1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct pt_regs *regs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct pt_regs *regs) 144 { 145 struct trace_array *tr = op->private; 146 int pid; 147 148 if (tr) { 149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 150 if (pid == FTRACE_PID_IGNORE) 151 return; 152 if (pid != FTRACE_PID_TRACE && 153 pid != current->pid) 154 return; 155 } 156 157 op->saved_func(ip, parent_ip, op, regs); 158 } 159 160 static void ftrace_sync_ipi(void *data) 161 { 162 /* Probably not needed, but do it anyway */ 163 smp_rmb(); 164 } 165 166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 167 { 168 /* 169 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 170 * then it needs to call the list anyway. 171 */ 172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 173 FTRACE_FORCE_LIST_FUNC) 174 return ftrace_ops_list_func; 175 176 return ftrace_ops_get_func(ops); 177 } 178 179 static void update_ftrace_function(void) 180 { 181 ftrace_func_t func; 182 183 /* 184 * Prepare the ftrace_ops that the arch callback will use. 185 * If there's only one ftrace_ops registered, the ftrace_ops_list 186 * will point to the ops we want. 187 */ 188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 189 lockdep_is_held(&ftrace_lock)); 190 191 /* If there's no ftrace_ops registered, just call the stub function */ 192 if (set_function_trace_op == &ftrace_list_end) { 193 func = ftrace_stub; 194 195 /* 196 * If we are at the end of the list and this ops is 197 * recursion safe and not dynamic and the arch supports passing ops, 198 * then have the mcount trampoline call the function directly. 199 */ 200 } else if (rcu_dereference_protected(ftrace_ops_list->next, 201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 202 func = ftrace_ops_get_list_func(ftrace_ops_list); 203 204 } else { 205 /* Just use the default ftrace_ops */ 206 set_function_trace_op = &ftrace_list_end; 207 func = ftrace_ops_list_func; 208 } 209 210 update_function_graph_func(); 211 212 /* If there's no change, then do nothing more here */ 213 if (ftrace_trace_function == func) 214 return; 215 216 /* 217 * If we are using the list function, it doesn't care 218 * about the function_trace_ops. 219 */ 220 if (func == ftrace_ops_list_func) { 221 ftrace_trace_function = func; 222 /* 223 * Don't even bother setting function_trace_ops, 224 * it would be racy to do so anyway. 225 */ 226 return; 227 } 228 229 #ifndef CONFIG_DYNAMIC_FTRACE 230 /* 231 * For static tracing, we need to be a bit more careful. 232 * The function change takes affect immediately. Thus, 233 * we need to coorditate the setting of the function_trace_ops 234 * with the setting of the ftrace_trace_function. 235 * 236 * Set the function to the list ops, which will call the 237 * function we want, albeit indirectly, but it handles the 238 * ftrace_ops and doesn't depend on function_trace_op. 239 */ 240 ftrace_trace_function = ftrace_ops_list_func; 241 /* 242 * Make sure all CPUs see this. Yes this is slow, but static 243 * tracing is slow and nasty to have enabled. 244 */ 245 synchronize_rcu_tasks_rude(); 246 /* Now all cpus are using the list ops. */ 247 function_trace_op = set_function_trace_op; 248 /* Make sure the function_trace_op is visible on all CPUs */ 249 smp_wmb(); 250 /* Nasty way to force a rmb on all cpus */ 251 smp_call_function(ftrace_sync_ipi, NULL, 1); 252 /* OK, we are all set to update the ftrace_trace_function now! */ 253 #endif /* !CONFIG_DYNAMIC_FTRACE */ 254 255 ftrace_trace_function = func; 256 } 257 258 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 259 struct ftrace_ops *ops) 260 { 261 rcu_assign_pointer(ops->next, *list); 262 263 /* 264 * We are entering ops into the list but another 265 * CPU might be walking that list. We need to make sure 266 * the ops->next pointer is valid before another CPU sees 267 * the ops pointer included into the list. 268 */ 269 rcu_assign_pointer(*list, ops); 270 } 271 272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 273 struct ftrace_ops *ops) 274 { 275 struct ftrace_ops **p; 276 277 /* 278 * If we are removing the last function, then simply point 279 * to the ftrace_stub. 280 */ 281 if (rcu_dereference_protected(*list, 282 lockdep_is_held(&ftrace_lock)) == ops && 283 rcu_dereference_protected(ops->next, 284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 285 *list = &ftrace_list_end; 286 return 0; 287 } 288 289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 290 if (*p == ops) 291 break; 292 293 if (*p != ops) 294 return -1; 295 296 *p = (*p)->next; 297 return 0; 298 } 299 300 static void ftrace_update_trampoline(struct ftrace_ops *ops); 301 302 int __register_ftrace_function(struct ftrace_ops *ops) 303 { 304 if (ops->flags & FTRACE_OPS_FL_DELETED) 305 return -EINVAL; 306 307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 308 return -EBUSY; 309 310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 311 /* 312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 315 */ 316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 318 return -EINVAL; 319 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 322 #endif 323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 324 return -EBUSY; 325 326 if (!core_kernel_data((unsigned long)ops)) 327 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 328 329 add_ftrace_ops(&ftrace_ops_list, ops); 330 331 /* Always save the function, and reset at unregistering */ 332 ops->saved_func = ops->func; 333 334 if (ftrace_pids_enabled(ops)) 335 ops->func = ftrace_pid_func; 336 337 ftrace_update_trampoline(ops); 338 339 if (ftrace_enabled) 340 update_ftrace_function(); 341 342 return 0; 343 } 344 345 int __unregister_ftrace_function(struct ftrace_ops *ops) 346 { 347 int ret; 348 349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 350 return -EBUSY; 351 352 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 353 354 if (ret < 0) 355 return ret; 356 357 if (ftrace_enabled) 358 update_ftrace_function(); 359 360 ops->func = ops->saved_func; 361 362 return 0; 363 } 364 365 static void ftrace_update_pid_func(void) 366 { 367 struct ftrace_ops *op; 368 369 /* Only do something if we are tracing something */ 370 if (ftrace_trace_function == ftrace_stub) 371 return; 372 373 do_for_each_ftrace_op(op, ftrace_ops_list) { 374 if (op->flags & FTRACE_OPS_FL_PID) { 375 op->func = ftrace_pids_enabled(op) ? 376 ftrace_pid_func : op->saved_func; 377 ftrace_update_trampoline(op); 378 } 379 } while_for_each_ftrace_op(op); 380 381 update_ftrace_function(); 382 } 383 384 #ifdef CONFIG_FUNCTION_PROFILER 385 struct ftrace_profile { 386 struct hlist_node node; 387 unsigned long ip; 388 unsigned long counter; 389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 390 unsigned long long time; 391 unsigned long long time_squared; 392 #endif 393 }; 394 395 struct ftrace_profile_page { 396 struct ftrace_profile_page *next; 397 unsigned long index; 398 struct ftrace_profile records[]; 399 }; 400 401 struct ftrace_profile_stat { 402 atomic_t disabled; 403 struct hlist_head *hash; 404 struct ftrace_profile_page *pages; 405 struct ftrace_profile_page *start; 406 struct tracer_stat stat; 407 }; 408 409 #define PROFILE_RECORDS_SIZE \ 410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 411 412 #define PROFILES_PER_PAGE \ 413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 414 415 static int ftrace_profile_enabled __read_mostly; 416 417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 418 static DEFINE_MUTEX(ftrace_profile_lock); 419 420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 421 422 #define FTRACE_PROFILE_HASH_BITS 10 423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 424 425 static void * 426 function_stat_next(void *v, int idx) 427 { 428 struct ftrace_profile *rec = v; 429 struct ftrace_profile_page *pg; 430 431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 432 433 again: 434 if (idx != 0) 435 rec++; 436 437 if ((void *)rec >= (void *)&pg->records[pg->index]) { 438 pg = pg->next; 439 if (!pg) 440 return NULL; 441 rec = &pg->records[0]; 442 if (!rec->counter) 443 goto again; 444 } 445 446 return rec; 447 } 448 449 static void *function_stat_start(struct tracer_stat *trace) 450 { 451 struct ftrace_profile_stat *stat = 452 container_of(trace, struct ftrace_profile_stat, stat); 453 454 if (!stat || !stat->start) 455 return NULL; 456 457 return function_stat_next(&stat->start->records[0], 0); 458 } 459 460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 461 /* function graph compares on total time */ 462 static int function_stat_cmp(const void *p1, const void *p2) 463 { 464 const struct ftrace_profile *a = p1; 465 const struct ftrace_profile *b = p2; 466 467 if (a->time < b->time) 468 return -1; 469 if (a->time > b->time) 470 return 1; 471 else 472 return 0; 473 } 474 #else 475 /* not function graph compares against hits */ 476 static int function_stat_cmp(const void *p1, const void *p2) 477 { 478 const struct ftrace_profile *a = p1; 479 const struct ftrace_profile *b = p2; 480 481 if (a->counter < b->counter) 482 return -1; 483 if (a->counter > b->counter) 484 return 1; 485 else 486 return 0; 487 } 488 #endif 489 490 static int function_stat_headers(struct seq_file *m) 491 { 492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 493 seq_puts(m, " Function " 494 "Hit Time Avg s^2\n" 495 " -------- " 496 "--- ---- --- ---\n"); 497 #else 498 seq_puts(m, " Function Hit\n" 499 " -------- ---\n"); 500 #endif 501 return 0; 502 } 503 504 static int function_stat_show(struct seq_file *m, void *v) 505 { 506 struct ftrace_profile *rec = v; 507 char str[KSYM_SYMBOL_LEN]; 508 int ret = 0; 509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 510 static struct trace_seq s; 511 unsigned long long avg; 512 unsigned long long stddev; 513 #endif 514 mutex_lock(&ftrace_profile_lock); 515 516 /* we raced with function_profile_reset() */ 517 if (unlikely(rec->counter == 0)) { 518 ret = -EBUSY; 519 goto out; 520 } 521 522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 523 avg = div64_ul(rec->time, rec->counter); 524 if (tracing_thresh && (avg < tracing_thresh)) 525 goto out; 526 #endif 527 528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 529 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 530 531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 532 seq_puts(m, " "); 533 534 /* Sample standard deviation (s^2) */ 535 if (rec->counter <= 1) 536 stddev = 0; 537 else { 538 /* 539 * Apply Welford's method: 540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 541 */ 542 stddev = rec->counter * rec->time_squared - 543 rec->time * rec->time; 544 545 /* 546 * Divide only 1000 for ns^2 -> us^2 conversion. 547 * trace_print_graph_duration will divide 1000 again. 548 */ 549 stddev = div64_ul(stddev, 550 rec->counter * (rec->counter - 1) * 1000); 551 } 552 553 trace_seq_init(&s); 554 trace_print_graph_duration(rec->time, &s); 555 trace_seq_puts(&s, " "); 556 trace_print_graph_duration(avg, &s); 557 trace_seq_puts(&s, " "); 558 trace_print_graph_duration(stddev, &s); 559 trace_print_seq(m, &s); 560 #endif 561 seq_putc(m, '\n'); 562 out: 563 mutex_unlock(&ftrace_profile_lock); 564 565 return ret; 566 } 567 568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 569 { 570 struct ftrace_profile_page *pg; 571 572 pg = stat->pages = stat->start; 573 574 while (pg) { 575 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 576 pg->index = 0; 577 pg = pg->next; 578 } 579 580 memset(stat->hash, 0, 581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 582 } 583 584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 585 { 586 struct ftrace_profile_page *pg; 587 int functions; 588 int pages; 589 int i; 590 591 /* If we already allocated, do nothing */ 592 if (stat->pages) 593 return 0; 594 595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 596 if (!stat->pages) 597 return -ENOMEM; 598 599 #ifdef CONFIG_DYNAMIC_FTRACE 600 functions = ftrace_update_tot_cnt; 601 #else 602 /* 603 * We do not know the number of functions that exist because 604 * dynamic tracing is what counts them. With past experience 605 * we have around 20K functions. That should be more than enough. 606 * It is highly unlikely we will execute every function in 607 * the kernel. 608 */ 609 functions = 20000; 610 #endif 611 612 pg = stat->start = stat->pages; 613 614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 615 616 for (i = 1; i < pages; i++) { 617 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 618 if (!pg->next) 619 goto out_free; 620 pg = pg->next; 621 } 622 623 return 0; 624 625 out_free: 626 pg = stat->start; 627 while (pg) { 628 unsigned long tmp = (unsigned long)pg; 629 630 pg = pg->next; 631 free_page(tmp); 632 } 633 634 stat->pages = NULL; 635 stat->start = NULL; 636 637 return -ENOMEM; 638 } 639 640 static int ftrace_profile_init_cpu(int cpu) 641 { 642 struct ftrace_profile_stat *stat; 643 int size; 644 645 stat = &per_cpu(ftrace_profile_stats, cpu); 646 647 if (stat->hash) { 648 /* If the profile is already created, simply reset it */ 649 ftrace_profile_reset(stat); 650 return 0; 651 } 652 653 /* 654 * We are profiling all functions, but usually only a few thousand 655 * functions are hit. We'll make a hash of 1024 items. 656 */ 657 size = FTRACE_PROFILE_HASH_SIZE; 658 659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 660 661 if (!stat->hash) 662 return -ENOMEM; 663 664 /* Preallocate the function profiling pages */ 665 if (ftrace_profile_pages_init(stat) < 0) { 666 kfree(stat->hash); 667 stat->hash = NULL; 668 return -ENOMEM; 669 } 670 671 return 0; 672 } 673 674 static int ftrace_profile_init(void) 675 { 676 int cpu; 677 int ret = 0; 678 679 for_each_possible_cpu(cpu) { 680 ret = ftrace_profile_init_cpu(cpu); 681 if (ret) 682 break; 683 } 684 685 return ret; 686 } 687 688 /* interrupts must be disabled */ 689 static struct ftrace_profile * 690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 691 { 692 struct ftrace_profile *rec; 693 struct hlist_head *hhd; 694 unsigned long key; 695 696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 697 hhd = &stat->hash[key]; 698 699 if (hlist_empty(hhd)) 700 return NULL; 701 702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 703 if (rec->ip == ip) 704 return rec; 705 } 706 707 return NULL; 708 } 709 710 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 711 struct ftrace_profile *rec) 712 { 713 unsigned long key; 714 715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 716 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 717 } 718 719 /* 720 * The memory is already allocated, this simply finds a new record to use. 721 */ 722 static struct ftrace_profile * 723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec = NULL; 726 727 /* prevent recursion (from NMIs) */ 728 if (atomic_inc_return(&stat->disabled) != 1) 729 goto out; 730 731 /* 732 * Try to find the function again since an NMI 733 * could have added it 734 */ 735 rec = ftrace_find_profiled_func(stat, ip); 736 if (rec) 737 goto out; 738 739 if (stat->pages->index == PROFILES_PER_PAGE) { 740 if (!stat->pages->next) 741 goto out; 742 stat->pages = stat->pages->next; 743 } 744 745 rec = &stat->pages->records[stat->pages->index++]; 746 rec->ip = ip; 747 ftrace_add_profile(stat, rec); 748 749 out: 750 atomic_dec(&stat->disabled); 751 752 return rec; 753 } 754 755 static void 756 function_profile_call(unsigned long ip, unsigned long parent_ip, 757 struct ftrace_ops *ops, struct pt_regs *regs) 758 { 759 struct ftrace_profile_stat *stat; 760 struct ftrace_profile *rec; 761 unsigned long flags; 762 763 if (!ftrace_profile_enabled) 764 return; 765 766 local_irq_save(flags); 767 768 stat = this_cpu_ptr(&ftrace_profile_stats); 769 if (!stat->hash || !ftrace_profile_enabled) 770 goto out; 771 772 rec = ftrace_find_profiled_func(stat, ip); 773 if (!rec) { 774 rec = ftrace_profile_alloc(stat, ip); 775 if (!rec) 776 goto out; 777 } 778 779 rec->counter++; 780 out: 781 local_irq_restore(flags); 782 } 783 784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 785 static bool fgraph_graph_time = true; 786 787 void ftrace_graph_graph_time_control(bool enable) 788 { 789 fgraph_graph_time = enable; 790 } 791 792 static int profile_graph_entry(struct ftrace_graph_ent *trace) 793 { 794 struct ftrace_ret_stack *ret_stack; 795 796 function_profile_call(trace->func, 0, NULL, NULL); 797 798 /* If function graph is shutting down, ret_stack can be NULL */ 799 if (!current->ret_stack) 800 return 0; 801 802 ret_stack = ftrace_graph_get_ret_stack(current, 0); 803 if (ret_stack) 804 ret_stack->subtime = 0; 805 806 return 1; 807 } 808 809 static void profile_graph_return(struct ftrace_graph_ret *trace) 810 { 811 struct ftrace_ret_stack *ret_stack; 812 struct ftrace_profile_stat *stat; 813 unsigned long long calltime; 814 struct ftrace_profile *rec; 815 unsigned long flags; 816 817 local_irq_save(flags); 818 stat = this_cpu_ptr(&ftrace_profile_stats); 819 if (!stat->hash || !ftrace_profile_enabled) 820 goto out; 821 822 /* If the calltime was zero'd ignore it */ 823 if (!trace->calltime) 824 goto out; 825 826 calltime = trace->rettime - trace->calltime; 827 828 if (!fgraph_graph_time) { 829 830 /* Append this call time to the parent time to subtract */ 831 ret_stack = ftrace_graph_get_ret_stack(current, 1); 832 if (ret_stack) 833 ret_stack->subtime += calltime; 834 835 ret_stack = ftrace_graph_get_ret_stack(current, 0); 836 if (ret_stack && ret_stack->subtime < calltime) 837 calltime -= ret_stack->subtime; 838 else 839 calltime = 0; 840 } 841 842 rec = ftrace_find_profiled_func(stat, trace->func); 843 if (rec) { 844 rec->time += calltime; 845 rec->time_squared += calltime * calltime; 846 } 847 848 out: 849 local_irq_restore(flags); 850 } 851 852 static struct fgraph_ops fprofiler_ops = { 853 .entryfunc = &profile_graph_entry, 854 .retfunc = &profile_graph_return, 855 }; 856 857 static int register_ftrace_profiler(void) 858 { 859 return register_ftrace_graph(&fprofiler_ops); 860 } 861 862 static void unregister_ftrace_profiler(void) 863 { 864 unregister_ftrace_graph(&fprofiler_ops); 865 } 866 #else 867 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 868 .func = function_profile_call, 869 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 870 INIT_OPS_HASH(ftrace_profile_ops) 871 }; 872 873 static int register_ftrace_profiler(void) 874 { 875 return register_ftrace_function(&ftrace_profile_ops); 876 } 877 878 static void unregister_ftrace_profiler(void) 879 { 880 unregister_ftrace_function(&ftrace_profile_ops); 881 } 882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 883 884 static ssize_t 885 ftrace_profile_write(struct file *filp, const char __user *ubuf, 886 size_t cnt, loff_t *ppos) 887 { 888 unsigned long val; 889 int ret; 890 891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 892 if (ret) 893 return ret; 894 895 val = !!val; 896 897 mutex_lock(&ftrace_profile_lock); 898 if (ftrace_profile_enabled ^ val) { 899 if (val) { 900 ret = ftrace_profile_init(); 901 if (ret < 0) { 902 cnt = ret; 903 goto out; 904 } 905 906 ret = register_ftrace_profiler(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 ftrace_profile_enabled = 1; 912 } else { 913 ftrace_profile_enabled = 0; 914 /* 915 * unregister_ftrace_profiler calls stop_machine 916 * so this acts like an synchronize_rcu. 917 */ 918 unregister_ftrace_profiler(); 919 } 920 } 921 out: 922 mutex_unlock(&ftrace_profile_lock); 923 924 *ppos += cnt; 925 926 return cnt; 927 } 928 929 static ssize_t 930 ftrace_profile_read(struct file *filp, char __user *ubuf, 931 size_t cnt, loff_t *ppos) 932 { 933 char buf[64]; /* big enough to hold a number */ 934 int r; 935 936 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 938 } 939 940 static const struct file_operations ftrace_profile_fops = { 941 .open = tracing_open_generic, 942 .read = ftrace_profile_read, 943 .write = ftrace_profile_write, 944 .llseek = default_llseek, 945 }; 946 947 /* used to initialize the real stat files */ 948 static struct tracer_stat function_stats __initdata = { 949 .name = "functions", 950 .stat_start = function_stat_start, 951 .stat_next = function_stat_next, 952 .stat_cmp = function_stat_cmp, 953 .stat_headers = function_stat_headers, 954 .stat_show = function_stat_show 955 }; 956 957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 958 { 959 struct ftrace_profile_stat *stat; 960 struct dentry *entry; 961 char *name; 962 int ret; 963 int cpu; 964 965 for_each_possible_cpu(cpu) { 966 stat = &per_cpu(ftrace_profile_stats, cpu); 967 968 name = kasprintf(GFP_KERNEL, "function%d", cpu); 969 if (!name) { 970 /* 971 * The files created are permanent, if something happens 972 * we still do not free memory. 973 */ 974 WARN(1, 975 "Could not allocate stat file for cpu %d\n", 976 cpu); 977 return; 978 } 979 stat->stat = function_stats; 980 stat->stat.name = name; 981 ret = register_stat_tracer(&stat->stat); 982 if (ret) { 983 WARN(1, 984 "Could not register function stat for cpu %d\n", 985 cpu); 986 kfree(name); 987 return; 988 } 989 } 990 991 entry = tracefs_create_file("function_profile_enabled", 0644, 992 d_tracer, NULL, &ftrace_profile_fops); 993 if (!entry) 994 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 995 } 996 997 #else /* CONFIG_FUNCTION_PROFILER */ 998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 999 { 1000 } 1001 #endif /* CONFIG_FUNCTION_PROFILER */ 1002 1003 #ifdef CONFIG_DYNAMIC_FTRACE 1004 1005 static struct ftrace_ops *removed_ops; 1006 1007 /* 1008 * Set when doing a global update, like enabling all recs or disabling them. 1009 * It is not set when just updating a single ftrace_ops. 1010 */ 1011 static bool update_all_ops; 1012 1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1014 # error Dynamic ftrace depends on MCOUNT_RECORD 1015 #endif 1016 1017 struct ftrace_func_probe { 1018 struct ftrace_probe_ops *probe_ops; 1019 struct ftrace_ops ops; 1020 struct trace_array *tr; 1021 struct list_head list; 1022 void *data; 1023 int ref; 1024 }; 1025 1026 /* 1027 * We make these constant because no one should touch them, 1028 * but they are used as the default "empty hash", to avoid allocating 1029 * it all the time. These are in a read only section such that if 1030 * anyone does try to modify it, it will cause an exception. 1031 */ 1032 static const struct hlist_head empty_buckets[1]; 1033 static const struct ftrace_hash empty_hash = { 1034 .buckets = (struct hlist_head *)empty_buckets, 1035 }; 1036 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1037 1038 struct ftrace_ops global_ops = { 1039 .func = ftrace_stub, 1040 .local_hash.notrace_hash = EMPTY_HASH, 1041 .local_hash.filter_hash = EMPTY_HASH, 1042 INIT_OPS_HASH(global_ops) 1043 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1044 FTRACE_OPS_FL_INITIALIZED | 1045 FTRACE_OPS_FL_PID, 1046 }; 1047 1048 /* 1049 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1050 */ 1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1052 { 1053 struct ftrace_ops *op = NULL; 1054 1055 /* 1056 * Some of the ops may be dynamically allocated, 1057 * they are freed after a synchronize_rcu(). 1058 */ 1059 preempt_disable_notrace(); 1060 1061 do_for_each_ftrace_op(op, ftrace_ops_list) { 1062 /* 1063 * This is to check for dynamically allocated trampolines. 1064 * Trampolines that are in kernel text will have 1065 * core_kernel_text() return true. 1066 */ 1067 if (op->trampoline && op->trampoline_size) 1068 if (addr >= op->trampoline && 1069 addr < op->trampoline + op->trampoline_size) { 1070 preempt_enable_notrace(); 1071 return op; 1072 } 1073 } while_for_each_ftrace_op(op); 1074 preempt_enable_notrace(); 1075 1076 return NULL; 1077 } 1078 1079 /* 1080 * This is used by __kernel_text_address() to return true if the 1081 * address is on a dynamically allocated trampoline that would 1082 * not return true for either core_kernel_text() or 1083 * is_module_text_address(). 1084 */ 1085 bool is_ftrace_trampoline(unsigned long addr) 1086 { 1087 return ftrace_ops_trampoline(addr) != NULL; 1088 } 1089 1090 struct ftrace_page { 1091 struct ftrace_page *next; 1092 struct dyn_ftrace *records; 1093 int index; 1094 int size; 1095 }; 1096 1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1099 1100 static struct ftrace_page *ftrace_pages_start; 1101 static struct ftrace_page *ftrace_pages; 1102 1103 static __always_inline unsigned long 1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1105 { 1106 if (hash->size_bits > 0) 1107 return hash_long(ip, hash->size_bits); 1108 1109 return 0; 1110 } 1111 1112 /* Only use this function if ftrace_hash_empty() has already been tested */ 1113 static __always_inline struct ftrace_func_entry * 1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1115 { 1116 unsigned long key; 1117 struct ftrace_func_entry *entry; 1118 struct hlist_head *hhd; 1119 1120 key = ftrace_hash_key(hash, ip); 1121 hhd = &hash->buckets[key]; 1122 1123 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1124 if (entry->ip == ip) 1125 return entry; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1132 * @hash: The hash to look at 1133 * @ip: The instruction pointer to test 1134 * 1135 * Search a given @hash to see if a given instruction pointer (@ip) 1136 * exists in it. 1137 * 1138 * Returns the entry that holds the @ip if found. NULL otherwise. 