1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_BITS 7 66 #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS) 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 #if ARCH_SUPPORTS_FTRACE_OPS 125 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct pt_regs *regs); 127 #else 128 /* See comment below, where ftrace_ops_list_func is defined */ 129 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 130 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 131 #endif 132 133 static inline void ftrace_ops_init(struct ftrace_ops *ops) 134 { 135 #ifdef CONFIG_DYNAMIC_FTRACE 136 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 137 mutex_init(&ops->local_hash.regex_lock); 138 ops->func_hash = &ops->local_hash; 139 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 140 } 141 #endif 142 } 143 144 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 145 struct ftrace_ops *op, struct pt_regs *regs) 146 { 147 struct trace_array *tr = op->private; 148 149 if (tr && this_cpu_read(tr->trace_buffer.data->ftrace_ignore_pid)) 150 return; 151 152 op->saved_func(ip, parent_ip, op, regs); 153 } 154 155 static void ftrace_sync(struct work_struct *work) 156 { 157 /* 158 * This function is just a stub to implement a hard force 159 * of synchronize_rcu(). This requires synchronizing 160 * tasks even in userspace and idle. 161 * 162 * Yes, function tracing is rude. 163 */ 164 } 165 166 static void ftrace_sync_ipi(void *data) 167 { 168 /* Probably not needed, but do it anyway */ 169 smp_rmb(); 170 } 171 172 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 173 { 174 /* 175 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 176 * then it needs to call the list anyway. 177 */ 178 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 179 FTRACE_FORCE_LIST_FUNC) 180 return ftrace_ops_list_func; 181 182 return ftrace_ops_get_func(ops); 183 } 184 185 static void update_ftrace_function(void) 186 { 187 ftrace_func_t func; 188 189 /* 190 * Prepare the ftrace_ops that the arch callback will use. 191 * If there's only one ftrace_ops registered, the ftrace_ops_list 192 * will point to the ops we want. 193 */ 194 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 195 lockdep_is_held(&ftrace_lock)); 196 197 /* If there's no ftrace_ops registered, just call the stub function */ 198 if (set_function_trace_op == &ftrace_list_end) { 199 func = ftrace_stub; 200 201 /* 202 * If we are at the end of the list and this ops is 203 * recursion safe and not dynamic and the arch supports passing ops, 204 * then have the mcount trampoline call the function directly. 205 */ 206 } else if (rcu_dereference_protected(ftrace_ops_list->next, 207 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 208 func = ftrace_ops_get_list_func(ftrace_ops_list); 209 210 } else { 211 /* Just use the default ftrace_ops */ 212 set_function_trace_op = &ftrace_list_end; 213 func = ftrace_ops_list_func; 214 } 215 216 update_function_graph_func(); 217 218 /* If there's no change, then do nothing more here */ 219 if (ftrace_trace_function == func) 220 return; 221 222 /* 223 * If we are using the list function, it doesn't care 224 * about the function_trace_ops. 225 */ 226 if (func == ftrace_ops_list_func) { 227 ftrace_trace_function = func; 228 /* 229 * Don't even bother setting function_trace_ops, 230 * it would be racy to do so anyway. 231 */ 232 return; 233 } 234 235 #ifndef CONFIG_DYNAMIC_FTRACE 236 /* 237 * For static tracing, we need to be a bit more careful. 238 * The function change takes affect immediately. Thus, 239 * we need to coorditate the setting of the function_trace_ops 240 * with the setting of the ftrace_trace_function. 241 * 242 * Set the function to the list ops, which will call the 243 * function we want, albeit indirectly, but it handles the 244 * ftrace_ops and doesn't depend on function_trace_op. 245 */ 246 ftrace_trace_function = ftrace_ops_list_func; 247 /* 248 * Make sure all CPUs see this. Yes this is slow, but static 249 * tracing is slow and nasty to have enabled. 250 */ 251 schedule_on_each_cpu(ftrace_sync); 252 /* Now all cpus are using the list ops. */ 253 function_trace_op = set_function_trace_op; 254 /* Make sure the function_trace_op is visible on all CPUs */ 255 smp_wmb(); 256 /* Nasty way to force a rmb on all cpus */ 257 smp_call_function(ftrace_sync_ipi, NULL, 1); 258 /* OK, we are all set to update the ftrace_trace_function now! */ 259 #endif /* !CONFIG_DYNAMIC_FTRACE */ 260 261 ftrace_trace_function = func; 262 } 263 264 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 265 struct ftrace_ops *ops) 266 { 267 rcu_assign_pointer(ops->next, *list); 268 269 /* 270 * We are entering ops into the list but another 271 * CPU might be walking that list. We need to make sure 272 * the ops->next pointer is valid before another CPU sees 273 * the ops pointer included into the list. 274 */ 275 rcu_assign_pointer(*list, ops); 276 } 277 278 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 279 struct ftrace_ops *ops) 280 { 281 struct ftrace_ops **p; 282 283 /* 284 * If we are removing the last function, then simply point 285 * to the ftrace_stub. 286 */ 287 if (rcu_dereference_protected(*list, 288 lockdep_is_held(&ftrace_lock)) == ops && 289 rcu_dereference_protected(ops->next, 290 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 291 *list = &ftrace_list_end; 292 return 0; 293 } 294 295 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 296 if (*p == ops) 297 break; 298 299 if (*p != ops) 300 return -1; 301 302 *p = (*p)->next; 303 return 0; 304 } 305 306 static void ftrace_update_trampoline(struct ftrace_ops *ops); 307 308 int __register_ftrace_function(struct ftrace_ops *ops) 309 { 310 if (ops->flags & FTRACE_OPS_FL_DELETED) 311 return -EINVAL; 312 313 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 314 return -EBUSY; 315 316 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 317 /* 318 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 319 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 320 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 321 */ 322 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 323 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 324 return -EINVAL; 325 326 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 327 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 328 #endif 329 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 330 return -EBUSY; 331 332 if (!core_kernel_data((unsigned long)ops)) 333 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 334 335 add_ftrace_ops(&ftrace_ops_list, ops); 336 337 /* Always save the function, and reset at unregistering */ 338 ops->saved_func = ops->func; 339 340 if (ftrace_pids_enabled(ops)) 341 ops->func = ftrace_pid_func; 342 343 ftrace_update_trampoline(ops); 344 345 if (ftrace_enabled) 346 update_ftrace_function(); 347 348 return 0; 349 } 350 351 int __unregister_ftrace_function(struct ftrace_ops *ops) 352 { 353 int ret; 354 355 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 356 return -EBUSY; 357 358 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 359 360 if (ret < 0) 361 return ret; 362 363 if (ftrace_enabled) 364 update_ftrace_function(); 365 366 ops->func = ops->saved_func; 367 368 return 0; 369 } 370 371 static void ftrace_update_pid_func(void) 372 { 373 struct ftrace_ops *op; 374 375 /* Only do something if we are tracing something */ 376 if (ftrace_trace_function == ftrace_stub) 377 return; 378 379 do_for_each_ftrace_op(op, ftrace_ops_list) { 380 if (op->flags & FTRACE_OPS_FL_PID) { 381 op->func = ftrace_pids_enabled(op) ? 382 ftrace_pid_func : op->saved_func; 383 ftrace_update_trampoline(op); 384 } 385 } while_for_each_ftrace_op(op); 386 387 update_ftrace_function(); 388 } 389 390 #ifdef CONFIG_FUNCTION_PROFILER 391 struct ftrace_profile { 392 struct hlist_node node; 393 unsigned long ip; 394 unsigned long counter; 395 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 396 unsigned long long time; 397 unsigned long long time_squared; 398 #endif 399 }; 400 401 struct ftrace_profile_page { 402 struct ftrace_profile_page *next; 403 unsigned long index; 404 struct ftrace_profile records[]; 405 }; 406 407 struct ftrace_profile_stat { 408 atomic_t disabled; 409 struct hlist_head *hash; 410 struct ftrace_profile_page *pages; 411 struct ftrace_profile_page *start; 412 struct tracer_stat stat; 413 }; 414 415 #define PROFILE_RECORDS_SIZE \ 416 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 417 418 #define PROFILES_PER_PAGE \ 419 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 420 421 static int ftrace_profile_enabled __read_mostly; 422 423 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 424 static DEFINE_MUTEX(ftrace_profile_lock); 425 426 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 427 428 #define FTRACE_PROFILE_HASH_BITS 10 429 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 430 431 static void * 432 function_stat_next(void *v, int idx) 433 { 434 struct ftrace_profile *rec = v; 435 struct ftrace_profile_page *pg; 436 437 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 438 439 again: 440 if (idx != 0) 441 rec++; 442 443 if ((void *)rec >= (void *)&pg->records[pg->index]) { 444 pg = pg->next; 445 if (!pg) 446 return NULL; 447 rec = &pg->records[0]; 448 if (!rec->counter) 449 goto again; 450 } 451 452 return rec; 453 } 454 455 static void *function_stat_start(struct tracer_stat *trace) 456 { 457 struct ftrace_profile_stat *stat = 458 container_of(trace, struct ftrace_profile_stat, stat); 459 460 if (!stat || !stat->start) 461 return NULL; 462 463 return function_stat_next(&stat->start->records[0], 0); 464 } 465 466 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 467 /* function graph compares on total time */ 468 static int function_stat_cmp(const void *p1, const void *p2) 469 { 470 const struct ftrace_profile *a = p1; 471 const struct ftrace_profile *b = p2; 472 473 if (a->time < b->time) 474 return -1; 475 if (a->time > b->time) 476 return 1; 477 else 478 return 0; 479 } 480 #else 481 /* not function graph compares against hits */ 482 static int function_stat_cmp(const void *p1, const void *p2) 483 { 484 const struct ftrace_profile *a = p1; 485 const struct ftrace_profile *b = p2; 486 487 if (a->counter < b->counter) 488 return -1; 489 if (a->counter > b->counter) 490 return 1; 491 else 492 return 0; 493 } 494 #endif 495 496 static int function_stat_headers(struct seq_file *m) 497 { 498 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 499 seq_puts(m, " Function " 500 "Hit Time Avg s^2\n" 501 " -------- " 502 "--- ---- --- ---\n"); 503 #else 504 seq_puts(m, " Function Hit\n" 505 " -------- ---\n"); 506 #endif 507 return 0; 508 } 509 510 static int function_stat_show(struct seq_file *m, void *v) 511 { 512 struct ftrace_profile *rec = v; 513 char str[KSYM_SYMBOL_LEN]; 514 int ret = 0; 515 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 516 static struct trace_seq s; 517 unsigned long long avg; 518 unsigned long long stddev; 519 #endif 520 mutex_lock(&ftrace_profile_lock); 521 522 /* we raced with function_profile_reset() */ 523 if (unlikely(rec->counter == 0)) { 524 ret = -EBUSY; 525 goto out; 526 } 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 avg = div64_ul(rec->time, rec->counter); 530 if (tracing_thresh && (avg < tracing_thresh)) 531 goto out; 532 #endif 533 534 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 535 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 536 537 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 538 seq_puts(m, " "); 539 540 /* Sample standard deviation (s^2) */ 541 if (rec->counter <= 1) 542 stddev = 0; 543 else { 544 /* 545 * Apply Welford's method: 546 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 547 */ 548 stddev = rec->counter * rec->time_squared - 549 rec->time * rec->time; 550 551 /* 552 * Divide only 1000 for ns^2 -> us^2 conversion. 553 * trace_print_graph_duration will divide 1000 again. 554 */ 555 stddev = div64_ul(stddev, 556 rec->counter * (rec->counter - 1) * 1000); 557 } 558 559 trace_seq_init(&s); 560 trace_print_graph_duration(rec->time, &s); 561 trace_seq_puts(&s, " "); 562 trace_print_graph_duration(avg, &s); 563 trace_seq_puts(&s, " "); 564 trace_print_graph_duration(stddev, &s); 565 trace_print_seq(m, &s); 566 #endif 567 seq_putc(m, '\n'); 568 out: 569 mutex_unlock(&ftrace_profile_lock); 570 571 return ret; 572 } 573 574 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 575 { 576 struct ftrace_profile_page *pg; 577 578 pg = stat->pages = stat->start; 579 580 while (pg) { 581 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 582 pg->index = 0; 583 pg = pg->next; 584 } 585 586 memset(stat->hash, 0, 587 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 588 } 589 590 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 591 { 592 struct ftrace_profile_page *pg; 593 int functions; 594 int pages; 595 int i; 596 597 /* If we already allocated, do nothing */ 598 if (stat->pages) 599 return 0; 600 601 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 602 if (!stat->pages) 603 return -ENOMEM; 604 605 #ifdef CONFIG_DYNAMIC_FTRACE 606 functions = ftrace_update_tot_cnt; 607 #else 608 /* 609 * We do not know the number of functions that exist because 610 * dynamic tracing is what counts them. With past experience 611 * we have around 20K functions. That should be more than enough. 612 * It is highly unlikely we will execute every function in 613 * the kernel. 614 */ 615 functions = 20000; 616 #endif 617 618 pg = stat->start = stat->pages; 619 620 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 621 622 for (i = 1; i < pages; i++) { 623 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 624 if (!pg->next) 625 goto out_free; 626 pg = pg->next; 627 } 628 629 return 0; 630 631 out_free: 632 pg = stat->start; 633 while (pg) { 634 unsigned long tmp = (unsigned long)pg; 635 636 pg = pg->next; 637 free_page(tmp); 638 } 639 640 stat->pages = NULL; 641 stat->start = NULL; 642 643 return -ENOMEM; 644 } 645 646 static int ftrace_profile_init_cpu(int cpu) 647 { 648 struct ftrace_profile_stat *stat; 649 int size; 650 651 stat = &per_cpu(ftrace_profile_stats, cpu); 652 653 if (stat->hash) { 654 /* If the profile is already created, simply reset it */ 655 ftrace_profile_reset(stat); 656 return 0; 657 } 658 659 /* 660 * We are profiling all functions, but usually only a few thousand 661 * functions are hit. We'll make a hash of 1024 items. 662 */ 663 size = FTRACE_PROFILE_HASH_SIZE; 664 665 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 666 667 if (!stat->hash) 668 return -ENOMEM; 669 670 /* Preallocate the function profiling pages */ 671 if (ftrace_profile_pages_init(stat) < 0) { 672 kfree(stat->hash); 673 stat->hash = NULL; 674 return -ENOMEM; 675 } 676 677 return 0; 678 } 679 680 static int ftrace_profile_init(void) 681 { 682 int cpu; 683 int ret = 0; 684 685 for_each_possible_cpu(cpu) { 686 ret = ftrace_profile_init_cpu(cpu); 687 if (ret) 688 break; 689 } 690 691 return ret; 692 } 693 694 /* interrupts must be disabled */ 695 static struct ftrace_profile * 696 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 697 { 698 struct ftrace_profile *rec; 699 struct hlist_head *hhd; 700 unsigned long key; 701 702 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 703 hhd = &stat->hash[key]; 704 705 if (hlist_empty(hhd)) 706 return NULL; 707 708 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 709 if (rec->ip == ip) 710 return rec; 711 } 712 713 return NULL; 714 } 715 716 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 717 struct ftrace_profile *rec) 718 { 719 unsigned long key; 720 721 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 722 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 723 } 724 725 /* 726 * The memory is already allocated, this simply finds a new record to use. 727 */ 728 static struct ftrace_profile * 729 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 730 { 731 struct ftrace_profile *rec = NULL; 732 733 /* prevent recursion (from NMIs) */ 734 if (atomic_inc_return(&stat->disabled) != 1) 735 goto out; 736 737 /* 738 * Try to find the function again since an NMI 739 * could have added it 740 */ 741 rec = ftrace_find_profiled_func(stat, ip); 742 if (rec) 743 goto out; 744 745 if (stat->pages->index == PROFILES_PER_PAGE) { 746 if (!stat->pages->next) 747 goto out; 748 stat->pages = stat->pages->next; 749 } 750 751 rec = &stat->pages->records[stat->pages->index++]; 752 rec->ip = ip; 753 ftrace_add_profile(stat, rec); 754 755 out: 756 atomic_dec(&stat->disabled); 757 758 return rec; 759 } 760 761 static void 762 function_profile_call(unsigned long ip, unsigned long parent_ip, 763 struct ftrace_ops *ops, struct pt_regs *regs) 764 { 765 struct ftrace_profile_stat *stat; 766 struct ftrace_profile *rec; 767 unsigned long flags; 768 769 if (!ftrace_profile_enabled) 770 return; 771 772 local_irq_save(flags); 773 774 stat = this_cpu_ptr(&ftrace_profile_stats); 775 if (!stat->hash || !ftrace_profile_enabled) 776 goto out; 777 778 rec = ftrace_find_profiled_func(stat, ip); 779 if (!rec) { 780 rec = ftrace_profile_alloc(stat, ip); 781 if (!rec) 782 goto out; 783 } 784 785 rec->counter++; 786 out: 787 local_irq_restore(flags); 788 } 789 790 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 791 static bool fgraph_graph_time = true; 792 793 void ftrace_graph_graph_time_control(bool enable) 794 { 795 fgraph_graph_time = enable; 796 } 797 798 static int profile_graph_entry(struct ftrace_graph_ent *trace) 799 { 800 struct ftrace_ret_stack *ret_stack; 801 802 function_profile_call(trace->func, 0, NULL, NULL); 803 804 /* If function graph is shutting down, ret_stack can be NULL */ 805 if (!current->ret_stack) 806 return 0; 807 808 ret_stack = ftrace_graph_get_ret_stack(current, 0); 809 if (ret_stack) 810 ret_stack->subtime = 0; 811 812 return 1; 813 } 814 815 static void profile_graph_return(struct ftrace_graph_ret *trace) 816 { 817 struct ftrace_ret_stack *ret_stack; 818 struct ftrace_profile_stat *stat; 819 unsigned long long calltime; 820 struct ftrace_profile *rec; 821 unsigned long flags; 822 823 local_irq_save(flags); 824 stat = this_cpu_ptr(&ftrace_profile_stats); 825 if (!stat->hash || !ftrace_profile_enabled) 826 goto out; 827 828 /* If the calltime was zero'd ignore it */ 829 if (!trace->calltime) 830 goto out; 831 832 calltime = trace->rettime - trace->calltime; 833 834 if (!fgraph_graph_time) { 835 836 /* Append this call time to the parent time to subtract */ 837 ret_stack = ftrace_graph_get_ret_stack(current, 1); 838 if (ret_stack) 839 ret_stack->subtime += calltime; 840 841 ret_stack = ftrace_graph_get_ret_stack(current, 0); 842 if (ret_stack && ret_stack->subtime < calltime) 843 calltime -= ret_stack->subtime; 844 else 845 calltime = 0; 846 } 847 848 rec = ftrace_find_profiled_func(stat, trace->func); 849 if (rec) { 850 rec->time += calltime; 851 rec->time_squared += calltime * calltime; 852 } 853 854 out: 855 local_irq_restore(flags); 856 } 857 858 static struct fgraph_ops fprofiler_ops = { 859 .entryfunc = &profile_graph_entry, 860 .retfunc = &profile_graph_return, 861 }; 862 863 static int register_ftrace_profiler(void) 864 { 865 return register_ftrace_graph(&fprofiler_ops); 866 } 867 868 static void unregister_ftrace_profiler(void) 869 { 870 unregister_ftrace_graph(&fprofiler_ops); 871 } 872 #else 873 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 874 .func = function_profile_call, 875 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 876 INIT_OPS_HASH(ftrace_profile_ops) 877 }; 878 879 static int register_ftrace_profiler(void) 880 { 881 return register_ftrace_function(&ftrace_profile_ops); 882 } 883 884 static void unregister_ftrace_profiler(void) 885 { 886 unregister_ftrace_function(&ftrace_profile_ops); 887 } 888 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 889 890 static ssize_t 891 ftrace_profile_write(struct file *filp, const char __user *ubuf, 892 size_t cnt, loff_t *ppos) 893 { 894 unsigned long val; 895 int ret; 896 897 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 898 if (ret) 899 return ret; 900 901 val = !!val; 902 903 mutex_lock(&ftrace_profile_lock); 904 if (ftrace_profile_enabled ^ val) { 905 if (val) { 906 ret = ftrace_profile_init(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 912 ret = register_ftrace_profiler(); 913 if (ret < 0) { 914 cnt = ret; 915 goto out; 916 } 917 ftrace_profile_enabled = 1; 918 } else { 919 ftrace_profile_enabled = 0; 920 /* 921 * unregister_ftrace_profiler calls stop_machine 922 * so this acts like an synchronize_rcu. 923 */ 924 unregister_ftrace_profiler(); 925 } 926 } 927 out: 928 mutex_unlock(&ftrace_profile_lock); 929 930 *ppos += cnt; 931 932 return cnt; 933 } 934 935 static ssize_t 936 ftrace_profile_read(struct file *filp, char __user *ubuf, 937 size_t cnt, loff_t *ppos) 938 { 939 char buf[64]; /* big enough to hold a number */ 940 int r; 941 942 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 943 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 944 } 945 946 static const struct file_operations ftrace_profile_fops = { 947 .open = tracing_open_generic, 948 .read = ftrace_profile_read, 949 .write = ftrace_profile_write, 950 .llseek = default_llseek, 951 }; 952 953 /* used to initialize the real stat files */ 954 static struct tracer_stat function_stats __initdata = { 955 .name = "functions", 956 .stat_start = function_stat_start, 957 .stat_next = function_stat_next, 958 .stat_cmp = function_stat_cmp, 959 .stat_headers = function_stat_headers, 960 .stat_show = function_stat_show 961 }; 962 963 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 964 { 965 struct ftrace_profile_stat *stat; 966 struct dentry *entry; 967 char *name; 968 int ret; 969 int cpu; 970 971 for_each_possible_cpu(cpu) { 972 stat = &per_cpu(ftrace_profile_stats, cpu); 973 974 name = kasprintf(GFP_KERNEL, "function%d", cpu); 975 if (!name) { 976 /* 977 * The files created are permanent, if something happens 978 * we still do not free memory. 979 */ 980 WARN(1, 981 "Could not allocate stat file for cpu %d\n", 982 cpu); 983 return; 984 } 985 stat->stat = function_stats; 986 stat->stat.name = name; 987 ret = register_stat_tracer(&stat->stat); 988 if (ret) { 989 WARN(1, 990 "Could not register function stat for cpu %d\n", 991 cpu); 992 kfree(name); 993 return; 994 } 995 } 996 997 entry = tracefs_create_file("function_profile_enabled", 0644, 998 d_tracer, NULL, &ftrace_profile_fops); 999 if (!entry) 1000 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 1001 } 1002 1003 #else /* CONFIG_FUNCTION_PROFILER */ 1004 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1005 { 1006 } 1007 #endif /* CONFIG_FUNCTION_PROFILER */ 1008 1009 #ifdef CONFIG_DYNAMIC_FTRACE 1010 1011 static struct ftrace_ops *removed_ops; 1012 1013 /* 1014 * Set when doing a global update, like enabling all recs or disabling them. 1015 * It is not set when just updating a single ftrace_ops. 1016 */ 1017 static bool update_all_ops; 1018 1019 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1020 # error Dynamic ftrace depends on MCOUNT_RECORD 1021 #endif 1022 1023 struct ftrace_func_probe { 1024 struct ftrace_probe_ops *probe_ops; 1025 struct ftrace_ops ops; 1026 struct trace_array *tr; 1027 struct list_head list; 1028 void *data; 1029 int ref; 1030 }; 1031 1032 /* 1033 * We make these constant because no one should touch them, 1034 * but they are used as the default "empty hash", to avoid allocating 1035 * it all the time. These are in a read only section such that if 1036 * anyone does try to modify it, it will cause an exception. 1037 */ 1038 static const struct hlist_head empty_buckets[1]; 1039 static const struct ftrace_hash empty_hash = { 1040 .buckets = (struct hlist_head *)empty_buckets, 1041 }; 1042 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1043 1044 struct ftrace_ops global_ops = { 1045 .func = ftrace_stub, 1046 .local_hash.notrace_hash = EMPTY_HASH, 1047 .local_hash.filter_hash = EMPTY_HASH, 1048 INIT_OPS_HASH(global_ops) 1049 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1050 FTRACE_OPS_FL_INITIALIZED | 1051 FTRACE_OPS_FL_PID, 1052 }; 1053 1054 /* 1055 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1056 */ 1057 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1058 { 1059 struct ftrace_ops *op = NULL; 1060 1061 /* 1062 * Some of the ops may be dynamically allocated, 1063 * they are freed after a synchronize_rcu(). 