1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct pt_regs *regs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct pt_regs *regs) 144 { 145 struct trace_array *tr = op->private; 146 int pid; 147 148 if (tr) { 149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 150 if (pid == FTRACE_PID_IGNORE) 151 return; 152 if (pid != FTRACE_PID_TRACE && 153 pid != current->pid) 154 return; 155 } 156 157 op->saved_func(ip, parent_ip, op, regs); 158 } 159 160 static void ftrace_sync_ipi(void *data) 161 { 162 /* Probably not needed, but do it anyway */ 163 smp_rmb(); 164 } 165 166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 167 { 168 /* 169 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 170 * then it needs to call the list anyway. 171 */ 172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 173 FTRACE_FORCE_LIST_FUNC) 174 return ftrace_ops_list_func; 175 176 return ftrace_ops_get_func(ops); 177 } 178 179 static void update_ftrace_function(void) 180 { 181 ftrace_func_t func; 182 183 /* 184 * Prepare the ftrace_ops that the arch callback will use. 185 * If there's only one ftrace_ops registered, the ftrace_ops_list 186 * will point to the ops we want. 187 */ 188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 189 lockdep_is_held(&ftrace_lock)); 190 191 /* If there's no ftrace_ops registered, just call the stub function */ 192 if (set_function_trace_op == &ftrace_list_end) { 193 func = ftrace_stub; 194 195 /* 196 * If we are at the end of the list and this ops is 197 * recursion safe and not dynamic and the arch supports passing ops, 198 * then have the mcount trampoline call the function directly. 199 */ 200 } else if (rcu_dereference_protected(ftrace_ops_list->next, 201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 202 func = ftrace_ops_get_list_func(ftrace_ops_list); 203 204 } else { 205 /* Just use the default ftrace_ops */ 206 set_function_trace_op = &ftrace_list_end; 207 func = ftrace_ops_list_func; 208 } 209 210 update_function_graph_func(); 211 212 /* If there's no change, then do nothing more here */ 213 if (ftrace_trace_function == func) 214 return; 215 216 /* 217 * If we are using the list function, it doesn't care 218 * about the function_trace_ops. 219 */ 220 if (func == ftrace_ops_list_func) { 221 ftrace_trace_function = func; 222 /* 223 * Don't even bother setting function_trace_ops, 224 * it would be racy to do so anyway. 225 */ 226 return; 227 } 228 229 #ifndef CONFIG_DYNAMIC_FTRACE 230 /* 231 * For static tracing, we need to be a bit more careful. 232 * The function change takes affect immediately. Thus, 233 * we need to coordinate the setting of the function_trace_ops 234 * with the setting of the ftrace_trace_function. 235 * 236 * Set the function to the list ops, which will call the 237 * function we want, albeit indirectly, but it handles the 238 * ftrace_ops and doesn't depend on function_trace_op. 239 */ 240 ftrace_trace_function = ftrace_ops_list_func; 241 /* 242 * Make sure all CPUs see this. Yes this is slow, but static 243 * tracing is slow and nasty to have enabled. 244 */ 245 synchronize_rcu_tasks_rude(); 246 /* Now all cpus are using the list ops. */ 247 function_trace_op = set_function_trace_op; 248 /* Make sure the function_trace_op is visible on all CPUs */ 249 smp_wmb(); 250 /* Nasty way to force a rmb on all cpus */ 251 smp_call_function(ftrace_sync_ipi, NULL, 1); 252 /* OK, we are all set to update the ftrace_trace_function now! */ 253 #endif /* !CONFIG_DYNAMIC_FTRACE */ 254 255 ftrace_trace_function = func; 256 } 257 258 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 259 struct ftrace_ops *ops) 260 { 261 rcu_assign_pointer(ops->next, *list); 262 263 /* 264 * We are entering ops into the list but another 265 * CPU might be walking that list. We need to make sure 266 * the ops->next pointer is valid before another CPU sees 267 * the ops pointer included into the list. 268 */ 269 rcu_assign_pointer(*list, ops); 270 } 271 272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 273 struct ftrace_ops *ops) 274 { 275 struct ftrace_ops **p; 276 277 /* 278 * If we are removing the last function, then simply point 279 * to the ftrace_stub. 280 */ 281 if (rcu_dereference_protected(*list, 282 lockdep_is_held(&ftrace_lock)) == ops && 283 rcu_dereference_protected(ops->next, 284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 285 *list = &ftrace_list_end; 286 return 0; 287 } 288 289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 290 if (*p == ops) 291 break; 292 293 if (*p != ops) 294 return -1; 295 296 *p = (*p)->next; 297 return 0; 298 } 299 300 static void ftrace_update_trampoline(struct ftrace_ops *ops); 301 302 int __register_ftrace_function(struct ftrace_ops *ops) 303 { 304 if (ops->flags & FTRACE_OPS_FL_DELETED) 305 return -EINVAL; 306 307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 308 return -EBUSY; 309 310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 311 /* 312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 315 */ 316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 318 return -EINVAL; 319 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 322 #endif 323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 324 return -EBUSY; 325 326 if (!core_kernel_data((unsigned long)ops)) 327 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 328 329 add_ftrace_ops(&ftrace_ops_list, ops); 330 331 /* Always save the function, and reset at unregistering */ 332 ops->saved_func = ops->func; 333 334 if (ftrace_pids_enabled(ops)) 335 ops->func = ftrace_pid_func; 336 337 ftrace_update_trampoline(ops); 338 339 if (ftrace_enabled) 340 update_ftrace_function(); 341 342 return 0; 343 } 344 345 int __unregister_ftrace_function(struct ftrace_ops *ops) 346 { 347 int ret; 348 349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 350 return -EBUSY; 351 352 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 353 354 if (ret < 0) 355 return ret; 356 357 if (ftrace_enabled) 358 update_ftrace_function(); 359 360 ops->func = ops->saved_func; 361 362 return 0; 363 } 364 365 static void ftrace_update_pid_func(void) 366 { 367 struct ftrace_ops *op; 368 369 /* Only do something if we are tracing something */ 370 if (ftrace_trace_function == ftrace_stub) 371 return; 372 373 do_for_each_ftrace_op(op, ftrace_ops_list) { 374 if (op->flags & FTRACE_OPS_FL_PID) { 375 op->func = ftrace_pids_enabled(op) ? 376 ftrace_pid_func : op->saved_func; 377 ftrace_update_trampoline(op); 378 } 379 } while_for_each_ftrace_op(op); 380 381 update_ftrace_function(); 382 } 383 384 #ifdef CONFIG_FUNCTION_PROFILER 385 struct ftrace_profile { 386 struct hlist_node node; 387 unsigned long ip; 388 unsigned long counter; 389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 390 unsigned long long time; 391 unsigned long long time_squared; 392 #endif 393 }; 394 395 struct ftrace_profile_page { 396 struct ftrace_profile_page *next; 397 unsigned long index; 398 struct ftrace_profile records[]; 399 }; 400 401 struct ftrace_profile_stat { 402 atomic_t disabled; 403 struct hlist_head *hash; 404 struct ftrace_profile_page *pages; 405 struct ftrace_profile_page *start; 406 struct tracer_stat stat; 407 }; 408 409 #define PROFILE_RECORDS_SIZE \ 410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 411 412 #define PROFILES_PER_PAGE \ 413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 414 415 static int ftrace_profile_enabled __read_mostly; 416 417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 418 static DEFINE_MUTEX(ftrace_profile_lock); 419 420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 421 422 #define FTRACE_PROFILE_HASH_BITS 10 