745 746 out: 747 atomic_dec(&stat->disabled); 748 749 return rec; 750 } 751 752 static void 753 function_profile_call(unsigned long ip, unsigned long parent_ip, 754 struct ftrace_ops *ops, struct ftrace_regs *fregs) 755 { 756 struct ftrace_profile_stat *stat; 757 struct ftrace_profile *rec; 758 unsigned long flags; 759 760 if (!ftrace_profile_enabled) 761 return; 762 763 local_irq_save(flags); 764 765 stat = this_cpu_ptr(&ftrace_profile_stats); 766 if (!stat->hash || !ftrace_profile_enabled) 767 goto out; 768 769 rec = ftrace_find_profiled_func(stat, ip); 770 if (!rec) { 771 rec = ftrace_profile_alloc(stat, ip); 772 if (!rec) 773 goto out; 774 } 775 776 rec->counter++; 777 out: 778 local_irq_restore(flags); 779 } 780 781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 782 static bool fgraph_graph_time = true; 783 784 void ftrace_graph_graph_time_control(bool enable) 785 { 786 fgraph_graph_time = enable; 787 } 788 789 static int profile_graph_entry(struct ftrace_graph_ent *trace) 790 { 791 struct ftrace_ret_stack *ret_stack; 792 793 function_profile_call(trace->func, 0, NULL, NULL); 794 795 /* If function graph is shutting down, ret_stack can be NULL */ 796 if (!current->ret_stack) 797 return 0; 798 799 ret_stack = ftrace_graph_get_ret_stack(current, 0); 800 if (ret_stack) 801 ret_stack->subtime = 0; 802 803 return 1; 804 } 805 806 static void profile_graph_return(struct ftrace_graph_ret *trace) 807 { 808 struct ftrace_ret_stack *ret_stack; 809 struct ftrace_profile_stat *stat; 810 unsigned long long calltime; 811 struct ftrace_profile *rec; 812 unsigned long flags; 813 814 local_irq_save(flags); 815 stat = this_cpu_ptr(&ftrace_profile_stats); 816 if (!stat->hash || !ftrace_profile_enabled) 817 goto out; 818 819 /* If the calltime was zero'd ignore it */ 820 if (!trace->calltime) 821 goto out; 822 823 calltime = trace->rettime - trace->calltime; 824 825 if (!fgraph_graph_time) { 826 827 /* Append this call time to the parent time to subtract */ 828 ret_stack = ftrace_graph_get_ret_stack(current, 1); 829 if (ret_stack) 830 ret_stack->subtime += calltime; 831 832 ret_stack = ftrace_graph_get_ret_stack(current, 0); 833 if (ret_stack && ret_stack->subtime < calltime) 834 calltime -= ret_stack->subtime; 835 else 836 calltime = 0; 837 } 838 839 rec = ftrace_find_profiled_func(stat, trace->func); 840 if (rec) { 841 rec->time += calltime; 842 rec->time_squared += calltime * calltime; 843 } 844 845 out: 846 local_irq_restore(flags); 847 } 848 849 static struct fgraph_ops fprofiler_ops = { 850 .entryfunc = &profile_graph_entry, 851 .retfunc = &profile_graph_return, 852 }; 853 854 static int register_ftrace_profiler(void) 855 { 856 return register_ftrace_graph(&fprofiler_ops); 857 } 858 859 static void unregister_ftrace_profiler(void) 860 { 861 unregister_ftrace_graph(&fprofiler_ops); 862 } 863 #else 864 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 865 .func = function_profile_call, 866 .flags = FTRACE_OPS_FL_INITIALIZED, 867 INIT_OPS_HASH(ftrace_profile_ops) 868 }; 869 870 static int register_ftrace_profiler(void) 871 { 872 return register_ftrace_function(&ftrace_profile_ops); 873 } 874 875 static void unregister_ftrace_profiler(void) 876 { 877 unregister_ftrace_function(&ftrace_profile_ops); 878 } 879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 880 881 static ssize_t 882 ftrace_profile_write(struct file *filp, const char __user *ubuf, 883 size_t cnt, loff_t *ppos) 884 { 885 unsigned long val; 886 int ret; 887 888 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 889 if (ret) 890 return ret; 891 892 val = !!val; 893 894 mutex_lock(&ftrace_profile_lock); 895 if (ftrace_profile_enabled ^ val) { 896 if (val) { 897 ret = ftrace_profile_init(); 898 if (ret < 0) { 899 cnt = ret; 900 goto out; 901 } 902 903 ret = register_ftrace_profiler(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 ftrace_profile_enabled = 1; 909 } else { 910 ftrace_profile_enabled = 0; 911 /* 912 * unregister_ftrace_profiler calls stop_machine 913 * so this acts like an synchronize_rcu. 914 */ 915 unregister_ftrace_profiler(); 916 } 917 } 918 out: 919 mutex_unlock(&ftrace_profile_lock); 920 921 *ppos += cnt; 922 923 return cnt; 924 } 925 926 static ssize_t 927 ftrace_profile_read(struct file *filp, char __user *ubuf, 928 size_t cnt, loff_t *ppos) 929 { 930 char buf[64]; /* big enough to hold a number */ 931 int r; 932 933 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 934 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 935 } 936 937 static const struct file_operations ftrace_profile_fops = { 938 .open = tracing_open_generic, 939 .read = ftrace_profile_read, 940 .write = ftrace_profile_write, 941 .llseek = default_llseek, 942 }; 943 944 /* used to initialize the real stat files */ 945 static struct tracer_stat function_stats __initdata = { 946 .name = "functions", 947 .stat_start = function_stat_start, 948 .stat_next = function_stat_next, 949 .stat_cmp = function_stat_cmp, 950 .stat_headers = function_stat_headers, 951 .stat_show = function_stat_show 952 }; 953 954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 955 { 956 struct ftrace_profile_stat *stat; 957 char *name; 958 int ret; 959 int cpu; 960 961 for_each_possible_cpu(cpu) { 962 stat = &per_cpu(ftrace_profile_stats, cpu); 963 964 name = kasprintf(GFP_KERNEL, "function%d", cpu); 965 if (!name) { 966 /* 967 * The files created are permanent, if something happens 968 * we still do not free memory. 969 */ 970 WARN(1, 971 "Could not allocate stat file for cpu %d\n", 972 cpu); 973 return; 974 } 975 stat->stat = function_stats; 976 stat->stat.name = name; 977 ret = register_stat_tracer(&stat->stat); 978 if (ret) { 979 WARN(1, 980 "Could not register function stat for cpu %d\n", 981 cpu); 982 kfree(name); 983 return; 984 } 985 } 986 987 trace_create_file("function_profile_enabled", 988 TRACE_MODE_WRITE, d_tracer, NULL, 989 &ftrace_profile_fops); 990 } 991 992 #else /* CONFIG_FUNCTION_PROFILER */ 993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 994 { 995 } 996 #endif /* CONFIG_FUNCTION_PROFILER */ 997 998 #ifdef CONFIG_DYNAMIC_FTRACE 999 1000 static struct ftrace_ops *removed_ops; 1001 1002 /* 1003 * Set when doing a global update, like enabling all recs or disabling them. 1004 * It is not set when just updating a single ftrace_ops. 1005 */ 1006 static bool update_all_ops; 1007 1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1009 # error Dynamic ftrace depends on MCOUNT_RECORD 1010 #endif 1011 1012 struct ftrace_func_probe { 1013 struct ftrace_probe_ops *probe_ops; 1014 struct ftrace_ops ops; 1015 struct trace_array *tr; 1016 struct list_head list; 1017 void *data; 1018 int ref; 1019 }; 1020 1021 /* 1022 * We make these constant because no one should touch them, 1023 * but they are used as the default "empty hash", to avoid allocating 1024 * it all the time. These are in a read only section such that if 1025 * anyone does try to modify it, it will cause an exception. 1026 */ 1027 static const struct hlist_head empty_buckets[1]; 1028 static const struct ftrace_hash empty_hash = { 1029 .buckets = (struct hlist_head *)empty_buckets, 1030 }; 1031 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1032 1033 struct ftrace_ops global_ops = { 1034 .func = ftrace_stub, 1035 .local_hash.notrace_hash = EMPTY_HASH, 1036 .local_hash.filter_hash = EMPTY_HASH, 1037 INIT_OPS_HASH(global_ops) 1038 .flags = FTRACE_OPS_FL_INITIALIZED | 1039 FTRACE_OPS_FL_PID, 1040 }; 1041 1042 /* 1043 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1044 */ 1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1046 { 1047 struct ftrace_ops *op = NULL; 1048 1049 /* 1050 * Some of the ops may be dynamically allocated, 1051 * they are freed after a synchronize_rcu(). 1052 */ 1053 preempt_disable_notrace(); 1054 1055 do_for_each_ftrace_op(op, ftrace_ops_list) { 1056 /* 1057 * This is to check for dynamically allocated trampolines. 1058 * Trampolines that are in kernel text will have 1059 * core_kernel_text() return true. 1060 */ 1061 if (op->trampoline && op->trampoline_size) 1062 if (addr >= op->trampoline && 1063 addr < op->trampoline + op->trampoline_size) { 1064 preempt_enable_notrace(); 1065 return op; 1066 } 1067 } while_for_each_ftrace_op(op); 1068 preempt_enable_notrace(); 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * This is used by __kernel_text_address() to return true if the 1075 * address is on a dynamically allocated trampoline that would 1076 * not return true for either core_kernel_text() or 1077 * is_module_text_address(). 1078 */ 1079 bool is_ftrace_trampoline(unsigned long addr) 1080 { 1081 return ftrace_ops_trampoline(addr) != NULL; 1082 } 1083 1084 struct ftrace_page { 1085 struct ftrace_page *next; 1086 struct dyn_ftrace *records; 1087 int index; 1088 int order; 1089 }; 1090 1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1093 1094 static struct ftrace_page *ftrace_pages_start; 1095 static struct ftrace_page *ftrace_pages; 1096 1097 static __always_inline unsigned long 1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1099 { 1100 if (hash->size_bits > 0) 1101 return hash_long(ip, hash->size_bits); 1102 1103 return 0; 1104 } 1105 1106 /* Only use this function if ftrace_hash_empty() has already been tested */ 1107 static __always_inline struct ftrace_func_entry * 1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 unsigned long key; 1111 struct ftrace_func_entry *entry; 1112 struct hlist_head *hhd; 1113 1114 key = ftrace_hash_key(hash, ip); 1115 hhd = &hash->buckets[key]; 1116 1117 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1118 if (entry->ip == ip) 1119 return entry; 1120 } 1121 return NULL; 1122 } 1123 1124 /** 1125 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1126 * @hash: The hash to look at 1127 * @ip: The instruction pointer to test 1128 * 1129 * Search a given @hash to see if a given instruction pointer (@ip) 1130 * exists in it. 1131 * 1132 * Returns the entry that holds the @ip if found. NULL otherwise. 1133 */ 1134 struct ftrace_func_entry * 1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (ftrace_hash_empty(hash)) 1138 return NULL; 1139 1140 return __ftrace_lookup_ip(hash, ip); 1141 } 1142 1143 static void __add_hash_entry(struct ftrace_hash *hash, 1144 struct ftrace_func_entry *entry) 1145 { 1146 struct hlist_head *hhd; 1147 unsigned long key; 1148 1149 key = ftrace_hash_key(hash, entry->ip); 1150 hhd = &hash->buckets[key]; 1151 hlist_add_head(&entry->hlist, hhd); 1152 hash->count++; 1153 } 1154 1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1156 { 1157 struct ftrace_func_entry *entry; 1158 1159 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1160 if (!entry) 1161 return -ENOMEM; 1162 1163 entry->ip = ip; 1164 __add_hash_entry(hash, entry); 1165 1166 return 0; 1167 } 1168 1169 static void 1170 free_hash_entry(struct ftrace_hash *hash, 1171 struct ftrace_func_entry *entry) 1172 { 1173 hlist_del(&entry->hlist); 1174 kfree(entry); 1175 hash->count--; 1176 } 1177 1178 static void 1179 remove_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del_rcu(&entry->hlist); 1183 hash->count--; 1184 } 1185 1186 static void ftrace_hash_clear(struct ftrace_hash *hash) 1187 { 1188 struct hlist_head *hhd; 1189 struct hlist_node *tn; 1190 struct ftrace_func_entry *entry; 1191 int size = 1 << hash->size_bits; 1192 int i; 1193 1194 if (!hash->count) 1195 return; 1196 1197 for (i = 0; i < size; i++) { 1198 hhd = &hash->buckets[i]; 1199 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1200 free_hash_entry(hash, entry); 1201 } 1202 FTRACE_WARN_ON(hash->count); 1203 } 1204 1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1206 { 1207 list_del(&ftrace_mod->list); 1208 kfree(ftrace_mod->module); 1209 kfree(ftrace_mod->func); 1210 kfree(ftrace_mod); 1211 } 1212 1213 static void clear_ftrace_mod_list(struct list_head *head) 1214 { 1215 struct ftrace_mod_load *p, *n; 1216 1217 /* stack tracer isn't supported yet */ 1218 if (!head) 1219 return; 1220 1221 mutex_lock(&ftrace_lock); 1222 list_for_each_entry_safe(p, n, head, list) 1223 free_ftrace_mod(p); 1224 mutex_unlock(&ftrace_lock); 1225 } 1226 1227 static void free_ftrace_hash(struct ftrace_hash *hash) 1228 { 1229 if (!hash || hash == EMPTY_HASH) 1230 return; 1231 ftrace_hash_clear(hash); 1232 kfree(hash->buckets); 1233 kfree(hash); 1234 } 1235 1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1237 { 1238 struct ftrace_hash *hash; 1239 1240 hash = container_of(rcu, struct ftrace_hash, rcu); 1241 free_ftrace_hash(hash); 1242 } 1243 1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1245 { 1246 if (!hash || hash == EMPTY_HASH) 1247 return; 1248 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1249 } 1250 1251 void ftrace_free_filter(struct ftrace_ops *ops) 1252 { 1253 ftrace_ops_init(ops); 1254 free_ftrace_hash(ops->func_hash->filter_hash); 1255 free_ftrace_hash(ops->func_hash->notrace_hash); 1256 } 1257 1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1259 { 1260 struct ftrace_hash *hash; 1261 int size; 1262 1263 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1264 if (!hash) 1265 return NULL; 1266 1267 size = 1 << size_bits; 1268 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1269 1270 if (!hash->buckets) { 1271 kfree(hash); 1272 return NULL; 1273 } 1274 1275 hash->size_bits = size_bits; 1276 1277 return hash; 1278 } 1279 1280 1281 static int ftrace_add_mod(struct trace_array *tr, 1282 const char *func, const char *module, 1283 int enable) 1284 { 1285 struct ftrace_mod_load *ftrace_mod; 1286 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1287 1288 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1289 if (!ftrace_mod) 1290 return -ENOMEM; 1291 1292 INIT_LIST_HEAD(&ftrace_mod->list); 1293 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1294 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1295 ftrace_mod->enable = enable; 1296 1297 if (!ftrace_mod->func || !ftrace_mod->module) 1298 goto out_free; 1299 1300 list_add(&ftrace_mod->list, mod_head); 1301 1302 return 0; 1303 1304 out_free: 1305 free_ftrace_mod(ftrace_mod); 1306 1307 return -ENOMEM; 1308 } 1309 1310 static struct ftrace_hash * 1311 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1312 { 1313 struct ftrace_func_entry *entry; 1314 struct ftrace_hash *new_hash; 1315 int size; 1316 int ret; 1317 int i; 1318 1319 new_hash = alloc_ftrace_hash(size_bits); 1320 if (!new_hash) 1321 return NULL; 1322 1323 if (hash) 1324 new_hash->flags = hash->flags; 1325 1326 /* Empty hash? */ 1327 if (ftrace_hash_empty(hash)) 1328 return new_hash; 1329 1330 size = 1 << hash->size_bits; 1331 for (i = 0; i < size; i++) { 1332 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1333 ret = add_hash_entry(new_hash, entry->ip); 1334 if (ret < 0) 1335 goto free_hash; 1336 } 1337 } 1338 1339 FTRACE_WARN_ON(new_hash->count != hash->count); 1340 1341 return new_hash; 1342 1343 free_hash: 1344 free_ftrace_hash(new_hash); 1345 return NULL; 1346 } 1347 1348 static void 1349 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1350 static void 1351 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1352 1353 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1354 struct ftrace_hash *new_hash); 1355 1356 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1357 { 1358 struct ftrace_func_entry *entry; 1359 struct ftrace_hash *new_hash; 1360 struct hlist_head *hhd; 1361 struct hlist_node *tn; 1362 int bits = 0; 1363 int i; 1364 1365 /* 1366 * Use around half the size (max bit of it), but 1367 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1368 */ 1369 bits = fls(size / 2); 1370 1371 /* Don't allocate too much */ 1372 if (bits > FTRACE_HASH_MAX_BITS) 1373 bits = FTRACE_HASH_MAX_BITS; 1374 1375 new_hash = alloc_ftrace_hash(bits); 1376 if (!new_hash) 1377 return NULL; 1378 1379 new_hash->flags = src->flags; 1380 1381 size = 1 << src->size_bits; 1382 for (i = 0; i < size; i++) { 1383 hhd = &src->buckets[i]; 1384 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1385 remove_hash_entry(src, entry); 1386 __add_hash_entry(new_hash, entry); 1387 } 1388 } 1389 return new_hash; 1390 } 1391 1392 static struct ftrace_hash * 1393 __ftrace_hash_move(struct ftrace_hash *src) 1394 { 1395 int size = src->count; 1396 1397 /* 1398 * If the new source is empty, just return the empty_hash. 1399 */ 1400 if (ftrace_hash_empty(src)) 1401 return EMPTY_HASH; 1402 1403 return dup_hash(src, size); 1404 } 1405 1406 static int 1407 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1408 struct ftrace_hash **dst, struct ftrace_hash *src) 1409 { 1410 struct ftrace_hash *new_hash; 1411 int ret; 1412 1413 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1414 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1415 return -EINVAL; 1416 1417 new_hash = __ftrace_hash_move(src); 1418 if (!new_hash) 1419 return -ENOMEM; 1420 1421 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1422 if (enable) { 1423 /* IPMODIFY should be updated only when filter_hash updating */ 1424 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1425 if (ret < 0) { 1426 free_ftrace_hash(new_hash); 1427 return ret; 1428 } 1429 } 1430 1431 /* 1432 * Remove the current set, update the hash and add 1433 * them back. 1434 */ 1435 ftrace_hash_rec_disable_modify(ops, enable); 1436 1437 rcu_assign_pointer(*dst, new_hash); 1438 1439 ftrace_hash_rec_enable_modify(ops, enable); 1440 1441 return 0; 1442 } 1443 1444 static bool hash_contains_ip(unsigned long ip, 1445 struct ftrace_ops_hash *hash) 1446 { 1447 /* 1448 * The function record is a match if it exists in the filter 1449 * hash and not in the notrace hash. Note, an empty hash is 1450 * considered a match for the filter hash, but an empty 1451 * notrace hash is considered not in the notrace hash. 1452 */ 1453 return (ftrace_hash_empty(hash->filter_hash) || 1454 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1455 (ftrace_hash_empty(hash->notrace_hash) || 1456 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1457 } 1458 1459 /* 1460 * Test the hashes for this ops to see if we want to call 1461 * the ops->func or not. 1462 * 1463 * It's a match if the ip is in the ops->filter_hash or 1464 * the filter_hash does not exist or is empty, 1465 * AND 1466 * the ip is not in the ops->notrace_hash. 1467 * 1468 * This needs to be called with preemption disabled as 1469 * the hashes are freed with call_rcu(). 1470 */ 1471 int 1472 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1473 { 1474 struct ftrace_ops_hash hash; 1475 int ret; 1476 1477 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1478 /* 1479 * There's a small race when adding ops that the ftrace handler 1480 * that wants regs, may be called without them. We can not 1481 * allow that handler to be called if regs is NULL. 1482 */ 1483 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1484 return 0; 1485 #endif 1486 1487 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1488 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1489 1490 if (hash_contains_ip(ip, &hash)) 1491 ret = 1; 1492 else 1493 ret = 0; 1494 1495 return ret; 1496 } 1497 1498 /* 1499 * This is a double for. Do not use 'break' to break out of the loop, 1500 * you must use a goto. 1501 */ 1502 #define do_for_each_ftrace_rec(pg, rec) \ 1503 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1504 int _____i; \ 1505 for (_____i = 0; _____i < pg->index; _____i++) { \ 1506 rec = &pg->records[_____i]; 1507 1508 #define while_for_each_ftrace_rec() \ 1509 } \ 1510 } 1511 1512 1513 static int ftrace_cmp_recs(const void *a, const void *b) 1514 { 1515 const struct dyn_ftrace *key = a; 1516 const struct dyn_ftrace *rec = b; 1517 1518 if (key->flags < rec->ip) 1519 return -1; 1520 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1521 return 1; 1522 return 0; 1523 } 1524 1525 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1526 { 1527 struct ftrace_page *pg; 1528 struct dyn_ftrace *rec = NULL; 1529 struct dyn_ftrace key; 1530 1531 key.ip = start; 1532 key.flags = end; /* overload flags, as it is unsigned long */ 1533 1534 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1535 if (end < pg->records[0].ip || 1536 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1537 continue; 1538 rec = bsearch(&key, pg->records, pg->index, 1539 sizeof(struct dyn_ftrace), 1540 ftrace_cmp_recs); 1541 if (rec) 1542 break; 1543 } 1544 return rec; 1545 } 1546 1547 /** 1548 * ftrace_location_range - return the first address of a traced location 1549 * if it touches the given ip range 1550 * @start: start of range to search. 1551 * @end: end of range to search (inclusive). @end points to the last byte 1552 * to check. 1553 * 1554 * Returns rec->ip if the related ftrace location is a least partly within 1555 * the given address range. That is, the first address of the instruction 1556 * that is either a NOP or call to the function tracer. It checks the ftrace 1557 * internal tables to determine if the address belongs or not. 1558 */ 1559 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1560 { 1561 struct dyn_ftrace *rec; 1562 1563 rec = lookup_rec(start, end); 1564 if (rec) 1565 return rec->ip; 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * ftrace_location - return the ftrace location 1572 * @ip: the instruction pointer to check 1573 * 1574 * If @ip matches the ftrace location, return @ip. 1575 * If @ip matches sym+0, return sym's ftrace location. 1576 * Otherwise, return 0. 1577 */ 1578 unsigned long ftrace_location(unsigned long ip) 1579 { 1580 struct dyn_ftrace *rec; 1581 unsigned long offset; 1582 unsigned long size; 1583 1584 rec = lookup_rec(ip, ip); 1585 if (!rec) { 1586 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1587 goto out; 1588 1589 /* map sym+0 to __fentry__ */ 1590 if (!offset) 1591 rec = lookup_rec(ip, ip + size - 1); 1592 } 1593 1594 if (rec) 1595 return rec->ip; 1596 1597 out: 1598 return 0; 1599 } 1600 1601 /** 1602 * ftrace_text_reserved - return true if range contains an ftrace location 1603 * @start: start of range to search 1604 * @end: end of range to search (inclusive). @end points to the last byte to check. 1605 * 1606 * Returns 1 if @start and @end contains a ftrace location. 1607 * That is, the instruction that is either a NOP or call to 1608 * the function tracer. It checks the ftrace internal tables to 1609 * determine if the address belongs or not. 1610 */ 1611 int ftrace_text_reserved(const void *start, const void *end) 1612 { 1613 unsigned long ret; 1614 1615 ret = ftrace_location_range((unsigned long)start, 1616 (unsigned long)end); 1617 1618 return (int)!!ret; 1619 } 1620 1621 /* Test if ops registered to this rec needs regs */ 1622 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1623 { 1624 struct ftrace_ops *ops; 1625 bool keep_regs = false; 1626 1627 for (ops = ftrace_ops_list; 1628 ops != &ftrace_list_end; ops = ops->next) { 1629 /* pass rec in as regs to have non-NULL val */ 1630 if (ftrace_ops_test(ops, rec->ip, rec)) { 1631 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1632 keep_regs = true; 1633 break; 1634 } 1635 } 1636 } 1637 1638 return keep_regs; 1639 } 1640 1641 static struct ftrace_ops * 1642 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1643 static struct ftrace_ops * 1644 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1645 static struct ftrace_ops * 1646 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1647 1648 static bool skip_record(struct dyn_ftrace *rec) 1649 { 1650 /* 1651 * At boot up, weak functions are set to disable. Function tracing 1652 * can be enabled before they are, and they still need to be disabled now. 1653 * If the record is disabled, still continue if it is marked as already 1654 * enabled (this is needed to keep the accounting working). 1655 */ 1656 return rec->flags & FTRACE_FL_DISABLED && 1657 !(rec->flags & FTRACE_FL_ENABLED); 1658 } 1659 1660 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1661 int filter_hash, 1662 bool inc) 1663 { 1664 struct ftrace_hash *hash; 1665 struct ftrace_hash *other_hash; 1666 struct ftrace_page *pg; 1667 struct dyn_ftrace *rec; 1668 bool update = false; 1669 int count = 0; 1670 int all = false; 1671 1672 /* Only update if the ops has been registered */ 1673 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1674 return false; 1675 1676 /* 1677 * In the filter_hash case: 1678 * If the count is zero, we update all records. 1679 * Otherwise we just update the items in the hash. 1680 * 1681 * In the notrace_hash case: 1682 * We enable the update in the hash. 1683 * As disabling notrace means enabling the tracing, 1684 * and enabling notrace means disabling, the inc variable 1685 * gets inversed. 1686 */ 1687 if (filter_hash) { 1688 hash = ops->func_hash->filter_hash; 1689 other_hash = ops->func_hash->notrace_hash; 1690 if (ftrace_hash_empty(hash)) 1691 all = true; 1692 } else { 1693 inc = !inc; 1694 hash = ops->func_hash->notrace_hash; 1695 other_hash = ops->func_hash->filter_hash; 1696 /* 1697 * If the notrace hash has no items, 1698 * then there's nothing to do. 1699 */ 1700 if (ftrace_hash_empty(hash)) 1701 return false; 1702 } 1703 1704 do_for_each_ftrace_rec(pg, rec) { 1705 int in_other_hash = 0; 1706 int in_hash = 0; 1707 int match = 0; 1708 1709 if (skip_record(rec)) 1710 continue; 1711 1712 if (all) { 1713 /* 1714 * Only the filter_hash affects all records. 1715 * Update if the record is not in the notrace hash. 1716 */ 1717 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1718 match = 1; 1719 } else { 1720 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1721 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1722 1723 /* 1724 * If filter_hash is set, we want to match all functions 1725 * that are in the hash but not in the other hash. 1726 * 1727 * If filter_hash is not set, then we are decrementing. 1728 * That means we match anything that is in the hash 1729 * and also in the other_hash. That is, we need to turn 1730 * off functions in the other hash because they are disabled 1731 * by this hash. 1732 */ 1733 if (filter_hash && in_hash && !in_other_hash) 1734 match = 1; 1735 else if (!filter_hash && in_hash && 1736 (in_other_hash || ftrace_hash_empty(other_hash))) 1737 match = 1; 1738 } 1739 if (!match) 1740 continue; 1741 1742 if (inc) { 1743 rec->flags++; 1744 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1745 return false; 1746 1747 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1748 rec->flags |= FTRACE_FL_DIRECT; 1749 1750 /* 1751 * If there's only a single callback registered to a 1752 * function, and the ops has a trampoline registered 1753 * for it, then we can call it directly. 