xref: /openbmc/linux/kernel/trace/ftrace.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct pt_regs *regs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 #define FTRACE_PID_IGNORE	-1
143 #define FTRACE_PID_TRACE	-2
144 
145 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
146 			    struct ftrace_ops *op, struct pt_regs *regs)
147 {
148 	struct trace_array *tr = op->private;
149 	int pid;
150 
151 	if (tr) {
152 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
153 		if (pid == FTRACE_PID_IGNORE)
154 			return;
155 		if (pid != FTRACE_PID_TRACE &&
156 		    pid != current->pid)
157 			return;
158 	}
159 
160 	op->saved_func(ip, parent_ip, op, regs);
161 }
162 
163 static void ftrace_sync_ipi(void *data)
164 {
165 	/* Probably not needed, but do it anyway */
166 	smp_rmb();
167 }
168 
169 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
170 {
171 	/*
172 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
173 	 * then it needs to call the list anyway.
174 	 */
175 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
176 	    FTRACE_FORCE_LIST_FUNC)
177 		return ftrace_ops_list_func;
178 
179 	return ftrace_ops_get_func(ops);
180 }
181 
182 static void update_ftrace_function(void)
183 {
184 	ftrace_func_t func;
185 
186 	/*
187 	 * Prepare the ftrace_ops that the arch callback will use.
188 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
189 	 * will point to the ops we want.
190 	 */
191 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
192 						lockdep_is_held(&ftrace_lock));
193 
194 	/* If there's no ftrace_ops registered, just call the stub function */
195 	if (set_function_trace_op == &ftrace_list_end) {
196 		func = ftrace_stub;
197 
198 	/*
199 	 * If we are at the end of the list and this ops is
200 	 * recursion safe and not dynamic and the arch supports passing ops,
201 	 * then have the mcount trampoline call the function directly.
202 	 */
203 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
204 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
205 		func = ftrace_ops_get_list_func(ftrace_ops_list);
206 
207 	} else {
208 		/* Just use the default ftrace_ops */
209 		set_function_trace_op = &ftrace_list_end;
210 		func = ftrace_ops_list_func;
211 	}
212 
213 	update_function_graph_func();
214 
215 	/* If there's no change, then do nothing more here */
216 	if (ftrace_trace_function == func)
217 		return;
218 
219 	/*
220 	 * If we are using the list function, it doesn't care
221 	 * about the function_trace_ops.
222 	 */
223 	if (func == ftrace_ops_list_func) {
224 		ftrace_trace_function = func;
225 		/*
226 		 * Don't even bother setting function_trace_ops,
227 		 * it would be racy to do so anyway.
228 		 */
229 		return;
230 	}
231 
232 #ifndef CONFIG_DYNAMIC_FTRACE
233 	/*
234 	 * For static tracing, we need to be a bit more careful.
235 	 * The function change takes affect immediately. Thus,
236 	 * we need to coorditate the setting of the function_trace_ops
237 	 * with the setting of the ftrace_trace_function.
238 	 *
239 	 * Set the function to the list ops, which will call the
240 	 * function we want, albeit indirectly, but it handles the
241 	 * ftrace_ops and doesn't depend on function_trace_op.
242 	 */
243 	ftrace_trace_function = ftrace_ops_list_func;
244 	/*
245 	 * Make sure all CPUs see this. Yes this is slow, but static
246 	 * tracing is slow and nasty to have enabled.
247 	 */
248 	synchronize_rcu_tasks_rude();
249 	/* Now all cpus are using the list ops. */
250 	function_trace_op = set_function_trace_op;
251 	/* Make sure the function_trace_op is visible on all CPUs */
252 	smp_wmb();
253 	/* Nasty way to force a rmb on all cpus */
254 	smp_call_function(ftrace_sync_ipi, NULL, 1);
255 	/* OK, we are all set to update the ftrace_trace_function now! */
256 #endif /* !CONFIG_DYNAMIC_FTRACE */
257 
258 	ftrace_trace_function = func;
259 }
260 
261 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
262 			   struct ftrace_ops *ops)
263 {
264 	rcu_assign_pointer(ops->next, *list);
265 
266 	/*
267 	 * We are entering ops into the list but another
268 	 * CPU might be walking that list. We need to make sure
269 	 * the ops->next pointer is valid before another CPU sees
270 	 * the ops pointer included into the list.
271 	 */
272 	rcu_assign_pointer(*list, ops);
273 }
274 
275 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
276 			     struct ftrace_ops *ops)
277 {
278 	struct ftrace_ops **p;
279 
280 	/*
281 	 * If we are removing the last function, then simply point
282 	 * to the ftrace_stub.
283 	 */
284 	if (rcu_dereference_protected(*list,
285 			lockdep_is_held(&ftrace_lock)) == ops &&
286 	    rcu_dereference_protected(ops->next,
287 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
288 		*list = &ftrace_list_end;
289 		return 0;
290 	}
291 
292 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
293 		if (*p == ops)
294 			break;
295 
296 	if (*p != ops)
297 		return -1;
298 
299 	*p = (*p)->next;
300 	return 0;
301 }
302 
303 static void ftrace_update_trampoline(struct ftrace_ops *ops);
304 
305 int __register_ftrace_function(struct ftrace_ops *ops)
306 {
307 	if (ops->flags & FTRACE_OPS_FL_DELETED)
308 		return -EINVAL;
309 
310 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
311 		return -EBUSY;
312 
313 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
314 	/*
315 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
316 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
317 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
318 	 */
319 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
320 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
321 		return -EINVAL;
322 
323 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
324 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
325 #endif
326 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
327 		return -EBUSY;
328 
329 	if (!core_kernel_data((unsigned long)ops))
330 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
331 
332 	add_ftrace_ops(&ftrace_ops_list, ops);
333 
334 	/* Always save the function, and reset at unregistering */
335 	ops->saved_func = ops->func;
336 
337 	if (ftrace_pids_enabled(ops))
338 		ops->func = ftrace_pid_func;
339 
340 	ftrace_update_trampoline(ops);
341 
342 	if (ftrace_enabled)
343 		update_ftrace_function();
344 
345 	return 0;
346 }
347 
348 int __unregister_ftrace_function(struct ftrace_ops *ops)
349 {
350 	int ret;
351 
352 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
353 		return -EBUSY;
354 
355 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
356 
357 	if (ret < 0)
358 		return ret;
359 
360 	if (ftrace_enabled)
361 		update_ftrace_function();
362 
363 	ops->func = ops->saved_func;
364 
365 	return 0;
366 }
367 
368 static void ftrace_update_pid_func(void)
369 {
370 	struct ftrace_ops *op;
371 
372 	/* Only do something if we are tracing something */
373 	if (ftrace_trace_function == ftrace_stub)
374 		return;
375 
376 	do_for_each_ftrace_op(op, ftrace_ops_list) {
377 		if (op->flags & FTRACE_OPS_FL_PID) {
378 			op->func = ftrace_pids_enabled(op) ?
379 				ftrace_pid_func : op->saved_func;
380 			ftrace_update_trampoline(op);
381 		}
382 	} while_for_each_ftrace_op(op);
383 
384 	update_ftrace_function();
385 }
386 
387 #ifdef CONFIG_FUNCTION_PROFILER
388 struct ftrace_profile {
389 	struct hlist_node		node;
390 	unsigned long			ip;
391 	unsigned long			counter;
392 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
393 	unsigned long long		time;
394 	unsigned long long		time_squared;
395 #endif
396 };
397 
398 struct ftrace_profile_page {
399 	struct ftrace_profile_page	*next;
400 	unsigned long			index;
401 	struct ftrace_profile		records[];
402 };
403 
404 struct ftrace_profile_stat {
405 	atomic_t			disabled;
406 	struct hlist_head		*hash;
407 	struct ftrace_profile_page	*pages;
408 	struct ftrace_profile_page	*start;
409 	struct tracer_stat		stat;
410 };
411 
412 #define PROFILE_RECORDS_SIZE						\
413 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
414 
415 #define PROFILES_PER_PAGE					\
416 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
417 
418 static int ftrace_profile_enabled __read_mostly;
419 
420 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
421 static DEFINE_MUTEX(ftrace_profile_lock);
422 
423 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
424 
425 #define FTRACE_PROFILE_HASH_BITS 10
426 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
427 
428 static void *
429 function_stat_next(void *v, int idx)
430 {
431 	struct ftrace_profile *rec = v;
432 	struct ftrace_profile_page *pg;
433 
434 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
435 
436  again:
437 	if (idx != 0)
438 		rec++;
439 
440 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
441 		pg = pg->next;
442 		if (!pg)
443 			return NULL;
444 		rec = &pg->records[0];
445 		if (!rec->counter)
446 			goto again;
447 	}
448 
449 	return rec;
450 }
451 
452 static void *function_stat_start(struct tracer_stat *trace)
453 {
454 	struct ftrace_profile_stat *stat =
455 		container_of(trace, struct ftrace_profile_stat, stat);
456 
457 	if (!stat || !stat->start)
458 		return NULL;
459 
460 	return function_stat_next(&stat->start->records[0], 0);
461 }
462 
463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
464 /* function graph compares on total time */
465 static int function_stat_cmp(const void *p1, const void *p2)
466 {
467 	const struct ftrace_profile *a = p1;
468 	const struct ftrace_profile *b = p2;
469 
470 	if (a->time < b->time)
471 		return -1;
472 	if (a->time > b->time)
473 		return 1;
474 	else
475 		return 0;
476 }
477 #else
478 /* not function graph compares against hits */
479 static int function_stat_cmp(const void *p1, const void *p2)
480 {
481 	const struct ftrace_profile *a = p1;
482 	const struct ftrace_profile *b = p2;
483 
484 	if (a->counter < b->counter)
485 		return -1;
486 	if (a->counter > b->counter)
487 		return 1;
488 	else
489 		return 0;
490 }
491 #endif
492 
493 static int function_stat_headers(struct seq_file *m)
494 {
495 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
496 	seq_puts(m, "  Function                               "
497 		 "Hit    Time            Avg             s^2\n"
498 		    "  --------                               "
499 		 "---    ----            ---             ---\n");
500 #else
501 	seq_puts(m, "  Function                               Hit\n"
502 		    "  --------                               ---\n");
503 #endif
504 	return 0;
505 }
506 
507 static int function_stat_show(struct seq_file *m, void *v)
508 {
509 	struct ftrace_profile *rec = v;
510 	char str[KSYM_SYMBOL_LEN];
511 	int ret = 0;
512 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
513 	static struct trace_seq s;
514 	unsigned long long avg;
515 	unsigned long long stddev;
516 #endif
517 	mutex_lock(&ftrace_profile_lock);
518 
519 	/* we raced with function_profile_reset() */
520 	if (unlikely(rec->counter == 0)) {
521 		ret = -EBUSY;
522 		goto out;
523 	}
524 
525 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
526 	avg = div64_ul(rec->time, rec->counter);
527 	if (tracing_thresh && (avg < tracing_thresh))
528 		goto out;
529 #endif
530 
531 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
532 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
533 
534 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
535 	seq_puts(m, "    ");
536 
537 	/* Sample standard deviation (s^2) */
538 	if (rec->counter <= 1)
539 		stddev = 0;
540 	else {
541 		/*
542 		 * Apply Welford's method:
543 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
544 		 */
545 		stddev = rec->counter * rec->time_squared -
546 			 rec->time * rec->time;
547 
548 		/*
549 		 * Divide only 1000 for ns^2 -> us^2 conversion.
550 		 * trace_print_graph_duration will divide 1000 again.
551 		 */
552 		stddev = div64_ul(stddev,
553 				  rec->counter * (rec->counter - 1) * 1000);
554 	}
555 
556 	trace_seq_init(&s);
557 	trace_print_graph_duration(rec->time, &s);
558 	trace_seq_puts(&s, "    ");
559 	trace_print_graph_duration(avg, &s);
560 	trace_seq_puts(&s, "    ");
561 	trace_print_graph_duration(stddev, &s);
562 	trace_print_seq(m, &s);
563 #endif
564 	seq_putc(m, '\n');
565 out:
566 	mutex_unlock(&ftrace_profile_lock);
567 
568 	return ret;
569 }
570 
571 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
572 {
573 	struct ftrace_profile_page *pg;
574 
575 	pg = stat->pages = stat->start;
576 
577 	while (pg) {
578 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
579 		pg->index = 0;
580 		pg = pg->next;
581 	}
582 
583 	memset(stat->hash, 0,
584 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
585 }
586 
587 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
588 {
589 	struct ftrace_profile_page *pg;
590 	int functions;
591 	int pages;
592 	int i;
593 
594 	/* If we already allocated, do nothing */
595 	if (stat->pages)
596 		return 0;
597 
598 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
599 	if (!stat->pages)
600 		return -ENOMEM;
601 
602 #ifdef CONFIG_DYNAMIC_FTRACE
603 	functions = ftrace_update_tot_cnt;
604 #else
605 	/*
606 	 * We do not know the number of functions that exist because
607 	 * dynamic tracing is what counts them. With past experience
608 	 * we have around 20K functions. That should be more than enough.
609 	 * It is highly unlikely we will execute every function in
610 	 * the kernel.
611 	 */
612 	functions = 20000;
613 #endif
614 
615 	pg = stat->start = stat->pages;
616 
617 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
618 
619 	for (i = 1; i < pages; i++) {
620 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
621 		if (!pg->next)
622 			goto out_free;
623 		pg = pg->next;
624 	}
625 
626 	return 0;
627 
628  out_free:
629 	pg = stat->start;
630 	while (pg) {
631 		unsigned long tmp = (unsigned long)pg;
632 
633 		pg = pg->next;
634 		free_page(tmp);
635 	}
636 
637 	stat->pages = NULL;
638 	stat->start = NULL;
639 
640 	return -ENOMEM;
641 }
642 
643 static int ftrace_profile_init_cpu(int cpu)
644 {
645 	struct ftrace_profile_stat *stat;
646 	int size;
647 
648 	stat = &per_cpu(ftrace_profile_stats, cpu);
649 
650 	if (stat->hash) {
651 		/* If the profile is already created, simply reset it */
652 		ftrace_profile_reset(stat);
653 		return 0;
654 	}
655 
656 	/*
657 	 * We are profiling all functions, but usually only a few thousand
658 	 * functions are hit. We'll make a hash of 1024 items.
659 	 */
660 	size = FTRACE_PROFILE_HASH_SIZE;
661 
662 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
663 
664 	if (!stat->hash)
665 		return -ENOMEM;
666 
667 	/* Preallocate the function profiling pages */
668 	if (ftrace_profile_pages_init(stat) < 0) {
669 		kfree(stat->hash);
670 		stat->hash = NULL;
671 		return -ENOMEM;
672 	}
673 
674 	return 0;
675 }
676 
677 static int ftrace_profile_init(void)
678 {
679 	int cpu;
680 	int ret = 0;
681 
682 	for_each_possible_cpu(cpu) {
683 		ret = ftrace_profile_init_cpu(cpu);
684 		if (ret)
685 			break;
686 	}
687 
688 	return ret;
689 }
690 
691 /* interrupts must be disabled */
692 static struct ftrace_profile *
693 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
694 {
695 	struct ftrace_profile *rec;
696 	struct hlist_head *hhd;
697 	unsigned long key;
698 
699 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
700 	hhd = &stat->hash[key];
701 
702 	if (hlist_empty(hhd))
703 		return NULL;
704 
705 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
706 		if (rec->ip == ip)
707 			return rec;
708 	}
709 
710 	return NULL;
711 }
712 
713 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
714 			       struct ftrace_profile *rec)
715 {
716 	unsigned long key;
717 
718 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
719 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
720 }
721 
722 /*
723  * The memory is already allocated, this simply finds a new record to use.
724  */
725 static struct ftrace_profile *
726 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
727 {
728 	struct ftrace_profile *rec = NULL;
729 
730 	/* prevent recursion (from NMIs) */
731 	if (atomic_inc_return(&stat->disabled) != 1)
732 		goto out;
733 
734 	/*
735 	 * Try to find the function again since an NMI
736 	 * could have added it
737 	 */
738 	rec = ftrace_find_profiled_func(stat, ip);
739 	if (rec)
740 		goto out;
741 
742 	if (stat->pages->index == PROFILES_PER_PAGE) {
743 		if (!stat->pages->next)
744 			goto out;
745 		stat->pages = stat->pages->next;
746 	}
747 
748 	rec = &stat->pages->records[stat->pages->index++];
749 	rec->ip = ip;
750 	ftrace_add_profile(stat, rec);
751 
752  out:
753 	atomic_dec(&stat->disabled);
754 
755 	return rec;
756 }
757 
758 static void
759 function_profile_call(unsigned long ip, unsigned long parent_ip,
760 		      struct ftrace_ops *ops, struct pt_regs *regs)
761 {
762 	struct ftrace_profile_stat *stat;
763 	struct ftrace_profile *rec;
764 	unsigned long flags;
765 
766 	if (!ftrace_profile_enabled)
767 		return;
768 
769 	local_irq_save(flags);
770 
771 	stat = this_cpu_ptr(&ftrace_profile_stats);
772 	if (!stat->hash || !ftrace_profile_enabled)
773 		goto out;
774 
775 	rec = ftrace_find_profiled_func(stat, ip);
776 	if (!rec) {
777 		rec = ftrace_profile_alloc(stat, ip);
778 		if (!rec)
779 			goto out;
780 	}
781 
782 	rec->counter++;
783  out:
784 	local_irq_restore(flags);
785 }
786 
787 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
788 static bool fgraph_graph_time = true;
789 
790 void ftrace_graph_graph_time_control(bool enable)
791 {
792 	fgraph_graph_time = enable;
793 }
794 
795 static int profile_graph_entry(struct ftrace_graph_ent *trace)
796 {
797 	struct ftrace_ret_stack *ret_stack;
798 
799 	function_profile_call(trace->func, 0, NULL, NULL);
800 
801 	/* If function graph is shutting down, ret_stack can be NULL */
802 	if (!current->ret_stack)
803 		return 0;
804 
805 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
806 	if (ret_stack)
807 		ret_stack->subtime = 0;
808 
809 	return 1;
810 }
811 
812 static void profile_graph_return(struct ftrace_graph_ret *trace)
813 {
814 	struct ftrace_ret_stack *ret_stack;
815 	struct ftrace_profile_stat *stat;
816 	unsigned long long calltime;
817 	struct ftrace_profile *rec;
818 	unsigned long flags;
819 
820 	local_irq_save(flags);
821 	stat = this_cpu_ptr(&ftrace_profile_stats);
822 	if (!stat->hash || !ftrace_profile_enabled)
823 		goto out;
824 
825 	/* If the calltime was zero'd ignore it */
826 	if (!trace->calltime)
827 		goto out;
828 
829 	calltime = trace->rettime - trace->calltime;
830 
831 	if (!fgraph_graph_time) {
832 
833 		/* Append this call time to the parent time to subtract */
834 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
835 		if (ret_stack)
836 			ret_stack->subtime += calltime;
837 
838 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
839 		if (ret_stack && ret_stack->subtime < calltime)
840 			calltime -= ret_stack->subtime;
841 		else
842 			calltime = 0;
843 	}
844 
845 	rec = ftrace_find_profiled_func(stat, trace->func);
846 	if (rec) {
847 		rec->time += calltime;
848 		rec->time_squared += calltime * calltime;
849 	}
850 
851  out:
852 	local_irq_restore(flags);
853 }
854 
855 static struct fgraph_ops fprofiler_ops = {
856 	.entryfunc = &profile_graph_entry,
857 	.retfunc = &profile_graph_return,
858 };
859 
860 static int register_ftrace_profiler(void)
861 {
862 	return register_ftrace_graph(&fprofiler_ops);
863 }
864 
865 static void unregister_ftrace_profiler(void)
866 {
867 	unregister_ftrace_graph(&fprofiler_ops);
868 }
869 #else
870 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
871 	.func		= function_profile_call,
872 	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
873 	INIT_OPS_HASH(ftrace_profile_ops)
874 };
875 
876 static int register_ftrace_profiler(void)
877 {
878 	return register_ftrace_function(&ftrace_profile_ops);
879 }
880 
881 static void unregister_ftrace_profiler(void)
882 {
883 	unregister_ftrace_function(&ftrace_profile_ops);
884 }
885 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
886 
887 static ssize_t
888 ftrace_profile_write(struct file *filp, const char __user *ubuf,
889 		     size_t cnt, loff_t *ppos)
890 {
891 	unsigned long val;
892 	int ret;
893 
894 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
895 	if (ret)
896 		return ret;
897 
898 	val = !!val;
899 
900 	mutex_lock(&ftrace_profile_lock);
901 	if (ftrace_profile_enabled ^ val) {
902 		if (val) {
903 			ret = ftrace_profile_init();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 
909 			ret = register_ftrace_profiler();
910 			if (ret < 0) {
911 				cnt = ret;
912 				goto out;
913 			}
914 			ftrace_profile_enabled = 1;
915 		} else {
916 			ftrace_profile_enabled = 0;
917 			/*
918 			 * unregister_ftrace_profiler calls stop_machine
919 			 * so this acts like an synchronize_rcu.
920 			 */
921 			unregister_ftrace_profiler();
922 		}
923 	}
924  out:
925 	mutex_unlock(&ftrace_profile_lock);
926 
927 	*ppos += cnt;
928 
929 	return cnt;
930 }
931 
932 static ssize_t
933 ftrace_profile_read(struct file *filp, char __user *ubuf,
934 		     size_t cnt, loff_t *ppos)
935 {
936 	char buf[64];		/* big enough to hold a number */
937 	int r;
938 
939 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
940 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
941 }
942 
943 static const struct file_operations ftrace_profile_fops = {
944 	.open		= tracing_open_generic,
945 	.read		= ftrace_profile_read,
946 	.write		= ftrace_profile_write,
947 	.llseek		= default_llseek,
948 };
949 
950 /* used to initialize the real stat files */
951 static struct tracer_stat function_stats __initdata = {
952 	.name		= "functions",
953 	.stat_start	= function_stat_start,
954 	.stat_next	= function_stat_next,
955 	.stat_cmp	= function_stat_cmp,
956 	.stat_headers	= function_stat_headers,
957 	.stat_show	= function_stat_show
958 };
959 
960 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
961 {
962 	struct ftrace_profile_stat *stat;
963 	struct dentry *entry;
964 	char *name;
965 	int ret;
966 	int cpu;
967 
968 	for_each_possible_cpu(cpu) {
969 		stat = &per_cpu(ftrace_profile_stats, cpu);
970 
971 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
972 		if (!name) {
973 			/*
974 			 * The files created are permanent, if something happens
975 			 * we still do not free memory.
976 			 */
977 			WARN(1,
978 			     "Could not allocate stat file for cpu %d\n",
979 			     cpu);
980 			return;
981 		}
982 		stat->stat = function_stats;
983 		stat->stat.name = name;
984 		ret = register_stat_tracer(&stat->stat);
985 		if (ret) {
986 			WARN(1,
987 			     "Could not register function stat for cpu %d\n",
988 			     cpu);
989 			kfree(name);
990 			return;
991 		}
992 	}
993 
994 	entry = tracefs_create_file("function_profile_enabled", 0644,
995 				    d_tracer, NULL, &ftrace_profile_fops);
996 	if (!entry)
997 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
998 }
999 
1000 #else /* CONFIG_FUNCTION_PROFILER */
1001 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1002 {
1003 }
1004 #endif /* CONFIG_FUNCTION_PROFILER */
1005 
1006 #ifdef CONFIG_DYNAMIC_FTRACE
1007 
1008 static struct ftrace_ops *removed_ops;
1009 
1010 /*
1011  * Set when doing a global update, like enabling all recs or disabling them.
1012  * It is not set when just updating a single ftrace_ops.
1013  */
1014 static bool update_all_ops;
1015 
1016 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1017 # error Dynamic ftrace depends on MCOUNT_RECORD
1018 #endif
1019 
1020 struct ftrace_func_probe {
1021 	struct ftrace_probe_ops	*probe_ops;
1022 	struct ftrace_ops	ops;
1023 	struct trace_array	*tr;
1024 	struct list_head	list;
1025 	void			*data;
1026 	int			ref;
1027 };
1028 
1029 /*
1030  * We make these constant because no one should touch them,
1031  * but they are used as the default "empty hash", to avoid allocating
1032  * it all the time. These are in a read only section such that if
1033  * anyone does try to modify it, it will cause an exception.
1034  */
1035 static const struct hlist_head empty_buckets[1];
1036 static const struct ftrace_hash empty_hash = {
1037 	.buckets = (struct hlist_head *)empty_buckets,
1038 };
1039 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1040 
1041 struct ftrace_ops global_ops = {
1042 	.func				= ftrace_stub,
1043 	.local_hash.notrace_hash	= EMPTY_HASH,
1044 	.local_hash.filter_hash		= EMPTY_HASH,
1045 	INIT_OPS_HASH(global_ops)
1046 	.flags				= FTRACE_OPS_FL_RECURSION_SAFE |
1047 					  FTRACE_OPS_FL_INITIALIZED |
1048 					  FTRACE_OPS_FL_PID,
1049 };
1050 
1051 /*
1052  * Used by the stack undwinder to know about dynamic ftrace trampolines.
1053  */
1054 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1055 {
1056 	struct ftrace_ops *op = NULL;
1057 
1058 	/*
1059 	 * Some of the ops may be dynamically allocated,
1060 	 * they are freed after a synchronize_rcu().
1061 	 */
1062 	preempt_disable_notrace();
1063 
1064 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1065 		/*
1066 		 * This is to check for dynamically allocated trampolines.
1067 		 * Trampolines that are in kernel text will have
1068 		 * core_kernel_text() return true.
1069 		 */
1070 		if (op->trampoline && op->trampoline_size)
1071 			if (addr >= op->trampoline &&
1072 			    addr < op->trampoline + op->trampoline_size) {
1073 				preempt_enable_notrace();
1074 				return op;
1075 			}
1076 	} while_for_each_ftrace_op(op);
1077 	preempt_enable_notrace();
1078 
1079 	return NULL;
1080 }
1081 
1082 /*
1083  * This is used by __kernel_text_address() to return true if the
1084  * address is on a dynamically allocated trampoline that would
1085  * not return true for either core_kernel_text() or
1086  * is_module_text_address().
1087  */
1088 bool is_ftrace_trampoline(unsigned long addr)
1089 {
1090 	return ftrace_ops_trampoline(addr) != NULL;
1091 }
1092 
1093 struct ftrace_page {
1094 	struct ftrace_page	*next;
1095 	struct dyn_ftrace	*records;
1096 	int			index;
1097 	int			size;
1098 };
1099 
1100 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1101 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1102 
1103 static struct ftrace_page	*ftrace_pages_start;
1104 static struct ftrace_page	*ftrace_pages;
1105 
1106 static __always_inline unsigned long
1107 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1108 {
1109 	if (hash->size_bits > 0)
1110 		return hash_long(ip, hash->size_bits);
1111 
1112 	return 0;
1113 }
1114 
1115 /* Only use this function if ftrace_hash_empty() has already been tested */
1116 static __always_inline struct ftrace_func_entry *
1117 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1118 {
1119 	unsigned long key;
1120 	struct ftrace_func_entry *entry;
1121 	struct hlist_head *hhd;
1122 
1123 	key = ftrace_hash_key(hash, ip);
1124 	hhd = &hash->buckets[key];
1125 
1126 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1127 		if (entry->ip == ip)
1128 			return entry;
1129 	}
1130 	return NULL;
1131 }
1132 
1133 /**
1134  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1135  * @hash: The hash to look at
1136  * @ip: The instruction pointer to test
1137  *
1138  * Search a given @hash to see if a given instruction pointer (@ip)
1139  * exists in it.
