xref: /openbmc/linux/kernel/trace/ftrace.c (revision 37b9345c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 static inline void ftrace_ops_init(struct ftrace_ops *ops)
129 {
130 #ifdef CONFIG_DYNAMIC_FTRACE
131 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
132 		mutex_init(&ops->local_hash.regex_lock);
133 		ops->func_hash = &ops->local_hash;
134 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
135 	}
136 #endif
137 }
138 
139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
140 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
141 {
142 	struct trace_array *tr = op->private;
143 	int pid;
144 
145 	if (tr) {
146 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
147 		if (pid == FTRACE_PID_IGNORE)
148 			return;
149 		if (pid != FTRACE_PID_TRACE &&
150 		    pid != current->pid)
151 			return;
152 	}
153 
154 	op->saved_func(ip, parent_ip, op, fregs);
155 }
156 
157 static void ftrace_sync_ipi(void *data)
158 {
159 	/* Probably not needed, but do it anyway */
160 	smp_rmb();
161 }
162 
163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
164 {
165 	/*
166 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
167 	 * then it needs to call the list anyway.
168 	 */
169 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
170 	    FTRACE_FORCE_LIST_FUNC)
171 		return ftrace_ops_list_func;
172 
173 	return ftrace_ops_get_func(ops);
174 }
175 
176 static void update_ftrace_function(void)
177 {
178 	ftrace_func_t func;
179 
180 	/*
181 	 * Prepare the ftrace_ops that the arch callback will use.
182 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
183 	 * will point to the ops we want.
184 	 */
185 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
186 						lockdep_is_held(&ftrace_lock));
187 
188 	/* If there's no ftrace_ops registered, just call the stub function */
189 	if (set_function_trace_op == &ftrace_list_end) {
190 		func = ftrace_stub;
191 
192 	/*
193 	 * If we are at the end of the list and this ops is
194 	 * recursion safe and not dynamic and the arch supports passing ops,
195 	 * then have the mcount trampoline call the function directly.
196 	 */
197 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
198 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
199 		func = ftrace_ops_get_list_func(ftrace_ops_list);
200 
201 	} else {
202 		/* Just use the default ftrace_ops */
203 		set_function_trace_op = &ftrace_list_end;
204 		func = ftrace_ops_list_func;
205 	}
206 
207 	update_function_graph_func();
208 
209 	/* If there's no change, then do nothing more here */
210 	if (ftrace_trace_function == func)
211 		return;
212 
213 	/*
214 	 * If we are using the list function, it doesn't care
215 	 * about the function_trace_ops.
216 	 */
217 	if (func == ftrace_ops_list_func) {
218 		ftrace_trace_function = func;
219 		/*
220 		 * Don't even bother setting function_trace_ops,
221 		 * it would be racy to do so anyway.
222 		 */
223 		return;
224 	}
225 
226 #ifndef CONFIG_DYNAMIC_FTRACE
227 	/*
228 	 * For static tracing, we need to be a bit more careful.
229 	 * The function change takes affect immediately. Thus,
230 	 * we need to coordinate the setting of the function_trace_ops
231 	 * with the setting of the ftrace_trace_function.
232 	 *
233 	 * Set the function to the list ops, which will call the
234 	 * function we want, albeit indirectly, but it handles the
235 	 * ftrace_ops and doesn't depend on function_trace_op.
236 	 */
237 	ftrace_trace_function = ftrace_ops_list_func;
238 	/*
239 	 * Make sure all CPUs see this. Yes this is slow, but static
240 	 * tracing is slow and nasty to have enabled.
241 	 */
242 	synchronize_rcu_tasks_rude();
243 	/* Now all cpus are using the list ops. */
244 	function_trace_op = set_function_trace_op;
245 	/* Make sure the function_trace_op is visible on all CPUs */
246 	smp_wmb();
247 	/* Nasty way to force a rmb on all cpus */
248 	smp_call_function(ftrace_sync_ipi, NULL, 1);
249 	/* OK, we are all set to update the ftrace_trace_function now! */
250 #endif /* !CONFIG_DYNAMIC_FTRACE */
251 
252 	ftrace_trace_function = func;
253 }
254 
255 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
256 			   struct ftrace_ops *ops)
257 {
258 	rcu_assign_pointer(ops->next, *list);
259 
260 	/*
261 	 * We are entering ops into the list but another
262 	 * CPU might be walking that list. We need to make sure
263 	 * the ops->next pointer is valid before another CPU sees
264 	 * the ops pointer included into the list.
265 	 */
266 	rcu_assign_pointer(*list, ops);
267 }
268 
269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
270 			     struct ftrace_ops *ops)
271 {
272 	struct ftrace_ops **p;
273 
274 	/*
275 	 * If we are removing the last function, then simply point
276 	 * to the ftrace_stub.
277 	 */
278 	if (rcu_dereference_protected(*list,
279 			lockdep_is_held(&ftrace_lock)) == ops &&
280 	    rcu_dereference_protected(ops->next,
281 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
282 		*list = &ftrace_list_end;
283 		return 0;
284 	}
285 
286 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
287 		if (*p == ops)
288 			break;
289 
290 	if (*p != ops)
291 		return -1;
292 
293 	*p = (*p)->next;
294 	return 0;
295 }
296 
297 static void ftrace_update_trampoline(struct ftrace_ops *ops);
298 
299 int __register_ftrace_function(struct ftrace_ops *ops)
300 {
301 	if (ops->flags & FTRACE_OPS_FL_DELETED)
302 		return -EINVAL;
303 
304 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
305 		return -EBUSY;
306 
307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
308 	/*
309 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
310 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
311 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
312 	 */
313 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
314 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
315 		return -EINVAL;
316 
317 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
318 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
319 #endif
320 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
321 		return -EBUSY;
322 
323 	if (!is_kernel_core_data((unsigned long)ops))
324 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
325 
326 	add_ftrace_ops(&ftrace_ops_list, ops);
327 
328 	/* Always save the function, and reset at unregistering */
329 	ops->saved_func = ops->func;
330 
331 	if (ftrace_pids_enabled(ops))
332 		ops->func = ftrace_pid_func;
333 
334 	ftrace_update_trampoline(ops);
335 
336 	if (ftrace_enabled)
337 		update_ftrace_function();
338 
339 	return 0;
340 }
341 
342 int __unregister_ftrace_function(struct ftrace_ops *ops)
343 {
344 	int ret;
345 
346 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
347 		return -EBUSY;
348 
349 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
350 
351 	if (ret < 0)
352 		return ret;
353 
354 	if (ftrace_enabled)
355 		update_ftrace_function();
356 
357 	ops->func = ops->saved_func;
358 
359 	return 0;
360 }
361 
362 static void ftrace_update_pid_func(void)
363 {
364 	struct ftrace_ops *op;
365 
366 	/* Only do something if we are tracing something */
367 	if (ftrace_trace_function == ftrace_stub)
368 		return;
369 
370 	do_for_each_ftrace_op(op, ftrace_ops_list) {
371 		if (op->flags & FTRACE_OPS_FL_PID) {
372 			op->func = ftrace_pids_enabled(op) ?
373 				ftrace_pid_func : op->saved_func;
374 			ftrace_update_trampoline(op);
375 		}
376 	} while_for_each_ftrace_op(op);
377 
378 	update_ftrace_function();
379 }
380 
381 #ifdef CONFIG_FUNCTION_PROFILER
382 struct ftrace_profile {
383 	struct hlist_node		node;
384 	unsigned long			ip;
385 	unsigned long			counter;
386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
387 	unsigned long long		time;
388 	unsigned long long		time_squared;
389 #endif
390 };
391 
392 struct ftrace_profile_page {
393 	struct ftrace_profile_page	*next;
394 	unsigned long			index;
395 	struct ftrace_profile		records[];
396 };
397 
398 struct ftrace_profile_stat {
399 	atomic_t			disabled;
400 	struct hlist_head		*hash;
401 	struct ftrace_profile_page	*pages;
402 	struct ftrace_profile_page	*start;
403 	struct tracer_stat		stat;
404 };
405 
406 #define PROFILE_RECORDS_SIZE						\
407 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
408 
409 #define PROFILES_PER_PAGE					\
410 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
411 
412 static int ftrace_profile_enabled __read_mostly;
413 
414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
415 static DEFINE_MUTEX(ftrace_profile_lock);
416 
417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
418 
419 #define FTRACE_PROFILE_HASH_BITS 10
420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
421 
422 static void *
423 function_stat_next(void *v, int idx)
424 {
425 	struct ftrace_profile *rec = v;
426 	struct ftrace_profile_page *pg;
427 
428 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
429 
430  again:
431 	if (idx != 0)
432 		rec++;
433 
434 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
435 		pg = pg->next;
436 		if (!pg)
437 			return NULL;
438 		rec = &pg->records[0];
439 		if (!rec->counter)
440 			goto again;
441 	}
442 
443 	return rec;
444 }
445 
446 static void *function_stat_start(struct tracer_stat *trace)
447 {
448 	struct ftrace_profile_stat *stat =
449 		container_of(trace, struct ftrace_profile_stat, stat);
450 
451 	if (!stat || !stat->start)
452 		return NULL;
453 
454 	return function_stat_next(&stat->start->records[0], 0);
455 }
456 
457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 /* function graph compares on total time */
459 static int function_stat_cmp(const void *p1, const void *p2)
460 {
461 	const struct ftrace_profile *a = p1;
462 	const struct ftrace_profile *b = p2;
463 
464 	if (a->time < b->time)
465 		return -1;
466 	if (a->time > b->time)
467 		return 1;
468 	else
469 		return 0;
470 }
471 #else
472 /* not function graph compares against hits */
473 static int function_stat_cmp(const void *p1, const void *p2)
474 {
475 	const struct ftrace_profile *a = p1;
476 	const struct ftrace_profile *b = p2;
477 
478 	if (a->counter < b->counter)
479 		return -1;
480 	if (a->counter > b->counter)
481 		return 1;
482 	else
483 		return 0;
484 }
485 #endif
486 
487 static int function_stat_headers(struct seq_file *m)
488 {
489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
490 	seq_puts(m, "  Function                               "
491 		 "Hit    Time            Avg             s^2\n"
492 		    "  --------                               "
493 		 "---    ----            ---             ---\n");
494 #else
495 	seq_puts(m, "  Function                               Hit\n"
496 		    "  --------                               ---\n");
497 #endif
498 	return 0;
499 }
500 
501 static int function_stat_show(struct seq_file *m, void *v)
502 {
503 	struct ftrace_profile *rec = v;
504 	char str[KSYM_SYMBOL_LEN];
505 	int ret = 0;
506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
507 	static struct trace_seq s;
508 	unsigned long long avg;
509 	unsigned long long stddev;
510 #endif
511 	mutex_lock(&ftrace_profile_lock);
512 
513 	/* we raced with function_profile_reset() */
514 	if (unlikely(rec->counter == 0)) {
515 		ret = -EBUSY;
516 		goto out;
517 	}
518 
519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
520 	avg = div64_ul(rec->time, rec->counter);
521 	if (tracing_thresh && (avg < tracing_thresh))
522 		goto out;
523 #endif
524 
525 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
526 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
527 
528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
529 	seq_puts(m, "    ");
530 
531 	/* Sample standard deviation (s^2) */
532 	if (rec->counter <= 1)
533 		stddev = 0;
534 	else {
535 		/*
536 		 * Apply Welford's method:
537 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
538 		 */
539 		stddev = rec->counter * rec->time_squared -
540 			 rec->time * rec->time;
541 
542 		/*
543 		 * Divide only 1000 for ns^2 -> us^2 conversion.
544 		 * trace_print_graph_duration will divide 1000 again.
545 		 */
546 		stddev = div64_ul(stddev,
547 				  rec->counter * (rec->counter - 1) * 1000);
548 	}
549 
550 	trace_seq_init(&s);
551 	trace_print_graph_duration(rec->time, &s);
552 	trace_seq_puts(&s, "    ");
553 	trace_print_graph_duration(avg, &s);
554 	trace_seq_puts(&s, "    ");
555 	trace_print_graph_duration(stddev, &s);
556 	trace_print_seq(m, &s);
557 #endif
558 	seq_putc(m, '\n');
559 out:
560 	mutex_unlock(&ftrace_profile_lock);
561 
562 	return ret;
563 }
564 
565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
566 {
567 	struct ftrace_profile_page *pg;
568 
569 	pg = stat->pages = stat->start;
570 
571 	while (pg) {
572 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
573 		pg->index = 0;
574 		pg = pg->next;
575 	}
576 
577 	memset(stat->hash, 0,
578 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
579 }
580 
581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
582 {
583 	struct ftrace_profile_page *pg;
584 	int functions;
585 	int pages;
586 	int i;
587 
588 	/* If we already allocated, do nothing */
589 	if (stat->pages)
590 		return 0;
591 
592 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!stat->pages)
594 		return -ENOMEM;
595 
596 #ifdef CONFIG_DYNAMIC_FTRACE
597 	functions = ftrace_update_tot_cnt;
598 #else
599 	/*
600 	 * We do not know the number of functions that exist because
601 	 * dynamic tracing is what counts them. With past experience
602 	 * we have around 20K functions. That should be more than enough.
603 	 * It is highly unlikely we will execute every function in
604 	 * the kernel.
605 	 */
606 	functions = 20000;
607 #endif
608 
609 	pg = stat->start = stat->pages;
610 
611 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
612 
613 	for (i = 1; i < pages; i++) {
614 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
615 		if (!pg->next)
616 			goto out_free;
617 		pg = pg->next;
618 	}
619 
620 	return 0;
621 
622  out_free:
623 	pg = stat->start;
624 	while (pg) {
625 		unsigned long tmp = (unsigned long)pg;
626 
627 		pg = pg->next;
628 		free_page(tmp);
629 	}
630 
631 	stat->pages = NULL;
632 	stat->start = NULL;
633 
634 	return -ENOMEM;
635 }
636 
637 static int ftrace_profile_init_cpu(int cpu)
638 {
639 	struct ftrace_profile_stat *stat;
640 	int size;
641 
642 	stat = &per_cpu(ftrace_profile_stats, cpu);
643 
644 	if (stat->hash) {
645 		/* If the profile is already created, simply reset it */
646 		ftrace_profile_reset(stat);
647 		return 0;
648 	}
649 
650 	/*
651 	 * We are profiling all functions, but usually only a few thousand
652 	 * functions are hit. We'll make a hash of 1024 items.
653 	 */
654 	size = FTRACE_PROFILE_HASH_SIZE;
655 
656 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
657 
658 	if (!stat->hash)
659 		return -ENOMEM;
660 
661 	/* Preallocate the function profiling pages */
662 	if (ftrace_profile_pages_init(stat) < 0) {
663 		kfree(stat->hash);
664 		stat->hash = NULL;
665 		return -ENOMEM;
666 	}
667 
668 	return 0;
669 }
670 
671 static int ftrace_profile_init(void)
672 {
673 	int cpu;
674 	int ret = 0;
675 
676 	for_each_possible_cpu(cpu) {
677 		ret = ftrace_profile_init_cpu(cpu);
678 		if (ret)
679 			break;
680 	}
681 
682 	return ret;
683 }
684 
685 /* interrupts must be disabled */
686 static struct ftrace_profile *
687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
688 {
689 	struct ftrace_profile *rec;
690 	struct hlist_head *hhd;
691 	unsigned long key;
692 
693 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
694 	hhd = &stat->hash[key];
695 
696 	if (hlist_empty(hhd))
697 		return NULL;
698 
699 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
700 		if (rec->ip == ip)
701 			return rec;
702 	}
703 
704 	return NULL;
705 }
706 
707 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
708 			       struct ftrace_profile *rec)
709 {
710 	unsigned long key;
711 
712 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
713 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
714 }
715 
716 /*
717  * The memory is already allocated, this simply finds a new record to use.
718  */
719 static struct ftrace_profile *
720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
721 {
722 	struct ftrace_profile *rec = NULL;
723 
724 	/* prevent recursion (from NMIs) */
725 	if (atomic_inc_return(&stat->disabled) != 1)
726 		goto out;
727 
728 	/*
729 	 * Try to find the function again since an NMI
730 	 * could have added it
731 	 */
732 	rec = ftrace_find_profiled_func(stat, ip);
733 	if (rec)
734 		goto out;
735 
736 	if (stat->pages->index == PROFILES_PER_PAGE) {
737 		if (!stat->pages->next)
738 			goto out;
739 		stat->pages = stat->pages->next;
740 	}
741 
742 	rec = &stat->pages->records[stat->pages->index++];
743 	rec->ip = ip;
744 	ftrace_add_profile(stat, rec);
745 
746  out:
747 	atomic_dec(&stat->disabled);
748 
749 	return rec;
750 }
751 
752 static void
753 function_profile_call(unsigned long ip, unsigned long parent_ip,
754 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
755 {
756 	struct ftrace_profile_stat *stat;
757 	struct ftrace_profile *rec;
758 	unsigned long flags;
759 
760 	if (!ftrace_profile_enabled)
761 		return;
762 
763 	local_irq_save(flags);
764 
765 	stat = this_cpu_ptr(&ftrace_profile_stats);
766 	if (!stat->hash || !ftrace_profile_enabled)
767 		goto out;
768 
769 	rec = ftrace_find_profiled_func(stat, ip);
770 	if (!rec) {
771 		rec = ftrace_profile_alloc(stat, ip);
772 		if (!rec)
773 			goto out;
774 	}
775 
776 	rec->counter++;
777  out:
778 	local_irq_restore(flags);
779 }
780 
781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
782 static bool fgraph_graph_time = true;
783 
784 void ftrace_graph_graph_time_control(bool enable)
785 {
786 	fgraph_graph_time = enable;
787 }
788 
789 static int profile_graph_entry(struct ftrace_graph_ent *trace)
790 {
791 	struct ftrace_ret_stack *ret_stack;
792 
793 	function_profile_call(trace->func, 0, NULL, NULL);
794 
795 	/* If function graph is shutting down, ret_stack can be NULL */
796 	if (!current->ret_stack)
797 		return 0;
798 
799 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
800 	if (ret_stack)
801 		ret_stack->subtime = 0;
802 
803 	return 1;
804 }
805 
806 static void profile_graph_return(struct ftrace_graph_ret *trace)
807 {
808 	struct ftrace_ret_stack *ret_stack;
809 	struct ftrace_profile_stat *stat;
810 	unsigned long long calltime;
811 	struct ftrace_profile *rec;
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	stat = this_cpu_ptr(&ftrace_profile_stats);
816 	if (!stat->hash || !ftrace_profile_enabled)
817 		goto out;
818 
819 	/* If the calltime was zero'd ignore it */
820 	if (!trace->calltime)
821 		goto out;
822 
823 	calltime = trace->rettime - trace->calltime;
824 
825 	if (!fgraph_graph_time) {
826 
827 		/* Append this call time to the parent time to subtract */
828 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
829 		if (ret_stack)
830 			ret_stack->subtime += calltime;
831 
832 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
833 		if (ret_stack && ret_stack->subtime < calltime)
834 			calltime -= ret_stack->subtime;
835 		else
836 			calltime = 0;
837 	}
838 
839 	rec = ftrace_find_profiled_func(stat, trace->func);
840 	if (rec) {
841 		rec->time += calltime;
842 		rec->time_squared += calltime * calltime;
843 	}
844 
845  out:
846 	local_irq_restore(flags);
847 }
848 
849 static struct fgraph_ops fprofiler_ops = {
850 	.entryfunc = &profile_graph_entry,
851 	.retfunc = &profile_graph_return,
852 };
853 
854 static int register_ftrace_profiler(void)
855 {
856 	return register_ftrace_graph(&fprofiler_ops);
857 }
858 
859 static void unregister_ftrace_profiler(void)
860 {
861 	unregister_ftrace_graph(&fprofiler_ops);
862 }
863 #else
864 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
865 	.func		= function_profile_call,
866 	.flags		= FTRACE_OPS_FL_INITIALIZED,
867 	INIT_OPS_HASH(ftrace_profile_ops)
868 };
869 
870 static int register_ftrace_profiler(void)
871 {
872 	return register_ftrace_function(&ftrace_profile_ops);
873 }
874 
875 static void unregister_ftrace_profiler(void)
876 {
877 	unregister_ftrace_function(&ftrace_profile_ops);
878 }
879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
880 
881 static ssize_t
882 ftrace_profile_write(struct file *filp, const char __user *ubuf,
883 		     size_t cnt, loff_t *ppos)
884 {
885 	unsigned long val;
886 	int ret;
887 
888 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
889 	if (ret)
890 		return ret;
891 
892 	val = !!val;
893 
894 	mutex_lock(&ftrace_profile_lock);
895 	if (ftrace_profile_enabled ^ val) {
896 		if (val) {
897 			ret = ftrace_profile_init();
898 			if (ret < 0) {
899 				cnt = ret;
900 				goto out;
901 			}
902 
903 			ret = register_ftrace_profiler();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 			ftrace_profile_enabled = 1;
909 		} else {
910 			ftrace_profile_enabled = 0;
911 			/*
912 			 * unregister_ftrace_profiler calls stop_machine
913 			 * so this acts like an synchronize_rcu.
914 			 */
915 			unregister_ftrace_profiler();
916 		}
917 	}
918  out:
919 	mutex_unlock(&ftrace_profile_lock);
920 
921 	*ppos += cnt;
922 
923 	return cnt;
924 }
925 
926 static ssize_t
927 ftrace_profile_read(struct file *filp, char __user *ubuf,
928 		     size_t cnt, loff_t *ppos)
929 {
930 	char buf[64];		/* big enough to hold a number */
931 	int r;
932 
933 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
934 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
935 }
936 
937 static const struct file_operations ftrace_profile_fops = {
938 	.open		= tracing_open_generic,
939 	.read		= ftrace_profile_read,
940 	.write		= ftrace_profile_write,
941 	.llseek		= default_llseek,
942 };
943 
944 /* used to initialize the real stat files */
945 static struct tracer_stat function_stats __initdata = {
946 	.name		= "functions",
947 	.stat_start	= function_stat_start,
948 	.stat_next	= function_stat_next,
949 	.stat_cmp	= function_stat_cmp,
950 	.stat_headers	= function_stat_headers,
951 	.stat_show	= function_stat_show
952 };
953 
954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
955 {
956 	struct ftrace_profile_stat *stat;
957 	char *name;
958 	int ret;
959 	int cpu;
960 
961 	for_each_possible_cpu(cpu) {
962 		stat = &per_cpu(ftrace_profile_stats, cpu);
963 
964 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
965 		if (!name) {
966 			/*
967 			 * The files created are permanent, if something happens
968 			 * we still do not free memory.
969 			 */
970 			WARN(1,
971 			     "Could not allocate stat file for cpu %d\n",
972 			     cpu);
973 			return;
974 		}
975 		stat->stat = function_stats;
976 		stat->stat.name = name;
977 		ret = register_stat_tracer(&stat->stat);
978 		if (ret) {
979 			WARN(1,
980 			     "Could not register function stat for cpu %d\n",
981 			     cpu);
982 			kfree(name);
983 			return;
984 		}
985 	}
986 
987 	trace_create_file("function_profile_enabled",
988 			  TRACE_MODE_WRITE, d_tracer, NULL,
989 			  &ftrace_profile_fops);
990 }
991 
992 #else /* CONFIG_FUNCTION_PROFILER */
993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
994 {
995 }
996 #endif /* CONFIG_FUNCTION_PROFILER */
997 
998 #ifdef CONFIG_DYNAMIC_FTRACE
999 
1000 static struct ftrace_ops *removed_ops;
1001 
1002 /*
1003  * Set when doing a global update, like enabling all recs or disabling them.
1004  * It is not set when just updating a single ftrace_ops.
1005  */
1006 static bool update_all_ops;
1007 
1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1009 # error Dynamic ftrace depends on MCOUNT_RECORD
1010 #endif
1011 
1012 struct ftrace_func_probe {
1013 	struct ftrace_probe_ops	*probe_ops;
1014 	struct ftrace_ops	ops;
1015 	struct trace_array	*tr;
1016 	struct list_head	list;
1017 	void			*data;
1018 	int			ref;
1019 };
1020 
1021 /*
1022  * We make these constant because no one should touch them,
1023  * but they are used as the default "empty hash", to avoid allocating
1024  * it all the time. These are in a read only section such that if
1025  * anyone does try to modify it, it will cause an exception.
1026  */
1027 static const struct hlist_head empty_buckets[1];
1028 static const struct ftrace_hash empty_hash = {
1029 	.buckets = (struct hlist_head *)empty_buckets,
1030 };
1031 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1032 
1033 struct ftrace_ops global_ops = {
1034 	.func				= ftrace_stub,
1035 	.local_hash.notrace_hash	= EMPTY_HASH,
1036 	.local_hash.filter_hash		= EMPTY_HASH,
1037 	INIT_OPS_HASH(global_ops)
1038 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1039 					  FTRACE_OPS_FL_PID,
1040 };
1041 
1042 /*
1043  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1044  */
1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1046 {
1047 	struct ftrace_ops *op = NULL;
1048 
1049 	/*
1050 	 * Some of the ops may be dynamically allocated,
1051 	 * they are freed after a synchronize_rcu().
1052 	 */
1053 	preempt_disable_notrace();
1054 
1055 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1056 		/*
1057 		 * This is to check for dynamically allocated trampolines.
1058 		 * Trampolines that are in kernel text will have
1059 		 * core_kernel_text() return true.
1060 		 */
1061 		if (op->trampoline && op->trampoline_size)
1062 			if (addr >= op->trampoline &&
1063 			    addr < op->trampoline + op->trampoline_size) {
1064 				preempt_enable_notrace();
1065 				return op;
1066 			}
1067 	} while_for_each_ftrace_op(op);
1068 	preempt_enable_notrace();
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * This is used by __kernel_text_address() to return true if the
1075  * address is on a dynamically allocated trampoline that would
1076  * not return true for either core_kernel_text() or
1077  * is_module_text_address().
1078  */
1079 bool is_ftrace_trampoline(unsigned long addr)
1080 {
1081 	return ftrace_ops_trampoline(addr) != NULL;
1082 }
1083 
1084 struct ftrace_page {
1085 	struct ftrace_page	*next;
1086 	struct dyn_ftrace	*records;
1087 	int			index;
1088 	int			order;
1089 };
1090 
1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1093 
1094 static struct ftrace_page	*ftrace_pages_start;
1095 static struct ftrace_page	*ftrace_pages;
1096 
1097 static __always_inline unsigned long
1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1099 {
1100 	if (hash->size_bits > 0)
1101 		return hash_long(ip, hash->size_bits);
1102 
1103 	return 0;
1104 }
1105 
1106 /* Only use this function if ftrace_hash_empty() has already been tested */
1107 static __always_inline struct ftrace_func_entry *
1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1109 {
1110 	unsigned long key;
1111 	struct ftrace_func_entry *entry;
1112 	struct hlist_head *hhd;
1113 
1114 	key = ftrace_hash_key(hash, ip);
1115 	hhd = &hash->buckets[key];
1116 
1117 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1118 		if (entry->ip == ip)
1119 			return entry;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1126  * @hash: The hash to look at
1127  * @ip: The instruction pointer to test
1128  *
1129  * Search a given @hash to see if a given instruction pointer (@ip)
1130  * exists in it.
1131  *
1132  * Returns the entry that holds the @ip if found. NULL otherwise.