1139 */ 1140 struct ftrace_func_entry * 1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1142 { 1143 if (ftrace_hash_empty(hash)) 1144 return NULL; 1145 1146 return __ftrace_lookup_ip(hash, ip); 1147 } 1148 1149 static void __add_hash_entry(struct ftrace_hash *hash, 1150 struct ftrace_func_entry *entry) 1151 { 1152 struct hlist_head *hhd; 1153 unsigned long key; 1154 1155 key = ftrace_hash_key(hash, entry->ip); 1156 hhd = &hash->buckets[key]; 1157 hlist_add_head(&entry->hlist, hhd); 1158 hash->count++; 1159 } 1160 1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1162 { 1163 struct ftrace_func_entry *entry; 1164 1165 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1166 if (!entry) 1167 return -ENOMEM; 1168 1169 entry->ip = ip; 1170 __add_hash_entry(hash, entry); 1171 1172 return 0; 1173 } 1174 1175 static void 1176 free_hash_entry(struct ftrace_hash *hash, 1177 struct ftrace_func_entry *entry) 1178 { 1179 hlist_del(&entry->hlist); 1180 kfree(entry); 1181 hash->count--; 1182 } 1183 1184 static void 1185 remove_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del_rcu(&entry->hlist); 1189 hash->count--; 1190 } 1191 1192 static void ftrace_hash_clear(struct ftrace_hash *hash) 1193 { 1194 struct hlist_head *hhd; 1195 struct hlist_node *tn; 1196 struct ftrace_func_entry *entry; 1197 int size = 1 << hash->size_bits; 1198 int i; 1199 1200 if (!hash->count) 1201 return; 1202 1203 for (i = 0; i < size; i++) { 1204 hhd = &hash->buckets[i]; 1205 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1206 free_hash_entry(hash, entry); 1207 } 1208 FTRACE_WARN_ON(hash->count); 1209 } 1210 1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1212 { 1213 list_del(&ftrace_mod->list); 1214 kfree(ftrace_mod->module); 1215 kfree(ftrace_mod->func); 1216 kfree(ftrace_mod); 1217 } 1218 1219 static void clear_ftrace_mod_list(struct list_head *head) 1220 { 1221 struct ftrace_mod_load *p, *n; 1222 1223 /* stack tracer isn't supported yet */ 1224 if (!head) 1225 return; 1226 1227 mutex_lock(&ftrace_lock); 1228 list_for_each_entry_safe(p, n, head, list) 1229 free_ftrace_mod(p); 1230 mutex_unlock(&ftrace_lock); 1231 } 1232 1233 static void free_ftrace_hash(struct ftrace_hash *hash) 1234 { 1235 if (!hash || hash == EMPTY_HASH) 1236 return; 1237 ftrace_hash_clear(hash); 1238 kfree(hash->buckets); 1239 kfree(hash); 1240 } 1241 1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1243 { 1244 struct ftrace_hash *hash; 1245 1246 hash = container_of(rcu, struct ftrace_hash, rcu); 1247 free_ftrace_hash(hash); 1248 } 1249 1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1251 { 1252 if (!hash || hash == EMPTY_HASH) 1253 return; 1254 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1255 } 1256 1257 void ftrace_free_filter(struct ftrace_ops *ops) 1258 { 1259 ftrace_ops_init(ops); 1260 free_ftrace_hash(ops->func_hash->filter_hash); 1261 free_ftrace_hash(ops->func_hash->notrace_hash); 1262 } 1263 1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1265 { 1266 struct ftrace_hash *hash; 1267 int size; 1268 1269 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1270 if (!hash) 1271 return NULL; 1272 1273 size = 1 << size_bits; 1274 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1275 1276 if (!hash->buckets) { 1277 kfree(hash); 1278 return NULL; 1279 } 1280 1281 hash->size_bits = size_bits; 1282 1283 return hash; 1284 } 1285 1286 1287 static int ftrace_add_mod(struct trace_array *tr, 1288 const char *func, const char *module, 1289 int enable) 1290 { 1291 struct ftrace_mod_load *ftrace_mod; 1292 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1293 1294 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1295 if (!ftrace_mod) 1296 return -ENOMEM; 1297 1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1300 ftrace_mod->enable = enable; 1301 1302 if (!ftrace_mod->func || !ftrace_mod->module) 1303 goto out_free; 1304 1305 list_add(&ftrace_mod->list, mod_head); 1306 1307 return 0; 1308 1309 out_free: 1310 free_ftrace_mod(ftrace_mod); 1311 1312 return -ENOMEM; 1313 } 1314 1315 static struct ftrace_hash * 1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1317 { 1318 struct ftrace_func_entry *entry; 1319 struct ftrace_hash *new_hash; 1320 int size; 1321 int ret; 1322 int i; 1323 1324 new_hash = alloc_ftrace_hash(size_bits); 1325 if (!new_hash) 1326 return NULL; 1327 1328 if (hash) 1329 new_hash->flags = hash->flags; 1330 1331 /* Empty hash? */ 1332 if (ftrace_hash_empty(hash)) 1333 return new_hash; 1334 1335 size = 1 << hash->size_bits; 1336 for (i = 0; i < size; i++) { 1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1338 ret = add_hash_entry(new_hash, entry->ip); 1339 if (ret < 0) 1340 goto free_hash; 1341 } 1342 } 1343 1344 FTRACE_WARN_ON(new_hash->count != hash->count); 1345 1346 return new_hash; 1347 1348 free_hash: 1349 free_ftrace_hash(new_hash); 1350 return NULL; 1351 } 1352 1353 static void 1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1355 static void 1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1357 1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1359 struct ftrace_hash *new_hash); 1360 1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1362 { 1363 struct ftrace_func_entry *entry; 1364 struct ftrace_hash *new_hash; 1365 struct hlist_head *hhd; 1366 struct hlist_node *tn; 1367 int bits = 0; 1368 int i; 1369 1370 /* 1371 * Make the hash size about 1/2 the # found 1372 */ 1373 for (size /= 2; size; size >>= 1) 1374 bits++; 1375 1376 /* Don't allocate too much */ 1377 if (bits > FTRACE_HASH_MAX_BITS) 1378 bits = FTRACE_HASH_MAX_BITS; 1379 1380 new_hash = alloc_ftrace_hash(bits); 1381 if (!new_hash) 1382 return NULL; 1383 1384 new_hash->flags = src->flags; 1385 1386 size = 1 << src->size_bits; 1387 for (i = 0; i < size; i++) { 1388 hhd = &src->buckets[i]; 1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1390 remove_hash_entry(src, entry); 1391 __add_hash_entry(new_hash, entry); 1392 } 1393 } 1394 return new_hash; 1395 } 1396 1397 static struct ftrace_hash * 1398 __ftrace_hash_move(struct ftrace_hash *src) 1399 { 1400 int size = src->count; 1401 1402 /* 1403 * If the new source is empty, just return the empty_hash. 1404 */ 1405 if (ftrace_hash_empty(src)) 1406 return EMPTY_HASH; 1407 1408 return dup_hash(src, size); 1409 } 1410 1411 static int 1412 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1413 struct ftrace_hash **dst, struct ftrace_hash *src) 1414 { 1415 struct ftrace_hash *new_hash; 1416 int ret; 1417 1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1420 return -EINVAL; 1421 1422 new_hash = __ftrace_hash_move(src); 1423 if (!new_hash) 1424 return -ENOMEM; 1425 1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1427 if (enable) { 1428 /* IPMODIFY should be updated only when filter_hash updating */ 1429 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1430 if (ret < 0) { 1431 free_ftrace_hash(new_hash); 1432 return ret; 1433 } 1434 } 1435 1436 /* 1437 * Remove the current set, update the hash and add 1438 * them back. 1439 */ 1440 ftrace_hash_rec_disable_modify(ops, enable); 1441 1442 rcu_assign_pointer(*dst, new_hash); 1443 1444 ftrace_hash_rec_enable_modify(ops, enable); 1445 1446 return 0; 1447 } 1448 1449 static bool hash_contains_ip(unsigned long ip, 1450 struct ftrace_ops_hash *hash) 1451 { 1452 /* 1453 * The function record is a match if it exists in the filter 1454 * hash and not in the notrace hash. Note, an emty hash is 1455 * considered a match for the filter hash, but an empty 1456 * notrace hash is considered not in the notrace hash. 1457 */ 1458 return (ftrace_hash_empty(hash->filter_hash) || 1459 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1460 (ftrace_hash_empty(hash->notrace_hash) || 1461 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1462 } 1463 1464 /* 1465 * Test the hashes for this ops to see if we want to call 1466 * the ops->func or not. 1467 * 1468 * It's a match if the ip is in the ops->filter_hash or 1469 * the filter_hash does not exist or is empty, 1470 * AND 1471 * the ip is not in the ops->notrace_hash. 1472 * 1473 * This needs to be called with preemption disabled as 1474 * the hashes are freed with call_rcu(). 1475 */ 1476 int 1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1478 { 1479 struct ftrace_ops_hash hash; 1480 int ret; 1481 1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1483 /* 1484 * There's a small race when adding ops that the ftrace handler 1485 * that wants regs, may be called without them. We can not 1486 * allow that handler to be called if regs is NULL. 1487 */ 1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1489 return 0; 1490 #endif 1491 1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1494 1495 if (hash_contains_ip(ip, &hash)) 1496 ret = 1; 1497 else 1498 ret = 0; 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * This is a double for. Do not use 'break' to break out of the loop, 1505 * you must use a goto. 1506 */ 1507 #define do_for_each_ftrace_rec(pg, rec) \ 1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1509 int _____i; \ 1510 for (_____i = 0; _____i < pg->index; _____i++) { \ 1511 rec = &pg->records[_____i]; 1512 1513 #define while_for_each_ftrace_rec() \ 1514 } \ 1515 } 1516 1517 1518 static int ftrace_cmp_recs(const void *a, const void *b) 1519 { 1520 const struct dyn_ftrace *key = a; 1521 const struct dyn_ftrace *rec = b; 1522 1523 if (key->flags < rec->ip) 1524 return -1; 1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1526 return 1; 1527 return 0; 1528 } 1529 1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1531 { 1532 struct ftrace_page *pg; 1533 struct dyn_ftrace *rec = NULL; 1534 struct dyn_ftrace key; 1535 1536 key.ip = start; 1537 key.flags = end; /* overload flags, as it is unsigned long */ 1538 1539 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1540 if (end < pg->records[0].ip || 1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1542 continue; 1543 rec = bsearch(&key, pg->records, pg->index, 1544 sizeof(struct dyn_ftrace), 1545 ftrace_cmp_recs); 1546 if (rec) 1547 break; 1548 } 1549 return rec; 1550 } 1551 1552 /** 1553 * ftrace_location_range - return the first address of a traced location 1554 * if it touches the given ip range 1555 * @start: start of range to search. 1556 * @end: end of range to search (inclusive). @end points to the last byte 1557 * to check. 1558 * 1559 * Returns rec->ip if the related ftrace location is a least partly within 1560 * the given address range. That is, the first address of the instruction 1561 * that is either a NOP or call to the function tracer. It checks the ftrace 1562 * internal tables to determine if the address belongs or not. 1563 */ 1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1565 { 1566 struct dyn_ftrace *rec; 1567 1568 rec = lookup_rec(start, end); 1569 if (rec) 1570 return rec->ip; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * ftrace_location - return true if the ip giving is a traced location 1577 * @ip: the instruction pointer to check 1578 * 1579 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1580 * That is, the instruction that is either a NOP or call to 1581 * the function tracer. It checks the ftrace internal tables to 1582 * determine if the address belongs or not. 1583 */ 1584 unsigned long ftrace_location(unsigned long ip) 1585 { 1586 return ftrace_location_range(ip, ip); 1587 } 1588 1589 /** 1590 * ftrace_text_reserved - return true if range contains an ftrace location 1591 * @start: start of range to search 1592 * @end: end of range to search (inclusive). @end points to the last byte to check. 1593 * 1594 * Returns 1 if @start and @end contains a ftrace location. 1595 * That is, the instruction that is either a NOP or call to 1596 * the function tracer. It checks the ftrace internal tables to 1597 * determine if the address belongs or not. 1598 */ 1599 int ftrace_text_reserved(const void *start, const void *end) 1600 { 1601 unsigned long ret; 1602 1603 ret = ftrace_location_range((unsigned long)start, 1604 (unsigned long)end); 1605 1606 return (int)!!ret; 1607 } 1608 1609 /* Test if ops registered to this rec needs regs */ 1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1611 { 1612 struct ftrace_ops *ops; 1613 bool keep_regs = false; 1614 1615 for (ops = ftrace_ops_list; 1616 ops != &ftrace_list_end; ops = ops->next) { 1617 /* pass rec in as regs to have non-NULL val */ 1618 if (ftrace_ops_test(ops, rec->ip, rec)) { 1619 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1620 keep_regs = true; 1621 break; 1622 } 1623 } 1624 } 1625 1626 return keep_regs; 1627 } 1628 1629 static struct ftrace_ops * 1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1631 static struct ftrace_ops * 1632 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1633 1634 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1635 int filter_hash, 1636 bool inc) 1637 { 1638 struct ftrace_hash *hash; 1639 struct ftrace_hash *other_hash; 1640 struct ftrace_page *pg; 1641 struct dyn_ftrace *rec; 1642 bool update = false; 1643 int count = 0; 1644 int all = false; 1645 1646 /* Only update if the ops has been registered */ 1647 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1648 return false; 1649 1650 /* 1651 * In the filter_hash case: 1652 * If the count is zero, we update all records. 1653 * Otherwise we just update the items in the hash. 1654 * 1655 * In the notrace_hash case: 1656 * We enable the update in the hash. 1657 * As disabling notrace means enabling the tracing, 1658 * and enabling notrace means disabling, the inc variable 1659 * gets inversed. 1660 */ 1661 if (filter_hash) { 1662 hash = ops->func_hash->filter_hash; 1663 other_hash = ops->func_hash->notrace_hash; 1664 if (ftrace_hash_empty(hash)) 1665 all = true; 1666 } else { 1667 inc = !inc; 1668 hash = ops->func_hash->notrace_hash; 1669 other_hash = ops->func_hash->filter_hash; 1670 /* 1671 * If the notrace hash has no items, 1672 * then there's nothing to do. 1673 */ 1674 if (ftrace_hash_empty(hash)) 1675 return false; 1676 } 1677 1678 do_for_each_ftrace_rec(pg, rec) { 1679 int in_other_hash = 0; 1680 int in_hash = 0; 1681 int match = 0; 1682 1683 if (rec->flags & FTRACE_FL_DISABLED) 1684 continue; 1685 1686 if (all) { 1687 /* 1688 * Only the filter_hash affects all records. 1689 * Update if the record is not in the notrace hash. 1690 */ 1691 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1692 match = 1; 1693 } else { 1694 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1695 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1696 1697 /* 1698 * If filter_hash is set, we want to match all functions 1699 * that are in the hash but not in the other hash. 1700 * 1701 * If filter_hash is not set, then we are decrementing. 1702 * That means we match anything that is in the hash 1703 * and also in the other_hash. That is, we need to turn 1704 * off functions in the other hash because they are disabled 1705 * by this hash. 1706 */ 1707 if (filter_hash && in_hash && !in_other_hash) 1708 match = 1; 1709 else if (!filter_hash && in_hash && 1710 (in_other_hash || ftrace_hash_empty(other_hash))) 1711 match = 1; 1712 } 1713 if (!match) 1714 continue; 1715 1716 if (inc) { 1717 rec->flags++; 1718 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1719 return false; 1720 1721 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1722 rec->flags |= FTRACE_FL_DIRECT; 1723 1724 /* 1725 * If there's only a single callback registered to a 1726 * function, and the ops has a trampoline registered 1727 * for it, then we can call it directly. 1728 */ 1729 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1730 rec->flags |= FTRACE_FL_TRAMP; 1731 else 1732 /* 1733 * If we are adding another function callback 1734 * to this function, and the previous had a 1735 * custom trampoline in use, then we need to go 1736 * back to the default trampoline. 1737 */ 1738 rec->flags &= ~FTRACE_FL_TRAMP; 1739 1740 /* 1741 * If any ops wants regs saved for this function 1742 * then all ops will get saved regs. 1743 */ 1744 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1745 rec->flags |= FTRACE_FL_REGS; 1746 } else { 1747 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1748 return false; 1749 rec->flags--; 1750 1751 /* 1752 * Only the internal direct_ops should have the 1753 * DIRECT flag set. Thus, if it is removing a 1754 * function, then that function should no longer 1755 * be direct. 1756 */ 1757 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1758 rec->flags &= ~FTRACE_FL_DIRECT; 1759 1760 /* 1761 * If the rec had REGS enabled and the ops that is 1762 * being removed had REGS set, then see if there is 1763 * still any ops for this record that wants regs. 1764 * If not, we can stop recording them. 1765 */ 1766 if (ftrace_rec_count(rec) > 0 && 1767 rec->flags & FTRACE_FL_REGS && 1768 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1769 if (!test_rec_ops_needs_regs(rec)) 1770 rec->flags &= ~FTRACE_FL_REGS; 1771 } 1772 1773 /* 1774 * The TRAMP needs to be set only if rec count 1775 * is decremented to one, and the ops that is 1776 * left has a trampoline. As TRAMP can only be 1777 * enabled if there is only a single ops attached 1778 * to it. 1779 */ 1780 if (ftrace_rec_count(rec) == 1 && 1781 ftrace_find_tramp_ops_any(rec)) 1782 rec->flags |= FTRACE_FL_TRAMP; 1783 else 1784 rec->flags &= ~FTRACE_FL_TRAMP; 1785 1786 /* 1787 * flags will be cleared in ftrace_check_record() 1788 * if rec count is zero. 1789 */ 1790 } 1791 count++; 1792 1793 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1794 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1795 1796 /* Shortcut, if we handled all records, we are done. */ 1797 if (!all && count == hash->count) 1798 return update; 1799 } while_for_each_ftrace_rec(); 1800 1801 return update; 1802 } 1803 1804 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1805 int filter_hash) 1806 { 1807 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1808 } 1809 1810 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1811 int filter_hash) 1812 { 1813 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1814 } 1815 1816 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1817 int filter_hash, int inc) 1818 { 1819 struct ftrace_ops *op; 1820 1821 __ftrace_hash_rec_update(ops, filter_hash, inc); 1822 1823 if (ops->func_hash != &global_ops.local_hash) 1824 return; 1825 1826 /* 1827 * If the ops shares the global_ops hash, then we need to update 1828 * all ops that are enabled and use this hash. 1829 */ 1830 do_for_each_ftrace_op(op, ftrace_ops_list) { 1831 /* Already done */ 1832 if (op == ops) 1833 continue; 1834 if (op->func_hash == &global_ops.local_hash) 1835 __ftrace_hash_rec_update(op, filter_hash, inc); 1836 } while_for_each_ftrace_op(op); 1837 } 1838 1839 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1840 int filter_hash) 1841 { 1842 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1843 } 1844 1845 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1846 int filter_hash) 1847 { 1848 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1849 } 1850 1851 /* 1852 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1853 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1854 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1855 * Note that old_hash and new_hash has below meanings 1856 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1857 * - If the hash is EMPTY_HASH, it hits nothing 1858 * - Anything else hits the recs which match the hash entries. 1859 */ 1860 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1861 struct ftrace_hash *old_hash, 1862 struct ftrace_hash *new_hash) 1863 { 1864 struct ftrace_page *pg; 1865 struct dyn_ftrace *rec, *end = NULL; 1866 int in_old, in_new; 1867 1868 /* Only update if the ops has been registered */ 1869 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1870 return 0; 1871 1872 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1873 return 0; 1874 1875 /* 1876 * Since the IPMODIFY is a very address sensitive action, we do not 1877 * allow ftrace_ops to set all functions to new hash. 1878 */ 1879 if (!new_hash || !old_hash) 1880 return -EINVAL; 1881 1882 /* Update rec->flags */ 1883 do_for_each_ftrace_rec(pg, rec) { 1884 1885 if (rec->flags & FTRACE_FL_DISABLED) 1886 continue; 1887 1888 /* We need to update only differences of filter_hash */ 1889 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1890 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1891 if (in_old == in_new) 1892 continue; 1893 1894 if (in_new) { 1895 /* New entries must ensure no others are using it */ 1896 if (rec->flags & FTRACE_FL_IPMODIFY) 1897 goto rollback; 1898 rec->flags |= FTRACE_FL_IPMODIFY; 1899 } else /* Removed entry */ 1900 rec->flags &= ~FTRACE_FL_IPMODIFY; 1901 } while_for_each_ftrace_rec(); 1902 1903 return 0; 1904 1905 rollback: 1906 end = rec; 1907 1908 /* Roll back what we did above */ 1909 do_for_each_ftrace_rec(pg, rec) { 1910 1911 if (rec->flags & FTRACE_FL_DISABLED) 1912 continue; 1913 1914 if (rec == end) 1915 goto err_out; 1916 1917 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1918 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1919 if (in_old == in_new) 1920 continue; 1921 1922 if (in_new) 1923 rec->flags &= ~FTRACE_FL_IPMODIFY; 1924 else 1925 rec->flags |= FTRACE_FL_IPMODIFY; 1926 } while_for_each_ftrace_rec(); 1927 1928 err_out: 1929 return -EBUSY; 1930 } 1931 1932 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1933 { 1934 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1935 1936 if (ftrace_hash_empty(hash)) 1937 hash = NULL; 1938 1939 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1940 } 1941 1942 /* Disabling always succeeds */ 1943 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1944 { 1945 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1946 1947 if (ftrace_hash_empty(hash)) 1948 hash = NULL; 1949 1950 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1951 } 1952 1953 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1954 struct ftrace_hash *new_hash) 1955 { 1956 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1957 1958 if (ftrace_hash_empty(old_hash)) 1959 old_hash = NULL; 1960 1961 if (ftrace_hash_empty(new_hash)) 1962 new_hash = NULL; 1963 1964 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1965 } 1966 1967 static void print_ip_ins(const char *fmt, const unsigned char *p) 1968 { 1969 int i; 1970 1971 printk(KERN_CONT "%s", fmt); 1972 1973 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1974 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1975 } 1976 1977 enum ftrace_bug_type ftrace_bug_type; 1978 const void *ftrace_expected; 1979 1980 static void print_bug_type(void) 1981 { 1982 switch (ftrace_bug_type) { 1983 case FTRACE_BUG_UNKNOWN: 1984 break; 1985 case FTRACE_BUG_INIT: 1986 pr_info("Initializing ftrace call sites\n"); 1987 break; 1988 case FTRACE_BUG_NOP: 1989 pr_info("Setting ftrace call site to NOP\n"); 1990 break; 1991 case FTRACE_BUG_CALL: 1992 pr_info("Setting ftrace call site to call ftrace function\n"); 1993 break; 1994 case FTRACE_BUG_UPDATE: 1995 pr_info("Updating ftrace call site to call a different ftrace function\n"); 1996 break; 1997 } 1998 } 1999 2000 /** 2001 * ftrace_bug - report and shutdown function tracer 2002 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2003 * @rec: The record that failed 2004 * 2005 * The arch code that enables or disables the function tracing 2006 * can call ftrace_bug() when it has detected a problem in 2007 * modifying the code. @failed should be one of either: 2008 * EFAULT - if the problem happens on reading the @ip address 2009 * EINVAL - if what is read at @ip is not what was expected 2010 * EPERM - if the problem happens on writing to the @ip address 2011 */ 2012 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2013 { 2014 unsigned long ip = rec ? rec->ip : 0; 2015 2016 pr_info("------------[ ftrace bug ]------------\n"); 2017 2018 switch (failed) { 2019 case -EFAULT: 2020 pr_info("ftrace faulted on modifying "); 2021 print_ip_sym(KERN_INFO, ip); 2022 break; 2023 case -EINVAL: 2024 pr_info("ftrace failed to modify "); 2025 print_ip_sym(KERN_INFO, ip); 2026 print_ip_ins(" actual: ", (unsigned char *)ip); 2027 pr_cont("\n"); 2028 if (ftrace_expected) { 2029 print_ip_ins(" expected: ", ftrace_expected); 2030 pr_cont("\n"); 2031 } 2032 break; 2033 case -EPERM: 2034 pr_info("ftrace faulted on writing "); 2035 print_ip_sym(KERN_INFO, ip); 2036 break; 2037 default: 2038 pr_info("ftrace faulted on unknown error "); 2039 print_ip_sym(KERN_INFO, ip); 2040 } 2041 print_bug_type(); 2042 if (rec) { 2043 struct ftrace_ops *ops = NULL; 2044 2045 pr_info("ftrace record flags: %lx\n", rec->flags); 2046 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2047 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2048 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2049 ops = ftrace_find_tramp_ops_any(rec); 2050 if (ops) { 2051 do { 2052 pr_cont("\ttramp: %pS (%pS)", 2053 (void *)ops->trampoline, 2054 (void *)ops->func); 2055 ops = ftrace_find_tramp_ops_next(rec, ops); 2056 } while (ops); 2057 } else 2058 pr_cont("\ttramp: ERROR!"); 2059 2060 } 2061 ip = ftrace_get_addr_curr(rec); 2062 pr_cont("\n expected tramp: %lx\n", ip); 2063 } 2064 2065 FTRACE_WARN_ON_ONCE(1); 2066 } 2067 2068 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2069 { 2070 unsigned long flag = 0UL; 2071 2072 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2073 2074 if (rec->flags & FTRACE_FL_DISABLED) 2075 return FTRACE_UPDATE_IGNORE; 2076 2077 /* 2078 * If we are updating calls: 2079 * 2080 * If the record has a ref count, then we need to enable it 2081 * because someone is using it. 2082 * 2083 * Otherwise we make sure its disabled. 