1140  *
1141  * Returns the entry that holds the @ip if found. NULL otherwise.
1142  */
1143 struct ftrace_func_entry *
1144 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1145 {
1146 	if (ftrace_hash_empty(hash))
1147 		return NULL;
1148 
1149 	return __ftrace_lookup_ip(hash, ip);
1150 }
1151 
1152 static void __add_hash_entry(struct ftrace_hash *hash,
1153 			     struct ftrace_func_entry *entry)
1154 {
1155 	struct hlist_head *hhd;
1156 	unsigned long key;
1157 
1158 	key = ftrace_hash_key(hash, entry->ip);
1159 	hhd = &hash->buckets[key];
1160 	hlist_add_head(&entry->hlist, hhd);
1161 	hash->count++;
1162 }
1163 
1164 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1165 {
1166 	struct ftrace_func_entry *entry;
1167 
1168 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1169 	if (!entry)
1170 		return -ENOMEM;
1171 
1172 	entry->ip = ip;
1173 	__add_hash_entry(hash, entry);
1174 
1175 	return 0;
1176 }
1177 
1178 static void
1179 free_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del(&entry->hlist);
1183 	kfree(entry);
1184 	hash->count--;
1185 }
1186 
1187 static void
1188 remove_hash_entry(struct ftrace_hash *hash,
1189 		  struct ftrace_func_entry *entry)
1190 {
1191 	hlist_del_rcu(&entry->hlist);
1192 	hash->count--;
1193 }
1194 
1195 static void ftrace_hash_clear(struct ftrace_hash *hash)
1196 {
1197 	struct hlist_head *hhd;
1198 	struct hlist_node *tn;
1199 	struct ftrace_func_entry *entry;
1200 	int size = 1 << hash->size_bits;
1201 	int i;
1202 
1203 	if (!hash->count)
1204 		return;
1205 
1206 	for (i = 0; i < size; i++) {
1207 		hhd = &hash->buckets[i];
1208 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1209 			free_hash_entry(hash, entry);
1210 	}
1211 	FTRACE_WARN_ON(hash->count);
1212 }
1213 
1214 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1215 {
1216 	list_del(&ftrace_mod->list);
1217 	kfree(ftrace_mod->module);
1218 	kfree(ftrace_mod->func);
1219 	kfree(ftrace_mod);
1220 }
1221 
1222 static void clear_ftrace_mod_list(struct list_head *head)
1223 {
1224 	struct ftrace_mod_load *p, *n;
1225 
1226 	/* stack tracer isn't supported yet */
1227 	if (!head)
1228 		return;
1229 
1230 	mutex_lock(&ftrace_lock);
1231 	list_for_each_entry_safe(p, n, head, list)
1232 		free_ftrace_mod(p);
1233 	mutex_unlock(&ftrace_lock);
1234 }
1235 
1236 static void free_ftrace_hash(struct ftrace_hash *hash)
1237 {
1238 	if (!hash || hash == EMPTY_HASH)
1239 		return;
1240 	ftrace_hash_clear(hash);
1241 	kfree(hash->buckets);
1242 	kfree(hash);
1243 }
1244 
1245 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1246 {
1247 	struct ftrace_hash *hash;
1248 
1249 	hash = container_of(rcu, struct ftrace_hash, rcu);
1250 	free_ftrace_hash(hash);
1251 }
1252 
1253 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1254 {
1255 	if (!hash || hash == EMPTY_HASH)
1256 		return;
1257 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1258 }
1259 
1260 void ftrace_free_filter(struct ftrace_ops *ops)
1261 {
1262 	ftrace_ops_init(ops);
1263 	free_ftrace_hash(ops->func_hash->filter_hash);
1264 	free_ftrace_hash(ops->func_hash->notrace_hash);
1265 }
1266 
1267 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1268 {
1269 	struct ftrace_hash *hash;
1270 	int size;
1271 
1272 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1273 	if (!hash)
1274 		return NULL;
1275 
1276 	size = 1 << size_bits;
1277 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1278 
1279 	if (!hash->buckets) {
1280 		kfree(hash);
1281 		return NULL;
1282 	}
1283 
1284 	hash->size_bits = size_bits;
1285 
1286 	return hash;
1287 }
1288 
1289 
1290 static int ftrace_add_mod(struct trace_array *tr,
1291 			  const char *func, const char *module,
1292 			  int enable)
1293 {
1294 	struct ftrace_mod_load *ftrace_mod;
1295 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1296 
1297 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1298 	if (!ftrace_mod)
1299 		return -ENOMEM;
1300 
1301 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1302 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1303 	ftrace_mod->enable = enable;
1304 
1305 	if (!ftrace_mod->func || !ftrace_mod->module)
1306 		goto out_free;
1307 
1308 	list_add(&ftrace_mod->list, mod_head);
1309 
1310 	return 0;
1311 
1312  out_free:
1313 	free_ftrace_mod(ftrace_mod);
1314 
1315 	return -ENOMEM;
1316 }
1317 
1318 static struct ftrace_hash *
1319 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1320 {
1321 	struct ftrace_func_entry *entry;
1322 	struct ftrace_hash *new_hash;
1323 	int size;
1324 	int ret;
1325 	int i;
1326 
1327 	new_hash = alloc_ftrace_hash(size_bits);
1328 	if (!new_hash)
1329 		return NULL;
1330 
1331 	if (hash)
1332 		new_hash->flags = hash->flags;
1333 
1334 	/* Empty hash? */
1335 	if (ftrace_hash_empty(hash))
1336 		return new_hash;
1337 
1338 	size = 1 << hash->size_bits;
1339 	for (i = 0; i < size; i++) {
1340 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1341 			ret = add_hash_entry(new_hash, entry->ip);
1342 			if (ret < 0)
1343 				goto free_hash;
1344 		}
1345 	}
1346 
1347 	FTRACE_WARN_ON(new_hash->count != hash->count);
1348 
1349 	return new_hash;
1350 
1351  free_hash:
1352 	free_ftrace_hash(new_hash);
1353 	return NULL;
1354 }
1355 
1356 static void
1357 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1358 static void
1359 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1360 
1361 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1362 				       struct ftrace_hash *new_hash);
1363 
1364 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1365 {
1366 	struct ftrace_func_entry *entry;
1367 	struct ftrace_hash *new_hash;
1368 	struct hlist_head *hhd;
1369 	struct hlist_node *tn;
1370 	int bits = 0;
1371 	int i;
1372 
1373 	/*
1374 	 * Make the hash size about 1/2 the # found
1375 	 */
1376 	for (size /= 2; size; size >>= 1)
1377 		bits++;
1378 
1379 	/* Don't allocate too much */
1380 	if (bits > FTRACE_HASH_MAX_BITS)
1381 		bits = FTRACE_HASH_MAX_BITS;
1382 
1383 	new_hash = alloc_ftrace_hash(bits);
1384 	if (!new_hash)
1385 		return NULL;
1386 
1387 	new_hash->flags = src->flags;
1388 
1389 	size = 1 << src->size_bits;
1390 	for (i = 0; i < size; i++) {
1391 		hhd = &src->buckets[i];
1392 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1393 			remove_hash_entry(src, entry);
1394 			__add_hash_entry(new_hash, entry);
1395 		}
1396 	}
1397 	return new_hash;
1398 }
1399 
1400 static struct ftrace_hash *
1401 __ftrace_hash_move(struct ftrace_hash *src)
1402 {
1403 	int size = src->count;
1404 
1405 	/*
1406 	 * If the new source is empty, just return the empty_hash.
1407 	 */
1408 	if (ftrace_hash_empty(src))
1409 		return EMPTY_HASH;
1410 
1411 	return dup_hash(src, size);
1412 }
1413 
1414 static int
1415 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1416 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1417 {
1418 	struct ftrace_hash *new_hash;
1419 	int ret;
1420 
1421 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1422 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1423 		return -EINVAL;
1424 
1425 	new_hash = __ftrace_hash_move(src);
1426 	if (!new_hash)
1427 		return -ENOMEM;
1428 
1429 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1430 	if (enable) {
1431 		/* IPMODIFY should be updated only when filter_hash updating */
1432 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1433 		if (ret < 0) {
1434 			free_ftrace_hash(new_hash);
1435 			return ret;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Remove the current set, update the hash and add
1441 	 * them back.
1442 	 */
1443 	ftrace_hash_rec_disable_modify(ops, enable);
1444 
1445 	rcu_assign_pointer(*dst, new_hash);
1446 
1447 	ftrace_hash_rec_enable_modify(ops, enable);
1448 
1449 	return 0;
1450 }
1451 
1452 static bool hash_contains_ip(unsigned long ip,
1453 			     struct ftrace_ops_hash *hash)
1454 {
1455 	/*
1456 	 * The function record is a match if it exists in the filter
1457 	 * hash and not in the notrace hash. Note, an emty hash is
1458 	 * considered a match for the filter hash, but an empty
1459 	 * notrace hash is considered not in the notrace hash.
1460 	 */
1461 	return (ftrace_hash_empty(hash->filter_hash) ||
1462 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1463 		(ftrace_hash_empty(hash->notrace_hash) ||
1464 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1465 }
1466 
1467 /*
1468  * Test the hashes for this ops to see if we want to call
1469  * the ops->func or not.
1470  *
1471  * It's a match if the ip is in the ops->filter_hash or
1472  * the filter_hash does not exist or is empty,
1473  *  AND
1474  * the ip is not in the ops->notrace_hash.
1475  *
1476  * This needs to be called with preemption disabled as
1477  * the hashes are freed with call_rcu().
1478  */
1479 int
1480 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1481 {
1482 	struct ftrace_ops_hash hash;
1483 	int ret;
1484 
1485 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1486 	/*
1487 	 * There's a small race when adding ops that the ftrace handler
1488 	 * that wants regs, may be called without them. We can not
1489 	 * allow that handler to be called if regs is NULL.
1490 	 */
1491 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1492 		return 0;
1493 #endif
1494 
1495 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1496 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1497 
1498 	if (hash_contains_ip(ip, &hash))
1499 		ret = 1;
1500 	else
1501 		ret = 0;
1502 
1503 	return ret;
1504 }
1505 
1506 /*
1507  * This is a double for. Do not use 'break' to break out of the loop,
1508  * you must use a goto.
1509  */
1510 #define do_for_each_ftrace_rec(pg, rec)					\
1511 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1512 		int _____i;						\
1513 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1514 			rec = &pg->records[_____i];
1515 
1516 #define while_for_each_ftrace_rec()		\
1517 		}				\
1518 	}
1519 
1520 
1521 static int ftrace_cmp_recs(const void *a, const void *b)
1522 {
1523 	const struct dyn_ftrace *key = a;
1524 	const struct dyn_ftrace *rec = b;
1525 
1526 	if (key->flags < rec->ip)
1527 		return -1;
1528 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1529 		return 1;
1530 	return 0;
1531 }
1532 
1533 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1534 {
1535 	struct ftrace_page *pg;
1536 	struct dyn_ftrace *rec = NULL;
1537 	struct dyn_ftrace key;
1538 
1539 	key.ip = start;
1540 	key.flags = end;	/* overload flags, as it is unsigned long */
1541 
1542 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1543 		if (end < pg->records[0].ip ||
1544 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1545 			continue;
1546 		rec = bsearch(&key, pg->records, pg->index,
1547 			      sizeof(struct dyn_ftrace),
1548 			      ftrace_cmp_recs);
1549 		if (rec)
1550 			break;
1551 	}
1552 	return rec;
1553 }
1554 
1555 /**
1556  * ftrace_location_range - return the first address of a traced location
1557  *	if it touches the given ip range
1558  * @start: start of range to search.
1559  * @end: end of range to search (inclusive). @end points to the last byte
1560  *	to check.
1561  *
1562  * Returns rec->ip if the related ftrace location is a least partly within
1563  * the given address range. That is, the first address of the instruction
1564  * that is either a NOP or call to the function tracer. It checks the ftrace
1565  * internal tables to determine if the address belongs or not.
1566  */
1567 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1568 {
1569 	struct dyn_ftrace *rec;
1570 
1571 	rec = lookup_rec(start, end);
1572 	if (rec)
1573 		return rec->ip;
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  * ftrace_location - return true if the ip giving is a traced location
1580  * @ip: the instruction pointer to check
1581  *
1582  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1583  * That is, the instruction that is either a NOP or call to
1584  * the function tracer. It checks the ftrace internal tables to
1585  * determine if the address belongs or not.
1586  */
1587 unsigned long ftrace_location(unsigned long ip)
1588 {
1589 	return ftrace_location_range(ip, ip);
1590 }
1591 
1592 /**
1593  * ftrace_text_reserved - return true if range contains an ftrace location
1594  * @start: start of range to search
1595  * @end: end of range to search (inclusive). @end points to the last byte to check.
1596  *
1597  * Returns 1 if @start and @end contains a ftrace location.
1598  * That is, the instruction that is either a NOP or call to
1599  * the function tracer. It checks the ftrace internal tables to
1600  * determine if the address belongs or not.
1601  */
1602 int ftrace_text_reserved(const void *start, const void *end)
1603 {
1604 	unsigned long ret;
1605 
1606 	ret = ftrace_location_range((unsigned long)start,
1607 				    (unsigned long)end);
1608 
1609 	return (int)!!ret;
1610 }
1611 
1612 /* Test if ops registered to this rec needs regs */
1613 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1614 {
1615 	struct ftrace_ops *ops;
1616 	bool keep_regs = false;
1617 
1618 	for (ops = ftrace_ops_list;
1619 	     ops != &ftrace_list_end; ops = ops->next) {
1620 		/* pass rec in as regs to have non-NULL val */
1621 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1622 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1623 				keep_regs = true;
1624 				break;
1625 			}
1626 		}
1627 	}
1628 
1629 	return  keep_regs;
1630 }
1631 
1632 static struct ftrace_ops *
1633 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1634 static struct ftrace_ops *
1635 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1636 
1637 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1638 				     int filter_hash,
1639 				     bool inc)
1640 {
1641 	struct ftrace_hash *hash;
1642 	struct ftrace_hash *other_hash;
1643 	struct ftrace_page *pg;
1644 	struct dyn_ftrace *rec;
1645 	bool update = false;
1646 	int count = 0;
1647 	int all = false;
1648 
1649 	/* Only update if the ops has been registered */
1650 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1651 		return false;
1652 
1653 	/*
1654 	 * In the filter_hash case:
1655 	 *   If the count is zero, we update all records.
1656 	 *   Otherwise we just update the items in the hash.
1657 	 *
1658 	 * In the notrace_hash case:
1659 	 *   We enable the update in the hash.
1660 	 *   As disabling notrace means enabling the tracing,
1661 	 *   and enabling notrace means disabling, the inc variable
1662 	 *   gets inversed.
1663 	 */
1664 	if (filter_hash) {
1665 		hash = ops->func_hash->filter_hash;
1666 		other_hash = ops->func_hash->notrace_hash;
1667 		if (ftrace_hash_empty(hash))
1668 			all = true;
1669 	} else {
1670 		inc = !inc;
1671 		hash = ops->func_hash->notrace_hash;
1672 		other_hash = ops->func_hash->filter_hash;
1673 		/*
1674 		 * If the notrace hash has no items,
1675 		 * then there's nothing to do.
1676 		 */
1677 		if (ftrace_hash_empty(hash))
1678 			return false;
1679 	}
1680 
1681 	do_for_each_ftrace_rec(pg, rec) {
1682 		int in_other_hash = 0;
1683 		int in_hash = 0;
1684 		int match = 0;
1685 
1686 		if (rec->flags & FTRACE_FL_DISABLED)
1687 			continue;
1688 
1689 		if (all) {
1690 			/*
1691 			 * Only the filter_hash affects all records.
1692 			 * Update if the record is not in the notrace hash.
1693 			 */
1694 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1695 				match = 1;
1696 		} else {
1697 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1698 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1699 
1700 			/*
1701 			 * If filter_hash is set, we want to match all functions
1702 			 * that are in the hash but not in the other hash.
1703 			 *
1704 			 * If filter_hash is not set, then we are decrementing.
1705 			 * That means we match anything that is in the hash
1706 			 * and also in the other_hash. That is, we need to turn
1707 			 * off functions in the other hash because they are disabled
1708 			 * by this hash.
1709 			 */
1710 			if (filter_hash && in_hash && !in_other_hash)
1711 				match = 1;
1712 			else if (!filter_hash && in_hash &&
1713 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1714 				match = 1;
1715 		}
1716 		if (!match)
1717 			continue;
1718 
1719 		if (inc) {
1720 			rec->flags++;
1721 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1722 				return false;
1723 
1724 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1725 				rec->flags |= FTRACE_FL_DIRECT;
1726 
1727 			/*
1728 			 * If there's only a single callback registered to a
1729 			 * function, and the ops has a trampoline registered
1730 			 * for it, then we can call it directly.
1731 			 */
1732 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1733 				rec->flags |= FTRACE_FL_TRAMP;
1734 			else
1735 				/*
1736 				 * If we are adding another function callback
1737 				 * to this function, and the previous had a
1738 				 * custom trampoline in use, then we need to go
1739 				 * back to the default trampoline.
1740 				 */
1741 				rec->flags &= ~FTRACE_FL_TRAMP;
1742 
1743 			/*
1744 			 * If any ops wants regs saved for this function
1745 			 * then all ops will get saved regs.
1746 			 */
1747 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1748 				rec->flags |= FTRACE_FL_REGS;
1749 		} else {
1750 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1751 				return false;
1752 			rec->flags--;
1753 
1754 			/*
1755 			 * Only the internal direct_ops should have the
1756 			 * DIRECT flag set. Thus, if it is removing a
1757 			 * function, then that function should no longer
1758 			 * be direct.
1759 			 */
1760 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1761 				rec->flags &= ~FTRACE_FL_DIRECT;
1762 
1763 			/*
1764 			 * If the rec had REGS enabled and the ops that is
1765 			 * being removed had REGS set, then see if there is
1766 			 * still any ops for this record that wants regs.
1767 			 * If not, we can stop recording them.
1768 			 */
1769 			if (ftrace_rec_count(rec) > 0 &&
1770 			    rec->flags & FTRACE_FL_REGS &&
1771 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1772 				if (!test_rec_ops_needs_regs(rec))
1773 					rec->flags &= ~FTRACE_FL_REGS;
1774 			}
1775 
1776 			/*
1777 			 * The TRAMP needs to be set only if rec count
1778 			 * is decremented to one, and the ops that is
1779 			 * left has a trampoline. As TRAMP can only be
1780 			 * enabled if there is only a single ops attached
1781 			 * to it.
1782 			 */
1783 			if (ftrace_rec_count(rec) == 1 &&
1784 			    ftrace_find_tramp_ops_any(rec))
1785 				rec->flags |= FTRACE_FL_TRAMP;
1786 			else
1787 				rec->flags &= ~FTRACE_FL_TRAMP;
1788 
1789 			/*
1790 			 * flags will be cleared in ftrace_check_record()
1791 			 * if rec count is zero.
1792 			 */
1793 		}
1794 		count++;
1795 
1796 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1797 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1798 
1799 		/* Shortcut, if we handled all records, we are done. */
1800 		if (!all && count == hash->count)
1801 			return update;
1802 	} while_for_each_ftrace_rec();
1803 
1804 	return update;
1805 }
1806 
1807 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1808 				    int filter_hash)
1809 {
1810 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1811 }
1812 
1813 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1814 				   int filter_hash)
1815 {
1816 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1817 }
1818 
1819 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1820 					  int filter_hash, int inc)
1821 {
1822 	struct ftrace_ops *op;
1823 
1824 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1825 
1826 	if (ops->func_hash != &global_ops.local_hash)
1827 		return;
1828 
1829 	/*
1830 	 * If the ops shares the global_ops hash, then we need to update
1831 	 * all ops that are enabled and use this hash.
1832 	 */
1833 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1834 		/* Already done */
1835 		if (op == ops)
1836 			continue;
1837 		if (op->func_hash == &global_ops.local_hash)
1838 			__ftrace_hash_rec_update(op, filter_hash, inc);
1839 	} while_for_each_ftrace_op(op);
1840 }
1841 
1842 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1843 					   int filter_hash)
1844 {
1845 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1846 }
1847 
1848 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1849 					  int filter_hash)
1850 {
1851 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1852 }
1853 
1854 /*
1855  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1856  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1857  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1858  * Note that old_hash and new_hash has below meanings
1859  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1860  *  - If the hash is EMPTY_HASH, it hits nothing
1861  *  - Anything else hits the recs which match the hash entries.
1862  */
1863 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1864 					 struct ftrace_hash *old_hash,
1865 					 struct ftrace_hash *new_hash)
1866 {
1867 	struct ftrace_page *pg;
1868 	struct dyn_ftrace *rec, *end = NULL;
1869 	int in_old, in_new;
1870 
1871 	/* Only update if the ops has been registered */
1872 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1873 		return 0;
1874 
1875 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1876 		return 0;
1877 
1878 	/*
1879 	 * Since the IPMODIFY is a very address sensitive action, we do not
1880 	 * allow ftrace_ops to set all functions to new hash.
1881 	 */
1882 	if (!new_hash || !old_hash)
1883 		return -EINVAL;
1884 
1885 	/* Update rec->flags */
1886 	do_for_each_ftrace_rec(pg, rec) {
1887 
1888 		if (rec->flags & FTRACE_FL_DISABLED)
1889 			continue;
1890 
1891 		/* We need to update only differences of filter_hash */
1892 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1893 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1894 		if (in_old == in_new)
1895 			continue;
1896 
1897 		if (in_new) {
1898 			/* New entries must ensure no others are using it */
1899 			if (rec->flags & FTRACE_FL_IPMODIFY)
1900 				goto rollback;
1901 			rec->flags |= FTRACE_FL_IPMODIFY;
1902 		} else /* Removed entry */
1903 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1904 	} while_for_each_ftrace_rec();
1905 
1906 	return 0;
1907 
1908 rollback:
1909 	end = rec;
1910 
1911 	/* Roll back what we did above */
1912 	do_for_each_ftrace_rec(pg, rec) {
1913 
1914 		if (rec->flags & FTRACE_FL_DISABLED)
1915 			continue;
1916 
1917 		if (rec == end)
1918 			goto err_out;
1919 
1920 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1921 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1922 		if (in_old == in_new)
1923 			continue;
1924 
1925 		if (in_new)
1926 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1927 		else
1928 			rec->flags |= FTRACE_FL_IPMODIFY;
1929 	} while_for_each_ftrace_rec();
1930 
1931 err_out:
1932 	return -EBUSY;
1933 }
1934 
1935 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1936 {
1937 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1938 
1939 	if (ftrace_hash_empty(hash))
1940 		hash = NULL;
1941 
1942 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1943 }
1944 
1945 /* Disabling always succeeds */
1946 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1947 {
1948 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1949 
1950 	if (ftrace_hash_empty(hash))
1951 		hash = NULL;
1952 
1953 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1954 }
1955 
1956 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1957 				       struct ftrace_hash *new_hash)
1958 {
1959 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1960 
1961 	if (ftrace_hash_empty(old_hash))
1962 		old_hash = NULL;
1963 
1964 	if (ftrace_hash_empty(new_hash))
1965 		new_hash = NULL;
1966 
1967 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1968 }
1969 
1970 static void print_ip_ins(const char *fmt, const unsigned char *p)
1971 {
1972 	int i;
1973 
1974 	printk(KERN_CONT "%s", fmt);
1975 
1976 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1977 		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1978 }
1979 
1980 enum ftrace_bug_type ftrace_bug_type;
1981 const void *ftrace_expected;
1982 
1983 static void print_bug_type(void)
1984 {
1985 	switch (ftrace_bug_type) {
1986 	case FTRACE_BUG_UNKNOWN:
1987 		break;
1988 	case FTRACE_BUG_INIT:
1989 		pr_info("Initializing ftrace call sites\n");
1990 		break;
1991 	case FTRACE_BUG_NOP:
1992 		pr_info("Setting ftrace call site to NOP\n");
1993 		break;
1994 	case FTRACE_BUG_CALL:
1995 		pr_info("Setting ftrace call site to call ftrace function\n");
1996 		break;
1997 	case FTRACE_BUG_UPDATE:
1998 		pr_info("Updating ftrace call site to call a different ftrace function\n");
1999 		break;
2000 	}
2001 }
2002 
2003 /**
2004  * ftrace_bug - report and shutdown function tracer
2005  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2006  * @rec: The record that failed
2007  *
2008  * The arch code that enables or disables the function tracing
2009  * can call ftrace_bug() when it has detected a problem in
2010  * modifying the code. @failed should be one of either:
2011  * EFAULT - if the problem happens on reading the @ip address
2012  * EINVAL - if what is read at @ip is not what was expected
2013  * EPERM - if the problem happens on writing to the @ip address
2014  */
2015 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2016 {
2017 	unsigned long ip = rec ? rec->ip : 0;
2018 
2019 	pr_info("------------[ ftrace bug ]------------\n");
2020 
2021 	switch (failed) {
2022 	case -EFAULT:
2023 		pr_info("ftrace faulted on modifying ");
2024 		print_ip_sym(KERN_INFO, ip);
2025 		break;
2026 	case -EINVAL:
2027 		pr_info("ftrace failed to modify ");
2028 		print_ip_sym(KERN_INFO, ip);
2029 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2030 		pr_cont("\n");
2031 		if (ftrace_expected) {
2032 			print_ip_ins(" expected: ", ftrace_expected);
2033 			pr_cont("\n");
2034 		}
2035 		break;
2036 	case -EPERM:
2037 		pr_info("ftrace faulted on writing ");
2038 		print_ip_sym(KERN_INFO, ip);
2039 		break;
2040 	default:
2041 		pr_info("ftrace faulted on unknown error ");
2042 		print_ip_sym(KERN_INFO, ip);
2043 	}
2044 	print_bug_type();
2045 	if (rec) {
2046 		struct ftrace_ops *ops = NULL;
2047 
2048 		pr_info("ftrace record flags: %lx\n", rec->flags);
2049 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2050 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2051 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2052 			ops = ftrace_find_tramp_ops_any(rec);
2053 			if (ops) {
2054 				do {
2055 					pr_cont("\ttramp: %pS (%pS)",
2056 						(void *)ops->trampoline,
2057 						(void *)ops->func);
2058 					ops = ftrace_find_tramp_ops_next(rec, ops);
2059 				} while (ops);
2060 			} else
2061 				pr_cont("\ttramp: ERROR!");
2062 
2063 		}
2064 		ip = ftrace_get_addr_curr(rec);
2065 		pr_cont("\n expected tramp: %lx\n", ip);
2066 	}
2067 
2068 	FTRACE_WARN_ON_ONCE(1);
2069 }
2070 
2071 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2072 {
2073 	unsigned long flag = 0UL;
2074 
2075 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2076 
2077 	if (rec->flags & FTRACE_FL_DISABLED)
2078 		return FTRACE_UPDATE_IGNORE;
2079 
2080 	/*
2081 	 * If we are updating calls:
2082 	 *
2083 	 *   If the record has a ref count, then we need to enable it
2084 	 *   because someone is using it.