1064 */ 1065 preempt_disable_notrace(); 1066 1067 do_for_each_ftrace_op(op, ftrace_ops_list) { 1068 /* 1069 * This is to check for dynamically allocated trampolines. 1070 * Trampolines that are in kernel text will have 1071 * core_kernel_text() return true. 1072 */ 1073 if (op->trampoline && op->trampoline_size) 1074 if (addr >= op->trampoline && 1075 addr < op->trampoline + op->trampoline_size) { 1076 preempt_enable_notrace(); 1077 return op; 1078 } 1079 } while_for_each_ftrace_op(op); 1080 preempt_enable_notrace(); 1081 1082 return NULL; 1083 } 1084 1085 /* 1086 * This is used by __kernel_text_address() to return true if the 1087 * address is on a dynamically allocated trampoline that would 1088 * not return true for either core_kernel_text() or 1089 * is_module_text_address(). 1090 */ 1091 bool is_ftrace_trampoline(unsigned long addr) 1092 { 1093 return ftrace_ops_trampoline(addr) != NULL; 1094 } 1095 1096 struct ftrace_page { 1097 struct ftrace_page *next; 1098 struct dyn_ftrace *records; 1099 int index; 1100 int size; 1101 }; 1102 1103 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1104 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1105 1106 /* estimate from running different kernels */ 1107 #define NR_TO_INIT 10000 1108 1109 static struct ftrace_page *ftrace_pages_start; 1110 static struct ftrace_page *ftrace_pages; 1111 1112 static __always_inline unsigned long 1113 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1114 { 1115 if (hash->size_bits > 0) 1116 return hash_long(ip, hash->size_bits); 1117 1118 return 0; 1119 } 1120 1121 /* Only use this function if ftrace_hash_empty() has already been tested */ 1122 static __always_inline struct ftrace_func_entry * 1123 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1124 { 1125 unsigned long key; 1126 struct ftrace_func_entry *entry; 1127 struct hlist_head *hhd; 1128 1129 key = ftrace_hash_key(hash, ip); 1130 hhd = &hash->buckets[key]; 1131 1132 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1133 if (entry->ip == ip) 1134 return entry; 1135 } 1136 return NULL; 1137 } 1138 1139 /** 1140 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1141 * @hash: The hash to look at 1142 * @ip: The instruction pointer to test 1143 * 1144 * Search a given @hash to see if a given instruction pointer (@ip) 1145 * exists in it. 1146 * 1147 * Returns the entry that holds the @ip if found. NULL otherwise. 1148 */ 1149 struct ftrace_func_entry * 1150 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1151 { 1152 if (ftrace_hash_empty(hash)) 1153 return NULL; 1154 1155 return __ftrace_lookup_ip(hash, ip); 1156 } 1157 1158 static void __add_hash_entry(struct ftrace_hash *hash, 1159 struct ftrace_func_entry *entry) 1160 { 1161 struct hlist_head *hhd; 1162 unsigned long key; 1163 1164 key = ftrace_hash_key(hash, entry->ip); 1165 hhd = &hash->buckets[key]; 1166 hlist_add_head(&entry->hlist, hhd); 1167 hash->count++; 1168 } 1169 1170 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1171 { 1172 struct ftrace_func_entry *entry; 1173 1174 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1175 if (!entry) 1176 return -ENOMEM; 1177 1178 entry->ip = ip; 1179 __add_hash_entry(hash, entry); 1180 1181 return 0; 1182 } 1183 1184 static void 1185 free_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del(&entry->hlist); 1189 kfree(entry); 1190 hash->count--; 1191 } 1192 1193 static void 1194 remove_hash_entry(struct ftrace_hash *hash, 1195 struct ftrace_func_entry *entry) 1196 { 1197 hlist_del_rcu(&entry->hlist); 1198 hash->count--; 1199 } 1200 1201 static void ftrace_hash_clear(struct ftrace_hash *hash) 1202 { 1203 struct hlist_head *hhd; 1204 struct hlist_node *tn; 1205 struct ftrace_func_entry *entry; 1206 int size = 1 << hash->size_bits; 1207 int i; 1208 1209 if (!hash->count) 1210 return; 1211 1212 for (i = 0; i < size; i++) { 1213 hhd = &hash->buckets[i]; 1214 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1215 free_hash_entry(hash, entry); 1216 } 1217 FTRACE_WARN_ON(hash->count); 1218 } 1219 1220 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1221 { 1222 list_del(&ftrace_mod->list); 1223 kfree(ftrace_mod->module); 1224 kfree(ftrace_mod->func); 1225 kfree(ftrace_mod); 1226 } 1227 1228 static void clear_ftrace_mod_list(struct list_head *head) 1229 { 1230 struct ftrace_mod_load *p, *n; 1231 1232 /* stack tracer isn't supported yet */ 1233 if (!head) 1234 return; 1235 1236 mutex_lock(&ftrace_lock); 1237 list_for_each_entry_safe(p, n, head, list) 1238 free_ftrace_mod(p); 1239 mutex_unlock(&ftrace_lock); 1240 } 1241 1242 static void free_ftrace_hash(struct ftrace_hash *hash) 1243 { 1244 if (!hash || hash == EMPTY_HASH) 1245 return; 1246 ftrace_hash_clear(hash); 1247 kfree(hash->buckets); 1248 kfree(hash); 1249 } 1250 1251 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1252 { 1253 struct ftrace_hash *hash; 1254 1255 hash = container_of(rcu, struct ftrace_hash, rcu); 1256 free_ftrace_hash(hash); 1257 } 1258 1259 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1260 { 1261 if (!hash || hash == EMPTY_HASH) 1262 return; 1263 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1264 } 1265 1266 void ftrace_free_filter(struct ftrace_ops *ops) 1267 { 1268 ftrace_ops_init(ops); 1269 free_ftrace_hash(ops->func_hash->filter_hash); 1270 free_ftrace_hash(ops->func_hash->notrace_hash); 1271 } 1272 1273 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1274 { 1275 struct ftrace_hash *hash; 1276 int size; 1277 1278 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1279 if (!hash) 1280 return NULL; 1281 1282 size = 1 << size_bits; 1283 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1284 1285 if (!hash->buckets) { 1286 kfree(hash); 1287 return NULL; 1288 } 1289 1290 hash->size_bits = size_bits; 1291 1292 return hash; 1293 } 1294 1295 1296 static int ftrace_add_mod(struct trace_array *tr, 1297 const char *func, const char *module, 1298 int enable) 1299 { 1300 struct ftrace_mod_load *ftrace_mod; 1301 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1302 1303 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1304 if (!ftrace_mod) 1305 return -ENOMEM; 1306 1307 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1308 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1309 ftrace_mod->enable = enable; 1310 1311 if (!ftrace_mod->func || !ftrace_mod->module) 1312 goto out_free; 1313 1314 list_add(&ftrace_mod->list, mod_head); 1315 1316 return 0; 1317 1318 out_free: 1319 free_ftrace_mod(ftrace_mod); 1320 1321 return -ENOMEM; 1322 } 1323 1324 static struct ftrace_hash * 1325 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1326 { 1327 struct ftrace_func_entry *entry; 1328 struct ftrace_hash *new_hash; 1329 int size; 1330 int ret; 1331 int i; 1332 1333 new_hash = alloc_ftrace_hash(size_bits); 1334 if (!new_hash) 1335 return NULL; 1336 1337 if (hash) 1338 new_hash->flags = hash->flags; 1339 1340 /* Empty hash? */ 1341 if (ftrace_hash_empty(hash)) 1342 return new_hash; 1343 1344 size = 1 << hash->size_bits; 1345 for (i = 0; i < size; i++) { 1346 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1347 ret = add_hash_entry(new_hash, entry->ip); 1348 if (ret < 0) 1349 goto free_hash; 1350 } 1351 } 1352 1353 FTRACE_WARN_ON(new_hash->count != hash->count); 1354 1355 return new_hash; 1356 1357 free_hash: 1358 free_ftrace_hash(new_hash); 1359 return NULL; 1360 } 1361 1362 static void 1363 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1364 static void 1365 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1366 1367 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1368 struct ftrace_hash *new_hash); 1369 1370 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1371 { 1372 struct ftrace_func_entry *entry; 1373 struct ftrace_hash *new_hash; 1374 struct hlist_head *hhd; 1375 struct hlist_node *tn; 1376 int bits = 0; 1377 int i; 1378 1379 /* 1380 * Make the hash size about 1/2 the # found 1381 */ 1382 for (size /= 2; size; size >>= 1) 1383 bits++; 1384 1385 /* Don't allocate too much */ 1386 if (bits > FTRACE_HASH_MAX_BITS) 1387 bits = FTRACE_HASH_MAX_BITS; 1388 1389 new_hash = alloc_ftrace_hash(bits); 1390 if (!new_hash) 1391 return NULL; 1392 1393 new_hash->flags = src->flags; 1394 1395 size = 1 << src->size_bits; 1396 for (i = 0; i < size; i++) { 1397 hhd = &src->buckets[i]; 1398 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1399 remove_hash_entry(src, entry); 1400 __add_hash_entry(new_hash, entry); 1401 } 1402 } 1403 return new_hash; 1404 } 1405 1406 static struct ftrace_hash * 1407 __ftrace_hash_move(struct ftrace_hash *src) 1408 { 1409 int size = src->count; 1410 1411 /* 1412 * If the new source is empty, just return the empty_hash. 1413 */ 1414 if (ftrace_hash_empty(src)) 1415 return EMPTY_HASH; 1416 1417 return dup_hash(src, size); 1418 } 1419 1420 static int 1421 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1422 struct ftrace_hash **dst, struct ftrace_hash *src) 1423 { 1424 struct ftrace_hash *new_hash; 1425 int ret; 1426 1427 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1428 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1429 return -EINVAL; 1430 1431 new_hash = __ftrace_hash_move(src); 1432 if (!new_hash) 1433 return -ENOMEM; 1434 1435 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1436 if (enable) { 1437 /* IPMODIFY should be updated only when filter_hash updating */ 1438 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1439 if (ret < 0) { 1440 free_ftrace_hash(new_hash); 1441 return ret; 1442 } 1443 } 1444 1445 /* 1446 * Remove the current set, update the hash and add 1447 * them back. 1448 */ 1449 ftrace_hash_rec_disable_modify(ops, enable); 1450 1451 rcu_assign_pointer(*dst, new_hash); 1452 1453 ftrace_hash_rec_enable_modify(ops, enable); 1454 1455 return 0; 1456 } 1457 1458 static bool hash_contains_ip(unsigned long ip, 1459 struct ftrace_ops_hash *hash) 1460 { 1461 /* 1462 * The function record is a match if it exists in the filter 1463 * hash and not in the notrace hash. Note, an emty hash is 1464 * considered a match for the filter hash, but an empty 1465 * notrace hash is considered not in the notrace hash. 1466 */ 1467 return (ftrace_hash_empty(hash->filter_hash) || 1468 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1469 (ftrace_hash_empty(hash->notrace_hash) || 1470 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1471 } 1472 1473 /* 1474 * Test the hashes for this ops to see if we want to call 1475 * the ops->func or not. 1476 * 1477 * It's a match if the ip is in the ops->filter_hash or 1478 * the filter_hash does not exist or is empty, 1479 * AND 1480 * the ip is not in the ops->notrace_hash. 1481 * 1482 * This needs to be called with preemption disabled as 1483 * the hashes are freed with call_rcu(). 1484 */ 1485 int 1486 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1487 { 1488 struct ftrace_ops_hash hash; 1489 int ret; 1490 1491 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1492 /* 1493 * There's a small race when adding ops that the ftrace handler 1494 * that wants regs, may be called without them. We can not 1495 * allow that handler to be called if regs is NULL. 1496 */ 1497 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1498 return 0; 1499 #endif 1500 1501 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1502 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1503 1504 if (hash_contains_ip(ip, &hash)) 1505 ret = 1; 1506 else 1507 ret = 0; 1508 1509 return ret; 1510 } 1511 1512 /* 1513 * This is a double for. Do not use 'break' to break out of the loop, 1514 * you must use a goto. 1515 */ 1516 #define do_for_each_ftrace_rec(pg, rec) \ 1517 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1518 int _____i; \ 1519 for (_____i = 0; _____i < pg->index; _____i++) { \ 1520 rec = &pg->records[_____i]; 1521 1522 #define while_for_each_ftrace_rec() \ 1523 } \ 1524 } 1525 1526 1527 static int ftrace_cmp_recs(const void *a, const void *b) 1528 { 1529 const struct dyn_ftrace *key = a; 1530 const struct dyn_ftrace *rec = b; 1531 1532 if (key->flags < rec->ip) 1533 return -1; 1534 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1535 return 1; 1536 return 0; 1537 } 1538 1539 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1540 { 1541 struct ftrace_page *pg; 1542 struct dyn_ftrace *rec = NULL; 1543 struct dyn_ftrace key; 1544 1545 key.ip = start; 1546 key.flags = end; /* overload flags, as it is unsigned long */ 1547 1548 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1549 if (end < pg->records[0].ip || 1550 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1551 continue; 1552 rec = bsearch(&key, pg->records, pg->index, 1553 sizeof(struct dyn_ftrace), 1554 ftrace_cmp_recs); 1555 } 1556 return rec; 1557 } 1558 1559 /** 1560 * ftrace_location_range - return the first address of a traced location 1561 * if it touches the given ip range 1562 * @start: start of range to search. 1563 * @end: end of range to search (inclusive). @end points to the last byte 1564 * to check. 1565 * 1566 * Returns rec->ip if the related ftrace location is a least partly within 1567 * the given address range. That is, the first address of the instruction 1568 * that is either a NOP or call to the function tracer. It checks the ftrace 1569 * internal tables to determine if the address belongs or not. 1570 */ 1571 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1572 { 1573 struct dyn_ftrace *rec; 1574 1575 rec = lookup_rec(start, end); 1576 if (rec) 1577 return rec->ip; 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * ftrace_location - return true if the ip giving is a traced location 1584 * @ip: the instruction pointer to check 1585 * 1586 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1587 * That is, the instruction that is either a NOP or call to 1588 * the function tracer. It checks the ftrace internal tables to 1589 * determine if the address belongs or not. 1590 */ 1591 unsigned long ftrace_location(unsigned long ip) 1592 { 1593 return ftrace_location_range(ip, ip); 1594 } 1595 1596 /** 1597 * ftrace_text_reserved - return true if range contains an ftrace location 1598 * @start: start of range to search 1599 * @end: end of range to search (inclusive). @end points to the last byte to check. 1600 * 1601 * Returns 1 if @start and @end contains a ftrace location. 1602 * That is, the instruction that is either a NOP or call to 1603 * the function tracer. It checks the ftrace internal tables to 1604 * determine if the address belongs or not. 1605 */ 1606 int ftrace_text_reserved(const void *start, const void *end) 1607 { 1608 unsigned long ret; 1609 1610 ret = ftrace_location_range((unsigned long)start, 1611 (unsigned long)end); 1612 1613 return (int)!!ret; 1614 } 1615 1616 /* Test if ops registered to this rec needs regs */ 1617 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1618 { 1619 struct ftrace_ops *ops; 1620 bool keep_regs = false; 1621 1622 for (ops = ftrace_ops_list; 1623 ops != &ftrace_list_end; ops = ops->next) { 1624 /* pass rec in as regs to have non-NULL val */ 1625 if (ftrace_ops_test(ops, rec->ip, rec)) { 1626 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1627 keep_regs = true; 1628 break; 1629 } 1630 } 1631 } 1632 1633 return keep_regs; 1634 } 1635 1636 static struct ftrace_ops * 1637 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1638 static struct ftrace_ops * 1639 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1640 1641 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1642 int filter_hash, 1643 bool inc) 1644 { 1645 struct ftrace_hash *hash; 1646 struct ftrace_hash *other_hash; 1647 struct ftrace_page *pg; 1648 struct dyn_ftrace *rec; 1649 bool update = false; 1650 int count = 0; 1651 int all = false; 1652 1653 /* Only update if the ops has been registered */ 1654 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1655 return false; 1656 1657 /* 1658 * In the filter_hash case: 1659 * If the count is zero, we update all records. 1660 * Otherwise we just update the items in the hash. 1661 * 1662 * In the notrace_hash case: 1663 * We enable the update in the hash. 1664 * As disabling notrace means enabling the tracing, 1665 * and enabling notrace means disabling, the inc variable 1666 * gets inversed. 1667 */ 1668 if (filter_hash) { 1669 hash = ops->func_hash->filter_hash; 1670 other_hash = ops->func_hash->notrace_hash; 1671 if (ftrace_hash_empty(hash)) 1672 all = true; 1673 } else { 1674 inc = !inc; 1675 hash = ops->func_hash->notrace_hash; 1676 other_hash = ops->func_hash->filter_hash; 1677 /* 1678 * If the notrace hash has no items, 1679 * then there's nothing to do. 1680 */ 1681 if (ftrace_hash_empty(hash)) 1682 return false; 1683 } 1684 1685 do_for_each_ftrace_rec(pg, rec) { 1686 int in_other_hash = 0; 1687 int in_hash = 0; 1688 int match = 0; 1689 1690 if (rec->flags & FTRACE_FL_DISABLED) 1691 continue; 1692 1693 if (all) { 1694 /* 1695 * Only the filter_hash affects all records. 1696 * Update if the record is not in the notrace hash. 1697 */ 1698 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1699 match = 1; 1700 } else { 1701 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1702 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1703 1704 /* 1705 * If filter_hash is set, we want to match all functions 1706 * that are in the hash but not in the other hash. 1707 * 1708 * If filter_hash is not set, then we are decrementing. 1709 * That means we match anything that is in the hash 1710 * and also in the other_hash. That is, we need to turn 1711 * off functions in the other hash because they are disabled 1712 * by this hash. 1713 */ 1714 if (filter_hash && in_hash && !in_other_hash) 1715 match = 1; 1716 else if (!filter_hash && in_hash && 1717 (in_other_hash || ftrace_hash_empty(other_hash))) 1718 match = 1; 1719 } 1720 if (!match) 1721 continue; 1722 1723 if (inc) { 1724 rec->flags++; 1725 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1726 return false; 1727 1728 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1729 rec->flags |= FTRACE_FL_DIRECT; 1730 1731 /* 1732 * If there's only a single callback registered to a 1733 * function, and the ops has a trampoline registered 1734 * for it, then we can call it directly. 1735 */ 1736 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1737 rec->flags |= FTRACE_FL_TRAMP; 1738 else 1739 /* 1740 * If we are adding another function callback 1741 * to this function, and the previous had a 1742 * custom trampoline in use, then we need to go 1743 * back to the default trampoline. 1744 */ 1745 rec->flags &= ~FTRACE_FL_TRAMP; 1746 1747 /* 1748 * If any ops wants regs saved for this function 1749 * then all ops will get saved regs. 1750 */ 1751 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1752 rec->flags |= FTRACE_FL_REGS; 1753 } else { 1754 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1755 return false; 1756 rec->flags--; 1757 1758 /* 1759 * Only the internal direct_ops should have the 1760 * DIRECT flag set. Thus, if it is removing a 1761 * function, then that function should no longer 1762 * be direct. 1763 */ 1764 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1765 rec->flags &= ~FTRACE_FL_DIRECT; 1766 1767 /* 1768 * If the rec had REGS enabled and the ops that is 1769 * being removed had REGS set, then see if there is 1770 * still any ops for this record that wants regs. 1771 * If not, we can stop recording them. 1772 */ 1773 if (ftrace_rec_count(rec) > 0 && 1774 rec->flags & FTRACE_FL_REGS && 1775 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1776 if (!test_rec_ops_needs_regs(rec)) 1777 rec->flags &= ~FTRACE_FL_REGS; 1778 } 1779 1780 /* 1781 * The TRAMP needs to be set only if rec count 1782 * is decremented to one, and the ops that is 1783 * left has a trampoline. As TRAMP can only be 1784 * enabled if there is only a single ops attached 1785 * to it. 1786 */ 1787 if (ftrace_rec_count(rec) == 1 && 1788 ftrace_find_tramp_ops_any(rec)) 1789 rec->flags |= FTRACE_FL_TRAMP; 1790 else 1791 rec->flags &= ~FTRACE_FL_TRAMP; 1792 1793 /* 1794 * flags will be cleared in ftrace_check_record() 1795 * if rec count is zero. 1796 */ 1797 } 1798 count++; 1799 1800 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1801 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1802 1803 /* Shortcut, if we handled all records, we are done. */ 1804 if (!all && count == hash->count) 1805 return update; 1806 } while_for_each_ftrace_rec(); 1807 1808 return update; 1809 } 1810 1811 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1812 int filter_hash) 1813 { 1814 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1815 } 1816 1817 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1818 int filter_hash) 1819 { 1820 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1821 } 1822 1823 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1824 int filter_hash, int inc) 1825 { 1826 struct ftrace_ops *op; 1827 1828 __ftrace_hash_rec_update(ops, filter_hash, inc); 1829 1830 if (ops->func_hash != &global_ops.local_hash) 1831 return; 1832 1833 /* 1834 * If the ops shares the global_ops hash, then we need to update 1835 * all ops that are enabled and use this hash. 1836 */ 1837 do_for_each_ftrace_op(op, ftrace_ops_list) { 1838 /* Already done */ 1839 if (op == ops) 1840 continue; 1841 if (op->func_hash == &global_ops.local_hash) 1842 __ftrace_hash_rec_update(op, filter_hash, inc); 1843 } while_for_each_ftrace_op(op); 1844 } 1845 1846 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1847 int filter_hash) 1848 { 1849 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1850 } 1851 1852 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1853 int filter_hash) 1854 { 1855 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1856 } 1857 1858 /* 1859 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1860 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1861 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1862 * Note that old_hash and new_hash has below meanings 1863 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1864 * - If the hash is EMPTY_HASH, it hits nothing 1865 * - Anything else hits the recs which match the hash entries. 