1133  */
1134 struct ftrace_func_entry *
1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	if (ftrace_hash_empty(hash))
1138 		return NULL;
1139 
1140 	return __ftrace_lookup_ip(hash, ip);
1141 }
1142 
1143 static void __add_hash_entry(struct ftrace_hash *hash,
1144 			     struct ftrace_func_entry *entry)
1145 {
1146 	struct hlist_head *hhd;
1147 	unsigned long key;
1148 
1149 	key = ftrace_hash_key(hash, entry->ip);
1150 	hhd = &hash->buckets[key];
1151 	hlist_add_head(&entry->hlist, hhd);
1152 	hash->count++;
1153 }
1154 
1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1156 {
1157 	struct ftrace_func_entry *entry;
1158 
1159 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1160 	if (!entry)
1161 		return -ENOMEM;
1162 
1163 	entry->ip = ip;
1164 	__add_hash_entry(hash, entry);
1165 
1166 	return 0;
1167 }
1168 
1169 static void
1170 free_hash_entry(struct ftrace_hash *hash,
1171 		  struct ftrace_func_entry *entry)
1172 {
1173 	hlist_del(&entry->hlist);
1174 	kfree(entry);
1175 	hash->count--;
1176 }
1177 
1178 static void
1179 remove_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del_rcu(&entry->hlist);
1183 	hash->count--;
1184 }
1185 
1186 static void ftrace_hash_clear(struct ftrace_hash *hash)
1187 {
1188 	struct hlist_head *hhd;
1189 	struct hlist_node *tn;
1190 	struct ftrace_func_entry *entry;
1191 	int size = 1 << hash->size_bits;
1192 	int i;
1193 
1194 	if (!hash->count)
1195 		return;
1196 
1197 	for (i = 0; i < size; i++) {
1198 		hhd = &hash->buckets[i];
1199 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1200 			free_hash_entry(hash, entry);
1201 	}
1202 	FTRACE_WARN_ON(hash->count);
1203 }
1204 
1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1206 {
1207 	list_del(&ftrace_mod->list);
1208 	kfree(ftrace_mod->module);
1209 	kfree(ftrace_mod->func);
1210 	kfree(ftrace_mod);
1211 }
1212 
1213 static void clear_ftrace_mod_list(struct list_head *head)
1214 {
1215 	struct ftrace_mod_load *p, *n;
1216 
1217 	/* stack tracer isn't supported yet */
1218 	if (!head)
1219 		return;
1220 
1221 	mutex_lock(&ftrace_lock);
1222 	list_for_each_entry_safe(p, n, head, list)
1223 		free_ftrace_mod(p);
1224 	mutex_unlock(&ftrace_lock);
1225 }
1226 
1227 static void free_ftrace_hash(struct ftrace_hash *hash)
1228 {
1229 	if (!hash || hash == EMPTY_HASH)
1230 		return;
1231 	ftrace_hash_clear(hash);
1232 	kfree(hash->buckets);
1233 	kfree(hash);
1234 }
1235 
1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1237 {
1238 	struct ftrace_hash *hash;
1239 
1240 	hash = container_of(rcu, struct ftrace_hash, rcu);
1241 	free_ftrace_hash(hash);
1242 }
1243 
1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1245 {
1246 	if (!hash || hash == EMPTY_HASH)
1247 		return;
1248 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1249 }
1250 
1251 void ftrace_free_filter(struct ftrace_ops *ops)
1252 {
1253 	ftrace_ops_init(ops);
1254 	free_ftrace_hash(ops->func_hash->filter_hash);
1255 	free_ftrace_hash(ops->func_hash->notrace_hash);
1256 }
1257 
1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1259 {
1260 	struct ftrace_hash *hash;
1261 	int size;
1262 
1263 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1264 	if (!hash)
1265 		return NULL;
1266 
1267 	size = 1 << size_bits;
1268 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1269 
1270 	if (!hash->buckets) {
1271 		kfree(hash);
1272 		return NULL;
1273 	}
1274 
1275 	hash->size_bits = size_bits;
1276 
1277 	return hash;
1278 }
1279 
1280 
1281 static int ftrace_add_mod(struct trace_array *tr,
1282 			  const char *func, const char *module,
1283 			  int enable)
1284 {
1285 	struct ftrace_mod_load *ftrace_mod;
1286 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1287 
1288 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1289 	if (!ftrace_mod)
1290 		return -ENOMEM;
1291 
1292 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1293 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1294 	ftrace_mod->enable = enable;
1295 
1296 	if (!ftrace_mod->func || !ftrace_mod->module)
1297 		goto out_free;
1298 
1299 	list_add(&ftrace_mod->list, mod_head);
1300 
1301 	return 0;
1302 
1303  out_free:
1304 	free_ftrace_mod(ftrace_mod);
1305 
1306 	return -ENOMEM;
1307 }
1308 
1309 static struct ftrace_hash *
1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1311 {
1312 	struct ftrace_func_entry *entry;
1313 	struct ftrace_hash *new_hash;
1314 	int size;
1315 	int ret;
1316 	int i;
1317 
1318 	new_hash = alloc_ftrace_hash(size_bits);
1319 	if (!new_hash)
1320 		return NULL;
1321 
1322 	if (hash)
1323 		new_hash->flags = hash->flags;
1324 
1325 	/* Empty hash? */
1326 	if (ftrace_hash_empty(hash))
1327 		return new_hash;
1328 
1329 	size = 1 << hash->size_bits;
1330 	for (i = 0; i < size; i++) {
1331 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1332 			ret = add_hash_entry(new_hash, entry->ip);
1333 			if (ret < 0)
1334 				goto free_hash;
1335 		}
1336 	}
1337 
1338 	FTRACE_WARN_ON(new_hash->count != hash->count);
1339 
1340 	return new_hash;
1341 
1342  free_hash:
1343 	free_ftrace_hash(new_hash);
1344 	return NULL;
1345 }
1346 
1347 static void
1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1349 static void
1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1351 
1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1353 				       struct ftrace_hash *new_hash);
1354 
1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1356 {
1357 	struct ftrace_func_entry *entry;
1358 	struct ftrace_hash *new_hash;
1359 	struct hlist_head *hhd;
1360 	struct hlist_node *tn;
1361 	int bits = 0;
1362 	int i;
1363 
1364 	/*
1365 	 * Use around half the size (max bit of it), but
1366 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1367 	 */
1368 	bits = fls(size / 2);
1369 
1370 	/* Don't allocate too much */
1371 	if (bits > FTRACE_HASH_MAX_BITS)
1372 		bits = FTRACE_HASH_MAX_BITS;
1373 
1374 	new_hash = alloc_ftrace_hash(bits);
1375 	if (!new_hash)
1376 		return NULL;
1377 
1378 	new_hash->flags = src->flags;
1379 
1380 	size = 1 << src->size_bits;
1381 	for (i = 0; i < size; i++) {
1382 		hhd = &src->buckets[i];
1383 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1384 			remove_hash_entry(src, entry);
1385 			__add_hash_entry(new_hash, entry);
1386 		}
1387 	}
1388 	return new_hash;
1389 }
1390 
1391 static struct ftrace_hash *
1392 __ftrace_hash_move(struct ftrace_hash *src)
1393 {
1394 	int size = src->count;
1395 
1396 	/*
1397 	 * If the new source is empty, just return the empty_hash.
1398 	 */
1399 	if (ftrace_hash_empty(src))
1400 		return EMPTY_HASH;
1401 
1402 	return dup_hash(src, size);
1403 }
1404 
1405 static int
1406 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1407 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1408 {
1409 	struct ftrace_hash *new_hash;
1410 	int ret;
1411 
1412 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1413 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1414 		return -EINVAL;
1415 
1416 	new_hash = __ftrace_hash_move(src);
1417 	if (!new_hash)
1418 		return -ENOMEM;
1419 
1420 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1421 	if (enable) {
1422 		/* IPMODIFY should be updated only when filter_hash updating */
1423 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1424 		if (ret < 0) {
1425 			free_ftrace_hash(new_hash);
1426 			return ret;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Remove the current set, update the hash and add
1432 	 * them back.
1433 	 */
1434 	ftrace_hash_rec_disable_modify(ops, enable);
1435 
1436 	rcu_assign_pointer(*dst, new_hash);
1437 
1438 	ftrace_hash_rec_enable_modify(ops, enable);
1439 
1440 	return 0;
1441 }
1442 
1443 static bool hash_contains_ip(unsigned long ip,
1444 			     struct ftrace_ops_hash *hash)
1445 {
1446 	/*
1447 	 * The function record is a match if it exists in the filter
1448 	 * hash and not in the notrace hash. Note, an empty hash is
1449 	 * considered a match for the filter hash, but an empty
1450 	 * notrace hash is considered not in the notrace hash.
1451 	 */
1452 	return (ftrace_hash_empty(hash->filter_hash) ||
1453 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1454 		(ftrace_hash_empty(hash->notrace_hash) ||
1455 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1456 }
1457 
1458 /*
1459  * Test the hashes for this ops to see if we want to call
1460  * the ops->func or not.
1461  *
1462  * It's a match if the ip is in the ops->filter_hash or
1463  * the filter_hash does not exist or is empty,
1464  *  AND
1465  * the ip is not in the ops->notrace_hash.
1466  *
1467  * This needs to be called with preemption disabled as
1468  * the hashes are freed with call_rcu().
1469  */
1470 int
1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1472 {
1473 	struct ftrace_ops_hash hash;
1474 	int ret;
1475 
1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1477 	/*
1478 	 * There's a small race when adding ops that the ftrace handler
1479 	 * that wants regs, may be called without them. We can not
1480 	 * allow that handler to be called if regs is NULL.
1481 	 */
1482 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1483 		return 0;
1484 #endif
1485 
1486 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1487 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1488 
1489 	if (hash_contains_ip(ip, &hash))
1490 		ret = 1;
1491 	else
1492 		ret = 0;
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * This is a double for. Do not use 'break' to break out of the loop,
1499  * you must use a goto.
1500  */
1501 #define do_for_each_ftrace_rec(pg, rec)					\
1502 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1503 		int _____i;						\
1504 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1505 			rec = &pg->records[_____i];
1506 
1507 #define while_for_each_ftrace_rec()		\
1508 		}				\
1509 	}
1510 
1511 
1512 static int ftrace_cmp_recs(const void *a, const void *b)
1513 {
1514 	const struct dyn_ftrace *key = a;
1515 	const struct dyn_ftrace *rec = b;
1516 
1517 	if (key->flags < rec->ip)
1518 		return -1;
1519 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1520 		return 1;
1521 	return 0;
1522 }
1523 
1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1525 {
1526 	struct ftrace_page *pg;
1527 	struct dyn_ftrace *rec = NULL;
1528 	struct dyn_ftrace key;
1529 
1530 	key.ip = start;
1531 	key.flags = end;	/* overload flags, as it is unsigned long */
1532 
1533 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1534 		if (end < pg->records[0].ip ||
1535 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1536 			continue;
1537 		rec = bsearch(&key, pg->records, pg->index,
1538 			      sizeof(struct dyn_ftrace),
1539 			      ftrace_cmp_recs);
1540 		if (rec)
1541 			break;
1542 	}
1543 	return rec;
1544 }
1545 
1546 /**
1547  * ftrace_location_range - return the first address of a traced location
1548  *	if it touches the given ip range
1549  * @start: start of range to search.
1550  * @end: end of range to search (inclusive). @end points to the last byte
1551  *	to check.
1552  *
1553  * Returns rec->ip if the related ftrace location is a least partly within
1554  * the given address range. That is, the first address of the instruction
1555  * that is either a NOP or call to the function tracer. It checks the ftrace
1556  * internal tables to determine if the address belongs or not.
1557  */
1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1559 {
1560 	struct dyn_ftrace *rec;
1561 
1562 	rec = lookup_rec(start, end);
1563 	if (rec)
1564 		return rec->ip;
1565 
1566 	return 0;
1567 }
1568 
1569 /**
1570  * ftrace_location - return the ftrace location
1571  * @ip: the instruction pointer to check
1572  *
1573  * If @ip matches the ftrace location, return @ip.
1574  * If @ip matches sym+0, return sym's ftrace location.
1575  * Otherwise, return 0.
1576  */
1577 unsigned long ftrace_location(unsigned long ip)
1578 {
1579 	struct dyn_ftrace *rec;
1580 	unsigned long offset;
1581 	unsigned long size;
1582 
1583 	rec = lookup_rec(ip, ip);
1584 	if (!rec) {
1585 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1586 			goto out;
1587 
1588 		/* map sym+0 to __fentry__ */
1589 		if (!offset)
1590 			rec = lookup_rec(ip, ip + size - 1);
1591 	}
1592 
1593 	if (rec)
1594 		return rec->ip;
1595 
1596 out:
1597 	return 0;
1598 }
1599 
1600 /**
1601  * ftrace_text_reserved - return true if range contains an ftrace location
1602  * @start: start of range to search
1603  * @end: end of range to search (inclusive). @end points to the last byte to check.
1604  *
1605  * Returns 1 if @start and @end contains a ftrace location.
1606  * That is, the instruction that is either a NOP or call to
1607  * the function tracer. It checks the ftrace internal tables to
1608  * determine if the address belongs or not.
1609  */
1610 int ftrace_text_reserved(const void *start, const void *end)
1611 {
1612 	unsigned long ret;
1613 
1614 	ret = ftrace_location_range((unsigned long)start,
1615 				    (unsigned long)end);
1616 
1617 	return (int)!!ret;
1618 }
1619 
1620 /* Test if ops registered to this rec needs regs */
1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1622 {
1623 	struct ftrace_ops *ops;
1624 	bool keep_regs = false;
1625 
1626 	for (ops = ftrace_ops_list;
1627 	     ops != &ftrace_list_end; ops = ops->next) {
1628 		/* pass rec in as regs to have non-NULL val */
1629 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1630 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1631 				keep_regs = true;
1632 				break;
1633 			}
1634 		}
1635 	}
1636 
1637 	return  keep_regs;
1638 }
1639 
1640 static struct ftrace_ops *
1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1642 static struct ftrace_ops *
1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1644 static struct ftrace_ops *
1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1646 
1647 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1648 				     int filter_hash,
1649 				     bool inc)
1650 {
1651 	struct ftrace_hash *hash;
1652 	struct ftrace_hash *other_hash;
1653 	struct ftrace_page *pg;
1654 	struct dyn_ftrace *rec;
1655 	bool update = false;
1656 	int count = 0;
1657 	int all = false;
1658 
1659 	/* Only update if the ops has been registered */
1660 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1661 		return false;
1662 
1663 	/*
1664 	 * In the filter_hash case:
1665 	 *   If the count is zero, we update all records.
1666 	 *   Otherwise we just update the items in the hash.
1667 	 *
1668 	 * In the notrace_hash case:
1669 	 *   We enable the update in the hash.
1670 	 *   As disabling notrace means enabling the tracing,
1671 	 *   and enabling notrace means disabling, the inc variable
1672 	 *   gets inversed.
1673 	 */
1674 	if (filter_hash) {
1675 		hash = ops->func_hash->filter_hash;
1676 		other_hash = ops->func_hash->notrace_hash;
1677 		if (ftrace_hash_empty(hash))
1678 			all = true;
1679 	} else {
1680 		inc = !inc;
1681 		hash = ops->func_hash->notrace_hash;
1682 		other_hash = ops->func_hash->filter_hash;
1683 		/*
1684 		 * If the notrace hash has no items,
1685 		 * then there's nothing to do.
1686 		 */
1687 		if (ftrace_hash_empty(hash))
1688 			return false;
1689 	}
1690 
1691 	do_for_each_ftrace_rec(pg, rec) {
1692 		int in_other_hash = 0;
1693 		int in_hash = 0;
1694 		int match = 0;
1695 
1696 		if (rec->flags & FTRACE_FL_DISABLED)
1697 			continue;
1698 
1699 		if (all) {
1700 			/*
1701 			 * Only the filter_hash affects all records.
1702 			 * Update if the record is not in the notrace hash.
1703 			 */
1704 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1705 				match = 1;
1706 		} else {
1707 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1708 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1709 
1710 			/*
1711 			 * If filter_hash is set, we want to match all functions
1712 			 * that are in the hash but not in the other hash.
1713 			 *
1714 			 * If filter_hash is not set, then we are decrementing.
1715 			 * That means we match anything that is in the hash
1716 			 * and also in the other_hash. That is, we need to turn
1717 			 * off functions in the other hash because they are disabled
1718 			 * by this hash.
1719 			 */
1720 			if (filter_hash && in_hash && !in_other_hash)
1721 				match = 1;
1722 			else if (!filter_hash && in_hash &&
1723 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1724 				match = 1;
1725 		}
1726 		if (!match)
1727 			continue;
1728 
1729 		if (inc) {
1730 			rec->flags++;
1731 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1732 				return false;
1733 
1734 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1735 				rec->flags |= FTRACE_FL_DIRECT;
1736 
1737 			/*
1738 			 * If there's only a single callback registered to a
1739 			 * function, and the ops has a trampoline registered
1740 			 * for it, then we can call it directly.
1741 			 */
1742 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1743 				rec->flags |= FTRACE_FL_TRAMP;
1744 			else
1745 				/*
1746 				 * If we are adding another function callback
1747 				 * to this function, and the previous had a
1748 				 * custom trampoline in use, then we need to go
1749 				 * back to the default trampoline.
1750 				 */
1751 				rec->flags &= ~FTRACE_FL_TRAMP;
1752 
1753 			/*
1754 			 * If any ops wants regs saved for this function
1755 			 * then all ops will get saved regs.
1756 			 */
1757 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1758 				rec->flags |= FTRACE_FL_REGS;
1759 		} else {
1760 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1761 				return false;
1762 			rec->flags--;
1763 
1764 			/*
1765 			 * Only the internal direct_ops should have the
1766 			 * DIRECT flag set. Thus, if it is removing a
1767 			 * function, then that function should no longer
1768 			 * be direct.
1769 			 */
1770 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1771 				rec->flags &= ~FTRACE_FL_DIRECT;
1772 
1773 			/*
1774 			 * If the rec had REGS enabled and the ops that is
1775 			 * being removed had REGS set, then see if there is
1776 			 * still any ops for this record that wants regs.
1777 			 * If not, we can stop recording them.
1778 			 */
1779 			if (ftrace_rec_count(rec) > 0 &&
1780 			    rec->flags & FTRACE_FL_REGS &&
1781 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1782 				if (!test_rec_ops_needs_regs(rec))
1783 					rec->flags &= ~FTRACE_FL_REGS;
1784 			}
1785 
1786 			/*
1787 			 * The TRAMP needs to be set only if rec count
1788 			 * is decremented to one, and the ops that is
1789 			 * left has a trampoline. As TRAMP can only be
1790 			 * enabled if there is only a single ops attached
1791 			 * to it.
1792 			 */
1793 			if (ftrace_rec_count(rec) == 1 &&
1794 			    ftrace_find_tramp_ops_any_other(rec, ops))
1795 				rec->flags |= FTRACE_FL_TRAMP;
1796 			else
1797 				rec->flags &= ~FTRACE_FL_TRAMP;
1798 
1799 			/*
1800 			 * flags will be cleared in ftrace_check_record()
1801 			 * if rec count is zero.
1802 			 */
1803 		}
1804 		count++;
1805 
1806 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1807 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1808 
1809 		/* Shortcut, if we handled all records, we are done. */
1810 		if (!all && count == hash->count)
1811 			return update;
1812 	} while_for_each_ftrace_rec();
1813 
1814 	return update;
1815 }
1816 
1817 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1818 				    int filter_hash)
1819 {
1820 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1821 }
1822 
1823 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1824 				   int filter_hash)
1825 {
1826 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1827 }
1828 
1829 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1830 					  int filter_hash, int inc)
1831 {
1832 	struct ftrace_ops *op;
1833 
1834 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1835 
1836 	if (ops->func_hash != &global_ops.local_hash)
1837 		return;
1838 
1839 	/*
1840 	 * If the ops shares the global_ops hash, then we need to update
1841 	 * all ops that are enabled and use this hash.
1842 	 */
1843 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1844 		/* Already done */
1845 		if (op == ops)
1846 			continue;
1847 		if (op->func_hash == &global_ops.local_hash)
1848 			__ftrace_hash_rec_update(op, filter_hash, inc);
1849 	} while_for_each_ftrace_op(op);
1850 }
1851 
1852 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1853 					   int filter_hash)
1854 {
1855 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1856 }
1857 
1858 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1859 					  int filter_hash)
1860 {
1861 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1862 }
1863 
1864 static bool ops_references_ip(struct ftrace_ops *ops, unsigned long ip);
1865 
1866 /*
1867  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1868  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1869  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1870  * Note that old_hash and new_hash has below meanings
1871  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1872  *  - If the hash is EMPTY_HASH, it hits nothing
1873  *  - Anything else hits the recs which match the hash entries.
1874  *
1875  * DIRECT ops does not have IPMODIFY flag, but we still need to check it
1876  * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call
1877  * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with
1878  * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate
1879  * the return value to the caller and eventually to the owner of the DIRECT
1880  * ops.
1881  */
1882 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1883 					 struct ftrace_hash *old_hash,
1884 					 struct ftrace_hash *new_hash)
1885 {
1886 	struct ftrace_page *pg;
1887 	struct dyn_ftrace *rec, *end = NULL;
1888 	int in_old, in_new;
1889 	bool is_ipmodify, is_direct;
1890 
1891 	/* Only update if the ops has been registered */
1892 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1893 		return 0;
1894 
1895 	is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY;
1896 	is_direct = ops->flags & FTRACE_OPS_FL_DIRECT;
1897 
1898 	/* neither IPMODIFY nor DIRECT, skip */
1899 	if (!is_ipmodify && !is_direct)
1900 		return 0;
1901 
1902 	if (WARN_ON_ONCE(is_ipmodify && is_direct))
1903 		return 0;
1904 
1905 	/*
1906 	 * Since the IPMODIFY and DIRECT are very address sensitive
1907 	 * actions, we do not allow ftrace_ops to set all functions to new
1908 	 * hash.
1909 	 */
1910 	if (!new_hash || !old_hash)
1911 		return -EINVAL;
1912 
1913 	/* Update rec->flags */
1914 	do_for_each_ftrace_rec(pg, rec) {
1915 
1916 		if (rec->flags & FTRACE_FL_DISABLED)
1917 			continue;
1918 
1919 		/* We need to update only differences of filter_hash */
1920 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1921 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1922 		if (in_old == in_new)
1923 			continue;
1924 
1925 		if (in_new) {
1926 			if (rec->flags & FTRACE_FL_IPMODIFY) {
1927 				int ret;
1928 
1929 				/* Cannot have two ipmodify on same rec */
1930 				if (is_ipmodify)
1931 					goto rollback;
1932 
1933 				FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT);
1934 
1935 				/*
1936 				 * Another ops with IPMODIFY is already
1937 				 * attached. We are now attaching a direct
1938 				 * ops. Run SHARE_IPMODIFY_SELF, to check
1939 				 * whether sharing is supported.
1940 				 */
1941 				if (!ops->ops_func)
1942 					return -EBUSY;
1943 				ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF);
1944 				if (ret)
1945 					return ret;
1946 			} else if (is_ipmodify) {
1947 				rec->flags |= FTRACE_FL_IPMODIFY;
1948 			}
1949 		} else if (is_ipmodify) {
1950 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1951 		}
1952 	} while_for_each_ftrace_rec();
1953 
1954 	return 0;
1955 
1956 rollback:
1957 	end = rec;
1958 
1959 	/* Roll back what we did above */
1960 	do_for_each_ftrace_rec(pg, rec) {
1961 
1962 		if (rec->flags & FTRACE_FL_DISABLED)
1963 			continue;
1964 
1965 		if (rec == end)
1966 			goto err_out;
1967 
1968 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1969 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1970 		if (in_old == in_new)
1971 			continue;
1972 
1973 		if (in_new)
1974 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1975 		else
1976 			rec->flags |= FTRACE_FL_IPMODIFY;
1977 	} while_for_each_ftrace_rec();
1978 
1979 err_out:
1980 	return -EBUSY;
1981 }
1982 
1983 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1984 {
1985 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1986 
1987 	if (ftrace_hash_empty(hash))
1988 		hash = NULL;
1989 
1990 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1991 }
1992 
1993 /* Disabling always succeeds */
1994 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1995 {
1996 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1997 
1998 	if (ftrace_hash_empty(hash))
1999 		hash = NULL;
2000 
2001 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
2002 }
2003 
2004 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
2005 				       struct ftrace_hash *new_hash)
2006 {
2007 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
2008 
2009 	if (ftrace_hash_empty(old_hash))
2010 		old_hash = NULL;
2011 
2012 	if (ftrace_hash_empty(new_hash))
2013 		new_hash = NULL;
2014 
2015 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
2016 }
2017 
2018 static void print_ip_ins(const char *fmt, const unsigned char *p)
2019 {
2020 	char ins[MCOUNT_INSN_SIZE];
2021 	int i;
2022 
2023 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
2024 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
2025 		return;
2026 	}
2027 
2028 	printk(KERN_CONT "%s", fmt);
2029 
2030 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
2031 		printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]);
2032 }
2033 
2034 enum ftrace_bug_type ftrace_bug_type;
2035 const void *ftrace_expected;
2036 
2037 static void print_bug_type(void)
2038 {
2039 	switch (ftrace_bug_type) {
2040 	case FTRACE_BUG_UNKNOWN:
2041 		break;
2042 	case FTRACE_BUG_INIT:
2043 		pr_info("Initializing ftrace call sites\n");
2044 		break;
2045 	case FTRACE_BUG_NOP:
2046 		pr_info("Setting ftrace call site to NOP\n");
2047 		break;
2048 	case FTRACE_BUG_CALL:
2049 		pr_info("Setting ftrace call site to call ftrace function\n");
2050 		break;
2051 	case FTRACE_BUG_UPDATE:
2052 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2053 		break;
2054 	}
2055 }
2056 
2057 /**
2058  * ftrace_bug - report and shutdown function tracer
2059  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2060  * @rec: The record that failed
2061  *
2062  * The arch code that enables or disables the function tracing
2063  * can call ftrace_bug() when it has detected a problem in
2064  * modifying the code. @failed should be one of either:
2065  * EFAULT - if the problem happens on reading the @ip address
2066  * EINVAL - if what is read at @ip is not what was expected
2067  * EPERM - if the problem happens on writing to the @ip address
2068  */
2069 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2070 {
2071 	unsigned long ip = rec ? rec->ip : 0;
2072 
2073 	pr_info("------------[ ftrace bug ]------------\n");
2074 
2075 	switch (failed) {
2076 	case -EFAULT:
2077 		pr_info("ftrace faulted on modifying ");
2078 		print_ip_sym(KERN_INFO, ip);
2079 		break;
2080 	case -EINVAL:
2081 		pr_info("ftrace failed to modify ");
2082 		print_ip_sym(KERN_INFO, ip);
2083 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2084 		pr_cont("\n");
2085 		if (ftrace_expected) {
2086 			print_ip_ins(" expected: ", ftrace_expected);
2087 			pr_cont("\n");
2088 		}
2089 		break;
2090 	case -EPERM:
2091 		pr_info("ftrace faulted on writing ");
2092 		print_ip_sym(KERN_INFO, ip);
2093 		break;
2094 	default:
2095 		pr_info("ftrace faulted on unknown error ");
2096 		print_ip_sym(KERN_INFO, ip);
2097 	}
2098 	print_bug_type();
2099 	if (rec) {
2100 		struct ftrace_ops *ops = NULL;
2101 
2102 		pr_info("ftrace record flags: %lx\n", rec->flags);
2103 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2104 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2105 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2106 			ops = ftrace_find_tramp_ops_any(rec);
2107 			if (ops) {
2108 				do {
2109 					pr_cont("\ttramp: %pS (%pS)",
2110 						(void *)ops->trampoline,
2111 						(void *)ops->func);
2112 					ops = ftrace_find_tramp_ops_next(rec, ops);
2113 				} while (ops);
2114 			} else
2115 				pr_cont("\ttramp: ERROR!");
2116 
2117 		}
2118 		ip = ftrace_get_addr_curr(rec);
2119 		pr_cont("\n expected tramp: %lx\n", ip);
2120 	}
2121 
2122 	FTRACE_WARN_ON_ONCE(1);
2123 }
2124 
2125 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2126 {
2127 	unsigned long flag = 0UL;
2128 
2129 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2130 
2131 	if (rec->flags & FTRACE_FL_DISABLED)
2132 		return FTRACE_UPDATE_IGNORE;
2133 
2134 	/*
2135 	 * If we are updating calls:
2136 	 *
2137 	 *   If the record has a ref count, then we need to enable it
2138 	 *   because someone is using it.
2139 	 *
2140 	 *   Otherwise we make sure its disabled.
2141 	 *
2142 	 * If we are disabling calls, then disable all records that
2143 	 * are enabled.
2144 	 */
2145 	if (enable && ftrace_rec_count(rec))
2146 		flag = FTRACE_FL_ENABLED;
2147 
2148 	/*
2149 	 * If enabling and the REGS flag does not match the REGS_EN, or
2150 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2151 	 * this record. Set flags to fail the compare against ENABLED.
2152 	 * Same for direct calls.
2153 	 */
2154 	if (flag) {
2155 		if (!(rec->flags & FTRACE_FL_REGS) !=
2156 		    !(rec->flags & FTRACE_FL_REGS_EN))
2157 			flag |= FTRACE_FL_REGS;
2158 
2159 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2160 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2161 			flag |= FTRACE_FL_TRAMP;
2162 
2163 		/*
2164 		 * Direct calls are special, as count matters.
2165 		 * We must test the record for direct, if the
2166 		 * DIRECT and DIRECT_EN do not match, but only
2167 		 * if the count is 1. That's because, if the
2168 		 * count is something other than one, we do not
2169 		 * want the direct enabled (it will be done via the
2170 		 * direct helper). But if DIRECT_EN is set, and
2171 		 * the count is not one, we need to clear it.
2172 		 */
2173 		if (ftrace_rec_count(rec) == 1) {
2174 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2175 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2176 				flag |= FTRACE_FL_DIRECT;
2177 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2178 			flag |= FTRACE_FL_DIRECT;
2179 		}
2180 	}
2181 
2182 	/* If the state of this record hasn't changed, then do nothing */
2183 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2184 		return FTRACE_UPDATE_IGNORE;
2185 
2186 	if (flag) {
2187 		/* Save off if rec is being enabled (for return value) */
2188 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2189 
2190 		if (update) {
2191 			rec->flags |= FTRACE_FL_ENABLED;
2192 			if (flag & FTRACE_FL_REGS) {
2193 				if (rec->flags & FTRACE_FL_REGS)
2194 					rec->flags |= FTRACE_FL_REGS_EN;
2195 				else
2196 					rec->flags &= ~FTRACE_FL_REGS_EN;
2197 			}
2198 			if (flag & FTRACE_FL_TRAMP) {
2199 				if (rec->flags & FTRACE_FL_TRAMP)
2200 					rec->flags |= FTRACE_FL_TRAMP_EN;
2201 				else
2202 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2203 			}
2204 
2205 			if (flag & FTRACE_FL_DIRECT) {
2206 				/*
2207 				 * If there's only one user (direct_ops helper)
2208 				 * then we can call the direct function
2209 				 * directly (no ftrace trampoline).
2210 				 */
2211 				if (ftrace_rec_count(rec) == 1) {
2212 					if (rec->flags & FTRACE_FL_DIRECT)
2213 						rec->flags |= FTRACE_FL_DIRECT_EN;
2214 					else
2215 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2216 				} else {
2217 					/*
2218 					 * Can only call directly if there's
2219 					 * only one callback to the function.
2220 					 */
2221 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2222 				}
2223 			}
2224 		}
2225 
2226 		/*
2227 		 * If this record is being updated from a nop, then
2228 		 *   return UPDATE_MAKE_CALL.
2229 		 * Otherwise,
2230 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2231 		 *   from the save regs, to a non-save regs function or
2232 		 *   vice versa, or from a trampoline call.
2233 		 */
2234 		if (flag & FTRACE_FL_ENABLED) {
2235 			ftrace_bug_type = FTRACE_BUG_CALL;
2236 			return FTRACE_UPDATE_MAKE_CALL;
2237 		}
2238 
2239 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2240 		return FTRACE_UPDATE_MODIFY_CALL;
2241 	}
2242 
2243 	if (update) {
2244 		/* If there's no more users, clear all flags */
2245 		if (!ftrace_rec_count(rec))
2246 			rec->flags = 0;
2247 		else
2248 			/*
2249 			 * Just disable the record, but keep the ops TRAMP
2250 			 * and REGS states. The _EN flags must be disabled though.
2251 			 */
2252 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2253 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2254 	}
2255 
2256 	ftrace_bug_type = FTRACE_BUG_NOP;
2257 	return FTRACE_UPDATE_MAKE_NOP;
2258 }
2259 
2260 /**
2261  * ftrace_update_record - set a record that now is tracing or not
2262  * @rec: the record to update
2263  * @enable: set to true if the record is tracing, false to force disable
2264  *
2265  * The records that represent all functions that can be traced need
2266  * to be updated when tracing has been enabled.
2267  */
2268 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2269 {
2270 	return ftrace_check_record(rec, enable, true);
2271 }
2272 
2273 /**
2274  * ftrace_test_record - check if the record has been enabled or not
2275  * @rec: the record to test
2276  * @enable: set to true to check if enabled, false if it is disabled
2277  *
2278  * The arch code may need to test if a record is already set to
2279  * tracing to determine how to modify the function code that it
2280  * represents.