423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 424 425 static void * 426 function_stat_next(void *v, int idx) 427 { 428 struct ftrace_profile *rec = v; 429 struct ftrace_profile_page *pg; 430 431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 432 433 again: 434 if (idx != 0) 435 rec++; 436 437 if ((void *)rec >= (void *)&pg->records[pg->index]) { 438 pg = pg->next; 439 if (!pg) 440 return NULL; 441 rec = &pg->records[0]; 442 if (!rec->counter) 443 goto again; 444 } 445 446 return rec; 447 } 448 449 static void *function_stat_start(struct tracer_stat *trace) 450 { 451 struct ftrace_profile_stat *stat = 452 container_of(trace, struct ftrace_profile_stat, stat); 453 454 if (!stat || !stat->start) 455 return NULL; 456 457 return function_stat_next(&stat->start->records[0], 0); 458 } 459 460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 461 /* function graph compares on total time */ 462 static int function_stat_cmp(const void *p1, const void *p2) 463 { 464 const struct ftrace_profile *a = p1; 465 const struct ftrace_profile *b = p2; 466 467 if (a->time < b->time) 468 return -1; 469 if (a->time > b->time) 470 return 1; 471 else 472 return 0; 473 } 474 #else 475 /* not function graph compares against hits */ 476 static int function_stat_cmp(const void *p1, const void *p2) 477 { 478 const struct ftrace_profile *a = p1; 479 const struct ftrace_profile *b = p2; 480 481 if (a->counter < b->counter) 482 return -1; 483 if (a->counter > b->counter) 484 return 1; 485 else 486 return 0; 487 } 488 #endif 489 490 static int function_stat_headers(struct seq_file *m) 491 { 492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 493 seq_puts(m, " Function " 494 "Hit Time Avg s^2\n" 495 " -------- " 496 "--- ---- --- ---\n"); 497 #else 498 seq_puts(m, " Function Hit\n" 499 " -------- ---\n"); 500 #endif 501 return 0; 502 } 503 504 static int function_stat_show(struct seq_file *m, void *v) 505 { 506 struct ftrace_profile *rec = v; 507 char str[KSYM_SYMBOL_LEN]; 508 int ret = 0; 509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 510 static struct trace_seq s; 511 unsigned long long avg; 512 unsigned long long stddev; 513 #endif 514 mutex_lock(&ftrace_profile_lock); 515 516 /* we raced with function_profile_reset() */ 517 if (unlikely(rec->counter == 0)) { 518 ret = -EBUSY; 519 goto out; 520 } 521 522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 523 avg = div64_ul(rec->time, rec->counter); 524 if (tracing_thresh && (avg < tracing_thresh)) 525 goto out; 526 #endif 527 528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 529 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 530 531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 532 seq_puts(m, " "); 533 534 /* Sample standard deviation (s^2) */ 535 if (rec->counter <= 1) 536 stddev = 0; 537 else { 538 /* 539 * Apply Welford's method: 540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 541 */ 542 stddev = rec->counter * rec->time_squared - 543 rec->time * rec->time; 544 545 /* 546 * Divide only 1000 for ns^2 -> us^2 conversion. 547 * trace_print_graph_duration will divide 1000 again. 548 */ 549 stddev = div64_ul(stddev, 550 rec->counter * (rec->counter - 1) * 1000); 551 } 552 553 trace_seq_init(&s); 554 trace_print_graph_duration(rec->time, &s); 555 trace_seq_puts(&s, " "); 556 trace_print_graph_duration(avg, &s); 557 trace_seq_puts(&s, " "); 558 trace_print_graph_duration(stddev, &s); 559 trace_print_seq(m, &s); 560 #endif 561 seq_putc(m, '\n'); 562 out: 563 mutex_unlock(&ftrace_profile_lock); 564 565 return ret; 566 } 567 568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 569 { 570 struct ftrace_profile_page *pg; 571 572 pg = stat->pages = stat->start; 573 574 while (pg) { 575 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 576 pg->index = 0; 577 pg = pg->next; 578 } 579 580 memset(stat->hash, 0, 581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 582 } 583 584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 585 { 586 struct ftrace_profile_page *pg; 587 int functions; 588 int pages; 589 int i; 590 591 /* If we already allocated, do nothing */ 592 if (stat->pages) 593 return 0; 594 595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 596 if (!stat->pages) 597 return -ENOMEM; 598 599 #ifdef CONFIG_DYNAMIC_FTRACE 600 functions = ftrace_update_tot_cnt; 601 #else 602 /* 603 * We do not know the number of functions that exist because 604 * dynamic tracing is what counts them. With past experience 605 * we have around 20K functions. That should be more than enough. 606 * It is highly unlikely we will execute every function in 607 * the kernel. 608 */ 609 functions = 20000; 610 #endif 611 612 pg = stat->start = stat->pages; 613 614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 615 616 for (i = 1; i < pages; i++) { 617 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 618 if (!pg->next) 619 goto out_free; 620 pg = pg->next; 621 } 622 623 return 0; 624 625 out_free: 626 pg = stat->start; 627 while (pg) { 628 unsigned long tmp = (unsigned long)pg; 629 630 pg = pg->next; 631 free_page(tmp); 632 } 633 634 stat->pages = NULL; 635 stat->start = NULL; 636 637 return -ENOMEM; 638 } 639 640 static int ftrace_profile_init_cpu(int cpu) 641 { 642 struct ftrace_profile_stat *stat; 643 int size; 644 645 stat = &per_cpu(ftrace_profile_stats, cpu); 646 647 if (stat->hash) { 648 /* If the profile is already created, simply reset it */ 649 ftrace_profile_reset(stat); 650 return 0; 651 } 652 653 /* 654 * We are profiling all functions, but usually only a few thousand 655 * functions are hit. We'll make a hash of 1024 items. 656 */ 657 size = FTRACE_PROFILE_HASH_SIZE; 658 659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 660 661 if (!stat->hash) 662 return -ENOMEM; 663 664 /* Preallocate the function profiling pages */ 665 if (ftrace_profile_pages_init(stat) < 0) { 666 kfree(stat->hash); 667 stat->hash = NULL; 668 return -ENOMEM; 669 } 670 671 return 0; 672 } 673 674 static int ftrace_profile_init(void) 675 { 676 int cpu; 677 int ret = 0; 678 679 for_each_possible_cpu(cpu) { 680 ret = ftrace_profile_init_cpu(cpu); 681 if (ret) 682 break; 683 } 684 685 return ret; 686 } 687 688 /* interrupts must be disabled */ 689 static struct ftrace_profile * 690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 691 { 692 struct ftrace_profile *rec; 693 struct hlist_head *hhd; 694 unsigned long key; 695 696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 697 hhd = &stat->hash[key]; 698 699 if (hlist_empty(hhd)) 700 return NULL; 701 702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 703 if (rec->ip == ip) 704 return rec; 705 } 706 707 return NULL; 708 } 709 710 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 711 struct ftrace_profile *rec) 712 { 713 unsigned long key; 714 715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 716 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 717 } 718 719 /* 720 * The memory is already allocated, this simply finds a new record to use. 721 */ 722 static struct ftrace_profile * 723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec = NULL; 726 727 /* prevent recursion (from NMIs) */ 728 if (atomic_inc_return(&stat->disabled) != 1) 729 goto out; 730 731 /* 732 * Try to find the function again since an NMI 733 * could have added it 734 */ 735 rec = ftrace_find_profiled_func(stat, ip); 736 if (rec) 737 goto out; 738 739 if (stat->pages->index == PROFILES_PER_PAGE) { 740 if (!stat->pages->next) 741 goto out; 742 stat->pages = stat->pages->next; 743 } 744 745 rec = &stat->pages->records[stat->pages->index++]; 746 rec->ip = ip; 747 ftrace_add_profile(stat, rec); 748 749 out: 750 atomic_dec(&stat->disabled); 751 