2085 	 *
2086 	 *   Otherwise we make sure its disabled.
2087 	 *
2088 	 * If we are disabling calls, then disable all records that
2089 	 * are enabled.
2090 	 */
2091 	if (enable && ftrace_rec_count(rec))
2092 		flag = FTRACE_FL_ENABLED;
2093 
2094 	/*
2095 	 * If enabling and the REGS flag does not match the REGS_EN, or
2096 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2097 	 * this record. Set flags to fail the compare against ENABLED.
2098 	 * Same for direct calls.
2099 	 */
2100 	if (flag) {
2101 		if (!(rec->flags & FTRACE_FL_REGS) !=
2102 		    !(rec->flags & FTRACE_FL_REGS_EN))
2103 			flag |= FTRACE_FL_REGS;
2104 
2105 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2106 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2107 			flag |= FTRACE_FL_TRAMP;
2108 
2109 		/*
2110 		 * Direct calls are special, as count matters.
2111 		 * We must test the record for direct, if the
2112 		 * DIRECT and DIRECT_EN do not match, but only
2113 		 * if the count is 1. That's because, if the
2114 		 * count is something other than one, we do not
2115 		 * want the direct enabled (it will be done via the
2116 		 * direct helper). But if DIRECT_EN is set, and
2117 		 * the count is not one, we need to clear it.
2118 		 */
2119 		if (ftrace_rec_count(rec) == 1) {
2120 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2121 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2122 				flag |= FTRACE_FL_DIRECT;
2123 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2124 			flag |= FTRACE_FL_DIRECT;
2125 		}
2126 	}
2127 
2128 	/* If the state of this record hasn't changed, then do nothing */
2129 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2130 		return FTRACE_UPDATE_IGNORE;
2131 
2132 	if (flag) {
2133 		/* Save off if rec is being enabled (for return value) */
2134 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2135 
2136 		if (update) {
2137 			rec->flags |= FTRACE_FL_ENABLED;
2138 			if (flag & FTRACE_FL_REGS) {
2139 				if (rec->flags & FTRACE_FL_REGS)
2140 					rec->flags |= FTRACE_FL_REGS_EN;
2141 				else
2142 					rec->flags &= ~FTRACE_FL_REGS_EN;
2143 			}
2144 			if (flag & FTRACE_FL_TRAMP) {
2145 				if (rec->flags & FTRACE_FL_TRAMP)
2146 					rec->flags |= FTRACE_FL_TRAMP_EN;
2147 				else
2148 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2149 			}
2150 			if (flag & FTRACE_FL_DIRECT) {
2151 				/*
2152 				 * If there's only one user (direct_ops helper)
2153 				 * then we can call the direct function
2154 				 * directly (no ftrace trampoline).
2155 				 */
2156 				if (ftrace_rec_count(rec) == 1) {
2157 					if (rec->flags & FTRACE_FL_DIRECT)
2158 						rec->flags |= FTRACE_FL_DIRECT_EN;
2159 					else
2160 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2161 				} else {
2162 					/*
2163 					 * Can only call directly if there's
2164 					 * only one callback to the function.
2165 					 */
2166 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2167 				}
2168 			}
2169 		}
2170 
2171 		/*
2172 		 * If this record is being updated from a nop, then
2173 		 *   return UPDATE_MAKE_CALL.
2174 		 * Otherwise,
2175 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2176 		 *   from the save regs, to a non-save regs function or
2177 		 *   vice versa, or from a trampoline call.
2178 		 */
2179 		if (flag & FTRACE_FL_ENABLED) {
2180 			ftrace_bug_type = FTRACE_BUG_CALL;
2181 			return FTRACE_UPDATE_MAKE_CALL;
2182 		}
2183 
2184 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2185 		return FTRACE_UPDATE_MODIFY_CALL;
2186 	}
2187 
2188 	if (update) {
2189 		/* If there's no more users, clear all flags */
2190 		if (!ftrace_rec_count(rec))
2191 			rec->flags = 0;
2192 		else
2193 			/*
2194 			 * Just disable the record, but keep the ops TRAMP
2195 			 * and REGS states. The _EN flags must be disabled though.
2196 			 */
2197 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2198 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2199 	}
2200 
2201 	ftrace_bug_type = FTRACE_BUG_NOP;
2202 	return FTRACE_UPDATE_MAKE_NOP;
2203 }
2204 
2205 /**
2206  * ftrace_update_record, set a record that now is tracing or not
2207  * @rec: the record to update
2208  * @enable: set to true if the record is tracing, false to force disable
2209  *
2210  * The records that represent all functions that can be traced need
2211  * to be updated when tracing has been enabled.
2212  */
2213 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2214 {
2215 	return ftrace_check_record(rec, enable, true);
2216 }
2217 
2218 /**
2219  * ftrace_test_record, check if the record has been enabled or not
2220  * @rec: the record to test
2221  * @enable: set to true to check if enabled, false if it is disabled
2222  *
2223  * The arch code may need to test if a record is already set to
2224  * tracing to determine how to modify the function code that it
2225  * represents.
2226  */
2227 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2228 {
2229 	return ftrace_check_record(rec, enable, false);
2230 }
2231 
2232 static struct ftrace_ops *
2233 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2234 {
2235 	struct ftrace_ops *op;
2236 	unsigned long ip = rec->ip;
2237 
2238 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2239 
2240 		if (!op->trampoline)
2241 			continue;
2242 
2243 		if (hash_contains_ip(ip, op->func_hash))
2244 			return op;
2245 	} while_for_each_ftrace_op(op);
2246 
2247 	return NULL;
2248 }
2249 
2250 static struct ftrace_ops *
2251 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2252 			   struct ftrace_ops *op)
2253 {
2254 	unsigned long ip = rec->ip;
2255 
2256 	while_for_each_ftrace_op(op) {
2257 
2258 		if (!op->trampoline)
2259 			continue;
2260 
2261 		if (hash_contains_ip(ip, op->func_hash))
2262 			return op;
2263 	}
2264 
2265 	return NULL;
2266 }
2267 
2268 static struct ftrace_ops *
2269 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2270 {
2271 	struct ftrace_ops *op;
2272 	unsigned long ip = rec->ip;
2273 
2274 	/*
2275 	 * Need to check removed ops first.
2276 	 * If they are being removed, and this rec has a tramp,
2277 	 * and this rec is in the ops list, then it would be the
2278 	 * one with the tramp.
2279 	 */
2280 	if (removed_ops) {
2281 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2282 			return removed_ops;
2283 	}
2284 
2285 	/*
2286 	 * Need to find the current trampoline for a rec.
2287 	 * Now, a trampoline is only attached to a rec if there
2288 	 * was a single 'ops' attached to it. But this can be called
2289 	 * when we are adding another op to the rec or removing the
2290 	 * current one. Thus, if the op is being added, we can
2291 	 * ignore it because it hasn't attached itself to the rec
2292 	 * yet.
2293 	 *
2294 	 * If an ops is being modified (hooking to different functions)
2295 	 * then we don't care about the new functions that are being
2296 	 * added, just the old ones (that are probably being removed).
2297 	 *
2298 	 * If we are adding an ops to a function that already is using
2299 	 * a trampoline, it needs to be removed (trampolines are only
2300 	 * for single ops connected), then an ops that is not being
2301 	 * modified also needs to be checked.
2302 	 */
2303 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2304 
2305 		if (!op->trampoline)
2306 			continue;
2307 
2308 		/*
2309 		 * If the ops is being added, it hasn't gotten to
2310 		 * the point to be removed from this tree yet.
2311 		 */
2312 		if (op->flags & FTRACE_OPS_FL_ADDING)
2313 			continue;
2314 
2315 
2316 		/*
2317 		 * If the ops is being modified and is in the old
2318 		 * hash, then it is probably being removed from this
2319 		 * function.
2320 		 */
2321 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2322 		    hash_contains_ip(ip, &op->old_hash))
2323 			return op;
2324 		/*
2325 		 * If the ops is not being added or modified, and it's
2326 		 * in its normal filter hash, then this must be the one
2327 		 * we want!
2328 		 */
2329 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2330 		    hash_contains_ip(ip, op->func_hash))
2331 			return op;
2332 
2333 	} while_for_each_ftrace_op(op);
2334 
2335 	return NULL;
2336 }
2337 
2338 static struct ftrace_ops *
2339 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2340 {
2341 	struct ftrace_ops *op;
2342 	unsigned long ip = rec->ip;
2343 
2344 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2345 		/* pass rec in as regs to have non-NULL val */
2346 		if (hash_contains_ip(ip, op->func_hash))
2347 			return op;
2348 	} while_for_each_ftrace_op(op);
2349 
2350 	return NULL;
2351 }
2352 
2353 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2354 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2355 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2356 static DEFINE_MUTEX(direct_mutex);
2357 int ftrace_direct_func_count;
2358 
2359 /*
2360  * Search the direct_functions hash to see if the given instruction pointer
2361  * has a direct caller attached to it.
2362  */
2363 unsigned long ftrace_find_rec_direct(unsigned long ip)
2364 {
2365 	struct ftrace_func_entry *entry;
2366 
2367 	entry = __ftrace_lookup_ip(direct_functions, ip);
2368 	if (!entry)
2369 		return 0;
2370 
2371 	return entry->direct;
2372 }
2373 
2374 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2375 			      struct ftrace_ops *ops, struct pt_regs *regs)
2376 {
2377 	unsigned long addr;
2378 
2379 	addr = ftrace_find_rec_direct(ip);
2380 	if (!addr)
2381 		return;
2382 
2383 	arch_ftrace_set_direct_caller(regs, addr);
2384 }
2385 
2386 struct ftrace_ops direct_ops = {
2387 	.func		= call_direct_funcs,
2388 	.flags		= FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE
2389 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2390 			  | FTRACE_OPS_FL_PERMANENT,
2391 };
2392 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2393 
2394 /**
2395  * ftrace_get_addr_new - Get the call address to set to
2396  * @rec:  The ftrace record descriptor
2397  *
2398  * If the record has the FTRACE_FL_REGS set, that means that it
2399  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2400  * is not not set, then it wants to convert to the normal callback.
2401  *
2402  * Returns the address of the trampoline to set to
2403  */
2404 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2405 {
2406 	struct ftrace_ops *ops;
2407 	unsigned long addr;
2408 
2409 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2410 	    (ftrace_rec_count(rec) == 1)) {
2411 		addr = ftrace_find_rec_direct(rec->ip);
2412 		if (addr)
2413 			return addr;
2414 		WARN_ON_ONCE(1);
2415 	}
2416 
2417 	/* Trampolines take precedence over regs */
2418 	if (rec->flags & FTRACE_FL_TRAMP) {
2419 		ops = ftrace_find_tramp_ops_new(rec);
2420 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2421 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2422 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2423 			/* Ftrace is shutting down, return anything */
2424 			return (unsigned long)FTRACE_ADDR;
2425 		}
2426 		return ops->trampoline;
2427 	}
2428 
2429 	if (rec->flags & FTRACE_FL_REGS)
2430 		return (unsigned long)FTRACE_REGS_ADDR;
2431 	else
2432 		return (unsigned long)FTRACE_ADDR;
2433 }
2434 
2435 /**
2436  * ftrace_get_addr_curr - Get the call address that is already there
2437  * @rec:  The ftrace record descriptor
2438  *
2439  * The FTRACE_FL_REGS_EN is set when the record already points to
2440  * a function that saves all the regs. Basically the '_EN' version
2441  * represents the current state of the function.
2442  *
2443  * Returns the address of the trampoline that is currently being called
2444  */
2445 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2446 {
2447 	struct ftrace_ops *ops;
2448 	unsigned long addr;
2449 
2450 	/* Direct calls take precedence over trampolines */
2451 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2452 		addr = ftrace_find_rec_direct(rec->ip);
2453 		if (addr)
2454 			return addr;
2455 		WARN_ON_ONCE(1);
2456 	}
2457 
2458 	/* Trampolines take precedence over regs */
2459 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2460 		ops = ftrace_find_tramp_ops_curr(rec);
2461 		if (FTRACE_WARN_ON(!ops)) {
2462 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2463 				(void *)rec->ip, (void *)rec->ip);
2464 			/* Ftrace is shutting down, return anything */
2465 			return (unsigned long)FTRACE_ADDR;
2466 		}
2467 		return ops->trampoline;
2468 	}
2469 
2470 	if (rec->flags & FTRACE_FL_REGS_EN)
2471 		return (unsigned long)FTRACE_REGS_ADDR;
2472 	else
2473 		return (unsigned long)FTRACE_ADDR;
2474 }
2475 
2476 static int
2477 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2478 {
2479 	unsigned long ftrace_old_addr;
2480 	unsigned long ftrace_addr;
2481 	int ret;
2482 
2483 	ftrace_addr = ftrace_get_addr_new(rec);
2484 
2485 	/* This needs to be done before we call ftrace_update_record */
2486 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2487 
2488 	ret = ftrace_update_record(rec, enable);
2489 
2490 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2491 
2492 	switch (ret) {
2493 	case FTRACE_UPDATE_IGNORE:
2494 		return 0;
2495 
2496 	case FTRACE_UPDATE_MAKE_CALL:
2497 		ftrace_bug_type = FTRACE_BUG_CALL;
2498 		return ftrace_make_call(rec, ftrace_addr);
2499 
2500 	case FTRACE_UPDATE_MAKE_NOP:
2501 		ftrace_bug_type = FTRACE_BUG_NOP;
2502 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2503 
2504 	case FTRACE_UPDATE_MODIFY_CALL:
2505 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2506 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2507 	}
2508 
2509 	return -1; /* unknown ftrace bug */
2510 }
2511 
2512 void __weak ftrace_replace_code(int mod_flags)
2513 {
2514 	struct dyn_ftrace *rec;
2515 	struct ftrace_page *pg;
2516 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2517 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2518 	int failed;
2519 
2520 	if (unlikely(ftrace_disabled))
2521 		return;
2522 
2523 	do_for_each_ftrace_rec(pg, rec) {
2524 
2525 		if (rec->flags & FTRACE_FL_DISABLED)
2526 			continue;
2527 
2528 		failed = __ftrace_replace_code(rec, enable);
2529 		if (failed) {
2530 			ftrace_bug(failed, rec);
2531 			/* Stop processing */
2532 			return;
2533 		}
2534 		if (schedulable)
2535 			cond_resched();
2536 	} while_for_each_ftrace_rec();
2537 }
2538 
2539 struct ftrace_rec_iter {
2540 	struct ftrace_page	*pg;
2541 	int			index;
2542 };
2543 
2544 /**
2545  * ftrace_rec_iter_start, start up iterating over traced functions
2546  *
2547  * Returns an iterator handle that is used to iterate over all
2548  * the records that represent address locations where functions
2549  * are traced.
2550  *
2551  * May return NULL if no records are available.
2552  */
2553 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2554 {
2555 	/*
2556 	 * We only use a single iterator.
2557 	 * Protected by the ftrace_lock mutex.
2558 	 */
2559 	static struct ftrace_rec_iter ftrace_rec_iter;
2560 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2561 
2562 	iter->pg = ftrace_pages_start;
2563 	iter->index = 0;
2564 
2565 	/* Could have empty pages */
2566 	while (iter->pg && !iter->pg->index)
2567 		iter->pg = iter->pg->next;
2568 
2569 	if (!iter->pg)
2570 		return NULL;
2571 
2572 	return iter;
2573 }
2574 
2575 /**
2576  * ftrace_rec_iter_next, get the next record to process.
2577  * @iter: The handle to the iterator.
2578  *
2579  * Returns the next iterator after the given iterator @iter.
2580  */
2581 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2582 {
2583 	iter->index++;
2584 
2585 	if (iter->index >= iter->pg->index) {
2586 		iter->pg = iter->pg->next;
2587 		iter->index = 0;
2588 
2589 		/* Could have empty pages */
2590 		while (iter->pg && !iter->pg->index)
2591 			iter->pg = iter->pg->next;
2592 	}
2593 
2594 	if (!iter->pg)
2595 		return NULL;
2596 
2597 	return iter;
2598 }
2599 
2600 /**
2601  * ftrace_rec_iter_record, get the record at the iterator location
2602  * @iter: The current iterator location
2603  *
2604  * Returns the record that the current @iter is at.
2605  */
2606 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2607 {
2608 	return &iter->pg->records[iter->index];
2609 }
2610 
2611 static int
2612 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2613 {
2614 	int ret;
2615 
2616 	if (unlikely(ftrace_disabled))
2617 		return 0;
2618 
2619 	ret = ftrace_init_nop(mod, rec);
2620 	if (ret) {
2621 		ftrace_bug_type = FTRACE_BUG_INIT;
2622 		ftrace_bug(ret, rec);
2623 		return 0;
2624 	}
2625 	return 1;
2626 }
2627 
2628 /*
2629  * archs can override this function if they must do something
2630  * before the modifying code is performed.
2631  */
2632 int __weak ftrace_arch_code_modify_prepare(void)
2633 {
2634 	return 0;
2635 }
2636 
2637 /*
2638  * archs can override this function if they must do something
2639  * after the modifying code is performed.
2640  */
2641 int __weak ftrace_arch_code_modify_post_process(void)
2642 {
2643 	return 0;
2644 }
2645 
2646 void ftrace_modify_all_code(int command)
2647 {
2648 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2649 	int mod_flags = 0;
2650 	int err = 0;
2651 
2652 	if (command & FTRACE_MAY_SLEEP)
2653 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2654 
2655 	/*
2656 	 * If the ftrace_caller calls a ftrace_ops func directly,
2657 	 * we need to make sure that it only traces functions it
2658 	 * expects to trace. When doing the switch of functions,
2659 	 * we need to update to the ftrace_ops_list_func first
2660 	 * before the transition between old and new calls are set,
2661 	 * as the ftrace_ops_list_func will check the ops hashes
2662 	 * to make sure the ops are having the right functions
2663 	 * traced.
2664 	 */
2665 	if (update) {
2666 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2667 		if (FTRACE_WARN_ON(err))
2668 			return;
2669 	}
2670 
2671 	if (command & FTRACE_UPDATE_CALLS)
2672 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2673 	else if (command & FTRACE_DISABLE_CALLS)
2674 		ftrace_replace_code(mod_flags);
2675 
2676 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2677 		function_trace_op = set_function_trace_op;
2678 		smp_wmb();
2679 		/* If irqs are disabled, we are in stop machine */
2680 		if (!irqs_disabled())
2681 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2682 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2683 		if (FTRACE_WARN_ON(err))
2684 			return;
2685 	}
2686 
2687 	if (command & FTRACE_START_FUNC_RET)
2688 		err = ftrace_enable_ftrace_graph_caller();
2689 	else if (command & FTRACE_STOP_FUNC_RET)
2690 		err = ftrace_disable_ftrace_graph_caller();
2691 	FTRACE_WARN_ON(err);
2692 }
2693 
2694 static int __ftrace_modify_code(void *data)
2695 {
2696 	int *command = data;
2697 
2698 	ftrace_modify_all_code(*command);
2699 
2700 	return 0;
2701 }
2702 
2703 /**
2704  * ftrace_run_stop_machine, go back to the stop machine method
2705  * @command: The command to tell ftrace what to do
2706  *
2707  * If an arch needs to fall back to the stop machine method, the
2708  * it can call this function.
2709  */
2710 void ftrace_run_stop_machine(int command)
2711 {
2712 	stop_machine(__ftrace_modify_code, &command, NULL);
2713 }
2714 
2715 /**
2716  * arch_ftrace_update_code, modify the code to trace or not trace
2717  * @command: The command that needs to be done
2718  *
2719  * Archs can override this function if it does not need to
2720  * run stop_machine() to modify code.
2721  */
2722 void __weak arch_ftrace_update_code(int command)
2723 {
2724 	ftrace_run_stop_machine(command);
2725 }
2726 
2727 static void ftrace_run_update_code(int command)
2728 {
2729 	int ret;
2730 
2731 	ret = ftrace_arch_code_modify_prepare();
2732 	FTRACE_WARN_ON(ret);
2733 	if (ret)
2734 		return;
2735 
2736 	/*
2737 	 * By default we use stop_machine() to modify the code.
2738 	 * But archs can do what ever they want as long as it
2739 	 * is safe. The stop_machine() is the safest, but also
2740 	 * produces the most overhead.
2741 	 */
2742 	arch_ftrace_update_code(command);
2743 
2744 	ret = ftrace_arch_code_modify_post_process();
2745 	FTRACE_WARN_ON(ret);
2746 }
2747 
2748 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2749 				   struct ftrace_ops_hash *old_hash)
2750 {
2751 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2752 	ops->old_hash.filter_hash = old_hash->filter_hash;
2753 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2754 	ftrace_run_update_code(command);
2755 	ops->old_hash.filter_hash = NULL;
2756 	ops->old_hash.notrace_hash = NULL;
2757 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2758 }
2759 
2760 static ftrace_func_t saved_ftrace_func;
2761 static int ftrace_start_up;
2762 
2763 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2764 {
2765 }
2766 
2767 /* List of trace_ops that have allocated trampolines */
2768 static LIST_HEAD(ftrace_ops_trampoline_list);
2769 
2770 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2771 {
2772 	lockdep_assert_held(&ftrace_lock);
2773 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2774 }
2775 
2776 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2777 {
2778 	lockdep_assert_held(&ftrace_lock);
2779 	list_del_rcu(&ops->list);
2780 }
2781 
2782 /*
2783  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2784  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2785  * not a module.
2786  */
2787 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2788 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2789 
2790 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2791 {
2792 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2793 	    ops->trampoline) {
2794 		/*
2795 		 * Record the text poke event before the ksymbol unregister
2796 		 * event.
2797 		 */
2798 		perf_event_text_poke((void *)ops->trampoline,
2799 				     (void *)ops->trampoline,
2800 				     ops->trampoline_size, NULL, 0);
2801 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2802 				   ops->trampoline, ops->trampoline_size,
2803 				   true, FTRACE_TRAMPOLINE_SYM);
2804 		/* Remove from kallsyms after the perf events */
2805 		ftrace_remove_trampoline_from_kallsyms(ops);
2806 	}
2807 
2808 	arch_ftrace_trampoline_free(ops);
2809 }
2810 
2811 static void ftrace_startup_enable(int command)
2812 {
2813 	if (saved_ftrace_func != ftrace_trace_function) {
2814 		saved_ftrace_func = ftrace_trace_function;
2815 		command |= FTRACE_UPDATE_TRACE_FUNC;
2816 	}
2817 
2818 	if (!command || !ftrace_enabled)
2819 		return;
2820 
2821 	ftrace_run_update_code(command);
2822 }
2823 
2824 static void ftrace_startup_all(int command)
2825 {
2826 	update_all_ops = true;
2827 	ftrace_startup_enable(command);
2828 	update_all_ops = false;
2829 }
2830 
2831 int ftrace_startup(struct ftrace_ops *ops, int command)
2832 {
2833 	int ret;
2834 
2835 	if (unlikely(ftrace_disabled))
2836 		return -ENODEV;
2837 
2838 	ret = __register_ftrace_function(ops);
2839 	if (ret)
2840 		return ret;
2841 
2842 	ftrace_start_up++;
2843 
2844 	/*
2845 	 * Note that ftrace probes uses this to start up
2846 	 * and modify functions it will probe. But we still
2847 	 * set the ADDING flag for modification, as probes
2848 	 * do not have trampolines. If they add them in the
2849 	 * future, then the probes will need to distinguish
2850 	 * between adding and updating probes.
2851 	 */
2852 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2853 
2854 	ret = ftrace_hash_ipmodify_enable(ops);
2855 	if (ret < 0) {
2856 		/* Rollback registration process */
2857 		__unregister_ftrace_function(ops);
2858 		ftrace_start_up--;
2859 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2860 		return ret;
2861 	}
2862 
2863 	if (ftrace_hash_rec_enable(ops, 1))
2864 		command |= FTRACE_UPDATE_CALLS;
2865 
2866 	ftrace_startup_enable(command);
2867 
2868 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2869 
2870 	return 0;
2871 }
2872 
2873 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2874 {
2875 	int ret;
2876 
2877 	if (unlikely(ftrace_disabled))
2878 		return -ENODEV;
2879 
2880 	ret = __unregister_ftrace_function(ops);
2881 	if (ret)
2882 		return ret;
2883 
2884 	ftrace_start_up--;
2885 	/*
2886 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2887 	 * critical but the ftrace_call callers may be never nopped again after
2888 	 * further ftrace uses.
2889 	 */
2890 	WARN_ON_ONCE(ftrace_start_up < 0);
2891 
2892 	/* Disabling ipmodify never fails */
2893 	ftrace_hash_ipmodify_disable(ops);
2894 
2895 	if (ftrace_hash_rec_disable(ops, 1))
2896 		command |= FTRACE_UPDATE_CALLS;
2897 
2898 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2899 
2900 	if (saved_ftrace_func != ftrace_trace_function) {
2901 		saved_ftrace_func = ftrace_trace_function;
2902 		command |= FTRACE_UPDATE_TRACE_FUNC;
2903 	}
2904 
2905 	if (!command || !ftrace_enabled) {
2906 		/*
2907 		 * If these are dynamic or per_cpu ops, they still
2908 		 * need their data freed. Since, function tracing is
2909 		 * not currently active, we can just free them
2910 		 * without synchronizing all CPUs.
2911 		 */
2912 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2913 			goto free_ops;
2914 
2915 		return 0;
2916 	}
2917 
2918 	/*
2919 	 * If the ops uses a trampoline, then it needs to be
2920 	 * tested first on update.
2921 	 */
2922 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2923 	removed_ops = ops;
2924 
2925 	/* The trampoline logic checks the old hashes */
2926 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2927 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2928 
2929 	ftrace_run_update_code(command);
2930 
2931 	/*
2932 	 * If there's no more ops registered with ftrace, run a
2933 	 * sanity check to make sure all rec flags are cleared.
2934 	 */
2935 	if (rcu_dereference_protected(ftrace_ops_list,
2936 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2937 		struct ftrace_page *pg;
2938 		struct dyn_ftrace *rec;
2939 
2940 		do_for_each_ftrace_rec(pg, rec) {
2941 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2942 				pr_warn("  %pS flags:%lx\n",
2943 					(void *)rec->ip, rec->flags);
2944 		} while_for_each_ftrace_rec();
2945 	}
2946 
2947 	ops->old_hash.filter_hash = NULL;
2948 	ops->old_hash.notrace_hash = NULL;
2949 
2950 	removed_ops = NULL;
2951 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2952 
2953 	/*
2954 	 * Dynamic ops may be freed, we must make sure that all
2955 	 * callers are done before leaving this function.
2956 	 * The same goes for freeing the per_cpu data of the per_cpu
2957 	 * ops.
2958 	 */
2959 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2960 		/*
2961 		 * We need to do a hard force of sched synchronization.
2962 		 * This is because we use preempt_disable() to do RCU, but
2963 		 * the function tracers can be called where RCU is not watching
2964 		 * (like before user_exit()). We can not rely on the RCU
2965 		 * infrastructure to do the synchronization, thus we must do it
2966 		 * ourselves.