1754 */ 1755 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1756 rec->flags |= FTRACE_FL_TRAMP; 1757 else 1758 /* 1759 * If we are adding another function callback 1760 * to this function, and the previous had a 1761 * custom trampoline in use, then we need to go 1762 * back to the default trampoline. 1763 */ 1764 rec->flags &= ~FTRACE_FL_TRAMP; 1765 1766 /* 1767 * If any ops wants regs saved for this function 1768 * then all ops will get saved regs. 1769 */ 1770 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1771 rec->flags |= FTRACE_FL_REGS; 1772 } else { 1773 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1774 return false; 1775 rec->flags--; 1776 1777 /* 1778 * Only the internal direct_ops should have the 1779 * DIRECT flag set. Thus, if it is removing a 1780 * function, then that function should no longer 1781 * be direct. 1782 */ 1783 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1784 rec->flags &= ~FTRACE_FL_DIRECT; 1785 1786 /* 1787 * If the rec had REGS enabled and the ops that is 1788 * being removed had REGS set, then see if there is 1789 * still any ops for this record that wants regs. 1790 * If not, we can stop recording them. 1791 */ 1792 if (ftrace_rec_count(rec) > 0 && 1793 rec->flags & FTRACE_FL_REGS && 1794 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1795 if (!test_rec_ops_needs_regs(rec)) 1796 rec->flags &= ~FTRACE_FL_REGS; 1797 } 1798 1799 /* 1800 * The TRAMP needs to be set only if rec count 1801 * is decremented to one, and the ops that is 1802 * left has a trampoline. As TRAMP can only be 1803 * enabled if there is only a single ops attached 1804 * to it. 1805 */ 1806 if (ftrace_rec_count(rec) == 1 && 1807 ftrace_find_tramp_ops_any_other(rec, ops)) 1808 rec->flags |= FTRACE_FL_TRAMP; 1809 else 1810 rec->flags &= ~FTRACE_FL_TRAMP; 1811 1812 /* 1813 * flags will be cleared in ftrace_check_record() 1814 * if rec count is zero. 1815 */ 1816 } 1817 count++; 1818 1819 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1820 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1821 1822 /* Shortcut, if we handled all records, we are done. */ 1823 if (!all && count == hash->count) 1824 return update; 1825 } while_for_each_ftrace_rec(); 1826 1827 return update; 1828 } 1829 1830 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1831 int filter_hash) 1832 { 1833 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1834 } 1835 1836 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1837 int filter_hash) 1838 { 1839 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1840 } 1841 1842 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1843 int filter_hash, int inc) 1844 { 1845 struct ftrace_ops *op; 1846 1847 __ftrace_hash_rec_update(ops, filter_hash, inc); 1848 1849 if (ops->func_hash != &global_ops.local_hash) 1850 return; 1851 1852 /* 1853 * If the ops shares the global_ops hash, then we need to update 1854 * all ops that are enabled and use this hash. 1855 */ 1856 do_for_each_ftrace_op(op, ftrace_ops_list) { 1857 /* Already done */ 1858 if (op == ops) 1859 continue; 1860 if (op->func_hash == &global_ops.local_hash) 1861 __ftrace_hash_rec_update(op, filter_hash, inc); 1862 } while_for_each_ftrace_op(op); 1863 } 1864 1865 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1866 int filter_hash) 1867 { 1868 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1869 } 1870 1871 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1872 int filter_hash) 1873 { 1874 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1875 } 1876 1877 /* 1878 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1879 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1880 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1881 * Note that old_hash and new_hash has below meanings 1882 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1883 * - If the hash is EMPTY_HASH, it hits nothing 1884 * - Anything else hits the recs which match the hash entries. 1885 * 1886 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1887 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1888 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1889 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1890 * the return value to the caller and eventually to the owner of the DIRECT 1891 * ops. 1892 */ 1893 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1894 struct ftrace_hash *old_hash, 1895 struct ftrace_hash *new_hash) 1896 { 1897 struct ftrace_page *pg; 1898 struct dyn_ftrace *rec, *end = NULL; 1899 int in_old, in_new; 1900 bool is_ipmodify, is_direct; 1901 1902 /* Only update if the ops has been registered */ 1903 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1904 return 0; 1905 1906 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1907 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1908 1909 /* neither IPMODIFY nor DIRECT, skip */ 1910 if (!is_ipmodify && !is_direct) 1911 return 0; 1912 1913 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1914 return 0; 1915 1916 /* 1917 * Since the IPMODIFY and DIRECT are very address sensitive 1918 * actions, we do not allow ftrace_ops to set all functions to new 1919 * hash. 1920 */ 1921 if (!new_hash || !old_hash) 1922 return -EINVAL; 1923 1924 /* Update rec->flags */ 1925 do_for_each_ftrace_rec(pg, rec) { 1926 1927 if (rec->flags & FTRACE_FL_DISABLED) 1928 continue; 1929 1930 /* We need to update only differences of filter_hash */ 1931 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1932 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1933 if (in_old == in_new) 1934 continue; 1935 1936 if (in_new) { 1937 if (rec->flags & FTRACE_FL_IPMODIFY) { 1938 int ret; 1939 1940 /* Cannot have two ipmodify on same rec */ 1941 if (is_ipmodify) 1942 goto rollback; 1943 1944 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 1945 1946 /* 1947 * Another ops with IPMODIFY is already 1948 * attached. We are now attaching a direct 1949 * ops. Run SHARE_IPMODIFY_SELF, to check 1950 * whether sharing is supported. 1951 */ 1952 if (!ops->ops_func) 1953 return -EBUSY; 1954 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 1955 if (ret) 1956 return ret; 1957 } else if (is_ipmodify) { 1958 rec->flags |= FTRACE_FL_IPMODIFY; 1959 } 1960 } else if (is_ipmodify) { 1961 rec->flags &= ~FTRACE_FL_IPMODIFY; 1962 } 1963 } while_for_each_ftrace_rec(); 1964 1965 return 0; 1966 1967 rollback: 1968 end = rec; 1969 1970 /* Roll back what we did above */ 1971 do_for_each_ftrace_rec(pg, rec) { 1972 1973 if (rec->flags & FTRACE_FL_DISABLED) 1974 continue; 1975 1976 if (rec == end) 1977 goto err_out; 1978 1979 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1980 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1981 if (in_old == in_new) 1982 continue; 1983 1984 if (in_new) 1985 rec->flags &= ~FTRACE_FL_IPMODIFY; 1986 else 1987 rec->flags |= FTRACE_FL_IPMODIFY; 1988 } while_for_each_ftrace_rec(); 1989 1990 err_out: 1991 return -EBUSY; 1992 } 1993 1994 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1995 { 1996 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1997 1998 if (ftrace_hash_empty(hash)) 1999 hash = NULL; 2000 2001 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2002 } 2003 2004 /* Disabling always succeeds */ 2005 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2006 { 2007 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2008 2009 if (ftrace_hash_empty(hash)) 2010 hash = NULL; 2011 2012 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2013 } 2014 2015 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2016 struct ftrace_hash *new_hash) 2017 { 2018 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2019 2020 if (ftrace_hash_empty(old_hash)) 2021 old_hash = NULL; 2022 2023 if (ftrace_hash_empty(new_hash)) 2024 new_hash = NULL; 2025 2026 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2027 } 2028 2029 static void print_ip_ins(const char *fmt, const unsigned char *p) 2030 { 2031 char ins[MCOUNT_INSN_SIZE]; 2032 2033 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2034 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2035 return; 2036 } 2037 2038 printk(KERN_CONT "%s", fmt); 2039 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2040 } 2041 2042 enum ftrace_bug_type ftrace_bug_type; 2043 const void *ftrace_expected; 2044 2045 static void print_bug_type(void) 2046 { 2047 switch (ftrace_bug_type) { 2048 case FTRACE_BUG_UNKNOWN: 2049 break; 2050 case FTRACE_BUG_INIT: 2051 pr_info("Initializing ftrace call sites\n"); 2052 break; 2053 case FTRACE_BUG_NOP: 2054 pr_info("Setting ftrace call site to NOP\n"); 2055 break; 2056 case FTRACE_BUG_CALL: 2057 pr_info("Setting ftrace call site to call ftrace function\n"); 2058 break; 2059 case FTRACE_BUG_UPDATE: 2060 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2061 break; 2062 } 2063 } 2064 2065 /** 2066 * ftrace_bug - report and shutdown function tracer 2067 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2068 * @rec: The record that failed 2069 * 2070 * The arch code that enables or disables the function tracing 2071 * can call ftrace_bug() when it has detected a problem in 2072 * modifying the code. @failed should be one of either: 2073 * EFAULT - if the problem happens on reading the @ip address 2074 * EINVAL - if what is read at @ip is not what was expected 2075 * EPERM - if the problem happens on writing to the @ip address 2076 */ 2077 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2078 { 2079 unsigned long ip = rec ? rec->ip : 0; 2080 2081 pr_info("------------[ ftrace bug ]------------\n"); 2082 2083 switch (failed) { 2084 case -EFAULT: 2085 pr_info("ftrace faulted on modifying "); 2086 print_ip_sym(KERN_INFO, ip); 2087 break; 2088 case -EINVAL: 2089 pr_info("ftrace failed to modify "); 2090 print_ip_sym(KERN_INFO, ip); 2091 print_ip_ins(" actual: ", (unsigned char *)ip); 2092 pr_cont("\n"); 2093 if (ftrace_expected) { 2094 print_ip_ins(" expected: ", ftrace_expected); 2095 pr_cont("\n"); 2096 } 2097 break; 2098 case -EPERM: 2099 pr_info("ftrace faulted on writing "); 2100 print_ip_sym(KERN_INFO, ip); 2101 break; 2102 default: 2103 pr_info("ftrace faulted on unknown error "); 2104 print_ip_sym(KERN_INFO, ip); 2105 } 2106 print_bug_type(); 2107 if (rec) { 2108 struct ftrace_ops *ops = NULL; 2109 2110 pr_info("ftrace record flags: %lx\n", rec->flags); 2111 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2112 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2113 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2114 ops = ftrace_find_tramp_ops_any(rec); 2115 if (ops) { 2116 do { 2117 pr_cont("\ttramp: %pS (%pS)", 2118 (void *)ops->trampoline, 2119 (void *)ops->func); 2120 ops = ftrace_find_tramp_ops_next(rec, ops); 2121 } while (ops); 2122 } else 2123 pr_cont("\ttramp: ERROR!"); 2124 2125 } 2126 ip = ftrace_get_addr_curr(rec); 2127 pr_cont("\n expected tramp: %lx\n", ip); 2128 } 2129 2130 FTRACE_WARN_ON_ONCE(1); 2131 } 2132 2133 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2134 { 2135 unsigned long flag = 0UL; 2136 2137 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2138 2139 if (skip_record(rec)) 2140 return FTRACE_UPDATE_IGNORE; 2141 2142 /* 2143 * If we are updating calls: 2144 * 2145 * If the record has a ref count, then we need to enable it 2146 * because someone is using it. 2147 * 2148 * Otherwise we make sure its disabled. 2149 * 2150 * If we are disabling calls, then disable all records that 2151 * are enabled. 2152 */ 2153 if (enable && ftrace_rec_count(rec)) 2154 flag = FTRACE_FL_ENABLED; 2155 2156 /* 2157 * If enabling and the REGS flag does not match the REGS_EN, or 2158 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2159 * this record. Set flags to fail the compare against ENABLED. 2160 * Same for direct calls. 2161 */ 2162 if (flag) { 2163 if (!(rec->flags & FTRACE_FL_REGS) != 2164 !(rec->flags & FTRACE_FL_REGS_EN)) 2165 flag |= FTRACE_FL_REGS; 2166 2167 if (!(rec->flags & FTRACE_FL_TRAMP) != 2168 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2169 flag |= FTRACE_FL_TRAMP; 2170 2171 /* 2172 * Direct calls are special, as count matters. 2173 * We must test the record for direct, if the 2174 * DIRECT and DIRECT_EN do not match, but only 2175 * if the count is 1. That's because, if the 2176 * count is something other than one, we do not 2177 * want the direct enabled (it will be done via the 2178 * direct helper). But if DIRECT_EN is set, and 2179 * the count is not one, we need to clear it. 2180 */ 2181 if (ftrace_rec_count(rec) == 1) { 2182 if (!(rec->flags & FTRACE_FL_DIRECT) != 2183 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2184 flag |= FTRACE_FL_DIRECT; 2185 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2186 flag |= FTRACE_FL_DIRECT; 2187 } 2188 } 2189 2190 /* If the state of this record hasn't changed, then do nothing */ 2191 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2192 return FTRACE_UPDATE_IGNORE; 2193 2194 if (flag) { 2195 /* Save off if rec is being enabled (for return value) */ 2196 flag ^= rec->flags & FTRACE_FL_ENABLED; 2197 2198 if (update) { 2199 rec->flags |= FTRACE_FL_ENABLED; 2200 if (flag & FTRACE_FL_REGS) { 2201 if (rec->flags & FTRACE_FL_REGS) 2202 rec->flags |= FTRACE_FL_REGS_EN; 2203 else 2204 rec->flags &= ~FTRACE_FL_REGS_EN; 2205 } 2206 if (flag & FTRACE_FL_TRAMP) { 2207 if (rec->flags & FTRACE_FL_TRAMP) 2208 rec->flags |= FTRACE_FL_TRAMP_EN; 2209 else 2210 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2211 } 2212 2213 if (flag & FTRACE_FL_DIRECT) { 2214 /* 2215 * If there's only one user (direct_ops helper) 2216 * then we can call the direct function 2217 * directly (no ftrace trampoline). 2218 */ 2219 if (ftrace_rec_count(rec) == 1) { 2220 if (rec->flags & FTRACE_FL_DIRECT) 2221 rec->flags |= FTRACE_FL_DIRECT_EN; 2222 else 2223 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2224 } else { 2225 /* 2226 * Can only call directly if there's 2227 * only one callback to the function. 2228 */ 2229 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2230 } 2231 } 2232 } 2233 2234 /* 2235 * If this record is being updated from a nop, then 2236 * return UPDATE_MAKE_CALL. 2237 * Otherwise, 2238 * return UPDATE_MODIFY_CALL to tell the caller to convert 2239 * from the save regs, to a non-save regs function or 2240 * vice versa, or from a trampoline call. 2241 */ 2242 if (flag & FTRACE_FL_ENABLED) { 2243 ftrace_bug_type = FTRACE_BUG_CALL; 2244 return FTRACE_UPDATE_MAKE_CALL; 2245 } 2246 2247 ftrace_bug_type = FTRACE_BUG_UPDATE; 2248 return FTRACE_UPDATE_MODIFY_CALL; 2249 } 2250 2251 if (update) { 2252 /* If there's no more users, clear all flags */ 2253 if (!ftrace_rec_count(rec)) 2254 rec->flags &= FTRACE_FL_DISABLED; 2255 else 2256 /* 2257 * Just disable the record, but keep the ops TRAMP 2258 * and REGS states. The _EN flags must be disabled though. 2259 */ 2260 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2261 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2262 } 2263 2264 ftrace_bug_type = FTRACE_BUG_NOP; 2265 return FTRACE_UPDATE_MAKE_NOP; 2266 } 2267 2268 /** 2269 * ftrace_update_record - set a record that now is tracing or not 2270 * @rec: the record to update 2271 * @enable: set to true if the record is tracing, false to force disable 2272 * 2273 * The records that represent all functions that can be traced need 2274 * to be updated when tracing has been enabled. 2275 */ 2276 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2277 { 2278 return ftrace_check_record(rec, enable, true); 2279 } 2280 2281 /** 2282 * ftrace_test_record - check if the record has been enabled or not 2283 * @rec: the record to test 2284 * @enable: set to true to check if enabled, false if it is disabled 2285 * 2286 * The arch code may need to test if a record is already set to 2287 * tracing to determine how to modify the function code that it 2288 * represents. 2289 */ 2290 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2291 { 2292 return ftrace_check_record(rec, enable, false); 2293 } 2294 2295 static struct ftrace_ops * 2296 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2297 { 2298 struct ftrace_ops *op; 2299 unsigned long ip = rec->ip; 2300 2301 do_for_each_ftrace_op(op, ftrace_ops_list) { 2302 2303 if (!op->trampoline) 2304 continue; 2305 2306 if (hash_contains_ip(ip, op->func_hash)) 2307 return op; 2308 } while_for_each_ftrace_op(op); 2309 2310 return NULL; 2311 } 2312 2313 static struct ftrace_ops * 2314 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2315 { 2316 struct ftrace_ops *op; 2317 unsigned long ip = rec->ip; 2318 2319 do_for_each_ftrace_op(op, ftrace_ops_list) { 2320 2321 if (op == op_exclude || !op->trampoline) 2322 continue; 2323 2324 if (hash_contains_ip(ip, op->func_hash)) 2325 return op; 2326 } while_for_each_ftrace_op(op); 2327 2328 return NULL; 2329 } 2330 2331 static struct ftrace_ops * 2332 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2333 struct ftrace_ops *op) 2334 { 2335 unsigned long ip = rec->ip; 2336 2337 while_for_each_ftrace_op(op) { 2338 2339 if (!op->trampoline) 2340 continue; 2341 2342 if (hash_contains_ip(ip, op->func_hash)) 2343 return op; 2344 } 2345 2346 return NULL; 2347 } 2348 2349 static struct ftrace_ops * 2350 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2351 { 2352 struct ftrace_ops *op; 2353 unsigned long ip = rec->ip; 2354 2355 /* 2356 * Need to check removed ops first. 2357 * If they are being removed, and this rec has a tramp, 2358 * and this rec is in the ops list, then it would be the 2359 * one with the tramp. 2360 */ 2361 if (removed_ops) { 2362 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2363 return removed_ops; 2364 } 2365 2366 /* 2367 * Need to find the current trampoline for a rec. 2368 * Now, a trampoline is only attached to a rec if there 2369 * was a single 'ops' attached to it. But this can be called 2370 * when we are adding another op to the rec or removing the 2371 * current one. Thus, if the op is being added, we can 2372 * ignore it because it hasn't attached itself to the rec 2373 * yet. 2374 * 2375 * If an ops is being modified (hooking to different functions) 2376 * then we don't care about the new functions that are being 2377 * added, just the old ones (that are probably being removed). 2378 * 2379 * If we are adding an ops to a function that already is using 2380 * a trampoline, it needs to be removed (trampolines are only 2381 * for single ops connected), then an ops that is not being 2382 * modified also needs to be checked. 2383 */ 2384 do_for_each_ftrace_op(op, ftrace_ops_list) { 2385 2386 if (!op->trampoline) 2387 continue; 2388 2389 /* 2390 * If the ops is being added, it hasn't gotten to 2391 * the point to be removed from this tree yet. 2392 */ 2393 if (op->flags & FTRACE_OPS_FL_ADDING) 2394 continue; 2395 2396 2397 /* 2398 * If the ops is being modified and is in the old 2399 * hash, then it is probably being removed from this 2400 * function. 2401 */ 2402 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2403 hash_contains_ip(ip, &op->old_hash)) 2404 return op; 2405 /* 2406 * If the ops is not being added or modified, and it's 2407 * in its normal filter hash, then this must be the one 2408 * we want! 2409 */ 2410 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2411 hash_contains_ip(ip, op->func_hash)) 2412 return op; 2413 2414 } while_for_each_ftrace_op(op); 2415 2416 return NULL; 2417 } 2418 2419 static struct ftrace_ops * 2420 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2421 { 2422 struct ftrace_ops *op; 2423 unsigned long ip = rec->ip; 2424 2425 do_for_each_ftrace_op(op, ftrace_ops_list) { 2426 /* pass rec in as regs to have non-NULL val */ 2427 if (hash_contains_ip(ip, op->func_hash)) 2428 return op; 2429 } while_for_each_ftrace_op(op); 2430 2431 return NULL; 2432 } 2433 2434 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2435 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2436 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2437 static DEFINE_MUTEX(direct_mutex); 2438 int ftrace_direct_func_count; 2439 2440 /* 2441 * Search the direct_functions hash to see if the given instruction pointer 2442 * has a direct caller attached to it. 2443 */ 2444 unsigned long ftrace_find_rec_direct(unsigned long ip) 2445 { 2446 struct ftrace_func_entry *entry; 2447 2448 entry = __ftrace_lookup_ip(direct_functions, ip); 2449 if (!entry) 2450 return 0; 2451 2452 return entry->direct; 2453 } 2454 2455 static struct ftrace_func_entry* 2456 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2457 struct ftrace_hash **free_hash) 2458 { 2459 struct ftrace_func_entry *entry; 2460 2461 if (ftrace_hash_empty(direct_functions) || 2462 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2463 struct ftrace_hash *new_hash; 2464 int size = ftrace_hash_empty(direct_functions) ? 0 : 2465 direct_functions->count + 1; 2466 2467 if (size < 32) 2468 size = 32; 2469 2470 new_hash = dup_hash(direct_functions, size); 2471 if (!new_hash) 2472 return NULL; 2473 2474 *free_hash = direct_functions; 2475 direct_functions = new_hash; 2476 } 2477 2478 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2479 if (!entry) 2480 return NULL; 2481 2482 entry->ip = ip; 2483 entry->direct = addr; 2484 __add_hash_entry(direct_functions, entry); 2485 return entry; 2486 } 2487 2488 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2489 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2490 { 2491 struct pt_regs *regs = ftrace_get_regs(fregs); 2492 unsigned long addr; 2493 2494 addr = ftrace_find_rec_direct(ip); 2495 if (!addr) 2496 return; 2497 2498 arch_ftrace_set_direct_caller(regs, addr); 2499 } 2500 2501 struct ftrace_ops direct_ops = { 2502 .func = call_direct_funcs, 2503 .flags = FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2504 | FTRACE_OPS_FL_PERMANENT, 2505 /* 2506 * By declaring the main trampoline as this trampoline 2507 * it will never have one allocated for it. Allocated 2508 * trampolines should not call direct functions. 2509 * The direct_ops should only be called by the builtin 2510 * ftrace_regs_caller trampoline. 2511 */ 2512 .trampoline = FTRACE_REGS_ADDR, 2513 }; 2514 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2515 2516 /** 2517 * ftrace_get_addr_new - Get the call address to set to 2518 * @rec: The ftrace record descriptor 2519 * 2520 * If the record has the FTRACE_FL_REGS set, that means that it 2521 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2522 * is not set, then it wants to convert to the normal callback. 2523 * 2524 * Returns the address of the trampoline to set to 2525 */ 2526 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2527 { 2528 struct ftrace_ops *ops; 2529 unsigned long addr; 2530 2531 if ((rec->flags & FTRACE_FL_DIRECT) && 2532 (ftrace_rec_count(rec) == 1)) { 2533 addr = ftrace_find_rec_direct(rec->ip); 2534 if (addr) 2535 return addr; 2536 WARN_ON_ONCE(1); 2537 } 2538 2539 /* Trampolines take precedence over regs */ 2540 if (rec->flags & FTRACE_FL_TRAMP) { 2541 ops = ftrace_find_tramp_ops_new(rec); 2542 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2543 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2544 (void *)rec->ip, (void *)rec->ip, rec->flags); 2545 /* Ftrace is shutting down, return anything */ 2546 return (unsigned long)FTRACE_ADDR; 2547 } 2548 return ops->trampoline; 2549 } 2550 2551 if (rec->flags & FTRACE_FL_REGS) 2552 return (unsigned long)FTRACE_REGS_ADDR; 2553 else 2554 return (unsigned long)FTRACE_ADDR; 2555 } 2556 2557 /** 2558 * ftrace_get_addr_curr - Get the call address that is already there 2559 * @rec: The ftrace record descriptor 2560 * 2561 * The FTRACE_FL_REGS_EN is set when the record already points to 2562 * a function that saves all the regs. Basically the '_EN' version 2563 * represents the current state of the function. 2564 * 2565 * Returns the address of the trampoline that is currently being called 2566 */ 2567 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2568 { 2569 struct ftrace_ops *ops; 2570 unsigned long addr; 2571 2572 /* Direct calls take precedence over trampolines */ 2573 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2574 addr = ftrace_find_rec_direct(rec->ip); 2575 if (addr) 2576 return addr; 2577 WARN_ON_ONCE(1); 2578 } 2579 2580 /* Trampolines take precedence over regs */ 2581 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2582 ops = ftrace_find_tramp_ops_curr(rec); 2583 if (FTRACE_WARN_ON(!ops)) { 2584 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2585 (void *)rec->ip, (void *)rec->ip); 2586 /* Ftrace is shutting down, return anything */ 2587 return (unsigned long)FTRACE_ADDR; 2588 } 2589 return ops->trampoline; 2590 } 2591 2592 if (rec->flags & FTRACE_FL_REGS_EN) 2593 return (unsigned long)FTRACE_REGS_ADDR; 2594 else 2595 return (unsigned long)FTRACE_ADDR; 2596 } 2597 2598 static int 2599 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2600 { 2601 unsigned long ftrace_old_addr; 2602 unsigned long ftrace_addr; 2603 int ret; 2604 2605 ftrace_addr = ftrace_get_addr_new(rec); 2606 2607 /* This needs to be done before we call ftrace_update_record */ 2608 ftrace_old_addr = ftrace_get_addr_curr(rec); 2609 2610 ret = ftrace_update_record(rec, enable); 2611 2612 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2613 2614 switch (ret) { 2615 case FTRACE_UPDATE_IGNORE: 2616 return 0; 2617 2618 case FTRACE_UPDATE_MAKE_CALL: 2619 ftrace_bug_type = FTRACE_BUG_CALL; 2620 return ftrace_make_call(rec, ftrace_addr); 2621 2622 case FTRACE_UPDATE_MAKE_NOP: 2623 ftrace_bug_type = FTRACE_BUG_NOP; 2624 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2625 2626 case FTRACE_UPDATE_MODIFY_CALL: 2627 ftrace_bug_type = FTRACE_BUG_UPDATE; 2628 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2629 } 2630 2631 return -1; /* unknown ftrace bug */ 2632 } 2633 2634 void __weak ftrace_replace_code(int mod_flags) 2635 { 2636 struct dyn_ftrace *rec; 2637 struct ftrace_page *pg; 2638 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2639 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2640 int failed; 2641 2642 if (unlikely(ftrace_disabled)) 2643 return; 2644 2645 do_for_each_ftrace_rec(pg, rec) { 2646 2647 if (skip_record(rec)) 2648 continue; 2649 2650 failed = __ftrace_replace_code(rec, enable); 2651 if (failed) { 2652 ftrace_bug(failed, rec); 2653 /* Stop processing */ 2654 return; 2655 } 2656 if (schedulable) 2657 cond_resched(); 2658 } while_for_each_ftrace_rec(); 2659 } 2660 2661 struct ftrace_rec_iter { 2662 struct ftrace_page *pg; 2663 int index; 2664 }; 2665 2666 /** 2667 * ftrace_rec_iter_start - start up iterating over traced functions 2668 * 2669 * Returns an iterator handle that is used to iterate over all 2670 * the records that represent address locations where functions 2671 * are traced. 