752 return rec; 753 } 754 755 static void 756 function_profile_call(unsigned long ip, unsigned long parent_ip, 757 struct ftrace_ops *ops, struct pt_regs *regs) 758 { 759 struct ftrace_profile_stat *stat; 760 struct ftrace_profile *rec; 761 unsigned long flags; 762 763 if (!ftrace_profile_enabled) 764 return; 765 766 local_irq_save(flags); 767 768 stat = this_cpu_ptr(&ftrace_profile_stats); 769 if (!stat->hash || !ftrace_profile_enabled) 770 goto out; 771 772 rec = ftrace_find_profiled_func(stat, ip); 773 if (!rec) { 774 rec = ftrace_profile_alloc(stat, ip); 775 if (!rec) 776 goto out; 777 } 778 779 rec->counter++; 780 out: 781 local_irq_restore(flags); 782 } 783 784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 785 static bool fgraph_graph_time = true; 786 787 void ftrace_graph_graph_time_control(bool enable) 788 { 789 fgraph_graph_time = enable; 790 } 791 792 static int profile_graph_entry(struct ftrace_graph_ent *trace) 793 { 794 struct ftrace_ret_stack *ret_stack; 795 796 function_profile_call(trace->func, 0, NULL, NULL); 797 798 /* If function graph is shutting down, ret_stack can be NULL */ 799 if (!current->ret_stack) 800 return 0; 801 802 ret_stack = ftrace_graph_get_ret_stack(current, 0); 803 if (ret_stack) 804 ret_stack->subtime = 0; 805 806 return 1; 807 } 808 809 static void profile_graph_return(struct ftrace_graph_ret *trace) 810 { 811 struct ftrace_ret_stack *ret_stack; 812 struct ftrace_profile_stat *stat; 813 unsigned long long calltime; 814 struct ftrace_profile *rec; 815 unsigned long flags; 816 817 local_irq_save(flags); 818 stat = this_cpu_ptr(&ftrace_profile_stats); 819 if (!stat->hash || !ftrace_profile_enabled) 820 goto out; 821 822 /* If the calltime was zero'd ignore it */ 823 if (!trace->calltime) 824 goto out; 825 826 calltime = trace->rettime - trace->calltime; 827 828 if (!fgraph_graph_time) { 829 830 /* Append this call time to the parent time to subtract */ 831 ret_stack = ftrace_graph_get_ret_stack(current, 1); 832 if (ret_stack) 833 ret_stack->subtime += calltime; 834 835 ret_stack = ftrace_graph_get_ret_stack(current, 0); 836 if (ret_stack && ret_stack->subtime < calltime) 837 calltime -= ret_stack->subtime; 838 else 839 calltime = 0; 840 } 841 842 rec = ftrace_find_profiled_func(stat, trace->func); 843 if (rec) { 844 rec->time += calltime; 845 rec->time_squared += calltime * calltime; 846 } 847 848 out: 849 local_irq_restore(flags); 850 } 851 852 static struct fgraph_ops fprofiler_ops = { 853 .entryfunc = &profile_graph_entry, 854 .retfunc = &profile_graph_return, 855 }; 856 857 static int register_ftrace_profiler(void) 858 { 859 return register_ftrace_graph(&fprofiler_ops); 860 } 861 862 static void unregister_ftrace_profiler(void) 863 { 864 unregister_ftrace_graph(&fprofiler_ops); 865 } 866 #else 867 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 868 .func = function_profile_call, 869 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 870 INIT_OPS_HASH(ftrace_profile_ops) 871 }; 872 873 static int register_ftrace_profiler(void) 874 { 875 return register_ftrace_function(&ftrace_profile_ops); 876 } 877 878 static void unregister_ftrace_profiler(void) 879 { 880 unregister_ftrace_function(&ftrace_profile_ops); 881 } 882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 883 884 static ssize_t 885 ftrace_profile_write(struct file *filp, const char __user *ubuf, 886 size_t cnt, loff_t *ppos) 887 { 888 unsigned long val; 889 int ret; 890 891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 892 if (ret) 893 return ret; 894 895 val = !!val; 896 897 mutex_lock(&ftrace_profile_lock); 898 if (ftrace_profile_enabled ^ val) { 899 if (val) { 900 ret = ftrace_profile_init(); 901 if (ret < 0) { 902 cnt = ret; 903 goto out; 904 } 905 906 ret = register_ftrace_profiler(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 ftrace_profile_enabled = 1; 912 } else { 913 ftrace_profile_enabled = 0; 914 /* 915 * unregister_ftrace_profiler calls stop_machine 916 * so this acts like an synchronize_rcu. 917 */ 918 unregister_ftrace_profiler(); 919 } 920 } 921 out: 922 mutex_unlock(&ftrace_profile_lock); 923 924 *ppos += cnt; 925 926 return cnt; 927 } 928 929 static ssize_t 930 ftrace_profile_read(struct file *filp, char __user *ubuf, 931 size_t cnt, loff_t *ppos) 932 { 933 char buf[64]; /* big enough to hold a number */ 934 int r; 935 936 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 938 } 939 940 static const struct file_operations ftrace_profile_fops = { 941 .open = tracing_open_generic, 942 .read = ftrace_profile_read, 943 .write = ftrace_profile_write, 944 .llseek = default_llseek, 945 }; 946 947 /* used to initialize the real stat files */ 948 static struct tracer_stat function_stats __initdata = { 949 .name = "functions", 950 .stat_start = function_stat_start, 951 .stat_next = function_stat_next, 952 .stat_cmp = function_stat_cmp, 953 .stat_headers = function_stat_headers, 954 .stat_show = function_stat_show 955 }; 956 957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 958 { 959 struct ftrace_profile_stat *stat; 960 struct dentry *entry; 961 char *name; 962 int ret; 963 int cpu; 964 965 for_each_possible_cpu(cpu) { 966 stat = &per_cpu(ftrace_profile_stats, cpu); 967 968 name = kasprintf(GFP_KERNEL, "function%d", cpu); 969 if (!name) { 970 /* 971 * The files created are permanent, if something happens 972 * we still do not free memory. 973 */ 974 WARN(1, 975 "Could not allocate stat file for cpu %d\n", 976 cpu); 977 return; 978 } 979 stat->stat = function_stats; 980 stat->stat.name = name; 981 ret = register_stat_tracer(&stat->stat); 982 if (ret) { 983 WARN(1, 984 "Could not register function stat for cpu %d\n", 985 cpu); 986 kfree(name); 987 return; 988 } 989 } 990 991 entry = tracefs_create_file("function_profile_enabled", 0644, 992 d_tracer, NULL, &ftrace_profile_fops); 993 if (!entry) 994 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 995 } 996 997 #else /* CONFIG_FUNCTION_PROFILER */ 998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 999 { 1000 } 1001 #endif /* CONFIG_FUNCTION_PROFILER */ 1002 1003 #ifdef CONFIG_DYNAMIC_FTRACE 1004 1005 static struct ftrace_ops *removed_ops; 1006 1007 /* 1008 * Set when doing a global update, like enabling all recs or disabling them. 1009 * It is not set when just updating a single ftrace_ops. 1010 */ 1011 static bool update_all_ops; 1012 1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1014 # error Dynamic ftrace depends on MCOUNT_RECORD 1015 #endif 1016 1017 struct ftrace_func_probe { 1018 struct ftrace_probe_ops *probe_ops; 1019 struct ftrace_ops ops; 1020 struct trace_array *tr; 1021 struct list_head list; 1022 void *data; 1023 int ref; 1024 }; 1025 1026 /* 1027 * We make these constant because no one should touch them, 1028 * but they are used as the default "empty hash", to avoid allocating 1029 * it all the time. These are in a read only section such that if 1030 * anyone does try to modify it, it will cause an exception. 1031 */ 1032 static const struct hlist_head empty_buckets[1]; 1033 static const struct ftrace_hash empty_hash = { 1034 .buckets = (struct hlist_head *)empty_buckets, 1035 }; 1036 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1037 1038 struct ftrace_ops global_ops = { 1039 .func = ftrace_stub, 1040 .local_hash.notrace_hash = EMPTY_HASH, 1041 .local_hash.filter_hash = EMPTY_HASH, 1042 INIT_OPS_HASH(global_ops) 1043 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1044 FTRACE_OPS_FL_INITIALIZED | 1045 FTRACE_OPS_FL_PID, 1046 }; 1047 1048 /* 1049 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1050 */ 1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1052 { 1053 struct ftrace_ops *op = NULL; 1054 1055 /* 1056 * Some of the ops may be dynamically allocated, 1057 * they are freed after a synchronize_rcu(). 