2967 		 */
2968 		synchronize_rcu_tasks_rude();
2969 
2970 		/*
2971 		 * When the kernel is preeptive, tasks can be preempted
2972 		 * while on a ftrace trampoline. Just scheduling a task on
2973 		 * a CPU is not good enough to flush them. Calling
2974 		 * synchornize_rcu_tasks() will wait for those tasks to
2975 		 * execute and either schedule voluntarily or enter user space.
2976 		 */
2977 		if (IS_ENABLED(CONFIG_PREEMPTION))
2978 			synchronize_rcu_tasks();
2979 
2980  free_ops:
2981 		ftrace_trampoline_free(ops);
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 static void ftrace_startup_sysctl(void)
2988 {
2989 	int command;
2990 
2991 	if (unlikely(ftrace_disabled))
2992 		return;
2993 
2994 	/* Force update next time */
2995 	saved_ftrace_func = NULL;
2996 	/* ftrace_start_up is true if we want ftrace running */
2997 	if (ftrace_start_up) {
2998 		command = FTRACE_UPDATE_CALLS;
2999 		if (ftrace_graph_active)
3000 			command |= FTRACE_START_FUNC_RET;
3001 		ftrace_startup_enable(command);
3002 	}
3003 }
3004 
3005 static void ftrace_shutdown_sysctl(void)
3006 {
3007 	int command;
3008 
3009 	if (unlikely(ftrace_disabled))
3010 		return;
3011 
3012 	/* ftrace_start_up is true if ftrace is running */
3013 	if (ftrace_start_up) {
3014 		command = FTRACE_DISABLE_CALLS;
3015 		if (ftrace_graph_active)
3016 			command |= FTRACE_STOP_FUNC_RET;
3017 		ftrace_run_update_code(command);
3018 	}
3019 }
3020 
3021 static u64		ftrace_update_time;
3022 unsigned long		ftrace_update_tot_cnt;
3023 unsigned long		ftrace_number_of_pages;
3024 unsigned long		ftrace_number_of_groups;
3025 
3026 static inline int ops_traces_mod(struct ftrace_ops *ops)
3027 {
3028 	/*
3029 	 * Filter_hash being empty will default to trace module.
3030 	 * But notrace hash requires a test of individual module functions.
3031 	 */
3032 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3033 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3034 }
3035 
3036 /*
3037  * Check if the current ops references the record.
3038  *
3039  * If the ops traces all functions, then it was already accounted for.
3040  * If the ops does not trace the current record function, skip it.
3041  * If the ops ignores the function via notrace filter, skip it.
3042  */
3043 static inline bool
3044 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3045 {
3046 	/* If ops isn't enabled, ignore it */
3047 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3048 		return false;
3049 
3050 	/* If ops traces all then it includes this function */
3051 	if (ops_traces_mod(ops))
3052 		return true;
3053 
3054 	/* The function must be in the filter */
3055 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3056 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3057 		return false;
3058 
3059 	/* If in notrace hash, we ignore it too */
3060 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3061 		return false;
3062 
3063 	return true;
3064 }
3065 
3066 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3067 {
3068 	struct ftrace_page *pg;
3069 	struct dyn_ftrace *p;
3070 	u64 start, stop;
3071 	unsigned long update_cnt = 0;
3072 	unsigned long rec_flags = 0;
3073 	int i;
3074 
3075 	start = ftrace_now(raw_smp_processor_id());
3076 
3077 	/*
3078 	 * When a module is loaded, this function is called to convert
3079 	 * the calls to mcount in its text to nops, and also to create
3080 	 * an entry in the ftrace data. Now, if ftrace is activated
3081 	 * after this call, but before the module sets its text to
3082 	 * read-only, the modification of enabling ftrace can fail if
3083 	 * the read-only is done while ftrace is converting the calls.
3084 	 * To prevent this, the module's records are set as disabled
3085 	 * and will be enabled after the call to set the module's text
3086 	 * to read-only.
3087 	 */
3088 	if (mod)
3089 		rec_flags |= FTRACE_FL_DISABLED;
3090 
3091 	for (pg = new_pgs; pg; pg = pg->next) {
3092 
3093 		for (i = 0; i < pg->index; i++) {
3094 
3095 			/* If something went wrong, bail without enabling anything */
3096 			if (unlikely(ftrace_disabled))
3097 				return -1;
3098 
3099 			p = &pg->records[i];
3100 			p->flags = rec_flags;
3101 
3102 			/*
3103 			 * Do the initial record conversion from mcount jump
3104 			 * to the NOP instructions.
3105 			 */
3106 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3107 			    !ftrace_nop_initialize(mod, p))
3108 				break;
3109 
3110 			update_cnt++;
3111 		}
3112 	}
3113 
3114 	stop = ftrace_now(raw_smp_processor_id());
3115 	ftrace_update_time = stop - start;
3116 	ftrace_update_tot_cnt += update_cnt;
3117 
3118 	return 0;
3119 }
3120 
3121 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3122 {
3123 	int order;
3124 	int cnt;
3125 
3126 	if (WARN_ON(!count))
3127 		return -EINVAL;
3128 
3129 	order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
3130 
3131 	/*
3132 	 * We want to fill as much as possible. No more than a page
3133 	 * may be empty.
3134 	 */
3135 	while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
3136 		order--;
3137 
3138  again:
3139 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3140 
3141 	if (!pg->records) {
3142 		/* if we can't allocate this size, try something smaller */
3143 		if (!order)
3144 			return -ENOMEM;
3145 		order >>= 1;
3146 		goto again;
3147 	}
3148 
3149 	ftrace_number_of_pages += 1 << order;
3150 	ftrace_number_of_groups++;
3151 
3152 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3153 	pg->size = cnt;
3154 
3155 	if (cnt > count)
3156 		cnt = count;
3157 
3158 	return cnt;
3159 }
3160 
3161 static struct ftrace_page *
3162 ftrace_allocate_pages(unsigned long num_to_init)
3163 {
3164 	struct ftrace_page *start_pg;
3165 	struct ftrace_page *pg;
3166 	int order;
3167 	int cnt;
3168 
3169 	if (!num_to_init)
3170 		return NULL;
3171 
3172 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3173 	if (!pg)
3174 		return NULL;
3175 
3176 	/*
3177 	 * Try to allocate as much as possible in one continues
3178 	 * location that fills in all of the space. We want to
3179 	 * waste as little space as possible.
3180 	 */
3181 	for (;;) {
3182 		cnt = ftrace_allocate_records(pg, num_to_init);
3183 		if (cnt < 0)
3184 			goto free_pages;
3185 
3186 		num_to_init -= cnt;
3187 		if (!num_to_init)
3188 			break;
3189 
3190 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3191 		if (!pg->next)
3192 			goto free_pages;
3193 
3194 		pg = pg->next;
3195 	}
3196 
3197 	return start_pg;
3198 
3199  free_pages:
3200 	pg = start_pg;
3201 	while (pg) {
3202 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3203 		free_pages((unsigned long)pg->records, order);
3204 		start_pg = pg->next;
3205 		kfree(pg);
3206 		pg = start_pg;
3207 		ftrace_number_of_pages -= 1 << order;
3208 		ftrace_number_of_groups--;
3209 	}
3210 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3211 	return NULL;
3212 }
3213 
3214 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3215 
3216 struct ftrace_iterator {
3217 	loff_t				pos;
3218 	loff_t				func_pos;
3219 	loff_t				mod_pos;
3220 	struct ftrace_page		*pg;
3221 	struct dyn_ftrace		*func;
3222 	struct ftrace_func_probe	*probe;
3223 	struct ftrace_func_entry	*probe_entry;
3224 	struct trace_parser		parser;
3225 	struct ftrace_hash		*hash;
3226 	struct ftrace_ops		*ops;
3227 	struct trace_array		*tr;
3228 	struct list_head		*mod_list;
3229 	int				pidx;
3230 	int				idx;
3231 	unsigned			flags;
3232 };
3233 
3234 static void *
3235 t_probe_next(struct seq_file *m, loff_t *pos)
3236 {
3237 	struct ftrace_iterator *iter = m->private;
3238 	struct trace_array *tr = iter->ops->private;
3239 	struct list_head *func_probes;
3240 	struct ftrace_hash *hash;
3241 	struct list_head *next;
3242 	struct hlist_node *hnd = NULL;
3243 	struct hlist_head *hhd;
3244 	int size;
3245 
3246 	(*pos)++;
3247 	iter->pos = *pos;
3248 
3249 	if (!tr)
3250 		return NULL;
3251 
3252 	func_probes = &tr->func_probes;
3253 	if (list_empty(func_probes))
3254 		return NULL;
3255 
3256 	if (!iter->probe) {
3257 		next = func_probes->next;
3258 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3259 	}
3260 
3261 	if (iter->probe_entry)
3262 		hnd = &iter->probe_entry->hlist;
3263 
3264 	hash = iter->probe->ops.func_hash->filter_hash;
3265 
3266 	/*
3267 	 * A probe being registered may temporarily have an empty hash
3268 	 * and it's at the end of the func_probes list.
3269 	 */
3270 	if (!hash || hash == EMPTY_HASH)
3271 		return NULL;
3272 
3273 	size = 1 << hash->size_bits;
3274 
3275  retry:
3276 	if (iter->pidx >= size) {
3277 		if (iter->probe->list.next == func_probes)
3278 			return NULL;
3279 		next = iter->probe->list.next;
3280 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3281 		hash = iter->probe->ops.func_hash->filter_hash;
3282 		size = 1 << hash->size_bits;
3283 		iter->pidx = 0;
3284 	}
3285 
3286 	hhd = &hash->buckets[iter->pidx];
3287 
3288 	if (hlist_empty(hhd)) {
3289 		iter->pidx++;
3290 		hnd = NULL;
3291 		goto retry;
3292 	}
3293 
3294 	if (!hnd)
3295 		hnd = hhd->first;
3296 	else {
3297 		hnd = hnd->next;
3298 		if (!hnd) {
3299 			iter->pidx++;
3300 			goto retry;
3301 		}
3302 	}
3303 
3304 	if (WARN_ON_ONCE(!hnd))
3305 		return NULL;
3306 
3307 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3308 
3309 	return iter;
3310 }
3311 
3312 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3313 {
3314 	struct ftrace_iterator *iter = m->private;
3315 	void *p = NULL;
3316 	loff_t l;
3317 
3318 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3319 		return NULL;
3320 
3321 	if (iter->mod_pos > *pos)
3322 		return NULL;
3323 
3324 	iter->probe = NULL;
3325 	iter->probe_entry = NULL;
3326 	iter->pidx = 0;
3327 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3328 		p = t_probe_next(m, &l);
3329 		if (!p)
3330 			break;
3331 	}
3332 	if (!p)
3333 		return NULL;
3334 
3335 	/* Only set this if we have an item */
3336 	iter->flags |= FTRACE_ITER_PROBE;
3337 
3338 	return iter;
3339 }
3340 
3341 static int
3342 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3343 {
3344 	struct ftrace_func_entry *probe_entry;
3345 	struct ftrace_probe_ops *probe_ops;
3346 	struct ftrace_func_probe *probe;
3347 
3348 	probe = iter->probe;
3349 	probe_entry = iter->probe_entry;
3350 
3351 	if (WARN_ON_ONCE(!probe || !probe_entry))
3352 		return -EIO;
3353 
3354 	probe_ops = probe->probe_ops;
3355 
3356 	if (probe_ops->print)
3357 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3358 
3359 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3360 		   (void *)probe_ops->func);
3361 
3362 	return 0;
3363 }
3364 
3365 static void *
3366 t_mod_next(struct seq_file *m, loff_t *pos)
3367 {
3368 	struct ftrace_iterator *iter = m->private;
3369 	struct trace_array *tr = iter->tr;
3370 
3371 	(*pos)++;
3372 	iter->pos = *pos;
3373 
3374 	iter->mod_list = iter->mod_list->next;
3375 
3376 	if (iter->mod_list == &tr->mod_trace ||
3377 	    iter->mod_list == &tr->mod_notrace) {
3378 		iter->flags &= ~FTRACE_ITER_MOD;
3379 		return NULL;
3380 	}
3381 
3382 	iter->mod_pos = *pos;
3383 
3384 	return iter;
3385 }
3386 
3387 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3388 {
3389 	struct ftrace_iterator *iter = m->private;
3390 	void *p = NULL;
3391 	loff_t l;
3392 
3393 	if (iter->func_pos > *pos)
3394 		return NULL;
3395 
3396 	iter->mod_pos = iter->func_pos;
3397 
3398 	/* probes are only available if tr is set */
3399 	if (!iter->tr)
3400 		return NULL;
3401 
3402 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3403 		p = t_mod_next(m, &l);
3404 		if (!p)
3405 			break;
3406 	}
3407 	if (!p) {
3408 		iter->flags &= ~FTRACE_ITER_MOD;
3409 		return t_probe_start(m, pos);
3410 	}
3411 
3412 	/* Only set this if we have an item */
3413 	iter->flags |= FTRACE_ITER_MOD;
3414 
3415 	return iter;
3416 }
3417 
3418 static int
3419 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3420 {
3421 	struct ftrace_mod_load *ftrace_mod;
3422 	struct trace_array *tr = iter->tr;
3423 
3424 	if (WARN_ON_ONCE(!iter->mod_list) ||
3425 			 iter->mod_list == &tr->mod_trace ||
3426 			 iter->mod_list == &tr->mod_notrace)
3427 		return -EIO;
3428 
3429 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3430 
3431 	if (ftrace_mod->func)
3432 		seq_printf(m, "%s", ftrace_mod->func);
3433 	else
3434 		seq_putc(m, '*');
3435 
3436 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3437 
3438 	return 0;
3439 }
3440 
3441 static void *
3442 t_func_next(struct seq_file *m, loff_t *pos)
3443 {
3444 	struct ftrace_iterator *iter = m->private;
3445 	struct dyn_ftrace *rec = NULL;
3446 
3447 	(*pos)++;
3448 
3449  retry:
3450 	if (iter->idx >= iter->pg->index) {
3451 		if (iter->pg->next) {
3452 			iter->pg = iter->pg->next;
3453 			iter->idx = 0;
3454 			goto retry;
3455 		}
3456 	} else {
3457 		rec = &iter->pg->records[iter->idx++];
3458 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3459 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3460 
3461 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3462 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3463 
3464 			rec = NULL;
3465 			goto retry;
3466 		}
3467 	}
3468 
3469 	if (!rec)
3470 		return NULL;
3471 
3472 	iter->pos = iter->func_pos = *pos;
3473 	iter->func = rec;
3474 
3475 	return iter;
3476 }
3477 
3478 static void *
3479 t_next(struct seq_file *m, void *v, loff_t *pos)
3480 {
3481 	struct ftrace_iterator *iter = m->private;
3482 	loff_t l = *pos; /* t_probe_start() must use original pos */
3483 	void *ret;
3484 
3485 	if (unlikely(ftrace_disabled))
3486 		return NULL;
3487 
3488 	if (iter->flags & FTRACE_ITER_PROBE)
3489 		return t_probe_next(m, pos);
3490 
3491 	if (iter->flags & FTRACE_ITER_MOD)
3492 		return t_mod_next(m, pos);
3493 
3494 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3495 		/* next must increment pos, and t_probe_start does not */
3496 		(*pos)++;
3497 		return t_mod_start(m, &l);
3498 	}
3499 
3500 	ret = t_func_next(m, pos);
3501 
3502 	if (!ret)
3503 		return t_mod_start(m, &l);
3504 
3505 	return ret;
3506 }
3507 
3508 static void reset_iter_read(struct ftrace_iterator *iter)
3509 {
3510 	iter->pos = 0;
3511 	iter->func_pos = 0;
3512 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3513 }
3514 
3515 static void *t_start(struct seq_file *m, loff_t *pos)
3516 {
3517 	struct ftrace_iterator *iter = m->private;
3518 	void *p = NULL;
3519 	loff_t l;
3520 
3521 	mutex_lock(&ftrace_lock);
3522 
3523 	if (unlikely(ftrace_disabled))
3524 		return NULL;
3525 
3526 	/*
3527 	 * If an lseek was done, then reset and start from beginning.
3528 	 */
3529 	if (*pos < iter->pos)
3530 		reset_iter_read(iter);
3531 
3532 	/*
3533 	 * For set_ftrace_filter reading, if we have the filter
3534 	 * off, we can short cut and just print out that all
3535 	 * functions are enabled.
3536 	 */
3537 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3538 	    ftrace_hash_empty(iter->hash)) {
3539 		iter->func_pos = 1; /* Account for the message */
3540 		if (*pos > 0)
3541 			return t_mod_start(m, pos);
3542 		iter->flags |= FTRACE_ITER_PRINTALL;
3543 		/* reset in case of seek/pread */
3544 		iter->flags &= ~FTRACE_ITER_PROBE;
3545 		return iter;
3546 	}
3547 
3548 	if (iter->flags & FTRACE_ITER_MOD)
3549 		return t_mod_start(m, pos);
3550 
3551 	/*
3552 	 * Unfortunately, we need to restart at ftrace_pages_start
3553 	 * every time we let go of the ftrace_mutex. This is because
3554 	 * those pointers can change without the lock.
3555 	 */
3556 	iter->pg = ftrace_pages_start;
3557 	iter->idx = 0;
3558 	for (l = 0; l <= *pos; ) {
3559 		p = t_func_next(m, &l);
3560 		if (!p)
3561 			break;
3562 	}
3563 
3564 	if (!p)
3565 		return t_mod_start(m, pos);
3566 
3567 	return iter;
3568 }
3569 
3570 static void t_stop(struct seq_file *m, void *p)
3571 {
3572 	mutex_unlock(&ftrace_lock);
3573 }
3574 
3575 void * __weak
3576 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3577 {
3578 	return NULL;
3579 }
3580 
3581 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3582 				struct dyn_ftrace *rec)
3583 {
3584 	void *ptr;
3585 
3586 	ptr = arch_ftrace_trampoline_func(ops, rec);
3587 	if (ptr)
3588 		seq_printf(m, " ->%pS", ptr);
3589 }
3590 
3591 static int t_show(struct seq_file *m, void *v)
3592 {
3593 	struct ftrace_iterator *iter = m->private;
3594 	struct dyn_ftrace *rec;
3595 
3596 	if (iter->flags & FTRACE_ITER_PROBE)
3597 		return t_probe_show(m, iter);
3598 
3599 	if (iter->flags & FTRACE_ITER_MOD)
3600 		return t_mod_show(m, iter);
3601 
3602 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3603 		if (iter->flags & FTRACE_ITER_NOTRACE)
3604 			seq_puts(m, "#### no functions disabled ####\n");
3605 		else
3606 			seq_puts(m, "#### all functions enabled ####\n");
3607 		return 0;
3608 	}
3609 
3610 	rec = iter->func;
3611 
3612 	if (!rec)
3613 		return 0;
3614 
3615 	seq_printf(m, "%ps", (void *)rec->ip);
3616 	if (iter->flags & FTRACE_ITER_ENABLED) {
3617 		struct ftrace_ops *ops;
3618 
3619 		seq_printf(m, " (%ld)%s%s%s",
3620 			   ftrace_rec_count(rec),
3621 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3622 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3623 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3624 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3625 			ops = ftrace_find_tramp_ops_any(rec);
3626 			if (ops) {
3627 				do {
3628 					seq_printf(m, "\ttramp: %pS (%pS)",
3629 						   (void *)ops->trampoline,
3630 						   (void *)ops->func);
3631 					add_trampoline_func(m, ops, rec);
3632 					ops = ftrace_find_tramp_ops_next(rec, ops);
3633 				} while (ops);
3634 			} else
3635 				seq_puts(m, "\ttramp: ERROR!");
3636 		} else {
3637 			add_trampoline_func(m, NULL, rec);
3638 		}
3639 		if (rec->flags & FTRACE_FL_DIRECT) {
3640 			unsigned long direct;
3641 
3642 			direct = ftrace_find_rec_direct(rec->ip);
3643 			if (direct)
3644 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3645 		}
3646 	}
3647 
3648 	seq_putc(m, '\n');
3649 
3650 	return 0;
3651 }
3652 
3653 static const struct seq_operations show_ftrace_seq_ops = {
3654 	.start = t_start,
3655 	.next = t_next,
3656 	.stop = t_stop,
3657 	.show = t_show,
3658 };
3659 
3660 static int
3661 ftrace_avail_open(struct inode *inode, struct file *file)
3662 {
3663 	struct ftrace_iterator *iter;
3664 	int ret;
3665 
3666 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3667 	if (ret)
3668 		return ret;
3669 
3670 	if (unlikely(ftrace_disabled))
3671 		return -ENODEV;
3672 
3673 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3674 	if (!iter)
3675 		return -ENOMEM;
3676 
3677 	iter->pg = ftrace_pages_start;
3678 	iter->ops = &global_ops;
3679 
3680 	return 0;
3681 }
3682 
3683 static int
3684 ftrace_enabled_open(struct inode *inode, struct file *file)
3685 {
3686 	struct ftrace_iterator *iter;
3687 
3688 	/*
3689 	 * This shows us what functions are currently being
3690 	 * traced and by what. Not sure if we want lockdown
3691 	 * to hide such critical information for an admin.
3692 	 * Although, perhaps it can show information we don't
3693 	 * want people to see, but if something is tracing
3694 	 * something, we probably want to know about it.
3695 	 */
3696 
3697 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3698 	if (!iter)
3699 		return -ENOMEM;
3700 
3701 	iter->pg = ftrace_pages_start;
3702 	iter->flags = FTRACE_ITER_ENABLED;
3703 	iter->ops = &global_ops;
3704 
3705 	return 0;
3706 }
3707 
3708 /**
3709  * ftrace_regex_open - initialize function tracer filter files
3710  * @ops: The ftrace_ops that hold the hash filters
3711  * @flag: The type of filter to process
3712  * @inode: The inode, usually passed in to your open routine
3713  * @file: The file, usually passed in to your open routine
3714  *
3715  * ftrace_regex_open() initializes the filter files for the
3716  * @ops. Depending on @flag it may process the filter hash or
3717  * the notrace hash of @ops. With this called from the open
3718  * routine, you can use ftrace_filter_write() for the write
3719  * routine if @flag has FTRACE_ITER_FILTER set, or
3720  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3721  * tracing_lseek() should be used as the lseek routine, and
3722  * release must call ftrace_regex_release().
3723  */
3724 int
3725 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3726 		  struct inode *inode, struct file *file)
3727 {
3728 	struct ftrace_iterator *iter;
3729 	struct ftrace_hash *hash;
3730 	struct list_head *mod_head;
3731 	struct trace_array *tr = ops->private;
3732 	int ret = -ENOMEM;
3733 
3734 	ftrace_ops_init(ops);
3735 
3736 	if (unlikely(ftrace_disabled))
3737 		return -ENODEV;
3738 
3739 	if (tracing_check_open_get_tr(tr))
3740 		return -ENODEV;
3741 
3742 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3743 	if (!iter)
3744 		goto out;
3745 
3746 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3747 		goto out;
3748 
3749 	iter->ops = ops;
3750 	iter->flags = flag;
3751 	iter->tr = tr;
3752 
3753 	mutex_lock(&ops->func_hash->regex_lock);
3754 
3755 	if (flag & FTRACE_ITER_NOTRACE) {
3756 		hash = ops->func_hash->notrace_hash;
3757 		mod_head = tr ? &tr->mod_notrace : NULL;
3758 	} else {
3759 		hash = ops->func_hash->filter_hash;
3760 		mod_head = tr ? &tr->mod_trace : NULL;
3761 	}
3762 
3763 	iter->mod_list = mod_head;
3764 
3765 	if (file->f_mode & FMODE_WRITE) {
3766 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3767 
3768 		if (file->f_flags & O_TRUNC) {
3769 			iter->hash = alloc_ftrace_hash(size_bits);
3770 			clear_ftrace_mod_list(mod_head);
3771 	        } else {
3772 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3773 		}
3774 
3775 		if (!iter->hash) {
3776 			trace_parser_put(&iter->parser);
3777 			goto out_unlock;
3778 		}
3779 	} else
3780 		iter->hash = hash;
3781 
3782 	ret = 0;
3783 
3784 	if (file->f_mode & FMODE_READ) {
3785 		iter->pg = ftrace_pages_start;
3786 
3787 		ret = seq_open(file, &show_ftrace_seq_ops);
3788 		if (!ret) {
3789 			struct seq_file *m = file->private_data;
3790 			m->private = iter;
3791 		} else {
3792 			/* Failed */
3793 			free_ftrace_hash(iter->hash);
3794 			trace_parser_put(&iter->parser);
3795 		}
3796 	} else
3797 		file->private_data = iter;
3798 
3799  out_unlock:
3800 	mutex_unlock(&ops->func_hash->regex_lock);
3801 
3802  out:
3803 	if (ret) {
3804 		kfree(iter);
3805 		if (tr)
3806 			trace_array_put(tr);
3807 	}
3808 
3809 	return ret;
3810 }
3811 
3812 static int
3813 ftrace_filter_open(struct inode *inode, struct file *file)
3814 {
3815 	struct ftrace_ops *ops = inode->i_private;
3816 
3817 	/* Checks for tracefs lockdown */
3818 	return ftrace_regex_open(ops,
3819 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3820 			inode, file);
3821 }
3822 
3823 static int
3824 ftrace_notrace_open(struct inode *inode, struct file *file)
3825 {
3826 	struct ftrace_ops *ops = inode->i_private;
3827 
3828 	/* Checks for tracefs lockdown */
3829 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3830 				 inode, file);
3831 }
3832 
3833 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3834 struct ftrace_glob {
3835 	char *search;
3836 	unsigned len;
3837 	int type;
3838 };
3839 
3840 /*
3841  * If symbols in an architecture don't correspond exactly to the user-visible
3842  * name of what they represent, it is possible to define this function to
3843  * perform the necessary adjustments.