2084 * 2085 * If we are disabling calls, then disable all records that 2086 * are enabled. 2087 */ 2088 if (enable && ftrace_rec_count(rec)) 2089 flag = FTRACE_FL_ENABLED; 2090 2091 /* 2092 * If enabling and the REGS flag does not match the REGS_EN, or 2093 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2094 * this record. Set flags to fail the compare against ENABLED. 2095 * Same for direct calls. 2096 */ 2097 if (flag) { 2098 if (!(rec->flags & FTRACE_FL_REGS) != 2099 !(rec->flags & FTRACE_FL_REGS_EN)) 2100 flag |= FTRACE_FL_REGS; 2101 2102 if (!(rec->flags & FTRACE_FL_TRAMP) != 2103 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2104 flag |= FTRACE_FL_TRAMP; 2105 2106 /* 2107 * Direct calls are special, as count matters. 2108 * We must test the record for direct, if the 2109 * DIRECT and DIRECT_EN do not match, but only 2110 * if the count is 1. That's because, if the 2111 * count is something other than one, we do not 2112 * want the direct enabled (it will be done via the 2113 * direct helper). But if DIRECT_EN is set, and 2114 * the count is not one, we need to clear it. 2115 */ 2116 if (ftrace_rec_count(rec) == 1) { 2117 if (!(rec->flags & FTRACE_FL_DIRECT) != 2118 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2119 flag |= FTRACE_FL_DIRECT; 2120 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2121 flag |= FTRACE_FL_DIRECT; 2122 } 2123 } 2124 2125 /* If the state of this record hasn't changed, then do nothing */ 2126 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2127 return FTRACE_UPDATE_IGNORE; 2128 2129 if (flag) { 2130 /* Save off if rec is being enabled (for return value) */ 2131 flag ^= rec->flags & FTRACE_FL_ENABLED; 2132 2133 if (update) { 2134 rec->flags |= FTRACE_FL_ENABLED; 2135 if (flag & FTRACE_FL_REGS) { 2136 if (rec->flags & FTRACE_FL_REGS) 2137 rec->flags |= FTRACE_FL_REGS_EN; 2138 else 2139 rec->flags &= ~FTRACE_FL_REGS_EN; 2140 } 2141 if (flag & FTRACE_FL_TRAMP) { 2142 if (rec->flags & FTRACE_FL_TRAMP) 2143 rec->flags |= FTRACE_FL_TRAMP_EN; 2144 else 2145 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2146 } 2147 if (flag & FTRACE_FL_DIRECT) { 2148 /* 2149 * If there's only one user (direct_ops helper) 2150 * then we can call the direct function 2151 * directly (no ftrace trampoline). 2152 */ 2153 if (ftrace_rec_count(rec) == 1) { 2154 if (rec->flags & FTRACE_FL_DIRECT) 2155 rec->flags |= FTRACE_FL_DIRECT_EN; 2156 else 2157 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2158 } else { 2159 /* 2160 * Can only call directly if there's 2161 * only one callback to the function. 2162 */ 2163 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2164 } 2165 } 2166 } 2167 2168 /* 2169 * If this record is being updated from a nop, then 2170 * return UPDATE_MAKE_CALL. 2171 * Otherwise, 2172 * return UPDATE_MODIFY_CALL to tell the caller to convert 2173 * from the save regs, to a non-save regs function or 2174 * vice versa, or from a trampoline call. 2175 */ 2176 if (flag & FTRACE_FL_ENABLED) { 2177 ftrace_bug_type = FTRACE_BUG_CALL; 2178 return FTRACE_UPDATE_MAKE_CALL; 2179 } 2180 2181 ftrace_bug_type = FTRACE_BUG_UPDATE; 2182 return FTRACE_UPDATE_MODIFY_CALL; 2183 } 2184 2185 if (update) { 2186 /* If there's no more users, clear all flags */ 2187 if (!ftrace_rec_count(rec)) 2188 rec->flags = 0; 2189 else 2190 /* 2191 * Just disable the record, but keep the ops TRAMP 2192 * and REGS states. The _EN flags must be disabled though. 2193 */ 2194 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2195 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2196 } 2197 2198 ftrace_bug_type = FTRACE_BUG_NOP; 2199 return FTRACE_UPDATE_MAKE_NOP; 2200 } 2201 2202 /** 2203 * ftrace_update_record, set a record that now is tracing or not 2204 * @rec: the record to update 2205 * @enable: set to true if the record is tracing, false to force disable 2206 * 2207 * The records that represent all functions that can be traced need 2208 * to be updated when tracing has been enabled. 2209 */ 2210 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2211 { 2212 return ftrace_check_record(rec, enable, true); 2213 } 2214 2215 /** 2216 * ftrace_test_record, check if the record has been enabled or not 2217 * @rec: the record to test 2218 * @enable: set to true to check if enabled, false if it is disabled 2219 * 2220 * The arch code may need to test if a record is already set to 2221 * tracing to determine how to modify the function code that it 2222 * represents. 2223 */ 2224 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2225 { 2226 return ftrace_check_record(rec, enable, false); 2227 } 2228 2229 static struct ftrace_ops * 2230 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2231 { 2232 struct ftrace_ops *op; 2233 unsigned long ip = rec->ip; 2234 2235 do_for_each_ftrace_op(op, ftrace_ops_list) { 2236 2237 if (!op->trampoline) 2238 continue; 2239 2240 if (hash_contains_ip(ip, op->func_hash)) 2241 return op; 2242 } while_for_each_ftrace_op(op); 2243 2244 return NULL; 2245 } 2246 2247 static struct ftrace_ops * 2248 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2249 struct ftrace_ops *op) 2250 { 2251 unsigned long ip = rec->ip; 2252 2253 while_for_each_ftrace_op(op) { 2254 2255 if (!op->trampoline) 2256 continue; 2257 2258 if (hash_contains_ip(ip, op->func_hash)) 2259 return op; 2260 } 2261 2262 return NULL; 2263 } 2264 2265 static struct ftrace_ops * 2266 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2267 { 2268 struct ftrace_ops *op; 2269 unsigned long ip = rec->ip; 2270 2271 /* 2272 * Need to check removed ops first. 2273 * If they are being removed, and this rec has a tramp, 2274 * and this rec is in the ops list, then it would be the 2275 * one with the tramp. 2276 */ 2277 if (removed_ops) { 2278 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2279 return removed_ops; 2280 } 2281 2282 /* 2283 * Need to find the current trampoline for a rec. 2284 * Now, a trampoline is only attached to a rec if there 2285 * was a single 'ops' attached to it. But this can be called 2286 * when we are adding another op to the rec or removing the 2287 * current one. Thus, if the op is being added, we can 2288 * ignore it because it hasn't attached itself to the rec 2289 * yet. 2290 * 2291 * If an ops is being modified (hooking to different functions) 2292 * then we don't care about the new functions that are being 2293 * added, just the old ones (that are probably being removed). 2294 * 2295 * If we are adding an ops to a function that already is using 2296 * a trampoline, it needs to be removed (trampolines are only 2297 * for single ops connected), then an ops that is not being 2298 * modified also needs to be checked. 2299 */ 2300 do_for_each_ftrace_op(op, ftrace_ops_list) { 2301 2302 if (!op->trampoline) 2303 continue; 2304 2305 /* 2306 * If the ops is being added, it hasn't gotten to 2307 * the point to be removed from this tree yet. 2308 */ 2309 if (op->flags & FTRACE_OPS_FL_ADDING) 2310 continue; 2311 2312 2313 /* 2314 * If the ops is being modified and is in the old 2315 * hash, then it is probably being removed from this 2316 * function. 2317 */ 2318 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2319 hash_contains_ip(ip, &op->old_hash)) 2320 return op; 2321 /* 2322 * If the ops is not being added or modified, and it's 2323 * in its normal filter hash, then this must be the one 2324 * we want! 2325 */ 2326 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2327 hash_contains_ip(ip, op->func_hash)) 2328 return op; 2329 2330 } while_for_each_ftrace_op(op); 2331 2332 return NULL; 2333 } 2334 2335 static struct ftrace_ops * 2336 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2337 { 2338 struct ftrace_ops *op; 2339 unsigned long ip = rec->ip; 2340 2341 do_for_each_ftrace_op(op, ftrace_ops_list) { 2342 /* pass rec in as regs to have non-NULL val */ 2343 if (hash_contains_ip(ip, op->func_hash)) 2344 return op; 2345 } while_for_each_ftrace_op(op); 2346 2347 return NULL; 2348 } 2349 2350 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2351 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2352 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2353 static DEFINE_MUTEX(direct_mutex); 2354 int ftrace_direct_func_count; 2355 2356 /* 2357 * Search the direct_functions hash to see if the given instruction pointer 2358 * has a direct caller attached to it. 2359 */ 2360 unsigned long ftrace_find_rec_direct(unsigned long ip) 2361 { 2362 struct ftrace_func_entry *entry; 2363 2364 entry = __ftrace_lookup_ip(direct_functions, ip); 2365 if (!entry) 2366 return 0; 2367 2368 return entry->direct; 2369 } 2370 2371 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2372 struct ftrace_ops *ops, struct pt_regs *regs) 2373 { 2374 unsigned long addr; 2375 2376 addr = ftrace_find_rec_direct(ip); 2377 if (!addr) 2378 return; 2379 2380 arch_ftrace_set_direct_caller(regs, addr); 2381 } 2382 2383 struct ftrace_ops direct_ops = { 2384 .func = call_direct_funcs, 2385 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2386 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2387 | FTRACE_OPS_FL_PERMANENT, 2388 /* 2389 * By declaring the main trampoline as this trampoline 2390 * it will never have one allocated for it. Allocated 2391 * trampolines should not call direct functions. 2392 * The direct_ops should only be called by the builtin 2393 * ftrace_regs_caller trampoline. 2394 */ 2395 .trampoline = FTRACE_REGS_ADDR, 2396 }; 2397 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2398 2399 /** 2400 * ftrace_get_addr_new - Get the call address to set to 2401 * @rec: The ftrace record descriptor 2402 * 2403 * If the record has the FTRACE_FL_REGS set, that means that it 2404 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2405 * is not not set, then it wants to convert to the normal callback. 2406 * 2407 * Returns the address of the trampoline to set to 2408 */ 2409 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2410 { 2411 struct ftrace_ops *ops; 2412 unsigned long addr; 2413 2414 if ((rec->flags & FTRACE_FL_DIRECT) && 2415 (ftrace_rec_count(rec) == 1)) { 2416 addr = ftrace_find_rec_direct(rec->ip); 2417 if (addr) 2418 return addr; 2419 WARN_ON_ONCE(1); 2420 } 2421 2422 /* Trampolines take precedence over regs */ 2423 if (rec->flags & FTRACE_FL_TRAMP) { 2424 ops = ftrace_find_tramp_ops_new(rec); 2425 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2426 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2427 (void *)rec->ip, (void *)rec->ip, rec->flags); 2428 /* Ftrace is shutting down, return anything */ 2429 return (unsigned long)FTRACE_ADDR; 2430 } 2431 return ops->trampoline; 2432 } 2433 2434 if (rec->flags & FTRACE_FL_REGS) 2435 return (unsigned long)FTRACE_REGS_ADDR; 2436 else 2437 return (unsigned long)FTRACE_ADDR; 2438 } 2439 2440 /** 2441 * ftrace_get_addr_curr - Get the call address that is already there 2442 * @rec: The ftrace record descriptor 2443 * 2444 * The FTRACE_FL_REGS_EN is set when the record already points to 2445 * a function that saves all the regs. Basically the '_EN' version 2446 * represents the current state of the function. 2447 * 2448 * Returns the address of the trampoline that is currently being called 2449 */ 2450 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2451 { 2452 struct ftrace_ops *ops; 2453 unsigned long addr; 2454 2455 /* Direct calls take precedence over trampolines */ 2456 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2457 addr = ftrace_find_rec_direct(rec->ip); 2458 if (addr) 2459 return addr; 2460 WARN_ON_ONCE(1); 2461 } 2462 2463 /* Trampolines take precedence over regs */ 2464 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2465 ops = ftrace_find_tramp_ops_curr(rec); 2466 if (FTRACE_WARN_ON(!ops)) { 2467 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2468 (void *)rec->ip, (void *)rec->ip); 2469 /* Ftrace is shutting down, return anything */ 2470 return (unsigned long)FTRACE_ADDR; 2471 } 2472 return ops->trampoline; 2473 } 2474 2475 if (rec->flags & FTRACE_FL_REGS_EN) 2476 return (unsigned long)FTRACE_REGS_ADDR; 2477 else 2478 return (unsigned long)FTRACE_ADDR; 2479 } 2480 2481 static int 2482 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2483 { 2484 unsigned long ftrace_old_addr; 2485 unsigned long ftrace_addr; 2486 int ret; 2487 2488 ftrace_addr = ftrace_get_addr_new(rec); 2489 2490 /* This needs to be done before we call ftrace_update_record */ 2491 ftrace_old_addr = ftrace_get_addr_curr(rec); 2492 2493 ret = ftrace_update_record(rec, enable); 2494 2495 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2496 2497 switch (ret) { 2498 case FTRACE_UPDATE_IGNORE: 2499 return 0; 2500 2501 case FTRACE_UPDATE_MAKE_CALL: 2502 ftrace_bug_type = FTRACE_BUG_CALL; 2503 return ftrace_make_call(rec, ftrace_addr); 2504 2505 case FTRACE_UPDATE_MAKE_NOP: 2506 ftrace_bug_type = FTRACE_BUG_NOP; 2507 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2508 2509 case FTRACE_UPDATE_MODIFY_CALL: 2510 ftrace_bug_type = FTRACE_BUG_UPDATE; 2511 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2512 } 2513 2514 return -1; /* unknown ftrace bug */ 2515 } 2516 2517 void __weak ftrace_replace_code(int mod_flags) 2518 { 2519 struct dyn_ftrace *rec; 2520 struct ftrace_page *pg; 2521 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2522 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2523 int failed; 2524 2525 if (unlikely(ftrace_disabled)) 2526 return; 2527 2528 do_for_each_ftrace_rec(pg, rec) { 2529 2530 if (rec->flags & FTRACE_FL_DISABLED) 2531 continue; 2532 2533 failed = __ftrace_replace_code(rec, enable); 2534 if (failed) { 2535 ftrace_bug(failed, rec); 2536 /* Stop processing */ 2537 return; 2538 } 2539 if (schedulable) 2540 cond_resched(); 2541 } while_for_each_ftrace_rec(); 2542 } 2543 2544 struct ftrace_rec_iter { 2545 struct ftrace_page *pg; 2546 int index; 2547 }; 2548 2549 /** 2550 * ftrace_rec_iter_start, start up iterating over traced functions 2551 * 2552 * Returns an iterator handle that is used to iterate over all 2553 * the records that represent address locations where functions 2554 * are traced. 2555 * 2556 * May return NULL if no records are available. 2557 */ 2558 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2559 { 2560 /* 2561 * We only use a single iterator. 2562 * Protected by the ftrace_lock mutex. 2563 */ 2564 static struct ftrace_rec_iter ftrace_rec_iter; 2565 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2566 2567 iter->pg = ftrace_pages_start; 2568 iter->index = 0; 2569 2570 /* Could have empty pages */ 2571 while (iter->pg && !iter->pg->index) 2572 iter->pg = iter->pg->next; 2573 2574 if (!iter->pg) 2575 return NULL; 2576 2577 return iter; 2578 } 2579 2580 /** 2581 * ftrace_rec_iter_next, get the next record to process. 2582 * @iter: The handle to the iterator. 2583 * 2584 * Returns the next iterator after the given iterator @iter. 2585 */ 2586 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2587 { 2588 iter->index++; 2589 2590 if (iter->index >= iter->pg->index) { 2591 iter->pg = iter->pg->next; 2592 iter->index = 0; 2593 2594 /* Could have empty pages */ 2595 while (iter->pg && !iter->pg->index) 2596 iter->pg = iter->pg->next; 2597 } 2598 2599 if (!iter->pg) 2600 return NULL; 2601 2602 return iter; 2603 } 2604 2605 /** 2606 * ftrace_rec_iter_record, get the record at the iterator location 2607 * @iter: The current iterator location 2608 * 2609 * Returns the record that the current @iter is at. 2610 */ 2611 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2612 { 2613 return &iter->pg->records[iter->index]; 2614 } 2615 2616 static int 2617 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2618 { 2619 int ret; 2620 2621 if (unlikely(ftrace_disabled)) 2622 return 0; 2623 2624 ret = ftrace_init_nop(mod, rec); 2625 if (ret) { 2626 ftrace_bug_type = FTRACE_BUG_INIT; 2627 ftrace_bug(ret, rec); 2628 return 0; 2629 } 2630 return 1; 2631 } 2632 2633 /* 2634 * archs can override this function if they must do something 2635 * before the modifying code is performed. 2636 */ 2637 int __weak ftrace_arch_code_modify_prepare(void) 2638 { 2639 return 0; 2640 } 2641 2642 /* 2643 * archs can override this function if they must do something 2644 * after the modifying code is performed. 2645 */ 2646 int __weak ftrace_arch_code_modify_post_process(void) 2647 { 2648 return 0; 2649 } 2650 2651 void ftrace_modify_all_code(int command) 2652 { 2653 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2654 int mod_flags = 0; 2655 int err = 0; 2656 2657 if (command & FTRACE_MAY_SLEEP) 2658 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2659 2660 /* 2661 * If the ftrace_caller calls a ftrace_ops func directly, 2662 * we need to make sure that it only traces functions it 2663 * expects to trace. When doing the switch of functions, 2664 * we need to update to the ftrace_ops_list_func first 2665 * before the transition between old and new calls are set, 2666 * as the ftrace_ops_list_func will check the ops hashes 2667 * to make sure the ops are having the right functions 2668 * traced. 2669 */ 2670 if (update) { 2671 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2672 if (FTRACE_WARN_ON(err)) 2673 return; 2674 } 2675 2676 if (command & FTRACE_UPDATE_CALLS) 2677 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2678 else if (command & FTRACE_DISABLE_CALLS) 2679 ftrace_replace_code(mod_flags); 2680 2681 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2682 function_trace_op = set_function_trace_op; 2683 smp_wmb(); 2684 /* If irqs are disabled, we are in stop machine */ 2685 if (!irqs_disabled()) 2686 smp_call_function(ftrace_sync_ipi, NULL, 1); 2687 err = ftrace_update_ftrace_func(ftrace_trace_function); 2688 if (FTRACE_WARN_ON(err)) 2689 return; 2690 } 2691 2692 if (command & FTRACE_START_FUNC_RET) 2693 err = ftrace_enable_ftrace_graph_caller(); 2694 else if (command & FTRACE_STOP_FUNC_RET) 2695 err = ftrace_disable_ftrace_graph_caller(); 2696 FTRACE_WARN_ON(err); 2697 } 2698 2699 static int __ftrace_modify_code(void *data) 2700 { 2701 int *command = data; 2702 2703 ftrace_modify_all_code(*command); 2704 2705 return 0; 2706 } 2707 2708 /** 2709 * ftrace_run_stop_machine, go back to the stop machine method 2710 * @command: The command to tell ftrace what to do 2711 * 2712 * If an arch needs to fall back to the stop machine method, the 2713 * it can call this function. 2714 */ 2715 void ftrace_run_stop_machine(int command) 2716 { 2717 stop_machine(__ftrace_modify_code, &command, NULL); 2718 } 2719 2720 /** 2721 * arch_ftrace_update_code, modify the code to trace or not trace 2722 * @command: The command that needs to be done 2723 * 2724 * Archs can override this function if it does not need to 2725 * run stop_machine() to modify code. 2726 */ 2727 void __weak arch_ftrace_update_code(int command) 2728 { 2729 ftrace_run_stop_machine(command); 2730 } 2731 2732 static void ftrace_run_update_code(int command) 2733 { 2734 int ret; 2735 2736 ret = ftrace_arch_code_modify_prepare(); 2737 FTRACE_WARN_ON(ret); 2738 if (ret) 2739 return; 2740 2741 /* 2742 * By default we use stop_machine() to modify the code. 2743 * But archs can do what ever they want as long as it 2744 * is safe. The stop_machine() is the safest, but also 2745 * produces the most overhead. 2746 */ 2747 arch_ftrace_update_code(command); 2748 2749 ret = ftrace_arch_code_modify_post_process(); 2750 FTRACE_WARN_ON(ret); 2751 } 2752 2753 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2754 struct ftrace_ops_hash *old_hash) 2755 { 2756 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2757 ops->old_hash.filter_hash = old_hash->filter_hash; 2758 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2759 ftrace_run_update_code(command); 2760 ops->old_hash.filter_hash = NULL; 2761 ops->old_hash.notrace_hash = NULL; 2762 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2763 } 2764 2765 static ftrace_func_t saved_ftrace_func; 2766 static int ftrace_start_up; 2767 2768 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2769 { 2770 } 2771 2772 /* List of trace_ops that have allocated trampolines */ 2773 static LIST_HEAD(ftrace_ops_trampoline_list); 2774 2775 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2776 { 2777 lockdep_assert_held(&ftrace_lock); 2778 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2779 } 2780 2781 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2782 { 2783 lockdep_assert_held(&ftrace_lock); 2784 list_del_rcu(&ops->list); 2785 } 2786 2787 /* 2788 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2789 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2790 * not a module. 2791 */ 2792 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2793 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2794 2795 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2796 { 2797 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2798 ops->trampoline) { 2799 /* 2800 * Record the text poke event before the ksymbol unregister 2801 * event. 2802 */ 2803 perf_event_text_poke((void *)ops->trampoline, 2804 (void *)ops->trampoline, 2805 ops->trampoline_size, NULL, 0); 2806 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2807 ops->trampoline, ops->trampoline_size, 2808 true, FTRACE_TRAMPOLINE_SYM); 2809 /* Remove from kallsyms after the perf events */ 2810 ftrace_remove_trampoline_from_kallsyms(ops); 2811 } 2812 2813 arch_ftrace_trampoline_free(ops); 2814 } 2815 2816 static void ftrace_startup_enable(int command) 2817 { 2818 if (saved_ftrace_func != ftrace_trace_function) { 2819 saved_ftrace_func = ftrace_trace_function; 2820 command |= FTRACE_UPDATE_TRACE_FUNC; 2821 } 2822 2823 if (!command || !ftrace_enabled) 2824 return; 2825 2826 ftrace_run_update_code(command); 2827 } 2828 2829 static void ftrace_startup_all(int command) 2830 { 2831 update_all_ops = true; 2832 ftrace_startup_enable(command); 2833 update_all_ops = false; 2834 } 2835 2836 int ftrace_startup(struct ftrace_ops *ops, int command) 2837 { 2838 int ret; 2839 2840 if (unlikely(ftrace_disabled)) 2841 return -ENODEV; 2842 2843 ret = __register_ftrace_function(ops); 2844 if (ret) 2845 return ret; 2846 2847 ftrace_start_up++; 2848 2849 /* 2850 * Note that ftrace probes uses this to start up 2851 * and modify functions it will probe. But we still 2852 * set the ADDING flag for modification, as probes 2853 * do not have trampolines. If they add them in the 2854 * future, then the probes will need to distinguish 2855 * between adding and updating probes. 2856 */ 2857 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2858 2859 ret = ftrace_hash_ipmodify_enable(ops); 2860 if (ret < 0) { 2861 /* Rollback registration process */ 2862 __unregister_ftrace_function(ops); 2863 ftrace_start_up--; 2864 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2865 return ret; 2866 } 2867 2868 if (ftrace_hash_rec_enable(ops, 1)) 2869 command |= FTRACE_UPDATE_CALLS; 2870 2871 ftrace_startup_enable(command); 2872 2873 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2874 2875 return 0; 2876 } 2877 2878 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2879 { 2880 int ret; 2881 2882 if (unlikely(ftrace_disabled)) 2883 return -ENODEV; 2884 2885 ret = __unregister_ftrace_function(ops); 2886 if (ret) 2887 return ret; 2888 2889 ftrace_start_up--; 2890 /* 2891 * Just warn in case of unbalance, no need to kill ftrace, it's not 2892 * critical but the ftrace_call callers may be never nopped again after 2893 * further ftrace uses. 2894 */ 2895 WARN_ON_ONCE(ftrace_start_up < 0); 2896 2897 /* Disabling ipmodify never fails */ 2898 ftrace_hash_ipmodify_disable(ops); 2899 2900 if (ftrace_hash_rec_disable(ops, 1)) 2901 command |= FTRACE_UPDATE_CALLS; 2902 2903 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2904 2905 if (saved_ftrace_func != ftrace_trace_function) { 2906 saved_ftrace_func = ftrace_trace_function; 2907 command |= FTRACE_UPDATE_TRACE_FUNC; 2908 } 2909 2910 if (!command || !ftrace_enabled) { 2911 /* 2912 * If these are dynamic or per_cpu ops, they still 2913 * need their data freed. Since, function tracing is 2914 * not currently active, we can just free them 2915 * without synchronizing all CPUs. 2916 */ 2917 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2918 goto free_ops; 2919 2920 return 0; 2921 } 2922 2923 /* 2924 * If the ops uses a trampoline, then it needs to be 2925 * tested first on update. 