2672 * 2673 * May return NULL if no records are available. 2674 */ 2675 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2676 { 2677 /* 2678 * We only use a single iterator. 2679 * Protected by the ftrace_lock mutex. 2680 */ 2681 static struct ftrace_rec_iter ftrace_rec_iter; 2682 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2683 2684 iter->pg = ftrace_pages_start; 2685 iter->index = 0; 2686 2687 /* Could have empty pages */ 2688 while (iter->pg && !iter->pg->index) 2689 iter->pg = iter->pg->next; 2690 2691 if (!iter->pg) 2692 return NULL; 2693 2694 return iter; 2695 } 2696 2697 /** 2698 * ftrace_rec_iter_next - get the next record to process. 2699 * @iter: The handle to the iterator. 2700 * 2701 * Returns the next iterator after the given iterator @iter. 2702 */ 2703 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2704 { 2705 iter->index++; 2706 2707 if (iter->index >= iter->pg->index) { 2708 iter->pg = iter->pg->next; 2709 iter->index = 0; 2710 2711 /* Could have empty pages */ 2712 while (iter->pg && !iter->pg->index) 2713 iter->pg = iter->pg->next; 2714 } 2715 2716 if (!iter->pg) 2717 return NULL; 2718 2719 return iter; 2720 } 2721 2722 /** 2723 * ftrace_rec_iter_record - get the record at the iterator location 2724 * @iter: The current iterator location 2725 * 2726 * Returns the record that the current @iter is at. 2727 */ 2728 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2729 { 2730 return &iter->pg->records[iter->index]; 2731 } 2732 2733 static int 2734 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2735 { 2736 int ret; 2737 2738 if (unlikely(ftrace_disabled)) 2739 return 0; 2740 2741 ret = ftrace_init_nop(mod, rec); 2742 if (ret) { 2743 ftrace_bug_type = FTRACE_BUG_INIT; 2744 ftrace_bug(ret, rec); 2745 return 0; 2746 } 2747 return 1; 2748 } 2749 2750 /* 2751 * archs can override this function if they must do something 2752 * before the modifying code is performed. 2753 */ 2754 void __weak ftrace_arch_code_modify_prepare(void) 2755 { 2756 } 2757 2758 /* 2759 * archs can override this function if they must do something 2760 * after the modifying code is performed. 2761 */ 2762 void __weak ftrace_arch_code_modify_post_process(void) 2763 { 2764 } 2765 2766 void ftrace_modify_all_code(int command) 2767 { 2768 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2769 int mod_flags = 0; 2770 int err = 0; 2771 2772 if (command & FTRACE_MAY_SLEEP) 2773 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2774 2775 /* 2776 * If the ftrace_caller calls a ftrace_ops func directly, 2777 * we need to make sure that it only traces functions it 2778 * expects to trace. When doing the switch of functions, 2779 * we need to update to the ftrace_ops_list_func first 2780 * before the transition between old and new calls are set, 2781 * as the ftrace_ops_list_func will check the ops hashes 2782 * to make sure the ops are having the right functions 2783 * traced. 2784 */ 2785 if (update) { 2786 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2787 if (FTRACE_WARN_ON(err)) 2788 return; 2789 } 2790 2791 if (command & FTRACE_UPDATE_CALLS) 2792 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2793 else if (command & FTRACE_DISABLE_CALLS) 2794 ftrace_replace_code(mod_flags); 2795 2796 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2797 function_trace_op = set_function_trace_op; 2798 smp_wmb(); 2799 /* If irqs are disabled, we are in stop machine */ 2800 if (!irqs_disabled()) 2801 smp_call_function(ftrace_sync_ipi, NULL, 1); 2802 err = ftrace_update_ftrace_func(ftrace_trace_function); 2803 if (FTRACE_WARN_ON(err)) 2804 return; 2805 } 2806 2807 if (command & FTRACE_START_FUNC_RET) 2808 err = ftrace_enable_ftrace_graph_caller(); 2809 else if (command & FTRACE_STOP_FUNC_RET) 2810 err = ftrace_disable_ftrace_graph_caller(); 2811 FTRACE_WARN_ON(err); 2812 } 2813 2814 static int __ftrace_modify_code(void *data) 2815 { 2816 int *command = data; 2817 2818 ftrace_modify_all_code(*command); 2819 2820 return 0; 2821 } 2822 2823 /** 2824 * ftrace_run_stop_machine - go back to the stop machine method 2825 * @command: The command to tell ftrace what to do 2826 * 2827 * If an arch needs to fall back to the stop machine method, the 2828 * it can call this function. 2829 */ 2830 void ftrace_run_stop_machine(int command) 2831 { 2832 stop_machine(__ftrace_modify_code, &command, NULL); 2833 } 2834 2835 /** 2836 * arch_ftrace_update_code - modify the code to trace or not trace 2837 * @command: The command that needs to be done 2838 * 2839 * Archs can override this function if it does not need to 2840 * run stop_machine() to modify code. 2841 */ 2842 void __weak arch_ftrace_update_code(int command) 2843 { 2844 ftrace_run_stop_machine(command); 2845 } 2846 2847 static void ftrace_run_update_code(int command) 2848 { 2849 ftrace_arch_code_modify_prepare(); 2850 2851 /* 2852 * By default we use stop_machine() to modify the code. 2853 * But archs can do what ever they want as long as it 2854 * is safe. The stop_machine() is the safest, but also 2855 * produces the most overhead. 2856 */ 2857 arch_ftrace_update_code(command); 2858 2859 ftrace_arch_code_modify_post_process(); 2860 } 2861 2862 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2863 struct ftrace_ops_hash *old_hash) 2864 { 2865 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2866 ops->old_hash.filter_hash = old_hash->filter_hash; 2867 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2868 ftrace_run_update_code(command); 2869 ops->old_hash.filter_hash = NULL; 2870 ops->old_hash.notrace_hash = NULL; 2871 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2872 } 2873 2874 static ftrace_func_t saved_ftrace_func; 2875 static int ftrace_start_up; 2876 2877 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2878 { 2879 } 2880 2881 /* List of trace_ops that have allocated trampolines */ 2882 static LIST_HEAD(ftrace_ops_trampoline_list); 2883 2884 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2885 { 2886 lockdep_assert_held(&ftrace_lock); 2887 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2888 } 2889 2890 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2891 { 2892 lockdep_assert_held(&ftrace_lock); 2893 list_del_rcu(&ops->list); 2894 synchronize_rcu(); 2895 } 2896 2897 /* 2898 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2899 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2900 * not a module. 2901 */ 2902 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2903 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2904 2905 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2906 { 2907 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2908 ops->trampoline) { 2909 /* 2910 * Record the text poke event before the ksymbol unregister 2911 * event. 2912 */ 2913 perf_event_text_poke((void *)ops->trampoline, 2914 (void *)ops->trampoline, 2915 ops->trampoline_size, NULL, 0); 2916 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2917 ops->trampoline, ops->trampoline_size, 2918 true, FTRACE_TRAMPOLINE_SYM); 2919 /* Remove from kallsyms after the perf events */ 2920 ftrace_remove_trampoline_from_kallsyms(ops); 2921 } 2922 2923 arch_ftrace_trampoline_free(ops); 2924 } 2925 2926 static void ftrace_startup_enable(int command) 2927 { 2928 if (saved_ftrace_func != ftrace_trace_function) { 2929 saved_ftrace_func = ftrace_trace_function; 2930 command |= FTRACE_UPDATE_TRACE_FUNC; 2931 } 2932 2933 if (!command || !ftrace_enabled) 2934 return; 2935 2936 ftrace_run_update_code(command); 2937 } 2938 2939 static void ftrace_startup_all(int command) 2940 { 2941 update_all_ops = true; 2942 ftrace_startup_enable(command); 2943 update_all_ops = false; 2944 } 2945 2946 int ftrace_startup(struct ftrace_ops *ops, int command) 2947 { 2948 int ret; 2949 2950 if (unlikely(ftrace_disabled)) 2951 return -ENODEV; 2952 2953 ret = __register_ftrace_function(ops); 2954 if (ret) 2955 return ret; 2956 2957 ftrace_start_up++; 2958 2959 /* 2960 * Note that ftrace probes uses this to start up 2961 * and modify functions it will probe. But we still 2962 * set the ADDING flag for modification, as probes 2963 * do not have trampolines. If they add them in the 2964 * future, then the probes will need to distinguish 2965 * between adding and updating probes. 2966 */ 2967 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2968 2969 ret = ftrace_hash_ipmodify_enable(ops); 2970 if (ret < 0) { 2971 /* Rollback registration process */ 2972 __unregister_ftrace_function(ops); 2973 ftrace_start_up--; 2974 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2975 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2976 ftrace_trampoline_free(ops); 2977 return ret; 2978 } 2979 2980 if (ftrace_hash_rec_enable(ops, 1)) 2981 command |= FTRACE_UPDATE_CALLS; 2982 2983 ftrace_startup_enable(command); 2984 2985 /* 2986 * If ftrace is in an undefined state, we just remove ops from list 2987 * to prevent the NULL pointer, instead of totally rolling it back and 2988 * free trampoline, because those actions could cause further damage. 2989 */ 2990 if (unlikely(ftrace_disabled)) { 2991 __unregister_ftrace_function(ops); 2992 return -ENODEV; 2993 } 2994 2995 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2996 2997 return 0; 2998 } 2999 3000 int ftrace_shutdown(struct ftrace_ops *ops, int command) 3001 { 3002 int ret; 3003 3004 if (unlikely(ftrace_disabled)) 3005 return -ENODEV; 3006 3007 ret = __unregister_ftrace_function(ops); 3008 if (ret) 3009 return ret; 3010 3011 ftrace_start_up--; 3012 /* 3013 * Just warn in case of unbalance, no need to kill ftrace, it's not 3014 * critical but the ftrace_call callers may be never nopped again after 3015 * further ftrace uses. 3016 */ 3017 WARN_ON_ONCE(ftrace_start_up < 0); 3018 3019 /* Disabling ipmodify never fails */ 3020 ftrace_hash_ipmodify_disable(ops); 3021 3022 if (ftrace_hash_rec_disable(ops, 1)) 3023 command |= FTRACE_UPDATE_CALLS; 3024 3025 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3026 3027 if (saved_ftrace_func != ftrace_trace_function) { 3028 saved_ftrace_func = ftrace_trace_function; 3029 command |= FTRACE_UPDATE_TRACE_FUNC; 3030 } 3031 3032 if (!command || !ftrace_enabled) 3033 goto out; 3034 3035 /* 3036 * If the ops uses a trampoline, then it needs to be 3037 * tested first on update. 3038 */ 3039 ops->flags |= FTRACE_OPS_FL_REMOVING; 3040 removed_ops = ops; 3041 3042 /* The trampoline logic checks the old hashes */ 3043 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3044 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3045 3046 ftrace_run_update_code(command); 3047 3048 /* 3049 * If there's no more ops registered with ftrace, run a 3050 * sanity check to make sure all rec flags are cleared. 3051 */ 3052 if (rcu_dereference_protected(ftrace_ops_list, 3053 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3054 struct ftrace_page *pg; 3055 struct dyn_ftrace *rec; 3056 3057 do_for_each_ftrace_rec(pg, rec) { 3058 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3059 pr_warn(" %pS flags:%lx\n", 3060 (void *)rec->ip, rec->flags); 3061 } while_for_each_ftrace_rec(); 3062 } 3063 3064 ops->old_hash.filter_hash = NULL; 3065 ops->old_hash.notrace_hash = NULL; 3066 3067 removed_ops = NULL; 3068 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3069 3070 out: 3071 /* 3072 * Dynamic ops may be freed, we must make sure that all 3073 * callers are done before leaving this function. 3074 * The same goes for freeing the per_cpu data of the per_cpu 3075 * ops. 3076 */ 3077 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3078 /* 3079 * We need to do a hard force of sched synchronization. 3080 * This is because we use preempt_disable() to do RCU, but 3081 * the function tracers can be called where RCU is not watching 3082 * (like before user_exit()). We can not rely on the RCU 3083 * infrastructure to do the synchronization, thus we must do it 3084 * ourselves. 3085 */ 3086 synchronize_rcu_tasks_rude(); 3087 3088 /* 3089 * When the kernel is preemptive, tasks can be preempted 3090 * while on a ftrace trampoline. Just scheduling a task on 3091 * a CPU is not good enough to flush them. Calling 3092 * synchronize_rcu_tasks() will wait for those tasks to 3093 * execute and either schedule voluntarily or enter user space. 3094 */ 3095 if (IS_ENABLED(CONFIG_PREEMPTION)) 3096 synchronize_rcu_tasks(); 3097 3098 ftrace_trampoline_free(ops); 3099 } 3100 3101 return 0; 3102 } 3103 3104 static u64 ftrace_update_time; 3105 unsigned long ftrace_update_tot_cnt; 3106 unsigned long ftrace_number_of_pages; 3107 unsigned long ftrace_number_of_groups; 3108 3109 static inline int ops_traces_mod(struct ftrace_ops *ops) 3110 { 3111 /* 3112 * Filter_hash being empty will default to trace module. 3113 * But notrace hash requires a test of individual module functions. 3114 */ 3115 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3116 ftrace_hash_empty(ops->func_hash->notrace_hash); 3117 } 3118 3119 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3120 { 3121 bool init_nop = ftrace_need_init_nop(); 3122 struct ftrace_page *pg; 3123 struct dyn_ftrace *p; 3124 u64 start, stop; 3125 unsigned long update_cnt = 0; 3126 unsigned long rec_flags = 0; 3127 int i; 3128 3129 start = ftrace_now(raw_smp_processor_id()); 3130 3131 /* 3132 * When a module is loaded, this function is called to convert 3133 * the calls to mcount in its text to nops, and also to create 3134 * an entry in the ftrace data. Now, if ftrace is activated 3135 * after this call, but before the module sets its text to 3136 * read-only, the modification of enabling ftrace can fail if 3137 * the read-only is done while ftrace is converting the calls. 3138 * To prevent this, the module's records are set as disabled 3139 * and will be enabled after the call to set the module's text 3140 * to read-only. 3141 */ 3142 if (mod) 3143 rec_flags |= FTRACE_FL_DISABLED; 3144 3145 for (pg = new_pgs; pg; pg = pg->next) { 3146 3147 for (i = 0; i < pg->index; i++) { 3148 3149 /* If something went wrong, bail without enabling anything */ 3150 if (unlikely(ftrace_disabled)) 3151 return -1; 3152 3153 p = &pg->records[i]; 3154 p->flags = rec_flags; 3155 3156 /* 3157 * Do the initial record conversion from mcount jump 3158 * to the NOP instructions. 3159 */ 3160 if (init_nop && !ftrace_nop_initialize(mod, p)) 3161 break; 3162 3163 update_cnt++; 3164 } 3165 } 3166 3167 stop = ftrace_now(raw_smp_processor_id()); 3168 ftrace_update_time = stop - start; 3169 ftrace_update_tot_cnt += update_cnt; 3170 3171 return 0; 3172 } 3173 3174 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3175 { 3176 int order; 3177 int pages; 3178 int cnt; 3179 3180 if (WARN_ON(!count)) 3181 return -EINVAL; 3182 3183 /* We want to fill as much as possible, with no empty pages */ 3184 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3185 order = fls(pages) - 1; 3186 3187 again: 3188 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3189 3190 if (!pg->records) { 3191 /* if we can't allocate this size, try something smaller */ 3192 if (!order) 3193 return -ENOMEM; 3194 order--; 3195 goto again; 3196 } 3197 3198 ftrace_number_of_pages += 1 << order; 3199 ftrace_number_of_groups++; 3200 3201 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3202 pg->order = order; 3203 3204 if (cnt > count) 3205 cnt = count; 3206 3207 return cnt; 3208 } 3209 3210 static struct ftrace_page * 3211 ftrace_allocate_pages(unsigned long num_to_init) 3212 { 3213 struct ftrace_page *start_pg; 3214 struct ftrace_page *pg; 3215 int cnt; 3216 3217 if (!num_to_init) 3218 return NULL; 3219 3220 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3221 if (!pg) 3222 return NULL; 3223 3224 /* 3225 * Try to allocate as much as possible in one continues 3226 * location that fills in all of the space. We want to 3227 * waste as little space as possible. 3228 */ 3229 for (;;) { 3230 cnt = ftrace_allocate_records(pg, num_to_init); 3231 if (cnt < 0) 3232 goto free_pages; 3233 3234 num_to_init -= cnt; 3235 if (!num_to_init) 3236 break; 3237 3238 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3239 if (!pg->next) 3240 goto free_pages; 3241 3242 pg = pg->next; 3243 } 3244 3245 return start_pg; 3246 3247 free_pages: 3248 pg = start_pg; 3249 while (pg) { 3250 if (pg->records) { 3251 free_pages((unsigned long)pg->records, pg->order); 3252 ftrace_number_of_pages -= 1 << pg->order; 3253 } 3254 start_pg = pg->next; 3255 kfree(pg); 3256 pg = start_pg; 3257 ftrace_number_of_groups--; 3258 } 3259 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3260 return NULL; 3261 } 3262 3263 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3264 3265 struct ftrace_iterator { 3266 loff_t pos; 3267 loff_t func_pos; 3268 loff_t mod_pos; 3269 struct ftrace_page *pg; 3270 struct dyn_ftrace *func; 3271 struct ftrace_func_probe *probe; 3272 struct ftrace_func_entry *probe_entry; 3273 struct trace_parser parser; 3274 struct ftrace_hash *hash; 3275 struct ftrace_ops *ops; 3276 struct trace_array *tr; 3277 struct list_head *mod_list; 3278 int pidx; 3279 int idx; 3280 unsigned flags; 3281 }; 3282 3283 static void * 3284 t_probe_next(struct seq_file *m, loff_t *pos) 3285 { 3286 struct ftrace_iterator *iter = m->private; 3287 struct trace_array *tr = iter->ops->private; 3288 struct list_head *func_probes; 3289 struct ftrace_hash *hash; 3290 struct list_head *next; 3291 struct hlist_node *hnd = NULL; 3292 struct hlist_head *hhd; 3293 int size; 3294 3295 (*pos)++; 3296 iter->pos = *pos; 3297 3298 if (!tr) 3299 return NULL; 3300 3301 func_probes = &tr->func_probes; 3302 if (list_empty(func_probes)) 3303 return NULL; 3304 3305 if (!iter->probe) { 3306 next = func_probes->next; 3307 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3308 } 3309 3310 if (iter->probe_entry) 3311 hnd = &iter->probe_entry->hlist; 3312 3313 hash = iter->probe->ops.func_hash->filter_hash; 3314 3315 /* 3316 * A probe being registered may temporarily have an empty hash 3317 * and it's at the end of the func_probes list. 3318 */ 3319 if (!hash || hash == EMPTY_HASH) 3320 return NULL; 3321 3322 size = 1 << hash->size_bits; 3323 3324 retry: 3325 if (iter->pidx >= size) { 3326 if (iter->probe->list.next == func_probes) 3327 return NULL; 3328 next = iter->probe->list.next; 3329 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3330 hash = iter->probe->ops.func_hash->filter_hash; 3331 size = 1 << hash->size_bits; 3332 iter->pidx = 0; 3333 } 3334 3335 hhd = &hash->buckets[iter->pidx]; 3336 3337 if (hlist_empty(hhd)) { 3338 iter->pidx++; 3339 hnd = NULL; 3340 goto retry; 3341 } 3342 3343 if (!hnd) 3344 hnd = hhd->first; 3345 else { 3346 hnd = hnd->next; 3347 if (!hnd) { 3348 iter->pidx++; 3349 goto retry; 3350 } 3351 } 3352 3353 if (WARN_ON_ONCE(!hnd)) 3354 return NULL; 3355 3356 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3357 3358 return iter; 3359 } 3360 3361 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3362 { 3363 struct ftrace_iterator *iter = m->private; 3364 void *p = NULL; 3365 loff_t l; 3366 3367 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3368 return NULL; 3369 3370 if (iter->mod_pos > *pos) 3371 return NULL; 3372 3373 iter->probe = NULL; 3374 iter->probe_entry = NULL; 3375 iter->pidx = 0; 3376 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3377 p = t_probe_next(m, &l); 3378 if (!p) 3379 break; 3380 } 3381 if (!p) 3382 return NULL; 3383 3384 /* Only set this if we have an item */ 3385 iter->flags |= FTRACE_ITER_PROBE; 3386 3387 return iter; 3388 } 3389 3390 static int 3391 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3392 { 3393 struct ftrace_func_entry *probe_entry; 3394 struct ftrace_probe_ops *probe_ops; 3395 struct ftrace_func_probe *probe; 3396 3397 probe = iter->probe; 3398 probe_entry = iter->probe_entry; 3399 3400 if (WARN_ON_ONCE(!probe || !probe_entry)) 3401 return -EIO; 3402 3403 probe_ops = probe->probe_ops; 3404 3405 if (probe_ops->print) 3406 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3407 3408 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3409 (void *)probe_ops->func); 3410 3411 return 0; 3412 } 3413 3414 static void * 3415 t_mod_next(struct seq_file *m, loff_t *pos) 3416 { 3417 struct ftrace_iterator *iter = m->private; 3418 struct trace_array *tr = iter->tr; 3419 3420 (*pos)++; 3421 iter->pos = *pos; 3422 3423 iter->mod_list = iter->mod_list->next; 3424 3425 if (iter->mod_list == &tr->mod_trace || 3426 iter->mod_list == &tr->mod_notrace) { 3427 iter->flags &= ~FTRACE_ITER_MOD; 3428 return NULL; 3429 } 3430 3431 iter->mod_pos = *pos; 3432 3433 return iter; 3434 } 3435 3436 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3437 { 3438 struct ftrace_iterator *iter = m->private; 3439 void *p = NULL; 3440 loff_t l; 3441 3442 if (iter->func_pos > *pos) 3443 return NULL; 3444 3445 iter->mod_pos = iter->func_pos; 3446 3447 /* probes are only available if tr is set */ 3448 if (!iter->tr) 3449 return NULL; 3450 3451 for (l = 0; l <= (*pos - iter->func_pos); ) { 3452 p = t_mod_next(m, &l); 3453 if (!p) 3454 break; 3455 } 3456 if (!p) { 3457 iter->flags &= ~FTRACE_ITER_MOD; 3458 return t_probe_start(m, pos); 3459 } 3460 3461 /* Only set this if we have an item */ 3462 iter->flags |= FTRACE_ITER_MOD; 3463 3464 return iter; 3465 } 3466 3467 static int 3468 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3469 { 3470 struct ftrace_mod_load *ftrace_mod; 3471 struct trace_array *tr = iter->tr; 3472 3473 if (WARN_ON_ONCE(!iter->mod_list) || 3474 iter->mod_list == &tr->mod_trace || 3475 iter->mod_list == &tr->mod_notrace) 3476 return -EIO; 3477 3478 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3479 3480 if (ftrace_mod->func) 3481 seq_printf(m, "%s", ftrace_mod->func); 3482 else 3483 seq_putc(m, '*'); 3484 3485 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3486 3487 return 0; 3488 } 3489 3490 static void * 3491 t_func_next(struct seq_file *m, loff_t *pos) 3492 { 3493 struct ftrace_iterator *iter = m->private; 3494 struct dyn_ftrace *rec = NULL; 3495 3496 (*pos)++; 3497 3498 retry: 3499 if (iter->idx >= iter->pg->index) { 3500 if (iter->pg->next) { 3501 iter->pg = iter->pg->next; 3502 iter->idx = 0; 3503 goto retry; 3504 } 3505 } else { 3506 rec = &iter->pg->records[iter->idx++]; 3507 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3508 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3509 3510 ((iter->flags & FTRACE_ITER_ENABLED) && 3511 !(rec->flags & FTRACE_FL_ENABLED))) { 3512 3513 rec = NULL; 3514 goto retry; 3515 } 3516 } 3517 3518 if (!rec) 3519 return NULL; 3520 3521 iter->pos = iter->func_pos = *pos; 3522 iter->func = rec; 3523 3524 return iter; 3525 } 3526 3527 static void * 3528 t_next(struct seq_file *m, void *v, loff_t *pos) 3529 { 3530 struct ftrace_iterator *iter = m->private; 3531 loff_t l = *pos; /* t_probe_start() must use original pos */ 3532 void *ret; 3533 3534 if (unlikely(ftrace_disabled)) 3535 return NULL; 3536 3537 if (iter->flags & FTRACE_ITER_PROBE) 3538 return t_probe_next(m, pos); 3539 3540 if (iter->flags & FTRACE_ITER_MOD) 3541 return t_mod_next(m, pos); 3542 3543 if (iter->flags & FTRACE_ITER_PRINTALL) { 3544 /* next must increment pos, and t_probe_start does not */ 3545 (*pos)++; 3546 return t_mod_start(m, &l); 3547 } 3548 3549 ret = t_func_next(m, pos); 3550 3551 if (!ret) 3552 return t_mod_start(m, &l); 3553 3554 return ret; 3555 } 3556 3557 static void reset_iter_read(struct ftrace_iterator *iter) 3558 { 3559 iter->pos = 0; 3560 iter->func_pos = 0; 3561 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3562 } 3563 3564 static void *t_start(struct seq_file *m, loff_t *pos) 3565 { 3566 struct ftrace_iterator *iter = m->private; 3567 void *p = NULL; 3568 loff_t l; 3569 3570 mutex_lock(&ftrace_lock); 3571 3572 if (unlikely(ftrace_disabled)) 3573 return NULL; 3574 3575 /* 3576 * If an lseek was done, then reset and start from beginning. 3577 */ 3578 if (*pos < iter->pos) 3579 reset_iter_read(iter); 3580 3581 /* 3582 * For set_ftrace_filter reading, if we have the filter 3583 * off, we can short cut and just print out that all 3584 * functions are enabled. 3585 */ 3586 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3587 ftrace_hash_empty(iter->hash)) { 3588 iter->func_pos = 1; /* Account for the message */ 3589 if (*pos > 0) 3590 return t_mod_start(m, pos); 3591 iter->flags |= FTRACE_ITER_PRINTALL; 3592 /* reset in case of seek/pread */ 3593 iter->flags &= ~FTRACE_ITER_PROBE; 3594 return iter; 3595 } 3596 3597 if (iter->flags & FTRACE_ITER_MOD) 3598 return t_mod_start(m, pos); 3599 3600 /* 3601 * Unfortunately, we need to restart at ftrace_pages_start 3602 * every time we let go of the ftrace_mutex. This is because 3603 * those pointers can change without the lock. 3604 */ 3605 iter->pg = ftrace_pages_start; 3606 iter->idx = 0; 3607 for (l = 0; l <= *pos; ) { 3608 p = t_func_next(m, &l); 3609 if (!p) 3610 break; 3611 } 3612 3613 if (!p) 3614 return t_mod_start(m, pos); 3615 3616 return iter; 3617 } 3618 3619 static void t_stop(struct seq_file *m, void *p) 3620 { 3621 mutex_unlock(&ftrace_lock); 3622 } 3623 3624 void * __weak 3625 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3626 { 3627 return NULL; 3628 } 3629 3630 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3631 struct dyn_ftrace *rec) 3632 { 3633 void *ptr; 3634 3635 ptr = arch_ftrace_trampoline_func(ops, rec); 3636 if (ptr) 3637 seq_printf(m, " ->%pS", ptr); 3638 } 3639 3640 #ifdef FTRACE_MCOUNT_MAX_OFFSET 3641 /* 3642 * Weak functions can still have an mcount/fentry that is saved in 3643 * the __mcount_loc section. These can be detected by having a 3644 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 3645 * symbol found by kallsyms is not the function that the mcount/fentry 3646 * is part of. The offset is much greater in these cases. 