1866 */ 1867 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1868 struct ftrace_hash *old_hash, 1869 struct ftrace_hash *new_hash) 1870 { 1871 struct ftrace_page *pg; 1872 struct dyn_ftrace *rec, *end = NULL; 1873 int in_old, in_new; 1874 1875 /* Only update if the ops has been registered */ 1876 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1877 return 0; 1878 1879 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1880 return 0; 1881 1882 /* 1883 * Since the IPMODIFY is a very address sensitive action, we do not 1884 * allow ftrace_ops to set all functions to new hash. 1885 */ 1886 if (!new_hash || !old_hash) 1887 return -EINVAL; 1888 1889 /* Update rec->flags */ 1890 do_for_each_ftrace_rec(pg, rec) { 1891 1892 if (rec->flags & FTRACE_FL_DISABLED) 1893 continue; 1894 1895 /* We need to update only differences of filter_hash */ 1896 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1897 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1898 if (in_old == in_new) 1899 continue; 1900 1901 if (in_new) { 1902 /* New entries must ensure no others are using it */ 1903 if (rec->flags & FTRACE_FL_IPMODIFY) 1904 goto rollback; 1905 rec->flags |= FTRACE_FL_IPMODIFY; 1906 } else /* Removed entry */ 1907 rec->flags &= ~FTRACE_FL_IPMODIFY; 1908 } while_for_each_ftrace_rec(); 1909 1910 return 0; 1911 1912 rollback: 1913 end = rec; 1914 1915 /* Roll back what we did above */ 1916 do_for_each_ftrace_rec(pg, rec) { 1917 1918 if (rec->flags & FTRACE_FL_DISABLED) 1919 continue; 1920 1921 if (rec == end) 1922 goto err_out; 1923 1924 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1925 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1926 if (in_old == in_new) 1927 continue; 1928 1929 if (in_new) 1930 rec->flags &= ~FTRACE_FL_IPMODIFY; 1931 else 1932 rec->flags |= FTRACE_FL_IPMODIFY; 1933 } while_for_each_ftrace_rec(); 1934 1935 err_out: 1936 return -EBUSY; 1937 } 1938 1939 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1940 { 1941 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1942 1943 if (ftrace_hash_empty(hash)) 1944 hash = NULL; 1945 1946 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1947 } 1948 1949 /* Disabling always succeeds */ 1950 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1951 { 1952 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1953 1954 if (ftrace_hash_empty(hash)) 1955 hash = NULL; 1956 1957 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1958 } 1959 1960 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1961 struct ftrace_hash *new_hash) 1962 { 1963 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1964 1965 if (ftrace_hash_empty(old_hash)) 1966 old_hash = NULL; 1967 1968 if (ftrace_hash_empty(new_hash)) 1969 new_hash = NULL; 1970 1971 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1972 } 1973 1974 static void print_ip_ins(const char *fmt, const unsigned char *p) 1975 { 1976 int i; 1977 1978 printk(KERN_CONT "%s", fmt); 1979 1980 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1981 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1982 } 1983 1984 enum ftrace_bug_type ftrace_bug_type; 1985 const void *ftrace_expected; 1986 1987 static void print_bug_type(void) 1988 { 1989 switch (ftrace_bug_type) { 1990 case FTRACE_BUG_UNKNOWN: 1991 break; 1992 case FTRACE_BUG_INIT: 1993 pr_info("Initializing ftrace call sites\n"); 1994 break; 1995 case FTRACE_BUG_NOP: 1996 pr_info("Setting ftrace call site to NOP\n"); 1997 break; 1998 case FTRACE_BUG_CALL: 1999 pr_info("Setting ftrace call site to call ftrace function\n"); 2000 break; 2001 case FTRACE_BUG_UPDATE: 2002 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2003 break; 2004 } 2005 } 2006 2007 /** 2008 * ftrace_bug - report and shutdown function tracer 2009 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2010 * @rec: The record that failed 2011 * 2012 * The arch code that enables or disables the function tracing 2013 * can call ftrace_bug() when it has detected a problem in 2014 * modifying the code. @failed should be one of either: 2015 * EFAULT - if the problem happens on reading the @ip address 2016 * EINVAL - if what is read at @ip is not what was expected 2017 * EPERM - if the problem happens on writing to the @ip address 2018 */ 2019 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2020 { 2021 unsigned long ip = rec ? rec->ip : 0; 2022 2023 switch (failed) { 2024 case -EFAULT: 2025 FTRACE_WARN_ON_ONCE(1); 2026 pr_info("ftrace faulted on modifying "); 2027 print_ip_sym(ip); 2028 break; 2029 case -EINVAL: 2030 FTRACE_WARN_ON_ONCE(1); 2031 pr_info("ftrace failed to modify "); 2032 print_ip_sym(ip); 2033 print_ip_ins(" actual: ", (unsigned char *)ip); 2034 pr_cont("\n"); 2035 if (ftrace_expected) { 2036 print_ip_ins(" expected: ", ftrace_expected); 2037 pr_cont("\n"); 2038 } 2039 break; 2040 case -EPERM: 2041 FTRACE_WARN_ON_ONCE(1); 2042 pr_info("ftrace faulted on writing "); 2043 print_ip_sym(ip); 2044 break; 2045 default: 2046 FTRACE_WARN_ON_ONCE(1); 2047 pr_info("ftrace faulted on unknown error "); 2048 print_ip_sym(ip); 2049 } 2050 print_bug_type(); 2051 if (rec) { 2052 struct ftrace_ops *ops = NULL; 2053 2054 pr_info("ftrace record flags: %lx\n", rec->flags); 2055 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2056 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2057 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2058 ops = ftrace_find_tramp_ops_any(rec); 2059 if (ops) { 2060 do { 2061 pr_cont("\ttramp: %pS (%pS)", 2062 (void *)ops->trampoline, 2063 (void *)ops->func); 2064 ops = ftrace_find_tramp_ops_next(rec, ops); 2065 } while (ops); 2066 } else 2067 pr_cont("\ttramp: ERROR!"); 2068 2069 } 2070 ip = ftrace_get_addr_curr(rec); 2071 pr_cont("\n expected tramp: %lx\n", ip); 2072 } 2073 } 2074 2075 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2076 { 2077 unsigned long flag = 0UL; 2078 2079 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2080 2081 if (rec->flags & FTRACE_FL_DISABLED) 2082 return FTRACE_UPDATE_IGNORE; 2083 2084 /* 2085 * If we are updating calls: 2086 * 2087 * If the record has a ref count, then we need to enable it 2088 * because someone is using it. 2089 * 2090 * Otherwise we make sure its disabled. 2091 * 2092 * If we are disabling calls, then disable all records that 2093 * are enabled. 2094 */ 2095 if (enable && ftrace_rec_count(rec)) 2096 flag = FTRACE_FL_ENABLED; 2097 2098 /* 2099 * If enabling and the REGS flag does not match the REGS_EN, or 2100 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2101 * this record. Set flags to fail the compare against ENABLED. 2102 * Same for direct calls. 2103 */ 2104 if (flag) { 2105 if (!(rec->flags & FTRACE_FL_REGS) != 2106 !(rec->flags & FTRACE_FL_REGS_EN)) 2107 flag |= FTRACE_FL_REGS; 2108 2109 if (!(rec->flags & FTRACE_FL_TRAMP) != 2110 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2111 flag |= FTRACE_FL_TRAMP; 2112 2113 /* 2114 * Direct calls are special, as count matters. 2115 * We must test the record for direct, if the 2116 * DIRECT and DIRECT_EN do not match, but only 2117 * if the count is 1. That's because, if the 2118 * count is something other than one, we do not 2119 * want the direct enabled (it will be done via the 2120 * direct helper). But if DIRECT_EN is set, and 2121 * the count is not one, we need to clear it. 2122 */ 2123 if (ftrace_rec_count(rec) == 1) { 2124 if (!(rec->flags & FTRACE_FL_DIRECT) != 2125 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2126 flag |= FTRACE_FL_DIRECT; 2127 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2128 flag |= FTRACE_FL_DIRECT; 2129 } 2130 } 2131 2132 /* If the state of this record hasn't changed, then do nothing */ 2133 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2134 return FTRACE_UPDATE_IGNORE; 2135 2136 if (flag) { 2137 /* Save off if rec is being enabled (for return value) */ 2138 flag ^= rec->flags & FTRACE_FL_ENABLED; 2139 2140 if (update) { 2141 rec->flags |= FTRACE_FL_ENABLED; 2142 if (flag & FTRACE_FL_REGS) { 2143 if (rec->flags & FTRACE_FL_REGS) 2144 rec->flags |= FTRACE_FL_REGS_EN; 2145 else 2146 rec->flags &= ~FTRACE_FL_REGS_EN; 2147 } 2148 if (flag & FTRACE_FL_TRAMP) { 2149 if (rec->flags & FTRACE_FL_TRAMP) 2150 rec->flags |= FTRACE_FL_TRAMP_EN; 2151 else 2152 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2153 } 2154 if (flag & FTRACE_FL_DIRECT) { 2155 /* 2156 * If there's only one user (direct_ops helper) 2157 * then we can call the direct function 2158 * directly (no ftrace trampoline). 2159 */ 2160 if (ftrace_rec_count(rec) == 1) { 2161 if (rec->flags & FTRACE_FL_DIRECT) 2162 rec->flags |= FTRACE_FL_DIRECT_EN; 2163 else 2164 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2165 } else { 2166 /* 2167 * Can only call directly if there's 2168 * only one callback to the function. 2169 */ 2170 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2171 } 2172 } 2173 } 2174 2175 /* 2176 * If this record is being updated from a nop, then 2177 * return UPDATE_MAKE_CALL. 2178 * Otherwise, 2179 * return UPDATE_MODIFY_CALL to tell the caller to convert 2180 * from the save regs, to a non-save regs function or 2181 * vice versa, or from a trampoline call. 2182 */ 2183 if (flag & FTRACE_FL_ENABLED) { 2184 ftrace_bug_type = FTRACE_BUG_CALL; 2185 return FTRACE_UPDATE_MAKE_CALL; 2186 } 2187 2188 ftrace_bug_type = FTRACE_BUG_UPDATE; 2189 return FTRACE_UPDATE_MODIFY_CALL; 2190 } 2191 2192 if (update) { 2193 /* If there's no more users, clear all flags */ 2194 if (!ftrace_rec_count(rec)) 2195 rec->flags = 0; 2196 else 2197 /* 2198 * Just disable the record, but keep the ops TRAMP 2199 * and REGS states. The _EN flags must be disabled though. 2200 */ 2201 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2202 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2203 } 2204 2205 ftrace_bug_type = FTRACE_BUG_NOP; 2206 return FTRACE_UPDATE_MAKE_NOP; 2207 } 2208 2209 /** 2210 * ftrace_update_record, set a record that now is tracing or not 2211 * @rec: the record to update 2212 * @enable: set to true if the record is tracing, false to force disable 2213 * 2214 * The records that represent all functions that can be traced need 2215 * to be updated when tracing has been enabled. 2216 */ 2217 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2218 { 2219 return ftrace_check_record(rec, enable, true); 2220 } 2221 2222 /** 2223 * ftrace_test_record, check if the record has been enabled or not 2224 * @rec: the record to test 2225 * @enable: set to true to check if enabled, false if it is disabled 2226 * 2227 * The arch code may need to test if a record is already set to 2228 * tracing to determine how to modify the function code that it 2229 * represents. 2230 */ 2231 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2232 { 2233 return ftrace_check_record(rec, enable, false); 2234 } 2235 2236 static struct ftrace_ops * 2237 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2238 { 2239 struct ftrace_ops *op; 2240 unsigned long ip = rec->ip; 2241 2242 do_for_each_ftrace_op(op, ftrace_ops_list) { 2243 2244 if (!op->trampoline) 2245 continue; 2246 2247 if (hash_contains_ip(ip, op->func_hash)) 2248 return op; 2249 } while_for_each_ftrace_op(op); 2250 2251 return NULL; 2252 } 2253 2254 static struct ftrace_ops * 2255 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2256 struct ftrace_ops *op) 2257 { 2258 unsigned long ip = rec->ip; 2259 2260 while_for_each_ftrace_op(op) { 2261 2262 if (!op->trampoline) 2263 continue; 2264 2265 if (hash_contains_ip(ip, op->func_hash)) 2266 return op; 2267 } 2268 2269 return NULL; 2270 } 2271 2272 static struct ftrace_ops * 2273 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2274 { 2275 struct ftrace_ops *op; 2276 unsigned long ip = rec->ip; 2277 2278 /* 2279 * Need to check removed ops first. 2280 * If they are being removed, and this rec has a tramp, 2281 * and this rec is in the ops list, then it would be the 2282 * one with the tramp. 2283 */ 2284 if (removed_ops) { 2285 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2286 return removed_ops; 2287 } 2288 2289 /* 2290 * Need to find the current trampoline for a rec. 2291 * Now, a trampoline is only attached to a rec if there 2292 * was a single 'ops' attached to it. But this can be called 2293 * when we are adding another op to the rec or removing the 2294 * current one. Thus, if the op is being added, we can 2295 * ignore it because it hasn't attached itself to the rec 2296 * yet. 2297 * 2298 * If an ops is being modified (hooking to different functions) 2299 * then we don't care about the new functions that are being 2300 * added, just the old ones (that are probably being removed). 2301 * 2302 * If we are adding an ops to a function that already is using 2303 * a trampoline, it needs to be removed (trampolines are only 2304 * for single ops connected), then an ops that is not being 2305 * modified also needs to be checked. 2306 */ 2307 do_for_each_ftrace_op(op, ftrace_ops_list) { 2308 2309 if (!op->trampoline) 2310 continue; 2311 2312 /* 2313 * If the ops is being added, it hasn't gotten to 2314 * the point to be removed from this tree yet. 2315 */ 2316 if (op->flags & FTRACE_OPS_FL_ADDING) 2317 continue; 2318 2319 2320 /* 2321 * If the ops is being modified and is in the old 2322 * hash, then it is probably being removed from this 2323 * function. 2324 */ 2325 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2326 hash_contains_ip(ip, &op->old_hash)) 2327 return op; 2328 /* 2329 * If the ops is not being added or modified, and it's 2330 * in its normal filter hash, then this must be the one 2331 * we want! 2332 */ 2333 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2334 hash_contains_ip(ip, op->func_hash)) 2335 return op; 2336 2337 } while_for_each_ftrace_op(op); 2338 2339 return NULL; 2340 } 2341 2342 static struct ftrace_ops * 2343 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2344 { 2345 struct ftrace_ops *op; 2346 unsigned long ip = rec->ip; 2347 2348 do_for_each_ftrace_op(op, ftrace_ops_list) { 2349 /* pass rec in as regs to have non-NULL val */ 2350 if (hash_contains_ip(ip, op->func_hash)) 2351 return op; 2352 } while_for_each_ftrace_op(op); 2353 2354 return NULL; 2355 } 2356 2357 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2358 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2359 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2360 static DEFINE_MUTEX(direct_mutex); 2361 int ftrace_direct_func_count; 2362 2363 /* 2364 * Search the direct_functions hash to see if the given instruction pointer 2365 * has a direct caller attached to it. 2366 */ 2367 unsigned long ftrace_find_rec_direct(unsigned long ip) 2368 { 2369 struct ftrace_func_entry *entry; 2370 2371 entry = __ftrace_lookup_ip(direct_functions, ip); 2372 if (!entry) 2373 return 0; 2374 2375 return entry->direct; 2376 } 2377 2378 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2379 struct ftrace_ops *ops, struct pt_regs *regs) 2380 { 2381 unsigned long addr; 2382 2383 addr = ftrace_find_rec_direct(ip); 2384 if (!addr) 2385 return; 2386 2387 arch_ftrace_set_direct_caller(regs, addr); 2388 } 2389 2390 struct ftrace_ops direct_ops = { 2391 .func = call_direct_funcs, 2392 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2393 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2394 | FTRACE_OPS_FL_PERMANENT, 2395 }; 2396 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2397 2398 /** 2399 * ftrace_get_addr_new - Get the call address to set to 2400 * @rec: The ftrace record descriptor 2401 * 2402 * If the record has the FTRACE_FL_REGS set, that means that it 2403 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2404 * is not not set, then it wants to convert to the normal callback. 2405 * 2406 * Returns the address of the trampoline to set to 2407 */ 2408 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2409 { 2410 struct ftrace_ops *ops; 2411 unsigned long addr; 2412 2413 if ((rec->flags & FTRACE_FL_DIRECT) && 2414 (ftrace_rec_count(rec) == 1)) { 2415 addr = ftrace_find_rec_direct(rec->ip); 2416 if (addr) 2417 return addr; 2418 WARN_ON_ONCE(1); 2419 } 2420 2421 /* Trampolines take precedence over regs */ 2422 if (rec->flags & FTRACE_FL_TRAMP) { 2423 ops = ftrace_find_tramp_ops_new(rec); 2424 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2425 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2426 (void *)rec->ip, (void *)rec->ip, rec->flags); 2427 /* Ftrace is shutting down, return anything */ 2428 return (unsigned long)FTRACE_ADDR; 2429 } 2430 return ops->trampoline; 2431 } 2432 2433 if (rec->flags & FTRACE_FL_REGS) 2434 return (unsigned long)FTRACE_REGS_ADDR; 2435 else 2436 return (unsigned long)FTRACE_ADDR; 2437 } 2438 2439 /** 2440 * ftrace_get_addr_curr - Get the call address that is already there 2441 * @rec: The ftrace record descriptor 2442 * 2443 * The FTRACE_FL_REGS_EN is set when the record already points to 2444 * a function that saves all the regs. Basically the '_EN' version 2445 * represents the current state of the function. 2446 * 2447 * Returns the address of the trampoline that is currently being called 2448 */ 2449 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2450 { 2451 struct ftrace_ops *ops; 2452 unsigned long addr; 2453 2454 /* Direct calls take precedence over trampolines */ 2455 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2456 addr = ftrace_find_rec_direct(rec->ip); 2457 if (addr) 2458 return addr; 2459 WARN_ON_ONCE(1); 2460 } 2461 2462 /* Trampolines take precedence over regs */ 2463 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2464 ops = ftrace_find_tramp_ops_curr(rec); 2465 if (FTRACE_WARN_ON(!ops)) { 2466 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2467 (void *)rec->ip, (void *)rec->ip); 2468 /* Ftrace is shutting down, return anything */ 2469 return (unsigned long)FTRACE_ADDR; 2470 } 2471 return ops->trampoline; 2472 } 2473 2474 if (rec->flags & FTRACE_FL_REGS_EN) 2475 return (unsigned long)FTRACE_REGS_ADDR; 2476 else 2477 return (unsigned long)FTRACE_ADDR; 2478 } 2479 2480 static int 2481 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2482 { 2483 unsigned long ftrace_old_addr; 2484 unsigned long ftrace_addr; 2485 int ret; 2486 2487 ftrace_addr = ftrace_get_addr_new(rec); 2488 2489 /* This needs to be done before we call ftrace_update_record */ 2490 ftrace_old_addr = ftrace_get_addr_curr(rec); 2491 2492 ret = ftrace_update_record(rec, enable); 2493 2494 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2495 2496 switch (ret) { 2497 case FTRACE_UPDATE_IGNORE: 2498 return 0; 2499 2500 case FTRACE_UPDATE_MAKE_CALL: 2501 ftrace_bug_type = FTRACE_BUG_CALL; 2502 return ftrace_make_call(rec, ftrace_addr); 2503 2504 case FTRACE_UPDATE_MAKE_NOP: 2505 ftrace_bug_type = FTRACE_BUG_NOP; 2506 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2507 2508 case FTRACE_UPDATE_MODIFY_CALL: 2509 ftrace_bug_type = FTRACE_BUG_UPDATE; 2510 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2511 } 2512 2513 return -1; /* unknown ftrace bug */ 2514 } 2515 2516 void __weak ftrace_replace_code(int mod_flags) 2517 { 2518 struct dyn_ftrace *rec; 2519 struct ftrace_page *pg; 2520 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2521 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2522 int failed; 2523 2524 if (unlikely(ftrace_disabled)) 2525 return; 2526 2527 do_for_each_ftrace_rec(pg, rec) { 2528 2529 if (rec->flags & FTRACE_FL_DISABLED) 2530 continue; 2531 2532 failed = __ftrace_replace_code(rec, enable); 2533 if (failed) { 2534 ftrace_bug(failed, rec); 2535 /* Stop processing */ 2536 return; 2537 } 2538 if (schedulable) 2539 cond_resched(); 2540 } while_for_each_ftrace_rec(); 2541 } 2542 2543 struct ftrace_rec_iter { 2544 struct ftrace_page *pg; 2545 int index; 2546 }; 2547 2548 /** 2549 * ftrace_rec_iter_start, start up iterating over traced functions 2550 * 2551 * Returns an iterator handle that is used to iterate over all 2552 * the records that represent address locations where functions 2553 * are traced. 2554 * 2555 * May return NULL if no records are available. 2556 */ 2557 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2558 { 2559 /* 2560 * We only use a single iterator. 2561 * Protected by the ftrace_lock mutex. 2562 */ 2563 static struct ftrace_rec_iter ftrace_rec_iter; 2564 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2565 2566 iter->pg = ftrace_pages_start; 2567 iter->index = 0; 2568 2569 /* Could have empty pages */ 2570 while (iter->pg && !iter->pg->index) 2571 iter->pg = iter->pg->next; 2572 2573 if (!iter->pg) 2574 return NULL; 2575 2576 return iter; 2577 } 2578 2579 /** 2580 * ftrace_rec_iter_next, get the next record to process. 2581 * @iter: The handle to the iterator. 2582 * 2583 * Returns the next iterator after the given iterator @iter. 2584 */ 2585 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2586 { 2587 iter->index++; 2588 2589 if (iter->index >= iter->pg->index) { 2590 iter->pg = iter->pg->next; 2591 iter->index = 0; 2592 2593 /* Could have empty pages */ 2594 while (iter->pg && !iter->pg->index) 2595 iter->pg = iter->pg->next; 2596 } 2597 2598 if (!iter->pg) 2599 return NULL; 2600 2601 return iter; 2602 } 2603 2604 /** 2605 * ftrace_rec_iter_record, get the record at the iterator location 2606 * @iter: The current iterator location 2607 * 2608 * Returns the record that the current @iter is at. 2609 */ 2610 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2611 { 2612 return &iter->pg->records[iter->index]; 2613 } 2614 2615 static int 2616 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2617 { 2618 int ret; 2619 2620 if (unlikely(ftrace_disabled)) 2621 return 0; 2622 2623 ret = ftrace_init_nop(mod, rec); 2624 if (ret) { 2625 ftrace_bug_type = FTRACE_BUG_INIT; 2626 ftrace_bug(ret, rec); 2627 return 0; 2628 } 2629 return 1; 2630 } 2631 2632 /* 2633 * archs can override this function if they must do something 2634 * before the modifying code is performed. 2635 */ 2636 int __weak ftrace_arch_code_modify_prepare(void) 2637 { 2638 return 0; 2639 } 2640 2641 /* 2642 * archs can override this function if they must do something 2643 * after the modifying code is performed. 2644 */ 2645 int __weak ftrace_arch_code_modify_post_process(void) 2646 { 2647 return 0; 2648 } 2649 2650 void ftrace_modify_all_code(int command) 2651 { 2652 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2653 int mod_flags = 0; 2654 int err = 0; 2655 2656 if (command & FTRACE_MAY_SLEEP) 2657 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2658 2659 /* 2660 * If the ftrace_caller calls a ftrace_ops func directly, 2661 * we need to make sure that it only traces functions it 2662 * expects to trace. When doing the switch of functions, 2663 * we need to update to the ftrace_ops_list_func first 2664 * before the transition between old and new calls are set, 2665 * as the ftrace_ops_list_func will check the ops hashes 2666 * to make sure the ops are having the right functions 2667 * traced. 2668 */ 2669 if (update) { 2670 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2671 if (FTRACE_WARN_ON(err)) 2672 return; 2673 } 2674 2675 if (command & FTRACE_UPDATE_CALLS) 2676 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2677 else if (command & FTRACE_DISABLE_CALLS) 2678 ftrace_replace_code(mod_flags); 2679 2680 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2681 function_trace_op = set_function_trace_op; 2682 smp_wmb(); 2683 /* If irqs are disabled, we are in stop machine */ 2684 if (!irqs_disabled()) 2685 smp_call_function(ftrace_sync_ipi, NULL, 1); 2686 err = ftrace_update_ftrace_func(ftrace_trace_function); 2687 if (FTRACE_WARN_ON(err)) 2688 return; 2689 } 2690 2691 if (command & FTRACE_START_FUNC_RET) 2692 err = ftrace_enable_ftrace_graph_caller(); 2693 else if (command & FTRACE_STOP_FUNC_RET) 2694 err = ftrace_disable_ftrace_graph_caller(); 2695 FTRACE_WARN_ON(err); 2696 } 2697 2698 static int __ftrace_modify_code(void *data) 2699 { 2700 int *command = data; 2701 2702 ftrace_modify_all_code(*command); 2703 2704 return 0; 2705 } 2706 2707 /** 2708 * ftrace_run_stop_machine, go back to the stop machine method 2709 * @command: The command to tell ftrace what to do 2710 * 2711 * If an arch needs to fall back to the stop machine method, the 2712 * it can call this function. 2713 */ 2714 void ftrace_run_stop_machine(int command) 2715 { 2716 stop_machine(__ftrace_modify_code, &command, NULL); 2717 } 2718 2719 /** 2720 * arch_ftrace_update_code, modify the code to trace or not trace 2721 * @command: The command that needs to be done 2722 * 2723 * Archs can override this function if it does not need to 2724 * run stop_machine() to modify code. 2725 */ 2726 void __weak arch_ftrace_update_code(int command) 2727 { 2728 ftrace_run_stop_machine(command); 2729 } 2730 2731 static void ftrace_run_update_code(int command) 2732 { 2733 int ret; 2734 2735 ret = ftrace_arch_code_modify_prepare(); 2736 FTRACE_WARN_ON(ret); 2737 if (ret) 2738 return; 2739 2740 /* 2741 * By default we use stop_machine() to modify the code. 2742 * But archs can do what ever they want as long as it 2743 * is safe. The stop_machine() is the safest, but also 2744 * produces the most overhead. 2745 */ 2746 arch_ftrace_update_code(command); 2747 2748 ret = ftrace_arch_code_modify_post_process(); 2749 FTRACE_WARN_ON(ret); 2750 } 2751 2752 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2753 struct ftrace_ops_hash *old_hash) 2754 { 2755 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2756 ops->old_hash.filter_hash = old_hash->filter_hash; 2757 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2758 ftrace_run_update_code(command); 2759 ops->old_hash.filter_hash = NULL; 2760 ops->old_hash.notrace_hash = NULL; 2761 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2762 } 2763 2764 static ftrace_func_t saved_ftrace_func; 2765 static int ftrace_start_up; 2766 2767 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2768 { 2769 } 2770 2771 static void ftrace_startup_enable(int command) 2772 { 2773 if (saved_ftrace_func != ftrace_trace_function) { 2774 saved_ftrace_func = ftrace_trace_function; 2775 command |= FTRACE_UPDATE_TRACE_FUNC; 2776 } 2777 2778 if (!command || !ftrace_enabled) 2779 return; 2780 2781 ftrace_run_update_code(command); 2782 } 2783 2784 static void ftrace_startup_all(int command) 2785 { 2786 update_all_ops = true; 2787 ftrace_startup_enable(command); 2788 update_all_ops = false; 2789 } 2790 2791 int ftrace_startup(struct ftrace_ops *ops, int command) 2792 { 2793 int ret; 2794 2795 if (unlikely(ftrace_disabled)) 2796 return -ENODEV; 2797 2798 ret = __register_ftrace_function(ops); 2799 if (ret) 2800 return ret; 2801 2802 ftrace_start_up++; 2803 2804 /* 2805 * Note that ftrace probes uses this to start up 2806 * and modify functions it will probe. But we still 2807 * set the ADDING flag for modification, as probes 2808 * do not have trampolines. If they add them in the 2809 * future, then the probes will need to distinguish 2810 * between adding and updating probes. 