1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 49 50 #define FTRACE_WARN_ON(cond) \ 51 ({ \ 52 int ___r = cond; \ 53 if (WARN_ON(___r)) \ 54 ftrace_kill(); \ 55 ___r; \ 56 }) 57 58 #define FTRACE_WARN_ON_ONCE(cond) \ 59 ({ \ 60 int ___r = cond; \ 61 if (WARN_ON_ONCE(___r)) \ 62 ftrace_kill(); \ 63 ___r; \ 64 }) 65 66 /* hash bits for specific function selection */ 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int __maybe_unused last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL || tr->function_no_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct ftrace_regs *fregs); 127 128 static inline void ftrace_ops_init(struct ftrace_ops *ops) 129 { 130 #ifdef CONFIG_DYNAMIC_FTRACE 131 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 132 mutex_init(&ops->local_hash.regex_lock); 133 ops->func_hash = &ops->local_hash; 134 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 135 } 136 #endif 137 } 138 139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 140 struct ftrace_ops *op, struct ftrace_regs *fregs) 141 { 142 struct trace_array *tr = op->private; 143 int pid; 144 145 if (tr) { 146 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 147 if (pid == FTRACE_PID_IGNORE) 148 return; 149 if (pid != FTRACE_PID_TRACE && 150 pid != current->pid) 151 return; 152 } 153 154 op->saved_func(ip, parent_ip, op, fregs); 155 } 156 157 static void ftrace_sync_ipi(void *data) 158 { 159 /* Probably not needed, but do it anyway */ 160 smp_rmb(); 161 } 162 163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 164 { 165 /* 166 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 167 * then it needs to call the list anyway. 168 */ 169 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 170 FTRACE_FORCE_LIST_FUNC) 171 return ftrace_ops_list_func; 172 173 return ftrace_ops_get_func(ops); 174 } 175 176 static void update_ftrace_function(void) 177 { 178 ftrace_func_t func; 179 180 /* 181 * Prepare the ftrace_ops that the arch callback will use. 182 * If there's only one ftrace_ops registered, the ftrace_ops_list 183 * will point to the ops we want. 184 */ 185 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 186 lockdep_is_held(&ftrace_lock)); 187 188 /* If there's no ftrace_ops registered, just call the stub function */ 189 if (set_function_trace_op == &ftrace_list_end) { 190 func = ftrace_stub; 191 192 /* 193 * If we are at the end of the list and this ops is 194 * recursion safe and not dynamic and the arch supports passing ops, 195 * then have the mcount trampoline call the function directly. 196 */ 197 } else if (rcu_dereference_protected(ftrace_ops_list->next, 198 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 199 func = ftrace_ops_get_list_func(ftrace_ops_list); 200 201 } else { 202 /* Just use the default ftrace_ops */ 203 set_function_trace_op = &ftrace_list_end; 204 func = ftrace_ops_list_func; 205 } 206 207 update_function_graph_func(); 208 209 /* If there's no change, then do nothing more here */ 210 if (ftrace_trace_function == func) 211 return; 212 213 /* 214 * If we are using the list function, it doesn't care 215 * about the function_trace_ops. 216 */ 217 if (func == ftrace_ops_list_func) { 218 ftrace_trace_function = func; 219 /* 220 * Don't even bother setting function_trace_ops, 221 * it would be racy to do so anyway. 222 */ 223 return; 224 } 225 226 #ifndef CONFIG_DYNAMIC_FTRACE 227 /* 228 * For static tracing, we need to be a bit more careful. 229 * The function change takes affect immediately. Thus, 230 * we need to coordinate the setting of the function_trace_ops 231 * with the setting of the ftrace_trace_function. 232 * 233 * Set the function to the list ops, which will call the 234 * function we want, albeit indirectly, but it handles the 235 * ftrace_ops and doesn't depend on function_trace_op. 236 */ 237 ftrace_trace_function = ftrace_ops_list_func; 238 /* 239 * Make sure all CPUs see this. Yes this is slow, but static 240 * tracing is slow and nasty to have enabled. 241 */ 242 synchronize_rcu_tasks_rude(); 243 /* Now all cpus are using the list ops. */ 244 function_trace_op = set_function_trace_op; 245 /* Make sure the function_trace_op is visible on all CPUs */ 246 smp_wmb(); 247 /* Nasty way to force a rmb on all cpus */ 248 smp_call_function(ftrace_sync_ipi, NULL, 1); 249 /* OK, we are all set to update the ftrace_trace_function now! */ 250 #endif /* !CONFIG_DYNAMIC_FTRACE */ 251 252 ftrace_trace_function = func; 253 } 254 255 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 256 struct ftrace_ops *ops) 257 { 258 rcu_assign_pointer(ops->next, *list); 259 260 /* 261 * We are entering ops into the list but another 262 * CPU might be walking that list. We need to make sure 263 * the ops->next pointer is valid before another CPU sees 264 * the ops pointer included into the list. 265 */ 266 rcu_assign_pointer(*list, ops); 267 } 268 269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 270 struct ftrace_ops *ops) 271 { 272 struct ftrace_ops **p; 273 274 /* 275 * If we are removing the last function, then simply point 276 * to the ftrace_stub. 277 */ 278 if (rcu_dereference_protected(*list, 279 lockdep_is_held(&ftrace_lock)) == ops && 280 rcu_dereference_protected(ops->next, 281 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 282 *list = &ftrace_list_end; 283 return 0; 284 } 285 286 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 287 if (*p == ops) 288 break; 289 290 if (*p != ops) 291 return -1; 292 293 *p = (*p)->next; 294 return 0; 295 } 296 297 static void ftrace_update_trampoline(struct ftrace_ops *ops); 298 299 int __register_ftrace_function(struct ftrace_ops *ops) 300 { 301 if (ops->flags & FTRACE_OPS_FL_DELETED) 302 return -EINVAL; 303 304 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 305 return -EBUSY; 306 307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 308 /* 309 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 310 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 311 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 312 */ 313 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 314 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 315 return -EINVAL; 316 317 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 318 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 319 #endif 320 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 321 return -EBUSY; 322 323 if (!is_kernel_core_data((unsigned long)ops)) 324 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 325 326 add_ftrace_ops(&ftrace_ops_list, ops); 327 328 /* Always save the function, and reset at unregistering */ 329 ops->saved_func = ops->func; 330 331 if (ftrace_pids_enabled(ops)) 332 ops->func = ftrace_pid_func; 333 334 ftrace_update_trampoline(ops); 335 336 if (ftrace_enabled) 337 update_ftrace_function(); 338 339 return 0; 340 } 341 342 int __unregister_ftrace_function(struct ftrace_ops *ops) 343 { 344 int ret; 345 346 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 347 return -EBUSY; 348 349 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 350 351 if (ret < 0) 352 return ret; 353 354 if (ftrace_enabled) 355 update_ftrace_function(); 356 357 ops->func = ops->saved_func; 358 359 return 0; 360 } 361 362 static void ftrace_update_pid_func(void) 363 { 364 struct ftrace_ops *op; 365 366 /* Only do something if we are tracing something */ 367 if (ftrace_trace_function == ftrace_stub) 368 return; 369 370 do_for_each_ftrace_op(op, ftrace_ops_list) { 371 if (op->flags & FTRACE_OPS_FL_PID) { 372 op->func = ftrace_pids_enabled(op) ? 373 ftrace_pid_func : op->saved_func; 374 ftrace_update_trampoline(op); 375 } 376 } while_for_each_ftrace_op(op); 377 378 update_ftrace_function(); 379 } 380 381 #ifdef CONFIG_FUNCTION_PROFILER 382 struct ftrace_profile { 383 struct hlist_node node; 384 unsigned long ip; 385 unsigned long counter; 386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 387 unsigned long long time; 388 unsigned long long time_squared; 389 #endif 390 }; 391 392 struct ftrace_profile_page { 393 struct ftrace_profile_page *next; 394 unsigned long index; 395 struct ftrace_profile records[]; 396 }; 397 398 struct ftrace_profile_stat { 399 atomic_t disabled; 400 struct hlist_head *hash; 401 struct ftrace_profile_page *pages; 402 struct ftrace_profile_page *start; 403 struct tracer_stat stat; 404 }; 405 406 #define PROFILE_RECORDS_SIZE \ 407 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 408 409 #define PROFILES_PER_PAGE \ 410 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 411 412 static int ftrace_profile_enabled __read_mostly; 413 414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 415 static DEFINE_MUTEX(ftrace_profile_lock); 416 417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 418 419 #define FTRACE_PROFILE_HASH_BITS 10 420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 421 422 static void * 423 function_stat_next(void *v, int idx) 424 { 425 struct ftrace_profile *rec = v; 426 struct ftrace_profile_page *pg; 427 428 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 429 430 again: 431 if (idx != 0) 432 rec++; 433 434 if ((void *)rec >= (void *)&pg->records[pg->index]) { 435 pg = pg->next; 436 if (!pg) 437 return NULL; 438 rec = &pg->records[0]; 439 if (!rec->counter) 440 goto again; 441 } 442 443 return rec; 444 } 445 446 static void *function_stat_start(struct tracer_stat *trace) 447 { 448 struct ftrace_profile_stat *stat = 449 container_of(trace, struct ftrace_profile_stat, stat); 450 451 if (!stat || !stat->start) 452 return NULL; 453 454 return function_stat_next(&stat->start->records[0], 0); 455 } 456 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 /* function graph compares on total time */ 459 static int function_stat_cmp(const void *p1, const void *p2) 460 { 461 const struct ftrace_profile *a = p1; 462 const struct ftrace_profile *b = p2; 463 464 if (a->time < b->time) 465 return -1; 466 if (a->time > b->time) 467 return 1; 468 else 469 return 0; 470 } 471 #else 472 /* not function graph compares against hits */ 473 static int function_stat_cmp(const void *p1, const void *p2) 474 { 475 const struct ftrace_profile *a = p1; 476 const struct ftrace_profile *b = p2; 477 478 if (a->counter < b->counter) 479 return -1; 480 if (a->counter > b->counter) 481 return 1; 482 else 483 return 0; 484 } 485 #endif 486 487 static int function_stat_headers(struct seq_file *m) 488 { 489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 490 seq_puts(m, " Function " 491 "Hit Time Avg s^2\n" 492 " -------- " 493 "--- ---- --- ---\n"); 494 #else 495 seq_puts(m, " Function Hit\n" 496 " -------- ---\n"); 497 #endif 498 return 0; 499 } 500 501 static int function_stat_show(struct seq_file *m, void *v) 502 { 503 struct ftrace_profile *rec = v; 504 char str[KSYM_SYMBOL_LEN]; 505 int ret = 0; 506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 507 static struct trace_seq s; 508 unsigned long long avg; 509 unsigned long long stddev; 510 #endif 511 mutex_lock(&ftrace_profile_lock); 512 513 /* we raced with function_profile_reset() */ 514 if (unlikely(rec->counter == 0)) { 515 ret = -EBUSY; 516 goto out; 517 } 518 519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 520 avg = div64_ul(rec->time, rec->counter); 521 if (tracing_thresh && (avg < tracing_thresh)) 522 goto out; 523 #endif 524 525 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 526 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 seq_puts(m, " "); 530 531 /* Sample standard deviation (s^2) */ 532 if (rec->counter <= 1) 533 stddev = 0; 534 else { 535 /* 536 * Apply Welford's method: 537 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 538 */ 539 stddev = rec->counter * rec->time_squared - 540 rec->time * rec->time; 541 542 /* 543 * Divide only 1000 for ns^2 -> us^2 conversion. 544 * trace_print_graph_duration will divide 1000 again. 545 */ 546 stddev = div64_ul(stddev, 547 rec->counter * (rec->counter - 1) * 1000); 548 } 549 550 trace_seq_init(&s); 551 trace_print_graph_duration(rec->time, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(avg, &s); 554 trace_seq_puts(&s, " "); 555 trace_print_graph_duration(stddev, &s); 556 trace_print_seq(m, &s); 557 #endif 558 seq_putc(m, '\n'); 559 out: 560 mutex_unlock(&ftrace_profile_lock); 561 562 return ret; 563 } 564 565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 566 { 567 struct ftrace_profile_page *pg; 568 569 pg = stat->pages = stat->start; 570 571 while (pg) { 572 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 573 pg->index = 0; 574 pg = pg->next; 575 } 576 577 memset(stat->hash, 0, 578 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 579 } 580 581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 582 { 583 struct ftrace_profile_page *pg; 584 int functions; 585 int pages; 586 int i; 587 588 /* If we already allocated, do nothing */ 589 if (stat->pages) 590 return 0; 591 592 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!stat->pages) 594 return -ENOMEM; 595 596 #ifdef CONFIG_DYNAMIC_FTRACE 597 functions = ftrace_update_tot_cnt; 598 #else 599 /* 600 * We do not know the number of functions that exist because 601 * dynamic tracing is what counts them. With past experience 602 * we have around 20K functions. That should be more than enough. 603 * It is highly unlikely we will execute every function in 604 * the kernel. 605 */ 606 functions = 20000; 607 #endif 608 609 pg = stat->start = stat->pages; 610 611 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 612 613 for (i = 1; i < pages; i++) { 614 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 615 if (!pg->next) 616 goto out_free; 617 pg = pg->next; 618 } 619 620 return 0; 621 622 out_free: 623 pg = stat->start; 624 while (pg) { 625 unsigned long tmp = (unsigned long)pg; 626 627 pg = pg->next; 628 free_page(tmp); 629 } 630 631 stat->pages = NULL; 632 stat->start = NULL; 633 634 return -ENOMEM; 635 } 636 637 static int ftrace_profile_init_cpu(int cpu) 638 { 639 struct ftrace_profile_stat *stat; 640 int size; 641 642 stat = &per_cpu(ftrace_profile_stats, cpu); 643 644 if (stat->hash) { 645 /* If the profile is already created, simply reset it */ 646 ftrace_profile_reset(stat); 647 return 0; 648 } 649 650 /* 651 * We are profiling all functions, but usually only a few thousand 652 * functions are hit. We'll make a hash of 1024 items. 653 */ 654 size = FTRACE_PROFILE_HASH_SIZE; 655 656 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 657 658 if (!stat->hash) 659 return -ENOMEM; 660 661 /* Preallocate the function profiling pages */ 662 if (ftrace_profile_pages_init(stat) < 0) { 663 kfree(stat->hash); 664 stat->hash = NULL; 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static int ftrace_profile_init(void) 672 { 673 int cpu; 674 int ret = 0; 675 676 for_each_possible_cpu(cpu) { 677 ret = ftrace_profile_init_cpu(cpu); 678 if (ret) 679 break; 680 } 681 682 return ret; 683 } 684 685 /* interrupts must be disabled */ 686 static struct ftrace_profile * 687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 688 { 689 struct ftrace_profile *rec; 690 struct hlist_head *hhd; 691 unsigned long key; 692 693 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 694 hhd = &stat->hash[key]; 695 696 if (hlist_empty(hhd)) 697 return NULL; 698 699 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 700 if (rec->ip == ip) 701 return rec; 702 } 703 704 return NULL; 705 } 706 707 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 708 struct ftrace_profile *rec) 709 { 710 unsigned long key; 711 712 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 713 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 714 } 715 716 /* 717 * The memory is already allocated, this simply finds a new record to use. 718 */ 719 static struct ftrace_profile * 720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 721 { 722 struct ftrace_profile *rec = NULL; 723 724 /* prevent recursion (from NMIs) */ 725 if (atomic_inc_return(&stat->disabled) != 1) 726 goto out; 727 728 /* 729 * Try to find the function again since an NMI 730 * could have added it 731 */ 732 rec = ftrace_find_profiled_func(stat, ip); 733 if (rec) 734 goto out; 735 736 if (stat->pages->index == PROFILES_PER_PAGE) { 737 if (!stat->pages->next) 738 goto out; 739 stat->pages = stat->pages->next; 740 } 741 742 rec = &stat->pages->records[stat->pages->index++]; 743 rec->ip = ip; 744 ftrace_add_profile(stat, rec); 745 746 out: 747 atomic_dec(&stat->disabled); 748 749 return rec; 750 } 751 752 static void 753 function_profile_call(unsigned long ip, unsigned long parent_ip, 754 struct ftrace_ops *ops, struct ftrace_regs *fregs) 755 { 756 struct ftrace_profile_stat *stat; 757 struct ftrace_profile *rec; 758 unsigned long flags; 759 760 if (!ftrace_profile_enabled) 761 return; 762 763 local_irq_save(flags); 764 765 stat = this_cpu_ptr(&ftrace_profile_stats); 766 if (!stat->hash || !ftrace_profile_enabled) 767 goto out; 768 769 rec = ftrace_find_profiled_func(stat, ip); 770 if (!rec) { 771 rec = ftrace_profile_alloc(stat, ip); 772 if (!rec) 773 goto out; 774 } 775 776 rec->counter++; 777 out: 778 local_irq_restore(flags); 779 } 780 781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 782 static bool fgraph_graph_time = true; 783 784 void ftrace_graph_graph_time_control(bool enable) 785 { 786 fgraph_graph_time = enable; 787 } 788 789 static int profile_graph_entry(struct ftrace_graph_ent *trace) 790 { 791 struct ftrace_ret_stack *ret_stack; 792 793 function_profile_call(trace->func, 0, NULL, NULL); 794 795 /* If function graph is shutting down, ret_stack can be NULL */ 796 if (!current->ret_stack) 797 return 0; 798 799 ret_stack = ftrace_graph_get_ret_stack(current, 0); 800 if (ret_stack) 801 ret_stack->subtime = 0; 802 803 return 1; 804 } 805 806 static void profile_graph_return(struct ftrace_graph_ret *trace) 807 { 808 struct ftrace_ret_stack *ret_stack; 809 struct ftrace_profile_stat *stat; 810 unsigned long long calltime; 811 struct ftrace_profile *rec; 812 unsigned long flags; 813 814 local_irq_save(flags); 815 stat = this_cpu_ptr(&ftrace_profile_stats); 816 if (!stat->hash || !ftrace_profile_enabled) 817 goto out; 818 819 /* If the calltime was zero'd ignore it */ 820 if (!trace->calltime) 821 goto out; 822 823 calltime = trace->rettime - trace->calltime; 824 825 if (!fgraph_graph_time) { 826 827 /* Append this call time to the parent time to subtract */ 828 ret_stack = ftrace_graph_get_ret_stack(current, 1); 829 if (ret_stack) 830 ret_stack->subtime += calltime; 831 832 ret_stack = ftrace_graph_get_ret_stack(current, 0); 833 if (ret_stack && ret_stack->subtime < calltime) 834 calltime -= ret_stack->subtime; 835 else 836 calltime = 0; 837 } 838 839 rec = ftrace_find_profiled_func(stat, trace->func); 840 if (rec) { 841 rec->time += calltime; 842 rec->time_squared += calltime * calltime; 843 } 844 845 out: 846 local_irq_restore(flags); 847 } 848 849 static struct fgraph_ops fprofiler_ops = { 850 .entryfunc = &profile_graph_entry, 851 .retfunc = &profile_graph_return, 852 }; 853 854 static int register_ftrace_profiler(void) 855 { 856 return register_ftrace_graph(&fprofiler_ops); 857 } 858 859 static void unregister_ftrace_profiler(void) 860 { 861 unregister_ftrace_graph(&fprofiler_ops); 862 } 863 #else 864 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 865 .func = function_profile_call, 866 .flags = FTRACE_OPS_FL_INITIALIZED, 867 INIT_OPS_HASH(ftrace_profile_ops) 868 }; 869 870 static int register_ftrace_profiler(void) 871 { 872 return register_ftrace_function(&ftrace_profile_ops); 873 } 874 875 static void unregister_ftrace_profiler(void) 876 { 877 unregister_ftrace_function(&ftrace_profile_ops); 878 } 879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 880 881 static ssize_t 882 ftrace_profile_write(struct file *filp, const char __user *ubuf, 883 size_t cnt, loff_t *ppos) 884 { 885 unsigned long val; 886 int ret; 887 888 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 889 if (ret) 890 return ret; 891 892 val = !!val; 893 894 mutex_lock(&ftrace_profile_lock); 895 if (ftrace_profile_enabled ^ val) { 896 if (val) { 897 ret = ftrace_profile_init(); 898 if (ret < 0) { 899 cnt = ret; 900 goto out; 901 } 902 903 ret = register_ftrace_profiler(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 ftrace_profile_enabled = 1; 909 } else { 910 ftrace_profile_enabled = 0; 911 /* 912 * unregister_ftrace_profiler calls stop_machine 913 * so this acts like an synchronize_rcu. 914 */ 915 unregister_ftrace_profiler(); 916 } 917 } 918 out: 919 mutex_unlock(&ftrace_profile_lock); 920 921 *ppos += cnt; 922 923 return cnt; 924 } 925 926 static ssize_t 927 ftrace_profile_read(struct file *filp, char __user *ubuf, 928 size_t cnt, loff_t *ppos) 929 { 930 char buf[64]; /* big enough to hold a number */ 931 int r; 932 933 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 934 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 935 } 936 937 static const struct file_operations ftrace_profile_fops = { 938 .open = tracing_open_generic, 939 .read = ftrace_profile_read, 940 .write = ftrace_profile_write, 941 .llseek = default_llseek, 942 }; 943 944 /* used to initialize the real stat files */ 945 static struct tracer_stat function_stats __initdata = { 946 .name = "functions", 947 .stat_start = function_stat_start, 948 .stat_next = function_stat_next, 949 .stat_cmp = function_stat_cmp, 950 .stat_headers = function_stat_headers, 951 .stat_show = function_stat_show 952 }; 953 954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 955 { 956 struct ftrace_profile_stat *stat; 957 char *name; 958 int ret; 959 int cpu; 960 961 for_each_possible_cpu(cpu) { 962 stat = &per_cpu(ftrace_profile_stats, cpu); 963 964 name = kasprintf(GFP_KERNEL, "function%d", cpu); 965 if (!name) { 966 /* 967 * The files created are permanent, if something happens 968 * we still do not free memory. 969 */ 970 WARN(1, 971 "Could not allocate stat file for cpu %d\n", 972 cpu); 973 return; 974 } 975 stat->stat = function_stats; 976 stat->stat.name = name; 977 ret = register_stat_tracer(&stat->stat); 978 if (ret) { 979 WARN(1, 980 "Could not register function stat for cpu %d\n", 981 cpu); 982 kfree(name); 983 return; 984 } 985 } 986 987 trace_create_file("function_profile_enabled", 988 TRACE_MODE_WRITE, d_tracer, NULL, 989 &ftrace_profile_fops); 990 } 991 992 #else /* CONFIG_FUNCTION_PROFILER */ 993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 994 { 995 } 996 #endif /* CONFIG_FUNCTION_PROFILER */ 997 998 #ifdef CONFIG_DYNAMIC_FTRACE 999 1000 static struct ftrace_ops *removed_ops; 1001 1002 /* 1003 * Set when doing a global update, like enabling all recs or disabling them. 1004 * It is not set when just updating a single ftrace_ops. 1005 */ 1006 static bool update_all_ops; 1007 1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1009 # error Dynamic ftrace depends on MCOUNT_RECORD 1010 #endif 1011 1012 struct ftrace_func_probe { 1013 struct ftrace_probe_ops *probe_ops; 1014 struct ftrace_ops ops; 1015 struct trace_array *tr; 1016 struct list_head list; 1017 void *data; 1018 int ref; 1019 }; 1020 1021 /* 1022 * We make these constant because no one should touch them, 1023 * but they are used as the default "empty hash", to avoid allocating 1024 * it all the time. These are in a read only section such that if 1025 * anyone does try to modify it, it will cause an exception. 1026 */ 1027 static const struct hlist_head empty_buckets[1]; 1028 static const struct ftrace_hash empty_hash = { 1029 .buckets = (struct hlist_head *)empty_buckets, 1030 }; 1031 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1032 1033 struct ftrace_ops global_ops = { 1034 .func = ftrace_stub, 1035 .local_hash.notrace_hash = EMPTY_HASH, 1036 .local_hash.filter_hash = EMPTY_HASH, 1037 INIT_OPS_HASH(global_ops) 1038 .flags = FTRACE_OPS_FL_INITIALIZED | 1039 FTRACE_OPS_FL_PID, 1040 }; 1041 1042 /* 1043 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1044 */ 1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1046 { 1047 struct ftrace_ops *op = NULL; 1048 1049 /* 1050 * Some of the ops may be dynamically allocated, 1051 * they are freed after a synchronize_rcu(). 1052 */ 1053 preempt_disable_notrace(); 1054 1055 do_for_each_ftrace_op(op, ftrace_ops_list) { 1056 /* 1057 * This is to check for dynamically allocated trampolines. 1058 * Trampolines that are in kernel text will have 1059 * core_kernel_text() return true. 1060 */ 1061 if (op->trampoline && op->trampoline_size) 1062 if (addr >= op->trampoline && 1063 addr < op->trampoline + op->trampoline_size) { 1064 preempt_enable_notrace(); 1065 return op; 1066 } 1067 } while_for_each_ftrace_op(op); 1068 preempt_enable_notrace(); 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * This is used by __kernel_text_address() to return true if the 1075 * address is on a dynamically allocated trampoline that would 1076 * not return true for either core_kernel_text() or 1077 * is_module_text_address(). 1078 */ 1079 bool is_ftrace_trampoline(unsigned long addr) 1080 { 1081 return ftrace_ops_trampoline(addr) != NULL; 1082 } 1083 1084 struct ftrace_page { 1085 struct ftrace_page *next; 1086 struct dyn_ftrace *records; 1087 int index; 1088 int order; 1089 }; 1090 1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1093 1094 static struct ftrace_page *ftrace_pages_start; 1095 static struct ftrace_page *ftrace_pages; 1096 1097 static __always_inline unsigned long 1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1099 { 1100 if (hash->size_bits > 0) 1101 return hash_long(ip, hash->size_bits); 1102 1103 return 0; 1104 } 1105 1106 /* Only use this function if ftrace_hash_empty() has already been tested */ 1107 static __always_inline struct ftrace_func_entry * 1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 unsigned long key; 1111 struct ftrace_func_entry *entry; 1112 struct hlist_head *hhd; 1113 1114 key = ftrace_hash_key(hash, ip); 1115 hhd = &hash->buckets[key]; 1116 1117 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1118 if (entry->ip == ip) 1119 return entry; 1120 } 1121 return NULL; 1122 } 1123 1124 /** 1125 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1126 * @hash: The hash to look at 1127 * @ip: The instruction pointer to test 1128 * 1129 * Search a given @hash to see if a given instruction pointer (@ip) 1130 * exists in it. 1131 * 1132 * Returns the entry that holds the @ip if found. NULL otherwise. 