1058 */ 1059 preempt_disable_notrace(); 1060 1061 do_for_each_ftrace_op(op, ftrace_ops_list) { 1062 /* 1063 * This is to check for dynamically allocated trampolines. 1064 * Trampolines that are in kernel text will have 1065 * core_kernel_text() return true. 1066 */ 1067 if (op->trampoline && op->trampoline_size) 1068 if (addr >= op->trampoline && 1069 addr < op->trampoline + op->trampoline_size) { 1070 preempt_enable_notrace(); 1071 return op; 1072 } 1073 } while_for_each_ftrace_op(op); 1074 preempt_enable_notrace(); 1075 1076 return NULL; 1077 } 1078 1079 /* 1080 * This is used by __kernel_text_address() to return true if the 1081 * address is on a dynamically allocated trampoline that would 1082 * not return true for either core_kernel_text() or 1083 * is_module_text_address(). 1084 */ 1085 bool is_ftrace_trampoline(unsigned long addr) 1086 { 1087 return ftrace_ops_trampoline(addr) != NULL; 1088 } 1089 1090 struct ftrace_page { 1091 struct ftrace_page *next; 1092 struct dyn_ftrace *records; 1093 int index; 1094 int size; 1095 }; 1096 1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1099 1100 static struct ftrace_page *ftrace_pages_start; 1101 static struct ftrace_page *ftrace_pages; 1102 1103 static __always_inline unsigned long 1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1105 { 1106 if (hash->size_bits > 0) 1107 return hash_long(ip, hash->size_bits); 1108 1109 return 0; 1110 } 1111 1112 /* Only use this function if ftrace_hash_empty() has already been tested */ 1113 static __always_inline struct ftrace_func_entry * 1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1115 { 1116 unsigned long key; 1117 struct ftrace_func_entry *entry; 1118 struct hlist_head *hhd; 1119 1120 key = ftrace_hash_key(hash, ip); 1121 hhd = &hash->buckets[key]; 1122 1123 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1124 if (entry->ip == ip) 1125 return entry; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1132 * @hash: The hash to look at 1133 * @ip: The instruction pointer to test 1134 * 1135 * Search a given @hash to see if a given instruction pointer (@ip) 1136 * exists in it. 1137 * 1138 * Returns the entry that holds the @ip if found. NULL otherwise. 1139 */ 1140 struct ftrace_func_entry * 1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1142 { 1143 if (ftrace_hash_empty(hash)) 1144 return NULL; 1145 1146 return __ftrace_lookup_ip(hash, ip); 1147 } 1148 1149 static void __add_hash_entry(struct ftrace_hash *hash, 1150 struct ftrace_func_entry *entry) 1151 { 1152 struct hlist_head *hhd; 1153 unsigned long key; 1154 1155 key = ftrace_hash_key(hash, entry->ip); 1156 hhd = &hash->buckets[key]; 1157 hlist_add_head(&entry->hlist, hhd); 1158 hash->count++; 1159 } 1160 1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1162 { 1163 struct ftrace_func_entry *entry; 1164 1165 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1166 if (!entry) 1167 return -ENOMEM; 1168 1169 entry->ip = ip; 1170 __add_hash_entry(hash, entry); 1171 1172 return 0; 1173 } 1174 1175 static void 1176 free_hash_entry(struct ftrace_hash *hash, 1177 struct ftrace_func_entry *entry) 1178 { 1179 hlist_del(&entry->hlist); 1180 kfree(entry); 1181 hash->count--; 1182 } 1183 1184 static void 1185 remove_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del_rcu(&entry->hlist); 1189 hash->count--; 1190 } 1191 1192 static void ftrace_hash_clear(struct ftrace_hash *hash) 1193 { 1194 struct hlist_head *hhd; 1195 struct hlist_node *tn; 1196 struct ftrace_func_entry *entry; 1197 int size = 1 << hash->size_bits; 1198 int i; 1199 1200 if (!hash->count) 1201 return; 1202 1203 for (i = 0; i < size; i++) { 1204 hhd = &hash->buckets[i]; 1205 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1206 free_hash_entry(hash, entry); 1207 } 1208 FTRACE_WARN_ON(hash->count); 1209 } 1210 1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1212 { 1213 list_del(&ftrace_mod->list); 1214 kfree(ftrace_mod->module); 1215 kfree(ftrace_mod->func); 1216 kfree(ftrace_mod); 1217 } 1218 1219 static void clear_ftrace_mod_list(struct list_head *head) 1220 { 1221 struct ftrace_mod_load *p, *n; 1222 1223 /* stack tracer isn't supported yet */ 1224 if (!head) 1225 return; 1226 1227 mutex_lock(&ftrace_lock); 1228 list_for_each_entry_safe(p, n, head, list) 1229 free_ftrace_mod(p); 1230 mutex_unlock(&ftrace_lock); 1231 } 1232 1233 static void free_ftrace_hash(struct ftrace_hash *hash) 1234 { 1235 if (!hash || hash == EMPTY_HASH) 1236 return; 1237 ftrace_hash_clear(hash); 1238 kfree(hash->buckets); 1239 kfree(hash); 1240 } 1241 1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1243 { 1244 struct ftrace_hash *hash; 1245 1246 hash = container_of(rcu, struct ftrace_hash, rcu); 1247 free_ftrace_hash(hash); 1248 } 1249 1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1251 { 1252 if (!hash || hash == EMPTY_HASH) 1253 return; 1254 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1255 } 1256 1257 void ftrace_free_filter(struct ftrace_ops *ops) 1258 { 1259 ftrace_ops_init(ops); 1260 free_ftrace_hash(ops->func_hash->filter_hash); 1261 free_ftrace_hash(ops->func_hash->notrace_hash); 1262 } 1263 1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1265 { 1266 struct ftrace_hash *hash; 1267 int size; 1268 1269 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1270 if (!hash) 1271 return NULL; 1272 1273 size = 1 << size_bits; 1274 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1275 1276 if (!hash->buckets) { 1277 kfree(hash); 1278 return NULL; 1279 } 1280 1281 hash->size_bits = size_bits; 1282 1283 return hash; 1284 } 1285 1286 1287 static int ftrace_add_mod(struct trace_array *tr, 1288 const char *func, const char *module, 1289 int enable) 1290 { 1291 struct ftrace_mod_load *ftrace_mod; 1292 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1293 1294 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1295 if (!ftrace_mod) 1296 return -ENOMEM; 1297 1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1300 ftrace_mod->enable = enable; 1301 1302 if (!ftrace_mod->func || !ftrace_mod->module) 1303 goto out_free; 1304 1305 list_add(&ftrace_mod->list, mod_head); 1306 1307 return 0; 1308 1309 out_free: 1310 free_ftrace_mod(ftrace_mod); 1311 1312 return -ENOMEM; 1313 } 1314 1315 static struct ftrace_hash * 1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1317 { 1318 struct ftrace_func_entry *entry; 1319 struct ftrace_hash *new_hash; 1320 int size; 1321 int ret; 1322 int i; 1323 1324 new_hash = alloc_ftrace_hash(size_bits); 1325 if (!new_hash) 1326 return NULL; 1327 1328 if (hash) 1329 new_hash->flags = hash->flags; 1330 1331 /* Empty hash? */ 1332 if (ftrace_hash_empty(hash)) 1333 return new_hash; 1334 1335 size = 1 << hash->size_bits; 1336 for (i = 0; i < size; i++) { 1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1338 ret = add_hash_entry(new_hash, entry->ip); 1339 if (ret < 0) 1340 goto free_hash; 1341 } 1342 } 1343 1344 FTRACE_WARN_ON(new_hash->count != hash->count); 1345 1346 return new_hash; 1347 1348 free_hash: 1349 free_ftrace_hash(new_hash); 1350 return NULL; 1351 } 1352 1353 static void 1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1355 static void 1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1357 1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1359 struct ftrace_hash *new_hash); 1360 1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1362 { 1363 struct ftrace_func_entry *entry; 1364 struct ftrace_hash *new_hash; 1365 struct hlist_head *hhd; 1366 struct hlist_node *tn; 1367 int bits = 0; 1368 int i; 1369 