2811 */ 2812 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2813 2814 ret = ftrace_hash_ipmodify_enable(ops); 2815 if (ret < 0) { 2816 /* Rollback registration process */ 2817 __unregister_ftrace_function(ops); 2818 ftrace_start_up--; 2819 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2820 return ret; 2821 } 2822 2823 if (ftrace_hash_rec_enable(ops, 1)) 2824 command |= FTRACE_UPDATE_CALLS; 2825 2826 ftrace_startup_enable(command); 2827 2828 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2829 2830 return 0; 2831 } 2832 2833 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2834 { 2835 int ret; 2836 2837 if (unlikely(ftrace_disabled)) 2838 return -ENODEV; 2839 2840 ret = __unregister_ftrace_function(ops); 2841 if (ret) 2842 return ret; 2843 2844 ftrace_start_up--; 2845 /* 2846 * Just warn in case of unbalance, no need to kill ftrace, it's not 2847 * critical but the ftrace_call callers may be never nopped again after 2848 * further ftrace uses. 2849 */ 2850 WARN_ON_ONCE(ftrace_start_up < 0); 2851 2852 /* Disabling ipmodify never fails */ 2853 ftrace_hash_ipmodify_disable(ops); 2854 2855 if (ftrace_hash_rec_disable(ops, 1)) 2856 command |= FTRACE_UPDATE_CALLS; 2857 2858 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2859 2860 if (saved_ftrace_func != ftrace_trace_function) { 2861 saved_ftrace_func = ftrace_trace_function; 2862 command |= FTRACE_UPDATE_TRACE_FUNC; 2863 } 2864 2865 if (!command || !ftrace_enabled) { 2866 /* 2867 * If these are dynamic or per_cpu ops, they still 2868 * need their data freed. Since, function tracing is 2869 * not currently active, we can just free them 2870 * without synchronizing all CPUs. 2871 */ 2872 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2873 goto free_ops; 2874 2875 return 0; 2876 } 2877 2878 /* 2879 * If the ops uses a trampoline, then it needs to be 2880 * tested first on update. 2881 */ 2882 ops->flags |= FTRACE_OPS_FL_REMOVING; 2883 removed_ops = ops; 2884 2885 /* The trampoline logic checks the old hashes */ 2886 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2887 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2888 2889 ftrace_run_update_code(command); 2890 2891 /* 2892 * If there's no more ops registered with ftrace, run a 2893 * sanity check to make sure all rec flags are cleared. 2894 */ 2895 if (rcu_dereference_protected(ftrace_ops_list, 2896 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2897 struct ftrace_page *pg; 2898 struct dyn_ftrace *rec; 2899 2900 do_for_each_ftrace_rec(pg, rec) { 2901 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2902 pr_warn(" %pS flags:%lx\n", 2903 (void *)rec->ip, rec->flags); 2904 } while_for_each_ftrace_rec(); 2905 } 2906 2907 ops->old_hash.filter_hash = NULL; 2908 ops->old_hash.notrace_hash = NULL; 2909 2910 removed_ops = NULL; 2911 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2912 2913 /* 2914 * Dynamic ops may be freed, we must make sure that all 2915 * callers are done before leaving this function. 2916 * The same goes for freeing the per_cpu data of the per_cpu 2917 * ops. 2918 */ 2919 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2920 /* 2921 * We need to do a hard force of sched synchronization. 2922 * This is because we use preempt_disable() to do RCU, but 2923 * the function tracers can be called where RCU is not watching 2924 * (like before user_exit()). We can not rely on the RCU 2925 * infrastructure to do the synchronization, thus we must do it 2926 * ourselves. 2927 */ 2928 schedule_on_each_cpu(ftrace_sync); 2929 2930 /* 2931 * When the kernel is preeptive, tasks can be preempted 2932 * while on a ftrace trampoline. Just scheduling a task on 2933 * a CPU is not good enough to flush them. Calling 2934 * synchornize_rcu_tasks() will wait for those tasks to 2935 * execute and either schedule voluntarily or enter user space. 2936 */ 2937 if (IS_ENABLED(CONFIG_PREEMPTION)) 2938 synchronize_rcu_tasks(); 2939 2940 free_ops: 2941 arch_ftrace_trampoline_free(ops); 2942 } 2943 2944 return 0; 2945 } 2946 2947 static void ftrace_startup_sysctl(void) 2948 { 2949 int command; 2950 2951 if (unlikely(ftrace_disabled)) 2952 return; 2953 2954 /* Force update next time */ 2955 saved_ftrace_func = NULL; 2956 /* ftrace_start_up is true if we want ftrace running */ 2957 if (ftrace_start_up) { 2958 command = FTRACE_UPDATE_CALLS; 2959 if (ftrace_graph_active) 2960 command |= FTRACE_START_FUNC_RET; 2961 ftrace_startup_enable(command); 2962 } 2963 } 2964 2965 static void ftrace_shutdown_sysctl(void) 2966 { 2967 int command; 2968 2969 if (unlikely(ftrace_disabled)) 2970 return; 2971 2972 /* ftrace_start_up is true if ftrace is running */ 2973 if (ftrace_start_up) { 2974 command = FTRACE_DISABLE_CALLS; 2975 if (ftrace_graph_active) 2976 command |= FTRACE_STOP_FUNC_RET; 2977 ftrace_run_update_code(command); 2978 } 2979 } 2980 2981 static u64 ftrace_update_time; 2982 unsigned long ftrace_update_tot_cnt; 2983 unsigned long ftrace_number_of_pages; 2984 unsigned long ftrace_number_of_groups; 2985 2986 static inline int ops_traces_mod(struct ftrace_ops *ops) 2987 { 2988 /* 2989 * Filter_hash being empty will default to trace module. 2990 * But notrace hash requires a test of individual module functions. 2991 */ 2992 return ftrace_hash_empty(ops->func_hash->filter_hash) && 2993 ftrace_hash_empty(ops->func_hash->notrace_hash); 2994 } 2995 2996 /* 2997 * Check if the current ops references the record. 2998 * 2999 * If the ops traces all functions, then it was already accounted for. 3000 * If the ops does not trace the current record function, skip it. 3001 * If the ops ignores the function via notrace filter, skip it. 3002 */ 3003 static inline bool 3004 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3005 { 3006 /* If ops isn't enabled, ignore it */ 3007 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3008 return false; 3009 3010 /* If ops traces all then it includes this function */ 3011 if (ops_traces_mod(ops)) 3012 return true; 3013 3014 /* The function must be in the filter */ 3015 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3016 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3017 return false; 3018 3019 /* If in notrace hash, we ignore it too */ 3020 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3021 return false; 3022 3023 return true; 3024 } 3025 3026 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3027 { 3028 struct ftrace_page *pg; 3029 struct dyn_ftrace *p; 3030 u64 start, stop; 3031 unsigned long update_cnt = 0; 3032 unsigned long rec_flags = 0; 3033 int i; 3034 3035 start = ftrace_now(raw_smp_processor_id()); 3036 3037 /* 3038 * When a module is loaded, this function is called to convert 3039 * the calls to mcount in its text to nops, and also to create 3040 * an entry in the ftrace data. Now, if ftrace is activated 3041 * after this call, but before the module sets its text to 3042 * read-only, the modification of enabling ftrace can fail if 3043 * the read-only is done while ftrace is converting the calls. 3044 * To prevent this, the module's records are set as disabled 3045 * and will be enabled after the call to set the module's text 3046 * to read-only. 3047 */ 3048 if (mod) 3049 rec_flags |= FTRACE_FL_DISABLED; 3050 3051 for (pg = new_pgs; pg; pg = pg->next) { 3052 3053 for (i = 0; i < pg->index; i++) { 3054 3055 /* If something went wrong, bail without enabling anything */ 3056 if (unlikely(ftrace_disabled)) 3057 return -1; 3058 3059 p = &pg->records[i]; 3060 p->flags = rec_flags; 3061 3062 /* 3063 * Do the initial record conversion from mcount jump 3064 * to the NOP instructions. 3065 */ 3066 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3067 !ftrace_nop_initialize(mod, p)) 3068 break; 3069 3070 update_cnt++; 3071 } 3072 } 3073 3074 stop = ftrace_now(raw_smp_processor_id()); 3075 ftrace_update_time = stop - start; 3076 ftrace_update_tot_cnt += update_cnt; 3077 3078 return 0; 3079 } 3080 3081 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3082 { 3083 int order; 3084 int cnt; 3085 3086 if (WARN_ON(!count)) 3087 return -EINVAL; 3088 3089 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3090 3091 /* 3092 * We want to fill as much as possible. No more than a page 3093 * may be empty. 3094 */ 3095 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3096 order--; 3097 3098 again: 3099 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3100 3101 if (!pg->records) { 3102 /* if we can't allocate this size, try something smaller */ 3103 if (!order) 3104 return -ENOMEM; 3105 order >>= 1; 3106 goto again; 3107 } 3108 3109 ftrace_number_of_pages += 1 << order; 3110 ftrace_number_of_groups++; 3111 3112 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3113 pg->size = cnt; 3114 3115 if (cnt > count) 3116 cnt = count; 3117 3118 return cnt; 3119 } 3120 3121 static struct ftrace_page * 3122 ftrace_allocate_pages(unsigned long num_to_init) 3123 { 3124 struct ftrace_page *start_pg; 3125 struct ftrace_page *pg; 3126 int order; 3127 int cnt; 3128 3129 if (!num_to_init) 3130 return NULL; 3131 3132 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3133 if (!pg) 3134 return NULL; 3135 3136 /* 3137 * Try to allocate as much as possible in one continues 3138 * location that fills in all of the space. We want to 3139 * waste as little space as possible. 3140 */ 3141 for (;;) { 3142 cnt = ftrace_allocate_records(pg, num_to_init); 3143 if (cnt < 0) 3144 goto free_pages; 3145 3146 num_to_init -= cnt; 3147 if (!num_to_init) 3148 break; 3149 3150 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3151 if (!pg->next) 3152 goto free_pages; 3153 3154 pg = pg->next; 3155 } 3156 3157 return start_pg; 3158 3159 free_pages: 3160 pg = start_pg; 3161 while (pg) { 3162 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3163 free_pages((unsigned long)pg->records, order); 3164 start_pg = pg->next; 3165 kfree(pg); 3166 pg = start_pg; 3167 ftrace_number_of_pages -= 1 << order; 3168 ftrace_number_of_groups--; 3169 } 3170 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3171 return NULL; 3172 } 3173 3174 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3175 3176 struct ftrace_iterator { 3177 loff_t pos; 3178 loff_t func_pos; 3179 loff_t mod_pos; 3180 struct ftrace_page *pg; 3181 struct dyn_ftrace *func; 3182 struct ftrace_func_probe *probe; 3183 struct ftrace_func_entry *probe_entry; 3184 struct trace_parser parser; 3185 struct ftrace_hash *hash; 3186 struct ftrace_ops *ops; 3187 struct trace_array *tr; 3188 struct list_head *mod_list; 3189 int pidx; 3190 int idx; 3191 unsigned flags; 3192 }; 3193 3194 static void * 3195 t_probe_next(struct seq_file *m, loff_t *pos) 3196 { 3197 struct ftrace_iterator *iter = m->private; 3198 struct trace_array *tr = iter->ops->private; 3199 struct list_head *func_probes; 3200 struct ftrace_hash *hash; 3201 struct list_head *next; 3202 struct hlist_node *hnd = NULL; 3203 struct hlist_head *hhd; 3204 int size; 3205 3206 (*pos)++; 3207 iter->pos = *pos; 3208 3209 if (!tr) 3210 return NULL; 3211 3212 func_probes = &tr->func_probes; 3213 if (list_empty(func_probes)) 3214 return NULL; 3215 3216 if (!iter->probe) { 3217 next = func_probes->next; 3218 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3219 } 3220 3221 if (iter->probe_entry) 3222 hnd = &iter->probe_entry->hlist; 3223 3224 hash = iter->probe->ops.func_hash->filter_hash; 3225 3226 /* 3227 * A probe being registered may temporarily have an empty hash 3228 * and it's at the end of the func_probes list. 3229 */ 3230 if (!hash || hash == EMPTY_HASH) 3231 return NULL; 3232 3233 size = 1 << hash->size_bits; 3234 3235 retry: 3236 if (iter->pidx >= size) { 3237 if (iter->probe->list.next == func_probes) 3238 return NULL; 3239 next = iter->probe->list.next; 3240 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3241 hash = iter->probe->ops.func_hash->filter_hash; 3242 size = 1 << hash->size_bits; 3243 iter->pidx = 0; 3244 } 3245 3246 hhd = &hash->buckets[iter->pidx]; 3247 3248 if (hlist_empty(hhd)) { 3249 iter->pidx++; 3250 hnd = NULL; 3251 goto retry; 3252 } 3253 3254 if (!hnd) 3255 hnd = hhd->first; 3256 else { 3257 hnd = hnd->next; 3258 if (!hnd) { 3259 iter->pidx++; 3260 goto retry; 3261 } 3262 } 3263 3264 if (WARN_ON_ONCE(!hnd)) 3265 return NULL; 3266 3267 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3268 3269 return iter; 3270 } 3271 3272 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3273 { 3274 struct ftrace_iterator *iter = m->private; 3275 void *p = NULL; 3276 loff_t l; 3277 3278 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3279 return NULL; 3280 3281 if (iter->mod_pos > *pos) 3282 return NULL; 3283 3284 iter->probe = NULL; 3285 iter->probe_entry = NULL; 3286 iter->pidx = 0; 3287 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3288 p = t_probe_next(m, &l); 3289 if (!p) 3290 break; 3291 } 3292 if (!p) 3293 return NULL; 3294 3295 /* Only set this if we have an item */ 3296 iter->flags |= FTRACE_ITER_PROBE; 3297 3298 return iter; 3299 } 3300 3301 static int 3302 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3303 { 3304 struct ftrace_func_entry *probe_entry; 3305 struct ftrace_probe_ops *probe_ops; 3306 struct ftrace_func_probe *probe; 3307 3308 probe = iter->probe; 3309 probe_entry = iter->probe_entry; 3310 3311 if (WARN_ON_ONCE(!probe || !probe_entry)) 3312 return -EIO; 3313 3314 probe_ops = probe->probe_ops; 3315 3316 if (probe_ops->print) 3317 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3318 3319 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3320 (void *)probe_ops->func); 3321 3322 return 0; 3323 } 3324 3325 static void * 3326 t_mod_next(struct seq_file *m, loff_t *pos) 3327 { 3328 struct ftrace_iterator *iter = m->private; 3329 struct trace_array *tr = iter->tr; 3330 3331 (*pos)++; 3332 iter->pos = *pos; 3333 3334 iter->mod_list = iter->mod_list->next; 3335 3336 if (iter->mod_list == &tr->mod_trace || 3337 iter->mod_list == &tr->mod_notrace) { 3338 iter->flags &= ~FTRACE_ITER_MOD; 3339 return NULL; 3340 } 3341 3342 iter->mod_pos = *pos; 3343 3344 return iter; 3345 } 3346 3347 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3348 { 3349 struct ftrace_iterator *iter = m->private; 3350 void *p = NULL; 3351 loff_t l; 3352 3353 if (iter->func_pos > *pos) 3354 return NULL; 3355 3356 iter->mod_pos = iter->func_pos; 3357 3358 /* probes are only available if tr is set */ 3359 if (!iter->tr) 3360 return NULL; 3361 3362 for (l = 0; l <= (*pos - iter->func_pos); ) { 3363 p = t_mod_next(m, &l); 3364 if (!p) 3365 break; 3366 } 3367 if (!p) { 3368 iter->flags &= ~FTRACE_ITER_MOD; 3369 return t_probe_start(m, pos); 3370 } 3371 3372 /* Only set this if we have an item */ 3373 iter->flags |= FTRACE_ITER_MOD; 3374 3375 return iter; 3376 } 3377 3378 static int 3379 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3380 { 3381 struct ftrace_mod_load *ftrace_mod; 3382 struct trace_array *tr = iter->tr; 3383 3384 if (WARN_ON_ONCE(!iter->mod_list) || 3385 iter->mod_list == &tr->mod_trace || 3386 iter->mod_list == &tr->mod_notrace) 3387 return -EIO; 3388 3389 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3390 3391 if (ftrace_mod->func) 3392 seq_printf(m, "%s", ftrace_mod->func); 3393 else 3394 seq_putc(m, '*'); 3395 3396 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3397 3398 return 0; 3399 } 3400 3401 static void * 3402 t_func_next(struct seq_file *m, loff_t *pos) 3403 { 3404 struct ftrace_iterator *iter = m->private; 3405 struct dyn_ftrace *rec = NULL; 3406 3407 (*pos)++; 3408 3409 retry: 3410 if (iter->idx >= iter->pg->index) { 3411 if (iter->pg->next) { 3412 iter->pg = iter->pg->next; 3413 iter->idx = 0; 3414 goto retry; 3415 } 3416 } else { 3417 rec = &iter->pg->records[iter->idx++]; 3418 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3419 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3420 3421 ((iter->flags & FTRACE_ITER_ENABLED) && 3422 !(rec->flags & FTRACE_FL_ENABLED))) { 3423 3424 rec = NULL; 3425 goto retry; 3426 } 3427 } 3428 3429 if (!rec) 3430 return NULL; 3431 3432 iter->pos = iter->func_pos = *pos; 3433 iter->func = rec; 3434 3435 return iter; 3436 } 3437 3438 static void * 3439 t_next(struct seq_file *m, void *v, loff_t *pos) 3440 { 3441 struct ftrace_iterator *iter = m->private; 3442 loff_t l = *pos; /* t_probe_start() must use original pos */ 3443 void *ret; 3444 3445 if (unlikely(ftrace_disabled)) 3446 return NULL; 3447 3448 if (iter->flags & FTRACE_ITER_PROBE) 3449 return t_probe_next(m, pos); 3450 3451 if (iter->flags & FTRACE_ITER_MOD) 3452 return t_mod_next(m, pos); 3453 3454 if (iter->flags & FTRACE_ITER_PRINTALL) { 3455 /* next must increment pos, and t_probe_start does not */ 3456 (*pos)++; 3457 return t_mod_start(m, &l); 3458 } 3459 3460 ret = t_func_next(m, pos); 3461 3462 if (!ret) 3463 return t_mod_start(m, &l); 3464 3465 return ret; 3466 } 3467 3468 static void reset_iter_read(struct ftrace_iterator *iter) 3469 { 3470 iter->pos = 0; 3471 iter->func_pos = 0; 3472 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3473 } 3474 3475 static void *t_start(struct seq_file *m, loff_t *pos) 3476 { 3477 struct ftrace_iterator *iter = m->private; 3478 void *p = NULL; 3479 loff_t l; 3480 3481 mutex_lock(&ftrace_lock); 3482 3483 if (unlikely(ftrace_disabled)) 3484 return NULL; 3485 3486 /* 3487 * If an lseek was done, then reset and start from beginning. 3488 */ 3489 if (*pos < iter->pos) 3490 reset_iter_read(iter); 3491 3492 /* 3493 * For set_ftrace_filter reading, if we have the filter 3494 * off, we can short cut and just print out that all 3495 * functions are enabled. 3496 */ 3497 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3498 ftrace_hash_empty(iter->hash)) { 3499 iter->func_pos = 1; /* Account for the message */ 3500 if (*pos > 0) 3501 return t_mod_start(m, pos); 3502 iter->flags |= FTRACE_ITER_PRINTALL; 3503 /* reset in case of seek/pread */ 3504 iter->flags &= ~FTRACE_ITER_PROBE; 3505 return iter; 3506 } 3507 3508 if (iter->flags & FTRACE_ITER_MOD) 3509 return t_mod_start(m, pos); 3510 3511 /* 3512 * Unfortunately, we need to restart at ftrace_pages_start 3513 * every time we let go of the ftrace_mutex. This is because 3514 * those pointers can change without the lock. 3515 */ 3516 iter->pg = ftrace_pages_start; 3517 iter->idx = 0; 3518 for (l = 0; l <= *pos; ) { 3519 p = t_func_next(m, &l); 3520 if (!p) 3521 break; 3522 } 3523 3524 if (!p) 3525 return t_mod_start(m, pos); 3526 3527 return iter; 3528 } 3529 3530 static void t_stop(struct seq_file *m, void *p) 3531 { 3532 mutex_unlock(&ftrace_lock); 3533 } 3534 3535 void * __weak 3536 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3537 { 3538 return NULL; 3539 } 3540 3541 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3542 struct dyn_ftrace *rec) 3543 { 3544 void *ptr; 3545 3546 ptr = arch_ftrace_trampoline_func(ops, rec); 3547 if (ptr) 3548 seq_printf(m, " ->%pS", ptr); 3549 } 3550 3551 static int t_show(struct seq_file *m, void *v) 3552 { 3553 struct ftrace_iterator *iter = m->private; 3554 struct dyn_ftrace *rec; 3555 3556 if (iter->flags & FTRACE_ITER_PROBE) 3557 return t_probe_show(m, iter); 3558 3559 if (iter->flags & FTRACE_ITER_MOD) 3560 return t_mod_show(m, iter); 3561 3562 if (iter->flags & FTRACE_ITER_PRINTALL) { 3563 if (iter->flags & FTRACE_ITER_NOTRACE) 3564 seq_puts(m, "#### no functions disabled ####\n"); 3565 else 3566 seq_puts(m, "#### all functions enabled ####\n"); 3567 return 0; 3568 } 3569 3570 rec = iter->func; 3571 3572 if (!rec) 3573 return 0; 3574 3575 seq_printf(m, "%ps", (void *)rec->ip); 3576 if (iter->flags & FTRACE_ITER_ENABLED) { 3577 struct ftrace_ops *ops; 3578 3579 seq_printf(m, " (%ld)%s%s%s", 3580 ftrace_rec_count(rec), 3581 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3582 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3583 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3584 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3585 ops = ftrace_find_tramp_ops_any(rec); 3586 if (ops) { 3587 do { 3588 seq_printf(m, "\ttramp: %pS (%pS)", 3589 (void *)ops->trampoline, 3590 (void *)ops->func); 3591 add_trampoline_func(m, ops, rec); 3592 ops = ftrace_find_tramp_ops_next(rec, ops); 3593 } while (ops); 3594 } else 3595 seq_puts(m, "\ttramp: ERROR!"); 3596 } else { 3597 add_trampoline_func(m, NULL, rec); 3598 } 3599 if (rec->flags & FTRACE_FL_DIRECT) { 3600 unsigned long direct; 3601 3602 direct = ftrace_find_rec_direct(rec->ip); 3603 if (direct) 3604 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3605 } 3606 } 3607 3608 seq_putc(m, '\n'); 3609 3610 return 0; 3611 } 3612 3613 static const struct seq_operations show_ftrace_seq_ops = { 3614 .start = t_start, 3615 .next = t_next, 3616 .stop = t_stop, 3617 .show = t_show, 3618 }; 3619 3620 static int 3621 ftrace_avail_open(struct inode *inode, struct file *file) 3622 { 3623 struct ftrace_iterator *iter; 3624 int ret; 3625 3626 ret = security_locked_down(LOCKDOWN_TRACEFS); 3627 if (ret) 3628 return ret; 3629 3630 if (unlikely(ftrace_disabled)) 3631 return -ENODEV; 3632 3633 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3634 if (!iter) 3635 return -ENOMEM; 3636 3637 iter->pg = ftrace_pages_start; 3638 iter->ops = &global_ops; 3639 3640 return 0; 3641 } 3642 3643 static int 3644 ftrace_enabled_open(struct inode *inode, struct file *file) 3645 { 3646 struct ftrace_iterator *iter; 3647 3648 /* 3649 * This shows us what functions are currently being 3650 * traced and by what. Not sure if we want lockdown 3651 * to hide such critical information for an admin. 3652 * Although, perhaps it can show information we don't 3653 * want people to see, but if something is tracing 3654 * something, we probably want to know about it. 3655 */ 3656 3657 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3658 if (!iter) 3659 return -ENOMEM; 3660 3661 iter->pg = ftrace_pages_start; 3662 iter->flags = FTRACE_ITER_ENABLED; 3663 iter->ops = &global_ops; 3664 3665 return 0; 3666 } 3667 3668 /** 3669 * ftrace_regex_open - initialize function tracer filter files 3670 * @ops: The ftrace_ops that hold the hash filters 3671 * @flag: The type of filter to process 3672 * @inode: The inode, usually passed in to your open routine 3673 * @file: The file, usually passed in to your open routine 3674 * 3675 * ftrace_regex_open() initializes the filter files for the 3676 * @ops. Depending on @flag it may process the filter hash or 3677 * the notrace hash of @ops. With this called from the open 3678 * routine, you can use ftrace_filter_write() for the write 3679 * routine if @flag has FTRACE_ITER_FILTER set, or 3680 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3681 * tracing_lseek() should be used as the lseek routine, and 3682 * release must call ftrace_regex_release(). 