1133 */ 1134 struct ftrace_func_entry * 1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (ftrace_hash_empty(hash)) 1138 return NULL; 1139 1140 return __ftrace_lookup_ip(hash, ip); 1141 } 1142 1143 static void __add_hash_entry(struct ftrace_hash *hash, 1144 struct ftrace_func_entry *entry) 1145 { 1146 struct hlist_head *hhd; 1147 unsigned long key; 1148 1149 key = ftrace_hash_key(hash, entry->ip); 1150 hhd = &hash->buckets[key]; 1151 hlist_add_head(&entry->hlist, hhd); 1152 hash->count++; 1153 } 1154 1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1156 { 1157 struct ftrace_func_entry *entry; 1158 1159 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1160 if (!entry) 1161 return -ENOMEM; 1162 1163 entry->ip = ip; 1164 __add_hash_entry(hash, entry); 1165 1166 return 0; 1167 } 1168 1169 static void 1170 free_hash_entry(struct ftrace_hash *hash, 1171 struct ftrace_func_entry *entry) 1172 { 1173 hlist_del(&entry->hlist); 1174 kfree(entry); 1175 hash->count--; 1176 } 1177 1178 static void 1179 remove_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del_rcu(&entry->hlist); 1183 hash->count--; 1184 } 1185 1186 static void ftrace_hash_clear(struct ftrace_hash *hash) 1187 { 1188 struct hlist_head *hhd; 1189 struct hlist_node *tn; 1190 struct ftrace_func_entry *entry; 1191 int size = 1 << hash->size_bits; 1192 int i; 1193 1194 if (!hash->count) 1195 return; 1196 1197 for (i = 0; i < size; i++) { 1198 hhd = &hash->buckets[i]; 1199 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1200 free_hash_entry(hash, entry); 1201 } 1202 FTRACE_WARN_ON(hash->count); 1203 } 1204 1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1206 { 1207 list_del(&ftrace_mod->list); 1208 kfree(ftrace_mod->module); 1209 kfree(ftrace_mod->func); 1210 kfree(ftrace_mod); 1211 } 1212 1213 static void clear_ftrace_mod_list(struct list_head *head) 1214 { 1215 struct ftrace_mod_load *p, *n; 1216 1217 /* stack tracer isn't supported yet */ 1218 if (!head) 1219 return; 1220 1221 mutex_lock(&ftrace_lock); 1222 list_for_each_entry_safe(p, n, head, list) 1223 free_ftrace_mod(p); 1224 mutex_unlock(&ftrace_lock); 1225 } 1226 1227 static void free_ftrace_hash(struct ftrace_hash *hash) 1228 { 1229 if (!hash || hash == EMPTY_HASH) 1230 return; 1231 ftrace_hash_clear(hash); 1232 kfree(hash->buckets); 1233 kfree(hash); 1234 } 1235 1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1237 { 1238 struct ftrace_hash *hash; 1239 1240 hash = container_of(rcu, struct ftrace_hash, rcu); 1241 free_ftrace_hash(hash); 1242 } 1243 1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1245 { 1246 if (!hash || hash == EMPTY_HASH) 1247 return; 1248 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1249 } 1250 1251 void ftrace_free_filter(struct ftrace_ops *ops) 1252 { 1253 ftrace_ops_init(ops); 1254 free_ftrace_hash(ops->func_hash->filter_hash); 1255 free_ftrace_hash(ops->func_hash->notrace_hash); 1256 } 1257 1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1259 { 1260 struct ftrace_hash *hash; 1261 int size; 1262 1263 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1264 if (!hash) 1265 return NULL; 1266 1267 size = 1 << size_bits; 1268 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1269 1270 if (!hash->buckets) { 1271 kfree(hash); 1272 return NULL; 1273 } 1274 1275 hash->size_bits = size_bits; 1276 1277 return hash; 1278 } 1279 1280 1281 static int ftrace_add_mod(struct trace_array *tr, 1282 const char *func, const char *module, 1283 int enable) 1284 { 1285 struct ftrace_mod_load *ftrace_mod; 1286 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1287 1288 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1289 if (!ftrace_mod) 1290 return -ENOMEM; 1291 1292 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1293 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1294 ftrace_mod->enable = enable; 1295 1296 if (!ftrace_mod->func || !ftrace_mod->module) 1297 goto out_free; 1298 1299 list_add(&ftrace_mod->list, mod_head); 1300 1301 return 0; 1302 1303 out_free: 1304 free_ftrace_mod(ftrace_mod); 1305 1306 return -ENOMEM; 1307 } 1308 1309 static struct ftrace_hash * 1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1311 { 1312 struct ftrace_func_entry *entry; 1313 struct ftrace_hash *new_hash; 1314 int size; 1315 int ret; 1316 int i; 1317 1318 new_hash = alloc_ftrace_hash(size_bits); 1319 if (!new_hash) 1320 return NULL; 1321 1322 if (hash) 1323 new_hash->flags = hash->flags; 1324 1325 /* Empty hash? */ 1326 if (ftrace_hash_empty(hash)) 1327 return new_hash; 1328 1329 size = 1 << hash->size_bits; 1330 for (i = 0; i < size; i++) { 1331 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1332 ret = add_hash_entry(new_hash, entry->ip); 1333 if (ret < 0) 1334 goto free_hash; 1335 } 1336 } 1337 1338 FTRACE_WARN_ON(new_hash->count != hash->count); 1339 1340 return new_hash; 1341 1342 free_hash: 1343 free_ftrace_hash(new_hash); 1344 return NULL; 1345 } 1346 1347 static void 1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1349 static void 1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1351 1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1353 struct ftrace_hash *new_hash); 1354 1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1356 { 1357 struct ftrace_func_entry *entry; 1358 struct ftrace_hash *new_hash; 1359 struct hlist_head *hhd; 1360 struct hlist_node *tn; 1361 int bits = 0; 1362 int i; 1363 1364 /* 1365 * Use around half the size (max bit of it), but 1366 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1367 */ 1368 bits = fls(size / 2); 1369 1370 /* Don't allocate too much */ 1371 if (bits > FTRACE_HASH_MAX_BITS) 1372 bits = FTRACE_HASH_MAX_BITS; 1373 1374 new_hash = alloc_ftrace_hash(bits); 1375 if (!new_hash) 1376 return NULL; 1377 1378 new_hash->flags = src->flags; 1379 1380 size = 1 << src->size_bits; 1381 for (i = 0; i < size; i++) { 1382 hhd = &src->buckets[i]; 1383 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1384 remove_hash_entry(src, entry); 1385 __add_hash_entry(new_hash, entry); 1386 } 1387 } 1388 return new_hash; 1389 } 1390 1391 static struct ftrace_hash * 1392 __ftrace_hash_move(struct ftrace_hash *src) 1393 { 1394 int size = src->count; 1395 1396 /* 1397 * If the new source is empty, just return the empty_hash. 1398 */ 1399 if (ftrace_hash_empty(src)) 1400 return EMPTY_HASH; 1401 1402 return dup_hash(src, size); 1403 } 1404 1405 static int 1406 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1407 struct ftrace_hash **dst, struct ftrace_hash *src) 1408 { 1409 struct ftrace_hash *new_hash; 1410 int ret; 1411 1412 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1413 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1414 return -EINVAL; 1415 1416 new_hash = __ftrace_hash_move(src); 1417 if (!new_hash) 1418 return -ENOMEM; 1419 1420 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1421 if (enable) { 1422 /* IPMODIFY should be updated only when filter_hash updating */ 1423 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1424 if (ret < 0) { 1425 free_ftrace_hash(new_hash); 1426 return ret; 1427 } 1428 } 1429 1430 /* 1431 * Remove the current set, update the hash and add 1432 * them back. 1433 */ 1434 ftrace_hash_rec_disable_modify(ops, enable); 1435 1436 rcu_assign_pointer(*dst, new_hash); 1437 1438 ftrace_hash_rec_enable_modify(ops, enable); 1439 1440 return 0; 1441 } 1442 1443 static bool hash_contains_ip(unsigned long ip, 1444 struct ftrace_ops_hash *hash) 1445 { 1446 /* 1447 * The function record is a match if it exists in the filter 1448 * hash and not in the notrace hash. Note, an empty hash is 1449 * considered a match for the filter hash, but an empty 1450 * notrace hash is considered not in the notrace hash. 1451 */ 1452 return (ftrace_hash_empty(hash->filter_hash) || 1453 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1454 (ftrace_hash_empty(hash->notrace_hash) || 1455 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1456 } 1457 1458 /* 1459 * Test the hashes for this ops to see if we want to call 1460 * the ops->func or not. 1461 * 1462 * It's a match if the ip is in the ops->filter_hash or 1463 * the filter_hash does not exist or is empty, 1464 * AND 1465 * the ip is not in the ops->notrace_hash. 1466 * 1467 * This needs to be called with preemption disabled as 1468 * the hashes are freed with call_rcu(). 1469 */ 1470 int 1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1472 { 1473 struct ftrace_ops_hash hash; 1474 int ret; 1475 1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1477 /* 1478 * There's a small race when adding ops that the ftrace handler 1479 * that wants regs, may be called without them. We can not 1480 * allow that handler to be called if regs is NULL. 1481 */ 1482 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1483 return 0; 1484 #endif 1485 1486 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1487 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1488 1489 if (hash_contains_ip(ip, &hash)) 1490 ret = 1; 1491 else 1492 ret = 0; 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * This is a double for. Do not use 'break' to break out of the loop, 1499 * you must use a goto. 1500 */ 1501 #define do_for_each_ftrace_rec(pg, rec) \ 1502 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1503 int _____i; \ 1504 for (_____i = 0; _____i < pg->index; _____i++) { \ 1505 rec = &pg->records[_____i]; 1506 1507 #define while_for_each_ftrace_rec() \ 1508 } \ 1509 } 1510 1511 1512 static int ftrace_cmp_recs(const void *a, const void *b) 1513 { 1514 const struct dyn_ftrace *key = a; 1515 const struct dyn_ftrace *rec = b; 1516 1517 if (key->flags < rec->ip) 1518 return -1; 1519 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1520 return 1; 1521 return 0; 1522 } 1523 1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1525 { 1526 struct ftrace_page *pg; 1527 struct dyn_ftrace *rec = NULL; 1528 struct dyn_ftrace key; 1529 1530 key.ip = start; 1531 key.flags = end; /* overload flags, as it is unsigned long */ 1532 1533 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1534 if (end < pg->records[0].ip || 1535 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1536 continue; 1537 rec = bsearch(&key, pg->records, pg->index, 1538 sizeof(struct dyn_ftrace), 1539 ftrace_cmp_recs); 1540 if (rec) 1541 break; 1542 } 1543 return rec; 1544 } 1545 1546 /** 1547 * ftrace_location_range - return the first address of a traced location 1548 * if it touches the given ip range 1549 * @start: start of range to search. 1550 * @end: end of range to search (inclusive). @end points to the last byte 1551 * to check. 1552 * 1553 * Returns rec->ip if the related ftrace location is a least partly within 1554 * the given address range. That is, the first address of the instruction 1555 * that is either a NOP or call to the function tracer. It checks the ftrace 1556 * internal tables to determine if the address belongs or not. 1557 */ 1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1559 { 1560 struct dyn_ftrace *rec; 1561 1562 rec = lookup_rec(start, end); 1563 if (rec) 1564 return rec->ip; 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * ftrace_location - return the ftrace location 1571 * @ip: the instruction pointer to check 1572 * 1573 * If @ip matches the ftrace location, return @ip. 1574 * If @ip matches sym+0, return sym's ftrace location. 1575 * Otherwise, return 0. 1576 */ 1577 unsigned long ftrace_location(unsigned long ip) 1578 { 1579 struct dyn_ftrace *rec; 1580 unsigned long offset; 1581 unsigned long size; 1582 1583 rec = lookup_rec(ip, ip); 1584 if (!rec) { 1585 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1586 goto out; 1587 1588 /* map sym+0 to __fentry__ */ 1589 if (!offset) 1590 rec = lookup_rec(ip, ip + size - 1); 1591 } 1592 1593 if (rec) 1594 return rec->ip; 1595 1596 out: 1597 return 0; 1598 } 1599 1600 /** 1601 * ftrace_text_reserved - return true if range contains an ftrace location 1602 * @start: start of range to search 1603 * @end: end of range to search (inclusive). @end points to the last byte to check. 1604 * 1605 * Returns 1 if @start and @end contains a ftrace location. 1606 * That is, the instruction that is either a NOP or call to 1607 * the function tracer. It checks the ftrace internal tables to 1608 * determine if the address belongs or not. 1609 */ 1610 int ftrace_text_reserved(const void *start, const void *end) 1611 { 1612 unsigned long ret; 1613 1614 ret = ftrace_location_range((unsigned long)start, 1615 (unsigned long)end); 1616 1617 return (int)!!ret; 1618 } 1619 1620 /* Test if ops registered to this rec needs regs */ 1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1622 { 1623 struct ftrace_ops *ops; 1624 bool keep_regs = false; 1625 1626 for (ops = ftrace_ops_list; 1627 ops != &ftrace_list_end; ops = ops->next) { 1628 /* pass rec in as regs to have non-NULL val */ 1629 if (ftrace_ops_test(ops, rec->ip, rec)) { 1630 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1631 keep_regs = true; 1632 break; 1633 } 1634 } 1635 } 1636 1637 return keep_regs; 1638 } 1639 1640 static struct ftrace_ops * 1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1642 static struct ftrace_ops * 1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1644 static struct ftrace_ops * 1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1646 1647 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1648 int filter_hash, 1649 bool inc) 1650 { 1651 struct ftrace_hash *hash; 1652 struct ftrace_hash *other_hash; 1653 struct ftrace_page *pg; 1654 struct dyn_ftrace *rec; 1655 bool update = false; 1656 int count = 0; 1657 int all = false; 1658 1659 /* Only update if the ops has been registered */ 1660 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1661 return false; 1662 1663 /* 1664 * In the filter_hash case: 1665 * If the count is zero, we update all records. 1666 * Otherwise we just update the items in the hash. 1667 * 1668 * In the notrace_hash case: 1669 * We enable the update in the hash. 1670 * As disabling notrace means enabling the tracing, 1671 * and enabling notrace means disabling, the inc variable 1672 * gets inversed. 1673 */ 1674 if (filter_hash) { 1675 hash = ops->func_hash->filter_hash; 1676 other_hash = ops->func_hash->notrace_hash; 1677 if (ftrace_hash_empty(hash)) 1678 all = true; 1679 } else { 1680 inc = !inc; 1681 hash = ops->func_hash->notrace_hash; 1682 other_hash = ops->func_hash->filter_hash; 1683 /* 1684 * If the notrace hash has no items, 1685 * then there's nothing to do. 1686 */ 1687 if (ftrace_hash_empty(hash)) 1688 return false; 1689 } 1690 1691 do_for_each_ftrace_rec(pg, rec) { 1692 int in_other_hash = 0; 1693 int in_hash = 0; 1694 int match = 0; 1695 1696 if (rec->flags & FTRACE_FL_DISABLED) 1697 continue; 1698 1699 if (all) { 1700 /* 1701 * Only the filter_hash affects all records. 1702 * Update if the record is not in the notrace hash. 1703 */ 1704 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1705 match = 1; 1706 } else { 1707 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1708 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1709 1710 /* 1711 * If filter_hash is set, we want to match all functions 1712 * that are in the hash but not in the other hash. 1713 * 1714 * If filter_hash is not set, then we are decrementing. 1715 * That means we match anything that is in the hash 1716 * and also in the other_hash. That is, we need to turn 1717 * off functions in the other hash because they are disabled 1718 * by this hash. 1719 */ 1720 if (filter_hash && in_hash && !in_other_hash) 1721 match = 1; 1722 else if (!filter_hash && in_hash && 1723 (in_other_hash || ftrace_hash_empty(other_hash))) 1724 match = 1; 1725 } 1726 if (!match) 1727 continue; 1728 1729 if (inc) { 1730 rec->flags++; 1731 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1732 return false; 1733 1734 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1735 rec->flags |= FTRACE_FL_DIRECT; 1736 1737 /* 1738 * If there's only a single callback registered to a 1739 * function, and the ops has a trampoline registered 1740 * for it, then we can call it directly. 1741 */ 1742 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1743 rec->flags |= FTRACE_FL_TRAMP; 1744 else 1745 /* 1746 * If we are adding another function callback 1747 * to this function, and the previous had a 1748 * custom trampoline in use, then we need to go 1749 * back to the default trampoline. 1750 */ 1751 rec->flags &= ~FTRACE_FL_TRAMP; 1752 1753 /* 1754 * If any ops wants regs saved for this function 1755 * then all ops will get saved regs. 1756 */ 1757 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1758 rec->flags |= FTRACE_FL_REGS; 1759 } else { 1760 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1761 return false; 1762 rec->flags--; 1763 1764 /* 1765 * Only the internal direct_ops should have the 1766 * DIRECT flag set. Thus, if it is removing a 1767 * function, then that function should no longer 1768 * be direct. 1769 */ 1770 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1771 rec->flags &= ~FTRACE_FL_DIRECT; 1772 1773 /* 1774 * If the rec had REGS enabled and the ops that is 1775 * being removed had REGS set, then see if there is 1776 * still any ops for this record that wants regs. 1777 * If not, we can stop recording them. 1778 */ 1779 if (ftrace_rec_count(rec) > 0 && 1780 rec->flags & FTRACE_FL_REGS && 1781 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1782 if (!test_rec_ops_needs_regs(rec)) 1783 rec->flags &= ~FTRACE_FL_REGS; 1784 } 1785 1786 /* 1787 * The TRAMP needs to be set only if rec count 1788 * is decremented to one, and the ops that is 1789 * left has a trampoline. As TRAMP can only be 1790 * enabled if there is only a single ops attached 1791 * to it. 1792 */ 1793 if (ftrace_rec_count(rec) == 1 && 1794 ftrace_find_tramp_ops_any_other(rec, ops)) 1795 rec->flags |= FTRACE_FL_TRAMP; 1796 else 1797 rec->flags &= ~FTRACE_FL_TRAMP; 1798 1799 /* 1800 * flags will be cleared in ftrace_check_record() 1801 * if rec count is zero. 1802 */ 1803 } 1804 count++; 1805 1806 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1807 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1808 1809 /* Shortcut, if we handled all records, we are done. */ 1810 if (!all && count == hash->count) 1811 return update; 1812 } while_for_each_ftrace_rec(); 1813 1814 return update; 1815 } 1816 1817 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1818 int filter_hash) 1819 { 1820 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1821 } 1822 1823 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1824 int filter_hash) 1825 { 1826 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1827 } 1828 1829 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1830 int filter_hash, int inc) 1831 { 1832 struct ftrace_ops *op; 1833 1834 __ftrace_hash_rec_update(ops, filter_hash, inc); 1835 1836 if (ops->func_hash != &global_ops.local_hash) 1837 return; 1838 1839 /* 1840 * If the ops shares the global_ops hash, then we need to update 1841 * all ops that are enabled and use this hash. 1842 */ 1843 do_for_each_ftrace_op(op, ftrace_ops_list) { 1844 /* Already done */ 1845 if (op == ops) 1846 continue; 1847 if (op->func_hash == &global_ops.local_hash) 1848 __ftrace_hash_rec_update(op, filter_hash, inc); 1849 } while_for_each_ftrace_op(op); 1850 } 1851 1852 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1853 int filter_hash) 1854 { 1855 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1856 } 1857 1858 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1859 int filter_hash) 1860 { 1861 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1862 } 1863 1864 /* 1865 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1866 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1867 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1868 * Note that old_hash and new_hash has below meanings 1869 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1870 * - If the hash is EMPTY_HASH, it hits nothing 1871 * - Anything else hits the recs which match the hash entries. 1872 */ 1873 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1874 struct ftrace_hash *old_hash, 1875 struct ftrace_hash *new_hash) 1876 { 1877 struct ftrace_page *pg; 1878 struct dyn_ftrace *rec, *end = NULL; 1879 int in_old, in_new; 1880 1881 /* Only update if the ops has been registered */ 1882 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1883 return 0; 1884 1885 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1886 return 0; 1887 1888 /* 1889 * Since the IPMODIFY is a very address sensitive action, we do not 1890 * allow ftrace_ops to set all functions to new hash. 1891 */ 1892 if (!new_hash || !old_hash) 1893 return -EINVAL; 1894 1895 /* Update rec->flags */ 1896 do_for_each_ftrace_rec(pg, rec) { 1897 1898 if (rec->flags & FTRACE_FL_DISABLED) 1899 continue; 1900 1901 /* We need to update only differences of filter_hash */ 1902 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1903 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1904 if (in_old == in_new) 1905 continue; 1906 1907 if (in_new) { 1908 /* New entries must ensure no others are using it */ 1909 if (rec->flags & FTRACE_FL_IPMODIFY) 1910 goto rollback; 1911 rec->flags |= FTRACE_FL_IPMODIFY; 1912 } else /* Removed entry */ 1913 rec->flags &= ~FTRACE_FL_IPMODIFY; 1914 } while_for_each_ftrace_rec(); 1915 1916 return 0; 1917 1918 rollback: 1919 end = rec; 1920 1921 /* Roll back what we did above */ 1922 do_for_each_ftrace_rec(pg, rec) { 1923 1924 if (rec->flags & FTRACE_FL_DISABLED) 1925 continue; 1926 1927 if (rec == end) 1928 goto err_out; 1929 1930 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1931 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1932 if (in_old == in_new) 1933 continue; 1934 1935 if (in_new) 1936 rec->flags &= ~FTRACE_FL_IPMODIFY; 1937 else 1938 rec->flags |= FTRACE_FL_IPMODIFY; 1939 } while_for_each_ftrace_rec(); 1940 1941 err_out: 1942 return -EBUSY; 1943 } 1944 1945 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1946 { 1947 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1948 1949 if (ftrace_hash_empty(hash)) 1950 hash = NULL; 1951 1952 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1953 } 1954 1955 /* Disabling always succeeds */ 1956 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1957 { 1958 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1959 1960 if (ftrace_hash_empty(hash)) 1961 hash = NULL; 1962 1963 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1964 } 1965 1966 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1967 struct ftrace_hash *new_hash) 1968 { 1969 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1970 1971 if (ftrace_hash_empty(old_hash)) 1972 old_hash = NULL; 1973 1974 if (ftrace_hash_empty(new_hash)) 1975 new_hash = NULL; 1976 1977 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1978 } 1979 1980 static void print_ip_ins(const char *fmt, const unsigned char *p) 1981 { 1982 char ins[MCOUNT_INSN_SIZE]; 1983 int i; 1984 1985 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 1986 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 1987 return; 1988 } 1989 1990 printk(KERN_CONT "%s", fmt); 1991 1992 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1993 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]); 1994 } 1995 1996 enum ftrace_bug_type ftrace_bug_type; 1997 const void *ftrace_expected; 1998 1999 static void print_bug_type(void) 2000 { 2001 switch (ftrace_bug_type) { 2002 case FTRACE_BUG_UNKNOWN: 2003 break; 2004 case FTRACE_BUG_INIT: 2005 pr_info("Initializing ftrace call sites\n"); 2006 break; 2007 case FTRACE_BUG_NOP: 2008 pr_info("Setting ftrace call site to NOP\n"); 2009 break; 2010 case FTRACE_BUG_CALL: 2011 pr_info("Setting ftrace call site to call ftrace function\n"); 2012 break; 2013 case FTRACE_BUG_UPDATE: 2014 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2015 break; 2016 } 2017 } 2018 2019 /** 2020 * ftrace_bug - report and shutdown function tracer 2021 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2022 * @rec: The record that failed 2023 * 2024 * The arch code that enables or disables the function tracing 2025 * can call ftrace_bug() when it has detected a problem in 2026 * modifying the code. @failed should be one of either: 2027 * EFAULT - if the problem happens on reading the @ip address 2028 * EINVAL - if what is read at @ip is not what was expected 2029 * EPERM - if the problem happens on writing to the @ip address 2030 */ 2031 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2032 { 2033 unsigned long ip = rec ? rec->ip : 0; 2034 2035 pr_info("------------[ ftrace bug ]------------\n"); 2036 2037 switch (failed) { 2038 case -EFAULT: 2039 pr_info("ftrace faulted on modifying "); 2040 print_ip_sym(KERN_INFO, ip); 2041 break; 2042 case -EINVAL: 2043 pr_info("ftrace failed to modify "); 2044 print_ip_sym(KERN_INFO, ip); 2045 print_ip_ins(" actual: ", (unsigned char *)ip); 2046 pr_cont("\n"); 2047 if (ftrace_expected) { 2048 print_ip_ins(" expected: ", ftrace_expected); 2049 pr_cont("\n"); 2050 } 2051 break; 2052 case -EPERM: 2053 pr_info("ftrace faulted on writing "); 2054 print_ip_sym(KERN_INFO, ip); 2055 break; 2056 default: 2057 pr_info("ftrace faulted on unknown error "); 2058 print_ip_sym(KERN_INFO, ip); 2059 } 2060 print_bug_type(); 2061 if (rec) { 2062 struct ftrace_ops *ops = NULL; 2063 2064 pr_info("ftrace record flags: %lx\n", rec->flags); 2065 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2066 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2067 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2068 ops = ftrace_find_tramp_ops_any(rec); 2069 if (ops) { 2070 do { 2071 pr_cont("\ttramp: %pS (%pS)", 2072 (void *)ops->trampoline, 2073 (void *)ops->func); 2074 ops = ftrace_find_tramp_ops_next(rec, ops); 2075 } while (ops); 2076 } else 2077 pr_cont("\ttramp: ERROR!"); 2078 2079 } 2080 ip = ftrace_get_addr_curr(rec); 2081 pr_cont("\n expected tramp: %lx\n", ip); 2082 } 2083 2084 FTRACE_WARN_ON_ONCE(1); 2085 } 2086 2087 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2088 { 2089 unsigned long flag = 0UL; 2090 2091 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2092 2093 if (rec->flags & FTRACE_FL_DISABLED) 2094 return FTRACE_UPDATE_IGNORE; 2095 2096 /* 2097 * If we are updating calls: 2098 * 2099 * If the record has a ref count, then we need to enable it 2100 * because someone is using it. 2101 * 2102 * Otherwise we make sure its disabled. 2103 * 2104 * If we are disabling calls, then disable all records that 2105 * are enabled. 2106 */ 2107 if (enable && ftrace_rec_count(rec)) 2108 flag = FTRACE_FL_ENABLED; 2109 2110 /* 2111 * If enabling and the REGS flag does not match the REGS_EN, or 2112 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2113 * this record. Set flags to fail the compare against ENABLED. 2114 * Same for direct calls. 2115 */ 2116 if (flag) { 2117 if (!(rec->flags & FTRACE_FL_REGS) != 2118 !(rec->flags & FTRACE_FL_REGS_EN)) 2119 flag |= FTRACE_FL_REGS; 2120 2121 if (!(rec->flags & FTRACE_FL_TRAMP) != 2122 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2123 flag |= FTRACE_FL_TRAMP; 2124 2125 /* 2126 * Direct calls are special, as count matters. 2127 * We must test the record for direct, if the 2128 * DIRECT and DIRECT_EN do not match, but only 2129 * if the count is 1. That's because, if the 2130 * count is something other than one, we do not 2131 * want the direct enabled (it will be done via the 2132 * direct helper). But if DIRECT_EN is set, and 2133 * the count is not one, we need to clear it. 2134 */ 2135 if (ftrace_rec_count(rec) == 1) { 2136 if (!(rec->flags & FTRACE_FL_DIRECT) != 2137 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2138 flag |= FTRACE_FL_DIRECT; 2139 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2140 flag |= FTRACE_FL_DIRECT; 2141 } 2142 } 2143 2144 /* If the state of this record hasn't changed, then do nothing */ 2145 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2146 return FTRACE_UPDATE_IGNORE; 2147 2148 if (flag) { 2149 /* Save off if rec is being enabled (for return value) */ 2150 flag ^= rec->flags & FTRACE_FL_ENABLED; 2151 2152 if (update) { 2153 rec->flags |= FTRACE_FL_ENABLED; 2154 if (flag & FTRACE_FL_REGS) { 2155 if (rec->flags & FTRACE_FL_REGS) 2156 rec->flags |= FTRACE_FL_REGS_EN; 2157 else 2158 rec->flags &= ~FTRACE_FL_REGS_EN; 2159 } 2160 if (flag & FTRACE_FL_TRAMP) { 2161 if (rec->flags & FTRACE_FL_TRAMP) 2162 rec->flags |= FTRACE_FL_TRAMP_EN; 2163 else 2164 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2165 } 2166 2167 if (flag & FTRACE_FL_DIRECT) { 2168 /* 2169 * If there's only one user (direct_ops helper) 2170 * then we can call the direct function 2171 * directly (no ftrace trampoline). 