1370 /* 1371 * Use around half the size (max bit of it), but 1372 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1373 */ 1374 bits = fls(size / 2); 1375 1376 /* Don't allocate too much */ 1377 if (bits > FTRACE_HASH_MAX_BITS) 1378 bits = FTRACE_HASH_MAX_BITS; 1379 1380 new_hash = alloc_ftrace_hash(bits); 1381 if (!new_hash) 1382 return NULL; 1383 1384 new_hash->flags = src->flags; 1385 1386 size = 1 << src->size_bits; 1387 for (i = 0; i < size; i++) { 1388 hhd = &src->buckets[i]; 1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1390 remove_hash_entry(src, entry); 1391 __add_hash_entry(new_hash, entry); 1392 } 1393 } 1394 return new_hash; 1395 } 1396 1397 static struct ftrace_hash * 1398 __ftrace_hash_move(struct ftrace_hash *src) 1399 { 1400 int size = src->count; 1401 1402 /* 1403 * If the new source is empty, just return the empty_hash. 1404 */ 1405 if (ftrace_hash_empty(src)) 1406 return EMPTY_HASH; 1407 1408 return dup_hash(src, size); 1409 } 1410 1411 static int 1412 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1413 struct ftrace_hash **dst, struct ftrace_hash *src) 1414 { 1415 struct ftrace_hash *new_hash; 1416 int ret; 1417 1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1420 return -EINVAL; 1421 1422 new_hash = __ftrace_hash_move(src); 1423 if (!new_hash) 1424 return -ENOMEM; 1425 1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1427 if (enable) { 1428 /* IPMODIFY should be updated only when filter_hash updating */ 1429 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1430 if (ret < 0) { 1431 free_ftrace_hash(new_hash); 1432 return ret; 1433 } 1434 } 1435 1436 /* 1437 * Remove the current set, update the hash and add 1438 * them back. 1439 */ 1440 ftrace_hash_rec_disable_modify(ops, enable); 1441 1442 rcu_assign_pointer(*dst, new_hash); 1443 1444 ftrace_hash_rec_enable_modify(ops, enable); 1445 1446 return 0; 1447 } 1448 1449 static bool hash_contains_ip(unsigned long ip, 1450 struct ftrace_ops_hash *hash) 1451 { 1452 /* 1453 * The function record is a match if it exists in the filter 1454 * hash and not in the notrace hash. Note, an empty hash is 1455 * considered a match for the filter hash, but an empty 1456 * notrace hash is considered not in the notrace hash. 1457 */ 1458 return (ftrace_hash_empty(hash->filter_hash) || 1459 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1460 (ftrace_hash_empty(hash->notrace_hash) || 1461 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1462 } 1463 1464 /* 1465 * Test the hashes for this ops to see if we want to call 1466 * the ops->func or not. 1467 * 1468 * It's a match if the ip is in the ops->filter_hash or 1469 * the filter_hash does not exist or is empty, 1470 * AND 1471 * the ip is not in the ops->notrace_hash. 1472 * 1473 * This needs to be called with preemption disabled as 1474 * the hashes are freed with call_rcu(). 1475 */ 1476 int 1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1478 { 1479 struct ftrace_ops_hash hash; 1480 int ret; 1481 1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1483 /* 1484 * There's a small race when adding ops that the ftrace handler 1485 * that wants regs, may be called without them. We can not 1486 * allow that handler to be called if regs is NULL. 1487 */ 1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1489 return 0; 1490 #endif 1491 1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1494 1495 if (hash_contains_ip(ip, &hash)) 1496 ret = 1; 1497 else 1498 ret = 0; 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * This is a double for. Do not use 'break' to break out of the loop, 1505 * you must use a goto. 1506 */ 1507 #define do_for_each_ftrace_rec(pg, rec) \ 1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1509 int _____i; \ 1510 for (_____i = 0; _____i < pg->index; _____i++) { \ 1511 rec = &pg->records[_____i]; 1512 1513 #define while_for_each_ftrace_rec() \ 1514 } \ 1515 } 1516 1517 1518 static int ftrace_cmp_recs(const void *a, const void *b) 1519 { 1520 const struct dyn_ftrace *key = a; 1521 const struct dyn_ftrace *rec = b; 1522 1523 if (key->flags < rec->ip) 1524 return -1; 1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1526 return 1; 1527 return 0; 1528 } 1529 1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1531 { 1532 struct ftrace_page *pg; 1533 struct dyn_ftrace *rec = NULL; 1534 struct dyn_ftrace key; 1535 1536 key.ip = start; 1537 key.flags = end; /* overload flags, as it is unsigned long */ 1538 1539 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1540 if (end < pg->records[0].ip || 1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1542 continue; 1543 rec = bsearch(&key, pg->records, pg->index, 1544 sizeof(struct dyn_ftrace), 1545 ftrace_cmp_recs); 1546 if (rec) 1547 break; 1548 } 1549 return rec; 1550 } 1551 1552 /** 1553 * ftrace_location_range - return the first address of a traced location 1554 * if it touches the given ip range 1555 * @start: start of range to search. 1556 * @end: end of range to search (inclusive). @end points to the last byte 1557 * to check. 1558 * 1559 * Returns rec->ip if the related ftrace location is a least partly within 1560 * the given address range. That is, the first address of the instruction 1561 * that is either a NOP or call to the function tracer. It checks the ftrace 1562 * internal tables to determine if the address belongs or not. 1563 */ 1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1565 { 1566 struct dyn_ftrace *rec; 1567 1568 rec = lookup_rec(start, end); 1569 if (rec) 1570 return rec->ip; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * ftrace_location - return true if the ip giving is a traced location 1577 * @ip: the instruction pointer to check 1578 * 1579 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1580 * That is, the instruction that is either a NOP or call to 1581 * the function tracer. It checks the ftrace internal tables to 1582 * determine if the address belongs or not. 1583 */ 1584 unsigned long ftrace_location(unsigned long ip) 1585 { 1586 return ftrace_location_range(ip, ip); 1587 } 1588 1589 /** 1590 * ftrace_text_reserved - return true if range contains an ftrace location 1591 * @start: start of range to search 1592 * @end: end of range to search (inclusive). @end points to the last byte to check. 1593 * 1594 * Returns 1 if @start and @end contains a ftrace location. 1595 * That is, the instruction that is either a NOP or call to 1596 * the function tracer. It checks the ftrace internal tables to 1597 * determine if the address belongs or not. 1598 */ 1599 int ftrace_text_reserved(const void *start, const void *end) 1600 { 1601 unsigned long ret; 1602 1603 ret = ftrace_location_range((unsigned long)start, 1604 (unsigned long)end); 1605 1606 return (int)!!ret; 1607 } 1608 1609 /* Test if ops registered to this rec needs regs */ 1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1611 { 1612 struct ftrace_ops *ops; 1613 bool keep_regs = false; 1614 1615 for (ops = ftrace_ops_list; 1616 ops != &ftrace_list_end; ops = ops->next) { 1617 /* pass rec in as regs to have non-NULL val */ 1618 if (ftrace_ops_test(ops, rec->ip, rec)) { 1619 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1620 keep_regs = true; 1621 break; 1622 } 1623 } 1624 } 1625 1626 return keep_regs; 1627 } 1628 1629 static struct ftrace_ops * 1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1631 static struct ftrace_ops * 1632 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1633 static struct ftrace_ops * 1634 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1635 1636 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1637 int filter_hash, 1638 bool inc) 1639 { 1640 struct ftrace_hash *hash; 1641 struct ftrace_hash *other_hash; 1642 struct ftrace_page *pg; 1643 struct dyn_ftrace *rec; 1644 bool update = false; 1645 int count = 0; 1646 int all = false; 1647 1648 /* Only update if the ops has been registered */ 1649 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1650 return false; 1651 1652 /* 1653 * In the filter_hash case: 1654 * If the count is zero, we update all records. 