3683 */ 3684 int 3685 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3686 struct inode *inode, struct file *file) 3687 { 3688 struct ftrace_iterator *iter; 3689 struct ftrace_hash *hash; 3690 struct list_head *mod_head; 3691 struct trace_array *tr = ops->private; 3692 int ret = -ENOMEM; 3693 3694 ftrace_ops_init(ops); 3695 3696 if (unlikely(ftrace_disabled)) 3697 return -ENODEV; 3698 3699 if (tracing_check_open_get_tr(tr)) 3700 return -ENODEV; 3701 3702 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3703 if (!iter) 3704 goto out; 3705 3706 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3707 goto out; 3708 3709 iter->ops = ops; 3710 iter->flags = flag; 3711 iter->tr = tr; 3712 3713 mutex_lock(&ops->func_hash->regex_lock); 3714 3715 if (flag & FTRACE_ITER_NOTRACE) { 3716 hash = ops->func_hash->notrace_hash; 3717 mod_head = tr ? &tr->mod_notrace : NULL; 3718 } else { 3719 hash = ops->func_hash->filter_hash; 3720 mod_head = tr ? &tr->mod_trace : NULL; 3721 } 3722 3723 iter->mod_list = mod_head; 3724 3725 if (file->f_mode & FMODE_WRITE) { 3726 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3727 3728 if (file->f_flags & O_TRUNC) { 3729 iter->hash = alloc_ftrace_hash(size_bits); 3730 clear_ftrace_mod_list(mod_head); 3731 } else { 3732 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3733 } 3734 3735 if (!iter->hash) { 3736 trace_parser_put(&iter->parser); 3737 goto out_unlock; 3738 } 3739 } else 3740 iter->hash = hash; 3741 3742 ret = 0; 3743 3744 if (file->f_mode & FMODE_READ) { 3745 iter->pg = ftrace_pages_start; 3746 3747 ret = seq_open(file, &show_ftrace_seq_ops); 3748 if (!ret) { 3749 struct seq_file *m = file->private_data; 3750 m->private = iter; 3751 } else { 3752 /* Failed */ 3753 free_ftrace_hash(iter->hash); 3754 trace_parser_put(&iter->parser); 3755 } 3756 } else 3757 file->private_data = iter; 3758 3759 out_unlock: 3760 mutex_unlock(&ops->func_hash->regex_lock); 3761 3762 out: 3763 if (ret) { 3764 kfree(iter); 3765 if (tr) 3766 trace_array_put(tr); 3767 } 3768 3769 return ret; 3770 } 3771 3772 static int 3773 ftrace_filter_open(struct inode *inode, struct file *file) 3774 { 3775 struct ftrace_ops *ops = inode->i_private; 3776 3777 /* Checks for tracefs lockdown */ 3778 return ftrace_regex_open(ops, 3779 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3780 inode, file); 3781 } 3782 3783 static int 3784 ftrace_notrace_open(struct inode *inode, struct file *file) 3785 { 3786 struct ftrace_ops *ops = inode->i_private; 3787 3788 /* Checks for tracefs lockdown */ 3789 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3790 inode, file); 3791 } 3792 3793 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3794 struct ftrace_glob { 3795 char *search; 3796 unsigned len; 3797 int type; 3798 }; 3799 3800 /* 3801 * If symbols in an architecture don't correspond exactly to the user-visible 3802 * name of what they represent, it is possible to define this function to 3803 * perform the necessary adjustments. 3804 */ 3805 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3806 { 3807 return str; 3808 } 3809 3810 static int ftrace_match(char *str, struct ftrace_glob *g) 3811 { 3812 int matched = 0; 3813 int slen; 3814 3815 str = arch_ftrace_match_adjust(str, g->search); 3816 3817 switch (g->type) { 3818 case MATCH_FULL: 3819 if (strcmp(str, g->search) == 0) 3820 matched = 1; 3821 break; 3822 case MATCH_FRONT_ONLY: 3823 if (strncmp(str, g->search, g->len) == 0) 3824 matched = 1; 3825 break; 3826 case MATCH_MIDDLE_ONLY: 3827 if (strstr(str, g->search)) 3828 matched = 1; 3829 break; 3830 case MATCH_END_ONLY: 3831 slen = strlen(str); 3832 if (slen >= g->len && 3833 memcmp(str + slen - g->len, g->search, g->len) == 0) 3834 matched = 1; 3835 break; 3836 case MATCH_GLOB: 3837 if (glob_match(g->search, str)) 3838 matched = 1; 3839 break; 3840 } 3841 3842 return matched; 3843 } 3844 3845 static int 3846 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3847 { 3848 struct ftrace_func_entry *entry; 3849 int ret = 0; 3850 3851 entry = ftrace_lookup_ip(hash, rec->ip); 3852 if (clear_filter) { 3853 /* Do nothing if it doesn't exist */ 3854 if (!entry) 3855 return 0; 3856 3857 free_hash_entry(hash, entry); 3858 } else { 3859 /* Do nothing if it exists */ 3860 if (entry) 3861 return 0; 3862 3863 ret = add_hash_entry(hash, rec->ip); 3864 } 3865 return ret; 3866 } 3867 3868 static int 3869 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3870 int clear_filter) 3871 { 3872 long index = simple_strtoul(func_g->search, NULL, 0); 3873 struct ftrace_page *pg; 3874 struct dyn_ftrace *rec; 3875 3876 /* The index starts at 1 */ 3877 if (--index < 0) 3878 return 0; 3879 3880 do_for_each_ftrace_rec(pg, rec) { 3881 if (pg->index <= index) { 3882 index -= pg->index; 3883 /* this is a double loop, break goes to the next page */ 3884 break; 3885 } 3886 rec = &pg->records[index]; 3887 enter_record(hash, rec, clear_filter); 3888 return 1; 3889 } while_for_each_ftrace_rec(); 3890 return 0; 3891 } 3892 3893 static int 3894 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3895 struct ftrace_glob *mod_g, int exclude_mod) 3896 { 3897 char str[KSYM_SYMBOL_LEN]; 3898 char *modname; 3899 3900 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3901 3902 if (mod_g) { 3903 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3904 3905 /* blank module name to match all modules */ 3906 if (!mod_g->len) { 3907 /* blank module globbing: modname xor exclude_mod */ 3908 if (!exclude_mod != !modname) 3909 goto func_match; 3910 return 0; 3911 } 3912 3913 /* 3914 * exclude_mod is set to trace everything but the given 3915 * module. If it is set and the module matches, then 3916 * return 0. If it is not set, and the module doesn't match 3917 * also return 0. Otherwise, check the function to see if 3918 * that matches. 3919 */ 3920 if (!mod_matches == !exclude_mod) 3921 return 0; 3922 func_match: 3923 /* blank search means to match all funcs in the mod */ 3924 if (!func_g->len) 3925 return 1; 3926 } 3927 3928 return ftrace_match(str, func_g); 3929 } 3930 3931 static int 3932 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3933 { 3934 struct ftrace_page *pg; 3935 struct dyn_ftrace *rec; 3936 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3937 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3938 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3939 int exclude_mod = 0; 3940 int found = 0; 3941 int ret; 3942 int clear_filter = 0; 3943 3944 if (func) { 3945 func_g.type = filter_parse_regex(func, len, &func_g.search, 3946 &clear_filter); 3947 func_g.len = strlen(func_g.search); 3948 } 3949 3950 if (mod) { 3951 mod_g.type = filter_parse_regex(mod, strlen(mod), 3952 &mod_g.search, &exclude_mod); 3953 mod_g.len = strlen(mod_g.search); 3954 } 3955 3956 mutex_lock(&ftrace_lock); 3957 3958 if (unlikely(ftrace_disabled)) 3959 goto out_unlock; 3960 3961 if (func_g.type == MATCH_INDEX) { 3962 found = add_rec_by_index(hash, &func_g, clear_filter); 3963 goto out_unlock; 3964 } 3965 3966 do_for_each_ftrace_rec(pg, rec) { 3967 3968 if (rec->flags & FTRACE_FL_DISABLED) 3969 continue; 3970 3971 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 3972 ret = enter_record(hash, rec, clear_filter); 3973 if (ret < 0) { 3974 found = ret; 3975 goto out_unlock; 3976 } 3977 found = 1; 3978 } 3979 } while_for_each_ftrace_rec(); 3980 out_unlock: 3981 mutex_unlock(&ftrace_lock); 3982 3983 return found; 3984 } 3985 3986 static int 3987 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 3988 { 3989 return match_records(hash, buff, len, NULL); 3990 } 3991 3992 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3993 struct ftrace_ops_hash *old_hash) 3994 { 3995 struct ftrace_ops *op; 3996 3997 if (!ftrace_enabled) 3998 return; 3999 4000 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4001 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4002 return; 4003 } 4004 4005 /* 4006 * If this is the shared global_ops filter, then we need to 4007 * check if there is another ops that shares it, is enabled. 4008 * If so, we still need to run the modify code. 4009 */ 4010 if (ops->func_hash != &global_ops.local_hash) 4011 return; 4012 4013 do_for_each_ftrace_op(op, ftrace_ops_list) { 4014 if (op->func_hash == &global_ops.local_hash && 4015 op->flags & FTRACE_OPS_FL_ENABLED) { 4016 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4017 /* Only need to do this once */ 4018 return; 4019 } 4020 } while_for_each_ftrace_op(op); 4021 } 4022 4023 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4024 struct ftrace_hash **orig_hash, 4025 struct ftrace_hash *hash, 4026 int enable) 4027 { 4028 struct ftrace_ops_hash old_hash_ops; 4029 struct ftrace_hash *old_hash; 4030 int ret; 4031 4032 old_hash = *orig_hash; 4033 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4034 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4035 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4036 if (!ret) { 4037 ftrace_ops_update_code(ops, &old_hash_ops); 4038 free_ftrace_hash_rcu(old_hash); 4039 } 4040 return ret; 4041 } 4042 4043 static bool module_exists(const char *module) 4044 { 4045 /* All modules have the symbol __this_module */ 4046 static const char this_mod[] = "__this_module"; 4047 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4048 unsigned long val; 4049 int n; 4050 4051 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4052 4053 if (n > sizeof(modname) - 1) 4054 return false; 4055 4056 val = module_kallsyms_lookup_name(modname); 4057 return val != 0; 4058 } 4059 4060 static int cache_mod(struct trace_array *tr, 4061 const char *func, char *module, int enable) 4062 { 4063 struct ftrace_mod_load *ftrace_mod, *n; 4064 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4065 int ret; 4066 4067 mutex_lock(&ftrace_lock); 4068 4069 /* We do not cache inverse filters */ 4070 if (func[0] == '!') { 4071 func++; 4072 ret = -EINVAL; 4073 4074 /* Look to remove this hash */ 4075 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4076 if (strcmp(ftrace_mod->module, module) != 0) 4077 continue; 4078 4079 /* no func matches all */ 4080 if (strcmp(func, "*") == 0 || 4081 (ftrace_mod->func && 4082 strcmp(ftrace_mod->func, func) == 0)) { 4083 ret = 0; 4084 free_ftrace_mod(ftrace_mod); 4085 continue; 4086 } 4087 } 4088 goto out; 4089 } 4090 4091 ret = -EINVAL; 4092 /* We only care about modules that have not been loaded yet */ 4093 if (module_exists(module)) 4094 goto out; 4095 4096 /* Save this string off, and execute it when the module is loaded */ 4097 ret = ftrace_add_mod(tr, func, module, enable); 4098 out: 4099 mutex_unlock(&ftrace_lock); 4100 4101 return ret; 4102 } 4103 4104 static int 4105 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4106 int reset, int enable); 4107 4108 #ifdef CONFIG_MODULES 4109 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4110 char *mod, bool enable) 4111 { 4112 struct ftrace_mod_load *ftrace_mod, *n; 4113 struct ftrace_hash **orig_hash, *new_hash; 4114 LIST_HEAD(process_mods); 4115 char *func; 4116 int ret; 4117 4118 mutex_lock(&ops->func_hash->regex_lock); 4119 4120 if (enable) 4121 orig_hash = &ops->func_hash->filter_hash; 4122 else 4123 orig_hash = &ops->func_hash->notrace_hash; 4124 4125 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4126 *orig_hash); 4127 if (!new_hash) 4128 goto out; /* warn? */ 4129 4130 mutex_lock(&ftrace_lock); 4131 4132 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4133 4134 if (strcmp(ftrace_mod->module, mod) != 0) 4135 continue; 4136 4137 if (ftrace_mod->func) 4138 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4139 else 4140 func = kstrdup("*", GFP_KERNEL); 4141 4142 if (!func) /* warn? */ 4143 continue; 4144 4145 list_del(&ftrace_mod->list); 4146 list_add(&ftrace_mod->list, &process_mods); 4147 4148 /* Use the newly allocated func, as it may be "*" */ 4149 kfree(ftrace_mod->func); 4150 ftrace_mod->func = func; 4151 } 4152 4153 mutex_unlock(&ftrace_lock); 4154 4155 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4156 4157 func = ftrace_mod->func; 4158 4159 /* Grabs ftrace_lock, which is why we have this extra step */ 4160 match_records(new_hash, func, strlen(func), mod); 4161 free_ftrace_mod(ftrace_mod); 4162 } 4163 4164 if (enable && list_empty(head)) 4165 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4166 4167 mutex_lock(&ftrace_lock); 4168 4169 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4170 new_hash, enable); 4171 mutex_unlock(&ftrace_lock); 4172 4173 out: 4174 mutex_unlock(&ops->func_hash->regex_lock); 4175 4176 free_ftrace_hash(new_hash); 4177 } 4178 4179 static void process_cached_mods(const char *mod_name) 4180 { 4181 struct trace_array *tr; 4182 char *mod; 4183 4184 mod = kstrdup(mod_name, GFP_KERNEL); 4185 if (!mod) 4186 return; 4187 4188 mutex_lock(&trace_types_lock); 4189 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4190 if (!list_empty(&tr->mod_trace)) 4191 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4192 if (!list_empty(&tr->mod_notrace)) 4193 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4194 } 4195 mutex_unlock(&trace_types_lock); 4196 4197 kfree(mod); 4198 } 4199 #endif 4200 4201 /* 4202 * We register the module command as a template to show others how 4203 * to register the a command as well. 4204 */ 4205 4206 static int 4207 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4208 char *func_orig, char *cmd, char *module, int enable) 4209 { 4210 char *func; 4211 int ret; 4212 4213 /* match_records() modifies func, and we need the original */ 4214 func = kstrdup(func_orig, GFP_KERNEL); 4215 if (!func) 4216 return -ENOMEM; 4217 4218 /* 4219 * cmd == 'mod' because we only registered this func 4220 * for the 'mod' ftrace_func_command. 4221 * But if you register one func with multiple commands, 4222 * you can tell which command was used by the cmd 4223 * parameter. 4224 */ 4225 ret = match_records(hash, func, strlen(func), module); 4226 kfree(func); 4227 4228 if (!ret) 4229 return cache_mod(tr, func_orig, module, enable); 4230 if (ret < 0) 4231 return ret; 4232 return 0; 4233 } 4234 4235 static struct ftrace_func_command ftrace_mod_cmd = { 4236 .name = "mod", 4237 .func = ftrace_mod_callback, 4238 }; 4239 4240 static int __init ftrace_mod_cmd_init(void) 4241 { 4242 return register_ftrace_command(&ftrace_mod_cmd); 4243 } 4244 core_initcall(ftrace_mod_cmd_init); 4245 4246 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4247 struct ftrace_ops *op, struct pt_regs *pt_regs) 4248 { 4249 struct ftrace_probe_ops *probe_ops; 4250 struct ftrace_func_probe *probe; 4251 4252 probe = container_of(op, struct ftrace_func_probe, ops); 4253 probe_ops = probe->probe_ops; 4254 4255 /* 4256 * Disable preemption for these calls to prevent a RCU grace 4257 * period. This syncs the hash iteration and freeing of items 4258 * on the hash. rcu_read_lock is too dangerous here. 4259 */ 4260 preempt_disable_notrace(); 4261 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4262 preempt_enable_notrace(); 4263 } 4264 4265 struct ftrace_func_map { 4266 struct ftrace_func_entry entry; 4267 void *data; 4268 }; 4269 4270 struct ftrace_func_mapper { 4271 struct ftrace_hash hash; 4272 }; 4273 4274 /** 4275 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4276 * 4277 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4278 */ 4279 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4280 { 4281 struct ftrace_hash *hash; 4282 4283 /* 4284 * The mapper is simply a ftrace_hash, but since the entries 4285 * in the hash are not ftrace_func_entry type, we define it 4286 * as a separate structure. 4287 */ 4288 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4289 return (struct ftrace_func_mapper *)hash; 4290 } 4291 4292 /** 4293 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4294 * @mapper: The mapper that has the ip maps 4295 * @ip: the instruction pointer to find the data for 4296 * 4297 * Returns the data mapped to @ip if found otherwise NULL. The return 4298 * is actually the address of the mapper data pointer. The address is 4299 * returned for use cases where the data is no bigger than a long, and 4300 * the user can use the data pointer as its data instead of having to 4301 * allocate more memory for the reference. 4302 */ 4303 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4304 unsigned long ip) 4305 { 4306 struct ftrace_func_entry *entry; 4307 struct ftrace_func_map *map; 4308 4309 entry = ftrace_lookup_ip(&mapper->hash, ip); 4310 if (!entry) 4311 return NULL; 4312 4313 map = (struct ftrace_func_map *)entry; 4314 return &map->data; 4315 } 4316 4317 /** 4318 * ftrace_func_mapper_add_ip - Map some data to an ip 4319 * @mapper: The mapper that has the ip maps 4320 * @ip: The instruction pointer address to map @data to 4321 * @data: The data to map to @ip 4322 * 4323 * Returns 0 on succes otherwise an error. 4324 */ 4325 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4326 unsigned long ip, void *data) 4327 { 4328 struct ftrace_func_entry *entry; 4329 struct ftrace_func_map *map; 4330 4331 entry = ftrace_lookup_ip(&mapper->hash, ip); 4332 if (entry) 4333 return -EBUSY; 4334 4335 map = kmalloc(sizeof(*map), GFP_KERNEL); 4336 if (!map) 4337 return -ENOMEM; 4338 4339 map->entry.ip = ip; 4340 map->data = data; 4341 4342 __add_hash_entry(&mapper->hash, &map->entry); 4343 4344 return 0; 4345 } 4346 4347 /** 4348 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4349 * @mapper: The mapper that has the ip maps 4350 * @ip: The instruction pointer address to remove the data from 4351 * 4352 * Returns the data if it is found, otherwise NULL. 4353 * Note, if the data pointer is used as the data itself, (see 4354 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4355 * if the data pointer was set to zero. 4356 */ 4357 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4358 unsigned long ip) 4359 { 4360 struct ftrace_func_entry *entry; 4361 struct ftrace_func_map *map; 4362 void *data; 4363 4364 entry = ftrace_lookup_ip(&mapper->hash, ip); 4365 if (!entry) 4366 return NULL; 4367 4368 map = (struct ftrace_func_map *)entry; 4369 data = map->data; 4370 4371 remove_hash_entry(&mapper->hash, entry); 4372 kfree(entry); 4373 4374 return data; 4375 } 4376 4377 /** 4378 * free_ftrace_func_mapper - free a mapping of ips and data 4379 * @mapper: The mapper that has the ip maps 4380 * @free_func: A function to be called on each data item. 4381 * 4382 * This is used to free the function mapper. The @free_func is optional 4383 * and can be used if the data needs to be freed as well. 4384 */ 4385 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4386 ftrace_mapper_func free_func) 4387 { 4388 struct ftrace_func_entry *entry; 4389 struct ftrace_func_map *map; 4390 struct hlist_head *hhd; 4391 int size, i; 4392 4393 if (!mapper) 4394 return; 4395 4396 if (free_func && mapper->hash.count) { 4397 size = 1 << mapper->hash.size_bits; 4398 for (i = 0; i < size; i++) { 4399 hhd = &mapper->hash.buckets[i]; 4400 hlist_for_each_entry(entry, hhd, hlist) { 4401 map = (struct ftrace_func_map *)entry; 4402 free_func(map); 4403 } 4404 } 4405 } 4406 free_ftrace_hash(&mapper->hash); 4407 } 4408 4409 static void release_probe(struct ftrace_func_probe *probe) 4410 { 4411 struct ftrace_probe_ops *probe_ops; 4412 4413 mutex_lock(&ftrace_lock); 4414 4415 WARN_ON(probe->ref <= 0); 4416 4417 /* Subtract the ref that was used to protect this instance */ 4418 probe->ref--; 4419 4420 if (!probe->ref) { 4421 probe_ops = probe->probe_ops; 4422 /* 4423 * Sending zero as ip tells probe_ops to free 4424 * the probe->data itself 4425 */ 4426 if (probe_ops->free) 4427 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4428 list_del(&probe->list); 4429 kfree(probe); 4430 } 4431 mutex_unlock(&ftrace_lock); 4432 } 4433 4434 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4435 { 4436 /* 4437 * Add one ref to keep it from being freed when releasing the 4438 * ftrace_lock mutex. 4439 */ 4440 probe->ref++; 4441 } 4442 4443 int 4444 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4445 struct ftrace_probe_ops *probe_ops, 4446 void *data) 4447 { 4448 struct ftrace_func_entry *entry; 4449 struct ftrace_func_probe *probe; 4450 struct ftrace_hash **orig_hash; 4451 struct ftrace_hash *old_hash; 4452 struct ftrace_hash *hash; 4453 int count = 0; 4454 int size; 4455 int ret; 4456 int i; 4457 4458 if (WARN_ON(!tr)) 4459 return -EINVAL; 4460 4461 /* We do not support '!' for function probes */ 4462 if (WARN_ON(glob[0] == '!')) 4463 return -EINVAL; 4464 4465 4466 mutex_lock(&ftrace_lock); 4467 /* Check if the probe_ops is already registered */ 4468 list_for_each_entry(probe, &tr->func_probes, list) { 4469 if (probe->probe_ops == probe_ops) 4470 break; 4471 } 4472 if (&probe->list == &tr->func_probes) { 4473 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4474 if (!probe) { 4475 mutex_unlock(&ftrace_lock); 4476 return -ENOMEM; 4477 } 4478 probe->probe_ops = probe_ops; 4479 probe->ops.func = function_trace_probe_call; 4480 probe->tr = tr; 4481 ftrace_ops_init(&probe->ops); 4482 list_add(&probe->list, &tr->func_probes); 4483 } 4484 4485 acquire_probe_locked(probe); 4486 4487 mutex_unlock(&ftrace_lock); 4488 4489 /* 4490 * Note, there's a small window here that the func_hash->filter_hash 4491 * may be NULL or empty. Need to be carefule when reading the loop. 4492 */ 4493 mutex_lock(&probe->ops.func_hash->regex_lock); 4494 4495 orig_hash = &probe->ops.func_hash->filter_hash; 4496 old_hash = *orig_hash; 4497 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4498 4499 if (!hash) { 4500 ret = -ENOMEM; 4501 goto out; 4502 } 4503 4504 ret = ftrace_match_records(hash, glob, strlen(glob)); 4505 4506 /* Nothing found? */ 4507 if (!ret) 4508 ret = -EINVAL; 4509 4510 if (ret < 0) 4511 goto out; 4512 4513 size = 1 << hash->size_bits; 4514 for (i = 0; i < size; i++) { 4515 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4516 if (ftrace_lookup_ip(old_hash, entry->ip)) 4517 continue; 4518 /* 4519 * The caller might want to do something special 4520 * for each function we find. We call the callback 4521 * to give the caller an opportunity to do so. 4522 */ 4523 if (probe_ops->init) { 4524 ret = probe_ops->init(probe_ops, tr, 4525 entry->ip, data, 4526 &probe->data); 4527 if (ret < 0) { 4528 if (probe_ops->free && count) 4529 probe_ops->free(probe_ops, tr, 4530 0, probe->data); 4531 probe->data = NULL; 4532 goto out; 4533 } 4534 } 4535 count++; 4536 } 4537 } 4538 4539 mutex_lock(&ftrace_lock); 4540 4541 if (!count) { 4542 /* Nothing was added? */ 4543 ret = -EINVAL; 4544 goto out_unlock; 4545 } 4546 4547 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4548 hash, 1); 4549 if (ret < 0) 4550 goto err_unlock; 4551 4552 /* One ref for each new function traced */ 4553 probe->ref += count; 4554 4555 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4556 ret = ftrace_startup(&probe->ops, 0); 4557 4558 out_unlock: 4559 mutex_unlock(&ftrace_lock); 4560 4561 if (!ret) 4562 ret = count; 4563 out: 4564 mutex_unlock(&probe->ops.func_hash->regex_lock); 4565 free_ftrace_hash(hash); 4566 4567 release_probe(probe); 4568 4569 return ret; 4570 4571 err_unlock: 4572 if (!probe_ops->free || !count) 4573 goto out_unlock; 4574 4575 /* Failed to do the move, need to call the free functions */ 4576 for (i = 0; i < size; i++) { 4577 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4578 if (ftrace_lookup_ip(old_hash, entry->ip)) 4579 continue; 4580 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4581 } 4582 } 4583 goto out_unlock; 4584 } 4585 4586 int 4587 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4588 struct ftrace_probe_ops *probe_ops) 4589 { 4590 struct ftrace_ops_hash old_hash_ops; 4591 struct ftrace_func_entry *entry; 4592 struct ftrace_func_probe *probe; 4593 struct ftrace_glob func_g; 4594 struct ftrace_hash **orig_hash; 4595 struct ftrace_hash *old_hash; 4596 struct ftrace_hash *hash = NULL; 4597 struct hlist_node *tmp; 4598 struct hlist_head hhd; 4599 char str[KSYM_SYMBOL_LEN]; 4600 int count = 0; 4601 int i, ret = -ENODEV; 4602 int size; 4603 4604 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4605 func_g.search = NULL; 4606 else { 4607 int not; 4608 4609 func_g.type = filter_parse_regex(glob, strlen(glob), 4610 &func_g.search, ¬); 4611 func_g.len = strlen(func_g.search); 4612 4613 /* we do not support '!' for function probes */ 4614 if (WARN_ON(not)) 4615 return -EINVAL; 4616 } 4617 4618 mutex_lock(&ftrace_lock); 4619 /* Check if the probe_ops is already registered */ 4620 list_for_each_entry(probe, &tr->func_probes, list) { 4621 if (probe->probe_ops == probe_ops) 4622 break; 4623 } 4624 if (&probe->list == &tr->func_probes) 4625 goto err_unlock_ftrace; 4626 4627 ret = -EINVAL; 4628 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4629 goto err_unlock_ftrace; 4630 4631 acquire_probe_locked(probe); 4632 4633 mutex_unlock(&ftrace_lock); 4634 4635 mutex_lock(&probe->ops.func_hash->regex_lock); 4636 4637 orig_hash = &probe->ops.func_hash->filter_hash; 4638 old_hash = *orig_hash; 4639 4640 if (ftrace_hash_empty(old_hash)) 4641 goto out_unlock; 4642 4643 old_hash_ops.filter_hash = old_hash; 4644 /* Probes only have