3844 */
3845 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3846 {
3847 	return str;
3848 }
3849 
3850 static int ftrace_match(char *str, struct ftrace_glob *g)
3851 {
3852 	int matched = 0;
3853 	int slen;
3854 
3855 	str = arch_ftrace_match_adjust(str, g->search);
3856 
3857 	switch (g->type) {
3858 	case MATCH_FULL:
3859 		if (strcmp(str, g->search) == 0)
3860 			matched = 1;
3861 		break;
3862 	case MATCH_FRONT_ONLY:
3863 		if (strncmp(str, g->search, g->len) == 0)
3864 			matched = 1;
3865 		break;
3866 	case MATCH_MIDDLE_ONLY:
3867 		if (strstr(str, g->search))
3868 			matched = 1;
3869 		break;
3870 	case MATCH_END_ONLY:
3871 		slen = strlen(str);
3872 		if (slen >= g->len &&
3873 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3874 			matched = 1;
3875 		break;
3876 	case MATCH_GLOB:
3877 		if (glob_match(g->search, str))
3878 			matched = 1;
3879 		break;
3880 	}
3881 
3882 	return matched;
3883 }
3884 
3885 static int
3886 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3887 {
3888 	struct ftrace_func_entry *entry;
3889 	int ret = 0;
3890 
3891 	entry = ftrace_lookup_ip(hash, rec->ip);
3892 	if (clear_filter) {
3893 		/* Do nothing if it doesn't exist */
3894 		if (!entry)
3895 			return 0;
3896 
3897 		free_hash_entry(hash, entry);
3898 	} else {
3899 		/* Do nothing if it exists */
3900 		if (entry)
3901 			return 0;
3902 
3903 		ret = add_hash_entry(hash, rec->ip);
3904 	}
3905 	return ret;
3906 }
3907 
3908 static int
3909 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3910 		 int clear_filter)
3911 {
3912 	long index = simple_strtoul(func_g->search, NULL, 0);
3913 	struct ftrace_page *pg;
3914 	struct dyn_ftrace *rec;
3915 
3916 	/* The index starts at 1 */
3917 	if (--index < 0)
3918 		return 0;
3919 
3920 	do_for_each_ftrace_rec(pg, rec) {
3921 		if (pg->index <= index) {
3922 			index -= pg->index;
3923 			/* this is a double loop, break goes to the next page */
3924 			break;
3925 		}
3926 		rec = &pg->records[index];
3927 		enter_record(hash, rec, clear_filter);
3928 		return 1;
3929 	} while_for_each_ftrace_rec();
3930 	return 0;
3931 }
3932 
3933 static int
3934 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3935 		struct ftrace_glob *mod_g, int exclude_mod)
3936 {
3937 	char str[KSYM_SYMBOL_LEN];
3938 	char *modname;
3939 
3940 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3941 
3942 	if (mod_g) {
3943 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3944 
3945 		/* blank module name to match all modules */
3946 		if (!mod_g->len) {
3947 			/* blank module globbing: modname xor exclude_mod */
3948 			if (!exclude_mod != !modname)
3949 				goto func_match;
3950 			return 0;
3951 		}
3952 
3953 		/*
3954 		 * exclude_mod is set to trace everything but the given
3955 		 * module. If it is set and the module matches, then
3956 		 * return 0. If it is not set, and the module doesn't match
3957 		 * also return 0. Otherwise, check the function to see if
3958 		 * that matches.
3959 		 */
3960 		if (!mod_matches == !exclude_mod)
3961 			return 0;
3962 func_match:
3963 		/* blank search means to match all funcs in the mod */
3964 		if (!func_g->len)
3965 			return 1;
3966 	}
3967 
3968 	return ftrace_match(str, func_g);
3969 }
3970 
3971 static int
3972 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3973 {
3974 	struct ftrace_page *pg;
3975 	struct dyn_ftrace *rec;
3976 	struct ftrace_glob func_g = { .type = MATCH_FULL };
3977 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
3978 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
3979 	int exclude_mod = 0;
3980 	int found = 0;
3981 	int ret;
3982 	int clear_filter = 0;
3983 
3984 	if (func) {
3985 		func_g.type = filter_parse_regex(func, len, &func_g.search,
3986 						 &clear_filter);
3987 		func_g.len = strlen(func_g.search);
3988 	}
3989 
3990 	if (mod) {
3991 		mod_g.type = filter_parse_regex(mod, strlen(mod),
3992 				&mod_g.search, &exclude_mod);
3993 		mod_g.len = strlen(mod_g.search);
3994 	}
3995 
3996 	mutex_lock(&ftrace_lock);
3997 
3998 	if (unlikely(ftrace_disabled))
3999 		goto out_unlock;
4000 
4001 	if (func_g.type == MATCH_INDEX) {
4002 		found = add_rec_by_index(hash, &func_g, clear_filter);
4003 		goto out_unlock;
4004 	}
4005 
4006 	do_for_each_ftrace_rec(pg, rec) {
4007 
4008 		if (rec->flags & FTRACE_FL_DISABLED)
4009 			continue;
4010 
4011 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4012 			ret = enter_record(hash, rec, clear_filter);
4013 			if (ret < 0) {
4014 				found = ret;
4015 				goto out_unlock;
4016 			}
4017 			found = 1;
4018 		}
4019 	} while_for_each_ftrace_rec();
4020  out_unlock:
4021 	mutex_unlock(&ftrace_lock);
4022 
4023 	return found;
4024 }
4025 
4026 static int
4027 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4028 {
4029 	return match_records(hash, buff, len, NULL);
4030 }
4031 
4032 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4033 				   struct ftrace_ops_hash *old_hash)
4034 {
4035 	struct ftrace_ops *op;
4036 
4037 	if (!ftrace_enabled)
4038 		return;
4039 
4040 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4041 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4042 		return;
4043 	}
4044 
4045 	/*
4046 	 * If this is the shared global_ops filter, then we need to
4047 	 * check if there is another ops that shares it, is enabled.
4048 	 * If so, we still need to run the modify code.
4049 	 */
4050 	if (ops->func_hash != &global_ops.local_hash)
4051 		return;
4052 
4053 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4054 		if (op->func_hash == &global_ops.local_hash &&
4055 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4056 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4057 			/* Only need to do this once */
4058 			return;
4059 		}
4060 	} while_for_each_ftrace_op(op);
4061 }
4062 
4063 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4064 					   struct ftrace_hash **orig_hash,
4065 					   struct ftrace_hash *hash,
4066 					   int enable)
4067 {
4068 	struct ftrace_ops_hash old_hash_ops;
4069 	struct ftrace_hash *old_hash;
4070 	int ret;
4071 
4072 	old_hash = *orig_hash;
4073 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4074 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4075 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4076 	if (!ret) {
4077 		ftrace_ops_update_code(ops, &old_hash_ops);
4078 		free_ftrace_hash_rcu(old_hash);
4079 	}
4080 	return ret;
4081 }
4082 
4083 static bool module_exists(const char *module)
4084 {
4085 	/* All modules have the symbol __this_module */
4086 	static const char this_mod[] = "__this_module";
4087 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4088 	unsigned long val;
4089 	int n;
4090 
4091 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4092 
4093 	if (n > sizeof(modname) - 1)
4094 		return false;
4095 
4096 	val = module_kallsyms_lookup_name(modname);
4097 	return val != 0;
4098 }
4099 
4100 static int cache_mod(struct trace_array *tr,
4101 		     const char *func, char *module, int enable)
4102 {
4103 	struct ftrace_mod_load *ftrace_mod, *n;
4104 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4105 	int ret;
4106 
4107 	mutex_lock(&ftrace_lock);
4108 
4109 	/* We do not cache inverse filters */
4110 	if (func[0] == '!') {
4111 		func++;
4112 		ret = -EINVAL;
4113 
4114 		/* Look to remove this hash */
4115 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4116 			if (strcmp(ftrace_mod->module, module) != 0)
4117 				continue;
4118 
4119 			/* no func matches all */
4120 			if (strcmp(func, "*") == 0 ||
4121 			    (ftrace_mod->func &&
4122 			     strcmp(ftrace_mod->func, func) == 0)) {
4123 				ret = 0;
4124 				free_ftrace_mod(ftrace_mod);
4125 				continue;
4126 			}
4127 		}
4128 		goto out;
4129 	}
4130 
4131 	ret = -EINVAL;
4132 	/* We only care about modules that have not been loaded yet */
4133 	if (module_exists(module))
4134 		goto out;
4135 
4136 	/* Save this string off, and execute it when the module is loaded */
4137 	ret = ftrace_add_mod(tr, func, module, enable);
4138  out:
4139 	mutex_unlock(&ftrace_lock);
4140 
4141 	return ret;
4142 }
4143 
4144 static int
4145 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4146 		 int reset, int enable);
4147 
4148 #ifdef CONFIG_MODULES
4149 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4150 			     char *mod, bool enable)
4151 {
4152 	struct ftrace_mod_load *ftrace_mod, *n;
4153 	struct ftrace_hash **orig_hash, *new_hash;
4154 	LIST_HEAD(process_mods);
4155 	char *func;
4156 	int ret;
4157 
4158 	mutex_lock(&ops->func_hash->regex_lock);
4159 
4160 	if (enable)
4161 		orig_hash = &ops->func_hash->filter_hash;
4162 	else
4163 		orig_hash = &ops->func_hash->notrace_hash;
4164 
4165 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4166 					      *orig_hash);
4167 	if (!new_hash)
4168 		goto out; /* warn? */
4169 
4170 	mutex_lock(&ftrace_lock);
4171 
4172 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4173 
4174 		if (strcmp(ftrace_mod->module, mod) != 0)
4175 			continue;
4176 
4177 		if (ftrace_mod->func)
4178 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4179 		else
4180 			func = kstrdup("*", GFP_KERNEL);
4181 
4182 		if (!func) /* warn? */
4183 			continue;
4184 
4185 		list_del(&ftrace_mod->list);
4186 		list_add(&ftrace_mod->list, &process_mods);
4187 
4188 		/* Use the newly allocated func, as it may be "*" */
4189 		kfree(ftrace_mod->func);
4190 		ftrace_mod->func = func;
4191 	}
4192 
4193 	mutex_unlock(&ftrace_lock);
4194 
4195 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4196 
4197 		func = ftrace_mod->func;
4198 
4199 		/* Grabs ftrace_lock, which is why we have this extra step */
4200 		match_records(new_hash, func, strlen(func), mod);
4201 		free_ftrace_mod(ftrace_mod);
4202 	}
4203 
4204 	if (enable && list_empty(head))
4205 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4206 
4207 	mutex_lock(&ftrace_lock);
4208 
4209 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
4210 					      new_hash, enable);
4211 	mutex_unlock(&ftrace_lock);
4212 
4213  out:
4214 	mutex_unlock(&ops->func_hash->regex_lock);
4215 
4216 	free_ftrace_hash(new_hash);
4217 }
4218 
4219 static void process_cached_mods(const char *mod_name)
4220 {
4221 	struct trace_array *tr;
4222 	char *mod;
4223 
4224 	mod = kstrdup(mod_name, GFP_KERNEL);
4225 	if (!mod)
4226 		return;
4227 
4228 	mutex_lock(&trace_types_lock);
4229 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4230 		if (!list_empty(&tr->mod_trace))
4231 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4232 		if (!list_empty(&tr->mod_notrace))
4233 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4234 	}
4235 	mutex_unlock(&trace_types_lock);
4236 
4237 	kfree(mod);
4238 }
4239 #endif
4240 
4241 /*
4242  * We register the module command as a template to show others how
4243  * to register the a command as well.
4244  */
4245 
4246 static int
4247 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4248 		    char *func_orig, char *cmd, char *module, int enable)
4249 {
4250 	char *func;
4251 	int ret;
4252 
4253 	/* match_records() modifies func, and we need the original */
4254 	func = kstrdup(func_orig, GFP_KERNEL);
4255 	if (!func)
4256 		return -ENOMEM;
4257 
4258 	/*
4259 	 * cmd == 'mod' because we only registered this func
4260 	 * for the 'mod' ftrace_func_command.
4261 	 * But if you register one func with multiple commands,
4262 	 * you can tell which command was used by the cmd
4263 	 * parameter.
4264 	 */
4265 	ret = match_records(hash, func, strlen(func), module);
4266 	kfree(func);
4267 
4268 	if (!ret)
4269 		return cache_mod(tr, func_orig, module, enable);
4270 	if (ret < 0)
4271 		return ret;
4272 	return 0;
4273 }
4274 
4275 static struct ftrace_func_command ftrace_mod_cmd = {
4276 	.name			= "mod",
4277 	.func			= ftrace_mod_callback,
4278 };
4279 
4280 static int __init ftrace_mod_cmd_init(void)
4281 {
4282 	return register_ftrace_command(&ftrace_mod_cmd);
4283 }
4284 core_initcall(ftrace_mod_cmd_init);
4285 
4286 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4287 				      struct ftrace_ops *op, struct pt_regs *pt_regs)
4288 {
4289 	struct ftrace_probe_ops *probe_ops;
4290 	struct ftrace_func_probe *probe;
4291 
4292 	probe = container_of(op, struct ftrace_func_probe, ops);
4293 	probe_ops = probe->probe_ops;
4294 
4295 	/*
4296 	 * Disable preemption for these calls to prevent a RCU grace
4297 	 * period. This syncs the hash iteration and freeing of items
4298 	 * on the hash. rcu_read_lock is too dangerous here.
4299 	 */
4300 	preempt_disable_notrace();
4301 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4302 	preempt_enable_notrace();
4303 }
4304 
4305 struct ftrace_func_map {
4306 	struct ftrace_func_entry	entry;
4307 	void				*data;
4308 };
4309 
4310 struct ftrace_func_mapper {
4311 	struct ftrace_hash		hash;
4312 };
4313 
4314 /**
4315  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4316  *
4317  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4318  */
4319 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4320 {
4321 	struct ftrace_hash *hash;
4322 
4323 	/*
4324 	 * The mapper is simply a ftrace_hash, but since the entries
4325 	 * in the hash are not ftrace_func_entry type, we define it
4326 	 * as a separate structure.
4327 	 */
4328 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4329 	return (struct ftrace_func_mapper *)hash;
4330 }
4331 
4332 /**
4333  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4334  * @mapper: The mapper that has the ip maps
4335  * @ip: the instruction pointer to find the data for
4336  *
4337  * Returns the data mapped to @ip if found otherwise NULL. The return
4338  * is actually the address of the mapper data pointer. The address is
4339  * returned for use cases where the data is no bigger than a long, and
4340  * the user can use the data pointer as its data instead of having to
4341  * allocate more memory for the reference.
4342  */
4343 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4344 				  unsigned long ip)
4345 {
4346 	struct ftrace_func_entry *entry;
4347 	struct ftrace_func_map *map;
4348 
4349 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4350 	if (!entry)
4351 		return NULL;
4352 
4353 	map = (struct ftrace_func_map *)entry;
4354 	return &map->data;
4355 }
4356 
4357 /**
4358  * ftrace_func_mapper_add_ip - Map some data to an ip
4359  * @mapper: The mapper that has the ip maps
4360  * @ip: The instruction pointer address to map @data to
4361  * @data: The data to map to @ip
4362  *
4363  * Returns 0 on succes otherwise an error.
4364  */
4365 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4366 			      unsigned long ip, void *data)
4367 {
4368 	struct ftrace_func_entry *entry;
4369 	struct ftrace_func_map *map;
4370 
4371 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4372 	if (entry)
4373 		return -EBUSY;
4374 
4375 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4376 	if (!map)
4377 		return -ENOMEM;
4378 
4379 	map->entry.ip = ip;
4380 	map->data = data;
4381 
4382 	__add_hash_entry(&mapper->hash, &map->entry);
4383 
4384 	return 0;
4385 }
4386 
4387 /**
4388  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4389  * @mapper: The mapper that has the ip maps
4390  * @ip: The instruction pointer address to remove the data from
4391  *
4392  * Returns the data if it is found, otherwise NULL.
4393  * Note, if the data pointer is used as the data itself, (see
4394  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4395  * if the data pointer was set to zero.
4396  */
4397 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4398 				   unsigned long ip)
4399 {
4400 	struct ftrace_func_entry *entry;
4401 	struct ftrace_func_map *map;
4402 	void *data;
4403 
4404 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4405 	if (!entry)
4406 		return NULL;
4407 
4408 	map = (struct ftrace_func_map *)entry;
4409 	data = map->data;
4410 
4411 	remove_hash_entry(&mapper->hash, entry);
4412 	kfree(entry);
4413 
4414 	return data;
4415 }
4416 
4417 /**
4418  * free_ftrace_func_mapper - free a mapping of ips and data
4419  * @mapper: The mapper that has the ip maps
4420  * @free_func: A function to be called on each data item.
4421  *
4422  * This is used to free the function mapper. The @free_func is optional
4423  * and can be used if the data needs to be freed as well.
4424  */
4425 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4426 			     ftrace_mapper_func free_func)
4427 {
4428 	struct ftrace_func_entry *entry;
4429 	struct ftrace_func_map *map;
4430 	struct hlist_head *hhd;
4431 	int size, i;
4432 
4433 	if (!mapper)
4434 		return;
4435 
4436 	if (free_func && mapper->hash.count) {
4437 		size = 1 << mapper->hash.size_bits;
4438 		for (i = 0; i < size; i++) {
4439 			hhd = &mapper->hash.buckets[i];
4440 			hlist_for_each_entry(entry, hhd, hlist) {
4441 				map = (struct ftrace_func_map *)entry;
4442 				free_func(map);
4443 			}
4444 		}
4445 	}
4446 	free_ftrace_hash(&mapper->hash);
4447 }
4448 
4449 static void release_probe(struct ftrace_func_probe *probe)
4450 {
4451 	struct ftrace_probe_ops *probe_ops;
4452 
4453 	mutex_lock(&ftrace_lock);
4454 
4455 	WARN_ON(probe->ref <= 0);
4456 
4457 	/* Subtract the ref that was used to protect this instance */
4458 	probe->ref--;
4459 
4460 	if (!probe->ref) {
4461 		probe_ops = probe->probe_ops;
4462 		/*
4463 		 * Sending zero as ip tells probe_ops to free
4464 		 * the probe->data itself
4465 		 */
4466 		if (probe_ops->free)
4467 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4468 		list_del(&probe->list);
4469 		kfree(probe);
4470 	}
4471 	mutex_unlock(&ftrace_lock);
4472 }
4473 
4474 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4475 {
4476 	/*
4477 	 * Add one ref to keep it from being freed when releasing the
4478 	 * ftrace_lock mutex.
4479 	 */
4480 	probe->ref++;
4481 }
4482 
4483 int
4484 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4485 			       struct ftrace_probe_ops *probe_ops,
4486 			       void *data)
4487 {
4488 	struct ftrace_func_entry *entry;
4489 	struct ftrace_func_probe *probe;
4490 	struct ftrace_hash **orig_hash;
4491 	struct ftrace_hash *old_hash;
4492 	struct ftrace_hash *hash;
4493 	int count = 0;
4494 	int size;
4495 	int ret;
4496 	int i;
4497 
4498 	if (WARN_ON(!tr))
4499 		return -EINVAL;
4500 
4501 	/* We do not support '!' for function probes */
4502 	if (WARN_ON(glob[0] == '!'))
4503 		return -EINVAL;
4504 
4505 
4506 	mutex_lock(&ftrace_lock);
4507 	/* Check if the probe_ops is already registered */
4508 	list_for_each_entry(probe, &tr->func_probes, list) {
4509 		if (probe->probe_ops == probe_ops)
4510 			break;
4511 	}
4512 	if (&probe->list == &tr->func_probes) {
4513 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4514 		if (!probe) {
4515 			mutex_unlock(&ftrace_lock);
4516 			return -ENOMEM;
4517 		}
4518 		probe->probe_ops = probe_ops;
4519 		probe->ops.func = function_trace_probe_call;
4520 		probe->tr = tr;
4521 		ftrace_ops_init(&probe->ops);
4522 		list_add(&probe->list, &tr->func_probes);
4523 	}
4524 
4525 	acquire_probe_locked(probe);
4526 
4527 	mutex_unlock(&ftrace_lock);
4528 
4529 	/*
4530 	 * Note, there's a small window here that the func_hash->filter_hash
4531 	 * may be NULL or empty. Need to be carefule when reading the loop.
4532 	 */
4533 	mutex_lock(&probe->ops.func_hash->regex_lock);
4534 
4535 	orig_hash = &probe->ops.func_hash->filter_hash;
4536 	old_hash = *orig_hash;
4537 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4538 
4539 	if (!hash) {
4540 		ret = -ENOMEM;
4541 		goto out;
4542 	}
4543 
4544 	ret = ftrace_match_records(hash, glob, strlen(glob));
4545 
4546 	/* Nothing found? */
4547 	if (!ret)
4548 		ret = -EINVAL;
4549 
4550 	if (ret < 0)
4551 		goto out;
4552 
4553 	size = 1 << hash->size_bits;
4554 	for (i = 0; i < size; i++) {
4555 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4556 			if (ftrace_lookup_ip(old_hash, entry->ip))
4557 				continue;
4558 			/*
4559 			 * The caller might want to do something special
4560 			 * for each function we find. We call the callback
4561 			 * to give the caller an opportunity to do so.
4562 			 */
4563 			if (probe_ops->init) {
4564 				ret = probe_ops->init(probe_ops, tr,
4565 						      entry->ip, data,
4566 						      &probe->data);
4567 				if (ret < 0) {
4568 					if (probe_ops->free && count)
4569 						probe_ops->free(probe_ops, tr,
4570 								0, probe->data);
4571 					probe->data = NULL;
4572 					goto out;
4573 				}
4574 			}
4575 			count++;
4576 		}
4577 	}
4578 
4579 	mutex_lock(&ftrace_lock);
4580 
4581 	if (!count) {
4582 		/* Nothing was added? */
4583 		ret = -EINVAL;
4584 		goto out_unlock;
4585 	}
4586 
4587 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4588 					      hash, 1);
4589 	if (ret < 0)
4590 		goto err_unlock;
4591 
4592 	/* One ref for each new function traced */
4593 	probe->ref += count;
4594 
4595 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4596 		ret = ftrace_startup(&probe->ops, 0);
4597 
4598  out_unlock:
4599 	mutex_unlock(&ftrace_lock);
4600 
4601 	if (!ret)
4602 		ret = count;
4603  out:
4604 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4605 	free_ftrace_hash(hash);
4606 
4607 	release_probe(probe);
4608 
4609 	return ret;
4610 
4611  err_unlock:
4612 	if (!probe_ops->free || !count)
4613 		goto out_unlock;
4614 
4615 	/* Failed to do the move, need to call the free functions */
4616 	for (i = 0; i < size; i++) {
4617 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4618 			if (ftrace_lookup_ip(old_hash, entry->ip))
4619 				continue;
4620 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4621 		}
4622 	}
4623 	goto out_unlock;
4624 }
4625 
4626 int
4627 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4628 				      struct ftrace_probe_ops *probe_ops)
4629 {
4630 	struct ftrace_ops_hash old_hash_ops;
4631 	struct ftrace_func_entry *entry;
4632 	struct ftrace_func_probe *probe;
4633 	struct ftrace_glob func_g;
4634 	struct ftrace_hash **orig_hash;
4635 	struct ftrace_hash *old_hash;
4636 	struct ftrace_hash *hash = NULL;
4637 	struct hlist_node *tmp;
4638 	struct hlist_head hhd;
4639 	char str[KSYM_SYMBOL_LEN];
4640 	int count = 0;
4641 	int i, ret = -ENODEV;
4642 	int size;
4643 
4644 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4645 		func_g.search = NULL;
4646 	else {
4647 		int not;
4648 
4649 		func_g.type = filter_parse_regex(glob, strlen(glob),
4650 						 &func_g.search, &not);
4651 		func_g.len = strlen(func_g.search);
4652 
4653 		/* we do not support '!' for function probes */
4654 		if (WARN_ON(not))
4655 			return -EINVAL;
4656 	}
4657 
4658 	mutex_lock(&ftrace_lock);
4659 	/* Check if the probe_ops is already registered */
4660 	list_for_each_entry(probe, &tr->func_probes, list) {
4661 		if (probe->probe_ops == probe_ops)
4662 			break;
4663 	}
4664 	if (&probe->list == &tr->func_probes)
4665 		goto err_unlock_ftrace;
4666 
4667 	ret = -EINVAL;
4668 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4669 		goto err_unlock_ftrace;
4670 
4671 	acquire_probe_locked(probe);
4672 
4673 	mutex_unlock(&ftrace_lock);
4674 
4675 	mutex_lock(&probe->ops.func_hash->regex_lock);
4676 
4677 	orig_hash = &probe->ops.func_hash->filter_hash;
4678 	old_hash = *orig_hash;
4679 
4680 	if (ftrace_hash_empty(old_hash))
4681 		goto out_unlock;
4682 
4683 	old_hash_ops.filter_hash = old_hash;
4684 	/* Probes only have filters */
4685 	old_hash_ops.notrace_hash = NULL;
4686 
4687 	ret = -ENOMEM;
4688 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4689 	if (!hash)
4690 		goto out_unlock;
4691 
4692 	INIT_HLIST_HEAD(&hhd);
4693 
4694 	size = 1 << hash->size_bits;
4695 	for (i = 0; i < size; i++) {
4696 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4697 
4698 			if (func_g.search) {
4699 				kallsyms_lookup(entry->ip, NULL, NULL,
4700 						NULL, str);
4701 				if (!ftrace_match(str, &func_g))
4702 					continue;
4703 			}
4704 			count++;
4705 			remove_hash_entry(hash, entry);
4706 			hlist_add_head(&entry->hlist, &hhd);
4707 		}
4708 	}
4709 
4710 	/* Nothing found? */
4711 	if (!count) {
4712 		ret = -EINVAL;
4713 		goto out_unlock;
4714 	}
4715 
4716 	mutex_lock(&ftrace_lock);
4717 
4718 	WARN_ON(probe->ref < count);
4719 
4720 	probe->ref -= count;
4721 
4722 	if (ftrace_hash_empty(hash))
4723 		ftrace_shutdown(&probe->ops, 0);
4724 
4725 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4726 					      hash, 1);
4727 
4728 	/* still need to update the function call sites */
4729 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4730 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4731 				       &old_hash_ops);
4732 	synchronize_rcu();
4733 
4734 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4735 		hlist_del(&entry->hlist);
4736 		if (probe_ops->free)
4737 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4738 		kfree(entry);
4739 	}
4740 	mutex_unlock(&ftrace_lock);
4741 
4742  out_unlock:
4743 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4744 	free_ftrace_hash(hash);
4745 
4746 	release_probe(probe);
4747 
4748 	return ret;
4749 
4750  err_unlock_ftrace:
4751 	mutex_unlock(&ftrace_lock);
4752 	return ret;
4753 }
4754 
4755 void clear_ftrace_function_probes(struct trace_array *tr)
4756 {
4757 	struct ftrace_func_probe *probe, *n;
4758 
4759 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4760 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4761 }
4762 
4763 static LIST_HEAD(ftrace_commands);
4764 static DEFINE_MUTEX(ftrace_cmd_mutex);
4765 
4766 /*
4767  * Currently we only register ftrace commands from __init, so mark this
4768  * __init too.
4769  */
4770 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4771 {
4772 	struct ftrace_func_command *p;
4773 	int ret = 0;
4774 
4775 	mutex_lock(&ftrace_cmd_mutex);
4776 	list_for_each_entry(p, &ftrace_commands, list) {
4777 		if (strcmp(cmd->name, p->name) == 0) {
4778 			ret = -EBUSY;
4779 			goto out_unlock;
4780 		}
4781 	}
4782 	list_add(&cmd->list, &ftrace_commands);
4783  out_unlock:
4784 	mutex_unlock(&ftrace_cmd_mutex);
4785 
4786 	return ret;
4787 }
4788 
4789 /*
4790  * Currently we only unregister ftrace commands from __init, so mark
4791  * this __init too.