1655 * Otherwise we just update the items in the hash. 1656 * 1657 * In the notrace_hash case: 1658 * We enable the update in the hash. 1659 * As disabling notrace means enabling the tracing, 1660 * and enabling notrace means disabling, the inc variable 1661 * gets inversed. 1662 */ 1663 if (filter_hash) { 1664 hash = ops->func_hash->filter_hash; 1665 other_hash = ops->func_hash->notrace_hash; 1666 if (ftrace_hash_empty(hash)) 1667 all = true; 1668 } else { 1669 inc = !inc; 1670 hash = ops->func_hash->notrace_hash; 1671 other_hash = ops->func_hash->filter_hash; 1672 /* 1673 * If the notrace hash has no items, 1674 * then there's nothing to do. 1675 */ 1676 if (ftrace_hash_empty(hash)) 1677 return false; 1678 } 1679 1680 do_for_each_ftrace_rec(pg, rec) { 1681 int in_other_hash = 0; 1682 int in_hash = 0; 1683 int match = 0; 1684 1685 if (rec->flags & FTRACE_FL_DISABLED) 1686 continue; 1687 1688 if (all) { 1689 /* 1690 * Only the filter_hash affects all records. 1691 * Update if the record is not in the notrace hash. 1692 */ 1693 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1694 match = 1; 1695 } else { 1696 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1697 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1698 1699 /* 1700 * If filter_hash is set, we want to match all functions 1701 * that are in the hash but not in the other hash. 1702 * 1703 * If filter_hash is not set, then we are decrementing. 1704 * That means we match anything that is in the hash 1705 * and also in the other_hash. That is, we need to turn 1706 * off functions in the other hash because they are disabled 1707 * by this hash. 1708 */ 1709 if (filter_hash && in_hash && !in_other_hash) 1710 match = 1; 1711 else if (!filter_hash && in_hash && 1712 (in_other_hash || ftrace_hash_empty(other_hash))) 1713 match = 1; 1714 } 1715 if (!match) 1716 continue; 1717 1718 if (inc) { 1719 rec->flags++; 1720 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1721 return false; 1722 1723 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1724 rec->flags |= FTRACE_FL_DIRECT; 1725 1726 /* 1727 * If there's only a single callback registered to a 1728 * function, and the ops has a trampoline registered 1729 * for it, then we can call it directly. 1730 */ 1731 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1732 rec->flags |= FTRACE_FL_TRAMP; 1733 else 1734 /* 1735 * If we are adding another function callback 1736 * to this function, and the previous had a 1737 * custom trampoline in use, then we need to go 1738 * back to the default trampoline. 1739 */ 1740 rec->flags &= ~FTRACE_FL_TRAMP; 1741 1742 /* 1743 * If any ops wants regs saved for this function 1744 * then all ops will get saved regs. 1745 */ 1746 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1747 rec->flags |= FTRACE_FL_REGS; 1748 } else { 1749 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1750 return false; 1751 rec->flags--; 1752 1753 /* 1754 * Only the internal direct_ops should have the 1755 * DIRECT flag set. Thus, if it is removing a 1756 * function, then that function should no longer 1757 * be direct. 1758 */ 1759 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1760 rec->flags &= ~FTRACE_FL_DIRECT; 1761 1762 /* 1763 * If the rec had REGS enabled and the ops that is 1764 * being removed had REGS set, then see if there is 1765 * still any ops for this record that wants regs. 1766 * If not, we can stop recording them. 1767 */ 1768 if (ftrace_rec_count(rec) > 0 && 1769 rec->flags & FTRACE_FL_REGS && 1770 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1771 if (!test_rec_ops_needs_regs(rec)) 1772 rec->flags &= ~FTRACE_FL_REGS; 1773 } 1774 1775 /* 1776 * The TRAMP needs to be set only if rec count 1777 * is decremented to one, and the ops that is 1778 * left has a trampoline. As TRAMP can only be 1779 * enabled if there is only a single ops attached 1780 * to it. 1781 */ 1782 if (ftrace_rec_count(rec) == 1 && 1783 ftrace_find_tramp_ops_any_other(rec, ops)) 1784 rec->flags |= FTRACE_FL_TRAMP; 1785 else 1786 rec->flags &= ~FTRACE_FL_TRAMP; 1787 1788 /* 1789 * flags will be cleared in ftrace_check_record() 1790 * if rec count is zero. 1791 */ 1792 } 1793 count++; 1794 1795 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1796 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1797 1798 /* Shortcut, if we handled all records, we are done. */ 1799 if (!all && count == hash->count) 1800 return update; 1801 } while_for_each_ftrace_rec(); 1802 1803 return update; 1804 } 1805 1806 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1807 int filter_hash) 1808 { 1809 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1810 } 1811 1812 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1813 int filter_hash) 1814 { 1815 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1816 } 1817 1818 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1819 int filter_hash, int inc) 1820 { 1821 struct ftrace_ops *op; 1822 1823 __ftrace_hash_rec_update(ops, filter_hash, inc); 1824 1825 if (ops->func_hash != &global_ops.local_hash) 1826 return; 1827 1828 /* 1829 * If the ops shares the global_ops hash, then we need to update 1830 * all ops that are enabled and use this hash. 1831 */ 1832 do_for_each_ftrace_op(op, ftrace_ops_list) { 1833 /* Already done */ 1834 if (op == ops) 1835 continue; 1836 if (op->func_hash == &global_ops.local_hash) 1837 __ftrace_hash_rec_update(op, filter_hash, inc); 1838 } while_for_each_ftrace_op(op); 1839 } 1840 1841 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1842 int filter_hash) 1843 { 1844 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1845 } 1846 1847 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1848 int filter_hash) 1849 { 1850 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1851 } 1852 1853 /* 1854 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1855 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1856 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1857 * Note that old_hash and new_hash has below meanings 1858 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1859 * - If the hash is EMPTY_HASH, it hits nothing 1860 * - Anything else hits the recs which match the hash entries. 