2926 */ 2927 ops->flags |= FTRACE_OPS_FL_REMOVING; 2928 removed_ops = ops; 2929 2930 /* The trampoline logic checks the old hashes */ 2931 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2932 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2933 2934 ftrace_run_update_code(command); 2935 2936 /* 2937 * If there's no more ops registered with ftrace, run a 2938 * sanity check to make sure all rec flags are cleared. 2939 */ 2940 if (rcu_dereference_protected(ftrace_ops_list, 2941 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2942 struct ftrace_page *pg; 2943 struct dyn_ftrace *rec; 2944 2945 do_for_each_ftrace_rec(pg, rec) { 2946 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2947 pr_warn(" %pS flags:%lx\n", 2948 (void *)rec->ip, rec->flags); 2949 } while_for_each_ftrace_rec(); 2950 } 2951 2952 ops->old_hash.filter_hash = NULL; 2953 ops->old_hash.notrace_hash = NULL; 2954 2955 removed_ops = NULL; 2956 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2957 2958 /* 2959 * Dynamic ops may be freed, we must make sure that all 2960 * callers are done before leaving this function. 2961 * The same goes for freeing the per_cpu data of the per_cpu 2962 * ops. 2963 */ 2964 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2965 /* 2966 * We need to do a hard force of sched synchronization. 2967 * This is because we use preempt_disable() to do RCU, but 2968 * the function tracers can be called where RCU is not watching 2969 * (like before user_exit()). We can not rely on the RCU 2970 * infrastructure to do the synchronization, thus we must do it 2971 * ourselves. 2972 */ 2973 synchronize_rcu_tasks_rude(); 2974 2975 /* 2976 * When the kernel is preeptive, tasks can be preempted 2977 * while on a ftrace trampoline. Just scheduling a task on 2978 * a CPU is not good enough to flush them. Calling 2979 * synchornize_rcu_tasks() will wait for those tasks to 2980 * execute and either schedule voluntarily or enter user space. 2981 */ 2982 if (IS_ENABLED(CONFIG_PREEMPTION)) 2983 synchronize_rcu_tasks(); 2984 2985 free_ops: 2986 ftrace_trampoline_free(ops); 2987 } 2988 2989 return 0; 2990 } 2991 2992 static void ftrace_startup_sysctl(void) 2993 { 2994 int command; 2995 2996 if (unlikely(ftrace_disabled)) 2997 return; 2998 2999 /* Force update next time */ 3000 saved_ftrace_func = NULL; 3001 /* ftrace_start_up is true if we want ftrace running */ 3002 if (ftrace_start_up) { 3003 command = FTRACE_UPDATE_CALLS; 3004 if (ftrace_graph_active) 3005 command |= FTRACE_START_FUNC_RET; 3006 ftrace_startup_enable(command); 3007 } 3008 } 3009 3010 static void ftrace_shutdown_sysctl(void) 3011 { 3012 int command; 3013 3014 if (unlikely(ftrace_disabled)) 3015 return; 3016 3017 /* ftrace_start_up is true if ftrace is running */ 3018 if (ftrace_start_up) { 3019 command = FTRACE_DISABLE_CALLS; 3020 if (ftrace_graph_active) 3021 command |= FTRACE_STOP_FUNC_RET; 3022 ftrace_run_update_code(command); 3023 } 3024 } 3025 3026 static u64 ftrace_update_time; 3027 unsigned long ftrace_update_tot_cnt; 3028 unsigned long ftrace_number_of_pages; 3029 unsigned long ftrace_number_of_groups; 3030 3031 static inline int ops_traces_mod(struct ftrace_ops *ops) 3032 { 3033 /* 3034 * Filter_hash being empty will default to trace module. 3035 * But notrace hash requires a test of individual module functions. 3036 */ 3037 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3038 ftrace_hash_empty(ops->func_hash->notrace_hash); 3039 } 3040 3041 /* 3042 * Check if the current ops references the record. 3043 * 3044 * If the ops traces all functions, then it was already accounted for. 3045 * If the ops does not trace the current record function, skip it. 3046 * If the ops ignores the function via notrace filter, skip it. 3047 */ 3048 static inline bool 3049 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3050 { 3051 /* If ops isn't enabled, ignore it */ 3052 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3053 return false; 3054 3055 /* If ops traces all then it includes this function */ 3056 if (ops_traces_mod(ops)) 3057 return true; 3058 3059 /* The function must be in the filter */ 3060 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3061 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3062 return false; 3063 3064 /* If in notrace hash, we ignore it too */ 3065 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3066 return false; 3067 3068 return true; 3069 } 3070 3071 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3072 { 3073 struct ftrace_page *pg; 3074 struct dyn_ftrace *p; 3075 u64 start, stop; 3076 unsigned long update_cnt = 0; 3077 unsigned long rec_flags = 0; 3078 int i; 3079 3080 start = ftrace_now(raw_smp_processor_id()); 3081 3082 /* 3083 * When a module is loaded, this function is called to convert 3084 * the calls to mcount in its text to nops, and also to create 3085 * an entry in the ftrace data. Now, if ftrace is activated 3086 * after this call, but before the module sets its text to 3087 * read-only, the modification of enabling ftrace can fail if 3088 * the read-only is done while ftrace is converting the calls. 3089 * To prevent this, the module's records are set as disabled 3090 * and will be enabled after the call to set the module's text 3091 * to read-only. 3092 */ 3093 if (mod) 3094 rec_flags |= FTRACE_FL_DISABLED; 3095 3096 for (pg = new_pgs; pg; pg = pg->next) { 3097 3098 for (i = 0; i < pg->index; i++) { 3099 3100 /* If something went wrong, bail without enabling anything */ 3101 if (unlikely(ftrace_disabled)) 3102 return -1; 3103 3104 p = &pg->records[i]; 3105 p->flags = rec_flags; 3106 3107 /* 3108 * Do the initial record conversion from mcount jump 3109 * to the NOP instructions. 3110 */ 3111 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3112 !ftrace_nop_initialize(mod, p)) 3113 break; 3114 3115 update_cnt++; 3116 } 3117 } 3118 3119 stop = ftrace_now(raw_smp_processor_id()); 3120 ftrace_update_time = stop - start; 3121 ftrace_update_tot_cnt += update_cnt; 3122 3123 return 0; 3124 } 3125 3126 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3127 { 3128 int order; 3129 int cnt; 3130 3131 if (WARN_ON(!count)) 3132 return -EINVAL; 3133 3134 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3135 3136 /* 3137 * We want to fill as much as possible. No more than a page 3138 * may be empty. 3139 */ 3140 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3141 order--; 3142 3143 again: 3144 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3145 3146 if (!pg->records) { 3147 /* if we can't allocate this size, try something smaller */ 3148 if (!order) 3149 return -ENOMEM; 3150 order >>= 1; 3151 goto again; 3152 } 3153 3154 ftrace_number_of_pages += 1 << order; 3155 ftrace_number_of_groups++; 3156 3157 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3158 pg->size = cnt; 3159 3160 if (cnt > count) 3161 cnt = count; 3162 3163 return cnt; 3164 } 3165 3166 static struct ftrace_page * 3167 ftrace_allocate_pages(unsigned long num_to_init) 3168 { 3169 struct ftrace_page *start_pg; 3170 struct ftrace_page *pg; 3171 int order; 3172 int cnt; 3173 3174 if (!num_to_init) 3175 return NULL; 3176 3177 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3178 if (!pg) 3179 return NULL; 3180 3181 /* 3182 * Try to allocate as much as possible in one continues 3183 * location that fills in all of the space. We want to 3184 * waste as little space as possible. 3185 */ 3186 for (;;) { 3187 cnt = ftrace_allocate_records(pg, num_to_init); 3188 if (cnt < 0) 3189 goto free_pages; 3190 3191 num_to_init -= cnt; 3192 if (!num_to_init) 3193 break; 3194 3195 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3196 if (!pg->next) 3197 goto free_pages; 3198 3199 pg = pg->next; 3200 } 3201 3202 return start_pg; 3203 3204 free_pages: 3205 pg = start_pg; 3206 while (pg) { 3207 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3208 free_pages((unsigned long)pg->records, order); 3209 start_pg = pg->next; 3210 kfree(pg); 3211 pg = start_pg; 3212 ftrace_number_of_pages -= 1 << order; 3213 ftrace_number_of_groups--; 3214 } 3215 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3216 return NULL; 3217 } 3218 3219 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3220 3221 struct ftrace_iterator { 3222 loff_t pos; 3223 loff_t func_pos; 3224 loff_t mod_pos; 3225 struct ftrace_page *pg; 3226 struct dyn_ftrace *func; 3227 struct ftrace_func_probe *probe; 3228 struct ftrace_func_entry *probe_entry; 3229 struct trace_parser parser; 3230 struct ftrace_hash *hash; 3231 struct ftrace_ops *ops; 3232 struct trace_array *tr; 3233 struct list_head *mod_list; 3234 int pidx; 3235 int idx; 3236 unsigned flags; 3237 }; 3238 3239 static void * 3240 t_probe_next(struct seq_file *m, loff_t *pos) 3241 { 3242 struct ftrace_iterator *iter = m->private; 3243 struct trace_array *tr = iter->ops->private; 3244 struct list_head *func_probes; 3245 struct ftrace_hash *hash; 3246 struct list_head *next; 3247 struct hlist_node *hnd = NULL; 3248 struct hlist_head *hhd; 3249 int size; 3250 3251 (*pos)++; 3252 iter->pos = *pos; 3253 3254 if (!tr) 3255 return NULL; 3256 3257 func_probes = &tr->func_probes; 3258 if (list_empty(func_probes)) 3259 return NULL; 3260 3261 if (!iter->probe) { 3262 next = func_probes->next; 3263 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3264 } 3265 3266 if (iter->probe_entry) 3267 hnd = &iter->probe_entry->hlist; 3268 3269 hash = iter->probe->ops.func_hash->filter_hash; 3270 3271 /* 3272 * A probe being registered may temporarily have an empty hash 3273 * and it's at the end of the func_probes list. 3274 */ 3275 if (!hash || hash == EMPTY_HASH) 3276 return NULL; 3277 3278 size = 1 << hash->size_bits; 3279 3280 retry: 3281 if (iter->pidx >= size) { 3282 if (iter->probe->list.next == func_probes) 3283 return NULL; 3284 next = iter->probe->list.next; 3285 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3286 hash = iter->probe->ops.func_hash->filter_hash; 3287 size = 1 << hash->size_bits; 3288 iter->pidx = 0; 3289 } 3290 3291 hhd = &hash->buckets[iter->pidx]; 3292 3293 if (hlist_empty(hhd)) { 3294 iter->pidx++; 3295 hnd = NULL; 3296 goto retry; 3297 } 3298 3299 if (!hnd) 3300 hnd = hhd->first; 3301 else { 3302 hnd = hnd->next; 3303 if (!hnd) { 3304 iter->pidx++; 3305 goto retry; 3306 } 3307 } 3308 3309 if (WARN_ON_ONCE(!hnd)) 3310 return NULL; 3311 3312 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3313 3314 return iter; 3315 } 3316 3317 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3318 { 3319 struct ftrace_iterator *iter = m->private; 3320 void *p = NULL; 3321 loff_t l; 3322 3323 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3324 return NULL; 3325 3326 if (iter->mod_pos > *pos) 3327 return NULL; 3328 3329 iter->probe = NULL; 3330 iter->probe_entry = NULL; 3331 iter->pidx = 0; 3332 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3333 p = t_probe_next(m, &l); 3334 if (!p) 3335 break; 3336 } 3337 if (!p) 3338 return NULL; 3339 3340 /* Only set this if we have an item */ 3341 iter->flags |= FTRACE_ITER_PROBE; 3342 3343 return iter; 3344 } 3345 3346 static int 3347 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3348 { 3349 struct ftrace_func_entry *probe_entry; 3350 struct ftrace_probe_ops *probe_ops; 3351 struct ftrace_func_probe *probe; 3352 3353 probe = iter->probe; 3354 probe_entry = iter->probe_entry; 3355 3356 if (WARN_ON_ONCE(!probe || !probe_entry)) 3357 return -EIO; 3358 3359 probe_ops = probe->probe_ops; 3360 3361 if (probe_ops->print) 3362 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3363 3364 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3365 (void *)probe_ops->func); 3366 3367 return 0; 3368 } 3369 3370 static void * 3371 t_mod_next(struct seq_file *m, loff_t *pos) 3372 { 3373 struct ftrace_iterator *iter = m->private; 3374 struct trace_array *tr = iter->tr; 3375 3376 (*pos)++; 3377 iter->pos = *pos; 3378 3379 iter->mod_list = iter->mod_list->next; 3380 3381 if (iter->mod_list == &tr->mod_trace || 3382 iter->mod_list == &tr->mod_notrace) { 3383 iter->flags &= ~FTRACE_ITER_MOD; 3384 return NULL; 3385 } 3386 3387 iter->mod_pos = *pos; 3388 3389 return iter; 3390 } 3391 3392 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3393 { 3394 struct ftrace_iterator *iter = m->private; 3395 void *p = NULL; 3396 loff_t l; 3397 3398 if (iter->func_pos > *pos) 3399 return NULL; 3400 3401 iter->mod_pos = iter->func_pos; 3402 3403 /* probes are only available if tr is set */ 3404 if (!iter->tr) 3405 return NULL; 3406 3407 for (l = 0; l <= (*pos - iter->func_pos); ) { 3408 p = t_mod_next(m, &l); 3409 if (!p) 3410 break; 3411 } 3412 if (!p) { 3413 iter->flags &= ~FTRACE_ITER_MOD; 3414 return t_probe_start(m, pos); 3415 } 3416 3417 /* Only set this if we have an item */ 3418 iter->flags |= FTRACE_ITER_MOD; 3419 3420 return iter; 3421 } 3422 3423 static int 3424 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3425 { 3426 struct ftrace_mod_load *ftrace_mod; 3427 struct trace_array *tr = iter->tr; 3428 3429 if (WARN_ON_ONCE(!iter->mod_list) || 3430 iter->mod_list == &tr->mod_trace || 3431 iter->mod_list == &tr->mod_notrace) 3432 return -EIO; 3433 3434 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3435 3436 if (ftrace_mod->func) 3437 seq_printf(m, "%s", ftrace_mod->func); 3438 else 3439 seq_putc(m, '*'); 3440 3441 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3442 3443 return 0; 3444 } 3445 3446 static void * 3447 t_func_next(struct seq_file *m, loff_t *pos) 3448 { 3449 struct ftrace_iterator *iter = m->private; 3450 struct dyn_ftrace *rec = NULL; 3451 3452 (*pos)++; 3453 3454 retry: 3455 if (iter->idx >= iter->pg->index) { 3456 if (iter->pg->next) { 3457 iter->pg = iter->pg->next; 3458 iter->idx = 0; 3459 goto retry; 3460 } 3461 } else { 3462 rec = &iter->pg->records[iter->idx++]; 3463 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3464 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3465 3466 ((iter->flags & FTRACE_ITER_ENABLED) && 3467 !(rec->flags & FTRACE_FL_ENABLED))) { 3468 3469 rec = NULL; 3470 goto retry; 3471 } 3472 } 3473 3474 if (!rec) 3475 return NULL; 3476 3477 iter->pos = iter->func_pos = *pos; 3478 iter->func = rec; 3479 3480 return iter; 3481 } 3482 3483 static void * 3484 t_next(struct seq_file *m, void *v, loff_t *pos) 3485 { 3486 struct ftrace_iterator *iter = m->private; 3487 loff_t l = *pos; /* t_probe_start() must use original pos */ 3488 void *ret; 3489 3490 if (unlikely(ftrace_disabled)) 3491 return NULL; 3492 3493 if (iter->flags & FTRACE_ITER_PROBE) 3494 return t_probe_next(m, pos); 3495 3496 if (iter->flags & FTRACE_ITER_MOD) 3497 return t_mod_next(m, pos); 3498 3499 if (iter->flags & FTRACE_ITER_PRINTALL) { 3500 /* next must increment pos, and t_probe_start does not */ 3501 (*pos)++; 3502 return t_mod_start(m, &l); 3503 } 3504 3505 ret = t_func_next(m, pos); 3506 3507 if (!ret) 3508 return t_mod_start(m, &l); 3509 3510 return ret; 3511 } 3512 3513 static void reset_iter_read(struct ftrace_iterator *iter) 3514 { 3515 iter->pos = 0; 3516 iter->func_pos = 0; 3517 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3518 } 3519 3520 static void *t_start(struct seq_file *m, loff_t *pos) 3521 { 3522 struct ftrace_iterator *iter = m->private; 3523 void *p = NULL; 3524 loff_t l; 3525 3526 mutex_lock(&ftrace_lock); 3527 3528 if (unlikely(ftrace_disabled)) 3529 return NULL; 3530 3531 /* 3532 * If an lseek was done, then reset and start from beginning. 3533 */ 3534 if (*pos < iter->pos) 3535 reset_iter_read(iter); 3536 3537 /* 3538 * For set_ftrace_filter reading, if we have the filter 3539 * off, we can short cut and just print out that all 3540 * functions are enabled. 3541 */ 3542 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3543 ftrace_hash_empty(iter->hash)) { 3544 iter->func_pos = 1; /* Account for the message */ 3545 if (*pos > 0) 3546 return t_mod_start(m, pos); 3547 iter->flags |= FTRACE_ITER_PRINTALL; 3548 /* reset in case of seek/pread */ 3549 iter->flags &= ~FTRACE_ITER_PROBE; 3550 return iter; 3551 } 3552 3553 if (iter->flags & FTRACE_ITER_MOD) 3554 return t_mod_start(m, pos); 3555 3556 /* 3557 * Unfortunately, we need to restart at ftrace_pages_start 3558 * every time we let go of the ftrace_mutex. This is because 3559 * those pointers can change without the lock. 3560 */ 3561 iter->pg = ftrace_pages_start; 3562 iter->idx = 0; 3563 for (l = 0; l <= *pos; ) { 3564 p = t_func_next(m, &l); 3565 if (!p) 3566 break; 3567 } 3568 3569 if (!p) 3570 return t_mod_start(m, pos); 3571 3572 return iter; 3573 } 3574 3575 static void t_stop(struct seq_file *m, void *p) 3576 { 3577 mutex_unlock(&ftrace_lock); 3578 } 3579 3580 void * __weak 3581 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3582 { 3583 return NULL; 3584 } 3585 3586 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3587 struct dyn_ftrace *rec) 3588 { 3589 void *ptr; 3590 3591 ptr = arch_ftrace_trampoline_func(ops, rec); 3592 if (ptr) 3593 seq_printf(m, " ->%pS", ptr); 3594 } 3595 3596 static int t_show(struct seq_file *m, void *v) 3597 { 3598 struct ftrace_iterator *iter = m->private; 3599 struct dyn_ftrace *rec; 3600 3601 if (iter->flags & FTRACE_ITER_PROBE) 3602 return t_probe_show(m, iter); 3603 3604 if (iter->flags & FTRACE_ITER_MOD) 3605 return t_mod_show(m, iter); 3606 3607 if (iter->flags & FTRACE_ITER_PRINTALL) { 3608 if (iter->flags & FTRACE_ITER_NOTRACE) 3609 seq_puts(m, "#### no functions disabled ####\n"); 3610 else 3611 seq_puts(m, "#### all functions enabled ####\n"); 3612 return 0; 3613 } 3614 3615 rec = iter->func; 3616 3617 if (!rec) 3618 return 0; 3619 3620 seq_printf(m, "%ps", (void *)rec->ip); 3621 if (iter->flags & FTRACE_ITER_ENABLED) { 3622 struct ftrace_ops *ops; 3623 3624 seq_printf(m, " (%ld)%s%s%s", 3625 ftrace_rec_count(rec), 3626 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3627 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3628 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3629 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3630 ops = ftrace_find_tramp_ops_any(rec); 3631 if (ops) { 3632 do { 3633 seq_printf(m, "\ttramp: %pS (%pS)", 3634 (void *)ops->trampoline, 3635 (void *)ops->func); 3636 add_trampoline_func(m, ops, rec); 3637 ops = ftrace_find_tramp_ops_next(rec, ops); 3638 } while (ops); 3639 } else 3640 seq_puts(m, "\ttramp: ERROR!"); 3641 } else { 3642 add_trampoline_func(m, NULL, rec); 3643 } 3644 if (rec->flags & FTRACE_FL_DIRECT) { 3645 unsigned long direct; 3646 3647 direct = ftrace_find_rec_direct(rec->ip); 3648 if (direct) 3649 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3650 } 3651 } 3652 3653 seq_putc(m, '\n'); 3654 3655 return 0; 3656 } 3657 3658 static const struct seq_operations show_ftrace_seq_ops = { 3659 .start = t_start, 3660 .next = t_next, 3661 .stop = t_stop, 3662 .show = t_show, 3663 }; 3664 3665 static int 3666 ftrace_avail_open(struct inode *inode, struct file *file) 3667 { 3668 struct ftrace_iterator *iter; 3669 int ret; 3670 3671 ret = security_locked_down(LOCKDOWN_TRACEFS); 3672 if (ret) 3673 return ret; 3674 3675 if (unlikely(ftrace_disabled)) 3676 return -ENODEV; 3677 3678 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3679 if (!iter) 3680 return -ENOMEM; 3681 3682 iter->pg = ftrace_pages_start; 3683 iter->ops = &global_ops; 3684 3685 return 0; 3686 } 3687 3688 static int 3689 ftrace_enabled_open(struct inode *inode, struct file *file) 3690 { 3691 struct ftrace_iterator *iter; 3692 3693 /* 3694 * This shows us what functions are currently being 3695 * traced and by what. Not sure if we want lockdown 3696 * to hide such critical information for an admin. 3697 * Although, perhaps it can show information we don't 3698 * want people to see, but if something is tracing 3699 * something, we probably want to know about it. 3700 */ 3701 3702 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3703 if (!iter) 3704 return -ENOMEM; 3705 3706 iter->pg = ftrace_pages_start; 3707 iter->flags = FTRACE_ITER_ENABLED; 3708 iter->ops = &global_ops; 3709 3710 return 0; 3711 } 3712 3713 /** 3714 * ftrace_regex_open - initialize function tracer filter files 3715 * @ops: The ftrace_ops that hold the hash filters 3716 * @flag: The type of filter to process 3717 * @inode: The inode, usually passed in to your open routine 3718 * @file: The file, usually passed in to your open routine 3719 * 3720 * ftrace_regex_open() initializes the filter files for the 3721 * @ops. Depending on @flag it may process the filter hash or 3722 * the notrace hash of @ops. With this called from the open 3723 * routine, you can use ftrace_filter_write() for the write 3724 * routine if @flag has FTRACE_ITER_FILTER set, or 3725 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3726 * tracing_lseek() should be used as the lseek routine, and 3727 * release must call ftrace_regex_release(). 3728 */ 3729 int 3730 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3731 struct inode *inode, struct file *file) 3732 { 3733 struct ftrace_iterator *iter; 3734 struct ftrace_hash *hash; 3735 struct list_head *mod_head; 3736 struct trace_array *tr = ops->private; 3737 int ret = -ENOMEM; 3738 3739 ftrace_ops_init(ops); 3740 3741 if (unlikely(ftrace_disabled)) 3742 return -ENODEV; 3743 3744 if (tracing_check_open_get_tr(tr)) 3745 return -ENODEV; 3746 3747 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3748 if (!iter) 3749 goto out; 3750 3751 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3752 goto out; 3753 3754 iter->ops = ops; 3755 iter->flags = flag; 3756 iter->tr = tr; 3757 3758 mutex_lock(&ops->func_hash->regex_lock); 3759 3760 if (flag & FTRACE_ITER_NOTRACE) { 3761 hash = ops->func_hash->notrace_hash; 3762 mod_head = tr ? &tr->mod_notrace : NULL; 3763 } else { 3764 hash = ops->func_hash->filter_hash; 3765 mod_head = tr ? &tr->mod_trace : NULL; 3766 } 3767 3768 iter->mod_list = mod_head; 3769 3770 if (file->f_mode & FMODE_WRITE) { 3771 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3772 3773 if (file->f_flags & O_TRUNC) { 3774 iter->hash = alloc_ftrace_hash(size_bits); 3775 clear_ftrace_mod_list(mod_head); 3776 } else { 3777 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3778 } 3779 3780 if (!iter->hash) { 3781 trace_parser_put(&iter->parser); 3782 goto out_unlock; 3783 } 3784 } else 3785 iter->hash = hash; 3786 3787 ret = 0; 3788 3789 if (file->f_mode & FMODE_READ) { 3790 iter->pg = ftrace_pages_start; 3791 3792 ret = seq_open(file, &show_ftrace_seq_ops); 3793 if (!ret) { 3794 struct seq_file *m = file->private_data; 3795 m->private = iter; 3796 } else { 3797 /* Failed */ 3798 free_ftrace_hash(iter->hash); 3799 trace_parser_put(&iter->parser); 3800 } 3801 } else 3802 file->private_data = iter; 3803 3804 out_unlock: 3805 mutex_unlock(&ops->func_hash->regex_lock); 3806 3807 out: 3808 if (ret) { 3809 kfree(iter); 3810 if (tr) 3811 trace_array_put(tr); 3812 } 3813 3814 return ret; 3815 } 3816 3817 static int 3818 ftrace_filter_open(struct inode *inode, struct file *file) 3819 { 3820 struct ftrace_ops *ops = inode->i_private; 3821 3822 /* Checks for tracefs lockdown */ 3823 return ftrace_regex_open(ops, 3824 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3825 inode, file); 3826 } 3827 3828 static int 3829 ftrace_notrace_open(struct inode *inode, struct file *file) 3830 { 3831 struct ftrace_ops *ops = inode->i_private; 3832 3833 /* Checks for tracefs lockdown */ 3834 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3835 inode, file); 3836 } 3837 3838 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3839 struct ftrace_glob { 3840 char *search; 3841 unsigned len; 3842 int type; 3843 }; 3844 3845 /* 3846 * If symbols in an architecture don't correspond exactly to the user-visible 3847 * name of what they represent, it is possible to define this function to 3848 * perform the necessary adjustments. 