2281  */
2282 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2283 {
2284 	return ftrace_check_record(rec, enable, false);
2285 }
2286 
2287 static struct ftrace_ops *
2288 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2289 {
2290 	struct ftrace_ops *op;
2291 	unsigned long ip = rec->ip;
2292 
2293 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2294 
2295 		if (!op->trampoline)
2296 			continue;
2297 
2298 		if (hash_contains_ip(ip, op->func_hash))
2299 			return op;
2300 	} while_for_each_ftrace_op(op);
2301 
2302 	return NULL;
2303 }
2304 
2305 static struct ftrace_ops *
2306 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2307 {
2308 	struct ftrace_ops *op;
2309 	unsigned long ip = rec->ip;
2310 
2311 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2312 
2313 		if (op == op_exclude || !op->trampoline)
2314 			continue;
2315 
2316 		if (hash_contains_ip(ip, op->func_hash))
2317 			return op;
2318 	} while_for_each_ftrace_op(op);
2319 
2320 	return NULL;
2321 }
2322 
2323 static struct ftrace_ops *
2324 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2325 			   struct ftrace_ops *op)
2326 {
2327 	unsigned long ip = rec->ip;
2328 
2329 	while_for_each_ftrace_op(op) {
2330 
2331 		if (!op->trampoline)
2332 			continue;
2333 
2334 		if (hash_contains_ip(ip, op->func_hash))
2335 			return op;
2336 	}
2337 
2338 	return NULL;
2339 }
2340 
2341 static struct ftrace_ops *
2342 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2343 {
2344 	struct ftrace_ops *op;
2345 	unsigned long ip = rec->ip;
2346 
2347 	/*
2348 	 * Need to check removed ops first.
2349 	 * If they are being removed, and this rec has a tramp,
2350 	 * and this rec is in the ops list, then it would be the
2351 	 * one with the tramp.
2352 	 */
2353 	if (removed_ops) {
2354 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2355 			return removed_ops;
2356 	}
2357 
2358 	/*
2359 	 * Need to find the current trampoline for a rec.
2360 	 * Now, a trampoline is only attached to a rec if there
2361 	 * was a single 'ops' attached to it. But this can be called
2362 	 * when we are adding another op to the rec or removing the
2363 	 * current one. Thus, if the op is being added, we can
2364 	 * ignore it because it hasn't attached itself to the rec
2365 	 * yet.
2366 	 *
2367 	 * If an ops is being modified (hooking to different functions)
2368 	 * then we don't care about the new functions that are being
2369 	 * added, just the old ones (that are probably being removed).
2370 	 *
2371 	 * If we are adding an ops to a function that already is using
2372 	 * a trampoline, it needs to be removed (trampolines are only
2373 	 * for single ops connected), then an ops that is not being
2374 	 * modified also needs to be checked.
2375 	 */
2376 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2377 
2378 		if (!op->trampoline)
2379 			continue;
2380 
2381 		/*
2382 		 * If the ops is being added, it hasn't gotten to
2383 		 * the point to be removed from this tree yet.
2384 		 */
2385 		if (op->flags & FTRACE_OPS_FL_ADDING)
2386 			continue;
2387 
2388 
2389 		/*
2390 		 * If the ops is being modified and is in the old
2391 		 * hash, then it is probably being removed from this
2392 		 * function.
2393 		 */
2394 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2395 		    hash_contains_ip(ip, &op->old_hash))
2396 			return op;
2397 		/*
2398 		 * If the ops is not being added or modified, and it's
2399 		 * in its normal filter hash, then this must be the one
2400 		 * we want!
2401 		 */
2402 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2403 		    hash_contains_ip(ip, op->func_hash))
2404 			return op;
2405 
2406 	} while_for_each_ftrace_op(op);
2407 
2408 	return NULL;
2409 }
2410 
2411 static struct ftrace_ops *
2412 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2413 {
2414 	struct ftrace_ops *op;
2415 	unsigned long ip = rec->ip;
2416 
2417 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2418 		/* pass rec in as regs to have non-NULL val */
2419 		if (hash_contains_ip(ip, op->func_hash))
2420 			return op;
2421 	} while_for_each_ftrace_op(op);
2422 
2423 	return NULL;
2424 }
2425 
2426 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2427 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2428 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2429 static DEFINE_MUTEX(direct_mutex);
2430 int ftrace_direct_func_count;
2431 
2432 /*
2433  * Search the direct_functions hash to see if the given instruction pointer
2434  * has a direct caller attached to it.
2435  */
2436 unsigned long ftrace_find_rec_direct(unsigned long ip)
2437 {
2438 	struct ftrace_func_entry *entry;
2439 
2440 	entry = __ftrace_lookup_ip(direct_functions, ip);
2441 	if (!entry)
2442 		return 0;
2443 
2444 	return entry->direct;
2445 }
2446 
2447 static struct ftrace_func_entry*
2448 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2449 		      struct ftrace_hash **free_hash)
2450 {
2451 	struct ftrace_func_entry *entry;
2452 
2453 	if (ftrace_hash_empty(direct_functions) ||
2454 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2455 		struct ftrace_hash *new_hash;
2456 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2457 			direct_functions->count + 1;
2458 
2459 		if (size < 32)
2460 			size = 32;
2461 
2462 		new_hash = dup_hash(direct_functions, size);
2463 		if (!new_hash)
2464 			return NULL;
2465 
2466 		*free_hash = direct_functions;
2467 		direct_functions = new_hash;
2468 	}
2469 
2470 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2471 	if (!entry)
2472 		return NULL;
2473 
2474 	entry->ip = ip;
2475 	entry->direct = addr;
2476 	__add_hash_entry(direct_functions, entry);
2477 	return entry;
2478 }
2479 
2480 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2481 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2482 {
2483 	struct pt_regs *regs = ftrace_get_regs(fregs);
2484 	unsigned long addr;
2485 
2486 	addr = ftrace_find_rec_direct(ip);
2487 	if (!addr)
2488 		return;
2489 
2490 	arch_ftrace_set_direct_caller(regs, addr);
2491 }
2492 
2493 struct ftrace_ops direct_ops = {
2494 	.func		= call_direct_funcs,
2495 	.flags		= FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2496 			  | FTRACE_OPS_FL_PERMANENT,
2497 	/*
2498 	 * By declaring the main trampoline as this trampoline
2499 	 * it will never have one allocated for it. Allocated
2500 	 * trampolines should not call direct functions.
2501 	 * The direct_ops should only be called by the builtin
2502 	 * ftrace_regs_caller trampoline.
2503 	 */
2504 	.trampoline	= FTRACE_REGS_ADDR,
2505 };
2506 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2507 
2508 /**
2509  * ftrace_get_addr_new - Get the call address to set to
2510  * @rec:  The ftrace record descriptor
2511  *
2512  * If the record has the FTRACE_FL_REGS set, that means that it
2513  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2514  * is not set, then it wants to convert to the normal callback.
2515  *
2516  * Returns the address of the trampoline to set to
2517  */
2518 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2519 {
2520 	struct ftrace_ops *ops;
2521 	unsigned long addr;
2522 
2523 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2524 	    (ftrace_rec_count(rec) == 1)) {
2525 		addr = ftrace_find_rec_direct(rec->ip);
2526 		if (addr)
2527 			return addr;
2528 		WARN_ON_ONCE(1);
2529 	}
2530 
2531 	/* Trampolines take precedence over regs */
2532 	if (rec->flags & FTRACE_FL_TRAMP) {
2533 		ops = ftrace_find_tramp_ops_new(rec);
2534 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2535 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2536 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2537 			/* Ftrace is shutting down, return anything */
2538 			return (unsigned long)FTRACE_ADDR;
2539 		}
2540 		return ops->trampoline;
2541 	}
2542 
2543 	if (rec->flags & FTRACE_FL_REGS)
2544 		return (unsigned long)FTRACE_REGS_ADDR;
2545 	else
2546 		return (unsigned long)FTRACE_ADDR;
2547 }
2548 
2549 /**
2550  * ftrace_get_addr_curr - Get the call address that is already there
2551  * @rec:  The ftrace record descriptor
2552  *
2553  * The FTRACE_FL_REGS_EN is set when the record already points to
2554  * a function that saves all the regs. Basically the '_EN' version
2555  * represents the current state of the function.
2556  *
2557  * Returns the address of the trampoline that is currently being called
2558  */
2559 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2560 {
2561 	struct ftrace_ops *ops;
2562 	unsigned long addr;
2563 
2564 	/* Direct calls take precedence over trampolines */
2565 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2566 		addr = ftrace_find_rec_direct(rec->ip);
2567 		if (addr)
2568 			return addr;
2569 		WARN_ON_ONCE(1);
2570 	}
2571 
2572 	/* Trampolines take precedence over regs */
2573 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2574 		ops = ftrace_find_tramp_ops_curr(rec);
2575 		if (FTRACE_WARN_ON(!ops)) {
2576 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2577 				(void *)rec->ip, (void *)rec->ip);
2578 			/* Ftrace is shutting down, return anything */
2579 			return (unsigned long)FTRACE_ADDR;
2580 		}
2581 		return ops->trampoline;
2582 	}
2583 
2584 	if (rec->flags & FTRACE_FL_REGS_EN)
2585 		return (unsigned long)FTRACE_REGS_ADDR;
2586 	else
2587 		return (unsigned long)FTRACE_ADDR;
2588 }
2589 
2590 static int
2591 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2592 {
2593 	unsigned long ftrace_old_addr;
2594 	unsigned long ftrace_addr;
2595 	int ret;
2596 
2597 	ftrace_addr = ftrace_get_addr_new(rec);
2598 
2599 	/* This needs to be done before we call ftrace_update_record */
2600 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2601 
2602 	ret = ftrace_update_record(rec, enable);
2603 
2604 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2605 
2606 	switch (ret) {
2607 	case FTRACE_UPDATE_IGNORE:
2608 		return 0;
2609 
2610 	case FTRACE_UPDATE_MAKE_CALL:
2611 		ftrace_bug_type = FTRACE_BUG_CALL;
2612 		return ftrace_make_call(rec, ftrace_addr);
2613 
2614 	case FTRACE_UPDATE_MAKE_NOP:
2615 		ftrace_bug_type = FTRACE_BUG_NOP;
2616 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2617 
2618 	case FTRACE_UPDATE_MODIFY_CALL:
2619 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2620 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2621 	}
2622 
2623 	return -1; /* unknown ftrace bug */
2624 }
2625 
2626 void __weak ftrace_replace_code(int mod_flags)
2627 {
2628 	struct dyn_ftrace *rec;
2629 	struct ftrace_page *pg;
2630 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2631 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2632 	int failed;
2633 
2634 	if (unlikely(ftrace_disabled))
2635 		return;
2636 
2637 	do_for_each_ftrace_rec(pg, rec) {
2638 
2639 		if (rec->flags & FTRACE_FL_DISABLED)
2640 			continue;
2641 
2642 		failed = __ftrace_replace_code(rec, enable);
2643 		if (failed) {
2644 			ftrace_bug(failed, rec);
2645 			/* Stop processing */
2646 			return;
2647 		}
2648 		if (schedulable)
2649 			cond_resched();
2650 	} while_for_each_ftrace_rec();
2651 }
2652 
2653 struct ftrace_rec_iter {
2654 	struct ftrace_page	*pg;
2655 	int			index;
2656 };
2657 
2658 /**
2659  * ftrace_rec_iter_start - start up iterating over traced functions
2660  *
2661  * Returns an iterator handle that is used to iterate over all
2662  * the records that represent address locations where functions
2663  * are traced.
2664  *
2665  * May return NULL if no records are available.
2666  */
2667 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2668 {
2669 	/*
2670 	 * We only use a single iterator.
2671 	 * Protected by the ftrace_lock mutex.
2672 	 */
2673 	static struct ftrace_rec_iter ftrace_rec_iter;
2674 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2675 
2676 	iter->pg = ftrace_pages_start;
2677 	iter->index = 0;
2678 
2679 	/* Could have empty pages */
2680 	while (iter->pg && !iter->pg->index)
2681 		iter->pg = iter->pg->next;
2682 
2683 	if (!iter->pg)
2684 		return NULL;
2685 
2686 	return iter;
2687 }
2688 
2689 /**
2690  * ftrace_rec_iter_next - get the next record to process.
2691  * @iter: The handle to the iterator.
2692  *
2693  * Returns the next iterator after the given iterator @iter.
2694  */
2695 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2696 {
2697 	iter->index++;
2698 
2699 	if (iter->index >= iter->pg->index) {
2700 		iter->pg = iter->pg->next;
2701 		iter->index = 0;
2702 
2703 		/* Could have empty pages */
2704 		while (iter->pg && !iter->pg->index)
2705 			iter->pg = iter->pg->next;
2706 	}
2707 
2708 	if (!iter->pg)
2709 		return NULL;
2710 
2711 	return iter;
2712 }
2713 
2714 /**
2715  * ftrace_rec_iter_record - get the record at the iterator location
2716  * @iter: The current iterator location
2717  *
2718  * Returns the record that the current @iter is at.
2719  */
2720 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2721 {
2722 	return &iter->pg->records[iter->index];
2723 }
2724 
2725 static int
2726 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2727 {
2728 	int ret;
2729 
2730 	if (unlikely(ftrace_disabled))
2731 		return 0;
2732 
2733 	ret = ftrace_init_nop(mod, rec);
2734 	if (ret) {
2735 		ftrace_bug_type = FTRACE_BUG_INIT;
2736 		ftrace_bug(ret, rec);
2737 		return 0;
2738 	}
2739 	return 1;
2740 }
2741 
2742 /*
2743  * archs can override this function if they must do something
2744  * before the modifying code is performed.
2745  */
2746 void __weak ftrace_arch_code_modify_prepare(void)
2747 {
2748 }
2749 
2750 /*
2751  * archs can override this function if they must do something
2752  * after the modifying code is performed.
2753  */
2754 void __weak ftrace_arch_code_modify_post_process(void)
2755 {
2756 }
2757 
2758 void ftrace_modify_all_code(int command)
2759 {
2760 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2761 	int mod_flags = 0;
2762 	int err = 0;
2763 
2764 	if (command & FTRACE_MAY_SLEEP)
2765 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2766 
2767 	/*
2768 	 * If the ftrace_caller calls a ftrace_ops func directly,
2769 	 * we need to make sure that it only traces functions it
2770 	 * expects to trace. When doing the switch of functions,
2771 	 * we need to update to the ftrace_ops_list_func first
2772 	 * before the transition between old and new calls are set,
2773 	 * as the ftrace_ops_list_func will check the ops hashes
2774 	 * to make sure the ops are having the right functions
2775 	 * traced.
2776 	 */
2777 	if (update) {
2778 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2779 		if (FTRACE_WARN_ON(err))
2780 			return;
2781 	}
2782 
2783 	if (command & FTRACE_UPDATE_CALLS)
2784 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2785 	else if (command & FTRACE_DISABLE_CALLS)
2786 		ftrace_replace_code(mod_flags);
2787 
2788 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2789 		function_trace_op = set_function_trace_op;
2790 		smp_wmb();
2791 		/* If irqs are disabled, we are in stop machine */
2792 		if (!irqs_disabled())
2793 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2794 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2795 		if (FTRACE_WARN_ON(err))
2796 			return;
2797 	}
2798 
2799 	if (command & FTRACE_START_FUNC_RET)
2800 		err = ftrace_enable_ftrace_graph_caller();
2801 	else if (command & FTRACE_STOP_FUNC_RET)
2802 		err = ftrace_disable_ftrace_graph_caller();
2803 	FTRACE_WARN_ON(err);
2804 }
2805 
2806 static int __ftrace_modify_code(void *data)
2807 {
2808 	int *command = data;
2809 
2810 	ftrace_modify_all_code(*command);
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  * ftrace_run_stop_machine - go back to the stop machine method
2817  * @command: The command to tell ftrace what to do
2818  *
2819  * If an arch needs to fall back to the stop machine method, the
2820  * it can call this function.
2821  */
2822 void ftrace_run_stop_machine(int command)
2823 {
2824 	stop_machine(__ftrace_modify_code, &command, NULL);
2825 }
2826 
2827 /**
2828  * arch_ftrace_update_code - modify the code to trace or not trace
2829  * @command: The command that needs to be done
2830  *
2831  * Archs can override this function if it does not need to
2832  * run stop_machine() to modify code.
2833  */
2834 void __weak arch_ftrace_update_code(int command)
2835 {
2836 	ftrace_run_stop_machine(command);
2837 }
2838 
2839 static void ftrace_run_update_code(int command)
2840 {
2841 	ftrace_arch_code_modify_prepare();
2842 
2843 	/*
2844 	 * By default we use stop_machine() to modify the code.
2845 	 * But archs can do what ever they want as long as it
2846 	 * is safe. The stop_machine() is the safest, but also
2847 	 * produces the most overhead.
2848 	 */
2849 	arch_ftrace_update_code(command);
2850 
2851 	ftrace_arch_code_modify_post_process();
2852 }
2853 
2854 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2855 				   struct ftrace_ops_hash *old_hash)
2856 {
2857 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2858 	ops->old_hash.filter_hash = old_hash->filter_hash;
2859 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2860 	ftrace_run_update_code(command);
2861 	ops->old_hash.filter_hash = NULL;
2862 	ops->old_hash.notrace_hash = NULL;
2863 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2864 }
2865 
2866 static ftrace_func_t saved_ftrace_func;
2867 static int ftrace_start_up;
2868 
2869 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2870 {
2871 }
2872 
2873 /* List of trace_ops that have allocated trampolines */
2874 static LIST_HEAD(ftrace_ops_trampoline_list);
2875 
2876 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2877 {
2878 	lockdep_assert_held(&ftrace_lock);
2879 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2880 }
2881 
2882 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2883 {
2884 	lockdep_assert_held(&ftrace_lock);
2885 	list_del_rcu(&ops->list);
2886 	synchronize_rcu();
2887 }
2888 
2889 /*
2890  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2891  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2892  * not a module.
2893  */
2894 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2895 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2896 
2897 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2898 {
2899 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2900 	    ops->trampoline) {
2901 		/*
2902 		 * Record the text poke event before the ksymbol unregister
2903 		 * event.
2904 		 */
2905 		perf_event_text_poke((void *)ops->trampoline,
2906 				     (void *)ops->trampoline,
2907 				     ops->trampoline_size, NULL, 0);
2908 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2909 				   ops->trampoline, ops->trampoline_size,
2910 				   true, FTRACE_TRAMPOLINE_SYM);
2911 		/* Remove from kallsyms after the perf events */
2912 		ftrace_remove_trampoline_from_kallsyms(ops);
2913 	}
2914 
2915 	arch_ftrace_trampoline_free(ops);
2916 }
2917 
2918 static void ftrace_startup_enable(int command)
2919 {
2920 	if (saved_ftrace_func != ftrace_trace_function) {
2921 		saved_ftrace_func = ftrace_trace_function;
2922 		command |= FTRACE_UPDATE_TRACE_FUNC;
2923 	}
2924 
2925 	if (!command || !ftrace_enabled)
2926 		return;
2927 
2928 	ftrace_run_update_code(command);
2929 }
2930 
2931 static void ftrace_startup_all(int command)
2932 {
2933 	update_all_ops = true;
2934 	ftrace_startup_enable(command);
2935 	update_all_ops = false;
2936 }
2937 
2938 int ftrace_startup(struct ftrace_ops *ops, int command)
2939 {
2940 	int ret;
2941 
2942 	if (unlikely(ftrace_disabled))
2943 		return -ENODEV;
2944 
2945 	ret = __register_ftrace_function(ops);
2946 	if (ret)
2947 		return ret;
2948 
2949 	ftrace_start_up++;
2950 
2951 	/*
2952 	 * Note that ftrace probes uses this to start up
2953 	 * and modify functions it will probe. But we still
2954 	 * set the ADDING flag for modification, as probes
2955 	 * do not have trampolines. If they add them in the
2956 	 * future, then the probes will need to distinguish
2957 	 * between adding and updating probes.
2958 	 */
2959 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2960 
2961 	ret = ftrace_hash_ipmodify_enable(ops);
2962 	if (ret < 0) {
2963 		/* Rollback registration process */
2964 		__unregister_ftrace_function(ops);
2965 		ftrace_start_up--;
2966 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2967 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2968 			ftrace_trampoline_free(ops);
2969 		return ret;
2970 	}
2971 
2972 	if (ftrace_hash_rec_enable(ops, 1))
2973 		command |= FTRACE_UPDATE_CALLS;
2974 
2975 	ftrace_startup_enable(command);
2976 
2977 	/*
2978 	 * If ftrace is in an undefined state, we just remove ops from list
2979 	 * to prevent the NULL pointer, instead of totally rolling it back and
2980 	 * free trampoline, because those actions could cause further damage.
2981 	 */
2982 	if (unlikely(ftrace_disabled)) {
2983 		__unregister_ftrace_function(ops);
2984 		return -ENODEV;
2985 	}
2986 
2987 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2988 
2989 	return 0;
2990 }
2991 
2992 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2993 {
2994 	int ret;
2995 
2996 	if (unlikely(ftrace_disabled))
2997 		return -ENODEV;
2998 
2999 	ret = __unregister_ftrace_function(ops);
3000 	if (ret)
3001 		return ret;
3002 
3003 	ftrace_start_up--;
3004 	/*
3005 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
3006 	 * critical but the ftrace_call callers may be never nopped again after
3007 	 * further ftrace uses.
3008 	 */
3009 	WARN_ON_ONCE(ftrace_start_up < 0);
3010 
3011 	/* Disabling ipmodify never fails */
3012 	ftrace_hash_ipmodify_disable(ops);
3013 
3014 	if (ftrace_hash_rec_disable(ops, 1))
3015 		command |= FTRACE_UPDATE_CALLS;
3016 
3017 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
3018 
3019 	if (saved_ftrace_func != ftrace_trace_function) {
3020 		saved_ftrace_func = ftrace_trace_function;
3021 		command |= FTRACE_UPDATE_TRACE_FUNC;
3022 	}
3023 
3024 	if (!command || !ftrace_enabled) {
3025 		/*
3026 		 * If these are dynamic or per_cpu ops, they still
3027 		 * need their data freed. Since, function tracing is
3028 		 * not currently active, we can just free them
3029 		 * without synchronizing all CPUs.
3030 		 */
3031 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
3032 			goto free_ops;
3033 
3034 		return 0;
3035 	}
3036 
3037 	/*
3038 	 * If the ops uses a trampoline, then it needs to be
3039 	 * tested first on update.
3040 	 */
3041 	ops->flags |= FTRACE_OPS_FL_REMOVING;
3042 	removed_ops = ops;
3043 
3044 	/* The trampoline logic checks the old hashes */
3045 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
3046 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3047 
3048 	ftrace_run_update_code(command);
3049 
3050 	/*
3051 	 * If there's no more ops registered with ftrace, run a
3052 	 * sanity check to make sure all rec flags are cleared.
3053 	 */
3054 	if (rcu_dereference_protected(ftrace_ops_list,
3055 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3056 		struct ftrace_page *pg;
3057 		struct dyn_ftrace *rec;
3058 
3059 		do_for_each_ftrace_rec(pg, rec) {
3060 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3061 				pr_warn("  %pS flags:%lx\n",
3062 					(void *)rec->ip, rec->flags);
3063 		} while_for_each_ftrace_rec();
3064 	}
3065 
3066 	ops->old_hash.filter_hash = NULL;
3067 	ops->old_hash.notrace_hash = NULL;
3068 
3069 	removed_ops = NULL;
3070 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3071 
3072 	/*
3073 	 * Dynamic ops may be freed, we must make sure that all
3074 	 * callers are done before leaving this function.
3075 	 * The same goes for freeing the per_cpu data of the per_cpu
3076 	 * ops.
3077 	 */
3078 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3079 		/*
3080 		 * We need to do a hard force of sched synchronization.
3081 		 * This is because we use preempt_disable() to do RCU, but
3082 		 * the function tracers can be called where RCU is not watching
3083 		 * (like before user_exit()). We can not rely on the RCU
3084 		 * infrastructure to do the synchronization, thus we must do it
3085 		 * ourselves.
3086 		 */
3087 		synchronize_rcu_tasks_rude();
3088 
3089 		/*
3090 		 * When the kernel is preemptive, tasks can be preempted
3091 		 * while on a ftrace trampoline. Just scheduling a task on
3092 		 * a CPU is not good enough to flush them. Calling
3093 		 * synchronize_rcu_tasks() will wait for those tasks to
3094 		 * execute and either schedule voluntarily or enter user space.
3095 		 */
3096 		if (IS_ENABLED(CONFIG_PREEMPTION))
3097 			synchronize_rcu_tasks();
3098 
3099  free_ops:
3100 		ftrace_trampoline_free(ops);
3101 	}
3102 
3103 	return 0;
3104 }
3105 
3106 static u64		ftrace_update_time;
3107 unsigned long		ftrace_update_tot_cnt;
3108 unsigned long		ftrace_number_of_pages;
3109 unsigned long		ftrace_number_of_groups;
3110 
3111 static inline int ops_traces_mod(struct ftrace_ops *ops)
3112 {
3113 	/*
3114 	 * Filter_hash being empty will default to trace module.
3115 	 * But notrace hash requires a test of individual module functions.
3116 	 */
3117 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3118 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3119 }
3120 
3121 /*
3122  * Check if the current ops references the given ip.
3123  *
3124  * If the ops traces all functions, then it was already accounted for.
3125  * If the ops does not trace the current record function, skip it.
3126  * If the ops ignores the function via notrace filter, skip it.
3127  */
3128 static bool
3129 ops_references_ip(struct ftrace_ops *ops, unsigned long ip)
3130 {
3131 	/* If ops isn't enabled, ignore it */
3132 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3133 		return false;
3134 
3135 	/* If ops traces all then it includes this function */
3136 	if (ops_traces_mod(ops))
3137 		return true;
3138 
3139 	/* The function must be in the filter */
3140 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3141 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip))
3142 		return false;
3143 
3144 	/* If in notrace hash, we ignore it too */
3145 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip))
3146 		return false;
3147 
3148 	return true;
3149 }
3150 
3151 /*
3152  * Check if the current ops references the record.
3153  *
3154  * If the ops traces all functions, then it was already accounted for.
3155  * If the ops does not trace the current record function, skip it.
3156  * If the ops ignores the function via notrace filter, skip it.
3157  */
3158 static bool
3159 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3160 {
3161 	return ops_references_ip(ops, rec->ip);
3162 }
3163 
3164 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3165 {
3166 	bool init_nop = ftrace_need_init_nop();
3167 	struct ftrace_page *pg;
3168 	struct dyn_ftrace *p;
3169 	u64 start, stop;
3170 	unsigned long update_cnt = 0;
3171 	unsigned long rec_flags = 0;
3172 	int i;
3173 
3174 	start = ftrace_now(raw_smp_processor_id());
3175 
3176 	/*
3177 	 * When a module is loaded, this function is called to convert
3178 	 * the calls to mcount in its text to nops, and also to create
3179 	 * an entry in the ftrace data. Now, if ftrace is activated
3180 	 * after this call, but before the module sets its text to
3181 	 * read-only, the modification of enabling ftrace can fail if
3182 	 * the read-only is done while ftrace is converting the calls.
3183 	 * To prevent this, the module's records are set as disabled
3184 	 * and will be enabled after the call to set the module's text
3185 	 * to read-only.
3186 	 */
3187 	if (mod)
3188 		rec_flags |= FTRACE_FL_DISABLED;
3189 
3190 	for (pg = new_pgs; pg; pg = pg->next) {
3191 
3192 		for (i = 0; i < pg->index; i++) {
3193 
3194 			/* If something went wrong, bail without enabling anything */
3195 			if (unlikely(ftrace_disabled))
3196 				return -1;
3197 
3198 			p = &pg->records[i];
3199 			p->flags = rec_flags;
3200 
3201 			/*
3202 			 * Do the initial record conversion from mcount jump
3203 			 * to the NOP instructions.
3204 			 */
3205 			if (init_nop && !ftrace_nop_initialize(mod, p))
3206 				break;
3207 
3208 			update_cnt++;
3209 		}
3210 	}
3211 
3212 	stop = ftrace_now(raw_smp_processor_id());
3213 	ftrace_update_time = stop - start;
3214 	ftrace_update_tot_cnt += update_cnt;
3215 
3216 	return 0;
3217 }
3218 
3219 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3220 {
3221 	int order;
3222 	int pages;
3223 	int cnt;
3224 
3225 	if (WARN_ON(!count))
3226 		return -EINVAL;
3227 
3228 	/* We want to fill as much as possible, with no empty pages */
3229 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3230 	order = fls(pages) - 1;
3231 
3232  again:
3233 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3234 
3235 	if (!pg->records) {
3236 		/* if we can't allocate this size, try something smaller */
3237 		if (!order)
3238 			return -ENOMEM;
3239 		order >>= 1;
3240 		goto again;
3241 	}
3242 
3243 	ftrace_number_of_pages += 1 << order;
3244 	ftrace_number_of_groups++;
3245 
3246 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3247 	pg->order = order;
3248 
3249 	if (cnt > count)
3250 		cnt = count;
3251 
3252 	return cnt;
3253 }
3254 
3255 static struct ftrace_page *
3256 ftrace_allocate_pages(unsigned long num_to_init)
3257 {
3258 	struct ftrace_page *start_pg;
3259 	struct ftrace_page *pg;
3260 	int cnt;
3261 
3262 	if (!num_to_init)
3263 		return NULL;
3264 
3265 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3266 	if (!pg)
3267 		return NULL;
3268 
3269 	/*
3270 	 * Try to allocate as much as possible in one continues
3271 	 * location that fills in all of the space. We want to
3272 	 * waste as little space as possible.