3647 * 3648 * Test the record to make sure that the ip points to a valid kallsyms 3649 * and if not, mark it disabled. 3650 */ 3651 static int test_for_valid_rec(struct dyn_ftrace *rec) 3652 { 3653 char str[KSYM_SYMBOL_LEN]; 3654 unsigned long offset; 3655 const char *ret; 3656 3657 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 3658 3659 /* Weak functions can cause invalid addresses */ 3660 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3661 rec->flags |= FTRACE_FL_DISABLED; 3662 return 0; 3663 } 3664 return 1; 3665 } 3666 3667 static struct workqueue_struct *ftrace_check_wq __initdata; 3668 static struct work_struct ftrace_check_work __initdata; 3669 3670 /* 3671 * Scan all the mcount/fentry entries to make sure they are valid. 3672 */ 3673 static __init void ftrace_check_work_func(struct work_struct *work) 3674 { 3675 struct ftrace_page *pg; 3676 struct dyn_ftrace *rec; 3677 3678 mutex_lock(&ftrace_lock); 3679 do_for_each_ftrace_rec(pg, rec) { 3680 test_for_valid_rec(rec); 3681 } while_for_each_ftrace_rec(); 3682 mutex_unlock(&ftrace_lock); 3683 } 3684 3685 static int __init ftrace_check_for_weak_functions(void) 3686 { 3687 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 3688 3689 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 3690 3691 queue_work(ftrace_check_wq, &ftrace_check_work); 3692 return 0; 3693 } 3694 3695 static int __init ftrace_check_sync(void) 3696 { 3697 /* Make sure the ftrace_check updates are finished */ 3698 if (ftrace_check_wq) 3699 destroy_workqueue(ftrace_check_wq); 3700 return 0; 3701 } 3702 3703 late_initcall_sync(ftrace_check_sync); 3704 subsys_initcall(ftrace_check_for_weak_functions); 3705 3706 static int print_rec(struct seq_file *m, unsigned long ip) 3707 { 3708 unsigned long offset; 3709 char str[KSYM_SYMBOL_LEN]; 3710 char *modname; 3711 const char *ret; 3712 3713 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 3714 /* Weak functions can cause invalid addresses */ 3715 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3716 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 3717 FTRACE_INVALID_FUNCTION, offset); 3718 ret = NULL; 3719 } 3720 3721 seq_puts(m, str); 3722 if (modname) 3723 seq_printf(m, " [%s]", modname); 3724 return ret == NULL ? -1 : 0; 3725 } 3726 #else 3727 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 3728 { 3729 return 1; 3730 } 3731 3732 static inline int print_rec(struct seq_file *m, unsigned long ip) 3733 { 3734 seq_printf(m, "%ps", (void *)ip); 3735 return 0; 3736 } 3737 #endif 3738 3739 static int t_show(struct seq_file *m, void *v) 3740 { 3741 struct ftrace_iterator *iter = m->private; 3742 struct dyn_ftrace *rec; 3743 3744 if (iter->flags & FTRACE_ITER_PROBE) 3745 return t_probe_show(m, iter); 3746 3747 if (iter->flags & FTRACE_ITER_MOD) 3748 return t_mod_show(m, iter); 3749 3750 if (iter->flags & FTRACE_ITER_PRINTALL) { 3751 if (iter->flags & FTRACE_ITER_NOTRACE) 3752 seq_puts(m, "#### no functions disabled ####\n"); 3753 else 3754 seq_puts(m, "#### all functions enabled ####\n"); 3755 return 0; 3756 } 3757 3758 rec = iter->func; 3759 3760 if (!rec) 3761 return 0; 3762 3763 if (print_rec(m, rec->ip)) { 3764 /* This should only happen when a rec is disabled */ 3765 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 3766 seq_putc(m, '\n'); 3767 return 0; 3768 } 3769 3770 if (iter->flags & FTRACE_ITER_ENABLED) { 3771 struct ftrace_ops *ops; 3772 3773 seq_printf(m, " (%ld)%s%s%s", 3774 ftrace_rec_count(rec), 3775 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3776 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3777 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3778 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3779 ops = ftrace_find_tramp_ops_any(rec); 3780 if (ops) { 3781 do { 3782 seq_printf(m, "\ttramp: %pS (%pS)", 3783 (void *)ops->trampoline, 3784 (void *)ops->func); 3785 add_trampoline_func(m, ops, rec); 3786 ops = ftrace_find_tramp_ops_next(rec, ops); 3787 } while (ops); 3788 } else 3789 seq_puts(m, "\ttramp: ERROR!"); 3790 } else { 3791 add_trampoline_func(m, NULL, rec); 3792 } 3793 if (rec->flags & FTRACE_FL_DIRECT) { 3794 unsigned long direct; 3795 3796 direct = ftrace_find_rec_direct(rec->ip); 3797 if (direct) 3798 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3799 } 3800 } 3801 3802 seq_putc(m, '\n'); 3803 3804 return 0; 3805 } 3806 3807 static const struct seq_operations show_ftrace_seq_ops = { 3808 .start = t_start, 3809 .next = t_next, 3810 .stop = t_stop, 3811 .show = t_show, 3812 }; 3813 3814 static int 3815 ftrace_avail_open(struct inode *inode, struct file *file) 3816 { 3817 struct ftrace_iterator *iter; 3818 int ret; 3819 3820 ret = security_locked_down(LOCKDOWN_TRACEFS); 3821 if (ret) 3822 return ret; 3823 3824 if (unlikely(ftrace_disabled)) 3825 return -ENODEV; 3826 3827 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3828 if (!iter) 3829 return -ENOMEM; 3830 3831 iter->pg = ftrace_pages_start; 3832 iter->ops = &global_ops; 3833 3834 return 0; 3835 } 3836 3837 static int 3838 ftrace_enabled_open(struct inode *inode, struct file *file) 3839 { 3840 struct ftrace_iterator *iter; 3841 3842 /* 3843 * This shows us what functions are currently being 3844 * traced and by what. Not sure if we want lockdown 3845 * to hide such critical information for an admin. 3846 * Although, perhaps it can show information we don't 3847 * want people to see, but if something is tracing 3848 * something, we probably want to know about it. 3849 */ 3850 3851 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3852 if (!iter) 3853 return -ENOMEM; 3854 3855 iter->pg = ftrace_pages_start; 3856 iter->flags = FTRACE_ITER_ENABLED; 3857 iter->ops = &global_ops; 3858 3859 return 0; 3860 } 3861 3862 /** 3863 * ftrace_regex_open - initialize function tracer filter files 3864 * @ops: The ftrace_ops that hold the hash filters 3865 * @flag: The type of filter to process 3866 * @inode: The inode, usually passed in to your open routine 3867 * @file: The file, usually passed in to your open routine 3868 * 3869 * ftrace_regex_open() initializes the filter files for the 3870 * @ops. Depending on @flag it may process the filter hash or 3871 * the notrace hash of @ops. With this called from the open 3872 * routine, you can use ftrace_filter_write() for the write 3873 * routine if @flag has FTRACE_ITER_FILTER set, or 3874 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3875 * tracing_lseek() should be used as the lseek routine, and 3876 * release must call ftrace_regex_release(). 3877 */ 3878 int 3879 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3880 struct inode *inode, struct file *file) 3881 { 3882 struct ftrace_iterator *iter; 3883 struct ftrace_hash *hash; 3884 struct list_head *mod_head; 3885 struct trace_array *tr = ops->private; 3886 int ret = -ENOMEM; 3887 3888 ftrace_ops_init(ops); 3889 3890 if (unlikely(ftrace_disabled)) 3891 return -ENODEV; 3892 3893 if (tracing_check_open_get_tr(tr)) 3894 return -ENODEV; 3895 3896 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3897 if (!iter) 3898 goto out; 3899 3900 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3901 goto out; 3902 3903 iter->ops = ops; 3904 iter->flags = flag; 3905 iter->tr = tr; 3906 3907 mutex_lock(&ops->func_hash->regex_lock); 3908 3909 if (flag & FTRACE_ITER_NOTRACE) { 3910 hash = ops->func_hash->notrace_hash; 3911 mod_head = tr ? &tr->mod_notrace : NULL; 3912 } else { 3913 hash = ops->func_hash->filter_hash; 3914 mod_head = tr ? &tr->mod_trace : NULL; 3915 } 3916 3917 iter->mod_list = mod_head; 3918 3919 if (file->f_mode & FMODE_WRITE) { 3920 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3921 3922 if (file->f_flags & O_TRUNC) { 3923 iter->hash = alloc_ftrace_hash(size_bits); 3924 clear_ftrace_mod_list(mod_head); 3925 } else { 3926 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3927 } 3928 3929 if (!iter->hash) { 3930 trace_parser_put(&iter->parser); 3931 goto out_unlock; 3932 } 3933 } else 3934 iter->hash = hash; 3935 3936 ret = 0; 3937 3938 if (file->f_mode & FMODE_READ) { 3939 iter->pg = ftrace_pages_start; 3940 3941 ret = seq_open(file, &show_ftrace_seq_ops); 3942 if (!ret) { 3943 struct seq_file *m = file->private_data; 3944 m->private = iter; 3945 } else { 3946 /* Failed */ 3947 free_ftrace_hash(iter->hash); 3948 trace_parser_put(&iter->parser); 3949 } 3950 } else 3951 file->private_data = iter; 3952 3953 out_unlock: 3954 mutex_unlock(&ops->func_hash->regex_lock); 3955 3956 out: 3957 if (ret) { 3958 kfree(iter); 3959 if (tr) 3960 trace_array_put(tr); 3961 } 3962 3963 return ret; 3964 } 3965 3966 static int 3967 ftrace_filter_open(struct inode *inode, struct file *file) 3968 { 3969 struct ftrace_ops *ops = inode->i_private; 3970 3971 /* Checks for tracefs lockdown */ 3972 return ftrace_regex_open(ops, 3973 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3974 inode, file); 3975 } 3976 3977 static int 3978 ftrace_notrace_open(struct inode *inode, struct file *file) 3979 { 3980 struct ftrace_ops *ops = inode->i_private; 3981 3982 /* Checks for tracefs lockdown */ 3983 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3984 inode, file); 3985 } 3986 3987 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3988 struct ftrace_glob { 3989 char *search; 3990 unsigned len; 3991 int type; 3992 }; 3993 3994 /* 3995 * If symbols in an architecture don't correspond exactly to the user-visible 3996 * name of what they represent, it is possible to define this function to 3997 * perform the necessary adjustments. 3998 */ 3999 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 4000 { 4001 return str; 4002 } 4003 4004 static int ftrace_match(char *str, struct ftrace_glob *g) 4005 { 4006 int matched = 0; 4007 int slen; 4008 4009 str = arch_ftrace_match_adjust(str, g->search); 4010 4011 switch (g->type) { 4012 case MATCH_FULL: 4013 if (strcmp(str, g->search) == 0) 4014 matched = 1; 4015 break; 4016 case MATCH_FRONT_ONLY: 4017 if (strncmp(str, g->search, g->len) == 0) 4018 matched = 1; 4019 break; 4020 case MATCH_MIDDLE_ONLY: 4021 if (strstr(str, g->search)) 4022 matched = 1; 4023 break; 4024 case MATCH_END_ONLY: 4025 slen = strlen(str); 4026 if (slen >= g->len && 4027 memcmp(str + slen - g->len, g->search, g->len) == 0) 4028 matched = 1; 4029 break; 4030 case MATCH_GLOB: 4031 if (glob_match(g->search, str)) 4032 matched = 1; 4033 break; 4034 } 4035 4036 return matched; 4037 } 4038 4039 static int 4040 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4041 { 4042 struct ftrace_func_entry *entry; 4043 int ret = 0; 4044 4045 entry = ftrace_lookup_ip(hash, rec->ip); 4046 if (clear_filter) { 4047 /* Do nothing if it doesn't exist */ 4048 if (!entry) 4049 return 0; 4050 4051 free_hash_entry(hash, entry); 4052 } else { 4053 /* Do nothing if it exists */ 4054 if (entry) 4055 return 0; 4056 4057 ret = add_hash_entry(hash, rec->ip); 4058 } 4059 return ret; 4060 } 4061 4062 static int 4063 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4064 int clear_filter) 4065 { 4066 long index = simple_strtoul(func_g->search, NULL, 0); 4067 struct ftrace_page *pg; 4068 struct dyn_ftrace *rec; 4069 4070 /* The index starts at 1 */ 4071 if (--index < 0) 4072 return 0; 4073 4074 do_for_each_ftrace_rec(pg, rec) { 4075 if (pg->index <= index) { 4076 index -= pg->index; 4077 /* this is a double loop, break goes to the next page */ 4078 break; 4079 } 4080 rec = &pg->records[index]; 4081 enter_record(hash, rec, clear_filter); 4082 return 1; 4083 } while_for_each_ftrace_rec(); 4084 return 0; 4085 } 4086 4087 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4088 static int lookup_ip(unsigned long ip, char **modname, char *str) 4089 { 4090 unsigned long offset; 4091 4092 kallsyms_lookup(ip, NULL, &offset, modname, str); 4093 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4094 return -1; 4095 return 0; 4096 } 4097 #else 4098 static int lookup_ip(unsigned long ip, char **modname, char *str) 4099 { 4100 kallsyms_lookup(ip, NULL, NULL, modname, str); 4101 return 0; 4102 } 4103 #endif 4104 4105 static int 4106 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4107 struct ftrace_glob *mod_g, int exclude_mod) 4108 { 4109 char str[KSYM_SYMBOL_LEN]; 4110 char *modname; 4111 4112 if (lookup_ip(rec->ip, &modname, str)) { 4113 /* This should only happen when a rec is disabled */ 4114 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4115 !(rec->flags & FTRACE_FL_DISABLED)); 4116 return 0; 4117 } 4118 4119 if (mod_g) { 4120 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4121 4122 /* blank module name to match all modules */ 4123 if (!mod_g->len) { 4124 /* blank module globbing: modname xor exclude_mod */ 4125 if (!exclude_mod != !modname) 4126 goto func_match; 4127 return 0; 4128 } 4129 4130 /* 4131 * exclude_mod is set to trace everything but the given 4132 * module. If it is set and the module matches, then 4133 * return 0. If it is not set, and the module doesn't match 4134 * also return 0. Otherwise, check the function to see if 4135 * that matches. 4136 */ 4137 if (!mod_matches == !exclude_mod) 4138 return 0; 4139 func_match: 4140 /* blank search means to match all funcs in the mod */ 4141 if (!func_g->len) 4142 return 1; 4143 } 4144 4145 return ftrace_match(str, func_g); 4146 } 4147 4148 static int 4149 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4150 { 4151 struct ftrace_page *pg; 4152 struct dyn_ftrace *rec; 4153 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4154 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4155 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4156 int exclude_mod = 0; 4157 int found = 0; 4158 int ret; 4159 int clear_filter = 0; 4160 4161 if (func) { 4162 func_g.type = filter_parse_regex(func, len, &func_g.search, 4163 &clear_filter); 4164 func_g.len = strlen(func_g.search); 4165 } 4166 4167 if (mod) { 4168 mod_g.type = filter_parse_regex(mod, strlen(mod), 4169 &mod_g.search, &exclude_mod); 4170 mod_g.len = strlen(mod_g.search); 4171 } 4172 4173 mutex_lock(&ftrace_lock); 4174 4175 if (unlikely(ftrace_disabled)) 4176 goto out_unlock; 4177 4178 if (func_g.type == MATCH_INDEX) { 4179 found = add_rec_by_index(hash, &func_g, clear_filter); 4180 goto out_unlock; 4181 } 4182 4183 do_for_each_ftrace_rec(pg, rec) { 4184 4185 if (rec->flags & FTRACE_FL_DISABLED) 4186 continue; 4187 4188 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4189 ret = enter_record(hash, rec, clear_filter); 4190 if (ret < 0) { 4191 found = ret; 4192 goto out_unlock; 4193 } 4194 found = 1; 4195 } 4196 } while_for_each_ftrace_rec(); 4197 out_unlock: 4198 mutex_unlock(&ftrace_lock); 4199 4200 return found; 4201 } 4202 4203 static int 4204 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4205 { 4206 return match_records(hash, buff, len, NULL); 4207 } 4208 4209 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4210 struct ftrace_ops_hash *old_hash) 4211 { 4212 struct ftrace_ops *op; 4213 4214 if (!ftrace_enabled) 4215 return; 4216 4217 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4218 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4219 return; 4220 } 4221 4222 /* 4223 * If this is the shared global_ops filter, then we need to 4224 * check if there is another ops that shares it, is enabled. 4225 * If so, we still need to run the modify code. 4226 */ 4227 if (ops->func_hash != &global_ops.local_hash) 4228 return; 4229 4230 do_for_each_ftrace_op(op, ftrace_ops_list) { 4231 if (op->func_hash == &global_ops.local_hash && 4232 op->flags & FTRACE_OPS_FL_ENABLED) { 4233 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4234 /* Only need to do this once */ 4235 return; 4236 } 4237 } while_for_each_ftrace_op(op); 4238 } 4239 4240 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4241 struct ftrace_hash **orig_hash, 4242 struct ftrace_hash *hash, 4243 int enable) 4244 { 4245 struct ftrace_ops_hash old_hash_ops; 4246 struct ftrace_hash *old_hash; 4247 int ret; 4248 4249 old_hash = *orig_hash; 4250 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4251 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4252 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4253 if (!ret) { 4254 ftrace_ops_update_code(ops, &old_hash_ops); 4255 free_ftrace_hash_rcu(old_hash); 4256 } 4257 return ret; 4258 } 4259 4260 static bool module_exists(const char *module) 4261 { 4262 /* All modules have the symbol __this_module */ 4263 static const char this_mod[] = "__this_module"; 4264 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4265 unsigned long val; 4266 int n; 4267 4268 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4269 4270 if (n > sizeof(modname) - 1) 4271 return false; 4272 4273 val = module_kallsyms_lookup_name(modname); 4274 return val != 0; 4275 } 4276 4277 static int cache_mod(struct trace_array *tr, 4278 const char *func, char *module, int enable) 4279 { 4280 struct ftrace_mod_load *ftrace_mod, *n; 4281 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4282 int ret; 4283 4284 mutex_lock(&ftrace_lock); 4285 4286 /* We do not cache inverse filters */ 4287 if (func[0] == '!') { 4288 func++; 4289 ret = -EINVAL; 4290 4291 /* Look to remove this hash */ 4292 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4293 if (strcmp(ftrace_mod->module, module) != 0) 4294 continue; 4295 4296 /* no func matches all */ 4297 if (strcmp(func, "*") == 0 || 4298 (ftrace_mod->func && 4299 strcmp(ftrace_mod->func, func) == 0)) { 4300 ret = 0; 4301 free_ftrace_mod(ftrace_mod); 4302 continue; 4303 } 4304 } 4305 goto out; 4306 } 4307 4308 ret = -EINVAL; 4309 /* We only care about modules that have not been loaded yet */ 4310 if (module_exists(module)) 4311 goto out; 4312 4313 /* Save this string off, and execute it when the module is loaded */ 4314 ret = ftrace_add_mod(tr, func, module, enable); 4315 out: 4316 mutex_unlock(&ftrace_lock); 4317 4318 return ret; 4319 } 4320 4321 static int 4322 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4323 int reset, int enable); 4324 4325 #ifdef CONFIG_MODULES 4326 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4327 char *mod, bool enable) 4328 { 4329 struct ftrace_mod_load *ftrace_mod, *n; 4330 struct ftrace_hash **orig_hash, *new_hash; 4331 LIST_HEAD(process_mods); 4332 char *func; 4333 4334 mutex_lock(&ops->func_hash->regex_lock); 4335 4336 if (enable) 4337 orig_hash = &ops->func_hash->filter_hash; 4338 else 4339 orig_hash = &ops->func_hash->notrace_hash; 4340 4341 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4342 *orig_hash); 4343 if (!new_hash) 4344 goto out; /* warn? */ 4345 4346 mutex_lock(&ftrace_lock); 4347 4348 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4349 4350 if (strcmp(ftrace_mod->module, mod) != 0) 4351 continue; 4352 4353 if (ftrace_mod->func) 4354 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4355 else 4356 func = kstrdup("*", GFP_KERNEL); 4357 4358 if (!func) /* warn? */ 4359 continue; 4360 4361 list_move(&ftrace_mod->list, &process_mods); 4362 4363 /* Use the newly allocated func, as it may be "*" */ 4364 kfree(ftrace_mod->func); 4365 ftrace_mod->func = func; 4366 } 4367 4368 mutex_unlock(&ftrace_lock); 4369 4370 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4371 4372 func = ftrace_mod->func; 4373 4374 /* Grabs ftrace_lock, which is why we have this extra step */ 4375 match_records(new_hash, func, strlen(func), mod); 4376 free_ftrace_mod(ftrace_mod); 4377 } 4378 4379 if (enable && list_empty(head)) 4380 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4381 4382 mutex_lock(&ftrace_lock); 4383 4384 ftrace_hash_move_and_update_ops(ops, orig_hash, 4385 new_hash, enable); 4386 mutex_unlock(&ftrace_lock); 4387 4388 out: 4389 mutex_unlock(&ops->func_hash->regex_lock); 4390 4391 free_ftrace_hash(new_hash); 4392 } 4393 4394 static void process_cached_mods(const char *mod_name) 4395 { 4396 struct trace_array *tr; 4397 char *mod; 4398 4399 mod = kstrdup(mod_name, GFP_KERNEL); 4400 if (!mod) 4401 return; 4402 4403 mutex_lock(&trace_types_lock); 4404 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4405 if (!list_empty(&tr->mod_trace)) 4406 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4407 if (!list_empty(&tr->mod_notrace)) 4408 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4409 } 4410 mutex_unlock(&trace_types_lock); 4411 4412 kfree(mod); 4413 } 4414 #endif 4415 4416 /* 4417 * We register the module command as a template to show others how 4418 * to register the a command as well. 4419 */ 4420 4421 static int 4422 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4423 char *func_orig, char *cmd, char *module, int enable) 4424 { 4425 char *func; 4426 int ret; 4427 4428 /* match_records() modifies func, and we need the original */ 4429 func = kstrdup(func_orig, GFP_KERNEL); 4430 if (!func) 4431 return -ENOMEM; 4432 4433 /* 4434 * cmd == 'mod' because we only registered this func 4435 * for the 'mod' ftrace_func_command. 4436 * But if you register one func with multiple commands, 4437 * you can tell which command was used by the cmd 4438 * parameter. 4439 */ 4440 ret = match_records(hash, func, strlen(func), module); 4441 kfree(func); 4442 4443 if (!ret) 4444 return cache_mod(tr, func_orig, module, enable); 4445 if (ret < 0) 4446 return ret; 4447 return 0; 4448 } 4449 4450 static struct ftrace_func_command ftrace_mod_cmd = { 4451 .name = "mod", 4452 .func = ftrace_mod_callback, 4453 }; 4454 4455 static int __init ftrace_mod_cmd_init(void) 4456 { 4457 return register_ftrace_command(&ftrace_mod_cmd); 4458 } 4459 core_initcall(ftrace_mod_cmd_init); 4460 4461 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4462 struct ftrace_ops *op, struct ftrace_regs *fregs) 4463 { 4464 struct ftrace_probe_ops *probe_ops; 4465 struct ftrace_func_probe *probe; 4466 4467 probe = container_of(op, struct ftrace_func_probe, ops); 4468 probe_ops = probe->probe_ops; 4469 4470 /* 4471 * Disable preemption for these calls to prevent a RCU grace 4472 * period. This syncs the hash iteration and freeing of items 4473 * on the hash. rcu_read_lock is too dangerous here. 4474 */ 4475 preempt_disable_notrace(); 4476 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4477 preempt_enable_notrace(); 4478 } 4479 4480 struct ftrace_func_map { 4481 struct ftrace_func_entry entry; 4482 void *data; 4483 }; 4484 4485 struct ftrace_func_mapper { 4486 struct ftrace_hash hash; 4487 }; 4488 4489 /** 4490 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4491 * 4492 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4493 */ 4494 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4495 { 4496 struct ftrace_hash *hash; 4497 4498 /* 4499 * The mapper is simply a ftrace_hash, but since the entries 4500 * in the hash are not ftrace_func_entry type, we define it 4501 * as a separate structure. 4502 */ 4503 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4504 return (struct ftrace_func_mapper *)hash; 4505 } 4506 4507 /** 4508 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4509 * @mapper: The mapper that has the ip maps 4510 * @ip: the instruction pointer to find the data for 4511 * 4512 * Returns the data mapped to @ip if found otherwise NULL. The return 4513 * is actually the address of the mapper data pointer. The address is 4514 * returned for use cases where the data is no bigger than a long, and 4515 * the user can use the data pointer as its data instead of having to 4516 * allocate more memory for the reference. 4517 */ 4518 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4519 unsigned long ip) 4520 { 4521 struct ftrace_func_entry *entry; 4522 struct ftrace_func_map *map; 4523 4524 entry = ftrace_lookup_ip(&mapper->hash, ip); 4525 if (!entry) 4526 return NULL; 4527 4528 map = (struct ftrace_func_map *)entry; 4529 return &map->data; 4530 } 4531 4532 /** 4533 * ftrace_func_mapper_add_ip - Map some data to an ip 4534 * @mapper: The mapper that has the ip maps 4535 * @ip: The instruction pointer address to map @data to 4536 * @data: The data to map to @ip 4537 * 4538 * Returns 0 on success otherwise an error. 4539 */ 4540 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4541 unsigned long ip, void *data) 4542 { 4543 struct ftrace_func_entry *entry; 4544 struct ftrace_func_map *map; 4545 4546 entry = ftrace_lookup_ip(&mapper->hash, ip); 4547 if (entry) 4548 return -EBUSY; 4549 4550 map = kmalloc(sizeof(*map), GFP_KERNEL); 4551 if (!map) 4552 return -ENOMEM; 4553 4554 map->entry.ip = ip; 4555 map->data = data; 4556 4557 __add_hash_entry(&mapper->hash, &map->entry); 4558 4559 return 0; 4560 } 4561 4562 /** 4563 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4564 * @mapper: The mapper that has the ip maps 4565 * @ip: The instruction pointer address to remove the data from 4566 * 4567 * Returns the data if it is found, otherwise NULL. 4568 * Note, if the data pointer is used as the data itself, (see 4569 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4570 * if the data pointer was set to zero. 4571 */ 4572 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4573 unsigned long ip) 4574 { 4575 struct ftrace_func_entry *entry; 4576 struct ftrace_func_map *map; 4577 void *data; 4578 4579 entry = ftrace_lookup_ip(&mapper->hash, ip); 4580 if (!entry) 4581 return NULL; 4582 4583 map = (struct ftrace_func_map *)entry; 4584 data = map->data; 4585 4586 remove_hash_entry(&mapper->hash, entry); 4587 kfree(entry); 4588 4589 return data; 4590 } 4591 4592 /** 4593 * free_ftrace_func_mapper - free a mapping of ips and data 4594 * @mapper: The mapper that has the ip maps 4595 * @free_func: A function to be called on each data item. 4596 * 4597 * This is used to free the function mapper. The @free_func is optional 4598 * and can be used if the data needs to be freed as well. 4599 */ 4600 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4601 ftrace_mapper_func free_func) 4602 { 4603 struct ftrace_func_entry *entry; 4604 struct ftrace_func_map *map; 4605 struct hlist_head *hhd; 4606 int size, i; 4607 4608 if (!mapper) 4609 return; 4610 4611 if (free_func && mapper->hash.count) { 4612 size = 1 << mapper->hash.size_bits; 4613 for (i = 0; i < size; i++) { 4614 hhd = &mapper->hash.buckets[i]; 4615 hlist_for_each_entry(entry, hhd, hlist) { 4616 map = (struct ftrace_func_map *)entry; 4617 free_func(map); 4618 } 4619 } 4620 } 4621 free_ftrace_hash(&mapper->hash); 4622 } 4623 4624 static void release_probe(struct ftrace_func_probe *probe) 4625 { 4626 struct ftrace_probe_ops *probe_ops; 4627 4628 mutex_lock(&ftrace_lock); 4629 4630 WARN_ON(probe->ref <= 0); 4631 4632 /* Subtract the ref that was used to protect this instance */ 4633 probe->ref--; 4634 4635 if (!probe->ref) { 4636 probe_ops = probe->probe_ops; 4637 /* 4638 * Sending zero as ip tells probe_ops to free 4639 * the probe->data itself 4640 */ 4641 if (probe_ops->free) 4642 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4643 list_del(&probe->list); 4644 kfree(probe); 4645 } 4646 mutex_unlock(&ftrace_lock); 4647 } 4648 4649 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4650 { 4651 /* 4652 * Add one ref to keep it from being freed when releasing the 4653 * ftrace_lock mutex. 