filters */ 4645 old_hash_ops.notrace_hash = NULL; 4646 4647 ret = -ENOMEM; 4648 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4649 if (!hash) 4650 goto out_unlock; 4651 4652 INIT_HLIST_HEAD(&hhd); 4653 4654 size = 1 << hash->size_bits; 4655 for (i = 0; i < size; i++) { 4656 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4657 4658 if (func_g.search) { 4659 kallsyms_lookup(entry->ip, NULL, NULL, 4660 NULL, str); 4661 if (!ftrace_match(str, &func_g)) 4662 continue; 4663 } 4664 count++; 4665 remove_hash_entry(hash, entry); 4666 hlist_add_head(&entry->hlist, &hhd); 4667 } 4668 } 4669 4670 /* Nothing found? */ 4671 if (!count) { 4672 ret = -EINVAL; 4673 goto out_unlock; 4674 } 4675 4676 mutex_lock(&ftrace_lock); 4677 4678 WARN_ON(probe->ref < count); 4679 4680 probe->ref -= count; 4681 4682 if (ftrace_hash_empty(hash)) 4683 ftrace_shutdown(&probe->ops, 0); 4684 4685 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4686 hash, 1); 4687 4688 /* still need to update the function call sites */ 4689 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4690 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4691 &old_hash_ops); 4692 synchronize_rcu(); 4693 4694 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4695 hlist_del(&entry->hlist); 4696 if (probe_ops->free) 4697 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4698 kfree(entry); 4699 } 4700 mutex_unlock(&ftrace_lock); 4701 4702 out_unlock: 4703 mutex_unlock(&probe->ops.func_hash->regex_lock); 4704 free_ftrace_hash(hash); 4705 4706 release_probe(probe); 4707 4708 return ret; 4709 4710 err_unlock_ftrace: 4711 mutex_unlock(&ftrace_lock); 4712 return ret; 4713 } 4714 4715 void clear_ftrace_function_probes(struct trace_array *tr) 4716 { 4717 struct ftrace_func_probe *probe, *n; 4718 4719 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4720 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4721 } 4722 4723 static LIST_HEAD(ftrace_commands); 4724 static DEFINE_MUTEX(ftrace_cmd_mutex); 4725 4726 /* 4727 * Currently we only register ftrace commands from __init, so mark this 4728 * __init too. 4729 */ 4730 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4731 { 4732 struct ftrace_func_command *p; 4733 int ret = 0; 4734 4735 mutex_lock(&ftrace_cmd_mutex); 4736 list_for_each_entry(p, &ftrace_commands, list) { 4737 if (strcmp(cmd->name, p->name) == 0) { 4738 ret = -EBUSY; 4739 goto out_unlock; 4740 } 4741 } 4742 list_add(&cmd->list, &ftrace_commands); 4743 out_unlock: 4744 mutex_unlock(&ftrace_cmd_mutex); 4745 4746 return ret; 4747 } 4748 4749 /* 4750 * Currently we only unregister ftrace commands from __init, so mark 4751 * this __init too. 4752 */ 4753 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4754 { 4755 struct ftrace_func_command *p, *n; 4756 int ret = -ENODEV; 4757 4758 mutex_lock(&ftrace_cmd_mutex); 4759 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4760 if (strcmp(cmd->name, p->name) == 0) { 4761 ret = 0; 4762 list_del_init(&p->list); 4763 goto out_unlock; 4764 } 4765 } 4766 out_unlock: 4767 mutex_unlock(&ftrace_cmd_mutex); 4768 4769 return ret; 4770 } 4771 4772 static int ftrace_process_regex(struct ftrace_iterator *iter, 4773 char *buff, int len, int enable) 4774 { 4775 struct ftrace_hash *hash = iter->hash; 4776 struct trace_array *tr = iter->ops->private; 4777 char *func, *command, *next = buff; 4778 struct ftrace_func_command *p; 4779 int ret = -EINVAL; 4780 4781 func = strsep(&next, ":"); 4782 4783 if (!next) { 4784 ret = ftrace_match_records(hash, func, len); 4785 if (!ret) 4786 ret = -EINVAL; 4787 if (ret < 0) 4788 return ret; 4789 return 0; 4790 } 4791 4792 /* command found */ 4793 4794 command = strsep(&next, ":"); 4795 4796 mutex_lock(&ftrace_cmd_mutex); 4797 list_for_each_entry(p, &ftrace_commands, list) { 4798 if (strcmp(p->name, command) == 0) { 4799 ret = p->func(tr, hash, func, command, next, enable); 4800 goto out_unlock; 4801 } 4802 } 4803 out_unlock: 4804 mutex_unlock(&ftrace_cmd_mutex); 4805 4806 return ret; 4807 } 4808 4809 static ssize_t 4810 ftrace_regex_write(struct file *file, const char __user *ubuf, 4811 size_t cnt, loff_t *ppos, int enable) 4812 { 4813 struct ftrace_iterator *iter; 4814 struct trace_parser *parser; 4815 ssize_t ret, read; 4816 4817 if (!cnt) 4818 return 0; 4819 4820 if (file->f_mode & FMODE_READ) { 4821 struct seq_file *m = file->private_data; 4822 iter = m->private; 4823 } else 4824 iter = file->private_data; 4825 4826 if (unlikely(ftrace_disabled)) 4827 return -ENODEV; 4828 4829 /* iter->hash is a local copy, so we don't need regex_lock */ 4830 4831 parser = &iter->parser; 4832 read = trace_get_user(parser, ubuf, cnt, ppos); 4833 4834 if (read >= 0 && trace_parser_loaded(parser) && 4835 !trace_parser_cont(parser)) { 4836 ret = ftrace_process_regex(iter, parser->buffer, 4837 parser->idx, enable); 4838 trace_parser_clear(parser); 4839 if (ret < 0) 4840 goto out; 4841 } 4842 4843 ret = read; 4844 out: 4845 return ret; 4846 } 4847 4848 ssize_t 4849 ftrace_filter_write(struct file *file, const char __user *ubuf, 4850 size_t cnt, loff_t *ppos) 4851 { 4852 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4853 } 4854 4855 ssize_t 4856 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4857 size_t cnt, loff_t *ppos) 4858 { 4859 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4860 } 4861 4862 static int 4863 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4864 { 4865 struct ftrace_func_entry *entry; 4866 4867 if (!ftrace_location(ip)) 4868 return -EINVAL; 4869 4870 if (remove) { 4871 entry = ftrace_lookup_ip(hash, ip); 4872 if (!entry) 4873 return -ENOENT; 4874 free_hash_entry(hash, entry); 4875 return 0; 4876 } 4877 4878 return add_hash_entry(hash, ip); 4879 } 4880 4881 static int 4882 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4883 unsigned long ip, int remove, int reset, int enable) 4884 { 4885 struct ftrace_hash **orig_hash; 4886 struct ftrace_hash *hash; 4887 int ret; 4888 4889 if (unlikely(ftrace_disabled)) 4890 return -ENODEV; 4891 4892 mutex_lock(&ops->func_hash->regex_lock); 4893 4894 if (enable) 4895 orig_hash = &ops->func_hash->filter_hash; 4896 else 4897 orig_hash = &ops->func_hash->notrace_hash; 4898 4899 if (reset) 4900 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4901 else 4902 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4903 4904 if (!hash) { 4905 ret = -ENOMEM; 4906 goto out_regex_unlock; 4907 } 4908 4909 if (buf && !ftrace_match_records(hash, buf, len)) { 4910 ret = -EINVAL; 4911 goto out_regex_unlock; 4912 } 4913 if (ip) { 4914 ret = ftrace_match_addr(hash, ip, remove); 4915 if (ret < 0) 4916 goto out_regex_unlock; 4917 } 4918 4919 mutex_lock(&ftrace_lock); 4920 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4921 mutex_unlock(&ftrace_lock); 4922 4923 out_regex_unlock: 4924 mutex_unlock(&ops->func_hash->regex_lock); 4925 4926 free_ftrace_hash(hash); 4927 return ret; 4928 } 4929 4930 static int 4931 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4932 int reset, int enable) 4933 { 4934 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4935 } 4936 4937 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4938 4939 struct ftrace_direct_func { 4940 struct list_head next; 4941 unsigned long addr; 4942 int count; 4943 }; 4944 4945 static LIST_HEAD(ftrace_direct_funcs); 4946 4947 /** 4948 * ftrace_find_direct_func - test an address if it is a registered direct caller 4949 * @addr: The address of a registered direct caller 4950 * 4951 * This searches to see if a ftrace direct caller has been registered 4952 * at a specific address, and if so, it returns a descriptor for it. 4953 * 4954 * This can be used by architecture code to see if an address is 4955 * a direct caller (trampoline) attached to a fentry/mcount location. 4956 * This is useful for the function_graph tracer, as it may need to 4957 * do adjustments if it traced a location that also has a direct 4958 * trampoline attached to it. 4959 */ 4960 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 4961 { 4962 struct ftrace_direct_func *entry; 4963 bool found = false; 4964 4965 /* May be called by fgraph trampoline (protected by rcu tasks) */ 4966 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 4967 if (entry->addr == addr) { 4968 found = true; 4969 break; 4970 } 4971 } 4972 if (found) 4973 return entry; 4974 4975 return NULL; 4976 } 4977 4978 /** 4979 * register_ftrace_direct - Call a custom trampoline directly 4980 * @ip: The address of the nop at the beginning of a function 4981 * @addr: The address of the trampoline to call at @ip 4982 * 4983 * This is used to connect a direct call from the nop location (@ip) 4984 * at the start of ftrace traced functions. The location that it calls 4985 * (@addr) must be able to handle a direct call, and save the parameters 4986 * of the function being traced, and restore them (or inject new ones 4987 * if needed), before returning. 4988 * 4989 * Returns: 4990 * 0 on success 4991 * -EBUSY - Another direct function is already attached (there can be only one) 4992 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 4993 * -ENOMEM - There was an allocation failure. 4994 */ 4995 int register_ftrace_direct(unsigned long ip, unsigned long addr) 4996 { 4997 struct ftrace_direct_func *direct; 4998 struct ftrace_func_entry *entry; 4999 struct ftrace_hash *free_hash = NULL; 5000 struct dyn_ftrace *rec; 5001 int ret = -EBUSY; 5002 5003 mutex_lock(&direct_mutex); 5004 5005 /* See if there's a direct function at @ip already */ 5006 if (ftrace_find_rec_direct(ip)) 5007 goto out_unlock; 5008 5009 ret = -ENODEV; 5010 rec = lookup_rec(ip, ip); 5011 if (!rec) 5012 goto out_unlock; 5013 5014 /* 5015 * Check if the rec says it has a direct call but we didn't 5016 * find one earlier? 5017 */ 5018 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5019 goto out_unlock; 5020 5021 /* Make sure the ip points to the exact record */ 5022 if (ip != rec->ip) { 5023 ip = rec->ip; 5024 /* Need to check this ip for a direct. */ 5025 if (ftrace_find_rec_direct(ip)) 5026 goto out_unlock; 5027 } 5028 5029 ret = -ENOMEM; 5030 if (ftrace_hash_empty(direct_functions) || 5031 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5032 struct ftrace_hash *new_hash; 5033 int size = ftrace_hash_empty(direct_functions) ? 0 : 5034 direct_functions->count + 1; 5035 5036 if (size < 32) 5037 size = 32; 5038 5039 new_hash = dup_hash(direct_functions, size); 5040 if (!new_hash) 5041 goto out_unlock; 5042 5043 free_hash = direct_functions; 5044 direct_functions = new_hash; 5045 } 5046 5047 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5048 if (!entry) 5049 goto out_unlock; 5050 5051 direct = ftrace_find_direct_func(addr); 5052 if (!direct) { 5053 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5054 if (!direct) { 5055 kfree(entry); 5056 goto out_unlock; 5057 } 5058 direct->addr = addr; 5059 direct->count = 0; 5060 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5061 ftrace_direct_func_count++; 5062 } 5063 5064 entry->ip = ip; 5065 entry->direct = addr; 5066 __add_hash_entry(direct_functions, entry); 5067 5068 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5069 if (ret) 5070 remove_hash_entry(direct_functions, entry); 5071 5072 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5073 ret = register_ftrace_function(&direct_ops); 5074 if (ret) 5075 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5076 } 5077 5078 if (ret) { 5079 kfree(entry); 5080 if (!direct->count) { 5081 list_del_rcu(&direct->next); 5082 synchronize_rcu_tasks(); 5083 kfree(direct); 5084 if (free_hash) 5085 free_ftrace_hash(free_hash); 5086 free_hash = NULL; 5087 ftrace_direct_func_count--; 5088 } 5089 } else { 5090 direct->count++; 5091 } 5092 out_unlock: 5093 mutex_unlock(&direct_mutex); 5094 5095 if (free_hash) { 5096 synchronize_rcu_tasks(); 5097 free_ftrace_hash(free_hash); 5098 } 5099 5100 return ret; 5101 } 5102 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5103 5104 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5105 struct dyn_ftrace **recp) 5106 { 5107 struct ftrace_func_entry *entry; 5108 struct dyn_ftrace *rec; 5109 5110 rec = lookup_rec(*ip, *ip); 5111 if (!rec) 5112 return NULL; 5113 5114 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5115 if (!entry) { 5116 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5117 return NULL; 5118 } 5119 5120 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5121 5122 /* Passed in ip just needs to be on the call site */ 5123 *ip = rec->ip; 5124 5125 if (recp) 5126 *recp = rec; 5127 5128 return entry; 5129 } 5130 5131 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5132 { 5133 struct ftrace_direct_func *direct; 5134 struct ftrace_func_entry *entry; 5135 int ret = -ENODEV; 5136 5137 mutex_lock(&direct_mutex); 5138 5139 entry = find_direct_entry(&ip, NULL); 5140 if (!entry) 5141 goto out_unlock; 5142 5143 if (direct_functions->count == 1) 5144 unregister_ftrace_function(&direct_ops); 5145 5146 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5147 5148 WARN_ON(ret); 5149 5150 remove_hash_entry(direct_functions, entry); 5151 5152 direct = ftrace_find_direct_func(addr); 5153 if (!WARN_ON(!direct)) { 5154 /* This is the good path (see the ! before WARN) */ 5155 direct->count--; 5156 WARN_ON(direct->count < 0); 5157 if (!direct->count) { 5158 list_del_rcu(&direct->next); 5159 synchronize_rcu_tasks(); 5160 kfree(direct); 5161 ftrace_direct_func_count--; 5162 } 5163 } 5164 out_unlock: 5165 mutex_unlock(&direct_mutex); 5166 5167 return ret; 5168 } 5169 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5170 5171 static struct ftrace_ops stub_ops = { 5172 .func = ftrace_stub, 5173 }; 5174 5175 /** 5176 * ftrace_modify_direct_caller - modify ftrace nop directly 5177 * @entry: The ftrace hash entry of the direct helper for @rec 5178 * @rec: The record representing the function site to patch 5179 * @old_addr: The location that the site at @rec->ip currently calls 5180 * @new_addr: The location that the site at @rec->ip should call 5181 * 5182 * An architecture may overwrite this function to optimize the 5183 * changing of the direct callback on an ftrace nop location. 5184 * This is called with the ftrace_lock mutex held, and no other 5185 * ftrace callbacks are on the associated record (@rec). Thus, 5186 * it is safe to modify the ftrace record, where it should be 5187 * currently calling @old_addr directly, to call @new_addr. 5188 * 5189 * Safety checks should be made to make sure that the code at 5190 * @rec->ip is currently calling @old_addr. And this must 5191 * also update entry->direct to @new_addr. 5192 */ 5193 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5194 struct dyn_ftrace *rec, 5195 unsigned long old_addr, 5196 unsigned long new_addr) 5197 { 5198 unsigned long ip = rec->ip; 5199 int ret; 5200 5201 /* 5202 * The ftrace_lock was used to determine if the record 5203 * had more than one registered user to it. If it did, 5204 * we needed to prevent that from changing to do the quick 5205 * switch. But if it did not (only a direct caller was attached) 5206 * then this function is called. But this function can deal 5207 * with attached callers to the rec that we care about, and 5208 * since this function uses standard ftrace calls that take 5209 * the ftrace_lock mutex, we need to release it. 5210 */ 5211 mutex_unlock(&ftrace_lock); 5212 5213 /* 5214 * By setting a stub function at the same address, we force 5215 * the code to call the iterator and the direct_ops helper. 5216 * This means that @ip does not call the direct call, and 5217 * we can simply modify it. 5218 */ 5219 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5220 if (ret) 5221 goto out_lock; 5222 5223 ret = register_ftrace_function(&stub_ops); 5224 if (ret) { 5225 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5226 goto out_lock; 5227 } 5228 5229 entry->direct = new_addr; 5230 5231 /* 5232 * By removing the stub, we put back the direct call, calling 5233 * the @new_addr. 5234 */ 5235 unregister_ftrace_function(&stub_ops); 5236 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5237 5238 out_lock: 5239 mutex_lock(&ftrace_lock); 5240 5241 return ret; 5242 } 5243 5244 /** 5245 * modify_ftrace_direct - Modify an existing direct call to call something else 5246 * @ip: The instruction pointer to modify 5247 * @old_addr: The address that the current @ip calls directly 5248 * @new_addr: The address that the @ip should call 5249 * 5250 * This modifies a ftrace direct caller at an instruction pointer without 5251 * having to disable it first. The direct call will switch over to the 5252 * @new_addr without missing anything. 5253 * 5254 * Returns: zero on success. Non zero on error, which includes: 5255 * -ENODEV : the @ip given has no direct caller attached 5256 * -EINVAL : the @old_addr does not match the current direct caller 5257 */ 5258 int modify_ftrace_direct(unsigned long ip, 5259 unsigned long old_addr, unsigned long new_addr) 5260 { 5261 struct ftrace_func_entry *entry; 5262 struct dyn_ftrace *rec; 5263 int ret = -ENODEV; 5264 5265 mutex_lock(&direct_mutex); 5266 5267 mutex_lock(&ftrace_lock); 5268 entry = find_direct_entry(&ip, &rec); 5269 if (!entry) 5270 goto out_unlock; 5271 5272 ret = -EINVAL; 5273 if (entry->direct != old_addr) 5274 goto out_unlock; 5275 5276 /* 5277 * If there's no other ftrace callback on the rec->ip location, 5278 * then it can be changed directly by the architecture. 5279 * If there is another caller, then we just need to change the 5280 * direct caller helper to point to @new_addr. 5281 */ 5282 if (ftrace_rec_count(rec) == 1) { 5283 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5284 } else { 5285 entry->direct = new_addr; 5286 ret = 0; 5287 } 5288 5289 out_unlock: 5290 mutex_unlock(&ftrace_lock); 5291 mutex_unlock(&direct_mutex); 5292 return ret; 5293 } 5294 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5295 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5296 5297 /** 5298 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5299 * @ops - the ops to set the filter with 5300 * @ip - the address to add to or remove from the filter. 5301 * @remove - non zero to remove the ip from the filter 5302 * @reset - non zero to reset all filters before applying this filter. 5303 * 5304 * Filters denote which functions should be enabled when tracing is enabled 5305 * If @ip is NULL, it failes to update filter. 5306 */ 5307 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5308 int remove, int reset) 5309 { 5310 ftrace_ops_init(ops); 5311 return ftrace_set_addr(ops, ip, remove, reset, 1); 5312 } 5313 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5314 5315 /** 5316 * ftrace_ops_set_global_filter - setup ops to use global filters 5317 * @ops - the ops which will use the global filters 5318 * 5319 * ftrace users who need global function trace filtering should call this. 5320 * It can set the global filter only if ops were not initialized before. 5321 */ 5322 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5323 { 5324 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5325 return; 5326 5327 ftrace_ops_init(ops); 5328 ops->func_hash = &global_ops.local_hash; 5329 } 5330 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5331 5332 static int 5333 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5334 int reset, int enable) 5335 { 5336 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5337 } 5338 5339 /** 5340 * ftrace_set_filter - set a function to filter on in ftrace 5341 * @ops - the ops to set the filter with 5342 * @buf - the string that holds the function filter text. 5343 * @len - the length of the string. 5344 * @reset - non zero to reset all filters before applying this filter. 5345 * 5346 * Filters denote which functions should be enabled when tracing is enabled. 5347 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5348 */ 5349 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5350 int len, int reset) 5351 { 5352 ftrace_ops_init(ops); 5353 return ftrace_set_regex(ops, buf, len, reset, 1); 5354 } 5355 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5356 5357 /** 5358 * ftrace_set_notrace - set a function to not trace in ftrace 5359 * @ops - the ops to set the notrace filter with 5360 * @buf - the string that holds the function notrace text. 5361 * @len - the length of the string. 5362 * @reset - non zero to reset all filters before applying this filter. 5363 * 5364 * Notrace Filters denote which functions should not be enabled when tracing 5365 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5366 * for tracing. 5367 */ 5368 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5369 int len, int reset) 5370 { 5371 ftrace_ops_init(ops); 5372 return ftrace_set_regex(ops, buf, len, reset, 0); 5373 } 5374 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5375 /** 5376 * ftrace_set_global_filter - set a function to filter on with global tracers 5377 * @buf - the string that holds the function filter text. 5378 * @len - the length of the string. 5379 * @reset - non zero to reset all filters before applying this filter. 5380 * 5381 * Filters denote which functions should be enabled when tracing is enabled. 5382 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5383 */ 5384 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5385 { 5386 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5387 } 5388 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5389 5390 /** 5391 * ftrace_set_global_notrace - set a function to not trace with global tracers 5392 * @buf - the string that holds the function notrace text. 5393 * @len - the length of the string. 5394 * @reset - non zero to reset all filters before applying this filter. 5395 * 5396 * Notrace Filters denote which functions should not be enabled when tracing 5397 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5398 * for tracing. 