3273 	 */
3274 	for (;;) {
3275 		cnt = ftrace_allocate_records(pg, num_to_init);
3276 		if (cnt < 0)
3277 			goto free_pages;
3278 
3279 		num_to_init -= cnt;
3280 		if (!num_to_init)
3281 			break;
3282 
3283 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3284 		if (!pg->next)
3285 			goto free_pages;
3286 
3287 		pg = pg->next;
3288 	}
3289 
3290 	return start_pg;
3291 
3292  free_pages:
3293 	pg = start_pg;
3294 	while (pg) {
3295 		if (pg->records) {
3296 			free_pages((unsigned long)pg->records, pg->order);
3297 			ftrace_number_of_pages -= 1 << pg->order;
3298 		}
3299 		start_pg = pg->next;
3300 		kfree(pg);
3301 		pg = start_pg;
3302 		ftrace_number_of_groups--;
3303 	}
3304 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3305 	return NULL;
3306 }
3307 
3308 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3309 
3310 struct ftrace_iterator {
3311 	loff_t				pos;
3312 	loff_t				func_pos;
3313 	loff_t				mod_pos;
3314 	struct ftrace_page		*pg;
3315 	struct dyn_ftrace		*func;
3316 	struct ftrace_func_probe	*probe;
3317 	struct ftrace_func_entry	*probe_entry;
3318 	struct trace_parser		parser;
3319 	struct ftrace_hash		*hash;
3320 	struct ftrace_ops		*ops;
3321 	struct trace_array		*tr;
3322 	struct list_head		*mod_list;
3323 	int				pidx;
3324 	int				idx;
3325 	unsigned			flags;
3326 };
3327 
3328 static void *
3329 t_probe_next(struct seq_file *m, loff_t *pos)
3330 {
3331 	struct ftrace_iterator *iter = m->private;
3332 	struct trace_array *tr = iter->ops->private;
3333 	struct list_head *func_probes;
3334 	struct ftrace_hash *hash;
3335 	struct list_head *next;
3336 	struct hlist_node *hnd = NULL;
3337 	struct hlist_head *hhd;
3338 	int size;
3339 
3340 	(*pos)++;
3341 	iter->pos = *pos;
3342 
3343 	if (!tr)
3344 		return NULL;
3345 
3346 	func_probes = &tr->func_probes;
3347 	if (list_empty(func_probes))
3348 		return NULL;
3349 
3350 	if (!iter->probe) {
3351 		next = func_probes->next;
3352 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3353 	}
3354 
3355 	if (iter->probe_entry)
3356 		hnd = &iter->probe_entry->hlist;
3357 
3358 	hash = iter->probe->ops.func_hash->filter_hash;
3359 
3360 	/*
3361 	 * A probe being registered may temporarily have an empty hash
3362 	 * and it's at the end of the func_probes list.
3363 	 */
3364 	if (!hash || hash == EMPTY_HASH)
3365 		return NULL;
3366 
3367 	size = 1 << hash->size_bits;
3368 
3369  retry:
3370 	if (iter->pidx >= size) {
3371 		if (iter->probe->list.next == func_probes)
3372 			return NULL;
3373 		next = iter->probe->list.next;
3374 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3375 		hash = iter->probe->ops.func_hash->filter_hash;
3376 		size = 1 << hash->size_bits;
3377 		iter->pidx = 0;
3378 	}
3379 
3380 	hhd = &hash->buckets[iter->pidx];
3381 
3382 	if (hlist_empty(hhd)) {
3383 		iter->pidx++;
3384 		hnd = NULL;
3385 		goto retry;
3386 	}
3387 
3388 	if (!hnd)
3389 		hnd = hhd->first;
3390 	else {
3391 		hnd = hnd->next;
3392 		if (!hnd) {
3393 			iter->pidx++;
3394 			goto retry;
3395 		}
3396 	}
3397 
3398 	if (WARN_ON_ONCE(!hnd))
3399 		return NULL;
3400 
3401 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3402 
3403 	return iter;
3404 }
3405 
3406 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3407 {
3408 	struct ftrace_iterator *iter = m->private;
3409 	void *p = NULL;
3410 	loff_t l;
3411 
3412 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3413 		return NULL;
3414 
3415 	if (iter->mod_pos > *pos)
3416 		return NULL;
3417 
3418 	iter->probe = NULL;
3419 	iter->probe_entry = NULL;
3420 	iter->pidx = 0;
3421 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3422 		p = t_probe_next(m, &l);
3423 		if (!p)
3424 			break;
3425 	}
3426 	if (!p)
3427 		return NULL;
3428 
3429 	/* Only set this if we have an item */
3430 	iter->flags |= FTRACE_ITER_PROBE;
3431 
3432 	return iter;
3433 }
3434 
3435 static int
3436 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3437 {
3438 	struct ftrace_func_entry *probe_entry;
3439 	struct ftrace_probe_ops *probe_ops;
3440 	struct ftrace_func_probe *probe;
3441 
3442 	probe = iter->probe;
3443 	probe_entry = iter->probe_entry;
3444 
3445 	if (WARN_ON_ONCE(!probe || !probe_entry))
3446 		return -EIO;
3447 
3448 	probe_ops = probe->probe_ops;
3449 
3450 	if (probe_ops->print)
3451 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3452 
3453 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3454 		   (void *)probe_ops->func);
3455 
3456 	return 0;
3457 }
3458 
3459 static void *
3460 t_mod_next(struct seq_file *m, loff_t *pos)
3461 {
3462 	struct ftrace_iterator *iter = m->private;
3463 	struct trace_array *tr = iter->tr;
3464 
3465 	(*pos)++;
3466 	iter->pos = *pos;
3467 
3468 	iter->mod_list = iter->mod_list->next;
3469 
3470 	if (iter->mod_list == &tr->mod_trace ||
3471 	    iter->mod_list == &tr->mod_notrace) {
3472 		iter->flags &= ~FTRACE_ITER_MOD;
3473 		return NULL;
3474 	}
3475 
3476 	iter->mod_pos = *pos;
3477 
3478 	return iter;
3479 }
3480 
3481 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3482 {
3483 	struct ftrace_iterator *iter = m->private;
3484 	void *p = NULL;
3485 	loff_t l;
3486 
3487 	if (iter->func_pos > *pos)
3488 		return NULL;
3489 
3490 	iter->mod_pos = iter->func_pos;
3491 
3492 	/* probes are only available if tr is set */
3493 	if (!iter->tr)
3494 		return NULL;
3495 
3496 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3497 		p = t_mod_next(m, &l);
3498 		if (!p)
3499 			break;
3500 	}
3501 	if (!p) {
3502 		iter->flags &= ~FTRACE_ITER_MOD;
3503 		return t_probe_start(m, pos);
3504 	}
3505 
3506 	/* Only set this if we have an item */
3507 	iter->flags |= FTRACE_ITER_MOD;
3508 
3509 	return iter;
3510 }
3511 
3512 static int
3513 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3514 {
3515 	struct ftrace_mod_load *ftrace_mod;
3516 	struct trace_array *tr = iter->tr;
3517 
3518 	if (WARN_ON_ONCE(!iter->mod_list) ||
3519 			 iter->mod_list == &tr->mod_trace ||
3520 			 iter->mod_list == &tr->mod_notrace)
3521 		return -EIO;
3522 
3523 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3524 
3525 	if (ftrace_mod->func)
3526 		seq_printf(m, "%s", ftrace_mod->func);
3527 	else
3528 		seq_putc(m, '*');
3529 
3530 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3531 
3532 	return 0;
3533 }
3534 
3535 static void *
3536 t_func_next(struct seq_file *m, loff_t *pos)
3537 {
3538 	struct ftrace_iterator *iter = m->private;
3539 	struct dyn_ftrace *rec = NULL;
3540 
3541 	(*pos)++;
3542 
3543  retry:
3544 	if (iter->idx >= iter->pg->index) {
3545 		if (iter->pg->next) {
3546 			iter->pg = iter->pg->next;
3547 			iter->idx = 0;
3548 			goto retry;
3549 		}
3550 	} else {
3551 		rec = &iter->pg->records[iter->idx++];
3552 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3553 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3554 
3555 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3556 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3557 
3558 			rec = NULL;
3559 			goto retry;
3560 		}
3561 	}
3562 
3563 	if (!rec)
3564 		return NULL;
3565 
3566 	iter->pos = iter->func_pos = *pos;
3567 	iter->func = rec;
3568 
3569 	return iter;
3570 }
3571 
3572 static void *
3573 t_next(struct seq_file *m, void *v, loff_t *pos)
3574 {
3575 	struct ftrace_iterator *iter = m->private;
3576 	loff_t l = *pos; /* t_probe_start() must use original pos */
3577 	void *ret;
3578 
3579 	if (unlikely(ftrace_disabled))
3580 		return NULL;
3581 
3582 	if (iter->flags & FTRACE_ITER_PROBE)
3583 		return t_probe_next(m, pos);
3584 
3585 	if (iter->flags & FTRACE_ITER_MOD)
3586 		return t_mod_next(m, pos);
3587 
3588 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3589 		/* next must increment pos, and t_probe_start does not */
3590 		(*pos)++;
3591 		return t_mod_start(m, &l);
3592 	}
3593 
3594 	ret = t_func_next(m, pos);
3595 
3596 	if (!ret)
3597 		return t_mod_start(m, &l);
3598 
3599 	return ret;
3600 }
3601 
3602 static void reset_iter_read(struct ftrace_iterator *iter)
3603 {
3604 	iter->pos = 0;
3605 	iter->func_pos = 0;
3606 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3607 }
3608 
3609 static void *t_start(struct seq_file *m, loff_t *pos)
3610 {
3611 	struct ftrace_iterator *iter = m->private;
3612 	void *p = NULL;
3613 	loff_t l;
3614 
3615 	mutex_lock(&ftrace_lock);
3616 
3617 	if (unlikely(ftrace_disabled))
3618 		return NULL;
3619 
3620 	/*
3621 	 * If an lseek was done, then reset and start from beginning.
3622 	 */
3623 	if (*pos < iter->pos)
3624 		reset_iter_read(iter);
3625 
3626 	/*
3627 	 * For set_ftrace_filter reading, if we have the filter
3628 	 * off, we can short cut and just print out that all
3629 	 * functions are enabled.
3630 	 */
3631 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3632 	    ftrace_hash_empty(iter->hash)) {
3633 		iter->func_pos = 1; /* Account for the message */
3634 		if (*pos > 0)
3635 			return t_mod_start(m, pos);
3636 		iter->flags |= FTRACE_ITER_PRINTALL;
3637 		/* reset in case of seek/pread */
3638 		iter->flags &= ~FTRACE_ITER_PROBE;
3639 		return iter;
3640 	}
3641 
3642 	if (iter->flags & FTRACE_ITER_MOD)
3643 		return t_mod_start(m, pos);
3644 
3645 	/*
3646 	 * Unfortunately, we need to restart at ftrace_pages_start
3647 	 * every time we let go of the ftrace_mutex. This is because
3648 	 * those pointers can change without the lock.
3649 	 */
3650 	iter->pg = ftrace_pages_start;
3651 	iter->idx = 0;
3652 	for (l = 0; l <= *pos; ) {
3653 		p = t_func_next(m, &l);
3654 		if (!p)
3655 			break;
3656 	}
3657 
3658 	if (!p)
3659 		return t_mod_start(m, pos);
3660 
3661 	return iter;
3662 }
3663 
3664 static void t_stop(struct seq_file *m, void *p)
3665 {
3666 	mutex_unlock(&ftrace_lock);
3667 }
3668 
3669 void * __weak
3670 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3671 {
3672 	return NULL;
3673 }
3674 
3675 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3676 				struct dyn_ftrace *rec)
3677 {
3678 	void *ptr;
3679 
3680 	ptr = arch_ftrace_trampoline_func(ops, rec);
3681 	if (ptr)
3682 		seq_printf(m, " ->%pS", ptr);
3683 }
3684 
3685 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3686 /*
3687  * Weak functions can still have an mcount/fentry that is saved in
3688  * the __mcount_loc section. These can be detected by having a
3689  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3690  * symbol found by kallsyms is not the function that the mcount/fentry
3691  * is part of. The offset is much greater in these cases.
3692  *
3693  * Test the record to make sure that the ip points to a valid kallsyms
3694  * and if not, mark it disabled.
3695  */
3696 static int test_for_valid_rec(struct dyn_ftrace *rec)
3697 {
3698 	char str[KSYM_SYMBOL_LEN];
3699 	unsigned long offset;
3700 	const char *ret;
3701 
3702 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3703 
3704 	/* Weak functions can cause invalid addresses */
3705 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3706 		rec->flags |= FTRACE_FL_DISABLED;
3707 		return 0;
3708 	}
3709 	return 1;
3710 }
3711 
3712 static struct workqueue_struct *ftrace_check_wq __initdata;
3713 static struct work_struct ftrace_check_work __initdata;
3714 
3715 /*
3716  * Scan all the mcount/fentry entries to make sure they are valid.
3717  */
3718 static __init void ftrace_check_work_func(struct work_struct *work)
3719 {
3720 	struct ftrace_page *pg;
3721 	struct dyn_ftrace *rec;
3722 
3723 	mutex_lock(&ftrace_lock);
3724 	do_for_each_ftrace_rec(pg, rec) {
3725 		test_for_valid_rec(rec);
3726 	} while_for_each_ftrace_rec();
3727 	mutex_unlock(&ftrace_lock);
3728 }
3729 
3730 static int __init ftrace_check_for_weak_functions(void)
3731 {
3732 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3733 
3734 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3735 
3736 	queue_work(ftrace_check_wq, &ftrace_check_work);
3737 	return 0;
3738 }
3739 
3740 static int __init ftrace_check_sync(void)
3741 {
3742 	/* Make sure the ftrace_check updates are finished */
3743 	if (ftrace_check_wq)
3744 		destroy_workqueue(ftrace_check_wq);
3745 	return 0;
3746 }
3747 
3748 late_initcall_sync(ftrace_check_sync);
3749 subsys_initcall(ftrace_check_for_weak_functions);
3750 
3751 static int print_rec(struct seq_file *m, unsigned long ip)
3752 {
3753 	unsigned long offset;
3754 	char str[KSYM_SYMBOL_LEN];
3755 	char *modname;
3756 	const char *ret;
3757 
3758 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3759 	/* Weak functions can cause invalid addresses */
3760 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3761 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3762 			 FTRACE_INVALID_FUNCTION, offset);
3763 		ret = NULL;
3764 	}
3765 
3766 	seq_puts(m, str);
3767 	if (modname)
3768 		seq_printf(m, " [%s]", modname);
3769 	return ret == NULL ? -1 : 0;
3770 }
3771 #else
3772 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3773 {
3774 	return 1;
3775 }
3776 
3777 static inline int print_rec(struct seq_file *m, unsigned long ip)
3778 {
3779 	seq_printf(m, "%ps", (void *)ip);
3780 	return 0;
3781 }
3782 #endif
3783 
3784 static int t_show(struct seq_file *m, void *v)
3785 {
3786 	struct ftrace_iterator *iter = m->private;
3787 	struct dyn_ftrace *rec;
3788 
3789 	if (iter->flags & FTRACE_ITER_PROBE)
3790 		return t_probe_show(m, iter);
3791 
3792 	if (iter->flags & FTRACE_ITER_MOD)
3793 		return t_mod_show(m, iter);
3794 
3795 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3796 		if (iter->flags & FTRACE_ITER_NOTRACE)
3797 			seq_puts(m, "#### no functions disabled ####\n");
3798 		else
3799 			seq_puts(m, "#### all functions enabled ####\n");
3800 		return 0;
3801 	}
3802 
3803 	rec = iter->func;
3804 
3805 	if (!rec)
3806 		return 0;
3807 
3808 	if (print_rec(m, rec->ip)) {
3809 		/* This should only happen when a rec is disabled */
3810 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3811 		seq_putc(m, '\n');
3812 		return 0;
3813 	}
3814 
3815 	if (iter->flags & FTRACE_ITER_ENABLED) {
3816 		struct ftrace_ops *ops;
3817 
3818 		seq_printf(m, " (%ld)%s%s%s",
3819 			   ftrace_rec_count(rec),
3820 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3821 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3822 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3823 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3824 			ops = ftrace_find_tramp_ops_any(rec);
3825 			if (ops) {
3826 				do {
3827 					seq_printf(m, "\ttramp: %pS (%pS)",
3828 						   (void *)ops->trampoline,
3829 						   (void *)ops->func);
3830 					add_trampoline_func(m, ops, rec);
3831 					ops = ftrace_find_tramp_ops_next(rec, ops);
3832 				} while (ops);
3833 			} else
3834 				seq_puts(m, "\ttramp: ERROR!");
3835 		} else {
3836 			add_trampoline_func(m, NULL, rec);
3837 		}
3838 		if (rec->flags & FTRACE_FL_DIRECT) {
3839 			unsigned long direct;
3840 
3841 			direct = ftrace_find_rec_direct(rec->ip);
3842 			if (direct)
3843 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3844 		}
3845 	}
3846 
3847 	seq_putc(m, '\n');
3848 
3849 	return 0;
3850 }
3851 
3852 static const struct seq_operations show_ftrace_seq_ops = {
3853 	.start = t_start,
3854 	.next = t_next,
3855 	.stop = t_stop,
3856 	.show = t_show,
3857 };
3858 
3859 static int
3860 ftrace_avail_open(struct inode *inode, struct file *file)
3861 {
3862 	struct ftrace_iterator *iter;
3863 	int ret;
3864 
3865 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3866 	if (ret)
3867 		return ret;
3868 
3869 	if (unlikely(ftrace_disabled))
3870 		return -ENODEV;
3871 
3872 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3873 	if (!iter)
3874 		return -ENOMEM;
3875 
3876 	iter->pg = ftrace_pages_start;
3877 	iter->ops = &global_ops;
3878 
3879 	return 0;
3880 }
3881 
3882 static int
3883 ftrace_enabled_open(struct inode *inode, struct file *file)
3884 {
3885 	struct ftrace_iterator *iter;
3886 
3887 	/*
3888 	 * This shows us what functions are currently being
3889 	 * traced and by what. Not sure if we want lockdown
3890 	 * to hide such critical information for an admin.
3891 	 * Although, perhaps it can show information we don't
3892 	 * want people to see, but if something is tracing
3893 	 * something, we probably want to know about it.
3894 	 */
3895 
3896 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3897 	if (!iter)
3898 		return -ENOMEM;
3899 
3900 	iter->pg = ftrace_pages_start;
3901 	iter->flags = FTRACE_ITER_ENABLED;
3902 	iter->ops = &global_ops;
3903 
3904 	return 0;
3905 }
3906 
3907 /**
3908  * ftrace_regex_open - initialize function tracer filter files
3909  * @ops: The ftrace_ops that hold the hash filters
3910  * @flag: The type of filter to process
3911  * @inode: The inode, usually passed in to your open routine
3912  * @file: The file, usually passed in to your open routine
3913  *
3914  * ftrace_regex_open() initializes the filter files for the
3915  * @ops. Depending on @flag it may process the filter hash or
3916  * the notrace hash of @ops. With this called from the open
3917  * routine, you can use ftrace_filter_write() for the write
3918  * routine if @flag has FTRACE_ITER_FILTER set, or
3919  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3920  * tracing_lseek() should be used as the lseek routine, and
3921  * release must call ftrace_regex_release().
3922  */
3923 int
3924 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3925 		  struct inode *inode, struct file *file)
3926 {
3927 	struct ftrace_iterator *iter;
3928 	struct ftrace_hash *hash;
3929 	struct list_head *mod_head;
3930 	struct trace_array *tr = ops->private;
3931 	int ret = -ENOMEM;
3932 
3933 	ftrace_ops_init(ops);
3934 
3935 	if (unlikely(ftrace_disabled))
3936 		return -ENODEV;
3937 
3938 	if (tracing_check_open_get_tr(tr))
3939 		return -ENODEV;
3940 
3941 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3942 	if (!iter)
3943 		goto out;
3944 
3945 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3946 		goto out;
3947 
3948 	iter->ops = ops;
3949 	iter->flags = flag;
3950 	iter->tr = tr;
3951 
3952 	mutex_lock(&ops->func_hash->regex_lock);
3953 
3954 	if (flag & FTRACE_ITER_NOTRACE) {
3955 		hash = ops->func_hash->notrace_hash;
3956 		mod_head = tr ? &tr->mod_notrace : NULL;
3957 	} else {
3958 		hash = ops->func_hash->filter_hash;
3959 		mod_head = tr ? &tr->mod_trace : NULL;
3960 	}
3961 
3962 	iter->mod_list = mod_head;
3963 
3964 	if (file->f_mode & FMODE_WRITE) {
3965 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3966 
3967 		if (file->f_flags & O_TRUNC) {
3968 			iter->hash = alloc_ftrace_hash(size_bits);
3969 			clear_ftrace_mod_list(mod_head);
3970 	        } else {
3971 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3972 		}
3973 
3974 		if (!iter->hash) {
3975 			trace_parser_put(&iter->parser);
3976 			goto out_unlock;
3977 		}
3978 	} else
3979 		iter->hash = hash;
3980 
3981 	ret = 0;
3982 
3983 	if (file->f_mode & FMODE_READ) {
3984 		iter->pg = ftrace_pages_start;
3985 
3986 		ret = seq_open(file, &show_ftrace_seq_ops);
3987 		if (!ret) {
3988 			struct seq_file *m = file->private_data;
3989 			m->private = iter;
3990 		} else {
3991 			/* Failed */
3992 			free_ftrace_hash(iter->hash);
3993 			trace_parser_put(&iter->parser);
3994 		}
3995 	} else
3996 		file->private_data = iter;
3997 
3998  out_unlock:
3999 	mutex_unlock(&ops->func_hash->regex_lock);
4000 
4001  out:
4002 	if (ret) {
4003 		kfree(iter);
4004 		if (tr)
4005 			trace_array_put(tr);
4006 	}
4007 
4008 	return ret;
4009 }
4010 
4011 static int
4012 ftrace_filter_open(struct inode *inode, struct file *file)
4013 {
4014 	struct ftrace_ops *ops = inode->i_private;
4015 
4016 	/* Checks for tracefs lockdown */
4017 	return ftrace_regex_open(ops,
4018 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
4019 			inode, file);
4020 }
4021 
4022 static int
4023 ftrace_notrace_open(struct inode *inode, struct file *file)
4024 {
4025 	struct ftrace_ops *ops = inode->i_private;
4026 
4027 	/* Checks for tracefs lockdown */
4028 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
4029 				 inode, file);
4030 }
4031 
4032 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
4033 struct ftrace_glob {
4034 	char *search;
4035 	unsigned len;
4036 	int type;
4037 };
4038 
4039 /*
4040  * If symbols in an architecture don't correspond exactly to the user-visible
4041  * name of what they represent, it is possible to define this function to
4042  * perform the necessary adjustments.
4043 */
4044 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
4045 {
4046 	return str;
4047 }
4048 
4049 static int ftrace_match(char *str, struct ftrace_glob *g)
4050 {
4051 	int matched = 0;
4052 	int slen;
4053 
4054 	str = arch_ftrace_match_adjust(str, g->search);
4055 
4056 	switch (g->type) {
4057 	case MATCH_FULL:
4058 		if (strcmp(str, g->search) == 0)
4059 			matched = 1;
4060 		break;
4061 	case MATCH_FRONT_ONLY:
4062 		if (strncmp(str, g->search, g->len) == 0)
4063 			matched = 1;
4064 		break;
4065 	case MATCH_MIDDLE_ONLY:
4066 		if (strstr(str, g->search))
4067 			matched = 1;
4068 		break;
4069 	case MATCH_END_ONLY:
4070 		slen = strlen(str);
4071 		if (slen >= g->len &&
4072 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4073 			matched = 1;
4074 		break;
4075 	case MATCH_GLOB:
4076 		if (glob_match(g->search, str))
4077 			matched = 1;
4078 		break;
4079 	}
4080 
4081 	return matched;
4082 }
4083 
4084 static int
4085 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4086 {
4087 	struct ftrace_func_entry *entry;
4088 	int ret = 0;
4089 
4090 	entry = ftrace_lookup_ip(hash, rec->ip);
4091 	if (clear_filter) {
4092 		/* Do nothing if it doesn't exist */
4093 		if (!entry)
4094 			return 0;
4095 
4096 		free_hash_entry(hash, entry);
4097 	} else {
4098 		/* Do nothing if it exists */
4099 		if (entry)
4100 			return 0;
4101 
4102 		ret = add_hash_entry(hash, rec->ip);
4103 	}
4104 	return ret;
4105 }
4106 
4107 static int
4108 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4109 		 int clear_filter)
4110 {
4111 	long index = simple_strtoul(func_g->search, NULL, 0);
4112 	struct ftrace_page *pg;
4113 	struct dyn_ftrace *rec;
4114 
4115 	/* The index starts at 1 */
4116 	if (--index < 0)
4117 		return 0;
4118 
4119 	do_for_each_ftrace_rec(pg, rec) {
4120 		if (pg->index <= index) {
4121 			index -= pg->index;
4122 			/* this is a double loop, break goes to the next page */
4123 			break;
4124 		}
4125 		rec = &pg->records[index];
4126 		enter_record(hash, rec, clear_filter);
4127 		return 1;
4128 	} while_for_each_ftrace_rec();
4129 	return 0;
4130 }
4131 
4132 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4133 static int lookup_ip(unsigned long ip, char **modname, char *str)
4134 {
4135 	unsigned long offset;
4136 
4137 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4138 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4139 		return -1;
4140 	return 0;
4141 }
4142 #else
4143 static int lookup_ip(unsigned long ip, char **modname, char *str)
4144 {
4145 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4146 	return 0;
4147 }
4148 #endif
4149 
4150 static int
4151 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4152 		struct ftrace_glob *mod_g, int exclude_mod)
4153 {
4154 	char str[KSYM_SYMBOL_LEN];
4155 	char *modname;
4156 
4157 	if (lookup_ip(rec->ip, &modname, str)) {
4158 		/* This should only happen when a rec is disabled */
4159 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4160 			     !(rec->flags & FTRACE_FL_DISABLED));
4161 		return 0;
4162 	}
4163 
4164 	if (mod_g) {
4165 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4166 
4167 		/* blank module name to match all modules */
4168 		if (!mod_g->len) {
4169 			/* blank module globbing: modname xor exclude_mod */
4170 			if (!exclude_mod != !modname)
4171 				goto func_match;
4172 			return 0;
4173 		}
4174 
4175 		/*
4176 		 * exclude_mod is set to trace everything but the given
4177 		 * module. If it is set and the module matches, then
4178 		 * return 0. If it is not set, and the module doesn't match
4179 		 * also return 0. Otherwise, check the function to see if
4180 		 * that matches.
4181 		 */
4182 		if (!mod_matches == !exclude_mod)
4183 			return 0;
4184 func_match:
4185 		/* blank search means to match all funcs in the mod */
4186 		if (!func_g->len)
4187 			return 1;
4188 	}
4189 
4190 	return ftrace_match(str, func_g);
4191 }
4192 
4193 static int
4194 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4195 {
4196 	struct ftrace_page *pg;
4197 	struct dyn_ftrace *rec;
4198 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4199 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4200 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4201 	int exclude_mod = 0;
4202 	int found = 0;
4203 	int ret;
4204 	int clear_filter = 0;
4205 
4206 	if (func) {
4207 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4208 						 &clear_filter);
4209 		func_g.len = strlen(func_g.search);
4210 	}
4211 
4212 	if (mod) {
4213 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4214 				&mod_g.search, &exclude_mod);
4215 		mod_g.len = strlen(mod_g.search);
4216 	}
4217 
4218 	mutex_lock(&ftrace_lock);
4219 
4220 	if (unlikely(ftrace_disabled))
4221 		goto out_unlock;
4222 
4223 	if (func_g.type == MATCH_INDEX) {
4224 		found = add_rec_by_index(hash, &func_g, clear_filter);
4225 		goto out_unlock;
4226 	}
4227 
4228 	do_for_each_ftrace_rec(pg, rec) {
4229 
4230 		if (rec->flags & FTRACE_FL_DISABLED)
4231 			continue;
4232 
4233 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4234 			ret = enter_record(hash, rec, clear_filter);
4235 			if (ret < 0) {
4236 				found = ret;
4237 				goto out_unlock;
4238 			}
4239 			found = 1;
4240 		}
4241 	} while_for_each_ftrace_rec();
4242  out_unlock:
4243 	mutex_unlock(&ftrace_lock);
4244 
4245 	return found;
4246 }
4247 
4248 static int
4249 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4250 {
4251 	return match_records(hash, buff, len, NULL);
4252 }
4253 
4254 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4255 				   struct ftrace_ops_hash *old_hash)
4256 {
4257 	struct ftrace_ops *op;
4258 
4259 	if (!ftrace_enabled)
4260 		return;
4261 
4262 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4263 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4264 		return;
4265 	}
4266 
4267 	/*
4268 	 * If this is the shared global_ops filter, then we need to
4269 	 * check if there is another ops that shares it, is enabled.
4270 	 * If so, we still need to run the modify code.