4654 */ 4655 probe->ref++; 4656 } 4657 4658 int 4659 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4660 struct ftrace_probe_ops *probe_ops, 4661 void *data) 4662 { 4663 struct ftrace_func_probe *probe = NULL, *iter; 4664 struct ftrace_func_entry *entry; 4665 struct ftrace_hash **orig_hash; 4666 struct ftrace_hash *old_hash; 4667 struct ftrace_hash *hash; 4668 int count = 0; 4669 int size; 4670 int ret; 4671 int i; 4672 4673 if (WARN_ON(!tr)) 4674 return -EINVAL; 4675 4676 /* We do not support '!' for function probes */ 4677 if (WARN_ON(glob[0] == '!')) 4678 return -EINVAL; 4679 4680 4681 mutex_lock(&ftrace_lock); 4682 /* Check if the probe_ops is already registered */ 4683 list_for_each_entry(iter, &tr->func_probes, list) { 4684 if (iter->probe_ops == probe_ops) { 4685 probe = iter; 4686 break; 4687 } 4688 } 4689 if (!probe) { 4690 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4691 if (!probe) { 4692 mutex_unlock(&ftrace_lock); 4693 return -ENOMEM; 4694 } 4695 probe->probe_ops = probe_ops; 4696 probe->ops.func = function_trace_probe_call; 4697 probe->tr = tr; 4698 ftrace_ops_init(&probe->ops); 4699 list_add(&probe->list, &tr->func_probes); 4700 } 4701 4702 acquire_probe_locked(probe); 4703 4704 mutex_unlock(&ftrace_lock); 4705 4706 /* 4707 * Note, there's a small window here that the func_hash->filter_hash 4708 * may be NULL or empty. Need to be careful when reading the loop. 4709 */ 4710 mutex_lock(&probe->ops.func_hash->regex_lock); 4711 4712 orig_hash = &probe->ops.func_hash->filter_hash; 4713 old_hash = *orig_hash; 4714 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4715 4716 if (!hash) { 4717 ret = -ENOMEM; 4718 goto out; 4719 } 4720 4721 ret = ftrace_match_records(hash, glob, strlen(glob)); 4722 4723 /* Nothing found? */ 4724 if (!ret) 4725 ret = -EINVAL; 4726 4727 if (ret < 0) 4728 goto out; 4729 4730 size = 1 << hash->size_bits; 4731 for (i = 0; i < size; i++) { 4732 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4733 if (ftrace_lookup_ip(old_hash, entry->ip)) 4734 continue; 4735 /* 4736 * The caller might want to do something special 4737 * for each function we find. We call the callback 4738 * to give the caller an opportunity to do so. 4739 */ 4740 if (probe_ops->init) { 4741 ret = probe_ops->init(probe_ops, tr, 4742 entry->ip, data, 4743 &probe->data); 4744 if (ret < 0) { 4745 if (probe_ops->free && count) 4746 probe_ops->free(probe_ops, tr, 4747 0, probe->data); 4748 probe->data = NULL; 4749 goto out; 4750 } 4751 } 4752 count++; 4753 } 4754 } 4755 4756 mutex_lock(&ftrace_lock); 4757 4758 if (!count) { 4759 /* Nothing was added? */ 4760 ret = -EINVAL; 4761 goto out_unlock; 4762 } 4763 4764 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4765 hash, 1); 4766 if (ret < 0) 4767 goto err_unlock; 4768 4769 /* One ref for each new function traced */ 4770 probe->ref += count; 4771 4772 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4773 ret = ftrace_startup(&probe->ops, 0); 4774 4775 out_unlock: 4776 mutex_unlock(&ftrace_lock); 4777 4778 if (!ret) 4779 ret = count; 4780 out: 4781 mutex_unlock(&probe->ops.func_hash->regex_lock); 4782 free_ftrace_hash(hash); 4783 4784 release_probe(probe); 4785 4786 return ret; 4787 4788 err_unlock: 4789 if (!probe_ops->free || !count) 4790 goto out_unlock; 4791 4792 /* Failed to do the move, need to call the free functions */ 4793 for (i = 0; i < size; i++) { 4794 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4795 if (ftrace_lookup_ip(old_hash, entry->ip)) 4796 continue; 4797 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4798 } 4799 } 4800 goto out_unlock; 4801 } 4802 4803 int 4804 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4805 struct ftrace_probe_ops *probe_ops) 4806 { 4807 struct ftrace_func_probe *probe = NULL, *iter; 4808 struct ftrace_ops_hash old_hash_ops; 4809 struct ftrace_func_entry *entry; 4810 struct ftrace_glob func_g; 4811 struct ftrace_hash **orig_hash; 4812 struct ftrace_hash *old_hash; 4813 struct ftrace_hash *hash = NULL; 4814 struct hlist_node *tmp; 4815 struct hlist_head hhd; 4816 char str[KSYM_SYMBOL_LEN]; 4817 int count = 0; 4818 int i, ret = -ENODEV; 4819 int size; 4820 4821 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4822 func_g.search = NULL; 4823 else { 4824 int not; 4825 4826 func_g.type = filter_parse_regex(glob, strlen(glob), 4827 &func_g.search, ¬); 4828 func_g.len = strlen(func_g.search); 4829 4830 /* we do not support '!' for function probes */ 4831 if (WARN_ON(not)) 4832 return -EINVAL; 4833 } 4834 4835 mutex_lock(&ftrace_lock); 4836 /* Check if the probe_ops is already registered */ 4837 list_for_each_entry(iter, &tr->func_probes, list) { 4838 if (iter->probe_ops == probe_ops) { 4839 probe = iter; 4840 break; 4841 } 4842 } 4843 if (!probe) 4844 goto err_unlock_ftrace; 4845 4846 ret = -EINVAL; 4847 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4848 goto err_unlock_ftrace; 4849 4850 acquire_probe_locked(probe); 4851 4852 mutex_unlock(&ftrace_lock); 4853 4854 mutex_lock(&probe->ops.func_hash->regex_lock); 4855 4856 orig_hash = &probe->ops.func_hash->filter_hash; 4857 old_hash = *orig_hash; 4858 4859 if (ftrace_hash_empty(old_hash)) 4860 goto out_unlock; 4861 4862 old_hash_ops.filter_hash = old_hash; 4863 /* Probes only have filters */ 4864 old_hash_ops.notrace_hash = NULL; 4865 4866 ret = -ENOMEM; 4867 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4868 if (!hash) 4869 goto out_unlock; 4870 4871 INIT_HLIST_HEAD(&hhd); 4872 4873 size = 1 << hash->size_bits; 4874 for (i = 0; i < size; i++) { 4875 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4876 4877 if (func_g.search) { 4878 kallsyms_lookup(entry->ip, NULL, NULL, 4879 NULL, str); 4880 if (!ftrace_match(str, &func_g)) 4881 continue; 4882 } 4883 count++; 4884 remove_hash_entry(hash, entry); 4885 hlist_add_head(&entry->hlist, &hhd); 4886 } 4887 } 4888 4889 /* Nothing found? */ 4890 if (!count) { 4891 ret = -EINVAL; 4892 goto out_unlock; 4893 } 4894 4895 mutex_lock(&ftrace_lock); 4896 4897 WARN_ON(probe->ref < count); 4898 4899 probe->ref -= count; 4900 4901 if (ftrace_hash_empty(hash)) 4902 ftrace_shutdown(&probe->ops, 0); 4903 4904 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4905 hash, 1); 4906 4907 /* still need to update the function call sites */ 4908 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4909 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4910 &old_hash_ops); 4911 synchronize_rcu(); 4912 4913 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4914 hlist_del(&entry->hlist); 4915 if (probe_ops->free) 4916 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4917 kfree(entry); 4918 } 4919 mutex_unlock(&ftrace_lock); 4920 4921 out_unlock: 4922 mutex_unlock(&probe->ops.func_hash->regex_lock); 4923 free_ftrace_hash(hash); 4924 4925 release_probe(probe); 4926 4927 return ret; 4928 4929 err_unlock_ftrace: 4930 mutex_unlock(&ftrace_lock); 4931 return ret; 4932 } 4933 4934 void clear_ftrace_function_probes(struct trace_array *tr) 4935 { 4936 struct ftrace_func_probe *probe, *n; 4937 4938 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4939 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4940 } 4941 4942 static LIST_HEAD(ftrace_commands); 4943 static DEFINE_MUTEX(ftrace_cmd_mutex); 4944 4945 /* 4946 * Currently we only register ftrace commands from __init, so mark this 4947 * __init too. 4948 */ 4949 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4950 { 4951 struct ftrace_func_command *p; 4952 int ret = 0; 4953 4954 mutex_lock(&ftrace_cmd_mutex); 4955 list_for_each_entry(p, &ftrace_commands, list) { 4956 if (strcmp(cmd->name, p->name) == 0) { 4957 ret = -EBUSY; 4958 goto out_unlock; 4959 } 4960 } 4961 list_add(&cmd->list, &ftrace_commands); 4962 out_unlock: 4963 mutex_unlock(&ftrace_cmd_mutex); 4964 4965 return ret; 4966 } 4967 4968 /* 4969 * Currently we only unregister ftrace commands from __init, so mark 4970 * this __init too. 4971 */ 4972 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4973 { 4974 struct ftrace_func_command *p, *n; 4975 int ret = -ENODEV; 4976 4977 mutex_lock(&ftrace_cmd_mutex); 4978 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4979 if (strcmp(cmd->name, p->name) == 0) { 4980 ret = 0; 4981 list_del_init(&p->list); 4982 goto out_unlock; 4983 } 4984 } 4985 out_unlock: 4986 mutex_unlock(&ftrace_cmd_mutex); 4987 4988 return ret; 4989 } 4990 4991 static int ftrace_process_regex(struct ftrace_iterator *iter, 4992 char *buff, int len, int enable) 4993 { 4994 struct ftrace_hash *hash = iter->hash; 4995 struct trace_array *tr = iter->ops->private; 4996 char *func, *command, *next = buff; 4997 struct ftrace_func_command *p; 4998 int ret = -EINVAL; 4999 5000 func = strsep(&next, ":"); 5001 5002 if (!next) { 5003 ret = ftrace_match_records(hash, func, len); 5004 if (!ret) 5005 ret = -EINVAL; 5006 if (ret < 0) 5007 return ret; 5008 return 0; 5009 } 5010 5011 /* command found */ 5012 5013 command = strsep(&next, ":"); 5014 5015 mutex_lock(&ftrace_cmd_mutex); 5016 list_for_each_entry(p, &ftrace_commands, list) { 5017 if (strcmp(p->name, command) == 0) { 5018 ret = p->func(tr, hash, func, command, next, enable); 5019 goto out_unlock; 5020 } 5021 } 5022 out_unlock: 5023 mutex_unlock(&ftrace_cmd_mutex); 5024 5025 return ret; 5026 } 5027 5028 static ssize_t 5029 ftrace_regex_write(struct file *file, const char __user *ubuf, 5030 size_t cnt, loff_t *ppos, int enable) 5031 { 5032 struct ftrace_iterator *iter; 5033 struct trace_parser *parser; 5034 ssize_t ret, read; 5035 5036 if (!cnt) 5037 return 0; 5038 5039 if (file->f_mode & FMODE_READ) { 5040 struct seq_file *m = file->private_data; 5041 iter = m->private; 5042 } else 5043 iter = file->private_data; 5044 5045 if (unlikely(ftrace_disabled)) 5046 return -ENODEV; 5047 5048 /* iter->hash is a local copy, so we don't need regex_lock */ 5049 5050 parser = &iter->parser; 5051 read = trace_get_user(parser, ubuf, cnt, ppos); 5052 5053 if (read >= 0 && trace_parser_loaded(parser) && 5054 !trace_parser_cont(parser)) { 5055 ret = ftrace_process_regex(iter, parser->buffer, 5056 parser->idx, enable); 5057 trace_parser_clear(parser); 5058 if (ret < 0) 5059 goto out; 5060 } 5061 5062 ret = read; 5063 out: 5064 return ret; 5065 } 5066 5067 ssize_t 5068 ftrace_filter_write(struct file *file, const char __user *ubuf, 5069 size_t cnt, loff_t *ppos) 5070 { 5071 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5072 } 5073 5074 ssize_t 5075 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5076 size_t cnt, loff_t *ppos) 5077 { 5078 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5079 } 5080 5081 static int 5082 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5083 { 5084 struct ftrace_func_entry *entry; 5085 5086 ip = ftrace_location(ip); 5087 if (!ip) 5088 return -EINVAL; 5089 5090 if (remove) { 5091 entry = ftrace_lookup_ip(hash, ip); 5092 if (!entry) 5093 return -ENOENT; 5094 free_hash_entry(hash, entry); 5095 return 0; 5096 } 5097 5098 return add_hash_entry(hash, ip); 5099 } 5100 5101 static int 5102 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5103 unsigned int cnt, int remove) 5104 { 5105 unsigned int i; 5106 int err; 5107 5108 for (i = 0; i < cnt; i++) { 5109 err = __ftrace_match_addr(hash, ips[i], remove); 5110 if (err) { 5111 /* 5112 * This expects the @hash is a temporary hash and if this 5113 * fails the caller must free the @hash. 5114 */ 5115 return err; 5116 } 5117 } 5118 return 0; 5119 } 5120 5121 static int 5122 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5123 unsigned long *ips, unsigned int cnt, 5124 int remove, int reset, int enable) 5125 { 5126 struct ftrace_hash **orig_hash; 5127 struct ftrace_hash *hash; 5128 int ret; 5129 5130 if (unlikely(ftrace_disabled)) 5131 return -ENODEV; 5132 5133 mutex_lock(&ops->func_hash->regex_lock); 5134 5135 if (enable) 5136 orig_hash = &ops->func_hash->filter_hash; 5137 else 5138 orig_hash = &ops->func_hash->notrace_hash; 5139 5140 if (reset) 5141 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5142 else 5143 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5144 5145 if (!hash) { 5146 ret = -ENOMEM; 5147 goto out_regex_unlock; 5148 } 5149 5150 if (buf && !ftrace_match_records(hash, buf, len)) { 5151 ret = -EINVAL; 5152 goto out_regex_unlock; 5153 } 5154 if (ips) { 5155 ret = ftrace_match_addr(hash, ips, cnt, remove); 5156 if (ret < 0) 5157 goto out_regex_unlock; 5158 } 5159 5160 mutex_lock(&ftrace_lock); 5161 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5162 mutex_unlock(&ftrace_lock); 5163 5164 out_regex_unlock: 5165 mutex_unlock(&ops->func_hash->regex_lock); 5166 5167 free_ftrace_hash(hash); 5168 return ret; 5169 } 5170 5171 static int 5172 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5173 int remove, int reset, int enable) 5174 { 5175 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5176 } 5177 5178 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5179 5180 struct ftrace_direct_func { 5181 struct list_head next; 5182 unsigned long addr; 5183 int count; 5184 }; 5185 5186 static LIST_HEAD(ftrace_direct_funcs); 5187 5188 /** 5189 * ftrace_find_direct_func - test an address if it is a registered direct caller 5190 * @addr: The address of a registered direct caller 5191 * 5192 * This searches to see if a ftrace direct caller has been registered 5193 * at a specific address, and if so, it returns a descriptor for it. 5194 * 5195 * This can be used by architecture code to see if an address is 5196 * a direct caller (trampoline) attached to a fentry/mcount location. 5197 * This is useful for the function_graph tracer, as it may need to 5198 * do adjustments if it traced a location that also has a direct 5199 * trampoline attached to it. 5200 */ 5201 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5202 { 5203 struct ftrace_direct_func *entry; 5204 bool found = false; 5205 5206 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5207 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5208 if (entry->addr == addr) { 5209 found = true; 5210 break; 5211 } 5212 } 5213 if (found) 5214 return entry; 5215 5216 return NULL; 5217 } 5218 5219 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5220 { 5221 struct ftrace_direct_func *direct; 5222 5223 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5224 if (!direct) 5225 return NULL; 5226 direct->addr = addr; 5227 direct->count = 0; 5228 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5229 ftrace_direct_func_count++; 5230 return direct; 5231 } 5232 5233 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5234 5235 /** 5236 * register_ftrace_direct - Call a custom trampoline directly 5237 * @ip: The address of the nop at the beginning of a function 5238 * @addr: The address of the trampoline to call at @ip 5239 * 5240 * This is used to connect a direct call from the nop location (@ip) 5241 * at the start of ftrace traced functions. The location that it calls 5242 * (@addr) must be able to handle a direct call, and save the parameters 5243 * of the function being traced, and restore them (or inject new ones 5244 * if needed), before returning. 5245 * 5246 * Returns: 5247 * 0 on success 5248 * -EBUSY - Another direct function is already attached (there can be only one) 5249 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5250 * -ENOMEM - There was an allocation failure. 5251 */ 5252 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5253 { 5254 struct ftrace_direct_func *direct; 5255 struct ftrace_func_entry *entry; 5256 struct ftrace_hash *free_hash = NULL; 5257 struct dyn_ftrace *rec; 5258 int ret = -ENODEV; 5259 5260 mutex_lock(&direct_mutex); 5261 5262 ip = ftrace_location(ip); 5263 if (!ip) 5264 goto out_unlock; 5265 5266 /* See if there's a direct function at @ip already */ 5267 ret = -EBUSY; 5268 if (ftrace_find_rec_direct(ip)) 5269 goto out_unlock; 5270 5271 ret = -ENODEV; 5272 rec = lookup_rec(ip, ip); 5273 if (!rec) 5274 goto out_unlock; 5275 5276 /* 5277 * Check if the rec says it has a direct call but we didn't 5278 * find one earlier? 5279 */ 5280 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5281 goto out_unlock; 5282 5283 /* Make sure the ip points to the exact record */ 5284 if (ip != rec->ip) { 5285 ip = rec->ip; 5286 /* Need to check this ip for a direct. */ 5287 if (ftrace_find_rec_direct(ip)) 5288 goto out_unlock; 5289 } 5290 5291 ret = -ENOMEM; 5292 direct = ftrace_find_direct_func(addr); 5293 if (!direct) { 5294 direct = ftrace_alloc_direct_func(addr); 5295 if (!direct) 5296 goto out_unlock; 5297 } 5298 5299 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5300 if (!entry) 5301 goto out_unlock; 5302 5303 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5304 5305 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5306 ret = register_ftrace_function_nolock(&direct_ops); 5307 if (ret) 5308 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5309 } 5310 5311 if (ret) { 5312 remove_hash_entry(direct_functions, entry); 5313 kfree(entry); 5314 if (!direct->count) { 5315 list_del_rcu(&direct->next); 5316 synchronize_rcu_tasks(); 5317 kfree(direct); 5318 if (free_hash) 5319 free_ftrace_hash(free_hash); 5320 free_hash = NULL; 5321 ftrace_direct_func_count--; 5322 } 5323 } else { 5324 direct->count++; 5325 } 5326 out_unlock: 5327 mutex_unlock(&direct_mutex); 5328 5329 if (free_hash) { 5330 synchronize_rcu_tasks(); 5331 free_ftrace_hash(free_hash); 5332 } 5333 5334 return ret; 5335 } 5336 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5337 5338 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5339 struct dyn_ftrace **recp) 5340 { 5341 struct ftrace_func_entry *entry; 5342 struct dyn_ftrace *rec; 5343 5344 rec = lookup_rec(*ip, *ip); 5345 if (!rec) 5346 return NULL; 5347 5348 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5349 if (!entry) { 5350 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5351 return NULL; 5352 } 5353 5354 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5355 5356 /* Passed in ip just needs to be on the call site */ 5357 *ip = rec->ip; 5358 5359 if (recp) 5360 *recp = rec; 5361 5362 return entry; 5363 } 5364 5365 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5366 { 5367 struct ftrace_direct_func *direct; 5368 struct ftrace_func_entry *entry; 5369 struct ftrace_hash *hash; 5370 int ret = -ENODEV; 5371 5372 mutex_lock(&direct_mutex); 5373 5374 ip = ftrace_location(ip); 5375 if (!ip) 5376 goto out_unlock; 5377 5378 entry = find_direct_entry(&ip, NULL); 5379 if (!entry) 5380 goto out_unlock; 5381 5382 hash = direct_ops.func_hash->filter_hash; 5383 if (hash->count == 1) 5384 unregister_ftrace_function(&direct_ops); 5385 5386 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5387 5388 WARN_ON(ret); 5389 5390 remove_hash_entry(direct_functions, entry); 5391 5392 direct = ftrace_find_direct_func(addr); 5393 if (!WARN_ON(!direct)) { 5394 /* This is the good path (see the ! before WARN) */ 5395 direct->count--; 5396 WARN_ON(direct->count < 0); 5397 if (!direct->count) { 5398 list_del_rcu(&direct->next); 5399 synchronize_rcu_tasks(); 5400 kfree(direct); 5401 kfree(entry); 5402 ftrace_direct_func_count--; 5403 } 5404 } 5405 out_unlock: 5406 mutex_unlock(&direct_mutex); 5407 5408 return ret; 5409 } 5410 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5411 5412 static struct ftrace_ops stub_ops = { 5413 .func = ftrace_stub, 5414 }; 5415 5416 /** 5417 * ftrace_modify_direct_caller - modify ftrace nop directly 5418 * @entry: The ftrace hash entry of the direct helper for @rec 5419 * @rec: The record representing the function site to patch 5420 * @old_addr: The location that the site at @rec->ip currently calls 5421 * @new_addr: The location that the site at @rec->ip should call 5422 * 5423 * An architecture may overwrite this function to optimize the 5424 * changing of the direct callback on an ftrace nop location. 5425 * This is called with the ftrace_lock mutex held, and no other 5426 * ftrace callbacks are on the associated record (@rec). Thus, 5427 * it is safe to modify the ftrace record, where it should be 5428 * currently calling @old_addr directly, to call @new_addr. 5429 * 5430 * This is called with direct_mutex locked. 5431 * 5432 * Safety checks should be made to make sure that the code at 5433 * @rec->ip is currently calling @old_addr. And this must 5434 * also update entry->direct to @new_addr. 5435 */ 5436 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5437 struct dyn_ftrace *rec, 5438 unsigned long old_addr, 5439 unsigned long new_addr) 5440 { 5441 unsigned long ip = rec->ip; 5442 int ret; 5443 5444 lockdep_assert_held(&direct_mutex); 5445 5446 /* 5447 * The ftrace_lock was used to determine if the record 5448 * had more than one registered user to it. If it did, 5449 * we needed to prevent that from changing to do the quick 5450 * switch. But if it did not (only a direct caller was attached) 5451 * then this function is called. But this function can deal 5452 * with attached callers to the rec that we care about, and 5453 * since this function uses standard ftrace calls that take 5454 * the ftrace_lock mutex, we need to release it. 5455 */ 5456 mutex_unlock(&ftrace_lock); 5457 5458 /* 5459 * By setting a stub function at the same address, we force 5460 * the code to call the iterator and the direct_ops helper. 5461 * This means that @ip does not call the direct call, and 5462 * we can simply modify it. 5463 */ 5464 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5465 if (ret) 5466 goto out_lock; 5467 5468 ret = register_ftrace_function_nolock(&stub_ops); 5469 if (ret) { 5470 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5471 goto out_lock; 5472 } 5473 5474 entry->direct = new_addr; 5475 5476 /* 5477 * By removing the stub, we put back the direct call, calling 5478 * the @new_addr. 5479 */ 5480 unregister_ftrace_function(&stub_ops); 5481 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5482 5483 out_lock: 5484 mutex_lock(&ftrace_lock); 5485 5486 return ret; 5487 } 5488 5489 /** 5490 * modify_ftrace_direct - Modify an existing direct call to call something else 5491 * @ip: The instruction pointer to modify 5492 * @old_addr: The address that the current @ip calls directly 5493 * @new_addr: The address that the @ip should call 5494 * 5495 * This modifies a ftrace direct caller at an instruction pointer without 5496 * having to disable it first. The direct call will switch over to the 5497 * @new_addr without missing anything. 5498 * 5499 * Returns: zero on success. Non zero on error, which includes: 5500 * -ENODEV : the @ip given has no direct caller attached 5501 * -EINVAL : the @old_addr does not match the current direct caller 5502 */ 5503 int modify_ftrace_direct(unsigned long ip, 5504 unsigned long old_addr, unsigned long new_addr) 5505 { 5506 struct ftrace_direct_func *direct, *new_direct = NULL; 5507 struct ftrace_func_entry *entry; 5508 struct dyn_ftrace *rec; 5509 int ret = -ENODEV; 5510 5511 mutex_lock(&direct_mutex); 5512 5513 mutex_lock(&ftrace_lock); 5514 5515 ip = ftrace_location(ip); 5516 if (!ip) 5517 goto out_unlock; 5518 5519 entry = find_direct_entry(&ip, &rec); 5520 if (!entry) 5521 goto out_unlock; 5522 5523 ret = -EINVAL; 5524 if (entry->direct != old_addr) 5525 goto out_unlock; 5526 5527 direct = ftrace_find_direct_func(old_addr); 5528 if (WARN_ON(!direct)) 5529 goto out_unlock; 5530 if (direct->count > 1) { 5531 ret = -ENOMEM; 5532 new_direct = ftrace_alloc_direct_func(new_addr); 5533 if (!new_direct) 5534 goto out_unlock; 5535 direct->count--; 5536 new_direct->count++; 5537 } else { 5538 direct->addr = new_addr; 5539 } 5540 5541 /* 5542 * If there's no other ftrace callback on the rec->ip location, 5543 * then it can be changed directly by the architecture. 5544 * If there is another caller, then we just need to change the 5545 * direct caller helper to point to @new_addr. 5546 */ 5547 if (ftrace_rec_count(rec) == 1) { 5548 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5549 } else { 5550 entry->direct = new_addr; 5551 ret = 0; 5552 } 5553 5554 if (unlikely(ret && new_direct)) { 5555 direct->count++; 5556 list_del_rcu(&new_direct->next); 5557 synchronize_rcu_tasks(); 5558 kfree(new_direct); 5559 ftrace_direct_func_count--; 5560 } 5561 5562 out_unlock: 5563 mutex_unlock(&ftrace_lock); 5564 mutex_unlock(&direct_mutex); 5565 return ret; 5566 } 5567 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5568 5569 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5570 5571 static int check_direct_multi(struct ftrace_ops *ops) 5572 { 5573 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5574 return -EINVAL; 5575 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5576 return -EINVAL; 5577 return 0; 5578 } 5579 5580 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5581 { 5582 struct ftrace_func_entry *entry, *del; 5583 int size, i; 5584 5585 size = 1 << hash->size_bits; 5586 for (i = 0; i < size; i++) { 5587 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5588 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5589 if (del && del->direct == addr) { 5590 remove_hash_entry(direct_functions, del); 5591 kfree(del); 5592 } 5593 } 5594 } 5595 } 5596 5597 /** 5598 * register_ftrace_direct_multi - Call a custom trampoline directly 5599 * for multiple functions registered in @ops 5600 * @ops: The address of the struct ftrace_ops object 5601 * @addr: The address of the trampoline to call at @ops functions 5602 * 5603 * This is used to connect a direct calls to @addr from the nop locations 5604 * of the functions registered in @ops (with by ftrace_set_filter_ip 5605 * function). 