4792  */
4793 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4794 {
4795 	struct ftrace_func_command *p, *n;
4796 	int ret = -ENODEV;
4797 
4798 	mutex_lock(&ftrace_cmd_mutex);
4799 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4800 		if (strcmp(cmd->name, p->name) == 0) {
4801 			ret = 0;
4802 			list_del_init(&p->list);
4803 			goto out_unlock;
4804 		}
4805 	}
4806  out_unlock:
4807 	mutex_unlock(&ftrace_cmd_mutex);
4808 
4809 	return ret;
4810 }
4811 
4812 static int ftrace_process_regex(struct ftrace_iterator *iter,
4813 				char *buff, int len, int enable)
4814 {
4815 	struct ftrace_hash *hash = iter->hash;
4816 	struct trace_array *tr = iter->ops->private;
4817 	char *func, *command, *next = buff;
4818 	struct ftrace_func_command *p;
4819 	int ret = -EINVAL;
4820 
4821 	func = strsep(&next, ":");
4822 
4823 	if (!next) {
4824 		ret = ftrace_match_records(hash, func, len);
4825 		if (!ret)
4826 			ret = -EINVAL;
4827 		if (ret < 0)
4828 			return ret;
4829 		return 0;
4830 	}
4831 
4832 	/* command found */
4833 
4834 	command = strsep(&next, ":");
4835 
4836 	mutex_lock(&ftrace_cmd_mutex);
4837 	list_for_each_entry(p, &ftrace_commands, list) {
4838 		if (strcmp(p->name, command) == 0) {
4839 			ret = p->func(tr, hash, func, command, next, enable);
4840 			goto out_unlock;
4841 		}
4842 	}
4843  out_unlock:
4844 	mutex_unlock(&ftrace_cmd_mutex);
4845 
4846 	return ret;
4847 }
4848 
4849 static ssize_t
4850 ftrace_regex_write(struct file *file, const char __user *ubuf,
4851 		   size_t cnt, loff_t *ppos, int enable)
4852 {
4853 	struct ftrace_iterator *iter;
4854 	struct trace_parser *parser;
4855 	ssize_t ret, read;
4856 
4857 	if (!cnt)
4858 		return 0;
4859 
4860 	if (file->f_mode & FMODE_READ) {
4861 		struct seq_file *m = file->private_data;
4862 		iter = m->private;
4863 	} else
4864 		iter = file->private_data;
4865 
4866 	if (unlikely(ftrace_disabled))
4867 		return -ENODEV;
4868 
4869 	/* iter->hash is a local copy, so we don't need regex_lock */
4870 
4871 	parser = &iter->parser;
4872 	read = trace_get_user(parser, ubuf, cnt, ppos);
4873 
4874 	if (read >= 0 && trace_parser_loaded(parser) &&
4875 	    !trace_parser_cont(parser)) {
4876 		ret = ftrace_process_regex(iter, parser->buffer,
4877 					   parser->idx, enable);
4878 		trace_parser_clear(parser);
4879 		if (ret < 0)
4880 			goto out;
4881 	}
4882 
4883 	ret = read;
4884  out:
4885 	return ret;
4886 }
4887 
4888 ssize_t
4889 ftrace_filter_write(struct file *file, const char __user *ubuf,
4890 		    size_t cnt, loff_t *ppos)
4891 {
4892 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4893 }
4894 
4895 ssize_t
4896 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4897 		     size_t cnt, loff_t *ppos)
4898 {
4899 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4900 }
4901 
4902 static int
4903 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4904 {
4905 	struct ftrace_func_entry *entry;
4906 
4907 	if (!ftrace_location(ip))
4908 		return -EINVAL;
4909 
4910 	if (remove) {
4911 		entry = ftrace_lookup_ip(hash, ip);
4912 		if (!entry)
4913 			return -ENOENT;
4914 		free_hash_entry(hash, entry);
4915 		return 0;
4916 	}
4917 
4918 	return add_hash_entry(hash, ip);
4919 }
4920 
4921 static int
4922 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4923 		unsigned long ip, int remove, int reset, int enable)
4924 {
4925 	struct ftrace_hash **orig_hash;
4926 	struct ftrace_hash *hash;
4927 	int ret;
4928 
4929 	if (unlikely(ftrace_disabled))
4930 		return -ENODEV;
4931 
4932 	mutex_lock(&ops->func_hash->regex_lock);
4933 
4934 	if (enable)
4935 		orig_hash = &ops->func_hash->filter_hash;
4936 	else
4937 		orig_hash = &ops->func_hash->notrace_hash;
4938 
4939 	if (reset)
4940 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4941 	else
4942 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4943 
4944 	if (!hash) {
4945 		ret = -ENOMEM;
4946 		goto out_regex_unlock;
4947 	}
4948 
4949 	if (buf && !ftrace_match_records(hash, buf, len)) {
4950 		ret = -EINVAL;
4951 		goto out_regex_unlock;
4952 	}
4953 	if (ip) {
4954 		ret = ftrace_match_addr(hash, ip, remove);
4955 		if (ret < 0)
4956 			goto out_regex_unlock;
4957 	}
4958 
4959 	mutex_lock(&ftrace_lock);
4960 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4961 	mutex_unlock(&ftrace_lock);
4962 
4963  out_regex_unlock:
4964 	mutex_unlock(&ops->func_hash->regex_lock);
4965 
4966 	free_ftrace_hash(hash);
4967 	return ret;
4968 }
4969 
4970 static int
4971 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4972 		int reset, int enable)
4973 {
4974 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
4975 }
4976 
4977 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
4978 
4979 struct ftrace_direct_func {
4980 	struct list_head	next;
4981 	unsigned long		addr;
4982 	int			count;
4983 };
4984 
4985 static LIST_HEAD(ftrace_direct_funcs);
4986 
4987 /**
4988  * ftrace_find_direct_func - test an address if it is a registered direct caller
4989  * @addr: The address of a registered direct caller
4990  *
4991  * This searches to see if a ftrace direct caller has been registered
4992  * at a specific address, and if so, it returns a descriptor for it.
4993  *
4994  * This can be used by architecture code to see if an address is
4995  * a direct caller (trampoline) attached to a fentry/mcount location.
4996  * This is useful for the function_graph tracer, as it may need to
4997  * do adjustments if it traced a location that also has a direct
4998  * trampoline attached to it.
4999  */
5000 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5001 {
5002 	struct ftrace_direct_func *entry;
5003 	bool found = false;
5004 
5005 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5006 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5007 		if (entry->addr == addr) {
5008 			found = true;
5009 			break;
5010 		}
5011 	}
5012 	if (found)
5013 		return entry;
5014 
5015 	return NULL;
5016 }
5017 
5018 /**
5019  * register_ftrace_direct - Call a custom trampoline directly
5020  * @ip: The address of the nop at the beginning of a function
5021  * @addr: The address of the trampoline to call at @ip
5022  *
5023  * This is used to connect a direct call from the nop location (@ip)
5024  * at the start of ftrace traced functions. The location that it calls
5025  * (@addr) must be able to handle a direct call, and save the parameters
5026  * of the function being traced, and restore them (or inject new ones
5027  * if needed), before returning.
5028  *
5029  * Returns:
5030  *  0 on success
5031  *  -EBUSY - Another direct function is already attached (there can be only one)
5032  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5033  *  -ENOMEM - There was an allocation failure.
5034  */
5035 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5036 {
5037 	struct ftrace_direct_func *direct;
5038 	struct ftrace_func_entry *entry;
5039 	struct ftrace_hash *free_hash = NULL;
5040 	struct dyn_ftrace *rec;
5041 	int ret = -EBUSY;
5042 
5043 	mutex_lock(&direct_mutex);
5044 
5045 	/* See if there's a direct function at @ip already */
5046 	if (ftrace_find_rec_direct(ip))
5047 		goto out_unlock;
5048 
5049 	ret = -ENODEV;
5050 	rec = lookup_rec(ip, ip);
5051 	if (!rec)
5052 		goto out_unlock;
5053 
5054 	/*
5055 	 * Check if the rec says it has a direct call but we didn't
5056 	 * find one earlier?
5057 	 */
5058 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5059 		goto out_unlock;
5060 
5061 	/* Make sure the ip points to the exact record */
5062 	if (ip != rec->ip) {
5063 		ip = rec->ip;
5064 		/* Need to check this ip for a direct. */
5065 		if (ftrace_find_rec_direct(ip))
5066 			goto out_unlock;
5067 	}
5068 
5069 	ret = -ENOMEM;
5070 	if (ftrace_hash_empty(direct_functions) ||
5071 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5072 		struct ftrace_hash *new_hash;
5073 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5074 			direct_functions->count + 1;
5075 
5076 		if (size < 32)
5077 			size = 32;
5078 
5079 		new_hash = dup_hash(direct_functions, size);
5080 		if (!new_hash)
5081 			goto out_unlock;
5082 
5083 		free_hash = direct_functions;
5084 		direct_functions = new_hash;
5085 	}
5086 
5087 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5088 	if (!entry)
5089 		goto out_unlock;
5090 
5091 	direct = ftrace_find_direct_func(addr);
5092 	if (!direct) {
5093 		direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5094 		if (!direct) {
5095 			kfree(entry);
5096 			goto out_unlock;
5097 		}
5098 		direct->addr = addr;
5099 		direct->count = 0;
5100 		list_add_rcu(&direct->next, &ftrace_direct_funcs);
5101 		ftrace_direct_func_count++;
5102 	}
5103 
5104 	entry->ip = ip;
5105 	entry->direct = addr;
5106 	__add_hash_entry(direct_functions, entry);
5107 
5108 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5109 	if (ret)
5110 		remove_hash_entry(direct_functions, entry);
5111 
5112 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5113 		ret = register_ftrace_function(&direct_ops);
5114 		if (ret)
5115 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5116 	}
5117 
5118 	if (ret) {
5119 		kfree(entry);
5120 		if (!direct->count) {
5121 			list_del_rcu(&direct->next);
5122 			synchronize_rcu_tasks();
5123 			kfree(direct);
5124 			if (free_hash)
5125 				free_ftrace_hash(free_hash);
5126 			free_hash = NULL;
5127 			ftrace_direct_func_count--;
5128 		}
5129 	} else {
5130 		direct->count++;
5131 	}
5132  out_unlock:
5133 	mutex_unlock(&direct_mutex);
5134 
5135 	if (free_hash) {
5136 		synchronize_rcu_tasks();
5137 		free_ftrace_hash(free_hash);
5138 	}
5139 
5140 	return ret;
5141 }
5142 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5143 
5144 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5145 						   struct dyn_ftrace **recp)
5146 {
5147 	struct ftrace_func_entry *entry;
5148 	struct dyn_ftrace *rec;
5149 
5150 	rec = lookup_rec(*ip, *ip);
5151 	if (!rec)
5152 		return NULL;
5153 
5154 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5155 	if (!entry) {
5156 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5157 		return NULL;
5158 	}
5159 
5160 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5161 
5162 	/* Passed in ip just needs to be on the call site */
5163 	*ip = rec->ip;
5164 
5165 	if (recp)
5166 		*recp = rec;
5167 
5168 	return entry;
5169 }
5170 
5171 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5172 {
5173 	struct ftrace_direct_func *direct;
5174 	struct ftrace_func_entry *entry;
5175 	int ret = -ENODEV;
5176 
5177 	mutex_lock(&direct_mutex);
5178 
5179 	entry = find_direct_entry(&ip, NULL);
5180 	if (!entry)
5181 		goto out_unlock;
5182 
5183 	if (direct_functions->count == 1)
5184 		unregister_ftrace_function(&direct_ops);
5185 
5186 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5187 
5188 	WARN_ON(ret);
5189 
5190 	remove_hash_entry(direct_functions, entry);
5191 
5192 	direct = ftrace_find_direct_func(addr);
5193 	if (!WARN_ON(!direct)) {
5194 		/* This is the good path (see the ! before WARN) */
5195 		direct->count--;
5196 		WARN_ON(direct->count < 0);
5197 		if (!direct->count) {
5198 			list_del_rcu(&direct->next);
5199 			synchronize_rcu_tasks();
5200 			kfree(direct);
5201 			kfree(entry);
5202 			ftrace_direct_func_count--;
5203 		}
5204 	}
5205  out_unlock:
5206 	mutex_unlock(&direct_mutex);
5207 
5208 	return ret;
5209 }
5210 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5211 
5212 static struct ftrace_ops stub_ops = {
5213 	.func		= ftrace_stub,
5214 };
5215 
5216 /**
5217  * ftrace_modify_direct_caller - modify ftrace nop directly
5218  * @entry: The ftrace hash entry of the direct helper for @rec
5219  * @rec: The record representing the function site to patch
5220  * @old_addr: The location that the site at @rec->ip currently calls
5221  * @new_addr: The location that the site at @rec->ip should call
5222  *
5223  * An architecture may overwrite this function to optimize the
5224  * changing of the direct callback on an ftrace nop location.
5225  * This is called with the ftrace_lock mutex held, and no other
5226  * ftrace callbacks are on the associated record (@rec). Thus,
5227  * it is safe to modify the ftrace record, where it should be
5228  * currently calling @old_addr directly, to call @new_addr.
5229  *
5230  * Safety checks should be made to make sure that the code at
5231  * @rec->ip is currently calling @old_addr. And this must
5232  * also update entry->direct to @new_addr.
5233  */
5234 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5235 				       struct dyn_ftrace *rec,
5236 				       unsigned long old_addr,
5237 				       unsigned long new_addr)
5238 {
5239 	unsigned long ip = rec->ip;
5240 	int ret;
5241 
5242 	/*
5243 	 * The ftrace_lock was used to determine if the record
5244 	 * had more than one registered user to it. If it did,
5245 	 * we needed to prevent that from changing to do the quick
5246 	 * switch. But if it did not (only a direct caller was attached)
5247 	 * then this function is called. But this function can deal
5248 	 * with attached callers to the rec that we care about, and
5249 	 * since this function uses standard ftrace calls that take
5250 	 * the ftrace_lock mutex, we need to release it.
5251 	 */
5252 	mutex_unlock(&ftrace_lock);
5253 
5254 	/*
5255 	 * By setting a stub function at the same address, we force
5256 	 * the code to call the iterator and the direct_ops helper.
5257 	 * This means that @ip does not call the direct call, and
5258 	 * we can simply modify it.
5259 	 */
5260 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5261 	if (ret)
5262 		goto out_lock;
5263 
5264 	ret = register_ftrace_function(&stub_ops);
5265 	if (ret) {
5266 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5267 		goto out_lock;
5268 	}
5269 
5270 	entry->direct = new_addr;
5271 
5272 	/*
5273 	 * By removing the stub, we put back the direct call, calling
5274 	 * the @new_addr.
5275 	 */
5276 	unregister_ftrace_function(&stub_ops);
5277 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5278 
5279  out_lock:
5280 	mutex_lock(&ftrace_lock);
5281 
5282 	return ret;
5283 }
5284 
5285 /**
5286  * modify_ftrace_direct - Modify an existing direct call to call something else
5287  * @ip: The instruction pointer to modify
5288  * @old_addr: The address that the current @ip calls directly
5289  * @new_addr: The address that the @ip should call
5290  *
5291  * This modifies a ftrace direct caller at an instruction pointer without
5292  * having to disable it first. The direct call will switch over to the
5293  * @new_addr without missing anything.
5294  *
5295  * Returns: zero on success. Non zero on error, which includes:
5296  *  -ENODEV : the @ip given has no direct caller attached
5297  *  -EINVAL : the @old_addr does not match the current direct caller
5298  */
5299 int modify_ftrace_direct(unsigned long ip,
5300 			 unsigned long old_addr, unsigned long new_addr)
5301 {
5302 	struct ftrace_func_entry *entry;
5303 	struct dyn_ftrace *rec;
5304 	int ret = -ENODEV;
5305 
5306 	mutex_lock(&direct_mutex);
5307 
5308 	mutex_lock(&ftrace_lock);
5309 	entry = find_direct_entry(&ip, &rec);
5310 	if (!entry)
5311 		goto out_unlock;
5312 
5313 	ret = -EINVAL;
5314 	if (entry->direct != old_addr)
5315 		goto out_unlock;
5316 
5317 	/*
5318 	 * If there's no other ftrace callback on the rec->ip location,
5319 	 * then it can be changed directly by the architecture.
5320 	 * If there is another caller, then we just need to change the
5321 	 * direct caller helper to point to @new_addr.
5322 	 */
5323 	if (ftrace_rec_count(rec) == 1) {
5324 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5325 	} else {
5326 		entry->direct = new_addr;
5327 		ret = 0;
5328 	}
5329 
5330  out_unlock:
5331 	mutex_unlock(&ftrace_lock);
5332 	mutex_unlock(&direct_mutex);
5333 	return ret;
5334 }
5335 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5336 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5337 
5338 /**
5339  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5340  * @ops - the ops to set the filter with
5341  * @ip - the address to add to or remove from the filter.
5342  * @remove - non zero to remove the ip from the filter
5343  * @reset - non zero to reset all filters before applying this filter.
5344  *
5345  * Filters denote which functions should be enabled when tracing is enabled
5346  * If @ip is NULL, it failes to update filter.
5347  */
5348 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5349 			 int remove, int reset)
5350 {
5351 	ftrace_ops_init(ops);
5352 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5353 }
5354 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5355 
5356 /**
5357  * ftrace_ops_set_global_filter - setup ops to use global filters
5358  * @ops - the ops which will use the global filters
5359  *
5360  * ftrace users who need global function trace filtering should call this.
5361  * It can set the global filter only if ops were not initialized before.
5362  */
5363 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5364 {
5365 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5366 		return;
5367 
5368 	ftrace_ops_init(ops);
5369 	ops->func_hash = &global_ops.local_hash;
5370 }
5371 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5372 
5373 static int
5374 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5375 		 int reset, int enable)
5376 {
5377 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5378 }
5379 
5380 /**
5381  * ftrace_set_filter - set a function to filter on in ftrace
5382  * @ops - the ops to set the filter with
5383  * @buf - the string that holds the function filter text.
5384  * @len - the length of the string.
5385  * @reset - non zero to reset all filters before applying this filter.
5386  *
5387  * Filters denote which functions should be enabled when tracing is enabled.
5388  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5389  */
5390 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5391 		       int len, int reset)
5392 {
5393 	ftrace_ops_init(ops);
5394 	return ftrace_set_regex(ops, buf, len, reset, 1);
5395 }
5396 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5397 
5398 /**
5399  * ftrace_set_notrace - set a function to not trace in ftrace
5400  * @ops - the ops to set the notrace filter with
5401  * @buf - the string that holds the function notrace text.
5402  * @len - the length of the string.
5403  * @reset - non zero to reset all filters before applying this filter.
5404  *
5405  * Notrace Filters denote which functions should not be enabled when tracing
5406  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5407  * for tracing.
5408  */
5409 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5410 			int len, int reset)
5411 {
5412 	ftrace_ops_init(ops);
5413 	return ftrace_set_regex(ops, buf, len, reset, 0);
5414 }
5415 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5416 /**
5417  * ftrace_set_global_filter - set a function to filter on with global tracers
5418  * @buf - the string that holds the function filter text.
5419  * @len - the length of the string.
5420  * @reset - non zero to reset all filters before applying this filter.
5421  *
5422  * Filters denote which functions should be enabled when tracing is enabled.
5423  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5424  */
5425 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5426 {
5427 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5428 }
5429 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5430 
5431 /**
5432  * ftrace_set_global_notrace - set a function to not trace with global tracers
5433  * @buf - the string that holds the function notrace text.
5434  * @len - the length of the string.
5435  * @reset - non zero to reset all filters before applying this filter.
5436  *
5437  * Notrace Filters denote which functions should not be enabled when tracing
5438  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5439  * for tracing.
5440  */
5441 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5442 {
5443 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5444 }
5445 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5446 
5447 /*
5448  * command line interface to allow users to set filters on boot up.
5449  */
5450 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5451 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5452 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5453 
5454 /* Used by function selftest to not test if filter is set */
5455 bool ftrace_filter_param __initdata;
5456 
5457 static int __init set_ftrace_notrace(char *str)
5458 {
5459 	ftrace_filter_param = true;
5460 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5461 	return 1;
5462 }
5463 __setup("ftrace_notrace=", set_ftrace_notrace);
5464 
5465 static int __init set_ftrace_filter(char *str)
5466 {
5467 	ftrace_filter_param = true;
5468 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5469 	return 1;
5470 }
5471 __setup("ftrace_filter=", set_ftrace_filter);
5472 
5473 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5474 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5475 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5476 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5477 
5478 static int __init set_graph_function(char *str)
5479 {
5480 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5481 	return 1;
5482 }
5483 __setup("ftrace_graph_filter=", set_graph_function);
5484 
5485 static int __init set_graph_notrace_function(char *str)
5486 {
5487 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5488 	return 1;
5489 }
5490 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5491 
5492 static int __init set_graph_max_depth_function(char *str)
5493 {
5494 	if (!str)
5495 		return 0;
5496 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5497 	return 1;
5498 }
5499 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5500 
5501 static void __init set_ftrace_early_graph(char *buf, int enable)
5502 {
5503 	int ret;
5504 	char *func;
5505 	struct ftrace_hash *hash;
5506 
5507 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5508 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5509 		return;
5510 
5511 	while (buf) {
5512 		func = strsep(&buf, ",");
5513 		/* we allow only one expression at a time */
5514 		ret = ftrace_graph_set_hash(hash, func);
5515 		if (ret)
5516 			printk(KERN_DEBUG "ftrace: function %s not "
5517 					  "traceable\n", func);
5518 	}
5519 
5520 	if (enable)
5521 		ftrace_graph_hash = hash;
5522 	else
5523 		ftrace_graph_notrace_hash = hash;
5524 }
5525 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5526 
5527 void __init
5528 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5529 {
5530 	char *func;
5531 
5532 	ftrace_ops_init(ops);
5533 
5534 	while (buf) {
5535 		func = strsep(&buf, ",");
5536 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5537 	}
5538 }
5539 
5540 static void __init set_ftrace_early_filters(void)
5541 {
5542 	if (ftrace_filter_buf[0])
5543 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5544 	if (ftrace_notrace_buf[0])
5545 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5546 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5547 	if (ftrace_graph_buf[0])
5548 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5549 	if (ftrace_graph_notrace_buf[0])
5550 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5551 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5552 }
5553 
5554 int ftrace_regex_release(struct inode *inode, struct file *file)
5555 {
5556 	struct seq_file *m = (struct seq_file *)file->private_data;
5557 	struct ftrace_iterator *iter;
5558 	struct ftrace_hash **orig_hash;
5559 	struct trace_parser *parser;
5560 	int filter_hash;
5561 	int ret;
5562 
5563 	if (file->f_mode & FMODE_READ) {
5564 		iter = m->private;
5565 		seq_release(inode, file);
5566 	} else
5567 		iter = file->private_data;
5568 
5569 	parser = &iter->parser;
5570 	if (trace_parser_loaded(parser)) {
5571 		ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5572 	}
5573 
5574 	trace_parser_put(parser);
5575 
5576 	mutex_lock(&iter->ops->func_hash->regex_lock);
5577 
5578 	if (file->f_mode & FMODE_WRITE) {
5579 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5580 
5581 		if (filter_hash) {
5582 			orig_hash = &iter->ops->func_hash->filter_hash;
5583 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5584 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5585 		} else
5586 			orig_hash = &iter->ops->func_hash->notrace_hash;
5587 
5588 		mutex_lock(&ftrace_lock);
5589 		ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5590 						      iter->hash, filter_hash);
5591 		mutex_unlock(&ftrace_lock);
5592 	} else {
5593 		/* For read only, the hash is the ops hash */
5594 		iter->hash = NULL;
5595 	}
5596 
5597 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5598 	free_ftrace_hash(iter->hash);
5599 	if (iter->tr)
5600 		trace_array_put(iter->tr);
5601 	kfree(iter);
5602 
5603 	return 0;
5604 }
5605 
5606 static const struct file_operations ftrace_avail_fops = {
5607 	.open = ftrace_avail_open,
5608 	.read = seq_read,
5609 	.llseek = seq_lseek,
5610 	.release = seq_release_private,
5611 };
5612 
5613 static const struct file_operations ftrace_enabled_fops = {
5614 	.open = ftrace_enabled_open,
5615 	.read = seq_read,
5616 	.llseek = seq_lseek,
5617 	.release = seq_release_private,
5618 };
5619 
5620 static const struct file_operations ftrace_filter_fops = {
5621 	.open = ftrace_filter_open,
5622 	.read = seq_read,
5623 	.write = ftrace_filter_write,
5624 	.llseek = tracing_lseek,
5625 	.release = ftrace_regex_release,
5626 };
5627 
5628 static const struct file_operations ftrace_notrace_fops = {
5629 	.open = ftrace_notrace_open,
5630 	.read = seq_read,
5631 	.write = ftrace_notrace_write,
5632 	.llseek = tracing_lseek,
5633 	.release = ftrace_regex_release,
5634 };
5635 
5636 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5637 
5638 static DEFINE_MUTEX(graph_lock);
5639 
5640 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5641 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5642 
5643 enum graph_filter_type {
5644 	GRAPH_FILTER_NOTRACE	= 0,
5645 	GRAPH_FILTER_FUNCTION,
5646 };
5647 
5648 #define FTRACE_GRAPH_EMPTY	((void *)1)
5649 
5650 struct ftrace_graph_data {
5651 	struct ftrace_hash		*hash;
5652 	struct ftrace_func_entry	*entry;
5653 	int				idx;   /* for hash table iteration */
5654 	enum graph_filter_type		type;
5655 	struct ftrace_hash		*new_hash;
5656 	const struct seq_operations	*seq_ops;
5657 	struct trace_parser		parser;
5658 };
5659 
5660 static void *
5661 __g_next(struct seq_file *m, loff_t *pos)
5662 {
5663 	struct ftrace_graph_data *fgd = m->private;
5664 	struct ftrace_func_entry *entry = fgd->entry;
5665 	struct hlist_head *head;
5666 	int i, idx = fgd->idx;
5667 
5668 	if (*pos >= fgd->hash->count)
5669 		return NULL;
5670 
5671 	if (entry) {
5672 		hlist_for_each_entry_continue(entry, hlist) {
5673 			fgd->entry = entry;
5674 			return entry;
5675 		}
5676 
5677 		idx++;
5678 	}
5679 
5680 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5681 		head = &fgd->hash->buckets[i];
5682 		hlist_for_each_entry(entry, head, hlist) {
5683 			fgd->entry = entry;
5684 			fgd->idx = i;
5685 			return entry;
5686 		}
5687 	}
5688 	return NULL;
5689 }
5690 
5691 static void *
5692 g_next(struct seq_file *m, void *v, loff_t *pos)
5693 {
5694 	(*pos)++;
5695 	return __g_next(m, pos);
5696 }
5697 
5698 static void *g_start(struct seq_file *m, loff_t *pos)
5699 {
5700 	struct ftrace_graph_data *fgd = m->private;
5701 
5702 	mutex_lock(&graph_lock);
5703 
5704 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5705 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5706 					lockdep_is_held(&graph_lock));
5707 	else
5708 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5709 					lockdep_is_held(&graph_lock));
5710 
5711 	/* Nothing, tell g_show to print all functions are enabled */
5712 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5713 		return FTRACE_GRAPH_EMPTY;
5714 
5715 	fgd->idx = 0;
5716 	fgd->entry = NULL;
5717 	return __g_next(m, pos);
5718 }
5719 
5720 static void g_stop(struct seq_file *m, void *p)
5721 {
5722 	mutex_unlock(&graph_lock);
5723 }
5724 
5725 static int g_show(struct seq_file *m, void *v)
5726 {
5727 	struct ftrace_func_entry *entry = v;
5728 
5729 	if (!entry)
5730 		return 0;
5731 
5732 	if (entry == FTRACE_GRAPH_EMPTY) {
5733 		struct ftrace_graph_data *fgd = m->private;
5734 
5735 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5736 			seq_puts(m, "#### all functions enabled ####\n");
5737 		else
5738 			seq_puts(m, "#### no functions disabled ####\n");
5739 		return 0;
5740 	}
5741 
5742 	seq_printf(m, "%ps\n", (void *)entry->ip);
5743 
5744 	return 0;
5745 }
5746 
5747 static const struct seq_operations ftrace_graph_seq_ops = {
5748 	.start = g_start,
5749 	.next = g_next,
5750 	.stop = g_stop,
5751 	.show = g_show,
5752 };
5753 
5754 static int
5755 __ftrace_graph_open(struct inode *inode, struct file *file,
5756 		    struct ftrace_graph_data *fgd)
5757 {
5758 	int ret;
5759 	struct ftrace_hash *new_hash = NULL;
5760 
5761 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5762 	if (ret)
5763 		return ret;
5764 
5765 	if (file->f_mode & FMODE_WRITE) {
5766 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5767 
5768 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5769 			return -ENOMEM;
5770 
5771 		if (file->f_flags & O_TRUNC)
5772 			new_hash = alloc_ftrace_hash(size_bits);
5773 		else
5774 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5775 							      fgd->hash);
5776 		if (!new_hash) {
5777 			ret = -ENOMEM;
5778 			goto out;
5779 		}
5780 	}
5781 
5782 	if (file->f_mode & FMODE_READ) {
5783 		ret = seq_open(file, &ftrace_graph_seq_ops);
5784 		if (!ret) {
5785 			struct seq_file *m = file->private_data;
5786 			m->private = fgd;
5787 		} else {
5788 			/* Failed */
5789 			free_ftrace_hash(new_hash);
5790 			new_hash = NULL;
5791 		}
5792 	} else
5793 		file->private_data = fgd;
5794 
5795 out:
5796 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5797 		trace_parser_put(&fgd->parser);
5798 
5799 	fgd->new_hash = new_hash;
5800 
5801 	/*
5802 	 * All uses of fgd->hash must be taken with the graph_lock
5803 	 * held. The graph_lock is going to be released, so force
5804 	 * fgd->hash to be reinitialized when it is taken again.