1861 */ 1862 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1863 struct ftrace_hash *old_hash, 1864 struct ftrace_hash *new_hash) 1865 { 1866 struct ftrace_page *pg; 1867 struct dyn_ftrace *rec, *end = NULL; 1868 int in_old, in_new; 1869 1870 /* Only update if the ops has been registered */ 1871 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1872 return 0; 1873 1874 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1875 return 0; 1876 1877 /* 1878 * Since the IPMODIFY is a very address sensitive action, we do not 1879 * allow ftrace_ops to set all functions to new hash. 1880 */ 1881 if (!new_hash || !old_hash) 1882 return -EINVAL; 1883 1884 /* Update rec->flags */ 1885 do_for_each_ftrace_rec(pg, rec) { 1886 1887 if (rec->flags & FTRACE_FL_DISABLED) 1888 continue; 1889 1890 /* We need to update only differences of filter_hash */ 1891 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1892 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1893 if (in_old == in_new) 1894 continue; 1895 1896 if (in_new) { 1897 /* New entries must ensure no others are using it */ 1898 if (rec->flags & FTRACE_FL_IPMODIFY) 1899 goto rollback; 1900 rec->flags |= FTRACE_FL_IPMODIFY; 1901 } else /* Removed entry */ 1902 rec->flags &= ~FTRACE_FL_IPMODIFY; 1903 } while_for_each_ftrace_rec(); 1904 1905 return 0; 1906 1907 rollback: 1908 end = rec; 1909 1910 /* Roll back what we did above */ 1911 do_for_each_ftrace_rec(pg, rec) { 1912 1913 if (rec->flags & FTRACE_FL_DISABLED) 1914 continue; 1915 1916 if (rec == end) 1917 goto err_out; 1918 1919 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1920 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1921 if (in_old == in_new) 1922 continue; 1923 1924 if (in_new) 1925 rec->flags &= ~FTRACE_FL_IPMODIFY; 1926 else 1927 rec->flags |= FTRACE_FL_IPMODIFY; 1928 } while_for_each_ftrace_rec(); 1929 1930 err_out: 1931 return -EBUSY; 1932 } 1933 1934 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1935 { 1936 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1937 1938 if (ftrace_hash_empty(hash)) 1939 hash = NULL; 1940 1941 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1942 } 1943 1944 /* Disabling always succeeds */ 1945 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1946 { 1947 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1948 1949 if (ftrace_hash_empty(hash)) 1950 hash = NULL; 1951 1952 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1953 } 1954 1955 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1956 struct ftrace_hash *new_hash) 1957 { 1958 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1959 1960 if (ftrace_hash_empty(old_hash)) 1961 old_hash = NULL; 1962 1963 if (ftrace_hash_empty(new_hash)) 1964 new_hash = NULL; 1965 1966 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1967 } 1968 1969 static void print_ip_ins(const char *fmt, const unsigned char *p) 1970 { 1971 int i; 1972 1973 printk(KERN_CONT "%s", fmt); 1974 1975 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1976 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1977 } 1978 1979 enum ftrace_bug_type ftrace_bug_type; 1980 const void *ftrace_expected; 1981 1982 static void print_bug_type(void) 1983 { 1984 switch (ftrace_bug_type) { 1985 case FTRACE_BUG_UNKNOWN: 1986 break; 1987 case FTRACE_BUG_INIT: 1988 pr_info("Initializing ftrace call sites\n"); 1989 break; 1990 case FTRACE_BUG_NOP: 1991 pr_info("Setting ftrace call site to NOP\n"); 1992 break; 1993 case FTRACE_BUG_CALL: 1994 pr_info("Setting ftrace call site to call ftrace function\n"); 1995 break; 1996 case FTRACE_BUG_UPDATE: 1997 pr_info("Updating ftrace call site to call a different ftrace function\n"); 1998 break; 1999 } 2000 } 2001 2002 /** 2003 * ftrace_bug - report and shutdown function tracer 2004 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2005 * @rec: The record that failed 2006 * 2007 * The arch code that enables or disables the function tracing 2008 * can call ftrace_bug() when it has detected a problem in 2009 * modifying the code. @failed should be one of either: 2010 * EFAULT - if the problem happens on reading the @ip address 2011 * EINVAL - if what is read at @ip is not what was expected 2012 * EPERM - if the problem happens on writing to the @ip address 2013 */ 2014 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2015 { 2016 unsigned long ip = rec ? rec->ip : 0; 2017 2018 pr_info("------------[ ftrace bug ]------------\n"); 2019 2020 switch (failed) { 2021 case -EFAULT: 2022 pr_info("ftrace faulted on modifying "); 2023 print_ip_sym(KERN_INFO, ip); 2024 break; 2025 case -EINVAL: 2026 pr_info("ftrace failed to modify "); 2027 print_ip_sym(KERN_INFO, ip); 2028 print_ip_ins(" actual: ", (unsigned char *)ip); 2029 pr_cont("\n"); 2030 if (ftrace_expected) { 2031 print_ip_ins(" expected: ", ftrace_expected); 2032 pr_cont("\n"); 2033 } 2034 break; 2035 case -EPERM: 2036 pr_info("ftrace faulted on writing "); 2037 print_ip_sym(KERN_INFO, ip); 2038 break; 2039 default: 2040 pr_info("ftrace faulted on unknown error "); 2041 print_ip_sym(KERN_INFO, ip); 2042 } 2043 print_bug_type(); 2044 if (rec) { 2045 struct ftrace_ops *ops = NULL; 2046 2047 pr_info("ftrace record flags: %lx\n", rec->flags); 2048 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2049 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2050 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2051 ops = ftrace_find_tramp_ops_any(rec); 2052 if (ops) { 2053 do { 2054 pr_cont("\ttramp: %pS (%pS)", 2055 (void *)ops->trampoline, 2056 (void *)ops->func); 2057 ops = ftrace_find_tramp_ops_next(rec, ops); 2058 } while (ops); 2059 } else 2060 pr_cont("\ttramp: ERROR!"); 2061 2062 } 2063 ip = ftrace_get_addr_curr(rec); 2064 pr_cont("\n expected tramp: %lx\n", ip); 2065 } 2066 2067 FTRACE_WARN_ON_ONCE(1); 2068 } 2069 2070 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2071 { 2072 unsigned long flag = 0UL; 2073 2074 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2075 2076 if (rec->flags & FTRACE_FL_DISABLED) 2077 return FTRACE_UPDATE_IGNORE; 2078 2079 /* 2080 * If we are updating calls: 2081 * 2082 * If the record has a ref count, then we need to enable it 2083 * because someone is using it. 2084 * 2085 * Otherwise we make sure its disabled. 2086 * 2087 * If we are disabling calls, then disable all records that 2088 * are enabled. 2089 */ 2090 if (enable && ftrace_rec_count(rec)) 2091 flag = FTRACE_FL_ENABLED; 2092 2093 /* 2094 * If enabling and the REGS flag does not match the REGS_EN, or 2095 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2096 * this record. Set flags to fail the compare against ENABLED. 2097 * Same for direct calls. 2098 */ 2099 if (flag) { 2100 if (!(rec->flags & FTRACE_FL_REGS) != 2101 !(rec->flags & FTRACE_FL_REGS_EN)) 2102 flag |= FTRACE_FL_REGS; 2103 2104 if (!(rec->flags & FTRACE_FL_TRAMP) != 2105 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2106 flag |= FTRACE_FL_TRAMP; 2107 2108 /* 2109 * Direct calls are special, as count matters. 2110 * We must test the record for direct, if the 2111 * DIRECT and DIRECT_EN do not match, but only 2112 * if the count is 1. That's because, if the 2113 * count is something other than one, we do not 2114 * want the direct enabled (it will be done via the 2115 * direct helper). But if DIRECT_EN is set, and 2116 * the count is not one, we need to clear it. 2117 */ 2118 if (ftrace_rec_count(rec) == 1) { 2119 if (!(rec->flags & FTRACE_FL_DIRECT) != 2120 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2121 flag |= FTRACE_FL_DIRECT; 2122 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2123 flag |= FTRACE_FL_DIRECT; 2124 } 2125 } 2126 2127 /* If the state of this record hasn't changed, then do nothing */ 2128 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2129 return FTRACE_UPDATE_IGNORE; 2130 2131 if (flag) { 2132 /* Save off if rec is being enabled (for return value) */ 2133 flag ^= rec->flags & FTRACE_FL_ENABLED; 2134 2135 if (update) { 2136 rec->flags |= FTRACE_FL_ENABLED; 2137 if (flag & FTRACE_FL_REGS) { 2138 if (rec->flags & FTRACE_FL_REGS) 2139 rec->flags |= FTRACE_FL_REGS_EN; 2140 else 2141 rec->flags &= ~FTRACE_FL_REGS_EN; 2142 } 2143 if (flag & FTRACE_FL_TRAMP) { 2144 if (rec->flags & FTRACE_FL_TRAMP) 2145 rec->flags |= FTRACE_FL_TRAMP_EN; 2146 else 2147 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2148 } 2149 if (flag & FTRACE_FL_DIRECT) { 2150 /* 2151 * If there's only one user (direct_ops helper) 2152 * then we can call the direct function 2153 * directly (no ftrace trampoline). 2154 */ 2155 if (ftrace_rec_count(rec) == 1) { 2156 if (rec->flags & FTRACE_FL_DIRECT) 2157 rec->flags |= FTRACE_FL_DIRECT_EN; 2158 else 2159 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2160 } else { 2161 /* 2162 * Can only call directly if there's 2163 * only one callback to the function. 