5606 * 5607 * The location that it calls (@addr) must be able to handle a direct call, 5608 * and save the parameters of the function being traced, and restore them 5609 * (or inject new ones if needed), before returning. 5610 * 5611 * Returns: 5612 * 0 on success 5613 * -EINVAL - The @ops object was already registered with this call or 5614 * when there are no functions in @ops object. 5615 * -EBUSY - Another direct function is already attached (there can be only one) 5616 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5617 * -ENOMEM - There was an allocation failure. 5618 */ 5619 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5620 { 5621 struct ftrace_hash *hash, *free_hash = NULL; 5622 struct ftrace_func_entry *entry, *new; 5623 int err = -EBUSY, size, i; 5624 5625 if (ops->func || ops->trampoline) 5626 return -EINVAL; 5627 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5628 return -EINVAL; 5629 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5630 return -EINVAL; 5631 5632 hash = ops->func_hash->filter_hash; 5633 if (ftrace_hash_empty(hash)) 5634 return -EINVAL; 5635 5636 mutex_lock(&direct_mutex); 5637 5638 /* Make sure requested entries are not already registered.. */ 5639 size = 1 << hash->size_bits; 5640 for (i = 0; i < size; i++) { 5641 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5642 if (ftrace_find_rec_direct(entry->ip)) 5643 goto out_unlock; 5644 } 5645 } 5646 5647 /* ... and insert them to direct_functions hash. */ 5648 err = -ENOMEM; 5649 for (i = 0; i < size; i++) { 5650 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5651 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5652 if (!new) 5653 goto out_remove; 5654 entry->direct = addr; 5655 } 5656 } 5657 5658 ops->func = call_direct_funcs; 5659 ops->flags = MULTI_FLAGS; 5660 ops->trampoline = FTRACE_REGS_ADDR; 5661 5662 err = register_ftrace_function_nolock(ops); 5663 5664 out_remove: 5665 if (err) 5666 remove_direct_functions_hash(hash, addr); 5667 5668 out_unlock: 5669 mutex_unlock(&direct_mutex); 5670 5671 if (free_hash) { 5672 synchronize_rcu_tasks(); 5673 free_ftrace_hash(free_hash); 5674 } 5675 return err; 5676 } 5677 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5678 5679 /** 5680 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5681 * previously registered by register_ftrace_direct_multi for @ops object. 5682 * @ops: The address of the struct ftrace_ops object 5683 * 5684 * This is used to remove a direct calls to @addr from the nop locations 5685 * of the functions registered in @ops (with by ftrace_set_filter_ip 5686 * function). 5687 * 5688 * Returns: 5689 * 0 on success 5690 * -EINVAL - The @ops object was not properly registered. 5691 */ 5692 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5693 { 5694 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5695 int err; 5696 5697 if (check_direct_multi(ops)) 5698 return -EINVAL; 5699 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5700 return -EINVAL; 5701 5702 mutex_lock(&direct_mutex); 5703 err = unregister_ftrace_function(ops); 5704 remove_direct_functions_hash(hash, addr); 5705 mutex_unlock(&direct_mutex); 5706 5707 /* cleanup for possible another register call */ 5708 ops->func = NULL; 5709 ops->trampoline = 0; 5710 return err; 5711 } 5712 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5713 5714 static int 5715 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5716 { 5717 struct ftrace_hash *hash; 5718 struct ftrace_func_entry *entry, *iter; 5719 static struct ftrace_ops tmp_ops = { 5720 .func = ftrace_stub, 5721 .flags = FTRACE_OPS_FL_STUB, 5722 }; 5723 int i, size; 5724 int err; 5725 5726 lockdep_assert_held_once(&direct_mutex); 5727 5728 /* Enable the tmp_ops to have the same functions as the direct ops */ 5729 ftrace_ops_init(&tmp_ops); 5730 tmp_ops.func_hash = ops->func_hash; 5731 5732 err = register_ftrace_function_nolock(&tmp_ops); 5733 if (err) 5734 return err; 5735 5736 /* 5737 * Now the ftrace_ops_list_func() is called to do the direct callers. 5738 * We can safely change the direct functions attached to each entry. 5739 */ 5740 mutex_lock(&ftrace_lock); 5741 5742 hash = ops->func_hash->filter_hash; 5743 size = 1 << hash->size_bits; 5744 for (i = 0; i < size; i++) { 5745 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5746 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5747 if (!entry) 5748 continue; 5749 entry->direct = addr; 5750 } 5751 } 5752 5753 mutex_unlock(&ftrace_lock); 5754 5755 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5756 unregister_ftrace_function(&tmp_ops); 5757 5758 return err; 5759 } 5760 5761 /** 5762 * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call 5763 * to call something else 5764 * @ops: The address of the struct ftrace_ops object 5765 * @addr: The address of the new trampoline to call at @ops functions 5766 * 5767 * This is used to unregister currently registered direct caller and 5768 * register new one @addr on functions registered in @ops object. 5769 * 5770 * Note there's window between ftrace_shutdown and ftrace_startup calls 5771 * where there will be no callbacks called. 5772 * 5773 * Caller should already have direct_mutex locked, so we don't lock 5774 * direct_mutex here. 5775 * 5776 * Returns: zero on success. Non zero on error, which includes: 5777 * -EINVAL - The @ops object was not properly registered. 5778 */ 5779 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr) 5780 { 5781 if (check_direct_multi(ops)) 5782 return -EINVAL; 5783 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5784 return -EINVAL; 5785 5786 return __modify_ftrace_direct_multi(ops, addr); 5787 } 5788 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock); 5789 5790 /** 5791 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5792 * to call something else 5793 * @ops: The address of the struct ftrace_ops object 5794 * @addr: The address of the new trampoline to call at @ops functions 5795 * 5796 * This is used to unregister currently registered direct caller and 5797 * register new one @addr on functions registered in @ops object. 5798 * 5799 * Note there's window between ftrace_shutdown and ftrace_startup calls 5800 * where there will be no callbacks called. 5801 * 5802 * Returns: zero on success. Non zero on error, which includes: 5803 * -EINVAL - The @ops object was not properly registered. 5804 */ 5805 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5806 { 5807 int err; 5808 5809 if (check_direct_multi(ops)) 5810 return -EINVAL; 5811 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5812 return -EINVAL; 5813 5814 mutex_lock(&direct_mutex); 5815 err = __modify_ftrace_direct_multi(ops, addr); 5816 mutex_unlock(&direct_mutex); 5817 return err; 5818 } 5819 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5820 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5821 5822 /** 5823 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5824 * @ops - the ops to set the filter with 5825 * @ip - the address to add to or remove from the filter. 5826 * @remove - non zero to remove the ip from the filter 5827 * @reset - non zero to reset all filters before applying this filter. 5828 * 5829 * Filters denote which functions should be enabled when tracing is enabled 5830 * If @ip is NULL, it fails to update filter. 5831 */ 5832 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5833 int remove, int reset) 5834 { 5835 ftrace_ops_init(ops); 5836 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5837 } 5838 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5839 5840 /** 5841 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5842 * @ops - the ops to set the filter with 5843 * @ips - the array of addresses to add to or remove from the filter. 5844 * @cnt - the number of addresses in @ips 5845 * @remove - non zero to remove ips from the filter 5846 * @reset - non zero to reset all filters before applying this filter. 5847 * 5848 * Filters denote which functions should be enabled when tracing is enabled 5849 * If @ips array or any ip specified within is NULL , it fails to update filter. 5850 */ 5851 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5852 unsigned int cnt, int remove, int reset) 5853 { 5854 ftrace_ops_init(ops); 5855 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5856 } 5857 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5858 5859 /** 5860 * ftrace_ops_set_global_filter - setup ops to use global filters 5861 * @ops - the ops which will use the global filters 5862 * 5863 * ftrace users who need global function trace filtering should call this. 5864 * It can set the global filter only if ops were not initialized before. 5865 */ 5866 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5867 { 5868 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5869 return; 5870 5871 ftrace_ops_init(ops); 5872 ops->func_hash = &global_ops.local_hash; 5873 } 5874 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5875 5876 static int 5877 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5878 int reset, int enable) 5879 { 5880 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5881 } 5882 5883 /** 5884 * ftrace_set_filter - set a function to filter on in ftrace 5885 * @ops - the ops to set the filter with 5886 * @buf - the string that holds the function filter text. 5887 * @len - the length of the string. 5888 * @reset - non zero to reset all filters before applying this filter. 5889 * 5890 * Filters denote which functions should be enabled when tracing is enabled. 5891 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5892 */ 5893 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5894 int len, int reset) 5895 { 5896 ftrace_ops_init(ops); 5897 return ftrace_set_regex(ops, buf, len, reset, 1); 5898 } 5899 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5900 5901 /** 5902 * ftrace_set_notrace - set a function to not trace in ftrace 5903 * @ops - the ops to set the notrace filter with 5904 * @buf - the string that holds the function notrace text. 5905 * @len - the length of the string. 5906 * @reset - non zero to reset all filters before applying this filter. 5907 * 5908 * Notrace Filters denote which functions should not be enabled when tracing 5909 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5910 * for tracing. 5911 */ 5912 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5913 int len, int reset) 5914 { 5915 ftrace_ops_init(ops); 5916 return ftrace_set_regex(ops, buf, len, reset, 0); 5917 } 5918 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5919 /** 5920 * ftrace_set_global_filter - set a function to filter on with global tracers 5921 * @buf - the string that holds the function filter text. 5922 * @len - the length of the string. 5923 * @reset - non zero to reset all filters before applying this filter. 5924 * 5925 * Filters denote which functions should be enabled when tracing is enabled. 5926 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5927 */ 5928 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5929 { 5930 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5931 } 5932 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5933 5934 /** 5935 * ftrace_set_global_notrace - set a function to not trace with global tracers 5936 * @buf - the string that holds the function notrace text. 5937 * @len - the length of the string. 5938 * @reset - non zero to reset all filters before applying this filter. 5939 * 5940 * Notrace Filters denote which functions should not be enabled when tracing 5941 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5942 * for tracing. 5943 */ 5944 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5945 { 5946 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5947 } 5948 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5949 5950 /* 5951 * command line interface to allow users to set filters on boot up. 5952 */ 5953 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5954 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5955 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5956 5957 /* Used by function selftest to not test if filter is set */ 5958 bool ftrace_filter_param __initdata; 5959 5960 static int __init set_ftrace_notrace(char *str) 5961 { 5962 ftrace_filter_param = true; 5963 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5964 return 1; 5965 } 5966 __setup("ftrace_notrace=", set_ftrace_notrace); 5967 5968 static int __init set_ftrace_filter(char *str) 5969 { 5970 ftrace_filter_param = true; 5971 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5972 return 1; 5973 } 5974 __setup("ftrace_filter=", set_ftrace_filter); 5975 5976 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5977 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5978 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5979 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5980 5981 static int __init set_graph_function(char *str) 5982 { 5983 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5984 return 1; 5985 } 5986 __setup("ftrace_graph_filter=", set_graph_function); 5987 5988 static int __init set_graph_notrace_function(char *str) 5989 { 5990 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5991 return 1; 5992 } 5993 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5994 5995 static int __init set_graph_max_depth_function(char *str) 5996 { 5997 if (!str) 5998 return 0; 5999 fgraph_max_depth = simple_strtoul(str, NULL, 0); 6000 return 1; 6001 } 6002 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6003 6004 static void __init set_ftrace_early_graph(char *buf, int enable) 6005 { 6006 int ret; 6007 char *func; 6008 struct ftrace_hash *hash; 6009 6010 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6011 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6012 return; 6013 6014 while (buf) { 6015 func = strsep(&buf, ","); 6016 /* we allow only one expression at a time */ 6017 ret = ftrace_graph_set_hash(hash, func); 6018 if (ret) 6019 printk(KERN_DEBUG "ftrace: function %s not " 6020 "traceable\n", func); 6021 } 6022 6023 if (enable) 6024 ftrace_graph_hash = hash; 6025 else 6026 ftrace_graph_notrace_hash = hash; 6027 } 6028 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6029 6030 void __init 6031 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6032 { 6033 char *func; 6034 6035 ftrace_ops_init(ops); 6036 6037 while (buf) { 6038 func = strsep(&buf, ","); 6039 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6040 } 6041 } 6042 6043 static void __init set_ftrace_early_filters(void) 6044 { 6045 if (ftrace_filter_buf[0]) 6046 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6047 if (ftrace_notrace_buf[0]) 6048 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6049 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6050 if (ftrace_graph_buf[0]) 6051 set_ftrace_early_graph(ftrace_graph_buf, 1); 6052 if (ftrace_graph_notrace_buf[0]) 6053 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6054 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6055 } 6056 6057 int ftrace_regex_release(struct inode *inode, struct file *file) 6058 { 6059 struct seq_file *m = (struct seq_file *)file->private_data; 6060 struct ftrace_iterator *iter; 6061 struct ftrace_hash **orig_hash; 6062 struct trace_parser *parser; 6063 int filter_hash; 6064 6065 if (file->f_mode & FMODE_READ) { 6066 iter = m->private; 6067 seq_release(inode, file); 6068 } else 6069 iter = file->private_data; 6070 6071 parser = &iter->parser; 6072 if (trace_parser_loaded(parser)) { 6073 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6074 6075 ftrace_process_regex(iter, parser->buffer, 6076 parser->idx, enable); 6077 } 6078 6079 trace_parser_put(parser); 6080 6081 mutex_lock(&iter->ops->func_hash->regex_lock); 6082 6083 if (file->f_mode & FMODE_WRITE) { 6084 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6085 6086 if (filter_hash) { 6087 orig_hash = &iter->ops->func_hash->filter_hash; 6088 if (iter->tr) { 6089 if (list_empty(&iter->tr->mod_trace)) 6090 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6091 else 6092 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6093 } 6094 } else 6095 orig_hash = &iter->ops->func_hash->notrace_hash; 6096 6097 mutex_lock(&ftrace_lock); 6098 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6099 iter->hash, filter_hash); 6100 mutex_unlock(&ftrace_lock); 6101 } else { 6102 /* For read only, the hash is the ops hash */ 6103 iter->hash = NULL; 6104 } 6105 6106 mutex_unlock(&iter->ops->func_hash->regex_lock); 6107 free_ftrace_hash(iter->hash); 6108 if (iter->tr) 6109 trace_array_put(iter->tr); 6110 kfree(iter); 6111 6112 return 0; 6113 } 6114 6115 static const struct file_operations ftrace_avail_fops = { 6116 .open = ftrace_avail_open, 6117 .read = seq_read, 6118 .llseek = seq_lseek, 6119 .release = seq_release_private, 6120 }; 6121 6122 static const struct file_operations ftrace_enabled_fops = { 6123 .open = ftrace_enabled_open, 6124 .read = seq_read, 6125 .llseek = seq_lseek, 6126 .release = seq_release_private, 6127 }; 6128 6129 static const struct file_operations ftrace_filter_fops = { 6130 .open = ftrace_filter_open, 6131 .read = seq_read, 6132 .write = ftrace_filter_write, 6133 .llseek = tracing_lseek, 6134 .release = ftrace_regex_release, 6135 }; 6136 6137 static const struct file_operations ftrace_notrace_fops = { 6138 .open = ftrace_notrace_open, 6139 .read = seq_read, 6140 .write = ftrace_notrace_write, 6141 .llseek = tracing_lseek, 6142 .release = ftrace_regex_release, 6143 }; 6144 6145 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6146 6147 static DEFINE_MUTEX(graph_lock); 6148 6149 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6150 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6151 6152 enum graph_filter_type { 6153 GRAPH_FILTER_NOTRACE = 0, 6154 GRAPH_FILTER_FUNCTION, 6155 }; 6156 6157 #define FTRACE_GRAPH_EMPTY ((void *)1) 6158 6159 struct ftrace_graph_data { 6160 struct ftrace_hash *hash; 6161 struct ftrace_func_entry *entry; 6162 int idx; /* for hash table iteration */ 6163 enum graph_filter_type type; 6164 struct ftrace_hash *new_hash; 6165 const struct seq_operations *seq_ops; 6166 struct trace_parser parser; 6167 }; 6168 6169 static void * 6170 __g_next(struct seq_file *m, loff_t *pos) 6171 { 6172 struct ftrace_graph_data *fgd = m->private; 6173 struct ftrace_func_entry *entry = fgd->entry; 6174 struct hlist_head *head; 6175 int i, idx = fgd->idx; 6176 6177 if (*pos >= fgd->hash->count) 6178 return NULL; 6179 6180 if (entry) { 6181 hlist_for_each_entry_continue(entry, hlist) { 6182 fgd->entry = entry; 6183 return entry; 6184 } 6185 6186 idx++; 6187 } 6188 6189 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6190 head = &fgd->hash->buckets[i]; 6191 hlist_for_each_entry(entry, head, hlist) { 6192 fgd->entry = entry; 6193 fgd->idx = i; 6194 return entry; 6195 } 6196 } 6197 return NULL; 6198 } 6199 6200 static void * 6201 g_next(struct seq_file *m, void *v, loff_t *pos) 6202 { 6203 (*pos)++; 6204 return __g_next(m, pos); 6205 } 6206 6207 static void *g_start(struct seq_file *m, loff_t *pos) 6208 { 6209 struct ftrace_graph_data *fgd = m->private; 6210 6211 mutex_lock(&graph_lock); 6212 6213 if (fgd->type == GRAPH_FILTER_FUNCTION) 6214 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6215 lockdep_is_held(&graph_lock)); 6216 else 6217 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6218 lockdep_is_held(&graph_lock)); 6219 6220 /* Nothing, tell g_show to print all functions are enabled */ 6221 if (ftrace_hash_empty(fgd->hash) && !*pos) 6222 return FTRACE_GRAPH_EMPTY; 6223 6224 fgd->idx = 0; 6225 fgd->entry = NULL; 6226 return __g_next(m, pos); 6227 } 6228 6229 static void g_stop(struct seq_file *m, void *p) 6230 { 6231 mutex_unlock(&graph_lock); 6232 } 6233 6234 static int g_show(struct seq_file *m, void *v) 6235 { 6236 struct ftrace_func_entry *entry = v; 6237 6238 if (!entry) 6239 return 0; 6240 6241 if (entry == FTRACE_GRAPH_EMPTY) { 6242 struct ftrace_graph_data *fgd = m->private; 6243 6244 if (fgd->type == GRAPH_FILTER_FUNCTION) 6245 seq_puts(m, "#### all functions enabled ####\n"); 6246 else 6247 seq_puts(m, "#### no functions disabled ####\n"); 6248 return 0; 6249 } 6250 6251 seq_printf(m, "%ps\n", (void *)entry->ip); 6252 6253 return 0; 6254 } 6255 6256 static const struct seq_operations ftrace_graph_seq_ops = { 6257 .start = g_start, 6258 .next = g_next, 6259 .stop = g_stop, 6260 .show = g_show, 6261 }; 6262 6263 static int 6264 __ftrace_graph_open(struct inode *inode, struct file *file, 6265 struct ftrace_graph_data *fgd) 6266 { 6267 int ret; 6268 struct ftrace_hash *new_hash = NULL; 6269 6270 ret = security_locked_down(LOCKDOWN_TRACEFS); 6271 if (ret) 6272 return ret; 6273 6274 if (file->f_mode & FMODE_WRITE) { 6275 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6276 6277 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6278 return -ENOMEM; 6279 6280 if (file->f_flags & O_TRUNC) 6281 new_hash = alloc_ftrace_hash(size_bits); 6282 else 6283 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6284 fgd->hash); 6285 if (!new_hash) { 6286 ret = -ENOMEM; 6287 goto out; 6288 } 6289 } 6290 6291 if (file->f_mode & FMODE_READ) { 6292 ret = seq_open(file, &ftrace_graph_seq_ops); 6293 if (!ret) { 6294 struct seq_file *m = file->private_data; 6295 m->private = fgd; 6296 } else { 6297 /* Failed */ 6298 free_ftrace_hash(new_hash); 6299 new_hash = NULL; 6300 } 6301 } else 6302 file->private_data = fgd; 6303 6304 out: 6305 if (ret < 0 && file->f_mode & FMODE_WRITE) 6306 trace_parser_put(&fgd->parser); 6307 6308 fgd->new_hash = new_hash; 6309 6310 /* 6311 * All uses of fgd->hash must be taken with the graph_lock 6312 * held. The graph_lock is going to be released, so force 6313 * fgd->hash to be reinitialized when it is taken again. 6314 */ 6315 fgd->hash = NULL; 6316 6317 return ret; 6318 } 6319 6320 static int 6321 ftrace_graph_open(struct inode *inode, struct file *file) 6322 { 6323 struct ftrace_graph_data *fgd; 6324 int ret; 6325 6326 if (unlikely(ftrace_disabled)) 6327 return -ENODEV; 6328 6329 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6330 if (fgd == NULL) 6331 return -ENOMEM; 6332 6333 mutex_lock(&graph_lock); 6334 6335 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6336 lockdep_is_held(&graph_lock)); 6337 fgd->type = GRAPH_FILTER_FUNCTION; 6338 fgd->seq_ops = &ftrace_graph_seq_ops; 6339 6340 ret = __ftrace_graph_open(inode, file, fgd); 6341 if (ret < 0) 6342 kfree(fgd); 6343 6344 mutex_unlock(&graph_lock); 6345 return ret; 6346 } 6347 6348 static int 6349 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6350 { 6351 struct ftrace_graph_data *fgd; 6352 int ret; 6353 6354 if (unlikely(ftrace_disabled)) 6355 return -ENODEV; 6356 6357 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6358 if (fgd == NULL) 6359 return -ENOMEM; 6360 6361 mutex_lock(&graph_lock); 6362 6363 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6364 lockdep_is_held(&graph_lock)); 6365 fgd->type = GRAPH_FILTER_NOTRACE; 6366 fgd->seq_ops = &ftrace_graph_seq_ops; 6367 6368 ret = __ftrace_graph_open(inode, file, fgd); 6369 if (ret < 0) 6370 kfree(fgd); 6371 6372 mutex_unlock(&graph_lock); 6373 return ret; 6374 } 6375 6376 static int 6377 ftrace_graph_release(struct inode *inode, struct file *file) 6378 { 6379 struct ftrace_graph_data *fgd; 6380 struct ftrace_hash *old_hash, *new_hash; 6381 struct trace_parser *parser; 6382 int ret = 0; 6383 6384 if (file->f_mode & FMODE_READ) { 6385 struct seq_file *m = file->private_data; 6386 6387 fgd = m->private; 6388 seq_release(inode, file); 6389 } else { 6390 fgd = file->private_data; 6391 } 6392 6393 6394 if (file->f_mode & FMODE_WRITE) { 6395 6396 parser = &fgd->parser; 6397 6398 if (trace_parser_loaded((parser))) { 6399 ret = ftrace_graph_set_hash(fgd->new_hash, 6400 parser->buffer); 6401 } 6402 6403 trace_parser_put(parser); 6404 6405 new_hash = __ftrace_hash_move(fgd->new_hash); 6406 if (!new_hash) { 6407 ret = -ENOMEM; 6408 goto out; 6409 } 6410 6411 mutex_lock(&graph_lock); 6412 6413 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6414 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6415 lockdep_is_held(&graph_lock)); 6416 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6417 } else { 6418 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6419 lockdep_is_held(&graph_lock)); 6420 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6421 } 6422 6423 mutex_unlock(&graph_lock); 6424 6425 /* 6426 * We need to do a hard force of sched synchronization. 6427 * This is because we use preempt_disable() to do RCU, but 6428 * the function tracers can be called where RCU is not watching 6429 * (like before user_exit()). We can not rely on the RCU 6430 * infrastructure to do the synchronization, thus we must do it 6431 * ourselves. 