2172 */ 2173 if (ftrace_rec_count(rec) == 1) { 2174 if (rec->flags & FTRACE_FL_DIRECT) 2175 rec->flags |= FTRACE_FL_DIRECT_EN; 2176 else 2177 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2178 } else { 2179 /* 2180 * Can only call directly if there's 2181 * only one callback to the function. 2182 */ 2183 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2184 } 2185 } 2186 } 2187 2188 /* 2189 * If this record is being updated from a nop, then 2190 * return UPDATE_MAKE_CALL. 2191 * Otherwise, 2192 * return UPDATE_MODIFY_CALL to tell the caller to convert 2193 * from the save regs, to a non-save regs function or 2194 * vice versa, or from a trampoline call. 2195 */ 2196 if (flag & FTRACE_FL_ENABLED) { 2197 ftrace_bug_type = FTRACE_BUG_CALL; 2198 return FTRACE_UPDATE_MAKE_CALL; 2199 } 2200 2201 ftrace_bug_type = FTRACE_BUG_UPDATE; 2202 return FTRACE_UPDATE_MODIFY_CALL; 2203 } 2204 2205 if (update) { 2206 /* If there's no more users, clear all flags */ 2207 if (!ftrace_rec_count(rec)) 2208 rec->flags = 0; 2209 else 2210 /* 2211 * Just disable the record, but keep the ops TRAMP 2212 * and REGS states. The _EN flags must be disabled though. 2213 */ 2214 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2215 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2216 } 2217 2218 ftrace_bug_type = FTRACE_BUG_NOP; 2219 return FTRACE_UPDATE_MAKE_NOP; 2220 } 2221 2222 /** 2223 * ftrace_update_record - set a record that now is tracing or not 2224 * @rec: the record to update 2225 * @enable: set to true if the record is tracing, false to force disable 2226 * 2227 * The records that represent all functions that can be traced need 2228 * to be updated when tracing has been enabled. 2229 */ 2230 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2231 { 2232 return ftrace_check_record(rec, enable, true); 2233 } 2234 2235 /** 2236 * ftrace_test_record - check if the record has been enabled or not 2237 * @rec: the record to test 2238 * @enable: set to true to check if enabled, false if it is disabled 2239 * 2240 * The arch code may need to test if a record is already set to 2241 * tracing to determine how to modify the function code that it 2242 * represents. 2243 */ 2244 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2245 { 2246 return ftrace_check_record(rec, enable, false); 2247 } 2248 2249 static struct ftrace_ops * 2250 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2251 { 2252 struct ftrace_ops *op; 2253 unsigned long ip = rec->ip; 2254 2255 do_for_each_ftrace_op(op, ftrace_ops_list) { 2256 2257 if (!op->trampoline) 2258 continue; 2259 2260 if (hash_contains_ip(ip, op->func_hash)) 2261 return op; 2262 } while_for_each_ftrace_op(op); 2263 2264 return NULL; 2265 } 2266 2267 static struct ftrace_ops * 2268 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2269 { 2270 struct ftrace_ops *op; 2271 unsigned long ip = rec->ip; 2272 2273 do_for_each_ftrace_op(op, ftrace_ops_list) { 2274 2275 if (op == op_exclude || !op->trampoline) 2276 continue; 2277 2278 if (hash_contains_ip(ip, op->func_hash)) 2279 return op; 2280 } while_for_each_ftrace_op(op); 2281 2282 return NULL; 2283 } 2284 2285 static struct ftrace_ops * 2286 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2287 struct ftrace_ops *op) 2288 { 2289 unsigned long ip = rec->ip; 2290 2291 while_for_each_ftrace_op(op) { 2292 2293 if (!op->trampoline) 2294 continue; 2295 2296 if (hash_contains_ip(ip, op->func_hash)) 2297 return op; 2298 } 2299 2300 return NULL; 2301 } 2302 2303 static struct ftrace_ops * 2304 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2305 { 2306 struct ftrace_ops *op; 2307 unsigned long ip = rec->ip; 2308 2309 /* 2310 * Need to check removed ops first. 2311 * If they are being removed, and this rec has a tramp, 2312 * and this rec is in the ops list, then it would be the 2313 * one with the tramp. 2314 */ 2315 if (removed_ops) { 2316 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2317 return removed_ops; 2318 } 2319 2320 /* 2321 * Need to find the current trampoline for a rec. 2322 * Now, a trampoline is only attached to a rec if there 2323 * was a single 'ops' attached to it. But this can be called 2324 * when we are adding another op to the rec or removing the 2325 * current one. Thus, if the op is being added, we can 2326 * ignore it because it hasn't attached itself to the rec 2327 * yet. 2328 * 2329 * If an ops is being modified (hooking to different functions) 2330 * then we don't care about the new functions that are being 2331 * added, just the old ones (that are probably being removed). 2332 * 2333 * If we are adding an ops to a function that already is using 2334 * a trampoline, it needs to be removed (trampolines are only 2335 * for single ops connected), then an ops that is not being 2336 * modified also needs to be checked. 2337 */ 2338 do_for_each_ftrace_op(op, ftrace_ops_list) { 2339 2340 if (!op->trampoline) 2341 continue; 2342 2343 /* 2344 * If the ops is being added, it hasn't gotten to 2345 * the point to be removed from this tree yet. 2346 */ 2347 if (op->flags & FTRACE_OPS_FL_ADDING) 2348 continue; 2349 2350 2351 /* 2352 * If the ops is being modified and is in the old 2353 * hash, then it is probably being removed from this 2354 * function. 2355 */ 2356 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2357 hash_contains_ip(ip, &op->old_hash)) 2358 return op; 2359 /* 2360 * If the ops is not being added or modified, and it's 2361 * in its normal filter hash, then this must be the one 2362 * we want! 2363 */ 2364 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2365 hash_contains_ip(ip, op->func_hash)) 2366 return op; 2367 2368 } while_for_each_ftrace_op(op); 2369 2370 return NULL; 2371 } 2372 2373 static struct ftrace_ops * 2374 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2375 { 2376 struct ftrace_ops *op; 2377 unsigned long ip = rec->ip; 2378 2379 do_for_each_ftrace_op(op, ftrace_ops_list) { 2380 /* pass rec in as regs to have non-NULL val */ 2381 if (hash_contains_ip(ip, op->func_hash)) 2382 return op; 2383 } while_for_each_ftrace_op(op); 2384 2385 return NULL; 2386 } 2387 2388 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2389 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2390 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2391 static DEFINE_MUTEX(direct_mutex); 2392 int ftrace_direct_func_count; 2393 2394 /* 2395 * Search the direct_functions hash to see if the given instruction pointer 2396 * has a direct caller attached to it. 2397 */ 2398 unsigned long ftrace_find_rec_direct(unsigned long ip) 2399 { 2400 struct ftrace_func_entry *entry; 2401 2402 entry = __ftrace_lookup_ip(direct_functions, ip); 2403 if (!entry) 2404 return 0; 2405 2406 return entry->direct; 2407 } 2408 2409 static struct ftrace_func_entry* 2410 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2411 struct ftrace_hash **free_hash) 2412 { 2413 struct ftrace_func_entry *entry; 2414 2415 if (ftrace_hash_empty(direct_functions) || 2416 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2417 struct ftrace_hash *new_hash; 2418 int size = ftrace_hash_empty(direct_functions) ? 0 : 2419 direct_functions->count + 1; 2420 2421 if (size < 32) 2422 size = 32; 2423 2424 new_hash = dup_hash(direct_functions, size); 2425 if (!new_hash) 2426 return NULL; 2427 2428 *free_hash = direct_functions; 2429 direct_functions = new_hash; 2430 } 2431 2432 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2433 if (!entry) 2434 return NULL; 2435 2436 entry->ip = ip; 2437 entry->direct = addr; 2438 __add_hash_entry(direct_functions, entry); 2439 return entry; 2440 } 2441 2442 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2443 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2444 { 2445 struct pt_regs *regs = ftrace_get_regs(fregs); 2446 unsigned long addr; 2447 2448 addr = ftrace_find_rec_direct(ip); 2449 if (!addr) 2450 return; 2451 2452 arch_ftrace_set_direct_caller(regs, addr); 2453 } 2454 2455 struct ftrace_ops direct_ops = { 2456 .func = call_direct_funcs, 2457 .flags = FTRACE_OPS_FL_IPMODIFY 2458 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2459 | FTRACE_OPS_FL_PERMANENT, 2460 /* 2461 * By declaring the main trampoline as this trampoline 2462 * it will never have one allocated for it. Allocated 2463 * trampolines should not call direct functions. 2464 * The direct_ops should only be called by the builtin 2465 * ftrace_regs_caller trampoline. 2466 */ 2467 .trampoline = FTRACE_REGS_ADDR, 2468 }; 2469 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2470 2471 /** 2472 * ftrace_get_addr_new - Get the call address to set to 2473 * @rec: The ftrace record descriptor 2474 * 2475 * If the record has the FTRACE_FL_REGS set, that means that it 2476 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2477 * is not set, then it wants to convert to the normal callback. 2478 * 2479 * Returns the address of the trampoline to set to 2480 */ 2481 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2482 { 2483 struct ftrace_ops *ops; 2484 unsigned long addr; 2485 2486 if ((rec->flags & FTRACE_FL_DIRECT) && 2487 (ftrace_rec_count(rec) == 1)) { 2488 addr = ftrace_find_rec_direct(rec->ip); 2489 if (addr) 2490 return addr; 2491 WARN_ON_ONCE(1); 2492 } 2493 2494 /* Trampolines take precedence over regs */ 2495 if (rec->flags & FTRACE_FL_TRAMP) { 2496 ops = ftrace_find_tramp_ops_new(rec); 2497 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2498 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2499 (void *)rec->ip, (void *)rec->ip, rec->flags); 2500 /* Ftrace is shutting down, return anything */ 2501 return (unsigned long)FTRACE_ADDR; 2502 } 2503 return ops->trampoline; 2504 } 2505 2506 if (rec->flags & FTRACE_FL_REGS) 2507 return (unsigned long)FTRACE_REGS_ADDR; 2508 else 2509 return (unsigned long)FTRACE_ADDR; 2510 } 2511 2512 /** 2513 * ftrace_get_addr_curr - Get the call address that is already there 2514 * @rec: The ftrace record descriptor 2515 * 2516 * The FTRACE_FL_REGS_EN is set when the record already points to 2517 * a function that saves all the regs. Basically the '_EN' version 2518 * represents the current state of the function. 2519 * 2520 * Returns the address of the trampoline that is currently being called 2521 */ 2522 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2523 { 2524 struct ftrace_ops *ops; 2525 unsigned long addr; 2526 2527 /* Direct calls take precedence over trampolines */ 2528 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2529 addr = ftrace_find_rec_direct(rec->ip); 2530 if (addr) 2531 return addr; 2532 WARN_ON_ONCE(1); 2533 } 2534 2535 /* Trampolines take precedence over regs */ 2536 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2537 ops = ftrace_find_tramp_ops_curr(rec); 2538 if (FTRACE_WARN_ON(!ops)) { 2539 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2540 (void *)rec->ip, (void *)rec->ip); 2541 /* Ftrace is shutting down, return anything */ 2542 return (unsigned long)FTRACE_ADDR; 2543 } 2544 return ops->trampoline; 2545 } 2546 2547 if (rec->flags & FTRACE_FL_REGS_EN) 2548 return (unsigned long)FTRACE_REGS_ADDR; 2549 else 2550 return (unsigned long)FTRACE_ADDR; 2551 } 2552 2553 static int 2554 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2555 { 2556 unsigned long ftrace_old_addr; 2557 unsigned long ftrace_addr; 2558 int ret; 2559 2560 ftrace_addr = ftrace_get_addr_new(rec); 2561 2562 /* This needs to be done before we call ftrace_update_record */ 2563 ftrace_old_addr = ftrace_get_addr_curr(rec); 2564 2565 ret = ftrace_update_record(rec, enable); 2566 2567 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2568 2569 switch (ret) { 2570 case FTRACE_UPDATE_IGNORE: 2571 return 0; 2572 2573 case FTRACE_UPDATE_MAKE_CALL: 2574 ftrace_bug_type = FTRACE_BUG_CALL; 2575 return ftrace_make_call(rec, ftrace_addr); 2576 2577 case FTRACE_UPDATE_MAKE_NOP: 2578 ftrace_bug_type = FTRACE_BUG_NOP; 2579 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2580 2581 case FTRACE_UPDATE_MODIFY_CALL: 2582 ftrace_bug_type = FTRACE_BUG_UPDATE; 2583 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2584 } 2585 2586 return -1; /* unknown ftrace bug */ 2587 } 2588 2589 void __weak ftrace_replace_code(int mod_flags) 2590 { 2591 struct dyn_ftrace *rec; 2592 struct ftrace_page *pg; 2593 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2594 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2595 int failed; 2596 2597 if (unlikely(ftrace_disabled)) 2598 return; 2599 2600 do_for_each_ftrace_rec(pg, rec) { 2601 2602 if (rec->flags & FTRACE_FL_DISABLED) 2603 continue; 2604 2605 failed = __ftrace_replace_code(rec, enable); 2606 if (failed) { 2607 ftrace_bug(failed, rec); 2608 /* Stop processing */ 2609 return; 2610 } 2611 if (schedulable) 2612 cond_resched(); 2613 } while_for_each_ftrace_rec(); 2614 } 2615 2616 struct ftrace_rec_iter { 2617 struct ftrace_page *pg; 2618 int index; 2619 }; 2620 2621 /** 2622 * ftrace_rec_iter_start - start up iterating over traced functions 2623 * 2624 * Returns an iterator handle that is used to iterate over all 2625 * the records that represent address locations where functions 2626 * are traced. 2627 * 2628 * May return NULL if no records are available. 2629 */ 2630 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2631 { 2632 /* 2633 * We only use a single iterator. 2634 * Protected by the ftrace_lock mutex. 2635 */ 2636 static struct ftrace_rec_iter ftrace_rec_iter; 2637 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2638 2639 iter->pg = ftrace_pages_start; 2640 iter->index = 0; 2641 2642 /* Could have empty pages */ 2643 while (iter->pg && !iter->pg->index) 2644 iter->pg = iter->pg->next; 2645 2646 if (!iter->pg) 2647 return NULL; 2648 2649 return iter; 2650 } 2651 2652 /** 2653 * ftrace_rec_iter_next - get the next record to process. 2654 * @iter: The handle to the iterator. 2655 * 2656 * Returns the next iterator after the given iterator @iter. 2657 */ 2658 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2659 { 2660 iter->index++; 2661 2662 if (iter->index >= iter->pg->index) { 2663 iter->pg = iter->pg->next; 2664 iter->index = 0; 2665 2666 /* Could have empty pages */ 2667 while (iter->pg && !iter->pg->index) 2668 iter->pg = iter->pg->next; 2669 } 2670 2671 if (!iter->pg) 2672 return NULL; 2673 2674 return iter; 2675 } 2676 2677 /** 2678 * ftrace_rec_iter_record - get the record at the iterator location 2679 * @iter: The current iterator location 2680 * 2681 * Returns the record that the current @iter is at. 2682 */ 2683 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2684 { 2685 return &iter->pg->records[iter->index]; 2686 } 2687 2688 static int 2689 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2690 { 2691 int ret; 2692 2693 if (unlikely(ftrace_disabled)) 2694 return 0; 2695 2696 ret = ftrace_init_nop(mod, rec); 2697 if (ret) { 2698 ftrace_bug_type = FTRACE_BUG_INIT; 2699 ftrace_bug(ret, rec); 2700 return 0; 2701 } 2702 return 1; 2703 } 2704 2705 /* 2706 * archs can override this function if they must do something 2707 * before the modifying code is performed. 2708 */ 2709 void __weak ftrace_arch_code_modify_prepare(void) 2710 { 2711 } 2712 2713 /* 2714 * archs can override this function if they must do something 2715 * after the modifying code is performed. 2716 */ 2717 void __weak ftrace_arch_code_modify_post_process(void) 2718 { 2719 } 2720 2721 void ftrace_modify_all_code(int command) 2722 { 2723 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2724 int mod_flags = 0; 2725 int err = 0; 2726 2727 if (command & FTRACE_MAY_SLEEP) 2728 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2729 2730 /* 2731 * If the ftrace_caller calls a ftrace_ops func directly, 2732 * we need to make sure that it only traces functions it 2733 * expects to trace. When doing the switch of functions, 2734 * we need to update to the ftrace_ops_list_func first 2735 * before the transition between old and new calls are set, 2736 * as the ftrace_ops_list_func will check the ops hashes 2737 * to make sure the ops are having the right functions 2738 * traced. 2739 */ 2740 if (update) { 2741 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2742 if (FTRACE_WARN_ON(err)) 2743 return; 2744 } 2745 2746 if (command & FTRACE_UPDATE_CALLS) 2747 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2748 else if (command & FTRACE_DISABLE_CALLS) 2749 ftrace_replace_code(mod_flags); 2750 2751 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2752 function_trace_op = set_function_trace_op; 2753 smp_wmb(); 2754 /* If irqs are disabled, we are in stop machine */ 2755 if (!irqs_disabled()) 2756 smp_call_function(ftrace_sync_ipi, NULL, 1); 2757 err = ftrace_update_ftrace_func(ftrace_trace_function); 2758 if (FTRACE_WARN_ON(err)) 2759 return; 2760 } 2761 2762 if (command & FTRACE_START_FUNC_RET) 2763 err = ftrace_enable_ftrace_graph_caller(); 2764 else if (command & FTRACE_STOP_FUNC_RET) 2765 err = ftrace_disable_ftrace_graph_caller(); 2766 FTRACE_WARN_ON(err); 2767 } 2768 2769 static int __ftrace_modify_code(void *data) 2770 { 2771 int *command = data; 2772 2773 ftrace_modify_all_code(*command); 2774 2775 return 0; 2776 } 2777 2778 /** 2779 * ftrace_run_stop_machine - go back to the stop machine method 2780 * @command: The command to tell ftrace what to do 2781 * 2782 * If an arch needs to fall back to the stop machine method, the 2783 * it can call this function. 2784 */ 2785 void ftrace_run_stop_machine(int command) 2786 { 2787 stop_machine(__ftrace_modify_code, &command, NULL); 2788 } 2789 2790 /** 2791 * arch_ftrace_update_code - modify the code to trace or not trace 2792 * @command: The command that needs to be done 2793 * 2794 * Archs can override this function if it does not need to 2795 * run stop_machine() to modify code. 2796 */ 2797 void __weak arch_ftrace_update_code(int command) 2798 { 2799 ftrace_run_stop_machine(command); 2800 } 2801 2802 static void ftrace_run_update_code(int command) 2803 { 2804 ftrace_arch_code_modify_prepare(); 2805 2806 /* 2807 * By default we use stop_machine() to modify the code. 2808 * But archs can do what ever they want as long as it 2809 * is safe. The stop_machine() is the safest, but also 2810 * produces the most overhead. 2811 */ 2812 arch_ftrace_update_code(command); 2813 2814 ftrace_arch_code_modify_post_process(); 2815 } 2816 2817 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2818 struct ftrace_ops_hash *old_hash) 2819 { 2820 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2821 ops->old_hash.filter_hash = old_hash->filter_hash; 2822 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2823 ftrace_run_update_code(command); 2824 ops->old_hash.filter_hash = NULL; 2825 ops->old_hash.notrace_hash = NULL; 2826 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2827 } 2828 2829 static ftrace_func_t saved_ftrace_func; 2830 static int ftrace_start_up; 2831 2832 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2833 { 2834 } 2835 2836 /* List of trace_ops that have allocated trampolines */ 2837 static LIST_HEAD(ftrace_ops_trampoline_list); 2838 2839 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2840 { 2841 lockdep_assert_held(&ftrace_lock); 2842 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2843 } 2844 2845 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2846 { 2847 lockdep_assert_held(&ftrace_lock); 2848 list_del_rcu(&ops->list); 2849 synchronize_rcu(); 2850 } 2851 2852 /* 2853 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2854 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2855 * not a module. 2856 */ 2857 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2858 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2859 2860 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2861 { 2862 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2863 ops->trampoline) { 2864 /* 2865 * Record the text poke event before the ksymbol unregister 2866 * event. 2867 */ 2868 perf_event_text_poke((void *)ops->trampoline, 2869 (void *)ops->trampoline, 2870 ops->trampoline_size, NULL, 0); 2871 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2872 ops->trampoline, ops->trampoline_size, 2873 true, FTRACE_TRAMPOLINE_SYM); 2874 /* Remove from kallsyms after the perf events */ 2875 ftrace_remove_trampoline_from_kallsyms(ops); 2876 } 2877 2878 arch_ftrace_trampoline_free(ops); 2879 } 2880 2881 static void ftrace_startup_enable(int command) 2882 { 2883 if (saved_ftrace_func != ftrace_trace_function) { 2884 saved_ftrace_func = ftrace_trace_function; 2885 command |= FTRACE_UPDATE_TRACE_FUNC; 2886 } 2887 2888 if (!command || !ftrace_enabled) 2889 return; 2890 2891 ftrace_run_update_code(command); 2892 } 2893 2894 static void ftrace_startup_all(int command) 2895 { 2896 update_all_ops = true; 2897 ftrace_startup_enable(command); 2898 update_all_ops = false; 2899 } 2900 2901 int ftrace_startup(struct ftrace_ops *ops, int command) 2902 { 2903 int ret; 2904 2905 if (unlikely(ftrace_disabled)) 2906 return -ENODEV; 2907 2908 ret = __register_ftrace_function(ops); 2909 if (ret) 2910 return ret; 2911 2912 ftrace_start_up++; 2913 2914 /* 2915 * Note that ftrace probes uses this to start up 2916 * and modify functions it will probe. But we still 2917 * set the ADDING flag for modification, as probes 2918 * do not have trampolines. If they add them in the 2919 * future, then the probes will need to distinguish 2920 * between adding and updating probes. 2921 */ 2922 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2923 2924 ret = ftrace_hash_ipmodify_enable(ops); 2925 if (ret < 0) { 2926 /* Rollback registration process */ 2927 __unregister_ftrace_function(ops); 2928 ftrace_start_up--; 2929 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2930 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2931 ftrace_trampoline_free(ops); 2932 return ret; 2933 } 2934 2935 if (ftrace_hash_rec_enable(ops, 1)) 2936 command |= FTRACE_UPDATE_CALLS; 2937 2938 ftrace_startup_enable(command); 2939 2940 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2941 2942 return 0; 2943 } 2944 2945 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2946 { 2947 int ret; 2948 2949 if (unlikely(ftrace_disabled)) 2950 return -ENODEV; 2951 2952 ret = __unregister_ftrace_function(ops); 2953 if (ret) 2954 return ret; 2955 2956 ftrace_start_up--; 2957 /* 2958 * Just warn in case of unbalance, no need to kill ftrace, it's not 2959 * critical but the ftrace_call callers may be never nopped again after 2960 * further ftrace uses. 2961 */ 2962 WARN_ON_ONCE(ftrace_start_up < 0); 2963 2964 /* Disabling ipmodify never fails */ 2965 ftrace_hash_ipmodify_disable(ops); 2966 2967 if (ftrace_hash_rec_disable(ops, 1)) 2968 command |= FTRACE_UPDATE_CALLS; 2969 2970 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2971 2972 if (saved_ftrace_func != ftrace_trace_function) { 2973 saved_ftrace_func = ftrace_trace_function; 2974 command |= FTRACE_UPDATE_TRACE_FUNC; 2975 } 2976 2977 if (!command || !ftrace_enabled) { 2978 /* 2979 * If these are dynamic or per_cpu ops, they still 2980 * need their data freed. Since, function tracing is 2981 * not currently active, we can just free them 2982 * without synchronizing all CPUs. 2983 */ 2984 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2985 goto free_ops; 2986 2987 return 0; 2988 } 2989 2990 /* 2991 * If the ops uses a trampoline, then it needs to be 2992 * tested first on update. 2993 */ 2994 ops->flags |= FTRACE_OPS_FL_REMOVING; 2995 removed_ops = ops; 2996 2997 /* The trampoline logic checks the old hashes */ 2998 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2999 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3000 3001 ftrace_run_update_code(command); 3002 3003 /* 3004 * If there's no more ops registered with ftrace, run a 3005 * sanity check to make sure all rec flags are cleared. 3006 */ 3007 if (rcu_dereference_protected(ftrace_ops_list, 3008 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3009 struct ftrace_page *pg; 3010 struct dyn_ftrace *rec; 3011 3012 do_for_each_ftrace_rec(pg, rec) { 3013 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3014 pr_warn(" %pS flags:%lx\n", 3015 (void *)rec->ip, rec->flags); 3016 } while_for_each_ftrace_rec(); 3017 } 3018 3019 ops->old_hash.filter_hash = NULL; 3020 ops->old_hash.notrace_hash = NULL; 3021 3022 removed_ops = NULL; 3023 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3024 3025 /* 3026 * Dynamic ops may be freed, we must make sure that all 3027 * callers are done before leaving this function. 3028 * The same goes for freeing the per_cpu data of the per_cpu 3029 * ops. 3030 */ 3031 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3032 /* 3033 * We need to do a hard force of sched synchronization. 3034 * This is because we use preempt_disable() to do RCU, but 3035 * the function tracers can be called where RCU is not watching 3036 * (like before user_exit()). We can not rely on the RCU 3037 * infrastructure to do the synchronization, thus we must do it 3038 * ourselves. 3039 */ 3040 synchronize_rcu_tasks_rude(); 3041 3042 /* 3043 * When the kernel is preemptive, tasks can be preempted 3044 * while on a ftrace trampoline. Just scheduling a task on 3045 * a CPU is not good enough to flush them. Calling 3046 * synchronize_rcu_tasks() will wait for those tasks to 3047 * execute and either schedule voluntarily or enter user space. 3048 */ 3049 if (IS_ENABLED(CONFIG_PREEMPTION)) 3050 synchronize_rcu_tasks(); 3051 3052 free_ops: 3053 ftrace_trampoline_free(ops); 3054 } 3055 3056 return 0; 3057 } 3058 3059 static u64 ftrace_update_time; 3060 unsigned long ftrace_update_tot_cnt; 3061 unsigned long ftrace_number_of_pages; 3062 unsigned long ftrace_number_of_groups; 3063 3064 static inline int ops_traces_mod(struct ftrace_ops *ops) 3065 { 3066 /* 3067 * Filter_hash being empty will default to trace module. 3068 * But notrace hash requires a test of individual module functions. 3069 */ 3070 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3071 ftrace_hash_empty(ops->func_hash->notrace_hash); 3072 } 3073 3074 /* 3075 * Check if the current ops references the record. 3076 * 3077 * If the ops traces all functions, then it was already accounted for. 3078 * If the ops does not trace the current record function, skip it. 3079 * If the ops ignores the function via notrace filter, skip it. 3080 */ 3081 static inline bool 3082 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3083 { 3084 /* If ops isn't enabled, ignore it */ 3085 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3086 return false; 3087 3088 /* If ops traces all then it includes this function */ 3089 if (ops_traces_mod(ops)) 3090 return true; 3091 3092 /* The function must be in the filter */ 3093 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3094 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3095 return false; 3096 3097 /* If in notrace hash, we ignore it too */ 3098 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3099 return false; 3100 3101 return true; 3102 } 3103 3104 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3105 { 3106 bool init_nop = ftrace_need_init_nop(); 3107 struct ftrace_page *pg; 3108 struct dyn_ftrace *p; 3109 u64 start, stop; 3110 unsigned long update_cnt = 0; 3111 unsigned long rec_flags = 0; 3112 int i; 3113 3114 start = ftrace_now(raw_smp_processor_id()); 3115 3116 /* 3117 * When a module is loaded, this function is called to convert 3118 * the calls to mcount in its text to nops, and also to create 3119 * an entry in the ftrace data. Now, if ftrace is activated 3120 * after this call, but before the module sets its text to 3121 * read-only, the modification of enabling ftrace can fail if 3122 * the read-only is done while ftrace is converting the calls. 