4271 	 */
4272 	if (ops->func_hash != &global_ops.local_hash)
4273 		return;
4274 
4275 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4276 		if (op->func_hash == &global_ops.local_hash &&
4277 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4278 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4279 			/* Only need to do this once */
4280 			return;
4281 		}
4282 	} while_for_each_ftrace_op(op);
4283 }
4284 
4285 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4286 					   struct ftrace_hash **orig_hash,
4287 					   struct ftrace_hash *hash,
4288 					   int enable)
4289 {
4290 	struct ftrace_ops_hash old_hash_ops;
4291 	struct ftrace_hash *old_hash;
4292 	int ret;
4293 
4294 	old_hash = *orig_hash;
4295 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4296 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4297 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4298 	if (!ret) {
4299 		ftrace_ops_update_code(ops, &old_hash_ops);
4300 		free_ftrace_hash_rcu(old_hash);
4301 	}
4302 	return ret;
4303 }
4304 
4305 static bool module_exists(const char *module)
4306 {
4307 	/* All modules have the symbol __this_module */
4308 	static const char this_mod[] = "__this_module";
4309 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4310 	unsigned long val;
4311 	int n;
4312 
4313 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4314 
4315 	if (n > sizeof(modname) - 1)
4316 		return false;
4317 
4318 	val = module_kallsyms_lookup_name(modname);
4319 	return val != 0;
4320 }
4321 
4322 static int cache_mod(struct trace_array *tr,
4323 		     const char *func, char *module, int enable)
4324 {
4325 	struct ftrace_mod_load *ftrace_mod, *n;
4326 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4327 	int ret;
4328 
4329 	mutex_lock(&ftrace_lock);
4330 
4331 	/* We do not cache inverse filters */
4332 	if (func[0] == '!') {
4333 		func++;
4334 		ret = -EINVAL;
4335 
4336 		/* Look to remove this hash */
4337 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4338 			if (strcmp(ftrace_mod->module, module) != 0)
4339 				continue;
4340 
4341 			/* no func matches all */
4342 			if (strcmp(func, "*") == 0 ||
4343 			    (ftrace_mod->func &&
4344 			     strcmp(ftrace_mod->func, func) == 0)) {
4345 				ret = 0;
4346 				free_ftrace_mod(ftrace_mod);
4347 				continue;
4348 			}
4349 		}
4350 		goto out;
4351 	}
4352 
4353 	ret = -EINVAL;
4354 	/* We only care about modules that have not been loaded yet */
4355 	if (module_exists(module))
4356 		goto out;
4357 
4358 	/* Save this string off, and execute it when the module is loaded */
4359 	ret = ftrace_add_mod(tr, func, module, enable);
4360  out:
4361 	mutex_unlock(&ftrace_lock);
4362 
4363 	return ret;
4364 }
4365 
4366 static int
4367 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4368 		 int reset, int enable);
4369 
4370 #ifdef CONFIG_MODULES
4371 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4372 			     char *mod, bool enable)
4373 {
4374 	struct ftrace_mod_load *ftrace_mod, *n;
4375 	struct ftrace_hash **orig_hash, *new_hash;
4376 	LIST_HEAD(process_mods);
4377 	char *func;
4378 
4379 	mutex_lock(&ops->func_hash->regex_lock);
4380 
4381 	if (enable)
4382 		orig_hash = &ops->func_hash->filter_hash;
4383 	else
4384 		orig_hash = &ops->func_hash->notrace_hash;
4385 
4386 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4387 					      *orig_hash);
4388 	if (!new_hash)
4389 		goto out; /* warn? */
4390 
4391 	mutex_lock(&ftrace_lock);
4392 
4393 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4394 
4395 		if (strcmp(ftrace_mod->module, mod) != 0)
4396 			continue;
4397 
4398 		if (ftrace_mod->func)
4399 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4400 		else
4401 			func = kstrdup("*", GFP_KERNEL);
4402 
4403 		if (!func) /* warn? */
4404 			continue;
4405 
4406 		list_move(&ftrace_mod->list, &process_mods);
4407 
4408 		/* Use the newly allocated func, as it may be "*" */
4409 		kfree(ftrace_mod->func);
4410 		ftrace_mod->func = func;
4411 	}
4412 
4413 	mutex_unlock(&ftrace_lock);
4414 
4415 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4416 
4417 		func = ftrace_mod->func;
4418 
4419 		/* Grabs ftrace_lock, which is why we have this extra step */
4420 		match_records(new_hash, func, strlen(func), mod);
4421 		free_ftrace_mod(ftrace_mod);
4422 	}
4423 
4424 	if (enable && list_empty(head))
4425 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4426 
4427 	mutex_lock(&ftrace_lock);
4428 
4429 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4430 					      new_hash, enable);
4431 	mutex_unlock(&ftrace_lock);
4432 
4433  out:
4434 	mutex_unlock(&ops->func_hash->regex_lock);
4435 
4436 	free_ftrace_hash(new_hash);
4437 }
4438 
4439 static void process_cached_mods(const char *mod_name)
4440 {
4441 	struct trace_array *tr;
4442 	char *mod;
4443 
4444 	mod = kstrdup(mod_name, GFP_KERNEL);
4445 	if (!mod)
4446 		return;
4447 
4448 	mutex_lock(&trace_types_lock);
4449 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4450 		if (!list_empty(&tr->mod_trace))
4451 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4452 		if (!list_empty(&tr->mod_notrace))
4453 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4454 	}
4455 	mutex_unlock(&trace_types_lock);
4456 
4457 	kfree(mod);
4458 }
4459 #endif
4460 
4461 /*
4462  * We register the module command as a template to show others how
4463  * to register the a command as well.
4464  */
4465 
4466 static int
4467 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4468 		    char *func_orig, char *cmd, char *module, int enable)
4469 {
4470 	char *func;
4471 	int ret;
4472 
4473 	/* match_records() modifies func, and we need the original */
4474 	func = kstrdup(func_orig, GFP_KERNEL);
4475 	if (!func)
4476 		return -ENOMEM;
4477 
4478 	/*
4479 	 * cmd == 'mod' because we only registered this func
4480 	 * for the 'mod' ftrace_func_command.
4481 	 * But if you register one func with multiple commands,
4482 	 * you can tell which command was used by the cmd
4483 	 * parameter.
4484 	 */
4485 	ret = match_records(hash, func, strlen(func), module);
4486 	kfree(func);
4487 
4488 	if (!ret)
4489 		return cache_mod(tr, func_orig, module, enable);
4490 	if (ret < 0)
4491 		return ret;
4492 	return 0;
4493 }
4494 
4495 static struct ftrace_func_command ftrace_mod_cmd = {
4496 	.name			= "mod",
4497 	.func			= ftrace_mod_callback,
4498 };
4499 
4500 static int __init ftrace_mod_cmd_init(void)
4501 {
4502 	return register_ftrace_command(&ftrace_mod_cmd);
4503 }
4504 core_initcall(ftrace_mod_cmd_init);
4505 
4506 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4507 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4508 {
4509 	struct ftrace_probe_ops *probe_ops;
4510 	struct ftrace_func_probe *probe;
4511 
4512 	probe = container_of(op, struct ftrace_func_probe, ops);
4513 	probe_ops = probe->probe_ops;
4514 
4515 	/*
4516 	 * Disable preemption for these calls to prevent a RCU grace
4517 	 * period. This syncs the hash iteration and freeing of items
4518 	 * on the hash. rcu_read_lock is too dangerous here.
4519 	 */
4520 	preempt_disable_notrace();
4521 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4522 	preempt_enable_notrace();
4523 }
4524 
4525 struct ftrace_func_map {
4526 	struct ftrace_func_entry	entry;
4527 	void				*data;
4528 };
4529 
4530 struct ftrace_func_mapper {
4531 	struct ftrace_hash		hash;
4532 };
4533 
4534 /**
4535  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4536  *
4537  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4538  */
4539 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4540 {
4541 	struct ftrace_hash *hash;
4542 
4543 	/*
4544 	 * The mapper is simply a ftrace_hash, but since the entries
4545 	 * in the hash are not ftrace_func_entry type, we define it
4546 	 * as a separate structure.
4547 	 */
4548 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4549 	return (struct ftrace_func_mapper *)hash;
4550 }
4551 
4552 /**
4553  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4554  * @mapper: The mapper that has the ip maps
4555  * @ip: the instruction pointer to find the data for
4556  *
4557  * Returns the data mapped to @ip if found otherwise NULL. The return
4558  * is actually the address of the mapper data pointer. The address is
4559  * returned for use cases where the data is no bigger than a long, and
4560  * the user can use the data pointer as its data instead of having to
4561  * allocate more memory for the reference.
4562  */
4563 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4564 				  unsigned long ip)
4565 {
4566 	struct ftrace_func_entry *entry;
4567 	struct ftrace_func_map *map;
4568 
4569 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4570 	if (!entry)
4571 		return NULL;
4572 
4573 	map = (struct ftrace_func_map *)entry;
4574 	return &map->data;
4575 }
4576 
4577 /**
4578  * ftrace_func_mapper_add_ip - Map some data to an ip
4579  * @mapper: The mapper that has the ip maps
4580  * @ip: The instruction pointer address to map @data to
4581  * @data: The data to map to @ip
4582  *
4583  * Returns 0 on success otherwise an error.
4584  */
4585 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4586 			      unsigned long ip, void *data)
4587 {
4588 	struct ftrace_func_entry *entry;
4589 	struct ftrace_func_map *map;
4590 
4591 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4592 	if (entry)
4593 		return -EBUSY;
4594 
4595 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4596 	if (!map)
4597 		return -ENOMEM;
4598 
4599 	map->entry.ip = ip;
4600 	map->data = data;
4601 
4602 	__add_hash_entry(&mapper->hash, &map->entry);
4603 
4604 	return 0;
4605 }
4606 
4607 /**
4608  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4609  * @mapper: The mapper that has the ip maps
4610  * @ip: The instruction pointer address to remove the data from
4611  *
4612  * Returns the data if it is found, otherwise NULL.
4613  * Note, if the data pointer is used as the data itself, (see
4614  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4615  * if the data pointer was set to zero.
4616  */
4617 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4618 				   unsigned long ip)
4619 {
4620 	struct ftrace_func_entry *entry;
4621 	struct ftrace_func_map *map;
4622 	void *data;
4623 
4624 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4625 	if (!entry)
4626 		return NULL;
4627 
4628 	map = (struct ftrace_func_map *)entry;
4629 	data = map->data;
4630 
4631 	remove_hash_entry(&mapper->hash, entry);
4632 	kfree(entry);
4633 
4634 	return data;
4635 }
4636 
4637 /**
4638  * free_ftrace_func_mapper - free a mapping of ips and data
4639  * @mapper: The mapper that has the ip maps
4640  * @free_func: A function to be called on each data item.
4641  *
4642  * This is used to free the function mapper. The @free_func is optional
4643  * and can be used if the data needs to be freed as well.
4644  */
4645 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4646 			     ftrace_mapper_func free_func)
4647 {
4648 	struct ftrace_func_entry *entry;
4649 	struct ftrace_func_map *map;
4650 	struct hlist_head *hhd;
4651 	int size, i;
4652 
4653 	if (!mapper)
4654 		return;
4655 
4656 	if (free_func && mapper->hash.count) {
4657 		size = 1 << mapper->hash.size_bits;
4658 		for (i = 0; i < size; i++) {
4659 			hhd = &mapper->hash.buckets[i];
4660 			hlist_for_each_entry(entry, hhd, hlist) {
4661 				map = (struct ftrace_func_map *)entry;
4662 				free_func(map);
4663 			}
4664 		}
4665 	}
4666 	free_ftrace_hash(&mapper->hash);
4667 }
4668 
4669 static void release_probe(struct ftrace_func_probe *probe)
4670 {
4671 	struct ftrace_probe_ops *probe_ops;
4672 
4673 	mutex_lock(&ftrace_lock);
4674 
4675 	WARN_ON(probe->ref <= 0);
4676 
4677 	/* Subtract the ref that was used to protect this instance */
4678 	probe->ref--;
4679 
4680 	if (!probe->ref) {
4681 		probe_ops = probe->probe_ops;
4682 		/*
4683 		 * Sending zero as ip tells probe_ops to free
4684 		 * the probe->data itself
4685 		 */
4686 		if (probe_ops->free)
4687 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4688 		list_del(&probe->list);
4689 		kfree(probe);
4690 	}
4691 	mutex_unlock(&ftrace_lock);
4692 }
4693 
4694 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4695 {
4696 	/*
4697 	 * Add one ref to keep it from being freed when releasing the
4698 	 * ftrace_lock mutex.
4699 	 */
4700 	probe->ref++;
4701 }
4702 
4703 int
4704 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4705 			       struct ftrace_probe_ops *probe_ops,
4706 			       void *data)
4707 {
4708 	struct ftrace_func_probe *probe = NULL, *iter;
4709 	struct ftrace_func_entry *entry;
4710 	struct ftrace_hash **orig_hash;
4711 	struct ftrace_hash *old_hash;
4712 	struct ftrace_hash *hash;
4713 	int count = 0;
4714 	int size;
4715 	int ret;
4716 	int i;
4717 
4718 	if (WARN_ON(!tr))
4719 		return -EINVAL;
4720 
4721 	/* We do not support '!' for function probes */
4722 	if (WARN_ON(glob[0] == '!'))
4723 		return -EINVAL;
4724 
4725 
4726 	mutex_lock(&ftrace_lock);
4727 	/* Check if the probe_ops is already registered */
4728 	list_for_each_entry(iter, &tr->func_probes, list) {
4729 		if (iter->probe_ops == probe_ops) {
4730 			probe = iter;
4731 			break;
4732 		}
4733 	}
4734 	if (!probe) {
4735 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4736 		if (!probe) {
4737 			mutex_unlock(&ftrace_lock);
4738 			return -ENOMEM;
4739 		}
4740 		probe->probe_ops = probe_ops;
4741 		probe->ops.func = function_trace_probe_call;
4742 		probe->tr = tr;
4743 		ftrace_ops_init(&probe->ops);
4744 		list_add(&probe->list, &tr->func_probes);
4745 	}
4746 
4747 	acquire_probe_locked(probe);
4748 
4749 	mutex_unlock(&ftrace_lock);
4750 
4751 	/*
4752 	 * Note, there's a small window here that the func_hash->filter_hash
4753 	 * may be NULL or empty. Need to be careful when reading the loop.
4754 	 */
4755 	mutex_lock(&probe->ops.func_hash->regex_lock);
4756 
4757 	orig_hash = &probe->ops.func_hash->filter_hash;
4758 	old_hash = *orig_hash;
4759 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4760 
4761 	if (!hash) {
4762 		ret = -ENOMEM;
4763 		goto out;
4764 	}
4765 
4766 	ret = ftrace_match_records(hash, glob, strlen(glob));
4767 
4768 	/* Nothing found? */
4769 	if (!ret)
4770 		ret = -EINVAL;
4771 
4772 	if (ret < 0)
4773 		goto out;
4774 
4775 	size = 1 << hash->size_bits;
4776 	for (i = 0; i < size; i++) {
4777 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4778 			if (ftrace_lookup_ip(old_hash, entry->ip))
4779 				continue;
4780 			/*
4781 			 * The caller might want to do something special
4782 			 * for each function we find. We call the callback
4783 			 * to give the caller an opportunity to do so.
4784 			 */
4785 			if (probe_ops->init) {
4786 				ret = probe_ops->init(probe_ops, tr,
4787 						      entry->ip, data,
4788 						      &probe->data);
4789 				if (ret < 0) {
4790 					if (probe_ops->free && count)
4791 						probe_ops->free(probe_ops, tr,
4792 								0, probe->data);
4793 					probe->data = NULL;
4794 					goto out;
4795 				}
4796 			}
4797 			count++;
4798 		}
4799 	}
4800 
4801 	mutex_lock(&ftrace_lock);
4802 
4803 	if (!count) {
4804 		/* Nothing was added? */
4805 		ret = -EINVAL;
4806 		goto out_unlock;
4807 	}
4808 
4809 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4810 					      hash, 1);
4811 	if (ret < 0)
4812 		goto err_unlock;
4813 
4814 	/* One ref for each new function traced */
4815 	probe->ref += count;
4816 
4817 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4818 		ret = ftrace_startup(&probe->ops, 0);
4819 
4820  out_unlock:
4821 	mutex_unlock(&ftrace_lock);
4822 
4823 	if (!ret)
4824 		ret = count;
4825  out:
4826 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4827 	free_ftrace_hash(hash);
4828 
4829 	release_probe(probe);
4830 
4831 	return ret;
4832 
4833  err_unlock:
4834 	if (!probe_ops->free || !count)
4835 		goto out_unlock;
4836 
4837 	/* Failed to do the move, need to call the free functions */
4838 	for (i = 0; i < size; i++) {
4839 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4840 			if (ftrace_lookup_ip(old_hash, entry->ip))
4841 				continue;
4842 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4843 		}
4844 	}
4845 	goto out_unlock;
4846 }
4847 
4848 int
4849 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4850 				      struct ftrace_probe_ops *probe_ops)
4851 {
4852 	struct ftrace_func_probe *probe = NULL, *iter;
4853 	struct ftrace_ops_hash old_hash_ops;
4854 	struct ftrace_func_entry *entry;
4855 	struct ftrace_glob func_g;
4856 	struct ftrace_hash **orig_hash;
4857 	struct ftrace_hash *old_hash;
4858 	struct ftrace_hash *hash = NULL;
4859 	struct hlist_node *tmp;
4860 	struct hlist_head hhd;
4861 	char str[KSYM_SYMBOL_LEN];
4862 	int count = 0;
4863 	int i, ret = -ENODEV;
4864 	int size;
4865 
4866 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4867 		func_g.search = NULL;
4868 	else {
4869 		int not;
4870 
4871 		func_g.type = filter_parse_regex(glob, strlen(glob),
4872 						 &func_g.search, &not);
4873 		func_g.len = strlen(func_g.search);
4874 
4875 		/* we do not support '!' for function probes */
4876 		if (WARN_ON(not))
4877 			return -EINVAL;
4878 	}
4879 
4880 	mutex_lock(&ftrace_lock);
4881 	/* Check if the probe_ops is already registered */
4882 	list_for_each_entry(iter, &tr->func_probes, list) {
4883 		if (iter->probe_ops == probe_ops) {
4884 			probe = iter;
4885 			break;
4886 		}
4887 	}
4888 	if (!probe)
4889 		goto err_unlock_ftrace;
4890 
4891 	ret = -EINVAL;
4892 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4893 		goto err_unlock_ftrace;
4894 
4895 	acquire_probe_locked(probe);
4896 
4897 	mutex_unlock(&ftrace_lock);
4898 
4899 	mutex_lock(&probe->ops.func_hash->regex_lock);
4900 
4901 	orig_hash = &probe->ops.func_hash->filter_hash;
4902 	old_hash = *orig_hash;
4903 
4904 	if (ftrace_hash_empty(old_hash))
4905 		goto out_unlock;
4906 
4907 	old_hash_ops.filter_hash = old_hash;
4908 	/* Probes only have filters */
4909 	old_hash_ops.notrace_hash = NULL;
4910 
4911 	ret = -ENOMEM;
4912 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4913 	if (!hash)
4914 		goto out_unlock;
4915 
4916 	INIT_HLIST_HEAD(&hhd);
4917 
4918 	size = 1 << hash->size_bits;
4919 	for (i = 0; i < size; i++) {
4920 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4921 
4922 			if (func_g.search) {
4923 				kallsyms_lookup(entry->ip, NULL, NULL,
4924 						NULL, str);
4925 				if (!ftrace_match(str, &func_g))
4926 					continue;
4927 			}
4928 			count++;
4929 			remove_hash_entry(hash, entry);
4930 			hlist_add_head(&entry->hlist, &hhd);
4931 		}
4932 	}
4933 
4934 	/* Nothing found? */
4935 	if (!count) {
4936 		ret = -EINVAL;
4937 		goto out_unlock;
4938 	}
4939 
4940 	mutex_lock(&ftrace_lock);
4941 
4942 	WARN_ON(probe->ref < count);
4943 
4944 	probe->ref -= count;
4945 
4946 	if (ftrace_hash_empty(hash))
4947 		ftrace_shutdown(&probe->ops, 0);
4948 
4949 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4950 					      hash, 1);
4951 
4952 	/* still need to update the function call sites */
4953 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4954 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4955 				       &old_hash_ops);
4956 	synchronize_rcu();
4957 
4958 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4959 		hlist_del(&entry->hlist);
4960 		if (probe_ops->free)
4961 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4962 		kfree(entry);
4963 	}
4964 	mutex_unlock(&ftrace_lock);
4965 
4966  out_unlock:
4967 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4968 	free_ftrace_hash(hash);
4969 
4970 	release_probe(probe);
4971 
4972 	return ret;
4973 
4974  err_unlock_ftrace:
4975 	mutex_unlock(&ftrace_lock);
4976 	return ret;
4977 }
4978 
4979 void clear_ftrace_function_probes(struct trace_array *tr)
4980 {
4981 	struct ftrace_func_probe *probe, *n;
4982 
4983 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4984 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4985 }
4986 
4987 static LIST_HEAD(ftrace_commands);
4988 static DEFINE_MUTEX(ftrace_cmd_mutex);
4989 
4990 /*
4991  * Currently we only register ftrace commands from __init, so mark this
4992  * __init too.
4993  */
4994 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4995 {
4996 	struct ftrace_func_command *p;
4997 	int ret = 0;
4998 
4999 	mutex_lock(&ftrace_cmd_mutex);
5000 	list_for_each_entry(p, &ftrace_commands, list) {
5001 		if (strcmp(cmd->name, p->name) == 0) {
5002 			ret = -EBUSY;
5003 			goto out_unlock;
5004 		}
5005 	}
5006 	list_add(&cmd->list, &ftrace_commands);
5007  out_unlock:
5008 	mutex_unlock(&ftrace_cmd_mutex);
5009 
5010 	return ret;
5011 }
5012 
5013 /*
5014  * Currently we only unregister ftrace commands from __init, so mark
5015  * this __init too.
5016  */
5017 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
5018 {
5019 	struct ftrace_func_command *p, *n;
5020 	int ret = -ENODEV;
5021 
5022 	mutex_lock(&ftrace_cmd_mutex);
5023 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
5024 		if (strcmp(cmd->name, p->name) == 0) {
5025 			ret = 0;
5026 			list_del_init(&p->list);
5027 			goto out_unlock;
5028 		}
5029 	}
5030  out_unlock:
5031 	mutex_unlock(&ftrace_cmd_mutex);
5032 
5033 	return ret;
5034 }
5035 
5036 static int ftrace_process_regex(struct ftrace_iterator *iter,
5037 				char *buff, int len, int enable)
5038 {
5039 	struct ftrace_hash *hash = iter->hash;
5040 	struct trace_array *tr = iter->ops->private;
5041 	char *func, *command, *next = buff;
5042 	struct ftrace_func_command *p;
5043 	int ret = -EINVAL;
5044 
5045 	func = strsep(&next, ":");
5046 
5047 	if (!next) {
5048 		ret = ftrace_match_records(hash, func, len);
5049 		if (!ret)
5050 			ret = -EINVAL;
5051 		if (ret < 0)
5052 			return ret;
5053 		return 0;
5054 	}
5055 
5056 	/* command found */
5057 
5058 	command = strsep(&next, ":");
5059 
5060 	mutex_lock(&ftrace_cmd_mutex);
5061 	list_for_each_entry(p, &ftrace_commands, list) {
5062 		if (strcmp(p->name, command) == 0) {
5063 			ret = p->func(tr, hash, func, command, next, enable);
5064 			goto out_unlock;
5065 		}
5066 	}
5067  out_unlock:
5068 	mutex_unlock(&ftrace_cmd_mutex);
5069 
5070 	return ret;
5071 }
5072 
5073 static ssize_t
5074 ftrace_regex_write(struct file *file, const char __user *ubuf,
5075 		   size_t cnt, loff_t *ppos, int enable)
5076 {
5077 	struct ftrace_iterator *iter;
5078 	struct trace_parser *parser;
5079 	ssize_t ret, read;
5080 
5081 	if (!cnt)
5082 		return 0;
5083 
5084 	if (file->f_mode & FMODE_READ) {
5085 		struct seq_file *m = file->private_data;
5086 		iter = m->private;
5087 	} else
5088 		iter = file->private_data;
5089 
5090 	if (unlikely(ftrace_disabled))
5091 		return -ENODEV;
5092 
5093 	/* iter->hash is a local copy, so we don't need regex_lock */
5094 
5095 	parser = &iter->parser;
5096 	read = trace_get_user(parser, ubuf, cnt, ppos);
5097 
5098 	if (read >= 0 && trace_parser_loaded(parser) &&
5099 	    !trace_parser_cont(parser)) {
5100 		ret = ftrace_process_regex(iter, parser->buffer,
5101 					   parser->idx, enable);
5102 		trace_parser_clear(parser);
5103 		if (ret < 0)
5104 			goto out;
5105 	}
5106 
5107 	ret = read;
5108  out:
5109 	return ret;
5110 }
5111 
5112 ssize_t
5113 ftrace_filter_write(struct file *file, const char __user *ubuf,
5114 		    size_t cnt, loff_t *ppos)
5115 {
5116 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5117 }
5118 
5119 ssize_t
5120 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5121 		     size_t cnt, loff_t *ppos)
5122 {
5123 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5124 }
5125 
5126 static int
5127 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5128 {
5129 	struct ftrace_func_entry *entry;
5130 
5131 	ip = ftrace_location(ip);
5132 	if (!ip)
5133 		return -EINVAL;
5134 
5135 	if (remove) {
5136 		entry = ftrace_lookup_ip(hash, ip);
5137 		if (!entry)
5138 			return -ENOENT;
5139 		free_hash_entry(hash, entry);
5140 		return 0;
5141 	}
5142 
5143 	return add_hash_entry(hash, ip);
5144 }
5145 
5146 static int
5147 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5148 		  unsigned int cnt, int remove)
5149 {
5150 	unsigned int i;
5151 	int err;
5152 
5153 	for (i = 0; i < cnt; i++) {
5154 		err = __ftrace_match_addr(hash, ips[i], remove);
5155 		if (err) {
5156 			/*
5157 			 * This expects the @hash is a temporary hash and if this
5158 			 * fails the caller must free the @hash.
5159 			 */
5160 			return err;
5161 		}
5162 	}
5163 	return 0;
5164 }
5165 
5166 static int
5167 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5168 		unsigned long *ips, unsigned int cnt,
5169 		int remove, int reset, int enable)
5170 {
5171 	struct ftrace_hash **orig_hash;
5172 	struct ftrace_hash *hash;
5173 	int ret;
5174 
5175 	if (unlikely(ftrace_disabled))
5176 		return -ENODEV;
5177 
5178 	mutex_lock(&ops->func_hash->regex_lock);
5179 
5180 	if (enable)
5181 		orig_hash = &ops->func_hash->filter_hash;
5182 	else
5183 		orig_hash = &ops->func_hash->notrace_hash;
5184 
5185 	if (reset)
5186 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5187 	else
5188 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5189 
5190 	if (!hash) {
5191 		ret = -ENOMEM;
5192 		goto out_regex_unlock;
5193 	}
5194 
5195 	if (buf && !ftrace_match_records(hash, buf, len)) {
5196 		ret = -EINVAL;
5197 		goto out_regex_unlock;
5198 	}
5199 	if (ips) {
5200 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5201 		if (ret < 0)
5202 			goto out_regex_unlock;
5203 	}
5204 
5205 	mutex_lock(&ftrace_lock);
5206 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5207 	mutex_unlock(&ftrace_lock);
5208 
5209  out_regex_unlock:
5210 	mutex_unlock(&ops->func_hash->regex_lock);
5211 
5212 	free_ftrace_hash(hash);
5213 	return ret;
5214 }
5215 
5216 static int
5217 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5218 		int remove, int reset, int enable)
5219 {
5220 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5221 }
5222 
5223 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5224 
5225 struct ftrace_direct_func {
5226 	struct list_head	next;
5227 	unsigned long		addr;
5228 	int			count;
5229 };
5230 
5231 static LIST_HEAD(ftrace_direct_funcs);
5232 
5233 /**
5234  * ftrace_find_direct_func - test an address if it is a registered direct caller
5235  * @addr: The address of a registered direct caller
5236  *
5237  * This searches to see if a ftrace direct caller has been registered
5238  * at a specific address, and if so, it returns a descriptor for it.
5239  *
5240  * This can be used by architecture code to see if an address is
5241  * a direct caller (trampoline) attached to a fentry/mcount location.
5242  * This is useful for the function_graph tracer, as it may need to
5243  * do adjustments if it traced a location that also has a direct
5244  * trampoline attached to it.
5245  */
5246 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5247 {
5248 	struct ftrace_direct_func *entry;
5249 	bool found = false;
5250 
5251 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5252 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5253 		if (entry->addr == addr) {
5254 			found = true;
5255 			break;
5256 		}
5257 	}
5258 	if (found)
5259 		return entry;
5260 
5261 	return NULL;
5262 }
5263 
5264 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5265 {
5266 	struct ftrace_direct_func *direct;
5267 
5268 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5269 	if (!direct)
5270 		return NULL;
5271 	direct->addr = addr;
5272 	direct->count = 0;
5273 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5274 	ftrace_direct_func_count++;
5275 	return direct;
5276 }
5277 
5278 static int register_ftrace_function_nolock(struct ftrace_ops *ops);
5279 
5280 /**
5281  * register_ftrace_direct - Call a custom trampoline directly
5282  * @ip: The address of the nop at the beginning of a function
5283  * @addr: The address of the trampoline to call at @ip
5284  *
5285  * This is used to connect a direct call from the nop location (@ip)
5286  * at the start of ftrace traced functions. The location that it calls
5287  * (@addr) must be able to handle a direct call, and save the parameters
5288  * of the function being traced, and restore them (or inject new ones
5289  * if needed), before returning.
5290  *
5291  * Returns:
5292  *  0 on success
5293  *  -EBUSY - Another direct function is already attached (there can be only one)
5294  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5295  *  -ENOMEM - There was an allocation failure.
5296  */
5297 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5298 {
5299 	struct ftrace_direct_func *direct;
5300 	struct ftrace_func_entry *entry;
5301 	struct ftrace_hash *free_hash = NULL;
5302 	struct dyn_ftrace *rec;
5303 	int ret = -ENODEV;
5304 
5305 	mutex_lock(&direct_mutex);
5306 
5307 	ip = ftrace_location(ip);
5308 	if (!ip)
5309 		goto out_unlock;
5310 
5311 	/* See if there's a direct function at @ip already */
5312 	ret = -EBUSY;
5313 	if (ftrace_find_rec_direct(ip))
5314 		goto out_unlock;
5315 
5316 	ret = -ENODEV;
5317 	rec = lookup_rec(ip, ip);
5318 	if (!rec)
5319 		goto out_unlock;
5320 
5321 	/*
5322 	 * Check if the rec says it has a direct call but we didn't
5323 	 * find one earlier?