5805 	 */
5806 	fgd->hash = NULL;
5807 
5808 	return ret;
5809 }
5810 
5811 static int
5812 ftrace_graph_open(struct inode *inode, struct file *file)
5813 {
5814 	struct ftrace_graph_data *fgd;
5815 	int ret;
5816 
5817 	if (unlikely(ftrace_disabled))
5818 		return -ENODEV;
5819 
5820 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5821 	if (fgd == NULL)
5822 		return -ENOMEM;
5823 
5824 	mutex_lock(&graph_lock);
5825 
5826 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5827 					lockdep_is_held(&graph_lock));
5828 	fgd->type = GRAPH_FILTER_FUNCTION;
5829 	fgd->seq_ops = &ftrace_graph_seq_ops;
5830 
5831 	ret = __ftrace_graph_open(inode, file, fgd);
5832 	if (ret < 0)
5833 		kfree(fgd);
5834 
5835 	mutex_unlock(&graph_lock);
5836 	return ret;
5837 }
5838 
5839 static int
5840 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5841 {
5842 	struct ftrace_graph_data *fgd;
5843 	int ret;
5844 
5845 	if (unlikely(ftrace_disabled))
5846 		return -ENODEV;
5847 
5848 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5849 	if (fgd == NULL)
5850 		return -ENOMEM;
5851 
5852 	mutex_lock(&graph_lock);
5853 
5854 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5855 					lockdep_is_held(&graph_lock));
5856 	fgd->type = GRAPH_FILTER_NOTRACE;
5857 	fgd->seq_ops = &ftrace_graph_seq_ops;
5858 
5859 	ret = __ftrace_graph_open(inode, file, fgd);
5860 	if (ret < 0)
5861 		kfree(fgd);
5862 
5863 	mutex_unlock(&graph_lock);
5864 	return ret;
5865 }
5866 
5867 static int
5868 ftrace_graph_release(struct inode *inode, struct file *file)
5869 {
5870 	struct ftrace_graph_data *fgd;
5871 	struct ftrace_hash *old_hash, *new_hash;
5872 	struct trace_parser *parser;
5873 	int ret = 0;
5874 
5875 	if (file->f_mode & FMODE_READ) {
5876 		struct seq_file *m = file->private_data;
5877 
5878 		fgd = m->private;
5879 		seq_release(inode, file);
5880 	} else {
5881 		fgd = file->private_data;
5882 	}
5883 
5884 
5885 	if (file->f_mode & FMODE_WRITE) {
5886 
5887 		parser = &fgd->parser;
5888 
5889 		if (trace_parser_loaded((parser))) {
5890 			ret = ftrace_graph_set_hash(fgd->new_hash,
5891 						    parser->buffer);
5892 		}
5893 
5894 		trace_parser_put(parser);
5895 
5896 		new_hash = __ftrace_hash_move(fgd->new_hash);
5897 		if (!new_hash) {
5898 			ret = -ENOMEM;
5899 			goto out;
5900 		}
5901 
5902 		mutex_lock(&graph_lock);
5903 
5904 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5905 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5906 					lockdep_is_held(&graph_lock));
5907 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5908 		} else {
5909 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5910 					lockdep_is_held(&graph_lock));
5911 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5912 		}
5913 
5914 		mutex_unlock(&graph_lock);
5915 
5916 		/*
5917 		 * We need to do a hard force of sched synchronization.
5918 		 * This is because we use preempt_disable() to do RCU, but
5919 		 * the function tracers can be called where RCU is not watching
5920 		 * (like before user_exit()). We can not rely on the RCU
5921 		 * infrastructure to do the synchronization, thus we must do it
5922 		 * ourselves.
5923 		 */
5924 		synchronize_rcu_tasks_rude();
5925 
5926 		free_ftrace_hash(old_hash);
5927 	}
5928 
5929  out:
5930 	free_ftrace_hash(fgd->new_hash);
5931 	kfree(fgd);
5932 
5933 	return ret;
5934 }
5935 
5936 static int
5937 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5938 {
5939 	struct ftrace_glob func_g;
5940 	struct dyn_ftrace *rec;
5941 	struct ftrace_page *pg;
5942 	struct ftrace_func_entry *entry;
5943 	int fail = 1;
5944 	int not;
5945 
5946 	/* decode regex */
5947 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
5948 					 &func_g.search, &not);
5949 
5950 	func_g.len = strlen(func_g.search);
5951 
5952 	mutex_lock(&ftrace_lock);
5953 
5954 	if (unlikely(ftrace_disabled)) {
5955 		mutex_unlock(&ftrace_lock);
5956 		return -ENODEV;
5957 	}
5958 
5959 	do_for_each_ftrace_rec(pg, rec) {
5960 
5961 		if (rec->flags & FTRACE_FL_DISABLED)
5962 			continue;
5963 
5964 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
5965 			entry = ftrace_lookup_ip(hash, rec->ip);
5966 
5967 			if (!not) {
5968 				fail = 0;
5969 
5970 				if (entry)
5971 					continue;
5972 				if (add_hash_entry(hash, rec->ip) < 0)
5973 					goto out;
5974 			} else {
5975 				if (entry) {
5976 					free_hash_entry(hash, entry);
5977 					fail = 0;
5978 				}
5979 			}
5980 		}
5981 	} while_for_each_ftrace_rec();
5982 out:
5983 	mutex_unlock(&ftrace_lock);
5984 
5985 	if (fail)
5986 		return -EINVAL;
5987 
5988 	return 0;
5989 }
5990 
5991 static ssize_t
5992 ftrace_graph_write(struct file *file, const char __user *ubuf,
5993 		   size_t cnt, loff_t *ppos)
5994 {
5995 	ssize_t read, ret = 0;
5996 	struct ftrace_graph_data *fgd = file->private_data;
5997 	struct trace_parser *parser;
5998 
5999 	if (!cnt)
6000 		return 0;
6001 
6002 	/* Read mode uses seq functions */
6003 	if (file->f_mode & FMODE_READ) {
6004 		struct seq_file *m = file->private_data;
6005 		fgd = m->private;
6006 	}
6007 
6008 	parser = &fgd->parser;
6009 
6010 	read = trace_get_user(parser, ubuf, cnt, ppos);
6011 
6012 	if (read >= 0 && trace_parser_loaded(parser) &&
6013 	    !trace_parser_cont(parser)) {
6014 
6015 		ret = ftrace_graph_set_hash(fgd->new_hash,
6016 					    parser->buffer);
6017 		trace_parser_clear(parser);
6018 	}
6019 
6020 	if (!ret)
6021 		ret = read;
6022 
6023 	return ret;
6024 }
6025 
6026 static const struct file_operations ftrace_graph_fops = {
6027 	.open		= ftrace_graph_open,
6028 	.read		= seq_read,
6029 	.write		= ftrace_graph_write,
6030 	.llseek		= tracing_lseek,
6031 	.release	= ftrace_graph_release,
6032 };
6033 
6034 static const struct file_operations ftrace_graph_notrace_fops = {
6035 	.open		= ftrace_graph_notrace_open,
6036 	.read		= seq_read,
6037 	.write		= ftrace_graph_write,
6038 	.llseek		= tracing_lseek,
6039 	.release	= ftrace_graph_release,
6040 };
6041 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6042 
6043 void ftrace_create_filter_files(struct ftrace_ops *ops,
6044 				struct dentry *parent)
6045 {
6046 
6047 	trace_create_file("set_ftrace_filter", 0644, parent,
6048 			  ops, &ftrace_filter_fops);
6049 
6050 	trace_create_file("set_ftrace_notrace", 0644, parent,
6051 			  ops, &ftrace_notrace_fops);
6052 }
6053 
6054 /*
6055  * The name "destroy_filter_files" is really a misnomer. Although
6056  * in the future, it may actually delete the files, but this is
6057  * really intended to make sure the ops passed in are disabled
6058  * and that when this function returns, the caller is free to
6059  * free the ops.
6060  *
6061  * The "destroy" name is only to match the "create" name that this
6062  * should be paired with.
6063  */
6064 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6065 {
6066 	mutex_lock(&ftrace_lock);
6067 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6068 		ftrace_shutdown(ops, 0);
6069 	ops->flags |= FTRACE_OPS_FL_DELETED;
6070 	ftrace_free_filter(ops);
6071 	mutex_unlock(&ftrace_lock);
6072 }
6073 
6074 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6075 {
6076 
6077 	trace_create_file("available_filter_functions", 0444,
6078 			d_tracer, NULL, &ftrace_avail_fops);
6079 
6080 	trace_create_file("enabled_functions", 0444,
6081 			d_tracer, NULL, &ftrace_enabled_fops);
6082 
6083 	ftrace_create_filter_files(&global_ops, d_tracer);
6084 
6085 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6086 	trace_create_file("set_graph_function", 0644, d_tracer,
6087 				    NULL,
6088 				    &ftrace_graph_fops);
6089 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6090 				    NULL,
6091 				    &ftrace_graph_notrace_fops);
6092 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6093 
6094 	return 0;
6095 }
6096 
6097 static int ftrace_cmp_ips(const void *a, const void *b)
6098 {
6099 	const unsigned long *ipa = a;
6100 	const unsigned long *ipb = b;
6101 
6102 	if (*ipa > *ipb)
6103 		return 1;
6104 	if (*ipa < *ipb)
6105 		return -1;
6106 	return 0;
6107 }
6108 
6109 static int ftrace_process_locs(struct module *mod,
6110 			       unsigned long *start,
6111 			       unsigned long *end)
6112 {
6113 	struct ftrace_page *start_pg;
6114 	struct ftrace_page *pg;
6115 	struct dyn_ftrace *rec;
6116 	unsigned long count;
6117 	unsigned long *p;
6118 	unsigned long addr;
6119 	unsigned long flags = 0; /* Shut up gcc */
6120 	int ret = -ENOMEM;
6121 
6122 	count = end - start;
6123 
6124 	if (!count)
6125 		return 0;
6126 
6127 	sort(start, count, sizeof(*start),
6128 	     ftrace_cmp_ips, NULL);
6129 
6130 	start_pg = ftrace_allocate_pages(count);
6131 	if (!start_pg)
6132 		return -ENOMEM;
6133 
6134 	mutex_lock(&ftrace_lock);
6135 
6136 	/*
6137 	 * Core and each module needs their own pages, as
6138 	 * modules will free them when they are removed.
6139 	 * Force a new page to be allocated for modules.
6140 	 */
6141 	if (!mod) {
6142 		WARN_ON(ftrace_pages || ftrace_pages_start);
6143 		/* First initialization */
6144 		ftrace_pages = ftrace_pages_start = start_pg;
6145 	} else {
6146 		if (!ftrace_pages)
6147 			goto out;
6148 
6149 		if (WARN_ON(ftrace_pages->next)) {
6150 			/* Hmm, we have free pages? */
6151 			while (ftrace_pages->next)
6152 				ftrace_pages = ftrace_pages->next;
6153 		}
6154 
6155 		ftrace_pages->next = start_pg;
6156 	}
6157 
6158 	p = start;
6159 	pg = start_pg;
6160 	while (p < end) {
6161 		addr = ftrace_call_adjust(*p++);
6162 		/*
6163 		 * Some architecture linkers will pad between
6164 		 * the different mcount_loc sections of different
6165 		 * object files to satisfy alignments.
6166 		 * Skip any NULL pointers.
6167 		 */
6168 		if (!addr)
6169 			continue;
6170 
6171 		if (pg->index == pg->size) {
6172 			/* We should have allocated enough */
6173 			if (WARN_ON(!pg->next))
6174 				break;
6175 			pg = pg->next;
6176 		}
6177 
6178 		rec = &pg->records[pg->index++];
6179 		rec->ip = addr;
6180 	}
6181 
6182 	/* We should have used all pages */
6183 	WARN_ON(pg->next);
6184 
6185 	/* Assign the last page to ftrace_pages */
6186 	ftrace_pages = pg;
6187 
6188 	/*
6189 	 * We only need to disable interrupts on start up
6190 	 * because we are modifying code that an interrupt
6191 	 * may execute, and the modification is not atomic.
6192 	 * But for modules, nothing runs the code we modify
6193 	 * until we are finished with it, and there's no
6194 	 * reason to cause large interrupt latencies while we do it.
6195 	 */
6196 	if (!mod)
6197 		local_irq_save(flags);
6198 	ftrace_update_code(mod, start_pg);
6199 	if (!mod)
6200 		local_irq_restore(flags);
6201 	ret = 0;
6202  out:
6203 	mutex_unlock(&ftrace_lock);
6204 
6205 	return ret;
6206 }
6207 
6208 struct ftrace_mod_func {
6209 	struct list_head	list;
6210 	char			*name;
6211 	unsigned long		ip;
6212 	unsigned int		size;
6213 };
6214 
6215 struct ftrace_mod_map {
6216 	struct rcu_head		rcu;
6217 	struct list_head	list;
6218 	struct module		*mod;
6219 	unsigned long		start_addr;
6220 	unsigned long		end_addr;
6221 	struct list_head	funcs;
6222 	unsigned int		num_funcs;
6223 };
6224 
6225 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6226 					 unsigned long *value, char *type,
6227 					 char *name, char *module_name,
6228 					 int *exported)
6229 {
6230 	struct ftrace_ops *op;
6231 
6232 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6233 		if (!op->trampoline || symnum--)
6234 			continue;
6235 		*value = op->trampoline;
6236 		*type = 't';
6237 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6238 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6239 		*exported = 0;
6240 		return 0;
6241 	}
6242 
6243 	return -ERANGE;
6244 }
6245 
6246 #ifdef CONFIG_MODULES
6247 
6248 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6249 
6250 static LIST_HEAD(ftrace_mod_maps);
6251 
6252 static int referenced_filters(struct dyn_ftrace *rec)
6253 {
6254 	struct ftrace_ops *ops;
6255 	int cnt = 0;
6256 
6257 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6258 		if (ops_references_rec(ops, rec))
6259 		    cnt++;
6260 	}
6261 
6262 	return cnt;
6263 }
6264 
6265 static void
6266 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6267 {
6268 	struct ftrace_func_entry *entry;
6269 	struct dyn_ftrace *rec;
6270 	int i;
6271 
6272 	if (ftrace_hash_empty(hash))
6273 		return;
6274 
6275 	for (i = 0; i < pg->index; i++) {
6276 		rec = &pg->records[i];
6277 		entry = __ftrace_lookup_ip(hash, rec->ip);
6278 		/*
6279 		 * Do not allow this rec to match again.
6280 		 * Yeah, it may waste some memory, but will be removed
6281 		 * if/when the hash is modified again.
6282 		 */
6283 		if (entry)
6284 			entry->ip = 0;
6285 	}
6286 }
6287 
6288 /* Clear any records from hashs */
6289 static void clear_mod_from_hashes(struct ftrace_page *pg)
6290 {
6291 	struct trace_array *tr;
6292 
6293 	mutex_lock(&trace_types_lock);
6294 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6295 		if (!tr->ops || !tr->ops->func_hash)
6296 			continue;
6297 		mutex_lock(&tr->ops->func_hash->regex_lock);
6298 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6299 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6300 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6301 	}
6302 	mutex_unlock(&trace_types_lock);
6303 }
6304 
6305 static void ftrace_free_mod_map(struct rcu_head *rcu)
6306 {
6307 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6308 	struct ftrace_mod_func *mod_func;
6309 	struct ftrace_mod_func *n;
6310 
6311 	/* All the contents of mod_map are now not visible to readers */
6312 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6313 		kfree(mod_func->name);
6314 		list_del(&mod_func->list);
6315 		kfree(mod_func);
6316 	}
6317 
6318 	kfree(mod_map);
6319 }
6320 
6321 void ftrace_release_mod(struct module *mod)
6322 {
6323 	struct ftrace_mod_map *mod_map;
6324 	struct ftrace_mod_map *n;
6325 	struct dyn_ftrace *rec;
6326 	struct ftrace_page **last_pg;
6327 	struct ftrace_page *tmp_page = NULL;
6328 	struct ftrace_page *pg;
6329 	int order;
6330 
6331 	mutex_lock(&ftrace_lock);
6332 
6333 	if (ftrace_disabled)
6334 		goto out_unlock;
6335 
6336 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6337 		if (mod_map->mod == mod) {
6338 			list_del_rcu(&mod_map->list);
6339 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6340 			break;
6341 		}
6342 	}
6343 
6344 	/*
6345 	 * Each module has its own ftrace_pages, remove
6346 	 * them from the list.
6347 	 */
6348 	last_pg = &ftrace_pages_start;
6349 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6350 		rec = &pg->records[0];
6351 		if (within_module_core(rec->ip, mod) ||
6352 		    within_module_init(rec->ip, mod)) {
6353 			/*
6354 			 * As core pages are first, the first
6355 			 * page should never be a module page.
6356 			 */
6357 			if (WARN_ON(pg == ftrace_pages_start))
6358 				goto out_unlock;
6359 
6360 			/* Check if we are deleting the last page */
6361 			if (pg == ftrace_pages)
6362 				ftrace_pages = next_to_ftrace_page(last_pg);
6363 
6364 			ftrace_update_tot_cnt -= pg->index;
6365 			*last_pg = pg->next;
6366 
6367 			pg->next = tmp_page;
6368 			tmp_page = pg;
6369 		} else
6370 			last_pg = &pg->next;
6371 	}
6372  out_unlock:
6373 	mutex_unlock(&ftrace_lock);
6374 
6375 	for (pg = tmp_page; pg; pg = tmp_page) {
6376 
6377 		/* Needs to be called outside of ftrace_lock */
6378 		clear_mod_from_hashes(pg);
6379 
6380 		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6381 		free_pages((unsigned long)pg->records, order);
6382 		tmp_page = pg->next;
6383 		kfree(pg);
6384 		ftrace_number_of_pages -= 1 << order;
6385 		ftrace_number_of_groups--;
6386 	}
6387 }
6388 
6389 void ftrace_module_enable(struct module *mod)
6390 {
6391 	struct dyn_ftrace *rec;
6392 	struct ftrace_page *pg;
6393 
6394 	mutex_lock(&ftrace_lock);
6395 
6396 	if (ftrace_disabled)
6397 		goto out_unlock;
6398 
6399 	/*
6400 	 * If the tracing is enabled, go ahead and enable the record.
6401 	 *
6402 	 * The reason not to enable the record immediately is the
6403 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6404 	 * correct previous instructions.  Making first the NOP
6405 	 * conversion puts the module to the correct state, thus
6406 	 * passing the ftrace_make_call check.
6407 	 *
6408 	 * We also delay this to after the module code already set the
6409 	 * text to read-only, as we now need to set it back to read-write
6410 	 * so that we can modify the text.
6411 	 */
6412 	if (ftrace_start_up)
6413 		ftrace_arch_code_modify_prepare();
6414 
6415 	do_for_each_ftrace_rec(pg, rec) {
6416 		int cnt;
6417 		/*
6418 		 * do_for_each_ftrace_rec() is a double loop.
6419 		 * module text shares the pg. If a record is
6420 		 * not part of this module, then skip this pg,
6421 		 * which the "break" will do.
6422 		 */
6423 		if (!within_module_core(rec->ip, mod) &&
6424 		    !within_module_init(rec->ip, mod))
6425 			break;
6426 
6427 		cnt = 0;
6428 
6429 		/*
6430 		 * When adding a module, we need to check if tracers are
6431 		 * currently enabled and if they are, and can trace this record,
6432 		 * we need to enable the module functions as well as update the
6433 		 * reference counts for those function records.
6434 		 */
6435 		if (ftrace_start_up)
6436 			cnt += referenced_filters(rec);
6437 
6438 		/* This clears FTRACE_FL_DISABLED */
6439 		rec->flags = cnt;
6440 
6441 		if (ftrace_start_up && cnt) {
6442 			int failed = __ftrace_replace_code(rec, 1);
6443 			if (failed) {
6444 				ftrace_bug(failed, rec);
6445 				goto out_loop;
6446 			}
6447 		}
6448 
6449 	} while_for_each_ftrace_rec();
6450 
6451  out_loop:
6452 	if (ftrace_start_up)
6453 		ftrace_arch_code_modify_post_process();
6454 
6455  out_unlock:
6456 	mutex_unlock(&ftrace_lock);
6457 
6458 	process_cached_mods(mod->name);
6459 }
6460 
6461 void ftrace_module_init(struct module *mod)
6462 {
6463 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6464 		return;
6465 
6466 	ftrace_process_locs(mod, mod->ftrace_callsites,
6467 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6468 }
6469 
6470 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6471 				struct dyn_ftrace *rec)
6472 {
6473 	struct ftrace_mod_func *mod_func;
6474 	unsigned long symsize;
6475 	unsigned long offset;
6476 	char str[KSYM_SYMBOL_LEN];
6477 	char *modname;
6478 	const char *ret;
6479 
6480 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6481 	if (!ret)
6482 		return;
6483 
6484 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6485 	if (!mod_func)
6486 		return;
6487 
6488 	mod_func->name = kstrdup(str, GFP_KERNEL);
6489 	if (!mod_func->name) {
6490 		kfree(mod_func);
6491 		return;
6492 	}
6493 
6494 	mod_func->ip = rec->ip - offset;
6495 	mod_func->size = symsize;
6496 
6497 	mod_map->num_funcs++;
6498 
6499 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6500 }
6501 
6502 static struct ftrace_mod_map *
6503 allocate_ftrace_mod_map(struct module *mod,
6504 			unsigned long start, unsigned long end)
6505 {
6506 	struct ftrace_mod_map *mod_map;
6507 
6508 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6509 	if (!mod_map)
6510 		return NULL;
6511 
6512 	mod_map->mod = mod;
6513 	mod_map->start_addr = start;
6514 	mod_map->end_addr = end;
6515 	mod_map->num_funcs = 0;
6516 
6517 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6518 
6519 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6520 
6521 	return mod_map;
6522 }
6523 
6524 static const char *
6525 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6526 			   unsigned long addr, unsigned long *size,
6527 			   unsigned long *off, char *sym)
6528 {
6529 	struct ftrace_mod_func *found_func =  NULL;
6530 	struct ftrace_mod_func *mod_func;
6531 
6532 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6533 		if (addr >= mod_func->ip &&
6534 		    addr < mod_func->ip + mod_func->size) {
6535 			found_func = mod_func;
6536 			break;
6537 		}
6538 	}
6539 
6540 	if (found_func) {
6541 		if (size)
6542 			*size = found_func->size;
6543 		if (off)
6544 			*off = addr - found_func->ip;
6545 		if (sym)
6546 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6547 
6548 		return found_func->name;
6549 	}
6550 
6551 	return NULL;
6552 }
6553 
6554 const char *
6555 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6556 		   unsigned long *off, char **modname, char *sym)
6557 {
6558 	struct ftrace_mod_map *mod_map;
6559 	const char *ret = NULL;
6560 
6561 	/* mod_map is freed via call_rcu() */
6562 	preempt_disable();
6563 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6564 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6565 		if (ret) {
6566 			if (modname)
6567 				*modname = mod_map->mod->name;
6568 			break;
6569 		}
6570 	}
6571 	preempt_enable();
6572 
6573 	return ret;
6574 }
6575 
6576 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6577 			   char *type, char *name,
6578 			   char *module_name, int *exported)
6579 {
6580 	struct ftrace_mod_map *mod_map;
6581 	struct ftrace_mod_func *mod_func;
6582 	int ret;
6583 
6584 	preempt_disable();
6585 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6586 
6587 		if (symnum >= mod_map->num_funcs) {
6588 			symnum -= mod_map->num_funcs;
6589 			continue;
6590 		}
6591 
6592 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6593 			if (symnum > 1) {
6594 				symnum--;
6595 				continue;
6596 			}
6597 
6598 			*value = mod_func->ip;
6599 			*type = 'T';
6600 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6601 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6602 			*exported = 1;
6603 			preempt_enable();
6604 			return 0;
6605 		}
6606 		WARN_ON(1);
6607 		break;
6608 	}
6609 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6610 					    module_name, exported);
6611 	preempt_enable();
6612 	return ret;
6613 }
6614 
6615 #else
6616 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6617 				struct dyn_ftrace *rec) { }
6618 static inline struct ftrace_mod_map *
6619 allocate_ftrace_mod_map(struct module *mod,
6620 			unsigned long start, unsigned long end)
6621 {
6622 	return NULL;
6623 }
6624 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6625 			   char *type, char *name, char *module_name,
6626 			   int *exported)
6627 {
6628 	int ret;
6629 
6630 	preempt_disable();
6631 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6632 					    module_name, exported);
6633 	preempt_enable();
6634 	return ret;
6635 }
6636 #endif /* CONFIG_MODULES */
6637 
6638 struct ftrace_init_func {
6639 	struct list_head list;
6640 	unsigned long ip;
6641 };
6642 
6643 /* Clear any init ips from hashes */
6644 static void
6645 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6646 {
6647 	struct ftrace_func_entry *entry;
6648 
6649 	entry = ftrace_lookup_ip(hash, func->ip);
6650 	/*
6651 	 * Do not allow this rec to match again.
6652 	 * Yeah, it may waste some memory, but will be removed
6653 	 * if/when the hash is modified again.