6432 */ 6433 if (old_hash != EMPTY_HASH) 6434 synchronize_rcu_tasks_rude(); 6435 6436 free_ftrace_hash(old_hash); 6437 } 6438 6439 out: 6440 free_ftrace_hash(fgd->new_hash); 6441 kfree(fgd); 6442 6443 return ret; 6444 } 6445 6446 static int 6447 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6448 { 6449 struct ftrace_glob func_g; 6450 struct dyn_ftrace *rec; 6451 struct ftrace_page *pg; 6452 struct ftrace_func_entry *entry; 6453 int fail = 1; 6454 int not; 6455 6456 /* decode regex */ 6457 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6458 &func_g.search, ¬); 6459 6460 func_g.len = strlen(func_g.search); 6461 6462 mutex_lock(&ftrace_lock); 6463 6464 if (unlikely(ftrace_disabled)) { 6465 mutex_unlock(&ftrace_lock); 6466 return -ENODEV; 6467 } 6468 6469 do_for_each_ftrace_rec(pg, rec) { 6470 6471 if (rec->flags & FTRACE_FL_DISABLED) 6472 continue; 6473 6474 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6475 entry = ftrace_lookup_ip(hash, rec->ip); 6476 6477 if (!not) { 6478 fail = 0; 6479 6480 if (entry) 6481 continue; 6482 if (add_hash_entry(hash, rec->ip) < 0) 6483 goto out; 6484 } else { 6485 if (entry) { 6486 free_hash_entry(hash, entry); 6487 fail = 0; 6488 } 6489 } 6490 } 6491 } while_for_each_ftrace_rec(); 6492 out: 6493 mutex_unlock(&ftrace_lock); 6494 6495 if (fail) 6496 return -EINVAL; 6497 6498 return 0; 6499 } 6500 6501 static ssize_t 6502 ftrace_graph_write(struct file *file, const char __user *ubuf, 6503 size_t cnt, loff_t *ppos) 6504 { 6505 ssize_t read, ret = 0; 6506 struct ftrace_graph_data *fgd = file->private_data; 6507 struct trace_parser *parser; 6508 6509 if (!cnt) 6510 return 0; 6511 6512 /* Read mode uses seq functions */ 6513 if (file->f_mode & FMODE_READ) { 6514 struct seq_file *m = file->private_data; 6515 fgd = m->private; 6516 } 6517 6518 parser = &fgd->parser; 6519 6520 read = trace_get_user(parser, ubuf, cnt, ppos); 6521 6522 if (read >= 0 && trace_parser_loaded(parser) && 6523 !trace_parser_cont(parser)) { 6524 6525 ret = ftrace_graph_set_hash(fgd->new_hash, 6526 parser->buffer); 6527 trace_parser_clear(parser); 6528 } 6529 6530 if (!ret) 6531 ret = read; 6532 6533 return ret; 6534 } 6535 6536 static const struct file_operations ftrace_graph_fops = { 6537 .open = ftrace_graph_open, 6538 .read = seq_read, 6539 .write = ftrace_graph_write, 6540 .llseek = tracing_lseek, 6541 .release = ftrace_graph_release, 6542 }; 6543 6544 static const struct file_operations ftrace_graph_notrace_fops = { 6545 .open = ftrace_graph_notrace_open, 6546 .read = seq_read, 6547 .write = ftrace_graph_write, 6548 .llseek = tracing_lseek, 6549 .release = ftrace_graph_release, 6550 }; 6551 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6552 6553 void ftrace_create_filter_files(struct ftrace_ops *ops, 6554 struct dentry *parent) 6555 { 6556 6557 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6558 ops, &ftrace_filter_fops); 6559 6560 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6561 ops, &ftrace_notrace_fops); 6562 } 6563 6564 /* 6565 * The name "destroy_filter_files" is really a misnomer. Although 6566 * in the future, it may actually delete the files, but this is 6567 * really intended to make sure the ops passed in are disabled 6568 * and that when this function returns, the caller is free to 6569 * free the ops. 6570 * 6571 * The "destroy" name is only to match the "create" name that this 6572 * should be paired with. 6573 */ 6574 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6575 { 6576 mutex_lock(&ftrace_lock); 6577 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6578 ftrace_shutdown(ops, 0); 6579 ops->flags |= FTRACE_OPS_FL_DELETED; 6580 ftrace_free_filter(ops); 6581 mutex_unlock(&ftrace_lock); 6582 } 6583 6584 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6585 { 6586 6587 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6588 d_tracer, NULL, &ftrace_avail_fops); 6589 6590 trace_create_file("enabled_functions", TRACE_MODE_READ, 6591 d_tracer, NULL, &ftrace_enabled_fops); 6592 6593 ftrace_create_filter_files(&global_ops, d_tracer); 6594 6595 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6596 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6597 NULL, 6598 &ftrace_graph_fops); 6599 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6600 NULL, 6601 &ftrace_graph_notrace_fops); 6602 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6603 6604 return 0; 6605 } 6606 6607 static int ftrace_cmp_ips(const void *a, const void *b) 6608 { 6609 const unsigned long *ipa = a; 6610 const unsigned long *ipb = b; 6611 6612 if (*ipa > *ipb) 6613 return 1; 6614 if (*ipa < *ipb) 6615 return -1; 6616 return 0; 6617 } 6618 6619 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6620 static void test_is_sorted(unsigned long *start, unsigned long count) 6621 { 6622 int i; 6623 6624 for (i = 1; i < count; i++) { 6625 if (WARN(start[i - 1] > start[i], 6626 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6627 (void *)start[i - 1], start[i - 1], 6628 (void *)start[i], start[i])) 6629 break; 6630 } 6631 if (i == count) 6632 pr_info("ftrace section at %px sorted properly\n", start); 6633 } 6634 #else 6635 static void test_is_sorted(unsigned long *start, unsigned long count) 6636 { 6637 } 6638 #endif 6639 6640 static int ftrace_process_locs(struct module *mod, 6641 unsigned long *start, 6642 unsigned long *end) 6643 { 6644 struct ftrace_page *start_pg; 6645 struct ftrace_page *pg; 6646 struct dyn_ftrace *rec; 6647 unsigned long count; 6648 unsigned long *p; 6649 unsigned long addr; 6650 unsigned long flags = 0; /* Shut up gcc */ 6651 int ret = -ENOMEM; 6652 6653 count = end - start; 6654 6655 if (!count) 6656 return 0; 6657 6658 /* 6659 * Sorting mcount in vmlinux at build time depend on 6660 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6661 * modules can not be sorted at build time. 6662 */ 6663 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6664 sort(start, count, sizeof(*start), 6665 ftrace_cmp_ips, NULL); 6666 } else { 6667 test_is_sorted(start, count); 6668 } 6669 6670 start_pg = ftrace_allocate_pages(count); 6671 if (!start_pg) 6672 return -ENOMEM; 6673 6674 mutex_lock(&ftrace_lock); 6675 6676 /* 6677 * Core and each module needs their own pages, as 6678 * modules will free them when they are removed. 6679 * Force a new page to be allocated for modules. 6680 */ 6681 if (!mod) { 6682 WARN_ON(ftrace_pages || ftrace_pages_start); 6683 /* First initialization */ 6684 ftrace_pages = ftrace_pages_start = start_pg; 6685 } else { 6686 if (!ftrace_pages) 6687 goto out; 6688 6689 if (WARN_ON(ftrace_pages->next)) { 6690 /* Hmm, we have free pages? */ 6691 while (ftrace_pages->next) 6692 ftrace_pages = ftrace_pages->next; 6693 } 6694 6695 ftrace_pages->next = start_pg; 6696 } 6697 6698 p = start; 6699 pg = start_pg; 6700 while (p < end) { 6701 unsigned long end_offset; 6702 addr = ftrace_call_adjust(*p++); 6703 /* 6704 * Some architecture linkers will pad between 6705 * the different mcount_loc sections of different 6706 * object files to satisfy alignments. 6707 * Skip any NULL pointers. 6708 */ 6709 if (!addr) 6710 continue; 6711 6712 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6713 if (end_offset > PAGE_SIZE << pg->order) { 6714 /* We should have allocated enough */ 6715 if (WARN_ON(!pg->next)) 6716 break; 6717 pg = pg->next; 6718 } 6719 6720 rec = &pg->records[pg->index++]; 6721 rec->ip = addr; 6722 } 6723 6724 /* We should have used all pages */ 6725 WARN_ON(pg->next); 6726 6727 /* Assign the last page to ftrace_pages */ 6728 ftrace_pages = pg; 6729 6730 /* 6731 * We only need to disable interrupts on start up 6732 * because we are modifying code that an interrupt 6733 * may execute, and the modification is not atomic. 6734 * But for modules, nothing runs the code we modify 6735 * until we are finished with it, and there's no 6736 * reason to cause large interrupt latencies while we do it. 6737 */ 6738 if (!mod) 6739 local_irq_save(flags); 6740 ftrace_update_code(mod, start_pg); 6741 if (!mod) 6742 local_irq_restore(flags); 6743 ret = 0; 6744 out: 6745 mutex_unlock(&ftrace_lock); 6746 6747 return ret; 6748 } 6749 6750 struct ftrace_mod_func { 6751 struct list_head list; 6752 char *name; 6753 unsigned long ip; 6754 unsigned int size; 6755 }; 6756 6757 struct ftrace_mod_map { 6758 struct rcu_head rcu; 6759 struct list_head list; 6760 struct module *mod; 6761 unsigned long start_addr; 6762 unsigned long end_addr; 6763 struct list_head funcs; 6764 unsigned int num_funcs; 6765 }; 6766 6767 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6768 unsigned long *value, char *type, 6769 char *name, char *module_name, 6770 int *exported) 6771 { 6772 struct ftrace_ops *op; 6773 6774 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6775 if (!op->trampoline || symnum--) 6776 continue; 6777 *value = op->trampoline; 6778 *type = 't'; 6779 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6780 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6781 *exported = 0; 6782 return 0; 6783 } 6784 6785 return -ERANGE; 6786 } 6787 6788 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 6789 /* 6790 * Check if the current ops references the given ip. 6791 * 6792 * If the ops traces all functions, then it was already accounted for. 6793 * If the ops does not trace the current record function, skip it. 6794 * If the ops ignores the function via notrace filter, skip it. 6795 */ 6796 static bool 6797 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 6798 { 6799 /* If ops isn't enabled, ignore it */ 6800 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6801 return false; 6802 6803 /* If ops traces all then it includes this function */ 6804 if (ops_traces_mod(ops)) 6805 return true; 6806 6807 /* The function must be in the filter */ 6808 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 6809 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 6810 return false; 6811 6812 /* If in notrace hash, we ignore it too */ 6813 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 6814 return false; 6815 6816 return true; 6817 } 6818 #endif 6819 6820 #ifdef CONFIG_MODULES 6821 6822 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6823 6824 static LIST_HEAD(ftrace_mod_maps); 6825 6826 static int referenced_filters(struct dyn_ftrace *rec) 6827 { 6828 struct ftrace_ops *ops; 6829 int cnt = 0; 6830 6831 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6832 if (ops_references_ip(ops, rec->ip)) { 6833 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6834 continue; 6835 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6836 continue; 6837 cnt++; 6838 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6839 rec->flags |= FTRACE_FL_REGS; 6840 if (cnt == 1 && ops->trampoline) 6841 rec->flags |= FTRACE_FL_TRAMP; 6842 else 6843 rec->flags &= ~FTRACE_FL_TRAMP; 6844 } 6845 } 6846 6847 return cnt; 6848 } 6849 6850 static void 6851 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6852 { 6853 struct ftrace_func_entry *entry; 6854 struct dyn_ftrace *rec; 6855 int i; 6856 6857 if (ftrace_hash_empty(hash)) 6858 return; 6859 6860 for (i = 0; i < pg->index; i++) { 6861 rec = &pg->records[i]; 6862 entry = __ftrace_lookup_ip(hash, rec->ip); 6863 /* 6864 * Do not allow this rec to match again. 6865 * Yeah, it may waste some memory, but will be removed 6866 * if/when the hash is modified again. 6867 */ 6868 if (entry) 6869 entry->ip = 0; 6870 } 6871 } 6872 6873 /* Clear any records from hashes */ 6874 static void clear_mod_from_hashes(struct ftrace_page *pg) 6875 { 6876 struct trace_array *tr; 6877 6878 mutex_lock(&trace_types_lock); 6879 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6880 if (!tr->ops || !tr->ops->func_hash) 6881 continue; 6882 mutex_lock(&tr->ops->func_hash->regex_lock); 6883 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6884 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6885 mutex_unlock(&tr->ops->func_hash->regex_lock); 6886 } 6887 mutex_unlock(&trace_types_lock); 6888 } 6889 6890 static void ftrace_free_mod_map(struct rcu_head *rcu) 6891 { 6892 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6893 struct ftrace_mod_func *mod_func; 6894 struct ftrace_mod_func *n; 6895 6896 /* All the contents of mod_map are now not visible to readers */ 6897 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6898 kfree(mod_func->name); 6899 list_del(&mod_func->list); 6900 kfree(mod_func); 6901 } 6902 6903 kfree(mod_map); 6904 } 6905 6906 void ftrace_release_mod(struct module *mod) 6907 { 6908 struct ftrace_mod_map *mod_map; 6909 struct ftrace_mod_map *n; 6910 struct dyn_ftrace *rec; 6911 struct ftrace_page **last_pg; 6912 struct ftrace_page *tmp_page = NULL; 6913 struct ftrace_page *pg; 6914 6915 mutex_lock(&ftrace_lock); 6916 6917 if (ftrace_disabled) 6918 goto out_unlock; 6919 6920 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6921 if (mod_map->mod == mod) { 6922 list_del_rcu(&mod_map->list); 6923 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6924 break; 6925 } 6926 } 6927 6928 /* 6929 * Each module has its own ftrace_pages, remove 6930 * them from the list. 6931 */ 6932 last_pg = &ftrace_pages_start; 6933 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6934 rec = &pg->records[0]; 6935 if (within_module_core(rec->ip, mod) || 6936 within_module_init(rec->ip, mod)) { 6937 /* 6938 * As core pages are first, the first 6939 * page should never be a module page. 6940 */ 6941 if (WARN_ON(pg == ftrace_pages_start)) 6942 goto out_unlock; 6943 6944 /* Check if we are deleting the last page */ 6945 if (pg == ftrace_pages) 6946 ftrace_pages = next_to_ftrace_page(last_pg); 6947 6948 ftrace_update_tot_cnt -= pg->index; 6949 *last_pg = pg->next; 6950 6951 pg->next = tmp_page; 6952 tmp_page = pg; 6953 } else 6954 last_pg = &pg->next; 6955 } 6956 out_unlock: 6957 mutex_unlock(&ftrace_lock); 6958 6959 for (pg = tmp_page; pg; pg = tmp_page) { 6960 6961 /* Needs to be called outside of ftrace_lock */ 6962 clear_mod_from_hashes(pg); 6963 6964 if (pg->records) { 6965 free_pages((unsigned long)pg->records, pg->order); 6966 ftrace_number_of_pages -= 1 << pg->order; 6967 } 6968 tmp_page = pg->next; 6969 kfree(pg); 6970 ftrace_number_of_groups--; 6971 } 6972 } 6973 6974 void ftrace_module_enable(struct module *mod) 6975 { 6976 struct dyn_ftrace *rec; 6977 struct ftrace_page *pg; 6978 6979 mutex_lock(&ftrace_lock); 6980 6981 if (ftrace_disabled) 6982 goto out_unlock; 6983 6984 /* 6985 * If the tracing is enabled, go ahead and enable the record. 6986 * 6987 * The reason not to enable the record immediately is the 6988 * inherent check of ftrace_make_nop/ftrace_make_call for 6989 * correct previous instructions. Making first the NOP 6990 * conversion puts the module to the correct state, thus 6991 * passing the ftrace_make_call check. 6992 * 6993 * We also delay this to after the module code already set the 6994 * text to read-only, as we now need to set it back to read-write 6995 * so that we can modify the text. 6996 */ 6997 if (ftrace_start_up) 6998 ftrace_arch_code_modify_prepare(); 6999 7000 do_for_each_ftrace_rec(pg, rec) { 7001 int cnt; 7002 /* 7003 * do_for_each_ftrace_rec() is a double loop. 7004 * module text shares the pg. If a record is 7005 * not part of this module, then skip this pg, 7006 * which the "break" will do. 7007 */ 7008 if (!within_module_core(rec->ip, mod) && 7009 !within_module_init(rec->ip, mod)) 7010 break; 7011 7012 /* Weak functions should still be ignored */ 7013 if (!test_for_valid_rec(rec)) { 7014 /* Clear all other flags. Should not be enabled anyway */ 7015 rec->flags = FTRACE_FL_DISABLED; 7016 continue; 7017 } 7018 7019 cnt = 0; 7020 7021 /* 7022 * When adding a module, we need to check if tracers are 7023 * currently enabled and if they are, and can trace this record, 7024 * we need to enable the module functions as well as update the 7025 * reference counts for those function records. 7026 */ 7027 if (ftrace_start_up) 7028 cnt += referenced_filters(rec); 7029 7030 rec->flags &= ~FTRACE_FL_DISABLED; 7031 rec->flags += cnt; 7032 7033 if (ftrace_start_up && cnt) { 7034 int failed = __ftrace_replace_code(rec, 1); 7035 if (failed) { 7036 ftrace_bug(failed, rec); 7037 goto out_loop; 7038 } 7039 } 7040 7041 } while_for_each_ftrace_rec(); 7042 7043 out_loop: 7044 if (ftrace_start_up) 7045 ftrace_arch_code_modify_post_process(); 7046 7047 out_unlock: 7048 mutex_unlock(&ftrace_lock); 7049 7050 process_cached_mods(mod->name); 7051 } 7052 7053 void ftrace_module_init(struct module *mod) 7054 { 7055 int ret; 7056 7057 if (ftrace_disabled || !mod->num_ftrace_callsites) 7058 return; 7059 7060 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7061 mod->ftrace_callsites + mod->num_ftrace_callsites); 7062 if (ret) 7063 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7064 mod->name); 7065 } 7066 7067 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7068 struct dyn_ftrace *rec) 7069 { 7070 struct ftrace_mod_func *mod_func; 7071 unsigned long symsize; 7072 unsigned long offset; 7073 char str[KSYM_SYMBOL_LEN]; 7074 char *modname; 7075 const char *ret; 7076 7077 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7078 if (!ret) 7079 return; 7080 7081 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7082 if (!mod_func) 7083 return; 7084 7085 mod_func->name = kstrdup(str, GFP_KERNEL); 7086 if (!mod_func->name) { 7087 kfree(mod_func); 7088 return; 7089 } 7090 7091 mod_func->ip = rec->ip - offset; 7092 mod_func->size = symsize; 7093 7094 mod_map->num_funcs++; 7095 7096 list_add_rcu(&mod_func->list, &mod_map->funcs); 7097 } 7098 7099 static struct ftrace_mod_map * 7100 allocate_ftrace_mod_map(struct module *mod, 7101 unsigned long start, unsigned long end) 7102 { 7103 struct ftrace_mod_map *mod_map; 7104 7105 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7106 if (!mod_map) 7107 return NULL; 7108 7109 mod_map->mod = mod; 7110 mod_map->start_addr = start; 7111 mod_map->end_addr = end; 7112 mod_map->num_funcs = 0; 7113 7114 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7115 7116 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7117 7118 return mod_map; 7119 } 7120 7121 static const char * 7122 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7123 unsigned long addr, unsigned long *size, 7124 unsigned long *off, char *sym) 7125 { 7126 struct ftrace_mod_func *found_func = NULL; 7127 struct ftrace_mod_func *mod_func; 7128 7129 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7130 if (addr >= mod_func->ip && 7131 addr < mod_func->ip + mod_func->size) { 7132 found_func = mod_func; 7133 break; 7134 } 7135 } 7136 7137 if (found_func) { 7138 if (size) 7139 *size = found_func->size; 7140 if (off) 7141 *off = addr - found_func->ip; 7142 if (sym) 7143 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 7144 7145 return found_func->name; 7146 } 7147 7148 return NULL; 7149 } 7150 7151 const char * 7152 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7153 unsigned long *off, char **modname, char *sym) 7154 { 7155 struct ftrace_mod_map *mod_map; 7156 const char *ret = NULL; 7157 7158 /* mod_map is freed via call_rcu() */ 7159 preempt_disable(); 7160 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7161 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7162 if (ret) { 7163 if (modname) 7164 *modname = mod_map->mod->name; 7165 break; 7166 } 7167 } 7168 preempt_enable(); 7169 7170 return ret; 7171 } 7172 7173 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7174 char *type, char *name, 7175 char *module_name, int *exported) 7176 { 7177 struct ftrace_mod_map *mod_map; 7178 struct ftrace_mod_func *mod_func; 7179 int ret; 7180 7181 preempt_disable(); 7182 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7183 7184 if (symnum >= mod_map->num_funcs) { 7185 symnum -= mod_map->num_funcs; 7186 continue; 7187 } 7188 7189 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7190 if (symnum > 1) { 7191 symnum--; 7192 continue; 7193 } 7194 7195 *value = mod_func->ip; 7196 *type = 'T'; 7197 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7198 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7199 *exported = 1; 7200 preempt_enable(); 7201 return 0; 7202 } 7203 WARN_ON(1); 7204 break; 7205 } 7206 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7207 module_name, exported); 7208 preempt_enable(); 7209 return ret; 7210 } 7211 7212 #else 7213 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7214 struct dyn_ftrace *rec) { } 7215 static inline struct ftrace_mod_map * 7216 allocate_ftrace_mod_map(struct module *mod, 7217 unsigned long start, unsigned long end) 7218 { 7219 return NULL; 7220 } 7221 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7222 char *type, char *name, char *module_name, 7223 int *exported) 7224 { 7225 int ret; 7226 7227 preempt_disable(); 7228 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7229 module_name, exported); 7230 preempt_enable(); 7231 return ret; 7232 } 7233 #endif /* CONFIG_MODULES */ 7234 7235 struct ftrace_init_func { 7236 struct list_head list; 7237 unsigned long ip; 7238 }; 7239 7240 /* Clear any init ips from hashes */ 7241 static void 7242 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7243 { 7244 struct ftrace_func_entry *entry; 7245 7246 entry = ftrace_lookup_ip(hash, func->ip); 7247 /* 7248 * Do not allow this rec to match again. 7249 * Yeah, it may waste some memory, but will be removed 7250 * if/when the hash is modified again. 7251 */ 7252 if (entry) 7253 entry->ip = 0; 7254 } 7255 7256 static void 7257 clear_func_from_hashes(struct ftrace_init_func *func) 7258 { 7259 struct trace_array *tr; 7260 7261 mutex_lock(&trace_types_lock); 7262 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7263 if (!tr->ops || !tr->ops->func_hash) 7264 continue; 7265 mutex_lock(&tr->ops->func_hash->regex_lock); 7266 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7267 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7268 mutex_unlock(&tr->ops->func_hash->regex_lock); 7269 } 7270 mutex_unlock(&trace_types_lock); 7271 } 7272 7273 static void add_to_clear_hash_list(struct list_head *clear_list, 7274 struct dyn_ftrace *rec) 7275 { 7276 struct ftrace_init_func *func; 7277 7278 func = kmalloc(sizeof(*func), GFP_KERNEL); 7279 if (!func) { 7280 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7281 return; 7282 } 7283 7284 func->ip = rec->ip; 7285 list_add(&func->list, clear_list); 7286 } 7287 7288 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7289 { 7290 unsigned long start = (unsigned long)(start_ptr); 7291 unsigned long end = (unsigned long)(end_ptr); 7292 struct ftrace_page **last_pg = &ftrace_pages_start; 7293 struct ftrace_page *pg; 7294 struct dyn_ftrace *rec; 7295 struct dyn_ftrace key; 7296 struct ftrace_mod_map *mod_map = NULL; 7297 struct ftrace_init_func *func, *func_next; 7298 struct list_head clear_hash; 7299 7300 INIT_LIST_HEAD(&clear_hash); 7301 7302 key.ip = start; 7303 key.flags = end; /* overload flags, as it is unsigned long */ 7304 7305 mutex_lock(&ftrace_lock); 7306 7307 /* 7308 * If we are freeing module init memory, then check if 7309 * any tracer is active. If so, we need to save a mapping of 7310 * the module functions being freed with the address. 7311 */ 7312 if (mod && ftrace_ops_list != &ftrace_list_end) 7313 mod_map = allocate_ftrace_mod_map(mod, start, end); 7314 7315 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7316 if (end < pg->records[0].ip || 7317 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7318 continue; 7319 again: 7320 rec = bsearch(&key, pg->records, pg->index, 7321 sizeof(struct dyn_ftrace), 7322 ftrace_cmp_recs); 7323 if (!rec) 7324 continue; 7325 7326 /* rec will be cleared from hashes after ftrace_lock unlock */ 7327 add_to_clear_hash_list(&clear_hash, rec); 7328 7329 if (mod_map) 7330 save_ftrace_mod_rec(mod_map, rec); 7331 7332 pg->index--; 7333 ftrace_update_tot_cnt--; 7334 if (!pg->index) { 7335 *last_pg = pg->next; 7336 if (pg->records) { 7337 free_pages((unsigned long)pg->records, pg->order); 7338 ftrace_number_of_pages -= 1 << pg->order; 7339 } 7340 ftrace_number_of_groups--; 7341 kfree(pg); 7342 pg = container_of(last_pg, struct ftrace_page, next); 7343 if (!(*last_pg)) 7344 ftrace_pages = pg; 7345 continue; 7346 } 7347 memmove(rec, rec + 1, 7348 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7349 /* More than one function may be in this block */ 7350 goto again; 7351 } 7352 mutex_unlock(&ftrace_lock); 7353 7354 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7355 clear_func_from_hashes(func); 7356 kfree(func); 7357 } 7358 } 7359 7360 void __init ftrace_free_init_mem(void) 7361 { 7362 void *start = (void *)(&__init_begin); 7363 void *end = (void *)(&__init_end); 7364 7365 ftrace_boot_snapshot(); 7366 7367 ftrace_free_mem(NULL, start, end); 7368 } 7369 7370 int __init __weak ftrace_dyn_arch_init(void) 7371 { 7372 return 0; 7373 } 7374 7375 void __init ftrace_init(void) 7376 { 7377 extern unsigned long __start_mcount_loc[]; 7378 extern unsigned long __stop_mcount_loc[]; 7379 unsigned long count, flags; 7380 int ret; 7381 7382 local_irq_save(flags); 7383 ret = ftrace_dyn_arch_init(); 7384 local_irq_restore(flags); 7385 if (ret) 7386 goto failed; 7387 7388 count = __stop_mcount_loc - __start_mcount_loc; 7389 if (!count) { 7390 pr_info("ftrace: No functions to be traced?\n"); 7391 goto failed; 7392 } 7393 7394 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7395 count, DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 7396 7397 ret = ftrace_process_locs(NULL, 7398 __start_mcount_loc, 7399 __stop_mcount_loc); 7400 if (ret) { 7401 pr_warn("ftrace: failed to allocate entries for functions\n"); 7402 goto failed; 7403 } 7404 7405 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7406 ftrace_number_of_pages, ftrace_number_of_groups); 7407 7408 last_ftrace_enabled = ftrace_enabled = 1; 7409 7410 set_ftrace_early_filters(); 7411 7412 return; 7413 failed: 7414 ftrace_disabled = 1; 7415 } 7416 7417 /* Do nothing if arch does not support this */ 7418 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7419 { 7420 } 7421 7422 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7423 { 7424 unsigned long trampoline = ops->trampoline; 7425 7426 arch_ftrace_update_trampoline(ops); 7427 if (ops->trampoline && ops->trampoline != trampoline && 7428 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7429 /* Add to kallsyms before the perf events */ 7430 ftrace_add_trampoline_to_kallsyms(ops); 7431 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7432 ops->trampoline, ops->trampoline_size, false, 7433 FTRACE_TRAMPOLINE_SYM); 7434 /* 7435 * Record the perf text poke event after the ksymbol register 7436 * event. 7437 */ 7438 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7439 (void *)ops->trampoline, 7440 ops->trampoline_size); 7441 } 7442 } 7443 7444 void ftrace_init_trace_array(struct trace_array *tr) 7445 { 7446 INIT_LIST_HEAD(&tr->func_probes); 7447 INIT_LIST_HEAD(&tr->mod_trace); 7448 INIT_LIST_HEAD(&tr->mod_notrace); 7449 } 7450 #else 7451 7452 struct ftrace_ops global_ops = { 7453 .func = ftrace_stub, 7454 .flags = FTRACE_OPS_FL_INITIALIZED | 7455 FTRACE_OPS_FL_PID, 7456 }; 7457 7458 static int __init ftrace_nodyn_init(void) 7459 { 7460 ftrace_enabled = 1; 7461 return 0; 7462 } 7463 core_initcall(ftrace_nodyn_init); 7464 7465 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7466 static inline void ftrace_startup_all(int command) { } 7467 7468 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7469 { 7470 } 7471 7472 #endif /* CONFIG_DYNAMIC_FTRACE */ 7473 7474 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7475 { 7476 tr->ops = &global_ops; 7477 tr->ops->private = tr; 7478 ftrace_init_trace_array(tr); 7479 } 7480 7481 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7482 { 7483 /* If we filter on pids, update to use the pid function */ 7484 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7485 if (WARN_ON(tr->ops->func != ftrace_stub)) 7486 printk("ftrace ops had %pS for function\n", 7487 tr->ops->func); 7488 } 7489 tr->ops->func = func; 7490 tr->ops->private = tr; 7491 } 7492 7493 void ftrace_reset_array_ops(struct trace_array *tr) 7494 { 7495 tr->ops->func = ftrace_stub; 7496 } 7497 7498 static nokprobe_inline void 7499 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7500 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7501 { 7502 struct pt_regs *regs = ftrace_get_regs(fregs); 7503 struct ftrace_ops *op; 7504 int bit; 7505 7506 /* 7507 * The ftrace_test_and_set_recursion() will disable preemption, 7508 * which is required since some of the ops may be dynamically 7509 * allocated, they must be freed after a synchronize_rcu(). 