5324 	 */
5325 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5326 		goto out_unlock;
5327 
5328 	/* Make sure the ip points to the exact record */
5329 	if (ip != rec->ip) {
5330 		ip = rec->ip;
5331 		/* Need to check this ip for a direct. */
5332 		if (ftrace_find_rec_direct(ip))
5333 			goto out_unlock;
5334 	}
5335 
5336 	ret = -ENOMEM;
5337 	direct = ftrace_find_direct_func(addr);
5338 	if (!direct) {
5339 		direct = ftrace_alloc_direct_func(addr);
5340 		if (!direct)
5341 			goto out_unlock;
5342 	}
5343 
5344 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5345 	if (!entry)
5346 		goto out_unlock;
5347 
5348 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5349 
5350 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5351 		ret = register_ftrace_function_nolock(&direct_ops);
5352 		if (ret)
5353 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5354 	}
5355 
5356 	if (ret) {
5357 		remove_hash_entry(direct_functions, entry);
5358 		kfree(entry);
5359 		if (!direct->count) {
5360 			list_del_rcu(&direct->next);
5361 			synchronize_rcu_tasks();
5362 			kfree(direct);
5363 			if (free_hash)
5364 				free_ftrace_hash(free_hash);
5365 			free_hash = NULL;
5366 			ftrace_direct_func_count--;
5367 		}
5368 	} else {
5369 		direct->count++;
5370 	}
5371  out_unlock:
5372 	mutex_unlock(&direct_mutex);
5373 
5374 	if (free_hash) {
5375 		synchronize_rcu_tasks();
5376 		free_ftrace_hash(free_hash);
5377 	}
5378 
5379 	return ret;
5380 }
5381 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5382 
5383 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5384 						   struct dyn_ftrace **recp)
5385 {
5386 	struct ftrace_func_entry *entry;
5387 	struct dyn_ftrace *rec;
5388 
5389 	rec = lookup_rec(*ip, *ip);
5390 	if (!rec)
5391 		return NULL;
5392 
5393 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5394 	if (!entry) {
5395 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5396 		return NULL;
5397 	}
5398 
5399 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5400 
5401 	/* Passed in ip just needs to be on the call site */
5402 	*ip = rec->ip;
5403 
5404 	if (recp)
5405 		*recp = rec;
5406 
5407 	return entry;
5408 }
5409 
5410 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5411 {
5412 	struct ftrace_direct_func *direct;
5413 	struct ftrace_func_entry *entry;
5414 	struct ftrace_hash *hash;
5415 	int ret = -ENODEV;
5416 
5417 	mutex_lock(&direct_mutex);
5418 
5419 	ip = ftrace_location(ip);
5420 	if (!ip)
5421 		goto out_unlock;
5422 
5423 	entry = find_direct_entry(&ip, NULL);
5424 	if (!entry)
5425 		goto out_unlock;
5426 
5427 	hash = direct_ops.func_hash->filter_hash;
5428 	if (hash->count == 1)
5429 		unregister_ftrace_function(&direct_ops);
5430 
5431 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5432 
5433 	WARN_ON(ret);
5434 
5435 	remove_hash_entry(direct_functions, entry);
5436 
5437 	direct = ftrace_find_direct_func(addr);
5438 	if (!WARN_ON(!direct)) {
5439 		/* This is the good path (see the ! before WARN) */
5440 		direct->count--;
5441 		WARN_ON(direct->count < 0);
5442 		if (!direct->count) {
5443 			list_del_rcu(&direct->next);
5444 			synchronize_rcu_tasks();
5445 			kfree(direct);
5446 			kfree(entry);
5447 			ftrace_direct_func_count--;
5448 		}
5449 	}
5450  out_unlock:
5451 	mutex_unlock(&direct_mutex);
5452 
5453 	return ret;
5454 }
5455 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5456 
5457 static struct ftrace_ops stub_ops = {
5458 	.func		= ftrace_stub,
5459 };
5460 
5461 /**
5462  * ftrace_modify_direct_caller - modify ftrace nop directly
5463  * @entry: The ftrace hash entry of the direct helper for @rec
5464  * @rec: The record representing the function site to patch
5465  * @old_addr: The location that the site at @rec->ip currently calls
5466  * @new_addr: The location that the site at @rec->ip should call
5467  *
5468  * An architecture may overwrite this function to optimize the
5469  * changing of the direct callback on an ftrace nop location.
5470  * This is called with the ftrace_lock mutex held, and no other
5471  * ftrace callbacks are on the associated record (@rec). Thus,
5472  * it is safe to modify the ftrace record, where it should be
5473  * currently calling @old_addr directly, to call @new_addr.
5474  *
5475  * Safety checks should be made to make sure that the code at
5476  * @rec->ip is currently calling @old_addr. And this must
5477  * also update entry->direct to @new_addr.
5478  */
5479 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5480 				       struct dyn_ftrace *rec,
5481 				       unsigned long old_addr,
5482 				       unsigned long new_addr)
5483 {
5484 	unsigned long ip = rec->ip;
5485 	int ret;
5486 
5487 	/*
5488 	 * The ftrace_lock was used to determine if the record
5489 	 * had more than one registered user to it. If it did,
5490 	 * we needed to prevent that from changing to do the quick
5491 	 * switch. But if it did not (only a direct caller was attached)
5492 	 * then this function is called. But this function can deal
5493 	 * with attached callers to the rec that we care about, and
5494 	 * since this function uses standard ftrace calls that take
5495 	 * the ftrace_lock mutex, we need to release it.
5496 	 */
5497 	mutex_unlock(&ftrace_lock);
5498 
5499 	/*
5500 	 * By setting a stub function at the same address, we force
5501 	 * the code to call the iterator and the direct_ops helper.
5502 	 * This means that @ip does not call the direct call, and
5503 	 * we can simply modify it.
5504 	 */
5505 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5506 	if (ret)
5507 		goto out_lock;
5508 
5509 	ret = register_ftrace_function(&stub_ops);
5510 	if (ret) {
5511 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5512 		goto out_lock;
5513 	}
5514 
5515 	entry->direct = new_addr;
5516 
5517 	/*
5518 	 * By removing the stub, we put back the direct call, calling
5519 	 * the @new_addr.
5520 	 */
5521 	unregister_ftrace_function(&stub_ops);
5522 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5523 
5524  out_lock:
5525 	mutex_lock(&ftrace_lock);
5526 
5527 	return ret;
5528 }
5529 
5530 /**
5531  * modify_ftrace_direct - Modify an existing direct call to call something else
5532  * @ip: The instruction pointer to modify
5533  * @old_addr: The address that the current @ip calls directly
5534  * @new_addr: The address that the @ip should call
5535  *
5536  * This modifies a ftrace direct caller at an instruction pointer without
5537  * having to disable it first. The direct call will switch over to the
5538  * @new_addr without missing anything.
5539  *
5540  * Returns: zero on success. Non zero on error, which includes:
5541  *  -ENODEV : the @ip given has no direct caller attached
5542  *  -EINVAL : the @old_addr does not match the current direct caller
5543  */
5544 int modify_ftrace_direct(unsigned long ip,
5545 			 unsigned long old_addr, unsigned long new_addr)
5546 {
5547 	struct ftrace_direct_func *direct, *new_direct = NULL;
5548 	struct ftrace_func_entry *entry;
5549 	struct dyn_ftrace *rec;
5550 	int ret = -ENODEV;
5551 
5552 	mutex_lock(&direct_mutex);
5553 
5554 	mutex_lock(&ftrace_lock);
5555 
5556 	ip = ftrace_location(ip);
5557 	if (!ip)
5558 		goto out_unlock;
5559 
5560 	entry = find_direct_entry(&ip, &rec);
5561 	if (!entry)
5562 		goto out_unlock;
5563 
5564 	ret = -EINVAL;
5565 	if (entry->direct != old_addr)
5566 		goto out_unlock;
5567 
5568 	direct = ftrace_find_direct_func(old_addr);
5569 	if (WARN_ON(!direct))
5570 		goto out_unlock;
5571 	if (direct->count > 1) {
5572 		ret = -ENOMEM;
5573 		new_direct = ftrace_alloc_direct_func(new_addr);
5574 		if (!new_direct)
5575 			goto out_unlock;
5576 		direct->count--;
5577 		new_direct->count++;
5578 	} else {
5579 		direct->addr = new_addr;
5580 	}
5581 
5582 	/*
5583 	 * If there's no other ftrace callback on the rec->ip location,
5584 	 * then it can be changed directly by the architecture.
5585 	 * If there is another caller, then we just need to change the
5586 	 * direct caller helper to point to @new_addr.
5587 	 */
5588 	if (ftrace_rec_count(rec) == 1) {
5589 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5590 	} else {
5591 		entry->direct = new_addr;
5592 		ret = 0;
5593 	}
5594 
5595 	if (unlikely(ret && new_direct)) {
5596 		direct->count++;
5597 		list_del_rcu(&new_direct->next);
5598 		synchronize_rcu_tasks();
5599 		kfree(new_direct);
5600 		ftrace_direct_func_count--;
5601 	}
5602 
5603  out_unlock:
5604 	mutex_unlock(&ftrace_lock);
5605 	mutex_unlock(&direct_mutex);
5606 	return ret;
5607 }
5608 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5609 
5610 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS)
5611 
5612 static int check_direct_multi(struct ftrace_ops *ops)
5613 {
5614 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5615 		return -EINVAL;
5616 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5617 		return -EINVAL;
5618 	return 0;
5619 }
5620 
5621 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5622 {
5623 	struct ftrace_func_entry *entry, *del;
5624 	int size, i;
5625 
5626 	size = 1 << hash->size_bits;
5627 	for (i = 0; i < size; i++) {
5628 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5629 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5630 			if (del && del->direct == addr) {
5631 				remove_hash_entry(direct_functions, del);
5632 				kfree(del);
5633 			}
5634 		}
5635 	}
5636 }
5637 
5638 /**
5639  * register_ftrace_direct_multi - Call a custom trampoline directly
5640  * for multiple functions registered in @ops
5641  * @ops: The address of the struct ftrace_ops object
5642  * @addr: The address of the trampoline to call at @ops functions
5643  *
5644  * This is used to connect a direct calls to @addr from the nop locations
5645  * of the functions registered in @ops (with by ftrace_set_filter_ip
5646  * function).
5647  *
5648  * The location that it calls (@addr) must be able to handle a direct call,
5649  * and save the parameters of the function being traced, and restore them
5650  * (or inject new ones if needed), before returning.
5651  *
5652  * Returns:
5653  *  0 on success
5654  *  -EINVAL  - The @ops object was already registered with this call or
5655  *             when there are no functions in @ops object.
5656  *  -EBUSY   - Another direct function is already attached (there can be only one)
5657  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5658  *  -ENOMEM  - There was an allocation failure.
5659  */
5660 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5661 {
5662 	struct ftrace_hash *hash, *free_hash = NULL;
5663 	struct ftrace_func_entry *entry, *new;
5664 	int err = -EBUSY, size, i;
5665 
5666 	if (ops->func || ops->trampoline)
5667 		return -EINVAL;
5668 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5669 		return -EINVAL;
5670 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5671 		return -EINVAL;
5672 
5673 	hash = ops->func_hash->filter_hash;
5674 	if (ftrace_hash_empty(hash))
5675 		return -EINVAL;
5676 
5677 	mutex_lock(&direct_mutex);
5678 
5679 	/* Make sure requested entries are not already registered.. */
5680 	size = 1 << hash->size_bits;
5681 	for (i = 0; i < size; i++) {
5682 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5683 			if (ftrace_find_rec_direct(entry->ip))
5684 				goto out_unlock;
5685 		}
5686 	}
5687 
5688 	/* ... and insert them to direct_functions hash. */
5689 	err = -ENOMEM;
5690 	for (i = 0; i < size; i++) {
5691 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5692 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5693 			if (!new)
5694 				goto out_remove;
5695 			entry->direct = addr;
5696 		}
5697 	}
5698 
5699 	ops->func = call_direct_funcs;
5700 	ops->flags = MULTI_FLAGS;
5701 	ops->trampoline = FTRACE_REGS_ADDR;
5702 
5703 	err = register_ftrace_function_nolock(ops);
5704 
5705  out_remove:
5706 	if (err)
5707 		remove_direct_functions_hash(hash, addr);
5708 
5709  out_unlock:
5710 	mutex_unlock(&direct_mutex);
5711 
5712 	if (free_hash) {
5713 		synchronize_rcu_tasks();
5714 		free_ftrace_hash(free_hash);
5715 	}
5716 	return err;
5717 }
5718 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5719 
5720 /**
5721  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5722  * previously registered by register_ftrace_direct_multi for @ops object.
5723  * @ops: The address of the struct ftrace_ops object
5724  *
5725  * This is used to remove a direct calls to @addr from the nop locations
5726  * of the functions registered in @ops (with by ftrace_set_filter_ip
5727  * function).
5728  *
5729  * Returns:
5730  *  0 on success
5731  *  -EINVAL - The @ops object was not properly registered.
5732  */
5733 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5734 {
5735 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5736 	int err;
5737 
5738 	if (check_direct_multi(ops))
5739 		return -EINVAL;
5740 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5741 		return -EINVAL;
5742 
5743 	mutex_lock(&direct_mutex);
5744 	err = unregister_ftrace_function(ops);
5745 	remove_direct_functions_hash(hash, addr);
5746 	mutex_unlock(&direct_mutex);
5747 
5748 	/* cleanup for possible another register call */
5749 	ops->func = NULL;
5750 	ops->trampoline = 0;
5751 	return err;
5752 }
5753 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5754 
5755 static int
5756 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5757 {
5758 	struct ftrace_hash *hash;
5759 	struct ftrace_func_entry *entry, *iter;
5760 	static struct ftrace_ops tmp_ops = {
5761 		.func		= ftrace_stub,
5762 		.flags		= FTRACE_OPS_FL_STUB,
5763 	};
5764 	int i, size;
5765 	int err;
5766 
5767 	lockdep_assert_held_once(&direct_mutex);
5768 
5769 	/* Enable the tmp_ops to have the same functions as the direct ops */
5770 	ftrace_ops_init(&tmp_ops);
5771 	tmp_ops.func_hash = ops->func_hash;
5772 
5773 	err = register_ftrace_function_nolock(&tmp_ops);
5774 	if (err)
5775 		return err;
5776 
5777 	/*
5778 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5779 	 * We can safely change the direct functions attached to each entry.
5780 	 */
5781 	mutex_lock(&ftrace_lock);
5782 
5783 	hash = ops->func_hash->filter_hash;
5784 	size = 1 << hash->size_bits;
5785 	for (i = 0; i < size; i++) {
5786 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5787 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5788 			if (!entry)
5789 				continue;
5790 			entry->direct = addr;
5791 		}
5792 	}
5793 
5794 	mutex_unlock(&ftrace_lock);
5795 
5796 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5797 	unregister_ftrace_function(&tmp_ops);
5798 
5799 	return err;
5800 }
5801 
5802 /**
5803  * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call
5804  * to call something else
5805  * @ops: The address of the struct ftrace_ops object
5806  * @addr: The address of the new trampoline to call at @ops functions
5807  *
5808  * This is used to unregister currently registered direct caller and
5809  * register new one @addr on functions registered in @ops object.
5810  *
5811  * Note there's window between ftrace_shutdown and ftrace_startup calls
5812  * where there will be no callbacks called.
5813  *
5814  * Caller should already have direct_mutex locked, so we don't lock
5815  * direct_mutex here.
5816  *
5817  * Returns: zero on success. Non zero on error, which includes:
5818  *  -EINVAL - The @ops object was not properly registered.
5819  */
5820 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr)
5821 {
5822 	if (check_direct_multi(ops))
5823 		return -EINVAL;
5824 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5825 		return -EINVAL;
5826 
5827 	return __modify_ftrace_direct_multi(ops, addr);
5828 }
5829 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock);
5830 
5831 /**
5832  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5833  * to call something else
5834  * @ops: The address of the struct ftrace_ops object
5835  * @addr: The address of the new trampoline to call at @ops functions
5836  *
5837  * This is used to unregister currently registered direct caller and
5838  * register new one @addr on functions registered in @ops object.
5839  *
5840  * Note there's window between ftrace_shutdown and ftrace_startup calls
5841  * where there will be no callbacks called.
5842  *
5843  * Returns: zero on success. Non zero on error, which includes:
5844  *  -EINVAL - The @ops object was not properly registered.
5845  */
5846 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5847 {
5848 	int err;
5849 
5850 	if (check_direct_multi(ops))
5851 		return -EINVAL;
5852 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5853 		return -EINVAL;
5854 
5855 	mutex_lock(&direct_mutex);
5856 	err = __modify_ftrace_direct_multi(ops, addr);
5857 	mutex_unlock(&direct_mutex);
5858 	return err;
5859 }
5860 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5861 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5862 
5863 /**
5864  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5865  * @ops - the ops to set the filter with
5866  * @ip - the address to add to or remove from the filter.
5867  * @remove - non zero to remove the ip from the filter
5868  * @reset - non zero to reset all filters before applying this filter.
5869  *
5870  * Filters denote which functions should be enabled when tracing is enabled
5871  * If @ip is NULL, it fails to update filter.
5872  */
5873 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5874 			 int remove, int reset)
5875 {
5876 	ftrace_ops_init(ops);
5877 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5878 }
5879 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5880 
5881 /**
5882  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5883  * @ops - the ops to set the filter with
5884  * @ips - the array of addresses to add to or remove from the filter.
5885  * @cnt - the number of addresses in @ips
5886  * @remove - non zero to remove ips from the filter
5887  * @reset - non zero to reset all filters before applying this filter.
5888  *
5889  * Filters denote which functions should be enabled when tracing is enabled
5890  * If @ips array or any ip specified within is NULL , it fails to update filter.
5891  */
5892 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5893 			  unsigned int cnt, int remove, int reset)
5894 {
5895 	ftrace_ops_init(ops);
5896 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5897 }
5898 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5899 
5900 /**
5901  * ftrace_ops_set_global_filter - setup ops to use global filters
5902  * @ops - the ops which will use the global filters
5903  *
5904  * ftrace users who need global function trace filtering should call this.
5905  * It can set the global filter only if ops were not initialized before.
5906  */
5907 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5908 {
5909 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5910 		return;
5911 
5912 	ftrace_ops_init(ops);
5913 	ops->func_hash = &global_ops.local_hash;
5914 }
5915 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5916 
5917 static int
5918 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5919 		 int reset, int enable)
5920 {
5921 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
5922 }
5923 
5924 /**
5925  * ftrace_set_filter - set a function to filter on in ftrace
5926  * @ops - the ops to set the filter with
5927  * @buf - the string that holds the function filter text.
5928  * @len - the length of the string.
5929  * @reset - non zero to reset all filters before applying this filter.
5930  *
5931  * Filters denote which functions should be enabled when tracing is enabled.
5932  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5933  */
5934 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5935 		       int len, int reset)
5936 {
5937 	ftrace_ops_init(ops);
5938 	return ftrace_set_regex(ops, buf, len, reset, 1);
5939 }
5940 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5941 
5942 /**
5943  * ftrace_set_notrace - set a function to not trace in ftrace
5944  * @ops - the ops to set the notrace filter with
5945  * @buf - the string that holds the function notrace text.
5946  * @len - the length of the string.
5947  * @reset - non zero to reset all filters before applying this filter.
5948  *
5949  * Notrace Filters denote which functions should not be enabled when tracing
5950  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5951  * for tracing.
5952  */
5953 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5954 			int len, int reset)
5955 {
5956 	ftrace_ops_init(ops);
5957 	return ftrace_set_regex(ops, buf, len, reset, 0);
5958 }
5959 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5960 /**
5961  * ftrace_set_global_filter - set a function to filter on with global tracers
5962  * @buf - the string that holds the function filter text.
5963  * @len - the length of the string.
5964  * @reset - non zero to reset all filters before applying this filter.
5965  *
5966  * Filters denote which functions should be enabled when tracing is enabled.
5967  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5968  */
5969 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5970 {
5971 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5972 }
5973 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5974 
5975 /**
5976  * ftrace_set_global_notrace - set a function to not trace with global tracers
5977  * @buf - the string that holds the function notrace text.
5978  * @len - the length of the string.
5979  * @reset - non zero to reset all filters before applying this filter.
5980  *
5981  * Notrace Filters denote which functions should not be enabled when tracing
5982  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5983  * for tracing.
5984  */
5985 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5986 {
5987 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5988 }
5989 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5990 
5991 /*
5992  * command line interface to allow users to set filters on boot up.
5993  */
5994 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5995 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5996 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5997 
5998 /* Used by function selftest to not test if filter is set */
5999 bool ftrace_filter_param __initdata;
6000 
6001 static int __init set_ftrace_notrace(char *str)
6002 {
6003 	ftrace_filter_param = true;
6004 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
6005 	return 1;
6006 }
6007 __setup("ftrace_notrace=", set_ftrace_notrace);
6008 
6009 static int __init set_ftrace_filter(char *str)
6010 {
6011 	ftrace_filter_param = true;
6012 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
6013 	return 1;
6014 }
6015 __setup("ftrace_filter=", set_ftrace_filter);
6016 
6017 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6018 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
6019 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
6020 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
6021 
6022 static int __init set_graph_function(char *str)
6023 {
6024 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
6025 	return 1;
6026 }
6027 __setup("ftrace_graph_filter=", set_graph_function);
6028 
6029 static int __init set_graph_notrace_function(char *str)
6030 {
6031 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
6032 	return 1;
6033 }
6034 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
6035 
6036 static int __init set_graph_max_depth_function(char *str)
6037 {
6038 	if (!str)
6039 		return 0;
6040 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
6041 	return 1;
6042 }
6043 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
6044 
6045 static void __init set_ftrace_early_graph(char *buf, int enable)
6046 {
6047 	int ret;
6048 	char *func;
6049 	struct ftrace_hash *hash;
6050 
6051 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
6052 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
6053 		return;
6054 
6055 	while (buf) {
6056 		func = strsep(&buf, ",");
6057 		/* we allow only one expression at a time */
6058 		ret = ftrace_graph_set_hash(hash, func);
6059 		if (ret)
6060 			printk(KERN_DEBUG "ftrace: function %s not "
6061 					  "traceable\n", func);
6062 	}
6063 
6064 	if (enable)
6065 		ftrace_graph_hash = hash;
6066 	else
6067 		ftrace_graph_notrace_hash = hash;
6068 }
6069 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6070 
6071 void __init
6072 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
6073 {
6074 	char *func;
6075 
6076 	ftrace_ops_init(ops);
6077 
6078 	while (buf) {
6079 		func = strsep(&buf, ",");
6080 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
6081 	}
6082 }
6083 
6084 static void __init set_ftrace_early_filters(void)
6085 {
6086 	if (ftrace_filter_buf[0])
6087 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
6088 	if (ftrace_notrace_buf[0])
6089 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
6090 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6091 	if (ftrace_graph_buf[0])
6092 		set_ftrace_early_graph(ftrace_graph_buf, 1);
6093 	if (ftrace_graph_notrace_buf[0])
6094 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
6095 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6096 }
6097 
6098 int ftrace_regex_release(struct inode *inode, struct file *file)
6099 {
6100 	struct seq_file *m = (struct seq_file *)file->private_data;
6101 	struct ftrace_iterator *iter;
6102 	struct ftrace_hash **orig_hash;
6103 	struct trace_parser *parser;
6104 	int filter_hash;
6105 
6106 	if (file->f_mode & FMODE_READ) {
6107 		iter = m->private;
6108 		seq_release(inode, file);
6109 	} else
6110 		iter = file->private_data;
6111 
6112 	parser = &iter->parser;
6113 	if (trace_parser_loaded(parser)) {
6114 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6115 
6116 		ftrace_process_regex(iter, parser->buffer,
6117 				     parser->idx, enable);
6118 	}
6119 
6120 	trace_parser_put(parser);
6121 
6122 	mutex_lock(&iter->ops->func_hash->regex_lock);
6123 
6124 	if (file->f_mode & FMODE_WRITE) {
6125 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6126 
6127 		if (filter_hash) {
6128 			orig_hash = &iter->ops->func_hash->filter_hash;
6129 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
6130 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
6131 		} else
6132 			orig_hash = &iter->ops->func_hash->notrace_hash;
6133 
6134 		mutex_lock(&ftrace_lock);
6135 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6136 						      iter->hash, filter_hash);
6137 		mutex_unlock(&ftrace_lock);
6138 	} else {
6139 		/* For read only, the hash is the ops hash */
6140 		iter->hash = NULL;
6141 	}
6142 
6143 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6144 	free_ftrace_hash(iter->hash);
6145 	if (iter->tr)
6146 		trace_array_put(iter->tr);
6147 	kfree(iter);
6148 
6149 	return 0;
6150 }
6151 
6152 static const struct file_operations ftrace_avail_fops = {
6153 	.open = ftrace_avail_open,
6154 	.read = seq_read,
6155 	.llseek = seq_lseek,
6156 	.release = seq_release_private,
6157 };
6158 
6159 static const struct file_operations ftrace_enabled_fops = {
6160 	.open = ftrace_enabled_open,
6161 	.read = seq_read,
6162 	.llseek = seq_lseek,
6163 	.release = seq_release_private,
6164 };
6165 
6166 static const struct file_operations ftrace_filter_fops = {
6167 	.open = ftrace_filter_open,
6168 	.read = seq_read,
6169 	.write = ftrace_filter_write,
6170 	.llseek = tracing_lseek,
6171 	.release = ftrace_regex_release,
6172 };
6173 
6174 static const struct file_operations ftrace_notrace_fops = {
6175 	.open = ftrace_notrace_open,
6176 	.read = seq_read,
6177 	.write = ftrace_notrace_write,
6178 	.llseek = tracing_lseek,
6179 	.release = ftrace_regex_release,
6180 };
6181 
6182 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6183 
6184 static DEFINE_MUTEX(graph_lock);
6185 
6186 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6187 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6188 
6189 enum graph_filter_type {
6190 	GRAPH_FILTER_NOTRACE	= 0,
6191 	GRAPH_FILTER_FUNCTION,
6192 };
6193 
6194 #define FTRACE_GRAPH_EMPTY	((void *)1)
6195 
6196 struct ftrace_graph_data {
6197 	struct ftrace_hash		*hash;
6198 	struct ftrace_func_entry	*entry;
6199 	int				idx;   /* for hash table iteration */
6200 	enum graph_filter_type		type;
6201 	struct ftrace_hash		*new_hash;
6202 	const struct seq_operations	*seq_ops;
6203 	struct trace_parser		parser;
6204 };
6205 
6206 static void *
6207 __g_next(struct seq_file *m, loff_t *pos)
6208 {
6209 	struct ftrace_graph_data *fgd = m->private;
6210 	struct ftrace_func_entry *entry = fgd->entry;
6211 	struct hlist_head *head;
6212 	int i, idx = fgd->idx;
6213 
6214 	if (*pos >= fgd->hash->count)
6215 		return NULL;
6216 
6217 	if (entry) {
6218 		hlist_for_each_entry_continue(entry, hlist) {
6219 			fgd->entry = entry;
6220 			return entry;
6221 		}
6222 
6223 		idx++;
6224 	}
6225 
6226 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6227 		head = &fgd->hash->buckets[i];
6228 		hlist_for_each_entry(entry, head, hlist) {
6229 			fgd->entry = entry;
6230 			fgd->idx = i;
6231 			return entry;
6232 		}
6233 	}
6234 	return NULL;
6235 }
6236 
6237 static void *
6238 g_next(struct seq_file *m, void *v, loff_t *pos)
6239 {
6240 	(*pos)++;
6241 	return __g_next(m, pos);
6242 }
6243 
6244 static void *g_start(struct seq_file *m, loff_t *pos)
6245 {
6246 	struct ftrace_graph_data *fgd = m->private;
6247 
6248 	mutex_lock(&graph_lock);
6249 
6250 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6251 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6252 					lockdep_is_held(&graph_lock));
6253 	else
6254 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6255 					lockdep_is_held(&graph_lock));
6256 
6257 	/* Nothing, tell g_show to print all functions are enabled */
6258 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6259 		return FTRACE_GRAPH_EMPTY;
6260 
6261 	fgd->idx = 0;
6262 	fgd->entry = NULL;
6263 	return __g_next(m, pos);
6264 }
6265 
6266 static void g_stop(struct seq_file *m, void *p)
6267 {
6268 	mutex_unlock(&graph_lock);
6269 }
6270 
6271 static int g_show(struct seq_file *m, void *v)
6272 {
6273 	struct ftrace_func_entry *entry = v;
6274 
6275 	if (!entry)
6276 		return 0;
6277 
6278 	if (entry == FTRACE_GRAPH_EMPTY) {
6279 		struct ftrace_graph_data *fgd = m->private;
6280 
6281 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6282 			seq_puts(m, "#### all functions enabled ####\n");
6283 		else
6284 			seq_puts(m, "#### no functions disabled ####\n");
6285 		return 0;
6286 	}
6287 
6288 	seq_printf(m, "%ps\n", (void *)entry->ip);
6289 
6290 	return 0;
6291 }
6292 
6293 static const struct seq_operations ftrace_graph_seq_ops = {
6294 	.start = g_start,
6295 	.next = g_next,
6296 	.stop = g_stop,
6297 	.show = g_show,
6298 };
6299 
6300 static int
6301 __ftrace_graph_open(struct inode *inode, struct file *file,
6302 		    struct ftrace_graph_data *fgd)
6303 {
6304 	int ret;
6305 	struct ftrace_hash *new_hash = NULL;
6306 
6307 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6308 	if (ret)
6309 		return ret;
6310 
6311 	if (file->f_mode & FMODE_WRITE) {
6312 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6313 
6314 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6315 			return -ENOMEM;
6316 
6317 		if (file->f_flags & O_TRUNC)
6318 			new_hash = alloc_ftrace_hash(size_bits);
6319 		else
6320 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6321 							      fgd->hash);
6322 		if (!new_hash) {
6323 			ret = -ENOMEM;
6324 			goto out;
6325 		}
6326 	}
6327 
6328 	if (file->f_mode & FMODE_READ) {
6329 		ret = seq_open(file, &ftrace_graph_seq_ops);
6330 		if (!ret) {
6331 			struct seq_file *m = file->private_data;
6332 			m->private = fgd;
6333 		} else {
6334 			/* Failed */
6335 			free_ftrace_hash(new_hash);
6336 			new_hash = NULL;
6337 		}
6338 	} else
6339 		file->private_data = fgd;
6340 
6341 out:
6342 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6343 		trace_parser_put(&fgd->parser);
6344 
6345 	fgd->new_hash = new_hash;
6346 
6347 	/*
6348 	 * All uses of fgd->hash must be taken with the graph_lock
6349 	 * held. The graph_lock is going to be released, so force
6350 	 * fgd->hash to be reinitialized when it is taken again.