3849 */ 3850 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3851 { 3852 return str; 3853 } 3854 3855 static int ftrace_match(char *str, struct ftrace_glob *g) 3856 { 3857 int matched = 0; 3858 int slen; 3859 3860 str = arch_ftrace_match_adjust(str, g->search); 3861 3862 switch (g->type) { 3863 case MATCH_FULL: 3864 if (strcmp(str, g->search) == 0) 3865 matched = 1; 3866 break; 3867 case MATCH_FRONT_ONLY: 3868 if (strncmp(str, g->search, g->len) == 0) 3869 matched = 1; 3870 break; 3871 case MATCH_MIDDLE_ONLY: 3872 if (strstr(str, g->search)) 3873 matched = 1; 3874 break; 3875 case MATCH_END_ONLY: 3876 slen = strlen(str); 3877 if (slen >= g->len && 3878 memcmp(str + slen - g->len, g->search, g->len) == 0) 3879 matched = 1; 3880 break; 3881 case MATCH_GLOB: 3882 if (glob_match(g->search, str)) 3883 matched = 1; 3884 break; 3885 } 3886 3887 return matched; 3888 } 3889 3890 static int 3891 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3892 { 3893 struct ftrace_func_entry *entry; 3894 int ret = 0; 3895 3896 entry = ftrace_lookup_ip(hash, rec->ip); 3897 if (clear_filter) { 3898 /* Do nothing if it doesn't exist */ 3899 if (!entry) 3900 return 0; 3901 3902 free_hash_entry(hash, entry); 3903 } else { 3904 /* Do nothing if it exists */ 3905 if (entry) 3906 return 0; 3907 3908 ret = add_hash_entry(hash, rec->ip); 3909 } 3910 return ret; 3911 } 3912 3913 static int 3914 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3915 int clear_filter) 3916 { 3917 long index = simple_strtoul(func_g->search, NULL, 0); 3918 struct ftrace_page *pg; 3919 struct dyn_ftrace *rec; 3920 3921 /* The index starts at 1 */ 3922 if (--index < 0) 3923 return 0; 3924 3925 do_for_each_ftrace_rec(pg, rec) { 3926 if (pg->index <= index) { 3927 index -= pg->index; 3928 /* this is a double loop, break goes to the next page */ 3929 break; 3930 } 3931 rec = &pg->records[index]; 3932 enter_record(hash, rec, clear_filter); 3933 return 1; 3934 } while_for_each_ftrace_rec(); 3935 return 0; 3936 } 3937 3938 static int 3939 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3940 struct ftrace_glob *mod_g, int exclude_mod) 3941 { 3942 char str[KSYM_SYMBOL_LEN]; 3943 char *modname; 3944 3945 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3946 3947 if (mod_g) { 3948 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3949 3950 /* blank module name to match all modules */ 3951 if (!mod_g->len) { 3952 /* blank module globbing: modname xor exclude_mod */ 3953 if (!exclude_mod != !modname) 3954 goto func_match; 3955 return 0; 3956 } 3957 3958 /* 3959 * exclude_mod is set to trace everything but the given 3960 * module. If it is set and the module matches, then 3961 * return 0. If it is not set, and the module doesn't match 3962 * also return 0. Otherwise, check the function to see if 3963 * that matches. 3964 */ 3965 if (!mod_matches == !exclude_mod) 3966 return 0; 3967 func_match: 3968 /* blank search means to match all funcs in the mod */ 3969 if (!func_g->len) 3970 return 1; 3971 } 3972 3973 return ftrace_match(str, func_g); 3974 } 3975 3976 static int 3977 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3978 { 3979 struct ftrace_page *pg; 3980 struct dyn_ftrace *rec; 3981 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3982 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3983 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3984 int exclude_mod = 0; 3985 int found = 0; 3986 int ret; 3987 int clear_filter = 0; 3988 3989 if (func) { 3990 func_g.type = filter_parse_regex(func, len, &func_g.search, 3991 &clear_filter); 3992 func_g.len = strlen(func_g.search); 3993 } 3994 3995 if (mod) { 3996 mod_g.type = filter_parse_regex(mod, strlen(mod), 3997 &mod_g.search, &exclude_mod); 3998 mod_g.len = strlen(mod_g.search); 3999 } 4000 4001 mutex_lock(&ftrace_lock); 4002 4003 if (unlikely(ftrace_disabled)) 4004 goto out_unlock; 4005 4006 if (func_g.type == MATCH_INDEX) { 4007 found = add_rec_by_index(hash, &func_g, clear_filter); 4008 goto out_unlock; 4009 } 4010 4011 do_for_each_ftrace_rec(pg, rec) { 4012 4013 if (rec->flags & FTRACE_FL_DISABLED) 4014 continue; 4015 4016 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4017 ret = enter_record(hash, rec, clear_filter); 4018 if (ret < 0) { 4019 found = ret; 4020 goto out_unlock; 4021 } 4022 found = 1; 4023 } 4024 } while_for_each_ftrace_rec(); 4025 out_unlock: 4026 mutex_unlock(&ftrace_lock); 4027 4028 return found; 4029 } 4030 4031 static int 4032 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4033 { 4034 return match_records(hash, buff, len, NULL); 4035 } 4036 4037 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4038 struct ftrace_ops_hash *old_hash) 4039 { 4040 struct ftrace_ops *op; 4041 4042 if (!ftrace_enabled) 4043 return; 4044 4045 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4046 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4047 return; 4048 } 4049 4050 /* 4051 * If this is the shared global_ops filter, then we need to 4052 * check if there is another ops that shares it, is enabled. 4053 * If so, we still need to run the modify code. 4054 */ 4055 if (ops->func_hash != &global_ops.local_hash) 4056 return; 4057 4058 do_for_each_ftrace_op(op, ftrace_ops_list) { 4059 if (op->func_hash == &global_ops.local_hash && 4060 op->flags & FTRACE_OPS_FL_ENABLED) { 4061 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4062 /* Only need to do this once */ 4063 return; 4064 } 4065 } while_for_each_ftrace_op(op); 4066 } 4067 4068 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4069 struct ftrace_hash **orig_hash, 4070 struct ftrace_hash *hash, 4071 int enable) 4072 { 4073 struct ftrace_ops_hash old_hash_ops; 4074 struct ftrace_hash *old_hash; 4075 int ret; 4076 4077 old_hash = *orig_hash; 4078 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4079 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4080 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4081 if (!ret) { 4082 ftrace_ops_update_code(ops, &old_hash_ops); 4083 free_ftrace_hash_rcu(old_hash); 4084 } 4085 return ret; 4086 } 4087 4088 static bool module_exists(const char *module) 4089 { 4090 /* All modules have the symbol __this_module */ 4091 static const char this_mod[] = "__this_module"; 4092 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4093 unsigned long val; 4094 int n; 4095 4096 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4097 4098 if (n > sizeof(modname) - 1) 4099 return false; 4100 4101 val = module_kallsyms_lookup_name(modname); 4102 return val != 0; 4103 } 4104 4105 static int cache_mod(struct trace_array *tr, 4106 const char *func, char *module, int enable) 4107 { 4108 struct ftrace_mod_load *ftrace_mod, *n; 4109 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4110 int ret; 4111 4112 mutex_lock(&ftrace_lock); 4113 4114 /* We do not cache inverse filters */ 4115 if (func[0] == '!') { 4116 func++; 4117 ret = -EINVAL; 4118 4119 /* Look to remove this hash */ 4120 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4121 if (strcmp(ftrace_mod->module, module) != 0) 4122 continue; 4123 4124 /* no func matches all */ 4125 if (strcmp(func, "*") == 0 || 4126 (ftrace_mod->func && 4127 strcmp(ftrace_mod->func, func) == 0)) { 4128 ret = 0; 4129 free_ftrace_mod(ftrace_mod); 4130 continue; 4131 } 4132 } 4133 goto out; 4134 } 4135 4136 ret = -EINVAL; 4137 /* We only care about modules that have not been loaded yet */ 4138 if (module_exists(module)) 4139 goto out; 4140 4141 /* Save this string off, and execute it when the module is loaded */ 4142 ret = ftrace_add_mod(tr, func, module, enable); 4143 out: 4144 mutex_unlock(&ftrace_lock); 4145 4146 return ret; 4147 } 4148 4149 static int 4150 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4151 int reset, int enable); 4152 4153 #ifdef CONFIG_MODULES 4154 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4155 char *mod, bool enable) 4156 { 4157 struct ftrace_mod_load *ftrace_mod, *n; 4158 struct ftrace_hash **orig_hash, *new_hash; 4159 LIST_HEAD(process_mods); 4160 char *func; 4161 int ret; 4162 4163 mutex_lock(&ops->func_hash->regex_lock); 4164 4165 if (enable) 4166 orig_hash = &ops->func_hash->filter_hash; 4167 else 4168 orig_hash = &ops->func_hash->notrace_hash; 4169 4170 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4171 *orig_hash); 4172 if (!new_hash) 4173 goto out; /* warn? */ 4174 4175 mutex_lock(&ftrace_lock); 4176 4177 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4178 4179 if (strcmp(ftrace_mod->module, mod) != 0) 4180 continue; 4181 4182 if (ftrace_mod->func) 4183 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4184 else 4185 func = kstrdup("*", GFP_KERNEL); 4186 4187 if (!func) /* warn? */ 4188 continue; 4189 4190 list_del(&ftrace_mod->list); 4191 list_add(&ftrace_mod->list, &process_mods); 4192 4193 /* Use the newly allocated func, as it may be "*" */ 4194 kfree(ftrace_mod->func); 4195 ftrace_mod->func = func; 4196 } 4197 4198 mutex_unlock(&ftrace_lock); 4199 4200 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4201 4202 func = ftrace_mod->func; 4203 4204 /* Grabs ftrace_lock, which is why we have this extra step */ 4205 match_records(new_hash, func, strlen(func), mod); 4206 free_ftrace_mod(ftrace_mod); 4207 } 4208 4209 if (enable && list_empty(head)) 4210 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4211 4212 mutex_lock(&ftrace_lock); 4213 4214 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4215 new_hash, enable); 4216 mutex_unlock(&ftrace_lock); 4217 4218 out: 4219 mutex_unlock(&ops->func_hash->regex_lock); 4220 4221 free_ftrace_hash(new_hash); 4222 } 4223 4224 static void process_cached_mods(const char *mod_name) 4225 { 4226 struct trace_array *tr; 4227 char *mod; 4228 4229 mod = kstrdup(mod_name, GFP_KERNEL); 4230 if (!mod) 4231 return; 4232 4233 mutex_lock(&trace_types_lock); 4234 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4235 if (!list_empty(&tr->mod_trace)) 4236 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4237 if (!list_empty(&tr->mod_notrace)) 4238 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4239 } 4240 mutex_unlock(&trace_types_lock); 4241 4242 kfree(mod); 4243 } 4244 #endif 4245 4246 /* 4247 * We register the module command as a template to show others how 4248 * to register the a command as well. 4249 */ 4250 4251 static int 4252 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4253 char *func_orig, char *cmd, char *module, int enable) 4254 { 4255 char *func; 4256 int ret; 4257 4258 /* match_records() modifies func, and we need the original */ 4259 func = kstrdup(func_orig, GFP_KERNEL); 4260 if (!func) 4261 return -ENOMEM; 4262 4263 /* 4264 * cmd == 'mod' because we only registered this func 4265 * for the 'mod' ftrace_func_command. 4266 * But if you register one func with multiple commands, 4267 * you can tell which command was used by the cmd 4268 * parameter. 4269 */ 4270 ret = match_records(hash, func, strlen(func), module); 4271 kfree(func); 4272 4273 if (!ret) 4274 return cache_mod(tr, func_orig, module, enable); 4275 if (ret < 0) 4276 return ret; 4277 return 0; 4278 } 4279 4280 static struct ftrace_func_command ftrace_mod_cmd = { 4281 .name = "mod", 4282 .func = ftrace_mod_callback, 4283 }; 4284 4285 static int __init ftrace_mod_cmd_init(void) 4286 { 4287 return register_ftrace_command(&ftrace_mod_cmd); 4288 } 4289 core_initcall(ftrace_mod_cmd_init); 4290 4291 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4292 struct ftrace_ops *op, struct pt_regs *pt_regs) 4293 { 4294 struct ftrace_probe_ops *probe_ops; 4295 struct ftrace_func_probe *probe; 4296 4297 probe = container_of(op, struct ftrace_func_probe, ops); 4298 probe_ops = probe->probe_ops; 4299 4300 /* 4301 * Disable preemption for these calls to prevent a RCU grace 4302 * period. This syncs the hash iteration and freeing of items 4303 * on the hash. rcu_read_lock is too dangerous here. 4304 */ 4305 preempt_disable_notrace(); 4306 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4307 preempt_enable_notrace(); 4308 } 4309 4310 struct ftrace_func_map { 4311 struct ftrace_func_entry entry; 4312 void *data; 4313 }; 4314 4315 struct ftrace_func_mapper { 4316 struct ftrace_hash hash; 4317 }; 4318 4319 /** 4320 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4321 * 4322 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4323 */ 4324 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4325 { 4326 struct ftrace_hash *hash; 4327 4328 /* 4329 * The mapper is simply a ftrace_hash, but since the entries 4330 * in the hash are not ftrace_func_entry type, we define it 4331 * as a separate structure. 4332 */ 4333 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4334 return (struct ftrace_func_mapper *)hash; 4335 } 4336 4337 /** 4338 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4339 * @mapper: The mapper that has the ip maps 4340 * @ip: the instruction pointer to find the data for 4341 * 4342 * Returns the data mapped to @ip if found otherwise NULL. The return 4343 * is actually the address of the mapper data pointer. The address is 4344 * returned for use cases where the data is no bigger than a long, and 4345 * the user can use the data pointer as its data instead of having to 4346 * allocate more memory for the reference. 4347 */ 4348 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4349 unsigned long ip) 4350 { 4351 struct ftrace_func_entry *entry; 4352 struct ftrace_func_map *map; 4353 4354 entry = ftrace_lookup_ip(&mapper->hash, ip); 4355 if (!entry) 4356 return NULL; 4357 4358 map = (struct ftrace_func_map *)entry; 4359 return &map->data; 4360 } 4361 4362 /** 4363 * ftrace_func_mapper_add_ip - Map some data to an ip 4364 * @mapper: The mapper that has the ip maps 4365 * @ip: The instruction pointer address to map @data to 4366 * @data: The data to map to @ip 4367 * 4368 * Returns 0 on succes otherwise an error. 4369 */ 4370 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4371 unsigned long ip, void *data) 4372 { 4373 struct ftrace_func_entry *entry; 4374 struct ftrace_func_map *map; 4375 4376 entry = ftrace_lookup_ip(&mapper->hash, ip); 4377 if (entry) 4378 return -EBUSY; 4379 4380 map = kmalloc(sizeof(*map), GFP_KERNEL); 4381 if (!map) 4382 return -ENOMEM; 4383 4384 map->entry.ip = ip; 4385 map->data = data; 4386 4387 __add_hash_entry(&mapper->hash, &map->entry); 4388 4389 return 0; 4390 } 4391 4392 /** 4393 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4394 * @mapper: The mapper that has the ip maps 4395 * @ip: The instruction pointer address to remove the data from 4396 * 4397 * Returns the data if it is found, otherwise NULL. 4398 * Note, if the data pointer is used as the data itself, (see 4399 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4400 * if the data pointer was set to zero. 4401 */ 4402 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4403 unsigned long ip) 4404 { 4405 struct ftrace_func_entry *entry; 4406 struct ftrace_func_map *map; 4407 void *data; 4408 4409 entry = ftrace_lookup_ip(&mapper->hash, ip); 4410 if (!entry) 4411 return NULL; 4412 4413 map = (struct ftrace_func_map *)entry; 4414 data = map->data; 4415 4416 remove_hash_entry(&mapper->hash, entry); 4417 kfree(entry); 4418 4419 return data; 4420 } 4421 4422 /** 4423 * free_ftrace_func_mapper - free a mapping of ips and data 4424 * @mapper: The mapper that has the ip maps 4425 * @free_func: A function to be called on each data item. 4426 * 4427 * This is used to free the function mapper. The @free_func is optional 4428 * and can be used if the data needs to be freed as well. 4429 */ 4430 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4431 ftrace_mapper_func free_func) 4432 { 4433 struct ftrace_func_entry *entry; 4434 struct ftrace_func_map *map; 4435 struct hlist_head *hhd; 4436 int size, i; 4437 4438 if (!mapper) 4439 return; 4440 4441 if (free_func && mapper->hash.count) { 4442 size = 1 << mapper->hash.size_bits; 4443 for (i = 0; i < size; i++) { 4444 hhd = &mapper->hash.buckets[i]; 4445 hlist_for_each_entry(entry, hhd, hlist) { 4446 map = (struct ftrace_func_map *)entry; 4447 free_func(map); 4448 } 4449 } 4450 } 4451 free_ftrace_hash(&mapper->hash); 4452 } 4453 4454 static void release_probe(struct ftrace_func_probe *probe) 4455 { 4456 struct ftrace_probe_ops *probe_ops; 4457 4458 mutex_lock(&ftrace_lock); 4459 4460 WARN_ON(probe->ref <= 0); 4461 4462 /* Subtract the ref that was used to protect this instance */ 4463 probe->ref--; 4464 4465 if (!probe->ref) { 4466 probe_ops = probe->probe_ops; 4467 /* 4468 * Sending zero as ip tells probe_ops to free 4469 * the probe->data itself 4470 */ 4471 if (probe_ops->free) 4472 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4473 list_del(&probe->list); 4474 kfree(probe); 4475 } 4476 mutex_unlock(&ftrace_lock); 4477 } 4478 4479 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4480 { 4481 /* 4482 * Add one ref to keep it from being freed when releasing the 4483 * ftrace_lock mutex. 4484 */ 4485 probe->ref++; 4486 } 4487 4488 int 4489 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4490 struct ftrace_probe_ops *probe_ops, 4491 void *data) 4492 { 4493 struct ftrace_func_entry *entry; 4494 struct ftrace_func_probe *probe; 4495 struct ftrace_hash **orig_hash; 4496 struct ftrace_hash *old_hash; 4497 struct ftrace_hash *hash; 4498 int count = 0; 4499 int size; 4500 int ret; 4501 int i; 4502 4503 if (WARN_ON(!tr)) 4504 return -EINVAL; 4505 4506 /* We do not support '!' for function probes */ 4507 if (WARN_ON(glob[0] == '!')) 4508 return -EINVAL; 4509 4510 4511 mutex_lock(&ftrace_lock); 4512 /* Check if the probe_ops is already registered */ 4513 list_for_each_entry(probe, &tr->func_probes, list) { 4514 if (probe->probe_ops == probe_ops) 4515 break; 4516 } 4517 if (&probe->list == &tr->func_probes) { 4518 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4519 if (!probe) { 4520 mutex_unlock(&ftrace_lock); 4521 return -ENOMEM; 4522 } 4523 probe->probe_ops = probe_ops; 4524 probe->ops.func = function_trace_probe_call; 4525 probe->tr = tr; 4526 ftrace_ops_init(&probe->ops); 4527 list_add(&probe->list, &tr->func_probes); 4528 } 4529 4530 acquire_probe_locked(probe); 4531 4532 mutex_unlock(&ftrace_lock); 4533 4534 /* 4535 * Note, there's a small window here that the func_hash->filter_hash 4536 * may be NULL or empty. Need to be carefule when reading the loop. 4537 */ 4538 mutex_lock(&probe->ops.func_hash->regex_lock); 4539 4540 orig_hash = &probe->ops.func_hash->filter_hash; 4541 old_hash = *orig_hash; 4542 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4543 4544 if (!hash) { 4545 ret = -ENOMEM; 4546 goto out; 4547 } 4548 4549 ret = ftrace_match_records(hash, glob, strlen(glob)); 4550 4551 /* Nothing found? */ 4552 if (!ret) 4553 ret = -EINVAL; 4554 4555 if (ret < 0) 4556 goto out; 4557 4558 size = 1 << hash->size_bits; 4559 for (i = 0; i < size; i++) { 4560 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4561 if (ftrace_lookup_ip(old_hash, entry->ip)) 4562 continue; 4563 /* 4564 * The caller might want to do something special 4565 * for each function we find. We call the callback 4566 * to give the caller an opportunity to do so. 4567 */ 4568 if (probe_ops->init) { 4569 ret = probe_ops->init(probe_ops, tr, 4570 entry->ip, data, 4571 &probe->data); 4572 if (ret < 0) { 4573 if (probe_ops->free && count) 4574 probe_ops->free(probe_ops, tr, 4575 0, probe->data); 4576 probe->data = NULL; 4577 goto out; 4578 } 4579 } 4580 count++; 4581 } 4582 } 4583 4584 mutex_lock(&ftrace_lock); 4585 4586 if (!count) { 4587 /* Nothing was added? */ 4588 ret = -EINVAL; 4589 goto out_unlock; 4590 } 4591 4592 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4593 hash, 1); 4594 if (ret < 0) 4595 goto err_unlock; 4596 4597 /* One ref for each new function traced */ 4598 probe->ref += count; 4599 4600 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4601 ret = ftrace_startup(&probe->ops, 0); 4602 4603 out_unlock: 4604 mutex_unlock(&ftrace_lock); 4605 4606 if (!ret) 4607 ret = count; 4608 out: 4609 mutex_unlock(&probe->ops.func_hash->regex_lock); 4610 free_ftrace_hash(hash); 4611 4612 release_probe(probe); 4613 4614 return ret; 4615 4616 err_unlock: 4617 if (!probe_ops->free || !count) 4618 goto out_unlock; 4619 4620 /* Failed to do the move, need to call the free functions */ 4621 for (i = 0; i < size; i++) { 4622 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4623 if (ftrace_lookup_ip(old_hash, entry->ip)) 4624 continue; 4625 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4626 } 4627 } 4628 goto out_unlock; 4629 } 4630 4631 int 4632 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4633 struct ftrace_probe_ops *probe_ops) 4634 { 4635 struct ftrace_ops_hash old_hash_ops; 4636 struct ftrace_func_entry *entry; 4637 struct ftrace_func_probe *probe; 4638 struct ftrace_glob func_g; 4639 struct ftrace_hash **orig_hash; 4640 struct ftrace_hash *old_hash; 4641 struct ftrace_hash *hash = NULL; 4642 struct hlist_node *tmp; 4643 struct hlist_head hhd; 4644 char str[KSYM_SYMBOL_LEN]; 4645 int count = 0; 4646 int i, ret = -ENODEV; 4647 int size; 4648 4649 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4650 func_g.search = NULL; 4651 else { 4652 int not; 4653 4654 func_g.type = filter_parse_regex(glob, strlen(glob), 4655 &func_g.search, ¬); 4656 func_g.len = strlen(func_g.search); 4657 4658 /* we do not support '!' for function probes */ 4659 if (WARN_ON(not)) 4660 return -EINVAL; 4661 } 4662 4663 mutex_lock(&ftrace_lock); 4664 /* Check if the probe_ops is already registered */ 4665 list_for_each_entry(probe, &tr->func_probes, list) { 4666 if (probe->probe_ops == probe_ops) 4667 break; 4668 } 4669 if (&probe->list == &tr->func_probes) 4670 goto err_unlock_ftrace; 4671 4672 ret = -EINVAL; 4673 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4674 goto err_unlock_ftrace; 4675 4676 acquire_probe_locked(probe); 4677 4678 mutex_unlock(&ftrace_lock); 4679 4680 mutex_lock(&probe->ops.func_hash->regex_lock); 4681 4682 orig_hash = &probe->ops.func_hash->filter_hash; 4683 old_hash = *orig_hash; 4684 4685 if (ftrace_hash_empty(old_hash)) 4686 goto out_unlock; 4687 4688 old_hash_ops.filter_hash = old_hash; 4689 /* Probes only have filters */ 4690 old_hash_ops.notrace_hash = NULL; 4691 4692 ret = -ENOMEM; 4693 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4694 if (!hash) 4695 goto out_unlock; 4696 4697 INIT_HLIST_HEAD(&hhd); 4698 4699 size = 1 << hash->size_bits; 4700 for (i = 0; i < size; i++) { 4701 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4702 4703 if (func_g.search) { 4704 kallsyms_lookup(entry->ip, NULL, NULL, 4705 NULL, str); 4706 if (!ftrace_match(str, &func_g)) 4707 continue; 4708 } 4709 count++; 4710 remove_hash_entry(hash, entry); 4711 hlist_add_head(&entry->hlist, &hhd); 4712 } 4713 } 4714 4715 /* Nothing found? */ 4716 if (!count) { 4717 ret = -EINVAL; 4718 goto out_unlock; 4719 } 4720 4721 mutex_lock(&ftrace_lock); 4722 4723 WARN_ON(probe->ref < count); 4724 4725 probe->ref -= count; 4726 4727 if (ftrace_hash_empty(hash)) 4728 ftrace_shutdown(&probe->ops, 0); 4729 4730 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4731 hash, 1); 4732 4733 /* still need to update the function call sites */ 4734 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4735 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4736 &old_hash_ops); 4737 synchronize_rcu(); 4738 4739 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4740 hlist_del(&entry->hlist); 4741 if (probe_ops->free) 4742 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4743 kfree(entry); 4744 } 4745 mutex_unlock(&ftrace_lock); 4746 4747 out_unlock: 4748 mutex_unlock(&probe->ops.func_hash->regex_lock); 4749 free_ftrace_hash(hash); 4750 4751 release_probe(probe); 4752 4753 return ret; 4754 4755 err_unlock_ftrace: 4756 mutex_unlock(&ftrace_lock); 4757 return ret; 4758 } 4759 4760 void clear_ftrace_function_probes(struct trace_array *tr) 4761 { 4762 struct ftrace_func_probe *probe, *n; 4763 4764 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4765 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4766 } 4767 4768 static LIST_HEAD(ftrace_commands); 4769 static DEFINE_MUTEX(ftrace_cmd_mutex); 4770 4771 /* 4772 * Currently we only register ftrace commands from __init, so mark this 4773 * __init too. 4774 */ 4775 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4776 { 4777 struct ftrace_func_command *p; 4778 int ret = 0; 4779 4780 mutex_lock(&ftrace_cmd_mutex); 4781 list_for_each_entry(p, &ftrace_commands, list) { 4782 if (strcmp(cmd->name, p->name) == 0) { 4783 ret = -EBUSY; 4784 goto out_unlock; 4785 } 4786 } 4787 list_add(&cmd->list, &ftrace_commands); 4788 out_unlock: 4789 mutex_unlock(&ftrace_cmd_mutex); 4790 4791 return ret; 4792 } 4793 4794 /* 4795 * Currently we only unregister ftrace commands from __init, so mark 4796 * this __init too. 4797 */ 4798 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4799 { 4800 struct ftrace_func_command *p, *n; 4801 int ret = -ENODEV; 4802 4803 mutex_lock(&ftrace_cmd_mutex); 4804 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4805 if (strcmp(cmd->name, p->name) == 0) { 4806 ret = 0; 4807 list_del_init(&p->list); 4808 goto out_unlock; 4809 } 4810 } 4811 out_unlock: 4812 mutex_unlock(&ftrace_cmd_mutex); 4813 4814 return ret; 4815 } 4816 4817 static int ftrace_process_regex(struct ftrace_iterator *iter, 4818 char *buff, int len, int enable) 4819 { 4820 struct ftrace_hash *hash = iter->hash; 4821 struct trace_array *tr = iter->ops->private; 4822 char *func, *command, *next = buff; 4823 struct ftrace_func_command *p; 4824 int ret = -EINVAL; 4825 4826 func = strsep(&next, ":"); 4827 4828 if (!next) { 4829 ret = ftrace_match_records(hash, func, len); 4830 if (!ret) 4831 ret = -EINVAL; 4832 if (ret < 0) 4833 return ret; 4834 return 0; 4835 } 4836 4837 /* command found */ 4838 4839 command = strsep(&next, ":"); 4840 4841 mutex_lock(&ftrace_cmd_mutex); 4842 list_for_each_entry(p, &ftrace_commands, list) { 4843 if (strcmp(p->name, command) == 0) { 4844 ret = p->func(tr, hash, func, command, next, enable); 4845 goto out_unlock; 4846 } 4847 } 4848 out_unlock: 4849 mutex_unlock(&ftrace_cmd_mutex); 4850 4851 return ret; 4852 } 4853 4854 static ssize_t 4855 ftrace_regex_write(struct file *file, const char __user *ubuf, 4856 size_t cnt, loff_t *ppos, int enable) 4857 { 4858 struct ftrace_iterator *iter; 4859 struct trace_parser *parser; 4860 ssize_t ret, read; 4861 4862 if (!cnt) 4863 return 0; 4864 4865 if (file->f_mode & FMODE_READ) { 4866 struct seq_file *m = file->private_data; 4867 iter = m->private; 4868 } else 4869 iter = file->private_data; 4870 4871 if (unlikely(ftrace_disabled)) 4872 return -ENODEV; 4873 4874 /* iter->hash is a local copy, so we don't need regex_lock */ 4875 4876 parser = &iter->parser; 4877 read = trace_get_user(parser, ubuf, cnt, ppos); 4878 4879 if (read >= 0 && trace_parser_loaded(parser) && 4880 !trace_parser_cont(parser)) { 4881 ret = ftrace_process_regex(iter, parser->buffer, 4882 parser->idx, enable); 4883 trace_parser_clear(parser); 4884 if (ret < 0) 4885 goto out; 4886 } 4887 4888 ret = read; 4889 out: 4890 return ret; 4891 } 4892 4893 ssize_t 4894 ftrace_filter_write(struct file *file, const char __user *ubuf, 4895 size_t cnt, loff_t *ppos) 4896 { 4897 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4898 } 4899 4900 ssize_t 4901 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4902 size_t cnt, loff_t *ppos) 4903 { 4904 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4905 } 4906 4907 static int 4908 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4909 { 4910 struct ftrace_func_entry *entry; 4911 4912 if (!ftrace_location(ip)) 4913 return -EINVAL; 4914 4915 if (remove) { 4916 entry = ftrace_lookup_ip(hash, ip); 4917 if (!entry) 4918 return -ENOENT; 4919 free_hash_entry(hash, entry); 4920 return 0; 4921 } 4922 4923 return add_hash_entry(hash, ip); 4924 } 4925 4926 static int 4927 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4928 unsigned long ip, int remove, int reset, int enable) 4929 { 4930 struct ftrace_hash **orig_hash; 4931 struct ftrace_hash *hash; 4932 int ret; 4933 4934 if (unlikely(ftrace_disabled)) 4935 return -ENODEV; 4936 4937 mutex_lock(&ops->func_hash->regex_lock); 4938 4939 if (enable) 4940 orig_hash = &ops->func_hash->filter_hash; 4941 else 4942 orig_hash = &ops->func_hash->notrace_hash; 4943 4944 if (reset) 4945 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4946 else 4947 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4948 4949 if (!hash) { 4950 ret = -ENOMEM; 4951 goto out_regex_unlock; 4952 } 4953 4954 if (buf && !ftrace_match_records(hash, buf, len)) { 4955 ret = -EINVAL; 4956 goto out_regex_unlock; 4957 } 4958 if (ip) { 4959 ret = ftrace_match_addr(hash, ip, remove); 4960 if (ret < 0) 4961 goto out_regex_unlock; 4962 } 4963 4964 mutex_lock(&ftrace_lock); 4965 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4966 mutex_unlock(&ftrace_lock); 4967 4968 out_regex_unlock: 4969 mutex_unlock(&ops->func_hash->regex_lock); 4970 4971 free_ftrace_hash(hash); 4972 return ret; 4973 } 4974 4975 static int 4976 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4977 int reset, int enable) 4978 { 4979 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4980 } 4981 4982 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4983 4984 struct ftrace_direct_func { 4985 struct list_head next; 4986 unsigned long addr; 4987 int count; 4988 }; 4989 4990 static LIST_HEAD(ftrace_direct_funcs); 4991 4992 /** 4993 * ftrace_find_direct_func - test an address if it is a registered direct caller 4994 * @addr: The address of a registered direct caller 4995 * 4996 * This searches to see if a ftrace direct caller has been registered 4997 * at a specific address, and if so, it returns a descriptor for it. 4998 * 4999 * This can be used by architecture code to see if an address is 5000 * a direct caller (trampoline) attached to a fentry/mcount location. 