3123 * To prevent this, the module's records are set as disabled 3124 * and will be enabled after the call to set the module's text 3125 * to read-only. 3126 */ 3127 if (mod) 3128 rec_flags |= FTRACE_FL_DISABLED; 3129 3130 for (pg = new_pgs; pg; pg = pg->next) { 3131 3132 for (i = 0; i < pg->index; i++) { 3133 3134 /* If something went wrong, bail without enabling anything */ 3135 if (unlikely(ftrace_disabled)) 3136 return -1; 3137 3138 p = &pg->records[i]; 3139 p->flags = rec_flags; 3140 3141 /* 3142 * Do the initial record conversion from mcount jump 3143 * to the NOP instructions. 3144 */ 3145 if (init_nop && !ftrace_nop_initialize(mod, p)) 3146 break; 3147 3148 update_cnt++; 3149 } 3150 } 3151 3152 stop = ftrace_now(raw_smp_processor_id()); 3153 ftrace_update_time = stop - start; 3154 ftrace_update_tot_cnt += update_cnt; 3155 3156 return 0; 3157 } 3158 3159 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3160 { 3161 int order; 3162 int pages; 3163 int cnt; 3164 3165 if (WARN_ON(!count)) 3166 return -EINVAL; 3167 3168 /* We want to fill as much as possible, with no empty pages */ 3169 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3170 order = fls(pages) - 1; 3171 3172 again: 3173 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3174 3175 if (!pg->records) { 3176 /* if we can't allocate this size, try something smaller */ 3177 if (!order) 3178 return -ENOMEM; 3179 order >>= 1; 3180 goto again; 3181 } 3182 3183 ftrace_number_of_pages += 1 << order; 3184 ftrace_number_of_groups++; 3185 3186 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3187 pg->order = order; 3188 3189 if (cnt > count) 3190 cnt = count; 3191 3192 return cnt; 3193 } 3194 3195 static struct ftrace_page * 3196 ftrace_allocate_pages(unsigned long num_to_init) 3197 { 3198 struct ftrace_page *start_pg; 3199 struct ftrace_page *pg; 3200 int cnt; 3201 3202 if (!num_to_init) 3203 return NULL; 3204 3205 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3206 if (!pg) 3207 return NULL; 3208 3209 /* 3210 * Try to allocate as much as possible in one continues 3211 * location that fills in all of the space. We want to 3212 * waste as little space as possible. 3213 */ 3214 for (;;) { 3215 cnt = ftrace_allocate_records(pg, num_to_init); 3216 if (cnt < 0) 3217 goto free_pages; 3218 3219 num_to_init -= cnt; 3220 if (!num_to_init) 3221 break; 3222 3223 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3224 if (!pg->next) 3225 goto free_pages; 3226 3227 pg = pg->next; 3228 } 3229 3230 return start_pg; 3231 3232 free_pages: 3233 pg = start_pg; 3234 while (pg) { 3235 if (pg->records) { 3236 free_pages((unsigned long)pg->records, pg->order); 3237 ftrace_number_of_pages -= 1 << pg->order; 3238 } 3239 start_pg = pg->next; 3240 kfree(pg); 3241 pg = start_pg; 3242 ftrace_number_of_groups--; 3243 } 3244 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3245 return NULL; 3246 } 3247 3248 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3249 3250 struct ftrace_iterator { 3251 loff_t pos; 3252 loff_t func_pos; 3253 loff_t mod_pos; 3254 struct ftrace_page *pg; 3255 struct dyn_ftrace *func; 3256 struct ftrace_func_probe *probe; 3257 struct ftrace_func_entry *probe_entry; 3258 struct trace_parser parser; 3259 struct ftrace_hash *hash; 3260 struct ftrace_ops *ops; 3261 struct trace_array *tr; 3262 struct list_head *mod_list; 3263 int pidx; 3264 int idx; 3265 unsigned flags; 3266 }; 3267 3268 static void * 3269 t_probe_next(struct seq_file *m, loff_t *pos) 3270 { 3271 struct ftrace_iterator *iter = m->private; 3272 struct trace_array *tr = iter->ops->private; 3273 struct list_head *func_probes; 3274 struct ftrace_hash *hash; 3275 struct list_head *next; 3276 struct hlist_node *hnd = NULL; 3277 struct hlist_head *hhd; 3278 int size; 3279 3280 (*pos)++; 3281 iter->pos = *pos; 3282 3283 if (!tr) 3284 return NULL; 3285 3286 func_probes = &tr->func_probes; 3287 if (list_empty(func_probes)) 3288 return NULL; 3289 3290 if (!iter->probe) { 3291 next = func_probes->next; 3292 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3293 } 3294 3295 if (iter->probe_entry) 3296 hnd = &iter->probe_entry->hlist; 3297 3298 hash = iter->probe->ops.func_hash->filter_hash; 3299 3300 /* 3301 * A probe being registered may temporarily have an empty hash 3302 * and it's at the end of the func_probes list. 3303 */ 3304 if (!hash || hash == EMPTY_HASH) 3305 return NULL; 3306 3307 size = 1 << hash->size_bits; 3308 3309 retry: 3310 if (iter->pidx >= size) { 3311 if (iter->probe->list.next == func_probes) 3312 return NULL; 3313 next = iter->probe->list.next; 3314 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3315 hash = iter->probe->ops.func_hash->filter_hash; 3316 size = 1 << hash->size_bits; 3317 iter->pidx = 0; 3318 } 3319 3320 hhd = &hash->buckets[iter->pidx]; 3321 3322 if (hlist_empty(hhd)) { 3323 iter->pidx++; 3324 hnd = NULL; 3325 goto retry; 3326 } 3327 3328 if (!hnd) 3329 hnd = hhd->first; 3330 else { 3331 hnd = hnd->next; 3332 if (!hnd) { 3333 iter->pidx++; 3334 goto retry; 3335 } 3336 } 3337 3338 if (WARN_ON_ONCE(!hnd)) 3339 return NULL; 3340 3341 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3342 3343 return iter; 3344 } 3345 3346 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3347 { 3348 struct ftrace_iterator *iter = m->private; 3349 void *p = NULL; 3350 loff_t l; 3351 3352 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3353 return NULL; 3354 3355 if (iter->mod_pos > *pos) 3356 return NULL; 3357 3358 iter->probe = NULL; 3359 iter->probe_entry = NULL; 3360 iter->pidx = 0; 3361 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3362 p = t_probe_next(m, &l); 3363 if (!p) 3364 break; 3365 } 3366 if (!p) 3367 return NULL; 3368 3369 /* Only set this if we have an item */ 3370 iter->flags |= FTRACE_ITER_PROBE; 3371 3372 return iter; 3373 } 3374 3375 static int 3376 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3377 { 3378 struct ftrace_func_entry *probe_entry; 3379 struct ftrace_probe_ops *probe_ops; 3380 struct ftrace_func_probe *probe; 3381 3382 probe = iter->probe; 3383 probe_entry = iter->probe_entry; 3384 3385 if (WARN_ON_ONCE(!probe || !probe_entry)) 3386 return -EIO; 3387 3388 probe_ops = probe->probe_ops; 3389 3390 if (probe_ops->print) 3391 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3392 3393 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3394 (void *)probe_ops->func); 3395 3396 return 0; 3397 } 3398 3399 static void * 3400 t_mod_next(struct seq_file *m, loff_t *pos) 3401 { 3402 struct ftrace_iterator *iter = m->private; 3403 struct trace_array *tr = iter->tr; 3404 3405 (*pos)++; 3406 iter->pos = *pos; 3407 3408 iter->mod_list = iter->mod_list->next; 3409 3410 if (iter->mod_list == &tr->mod_trace || 3411 iter->mod_list == &tr->mod_notrace) { 3412 iter->flags &= ~FTRACE_ITER_MOD; 3413 return NULL; 3414 } 3415 3416 iter->mod_pos = *pos; 3417 3418 return iter; 3419 } 3420 3421 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3422 { 3423 struct ftrace_iterator *iter = m->private; 3424 void *p = NULL; 3425 loff_t l; 3426 3427 if (iter->func_pos > *pos) 3428 return NULL; 3429 3430 iter->mod_pos = iter->func_pos; 3431 3432 /* probes are only available if tr is set */ 3433 if (!iter->tr) 3434 return NULL; 3435 3436 for (l = 0; l <= (*pos - iter->func_pos); ) { 3437 p = t_mod_next(m, &l); 3438 if (!p) 3439 break; 3440 } 3441 if (!p) { 3442 iter->flags &= ~FTRACE_ITER_MOD; 3443 return t_probe_start(m, pos); 3444 } 3445 3446 /* Only set this if we have an item */ 3447 iter->flags |= FTRACE_ITER_MOD; 3448 3449 return iter; 3450 } 3451 3452 static int 3453 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3454 { 3455 struct ftrace_mod_load *ftrace_mod; 3456 struct trace_array *tr = iter->tr; 3457 3458 if (WARN_ON_ONCE(!iter->mod_list) || 3459 iter->mod_list == &tr->mod_trace || 3460 iter->mod_list == &tr->mod_notrace) 3461 return -EIO; 3462 3463 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3464 3465 if (ftrace_mod->func) 3466 seq_printf(m, "%s", ftrace_mod->func); 3467 else 3468 seq_putc(m, '*'); 3469 3470 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3471 3472 return 0; 3473 } 3474 3475 static void * 3476 t_func_next(struct seq_file *m, loff_t *pos) 3477 { 3478 struct ftrace_iterator *iter = m->private; 3479 struct dyn_ftrace *rec = NULL; 3480 3481 (*pos)++; 3482 3483 retry: 3484 if (iter->idx >= iter->pg->index) { 3485 if (iter->pg->next) { 3486 iter->pg = iter->pg->next; 3487 iter->idx = 0; 3488 goto retry; 3489 } 3490 } else { 3491 rec = &iter->pg->records[iter->idx++]; 3492 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3493 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3494 3495 ((iter->flags & FTRACE_ITER_ENABLED) && 3496 !(rec->flags & FTRACE_FL_ENABLED))) { 3497 3498 rec = NULL; 3499 goto retry; 3500 } 3501 } 3502 3503 if (!rec) 3504 return NULL; 3505 3506 iter->pos = iter->func_pos = *pos; 3507 iter->func = rec; 3508 3509 return iter; 3510 } 3511 3512 static void * 3513 t_next(struct seq_file *m, void *v, loff_t *pos) 3514 { 3515 struct ftrace_iterator *iter = m->private; 3516 loff_t l = *pos; /* t_probe_start() must use original pos */ 3517 void *ret; 3518 3519 if (unlikely(ftrace_disabled)) 3520 return NULL; 3521 3522 if (iter->flags & FTRACE_ITER_PROBE) 3523 return t_probe_next(m, pos); 3524 3525 if (iter->flags & FTRACE_ITER_MOD) 3526 return t_mod_next(m, pos); 3527 3528 if (iter->flags & FTRACE_ITER_PRINTALL) { 3529 /* next must increment pos, and t_probe_start does not */ 3530 (*pos)++; 3531 return t_mod_start(m, &l); 3532 } 3533 3534 ret = t_func_next(m, pos); 3535 3536 if (!ret) 3537 return t_mod_start(m, &l); 3538 3539 return ret; 3540 } 3541 3542 static void reset_iter_read(struct ftrace_iterator *iter) 3543 { 3544 iter->pos = 0; 3545 iter->func_pos = 0; 3546 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3547 } 3548 3549 static void *t_start(struct seq_file *m, loff_t *pos) 3550 { 3551 struct ftrace_iterator *iter = m->private; 3552 void *p = NULL; 3553 loff_t l; 3554 3555 mutex_lock(&ftrace_lock); 3556 3557 if (unlikely(ftrace_disabled)) 3558 return NULL; 3559 3560 /* 3561 * If an lseek was done, then reset and start from beginning. 3562 */ 3563 if (*pos < iter->pos) 3564 reset_iter_read(iter); 3565 3566 /* 3567 * For set_ftrace_filter reading, if we have the filter 3568 * off, we can short cut and just print out that all 3569 * functions are enabled. 3570 */ 3571 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3572 ftrace_hash_empty(iter->hash)) { 3573 iter->func_pos = 1; /* Account for the message */ 3574 if (*pos > 0) 3575 return t_mod_start(m, pos); 3576 iter->flags |= FTRACE_ITER_PRINTALL; 3577 /* reset in case of seek/pread */ 3578 iter->flags &= ~FTRACE_ITER_PROBE; 3579 return iter; 3580 } 3581 3582 if (iter->flags & FTRACE_ITER_MOD) 3583 return t_mod_start(m, pos); 3584 3585 /* 3586 * Unfortunately, we need to restart at ftrace_pages_start 3587 * every time we let go of the ftrace_mutex. This is because 3588 * those pointers can change without the lock. 3589 */ 3590 iter->pg = ftrace_pages_start; 3591 iter->idx = 0; 3592 for (l = 0; l <= *pos; ) { 3593 p = t_func_next(m, &l); 3594 if (!p) 3595 break; 3596 } 3597 3598 if (!p) 3599 return t_mod_start(m, pos); 3600 3601 return iter; 3602 } 3603 3604 static void t_stop(struct seq_file *m, void *p) 3605 { 3606 mutex_unlock(&ftrace_lock); 3607 } 3608 3609 void * __weak 3610 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3611 { 3612 return NULL; 3613 } 3614 3615 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3616 struct dyn_ftrace *rec) 3617 { 3618 void *ptr; 3619 3620 ptr = arch_ftrace_trampoline_func(ops, rec); 3621 if (ptr) 3622 seq_printf(m, " ->%pS", ptr); 3623 } 3624 3625 #ifdef FTRACE_MCOUNT_MAX_OFFSET 3626 /* 3627 * Weak functions can still have an mcount/fentry that is saved in 3628 * the __mcount_loc section. These can be detected by having a 3629 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 3630 * symbol found by kallsyms is not the function that the mcount/fentry 3631 * is part of. The offset is much greater in these cases. 3632 * 3633 * Test the record to make sure that the ip points to a valid kallsyms 3634 * and if not, mark it disabled. 3635 */ 3636 static int test_for_valid_rec(struct dyn_ftrace *rec) 3637 { 3638 char str[KSYM_SYMBOL_LEN]; 3639 unsigned long offset; 3640 const char *ret; 3641 3642 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 3643 3644 /* Weak functions can cause invalid addresses */ 3645 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3646 rec->flags |= FTRACE_FL_DISABLED; 3647 return 0; 3648 } 3649 return 1; 3650 } 3651 3652 static struct workqueue_struct *ftrace_check_wq __initdata; 3653 static struct work_struct ftrace_check_work __initdata; 3654 3655 /* 3656 * Scan all the mcount/fentry entries to make sure they are valid. 3657 */ 3658 static __init void ftrace_check_work_func(struct work_struct *work) 3659 { 3660 struct ftrace_page *pg; 3661 struct dyn_ftrace *rec; 3662 3663 mutex_lock(&ftrace_lock); 3664 do_for_each_ftrace_rec(pg, rec) { 3665 test_for_valid_rec(rec); 3666 } while_for_each_ftrace_rec(); 3667 mutex_unlock(&ftrace_lock); 3668 } 3669 3670 static int __init ftrace_check_for_weak_functions(void) 3671 { 3672 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 3673 3674 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 3675 3676 queue_work(ftrace_check_wq, &ftrace_check_work); 3677 return 0; 3678 } 3679 3680 static int __init ftrace_check_sync(void) 3681 { 3682 /* Make sure the ftrace_check updates are finished */ 3683 if (ftrace_check_wq) 3684 destroy_workqueue(ftrace_check_wq); 3685 return 0; 3686 } 3687 3688 late_initcall_sync(ftrace_check_sync); 3689 subsys_initcall(ftrace_check_for_weak_functions); 3690 3691 static int print_rec(struct seq_file *m, unsigned long ip) 3692 { 3693 unsigned long offset; 3694 char str[KSYM_SYMBOL_LEN]; 3695 char *modname; 3696 const char *ret; 3697 3698 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 3699 /* Weak functions can cause invalid addresses */ 3700 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3701 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 3702 FTRACE_INVALID_FUNCTION, offset); 3703 ret = NULL; 3704 } 3705 3706 seq_puts(m, str); 3707 if (modname) 3708 seq_printf(m, " [%s]", modname); 3709 return ret == NULL ? -1 : 0; 3710 } 3711 #else 3712 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 3713 { 3714 return 1; 3715 } 3716 3717 static inline int print_rec(struct seq_file *m, unsigned long ip) 3718 { 3719 seq_printf(m, "%ps", (void *)ip); 3720 return 0; 3721 } 3722 #endif 3723 3724 static int t_show(struct seq_file *m, void *v) 3725 { 3726 struct ftrace_iterator *iter = m->private; 3727 struct dyn_ftrace *rec; 3728 3729 if (iter->flags & FTRACE_ITER_PROBE) 3730 return t_probe_show(m, iter); 3731 3732 if (iter->flags & FTRACE_ITER_MOD) 3733 return t_mod_show(m, iter); 3734 3735 if (iter->flags & FTRACE_ITER_PRINTALL) { 3736 if (iter->flags & FTRACE_ITER_NOTRACE) 3737 seq_puts(m, "#### no functions disabled ####\n"); 3738 else 3739 seq_puts(m, "#### all functions enabled ####\n"); 3740 return 0; 3741 } 3742 3743 rec = iter->func; 3744 3745 if (!rec) 3746 return 0; 3747 3748 if (print_rec(m, rec->ip)) { 3749 /* This should only happen when a rec is disabled */ 3750 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 3751 seq_putc(m, '\n'); 3752 return 0; 3753 } 3754 3755 if (iter->flags & FTRACE_ITER_ENABLED) { 3756 struct ftrace_ops *ops; 3757 3758 seq_printf(m, " (%ld)%s%s%s", 3759 ftrace_rec_count(rec), 3760 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3761 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3762 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3763 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3764 ops = ftrace_find_tramp_ops_any(rec); 3765 if (ops) { 3766 do { 3767 seq_printf(m, "\ttramp: %pS (%pS)", 3768 (void *)ops->trampoline, 3769 (void *)ops->func); 3770 add_trampoline_func(m, ops, rec); 3771 ops = ftrace_find_tramp_ops_next(rec, ops); 3772 } while (ops); 3773 } else 3774 seq_puts(m, "\ttramp: ERROR!"); 3775 } else { 3776 add_trampoline_func(m, NULL, rec); 3777 } 3778 if (rec->flags & FTRACE_FL_DIRECT) { 3779 unsigned long direct; 3780 3781 direct = ftrace_find_rec_direct(rec->ip); 3782 if (direct) 3783 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3784 } 3785 } 3786 3787 seq_putc(m, '\n'); 3788 3789 return 0; 3790 } 3791 3792 static const struct seq_operations show_ftrace_seq_ops = { 3793 .start = t_start, 3794 .next = t_next, 3795 .stop = t_stop, 3796 .show = t_show, 3797 }; 3798 3799 static int 3800 ftrace_avail_open(struct inode *inode, struct file *file) 3801 { 3802 struct ftrace_iterator *iter; 3803 int ret; 3804 3805 ret = security_locked_down(LOCKDOWN_TRACEFS); 3806 if (ret) 3807 return ret; 3808 3809 if (unlikely(ftrace_disabled)) 3810 return -ENODEV; 3811 3812 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3813 if (!iter) 3814 return -ENOMEM; 3815 3816 iter->pg = ftrace_pages_start; 3817 iter->ops = &global_ops; 3818 3819 return 0; 3820 } 3821 3822 static int 3823 ftrace_enabled_open(struct inode *inode, struct file *file) 3824 { 3825 struct ftrace_iterator *iter; 3826 3827 /* 3828 * This shows us what functions are currently being 3829 * traced and by what. Not sure if we want lockdown 3830 * to hide such critical information for an admin. 3831 * Although, perhaps it can show information we don't 3832 * want people to see, but if something is tracing 3833 * something, we probably want to know about it. 3834 */ 3835 3836 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3837 if (!iter) 3838 return -ENOMEM; 3839 3840 iter->pg = ftrace_pages_start; 3841 iter->flags = FTRACE_ITER_ENABLED; 3842 iter->ops = &global_ops; 3843 3844 return 0; 3845 } 3846 3847 /** 3848 * ftrace_regex_open - initialize function tracer filter files 3849 * @ops: The ftrace_ops that hold the hash filters 3850 * @flag: The type of filter to process 3851 * @inode: The inode, usually passed in to your open routine 3852 * @file: The file, usually passed in to your open routine 3853 * 3854 * ftrace_regex_open() initializes the filter files for the 3855 * @ops. Depending on @flag it may process the filter hash or 3856 * the notrace hash of @ops. With this called from the open 3857 * routine, you can use ftrace_filter_write() for the write 3858 * routine if @flag has FTRACE_ITER_FILTER set, or 3859 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3860 * tracing_lseek() should be used as the lseek routine, and 3861 * release must call ftrace_regex_release(). 3862 */ 3863 int 3864 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3865 struct inode *inode, struct file *file) 3866 { 3867 struct ftrace_iterator *iter; 3868 struct ftrace_hash *hash; 3869 struct list_head *mod_head; 3870 struct trace_array *tr = ops->private; 3871 int ret = -ENOMEM; 3872 3873 ftrace_ops_init(ops); 3874 3875 if (unlikely(ftrace_disabled)) 3876 return -ENODEV; 3877 3878 if (tracing_check_open_get_tr(tr)) 3879 return -ENODEV; 3880 3881 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3882 if (!iter) 3883 goto out; 3884 3885 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3886 goto out; 3887 3888 iter->ops = ops; 3889 iter->flags = flag; 3890 iter->tr = tr; 3891 3892 mutex_lock(&ops->func_hash->regex_lock); 3893 3894 if (flag & FTRACE_ITER_NOTRACE) { 3895 hash = ops->func_hash->notrace_hash; 3896 mod_head = tr ? &tr->mod_notrace : NULL; 3897 } else { 3898 hash = ops->func_hash->filter_hash; 3899 mod_head = tr ? &tr->mod_trace : NULL; 3900 } 3901 3902 iter->mod_list = mod_head; 3903 3904 if (file->f_mode & FMODE_WRITE) { 3905 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3906 3907 if (file->f_flags & O_TRUNC) { 3908 iter->hash = alloc_ftrace_hash(size_bits); 3909 clear_ftrace_mod_list(mod_head); 3910 } else { 3911 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3912 } 3913 3914 if (!iter->hash) { 3915 trace_parser_put(&iter->parser); 3916 goto out_unlock; 3917 } 3918 } else 3919 iter->hash = hash; 3920 3921 ret = 0; 3922 3923 if (file->f_mode & FMODE_READ) { 3924 iter->pg = ftrace_pages_start; 3925 3926 ret = seq_open(file, &show_ftrace_seq_ops); 3927 if (!ret) { 3928 struct seq_file *m = file->private_data; 3929 m->private = iter; 3930 } else { 3931 /* Failed */ 3932 free_ftrace_hash(iter->hash); 3933 trace_parser_put(&iter->parser); 3934 } 3935 } else 3936 file->private_data = iter; 3937 3938 out_unlock: 3939 mutex_unlock(&ops->func_hash->regex_lock); 3940 3941 out: 3942 if (ret) { 3943 kfree(iter); 3944 if (tr) 3945 trace_array_put(tr); 3946 } 3947 3948 return ret; 3949 } 3950 3951 static int 3952 ftrace_filter_open(struct inode *inode, struct file *file) 3953 { 3954 struct ftrace_ops *ops = inode->i_private; 3955 3956 /* Checks for tracefs lockdown */ 3957 return ftrace_regex_open(ops, 3958 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3959 inode, file); 3960 } 3961 3962 static int 3963 ftrace_notrace_open(struct inode *inode, struct file *file) 3964 { 3965 struct ftrace_ops *ops = inode->i_private; 3966 3967 /* Checks for tracefs lockdown */ 3968 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3969 inode, file); 3970 } 3971 3972 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3973 struct ftrace_glob { 3974 char *search; 3975 unsigned len; 3976 int type; 3977 }; 3978 3979 /* 3980 * If symbols in an architecture don't correspond exactly to the user-visible 3981 * name of what they represent, it is possible to define this function to 3982 * perform the necessary adjustments. 3983 */ 3984 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3985 { 3986 return str; 3987 } 3988 3989 static int ftrace_match(char *str, struct ftrace_glob *g) 3990 { 3991 int matched = 0; 3992 int slen; 3993 3994 str = arch_ftrace_match_adjust(str, g->search); 3995 3996 switch (g->type) { 3997 case MATCH_FULL: 3998 if (strcmp(str, g->search) == 0) 3999 matched = 1; 4000 break; 4001 case MATCH_FRONT_ONLY: 4002 if (strncmp(str, g->search, g->len) == 0) 4003 matched = 1; 4004 break; 4005 case MATCH_MIDDLE_ONLY: 4006 if (strstr(str, g->search)) 4007 matched = 1; 4008 break; 4009 case MATCH_END_ONLY: 4010 slen = strlen(str); 4011 if (slen >= g->len && 4012 memcmp(str + slen - g->len, g->search, g->len) == 0) 4013 matched = 1; 4014 break; 4015 case MATCH_GLOB: 4016 if (glob_match(g->search, str)) 4017 matched = 1; 4018 break; 4019 } 4020 4021 return matched; 4022 } 4023 4024 static int 4025 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4026 { 4027 struct ftrace_func_entry *entry; 4028 int ret = 0; 4029 4030 entry = ftrace_lookup_ip(hash, rec->ip); 4031 if (clear_filter) { 4032 /* Do nothing if it doesn't exist */ 4033 if (!entry) 4034 return 0; 4035 4036 free_hash_entry(hash, entry); 4037 } else { 4038 /* Do nothing if it exists */ 4039 if (entry) 4040 return 0; 4041 4042 ret = add_hash_entry(hash, rec->ip); 4043 } 4044 return ret; 4045 } 4046 4047 static int 4048 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4049 int clear_filter) 4050 { 4051 long index = simple_strtoul(func_g->search, NULL, 0); 4052 struct ftrace_page *pg; 4053 struct dyn_ftrace *rec; 4054 4055 /* The index starts at 1 */ 4056 if (--index < 0) 4057 return 0; 4058 4059 do_for_each_ftrace_rec(pg, rec) { 4060 if (pg->index <= index) { 4061 index -= pg->index; 4062 /* this is a double loop, break goes to the next page */ 4063 break; 4064 } 4065 rec = &pg->records[index]; 4066 enter_record(hash, rec, clear_filter); 4067 return 1; 4068 } while_for_each_ftrace_rec(); 4069 return 0; 4070 } 4071 4072 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4073 static int lookup_ip(unsigned long ip, char **modname, char *str) 4074 { 4075 unsigned long offset; 4076 4077 kallsyms_lookup(ip, NULL, &offset, modname, str); 4078 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4079 return -1; 4080 return 0; 4081 } 4082 #else 4083 static int lookup_ip(unsigned long ip, char **modname, char *str) 4084 { 4085 kallsyms_lookup(ip, NULL, NULL, modname, str); 4086 return 0; 4087 } 4088 #endif 4089 4090 static int 4091 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4092 struct ftrace_glob *mod_g, int exclude_mod) 4093 { 4094 char str[KSYM_SYMBOL_LEN]; 4095 char *modname; 4096 4097 if (lookup_ip(rec->ip, &modname, str)) { 4098 /* This should only happen when a rec is disabled */ 4099 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4100 !(rec->flags & FTRACE_FL_DISABLED)); 4101 return 0; 4102 } 4103 4104 if (mod_g) { 4105 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4106 4107 /* blank module name to match all modules */ 4108 if (!mod_g->len) { 4109 /* blank module globbing: modname xor exclude_mod */ 4110 if (!exclude_mod != !modname) 4111 goto func_match; 4112 return 0; 4113 } 4114 4115 /* 4116 * exclude_mod is set to trace everything but the given 4117 * module. If it is set and the module matches, then 4118 * return 0. If it is not set, and the module doesn't match 4119 * also return 0. Otherwise, check the function to see if 4120 * that matches. 4121 */ 4122 if (!mod_matches == !exclude_mod) 4123 return 0; 4124 func_match: 4125 /* blank search means to match all funcs in the mod */ 4126 if (!func_g->len) 4127 return 1; 4128 } 4129 4130 return ftrace_match(str, func_g); 4131 } 4132 4133 static int 4134 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4135 { 4136 struct ftrace_page *pg; 4137 struct dyn_ftrace *rec; 4138 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4139 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4140 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4141 int exclude_mod = 0; 4142 int found = 0; 4143 int ret; 4144 int clear_filter = 0; 4145 4146 if (func) { 4147 func_g.type = filter_parse_regex(func, len, &func_g.search, 4148 &clear_filter); 4149 func_g.len = strlen(func_g.search); 4150 } 4151 4152 if (mod) { 4153 mod_g.type = filter_parse_regex(mod, strlen(mod), 4154 &mod_g.search, &exclude_mod); 4155 mod_g.len = strlen(mod_g.search); 4156 } 4157 4158 mutex_lock(&ftrace_lock); 4159 4160 if (unlikely(ftrace_disabled)) 4161 goto out_unlock; 4162 4163 if (func_g.type == MATCH_INDEX) { 4164 found = add_rec_by_index(hash, &func_g, clear_filter); 4165 goto out_unlock; 4166 } 4167 4168 do_for_each_ftrace_rec(pg, rec) { 4169 4170 if (rec->flags & FTRACE_FL_DISABLED) 4171 continue; 4172 4173 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4174 ret = enter_record(hash, rec, clear_filter); 4175 if (ret < 0) { 4176 found = ret; 4177 goto out_unlock; 4178 } 4179 found = 1; 4180 } 4181 } while_for_each_ftrace_rec(); 4182 out_unlock: 4183 mutex_unlock(&ftrace_lock); 4184 4185 return found; 4186 } 4187 4188 static int 4189 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4190 { 4191 return match_records(hash, buff, len, NULL); 4192 } 4193 4194 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4195 struct ftrace_ops_hash *old_hash) 4196 { 4197 struct ftrace_ops *op; 4198 4199 if (!ftrace_enabled) 4200 return; 4201 4202 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4203 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4204 return; 4205 } 4206 4207 /* 4208 * If this is the shared global_ops filter, then we need to 4209 * check if there is another ops that shares it, is enabled. 