7510 */ 7511 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7512 if (bit < 0) 7513 return; 7514 7515 do_for_each_ftrace_op(op, ftrace_ops_list) { 7516 /* Stub functions don't need to be called nor tested */ 7517 if (op->flags & FTRACE_OPS_FL_STUB) 7518 continue; 7519 /* 7520 * Check the following for each ops before calling their func: 7521 * if RCU flag is set, then rcu_is_watching() must be true 7522 * if PER_CPU is set, then ftrace_function_local_disable() 7523 * must be false 7524 * Otherwise test if the ip matches the ops filter 7525 * 7526 * If any of the above fails then the op->func() is not executed. 7527 */ 7528 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7529 ftrace_ops_test(op, ip, regs)) { 7530 if (FTRACE_WARN_ON(!op->func)) { 7531 pr_warn("op=%p %pS\n", op, op); 7532 goto out; 7533 } 7534 op->func(ip, parent_ip, op, fregs); 7535 } 7536 } while_for_each_ftrace_op(op); 7537 out: 7538 trace_clear_recursion(bit); 7539 } 7540 7541 /* 7542 * Some archs only support passing ip and parent_ip. Even though 7543 * the list function ignores the op parameter, we do not want any 7544 * C side effects, where a function is called without the caller 7545 * sending a third parameter. 7546 * Archs are to support both the regs and ftrace_ops at the same time. 7547 * If they support ftrace_ops, it is assumed they support regs. 7548 * If call backs want to use regs, they must either check for regs 7549 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7550 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7551 * An architecture can pass partial regs with ftrace_ops and still 7552 * set the ARCH_SUPPORTS_FTRACE_OPS. 7553 * 7554 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7555 * arch_ftrace_ops_list_func. 7556 */ 7557 #if ARCH_SUPPORTS_FTRACE_OPS 7558 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7559 struct ftrace_ops *op, struct ftrace_regs *fregs) 7560 { 7561 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7562 } 7563 #else 7564 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7565 { 7566 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7567 } 7568 #endif 7569 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7570 7571 /* 7572 * If there's only one function registered but it does not support 7573 * recursion, needs RCU protection and/or requires per cpu handling, then 7574 * this function will be called by the mcount trampoline. 7575 */ 7576 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7577 struct ftrace_ops *op, struct ftrace_regs *fregs) 7578 { 7579 int bit; 7580 7581 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7582 if (bit < 0) 7583 return; 7584 7585 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7586 op->func(ip, parent_ip, op, fregs); 7587 7588 trace_clear_recursion(bit); 7589 } 7590 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7591 7592 /** 7593 * ftrace_ops_get_func - get the function a trampoline should call 7594 * @ops: the ops to get the function for 7595 * 7596 * Normally the mcount trampoline will call the ops->func, but there 7597 * are times that it should not. For example, if the ops does not 7598 * have its own recursion protection, then it should call the 7599 * ftrace_ops_assist_func() instead. 7600 * 7601 * Returns the function that the trampoline should call for @ops. 7602 */ 7603 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7604 { 7605 /* 7606 * If the function does not handle recursion or needs to be RCU safe, 7607 * then we need to call the assist handler. 7608 */ 7609 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7610 FTRACE_OPS_FL_RCU)) 7611 return ftrace_ops_assist_func; 7612 7613 return ops->func; 7614 } 7615 7616 static void 7617 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7618 struct task_struct *prev, 7619 struct task_struct *next, 7620 unsigned int prev_state) 7621 { 7622 struct trace_array *tr = data; 7623 struct trace_pid_list *pid_list; 7624 struct trace_pid_list *no_pid_list; 7625 7626 pid_list = rcu_dereference_sched(tr->function_pids); 7627 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7628 7629 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7630 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7631 FTRACE_PID_IGNORE); 7632 else 7633 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7634 next->pid); 7635 } 7636 7637 static void 7638 ftrace_pid_follow_sched_process_fork(void *data, 7639 struct task_struct *self, 7640 struct task_struct *task) 7641 { 7642 struct trace_pid_list *pid_list; 7643 struct trace_array *tr = data; 7644 7645 pid_list = rcu_dereference_sched(tr->function_pids); 7646 trace_filter_add_remove_task(pid_list, self, task); 7647 7648 pid_list = rcu_dereference_sched(tr->function_no_pids); 7649 trace_filter_add_remove_task(pid_list, self, task); 7650 } 7651 7652 static void 7653 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7654 { 7655 struct trace_pid_list *pid_list; 7656 struct trace_array *tr = data; 7657 7658 pid_list = rcu_dereference_sched(tr->function_pids); 7659 trace_filter_add_remove_task(pid_list, NULL, task); 7660 7661 pid_list = rcu_dereference_sched(tr->function_no_pids); 7662 trace_filter_add_remove_task(pid_list, NULL, task); 7663 } 7664 7665 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7666 { 7667 if (enable) { 7668 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7669 tr); 7670 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7671 tr); 7672 } else { 7673 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7674 tr); 7675 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7676 tr); 7677 } 7678 } 7679 7680 static void clear_ftrace_pids(struct trace_array *tr, int type) 7681 { 7682 struct trace_pid_list *pid_list; 7683 struct trace_pid_list *no_pid_list; 7684 int cpu; 7685 7686 pid_list = rcu_dereference_protected(tr->function_pids, 7687 lockdep_is_held(&ftrace_lock)); 7688 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7689 lockdep_is_held(&ftrace_lock)); 7690 7691 /* Make sure there's something to do */ 7692 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7693 return; 7694 7695 /* See if the pids still need to be checked after this */ 7696 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7697 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7698 for_each_possible_cpu(cpu) 7699 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7700 } 7701 7702 if (type & TRACE_PIDS) 7703 rcu_assign_pointer(tr->function_pids, NULL); 7704 7705 if (type & TRACE_NO_PIDS) 7706 rcu_assign_pointer(tr->function_no_pids, NULL); 7707 7708 /* Wait till all users are no longer using pid filtering */ 7709 synchronize_rcu(); 7710 7711 if ((type & TRACE_PIDS) && pid_list) 7712 trace_pid_list_free(pid_list); 7713 7714 if ((type & TRACE_NO_PIDS) && no_pid_list) 7715 trace_pid_list_free(no_pid_list); 7716 } 7717 7718 void ftrace_clear_pids(struct trace_array *tr) 7719 { 7720 mutex_lock(&ftrace_lock); 7721 7722 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7723 7724 mutex_unlock(&ftrace_lock); 7725 } 7726 7727 static void ftrace_pid_reset(struct trace_array *tr, int type) 7728 { 7729 mutex_lock(&ftrace_lock); 7730 clear_ftrace_pids(tr, type); 7731 7732 ftrace_update_pid_func(); 7733 ftrace_startup_all(0); 7734 7735 mutex_unlock(&ftrace_lock); 7736 } 7737 7738 /* Greater than any max PID */ 7739 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7740 7741 static void *fpid_start(struct seq_file *m, loff_t *pos) 7742 __acquires(RCU) 7743 { 7744 struct trace_pid_list *pid_list; 7745 struct trace_array *tr = m->private; 7746 7747 mutex_lock(&ftrace_lock); 7748 rcu_read_lock_sched(); 7749 7750 pid_list = rcu_dereference_sched(tr->function_pids); 7751 7752 if (!pid_list) 7753 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7754 7755 return trace_pid_start(pid_list, pos); 7756 } 7757 7758 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7759 { 7760 struct trace_array *tr = m->private; 7761 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7762 7763 if (v == FTRACE_NO_PIDS) { 7764 (*pos)++; 7765 return NULL; 7766 } 7767 return trace_pid_next(pid_list, v, pos); 7768 } 7769 7770 static void fpid_stop(struct seq_file *m, void *p) 7771 __releases(RCU) 7772 { 7773 rcu_read_unlock_sched(); 7774 mutex_unlock(&ftrace_lock); 7775 } 7776 7777 static int fpid_show(struct seq_file *m, void *v) 7778 { 7779 if (v == FTRACE_NO_PIDS) { 7780 seq_puts(m, "no pid\n"); 7781 return 0; 7782 } 7783 7784 return trace_pid_show(m, v); 7785 } 7786 7787 static const struct seq_operations ftrace_pid_sops = { 7788 .start = fpid_start, 7789 .next = fpid_next, 7790 .stop = fpid_stop, 7791 .show = fpid_show, 7792 }; 7793 7794 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7795 __acquires(RCU) 7796 { 7797 struct trace_pid_list *pid_list; 7798 struct trace_array *tr = m->private; 7799 7800 mutex_lock(&ftrace_lock); 7801 rcu_read_lock_sched(); 7802 7803 pid_list = rcu_dereference_sched(tr->function_no_pids); 7804 7805 if (!pid_list) 7806 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7807 7808 return trace_pid_start(pid_list, pos); 7809 } 7810 7811 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7812 { 7813 struct trace_array *tr = m->private; 7814 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7815 7816 if (v == FTRACE_NO_PIDS) { 7817 (*pos)++; 7818 return NULL; 7819 } 7820 return trace_pid_next(pid_list, v, pos); 7821 } 7822 7823 static const struct seq_operations ftrace_no_pid_sops = { 7824 .start = fnpid_start, 7825 .next = fnpid_next, 7826 .stop = fpid_stop, 7827 .show = fpid_show, 7828 }; 7829 7830 static int pid_open(struct inode *inode, struct file *file, int type) 7831 { 7832 const struct seq_operations *seq_ops; 7833 struct trace_array *tr = inode->i_private; 7834 struct seq_file *m; 7835 int ret = 0; 7836 7837 ret = tracing_check_open_get_tr(tr); 7838 if (ret) 7839 return ret; 7840 7841 if ((file->f_mode & FMODE_WRITE) && 7842 (file->f_flags & O_TRUNC)) 7843 ftrace_pid_reset(tr, type); 7844 7845 switch (type) { 7846 case TRACE_PIDS: 7847 seq_ops = &ftrace_pid_sops; 7848 break; 7849 case TRACE_NO_PIDS: 7850 seq_ops = &ftrace_no_pid_sops; 7851 break; 7852 default: 7853 trace_array_put(tr); 7854 WARN_ON_ONCE(1); 7855 return -EINVAL; 7856 } 7857 7858 ret = seq_open(file, seq_ops); 7859 if (ret < 0) { 7860 trace_array_put(tr); 7861 } else { 7862 m = file->private_data; 7863 /* copy tr over to seq ops */ 7864 m->private = tr; 7865 } 7866 7867 return ret; 7868 } 7869 7870 static int 7871 ftrace_pid_open(struct inode *inode, struct file *file) 7872 { 7873 return pid_open(inode, file, TRACE_PIDS); 7874 } 7875 7876 static int 7877 ftrace_no_pid_open(struct inode *inode, struct file *file) 7878 { 7879 return pid_open(inode, file, TRACE_NO_PIDS); 7880 } 7881 7882 static void ignore_task_cpu(void *data) 7883 { 7884 struct trace_array *tr = data; 7885 struct trace_pid_list *pid_list; 7886 struct trace_pid_list *no_pid_list; 7887 7888 /* 7889 * This function is called by on_each_cpu() while the 7890 * event_mutex is held. 7891 */ 7892 pid_list = rcu_dereference_protected(tr->function_pids, 7893 mutex_is_locked(&ftrace_lock)); 7894 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7895 mutex_is_locked(&ftrace_lock)); 7896 7897 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7898 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7899 FTRACE_PID_IGNORE); 7900 else 7901 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7902 current->pid); 7903 } 7904 7905 static ssize_t 7906 pid_write(struct file *filp, const char __user *ubuf, 7907 size_t cnt, loff_t *ppos, int type) 7908 { 7909 struct seq_file *m = filp->private_data; 7910 struct trace_array *tr = m->private; 7911 struct trace_pid_list *filtered_pids; 7912 struct trace_pid_list *other_pids; 7913 struct trace_pid_list *pid_list; 7914 ssize_t ret; 7915 7916 if (!cnt) 7917 return 0; 7918 7919 mutex_lock(&ftrace_lock); 7920 7921 switch (type) { 7922 case TRACE_PIDS: 7923 filtered_pids = rcu_dereference_protected(tr->function_pids, 7924 lockdep_is_held(&ftrace_lock)); 7925 other_pids = rcu_dereference_protected(tr->function_no_pids, 7926 lockdep_is_held(&ftrace_lock)); 7927 break; 7928 case TRACE_NO_PIDS: 7929 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7930 lockdep_is_held(&ftrace_lock)); 7931 other_pids = rcu_dereference_protected(tr->function_pids, 7932 lockdep_is_held(&ftrace_lock)); 7933 break; 7934 default: 7935 ret = -EINVAL; 7936 WARN_ON_ONCE(1); 7937 goto out; 7938 } 7939 7940 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7941 if (ret < 0) 7942 goto out; 7943 7944 switch (type) { 7945 case TRACE_PIDS: 7946 rcu_assign_pointer(tr->function_pids, pid_list); 7947 break; 7948 case TRACE_NO_PIDS: 7949 rcu_assign_pointer(tr->function_no_pids, pid_list); 7950 break; 7951 } 7952 7953 7954 if (filtered_pids) { 7955 synchronize_rcu(); 7956 trace_pid_list_free(filtered_pids); 7957 } else if (pid_list && !other_pids) { 7958 /* Register a probe to set whether to ignore the tracing of a task */ 7959 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7960 } 7961 7962 /* 7963 * Ignoring of pids is done at task switch. But we have to 7964 * check for those tasks that are currently running. 7965 * Always do this in case a pid was appended or removed. 7966 */ 7967 on_each_cpu(ignore_task_cpu, tr, 1); 7968 7969 ftrace_update_pid_func(); 7970 ftrace_startup_all(0); 7971 out: 7972 mutex_unlock(&ftrace_lock); 7973 7974 if (ret > 0) 7975 *ppos += ret; 7976 7977 return ret; 7978 } 7979 7980 static ssize_t 7981 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7982 size_t cnt, loff_t *ppos) 7983 { 7984 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7985 } 7986 7987 static ssize_t 7988 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7989 size_t cnt, loff_t *ppos) 7990 { 7991 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7992 } 7993 7994 static int 7995 ftrace_pid_release(struct inode *inode, struct file *file) 7996 { 7997 struct trace_array *tr = inode->i_private; 7998 7999 trace_array_put(tr); 8000 8001 return seq_release(inode, file); 8002 } 8003 8004 static const struct file_operations ftrace_pid_fops = { 8005 .open = ftrace_pid_open, 8006 .write = ftrace_pid_write, 8007 .read = seq_read, 8008 .llseek = tracing_lseek, 8009 .release = ftrace_pid_release, 8010 }; 8011 8012 static const struct file_operations ftrace_no_pid_fops = { 8013 .open = ftrace_no_pid_open, 8014 .write = ftrace_no_pid_write, 8015 .read = seq_read, 8016 .llseek = tracing_lseek, 8017 .release = ftrace_pid_release, 8018 }; 8019 8020 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8021 { 8022 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8023 tr, &ftrace_pid_fops); 8024 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8025 d_tracer, tr, &ftrace_no_pid_fops); 8026 } 8027 8028 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8029 struct dentry *d_tracer) 8030 { 8031 /* Only the top level directory has the dyn_tracefs and profile */ 8032 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8033 8034 ftrace_init_dyn_tracefs(d_tracer); 8035 ftrace_profile_tracefs(d_tracer); 8036 } 8037 8038 /** 8039 * ftrace_kill - kill ftrace 8040 * 8041 * This function should be used by panic code. It stops ftrace 8042 * but in a not so nice way. If you need to simply kill ftrace 8043 * from a non-atomic section, use ftrace_kill. 8044 */ 8045 void ftrace_kill(void) 8046 { 8047 ftrace_disabled = 1; 8048 ftrace_enabled = 0; 8049 ftrace_trace_function = ftrace_stub; 8050 } 8051 8052 /** 8053 * ftrace_is_dead - Test if ftrace is dead or not. 8054 * 8055 * Returns 1 if ftrace is "dead", zero otherwise. 8056 */ 8057 int ftrace_is_dead(void) 8058 { 8059 return ftrace_disabled; 8060 } 8061 8062 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8063 /* 8064 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8065 * it doesn't conflict with any direct ftrace_ops. If there is existing 8066 * direct ftrace_ops on a kernel function being patched, call 8067 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8068 * 8069 * @ops: ftrace_ops being registered. 8070 * 8071 * Returns: 8072 * 0 on success; 8073 * Negative on failure. 8074 */ 8075 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8076 { 8077 struct ftrace_func_entry *entry; 8078 struct ftrace_hash *hash; 8079 struct ftrace_ops *op; 8080 int size, i, ret; 8081 8082 lockdep_assert_held_once(&direct_mutex); 8083 8084 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8085 return 0; 8086 8087 hash = ops->func_hash->filter_hash; 8088 size = 1 << hash->size_bits; 8089 for (i = 0; i < size; i++) { 8090 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8091 unsigned long ip = entry->ip; 8092 bool found_op = false; 8093 8094 mutex_lock(&ftrace_lock); 8095 do_for_each_ftrace_op(op, ftrace_ops_list) { 8096 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8097 continue; 8098 if (ops_references_ip(op, ip)) { 8099 found_op = true; 8100 break; 8101 } 8102 } while_for_each_ftrace_op(op); 8103 mutex_unlock(&ftrace_lock); 8104 8105 if (found_op) { 8106 if (!op->ops_func) 8107 return -EBUSY; 8108 8109 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8110 if (ret) 8111 return ret; 8112 } 8113 } 8114 } 8115 8116 return 0; 8117 } 8118 8119 /* 8120 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8121 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8122 * ops. 8123 */ 8124 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8125 { 8126 struct ftrace_func_entry *entry; 8127 struct ftrace_hash *hash; 8128 struct ftrace_ops *op; 8129 int size, i; 8130 8131 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8132 return; 8133 8134 mutex_lock(&direct_mutex); 8135 8136 hash = ops->func_hash->filter_hash; 8137 size = 1 << hash->size_bits; 8138 for (i = 0; i < size; i++) { 8139 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8140 unsigned long ip = entry->ip; 8141 bool found_op = false; 8142 8143 mutex_lock(&ftrace_lock); 8144 do_for_each_ftrace_op(op, ftrace_ops_list) { 8145 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8146 continue; 8147 if (ops_references_ip(op, ip)) { 8148 found_op = true; 8149 break; 8150 } 8151 } while_for_each_ftrace_op(op); 8152 mutex_unlock(&ftrace_lock); 8153 8154 /* The cleanup is optional, ignore any errors */ 8155 if (found_op && op->ops_func) 8156 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8157 } 8158 } 8159 mutex_unlock(&direct_mutex); 8160 } 8161 8162 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8163 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8164 8165 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8166 8167 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8168 { 8169 return 0; 8170 } 8171 8172 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8173 { 8174 } 8175 8176 #define lock_direct_mutex() do { } while (0) 8177 #define unlock_direct_mutex() do { } while (0) 8178 8179 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8180 8181 /* 8182 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8183 */ 8184 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8185 { 8186 int ret; 8187 8188 ftrace_ops_init(ops); 8189 8190 mutex_lock(&ftrace_lock); 8191 8192 ret = ftrace_startup(ops, 0); 8193 8194 mutex_unlock(&ftrace_lock); 8195 8196 return ret; 8197 } 8198 8199 /** 8200 * register_ftrace_function - register a function for profiling 8201 * @ops: ops structure that holds the function for profiling. 8202 * 8203 * Register a function to be called by all functions in the 8204 * kernel. 8205 * 8206 * Note: @ops->func and all the functions it calls must be labeled 8207 * with "notrace", otherwise it will go into a 8208 * recursive loop. 8209 */ 8210 int register_ftrace_function(struct ftrace_ops *ops) 8211 { 8212 int ret; 8213 8214 lock_direct_mutex(); 8215 ret = prepare_direct_functions_for_ipmodify(ops); 8216 if (ret < 0) 8217 goto out_unlock; 8218 8219 ret = register_ftrace_function_nolock(ops); 8220 8221 out_unlock: 8222 unlock_direct_mutex(); 8223 return ret; 8224 } 8225 EXPORT_SYMBOL_GPL(register_ftrace_function); 8226 8227 /** 8228 * unregister_ftrace_function - unregister a function for profiling. 8229 * @ops: ops structure that holds the function to unregister 8230 * 8231 * Unregister a function that was added to be called by ftrace profiling. 8232 */ 8233 int unregister_ftrace_function(struct ftrace_ops *ops) 8234 { 8235 int ret; 8236 8237 mutex_lock(&ftrace_lock); 8238 ret = ftrace_shutdown(ops, 0); 8239 mutex_unlock(&ftrace_lock); 8240 8241 cleanup_direct_functions_after_ipmodify(ops); 8242 return ret; 8243 } 8244 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8245 8246 static int symbols_cmp(const void *a, const void *b) 8247 { 8248 const char **str_a = (const char **) a; 8249 const char **str_b = (const char **) b; 8250 8251 return strcmp(*str_a, *str_b); 8252 } 8253 8254 struct kallsyms_data { 8255 unsigned long *addrs; 8256 const char **syms; 8257 size_t cnt; 8258 size_t found; 8259 }; 8260 8261 static int kallsyms_callback(void *data, const char *name, 8262 struct module *mod, unsigned long addr) 8263 { 8264 struct kallsyms_data *args = data; 8265 const char **sym; 8266 int idx; 8267 8268 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8269 if (!sym) 8270 return 0; 8271 8272 idx = sym - args->syms; 8273 if (args->addrs[idx]) 8274 return 0; 8275 8276 if (!ftrace_location(addr)) 8277 return 0; 8278 8279 args->addrs[idx] = addr; 8280 args->found++; 8281 return args->found == args->cnt ? 1 : 0; 8282 } 8283 8284 /** 8285 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8286 * 8287 * @sorted_syms: array of symbols pointers symbols to resolve, 8288 * must be alphabetically sorted 8289 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8290 * @addrs: array for storing resulting addresses 8291 * 8292 * This function looks up addresses for array of symbols provided in 8293 * @syms array (must be alphabetically sorted) and stores them in 8294 * @addrs array, which needs to be big enough to store at least @cnt 8295 * addresses. 8296 * 8297 * This function returns 0 if all provided symbols are found, 8298 * -ESRCH otherwise. 8299 */ 8300 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8301 { 8302 struct kallsyms_data args; 8303 int err; 8304 8305 memset(addrs, 0, sizeof(*addrs) * cnt); 8306 args.addrs = addrs; 8307 args.syms = sorted_syms; 8308 args.cnt = cnt; 8309 args.found = 0; 8310 err = kallsyms_on_each_symbol(kallsyms_callback, &args); 8311 if (err < 0) 8312 return err; 8313 return args.found == args.cnt ? 0 : -ESRCH; 8314 } 8315 8316 #ifdef CONFIG_SYSCTL 8317 8318 #ifdef CONFIG_DYNAMIC_FTRACE 8319 static void ftrace_startup_sysctl(void) 8320 { 8321 int command; 8322 8323 if (unlikely(ftrace_disabled)) 8324 return; 8325 8326 /* Force update next time */ 8327 saved_ftrace_func = NULL; 8328 /* ftrace_start_up is true if we want ftrace running */ 8329 if (ftrace_start_up) { 8330 command = FTRACE_UPDATE_CALLS; 8331 if (ftrace_graph_active) 8332 command |= FTRACE_START_FUNC_RET; 8333 ftrace_startup_enable(command); 8334 } 8335 } 8336 8337 static void ftrace_shutdown_sysctl(void) 8338 { 8339 int command; 8340 8341 if (unlikely(ftrace_disabled)) 8342 return; 8343 8344 /* ftrace_start_up is true if ftrace is running */ 8345 if (ftrace_start_up) { 8346 command = FTRACE_DISABLE_CALLS; 8347 if (ftrace_graph_active) 8348 command |= FTRACE_STOP_FUNC_RET; 8349 ftrace_run_update_code(command); 8350 } 8351 } 8352 #else 8353 # define ftrace_startup_sysctl() do { } while (0) 8354 # define ftrace_shutdown_sysctl() do { } while (0) 8355 #endif /* CONFIG_DYNAMIC_FTRACE */ 8356 8357 static bool is_permanent_ops_registered(void) 8358 { 8359 struct ftrace_ops *op; 8360 8361 do_for_each_ftrace_op(op, ftrace_ops_list) { 8362 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8363 return true; 8364 } while_for_each_ftrace_op(op); 8365 8366 return false; 8367 } 8368 8369 static int 8370 ftrace_enable_sysctl(struct ctl_table *table, int write, 8371 void *buffer, size_t *lenp, loff_t *ppos) 8372 { 8373 int ret = -ENODEV; 8374 8375 mutex_lock(&ftrace_lock); 8376 8377 if (unlikely(ftrace_disabled)) 8378 goto out; 8379 8380 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8381 8382 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8383 goto out; 8384 8385 if (ftrace_enabled) { 8386 8387 /* we are starting ftrace again */ 8388 if (rcu_dereference_protected(ftrace_ops_list, 8389 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8390 update_ftrace_function(); 8391 8392 ftrace_startup_sysctl(); 8393 8394 } else { 8395 if (is_permanent_ops_registered()) { 8396 ftrace_enabled = true; 8397 ret = -EBUSY; 8398 goto out; 8399 } 8400 8401 /* stopping ftrace calls (just send to ftrace_stub) */ 8402 ftrace_trace_function = ftrace_stub; 8403 8404 ftrace_shutdown_sysctl(); 8405 } 8406 8407 last_ftrace_enabled = !!ftrace_enabled; 8408 out: 8409 mutex_unlock(&ftrace_lock); 8410 return ret; 8411 } 8412 8413 static struct ctl_table ftrace_sysctls[] = { 8414 { 8415 .procname = "ftrace_enabled", 8416 .data = &ftrace_enabled, 8417 .maxlen = sizeof(int), 8418 .mode = 0644, 8419 .proc_handler = ftrace_enable_sysctl, 8420 }, 8421 {} 8422 }; 8423 8424 static int __init ftrace_sysctl_init(void) 8425 { 8426 register_sysctl_init("kernel", ftrace_sysctls); 8427 return 0; 8428 } 8429 late_initcall(ftrace_sysctl_init); 8430 #endif 8431