5001 * This is useful for the function_graph tracer, as it may need to 5002 * do adjustments if it traced a location that also has a direct 5003 * trampoline attached to it. 5004 */ 5005 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5006 { 5007 struct ftrace_direct_func *entry; 5008 bool found = false; 5009 5010 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5011 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5012 if (entry->addr == addr) { 5013 found = true; 5014 break; 5015 } 5016 } 5017 if (found) 5018 return entry; 5019 5020 return NULL; 5021 } 5022 5023 /** 5024 * register_ftrace_direct - Call a custom trampoline directly 5025 * @ip: The address of the nop at the beginning of a function 5026 * @addr: The address of the trampoline to call at @ip 5027 * 5028 * This is used to connect a direct call from the nop location (@ip) 5029 * at the start of ftrace traced functions. The location that it calls 5030 * (@addr) must be able to handle a direct call, and save the parameters 5031 * of the function being traced, and restore them (or inject new ones 5032 * if needed), before returning. 5033 * 5034 * Returns: 5035 * 0 on success 5036 * -EBUSY - Another direct function is already attached (there can be only one) 5037 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5038 * -ENOMEM - There was an allocation failure. 5039 */ 5040 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5041 { 5042 struct ftrace_direct_func *direct; 5043 struct ftrace_func_entry *entry; 5044 struct ftrace_hash *free_hash = NULL; 5045 struct dyn_ftrace *rec; 5046 int ret = -EBUSY; 5047 5048 mutex_lock(&direct_mutex); 5049 5050 /* See if there's a direct function at @ip already */ 5051 if (ftrace_find_rec_direct(ip)) 5052 goto out_unlock; 5053 5054 ret = -ENODEV; 5055 rec = lookup_rec(ip, ip); 5056 if (!rec) 5057 goto out_unlock; 5058 5059 /* 5060 * Check if the rec says it has a direct call but we didn't 5061 * find one earlier? 5062 */ 5063 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5064 goto out_unlock; 5065 5066 /* Make sure the ip points to the exact record */ 5067 if (ip != rec->ip) { 5068 ip = rec->ip; 5069 /* Need to check this ip for a direct. */ 5070 if (ftrace_find_rec_direct(ip)) 5071 goto out_unlock; 5072 } 5073 5074 ret = -ENOMEM; 5075 if (ftrace_hash_empty(direct_functions) || 5076 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5077 struct ftrace_hash *new_hash; 5078 int size = ftrace_hash_empty(direct_functions) ? 0 : 5079 direct_functions->count + 1; 5080 5081 if (size < 32) 5082 size = 32; 5083 5084 new_hash = dup_hash(direct_functions, size); 5085 if (!new_hash) 5086 goto out_unlock; 5087 5088 free_hash = direct_functions; 5089 direct_functions = new_hash; 5090 } 5091 5092 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5093 if (!entry) 5094 goto out_unlock; 5095 5096 direct = ftrace_find_direct_func(addr); 5097 if (!direct) { 5098 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5099 if (!direct) { 5100 kfree(entry); 5101 goto out_unlock; 5102 } 5103 direct->addr = addr; 5104 direct->count = 0; 5105 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5106 ftrace_direct_func_count++; 5107 } 5108 5109 entry->ip = ip; 5110 entry->direct = addr; 5111 __add_hash_entry(direct_functions, entry); 5112 5113 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5114 if (ret) 5115 remove_hash_entry(direct_functions, entry); 5116 5117 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5118 ret = register_ftrace_function(&direct_ops); 5119 if (ret) 5120 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5121 } 5122 5123 if (ret) { 5124 kfree(entry); 5125 if (!direct->count) { 5126 list_del_rcu(&direct->next); 5127 synchronize_rcu_tasks(); 5128 kfree(direct); 5129 if (free_hash) 5130 free_ftrace_hash(free_hash); 5131 free_hash = NULL; 5132 ftrace_direct_func_count--; 5133 } 5134 } else { 5135 direct->count++; 5136 } 5137 out_unlock: 5138 mutex_unlock(&direct_mutex); 5139 5140 if (free_hash) { 5141 synchronize_rcu_tasks(); 5142 free_ftrace_hash(free_hash); 5143 } 5144 5145 return ret; 5146 } 5147 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5148 5149 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5150 struct dyn_ftrace **recp) 5151 { 5152 struct ftrace_func_entry *entry; 5153 struct dyn_ftrace *rec; 5154 5155 rec = lookup_rec(*ip, *ip); 5156 if (!rec) 5157 return NULL; 5158 5159 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5160 if (!entry) { 5161 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5162 return NULL; 5163 } 5164 5165 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5166 5167 /* Passed in ip just needs to be on the call site */ 5168 *ip = rec->ip; 5169 5170 if (recp) 5171 *recp = rec; 5172 5173 return entry; 5174 } 5175 5176 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5177 { 5178 struct ftrace_direct_func *direct; 5179 struct ftrace_func_entry *entry; 5180 int ret = -ENODEV; 5181 5182 mutex_lock(&direct_mutex); 5183 5184 entry = find_direct_entry(&ip, NULL); 5185 if (!entry) 5186 goto out_unlock; 5187 5188 if (direct_functions->count == 1) 5189 unregister_ftrace_function(&direct_ops); 5190 5191 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5192 5193 WARN_ON(ret); 5194 5195 remove_hash_entry(direct_functions, entry); 5196 5197 direct = ftrace_find_direct_func(addr); 5198 if (!WARN_ON(!direct)) { 5199 /* This is the good path (see the ! before WARN) */ 5200 direct->count--; 5201 WARN_ON(direct->count < 0); 5202 if (!direct->count) { 5203 list_del_rcu(&direct->next); 5204 synchronize_rcu_tasks(); 5205 kfree(direct); 5206 kfree(entry); 5207 ftrace_direct_func_count--; 5208 } 5209 } 5210 out_unlock: 5211 mutex_unlock(&direct_mutex); 5212 5213 return ret; 5214 } 5215 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5216 5217 static struct ftrace_ops stub_ops = { 5218 .func = ftrace_stub, 5219 }; 5220 5221 /** 5222 * ftrace_modify_direct_caller - modify ftrace nop directly 5223 * @entry: The ftrace hash entry of the direct helper for @rec 5224 * @rec: The record representing the function site to patch 5225 * @old_addr: The location that the site at @rec->ip currently calls 5226 * @new_addr: The location that the site at @rec->ip should call 5227 * 5228 * An architecture may overwrite this function to optimize the 5229 * changing of the direct callback on an ftrace nop location. 5230 * This is called with the ftrace_lock mutex held, and no other 5231 * ftrace callbacks are on the associated record (@rec). Thus, 5232 * it is safe to modify the ftrace record, where it should be 5233 * currently calling @old_addr directly, to call @new_addr. 5234 * 5235 * Safety checks should be made to make sure that the code at 5236 * @rec->ip is currently calling @old_addr. And this must 5237 * also update entry->direct to @new_addr. 5238 */ 5239 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5240 struct dyn_ftrace *rec, 5241 unsigned long old_addr, 5242 unsigned long new_addr) 5243 { 5244 unsigned long ip = rec->ip; 5245 int ret; 5246 5247 /* 5248 * The ftrace_lock was used to determine if the record 5249 * had more than one registered user to it. If it did, 5250 * we needed to prevent that from changing to do the quick 5251 * switch. But if it did not (only a direct caller was attached) 5252 * then this function is called. But this function can deal 5253 * with attached callers to the rec that we care about, and 5254 * since this function uses standard ftrace calls that take 5255 * the ftrace_lock mutex, we need to release it. 5256 */ 5257 mutex_unlock(&ftrace_lock); 5258 5259 /* 5260 * By setting a stub function at the same address, we force 5261 * the code to call the iterator and the direct_ops helper. 5262 * This means that @ip does not call the direct call, and 5263 * we can simply modify it. 5264 */ 5265 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5266 if (ret) 5267 goto out_lock; 5268 5269 ret = register_ftrace_function(&stub_ops); 5270 if (ret) { 5271 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5272 goto out_lock; 5273 } 5274 5275 entry->direct = new_addr; 5276 5277 /* 5278 * By removing the stub, we put back the direct call, calling 5279 * the @new_addr. 5280 */ 5281 unregister_ftrace_function(&stub_ops); 5282 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5283 5284 out_lock: 5285 mutex_lock(&ftrace_lock); 5286 5287 return ret; 5288 } 5289 5290 /** 5291 * modify_ftrace_direct - Modify an existing direct call to call something else 5292 * @ip: The instruction pointer to modify 5293 * @old_addr: The address that the current @ip calls directly 5294 * @new_addr: The address that the @ip should call 5295 * 5296 * This modifies a ftrace direct caller at an instruction pointer without 5297 * having to disable it first. The direct call will switch over to the 5298 * @new_addr without missing anything. 5299 * 5300 * Returns: zero on success. Non zero on error, which includes: 5301 * -ENODEV : the @ip given has no direct caller attached 5302 * -EINVAL : the @old_addr does not match the current direct caller 5303 */ 5304 int modify_ftrace_direct(unsigned long ip, 5305 unsigned long old_addr, unsigned long new_addr) 5306 { 5307 struct ftrace_func_entry *entry; 5308 struct dyn_ftrace *rec; 5309 int ret = -ENODEV; 5310 5311 mutex_lock(&direct_mutex); 5312 5313 mutex_lock(&ftrace_lock); 5314 entry = find_direct_entry(&ip, &rec); 5315 if (!entry) 5316 goto out_unlock; 5317 5318 ret = -EINVAL; 5319 if (entry->direct != old_addr) 5320 goto out_unlock; 5321 5322 /* 5323 * If there's no other ftrace callback on the rec->ip location, 5324 * then it can be changed directly by the architecture. 5325 * If there is another caller, then we just need to change the 5326 * direct caller helper to point to @new_addr. 5327 */ 5328 if (ftrace_rec_count(rec) == 1) { 5329 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5330 } else { 5331 entry->direct = new_addr; 5332 ret = 0; 5333 } 5334 5335 out_unlock: 5336 mutex_unlock(&ftrace_lock); 5337 mutex_unlock(&direct_mutex); 5338 return ret; 5339 } 5340 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5341 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5342 5343 /** 5344 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5345 * @ops - the ops to set the filter with 5346 * @ip - the address to add to or remove from the filter. 5347 * @remove - non zero to remove the ip from the filter 5348 * @reset - non zero to reset all filters before applying this filter. 5349 * 5350 * Filters denote which functions should be enabled when tracing is enabled 5351 * If @ip is NULL, it failes to update filter. 5352 */ 5353 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5354 int remove, int reset) 5355 { 5356 ftrace_ops_init(ops); 5357 return ftrace_set_addr(ops, ip, remove, reset, 1); 5358 } 5359 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5360 5361 /** 5362 * ftrace_ops_set_global_filter - setup ops to use global filters 5363 * @ops - the ops which will use the global filters 5364 * 5365 * ftrace users who need global function trace filtering should call this. 5366 * It can set the global filter only if ops were not initialized before. 5367 */ 5368 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5369 { 5370 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5371 return; 5372 5373 ftrace_ops_init(ops); 5374 ops->func_hash = &global_ops.local_hash; 5375 } 5376 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5377 5378 static int 5379 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5380 int reset, int enable) 5381 { 5382 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5383 } 5384 5385 /** 5386 * ftrace_set_filter - set a function to filter on in ftrace 5387 * @ops - the ops to set the filter with 5388 * @buf - the string that holds the function filter text. 5389 * @len - the length of the string. 5390 * @reset - non zero to reset all filters before applying this filter. 5391 * 5392 * Filters denote which functions should be enabled when tracing is enabled. 5393 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5394 */ 5395 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5396 int len, int reset) 5397 { 5398 ftrace_ops_init(ops); 5399 return ftrace_set_regex(ops, buf, len, reset, 1); 5400 } 5401 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5402 5403 /** 5404 * ftrace_set_notrace - set a function to not trace in ftrace 5405 * @ops - the ops to set the notrace filter with 5406 * @buf - the string that holds the function notrace text. 5407 * @len - the length of the string. 5408 * @reset - non zero to reset all filters before applying this filter. 5409 * 5410 * Notrace Filters denote which functions should not be enabled when tracing 5411 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5412 * for tracing. 5413 */ 5414 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5415 int len, int reset) 5416 { 5417 ftrace_ops_init(ops); 5418 return ftrace_set_regex(ops, buf, len, reset, 0); 5419 } 5420 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5421 /** 5422 * ftrace_set_global_filter - set a function to filter on with global tracers 5423 * @buf - the string that holds the function filter text. 5424 * @len - the length of the string. 5425 * @reset - non zero to reset all filters before applying this filter. 5426 * 5427 * Filters denote which functions should be enabled when tracing is enabled. 5428 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5429 */ 5430 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5431 { 5432 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5433 } 5434 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5435 5436 /** 5437 * ftrace_set_global_notrace - set a function to not trace with global tracers 5438 * @buf - the string that holds the function notrace text. 5439 * @len - the length of the string. 5440 * @reset - non zero to reset all filters before applying this filter. 5441 * 5442 * Notrace Filters denote which functions should not be enabled when tracing 5443 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5444 * for tracing. 5445 */ 5446 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5447 { 5448 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5449 } 5450 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5451 5452 /* 5453 * command line interface to allow users to set filters on boot up. 5454 */ 5455 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5456 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5457 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5458 5459 /* Used by function selftest to not test if filter is set */ 5460 bool ftrace_filter_param __initdata; 5461 5462 static int __init set_ftrace_notrace(char *str) 5463 { 5464 ftrace_filter_param = true; 5465 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5466 return 1; 5467 } 5468 __setup("ftrace_notrace=", set_ftrace_notrace); 5469 5470 static int __init set_ftrace_filter(char *str) 5471 { 5472 ftrace_filter_param = true; 5473 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5474 return 1; 5475 } 5476 __setup("ftrace_filter=", set_ftrace_filter); 5477 5478 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5479 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5480 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5481 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5482 5483 static int __init set_graph_function(char *str) 5484 { 5485 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5486 return 1; 5487 } 5488 __setup("ftrace_graph_filter=", set_graph_function); 5489 5490 static int __init set_graph_notrace_function(char *str) 5491 { 5492 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5493 return 1; 5494 } 5495 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5496 5497 static int __init set_graph_max_depth_function(char *str) 5498 { 5499 if (!str) 5500 return 0; 5501 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5502 return 1; 5503 } 5504 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5505 5506 static void __init set_ftrace_early_graph(char *buf, int enable) 5507 { 5508 int ret; 5509 char *func; 5510 struct ftrace_hash *hash; 5511 5512 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5513 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5514 return; 5515 5516 while (buf) { 5517 func = strsep(&buf, ","); 5518 /* we allow only one expression at a time */ 5519 ret = ftrace_graph_set_hash(hash, func); 5520 if (ret) 5521 printk(KERN_DEBUG "ftrace: function %s not " 5522 "traceable\n", func); 5523 } 5524 5525 if (enable) 5526 ftrace_graph_hash = hash; 5527 else 5528 ftrace_graph_notrace_hash = hash; 5529 } 5530 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5531 5532 void __init 5533 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5534 { 5535 char *func; 5536 5537 ftrace_ops_init(ops); 5538 5539 while (buf) { 5540 func = strsep(&buf, ","); 5541 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5542 } 5543 } 5544 5545 static void __init set_ftrace_early_filters(void) 5546 { 5547 if (ftrace_filter_buf[0]) 5548 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5549 if (ftrace_notrace_buf[0]) 5550 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5552 if (ftrace_graph_buf[0]) 5553 set_ftrace_early_graph(ftrace_graph_buf, 1); 5554 if (ftrace_graph_notrace_buf[0]) 5555 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5556 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5557 } 5558 5559 int ftrace_regex_release(struct inode *inode, struct file *file) 5560 { 5561 struct seq_file *m = (struct seq_file *)file->private_data; 5562 struct ftrace_iterator *iter; 5563 struct ftrace_hash **orig_hash; 5564 struct trace_parser *parser; 5565 int filter_hash; 5566 int ret; 5567 5568 if (file->f_mode & FMODE_READ) { 5569 iter = m->private; 5570 seq_release(inode, file); 5571 } else 5572 iter = file->private_data; 5573 5574 parser = &iter->parser; 5575 if (trace_parser_loaded(parser)) { 5576 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5577 } 5578 5579 trace_parser_put(parser); 5580 5581 mutex_lock(&iter->ops->func_hash->regex_lock); 5582 5583 if (file->f_mode & FMODE_WRITE) { 5584 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5585 5586 if (filter_hash) { 5587 orig_hash = &iter->ops->func_hash->filter_hash; 5588 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5589 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5590 } else 5591 orig_hash = &iter->ops->func_hash->notrace_hash; 5592 5593 mutex_lock(&ftrace_lock); 5594 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5595 iter->hash, filter_hash); 5596 mutex_unlock(&ftrace_lock); 5597 } else { 5598 /* For read only, the hash is the ops hash */ 5599 iter->hash = NULL; 5600 } 5601 5602 mutex_unlock(&iter->ops->func_hash->regex_lock); 5603 free_ftrace_hash(iter->hash); 5604 if (iter->tr) 5605 trace_array_put(iter->tr); 5606 kfree(iter); 5607 5608 return 0; 5609 } 5610 5611 static const struct file_operations ftrace_avail_fops = { 5612 .open = ftrace_avail_open, 5613 .read = seq_read, 5614 .llseek = seq_lseek, 5615 .release = seq_release_private, 5616 }; 5617 5618 static const struct file_operations ftrace_enabled_fops = { 5619 .open = ftrace_enabled_open, 5620 .read = seq_read, 5621 .llseek = seq_lseek, 5622 .release = seq_release_private, 5623 }; 5624 5625 static const struct file_operations ftrace_filter_fops = { 5626 .open = ftrace_filter_open, 5627 .read = seq_read, 5628 .write = ftrace_filter_write, 5629 .llseek = tracing_lseek, 5630 .release = ftrace_regex_release, 5631 }; 5632 5633 static const struct file_operations ftrace_notrace_fops = { 5634 .open = ftrace_notrace_open, 5635 .read = seq_read, 5636 .write = ftrace_notrace_write, 5637 .llseek = tracing_lseek, 5638 .release = ftrace_regex_release, 5639 }; 5640 5641 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5642 5643 static DEFINE_MUTEX(graph_lock); 5644 5645 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5646 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5647 5648 enum graph_filter_type { 5649 GRAPH_FILTER_NOTRACE = 0, 5650 GRAPH_FILTER_FUNCTION, 5651 }; 5652 5653 #define FTRACE_GRAPH_EMPTY ((void *)1) 5654 5655 struct ftrace_graph_data { 5656 struct ftrace_hash *hash; 5657 struct ftrace_func_entry *entry; 5658 int idx; /* for hash table iteration */ 5659 enum graph_filter_type type; 5660 struct ftrace_hash *new_hash; 5661 const struct seq_operations *seq_ops; 5662 struct trace_parser parser; 5663 }; 5664 5665 static void * 5666 __g_next(struct seq_file *m, loff_t *pos) 5667 { 5668 struct ftrace_graph_data *fgd = m->private; 5669 struct ftrace_func_entry *entry = fgd->entry; 5670 struct hlist_head *head; 5671 int i, idx = fgd->idx; 5672 5673 if (*pos >= fgd->hash->count) 5674 return NULL; 5675 5676 if (entry) { 5677 hlist_for_each_entry_continue(entry, hlist) { 5678 fgd->entry = entry; 5679 return entry; 5680 } 5681 5682 idx++; 5683 } 5684 5685 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5686 head = &fgd->hash->buckets[i]; 5687 hlist_for_each_entry(entry, head, hlist) { 5688 fgd->entry = entry; 5689 fgd->idx = i; 5690 return entry; 5691 } 5692 } 5693 return NULL; 5694 } 5695 5696 static void * 5697 g_next(struct seq_file *m, void *v, loff_t *pos) 5698 { 5699 (*pos)++; 5700 return __g_next(m, pos); 5701 } 5702 5703 static void *g_start(struct seq_file *m, loff_t *pos) 5704 { 5705 struct ftrace_graph_data *fgd = m->private; 5706 5707 mutex_lock(&graph_lock); 5708 5709 if (fgd->type == GRAPH_FILTER_FUNCTION) 5710 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5711 lockdep_is_held(&graph_lock)); 5712 else 5713 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5714 lockdep_is_held(&graph_lock)); 5715 5716 /* Nothing, tell g_show to print all functions are enabled */ 5717 if (ftrace_hash_empty(fgd->hash) && !