4210 * If so, we still need to run the modify code. 4211 */ 4212 if (ops->func_hash != &global_ops.local_hash) 4213 return; 4214 4215 do_for_each_ftrace_op(op, ftrace_ops_list) { 4216 if (op->func_hash == &global_ops.local_hash && 4217 op->flags & FTRACE_OPS_FL_ENABLED) { 4218 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4219 /* Only need to do this once */ 4220 return; 4221 } 4222 } while_for_each_ftrace_op(op); 4223 } 4224 4225 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4226 struct ftrace_hash **orig_hash, 4227 struct ftrace_hash *hash, 4228 int enable) 4229 { 4230 struct ftrace_ops_hash old_hash_ops; 4231 struct ftrace_hash *old_hash; 4232 int ret; 4233 4234 old_hash = *orig_hash; 4235 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4236 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4237 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4238 if (!ret) { 4239 ftrace_ops_update_code(ops, &old_hash_ops); 4240 free_ftrace_hash_rcu(old_hash); 4241 } 4242 return ret; 4243 } 4244 4245 static bool module_exists(const char *module) 4246 { 4247 /* All modules have the symbol __this_module */ 4248 static const char this_mod[] = "__this_module"; 4249 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4250 unsigned long val; 4251 int n; 4252 4253 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4254 4255 if (n > sizeof(modname) - 1) 4256 return false; 4257 4258 val = module_kallsyms_lookup_name(modname); 4259 return val != 0; 4260 } 4261 4262 static int cache_mod(struct trace_array *tr, 4263 const char *func, char *module, int enable) 4264 { 4265 struct ftrace_mod_load *ftrace_mod, *n; 4266 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4267 int ret; 4268 4269 mutex_lock(&ftrace_lock); 4270 4271 /* We do not cache inverse filters */ 4272 if (func[0] == '!') { 4273 func++; 4274 ret = -EINVAL; 4275 4276 /* Look to remove this hash */ 4277 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4278 if (strcmp(ftrace_mod->module, module) != 0) 4279 continue; 4280 4281 /* no func matches all */ 4282 if (strcmp(func, "*") == 0 || 4283 (ftrace_mod->func && 4284 strcmp(ftrace_mod->func, func) == 0)) { 4285 ret = 0; 4286 free_ftrace_mod(ftrace_mod); 4287 continue; 4288 } 4289 } 4290 goto out; 4291 } 4292 4293 ret = -EINVAL; 4294 /* We only care about modules that have not been loaded yet */ 4295 if (module_exists(module)) 4296 goto out; 4297 4298 /* Save this string off, and execute it when the module is loaded */ 4299 ret = ftrace_add_mod(tr, func, module, enable); 4300 out: 4301 mutex_unlock(&ftrace_lock); 4302 4303 return ret; 4304 } 4305 4306 static int 4307 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4308 int reset, int enable); 4309 4310 #ifdef CONFIG_MODULES 4311 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4312 char *mod, bool enable) 4313 { 4314 struct ftrace_mod_load *ftrace_mod, *n; 4315 struct ftrace_hash **orig_hash, *new_hash; 4316 LIST_HEAD(process_mods); 4317 char *func; 4318 4319 mutex_lock(&ops->func_hash->regex_lock); 4320 4321 if (enable) 4322 orig_hash = &ops->func_hash->filter_hash; 4323 else 4324 orig_hash = &ops->func_hash->notrace_hash; 4325 4326 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4327 *orig_hash); 4328 if (!new_hash) 4329 goto out; /* warn? */ 4330 4331 mutex_lock(&ftrace_lock); 4332 4333 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4334 4335 if (strcmp(ftrace_mod->module, mod) != 0) 4336 continue; 4337 4338 if (ftrace_mod->func) 4339 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4340 else 4341 func = kstrdup("*", GFP_KERNEL); 4342 4343 if (!func) /* warn? */ 4344 continue; 4345 4346 list_move(&ftrace_mod->list, &process_mods); 4347 4348 /* Use the newly allocated func, as it may be "*" */ 4349 kfree(ftrace_mod->func); 4350 ftrace_mod->func = func; 4351 } 4352 4353 mutex_unlock(&ftrace_lock); 4354 4355 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4356 4357 func = ftrace_mod->func; 4358 4359 /* Grabs ftrace_lock, which is why we have this extra step */ 4360 match_records(new_hash, func, strlen(func), mod); 4361 free_ftrace_mod(ftrace_mod); 4362 } 4363 4364 if (enable && list_empty(head)) 4365 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4366 4367 mutex_lock(&ftrace_lock); 4368 4369 ftrace_hash_move_and_update_ops(ops, orig_hash, 4370 new_hash, enable); 4371 mutex_unlock(&ftrace_lock); 4372 4373 out: 4374 mutex_unlock(&ops->func_hash->regex_lock); 4375 4376 free_ftrace_hash(new_hash); 4377 } 4378 4379 static void process_cached_mods(const char *mod_name) 4380 { 4381 struct trace_array *tr; 4382 char *mod; 4383 4384 mod = kstrdup(mod_name, GFP_KERNEL); 4385 if (!mod) 4386 return; 4387 4388 mutex_lock(&trace_types_lock); 4389 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4390 if (!list_empty(&tr->mod_trace)) 4391 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4392 if (!list_empty(&tr->mod_notrace)) 4393 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4394 } 4395 mutex_unlock(&trace_types_lock); 4396 4397 kfree(mod); 4398 } 4399 #endif 4400 4401 /* 4402 * We register the module command as a template to show others how 4403 * to register the a command as well. 4404 */ 4405 4406 static int 4407 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4408 char *func_orig, char *cmd, char *module, int enable) 4409 { 4410 char *func; 4411 int ret; 4412 4413 /* match_records() modifies func, and we need the original */ 4414 func = kstrdup(func_orig, GFP_KERNEL); 4415 if (!func) 4416 return -ENOMEM; 4417 4418 /* 4419 * cmd == 'mod' because we only registered this func 4420 * for the 'mod' ftrace_func_command. 4421 * But if you register one func with multiple commands, 4422 * you can tell which command was used by the cmd 4423 * parameter. 4424 */ 4425 ret = match_records(hash, func, strlen(func), module); 4426 kfree(func); 4427 4428 if (!ret) 4429 return cache_mod(tr, func_orig, module, enable); 4430 if (ret < 0) 4431 return ret; 4432 return 0; 4433 } 4434 4435 static struct ftrace_func_command ftrace_mod_cmd = { 4436 .name = "mod", 4437 .func = ftrace_mod_callback, 4438 }; 4439 4440 static int __init ftrace_mod_cmd_init(void) 4441 { 4442 return register_ftrace_command(&ftrace_mod_cmd); 4443 } 4444 core_initcall(ftrace_mod_cmd_init); 4445 4446 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4447 struct ftrace_ops *op, struct ftrace_regs *fregs) 4448 { 4449 struct ftrace_probe_ops *probe_ops; 4450 struct ftrace_func_probe *probe; 4451 4452 probe = container_of(op, struct ftrace_func_probe, ops); 4453 probe_ops = probe->probe_ops; 4454 4455 /* 4456 * Disable preemption for these calls to prevent a RCU grace 4457 * period. This syncs the hash iteration and freeing of items 4458 * on the hash. rcu_read_lock is too dangerous here. 4459 */ 4460 preempt_disable_notrace(); 4461 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4462 preempt_enable_notrace(); 4463 } 4464 4465 struct ftrace_func_map { 4466 struct ftrace_func_entry entry; 4467 void *data; 4468 }; 4469 4470 struct ftrace_func_mapper { 4471 struct ftrace_hash hash; 4472 }; 4473 4474 /** 4475 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4476 * 4477 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4478 */ 4479 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4480 { 4481 struct ftrace_hash *hash; 4482 4483 /* 4484 * The mapper is simply a ftrace_hash, but since the entries 4485 * in the hash are not ftrace_func_entry type, we define it 4486 * as a separate structure. 4487 */ 4488 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4489 return (struct ftrace_func_mapper *)hash; 4490 } 4491 4492 /** 4493 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4494 * @mapper: The mapper that has the ip maps 4495 * @ip: the instruction pointer to find the data for 4496 * 4497 * Returns the data mapped to @ip if found otherwise NULL. The return 4498 * is actually the address of the mapper data pointer. The address is 4499 * returned for use cases where the data is no bigger than a long, and 4500 * the user can use the data pointer as its data instead of having to 4501 * allocate more memory for the reference. 4502 */ 4503 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4504 unsigned long ip) 4505 { 4506 struct ftrace_func_entry *entry; 4507 struct ftrace_func_map *map; 4508 4509 entry = ftrace_lookup_ip(&mapper->hash, ip); 4510 if (!entry) 4511 return NULL; 4512 4513 map = (struct ftrace_func_map *)entry; 4514 return &map->data; 4515 } 4516 4517 /** 4518 * ftrace_func_mapper_add_ip - Map some data to an ip 4519 * @mapper: The mapper that has the ip maps 4520 * @ip: The instruction pointer address to map @data to 4521 * @data: The data to map to @ip 4522 * 4523 * Returns 0 on success otherwise an error. 4524 */ 4525 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4526 unsigned long ip, void *data) 4527 { 4528 struct ftrace_func_entry *entry; 4529 struct ftrace_func_map *map; 4530 4531 entry = ftrace_lookup_ip(&mapper->hash, ip); 4532 if (entry) 4533 return -EBUSY; 4534 4535 map = kmalloc(sizeof(*map), GFP_KERNEL); 4536 if (!map) 4537 return -ENOMEM; 4538 4539 map->entry.ip = ip; 4540 map->data = data; 4541 4542 __add_hash_entry(&mapper->hash, &map->entry); 4543 4544 return 0; 4545 } 4546 4547 /** 4548 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4549 * @mapper: The mapper that has the ip maps 4550 * @ip: The instruction pointer address to remove the data from 4551 * 4552 * Returns the data if it is found, otherwise NULL. 4553 * Note, if the data pointer is used as the data itself, (see 4554 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4555 * if the data pointer was set to zero. 4556 */ 4557 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4558 unsigned long ip) 4559 { 4560 struct ftrace_func_entry *entry; 4561 struct ftrace_func_map *map; 4562 void *data; 4563 4564 entry = ftrace_lookup_ip(&mapper->hash, ip); 4565 if (!entry) 4566 return NULL; 4567 4568 map = (struct ftrace_func_map *)entry; 4569 data = map->data; 4570 4571 remove_hash_entry(&mapper->hash, entry); 4572 kfree(entry); 4573 4574 return data; 4575 } 4576 4577 /** 4578 * free_ftrace_func_mapper - free a mapping of ips and data 4579 * @mapper: The mapper that has the ip maps 4580 * @free_func: A function to be called on each data item. 4581 * 4582 * This is used to free the function mapper. The @free_func is optional 4583 * and can be used if the data needs to be freed as well. 4584 */ 4585 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4586 ftrace_mapper_func free_func) 4587 { 4588 struct ftrace_func_entry *entry; 4589 struct ftrace_func_map *map; 4590 struct hlist_head *hhd; 4591 int size, i; 4592 4593 if (!mapper) 4594 return; 4595 4596 if (free_func && mapper->hash.count) { 4597 size = 1 << mapper->hash.size_bits; 4598 for (i = 0; i < size; i++) { 4599 hhd = &mapper->hash.buckets[i]; 4600 hlist_for_each_entry(entry, hhd, hlist) { 4601 map = (struct ftrace_func_map *)entry; 4602 free_func(map); 4603 } 4604 } 4605 } 4606 free_ftrace_hash(&mapper->hash); 4607 } 4608 4609 static void release_probe(struct ftrace_func_probe *probe) 4610 { 4611 struct ftrace_probe_ops *probe_ops; 4612 4613 mutex_lock(&ftrace_lock); 4614 4615 WARN_ON(probe->ref <= 0); 4616 4617 /* Subtract the ref that was used to protect this instance */ 4618 probe->ref--; 4619 4620 if (!probe->ref) { 4621 probe_ops = probe->probe_ops; 4622 /* 4623 * Sending zero as ip tells probe_ops to free 4624 * the probe->data itself 4625 */ 4626 if (probe_ops->free) 4627 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4628 list_del(&probe->list); 4629 kfree(probe); 4630 } 4631 mutex_unlock(&ftrace_lock); 4632 } 4633 4634 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4635 { 4636 /* 4637 * Add one ref to keep it from being freed when releasing the 4638 * ftrace_lock mutex. 4639 */ 4640 probe->ref++; 4641 } 4642 4643 int 4644 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4645 struct ftrace_probe_ops *probe_ops, 4646 void *data) 4647 { 4648 struct ftrace_func_probe *probe = NULL, *iter; 4649 struct ftrace_func_entry *entry; 4650 struct ftrace_hash **orig_hash; 4651 struct ftrace_hash *old_hash; 4652 struct ftrace_hash *hash; 4653 int count = 0; 4654 int size; 4655 int ret; 4656 int i; 4657 4658 if (WARN_ON(!tr)) 4659 return -EINVAL; 4660 4661 /* We do not support '!' for function probes */ 4662 if (WARN_ON(glob[0] == '!')) 4663 return -EINVAL; 4664 4665 4666 mutex_lock(&ftrace_lock); 4667 /* Check if the probe_ops is already registered */ 4668 list_for_each_entry(iter, &tr->func_probes, list) { 4669 if (iter->probe_ops == probe_ops) { 4670 probe = iter; 4671 break; 4672 } 4673 } 4674 if (!probe) { 4675 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4676 if (!probe) { 4677 mutex_unlock(&ftrace_lock); 4678 return -ENOMEM; 4679 } 4680 probe->probe_ops = probe_ops; 4681 probe->ops.func = function_trace_probe_call; 4682 probe->tr = tr; 4683 ftrace_ops_init(&probe->ops); 4684 list_add(&probe->list, &tr->func_probes); 4685 } 4686 4687 acquire_probe_locked(probe); 4688 4689 mutex_unlock(&ftrace_lock); 4690 4691 /* 4692 * Note, there's a small window here that the func_hash->filter_hash 4693 * may be NULL or empty. Need to be careful when reading the loop. 4694 */ 4695 mutex_lock(&probe->ops.func_hash->regex_lock); 4696 4697 orig_hash = &probe->ops.func_hash->filter_hash; 4698 old_hash = *orig_hash; 4699 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4700 4701 if (!hash) { 4702 ret = -ENOMEM; 4703 goto out; 4704 } 4705 4706 ret = ftrace_match_records(hash, glob, strlen(glob)); 4707 4708 /* Nothing found? */ 4709 if (!ret) 4710 ret = -EINVAL; 4711 4712 if (ret < 0) 4713 goto out; 4714 4715 size = 1 << hash->size_bits; 4716 for (i = 0; i < size; i++) { 4717 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4718 if (ftrace_lookup_ip(old_hash, entry->ip)) 4719 continue; 4720 /* 4721 * The caller might want to do something special 4722 * for each function we find. We call the callback 4723 * to give the caller an opportunity to do so. 4724 */ 4725 if (probe_ops->init) { 4726 ret = probe_ops->init(probe_ops, tr, 4727 entry->ip, data, 4728 &probe->data); 4729 if (ret < 0) { 4730 if (probe_ops->free && count) 4731 probe_ops->free(probe_ops, tr, 4732 0, probe->data); 4733 probe->data = NULL; 4734 goto out; 4735 } 4736 } 4737 count++; 4738 } 4739 } 4740 4741 mutex_lock(&ftrace_lock); 4742 4743 if (!count) { 4744 /* Nothing was added? */ 4745 ret = -EINVAL; 4746 goto out_unlock; 4747 } 4748 4749 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4750 hash, 1); 4751 if (ret < 0) 4752 goto err_unlock; 4753 4754 /* One ref for each new function traced */ 4755 probe->ref += count; 4756 4757 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4758 ret = ftrace_startup(&probe->ops, 0); 4759 4760 out_unlock: 4761 mutex_unlock(&ftrace_lock); 4762 4763 if (!ret) 4764 ret = count; 4765 out: 4766 mutex_unlock(&probe->ops.func_hash->regex_lock); 4767 free_ftrace_hash(hash); 4768 4769 release_probe(probe); 4770 4771 return ret; 4772 4773 err_unlock: 4774 if (!probe_ops->free || !count) 4775 goto out_unlock; 4776 4777 /* Failed to do the move, need to call the free functions */ 4778 for (i = 0; i < size; i++) { 4779 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4780 if (ftrace_lookup_ip(old_hash, entry->ip)) 4781 continue; 4782 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4783 } 4784 } 4785 goto out_unlock; 4786 } 4787 4788 int 4789 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4790 struct ftrace_probe_ops *probe_ops) 4791 { 4792 struct ftrace_func_probe *probe = NULL, *iter; 4793 struct ftrace_ops_hash old_hash_ops; 4794 struct ftrace_func_entry *entry; 4795 struct ftrace_glob func_g; 4796 struct ftrace_hash **orig_hash; 4797 struct ftrace_hash *old_hash; 4798 struct ftrace_hash *hash = NULL; 4799 struct hlist_node *tmp; 4800 struct hlist_head hhd; 4801 char str[KSYM_SYMBOL_LEN]; 4802 int count = 0; 4803 int i, ret = -ENODEV; 4804 int size; 4805 4806 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4807 func_g.search = NULL; 4808 else { 4809 int not; 4810 4811 func_g.type = filter_parse_regex(glob, strlen(glob), 4812 &func_g.search, ¬); 4813 func_g.len = strlen(func_g.search); 4814 4815 /* we do not support '!' for function probes */ 4816 if (WARN_ON(not)) 4817 return -EINVAL; 4818 } 4819 4820 mutex_lock(&ftrace_lock); 4821 /* Check if the probe_ops is already registered */ 4822 list_for_each_entry(iter, &tr->func_probes, list) { 4823 if (iter->probe_ops == probe_ops) { 4824 probe = iter; 4825 break; 4826 } 4827 } 4828 if (!probe) 4829 goto err_unlock_ftrace; 4830 4831 ret = -EINVAL; 4832 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4833 goto err_unlock_ftrace; 4834 4835 acquire_probe_locked(probe); 4836 4837 mutex_unlock(&ftrace_lock); 4838 4839 mutex_lock(&probe->ops.func_hash->regex_lock); 4840 4841 orig_hash = &probe->ops.func_hash->filter_hash; 4842 old_hash = *orig_hash; 4843 4844 if (ftrace_hash_empty(old_hash)) 4845 goto out_unlock; 4846 4847 old_hash_ops.filter_hash = old_hash; 4848 /* Probes only have filters */ 4849 old_hash_ops.notrace_hash = NULL; 4850 4851 ret = -ENOMEM; 4852 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4853 if (!hash) 4854 goto out_unlock; 4855 4856 INIT_HLIST_HEAD(&hhd); 4857 4858 size = 1 << hash->size_bits; 4859 for (i = 0; i < size; i++) { 4860 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4861 4862 if (func_g.search) { 4863 kallsyms_lookup(entry->ip, NULL, NULL, 4864 NULL, str); 4865 if (!ftrace_match(str, &func_g)) 4866 continue; 4867 } 4868 count++; 4869 remove_hash_entry(hash, entry); 4870 hlist_add_head(&entry->hlist, &hhd); 4871 } 4872 } 4873 4874 /* Nothing found? */ 4875 if (!count) { 4876 ret = -EINVAL; 4877 goto out_unlock; 4878 } 4879 4880 mutex_lock(&ftrace_lock); 4881 4882 WARN_ON(probe->ref < count); 4883 4884 probe->ref -= count; 4885 4886 if (ftrace_hash_empty(hash)) 4887 ftrace_shutdown(&probe->ops, 0); 4888 4889 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4890 hash, 1); 4891 4892 /* still need to update the function call sites */ 4893 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4894 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4895 &old_hash_ops); 4896 synchronize_rcu(); 4897 4898 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4899 hlist_del(&entry->hlist); 4900 if (probe_ops->free) 4901 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4902 kfree(entry); 4903 } 4904 mutex_unlock(&ftrace_lock); 4905 4906 out_unlock: 4907 mutex_unlock(&probe->ops.func_hash->regex_lock); 4908 free_ftrace_hash(hash); 4909 4910 release_probe(probe); 4911 4912 return ret; 4913 4914 err_unlock_ftrace: 4915 mutex_unlock(&ftrace_lock); 4916 return ret; 4917 } 4918 4919 void clear_ftrace_function_probes(struct trace_array *tr) 4920 { 4921 struct ftrace_func_probe *probe, *n; 4922 4923 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4924 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4925 } 4926 4927 static LIST_HEAD(ftrace_commands); 4928 static DEFINE_MUTEX(ftrace_cmd_mutex); 4929 4930 /* 4931 * Currently we only register ftrace commands from __init, so mark this 4932 * __init too. 4933 */ 4934 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4935 { 4936 struct ftrace_func_command *p; 4937 int ret = 0; 4938 4939 mutex_lock(&ftrace_cmd_mutex); 4940 list_for_each_entry(p, &ftrace_commands, list) { 4941 if (strcmp(cmd->name, p->name) == 0) { 4942 ret = -EBUSY; 4943 goto out_unlock; 4944 } 4945 } 4946 list_add(&cmd->list, &ftrace_commands); 4947 out_unlock: 4948 mutex_unlock(&ftrace_cmd_mutex); 4949 4950 return ret; 4951 } 4952 4953 /* 4954 * Currently we only unregister ftrace commands from __init, so mark 4955 * this __init too. 4956 */ 4957 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4958 { 4959 struct ftrace_func_command *p, *n; 4960 int ret = -ENODEV; 4961 4962 mutex_lock(&ftrace_cmd_mutex); 4963 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4964 if (strcmp(cmd->name, p->name) == 0) { 4965 ret = 0; 4966 list_del_init(&p->list); 4967 goto out_unlock; 4968 } 4969 } 4970 out_unlock: 4971 mutex_unlock(&ftrace_cmd_mutex); 4972 4973 return ret; 4974 } 4975 4976 static int ftrace_process_regex(struct ftrace_iterator *iter, 4977 char *buff, int len, int enable) 4978 { 4979 struct ftrace_hash *hash = iter->hash; 4980 struct trace_array *tr = iter->ops->private; 4981 char *func, *command, *next = buff; 4982 struct ftrace_func_command *p; 4983 int ret = -EINVAL; 4984 4985 func = strsep(&next, ":"); 4986 4987 if (!next) { 4988 ret = ftrace_match_records(hash, func, len); 4989 if (!ret) 4990 ret = -EINVAL; 4991 if (ret < 0) 4992 return ret; 4993 return 0; 4994 } 4995 4996 /* command found */ 4997 4998 command = strsep(&next, ":"); 4999 5000 mutex_lock(&ftrace_cmd_mutex); 5001 list_for_each_entry(p, &ftrace_commands, list) { 5002 if (strcmp(p->name, command) == 0) { 5003 ret = p->func(tr, hash, func, command, next, enable); 5004 goto out_unlock; 5005 } 5006 } 5007 out_unlock: 5008 mutex_unlock(&ftrace_cmd_mutex); 5009 5010 return ret; 5011 } 5012 5013 static ssize_t 5014 ftrace_regex_write(struct file *file, const char __user *ubuf, 5015 size_t cnt, loff_t *ppos, int enable) 5016 { 5017 struct ftrace_iterator *iter; 5018 struct trace_parser *parser; 5019 ssize_t ret, read; 5020 5021 if (!cnt) 5022 return 0; 5023 5024 if (file->f_mode & FMODE_READ) { 5025 struct seq_file *m = file->private_data; 5026 iter = m->private; 5027 } else 5028 iter = file->private_data; 5029 5030 if (unlikely(ftrace_disabled)) 5031 return -ENODEV; 5032 5033 /* iter->hash is a local copy, so we don't need regex_lock */ 5034 5035 parser = &iter->parser; 5036 read = trace_get_user(parser, ubuf, cnt, ppos); 5037 5038 if (read >= 0 && trace_parser_loaded(parser) && 5039 !trace_parser_cont(parser)) { 5040 ret = ftrace_process_regex(iter, parser->buffer, 5041 parser->idx, enable); 5042 trace_parser_clear(parser); 5043 if (ret < 0) 5044 goto out; 5045 } 5046 5047 ret = read; 5048 out: 5049 return ret; 5050 } 5051 5052 ssize_t 5053 ftrace_filter_write(struct file *file, const char __user *ubuf, 5054 size_t cnt, loff_t *ppos) 5055 { 5056 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5057 } 5058 5059 ssize_t 5060 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5061 size_t cnt, loff_t *ppos) 5062 { 5063 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5064 } 5065 5066 static int 5067 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5068 { 5069 struct ftrace_func_entry *entry; 5070 5071 ip = ftrace_location(ip); 5072 if (!ip) 5073 return -EINVAL; 5074 5075 if (remove) { 5076 entry = ftrace_lookup_ip(hash, ip); 5077 if (!entry) 5078 return -ENOENT; 5079 free_hash_entry(hash, entry); 5080 return 0; 5081 } 5082 5083 return add_hash_entry(hash, ip); 5084 } 5085 5086 static int 5087 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5088 unsigned int cnt, int remove) 5089 { 5090 unsigned int i; 5091 int err; 5092 5093 for (i = 0; i < cnt; i++) { 5094 err = __ftrace_match_addr(hash, ips[i], remove); 5095 if (err) { 5096 /* 5097 * This expects the @hash is a temporary hash and if this 5098 * fails the caller must free the @hash. 5099 */ 5100 return err; 5101 } 5102 } 5103 return 0; 5104 } 5105 5106 static int 5107 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5108 unsigned long *ips, unsigned int cnt, 5109 int remove, int reset, int enable) 5110 { 5111 struct ftrace_hash **orig_hash; 5112 struct ftrace_hash *hash; 5113 int ret; 5114 5115 if (unlikely(ftrace_disabled)) 5116 return -ENODEV; 5117 5118 mutex_lock(&ops->func_hash->regex_lock); 5119 5120 if (enable) 5121 orig_hash = &ops->func_hash->filter_hash; 5122 else 5123 orig_hash = &ops->func_hash->notrace_hash; 5124 5125 if (reset) 5126 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5127 else 5128 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5129 5130 if (!hash) { 5131 ret = -ENOMEM; 5132 goto out_regex_unlock; 5133 } 5134 5135 if (buf && !ftrace_match_records(hash, buf, len)) { 5136 ret = -EINVAL; 5137 goto out_regex_unlock; 5138 } 5139 if (ips) { 5140 ret = ftrace_match_addr(hash, ips, cnt, remove); 5141 if (ret < 0) 5142 goto out_regex_unlock; 5143 } 5144 5145 mutex_lock(&ftrace_lock); 5146 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5147 mutex_unlock(&ftrace_lock); 5148 5149 out_regex_unlock: 5150 mutex_unlock(&ops->func_hash->regex_lock); 5151 5152 free_ftrace_hash(hash); 5153 return ret; 5154 } 5155 5156 static int 5157 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5158 int remove, int reset, int enable) 5159 { 5160 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5161 } 5162 5163 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5164 5165 struct ftrace_direct_func { 5166 struct list_head next; 5167 unsigned long addr; 5168 int count; 5169 }; 5170 5171 static LIST_HEAD(ftrace_direct_funcs); 5172 5173 /** 5174 * ftrace_find_direct_func - test an address if it is a registered direct caller 5175 * @addr: The address of a registered direct caller 5176 * 5177 * This searches to see if a ftrace direct caller has been registered 5178 * at a specific address, and if so, it returns a descriptor for it. 5179 * 5180 * This can be used by architecture code to see if an address is 5181 * a direct caller (trampoline) attached to a fentry/mcount location. 5182 * This is useful for the function_graph tracer, as it may need to 5183 * do adjustments if it traced a location that also has a direct 5184 * trampoline attached to it. 5185 */ 5186 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5187 { 5188 struct ftrace_direct_func *entry; 5189 bool found = false; 5190 5191 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5192 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5193 if (entry->addr == addr) { 5194 found = true; 5195 break; 5196 } 5197 } 5198 if (found) 5199 return entry; 5200 5201 return NULL; 5202 } 5203 5204 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5205 { 5206 struct ftrace_direct_func *direct; 5207 5208 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5209 if (!direct) 5210 return NULL; 5211 direct->addr = addr; 5212 direct->count = 0; 5213 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5214 ftrace_direct_func_count++; 5215 return direct; 5216 } 5217 5218 /** 5219 * register_ftrace_direct - Call a custom trampoline directly 5220 * @ip: The address of the nop at the beginning of a function 5221 * @addr: The address of the trampoline to call at @ip 5222 * 5223 * This is used to connect a direct call from the nop location (@ip) 5224 * at the start of ftrace traced functions. The location that it calls 5225 * (@addr) must be able to handle a direct call, and save the parameters 5226 * of the function being traced, and restore them (or inject new ones 5227 * if needed), before returning. 5228 * 5229 * Returns: 5230 * 0 on success 5231 * -EBUSY - Another direct function is already attached (there can be only one) 5232 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5233 * -ENOMEM - There was an allocation failure. 