6351 	 */
6352 	fgd->hash = NULL;
6353 
6354 	return ret;
6355 }
6356 
6357 static int
6358 ftrace_graph_open(struct inode *inode, struct file *file)
6359 {
6360 	struct ftrace_graph_data *fgd;
6361 	int ret;
6362 
6363 	if (unlikely(ftrace_disabled))
6364 		return -ENODEV;
6365 
6366 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6367 	if (fgd == NULL)
6368 		return -ENOMEM;
6369 
6370 	mutex_lock(&graph_lock);
6371 
6372 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6373 					lockdep_is_held(&graph_lock));
6374 	fgd->type = GRAPH_FILTER_FUNCTION;
6375 	fgd->seq_ops = &ftrace_graph_seq_ops;
6376 
6377 	ret = __ftrace_graph_open(inode, file, fgd);
6378 	if (ret < 0)
6379 		kfree(fgd);
6380 
6381 	mutex_unlock(&graph_lock);
6382 	return ret;
6383 }
6384 
6385 static int
6386 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6387 {
6388 	struct ftrace_graph_data *fgd;
6389 	int ret;
6390 
6391 	if (unlikely(ftrace_disabled))
6392 		return -ENODEV;
6393 
6394 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6395 	if (fgd == NULL)
6396 		return -ENOMEM;
6397 
6398 	mutex_lock(&graph_lock);
6399 
6400 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6401 					lockdep_is_held(&graph_lock));
6402 	fgd->type = GRAPH_FILTER_NOTRACE;
6403 	fgd->seq_ops = &ftrace_graph_seq_ops;
6404 
6405 	ret = __ftrace_graph_open(inode, file, fgd);
6406 	if (ret < 0)
6407 		kfree(fgd);
6408 
6409 	mutex_unlock(&graph_lock);
6410 	return ret;
6411 }
6412 
6413 static int
6414 ftrace_graph_release(struct inode *inode, struct file *file)
6415 {
6416 	struct ftrace_graph_data *fgd;
6417 	struct ftrace_hash *old_hash, *new_hash;
6418 	struct trace_parser *parser;
6419 	int ret = 0;
6420 
6421 	if (file->f_mode & FMODE_READ) {
6422 		struct seq_file *m = file->private_data;
6423 
6424 		fgd = m->private;
6425 		seq_release(inode, file);
6426 	} else {
6427 		fgd = file->private_data;
6428 	}
6429 
6430 
6431 	if (file->f_mode & FMODE_WRITE) {
6432 
6433 		parser = &fgd->parser;
6434 
6435 		if (trace_parser_loaded((parser))) {
6436 			ret = ftrace_graph_set_hash(fgd->new_hash,
6437 						    parser->buffer);
6438 		}
6439 
6440 		trace_parser_put(parser);
6441 
6442 		new_hash = __ftrace_hash_move(fgd->new_hash);
6443 		if (!new_hash) {
6444 			ret = -ENOMEM;
6445 			goto out;
6446 		}
6447 
6448 		mutex_lock(&graph_lock);
6449 
6450 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6451 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6452 					lockdep_is_held(&graph_lock));
6453 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6454 		} else {
6455 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6456 					lockdep_is_held(&graph_lock));
6457 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6458 		}
6459 
6460 		mutex_unlock(&graph_lock);
6461 
6462 		/*
6463 		 * We need to do a hard force of sched synchronization.
6464 		 * This is because we use preempt_disable() to do RCU, but
6465 		 * the function tracers can be called where RCU is not watching
6466 		 * (like before user_exit()). We can not rely on the RCU
6467 		 * infrastructure to do the synchronization, thus we must do it
6468 		 * ourselves.
6469 		 */
6470 		if (old_hash != EMPTY_HASH)
6471 			synchronize_rcu_tasks_rude();
6472 
6473 		free_ftrace_hash(old_hash);
6474 	}
6475 
6476  out:
6477 	free_ftrace_hash(fgd->new_hash);
6478 	kfree(fgd);
6479 
6480 	return ret;
6481 }
6482 
6483 static int
6484 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6485 {
6486 	struct ftrace_glob func_g;
6487 	struct dyn_ftrace *rec;
6488 	struct ftrace_page *pg;
6489 	struct ftrace_func_entry *entry;
6490 	int fail = 1;
6491 	int not;
6492 
6493 	/* decode regex */
6494 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6495 					 &func_g.search, &not);
6496 
6497 	func_g.len = strlen(func_g.search);
6498 
6499 	mutex_lock(&ftrace_lock);
6500 
6501 	if (unlikely(ftrace_disabled)) {
6502 		mutex_unlock(&ftrace_lock);
6503 		return -ENODEV;
6504 	}
6505 
6506 	do_for_each_ftrace_rec(pg, rec) {
6507 
6508 		if (rec->flags & FTRACE_FL_DISABLED)
6509 			continue;
6510 
6511 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6512 			entry = ftrace_lookup_ip(hash, rec->ip);
6513 
6514 			if (!not) {
6515 				fail = 0;
6516 
6517 				if (entry)
6518 					continue;
6519 				if (add_hash_entry(hash, rec->ip) < 0)
6520 					goto out;
6521 			} else {
6522 				if (entry) {
6523 					free_hash_entry(hash, entry);
6524 					fail = 0;
6525 				}
6526 			}
6527 		}
6528 	} while_for_each_ftrace_rec();
6529 out:
6530 	mutex_unlock(&ftrace_lock);
6531 
6532 	if (fail)
6533 		return -EINVAL;
6534 
6535 	return 0;
6536 }
6537 
6538 static ssize_t
6539 ftrace_graph_write(struct file *file, const char __user *ubuf,
6540 		   size_t cnt, loff_t *ppos)
6541 {
6542 	ssize_t read, ret = 0;
6543 	struct ftrace_graph_data *fgd = file->private_data;
6544 	struct trace_parser *parser;
6545 
6546 	if (!cnt)
6547 		return 0;
6548 
6549 	/* Read mode uses seq functions */
6550 	if (file->f_mode & FMODE_READ) {
6551 		struct seq_file *m = file->private_data;
6552 		fgd = m->private;
6553 	}
6554 
6555 	parser = &fgd->parser;
6556 
6557 	read = trace_get_user(parser, ubuf, cnt, ppos);
6558 
6559 	if (read >= 0 && trace_parser_loaded(parser) &&
6560 	    !trace_parser_cont(parser)) {
6561 
6562 		ret = ftrace_graph_set_hash(fgd->new_hash,
6563 					    parser->buffer);
6564 		trace_parser_clear(parser);
6565 	}
6566 
6567 	if (!ret)
6568 		ret = read;
6569 
6570 	return ret;
6571 }
6572 
6573 static const struct file_operations ftrace_graph_fops = {
6574 	.open		= ftrace_graph_open,
6575 	.read		= seq_read,
6576 	.write		= ftrace_graph_write,
6577 	.llseek		= tracing_lseek,
6578 	.release	= ftrace_graph_release,
6579 };
6580 
6581 static const struct file_operations ftrace_graph_notrace_fops = {
6582 	.open		= ftrace_graph_notrace_open,
6583 	.read		= seq_read,
6584 	.write		= ftrace_graph_write,
6585 	.llseek		= tracing_lseek,
6586 	.release	= ftrace_graph_release,
6587 };
6588 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6589 
6590 void ftrace_create_filter_files(struct ftrace_ops *ops,
6591 				struct dentry *parent)
6592 {
6593 
6594 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6595 			  ops, &ftrace_filter_fops);
6596 
6597 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6598 			  ops, &ftrace_notrace_fops);
6599 }
6600 
6601 /*
6602  * The name "destroy_filter_files" is really a misnomer. Although
6603  * in the future, it may actually delete the files, but this is
6604  * really intended to make sure the ops passed in are disabled
6605  * and that when this function returns, the caller is free to
6606  * free the ops.
6607  *
6608  * The "destroy" name is only to match the "create" name that this
6609  * should be paired with.
6610  */
6611 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6612 {
6613 	mutex_lock(&ftrace_lock);
6614 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6615 		ftrace_shutdown(ops, 0);
6616 	ops->flags |= FTRACE_OPS_FL_DELETED;
6617 	ftrace_free_filter(ops);
6618 	mutex_unlock(&ftrace_lock);
6619 }
6620 
6621 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6622 {
6623 
6624 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6625 			d_tracer, NULL, &ftrace_avail_fops);
6626 
6627 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6628 			d_tracer, NULL, &ftrace_enabled_fops);
6629 
6630 	ftrace_create_filter_files(&global_ops, d_tracer);
6631 
6632 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6633 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6634 				    NULL,
6635 				    &ftrace_graph_fops);
6636 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6637 				    NULL,
6638 				    &ftrace_graph_notrace_fops);
6639 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6640 
6641 	return 0;
6642 }
6643 
6644 static int ftrace_cmp_ips(const void *a, const void *b)
6645 {
6646 	const unsigned long *ipa = a;
6647 	const unsigned long *ipb = b;
6648 
6649 	if (*ipa > *ipb)
6650 		return 1;
6651 	if (*ipa < *ipb)
6652 		return -1;
6653 	return 0;
6654 }
6655 
6656 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6657 static void test_is_sorted(unsigned long *start, unsigned long count)
6658 {
6659 	int i;
6660 
6661 	for (i = 1; i < count; i++) {
6662 		if (WARN(start[i - 1] > start[i],
6663 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6664 			 (void *)start[i - 1], start[i - 1],
6665 			 (void *)start[i], start[i]))
6666 			break;
6667 	}
6668 	if (i == count)
6669 		pr_info("ftrace section at %px sorted properly\n", start);
6670 }
6671 #else
6672 static void test_is_sorted(unsigned long *start, unsigned long count)
6673 {
6674 }
6675 #endif
6676 
6677 static int ftrace_process_locs(struct module *mod,
6678 			       unsigned long *start,
6679 			       unsigned long *end)
6680 {
6681 	struct ftrace_page *start_pg;
6682 	struct ftrace_page *pg;
6683 	struct dyn_ftrace *rec;
6684 	unsigned long count;
6685 	unsigned long *p;
6686 	unsigned long addr;
6687 	unsigned long flags = 0; /* Shut up gcc */
6688 	int ret = -ENOMEM;
6689 
6690 	count = end - start;
6691 
6692 	if (!count)
6693 		return 0;
6694 
6695 	/*
6696 	 * Sorting mcount in vmlinux at build time depend on
6697 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6698 	 * modules can not be sorted at build time.
6699 	 */
6700 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6701 		sort(start, count, sizeof(*start),
6702 		     ftrace_cmp_ips, NULL);
6703 	} else {
6704 		test_is_sorted(start, count);
6705 	}
6706 
6707 	start_pg = ftrace_allocate_pages(count);
6708 	if (!start_pg)
6709 		return -ENOMEM;
6710 
6711 	mutex_lock(&ftrace_lock);
6712 
6713 	/*
6714 	 * Core and each module needs their own pages, as
6715 	 * modules will free them when they are removed.
6716 	 * Force a new page to be allocated for modules.
6717 	 */
6718 	if (!mod) {
6719 		WARN_ON(ftrace_pages || ftrace_pages_start);
6720 		/* First initialization */
6721 		ftrace_pages = ftrace_pages_start = start_pg;
6722 	} else {
6723 		if (!ftrace_pages)
6724 			goto out;
6725 
6726 		if (WARN_ON(ftrace_pages->next)) {
6727 			/* Hmm, we have free pages? */
6728 			while (ftrace_pages->next)
6729 				ftrace_pages = ftrace_pages->next;
6730 		}
6731 
6732 		ftrace_pages->next = start_pg;
6733 	}
6734 
6735 	p = start;
6736 	pg = start_pg;
6737 	while (p < end) {
6738 		unsigned long end_offset;
6739 		addr = ftrace_call_adjust(*p++);
6740 		/*
6741 		 * Some architecture linkers will pad between
6742 		 * the different mcount_loc sections of different
6743 		 * object files to satisfy alignments.
6744 		 * Skip any NULL pointers.
6745 		 */
6746 		if (!addr)
6747 			continue;
6748 
6749 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6750 		if (end_offset > PAGE_SIZE << pg->order) {
6751 			/* We should have allocated enough */
6752 			if (WARN_ON(!pg->next))
6753 				break;
6754 			pg = pg->next;
6755 		}
6756 
6757 		rec = &pg->records[pg->index++];
6758 		rec->ip = addr;
6759 	}
6760 
6761 	/* We should have used all pages */
6762 	WARN_ON(pg->next);
6763 
6764 	/* Assign the last page to ftrace_pages */
6765 	ftrace_pages = pg;
6766 
6767 	/*
6768 	 * We only need to disable interrupts on start up
6769 	 * because we are modifying code that an interrupt
6770 	 * may execute, and the modification is not atomic.
6771 	 * But for modules, nothing runs the code we modify
6772 	 * until we are finished with it, and there's no
6773 	 * reason to cause large interrupt latencies while we do it.
6774 	 */
6775 	if (!mod)
6776 		local_irq_save(flags);
6777 	ftrace_update_code(mod, start_pg);
6778 	if (!mod)
6779 		local_irq_restore(flags);
6780 	ret = 0;
6781  out:
6782 	mutex_unlock(&ftrace_lock);
6783 
6784 	return ret;
6785 }
6786 
6787 struct ftrace_mod_func {
6788 	struct list_head	list;
6789 	char			*name;
6790 	unsigned long		ip;
6791 	unsigned int		size;
6792 };
6793 
6794 struct ftrace_mod_map {
6795 	struct rcu_head		rcu;
6796 	struct list_head	list;
6797 	struct module		*mod;
6798 	unsigned long		start_addr;
6799 	unsigned long		end_addr;
6800 	struct list_head	funcs;
6801 	unsigned int		num_funcs;
6802 };
6803 
6804 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6805 					 unsigned long *value, char *type,
6806 					 char *name, char *module_name,
6807 					 int *exported)
6808 {
6809 	struct ftrace_ops *op;
6810 
6811 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6812 		if (!op->trampoline || symnum--)
6813 			continue;
6814 		*value = op->trampoline;
6815 		*type = 't';
6816 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6817 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6818 		*exported = 0;
6819 		return 0;
6820 	}
6821 
6822 	return -ERANGE;
6823 }
6824 
6825 #ifdef CONFIG_MODULES
6826 
6827 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6828 
6829 static LIST_HEAD(ftrace_mod_maps);
6830 
6831 static int referenced_filters(struct dyn_ftrace *rec)
6832 {
6833 	struct ftrace_ops *ops;
6834 	int cnt = 0;
6835 
6836 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6837 		if (ops_references_rec(ops, rec)) {
6838 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6839 				continue;
6840 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6841 				continue;
6842 			cnt++;
6843 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6844 				rec->flags |= FTRACE_FL_REGS;
6845 			if (cnt == 1 && ops->trampoline)
6846 				rec->flags |= FTRACE_FL_TRAMP;
6847 			else
6848 				rec->flags &= ~FTRACE_FL_TRAMP;
6849 		}
6850 	}
6851 
6852 	return cnt;
6853 }
6854 
6855 static void
6856 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6857 {
6858 	struct ftrace_func_entry *entry;
6859 	struct dyn_ftrace *rec;
6860 	int i;
6861 
6862 	if (ftrace_hash_empty(hash))
6863 		return;
6864 
6865 	for (i = 0; i < pg->index; i++) {
6866 		rec = &pg->records[i];
6867 		entry = __ftrace_lookup_ip(hash, rec->ip);
6868 		/*
6869 		 * Do not allow this rec to match again.
6870 		 * Yeah, it may waste some memory, but will be removed
6871 		 * if/when the hash is modified again.
6872 		 */
6873 		if (entry)
6874 			entry->ip = 0;
6875 	}
6876 }
6877 
6878 /* Clear any records from hashes */
6879 static void clear_mod_from_hashes(struct ftrace_page *pg)
6880 {
6881 	struct trace_array *tr;
6882 
6883 	mutex_lock(&trace_types_lock);
6884 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6885 		if (!tr->ops || !tr->ops->func_hash)
6886 			continue;
6887 		mutex_lock(&tr->ops->func_hash->regex_lock);
6888 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6889 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6890 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6891 	}
6892 	mutex_unlock(&trace_types_lock);
6893 }
6894 
6895 static void ftrace_free_mod_map(struct rcu_head *rcu)
6896 {
6897 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6898 	struct ftrace_mod_func *mod_func;
6899 	struct ftrace_mod_func *n;
6900 
6901 	/* All the contents of mod_map are now not visible to readers */
6902 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6903 		kfree(mod_func->name);
6904 		list_del(&mod_func->list);
6905 		kfree(mod_func);
6906 	}
6907 
6908 	kfree(mod_map);
6909 }
6910 
6911 void ftrace_release_mod(struct module *mod)
6912 {
6913 	struct ftrace_mod_map *mod_map;
6914 	struct ftrace_mod_map *n;
6915 	struct dyn_ftrace *rec;
6916 	struct ftrace_page **last_pg;
6917 	struct ftrace_page *tmp_page = NULL;
6918 	struct ftrace_page *pg;
6919 
6920 	mutex_lock(&ftrace_lock);
6921 
6922 	if (ftrace_disabled)
6923 		goto out_unlock;
6924 
6925 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6926 		if (mod_map->mod == mod) {
6927 			list_del_rcu(&mod_map->list);
6928 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6929 			break;
6930 		}
6931 	}
6932 
6933 	/*
6934 	 * Each module has its own ftrace_pages, remove
6935 	 * them from the list.
6936 	 */
6937 	last_pg = &ftrace_pages_start;
6938 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6939 		rec = &pg->records[0];
6940 		if (within_module_core(rec->ip, mod) ||
6941 		    within_module_init(rec->ip, mod)) {
6942 			/*
6943 			 * As core pages are first, the first
6944 			 * page should never be a module page.
6945 			 */
6946 			if (WARN_ON(pg == ftrace_pages_start))
6947 				goto out_unlock;
6948 
6949 			/* Check if we are deleting the last page */
6950 			if (pg == ftrace_pages)
6951 				ftrace_pages = next_to_ftrace_page(last_pg);
6952 
6953 			ftrace_update_tot_cnt -= pg->index;
6954 			*last_pg = pg->next;
6955 
6956 			pg->next = tmp_page;
6957 			tmp_page = pg;
6958 		} else
6959 			last_pg = &pg->next;
6960 	}
6961  out_unlock:
6962 	mutex_unlock(&ftrace_lock);
6963 
6964 	for (pg = tmp_page; pg; pg = tmp_page) {
6965 
6966 		/* Needs to be called outside of ftrace_lock */
6967 		clear_mod_from_hashes(pg);
6968 
6969 		if (pg->records) {
6970 			free_pages((unsigned long)pg->records, pg->order);
6971 			ftrace_number_of_pages -= 1 << pg->order;
6972 		}
6973 		tmp_page = pg->next;
6974 		kfree(pg);
6975 		ftrace_number_of_groups--;
6976 	}
6977 }
6978 
6979 void ftrace_module_enable(struct module *mod)
6980 {
6981 	struct dyn_ftrace *rec;
6982 	struct ftrace_page *pg;
6983 
6984 	mutex_lock(&ftrace_lock);
6985 
6986 	if (ftrace_disabled)
6987 		goto out_unlock;
6988 
6989 	/*
6990 	 * If the tracing is enabled, go ahead and enable the record.
6991 	 *
6992 	 * The reason not to enable the record immediately is the
6993 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6994 	 * correct previous instructions.  Making first the NOP
6995 	 * conversion puts the module to the correct state, thus
6996 	 * passing the ftrace_make_call check.
6997 	 *
6998 	 * We also delay this to after the module code already set the
6999 	 * text to read-only, as we now need to set it back to read-write
7000 	 * so that we can modify the text.
7001 	 */
7002 	if (ftrace_start_up)
7003 		ftrace_arch_code_modify_prepare();
7004 
7005 	do_for_each_ftrace_rec(pg, rec) {
7006 		int cnt;
7007 		/*
7008 		 * do_for_each_ftrace_rec() is a double loop.
7009 		 * module text shares the pg. If a record is
7010 		 * not part of this module, then skip this pg,
7011 		 * which the "break" will do.
7012 		 */
7013 		if (!within_module_core(rec->ip, mod) &&
7014 		    !within_module_init(rec->ip, mod))
7015 			break;
7016 
7017 		/* Weak functions should still be ignored */
7018 		if (!test_for_valid_rec(rec)) {
7019 			/* Clear all other flags. Should not be enabled anyway */
7020 			rec->flags = FTRACE_FL_DISABLED;
7021 			continue;
7022 		}
7023 
7024 		cnt = 0;
7025 
7026 		/*
7027 		 * When adding a module, we need to check if tracers are
7028 		 * currently enabled and if they are, and can trace this record,
7029 		 * we need to enable the module functions as well as update the
7030 		 * reference counts for those function records.
7031 		 */
7032 		if (ftrace_start_up)
7033 			cnt += referenced_filters(rec);
7034 
7035 		rec->flags &= ~FTRACE_FL_DISABLED;
7036 		rec->flags += cnt;
7037 
7038 		if (ftrace_start_up && cnt) {
7039 			int failed = __ftrace_replace_code(rec, 1);
7040 			if (failed) {
7041 				ftrace_bug(failed, rec);
7042 				goto out_loop;
7043 			}
7044 		}
7045 
7046 	} while_for_each_ftrace_rec();
7047 
7048  out_loop:
7049 	if (ftrace_start_up)
7050 		ftrace_arch_code_modify_post_process();
7051 
7052  out_unlock:
7053 	mutex_unlock(&ftrace_lock);
7054 
7055 	process_cached_mods(mod->name);
7056 }
7057 
7058 void ftrace_module_init(struct module *mod)
7059 {
7060 	int ret;
7061 
7062 	if (ftrace_disabled || !mod->num_ftrace_callsites)
7063 		return;
7064 
7065 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
7066 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
7067 	if (ret)
7068 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
7069 			mod->name);
7070 }
7071 
7072 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7073 				struct dyn_ftrace *rec)
7074 {
7075 	struct ftrace_mod_func *mod_func;
7076 	unsigned long symsize;
7077 	unsigned long offset;
7078 	char str[KSYM_SYMBOL_LEN];
7079 	char *modname;
7080 	const char *ret;
7081 
7082 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
7083 	if (!ret)
7084 		return;
7085 
7086 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
7087 	if (!mod_func)
7088 		return;
7089 
7090 	mod_func->name = kstrdup(str, GFP_KERNEL);
7091 	if (!mod_func->name) {
7092 		kfree(mod_func);
7093 		return;
7094 	}
7095 
7096 	mod_func->ip = rec->ip - offset;
7097 	mod_func->size = symsize;
7098 
7099 	mod_map->num_funcs++;
7100 
7101 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7102 }
7103 
7104 static struct ftrace_mod_map *
7105 allocate_ftrace_mod_map(struct module *mod,
7106 			unsigned long start, unsigned long end)
7107 {
7108 	struct ftrace_mod_map *mod_map;
7109 
7110 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7111 	if (!mod_map)
7112 		return NULL;
7113 
7114 	mod_map->mod = mod;
7115 	mod_map->start_addr = start;
7116 	mod_map->end_addr = end;
7117 	mod_map->num_funcs = 0;
7118 
7119 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7120 
7121 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7122 
7123 	return mod_map;
7124 }
7125 
7126 static const char *
7127 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7128 			   unsigned long addr, unsigned long *size,
7129 			   unsigned long *off, char *sym)
7130 {
7131 	struct ftrace_mod_func *found_func =  NULL;
7132 	struct ftrace_mod_func *mod_func;
7133 
7134 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7135 		if (addr >= mod_func->ip &&
7136 		    addr < mod_func->ip + mod_func->size) {
7137 			found_func = mod_func;
7138 			break;
7139 		}
7140 	}
7141 
7142 	if (found_func) {
7143 		if (size)
7144 			*size = found_func->size;
7145 		if (off)
7146 			*off = addr - found_func->ip;
7147 		if (sym)
7148 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7149 
7150 		return found_func->name;
7151 	}
7152 
7153 	return NULL;
7154 }
7155 
7156 const char *
7157 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7158 		   unsigned long *off, char **modname, char *sym)
7159 {
7160 	struct ftrace_mod_map *mod_map;
7161 	const char *ret = NULL;
7162 
7163 	/* mod_map is freed via call_rcu() */
7164 	preempt_disable();
7165 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7166 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7167 		if (ret) {
7168 			if (modname)
7169 				*modname = mod_map->mod->name;
7170 			break;
7171 		}
7172 	}
7173 	preempt_enable();
7174 
7175 	return ret;
7176 }
7177 
7178 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7179 			   char *type, char *name,
7180 			   char *module_name, int *exported)
7181 {
7182 	struct ftrace_mod_map *mod_map;
7183 	struct ftrace_mod_func *mod_func;
7184 	int ret;
7185 
7186 	preempt_disable();
7187 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7188 
7189 		if (symnum >= mod_map->num_funcs) {
7190 			symnum -= mod_map->num_funcs;
7191 			continue;
7192 		}
7193 
7194 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7195 			if (symnum > 1) {
7196 				symnum--;
7197 				continue;
7198 			}
7199 
7200 			*value = mod_func->ip;
7201 			*type = 'T';
7202 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7203 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7204 			*exported = 1;
7205 			preempt_enable();
7206 			return 0;
7207 		}
7208 		WARN_ON(1);
7209 		break;
7210 	}
7211 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7212 					    module_name, exported);
7213 	preempt_enable();
7214 	return ret;
7215 }
7216 
7217 #else
7218 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7219 				struct dyn_ftrace *rec) { }
7220 static inline struct ftrace_mod_map *
7221 allocate_ftrace_mod_map(struct module *mod,
7222 			unsigned long start, unsigned long end)
7223 {
7224 	return NULL;
7225 }
7226 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7227 			   char *type, char *name, char *module_name,
7228 			   int *exported)
7229 {
7230 	int ret;
7231 
7232 	preempt_disable();
7233 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7234 					    module_name, exported);
7235 	preempt_enable();
7236 	return ret;
7237 }
7238 #endif /* CONFIG_MODULES */
7239 
7240 struct ftrace_init_func {
7241 	struct list_head list;
7242 	unsigned long ip;
7243 };
7244 
7245 /* Clear any init ips from hashes */
7246 static void
7247 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7248 {
7249 	struct ftrace_func_entry *entry;
7250 
7251 	entry = ftrace_lookup_ip(hash, func->ip);
7252 	/*
7253 	 * Do not allow this rec to match again.
7254 	 * Yeah, it may waste some memory, but will be removed
7255 	 * if/when the hash is modified again.
7256 	 */
7257 	if (entry)
7258 		entry->ip = 0;
7259 }
7260 
7261 static void
7262 clear_func_from_hashes(struct ftrace_init_func *func)
7263 {
7264 	struct trace_array *tr;
7265 
7266 	mutex_lock(&trace_types_lock);
7267 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7268 		if (!tr->ops || !tr->ops->func_hash)
7269 			continue;
7270 		mutex_lock(&tr->ops->func_hash->regex_lock);
7271 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7272 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7273 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7274 	}
7275 	mutex_unlock(&trace_types_lock);
7276 }
7277 
7278 static void add_to_clear_hash_list(struct list_head *clear_list,
7279 				   struct dyn_ftrace *rec)
7280 {
7281 	struct ftrace_init_func *func;
7282 
7283 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7284 	if (!func) {
7285 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7286 		return;
7287 	}
7288 
7289 	func->ip = rec->ip;
7290 	list_add(&func->list, clear_list);
7291 }
7292 
7293 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7294 {
7295 	unsigned long start = (unsigned long)(start_ptr);
7296 	unsigned long end = (unsigned long)(end_ptr);
7297 	struct ftrace_page **last_pg = &ftrace_pages_start;
7298 	struct ftrace_page *pg;
7299 	struct dyn_ftrace *rec;
7300 	struct dyn_ftrace key;
7301 	struct ftrace_mod_map *mod_map = NULL;
7302 	struct ftrace_init_func *func, *func_next;
7303 	struct list_head clear_hash;
7304 
7305 	INIT_LIST_HEAD(&clear_hash);
7306 
7307 	key.ip = start;
7308 	key.flags = end;	/* overload flags, as it is unsigned long */
7309 
7310 	mutex_lock(&ftrace_lock);
7311 
7312 	/*
7313 	 * If we are freeing module init memory, then check if
7314 	 * any tracer is active. If so, we need to save a mapping of
7315 	 * the module functions being freed with the address.
7316 	 */
7317 	if (mod && ftrace_ops_list != &ftrace_list_end)
7318 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7319 
7320 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7321 		if (end < pg->records[0].ip ||
7322 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7323 			continue;
7324  again:
7325 		rec = bsearch(&key, pg->records, pg->index,
7326 			      sizeof(struct dyn_ftrace),
7327 			      ftrace_cmp_recs);
7328 		if (!rec)
7329 			continue;
7330 
7331 		/* rec will be cleared from hashes after ftrace_lock unlock */
7332 		add_to_clear_hash_list(&clear_hash, rec);
7333 
7334 		if (mod_map)
7335 			save_ftrace_mod_rec(mod_map, rec);
7336 
7337 		pg->index--;
7338 		ftrace_update_tot_cnt--;
7339 		if (!pg->index) {
7340 			*last_pg = pg->next;
7341 			if (pg->records) {
7342 				free_pages((unsigned long)pg->records, pg->order);
7343 				ftrace_number_of_pages -= 1 << pg->order;
7344 			}
7345 			ftrace_number_of_groups--;
7346 			kfree(pg);
7347 			pg = container_of(last_pg, struct ftrace_page, next);
7348 			if (!(*last_pg))
7349 				ftrace_pages = pg;
7350 			continue;
7351 		}
7352 		memmove(rec, rec + 1,
7353 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7354 		/* More than one function may be in this block */
7355 		goto again;
7356 	}
7357 	mutex_unlock(&ftrace_lock);
7358 
7359 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7360 		clear_func_from_hashes(func);
7361 		kfree(func);
7362 	}
7363 }
7364 
7365 void __init ftrace_free_init_mem(void)
7366 {
7367 	void *start = (void *)(&__init_begin);
7368 	void *end = (void *)(&__init_end);
7369 
7370 	ftrace_boot_snapshot();
7371 
7372 	ftrace_free_mem(NULL, start, end);
7373 }
7374 
7375 int __init __weak ftrace_dyn_arch_init(void)
7376 {
7377 	return 0;
7378 }
7379 
7380 void __init ftrace_init(void)
7381 {
7382 	extern unsigned long __start_mcount_loc[];
7383 	extern unsigned long __stop_mcount_loc[];
7384 	unsigned long count, flags;
7385 	int ret;
7386 
7387 	local_irq_save(flags);
7388 	ret = ftrace_dyn_arch_init();
7389 	local_irq_restore(flags);
7390 	if (ret)
7391 		goto failed;
7392 
7393 	count = __stop_mcount_loc - __start_mcount_loc;
7394 	if (!count) {
7395 		pr_info("ftrace: No functions to be traced?\n");
7396 		goto failed;
7397 	}
7398 
7399 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7400 		count, count / ENTRIES_PER_PAGE + 1);
7401 
7402 	ret = ftrace_process_locs(NULL,
7403 				  __start_mcount_loc,
7404 				  __stop_mcount_loc);
7405 	if (ret) {
7406 		pr_warn("ftrace: failed to allocate entries for functions\n");
7407 		goto failed;
7408 	}
7409 
7410 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7411 		ftrace_number_of_pages, ftrace_number_of_groups);
7412 
7413 	last_ftrace_enabled = ftrace_enabled = 1;
7414 
7415 	set_ftrace_early_filters();
7416 
7417 	return;
7418  failed:
7419 	ftrace_disabled = 1;
7420 }
7421 
7422 /* Do nothing if arch does not support this */
7423 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7424 {
7425 }
7426 
7427 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7428 {
7429 	unsigned long trampoline = ops->trampoline;
7430 
7431 	arch_ftrace_update_trampoline(ops);
7432 	if (ops->trampoline && ops->trampoline != trampoline &&
7433 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7434 		/* Add to kallsyms before the perf events */
7435 		ftrace_add_trampoline_to_kallsyms(ops);
7436 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7437 				   ops->trampoline, ops->trampoline_size, false,
7438 				   FTRACE_TRAMPOLINE_SYM);
7439 		/*
7440 		 * Record the perf text poke event after the ksymbol register
7441 		 * event.