5399 */ 5400 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5401 { 5402 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5403 } 5404 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5405 5406 /* 5407 * command line interface to allow users to set filters on boot up. 5408 */ 5409 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5410 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5411 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5412 5413 /* Used by function selftest to not test if filter is set */ 5414 bool ftrace_filter_param __initdata; 5415 5416 static int __init set_ftrace_notrace(char *str) 5417 { 5418 ftrace_filter_param = true; 5419 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5420 return 1; 5421 } 5422 __setup("ftrace_notrace=", set_ftrace_notrace); 5423 5424 static int __init set_ftrace_filter(char *str) 5425 { 5426 ftrace_filter_param = true; 5427 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5428 return 1; 5429 } 5430 __setup("ftrace_filter=", set_ftrace_filter); 5431 5432 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5433 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5434 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5435 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5436 5437 static int __init set_graph_function(char *str) 5438 { 5439 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5440 return 1; 5441 } 5442 __setup("ftrace_graph_filter=", set_graph_function); 5443 5444 static int __init set_graph_notrace_function(char *str) 5445 { 5446 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5447 return 1; 5448 } 5449 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5450 5451 static int __init set_graph_max_depth_function(char *str) 5452 { 5453 if (!str) 5454 return 0; 5455 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5456 return 1; 5457 } 5458 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5459 5460 static void __init set_ftrace_early_graph(char *buf, int enable) 5461 { 5462 int ret; 5463 char *func; 5464 struct ftrace_hash *hash; 5465 5466 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5467 if (WARN_ON(!hash)) 5468 return; 5469 5470 while (buf) { 5471 func = strsep(&buf, ","); 5472 /* we allow only one expression at a time */ 5473 ret = ftrace_graph_set_hash(hash, func); 5474 if (ret) 5475 printk(KERN_DEBUG "ftrace: function %s not " 5476 "traceable\n", func); 5477 } 5478 5479 if (enable) 5480 ftrace_graph_hash = hash; 5481 else 5482 ftrace_graph_notrace_hash = hash; 5483 } 5484 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5485 5486 void __init 5487 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5488 { 5489 char *func; 5490 5491 ftrace_ops_init(ops); 5492 5493 while (buf) { 5494 func = strsep(&buf, ","); 5495 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5496 } 5497 } 5498 5499 static void __init set_ftrace_early_filters(void) 5500 { 5501 if (ftrace_filter_buf[0]) 5502 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5503 if (ftrace_notrace_buf[0]) 5504 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5505 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5506 if (ftrace_graph_buf[0]) 5507 set_ftrace_early_graph(ftrace_graph_buf, 1); 5508 if (ftrace_graph_notrace_buf[0]) 5509 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5510 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5511 } 5512 5513 int ftrace_regex_release(struct inode *inode, struct file *file) 5514 { 5515 struct seq_file *m = (struct seq_file *)file->private_data; 5516 struct ftrace_iterator *iter; 5517 struct ftrace_hash **orig_hash; 5518 struct trace_parser *parser; 5519 int filter_hash; 5520 int ret; 5521 5522 if (file->f_mode & FMODE_READ) { 5523 iter = m->private; 5524 seq_release(inode, file); 5525 } else 5526 iter = file->private_data; 5527 5528 parser = &iter->parser; 5529 if (trace_parser_loaded(parser)) { 5530 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5531 } 5532 5533 trace_parser_put(parser); 5534 5535 mutex_lock(&iter->ops->func_hash->regex_lock); 5536 5537 if (file->f_mode & FMODE_WRITE) { 5538 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5539 5540 if (filter_hash) { 5541 orig_hash = &iter->ops->func_hash->filter_hash; 5542 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5543 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5544 } else 5545 orig_hash = &iter->ops->func_hash->notrace_hash; 5546 5547 mutex_lock(&ftrace_lock); 5548 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5549 iter->hash, filter_hash); 5550 mutex_unlock(&ftrace_lock); 5551 } else { 5552 /* For read only, the hash is the ops hash */ 5553 iter->hash = NULL; 5554 } 5555 5556 mutex_unlock(&iter->ops->func_hash->regex_lock); 5557 free_ftrace_hash(iter->hash); 5558 if (iter->tr) 5559 trace_array_put(iter->tr); 5560 kfree(iter); 5561 5562 return 0; 5563 } 5564 5565 static const struct file_operations ftrace_avail_fops = { 5566 .open = ftrace_avail_open, 5567 .read = seq_read, 5568 .llseek = seq_lseek, 5569 .release = seq_release_private, 5570 }; 5571 5572 static const struct file_operations ftrace_enabled_fops = { 5573 .open = ftrace_enabled_open, 5574 .read = seq_read, 5575 .llseek = seq_lseek, 5576 .release = seq_release_private, 5577 }; 5578 5579 static const struct file_operations ftrace_filter_fops = { 5580 .open = ftrace_filter_open, 5581 .read = seq_read, 5582 .write = ftrace_filter_write, 5583 .llseek = tracing_lseek, 5584 .release = ftrace_regex_release, 5585 }; 5586 5587 static const struct file_operations ftrace_notrace_fops = { 5588 .open = ftrace_notrace_open, 5589 .read = seq_read, 5590 .write = ftrace_notrace_write, 5591 .llseek = tracing_lseek, 5592 .release = ftrace_regex_release, 5593 }; 5594 5595 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5596 5597 static DEFINE_MUTEX(graph_lock); 5598 5599 struct ftrace_hash *ftrace_graph_hash = EMPTY_HASH; 5600 struct ftrace_hash *ftrace_graph_notrace_hash = EMPTY_HASH; 5601 5602 enum graph_filter_type { 5603 GRAPH_FILTER_NOTRACE = 0, 5604 GRAPH_FILTER_FUNCTION, 5605 }; 5606 5607 #define FTRACE_GRAPH_EMPTY ((void *)1) 5608 5609 struct ftrace_graph_data { 5610 struct ftrace_hash *hash; 5611 struct ftrace_func_entry *entry; 5612 int idx; /* for hash table iteration */ 5613 enum graph_filter_type type; 5614 struct ftrace_hash *new_hash; 5615 const struct seq_operations *seq_ops; 5616 struct trace_parser parser; 5617 }; 5618 5619 static void * 5620 __g_next(struct seq_file *m, loff_t *pos) 5621 { 5622 struct ftrace_graph_data *fgd = m->private; 5623 struct ftrace_func_entry *entry = fgd->entry; 5624 struct hlist_head *head; 5625 int i, idx = fgd->idx; 5626 5627 if (*pos >= fgd->hash->count) 5628 return NULL; 5629 5630 if (entry) { 5631 hlist_for_each_entry_continue(entry, hlist) { 5632 fgd->entry = entry; 5633 return entry; 5634 } 5635 5636 idx++; 5637 } 5638 5639 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5640 head = &fgd->hash->buckets[i]; 5641 hlist_for_each_entry(entry, head, hlist) { 5642 fgd->entry = entry; 5643 fgd->idx = i; 5644 return entry; 5645 } 5646 } 5647 return NULL; 5648 } 5649 5650 static void * 5651 g_next(struct seq_file *m, void *v, loff_t *pos) 5652 { 5653 (*pos)++; 5654 return __g_next(m, pos); 5655 } 5656 5657 static void *g_start(struct seq_file *m, loff_t *pos) 5658 { 5659 struct ftrace_graph_data *fgd = m->private; 5660 5661 mutex_lock(&graph_lock); 5662 5663 if (fgd->type == GRAPH_FILTER_FUNCTION) 5664 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5665 lockdep_is_held(&graph_lock)); 5666 else 5667 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5668 lockdep_is_held(&graph_lock)); 5669 5670 /* Nothing, tell g_show to print all functions are enabled */ 5671 if (ftrace_hash_empty(fgd->hash) && !*pos) 5672 return FTRACE_GRAPH_EMPTY; 5673 5674 fgd->idx = 0; 5675 fgd->entry = NULL; 5676 return __g_next(m, pos); 5677 } 5678 5679 static void g_stop(struct seq_file *m, void *p) 5680 { 5681 mutex_unlock(&graph_lock); 5682 } 5683 5684 static int g_show(struct seq_file *m, void *v) 5685 { 5686 struct ftrace_func_entry *entry = v; 5687 5688 if (!entry) 5689 return 0; 5690 5691 if (entry == FTRACE_GRAPH_EMPTY) { 5692 struct ftrace_graph_data *fgd = m->private; 5693 5694 if (fgd->type == GRAPH_FILTER_FUNCTION) 5695 seq_puts(m, "#### all functions enabled ####\n"); 5696 else 5697 seq_puts(m, "#### no functions disabled ####\n"); 5698 return 0; 5699 } 5700 5701 seq_printf(m, "%ps\n", (void *)entry->ip); 5702 5703 return 0; 5704 } 5705 5706 static const struct seq_operations ftrace_graph_seq_ops = { 5707 .start = g_start, 5708 .next = g_next, 5709 .stop = g_stop, 5710 .show = g_show, 5711 }; 5712 5713 static int 5714 __ftrace_graph_open(struct inode *inode, struct file *file, 5715 struct ftrace_graph_data *fgd) 5716 { 5717 int ret; 5718 struct ftrace_hash *new_hash = NULL; 5719 5720 ret = security_locked_down(LOCKDOWN_TRACEFS); 5721 if (ret) 5722 return ret; 5723 5724 if (file->f_mode & FMODE_WRITE) { 5725 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5726 5727 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5728 return -ENOMEM; 5729 5730 if (file->f_flags & O_TRUNC) 5731 new_hash = alloc_ftrace_hash(size_bits); 5732 else 5733 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5734 fgd->hash); 5735 if (!new_hash) { 5736 ret = -ENOMEM; 5737 goto out; 5738 } 5739 } 5740 5741 if (file->f_mode & FMODE_READ) { 5742 ret = seq_open(file, &ftrace_graph_seq_ops); 5743 if (!ret) { 5744 struct seq_file *m = file->private_data; 5745 m->private = fgd; 5746 } else { 5747 /* Failed */ 5748 free_ftrace_hash(new_hash); 5749 new_hash = NULL; 5750 } 5751 } else 5752 file->private_data = fgd; 5753 5754 out: 5755 if (ret < 0 && file->f_mode & FMODE_WRITE) 5756 trace_parser_put(&fgd->parser); 5757 5758 fgd->new_hash = new_hash; 5759 5760 /* 5761 * All uses of fgd->hash must be taken with the graph_lock 5762 * held. The graph_lock is going to be released, so force 5763 * fgd->hash to be reinitialized when it is taken again. 5764 */ 5765 fgd->hash = NULL; 5766 5767 return ret; 5768 } 5769 5770 static int 5771 ftrace_graph_open(struct inode *inode, struct file *file) 5772 { 5773 struct ftrace_graph_data *fgd; 5774 int ret; 5775 5776 if (unlikely(ftrace_disabled)) 5777 return -ENODEV; 5778 5779 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5780 if (fgd == NULL) 5781 return -ENOMEM; 5782 5783 mutex_lock(&graph_lock); 5784 5785 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5786 lockdep_is_held(&graph_lock)); 5787 fgd->type = GRAPH_FILTER_FUNCTION; 5788 fgd->seq_ops = &ftrace_graph_seq_ops; 5789 5790 ret = __ftrace_graph_open(inode, file, fgd); 5791 if (ret < 0) 5792 kfree(fgd); 5793 5794 mutex_unlock(&graph_lock); 5795 return ret; 5796 } 5797 5798 static int 5799 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5800 { 5801 struct ftrace_graph_data *fgd; 5802 int ret; 5803 5804 if (unlikely(ftrace_disabled)) 5805 return -ENODEV; 5806 5807 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5808 if (fgd == NULL) 5809 return -ENOMEM; 5810 5811 mutex_lock(&graph_lock); 5812 5813 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5814 lockdep_is_held(&graph_lock)); 5815 fgd->type = GRAPH_FILTER_NOTRACE; 5816 fgd->seq_ops = &ftrace_graph_seq_ops; 5817 5818 ret = __ftrace_graph_open(inode, file, fgd); 5819 if (ret < 0) 5820 kfree(fgd); 5821 5822 mutex_unlock(&graph_lock); 5823 return ret; 5824 } 5825 5826 static int 5827 ftrace_graph_release(struct inode *inode, struct file *file) 5828 { 5829 struct ftrace_graph_data *fgd; 5830 struct ftrace_hash *old_hash, *new_hash; 5831 struct trace_parser *parser; 5832 int ret = 0; 5833 5834 if (file->f_mode & FMODE_READ) { 5835 struct seq_file *m = file->private_data; 5836 5837 fgd = m->private; 5838 seq_release(inode, file); 5839 } else { 5840 fgd = file->private_data; 5841 } 5842 5843 5844 if (file->f_mode & FMODE_WRITE) { 5845 5846 parser = &fgd->parser; 5847 5848 if (trace_parser_loaded((parser))) { 5849 ret = ftrace_graph_set_hash(fgd->new_hash, 5850 parser->buffer); 5851 } 5852 5853 trace_parser_put(parser); 5854 5855 new_hash = __ftrace_hash_move(fgd->new_hash); 5856 if (!new_hash) { 5857 ret = -ENOMEM; 5858 goto out; 5859 } 5860 5861 mutex_lock(&graph_lock); 5862 5863 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5864 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5865 lockdep_is_held(&graph_lock)); 5866 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5867 } else { 5868 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5869 lockdep_is_held(&graph_lock)); 5870 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5871 } 5872 5873 mutex_unlock(&graph_lock); 5874 5875 /* Wait till all users are no longer using the old hash */ 5876 synchronize_rcu(); 5877 5878 free_ftrace_hash(old_hash); 5879 } 5880 5881 out: 5882 free_ftrace_hash(fgd->new_hash); 5883 kfree(fgd); 5884 5885 return ret; 5886 } 5887 5888 static int 5889 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5890 { 5891 struct ftrace_glob func_g; 5892 struct dyn_ftrace *rec; 5893 struct ftrace_page *pg; 5894 struct ftrace_func_entry *entry; 5895 int fail = 1; 5896 int not; 5897 5898 /* decode regex */ 5899 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5900 &func_g.search, ¬); 5901 5902 func_g.len = strlen(func_g.search); 5903 5904 mutex_lock(&ftrace_lock); 5905 5906 if (unlikely(ftrace_disabled)) { 5907 mutex_unlock(&ftrace_lock); 5908 return -ENODEV; 5909 } 5910 5911 do_for_each_ftrace_rec(pg, rec) { 5912 5913 if (rec->flags & FTRACE_FL_DISABLED) 5914 continue; 5915 5916 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5917 entry = ftrace_lookup_ip(hash, rec->ip); 5918 5919 if (!not) { 5920 fail = 0; 5921 5922 if (entry) 5923 continue; 5924 if (add_hash_entry(hash, rec->ip) < 0) 5925 goto out; 5926 } else { 5927 if (entry) { 5928 free_hash_entry(hash, entry); 5929 fail = 0; 5930 } 5931 } 5932 } 5933 } while_for_each_ftrace_rec(); 5934 out: 5935 mutex_unlock(&ftrace_lock); 5936 5937 if (fail) 5938 return -EINVAL; 5939 5940 return 0; 5941 } 5942 5943 static ssize_t 5944 ftrace_graph_write(struct file *file, const char __user *ubuf, 5945 size_t cnt, loff_t *ppos) 5946 { 5947 ssize_t read, ret = 0; 5948 struct ftrace_graph_data *fgd = file->private_data; 5949 struct trace_parser *parser; 5950 5951 if (!cnt) 5952 return 0; 5953 5954 /* Read mode uses seq functions */ 5955 if (file->f_mode & FMODE_READ) { 5956 struct seq_file *m = file->private_data; 5957 fgd = m->private; 5958 } 5959 5960 parser = &fgd->parser; 5961 5962 read = trace_get_user(parser, ubuf, cnt, ppos); 5963 5964 if (read >= 0 && trace_parser_loaded(parser) && 5965 !trace_parser_cont(parser)) { 5966 5967 ret = ftrace_graph_set_hash(fgd->new_hash, 5968 parser->buffer); 5969 trace_parser_clear(parser); 5970 } 5971 5972 if (!ret) 5973 ret = read; 5974 5975 return ret; 5976 } 5977 5978 static const struct file_operations ftrace_graph_fops = { 5979 .open = ftrace_graph_open, 5980 .read = seq_read, 5981 .write = ftrace_graph_write, 5982 .llseek = tracing_lseek, 5983 .release = ftrace_graph_release, 5984 }; 5985 5986 static const struct file_operations ftrace_graph_notrace_fops = { 5987 .open = ftrace_graph_notrace_open, 5988 .read = seq_read, 5989 .write = ftrace_graph_write, 5990 .llseek = tracing_lseek, 5991 .release = ftrace_graph_release, 5992 }; 5993 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5994 5995 void ftrace_create_filter_files(struct ftrace_ops *ops, 5996 struct dentry *parent) 5997 { 5998 5999 trace_create_file("set_ftrace_filter", 0644, parent, 6000 ops, &ftrace_filter_fops); 6001 6002 trace_create_file("set_ftrace_notrace", 0644, parent, 6003 ops, &ftrace_notrace_fops); 6004 } 6005 6006 /* 6007 * The name "destroy_filter_files" is really a misnomer. Although 6008 * in the future, it may actually delete the files, but this is 6009 * really intended to make sure the ops passed in are disabled 6010 * and that when this function returns, the caller is free to 6011 * free the ops. 6012 * 6013 * The "destroy" name is only to match the "create" name that this 6014 * should be paired with. 6015 */ 6016 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6017 { 6018 mutex_lock(&ftrace_lock); 6019 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6020 ftrace_shutdown(ops, 0); 6021 ops->flags |= FTRACE_OPS_FL_DELETED; 6022 ftrace_free_filter(ops); 6023 mutex_unlock(&ftrace_lock); 6024 } 6025 6026 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6027 { 6028 6029 trace_create_file("available_filter_functions", 0444, 6030 d_tracer, NULL, &ftrace_avail_fops); 6031 6032 trace_create_file("enabled_functions", 0444, 6033 d_tracer, NULL, &ftrace_enabled_fops); 6034 6035 ftrace_create_filter_files(&global_ops, d_tracer); 6036 6037 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6038 trace_create_file("set_graph_function", 0644, d_tracer, 6039 NULL, 6040 &ftrace_graph_fops); 6041 trace_create_file("set_graph_notrace", 0644, d_tracer, 6042 NULL, 6043 &ftrace_graph_notrace_fops); 6044 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6045 6046 return 0; 6047 } 6048 6049 static int ftrace_cmp_ips(const void *a, const void *b) 6050 { 6051 const unsigned long *ipa = a; 6052 const unsigned long *ipb = b; 6053 6054 if (*ipa > *ipb) 6055 return 1; 6056 if (*ipa < *ipb) 6057 return -1; 6058 return 0; 6059 } 6060 6061 static int ftrace_process_locs(struct module *mod, 6062 unsigned long *start, 6063 unsigned long *end) 6064 { 6065 struct ftrace_page *start_pg; 6066 struct ftrace_page *pg; 6067 struct dyn_ftrace *rec; 6068 unsigned long count; 6069 unsigned long *p; 6070 unsigned long addr; 6071 unsigned long flags = 0; /* Shut up gcc */ 6072 int ret = -ENOMEM; 6073 6074 count = end - start; 6075 6076 if (!count) 6077 return 0; 6078 6079 sort(start, count, sizeof(*start), 6080 ftrace_cmp_ips, NULL); 6081 6082 start_pg = ftrace_allocate_pages(count); 6083 if (!start_pg) 6084 return -ENOMEM; 6085 6086 mutex_lock(&ftrace_lock); 6087 6088 /* 6089 * Core and each module needs their own pages, as 6090 * modules will free them when they are removed. 6091 * Force a new page to be allocated for modules. 6092 */ 6093 if (!mod) { 6094 WARN_ON(ftrace_pages || ftrace_pages_start); 6095 /* First initialization */ 6096 ftrace_pages = ftrace_pages_start = start_pg; 6097 } else { 6098 if (!ftrace_pages) 6099 goto out; 6100 6101 if (WARN_ON(ftrace_pages->next)) { 6102 /* Hmm, we have free pages? */ 6103 while (ftrace_pages->next) 6104 ftrace_pages = ftrace_pages->next; 6105 } 6106 6107 ftrace_pages->next = start_pg; 6108 } 6109 6110 p = start; 6111 pg = start_pg; 6112 while (p < end) { 6113 addr = ftrace_call_adjust(*p++); 6114 /* 6115 * Some architecture linkers will pad between 6116 * the different mcount_loc sections of different 6117 * object files to satisfy alignments. 6118 * Skip any NULL pointers. 6119 */ 6120 if (!addr) 6121 continue; 6122 6123 if (pg->index == pg->size) { 6124 /* We should have allocated enough */ 6125 if (WARN_ON(!pg->next)) 6126 break; 6127 pg = pg->next; 6128 } 6129 6130 rec = &pg->records[pg->index++]; 6131 rec->ip = addr; 6132 } 6133 6134 /* We should have used all pages */ 6135 WARN_ON(pg->next); 6136 6137 /* Assign the last page to ftrace_pages */ 6138 ftrace_pages = pg; 6139 6140 /* 6141 * We only need to disable interrupts on start up 6142 * because we are modifying code that an interrupt 6143 * may execute, and the modification is not atomic. 6144 * But for modules, nothing runs the code we modify 6145 * until we are finished with it, and there's no 6146 * reason to cause large interrupt latencies while we do it. 6147 */ 6148 if (!mod) 6149 local_irq_save(flags); 6150 ftrace_update_code(mod, start_pg); 6151 if (!mod) 6152 local_irq_restore(flags); 6153 ret = 0; 6154 out: 6155 mutex_unlock(&ftrace_lock); 6156 6157 return ret; 6158 } 6159 6160 struct ftrace_mod_func { 6161 struct list_head list; 6162 char *name; 6163 unsigned long ip; 6164 unsigned int size; 6165 }; 6166 6167 struct ftrace_mod_map { 6168 struct rcu_head rcu; 6169 struct list_head list; 6170 struct module *mod; 6171 unsigned long start_addr; 6172 unsigned long end_addr; 6173 struct list_head funcs; 6174 unsigned int num_funcs; 6175 }; 6176 6177 #ifdef CONFIG_MODULES 6178 6179 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6180 6181 static LIST_HEAD(ftrace_mod_maps); 6182 6183 static int referenced_filters(struct dyn_ftrace *rec) 6184 { 6185 struct ftrace_ops *ops; 6186 int cnt = 0; 6187 6188 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6189 if (ops_references_rec(ops, rec)) 6190 cnt++; 6191 } 6192 6193 return cnt; 6194 } 6195 6196 static void 6197 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6198 { 6199 struct ftrace_func_entry *entry; 6200 struct dyn_ftrace *rec; 6201 int i; 6202 6203 if (ftrace_hash_empty(hash)) 6204 return; 6205 6206 for (i = 0; i < pg->index; i++) { 6207 rec = &pg->records[i]; 6208 entry = __ftrace_lookup_ip(hash, rec->ip); 6209 /* 6210 * Do not allow this rec to match again. 6211 * Yeah, it may waste some memory, but will be removed 6212 * if/when the hash is modified again. 6213 */ 6214 if (entry) 6215 entry->ip = 0; 6216 } 6217 } 6218 6219 /* Clear any records from hashs */ 6220 static void clear_mod_from_hashes(struct ftrace_page *pg) 6221 { 6222 struct trace_array *tr; 6223 6224 mutex_lock(&trace_types_lock); 6225 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6226 if (!tr->ops || !tr->ops->func_hash) 6227 continue; 6228 mutex_lock(&tr->ops->func_hash->regex_lock); 6229 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6230 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6231 mutex_unlock(&tr->ops->func_hash->regex_lock); 6232 } 6233 mutex_unlock(&trace_types_lock); 6234 } 6235 6236 static void ftrace_free_mod_map(struct rcu_head *rcu) 6237 { 6238 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6239 struct ftrace_mod_func *mod_func; 6240 struct ftrace_mod_func *n; 6241 6242 /* All the contents of mod_map are now not visible to readers */ 6243 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6244 kfree(mod_func->name); 6245 list_del(&mod_func->list); 6246 kfree(mod_func); 6247 } 6248 6249 kfree(mod_map); 6250 } 6251 6252 void ftrace_release_mod(struct module *mod) 6253 { 6254 struct ftrace_mod_map *mod_map; 6255 struct ftrace_mod_map *n; 6256 struct dyn_ftrace *rec; 6257 struct ftrace_page **last_pg; 6258 struct ftrace_page *tmp_page = NULL; 6259 struct ftrace_page *pg; 6260 int order; 6261 6262 mutex_lock(&ftrace_lock); 6263 6264 if (ftrace_disabled) 6265 goto out_unlock; 6266 6267 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6268 if (mod_map->mod == mod) { 6269 list_del_rcu(&mod_map->list); 6270 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6271 break; 6272 } 6273 } 6274 6275 /* 6276 * Each module has its own ftrace_pages, remove 6277 * them from the list. 6278 */ 6279 last_pg = &ftrace_pages_start; 6280 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6281 rec = &pg->records[0]; 6282 if (within_module_core(rec->ip, mod) || 6283 within_module_init(rec->ip, mod)) { 6284 /* 6285 * As core pages are first, the first 6286 * page should never be a module page. 6287 */ 6288 if (WARN_ON(pg == ftrace_pages_start)) 6289 goto out_unlock; 6290 6291 /* Check if we are deleting the last page */ 6292 if (pg == ftrace_pages) 6293 ftrace_pages = next_to_ftrace_page(last_pg); 6294 6295 ftrace_update_tot_cnt -= pg->index; 6296 *last_pg = pg->next; 6297 6298 pg->next = tmp_page; 6299 tmp_page = pg; 6300 } else 6301 last_pg = &pg->next; 6302 } 6303 out_unlock: 6304 mutex_unlock(&ftrace_lock); 6305 6306 for (pg = tmp_page; pg; pg = tmp_page) { 6307 6308 /* Needs to be called outside of ftrace_lock */ 6309 clear_mod_from_hashes(pg); 6310 6311 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6312 free_pages((unsigned long)pg->records, order); 6313 tmp_page = pg->next; 6314 kfree(pg); 6315 ftrace_number_of_pages -= 1 << order; 6316 ftrace_number_of_groups--; 6317 } 6318 } 6319 6320 void ftrace_module_enable(struct module *mod) 6321 { 6322 struct dyn_ftrace *rec; 6323 struct ftrace_page *pg; 6324 6325 mutex_lock(&ftrace_lock); 6326 6327 if (ftrace_disabled) 6328 goto out_unlock; 6329 6330 /* 6331 * If the tracing is enabled, go ahead and enable the record. 6332 * 6333 * The reason not to enable the record immediately is the 6334 * inherent check of ftrace_make_nop/ftrace_make_call for 6335 * correct previous instructions. Making first the NOP 6336 * conversion puts the module to the correct state, thus 6337 * passing the ftrace_make_call check. 6338 * 6339 * We also delay this to after the module code already set the 6340 * text to read-only, as we now need to set it back to read-write 6341 * so that we can modify the text. 6342 */ 6343 if (ftrace_start_up) 6344 ftrace_arch_code_modify_prepare(); 6345 6346 do_for_each_ftrace_rec(pg, rec) { 6347 int cnt; 6348 /* 6349 * do_for_each_ftrace_rec() is a double loop. 6350 * module text shares the pg. If a record is 6351 * not part of this module, then skip this pg, 6352 * which the "break" will do. 6353 */ 6354 if (!within_module_core(rec->ip, mod) && 6355 !within_module_init(rec->ip, mod)) 6356 break; 6357 6358 cnt = 0; 6359 6360 /* 6361 * When adding a module, we need to check if tracers are 6362 * currently enabled and if they are, and can trace this record, 6363 * we need to enable the module functions as well as update the 6364 * reference counts for those function records. 