5234 */ 5235 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5236 { 5237 struct ftrace_direct_func *direct; 5238 struct ftrace_func_entry *entry; 5239 struct ftrace_hash *free_hash = NULL; 5240 struct dyn_ftrace *rec; 5241 int ret = -ENODEV; 5242 5243 mutex_lock(&direct_mutex); 5244 5245 ip = ftrace_location(ip); 5246 if (!ip) 5247 goto out_unlock; 5248 5249 /* See if there's a direct function at @ip already */ 5250 ret = -EBUSY; 5251 if (ftrace_find_rec_direct(ip)) 5252 goto out_unlock; 5253 5254 ret = -ENODEV; 5255 rec = lookup_rec(ip, ip); 5256 if (!rec) 5257 goto out_unlock; 5258 5259 /* 5260 * Check if the rec says it has a direct call but we didn't 5261 * find one earlier? 5262 */ 5263 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5264 goto out_unlock; 5265 5266 /* Make sure the ip points to the exact record */ 5267 if (ip != rec->ip) { 5268 ip = rec->ip; 5269 /* Need to check this ip for a direct. */ 5270 if (ftrace_find_rec_direct(ip)) 5271 goto out_unlock; 5272 } 5273 5274 ret = -ENOMEM; 5275 direct = ftrace_find_direct_func(addr); 5276 if (!direct) { 5277 direct = ftrace_alloc_direct_func(addr); 5278 if (!direct) 5279 goto out_unlock; 5280 } 5281 5282 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5283 if (!entry) 5284 goto out_unlock; 5285 5286 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5287 5288 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5289 ret = register_ftrace_function(&direct_ops); 5290 if (ret) 5291 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5292 } 5293 5294 if (ret) { 5295 remove_hash_entry(direct_functions, entry); 5296 kfree(entry); 5297 if (!direct->count) { 5298 list_del_rcu(&direct->next); 5299 synchronize_rcu_tasks(); 5300 kfree(direct); 5301 if (free_hash) 5302 free_ftrace_hash(free_hash); 5303 free_hash = NULL; 5304 ftrace_direct_func_count--; 5305 } 5306 } else { 5307 direct->count++; 5308 } 5309 out_unlock: 5310 mutex_unlock(&direct_mutex); 5311 5312 if (free_hash) { 5313 synchronize_rcu_tasks(); 5314 free_ftrace_hash(free_hash); 5315 } 5316 5317 return ret; 5318 } 5319 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5320 5321 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5322 struct dyn_ftrace **recp) 5323 { 5324 struct ftrace_func_entry *entry; 5325 struct dyn_ftrace *rec; 5326 5327 rec = lookup_rec(*ip, *ip); 5328 if (!rec) 5329 return NULL; 5330 5331 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5332 if (!entry) { 5333 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5334 return NULL; 5335 } 5336 5337 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5338 5339 /* Passed in ip just needs to be on the call site */ 5340 *ip = rec->ip; 5341 5342 if (recp) 5343 *recp = rec; 5344 5345 return entry; 5346 } 5347 5348 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5349 { 5350 struct ftrace_direct_func *direct; 5351 struct ftrace_func_entry *entry; 5352 struct ftrace_hash *hash; 5353 int ret = -ENODEV; 5354 5355 mutex_lock(&direct_mutex); 5356 5357 ip = ftrace_location(ip); 5358 if (!ip) 5359 goto out_unlock; 5360 5361 entry = find_direct_entry(&ip, NULL); 5362 if (!entry) 5363 goto out_unlock; 5364 5365 hash = direct_ops.func_hash->filter_hash; 5366 if (hash->count == 1) 5367 unregister_ftrace_function(&direct_ops); 5368 5369 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5370 5371 WARN_ON(ret); 5372 5373 remove_hash_entry(direct_functions, entry); 5374 5375 direct = ftrace_find_direct_func(addr); 5376 if (!WARN_ON(!direct)) { 5377 /* This is the good path (see the ! before WARN) */ 5378 direct->count--; 5379 WARN_ON(direct->count < 0); 5380 if (!direct->count) { 5381 list_del_rcu(&direct->next); 5382 synchronize_rcu_tasks(); 5383 kfree(direct); 5384 kfree(entry); 5385 ftrace_direct_func_count--; 5386 } 5387 } 5388 out_unlock: 5389 mutex_unlock(&direct_mutex); 5390 5391 return ret; 5392 } 5393 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5394 5395 static struct ftrace_ops stub_ops = { 5396 .func = ftrace_stub, 5397 }; 5398 5399 /** 5400 * ftrace_modify_direct_caller - modify ftrace nop directly 5401 * @entry: The ftrace hash entry of the direct helper for @rec 5402 * @rec: The record representing the function site to patch 5403 * @old_addr: The location that the site at @rec->ip currently calls 5404 * @new_addr: The location that the site at @rec->ip should call 5405 * 5406 * An architecture may overwrite this function to optimize the 5407 * changing of the direct callback on an ftrace nop location. 5408 * This is called with the ftrace_lock mutex held, and no other 5409 * ftrace callbacks are on the associated record (@rec). Thus, 5410 * it is safe to modify the ftrace record, where it should be 5411 * currently calling @old_addr directly, to call @new_addr. 5412 * 5413 * Safety checks should be made to make sure that the code at 5414 * @rec->ip is currently calling @old_addr. And this must 5415 * also update entry->direct to @new_addr. 5416 */ 5417 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5418 struct dyn_ftrace *rec, 5419 unsigned long old_addr, 5420 unsigned long new_addr) 5421 { 5422 unsigned long ip = rec->ip; 5423 int ret; 5424 5425 /* 5426 * The ftrace_lock was used to determine if the record 5427 * had more than one registered user to it. If it did, 5428 * we needed to prevent that from changing to do the quick 5429 * switch. But if it did not (only a direct caller was attached) 5430 * then this function is called. But this function can deal 5431 * with attached callers to the rec that we care about, and 5432 * since this function uses standard ftrace calls that take 5433 * the ftrace_lock mutex, we need to release it. 5434 */ 5435 mutex_unlock(&ftrace_lock); 5436 5437 /* 5438 * By setting a stub function at the same address, we force 5439 * the code to call the iterator and the direct_ops helper. 5440 * This means that @ip does not call the direct call, and 5441 * we can simply modify it. 5442 */ 5443 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5444 if (ret) 5445 goto out_lock; 5446 5447 ret = register_ftrace_function(&stub_ops); 5448 if (ret) { 5449 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5450 goto out_lock; 5451 } 5452 5453 entry->direct = new_addr; 5454 5455 /* 5456 * By removing the stub, we put back the direct call, calling 5457 * the @new_addr. 5458 */ 5459 unregister_ftrace_function(&stub_ops); 5460 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5461 5462 out_lock: 5463 mutex_lock(&ftrace_lock); 5464 5465 return ret; 5466 } 5467 5468 /** 5469 * modify_ftrace_direct - Modify an existing direct call to call something else 5470 * @ip: The instruction pointer to modify 5471 * @old_addr: The address that the current @ip calls directly 5472 * @new_addr: The address that the @ip should call 5473 * 5474 * This modifies a ftrace direct caller at an instruction pointer without 5475 * having to disable it first. The direct call will switch over to the 5476 * @new_addr without missing anything. 5477 * 5478 * Returns: zero on success. Non zero on error, which includes: 5479 * -ENODEV : the @ip given has no direct caller attached 5480 * -EINVAL : the @old_addr does not match the current direct caller 5481 */ 5482 int modify_ftrace_direct(unsigned long ip, 5483 unsigned long old_addr, unsigned long new_addr) 5484 { 5485 struct ftrace_direct_func *direct, *new_direct = NULL; 5486 struct ftrace_func_entry *entry; 5487 struct dyn_ftrace *rec; 5488 int ret = -ENODEV; 5489 5490 mutex_lock(&direct_mutex); 5491 5492 mutex_lock(&ftrace_lock); 5493 5494 ip = ftrace_location(ip); 5495 if (!ip) 5496 goto out_unlock; 5497 5498 entry = find_direct_entry(&ip, &rec); 5499 if (!entry) 5500 goto out_unlock; 5501 5502 ret = -EINVAL; 5503 if (entry->direct != old_addr) 5504 goto out_unlock; 5505 5506 direct = ftrace_find_direct_func(old_addr); 5507 if (WARN_ON(!direct)) 5508 goto out_unlock; 5509 if (direct->count > 1) { 5510 ret = -ENOMEM; 5511 new_direct = ftrace_alloc_direct_func(new_addr); 5512 if (!new_direct) 5513 goto out_unlock; 5514 direct->count--; 5515 new_direct->count++; 5516 } else { 5517 direct->addr = new_addr; 5518 } 5519 5520 /* 5521 * If there's no other ftrace callback on the rec->ip location, 5522 * then it can be changed directly by the architecture. 5523 * If there is another caller, then we just need to change the 5524 * direct caller helper to point to @new_addr. 5525 */ 5526 if (ftrace_rec_count(rec) == 1) { 5527 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5528 } else { 5529 entry->direct = new_addr; 5530 ret = 0; 5531 } 5532 5533 if (unlikely(ret && new_direct)) { 5534 direct->count++; 5535 list_del_rcu(&new_direct->next); 5536 synchronize_rcu_tasks(); 5537 kfree(new_direct); 5538 ftrace_direct_func_count--; 5539 } 5540 5541 out_unlock: 5542 mutex_unlock(&ftrace_lock); 5543 mutex_unlock(&direct_mutex); 5544 return ret; 5545 } 5546 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5547 5548 #define MULTI_FLAGS (FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_DIRECT | \ 5549 FTRACE_OPS_FL_SAVE_REGS) 5550 5551 static int check_direct_multi(struct ftrace_ops *ops) 5552 { 5553 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5554 return -EINVAL; 5555 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5556 return -EINVAL; 5557 return 0; 5558 } 5559 5560 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5561 { 5562 struct ftrace_func_entry *entry, *del; 5563 int size, i; 5564 5565 size = 1 << hash->size_bits; 5566 for (i = 0; i < size; i++) { 5567 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5568 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5569 if (del && del->direct == addr) { 5570 remove_hash_entry(direct_functions, del); 5571 kfree(del); 5572 } 5573 } 5574 } 5575 } 5576 5577 /** 5578 * register_ftrace_direct_multi - Call a custom trampoline directly 5579 * for multiple functions registered in @ops 5580 * @ops: The address of the struct ftrace_ops object 5581 * @addr: The address of the trampoline to call at @ops functions 5582 * 5583 * This is used to connect a direct calls to @addr from the nop locations 5584 * of the functions registered in @ops (with by ftrace_set_filter_ip 5585 * function). 5586 * 5587 * The location that it calls (@addr) must be able to handle a direct call, 5588 * and save the parameters of the function being traced, and restore them 5589 * (or inject new ones if needed), before returning. 5590 * 5591 * Returns: 5592 * 0 on success 5593 * -EINVAL - The @ops object was already registered with this call or 5594 * when there are no functions in @ops object. 5595 * -EBUSY - Another direct function is already attached (there can be only one) 5596 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5597 * -ENOMEM - There was an allocation failure. 5598 */ 5599 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5600 { 5601 struct ftrace_hash *hash, *free_hash = NULL; 5602 struct ftrace_func_entry *entry, *new; 5603 int err = -EBUSY, size, i; 5604 5605 if (ops->func || ops->trampoline) 5606 return -EINVAL; 5607 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5608 return -EINVAL; 5609 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5610 return -EINVAL; 5611 5612 hash = ops->func_hash->filter_hash; 5613 if (ftrace_hash_empty(hash)) 5614 return -EINVAL; 5615 5616 mutex_lock(&direct_mutex); 5617 5618 /* Make sure requested entries are not already registered.. */ 5619 size = 1 << hash->size_bits; 5620 for (i = 0; i < size; i++) { 5621 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5622 if (ftrace_find_rec_direct(entry->ip)) 5623 goto out_unlock; 5624 } 5625 } 5626 5627 /* ... and insert them to direct_functions hash. */ 5628 err = -ENOMEM; 5629 for (i = 0; i < size; i++) { 5630 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5631 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5632 if (!new) 5633 goto out_remove; 5634 entry->direct = addr; 5635 } 5636 } 5637 5638 ops->func = call_direct_funcs; 5639 ops->flags = MULTI_FLAGS; 5640 ops->trampoline = FTRACE_REGS_ADDR; 5641 5642 err = register_ftrace_function(ops); 5643 5644 out_remove: 5645 if (err) 5646 remove_direct_functions_hash(hash, addr); 5647 5648 out_unlock: 5649 mutex_unlock(&direct_mutex); 5650 5651 if (free_hash) { 5652 synchronize_rcu_tasks(); 5653 free_ftrace_hash(free_hash); 5654 } 5655 return err; 5656 } 5657 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5658 5659 /** 5660 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5661 * previously registered by register_ftrace_direct_multi for @ops object. 5662 * @ops: The address of the struct ftrace_ops object 5663 * 5664 * This is used to remove a direct calls to @addr from the nop locations 5665 * of the functions registered in @ops (with by ftrace_set_filter_ip 5666 * function). 5667 * 5668 * Returns: 5669 * 0 on success 5670 * -EINVAL - The @ops object was not properly registered. 5671 */ 5672 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5673 { 5674 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5675 int err; 5676 5677 if (check_direct_multi(ops)) 5678 return -EINVAL; 5679 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5680 return -EINVAL; 5681 5682 mutex_lock(&direct_mutex); 5683 err = unregister_ftrace_function(ops); 5684 remove_direct_functions_hash(hash, addr); 5685 mutex_unlock(&direct_mutex); 5686 5687 /* cleanup for possible another register call */ 5688 ops->func = NULL; 5689 ops->trampoline = 0; 5690 return err; 5691 } 5692 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5693 5694 /** 5695 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5696 * to call something else 5697 * @ops: The address of the struct ftrace_ops object 5698 * @addr: The address of the new trampoline to call at @ops functions 5699 * 5700 * This is used to unregister currently registered direct caller and 5701 * register new one @addr on functions registered in @ops object. 5702 * 5703 * Note there's window between ftrace_shutdown and ftrace_startup calls 5704 * where there will be no callbacks called. 5705 * 5706 * Returns: zero on success. Non zero on error, which includes: 5707 * -EINVAL - The @ops object was not properly registered. 5708 */ 5709 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5710 { 5711 struct ftrace_hash *hash; 5712 struct ftrace_func_entry *entry, *iter; 5713 static struct ftrace_ops tmp_ops = { 5714 .func = ftrace_stub, 5715 .flags = FTRACE_OPS_FL_STUB, 5716 }; 5717 int i, size; 5718 int err; 5719 5720 if (check_direct_multi(ops)) 5721 return -EINVAL; 5722 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5723 return -EINVAL; 5724 5725 mutex_lock(&direct_mutex); 5726 5727 /* Enable the tmp_ops to have the same functions as the direct ops */ 5728 ftrace_ops_init(&tmp_ops); 5729 tmp_ops.func_hash = ops->func_hash; 5730 5731 err = register_ftrace_function(&tmp_ops); 5732 if (err) 5733 goto out_direct; 5734 5735 /* 5736 * Now the ftrace_ops_list_func() is called to do the direct callers. 5737 * We can safely change the direct functions attached to each entry. 5738 */ 5739 mutex_lock(&ftrace_lock); 5740 5741 hash = ops->func_hash->filter_hash; 5742 size = 1 << hash->size_bits; 5743 for (i = 0; i < size; i++) { 5744 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5745 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5746 if (!entry) 5747 continue; 5748 entry->direct = addr; 5749 } 5750 } 5751 5752 mutex_unlock(&ftrace_lock); 5753 5754 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5755 unregister_ftrace_function(&tmp_ops); 5756 5757 out_direct: 5758 mutex_unlock(&direct_mutex); 5759 return err; 5760 } 5761 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5762 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5763 5764 /** 5765 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5766 * @ops - the ops to set the filter with 5767 * @ip - the address to add to or remove from the filter. 5768 * @remove - non zero to remove the ip from the filter 5769 * @reset - non zero to reset all filters before applying this filter. 5770 * 5771 * Filters denote which functions should be enabled when tracing is enabled 5772 * If @ip is NULL, it fails to update filter. 5773 */ 5774 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5775 int remove, int reset) 5776 { 5777 ftrace_ops_init(ops); 5778 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5779 } 5780 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5781 5782 /** 5783 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5784 * @ops - the ops to set the filter with 5785 * @ips - the array of addresses to add to or remove from the filter. 5786 * @cnt - the number of addresses in @ips 5787 * @remove - non zero to remove ips from the filter 5788 * @reset - non zero to reset all filters before applying this filter. 5789 * 5790 * Filters denote which functions should be enabled when tracing is enabled 5791 * If @ips array or any ip specified within is NULL , it fails to update filter. 5792 */ 5793 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5794 unsigned int cnt, int remove, int reset) 5795 { 5796 ftrace_ops_init(ops); 5797 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5798 } 5799 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5800 5801 /** 5802 * ftrace_ops_set_global_filter - setup ops to use global filters 5803 * @ops - the ops which will use the global filters 5804 * 5805 * ftrace users who need global function trace filtering should call this. 5806 * It can set the global filter only if ops were not initialized before. 5807 */ 5808 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5809 { 5810 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5811 return; 5812 5813 ftrace_ops_init(ops); 5814 ops->func_hash = &global_ops.local_hash; 5815 } 5816 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5817 5818 static int 5819 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5820 int reset, int enable) 5821 { 5822 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5823 } 5824 5825 /** 5826 * ftrace_set_filter - set a function to filter on in ftrace 5827 * @ops - the ops to set the filter with 5828 * @buf - the string that holds the function filter text. 5829 * @len - the length of the string. 5830 * @reset - non zero to reset all filters before applying this filter. 5831 * 5832 * Filters denote which functions should be enabled when tracing is enabled. 5833 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5834 */ 5835 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5836 int len, int reset) 5837 { 5838 ftrace_ops_init(ops); 5839 return ftrace_set_regex(ops, buf, len, reset, 1); 5840 } 5841 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5842 5843 /** 5844 * ftrace_set_notrace - set a function to not trace in ftrace 5845 * @ops - the ops to set the notrace filter with 5846 * @buf - the string that holds the function notrace text. 5847 * @len - the length of the string. 5848 * @reset - non zero to reset all filters before applying this filter. 5849 * 5850 * Notrace Filters denote which functions should not be enabled when tracing 5851 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5852 * for tracing. 5853 */ 5854 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5855 int len, int reset) 5856 { 5857 ftrace_ops_init(ops); 5858 return ftrace_set_regex(ops, buf, len, reset, 0); 5859 } 5860 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5861 /** 5862 * ftrace_set_global_filter - set a function to filter on with global tracers 5863 * @buf - the string that holds the function filter text. 5864 * @len - the length of the string. 5865 * @reset - non zero to reset all filters before applying this filter. 5866 * 5867 * Filters denote which functions should be enabled when tracing is enabled. 5868 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5869 */ 5870 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5871 { 5872 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5873 } 5874 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5875 5876 /** 5877 * ftrace_set_global_notrace - set a function to not trace with global tracers 5878 * @buf - the string that holds the function notrace text. 5879 * @len - the length of the string. 5880 * @reset - non zero to reset all filters before applying this filter. 5881 * 5882 * Notrace Filters denote which functions should not be enabled when tracing 5883 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5884 * for tracing. 5885 */ 5886 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5887 { 5888 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5889 } 5890 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5891 5892 /* 5893 * command line interface to allow users to set filters on boot up. 5894 */ 5895 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5896 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5897 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5898 5899 /* Used by function selftest to not test if filter is set */ 5900 bool ftrace_filter_param __initdata; 5901 5902 static int __init set_ftrace_notrace(char *str) 5903 { 5904 ftrace_filter_param = true; 5905 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5906 return 1; 5907 } 5908 __setup("ftrace_notrace=", set_ftrace_notrace); 5909 5910 static int __init set_ftrace_filter(char *str) 5911 { 5912 ftrace_filter_param = true; 5913 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5914 return 1; 5915 } 5916 __setup("ftrace_filter=", set_ftrace_filter); 5917 5918 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5919 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5920 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5921 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5922 5923 static int __init set_graph_function(char *str) 5924 { 5925 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5926 return 1; 5927 } 5928 __setup("ftrace_graph_filter=", set_graph_function); 5929 5930 static int __init set_graph_notrace_function(char *str) 5931 { 5932 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5933 return 1; 5934 } 5935 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5936 5937 static int __init set_graph_max_depth_function(char *str) 5938 { 5939 if (!str) 5940 return 0; 5941 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5942 return 1; 5943 } 5944 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5945 5946 static void __init set_ftrace_early_graph(char *buf, int enable) 5947 { 5948 int ret; 5949 char *func; 5950 struct ftrace_hash *hash; 5951 5952 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5953 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5954 return; 5955 5956 while (buf) { 5957 func = strsep(&buf, ","); 5958 /* we allow only one expression at a time */ 5959 ret = ftrace_graph_set_hash(hash, func); 5960 if (ret) 5961 printk(KERN_DEBUG "ftrace: function %s not " 5962 "traceable\n", func); 5963 } 5964 5965 if (enable) 5966 ftrace_graph_hash = hash; 5967 else 5968 ftrace_graph_notrace_hash = hash; 5969 } 5970 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5971 5972 void __init 5973 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5974 { 5975 char *func; 5976 5977 ftrace_ops_init(ops); 5978 5979 while (buf) { 5980 func = strsep(&buf, ","); 5981 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5982 } 5983 } 5984 5985 static void __init set_ftrace_early_filters(void) 5986 { 5987 if (ftrace_filter_buf[0]) 5988 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5989 if (ftrace_notrace_buf[0]) 5990 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5991 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5992 if (ftrace_graph_buf[0]) 5993 set_ftrace_early_graph(ftrace_graph_buf, 1); 5994 if (ftrace_graph_notrace_buf[0]) 5995 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5996 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5997 } 5998 5999 int ftrace_regex_release(struct inode *inode, struct file *file) 6000 { 6001 struct seq_file *m = (struct seq_file *)file->private_data; 6002 struct ftrace_iterator *iter; 6003 struct ftrace_hash **orig_hash; 6004 struct trace_parser *parser; 6005 int filter_hash; 6006 6007 if (file->f_mode & FMODE_READ) { 6008 iter = m->private; 6009 seq_release(inode, file); 6010 } else 6011 iter = file->private_data; 6012 6013 parser = &iter->parser; 6014 if (trace_parser_loaded(parser)) { 6015 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6016 6017 ftrace_process_regex(iter, parser->buffer, 6018 parser->idx, enable); 6019 } 6020 6021 trace_parser_put(parser); 6022 6023 mutex_lock(&iter->ops->func_hash->regex_lock); 6024 6025 if (file->f_mode & FMODE_WRITE) { 6026 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6027 6028 if (filter_hash) { 6029 orig_hash = &iter->ops->func_hash->filter_hash; 6030 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 6031 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6032 } else 6033 orig_hash = &iter->ops->func_hash->notrace_hash; 6034 6035 mutex_lock(&ftrace_lock); 6036 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6037 iter->hash, filter_hash); 6038 mutex_unlock(&ftrace_lock); 6039 } else { 6040 /* For read only, the hash is the ops hash */ 6041 iter->hash = NULL; 6042 } 6043 6044 mutex_unlock(&iter->ops->func_hash->regex_lock); 6045 free_ftrace_hash(iter->hash); 6046 if (iter->tr) 6047 trace_array_put(iter->tr); 6048 kfree(iter); 6049 6050 return 0; 6051 } 6052 6053 static const struct file_operations ftrace_avail_fops = { 6054 .open = ftrace_avail_open, 6055 .read = seq_read, 6056 .llseek = seq_lseek, 6057 .release = seq_release_private, 6058 }; 6059 6060 static const struct file_operations ftrace_enabled_fops = { 6061 .open = ftrace_enabled_open, 6062 .read = seq_read, 6063 .llseek = seq_lseek, 6064 .release = seq_release_private, 6065 }; 6066 6067 static const struct file_operations ftrace_filter_fops = { 6068 .open = ftrace_filter_open, 6069 .read = seq_read, 6070 .write = ftrace_filter_write, 6071 .llseek = tracing_lseek, 6072 .release = ftrace_regex_release, 6073 }; 6074 6075 static const struct file_operations ftrace_notrace_fops = { 6076 .open = ftrace_notrace_open, 6077 .read = seq_read, 6078 .write = ftrace_notrace_write, 6079 .llseek = tracing_lseek, 6080 .release = ftrace_regex_release, 6081 }; 6082 6083 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6084 6085 static DEFINE_MUTEX(graph_lock); 6086 6087 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6088 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6089 6090 enum graph_filter_type { 6091 GRAPH_FILTER_NOTRACE = 0, 6092 GRAPH_FILTER_FUNCTION, 6093 }; 6094 6095 #define FTRACE_GRAPH_EMPTY ((void *)1) 6096 6097 struct ftrace_graph_data { 6098 struct ftrace_hash *hash; 6099 struct ftrace_func_entry *entry; 6100 int idx; /* for hash table iteration */ 6101 enum graph_filter_type type; 6102 struct ftrace_hash *new_hash; 6103 const struct seq_operations *seq_ops; 6104 struct trace_parser parser; 6105 }; 6106 6107 static void * 6108 __g_next(struct seq_file *m, loff_t *pos) 6109 { 6110 struct ftrace_graph_data *fgd = m->private; 6111 struct ftrace_func_entry *entry = fgd->entry; 6112 struct hlist_head *head; 6113 int i, idx = fgd->idx; 6114 6115 if (*pos >= fgd->hash->count) 6116 return NULL; 6117 6118 if (entry) { 6119 hlist_for_each_entry_continue(entry, hlist) { 6120 fgd->entry = entry; 6121 return entry; 6122 } 6123 6124 idx++; 6125 } 6126 6127 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6128 head = &fgd->hash->buckets[i]; 6129 hlist_for_each_entry(entry, head, hlist) { 6130 fgd->entry = entry; 6131 fgd->idx = i; 6132 return entry; 6133 } 6134 } 6135 return NULL; 6136 } 6137 6138 static void * 6139 g_next(struct seq_file *m, void *v, loff_t *pos) 6140 { 6141 (*pos)++; 6142 return __g_next(m, pos); 6143 } 6144 6145 static void *g_start(struct seq_file *m, loff_t *pos) 6146 { 6147 struct ftrace_graph_data *fgd = m->private; 6148 6149 mutex_lock(&graph_lock); 6150 6151 if (fgd->type == GRAPH_FILTER_FUNCTION) 6152 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6153 lockdep_is_held(&graph_lock)); 6154 else 6155 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6156 lockdep_is_held(&graph_lock)); 6157 6158 /* Nothing, tell g_show to print all functions are enabled */ 6159 if (ftrace_hash_empty(fgd->hash) && !