7442 		 */
7443 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7444 				     (void *)ops->trampoline,
7445 				     ops->trampoline_size);
7446 	}
7447 }
7448 
7449 void ftrace_init_trace_array(struct trace_array *tr)
7450 {
7451 	INIT_LIST_HEAD(&tr->func_probes);
7452 	INIT_LIST_HEAD(&tr->mod_trace);
7453 	INIT_LIST_HEAD(&tr->mod_notrace);
7454 }
7455 #else
7456 
7457 struct ftrace_ops global_ops = {
7458 	.func			= ftrace_stub,
7459 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7460 				  FTRACE_OPS_FL_PID,
7461 };
7462 
7463 static int __init ftrace_nodyn_init(void)
7464 {
7465 	ftrace_enabled = 1;
7466 	return 0;
7467 }
7468 core_initcall(ftrace_nodyn_init);
7469 
7470 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7471 static inline void ftrace_startup_all(int command) { }
7472 
7473 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7474 {
7475 }
7476 
7477 #endif /* CONFIG_DYNAMIC_FTRACE */
7478 
7479 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7480 {
7481 	tr->ops = &global_ops;
7482 	tr->ops->private = tr;
7483 	ftrace_init_trace_array(tr);
7484 }
7485 
7486 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7487 {
7488 	/* If we filter on pids, update to use the pid function */
7489 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7490 		if (WARN_ON(tr->ops->func != ftrace_stub))
7491 			printk("ftrace ops had %pS for function\n",
7492 			       tr->ops->func);
7493 	}
7494 	tr->ops->func = func;
7495 	tr->ops->private = tr;
7496 }
7497 
7498 void ftrace_reset_array_ops(struct trace_array *tr)
7499 {
7500 	tr->ops->func = ftrace_stub;
7501 }
7502 
7503 static nokprobe_inline void
7504 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7505 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7506 {
7507 	struct pt_regs *regs = ftrace_get_regs(fregs);
7508 	struct ftrace_ops *op;
7509 	int bit;
7510 
7511 	/*
7512 	 * The ftrace_test_and_set_recursion() will disable preemption,
7513 	 * which is required since some of the ops may be dynamically
7514 	 * allocated, they must be freed after a synchronize_rcu().
7515 	 */
7516 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7517 	if (bit < 0)
7518 		return;
7519 
7520 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7521 		/* Stub functions don't need to be called nor tested */
7522 		if (op->flags & FTRACE_OPS_FL_STUB)
7523 			continue;
7524 		/*
7525 		 * Check the following for each ops before calling their func:
7526 		 *  if RCU flag is set, then rcu_is_watching() must be true
7527 		 *  if PER_CPU is set, then ftrace_function_local_disable()
7528 		 *                          must be false
7529 		 *  Otherwise test if the ip matches the ops filter
7530 		 *
7531 		 * If any of the above fails then the op->func() is not executed.
7532 		 */
7533 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7534 		    ftrace_ops_test(op, ip, regs)) {
7535 			if (FTRACE_WARN_ON(!op->func)) {
7536 				pr_warn("op=%p %pS\n", op, op);
7537 				goto out;
7538 			}
7539 			op->func(ip, parent_ip, op, fregs);
7540 		}
7541 	} while_for_each_ftrace_op(op);
7542 out:
7543 	trace_clear_recursion(bit);
7544 }
7545 
7546 /*
7547  * Some archs only support passing ip and parent_ip. Even though
7548  * the list function ignores the op parameter, we do not want any
7549  * C side effects, where a function is called without the caller
7550  * sending a third parameter.
7551  * Archs are to support both the regs and ftrace_ops at the same time.
7552  * If they support ftrace_ops, it is assumed they support regs.
7553  * If call backs want to use regs, they must either check for regs
7554  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7555  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7556  * An architecture can pass partial regs with ftrace_ops and still
7557  * set the ARCH_SUPPORTS_FTRACE_OPS.
7558  *
7559  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7560  * arch_ftrace_ops_list_func.
7561  */
7562 #if ARCH_SUPPORTS_FTRACE_OPS
7563 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7564 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7565 {
7566 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7567 }
7568 #else
7569 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7570 {
7571 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7572 }
7573 #endif
7574 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7575 
7576 /*
7577  * If there's only one function registered but it does not support
7578  * recursion, needs RCU protection and/or requires per cpu handling, then
7579  * this function will be called by the mcount trampoline.
7580  */
7581 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7582 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7583 {
7584 	int bit;
7585 
7586 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7587 	if (bit < 0)
7588 		return;
7589 
7590 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7591 		op->func(ip, parent_ip, op, fregs);
7592 
7593 	trace_clear_recursion(bit);
7594 }
7595 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7596 
7597 /**
7598  * ftrace_ops_get_func - get the function a trampoline should call
7599  * @ops: the ops to get the function for
7600  *
7601  * Normally the mcount trampoline will call the ops->func, but there
7602  * are times that it should not. For example, if the ops does not
7603  * have its own recursion protection, then it should call the
7604  * ftrace_ops_assist_func() instead.
7605  *
7606  * Returns the function that the trampoline should call for @ops.
7607  */
7608 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7609 {
7610 	/*
7611 	 * If the function does not handle recursion or needs to be RCU safe,
7612 	 * then we need to call the assist handler.
7613 	 */
7614 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7615 			  FTRACE_OPS_FL_RCU))
7616 		return ftrace_ops_assist_func;
7617 
7618 	return ops->func;
7619 }
7620 
7621 static void
7622 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7623 				     struct task_struct *prev,
7624 				     struct task_struct *next,
7625 				     unsigned int prev_state)
7626 {
7627 	struct trace_array *tr = data;
7628 	struct trace_pid_list *pid_list;
7629 	struct trace_pid_list *no_pid_list;
7630 
7631 	pid_list = rcu_dereference_sched(tr->function_pids);
7632 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7633 
7634 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7635 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7636 			       FTRACE_PID_IGNORE);
7637 	else
7638 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7639 			       next->pid);
7640 }
7641 
7642 static void
7643 ftrace_pid_follow_sched_process_fork(void *data,
7644 				     struct task_struct *self,
7645 				     struct task_struct *task)
7646 {
7647 	struct trace_pid_list *pid_list;
7648 	struct trace_array *tr = data;
7649 
7650 	pid_list = rcu_dereference_sched(tr->function_pids);
7651 	trace_filter_add_remove_task(pid_list, self, task);
7652 
7653 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7654 	trace_filter_add_remove_task(pid_list, self, task);
7655 }
7656 
7657 static void
7658 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7659 {
7660 	struct trace_pid_list *pid_list;
7661 	struct trace_array *tr = data;
7662 
7663 	pid_list = rcu_dereference_sched(tr->function_pids);
7664 	trace_filter_add_remove_task(pid_list, NULL, task);
7665 
7666 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7667 	trace_filter_add_remove_task(pid_list, NULL, task);
7668 }
7669 
7670 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7671 {
7672 	if (enable) {
7673 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7674 						  tr);
7675 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7676 						  tr);
7677 	} else {
7678 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7679 						    tr);
7680 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7681 						    tr);
7682 	}
7683 }
7684 
7685 static void clear_ftrace_pids(struct trace_array *tr, int type)
7686 {
7687 	struct trace_pid_list *pid_list;
7688 	struct trace_pid_list *no_pid_list;
7689 	int cpu;
7690 
7691 	pid_list = rcu_dereference_protected(tr->function_pids,
7692 					     lockdep_is_held(&ftrace_lock));
7693 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7694 						lockdep_is_held(&ftrace_lock));
7695 
7696 	/* Make sure there's something to do */
7697 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7698 		return;
7699 
7700 	/* See if the pids still need to be checked after this */
7701 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7702 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7703 		for_each_possible_cpu(cpu)
7704 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7705 	}
7706 
7707 	if (type & TRACE_PIDS)
7708 		rcu_assign_pointer(tr->function_pids, NULL);
7709 
7710 	if (type & TRACE_NO_PIDS)
7711 		rcu_assign_pointer(tr->function_no_pids, NULL);
7712 
7713 	/* Wait till all users are no longer using pid filtering */
7714 	synchronize_rcu();
7715 
7716 	if ((type & TRACE_PIDS) && pid_list)
7717 		trace_pid_list_free(pid_list);
7718 
7719 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7720 		trace_pid_list_free(no_pid_list);
7721 }
7722 
7723 void ftrace_clear_pids(struct trace_array *tr)
7724 {
7725 	mutex_lock(&ftrace_lock);
7726 
7727 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7728 
7729 	mutex_unlock(&ftrace_lock);
7730 }
7731 
7732 static void ftrace_pid_reset(struct trace_array *tr, int type)
7733 {
7734 	mutex_lock(&ftrace_lock);
7735 	clear_ftrace_pids(tr, type);
7736 
7737 	ftrace_update_pid_func();
7738 	ftrace_startup_all(0);
7739 
7740 	mutex_unlock(&ftrace_lock);
7741 }
7742 
7743 /* Greater than any max PID */
7744 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7745 
7746 static void *fpid_start(struct seq_file *m, loff_t *pos)
7747 	__acquires(RCU)
7748 {
7749 	struct trace_pid_list *pid_list;
7750 	struct trace_array *tr = m->private;
7751 
7752 	mutex_lock(&ftrace_lock);
7753 	rcu_read_lock_sched();
7754 
7755 	pid_list = rcu_dereference_sched(tr->function_pids);
7756 
7757 	if (!pid_list)
7758 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7759 
7760 	return trace_pid_start(pid_list, pos);
7761 }
7762 
7763 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7764 {
7765 	struct trace_array *tr = m->private;
7766 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7767 
7768 	if (v == FTRACE_NO_PIDS) {
7769 		(*pos)++;
7770 		return NULL;
7771 	}
7772 	return trace_pid_next(pid_list, v, pos);
7773 }
7774 
7775 static void fpid_stop(struct seq_file *m, void *p)
7776 	__releases(RCU)
7777 {
7778 	rcu_read_unlock_sched();
7779 	mutex_unlock(&ftrace_lock);
7780 }
7781 
7782 static int fpid_show(struct seq_file *m, void *v)
7783 {
7784 	if (v == FTRACE_NO_PIDS) {
7785 		seq_puts(m, "no pid\n");
7786 		return 0;
7787 	}
7788 
7789 	return trace_pid_show(m, v);
7790 }
7791 
7792 static const struct seq_operations ftrace_pid_sops = {
7793 	.start = fpid_start,
7794 	.next = fpid_next,
7795 	.stop = fpid_stop,
7796 	.show = fpid_show,
7797 };
7798 
7799 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7800 	__acquires(RCU)
7801 {
7802 	struct trace_pid_list *pid_list;
7803 	struct trace_array *tr = m->private;
7804 
7805 	mutex_lock(&ftrace_lock);
7806 	rcu_read_lock_sched();
7807 
7808 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7809 
7810 	if (!pid_list)
7811 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7812 
7813 	return trace_pid_start(pid_list, pos);
7814 }
7815 
7816 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7817 {
7818 	struct trace_array *tr = m->private;
7819 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7820 
7821 	if (v == FTRACE_NO_PIDS) {
7822 		(*pos)++;
7823 		return NULL;
7824 	}
7825 	return trace_pid_next(pid_list, v, pos);
7826 }
7827 
7828 static const struct seq_operations ftrace_no_pid_sops = {
7829 	.start = fnpid_start,
7830 	.next = fnpid_next,
7831 	.stop = fpid_stop,
7832 	.show = fpid_show,
7833 };
7834 
7835 static int pid_open(struct inode *inode, struct file *file, int type)
7836 {
7837 	const struct seq_operations *seq_ops;
7838 	struct trace_array *tr = inode->i_private;
7839 	struct seq_file *m;
7840 	int ret = 0;
7841 
7842 	ret = tracing_check_open_get_tr(tr);
7843 	if (ret)
7844 		return ret;
7845 
7846 	if ((file->f_mode & FMODE_WRITE) &&
7847 	    (file->f_flags & O_TRUNC))
7848 		ftrace_pid_reset(tr, type);
7849 
7850 	switch (type) {
7851 	case TRACE_PIDS:
7852 		seq_ops = &ftrace_pid_sops;
7853 		break;
7854 	case TRACE_NO_PIDS:
7855 		seq_ops = &ftrace_no_pid_sops;
7856 		break;
7857 	default:
7858 		trace_array_put(tr);
7859 		WARN_ON_ONCE(1);
7860 		return -EINVAL;
7861 	}
7862 
7863 	ret = seq_open(file, seq_ops);
7864 	if (ret < 0) {
7865 		trace_array_put(tr);
7866 	} else {
7867 		m = file->private_data;
7868 		/* copy tr over to seq ops */
7869 		m->private = tr;
7870 	}
7871 
7872 	return ret;
7873 }
7874 
7875 static int
7876 ftrace_pid_open(struct inode *inode, struct file *file)
7877 {
7878 	return pid_open(inode, file, TRACE_PIDS);
7879 }
7880 
7881 static int
7882 ftrace_no_pid_open(struct inode *inode, struct file *file)
7883 {
7884 	return pid_open(inode, file, TRACE_NO_PIDS);
7885 }
7886 
7887 static void ignore_task_cpu(void *data)
7888 {
7889 	struct trace_array *tr = data;
7890 	struct trace_pid_list *pid_list;
7891 	struct trace_pid_list *no_pid_list;
7892 
7893 	/*
7894 	 * This function is called by on_each_cpu() while the
7895 	 * event_mutex is held.
7896 	 */
7897 	pid_list = rcu_dereference_protected(tr->function_pids,
7898 					     mutex_is_locked(&ftrace_lock));
7899 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7900 						mutex_is_locked(&ftrace_lock));
7901 
7902 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7903 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7904 			       FTRACE_PID_IGNORE);
7905 	else
7906 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7907 			       current->pid);
7908 }
7909 
7910 static ssize_t
7911 pid_write(struct file *filp, const char __user *ubuf,
7912 	  size_t cnt, loff_t *ppos, int type)
7913 {
7914 	struct seq_file *m = filp->private_data;
7915 	struct trace_array *tr = m->private;
7916 	struct trace_pid_list *filtered_pids;
7917 	struct trace_pid_list *other_pids;
7918 	struct trace_pid_list *pid_list;
7919 	ssize_t ret;
7920 
7921 	if (!cnt)
7922 		return 0;
7923 
7924 	mutex_lock(&ftrace_lock);
7925 
7926 	switch (type) {
7927 	case TRACE_PIDS:
7928 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7929 					     lockdep_is_held(&ftrace_lock));
7930 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7931 					     lockdep_is_held(&ftrace_lock));
7932 		break;
7933 	case TRACE_NO_PIDS:
7934 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7935 					     lockdep_is_held(&ftrace_lock));
7936 		other_pids = rcu_dereference_protected(tr->function_pids,
7937 					     lockdep_is_held(&ftrace_lock));
7938 		break;
7939 	default:
7940 		ret = -EINVAL;
7941 		WARN_ON_ONCE(1);
7942 		goto out;
7943 	}
7944 
7945 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7946 	if (ret < 0)
7947 		goto out;
7948 
7949 	switch (type) {
7950 	case TRACE_PIDS:
7951 		rcu_assign_pointer(tr->function_pids, pid_list);
7952 		break;
7953 	case TRACE_NO_PIDS:
7954 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7955 		break;
7956 	}
7957 
7958 
7959 	if (filtered_pids) {
7960 		synchronize_rcu();
7961 		trace_pid_list_free(filtered_pids);
7962 	} else if (pid_list && !other_pids) {
7963 		/* Register a probe to set whether to ignore the tracing of a task */
7964 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7965 	}
7966 
7967 	/*
7968 	 * Ignoring of pids is done at task switch. But we have to
7969 	 * check for those tasks that are currently running.
7970 	 * Always do this in case a pid was appended or removed.
7971 	 */
7972 	on_each_cpu(ignore_task_cpu, tr, 1);
7973 
7974 	ftrace_update_pid_func();
7975 	ftrace_startup_all(0);
7976  out:
7977 	mutex_unlock(&ftrace_lock);
7978 
7979 	if (ret > 0)
7980 		*ppos += ret;
7981 
7982 	return ret;
7983 }
7984 
7985 static ssize_t
7986 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7987 		 size_t cnt, loff_t *ppos)
7988 {
7989 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7990 }
7991 
7992 static ssize_t
7993 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7994 		    size_t cnt, loff_t *ppos)
7995 {
7996 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7997 }
7998 
7999 static int
8000 ftrace_pid_release(struct inode *inode, struct file *file)
8001 {
8002 	struct trace_array *tr = inode->i_private;
8003 
8004 	trace_array_put(tr);
8005 
8006 	return seq_release(inode, file);
8007 }
8008 
8009 static const struct file_operations ftrace_pid_fops = {
8010 	.open		= ftrace_pid_open,
8011 	.write		= ftrace_pid_write,
8012 	.read		= seq_read,
8013 	.llseek		= tracing_lseek,
8014 	.release	= ftrace_pid_release,
8015 };
8016 
8017 static const struct file_operations ftrace_no_pid_fops = {
8018 	.open		= ftrace_no_pid_open,
8019 	.write		= ftrace_no_pid_write,
8020 	.read		= seq_read,
8021 	.llseek		= tracing_lseek,
8022 	.release	= ftrace_pid_release,
8023 };
8024 
8025 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
8026 {
8027 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
8028 			    tr, &ftrace_pid_fops);
8029 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
8030 			  d_tracer, tr, &ftrace_no_pid_fops);
8031 }
8032 
8033 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
8034 					 struct dentry *d_tracer)
8035 {
8036 	/* Only the top level directory has the dyn_tracefs and profile */
8037 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
8038 
8039 	ftrace_init_dyn_tracefs(d_tracer);
8040 	ftrace_profile_tracefs(d_tracer);
8041 }
8042 
8043 /**
8044  * ftrace_kill - kill ftrace
8045  *
8046  * This function should be used by panic code. It stops ftrace
8047  * but in a not so nice way. If you need to simply kill ftrace
8048  * from a non-atomic section, use ftrace_kill.
8049  */
8050 void ftrace_kill(void)
8051 {
8052 	ftrace_disabled = 1;
8053 	ftrace_enabled = 0;
8054 	ftrace_trace_function = ftrace_stub;
8055 }
8056 
8057 /**
8058  * ftrace_is_dead - Test if ftrace is dead or not.
8059  *
8060  * Returns 1 if ftrace is "dead", zero otherwise.
8061  */
8062 int ftrace_is_dead(void)
8063 {
8064 	return ftrace_disabled;
8065 }
8066 
8067 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
8068 /*
8069  * When registering ftrace_ops with IPMODIFY, it is necessary to make sure
8070  * it doesn't conflict with any direct ftrace_ops. If there is existing
8071  * direct ftrace_ops on a kernel function being patched, call
8072  * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing.
8073  *
8074  * @ops:     ftrace_ops being registered.
8075  *
8076  * Returns:
8077  *         0 on success;
8078  *         Negative on failure.
8079  */
8080 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8081 {
8082 	struct ftrace_func_entry *entry;
8083 	struct ftrace_hash *hash;
8084 	struct ftrace_ops *op;
8085 	int size, i, ret;
8086 
8087 	lockdep_assert_held_once(&direct_mutex);
8088 
8089 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8090 		return 0;
8091 
8092 	hash = ops->func_hash->filter_hash;
8093 	size = 1 << hash->size_bits;
8094 	for (i = 0; i < size; i++) {
8095 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8096 			unsigned long ip = entry->ip;
8097 			bool found_op = false;
8098 
8099 			mutex_lock(&ftrace_lock);
8100 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8101 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8102 					continue;
8103 				if (ops_references_ip(op, ip)) {
8104 					found_op = true;
8105 					break;
8106 				}
8107 			} while_for_each_ftrace_op(op);
8108 			mutex_unlock(&ftrace_lock);
8109 
8110 			if (found_op) {
8111 				if (!op->ops_func)
8112 					return -EBUSY;
8113 
8114 				ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER);
8115 				if (ret)
8116 					return ret;
8117 			}
8118 		}
8119 	}
8120 
8121 	return 0;
8122 }
8123 
8124 /*
8125  * Similar to prepare_direct_functions_for_ipmodify, clean up after ops
8126  * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT
8127  * ops.
8128  */
8129 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8130 {
8131 	struct ftrace_func_entry *entry;
8132 	struct ftrace_hash *hash;
8133 	struct ftrace_ops *op;
8134 	int size, i;
8135 
8136 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
8137 		return;
8138 
8139 	mutex_lock(&direct_mutex);
8140 
8141 	hash = ops->func_hash->filter_hash;
8142 	size = 1 << hash->size_bits;
8143 	for (i = 0; i < size; i++) {
8144 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
8145 			unsigned long ip = entry->ip;
8146 			bool found_op = false;
8147 
8148 			mutex_lock(&ftrace_lock);
8149 			do_for_each_ftrace_op(op, ftrace_ops_list) {
8150 				if (!(op->flags & FTRACE_OPS_FL_DIRECT))
8151 					continue;
8152 				if (ops_references_ip(op, ip)) {
8153 					found_op = true;
8154 					break;
8155 				}
8156 			} while_for_each_ftrace_op(op);
8157 			mutex_unlock(&ftrace_lock);
8158 
8159 			/* The cleanup is optional, ignore any errors */
8160 			if (found_op && op->ops_func)
8161 				op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER);
8162 		}
8163 	}
8164 	mutex_unlock(&direct_mutex);
8165 }
8166 
8167 #define lock_direct_mutex()	mutex_lock(&direct_mutex)
8168 #define unlock_direct_mutex()	mutex_unlock(&direct_mutex)
8169 
8170 #else  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8171 
8172 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops)
8173 {
8174 	return 0;
8175 }
8176 
8177 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops)
8178 {
8179 }
8180 
8181 #define lock_direct_mutex()	do { } while (0)
8182 #define unlock_direct_mutex()	do { } while (0)
8183 
8184 #endif  /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
8185 
8186 /*
8187  * Similar to register_ftrace_function, except we don't lock direct_mutex.
8188  */
8189 static int register_ftrace_function_nolock(struct ftrace_ops *ops)
8190 {
8191 	int ret;
8192 
8193 	ftrace_ops_init(ops);
8194 
8195 	mutex_lock(&ftrace_lock);
8196 
8197 	ret = ftrace_startup(ops, 0);
8198 
8199 	mutex_unlock(&ftrace_lock);
8200 
8201 	return ret;
8202 }
8203 
8204 /**
8205  * register_ftrace_function - register a function for profiling
8206  * @ops:	ops structure that holds the function for profiling.
8207  *
8208  * Register a function to be called by all functions in the
8209  * kernel.
8210  *
8211  * Note: @ops->func and all the functions it calls must be labeled
8212  *       with "notrace", otherwise it will go into a
8213  *       recursive loop.
8214  */
8215 int register_ftrace_function(struct ftrace_ops *ops)
8216 {
8217 	int ret;
8218 
8219 	lock_direct_mutex();
8220 	ret = prepare_direct_functions_for_ipmodify(ops);
8221 	if (ret < 0)
8222 		goto out_unlock;
8223 
8224 	ret = register_ftrace_function_nolock(ops);
8225 
8226 out_unlock:
8227 	unlock_direct_mutex();
8228 	return ret;
8229 }
8230 EXPORT_SYMBOL_GPL(register_ftrace_function);
8231 
8232 /**
8233  * unregister_ftrace_function - unregister a function for profiling.
8234  * @ops:	ops structure that holds the function to unregister
8235  *
8236  * Unregister a function that was added to be called by ftrace profiling.
8237  */
8238 int unregister_ftrace_function(struct ftrace_ops *ops)
8239 {
8240 	int ret;
8241 
8242 	mutex_lock(&ftrace_lock);
8243 	ret = ftrace_shutdown(ops, 0);
8244 	mutex_unlock(&ftrace_lock);
8245 
8246 	cleanup_direct_functions_after_ipmodify(ops);
8247 	return ret;
8248 }
8249 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8250 
8251 static int symbols_cmp(const void *a, const void *b)
8252 {
8253 	const char **str_a = (const char **) a;
8254 	const char **str_b = (const char **) b;
8255 
8256 	return strcmp(*str_a, *str_b);
8257 }
8258 
8259 struct kallsyms_data {
8260 	unsigned long *addrs;
8261 	const char **syms;
8262 	size_t cnt;
8263 	size_t found;
8264 };
8265 
8266 static int kallsyms_callback(void *data, const char *name,
8267 			     struct module *mod, unsigned long addr)
8268 {
8269 	struct kallsyms_data *args = data;
8270 	const char **sym;
8271 	int idx;
8272 
8273 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8274 	if (!sym)
8275 		return 0;
8276 
8277 	idx = sym - args->syms;
8278 	if (args->addrs[idx])
8279 		return 0;
8280 
8281 	addr = ftrace_location(addr);
8282 	if (!addr)
8283 		return 0;
8284 
8285 	args->addrs[idx] = addr;
8286 	args->found++;
8287 	return args->found == args->cnt ? 1 : 0;
8288 }
8289 
8290 /**
8291  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8292  *
8293  * @sorted_syms: array of symbols pointers symbols to resolve,
8294  * must be alphabetically sorted
8295  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8296  * @addrs: array for storing resulting addresses
8297  *
8298  * This function looks up addresses for array of symbols provided in
8299  * @syms array (must be alphabetically sorted) and stores them in
8300  * @addrs array, which needs to be big enough to store at least @cnt
8301  * addresses.
8302  *
8303  * This function returns 0 if all provided symbols are found,
8304  * -ESRCH otherwise.
8305  */
8306 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8307 {
8308 	struct kallsyms_data args;
8309 	int err;
8310 
8311 	memset(addrs, 0, sizeof(*addrs) * cnt);
8312 	args.addrs = addrs;
8313 	args.syms = sorted_syms;
8314 	args.cnt = cnt;
8315 	args.found = 0;
8316 	err = kallsyms_on_each_symbol(kallsyms_callback, &args);
8317 	if (err < 0)
8318 		return err;
8319 	return args.found == args.cnt ? 0 : -ESRCH;
8320 }
8321 
8322 #ifdef CONFIG_SYSCTL
8323 
8324 #ifdef CONFIG_DYNAMIC_FTRACE
8325 static void ftrace_startup_sysctl(void)
8326 {
8327 	int command;
8328 
8329 	if (unlikely(ftrace_disabled))
8330 		return;
8331 
8332 	/* Force update next time */
8333 	saved_ftrace_func = NULL;
8334 	/* ftrace_start_up is true if we want ftrace running */
8335 	if (ftrace_start_up) {
8336 		command = FTRACE_UPDATE_CALLS;
8337 		if (ftrace_graph_active)
8338 			command |= FTRACE_START_FUNC_RET;
8339 		ftrace_startup_enable(command);
8340 	}
8341 }
8342 
8343 static void ftrace_shutdown_sysctl(void)
8344 {
8345 	int command;
8346 
8347 	if (unlikely(ftrace_disabled))
8348 		return;
8349 
8350 	/* ftrace_start_up is true if ftrace is running */
8351 	if (ftrace_start_up) {
8352 		command = FTRACE_DISABLE_CALLS;
8353 		if (ftrace_graph_active)
8354 			command |= FTRACE_STOP_FUNC_RET;
8355 		ftrace_run_update_code(command);
8356 	}
8357 }
8358 #else
8359 # define ftrace_startup_sysctl()       do { } while (0)
8360 # define ftrace_shutdown_sysctl()      do { } while (0)
8361 #endif /* CONFIG_DYNAMIC_FTRACE */
8362 
8363 static bool is_permanent_ops_registered(void)
8364 {
8365 	struct ftrace_ops *op;
8366 
8367 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8368 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8369 			return true;
8370 	} while_for_each_ftrace_op(op);
8371 
8372 	return false;
8373 }
8374 
8375 static int
8376 ftrace_enable_sysctl(struct ctl_table *table, int write,
8377 		     void *buffer, size_t *lenp, loff_t *ppos)
8378 {
8379 	int ret = -ENODEV;
8380 
8381 	mutex_lock(&ftrace_lock);
8382 
8383 	if (unlikely(ftrace_disabled))
8384 		goto out;
8385 
8386 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8387 
8388 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8389 		goto out;
8390 
8391 	if (ftrace_enabled) {
8392 
8393 		/* we are starting ftrace again */
8394 		if (rcu_dereference_protected(ftrace_ops_list,
8395 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8396 			update_ftrace_function();
8397 
8398 		ftrace_startup_sysctl();
8399 
8400 	} else {
8401 		if (is_permanent_ops_registered()) {
8402 			ftrace_enabled = true;
8403 			ret = -EBUSY;
8404 			goto out;
8405 		}
8406 
8407 		/* stopping ftrace calls (just send to ftrace_stub) */
8408 		ftrace_trace_function = ftrace_stub;
8409 
8410 		ftrace_shutdown_sysctl();
8411 	}
8412 
8413 	last_ftrace_enabled = !!ftrace_enabled;
8414  out:
8415 	mutex_unlock(&ftrace_lock);
8416 	return ret;
8417 }
8418 
8419 static struct ctl_table ftrace_sysctls[] = {
8420 	{
8421 		.procname       = "ftrace_enabled",
8422 		.data           = &ftrace_enabled,
8423 		.maxlen         = sizeof(int),
8424 		.mode           = 0644,
8425 		.proc_handler   = ftrace_enable_sysctl,
8426 	},
8427 	{}
8428 };
8429 
8430 static int __init ftrace_sysctl_init(void)
8431 {
8432 	register_sysctl_init("kernel", ftrace_sysctls);
8433 	return 0;
8434 }
8435 late_initcall(ftrace_sysctl_init);
8436 #endif
8437