*pos) 5718 return FTRACE_GRAPH_EMPTY; 5719 5720 fgd->idx = 0; 5721 fgd->entry = NULL; 5722 return __g_next(m, pos); 5723 } 5724 5725 static void g_stop(struct seq_file *m, void *p) 5726 { 5727 mutex_unlock(&graph_lock); 5728 } 5729 5730 static int g_show(struct seq_file *m, void *v) 5731 { 5732 struct ftrace_func_entry *entry = v; 5733 5734 if (!entry) 5735 return 0; 5736 5737 if (entry == FTRACE_GRAPH_EMPTY) { 5738 struct ftrace_graph_data *fgd = m->private; 5739 5740 if (fgd->type == GRAPH_FILTER_FUNCTION) 5741 seq_puts(m, "#### all functions enabled ####\n"); 5742 else 5743 seq_puts(m, "#### no functions disabled ####\n"); 5744 return 0; 5745 } 5746 5747 seq_printf(m, "%ps\n", (void *)entry->ip); 5748 5749 return 0; 5750 } 5751 5752 static const struct seq_operations ftrace_graph_seq_ops = { 5753 .start = g_start, 5754 .next = g_next, 5755 .stop = g_stop, 5756 .show = g_show, 5757 }; 5758 5759 static int 5760 __ftrace_graph_open(struct inode *inode, struct file *file, 5761 struct ftrace_graph_data *fgd) 5762 { 5763 int ret; 5764 struct ftrace_hash *new_hash = NULL; 5765 5766 ret = security_locked_down(LOCKDOWN_TRACEFS); 5767 if (ret) 5768 return ret; 5769 5770 if (file->f_mode & FMODE_WRITE) { 5771 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5772 5773 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5774 return -ENOMEM; 5775 5776 if (file->f_flags & O_TRUNC) 5777 new_hash = alloc_ftrace_hash(size_bits); 5778 else 5779 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5780 fgd->hash); 5781 if (!new_hash) { 5782 ret = -ENOMEM; 5783 goto out; 5784 } 5785 } 5786 5787 if (file->f_mode & FMODE_READ) { 5788 ret = seq_open(file, &ftrace_graph_seq_ops); 5789 if (!ret) { 5790 struct seq_file *m = file->private_data; 5791 m->private = fgd; 5792 } else { 5793 /* Failed */ 5794 free_ftrace_hash(new_hash); 5795 new_hash = NULL; 5796 } 5797 } else 5798 file->private_data = fgd; 5799 5800 out: 5801 if (ret < 0 && file->f_mode & FMODE_WRITE) 5802 trace_parser_put(&fgd->parser); 5803 5804 fgd->new_hash = new_hash; 5805 5806 /* 5807 * All uses of fgd->hash must be taken with the graph_lock 5808 * held. The graph_lock is going to be released, so force 5809 * fgd->hash to be reinitialized when it is taken again. 5810 */ 5811 fgd->hash = NULL; 5812 5813 return ret; 5814 } 5815 5816 static int 5817 ftrace_graph_open(struct inode *inode, struct file *file) 5818 { 5819 struct ftrace_graph_data *fgd; 5820 int ret; 5821 5822 if (unlikely(ftrace_disabled)) 5823 return -ENODEV; 5824 5825 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5826 if (fgd == NULL) 5827 return -ENOMEM; 5828 5829 mutex_lock(&graph_lock); 5830 5831 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5832 lockdep_is_held(&graph_lock)); 5833 fgd->type = GRAPH_FILTER_FUNCTION; 5834 fgd->seq_ops = &ftrace_graph_seq_ops; 5835 5836 ret = __ftrace_graph_open(inode, file, fgd); 5837 if (ret < 0) 5838 kfree(fgd); 5839 5840 mutex_unlock(&graph_lock); 5841 return ret; 5842 } 5843 5844 static int 5845 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5846 { 5847 struct ftrace_graph_data *fgd; 5848 int ret; 5849 5850 if (unlikely(ftrace_disabled)) 5851 return -ENODEV; 5852 5853 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5854 if (fgd == NULL) 5855 return -ENOMEM; 5856 5857 mutex_lock(&graph_lock); 5858 5859 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5860 lockdep_is_held(&graph_lock)); 5861 fgd->type = GRAPH_FILTER_NOTRACE; 5862 fgd->seq_ops = &ftrace_graph_seq_ops; 5863 5864 ret = __ftrace_graph_open(inode, file, fgd); 5865 if (ret < 0) 5866 kfree(fgd); 5867 5868 mutex_unlock(&graph_lock); 5869 return ret; 5870 } 5871 5872 static int 5873 ftrace_graph_release(struct inode *inode, struct file *file) 5874 { 5875 struct ftrace_graph_data *fgd; 5876 struct ftrace_hash *old_hash, *new_hash; 5877 struct trace_parser *parser; 5878 int ret = 0; 5879 5880 if (file->f_mode & FMODE_READ) { 5881 struct seq_file *m = file->private_data; 5882 5883 fgd = m->private; 5884 seq_release(inode, file); 5885 } else { 5886 fgd = file->private_data; 5887 } 5888 5889 5890 if (file->f_mode & FMODE_WRITE) { 5891 5892 parser = &fgd->parser; 5893 5894 if (trace_parser_loaded((parser))) { 5895 ret = ftrace_graph_set_hash(fgd->new_hash, 5896 parser->buffer); 5897 } 5898 5899 trace_parser_put(parser); 5900 5901 new_hash = __ftrace_hash_move(fgd->new_hash); 5902 if (!new_hash) { 5903 ret = -ENOMEM; 5904 goto out; 5905 } 5906 5907 mutex_lock(&graph_lock); 5908 5909 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5910 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5911 lockdep_is_held(&graph_lock)); 5912 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5913 } else { 5914 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5915 lockdep_is_held(&graph_lock)); 5916 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5917 } 5918 5919 mutex_unlock(&graph_lock); 5920 5921 /* 5922 * We need to do a hard force of sched synchronization. 5923 * This is because we use preempt_disable() to do RCU, but 5924 * the function tracers can be called where RCU is not watching 5925 * (like before user_exit()). We can not rely on the RCU 5926 * infrastructure to do the synchronization, thus we must do it 5927 * ourselves. 5928 */ 5929 synchronize_rcu_tasks_rude(); 5930 5931 free_ftrace_hash(old_hash); 5932 } 5933 5934 out: 5935 free_ftrace_hash(fgd->new_hash); 5936 kfree(fgd); 5937 5938 return ret; 5939 } 5940 5941 static int 5942 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5943 { 5944 struct ftrace_glob func_g; 5945 struct dyn_ftrace *rec; 5946 struct ftrace_page *pg; 5947 struct ftrace_func_entry *entry; 5948 int fail = 1; 5949 int not; 5950 5951 /* decode regex */ 5952 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5953 &func_g.search, ¬); 5954 5955 func_g.len = strlen(func_g.search); 5956 5957 mutex_lock(&ftrace_lock); 5958 5959 if (unlikely(ftrace_disabled)) { 5960 mutex_unlock(&ftrace_lock); 5961 return -ENODEV; 5962 } 5963 5964 do_for_each_ftrace_rec(pg, rec) { 5965 5966 if (rec->flags & FTRACE_FL_DISABLED) 5967 continue; 5968 5969 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5970 entry = ftrace_lookup_ip(hash, rec->ip); 5971 5972 if (!not) { 5973 fail = 0; 5974 5975 if (entry) 5976 continue; 5977 if (add_hash_entry(hash, rec->ip) < 0) 5978 goto out; 5979 } else { 5980 if (entry) { 5981 free_hash_entry(hash, entry); 5982 fail = 0; 5983 } 5984 } 5985 } 5986 } while_for_each_ftrace_rec(); 5987 out: 5988 mutex_unlock(&ftrace_lock); 5989 5990 if (fail) 5991 return -EINVAL; 5992 5993 return 0; 5994 } 5995 5996 static ssize_t 5997 ftrace_graph_write(struct file *file, const char __user *ubuf, 5998 size_t cnt, loff_t *ppos) 5999 { 6000 ssize_t read, ret = 0; 6001 struct ftrace_graph_data *fgd = file->private_data; 6002 struct trace_parser *parser; 6003 6004 if (!cnt) 6005 return 0; 6006 6007 /* Read mode uses seq functions */ 6008 if (file->f_mode & FMODE_READ) { 6009 struct seq_file *m = file->private_data; 6010 fgd = m->private; 6011 } 6012 6013 parser = &fgd->parser; 6014 6015 read = trace_get_user(parser, ubuf, cnt, ppos); 6016 6017 if (read >= 0 && trace_parser_loaded(parser) && 6018 !trace_parser_cont(parser)) { 6019 6020 ret = ftrace_graph_set_hash(fgd->new_hash, 6021 parser->buffer); 6022 trace_parser_clear(parser); 6023 } 6024 6025 if (!ret) 6026 ret = read; 6027 6028 return ret; 6029 } 6030 6031 static const struct file_operations ftrace_graph_fops = { 6032 .open = ftrace_graph_open, 6033 .read = seq_read, 6034 .write = ftrace_graph_write, 6035 .llseek = tracing_lseek, 6036 .release = ftrace_graph_release, 6037 }; 6038 6039 static const struct file_operations ftrace_graph_notrace_fops = { 6040 .open = ftrace_graph_notrace_open, 6041 .read = seq_read, 6042 .write = ftrace_graph_write, 6043 .llseek = tracing_lseek, 6044 .release = ftrace_graph_release, 6045 }; 6046 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6047 6048 void ftrace_create_filter_files(struct ftrace_ops *ops, 6049 struct dentry *parent) 6050 { 6051 6052 trace_create_file("set_ftrace_filter", 0644, parent, 6053 ops, &ftrace_filter_fops); 6054 6055 trace_create_file("set_ftrace_notrace", 0644, parent, 6056 ops, &ftrace_notrace_fops); 6057 } 6058 6059 /* 6060 * The name "destroy_filter_files" is really a misnomer. Although 6061 * in the future, it may actually delete the files, but this is 6062 * really intended to make sure the ops passed in are disabled 6063 * and that when this function returns, the caller is free to 6064 * free the ops. 6065 * 6066 * The "destroy" name is only to match the "create" name that this 6067 * should be paired with. 6068 */ 6069 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6070 { 6071 mutex_lock(&ftrace_lock); 6072 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6073 ftrace_shutdown(ops, 0); 6074 ops->flags |= FTRACE_OPS_FL_DELETED; 6075 ftrace_free_filter(ops); 6076 mutex_unlock(&ftrace_lock); 6077 } 6078 6079 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6080 { 6081 6082 trace_create_file("available_filter_functions", 0444, 6083 d_tracer, NULL, &ftrace_avail_fops); 6084 6085 trace_create_file("enabled_functions", 0444, 6086 d_tracer, NULL, &ftrace_enabled_fops); 6087 6088 ftrace_create_filter_files(&global_ops, d_tracer); 6089 6090 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6091 trace_create_file("set_graph_function", 0644, d_tracer, 6092 NULL, 6093 &ftrace_graph_fops); 6094 trace_create_file("set_graph_notrace", 0644, d_tracer, 6095 NULL, 6096 &ftrace_graph_notrace_fops); 6097 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6098 6099 return 0; 6100 } 6101 6102 static int ftrace_cmp_ips(const void *a, const void *b) 6103 { 6104 const unsigned long *ipa = a; 6105 const unsigned long *ipb = b; 6106 6107 if (*ipa > *ipb) 6108 return 1; 6109 if (*ipa < *ipb) 6110 return -1; 6111 return 0; 6112 } 6113 6114 static int ftrace_process_locs(struct module *mod, 6115 unsigned long *start, 6116 unsigned long *end) 6117 { 6118 struct ftrace_page *start_pg; 6119 struct ftrace_page *pg; 6120 struct dyn_ftrace *rec; 6121 unsigned long count; 6122 unsigned long *p; 6123 unsigned long addr; 6124 unsigned long flags = 0; /* Shut up gcc */ 6125 int ret = -ENOMEM; 6126 6127 count = end - start; 6128 6129 if (!count) 6130 return 0; 6131 6132 sort(start, count, sizeof(*start), 6133 ftrace_cmp_ips, NULL); 6134 6135 start_pg = ftrace_allocate_pages(count); 6136 if (!start_pg) 6137 return -ENOMEM; 6138 6139 mutex_lock(&ftrace_lock); 6140 6141 /* 6142 * Core and each module needs their own pages, as 6143 * modules will free them when they are removed. 6144 * Force a new page to be allocated for modules. 6145 */ 6146 if (!mod) { 6147 WARN_ON(ftrace_pages || ftrace_pages_start); 6148 /* First initialization */ 6149 ftrace_pages = ftrace_pages_start = start_pg; 6150 } else { 6151 if (!ftrace_pages) 6152 goto out; 6153 6154 if (WARN_ON(ftrace_pages->next)) { 6155 /* Hmm, we have free pages? */ 6156 while (ftrace_pages->next) 6157 ftrace_pages = ftrace_pages->next; 6158 } 6159 6160 ftrace_pages->next = start_pg; 6161 } 6162 6163 p = start; 6164 pg = start_pg; 6165 while (p < end) { 6166 addr = ftrace_call_adjust(*p++); 6167 /* 6168 * Some architecture linkers will pad between 6169 * the different mcount_loc sections of different 6170 * object files to satisfy alignments. 6171 * Skip any NULL pointers. 6172 */ 6173 if (!addr) 6174 continue; 6175 6176 if (pg->index == pg->size) { 6177 /* We should have allocated enough */ 6178 if (WARN_ON(!pg->next)) 6179 break; 6180 pg = pg->next; 6181 } 6182 6183 rec = &pg->records[pg->index++]; 6184 rec->ip = addr; 6185 } 6186 6187 /* We should have used all pages */ 6188 WARN_ON(pg->next); 6189 6190 /* Assign the last page to ftrace_pages */ 6191 ftrace_pages = pg; 6192 6193 /* 6194 * We only need to disable interrupts on start up 6195 * because we are modifying code that an interrupt 6196 * may execute, and the modification is not atomic. 6197 * But for modules, nothing runs the code we modify 6198 * until we are finished with it, and there's no 6199 * reason to cause large interrupt latencies while we do it. 6200 */ 6201 if (!mod) 6202 local_irq_save(flags); 6203 ftrace_update_code(mod, start_pg); 6204 if (!mod) 6205 local_irq_restore(flags); 6206 ret = 0; 6207 out: 6208 mutex_unlock(&ftrace_lock); 6209 6210 return ret; 6211 } 6212 6213 struct ftrace_mod_func { 6214 struct list_head list; 6215 char *name; 6216 unsigned long ip; 6217 unsigned int size; 6218 }; 6219 6220 struct ftrace_mod_map { 6221 struct rcu_head rcu; 6222 struct list_head list; 6223 struct module *mod; 6224 unsigned long start_addr; 6225 unsigned long end_addr; 6226 struct list_head funcs; 6227 unsigned int num_funcs; 6228 }; 6229 6230 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6231 unsigned long *value, char *type, 6232 char *name, char *module_name, 6233 int *exported) 6234 { 6235 struct ftrace_ops *op; 6236 6237 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6238 if (!op->trampoline || symnum--) 6239 continue; 6240 *value = op->trampoline; 6241 *type = 't'; 6242 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6243 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6244 *exported = 0; 6245 return 0; 6246 } 6247 6248 return -ERANGE; 6249 } 6250 6251 #ifdef CONFIG_MODULES 6252 6253 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6254 6255 static LIST_HEAD(ftrace_mod_maps); 6256 6257 static int referenced_filters(struct dyn_ftrace *rec) 6258 { 6259 struct ftrace_ops *ops; 6260 int cnt = 0; 6261 6262 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6263 if (ops_references_rec(ops, rec)) { 6264 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6265 continue; 6266 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6267 continue; 6268 cnt++; 6269 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6270 rec->flags |= FTRACE_FL_REGS; 6271 if (cnt == 1 && ops->trampoline) 6272 rec->flags |= FTRACE_FL_TRAMP; 6273 else 6274 rec->flags &= ~FTRACE_FL_TRAMP; 6275 } 6276 } 6277 6278 return cnt; 6279 } 6280 6281 static void 6282 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6283 { 6284 struct ftrace_func_entry *entry; 6285 struct dyn_ftrace *rec; 6286 int i; 6287 6288 if (ftrace_hash_empty(hash)) 6289 return; 6290 6291 for (i = 0; i < pg->index; i++) { 6292 rec = &pg->records[i]; 6293 entry = __ftrace_lookup_ip(hash, rec->ip); 6294 /* 6295 * Do not allow this rec to match again. 6296 * Yeah, it may waste some memory, but will be removed 6297 * if/when the hash is modified again. 6298 */ 6299 if (entry) 6300 entry->ip = 0; 6301 } 6302 } 6303 6304 /* Clear any records from hashs */ 6305 static void clear_mod_from_hashes(struct ftrace_page *pg) 6306 { 6307 struct trace_array *tr; 6308 6309 mutex_lock(&trace_types_lock); 6310 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6311 if (!tr->ops || !tr->ops->func_hash) 6312 continue; 6313 mutex_lock(&tr->ops->func_hash->regex_lock); 6314 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6315 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6316 mutex_unlock(&tr->ops->func_hash->regex_lock); 6317 } 6318 mutex_unlock(&trace_types_lock); 6319 } 6320 6321 static void ftrace_free_mod_map(struct rcu_head *rcu) 6322 { 6323 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6324 struct ftrace_mod_func *mod_func; 6325 struct ftrace_mod_func *n; 6326 6327 /* All the contents of mod_map are now not visible to readers */ 6328 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6329 kfree(mod_func->name); 6330 list_del(&mod_func->list); 6331 kfree(mod_func); 6332 } 6333 6334 kfree(mod_map); 6335 } 6336 6337 void ftrace_release_mod(struct module *mod) 6338 { 6339 struct ftrace_mod_map *mod_map; 6340 struct ftrace_mod_map *n; 6341 struct dyn_ftrace *rec; 6342 struct ftrace_page **last_pg; 6343 struct ftrace_page *tmp_page = NULL; 6344 struct ftrace_page *pg; 6345 int order; 6346 6347 mutex_lock(&ftrace_lock); 6348 6349 if (ftrace_disabled) 6350 goto out_unlock; 6351 6352 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6353 if (mod_map->mod == mod) { 6354 list_del_rcu(&mod_map->list); 6355 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6356 break; 6357 } 6358 } 6359 6360 /* 6361 * Each module has its own ftrace_pages, remove 6362 * them from the list. 6363 */ 6364 last_pg = &ftrace_pages_start; 6365 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6366 rec = &pg->records[0]; 6367 if (within_module_core(rec->ip, mod) || 6368 within_module_init(rec->ip, mod)) { 6369 /* 6370 * As core pages are first, the first 6371 * page should never be a module page. 6372 */ 6373 if (WARN_ON(pg == ftrace_pages_start)) 6374 goto out_unlock; 6375 6376 /* Check if we are deleting the last page */ 6377 if (pg == ftrace_pages) 6378 ftrace_pages = next_to_ftrace_page(last_pg); 6379 6380 ftrace_update_tot_cnt -= pg->index; 6381 *last_pg = pg->next; 6382 6383 pg->next = tmp_page; 6384 tmp_page = pg; 6385 } else 6386 last_pg = &pg->next; 6387 } 6388 out_unlock: 6389 mutex_unlock(&ftrace_lock); 6390 6391 for (pg = tmp_page; pg; pg = tmp_page) { 6392 6393 /* Needs to be called outside of ftrace_lock */ 6394 clear_mod_from_hashes(pg); 6395 6396 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6397 free_pages((unsigned long)pg->records, order); 6398 tmp_page = pg->next; 6399 kfree(pg); 6400 ftrace_number_of_pages -= 1 << order; 6401 ftrace_number_of_groups--; 6402 } 6403 } 6404 6405 void ftrace_module_enable(struct module *mod) 6406 { 6407 struct dyn_ftrace *rec; 6408 struct ftrace_page *pg; 6409 6410 mutex_lock(&ftrace_lock); 6411 6412 if (ftrace_disabled) 6413 goto out_unlock; 6414 6415 /* 6416 * If the tracing is enabled, go ahead and enable the record. 6417 * 6418 * The reason not to enable the record immediately is the 6419 * inherent check of ftrace_make_nop/ftrace_make_call for 6420 * correct previous instructions. Making first the NOP 6421 * conversion puts the module to the correct state, thus 6422 * passing the ftrace_make_call check. 6423 * 6424 * We also delay this to after the module code already set the 6425 * text to read-only, as we now need to set it back to read-write 6426 * so that we can modify the text. 6427 */ 6428 if (ftrace_start_up) 6429 ftrace_arch_code_modify_prepare(); 6430 6431 do_for_each_ftrace_rec(pg, rec) { 6432 int cnt; 6433 /* 6434 * do_for_each_ftrace_rec() is a double loop. 6435 * module text shares the pg. If a record is 6436 * not part of this module, then skip this pg, 6437 * which the "break" will do. 6438 */ 6439 if (!within_module_core(rec->ip, mod) && 6440 !within_module_init(rec->ip, mod)) 6441 break; 6442 6443 cnt = 0; 6444 6445 /* 6446 * When adding a module, we need to check if tracers are 6447 * currently enabled and if they are, and can trace this record, 6448 * we need to enable the module functions as well as update the 6449 * reference counts for those function records. 6450 */ 6451 if (ftrace_start_up) 6452 cnt += referenced_filters(rec); 6453 6454 rec->flags &= ~FTRACE_FL_DISABLED; 6455 rec->flags += cnt; 6456 6457 if (ftrace_start_up && cnt) { 6458 int failed = __ftrace_replace_code(rec, 1); 6459 if (failed) { 6460 ftrace_bug(failed, rec); 6461 goto out_loop; 6462 } 6463 } 6464 6465 } while_for_each_ftrace_rec(); 6466 6467 out_loop: 6468 if (ftrace_start_up) 6469 ftrace_arch_code_modify_post_process(); 6470 6471 out_unlock: 6472 mutex_unlock(&ftrace_lock); 6473 6474 process_cached_mods(mod->name); 6475 } 6476 6477 void ftrace_module_init(struct module *mod) 6478 { 6479 if (ftrace_disabled || !mod->num_ftrace_callsites) 6480 return; 6481 6482 ftrace_process_locs(mod, mod->ftrace_callsites, 6483 mod->ftrace_callsites + mod->num_ftrace_callsites); 6484 } 6485 6486 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6487 struct dyn_ftrace *rec) 6488 { 6489 struct ftrace_mod_func *mod_func; 6490 unsigned long symsize; 6491 unsigned long offset; 6492 char str[KSYM_SYMBOL_LEN]; 6493 char *modname; 6494 const char *ret; 6495 6496 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6497 if (!ret) 6498 return; 6499 6500 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6501 if (!mod_func) 6502 return; 6503 6504 mod_func->name = kstrdup(str, GFP_KERNEL); 6505 if (!mod_func->name) { 6506 kfree(mod_func); 6507 return; 6508 } 6509 6510 mod_func->ip = rec->ip - offset; 6511 mod_func->size = symsize; 6512 6513 mod_map->num_funcs++; 6514 6515 list_add_rcu(&mod_func->list, &mod_map->funcs); 6516 } 6517 6518 static struct ftrace_mod_map * 6519 allocate_ftrace_mod_map(struct module *mod, 6520 unsigned long start, unsigned long end) 6521 { 6522 struct ftrace_mod_map *mod_map; 6523 6524 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6525 if (!mod_map) 6526 return NULL; 6527 6528 mod_map->mod = mod; 6529 mod_map->start_addr = start; 6530 mod_map->end_addr = end; 6531 mod_map->num_funcs = 0; 6532 6533 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6534 6535 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6536 6537 return mod_map; 6538 } 6539 6540 static const char * 6541 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6542 unsigned long addr, unsigned long *size, 6543 unsigned long *off, char *sym) 6544 { 6545 struct ftrace_mod_func *found_func = NULL; 6546 struct ftrace_mod_func *mod_func; 6547 6548 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6549 if (addr >= mod_func->ip && 6550 addr < mod_func->ip + mod_func->size) { 6551 found_func = mod_func; 6552 break; 6553 } 6554 } 6555 6556 if (found_func) { 6557 if (size) 6558 *size = found_func->size; 6559 if (off) 6560 *off = addr - found_func->ip; 6561 if (sym) 6562 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6563 6564 return found_func->name; 6565 } 6566 6567 return NULL; 6568 } 6569 6570 const char * 6571 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6572 unsigned long *off, char **modname, char *sym) 6573 { 6574 struct ftrace_mod_map *mod_map; 6575 const char *ret = NULL; 6576 6577 /* mod_map is freed via call_rcu() */ 6578 preempt_disable(); 6579 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6580 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6581 if (ret) { 6582 if (modname) 6583 *modname = mod_map->mod->name; 6584 break; 6585 } 6586 } 6587 preempt_enable(); 6588 6589 return ret; 6590 } 6591 6592 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6593 char *type, char *name, 6594 char *module_name, int *exported) 6595 { 6596 struct ftrace_mod_map *mod_map; 6597 struct ftrace_mod_func *mod_func; 6598 int ret; 6599 6600 preempt_disable(); 6601 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6602 6603 if (symnum >= mod_map->num_funcs) { 6604 symnum -= mod_map->num_funcs; 6605 continue; 6606 } 6607 6608 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6609 if (symnum > 1) { 6610 symnum--; 6611 continue; 6612 } 6613 6614 *value = mod_func->ip; 6615 *type = 'T'; 6616 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6617 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6618 *exported = 1; 6619 preempt_enable(); 6620 return 0; 6621 } 6622 WARN_ON(1); 6623 break; 6624 } 6625 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6626 module_name, exported); 6627 preempt_enable(); 6628 return ret; 6629 } 6630 6631 #else 6632 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6633 struct dyn_ftrace *rec) { } 6634 static inline struct ftrace_mod_map * 6635 allocate_ftrace_mod_map(struct module *mod, 6636 unsigned long start, unsigned long end) 6637 { 6638 return NULL; 6639 } 6640 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6641 char *type, char *name, char *module_name, 6642 int *exported) 6643 { 6644 int ret; 6645 6646 preempt_disable(); 6647 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6648 module_name, exported); 6649 preempt_enable(); 6650 return ret; 6651 } 6652 #endif /* CONFIG_MODULES */ 6653 6654 struct ftrace_init_func { 6655 struct list_head list; 6656 unsigned long ip; 6657 }; 6658 6659 /* Clear any init ips from hashes */ 6660 static void 6661 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6662 { 6663 struct ftrace_func_entry *entry; 6664 6665 entry = ftrace_lookup_ip(hash, func->ip); 6666 /* 6667 * Do not allow this rec to match again. 6668 * Yeah, it may waste some memory, but will be removed 6669 * if/when the hash is modified again. 