*pos) 6160 return FTRACE_GRAPH_EMPTY; 6161 6162 fgd->idx = 0; 6163 fgd->entry = NULL; 6164 return __g_next(m, pos); 6165 } 6166 6167 static void g_stop(struct seq_file *m, void *p) 6168 { 6169 mutex_unlock(&graph_lock); 6170 } 6171 6172 static int g_show(struct seq_file *m, void *v) 6173 { 6174 struct ftrace_func_entry *entry = v; 6175 6176 if (!entry) 6177 return 0; 6178 6179 if (entry == FTRACE_GRAPH_EMPTY) { 6180 struct ftrace_graph_data *fgd = m->private; 6181 6182 if (fgd->type == GRAPH_FILTER_FUNCTION) 6183 seq_puts(m, "#### all functions enabled ####\n"); 6184 else 6185 seq_puts(m, "#### no functions disabled ####\n"); 6186 return 0; 6187 } 6188 6189 seq_printf(m, "%ps\n", (void *)entry->ip); 6190 6191 return 0; 6192 } 6193 6194 static const struct seq_operations ftrace_graph_seq_ops = { 6195 .start = g_start, 6196 .next = g_next, 6197 .stop = g_stop, 6198 .show = g_show, 6199 }; 6200 6201 static int 6202 __ftrace_graph_open(struct inode *inode, struct file *file, 6203 struct ftrace_graph_data *fgd) 6204 { 6205 int ret; 6206 struct ftrace_hash *new_hash = NULL; 6207 6208 ret = security_locked_down(LOCKDOWN_TRACEFS); 6209 if (ret) 6210 return ret; 6211 6212 if (file->f_mode & FMODE_WRITE) { 6213 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6214 6215 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6216 return -ENOMEM; 6217 6218 if (file->f_flags & O_TRUNC) 6219 new_hash = alloc_ftrace_hash(size_bits); 6220 else 6221 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6222 fgd->hash); 6223 if (!new_hash) { 6224 ret = -ENOMEM; 6225 goto out; 6226 } 6227 } 6228 6229 if (file->f_mode & FMODE_READ) { 6230 ret = seq_open(file, &ftrace_graph_seq_ops); 6231 if (!ret) { 6232 struct seq_file *m = file->private_data; 6233 m->private = fgd; 6234 } else { 6235 /* Failed */ 6236 free_ftrace_hash(new_hash); 6237 new_hash = NULL; 6238 } 6239 } else 6240 file->private_data = fgd; 6241 6242 out: 6243 if (ret < 0 && file->f_mode & FMODE_WRITE) 6244 trace_parser_put(&fgd->parser); 6245 6246 fgd->new_hash = new_hash; 6247 6248 /* 6249 * All uses of fgd->hash must be taken with the graph_lock 6250 * held. The graph_lock is going to be released, so force 6251 * fgd->hash to be reinitialized when it is taken again. 6252 */ 6253 fgd->hash = NULL; 6254 6255 return ret; 6256 } 6257 6258 static int 6259 ftrace_graph_open(struct inode *inode, struct file *file) 6260 { 6261 struct ftrace_graph_data *fgd; 6262 int ret; 6263 6264 if (unlikely(ftrace_disabled)) 6265 return -ENODEV; 6266 6267 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6268 if (fgd == NULL) 6269 return -ENOMEM; 6270 6271 mutex_lock(&graph_lock); 6272 6273 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6274 lockdep_is_held(&graph_lock)); 6275 fgd->type = GRAPH_FILTER_FUNCTION; 6276 fgd->seq_ops = &ftrace_graph_seq_ops; 6277 6278 ret = __ftrace_graph_open(inode, file, fgd); 6279 if (ret < 0) 6280 kfree(fgd); 6281 6282 mutex_unlock(&graph_lock); 6283 return ret; 6284 } 6285 6286 static int 6287 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6288 { 6289 struct ftrace_graph_data *fgd; 6290 int ret; 6291 6292 if (unlikely(ftrace_disabled)) 6293 return -ENODEV; 6294 6295 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6296 if (fgd == NULL) 6297 return -ENOMEM; 6298 6299 mutex_lock(&graph_lock); 6300 6301 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6302 lockdep_is_held(&graph_lock)); 6303 fgd->type = GRAPH_FILTER_NOTRACE; 6304 fgd->seq_ops = &ftrace_graph_seq_ops; 6305 6306 ret = __ftrace_graph_open(inode, file, fgd); 6307 if (ret < 0) 6308 kfree(fgd); 6309 6310 mutex_unlock(&graph_lock); 6311 return ret; 6312 } 6313 6314 static int 6315 ftrace_graph_release(struct inode *inode, struct file *file) 6316 { 6317 struct ftrace_graph_data *fgd; 6318 struct ftrace_hash *old_hash, *new_hash; 6319 struct trace_parser *parser; 6320 int ret = 0; 6321 6322 if (file->f_mode & FMODE_READ) { 6323 struct seq_file *m = file->private_data; 6324 6325 fgd = m->private; 6326 seq_release(inode, file); 6327 } else { 6328 fgd = file->private_data; 6329 } 6330 6331 6332 if (file->f_mode & FMODE_WRITE) { 6333 6334 parser = &fgd->parser; 6335 6336 if (trace_parser_loaded((parser))) { 6337 ret = ftrace_graph_set_hash(fgd->new_hash, 6338 parser->buffer); 6339 } 6340 6341 trace_parser_put(parser); 6342 6343 new_hash = __ftrace_hash_move(fgd->new_hash); 6344 if (!new_hash) { 6345 ret = -ENOMEM; 6346 goto out; 6347 } 6348 6349 mutex_lock(&graph_lock); 6350 6351 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6352 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6353 lockdep_is_held(&graph_lock)); 6354 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6355 } else { 6356 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6357 lockdep_is_held(&graph_lock)); 6358 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6359 } 6360 6361 mutex_unlock(&graph_lock); 6362 6363 /* 6364 * We need to do a hard force of sched synchronization. 6365 * This is because we use preempt_disable() to do RCU, but 6366 * the function tracers can be called where RCU is not watching 6367 * (like before user_exit()). We can not rely on the RCU 6368 * infrastructure to do the synchronization, thus we must do it 6369 * ourselves. 6370 */ 6371 if (old_hash != EMPTY_HASH) 6372 synchronize_rcu_tasks_rude(); 6373 6374 free_ftrace_hash(old_hash); 6375 } 6376 6377 out: 6378 free_ftrace_hash(fgd->new_hash); 6379 kfree(fgd); 6380 6381 return ret; 6382 } 6383 6384 static int 6385 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6386 { 6387 struct ftrace_glob func_g; 6388 struct dyn_ftrace *rec; 6389 struct ftrace_page *pg; 6390 struct ftrace_func_entry *entry; 6391 int fail = 1; 6392 int not; 6393 6394 /* decode regex */ 6395 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6396 &func_g.search, ¬); 6397 6398 func_g.len = strlen(func_g.search); 6399 6400 mutex_lock(&ftrace_lock); 6401 6402 if (unlikely(ftrace_disabled)) { 6403 mutex_unlock(&ftrace_lock); 6404 return -ENODEV; 6405 } 6406 6407 do_for_each_ftrace_rec(pg, rec) { 6408 6409 if (rec->flags & FTRACE_FL_DISABLED) 6410 continue; 6411 6412 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6413 entry = ftrace_lookup_ip(hash, rec->ip); 6414 6415 if (!not) { 6416 fail = 0; 6417 6418 if (entry) 6419 continue; 6420 if (add_hash_entry(hash, rec->ip) < 0) 6421 goto out; 6422 } else { 6423 if (entry) { 6424 free_hash_entry(hash, entry); 6425 fail = 0; 6426 } 6427 } 6428 } 6429 } while_for_each_ftrace_rec(); 6430 out: 6431 mutex_unlock(&ftrace_lock); 6432 6433 if (fail) 6434 return -EINVAL; 6435 6436 return 0; 6437 } 6438 6439 static ssize_t 6440 ftrace_graph_write(struct file *file, const char __user *ubuf, 6441 size_t cnt, loff_t *ppos) 6442 { 6443 ssize_t read, ret = 0; 6444 struct ftrace_graph_data *fgd = file->private_data; 6445 struct trace_parser *parser; 6446 6447 if (!cnt) 6448 return 0; 6449 6450 /* Read mode uses seq functions */ 6451 if (file->f_mode & FMODE_READ) { 6452 struct seq_file *m = file->private_data; 6453 fgd = m->private; 6454 } 6455 6456 parser = &fgd->parser; 6457 6458 read = trace_get_user(parser, ubuf, cnt, ppos); 6459 6460 if (read >= 0 && trace_parser_loaded(parser) && 6461 !trace_parser_cont(parser)) { 6462 6463 ret = ftrace_graph_set_hash(fgd->new_hash, 6464 parser->buffer); 6465 trace_parser_clear(parser); 6466 } 6467 6468 if (!ret) 6469 ret = read; 6470 6471 return ret; 6472 } 6473 6474 static const struct file_operations ftrace_graph_fops = { 6475 .open = ftrace_graph_open, 6476 .read = seq_read, 6477 .write = ftrace_graph_write, 6478 .llseek = tracing_lseek, 6479 .release = ftrace_graph_release, 6480 }; 6481 6482 static const struct file_operations ftrace_graph_notrace_fops = { 6483 .open = ftrace_graph_notrace_open, 6484 .read = seq_read, 6485 .write = ftrace_graph_write, 6486 .llseek = tracing_lseek, 6487 .release = ftrace_graph_release, 6488 }; 6489 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6490 6491 void ftrace_create_filter_files(struct ftrace_ops *ops, 6492 struct dentry *parent) 6493 { 6494 6495 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6496 ops, &ftrace_filter_fops); 6497 6498 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6499 ops, &ftrace_notrace_fops); 6500 } 6501 6502 /* 6503 * The name "destroy_filter_files" is really a misnomer. Although 6504 * in the future, it may actually delete the files, but this is 6505 * really intended to make sure the ops passed in are disabled 6506 * and that when this function returns, the caller is free to 6507 * free the ops. 6508 * 6509 * The "destroy" name is only to match the "create" name that this 6510 * should be paired with. 6511 */ 6512 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6513 { 6514 mutex_lock(&ftrace_lock); 6515 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6516 ftrace_shutdown(ops, 0); 6517 ops->flags |= FTRACE_OPS_FL_DELETED; 6518 ftrace_free_filter(ops); 6519 mutex_unlock(&ftrace_lock); 6520 } 6521 6522 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6523 { 6524 6525 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6526 d_tracer, NULL, &ftrace_avail_fops); 6527 6528 trace_create_file("enabled_functions", TRACE_MODE_READ, 6529 d_tracer, NULL, &ftrace_enabled_fops); 6530 6531 ftrace_create_filter_files(&global_ops, d_tracer); 6532 6533 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6534 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6535 NULL, 6536 &ftrace_graph_fops); 6537 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6538 NULL, 6539 &ftrace_graph_notrace_fops); 6540 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6541 6542 return 0; 6543 } 6544 6545 static int ftrace_cmp_ips(const void *a, const void *b) 6546 { 6547 const unsigned long *ipa = a; 6548 const unsigned long *ipb = b; 6549 6550 if (*ipa > *ipb) 6551 return 1; 6552 if (*ipa < *ipb) 6553 return -1; 6554 return 0; 6555 } 6556 6557 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6558 static void test_is_sorted(unsigned long *start, unsigned long count) 6559 { 6560 int i; 6561 6562 for (i = 1; i < count; i++) { 6563 if (WARN(start[i - 1] > start[i], 6564 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6565 (void *)start[i - 1], start[i - 1], 6566 (void *)start[i], start[i])) 6567 break; 6568 } 6569 if (i == count) 6570 pr_info("ftrace section at %px sorted properly\n", start); 6571 } 6572 #else 6573 static void test_is_sorted(unsigned long *start, unsigned long count) 6574 { 6575 } 6576 #endif 6577 6578 static int ftrace_process_locs(struct module *mod, 6579 unsigned long *start, 6580 unsigned long *end) 6581 { 6582 struct ftrace_page *start_pg; 6583 struct ftrace_page *pg; 6584 struct dyn_ftrace *rec; 6585 unsigned long count; 6586 unsigned long *p; 6587 unsigned long addr; 6588 unsigned long flags = 0; /* Shut up gcc */ 6589 int ret = -ENOMEM; 6590 6591 count = end - start; 6592 6593 if (!count) 6594 return 0; 6595 6596 /* 6597 * Sorting mcount in vmlinux at build time depend on 6598 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6599 * modules can not be sorted at build time. 6600 */ 6601 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6602 sort(start, count, sizeof(*start), 6603 ftrace_cmp_ips, NULL); 6604 } else { 6605 test_is_sorted(start, count); 6606 } 6607 6608 start_pg = ftrace_allocate_pages(count); 6609 if (!start_pg) 6610 return -ENOMEM; 6611 6612 mutex_lock(&ftrace_lock); 6613 6614 /* 6615 * Core and each module needs their own pages, as 6616 * modules will free them when they are removed. 6617 * Force a new page to be allocated for modules. 6618 */ 6619 if (!mod) { 6620 WARN_ON(ftrace_pages || ftrace_pages_start); 6621 /* First initialization */ 6622 ftrace_pages = ftrace_pages_start = start_pg; 6623 } else { 6624 if (!ftrace_pages) 6625 goto out; 6626 6627 if (WARN_ON(ftrace_pages->next)) { 6628 /* Hmm, we have free pages? */ 6629 while (ftrace_pages->next) 6630 ftrace_pages = ftrace_pages->next; 6631 } 6632 6633 ftrace_pages->next = start_pg; 6634 } 6635 6636 p = start; 6637 pg = start_pg; 6638 while (p < end) { 6639 unsigned long end_offset; 6640 addr = ftrace_call_adjust(*p++); 6641 /* 6642 * Some architecture linkers will pad between 6643 * the different mcount_loc sections of different 6644 * object files to satisfy alignments. 6645 * Skip any NULL pointers. 6646 */ 6647 if (!addr) 6648 continue; 6649 6650 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6651 if (end_offset > PAGE_SIZE << pg->order) { 6652 /* We should have allocated enough */ 6653 if (WARN_ON(!pg->next)) 6654 break; 6655 pg = pg->next; 6656 } 6657 6658 rec = &pg->records[pg->index++]; 6659 rec->ip = addr; 6660 } 6661 6662 /* We should have used all pages */ 6663 WARN_ON(pg->next); 6664 6665 /* Assign the last page to ftrace_pages */ 6666 ftrace_pages = pg; 6667 6668 /* 6669 * We only need to disable interrupts on start up 6670 * because we are modifying code that an interrupt 6671 * may execute, and the modification is not atomic. 6672 * But for modules, nothing runs the code we modify 6673 * until we are finished with it, and there's no 6674 * reason to cause large interrupt latencies while we do it. 6675 */ 6676 if (!mod) 6677 local_irq_save(flags); 6678 ftrace_update_code(mod, start_pg); 6679 if (!mod) 6680 local_irq_restore(flags); 6681 ret = 0; 6682 out: 6683 mutex_unlock(&ftrace_lock); 6684 6685 return ret; 6686 } 6687 6688 struct ftrace_mod_func { 6689 struct list_head list; 6690 char *name; 6691 unsigned long ip; 6692 unsigned int size; 6693 }; 6694 6695 struct ftrace_mod_map { 6696 struct rcu_head rcu; 6697 struct list_head list; 6698 struct module *mod; 6699 unsigned long start_addr; 6700 unsigned long end_addr; 6701 struct list_head funcs; 6702 unsigned int num_funcs; 6703 }; 6704 6705 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6706 unsigned long *value, char *type, 6707 char *name, char *module_name, 6708 int *exported) 6709 { 6710 struct ftrace_ops *op; 6711 6712 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6713 if (!op->trampoline || symnum--) 6714 continue; 6715 *value = op->trampoline; 6716 *type = 't'; 6717 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6718 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6719 *exported = 0; 6720 return 0; 6721 } 6722 6723 return -ERANGE; 6724 } 6725 6726 #ifdef CONFIG_MODULES 6727 6728 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6729 6730 static LIST_HEAD(ftrace_mod_maps); 6731 6732 static int referenced_filters(struct dyn_ftrace *rec) 6733 { 6734 struct ftrace_ops *ops; 6735 int cnt = 0; 6736 6737 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6738 if (ops_references_rec(ops, rec)) { 6739 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6740 continue; 6741 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6742 continue; 6743 cnt++; 6744 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6745 rec->flags |= FTRACE_FL_REGS; 6746 if (cnt == 1 && ops->trampoline) 6747 rec->flags |= FTRACE_FL_TRAMP; 6748 else 6749 rec->flags &= ~FTRACE_FL_TRAMP; 6750 } 6751 } 6752 6753 return cnt; 6754 } 6755 6756 static void 6757 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6758 { 6759 struct ftrace_func_entry *entry; 6760 struct dyn_ftrace *rec; 6761 int i; 6762 6763 if (ftrace_hash_empty(hash)) 6764 return; 6765 6766 for (i = 0; i < pg->index; i++) { 6767 rec = &pg->records[i]; 6768 entry = __ftrace_lookup_ip(hash, rec->ip); 6769 /* 6770 * Do not allow this rec to match again. 6771 * Yeah, it may waste some memory, but will be removed 6772 * if/when the hash is modified again. 6773 */ 6774 if (entry) 6775 entry->ip = 0; 6776 } 6777 } 6778 6779 /* Clear any records from hashes */ 6780 static void clear_mod_from_hashes(struct ftrace_page *pg) 6781 { 6782 struct trace_array *tr; 6783 6784 mutex_lock(&trace_types_lock); 6785 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6786 if (!tr->ops || !tr->ops->func_hash) 6787 continue; 6788 mutex_lock(&tr->ops->func_hash->regex_lock); 6789 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6790 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6791 mutex_unlock(&tr->ops->func_hash->regex_lock); 6792 } 6793 mutex_unlock(&trace_types_lock); 6794 } 6795 6796 static void ftrace_free_mod_map(struct rcu_head *rcu) 6797 { 6798 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6799 struct ftrace_mod_func *mod_func; 6800 struct ftrace_mod_func *n; 6801 6802 /* All the contents of mod_map are now not visible to readers */ 6803 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6804 kfree(mod_func->name); 6805 list_del(&mod_func->list); 6806 kfree(mod_func); 6807 } 6808 6809 kfree(mod_map); 6810 } 6811 6812 void ftrace_release_mod(struct module *mod) 6813 { 6814 struct ftrace_mod_map *mod_map; 6815 struct ftrace_mod_map *n; 6816 struct dyn_ftrace *rec; 6817 struct ftrace_page **last_pg; 6818 struct ftrace_page *tmp_page = NULL; 6819 struct ftrace_page *pg; 6820 6821 mutex_lock(&ftrace_lock); 6822 6823 if (ftrace_disabled) 6824 goto out_unlock; 6825 6826 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6827 if (mod_map->mod == mod) { 6828 list_del_rcu(&mod_map->list); 6829 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6830 break; 6831 } 6832 } 6833 6834 /* 6835 * Each module has its own ftrace_pages, remove 6836 * them from the list. 6837 */ 6838 last_pg = &ftrace_pages_start; 6839 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6840 rec = &pg->records[0]; 6841 if (within_module_core(rec->ip, mod) || 6842 within_module_init(rec->ip, mod)) { 6843 /* 6844 * As core pages are first, the first 6845 * page should never be a module page. 6846 */ 6847 if (WARN_ON(pg == ftrace_pages_start)) 6848 goto out_unlock; 6849 6850 /* Check if we are deleting the last page */ 6851 if (pg == ftrace_pages) 6852 ftrace_pages = next_to_ftrace_page(last_pg); 6853 6854 ftrace_update_tot_cnt -= pg->index; 6855 *last_pg = pg->next; 6856 6857 pg->next = tmp_page; 6858 tmp_page = pg; 6859 } else 6860 last_pg = &pg->next; 6861 } 6862 out_unlock: 6863 mutex_unlock(&ftrace_lock); 6864 6865 for (pg = tmp_page; pg; pg = tmp_page) { 6866 6867 /* Needs to be called outside of ftrace_lock */ 6868 clear_mod_from_hashes(pg); 6869 6870 if (pg->records) { 6871 free_pages((unsigned long)pg->records, pg->order); 6872 ftrace_number_of_pages -= 1 << pg->order; 6873 } 6874 tmp_page = pg->next; 6875 kfree(pg); 6876 ftrace_number_of_groups--; 6877 } 6878 } 6879 6880 void ftrace_module_enable(struct module *mod) 6881 { 6882 struct dyn_ftrace *rec; 6883 struct ftrace_page *pg; 6884 6885 mutex_lock(&ftrace_lock); 6886 6887 if (ftrace_disabled) 6888 goto out_unlock; 6889 6890 /* 6891 * If the tracing is enabled, go ahead and enable the record. 6892 * 6893 * The reason not to enable the record immediately is the 6894 * inherent check of ftrace_make_nop/ftrace_make_call for 6895 * correct previous instructions. Making first the NOP 6896 * conversion puts the module to the correct state, thus 6897 * passing the ftrace_make_call check. 6898 * 6899 * We also delay this to after the module code already set the 6900 * text to read-only, as we now need to set it back to read-write 6901 * so that we can modify the text. 6902 */ 6903 if (ftrace_start_up) 6904 ftrace_arch_code_modify_prepare(); 6905 6906 do_for_each_ftrace_rec(pg, rec) { 6907 int cnt; 6908 /* 6909 * do_for_each_ftrace_rec() is a double loop. 6910 * module text shares the pg. If a record is 6911 * not part of this module, then skip this pg, 6912 * which the "break" will do. 6913 */ 6914 if (!within_module_core(rec->ip, mod) && 6915 !within_module_init(rec->ip, mod)) 6916 break; 6917 6918 /* Weak functions should still be ignored */ 6919 if (!test_for_valid_rec(rec)) { 6920 /* Clear all other flags. Should not be enabled anyway */ 6921 rec->flags = FTRACE_FL_DISABLED; 6922 continue; 6923 } 6924 6925 cnt = 0; 6926 6927 /* 6928 * When adding a module, we need to check if tracers are 6929 * currently enabled and if they are, and can trace this record, 6930 * we need to enable the module functions as well as update the 6931 * reference counts for those function records. 6932 */ 6933 if (ftrace_start_up) 6934 cnt += referenced_filters(rec); 6935 6936 rec->flags &= ~FTRACE_FL_DISABLED; 6937 rec->flags += cnt; 6938 6939 if (ftrace_start_up && cnt) { 6940 int failed = __ftrace_replace_code(rec, 1); 6941 if (failed) { 6942 ftrace_bug(failed, rec); 6943 goto out_loop; 6944 } 6945 } 6946 6947 } while_for_each_ftrace_rec(); 6948 6949 out_loop: 6950 if (ftrace_start_up) 6951 ftrace_arch_code_modify_post_process(); 6952 6953 out_unlock: 6954 mutex_unlock(&ftrace_lock); 6955 6956 process_cached_mods(mod->name); 6957 } 6958 6959 void ftrace_module_init(struct module *mod) 6960 { 6961 int ret; 6962 6963 if (ftrace_disabled || !mod->num_ftrace_callsites) 6964 return; 6965 6966 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 6967 mod->ftrace_callsites + mod->num_ftrace_callsites); 6968 if (ret) 6969 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 6970 mod->name); 6971 } 6972 6973 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6974 struct dyn_ftrace *rec) 6975 { 6976 struct ftrace_mod_func *mod_func; 6977 unsigned long symsize; 6978 unsigned long offset; 6979 char str[KSYM_SYMBOL_LEN]; 6980 char *modname; 6981 const char *ret; 6982 6983 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6984 if (!ret) 6985 return; 6986 6987 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6988 if (!mod_func) 6989 return; 6990 6991 mod_func->name = kstrdup(str, GFP_KERNEL); 6992 if (!mod_func->name) { 6993 kfree(mod_func); 6994 return; 6995 } 6996 6997 mod_func->ip = rec->ip - offset; 6998 mod_func->size = symsize; 6999 7000 mod_map->num_funcs++; 7001 7002 list_add_rcu(&mod_func->list, &mod_map->funcs); 7003 } 7004 7005 static struct ftrace_mod_map * 7006 allocate_ftrace_mod_map(struct module *mod, 7007 unsigned long start, unsigned long end) 7008 { 7009 struct ftrace_mod_map *mod_map; 7010 7011 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7012 if (!mod_map) 7013 return NULL; 7014 7015 mod_map->mod = mod; 7016 mod_map->start_addr = start; 7017 mod_map->end_addr = end; 7018 mod_map->num_funcs = 0; 7019 7020 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7021 7022 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7023 7024 return mod_map; 7025 } 7026 7027 static const char * 7028 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7029 unsigned long addr, unsigned long *size, 7030 unsigned long *off, char *sym) 7031 { 7032 struct ftrace_mod_func *found_func = NULL; 7033 struct ftrace_mod_func *mod_func; 7034 7035 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7036 if (addr >= mod_func->ip && 7037 addr < mod_func->ip + mod_func->size) { 7038 found_func = mod_func; 7039 break; 7040 } 7041 } 7042 7043 if (found_func) { 7044 if (size) 7045 *size = found_func->size; 7046 if (off) 7047 *off = addr - found_func->ip; 7048 if (sym) 7049 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 7050 7051 return found_func->name; 7052 } 7053 7054 return NULL; 7055 } 7056 7057 const char * 7058 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7059 unsigned long *off, char **modname, char *sym) 7060 { 7061 struct ftrace_mod_map *mod_map; 7062 const char *ret = NULL; 7063 7064 /* mod_map is freed via call_rcu() */ 7065 preempt_disable(); 7066 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7067 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7068 if (ret) { 7069 if (modname) 7070 *modname = mod_map->mod->name; 7071 break; 7072 } 7073 } 7074 preempt_enable(); 7075 7076 return ret; 7077 } 7078 7079 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7080 char *type, char *name, 7081 char *module_name, int *exported) 7082 { 7083 struct ftrace_mod_map *mod_map; 7084 struct ftrace_mod_func *mod_func; 7085 int ret; 7086 7087 preempt_disable(); 7088 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7089 7090 if (symnum >= mod_map->num_funcs) { 7091 symnum -= mod_map->num_funcs; 7092 continue; 7093 } 7094 7095 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7096 if (symnum > 1) { 7097 symnum--; 7098 continue; 7099 } 7100 7101 *value = mod_func->ip; 7102 *type = 'T'; 7103 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7104 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7105 *exported = 1; 7106 preempt_enable(); 7107 return 0; 7108 } 7109 WARN_ON(1); 7110 break; 7111 } 7112 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7113 module_name, exported); 7114 preempt_enable(); 7115 return ret; 7116 } 7117 7118 #else 7119 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7120 struct dyn_ftrace *rec) { } 7121 static inline struct ftrace_mod_map * 7122 allocate_ftrace_mod_map(struct module *mod, 7123 unsigned long start, unsigned long end) 7124 { 7125 return NULL; 7126 } 7127 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7128 char *type, char *name, char *module_name, 7129 int *exported) 7130 { 7131 int ret; 7132 7133 preempt_disable(); 7134 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7135 module_name, exported); 7136 preempt_enable(); 7137 return ret; 7138 } 7139 #endif /* CONFIG_MODULES */ 7140 7141 struct ftrace_init_func { 7142 struct list_head list; 7143 unsigned long ip; 7144 }; 7145 7146 /* Clear any init ips from hashes */ 7147 static void 7148 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7149 { 7150 struct ftrace_func_entry *entry; 7151 7152 entry = ftrace_lookup_ip(hash, func->ip); 7153 /* 7154 * Do not allow this rec to match again. 7155 * Yeah, it may waste some memory, but will be removed 7156 * if/when the hash is modified again. 7157 */ 7158 if (entry) 7159 entry->ip = 0; 7160 } 7161 7162 static void 7163 clear_func_from_hashes(struct ftrace_init_func *func) 7164 { 7165 struct trace_array *tr; 7166 7167 mutex_lock(&trace_types_lock); 7168 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7169 if (!tr->ops || !tr->ops->func_hash) 7170 continue; 7171 mutex_lock(&tr->ops->func_hash->regex_lock); 7172 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7173 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7174 mutex_unlock(&tr->ops->func_hash->regex_lock); 7175 } 7176 mutex_unlock(&trace_types_lock); 7177 } 7178 7179 static void add_to_clear_hash_list(struct list_head *clear_list, 7180 struct dyn_ftrace *rec) 7181 { 7182 struct ftrace_init_func *func; 7183 7184 func = kmalloc(sizeof(*func), GFP_KERNEL); 7185 if (!func) { 7186 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7187 return; 7188 } 7189 7190 func->ip = rec->ip; 7191 list_add(&func->list, clear_list); 7192 } 7193 7194 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7195 { 7196 unsigned long start = (unsigned long)(start_ptr); 7197 unsigned long end = (unsigned long)(end_ptr); 7198 struct ftrace_page **last_pg = &ftrace_pages_start; 7199 struct ftrace_page *pg; 7200 struct dyn_ftrace *rec; 7201 struct dyn_ftrace key; 7202 struct ftrace_mod_map *mod_map = NULL; 7203 struct ftrace_init_func *func, *func_next; 7204 struct list_head clear_hash; 7205 7206 INIT_LIST_HEAD(&clear_hash); 7207 7208 key.ip = start; 7209 key.flags = end; /* overload flags, as it is unsigned long */ 7210 7211 mutex_lock(&ftrace_lock); 7212 7213 /* 7214 * If we are freeing module init memory, then check if 7215 * any tracer is active. If so, we need to save a mapping of 7216 * the module functions being freed with the address. 