6654 	 */
6655 	if (entry)
6656 		entry->ip = 0;
6657 }
6658 
6659 static void
6660 clear_func_from_hashes(struct ftrace_init_func *func)
6661 {
6662 	struct trace_array *tr;
6663 
6664 	mutex_lock(&trace_types_lock);
6665 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6666 		if (!tr->ops || !tr->ops->func_hash)
6667 			continue;
6668 		mutex_lock(&tr->ops->func_hash->regex_lock);
6669 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6670 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6671 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6672 	}
6673 	mutex_unlock(&trace_types_lock);
6674 }
6675 
6676 static void add_to_clear_hash_list(struct list_head *clear_list,
6677 				   struct dyn_ftrace *rec)
6678 {
6679 	struct ftrace_init_func *func;
6680 
6681 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6682 	if (!func) {
6683 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6684 		return;
6685 	}
6686 
6687 	func->ip = rec->ip;
6688 	list_add(&func->list, clear_list);
6689 }
6690 
6691 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6692 {
6693 	unsigned long start = (unsigned long)(start_ptr);
6694 	unsigned long end = (unsigned long)(end_ptr);
6695 	struct ftrace_page **last_pg = &ftrace_pages_start;
6696 	struct ftrace_page *pg;
6697 	struct dyn_ftrace *rec;
6698 	struct dyn_ftrace key;
6699 	struct ftrace_mod_map *mod_map = NULL;
6700 	struct ftrace_init_func *func, *func_next;
6701 	struct list_head clear_hash;
6702 	int order;
6703 
6704 	INIT_LIST_HEAD(&clear_hash);
6705 
6706 	key.ip = start;
6707 	key.flags = end;	/* overload flags, as it is unsigned long */
6708 
6709 	mutex_lock(&ftrace_lock);
6710 
6711 	/*
6712 	 * If we are freeing module init memory, then check if
6713 	 * any tracer is active. If so, we need to save a mapping of
6714 	 * the module functions being freed with the address.
6715 	 */
6716 	if (mod && ftrace_ops_list != &ftrace_list_end)
6717 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6718 
6719 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6720 		if (end < pg->records[0].ip ||
6721 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6722 			continue;
6723  again:
6724 		rec = bsearch(&key, pg->records, pg->index,
6725 			      sizeof(struct dyn_ftrace),
6726 			      ftrace_cmp_recs);
6727 		if (!rec)
6728 			continue;
6729 
6730 		/* rec will be cleared from hashes after ftrace_lock unlock */
6731 		add_to_clear_hash_list(&clear_hash, rec);
6732 
6733 		if (mod_map)
6734 			save_ftrace_mod_rec(mod_map, rec);
6735 
6736 		pg->index--;
6737 		ftrace_update_tot_cnt--;
6738 		if (!pg->index) {
6739 			*last_pg = pg->next;
6740 			order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6741 			free_pages((unsigned long)pg->records, order);
6742 			ftrace_number_of_pages -= 1 << order;
6743 			ftrace_number_of_groups--;
6744 			kfree(pg);
6745 			pg = container_of(last_pg, struct ftrace_page, next);
6746 			if (!(*last_pg))
6747 				ftrace_pages = pg;
6748 			continue;
6749 		}
6750 		memmove(rec, rec + 1,
6751 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6752 		/* More than one function may be in this block */
6753 		goto again;
6754 	}
6755 	mutex_unlock(&ftrace_lock);
6756 
6757 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6758 		clear_func_from_hashes(func);
6759 		kfree(func);
6760 	}
6761 }
6762 
6763 void __init ftrace_free_init_mem(void)
6764 {
6765 	void *start = (void *)(&__init_begin);
6766 	void *end = (void *)(&__init_end);
6767 
6768 	ftrace_free_mem(NULL, start, end);
6769 }
6770 
6771 void __init ftrace_init(void)
6772 {
6773 	extern unsigned long __start_mcount_loc[];
6774 	extern unsigned long __stop_mcount_loc[];
6775 	unsigned long count, flags;
6776 	int ret;
6777 
6778 	local_irq_save(flags);
6779 	ret = ftrace_dyn_arch_init();
6780 	local_irq_restore(flags);
6781 	if (ret)
6782 		goto failed;
6783 
6784 	count = __stop_mcount_loc - __start_mcount_loc;
6785 	if (!count) {
6786 		pr_info("ftrace: No functions to be traced?\n");
6787 		goto failed;
6788 	}
6789 
6790 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6791 		count, count / ENTRIES_PER_PAGE + 1);
6792 
6793 	last_ftrace_enabled = ftrace_enabled = 1;
6794 
6795 	ret = ftrace_process_locs(NULL,
6796 				  __start_mcount_loc,
6797 				  __stop_mcount_loc);
6798 
6799 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6800 		ftrace_number_of_pages, ftrace_number_of_groups);
6801 
6802 	set_ftrace_early_filters();
6803 
6804 	return;
6805  failed:
6806 	ftrace_disabled = 1;
6807 }
6808 
6809 /* Do nothing if arch does not support this */
6810 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6811 {
6812 }
6813 
6814 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6815 {
6816 	unsigned long trampoline = ops->trampoline;
6817 
6818 	arch_ftrace_update_trampoline(ops);
6819 	if (ops->trampoline && ops->trampoline != trampoline &&
6820 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6821 		/* Add to kallsyms before the perf events */
6822 		ftrace_add_trampoline_to_kallsyms(ops);
6823 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6824 				   ops->trampoline, ops->trampoline_size, false,
6825 				   FTRACE_TRAMPOLINE_SYM);
6826 		/*
6827 		 * Record the perf text poke event after the ksymbol register
6828 		 * event.
6829 		 */
6830 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6831 				     (void *)ops->trampoline,
6832 				     ops->trampoline_size);
6833 	}
6834 }
6835 
6836 void ftrace_init_trace_array(struct trace_array *tr)
6837 {
6838 	INIT_LIST_HEAD(&tr->func_probes);
6839 	INIT_LIST_HEAD(&tr->mod_trace);
6840 	INIT_LIST_HEAD(&tr->mod_notrace);
6841 }
6842 #else
6843 
6844 struct ftrace_ops global_ops = {
6845 	.func			= ftrace_stub,
6846 	.flags			= FTRACE_OPS_FL_RECURSION_SAFE |
6847 				  FTRACE_OPS_FL_INITIALIZED |
6848 				  FTRACE_OPS_FL_PID,
6849 };
6850 
6851 static int __init ftrace_nodyn_init(void)
6852 {
6853 	ftrace_enabled = 1;
6854 	return 0;
6855 }
6856 core_initcall(ftrace_nodyn_init);
6857 
6858 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6859 static inline void ftrace_startup_enable(int command) { }
6860 static inline void ftrace_startup_all(int command) { }
6861 
6862 # define ftrace_startup_sysctl()	do { } while (0)
6863 # define ftrace_shutdown_sysctl()	do { } while (0)
6864 
6865 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6866 {
6867 }
6868 
6869 #endif /* CONFIG_DYNAMIC_FTRACE */
6870 
6871 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6872 {
6873 	tr->ops = &global_ops;
6874 	tr->ops->private = tr;
6875 	ftrace_init_trace_array(tr);
6876 }
6877 
6878 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6879 {
6880 	/* If we filter on pids, update to use the pid function */
6881 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6882 		if (WARN_ON(tr->ops->func != ftrace_stub))
6883 			printk("ftrace ops had %pS for function\n",
6884 			       tr->ops->func);
6885 	}
6886 	tr->ops->func = func;
6887 	tr->ops->private = tr;
6888 }
6889 
6890 void ftrace_reset_array_ops(struct trace_array *tr)
6891 {
6892 	tr->ops->func = ftrace_stub;
6893 }
6894 
6895 static nokprobe_inline void
6896 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6897 		       struct ftrace_ops *ignored, struct pt_regs *regs)
6898 {
6899 	struct ftrace_ops *op;
6900 	int bit;
6901 
6902 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6903 	if (bit < 0)
6904 		return;
6905 
6906 	/*
6907 	 * Some of the ops may be dynamically allocated,
6908 	 * they must be freed after a synchronize_rcu().
6909 	 */
6910 	preempt_disable_notrace();
6911 
6912 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6913 		/* Stub functions don't need to be called nor tested */
6914 		if (op->flags & FTRACE_OPS_FL_STUB)
6915 			continue;
6916 		/*
6917 		 * Check the following for each ops before calling their func:
6918 		 *  if RCU flag is set, then rcu_is_watching() must be true
6919 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6920 		 *                          must be false
6921 		 *  Otherwise test if the ip matches the ops filter
6922 		 *
6923 		 * If any of the above fails then the op->func() is not executed.
6924 		 */
6925 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6926 		    ftrace_ops_test(op, ip, regs)) {
6927 			if (FTRACE_WARN_ON(!op->func)) {
6928 				pr_warn("op=%p %pS\n", op, op);
6929 				goto out;
6930 			}
6931 			op->func(ip, parent_ip, op, regs);
6932 		}
6933 	} while_for_each_ftrace_op(op);
6934 out:
6935 	preempt_enable_notrace();
6936 	trace_clear_recursion(bit);
6937 }
6938 
6939 /*
6940  * Some archs only support passing ip and parent_ip. Even though
6941  * the list function ignores the op parameter, we do not want any
6942  * C side effects, where a function is called without the caller
6943  * sending a third parameter.
6944  * Archs are to support both the regs and ftrace_ops at the same time.
6945  * If they support ftrace_ops, it is assumed they support regs.
6946  * If call backs want to use regs, they must either check for regs
6947  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
6948  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
6949  * An architecture can pass partial regs with ftrace_ops and still
6950  * set the ARCH_SUPPORTS_FTRACE_OPS.
6951  */
6952 #if ARCH_SUPPORTS_FTRACE_OPS
6953 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6954 				 struct ftrace_ops *op, struct pt_regs *regs)
6955 {
6956 	__ftrace_ops_list_func(ip, parent_ip, NULL, regs);
6957 }
6958 NOKPROBE_SYMBOL(ftrace_ops_list_func);
6959 #else
6960 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
6961 {
6962 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
6963 }
6964 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
6965 #endif
6966 
6967 /*
6968  * If there's only one function registered but it does not support
6969  * recursion, needs RCU protection and/or requires per cpu handling, then
6970  * this function will be called by the mcount trampoline.
6971  */
6972 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
6973 				   struct ftrace_ops *op, struct pt_regs *regs)
6974 {
6975 	int bit;
6976 
6977 	if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching())
6978 		return;
6979 
6980 	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6981 	if (bit < 0)
6982 		return;
6983 
6984 	preempt_disable_notrace();
6985 
6986 	op->func(ip, parent_ip, op, regs);
6987 
6988 	preempt_enable_notrace();
6989 	trace_clear_recursion(bit);
6990 }
6991 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
6992 
6993 /**
6994  * ftrace_ops_get_func - get the function a trampoline should call
6995  * @ops: the ops to get the function for
6996  *
6997  * Normally the mcount trampoline will call the ops->func, but there
6998  * are times that it should not. For example, if the ops does not
6999  * have its own recursion protection, then it should call the
7000  * ftrace_ops_assist_func() instead.
7001  *
7002  * Returns the function that the trampoline should call for @ops.
7003  */
7004 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7005 {
7006 	/*
7007 	 * If the function does not handle recursion, needs to be RCU safe,
7008 	 * or does per cpu logic, then we need to call the assist handler.
7009 	 */
7010 	if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
7011 	    ops->flags & FTRACE_OPS_FL_RCU)
7012 		return ftrace_ops_assist_func;
7013 
7014 	return ops->func;
7015 }
7016 
7017 static void
7018 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7019 		    struct task_struct *prev, struct task_struct *next)
7020 {
7021 	struct trace_array *tr = data;
7022 	struct trace_pid_list *pid_list;
7023 	struct trace_pid_list *no_pid_list;
7024 
7025 	pid_list = rcu_dereference_sched(tr->function_pids);
7026 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7027 
7028 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7029 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7030 			       FTRACE_PID_IGNORE);
7031 	else
7032 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7033 			       next->pid);
7034 }
7035 
7036 static void
7037 ftrace_pid_follow_sched_process_fork(void *data,
7038 				     struct task_struct *self,
7039 				     struct task_struct *task)
7040 {
7041 	struct trace_pid_list *pid_list;
7042 	struct trace_array *tr = data;
7043 
7044 	pid_list = rcu_dereference_sched(tr->function_pids);
7045 	trace_filter_add_remove_task(pid_list, self, task);
7046 
7047 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7048 	trace_filter_add_remove_task(pid_list, self, task);
7049 }
7050 
7051 static void
7052 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7053 {
7054 	struct trace_pid_list *pid_list;
7055 	struct trace_array *tr = data;
7056 
7057 	pid_list = rcu_dereference_sched(tr->function_pids);
7058 	trace_filter_add_remove_task(pid_list, NULL, task);
7059 
7060 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7061 	trace_filter_add_remove_task(pid_list, NULL, task);
7062 }
7063 
7064 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7065 {
7066 	if (enable) {
7067 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7068 						  tr);
7069 		register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
7070 						  tr);
7071 	} else {
7072 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7073 						    tr);
7074 		unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
7075 						    tr);
7076 	}
7077 }
7078 
7079 static void clear_ftrace_pids(struct trace_array *tr, int type)
7080 {
7081 	struct trace_pid_list *pid_list;
7082 	struct trace_pid_list *no_pid_list;
7083 	int cpu;
7084 
7085 	pid_list = rcu_dereference_protected(tr->function_pids,
7086 					     lockdep_is_held(&ftrace_lock));
7087 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7088 						lockdep_is_held(&ftrace_lock));
7089 
7090 	/* Make sure there's something to do */
7091 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7092 		return;
7093 
7094 	/* See if the pids still need to be checked after this */
7095 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7096 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7097 		for_each_possible_cpu(cpu)
7098 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7099 	}
7100 
7101 	if (type & TRACE_PIDS)
7102 		rcu_assign_pointer(tr->function_pids, NULL);
7103 
7104 	if (type & TRACE_NO_PIDS)
7105 		rcu_assign_pointer(tr->function_no_pids, NULL);
7106 
7107 	/* Wait till all users are no longer using pid filtering */
7108 	synchronize_rcu();
7109 
7110 	if ((type & TRACE_PIDS) && pid_list)
7111 		trace_free_pid_list(pid_list);
7112 
7113 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7114 		trace_free_pid_list(no_pid_list);
7115 }
7116 
7117 void ftrace_clear_pids(struct trace_array *tr)
7118 {
7119 	mutex_lock(&ftrace_lock);
7120 
7121 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7122 
7123 	mutex_unlock(&ftrace_lock);
7124 }
7125 
7126 static void ftrace_pid_reset(struct trace_array *tr, int type)
7127 {
7128 	mutex_lock(&ftrace_lock);
7129 	clear_ftrace_pids(tr, type);
7130 
7131 	ftrace_update_pid_func();
7132 	ftrace_startup_all(0);
7133 
7134 	mutex_unlock(&ftrace_lock);
7135 }
7136 
7137 /* Greater than any max PID */
7138 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7139 
7140 static void *fpid_start(struct seq_file *m, loff_t *pos)
7141 	__acquires(RCU)
7142 {
7143 	struct trace_pid_list *pid_list;
7144 	struct trace_array *tr = m->private;
7145 
7146 	mutex_lock(&ftrace_lock);
7147 	rcu_read_lock_sched();
7148 
7149 	pid_list = rcu_dereference_sched(tr->function_pids);
7150 
7151 	if (!pid_list)
7152 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7153 
7154 	return trace_pid_start(pid_list, pos);
7155 }
7156 
7157 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7158 {
7159 	struct trace_array *tr = m->private;
7160 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7161 
7162 	if (v == FTRACE_NO_PIDS) {
7163 		(*pos)++;
7164 		return NULL;
7165 	}
7166 	return trace_pid_next(pid_list, v, pos);
7167 }
7168 
7169 static void fpid_stop(struct seq_file *m, void *p)
7170 	__releases(RCU)
7171 {
7172 	rcu_read_unlock_sched();
7173 	mutex_unlock(&ftrace_lock);
7174 }
7175 
7176 static int fpid_show(struct seq_file *m, void *v)
7177 {
7178 	if (v == FTRACE_NO_PIDS) {
7179 		seq_puts(m, "no pid\n");
7180 		return 0;
7181 	}
7182 
7183 	return trace_pid_show(m, v);
7184 }
7185 
7186 static const struct seq_operations ftrace_pid_sops = {
7187 	.start = fpid_start,
7188 	.next = fpid_next,
7189 	.stop = fpid_stop,
7190 	.show = fpid_show,
7191 };
7192 
7193 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7194 	__acquires(RCU)
7195 {
7196 	struct trace_pid_list *pid_list;
7197 	struct trace_array *tr = m->private;
7198 
7199 	mutex_lock(&ftrace_lock);
7200 	rcu_read_lock_sched();
7201 
7202 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7203 
7204 	if (!pid_list)
7205 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7206 
7207 	return trace_pid_start(pid_list, pos);
7208 }
7209 
7210 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7211 {
7212 	struct trace_array *tr = m->private;
7213 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7214 
7215 	if (v == FTRACE_NO_PIDS) {
7216 		(*pos)++;
7217 		return NULL;
7218 	}
7219 	return trace_pid_next(pid_list, v, pos);
7220 }
7221 
7222 static const struct seq_operations ftrace_no_pid_sops = {
7223 	.start = fnpid_start,
7224 	.next = fnpid_next,
7225 	.stop = fpid_stop,
7226 	.show = fpid_show,
7227 };
7228 
7229 static int pid_open(struct inode *inode, struct file *file, int type)
7230 {
7231 	const struct seq_operations *seq_ops;
7232 	struct trace_array *tr = inode->i_private;
7233 	struct seq_file *m;
7234 	int ret = 0;
7235 
7236 	ret = tracing_check_open_get_tr(tr);
7237 	if (ret)
7238 		return ret;
7239 
7240 	if ((file->f_mode & FMODE_WRITE) &&
7241 	    (file->f_flags & O_TRUNC))
7242 		ftrace_pid_reset(tr, type);
7243 
7244 	switch (type) {
7245 	case TRACE_PIDS:
7246 		seq_ops = &ftrace_pid_sops;
7247 		break;
7248 	case TRACE_NO_PIDS:
7249 		seq_ops = &ftrace_no_pid_sops;
7250 		break;
7251 	default:
7252 		trace_array_put(tr);
7253 		WARN_ON_ONCE(1);
7254 		return -EINVAL;
7255 	}
7256 
7257 	ret = seq_open(file, seq_ops);
7258 	if (ret < 0) {
7259 		trace_array_put(tr);
7260 	} else {
7261 		m = file->private_data;
7262 		/* copy tr over to seq ops */
7263 		m->private = tr;
7264 	}
7265 
7266 	return ret;
7267 }
7268 
7269 static int
7270 ftrace_pid_open(struct inode *inode, struct file *file)
7271 {
7272 	return pid_open(inode, file, TRACE_PIDS);
7273 }
7274 
7275 static int
7276 ftrace_no_pid_open(struct inode *inode, struct file *file)
7277 {
7278 	return pid_open(inode, file, TRACE_NO_PIDS);
7279 }
7280 
7281 static void ignore_task_cpu(void *data)
7282 {
7283 	struct trace_array *tr = data;
7284 	struct trace_pid_list *pid_list;
7285 	struct trace_pid_list *no_pid_list;
7286 
7287 	/*
7288 	 * This function is called by on_each_cpu() while the
7289 	 * event_mutex is held.
7290 	 */
7291 	pid_list = rcu_dereference_protected(tr->function_pids,
7292 					     mutex_is_locked(&ftrace_lock));
7293 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7294 						mutex_is_locked(&ftrace_lock));
7295 
7296 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7297 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7298 			       FTRACE_PID_IGNORE);
7299 	else
7300 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7301 			       current->pid);
7302 }
7303 
7304 static ssize_t
7305 pid_write(struct file *filp, const char __user *ubuf,
7306 	  size_t cnt, loff_t *ppos, int type)
7307 {
7308 	struct seq_file *m = filp->private_data;
7309 	struct trace_array *tr = m->private;
7310 	struct trace_pid_list *filtered_pids;
7311 	struct trace_pid_list *other_pids;
7312 	struct trace_pid_list *pid_list;
7313 	ssize_t ret;
7314 
7315 	if (!cnt)
7316 		return 0;
7317 
7318 	mutex_lock(&ftrace_lock);
7319 
7320 	switch (type) {
7321 	case TRACE_PIDS:
7322 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7323 					     lockdep_is_held(&ftrace_lock));
7324 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7325 					     lockdep_is_held(&ftrace_lock));
7326 		break;
7327 	case TRACE_NO_PIDS:
7328 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7329 					     lockdep_is_held(&ftrace_lock));
7330 		other_pids = rcu_dereference_protected(tr->function_pids,
7331 					     lockdep_is_held(&ftrace_lock));
7332 		break;
7333 	default:
7334 		ret = -EINVAL;
7335 		WARN_ON_ONCE(1);
7336 		goto out;
7337 	}
7338 
7339 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7340 	if (ret < 0)
7341 		goto out;
7342 
7343 	switch (type) {
7344 	case TRACE_PIDS:
7345 		rcu_assign_pointer(tr->function_pids, pid_list);
7346 		break;
7347 	case TRACE_NO_PIDS:
7348 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7349 		break;
7350 	}
7351 
7352 
7353 	if (filtered_pids) {
7354 		synchronize_rcu();
7355 		trace_free_pid_list(filtered_pids);
7356 	} else if (pid_list && !other_pids) {
7357 		/* Register a probe to set whether to ignore the tracing of a task */
7358 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7359 	}
7360 
7361 	/*
7362 	 * Ignoring of pids is done at task switch. But we have to
7363 	 * check for those tasks that are currently running.
7364 	 * Always do this in case a pid was appended or removed.
7365 	 */
7366 	on_each_cpu(ignore_task_cpu, tr, 1);
7367 
7368 	ftrace_update_pid_func();
7369 	ftrace_startup_all(0);
7370  out:
7371 	mutex_unlock(&ftrace_lock);
7372 
7373 	if (ret > 0)
7374 		*ppos += ret;
7375 
7376 	return ret;
7377 }
7378 
7379 static ssize_t
7380 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7381 		 size_t cnt, loff_t *ppos)
7382 {
7383 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7384 }
7385 
7386 static ssize_t
7387 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7388 		    size_t cnt, loff_t *ppos)
7389 {
7390 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7391 }
7392 
7393 static int
7394 ftrace_pid_release(struct inode *inode, struct file *file)
7395 {
7396 	struct trace_array *tr = inode->i_private;
7397 
7398 	trace_array_put(tr);
7399 
7400 	return seq_release(inode, file);
7401 }
7402 
7403 static const struct file_operations ftrace_pid_fops = {
7404 	.open		= ftrace_pid_open,
7405 	.write		= ftrace_pid_write,
7406 	.read		= seq_read,
7407 	.llseek		= tracing_lseek,
7408 	.release	= ftrace_pid_release,
7409 };
7410 
7411 static const struct file_operations ftrace_no_pid_fops = {
7412 	.open		= ftrace_no_pid_open,
7413 	.write		= ftrace_no_pid_write,
7414 	.read		= seq_read,
7415 	.llseek		= tracing_lseek,
7416 	.release	= ftrace_pid_release,
7417 };
7418 
7419 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7420 {
7421 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7422 			    tr, &ftrace_pid_fops);
7423 	trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7424 			    tr, &ftrace_no_pid_fops);
7425 }
7426 
7427 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7428 					 struct dentry *d_tracer)
7429 {
7430 	/* Only the top level directory has the dyn_tracefs and profile */
7431 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7432 
7433 	ftrace_init_dyn_tracefs(d_tracer);
7434 	ftrace_profile_tracefs(d_tracer);
7435 }
7436 
7437 /**
7438  * ftrace_kill - kill ftrace
7439  *
7440  * This function should be used by panic code. It stops ftrace
7441  * but in a not so nice way. If you need to simply kill ftrace
7442  * from a non-atomic section, use ftrace_kill.
7443  */
7444 void ftrace_kill(void)
7445 {
7446 	ftrace_disabled = 1;
7447 	ftrace_enabled = 0;
7448 	ftrace_trace_function = ftrace_stub;
7449 }
7450 
7451 /**
7452  * Test if ftrace is dead or not.
7453  */
7454 int ftrace_is_dead(void)
7455 {
7456 	return ftrace_disabled;
7457 }
7458 
7459 /**
7460  * register_ftrace_function - register a function for profiling
7461  * @ops - ops structure that holds the function for profiling.
7462  *
7463  * Register a function to be called by all functions in the
7464  * kernel.
7465  *
7466  * Note: @ops->func and all the functions it calls must be labeled
7467  *       with "notrace", otherwise it will go into a
7468  *       recursive loop.
7469  */
7470 int register_ftrace_function(struct ftrace_ops *ops)
7471 {
7472 	int ret = -1;
7473 
7474 	ftrace_ops_init(ops);
7475 
7476 	mutex_lock(&ftrace_lock);
7477 
7478 	ret = ftrace_startup(ops, 0);
7479 
7480 	mutex_unlock(&ftrace_lock);
7481 
7482 	return ret;
7483 }
7484 EXPORT_SYMBOL_GPL(register_ftrace_function);
7485 
7486 /**
7487  * unregister_ftrace_function - unregister a function for profiling.
7488  * @ops - ops structure that holds the function to unregister
7489  *
7490  * Unregister a function that was added to be called by ftrace profiling.
7491  */
7492 int unregister_ftrace_function(struct ftrace_ops *ops)
7493 {
7494 	int ret;
7495 
7496 	mutex_lock(&ftrace_lock);
7497 	ret = ftrace_shutdown(ops, 0);
7498 	mutex_unlock(&ftrace_lock);
7499 
7500 	return ret;
7501 }
7502 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7503 
7504 static bool is_permanent_ops_registered(void)
7505 {
7506 	struct ftrace_ops *op;
7507 
7508 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7509 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7510 			return true;
7511 	} while_for_each_ftrace_op(op);
7512 
7513 	return false;
7514 }
7515 
7516 int
7517 ftrace_enable_sysctl(struct ctl_table *table, int write,
7518 		     void __user *buffer, size_t *lenp,
7519 		     loff_t *ppos)
7520 {
7521 	int ret = -ENODEV;
7522 
7523 	mutex_lock(&ftrace_lock);
7524 
7525 	if (unlikely(ftrace_disabled))
7526 		goto out;
7527 
7528 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7529 
7530 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7531 		goto out;
7532 
7533 	if (ftrace_enabled) {
7534 
7535 		/* we are starting ftrace again */
7536 		if (rcu_dereference_protected(ftrace_ops_list,
7537 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7538 			update_ftrace_function();
7539 
7540 		ftrace_startup_sysctl();
7541 
7542 	} else {
7543 		if (is_permanent_ops_registered()) {
7544 			ftrace_enabled = true;
7545 			ret = -EBUSY;
7546 			goto out;
7547 		}
7548 
7549 		/* stopping ftrace calls (just send to ftrace_stub) */
7550 		ftrace_trace_function = ftrace_stub;
7551 
7552 		ftrace_shutdown_sysctl();
7553 	}
7554 
7555 	last_ftrace_enabled = !!ftrace_enabled;
7556  out:
7557 	mutex_unlock(&ftrace_lock);
7558 	return ret;
7559 }
7560