6670 */ 6671 if (entry) 6672 entry->ip = 0; 6673 } 6674 6675 static void 6676 clear_func_from_hashes(struct ftrace_init_func *func) 6677 { 6678 struct trace_array *tr; 6679 6680 mutex_lock(&trace_types_lock); 6681 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6682 if (!tr->ops || !tr->ops->func_hash) 6683 continue; 6684 mutex_lock(&tr->ops->func_hash->regex_lock); 6685 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6686 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6687 mutex_unlock(&tr->ops->func_hash->regex_lock); 6688 } 6689 mutex_unlock(&trace_types_lock); 6690 } 6691 6692 static void add_to_clear_hash_list(struct list_head *clear_list, 6693 struct dyn_ftrace *rec) 6694 { 6695 struct ftrace_init_func *func; 6696 6697 func = kmalloc(sizeof(*func), GFP_KERNEL); 6698 if (!func) { 6699 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6700 return; 6701 } 6702 6703 func->ip = rec->ip; 6704 list_add(&func->list, clear_list); 6705 } 6706 6707 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6708 { 6709 unsigned long start = (unsigned long)(start_ptr); 6710 unsigned long end = (unsigned long)(end_ptr); 6711 struct ftrace_page **last_pg = &ftrace_pages_start; 6712 struct ftrace_page *pg; 6713 struct dyn_ftrace *rec; 6714 struct dyn_ftrace key; 6715 struct ftrace_mod_map *mod_map = NULL; 6716 struct ftrace_init_func *func, *func_next; 6717 struct list_head clear_hash; 6718 int order; 6719 6720 INIT_LIST_HEAD(&clear_hash); 6721 6722 key.ip = start; 6723 key.flags = end; /* overload flags, as it is unsigned long */ 6724 6725 mutex_lock(&ftrace_lock); 6726 6727 /* 6728 * If we are freeing module init memory, then check if 6729 * any tracer is active. If so, we need to save a mapping of 6730 * the module functions being freed with the address. 6731 */ 6732 if (mod && ftrace_ops_list != &ftrace_list_end) 6733 mod_map = allocate_ftrace_mod_map(mod, start, end); 6734 6735 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6736 if (end < pg->records[0].ip || 6737 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6738 continue; 6739 again: 6740 rec = bsearch(&key, pg->records, pg->index, 6741 sizeof(struct dyn_ftrace), 6742 ftrace_cmp_recs); 6743 if (!rec) 6744 continue; 6745 6746 /* rec will be cleared from hashes after ftrace_lock unlock */ 6747 add_to_clear_hash_list(&clear_hash, rec); 6748 6749 if (mod_map) 6750 save_ftrace_mod_rec(mod_map, rec); 6751 6752 pg->index--; 6753 ftrace_update_tot_cnt--; 6754 if (!pg->index) { 6755 *last_pg = pg->next; 6756 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6757 free_pages((unsigned long)pg->records, order); 6758 ftrace_number_of_pages -= 1 << order; 6759 ftrace_number_of_groups--; 6760 kfree(pg); 6761 pg = container_of(last_pg, struct ftrace_page, next); 6762 if (!(*last_pg)) 6763 ftrace_pages = pg; 6764 continue; 6765 } 6766 memmove(rec, rec + 1, 6767 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6768 /* More than one function may be in this block */ 6769 goto again; 6770 } 6771 mutex_unlock(&ftrace_lock); 6772 6773 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6774 clear_func_from_hashes(func); 6775 kfree(func); 6776 } 6777 } 6778 6779 void __init ftrace_free_init_mem(void) 6780 { 6781 void *start = (void *)(&__init_begin); 6782 void *end = (void *)(&__init_end); 6783 6784 ftrace_free_mem(NULL, start, end); 6785 } 6786 6787 void __init ftrace_init(void) 6788 { 6789 extern unsigned long __start_mcount_loc[]; 6790 extern unsigned long __stop_mcount_loc[]; 6791 unsigned long count, flags; 6792 int ret; 6793 6794 local_irq_save(flags); 6795 ret = ftrace_dyn_arch_init(); 6796 local_irq_restore(flags); 6797 if (ret) 6798 goto failed; 6799 6800 count = __stop_mcount_loc - __start_mcount_loc; 6801 if (!count) { 6802 pr_info("ftrace: No functions to be traced?\n"); 6803 goto failed; 6804 } 6805 6806 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6807 count, count / ENTRIES_PER_PAGE + 1); 6808 6809 last_ftrace_enabled = ftrace_enabled = 1; 6810 6811 ret = ftrace_process_locs(NULL, 6812 __start_mcount_loc, 6813 __stop_mcount_loc); 6814 6815 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6816 ftrace_number_of_pages, ftrace_number_of_groups); 6817 6818 set_ftrace_early_filters(); 6819 6820 return; 6821 failed: 6822 ftrace_disabled = 1; 6823 } 6824 6825 /* Do nothing if arch does not support this */ 6826 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6827 { 6828 } 6829 6830 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6831 { 6832 unsigned long trampoline = ops->trampoline; 6833 6834 arch_ftrace_update_trampoline(ops); 6835 if (ops->trampoline && ops->trampoline != trampoline && 6836 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 6837 /* Add to kallsyms before the perf events */ 6838 ftrace_add_trampoline_to_kallsyms(ops); 6839 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 6840 ops->trampoline, ops->trampoline_size, false, 6841 FTRACE_TRAMPOLINE_SYM); 6842 /* 6843 * Record the perf text poke event after the ksymbol register 6844 * event. 6845 */ 6846 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 6847 (void *)ops->trampoline, 6848 ops->trampoline_size); 6849 } 6850 } 6851 6852 void ftrace_init_trace_array(struct trace_array *tr) 6853 { 6854 INIT_LIST_HEAD(&tr->func_probes); 6855 INIT_LIST_HEAD(&tr->mod_trace); 6856 INIT_LIST_HEAD(&tr->mod_notrace); 6857 } 6858 #else 6859 6860 struct ftrace_ops global_ops = { 6861 .func = ftrace_stub, 6862 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6863 FTRACE_OPS_FL_INITIALIZED | 6864 FTRACE_OPS_FL_PID, 6865 }; 6866 6867 static int __init ftrace_nodyn_init(void) 6868 { 6869 ftrace_enabled = 1; 6870 return 0; 6871 } 6872 core_initcall(ftrace_nodyn_init); 6873 6874 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6875 static inline void ftrace_startup_enable(int command) { } 6876 static inline void ftrace_startup_all(int command) { } 6877 6878 # define ftrace_startup_sysctl() do { } while (0) 6879 # define ftrace_shutdown_sysctl() do { } while (0) 6880 6881 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6882 { 6883 } 6884 6885 #endif /* CONFIG_DYNAMIC_FTRACE */ 6886 6887 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6888 { 6889 tr->ops = &global_ops; 6890 tr->ops->private = tr; 6891 ftrace_init_trace_array(tr); 6892 } 6893 6894 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6895 { 6896 /* If we filter on pids, update to use the pid function */ 6897 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6898 if (WARN_ON(tr->ops->func != ftrace_stub)) 6899 printk("ftrace ops had %pS for function\n", 6900 tr->ops->func); 6901 } 6902 tr->ops->func = func; 6903 tr->ops->private = tr; 6904 } 6905 6906 void ftrace_reset_array_ops(struct trace_array *tr) 6907 { 6908 tr->ops->func = ftrace_stub; 6909 } 6910 6911 static nokprobe_inline void 6912 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6913 struct ftrace_ops *ignored, struct pt_regs *regs) 6914 { 6915 struct ftrace_ops *op; 6916 int bit; 6917 6918 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6919 if (bit < 0) 6920 return; 6921 6922 /* 6923 * Some of the ops may be dynamically allocated, 6924 * they must be freed after a synchronize_rcu(). 6925 */ 6926 preempt_disable_notrace(); 6927 6928 do_for_each_ftrace_op(op, ftrace_ops_list) { 6929 /* Stub functions don't need to be called nor tested */ 6930 if (op->flags & FTRACE_OPS_FL_STUB) 6931 continue; 6932 /* 6933 * Check the following for each ops before calling their func: 6934 * if RCU flag is set, then rcu_is_watching() must be true 6935 * if PER_CPU is set, then ftrace_function_local_disable() 6936 * must be false 6937 * Otherwise test if the ip matches the ops filter 6938 * 6939 * If any of the above fails then the op->func() is not executed. 6940 */ 6941 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6942 ftrace_ops_test(op, ip, regs)) { 6943 if (FTRACE_WARN_ON(!op->func)) { 6944 pr_warn("op=%p %pS\n", op, op); 6945 goto out; 6946 } 6947 op->func(ip, parent_ip, op, regs); 6948 } 6949 } while_for_each_ftrace_op(op); 6950 out: 6951 preempt_enable_notrace(); 6952 trace_clear_recursion(bit); 6953 } 6954 6955 /* 6956 * Some archs only support passing ip and parent_ip. Even though 6957 * the list function ignores the op parameter, we do not want any 6958 * C side effects, where a function is called without the caller 6959 * sending a third parameter. 6960 * Archs are to support both the regs and ftrace_ops at the same time. 6961 * If they support ftrace_ops, it is assumed they support regs. 6962 * If call backs want to use regs, they must either check for regs 6963 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6964 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6965 * An architecture can pass partial regs with ftrace_ops and still 6966 * set the ARCH_SUPPORTS_FTRACE_OPS. 6967 */ 6968 #if ARCH_SUPPORTS_FTRACE_OPS 6969 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6970 struct ftrace_ops *op, struct pt_regs *regs) 6971 { 6972 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6973 } 6974 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6975 #else 6976 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6977 { 6978 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6979 } 6980 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6981 #endif 6982 6983 /* 6984 * If there's only one function registered but it does not support 6985 * recursion, needs RCU protection and/or requires per cpu handling, then 6986 * this function will be called by the mcount trampoline. 6987 */ 6988 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6989 struct ftrace_ops *op, struct pt_regs *regs) 6990 { 6991 int bit; 6992 6993 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6994 return; 6995 6996 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6997 if (bit < 0) 6998 return; 6999 7000 preempt_disable_notrace(); 7001 7002 op->func(ip, parent_ip, op, regs); 7003 7004 preempt_enable_notrace(); 7005 trace_clear_recursion(bit); 7006 } 7007 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7008 7009 /** 7010 * ftrace_ops_get_func - get the function a trampoline should call 7011 * @ops: the ops to get the function for 7012 * 7013 * Normally the mcount trampoline will call the ops->func, but there 7014 * are times that it should not. For example, if the ops does not 7015 * have its own recursion protection, then it should call the 7016 * ftrace_ops_assist_func() instead. 7017 * 7018 * Returns the function that the trampoline should call for @ops. 7019 */ 7020 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7021 { 7022 /* 7023 * If the function does not handle recursion, needs to be RCU safe, 7024 * or does per cpu logic, then we need to call the assist handler. 7025 */ 7026 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 7027 ops->flags & FTRACE_OPS_FL_RCU) 7028 return ftrace_ops_assist_func; 7029 7030 return ops->func; 7031 } 7032 7033 static void 7034 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7035 struct task_struct *prev, struct task_struct *next) 7036 { 7037 struct trace_array *tr = data; 7038 struct trace_pid_list *pid_list; 7039 struct trace_pid_list *no_pid_list; 7040 7041 pid_list = rcu_dereference_sched(tr->function_pids); 7042 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7043 7044 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7045 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7046 FTRACE_PID_IGNORE); 7047 else 7048 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7049 next->pid); 7050 } 7051 7052 static void 7053 ftrace_pid_follow_sched_process_fork(void *data, 7054 struct task_struct *self, 7055 struct task_struct *task) 7056 { 7057 struct trace_pid_list *pid_list; 7058 struct trace_array *tr = data; 7059 7060 pid_list = rcu_dereference_sched(tr->function_pids); 7061 trace_filter_add_remove_task(pid_list, self, task); 7062 7063 pid_list = rcu_dereference_sched(tr->function_no_pids); 7064 trace_filter_add_remove_task(pid_list, self, task); 7065 } 7066 7067 static void 7068 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7069 { 7070 struct trace_pid_list *pid_list; 7071 struct trace_array *tr = data; 7072 7073 pid_list = rcu_dereference_sched(tr->function_pids); 7074 trace_filter_add_remove_task(pid_list, NULL, task); 7075 7076 pid_list = rcu_dereference_sched(tr->function_no_pids); 7077 trace_filter_add_remove_task(pid_list, NULL, task); 7078 } 7079 7080 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7081 { 7082 if (enable) { 7083 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7084 tr); 7085 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7086 tr); 7087 } else { 7088 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7089 tr); 7090 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7091 tr); 7092 } 7093 } 7094 7095 static void clear_ftrace_pids(struct trace_array *tr, int type) 7096 { 7097 struct trace_pid_list *pid_list; 7098 struct trace_pid_list *no_pid_list; 7099 int cpu; 7100 7101 pid_list = rcu_dereference_protected(tr->function_pids, 7102 lockdep_is_held(&ftrace_lock)); 7103 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7104 lockdep_is_held(&ftrace_lock)); 7105 7106 /* Make sure there's something to do */ 7107 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7108 return; 7109 7110 /* See if the pids still need to be checked after this */ 7111 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7112 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7113 for_each_possible_cpu(cpu) 7114 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7115 } 7116 7117 if (type & TRACE_PIDS) 7118 rcu_assign_pointer(tr->function_pids, NULL); 7119 7120 if (type & TRACE_NO_PIDS) 7121 rcu_assign_pointer(tr->function_no_pids, NULL); 7122 7123 /* Wait till all users are no longer using pid filtering */ 7124 synchronize_rcu(); 7125 7126 if ((type & TRACE_PIDS) && pid_list) 7127 trace_free_pid_list(pid_list); 7128 7129 if ((type & TRACE_NO_PIDS) && no_pid_list) 7130 trace_free_pid_list(no_pid_list); 7131 } 7132 7133 void ftrace_clear_pids(struct trace_array *tr) 7134 { 7135 mutex_lock(&ftrace_lock); 7136 7137 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7138 7139 mutex_unlock(&ftrace_lock); 7140 } 7141 7142 static void ftrace_pid_reset(struct trace_array *tr, int type) 7143 { 7144 mutex_lock(&ftrace_lock); 7145 clear_ftrace_pids(tr, type); 7146 7147 ftrace_update_pid_func(); 7148 ftrace_startup_all(0); 7149 7150 mutex_unlock(&ftrace_lock); 7151 } 7152 7153 /* Greater than any max PID */ 7154 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7155 7156 static void *fpid_start(struct seq_file *m, loff_t *pos) 7157 __acquires(RCU) 7158 { 7159 struct trace_pid_list *pid_list; 7160 struct trace_array *tr = m->private; 7161 7162 mutex_lock(&ftrace_lock); 7163 rcu_read_lock_sched(); 7164 7165 pid_list = rcu_dereference_sched(tr->function_pids); 7166 7167 if (!pid_list) 7168 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7169 7170 return trace_pid_start(pid_list, pos); 7171 } 7172 7173 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7174 { 7175 struct trace_array *tr = m->private; 7176 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7177 7178 if (v == FTRACE_NO_PIDS) { 7179 (*pos)++; 7180 return NULL; 7181 } 7182 return trace_pid_next(pid_list, v, pos); 7183 } 7184 7185 static void fpid_stop(struct seq_file *m, void *p) 7186 __releases(RCU) 7187 { 7188 rcu_read_unlock_sched(); 7189 mutex_unlock(&ftrace_lock); 7190 } 7191 7192 static int fpid_show(struct seq_file *m, void *v) 7193 { 7194 if (v == FTRACE_NO_PIDS) { 7195 seq_puts(m, "no pid\n"); 7196 return 0; 7197 } 7198 7199 return trace_pid_show(m, v); 7200 } 7201 7202 static const struct seq_operations ftrace_pid_sops = { 7203 .start = fpid_start, 7204 .next = fpid_next, 7205 .stop = fpid_stop, 7206 .show = fpid_show, 7207 }; 7208 7209 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7210 __acquires(RCU) 7211 { 7212 struct trace_pid_list *pid_list; 7213 struct trace_array *tr = m->private; 7214 7215 mutex_lock(&ftrace_lock); 7216 rcu_read_lock_sched(); 7217 7218 pid_list = rcu_dereference_sched(tr->function_no_pids); 7219 7220 if (!pid_list) 7221 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7222 7223 return trace_pid_start(pid_list, pos); 7224 } 7225 7226 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7227 { 7228 struct trace_array *tr = m->private; 7229 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7230 7231 if (v == FTRACE_NO_PIDS) { 7232 (*pos)++; 7233 return NULL; 7234 } 7235 return trace_pid_next(pid_list, v, pos); 7236 } 7237 7238 static const struct seq_operations ftrace_no_pid_sops = { 7239 .start = fnpid_start, 7240 .next = fnpid_next, 7241 .stop = fpid_stop, 7242 .show = fpid_show, 7243 }; 7244 7245 static int pid_open(struct inode *inode, struct file *file, int type) 7246 { 7247 const struct seq_operations *seq_ops; 7248 struct trace_array *tr = inode->i_private; 7249 struct seq_file *m; 7250 int ret = 0; 7251 7252 ret = tracing_check_open_get_tr(tr); 7253 if (ret) 7254 return ret; 7255 7256 if ((file->f_mode & FMODE_WRITE) && 7257 (file->f_flags & O_TRUNC)) 7258 ftrace_pid_reset(tr, type); 7259 7260 switch (type) { 7261 case TRACE_PIDS: 7262 seq_ops = &ftrace_pid_sops; 7263 break; 7264 case TRACE_NO_PIDS: 7265 seq_ops = &ftrace_no_pid_sops; 7266 break; 7267 default: 7268 trace_array_put(tr); 7269 WARN_ON_ONCE(1); 7270 return -EINVAL; 7271 } 7272 7273 ret = seq_open(file, seq_ops); 7274 if (ret < 0) { 7275 trace_array_put(tr); 7276 } else { 7277 m = file->private_data; 7278 /* copy tr over to seq ops */ 7279 m->private = tr; 7280 } 7281 7282 return ret; 7283 } 7284 7285 static int 7286 ftrace_pid_open(struct inode *inode, struct file *file) 7287 { 7288 return pid_open(inode, file, TRACE_PIDS); 7289 } 7290 7291 static int 7292 ftrace_no_pid_open(struct inode *inode, struct file *file) 7293 { 7294 return pid_open(inode, file, TRACE_NO_PIDS); 7295 } 7296 7297 static void ignore_task_cpu(void *data) 7298 { 7299 struct trace_array *tr = data; 7300 struct trace_pid_list *pid_list; 7301 struct trace_pid_list *no_pid_list; 7302 7303 /* 7304 * This function is called by on_each_cpu() while the 7305 * event_mutex is held. 7306 */ 7307 pid_list = rcu_dereference_protected(tr->function_pids, 7308 mutex_is_locked(&ftrace_lock)); 7309 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7310 mutex_is_locked(&ftrace_lock)); 7311 7312 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7313 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7314 FTRACE_PID_IGNORE); 7315 else 7316 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7317 current->pid); 7318 } 7319 7320 static ssize_t 7321 pid_write(struct file *filp, const char __user *ubuf, 7322 size_t cnt, loff_t *ppos, int type) 7323 { 7324 struct seq_file *m = filp->private_data; 7325 struct trace_array *tr = m->private; 7326 struct trace_pid_list *filtered_pids; 7327 struct trace_pid_list *other_pids; 7328 struct trace_pid_list *pid_list; 7329 ssize_t ret; 7330 7331 if (!cnt) 7332 return 0; 7333 7334 mutex_lock(&ftrace_lock); 7335 7336 switch (type) { 7337 case TRACE_PIDS: 7338 filtered_pids = rcu_dereference_protected(tr->function_pids, 7339 lockdep_is_held(&ftrace_lock)); 7340 other_pids = rcu_dereference_protected(tr->function_no_pids, 7341 lockdep_is_held(&ftrace_lock)); 7342 break; 7343 case TRACE_NO_PIDS: 7344 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7345 lockdep_is_held(&ftrace_lock)); 7346 other_pids = rcu_dereference_protected(tr->function_pids, 7347 lockdep_is_held(&ftrace_lock)); 7348 break; 7349 default: 7350 ret = -EINVAL; 7351 WARN_ON_ONCE(1); 7352 goto out; 7353 } 7354 7355 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7356 if (ret < 0) 7357 goto out; 7358 7359 switch (type) { 7360 case TRACE_PIDS: 7361 rcu_assign_pointer(tr->function_pids, pid_list); 7362 break; 7363 case TRACE_NO_PIDS: 7364 rcu_assign_pointer(tr->function_no_pids, pid_list); 7365 break; 7366 } 7367 7368 7369 if (filtered_pids) { 7370 synchronize_rcu(); 7371 trace_free_pid_list(filtered_pids); 7372 } else if (pid_list && !other_pids) { 7373 /* Register a probe to set whether to ignore the tracing of a task */ 7374 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7375 } 7376 7377 /* 7378 * Ignoring of pids is done at task switch. But we have to 7379 * check for those tasks that are currently running. 7380 * Always do this in case a pid was appended or removed. 7381 */ 7382 on_each_cpu(ignore_task_cpu, tr, 1); 7383 7384 ftrace_update_pid_func(); 7385 ftrace_startup_all(0); 7386 out: 7387 mutex_unlock(&ftrace_lock); 7388 7389 if (ret > 0) 7390 *ppos += ret; 7391 7392 return ret; 7393 } 7394 7395 static ssize_t 7396 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7397 size_t cnt, loff_t *ppos) 7398 { 7399 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7400 } 7401 7402 static ssize_t 7403 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7404 size_t cnt, loff_t *ppos) 7405 { 7406 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7407 } 7408 7409 static int 7410 ftrace_pid_release(struct inode *inode, struct file *file) 7411 { 7412 struct trace_array *tr = inode->i_private; 7413 7414 trace_array_put(tr); 7415 7416 return seq_release(inode, file); 7417 } 7418 7419 static const struct file_operations ftrace_pid_fops = { 7420 .open = ftrace_pid_open, 7421 .write = ftrace_pid_write, 7422 .read = seq_read, 7423 .llseek = tracing_lseek, 7424 .release = ftrace_pid_release, 7425 }; 7426 7427 static const struct file_operations ftrace_no_pid_fops = { 7428 .open = ftrace_no_pid_open, 7429 .write = ftrace_no_pid_write, 7430 .read = seq_read, 7431 .llseek = tracing_lseek, 7432 .release = ftrace_pid_release, 7433 }; 7434 7435 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7436 { 7437 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7438 tr, &ftrace_pid_fops); 7439 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer, 7440 tr, &ftrace_no_pid_fops); 7441 } 7442 7443 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7444 struct dentry *d_tracer) 7445 { 7446 /* Only the top level directory has the dyn_tracefs and profile */ 7447 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7448 7449 ftrace_init_dyn_tracefs(d_tracer); 7450 ftrace_profile_tracefs(d_tracer); 7451 } 7452 7453 /** 7454 * ftrace_kill - kill ftrace 7455 * 7456 * This function should be used by panic code. It stops ftrace 7457 * but in a not so nice way. If you need to simply kill ftrace 7458 * from a non-atomic section, use ftrace_kill. 7459 */ 7460 void ftrace_kill(void) 7461 { 7462 ftrace_disabled = 1; 7463 ftrace_enabled = 0; 7464 ftrace_trace_function = ftrace_stub; 7465 } 7466 7467 /** 7468 * Test if ftrace is dead or not. 7469 */ 7470 int ftrace_is_dead(void) 7471 { 7472 return ftrace_disabled; 7473 } 7474 7475 /** 7476 * register_ftrace_function - register a function for profiling 7477 * @ops - ops structure that holds the function for profiling. 7478 * 7479 * Register a function to be called by all functions in the 7480 * kernel. 7481 * 7482 * Note: @ops->func and all the functions it calls must be labeled 7483 * with "notrace", otherwise it will go into a 7484 * recursive loop. 7485 */ 7486 int register_ftrace_function(struct ftrace_ops *ops) 7487 { 7488 int ret = -1; 7489 7490 ftrace_ops_init(ops); 7491 7492 mutex_lock(&ftrace_lock); 7493 7494 ret = ftrace_startup(ops, 0); 7495 7496 mutex_unlock(&ftrace_lock); 7497 7498 return ret; 7499 } 7500 EXPORT_SYMBOL_GPL(register_ftrace_function); 7501 7502 /** 7503 * unregister_ftrace_function - unregister a function for profiling. 7504 * @ops - ops structure that holds the function to unregister 7505 * 7506 * Unregister a function that was added to be called by ftrace profiling. 7507 */ 7508 int unregister_ftrace_function(struct ftrace_ops *ops) 7509 { 7510 int ret; 7511 7512 mutex_lock(&ftrace_lock); 7513 ret = ftrace_shutdown(ops, 0); 7514 mutex_unlock(&ftrace_lock); 7515 7516 return ret; 7517 } 7518 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7519 7520 static bool is_permanent_ops_registered(void) 7521 { 7522 struct ftrace_ops *op; 7523 7524 do_for_each_ftrace_op(op, ftrace_ops_list) { 7525 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7526 return true; 7527 } while_for_each_ftrace_op(op); 7528 7529 return false; 7530 } 7531 7532 int 7533 ftrace_enable_sysctl(struct ctl_table *table, int write, 7534 void __user *buffer, size_t *lenp, 7535 loff_t *ppos) 7536 { 7537 int ret = -ENODEV; 7538 7539 mutex_lock(&ftrace_lock); 7540 7541 if (unlikely(ftrace_disabled)) 7542 goto out; 7543 7544 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7545 7546 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7547 goto out; 7548 7549 if (ftrace_enabled) { 7550 7551 /* we are starting ftrace again */ 7552 if (rcu_dereference_protected(ftrace_ops_list, 7553 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7554 update_ftrace_function(); 7555 7556 ftrace_startup_sysctl(); 7557 7558 } else { 7559 if (is_permanent_ops_registered()) { 7560 ftrace_enabled = true; 7561 ret = -EBUSY; 7562 goto out; 7563 } 7564 7565 /* stopping ftrace calls (just send to ftrace_stub) */ 7566 ftrace_trace_function = ftrace_stub; 7567 7568 ftrace_shutdown_sysctl(); 7569 } 7570 7571 last_ftrace_enabled = !!ftrace_enabled; 7572 out: 7573 mutex_unlock(&ftrace_lock); 7574 return ret; 7575 } 7576