7217 */ 7218 if (mod && ftrace_ops_list != &ftrace_list_end) 7219 mod_map = allocate_ftrace_mod_map(mod, start, end); 7220 7221 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7222 if (end < pg->records[0].ip || 7223 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7224 continue; 7225 again: 7226 rec = bsearch(&key, pg->records, pg->index, 7227 sizeof(struct dyn_ftrace), 7228 ftrace_cmp_recs); 7229 if (!rec) 7230 continue; 7231 7232 /* rec will be cleared from hashes after ftrace_lock unlock */ 7233 add_to_clear_hash_list(&clear_hash, rec); 7234 7235 if (mod_map) 7236 save_ftrace_mod_rec(mod_map, rec); 7237 7238 pg->index--; 7239 ftrace_update_tot_cnt--; 7240 if (!pg->index) { 7241 *last_pg = pg->next; 7242 if (pg->records) { 7243 free_pages((unsigned long)pg->records, pg->order); 7244 ftrace_number_of_pages -= 1 << pg->order; 7245 } 7246 ftrace_number_of_groups--; 7247 kfree(pg); 7248 pg = container_of(last_pg, struct ftrace_page, next); 7249 if (!(*last_pg)) 7250 ftrace_pages = pg; 7251 continue; 7252 } 7253 memmove(rec, rec + 1, 7254 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7255 /* More than one function may be in this block */ 7256 goto again; 7257 } 7258 mutex_unlock(&ftrace_lock); 7259 7260 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7261 clear_func_from_hashes(func); 7262 kfree(func); 7263 } 7264 } 7265 7266 void __init ftrace_free_init_mem(void) 7267 { 7268 void *start = (void *)(&__init_begin); 7269 void *end = (void *)(&__init_end); 7270 7271 ftrace_boot_snapshot(); 7272 7273 ftrace_free_mem(NULL, start, end); 7274 } 7275 7276 int __init __weak ftrace_dyn_arch_init(void) 7277 { 7278 return 0; 7279 } 7280 7281 void __init ftrace_init(void) 7282 { 7283 extern unsigned long __start_mcount_loc[]; 7284 extern unsigned long __stop_mcount_loc[]; 7285 unsigned long count, flags; 7286 int ret; 7287 7288 local_irq_save(flags); 7289 ret = ftrace_dyn_arch_init(); 7290 local_irq_restore(flags); 7291 if (ret) 7292 goto failed; 7293 7294 count = __stop_mcount_loc - __start_mcount_loc; 7295 if (!count) { 7296 pr_info("ftrace: No functions to be traced?\n"); 7297 goto failed; 7298 } 7299 7300 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7301 count, count / ENTRIES_PER_PAGE + 1); 7302 7303 ret = ftrace_process_locs(NULL, 7304 __start_mcount_loc, 7305 __stop_mcount_loc); 7306 if (ret) { 7307 pr_warn("ftrace: failed to allocate entries for functions\n"); 7308 goto failed; 7309 } 7310 7311 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7312 ftrace_number_of_pages, ftrace_number_of_groups); 7313 7314 last_ftrace_enabled = ftrace_enabled = 1; 7315 7316 set_ftrace_early_filters(); 7317 7318 return; 7319 failed: 7320 ftrace_disabled = 1; 7321 } 7322 7323 /* Do nothing if arch does not support this */ 7324 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7325 { 7326 } 7327 7328 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7329 { 7330 unsigned long trampoline = ops->trampoline; 7331 7332 arch_ftrace_update_trampoline(ops); 7333 if (ops->trampoline && ops->trampoline != trampoline && 7334 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7335 /* Add to kallsyms before the perf events */ 7336 ftrace_add_trampoline_to_kallsyms(ops); 7337 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7338 ops->trampoline, ops->trampoline_size, false, 7339 FTRACE_TRAMPOLINE_SYM); 7340 /* 7341 * Record the perf text poke event after the ksymbol register 7342 * event. 7343 */ 7344 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7345 (void *)ops->trampoline, 7346 ops->trampoline_size); 7347 } 7348 } 7349 7350 void ftrace_init_trace_array(struct trace_array *tr) 7351 { 7352 INIT_LIST_HEAD(&tr->func_probes); 7353 INIT_LIST_HEAD(&tr->mod_trace); 7354 INIT_LIST_HEAD(&tr->mod_notrace); 7355 } 7356 #else 7357 7358 struct ftrace_ops global_ops = { 7359 .func = ftrace_stub, 7360 .flags = FTRACE_OPS_FL_INITIALIZED | 7361 FTRACE_OPS_FL_PID, 7362 }; 7363 7364 static int __init ftrace_nodyn_init(void) 7365 { 7366 ftrace_enabled = 1; 7367 return 0; 7368 } 7369 core_initcall(ftrace_nodyn_init); 7370 7371 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7372 static inline void ftrace_startup_all(int command) { } 7373 7374 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7375 { 7376 } 7377 7378 #endif /* CONFIG_DYNAMIC_FTRACE */ 7379 7380 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7381 { 7382 tr->ops = &global_ops; 7383 tr->ops->private = tr; 7384 ftrace_init_trace_array(tr); 7385 } 7386 7387 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7388 { 7389 /* If we filter on pids, update to use the pid function */ 7390 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7391 if (WARN_ON(tr->ops->func != ftrace_stub)) 7392 printk("ftrace ops had %pS for function\n", 7393 tr->ops->func); 7394 } 7395 tr->ops->func = func; 7396 tr->ops->private = tr; 7397 } 7398 7399 void ftrace_reset_array_ops(struct trace_array *tr) 7400 { 7401 tr->ops->func = ftrace_stub; 7402 } 7403 7404 static nokprobe_inline void 7405 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7406 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7407 { 7408 struct pt_regs *regs = ftrace_get_regs(fregs); 7409 struct ftrace_ops *op; 7410 int bit; 7411 7412 /* 7413 * The ftrace_test_and_set_recursion() will disable preemption, 7414 * which is required since some of the ops may be dynamically 7415 * allocated, they must be freed after a synchronize_rcu(). 7416 */ 7417 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7418 if (bit < 0) 7419 return; 7420 7421 do_for_each_ftrace_op(op, ftrace_ops_list) { 7422 /* Stub functions don't need to be called nor tested */ 7423 if (op->flags & FTRACE_OPS_FL_STUB) 7424 continue; 7425 /* 7426 * Check the following for each ops before calling their func: 7427 * if RCU flag is set, then rcu_is_watching() must be true 7428 * if PER_CPU is set, then ftrace_function_local_disable() 7429 * must be false 7430 * Otherwise test if the ip matches the ops filter 7431 * 7432 * If any of the above fails then the op->func() is not executed. 7433 */ 7434 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7435 ftrace_ops_test(op, ip, regs)) { 7436 if (FTRACE_WARN_ON(!op->func)) { 7437 pr_warn("op=%p %pS\n", op, op); 7438 goto out; 7439 } 7440 op->func(ip, parent_ip, op, fregs); 7441 } 7442 } while_for_each_ftrace_op(op); 7443 out: 7444 trace_clear_recursion(bit); 7445 } 7446 7447 /* 7448 * Some archs only support passing ip and parent_ip. Even though 7449 * the list function ignores the op parameter, we do not want any 7450 * C side effects, where a function is called without the caller 7451 * sending a third parameter. 7452 * Archs are to support both the regs and ftrace_ops at the same time. 7453 * If they support ftrace_ops, it is assumed they support regs. 7454 * If call backs want to use regs, they must either check for regs 7455 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7456 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7457 * An architecture can pass partial regs with ftrace_ops and still 7458 * set the ARCH_SUPPORTS_FTRACE_OPS. 7459 * 7460 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7461 * arch_ftrace_ops_list_func. 7462 */ 7463 #if ARCH_SUPPORTS_FTRACE_OPS 7464 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7465 struct ftrace_ops *op, struct ftrace_regs *fregs) 7466 { 7467 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7468 } 7469 #else 7470 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7471 { 7472 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7473 } 7474 #endif 7475 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7476 7477 /* 7478 * If there's only one function registered but it does not support 7479 * recursion, needs RCU protection and/or requires per cpu handling, then 7480 * this function will be called by the mcount trampoline. 7481 */ 7482 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7483 struct ftrace_ops *op, struct ftrace_regs *fregs) 7484 { 7485 int bit; 7486 7487 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7488 if (bit < 0) 7489 return; 7490 7491 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7492 op->func(ip, parent_ip, op, fregs); 7493 7494 trace_clear_recursion(bit); 7495 } 7496 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7497 7498 /** 7499 * ftrace_ops_get_func - get the function a trampoline should call 7500 * @ops: the ops to get the function for 7501 * 7502 * Normally the mcount trampoline will call the ops->func, but there 7503 * are times that it should not. For example, if the ops does not 7504 * have its own recursion protection, then it should call the 7505 * ftrace_ops_assist_func() instead. 7506 * 7507 * Returns the function that the trampoline should call for @ops. 7508 */ 7509 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7510 { 7511 /* 7512 * If the function does not handle recursion or needs to be RCU safe, 7513 * then we need to call the assist handler. 7514 */ 7515 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7516 FTRACE_OPS_FL_RCU)) 7517 return ftrace_ops_assist_func; 7518 7519 return ops->func; 7520 } 7521 7522 static void 7523 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7524 struct task_struct *prev, 7525 struct task_struct *next, 7526 unsigned int prev_state) 7527 { 7528 struct trace_array *tr = data; 7529 struct trace_pid_list *pid_list; 7530 struct trace_pid_list *no_pid_list; 7531 7532 pid_list = rcu_dereference_sched(tr->function_pids); 7533 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7534 7535 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7536 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7537 FTRACE_PID_IGNORE); 7538 else 7539 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7540 next->pid); 7541 } 7542 7543 static void 7544 ftrace_pid_follow_sched_process_fork(void *data, 7545 struct task_struct *self, 7546 struct task_struct *task) 7547 { 7548 struct trace_pid_list *pid_list; 7549 struct trace_array *tr = data; 7550 7551 pid_list = rcu_dereference_sched(tr->function_pids); 7552 trace_filter_add_remove_task(pid_list, self, task); 7553 7554 pid_list = rcu_dereference_sched(tr->function_no_pids); 7555 trace_filter_add_remove_task(pid_list, self, task); 7556 } 7557 7558 static void 7559 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7560 { 7561 struct trace_pid_list *pid_list; 7562 struct trace_array *tr = data; 7563 7564 pid_list = rcu_dereference_sched(tr->function_pids); 7565 trace_filter_add_remove_task(pid_list, NULL, task); 7566 7567 pid_list = rcu_dereference_sched(tr->function_no_pids); 7568 trace_filter_add_remove_task(pid_list, NULL, task); 7569 } 7570 7571 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7572 { 7573 if (enable) { 7574 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7575 tr); 7576 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7577 tr); 7578 } else { 7579 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7580 tr); 7581 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7582 tr); 7583 } 7584 } 7585 7586 static void clear_ftrace_pids(struct trace_array *tr, int type) 7587 { 7588 struct trace_pid_list *pid_list; 7589 struct trace_pid_list *no_pid_list; 7590 int cpu; 7591 7592 pid_list = rcu_dereference_protected(tr->function_pids, 7593 lockdep_is_held(&ftrace_lock)); 7594 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7595 lockdep_is_held(&ftrace_lock)); 7596 7597 /* Make sure there's something to do */ 7598 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7599 return; 7600 7601 /* See if the pids still need to be checked after this */ 7602 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7603 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7604 for_each_possible_cpu(cpu) 7605 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7606 } 7607 7608 if (type & TRACE_PIDS) 7609 rcu_assign_pointer(tr->function_pids, NULL); 7610 7611 if (type & TRACE_NO_PIDS) 7612 rcu_assign_pointer(tr->function_no_pids, NULL); 7613 7614 /* Wait till all users are no longer using pid filtering */ 7615 synchronize_rcu(); 7616 7617 if ((type & TRACE_PIDS) && pid_list) 7618 trace_pid_list_free(pid_list); 7619 7620 if ((type & TRACE_NO_PIDS) && no_pid_list) 7621 trace_pid_list_free(no_pid_list); 7622 } 7623 7624 void ftrace_clear_pids(struct trace_array *tr) 7625 { 7626 mutex_lock(&ftrace_lock); 7627 7628 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7629 7630 mutex_unlock(&ftrace_lock); 7631 } 7632 7633 static void ftrace_pid_reset(struct trace_array *tr, int type) 7634 { 7635 mutex_lock(&ftrace_lock); 7636 clear_ftrace_pids(tr, type); 7637 7638 ftrace_update_pid_func(); 7639 ftrace_startup_all(0); 7640 7641 mutex_unlock(&ftrace_lock); 7642 } 7643 7644 /* Greater than any max PID */ 7645 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7646 7647 static void *fpid_start(struct seq_file *m, loff_t *pos) 7648 __acquires(RCU) 7649 { 7650 struct trace_pid_list *pid_list; 7651 struct trace_array *tr = m->private; 7652 7653 mutex_lock(&ftrace_lock); 7654 rcu_read_lock_sched(); 7655 7656 pid_list = rcu_dereference_sched(tr->function_pids); 7657 7658 if (!pid_list) 7659 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7660 7661 return trace_pid_start(pid_list, pos); 7662 } 7663 7664 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7665 { 7666 struct trace_array *tr = m->private; 7667 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7668 7669 if (v == FTRACE_NO_PIDS) { 7670 (*pos)++; 7671 return NULL; 7672 } 7673 return trace_pid_next(pid_list, v, pos); 7674 } 7675 7676 static void fpid_stop(struct seq_file *m, void *p) 7677 __releases(RCU) 7678 { 7679 rcu_read_unlock_sched(); 7680 mutex_unlock(&ftrace_lock); 7681 } 7682 7683 static int fpid_show(struct seq_file *m, void *v) 7684 { 7685 if (v == FTRACE_NO_PIDS) { 7686 seq_puts(m, "no pid\n"); 7687 return 0; 7688 } 7689 7690 return trace_pid_show(m, v); 7691 } 7692 7693 static const struct seq_operations ftrace_pid_sops = { 7694 .start = fpid_start, 7695 .next = fpid_next, 7696 .stop = fpid_stop, 7697 .show = fpid_show, 7698 }; 7699 7700 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7701 __acquires(RCU) 7702 { 7703 struct trace_pid_list *pid_list; 7704 struct trace_array *tr = m->private; 7705 7706 mutex_lock(&ftrace_lock); 7707 rcu_read_lock_sched(); 7708 7709 pid_list = rcu_dereference_sched(tr->function_no_pids); 7710 7711 if (!pid_list) 7712 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7713 7714 return trace_pid_start(pid_list, pos); 7715 } 7716 7717 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7718 { 7719 struct trace_array *tr = m->private; 7720 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7721 7722 if (v == FTRACE_NO_PIDS) { 7723 (*pos)++; 7724 return NULL; 7725 } 7726 return trace_pid_next(pid_list, v, pos); 7727 } 7728 7729 static const struct seq_operations ftrace_no_pid_sops = { 7730 .start = fnpid_start, 7731 .next = fnpid_next, 7732 .stop = fpid_stop, 7733 .show = fpid_show, 7734 }; 7735 7736 static int pid_open(struct inode *inode, struct file *file, int type) 7737 { 7738 const struct seq_operations *seq_ops; 7739 struct trace_array *tr = inode->i_private; 7740 struct seq_file *m; 7741 int ret = 0; 7742 7743 ret = tracing_check_open_get_tr(tr); 7744 if (ret) 7745 return ret; 7746 7747 if ((file->f_mode & FMODE_WRITE) && 7748 (file->f_flags & O_TRUNC)) 7749 ftrace_pid_reset(tr, type); 7750 7751 switch (type) { 7752 case TRACE_PIDS: 7753 seq_ops = &ftrace_pid_sops; 7754 break; 7755 case TRACE_NO_PIDS: 7756 seq_ops = &ftrace_no_pid_sops; 7757 break; 7758 default: 7759 trace_array_put(tr); 7760 WARN_ON_ONCE(1); 7761 return -EINVAL; 7762 } 7763 7764 ret = seq_open(file, seq_ops); 7765 if (ret < 0) { 7766 trace_array_put(tr); 7767 } else { 7768 m = file->private_data; 7769 /* copy tr over to seq ops */ 7770 m->private = tr; 7771 } 7772 7773 return ret; 7774 } 7775 7776 static int 7777 ftrace_pid_open(struct inode *inode, struct file *file) 7778 { 7779 return pid_open(inode, file, TRACE_PIDS); 7780 } 7781 7782 static int 7783 ftrace_no_pid_open(struct inode *inode, struct file *file) 7784 { 7785 return pid_open(inode, file, TRACE_NO_PIDS); 7786 } 7787 7788 static void ignore_task_cpu(void *data) 7789 { 7790 struct trace_array *tr = data; 7791 struct trace_pid_list *pid_list; 7792 struct trace_pid_list *no_pid_list; 7793 7794 /* 7795 * This function is called by on_each_cpu() while the 7796 * event_mutex is held. 7797 */ 7798 pid_list = rcu_dereference_protected(tr->function_pids, 7799 mutex_is_locked(&ftrace_lock)); 7800 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7801 mutex_is_locked(&ftrace_lock)); 7802 7803 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7804 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7805 FTRACE_PID_IGNORE); 7806 else 7807 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7808 current->pid); 7809 } 7810 7811 static ssize_t 7812 pid_write(struct file *filp, const char __user *ubuf, 7813 size_t cnt, loff_t *ppos, int type) 7814 { 7815 struct seq_file *m = filp->private_data; 7816 struct trace_array *tr = m->private; 7817 struct trace_pid_list *filtered_pids; 7818 struct trace_pid_list *other_pids; 7819 struct trace_pid_list *pid_list; 7820 ssize_t ret; 7821 7822 if (!cnt) 7823 return 0; 7824 7825 mutex_lock(&ftrace_lock); 7826 7827 switch (type) { 7828 case TRACE_PIDS: 7829 filtered_pids = rcu_dereference_protected(tr->function_pids, 7830 lockdep_is_held(&ftrace_lock)); 7831 other_pids = rcu_dereference_protected(tr->function_no_pids, 7832 lockdep_is_held(&ftrace_lock)); 7833 break; 7834 case TRACE_NO_PIDS: 7835 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7836 lockdep_is_held(&ftrace_lock)); 7837 other_pids = rcu_dereference_protected(tr->function_pids, 7838 lockdep_is_held(&ftrace_lock)); 7839 break; 7840 default: 7841 ret = -EINVAL; 7842 WARN_ON_ONCE(1); 7843 goto out; 7844 } 7845 7846 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7847 if (ret < 0) 7848 goto out; 7849 7850 switch (type) { 7851 case TRACE_PIDS: 7852 rcu_assign_pointer(tr->function_pids, pid_list); 7853 break; 7854 case TRACE_NO_PIDS: 7855 rcu_assign_pointer(tr->function_no_pids, pid_list); 7856 break; 7857 } 7858 7859 7860 if (filtered_pids) { 7861 synchronize_rcu(); 7862 trace_pid_list_free(filtered_pids); 7863 } else if (pid_list && !other_pids) { 7864 /* Register a probe to set whether to ignore the tracing of a task */ 7865 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7866 } 7867 7868 /* 7869 * Ignoring of pids is done at task switch. But we have to 7870 * check for those tasks that are currently running. 7871 * Always do this in case a pid was appended or removed. 7872 */ 7873 on_each_cpu(ignore_task_cpu, tr, 1); 7874 7875 ftrace_update_pid_func(); 7876 ftrace_startup_all(0); 7877 out: 7878 mutex_unlock(&ftrace_lock); 7879 7880 if (ret > 0) 7881 *ppos += ret; 7882 7883 return ret; 7884 } 7885 7886 static ssize_t 7887 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7888 size_t cnt, loff_t *ppos) 7889 { 7890 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7891 } 7892 7893 static ssize_t 7894 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7895 size_t cnt, loff_t *ppos) 7896 { 7897 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7898 } 7899 7900 static int 7901 ftrace_pid_release(struct inode *inode, struct file *file) 7902 { 7903 struct trace_array *tr = inode->i_private; 7904 7905 trace_array_put(tr); 7906 7907 return seq_release(inode, file); 7908 } 7909 7910 static const struct file_operations ftrace_pid_fops = { 7911 .open = ftrace_pid_open, 7912 .write = ftrace_pid_write, 7913 .read = seq_read, 7914 .llseek = tracing_lseek, 7915 .release = ftrace_pid_release, 7916 }; 7917 7918 static const struct file_operations ftrace_no_pid_fops = { 7919 .open = ftrace_no_pid_open, 7920 .write = ftrace_no_pid_write, 7921 .read = seq_read, 7922 .llseek = tracing_lseek, 7923 .release = ftrace_pid_release, 7924 }; 7925 7926 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7927 { 7928 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 7929 tr, &ftrace_pid_fops); 7930 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 7931 d_tracer, tr, &ftrace_no_pid_fops); 7932 } 7933 7934 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7935 struct dentry *d_tracer) 7936 { 7937 /* Only the top level directory has the dyn_tracefs and profile */ 7938 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7939 7940 ftrace_init_dyn_tracefs(d_tracer); 7941 ftrace_profile_tracefs(d_tracer); 7942 } 7943 7944 /** 7945 * ftrace_kill - kill ftrace 7946 * 7947 * This function should be used by panic code. It stops ftrace 7948 * but in a not so nice way. If you need to simply kill ftrace 7949 * from a non-atomic section, use ftrace_kill. 7950 */ 7951 void ftrace_kill(void) 7952 { 7953 ftrace_disabled = 1; 7954 ftrace_enabled = 0; 7955 ftrace_trace_function = ftrace_stub; 7956 } 7957 7958 /** 7959 * ftrace_is_dead - Test if ftrace is dead or not. 7960 * 7961 * Returns 1 if ftrace is "dead", zero otherwise. 7962 */ 7963 int ftrace_is_dead(void) 7964 { 7965 return ftrace_disabled; 7966 } 7967 7968 /** 7969 * register_ftrace_function - register a function for profiling 7970 * @ops: ops structure that holds the function for profiling. 7971 * 7972 * Register a function to be called by all functions in the 7973 * kernel. 7974 * 7975 * Note: @ops->func and all the functions it calls must be labeled 7976 * with "notrace", otherwise it will go into a 7977 * recursive loop. 7978 */ 7979 int register_ftrace_function(struct ftrace_ops *ops) 7980 { 7981 int ret; 7982 7983 ftrace_ops_init(ops); 7984 7985 mutex_lock(&ftrace_lock); 7986 7987 ret = ftrace_startup(ops, 0); 7988 7989 mutex_unlock(&ftrace_lock); 7990 7991 return ret; 7992 } 7993 EXPORT_SYMBOL_GPL(register_ftrace_function); 7994 7995 /** 7996 * unregister_ftrace_function - unregister a function for profiling. 7997 * @ops: ops structure that holds the function to unregister 7998 * 7999 * Unregister a function that was added to be called by ftrace profiling. 8000 */ 8001 int unregister_ftrace_function(struct ftrace_ops *ops) 8002 { 8003 int ret; 8004 8005 mutex_lock(&ftrace_lock); 8006 ret = ftrace_shutdown(ops, 0); 8007 mutex_unlock(&ftrace_lock); 8008 8009 return ret; 8010 } 8011 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8012 8013 static int symbols_cmp(const void *a, const void *b) 8014 { 8015 const char **str_a = (const char **) a; 8016 const char **str_b = (const char **) b; 8017 8018 return strcmp(*str_a, *str_b); 8019 } 8020 8021 struct kallsyms_data { 8022 unsigned long *addrs; 8023 const char **syms; 8024 size_t cnt; 8025 size_t found; 8026 }; 8027 8028 static int kallsyms_callback(void *data, const char *name, 8029 struct module *mod, unsigned long addr) 8030 { 8031 struct kallsyms_data *args = data; 8032 const char **sym; 8033 int idx; 8034 8035 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8036 if (!sym) 8037 return 0; 8038 8039 idx = sym - args->syms; 8040 if (args->addrs[idx]) 8041 return 0; 8042 8043 addr = ftrace_location(addr); 8044 if (!addr) 8045 return 0; 8046 8047 args->addrs[idx] = addr; 8048 args->found++; 8049 return args->found == args->cnt ? 1 : 0; 8050 } 8051 8052 /** 8053 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8054 * 8055 * @sorted_syms: array of symbols pointers symbols to resolve, 8056 * must be alphabetically sorted 8057 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8058 * @addrs: array for storing resulting addresses 8059 * 8060 * This function looks up addresses for array of symbols provided in 8061 * @syms array (must be alphabetically sorted) and stores them in 8062 * @addrs array, which needs to be big enough to store at least @cnt 8063 * addresses. 8064 * 8065 * This function returns 0 if all provided symbols are found, 8066 * -ESRCH otherwise. 8067 */ 8068 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8069 { 8070 struct kallsyms_data args; 8071 int err; 8072 8073 memset(addrs, 0, sizeof(*addrs) * cnt); 8074 args.addrs = addrs; 8075 args.syms = sorted_syms; 8076 args.cnt = cnt; 8077 args.found = 0; 8078 err = kallsyms_on_each_symbol(kallsyms_callback, &args); 8079 if (err < 0) 8080 return err; 8081 return args.found == args.cnt ? 0 : -ESRCH; 8082 } 8083 8084 #ifdef CONFIG_SYSCTL 8085 8086 #ifdef CONFIG_DYNAMIC_FTRACE 8087 static void ftrace_startup_sysctl(void) 8088 { 8089 int command; 8090 8091 if (unlikely(ftrace_disabled)) 8092 return; 8093 8094 /* Force update next time */ 8095 saved_ftrace_func = NULL; 8096 /* ftrace_start_up is true if we want ftrace running */ 8097 if (ftrace_start_up) { 8098 command = FTRACE_UPDATE_CALLS; 8099 if (ftrace_graph_active) 8100 command |= FTRACE_START_FUNC_RET; 8101 ftrace_startup_enable(command); 8102 } 8103 } 8104 8105 static void ftrace_shutdown_sysctl(void) 8106 { 8107 int command; 8108 8109 if (unlikely(ftrace_disabled)) 8110 return; 8111 8112 /* ftrace_start_up is true if ftrace is running */ 8113 if (ftrace_start_up) { 8114 command = FTRACE_DISABLE_CALLS; 8115 if (ftrace_graph_active) 8116 command |= FTRACE_STOP_FUNC_RET; 8117 ftrace_run_update_code(command); 8118 } 8119 } 8120 #else 8121 # define ftrace_startup_sysctl() do { } while (0) 8122 # define ftrace_shutdown_sysctl() do { } while (0) 8123 #endif /* CONFIG_DYNAMIC_FTRACE */ 8124 8125 static bool is_permanent_ops_registered(void) 8126 { 8127 struct ftrace_ops *op; 8128 8129 do_for_each_ftrace_op(op, ftrace_ops_list) { 8130 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8131 return true; 8132 } while_for_each_ftrace_op(op); 8133 8134 return false; 8135 } 8136 8137 static int 8138 ftrace_enable_sysctl(struct ctl_table *table, int write, 8139 void *buffer, size_t *lenp, loff_t *ppos) 8140 { 8141 int ret = -ENODEV; 8142 8143 mutex_lock(&ftrace_lock); 8144 8145 if (unlikely(ftrace_disabled)) 8146 goto out; 8147 8148 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8149 8150 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8151 goto out; 8152 8153 if (ftrace_enabled) { 8154 8155 /* we are starting ftrace again */ 8156 if (rcu_dereference_protected(ftrace_ops_list, 8157 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8158 update_ftrace_function(); 8159 8160 ftrace_startup_sysctl(); 8161 8162 } else { 8163 if (is_permanent_ops_registered()) { 8164 ftrace_enabled = true; 8165 ret = -EBUSY; 8166 goto out; 8167 } 8168 8169 /* stopping ftrace calls (just send to ftrace_stub) */ 8170 ftrace_trace_function = ftrace_stub; 8171 8172 ftrace_shutdown_sysctl(); 8173 } 8174 8175 last_ftrace_enabled = !!ftrace_enabled; 8176 out: 8177 mutex_unlock(&ftrace_lock); 8178 return ret; 8179 } 8180 8181 static struct ctl_table ftrace_sysctls[] = { 8182 { 8183 .procname = "ftrace_enabled", 8184 .data = &ftrace_enabled, 8185 .maxlen = sizeof(int), 8186 .mode = 0644, 8187 .proc_handler = ftrace_enable_sysctl, 8188 }, 8189 {} 8190 }; 8191 8192 static int __init ftrace_sysctl_init(void) 8193 { 8194 register_sysctl_init("kernel", ftrace_sysctls); 8195 return 0; 8196 } 8197 late_initcall(ftrace_sysctl_init); 8198 #endif 8199