6365 */ 6366 if (ftrace_start_up) 6367 cnt += referenced_filters(rec); 6368 6369 /* This clears FTRACE_FL_DISABLED */ 6370 rec->flags = cnt; 6371 6372 if (ftrace_start_up && cnt) { 6373 int failed = __ftrace_replace_code(rec, 1); 6374 if (failed) { 6375 ftrace_bug(failed, rec); 6376 goto out_loop; 6377 } 6378 } 6379 6380 } while_for_each_ftrace_rec(); 6381 6382 out_loop: 6383 if (ftrace_start_up) 6384 ftrace_arch_code_modify_post_process(); 6385 6386 out_unlock: 6387 mutex_unlock(&ftrace_lock); 6388 6389 process_cached_mods(mod->name); 6390 } 6391 6392 void ftrace_module_init(struct module *mod) 6393 { 6394 if (ftrace_disabled || !mod->num_ftrace_callsites) 6395 return; 6396 6397 ftrace_process_locs(mod, mod->ftrace_callsites, 6398 mod->ftrace_callsites + mod->num_ftrace_callsites); 6399 } 6400 6401 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6402 struct dyn_ftrace *rec) 6403 { 6404 struct ftrace_mod_func *mod_func; 6405 unsigned long symsize; 6406 unsigned long offset; 6407 char str[KSYM_SYMBOL_LEN]; 6408 char *modname; 6409 const char *ret; 6410 6411 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6412 if (!ret) 6413 return; 6414 6415 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6416 if (!mod_func) 6417 return; 6418 6419 mod_func->name = kstrdup(str, GFP_KERNEL); 6420 if (!mod_func->name) { 6421 kfree(mod_func); 6422 return; 6423 } 6424 6425 mod_func->ip = rec->ip - offset; 6426 mod_func->size = symsize; 6427 6428 mod_map->num_funcs++; 6429 6430 list_add_rcu(&mod_func->list, &mod_map->funcs); 6431 } 6432 6433 static struct ftrace_mod_map * 6434 allocate_ftrace_mod_map(struct module *mod, 6435 unsigned long start, unsigned long end) 6436 { 6437 struct ftrace_mod_map *mod_map; 6438 6439 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6440 if (!mod_map) 6441 return NULL; 6442 6443 mod_map->mod = mod; 6444 mod_map->start_addr = start; 6445 mod_map->end_addr = end; 6446 mod_map->num_funcs = 0; 6447 6448 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6449 6450 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6451 6452 return mod_map; 6453 } 6454 6455 static const char * 6456 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6457 unsigned long addr, unsigned long *size, 6458 unsigned long *off, char *sym) 6459 { 6460 struct ftrace_mod_func *found_func = NULL; 6461 struct ftrace_mod_func *mod_func; 6462 6463 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6464 if (addr >= mod_func->ip && 6465 addr < mod_func->ip + mod_func->size) { 6466 found_func = mod_func; 6467 break; 6468 } 6469 } 6470 6471 if (found_func) { 6472 if (size) 6473 *size = found_func->size; 6474 if (off) 6475 *off = addr - found_func->ip; 6476 if (sym) 6477 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6478 6479 return found_func->name; 6480 } 6481 6482 return NULL; 6483 } 6484 6485 const char * 6486 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6487 unsigned long *off, char **modname, char *sym) 6488 { 6489 struct ftrace_mod_map *mod_map; 6490 const char *ret = NULL; 6491 6492 /* mod_map is freed via call_rcu() */ 6493 preempt_disable(); 6494 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6495 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6496 if (ret) { 6497 if (modname) 6498 *modname = mod_map->mod->name; 6499 break; 6500 } 6501 } 6502 preempt_enable(); 6503 6504 return ret; 6505 } 6506 6507 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6508 char *type, char *name, 6509 char *module_name, int *exported) 6510 { 6511 struct ftrace_mod_map *mod_map; 6512 struct ftrace_mod_func *mod_func; 6513 6514 preempt_disable(); 6515 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6516 6517 if (symnum >= mod_map->num_funcs) { 6518 symnum -= mod_map->num_funcs; 6519 continue; 6520 } 6521 6522 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6523 if (symnum > 1) { 6524 symnum--; 6525 continue; 6526 } 6527 6528 *value = mod_func->ip; 6529 *type = 'T'; 6530 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6531 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6532 *exported = 1; 6533 preempt_enable(); 6534 return 0; 6535 } 6536 WARN_ON(1); 6537 break; 6538 } 6539 preempt_enable(); 6540 return -ERANGE; 6541 } 6542 6543 #else 6544 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6545 struct dyn_ftrace *rec) { } 6546 static inline struct ftrace_mod_map * 6547 allocate_ftrace_mod_map(struct module *mod, 6548 unsigned long start, unsigned long end) 6549 { 6550 return NULL; 6551 } 6552 #endif /* CONFIG_MODULES */ 6553 6554 struct ftrace_init_func { 6555 struct list_head list; 6556 unsigned long ip; 6557 }; 6558 6559 /* Clear any init ips from hashes */ 6560 static void 6561 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6562 { 6563 struct ftrace_func_entry *entry; 6564 6565 entry = ftrace_lookup_ip(hash, func->ip); 6566 /* 6567 * Do not allow this rec to match again. 6568 * Yeah, it may waste some memory, but will be removed 6569 * if/when the hash is modified again. 6570 */ 6571 if (entry) 6572 entry->ip = 0; 6573 } 6574 6575 static void 6576 clear_func_from_hashes(struct ftrace_init_func *func) 6577 { 6578 struct trace_array *tr; 6579 6580 mutex_lock(&trace_types_lock); 6581 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6582 if (!tr->ops || !tr->ops->func_hash) 6583 continue; 6584 mutex_lock(&tr->ops->func_hash->regex_lock); 6585 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6586 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6587 mutex_unlock(&tr->ops->func_hash->regex_lock); 6588 } 6589 mutex_unlock(&trace_types_lock); 6590 } 6591 6592 static void add_to_clear_hash_list(struct list_head *clear_list, 6593 struct dyn_ftrace *rec) 6594 { 6595 struct ftrace_init_func *func; 6596 6597 func = kmalloc(sizeof(*func), GFP_KERNEL); 6598 if (!func) { 6599 WARN_ONCE(1, "alloc failure, ftrace filter could be stale\n"); 6600 return; 6601 } 6602 6603 func->ip = rec->ip; 6604 list_add(&func->list, clear_list); 6605 } 6606 6607 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6608 { 6609 unsigned long start = (unsigned long)(start_ptr); 6610 unsigned long end = (unsigned long)(end_ptr); 6611 struct ftrace_page **last_pg = &ftrace_pages_start; 6612 struct ftrace_page *pg; 6613 struct dyn_ftrace *rec; 6614 struct dyn_ftrace key; 6615 struct ftrace_mod_map *mod_map = NULL; 6616 struct ftrace_init_func *func, *func_next; 6617 struct list_head clear_hash; 6618 int order; 6619 6620 INIT_LIST_HEAD(&clear_hash); 6621 6622 key.ip = start; 6623 key.flags = end; /* overload flags, as it is unsigned long */ 6624 6625 mutex_lock(&ftrace_lock); 6626 6627 /* 6628 * If we are freeing module init memory, then check if 6629 * any tracer is active. If so, we need to save a mapping of 6630 * the module functions being freed with the address. 6631 */ 6632 if (mod && ftrace_ops_list != &ftrace_list_end) 6633 mod_map = allocate_ftrace_mod_map(mod, start, end); 6634 6635 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6636 if (end < pg->records[0].ip || 6637 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6638 continue; 6639 again: 6640 rec = bsearch(&key, pg->records, pg->index, 6641 sizeof(struct dyn_ftrace), 6642 ftrace_cmp_recs); 6643 if (!rec) 6644 continue; 6645 6646 /* rec will be cleared from hashes after ftrace_lock unlock */ 6647 add_to_clear_hash_list(&clear_hash, rec); 6648 6649 if (mod_map) 6650 save_ftrace_mod_rec(mod_map, rec); 6651 6652 pg->index--; 6653 ftrace_update_tot_cnt--; 6654 if (!pg->index) { 6655 *last_pg = pg->next; 6656 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6657 free_pages((unsigned long)pg->records, order); 6658 ftrace_number_of_pages -= 1 << order; 6659 ftrace_number_of_groups--; 6660 kfree(pg); 6661 pg = container_of(last_pg, struct ftrace_page, next); 6662 if (!(*last_pg)) 6663 ftrace_pages = pg; 6664 continue; 6665 } 6666 memmove(rec, rec + 1, 6667 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6668 /* More than one function may be in this block */ 6669 goto again; 6670 } 6671 mutex_unlock(&ftrace_lock); 6672 6673 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6674 clear_func_from_hashes(func); 6675 kfree(func); 6676 } 6677 } 6678 6679 void __init ftrace_free_init_mem(void) 6680 { 6681 void *start = (void *)(&__init_begin); 6682 void *end = (void *)(&__init_end); 6683 6684 ftrace_free_mem(NULL, start, end); 6685 } 6686 6687 void __init ftrace_init(void) 6688 { 6689 extern unsigned long __start_mcount_loc[]; 6690 extern unsigned long __stop_mcount_loc[]; 6691 unsigned long count, flags; 6692 int ret; 6693 6694 local_irq_save(flags); 6695 ret = ftrace_dyn_arch_init(); 6696 local_irq_restore(flags); 6697 if (ret) 6698 goto failed; 6699 6700 count = __stop_mcount_loc - __start_mcount_loc; 6701 if (!count) { 6702 pr_info("ftrace: No functions to be traced?\n"); 6703 goto failed; 6704 } 6705 6706 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6707 count, count / ENTRIES_PER_PAGE + 1); 6708 6709 last_ftrace_enabled = ftrace_enabled = 1; 6710 6711 ret = ftrace_process_locs(NULL, 6712 __start_mcount_loc, 6713 __stop_mcount_loc); 6714 6715 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6716 ftrace_number_of_pages, ftrace_number_of_groups); 6717 6718 set_ftrace_early_filters(); 6719 6720 return; 6721 failed: 6722 ftrace_disabled = 1; 6723 } 6724 6725 /* Do nothing if arch does not support this */ 6726 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6727 { 6728 } 6729 6730 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6731 { 6732 arch_ftrace_update_trampoline(ops); 6733 } 6734 6735 void ftrace_init_trace_array(struct trace_array *tr) 6736 { 6737 INIT_LIST_HEAD(&tr->func_probes); 6738 INIT_LIST_HEAD(&tr->mod_trace); 6739 INIT_LIST_HEAD(&tr->mod_notrace); 6740 } 6741 #else 6742 6743 struct ftrace_ops global_ops = { 6744 .func = ftrace_stub, 6745 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6746 FTRACE_OPS_FL_INITIALIZED | 6747 FTRACE_OPS_FL_PID, 6748 }; 6749 6750 static int __init ftrace_nodyn_init(void) 6751 { 6752 ftrace_enabled = 1; 6753 return 0; 6754 } 6755 core_initcall(ftrace_nodyn_init); 6756 6757 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6758 static inline void ftrace_startup_enable(int command) { } 6759 static inline void ftrace_startup_all(int command) { } 6760 6761 # define ftrace_startup_sysctl() do { } while (0) 6762 # define ftrace_shutdown_sysctl() do { } while (0) 6763 6764 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6765 { 6766 } 6767 6768 #endif /* CONFIG_DYNAMIC_FTRACE */ 6769 6770 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6771 { 6772 tr->ops = &global_ops; 6773 tr->ops->private = tr; 6774 ftrace_init_trace_array(tr); 6775 } 6776 6777 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6778 { 6779 /* If we filter on pids, update to use the pid function */ 6780 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6781 if (WARN_ON(tr->ops->func != ftrace_stub)) 6782 printk("ftrace ops had %pS for function\n", 6783 tr->ops->func); 6784 } 6785 tr->ops->func = func; 6786 tr->ops->private = tr; 6787 } 6788 6789 void ftrace_reset_array_ops(struct trace_array *tr) 6790 { 6791 tr->ops->func = ftrace_stub; 6792 } 6793 6794 static nokprobe_inline void 6795 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6796 struct ftrace_ops *ignored, struct pt_regs *regs) 6797 { 6798 struct ftrace_ops *op; 6799 int bit; 6800 6801 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6802 if (bit < 0) 6803 return; 6804 6805 /* 6806 * Some of the ops may be dynamically allocated, 6807 * they must be freed after a synchronize_rcu(). 6808 */ 6809 preempt_disable_notrace(); 6810 6811 do_for_each_ftrace_op(op, ftrace_ops_list) { 6812 /* Stub functions don't need to be called nor tested */ 6813 if (op->flags & FTRACE_OPS_FL_STUB) 6814 continue; 6815 /* 6816 * Check the following for each ops before calling their func: 6817 * if RCU flag is set, then rcu_is_watching() must be true 6818 * if PER_CPU is set, then ftrace_function_local_disable() 6819 * must be false 6820 * Otherwise test if the ip matches the ops filter 6821 * 6822 * If any of the above fails then the op->func() is not executed. 6823 */ 6824 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6825 ftrace_ops_test(op, ip, regs)) { 6826 if (FTRACE_WARN_ON(!op->func)) { 6827 pr_warn("op=%p %pS\n", op, op); 6828 goto out; 6829 } 6830 op->func(ip, parent_ip, op, regs); 6831 } 6832 } while_for_each_ftrace_op(op); 6833 out: 6834 preempt_enable_notrace(); 6835 trace_clear_recursion(bit); 6836 } 6837 6838 /* 6839 * Some archs only support passing ip and parent_ip. Even though 6840 * the list function ignores the op parameter, we do not want any 6841 * C side effects, where a function is called without the caller 6842 * sending a third parameter. 6843 * Archs are to support both the regs and ftrace_ops at the same time. 6844 * If they support ftrace_ops, it is assumed they support regs. 6845 * If call backs want to use regs, they must either check for regs 6846 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6847 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6848 * An architecture can pass partial regs with ftrace_ops and still 6849 * set the ARCH_SUPPORTS_FTRACE_OPS. 6850 */ 6851 #if ARCH_SUPPORTS_FTRACE_OPS 6852 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6853 struct ftrace_ops *op, struct pt_regs *regs) 6854 { 6855 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6856 } 6857 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6858 #else 6859 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6860 { 6861 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6862 } 6863 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6864 #endif 6865 6866 /* 6867 * If there's only one function registered but it does not support 6868 * recursion, needs RCU protection and/or requires per cpu handling, then 6869 * this function will be called by the mcount trampoline. 6870 */ 6871 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6872 struct ftrace_ops *op, struct pt_regs *regs) 6873 { 6874 int bit; 6875 6876 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6877 return; 6878 6879 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6880 if (bit < 0) 6881 return; 6882 6883 preempt_disable_notrace(); 6884 6885 op->func(ip, parent_ip, op, regs); 6886 6887 preempt_enable_notrace(); 6888 trace_clear_recursion(bit); 6889 } 6890 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 6891 6892 /** 6893 * ftrace_ops_get_func - get the function a trampoline should call 6894 * @ops: the ops to get the function for 6895 * 6896 * Normally the mcount trampoline will call the ops->func, but there 6897 * are times that it should not. For example, if the ops does not 6898 * have its own recursion protection, then it should call the 6899 * ftrace_ops_assist_func() instead. 6900 * 6901 * Returns the function that the trampoline should call for @ops. 6902 */ 6903 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 6904 { 6905 /* 6906 * If the function does not handle recursion, needs to be RCU safe, 6907 * or does per cpu logic, then we need to call the assist handler. 6908 */ 6909 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 6910 ops->flags & FTRACE_OPS_FL_RCU) 6911 return ftrace_ops_assist_func; 6912 6913 return ops->func; 6914 } 6915 6916 static void 6917 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 6918 struct task_struct *prev, struct task_struct *next) 6919 { 6920 struct trace_array *tr = data; 6921 struct trace_pid_list *pid_list; 6922 6923 pid_list = rcu_dereference_sched(tr->function_pids); 6924 6925 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 6926 trace_ignore_this_task(pid_list, next)); 6927 } 6928 6929 static void 6930 ftrace_pid_follow_sched_process_fork(void *data, 6931 struct task_struct *self, 6932 struct task_struct *task) 6933 { 6934 struct trace_pid_list *pid_list; 6935 struct trace_array *tr = data; 6936 6937 pid_list = rcu_dereference_sched(tr->function_pids); 6938 trace_filter_add_remove_task(pid_list, self, task); 6939 } 6940 6941 static void 6942 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 6943 { 6944 struct trace_pid_list *pid_list; 6945 struct trace_array *tr = data; 6946 6947 pid_list = rcu_dereference_sched(tr->function_pids); 6948 trace_filter_add_remove_task(pid_list, NULL, task); 6949 } 6950 6951 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 6952 { 6953 if (enable) { 6954 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6955 tr); 6956 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6957 tr); 6958 } else { 6959 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6960 tr); 6961 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6962 tr); 6963 } 6964 } 6965 6966 static void clear_ftrace_pids(struct trace_array *tr) 6967 { 6968 struct trace_pid_list *pid_list; 6969 int cpu; 6970 6971 pid_list = rcu_dereference_protected(tr->function_pids, 6972 lockdep_is_held(&ftrace_lock)); 6973 if (!pid_list) 6974 return; 6975 6976 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6977 6978 for_each_possible_cpu(cpu) 6979 per_cpu_ptr(tr->trace_buffer.data, cpu)->ftrace_ignore_pid = false; 6980 6981 rcu_assign_pointer(tr->function_pids, NULL); 6982 6983 /* Wait till all users are no longer using pid filtering */ 6984 synchronize_rcu(); 6985 6986 trace_free_pid_list(pid_list); 6987 } 6988 6989 void ftrace_clear_pids(struct trace_array *tr) 6990 { 6991 mutex_lock(&ftrace_lock); 6992 6993 clear_ftrace_pids(tr); 6994 6995 mutex_unlock(&ftrace_lock); 6996 } 6997 6998 static void ftrace_pid_reset(struct trace_array *tr) 6999 { 7000 mutex_lock(&ftrace_lock); 7001 clear_ftrace_pids(tr); 7002 7003 ftrace_update_pid_func(); 7004 ftrace_startup_all(0); 7005 7006 mutex_unlock(&ftrace_lock); 7007 } 7008 7009 /* Greater than any max PID */ 7010 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7011 7012 static void *fpid_start(struct seq_file *m, loff_t *pos) 7013 __acquires(RCU) 7014 { 7015 struct trace_pid_list *pid_list; 7016 struct trace_array *tr = m->private; 7017 7018 mutex_lock(&ftrace_lock); 7019 rcu_read_lock_sched(); 7020 7021 pid_list = rcu_dereference_sched(tr->function_pids); 7022 7023 if (!pid_list) 7024 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7025 7026 return trace_pid_start(pid_list, pos); 7027 } 7028 7029 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7030 { 7031 struct trace_array *tr = m->private; 7032 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7033 7034 if (v == FTRACE_NO_PIDS) 7035 return NULL; 7036 7037 return trace_pid_next(pid_list, v, pos); 7038 } 7039 7040 static void fpid_stop(struct seq_file *m, void *p) 7041 __releases(RCU) 7042 { 7043 rcu_read_unlock_sched(); 7044 mutex_unlock(&ftrace_lock); 7045 } 7046 7047 static int fpid_show(struct seq_file *m, void *v) 7048 { 7049 if (v == FTRACE_NO_PIDS) { 7050 seq_puts(m, "no pid\n"); 7051 return 0; 7052 } 7053 7054 return trace_pid_show(m, v); 7055 } 7056 7057 static const struct seq_operations ftrace_pid_sops = { 7058 .start = fpid_start, 7059 .next = fpid_next, 7060 .stop = fpid_stop, 7061 .show = fpid_show, 7062 }; 7063 7064 static int 7065 ftrace_pid_open(struct inode *inode, struct file *file) 7066 { 7067 struct trace_array *tr = inode->i_private; 7068 struct seq_file *m; 7069 int ret = 0; 7070 7071 ret = tracing_check_open_get_tr(tr); 7072 if (ret) 7073 return ret; 7074 7075 if ((file->f_mode & FMODE_WRITE) && 7076 (file->f_flags & O_TRUNC)) 7077 ftrace_pid_reset(tr); 7078 7079 ret = seq_open(file, &ftrace_pid_sops); 7080 if (ret < 0) { 7081 trace_array_put(tr); 7082 } else { 7083 m = file->private_data; 7084 /* copy tr over to seq ops */ 7085 m->private = tr; 7086 } 7087 7088 return ret; 7089 } 7090 7091 static void ignore_task_cpu(void *data) 7092 { 7093 struct trace_array *tr = data; 7094 struct trace_pid_list *pid_list; 7095 7096 /* 7097 * This function is called by on_each_cpu() while the 7098 * event_mutex is held. 7099 */ 7100 pid_list = rcu_dereference_protected(tr->function_pids, 7101 mutex_is_locked(&ftrace_lock)); 7102 7103 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 7104 trace_ignore_this_task(pid_list, current)); 7105 } 7106 7107 static ssize_t 7108 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7109 size_t cnt, loff_t *ppos) 7110 { 7111 struct seq_file *m = filp->private_data; 7112 struct trace_array *tr = m->private; 7113 struct trace_pid_list *filtered_pids = NULL; 7114 struct trace_pid_list *pid_list; 7115 ssize_t ret; 7116 7117 if (!cnt) 7118 return 0; 7119 7120 mutex_lock(&ftrace_lock); 7121 7122 filtered_pids = rcu_dereference_protected(tr->function_pids, 7123 lockdep_is_held(&ftrace_lock)); 7124 7125 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7126 if (ret < 0) 7127 goto out; 7128 7129 rcu_assign_pointer(tr->function_pids, pid_list); 7130 7131 if (filtered_pids) { 7132 synchronize_rcu(); 7133 trace_free_pid_list(filtered_pids); 7134 } else if (pid_list) { 7135 /* Register a probe to set whether to ignore the tracing of a task */ 7136 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7137 } 7138 7139 /* 7140 * Ignoring of pids is done at task switch. But we have to 7141 * check for those tasks that are currently running. 7142 * Always do this in case a pid was appended or removed. 7143 */ 7144 on_each_cpu(ignore_task_cpu, tr, 1); 7145 7146 ftrace_update_pid_func(); 7147 ftrace_startup_all(0); 7148 out: 7149 mutex_unlock(&ftrace_lock); 7150 7151 if (ret > 0) 7152 *ppos += ret; 7153 7154 return ret; 7155 } 7156 7157 static int 7158 ftrace_pid_release(struct inode *inode, struct file *file) 7159 { 7160 struct trace_array *tr = inode->i_private; 7161 7162 trace_array_put(tr); 7163 7164 return seq_release(inode, file); 7165 } 7166 7167 static const struct file_operations ftrace_pid_fops = { 7168 .open = ftrace_pid_open, 7169 .write = ftrace_pid_write, 7170 .read = seq_read, 7171 .llseek = tracing_lseek, 7172 .release = ftrace_pid_release, 7173 }; 7174 7175 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7176 { 7177 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7178 tr, &ftrace_pid_fops); 7179 } 7180 7181 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7182 struct dentry *d_tracer) 7183 { 7184 /* Only the top level directory has the dyn_tracefs and profile */ 7185 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7186 7187 ftrace_init_dyn_tracefs(d_tracer); 7188 ftrace_profile_tracefs(d_tracer); 7189 } 7190 7191 /** 7192 * ftrace_kill - kill ftrace 7193 * 7194 * This function should be used by panic code. It stops ftrace 7195 * but in a not so nice way. If you need to simply kill ftrace 7196 * from a non-atomic section, use ftrace_kill. 7197 */ 7198 void ftrace_kill(void) 7199 { 7200 ftrace_disabled = 1; 7201 ftrace_enabled = 0; 7202 ftrace_trace_function = ftrace_stub; 7203 } 7204 7205 /** 7206 * Test if ftrace is dead or not. 7207 */ 7208 int ftrace_is_dead(void) 7209 { 7210 return ftrace_disabled; 7211 } 7212 7213 /** 7214 * register_ftrace_function - register a function for profiling 7215 * @ops - ops structure that holds the function for profiling. 7216 * 7217 * Register a function to be called by all functions in the 7218 * kernel. 7219 * 7220 * Note: @ops->func and all the functions it calls must be labeled 7221 * with "notrace", otherwise it will go into a 7222 * recursive loop. 7223 */ 7224 int register_ftrace_function(struct ftrace_ops *ops) 7225 { 7226 int ret = -1; 7227 7228 ftrace_ops_init(ops); 7229 7230 mutex_lock(&ftrace_lock); 7231 7232 ret = ftrace_startup(ops, 0); 7233 7234 mutex_unlock(&ftrace_lock); 7235 7236 return ret; 7237 } 7238 EXPORT_SYMBOL_GPL(register_ftrace_function); 7239 7240 /** 7241 * unregister_ftrace_function - unregister a function for profiling. 7242 * @ops - ops structure that holds the function to unregister 7243 * 7244 * Unregister a function that was added to be called by ftrace profiling. 7245 */ 7246 int unregister_ftrace_function(struct ftrace_ops *ops) 7247 { 7248 int ret; 7249 7250 mutex_lock(&ftrace_lock); 7251 ret = ftrace_shutdown(ops, 0); 7252 mutex_unlock(&ftrace_lock); 7253 7254 return ret; 7255 } 7256 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7257 7258 static bool is_permanent_ops_registered(void) 7259 { 7260 struct ftrace_ops *op; 7261 7262 do_for_each_ftrace_op(op, ftrace_ops_list) { 7263 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7264 return true; 7265 } while_for_each_ftrace_op(op); 7266 7267 return false; 7268 } 7269 7270 int 7271 ftrace_enable_sysctl(struct ctl_table *table, int write, 7272 void __user *buffer, size_t *lenp, 7273 loff_t *ppos) 7274 { 7275 int ret = -ENODEV; 7276 7277 mutex_lock(&ftrace_lock); 7278 7279 if (unlikely(ftrace_disabled)) 7280 goto out; 7281 7282 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7283 7284 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7285 goto out; 7286 7287 if (ftrace_enabled) { 7288 7289 /* we are starting ftrace again */ 7290 if (rcu_dereference_protected(ftrace_ops_list, 7291 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7292 update_ftrace_function(); 7293 7294 ftrace_startup_sysctl(); 7295 7296 } else { 7297 if (is_permanent_ops_registered()) { 7298 ftrace_enabled = true; 7299 ret = -EBUSY; 7300 goto out; 7301 } 7302 7303 /* stopping ftrace calls (just send to ftrace_stub) */ 7304 ftrace_trace_function = ftrace_stub; 7305 7306 ftrace_shutdown_sysctl(); 7307 } 7308 7309 last_ftrace_enabled = !!ftrace_enabled; 7310 out: 7311 mutex_unlock(&ftrace_lock); 7312 return ret; 7313 } 7314