2164 */ 2165 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2166 } 2167 } 2168 } 2169 2170 /* 2171 * If this record is being updated from a nop, then 2172 * return UPDATE_MAKE_CALL. 2173 * Otherwise, 2174 * return UPDATE_MODIFY_CALL to tell the caller to convert 2175 * from the save regs, to a non-save regs function or 2176 * vice versa, or from a trampoline call. 2177 */ 2178 if (flag & FTRACE_FL_ENABLED) { 2179 ftrace_bug_type = FTRACE_BUG_CALL; 2180 return FTRACE_UPDATE_MAKE_CALL; 2181 } 2182 2183 ftrace_bug_type = FTRACE_BUG_UPDATE; 2184 return FTRACE_UPDATE_MODIFY_CALL; 2185 } 2186 2187 if (update) { 2188 /* If there's no more users, clear all flags */ 2189 if (!ftrace_rec_count(rec)) 2190 rec->flags = 0; 2191 else 2192 /* 2193 * Just disable the record, but keep the ops TRAMP 2194 * and REGS states. The _EN flags must be disabled though. 2195 */ 2196 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2197 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2198 } 2199 2200 ftrace_bug_type = FTRACE_BUG_NOP; 2201 return FTRACE_UPDATE_MAKE_NOP; 2202 } 2203 2204 /** 2205 * ftrace_update_record, set a record that now is tracing or not 2206 * @rec: the record to update 2207 * @enable: set to true if the record is tracing, false to force disable 2208 * 2209 * The records that represent all functions that can be traced need 2210 * to be updated when tracing has been enabled. 2211 */ 2212 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2213 { 2214 return ftrace_check_record(rec, enable, true); 2215 } 2216 2217 /** 2218 * ftrace_test_record, check if the record has been enabled or not 2219 * @rec: the record to test 2220 * @enable: set to true to check if enabled, false if it is disabled 2221 * 2222 * The arch code may need to test if a record is already set to 2223 * tracing to determine how to modify the function code that it 2224 * represents. 2225 */ 2226 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2227 { 2228 return ftrace_check_record(rec, enable, false); 2229 } 2230 2231 static struct ftrace_ops * 2232 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2233 { 2234 struct ftrace_ops *op; 2235 unsigned long ip = rec->ip; 2236 2237 do_for_each_ftrace_op(op, ftrace_ops_list) { 2238 2239 if (!op->trampoline) 2240 continue; 2241 2242 if (hash_contains_ip(ip, op->func_hash)) 2243 return op; 2244 } while_for_each_ftrace_op(op); 2245 2246 return NULL; 2247 } 2248 2249 static struct ftrace_ops * 2250 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2251 { 2252 struct ftrace_ops *op; 2253 unsigned long ip = rec->ip; 2254 2255 do_for_each_ftrace_op(op, ftrace_ops_list) { 2256 2257 if (op == op_exclude || !op->trampoline) 2258 continue; 2259 2260 if (hash_contains_ip(ip, op->func_hash)) 2261 return op; 2262 } while_for_each_ftrace_op(op); 2263 2264 return NULL; 2265 } 2266 2267 static struct ftrace_ops * 2268 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2269 struct ftrace_ops *op) 2270 { 2271 unsigned long ip = rec->ip; 2272 2273 while_for_each_ftrace_op(op) { 2274 2275 if (!op->trampoline) 2276 continue; 2277 2278 if (hash_contains_ip(ip, op->func_hash)) 2279 return op; 2280 } 2281 2282 return NULL; 2283 } 2284 2285 static struct ftrace_ops * 2286 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2287 { 2288 struct ftrace_ops *op; 2289 unsigned long ip = rec->ip; 2290 2291 /* 2292 * Need to check removed ops first. 2293 * If they are being removed, and this rec has a tramp, 2294 * and this rec is in the ops list, then it would be the 2295 * one with the tramp. 2296 */ 2297 if (removed_ops) { 2298 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2299 return removed_ops; 2300 } 2301 2302 /* 2303 * Need to find the current trampoline for a rec. 2304 * Now, a trampoline is only attached to a rec if there 2305 * was a single 'ops' attached to it. But this can be called 2306 * when we are adding another op to the rec or removing the 2307 * current one. Thus, if the op is being added, we can 2308 * ignore it because it hasn't attached itself to the rec 2309 * yet. 2310 * 2311 * If an ops is being modified (hooking to different functions) 2312 * then we don't care about the new functions that are being 2313 * added, just the old ones (that are probably being removed). 2314 * 2315 * If we are adding an ops to a function that already is using 2316 * a trampoline, it needs to be removed (trampolines are only 2317 * for single ops connected), then an ops that is not being 2318 * modified also needs to be checked. 2319 */ 2320 do_for_each_ftrace_op(op, ftrace_ops_list) { 2321 2322 if (!op->trampoline) 2323 continue; 2324 2325 /* 2326 * If the ops is being added, it hasn't gotten to 2327 * the point to be removed from this tree yet. 2328 */ 2329 if (op->flags & FTRACE_OPS_FL_ADDING) 2330 continue; 2331 2332 2333 /* 2334 * If the ops is being modified and is in the old 2335 * hash, then it is probably being removed from this 2336 * function. 2337 */ 2338 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2339 hash_contains_ip(ip, &op->old_hash)) 2340 return op; 2341 /* 2342 * If the ops is not being added or modified, and it's 2343 * in its normal filter hash, then this must be the one 2344 * we want! 2345 */ 2346 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2347 hash_contains_ip(ip, op->func_hash)) 2348 return op; 2349 2350 } while_for_each_ftrace_op(op); 2351 2352 return NULL; 2353 } 2354 2355 static struct ftrace_ops * 2356 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2357 { 2358 struct ftrace_ops *op; 2359 unsigned long ip = rec->ip; 2360 2361 do_for_each_ftrace_op(op, ftrace_ops_list) { 2362 /* pass rec in as regs to have non-NULL val */ 2363 if (hash_contains_ip(ip, op->func_hash)) 2364 return op; 2365 } while_for_each_ftrace_op(op); 2366 2367 return NULL; 2368 } 2369 2370 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2371 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2372 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2373 static DEFINE_MUTEX(direct_mutex); 2374 int ftrace_direct_func_count; 2375 2376 /* 2377 * Search the direct_functions hash to see if the given instruction pointer 2378 * has a direct caller attached to it. 2379 */ 2380 unsigned long ftrace_find_rec_direct(unsigned long ip) 2381 { 2382 struct ftrace_func_entry *entry; 2383 2384 entry = __ftrace_lookup_ip(direct_functions, ip); 2385 if (!entry) 2386 return 0; 2387 2388 return entry->direct; 2389 } 2390 2391 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2392 struct ftrace_ops *ops, struct pt_regs *regs) 2393 { 2394 unsigned long addr; 2395 2396 addr = ftrace_find_rec_direct(ip); 2397 if (!addr) 2398 return; 2399 2400 arch_ftrace_set_direct_caller(regs, addr); 2401 } 2402 2403 struct ftrace_ops direct_ops = { 2404 .func = call_direct_funcs, 2405 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2406 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2407 | FTRACE_OPS_FL_PERMANENT, 2408 /* 2409 * By declaring the main trampoline as this trampoline 2410 * it will never have one allocated for it. Allocated 2411 * trampolines should not call direct functions. 2412 * The direct_ops should only be called by the builtin 2413 * ftrace_regs_caller trampoline. 2414 */ 2415 .trampoline = FTRACE_REGS_ADDR, 2416 }; 2417 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2418 2419 /** 2420 * ftrace_get_addr_new - Get the call address to set to 2421 * @rec: The ftrace record descriptor 2422 * 2423 * If the record has the FTRACE_FL_REGS set, that means that it 2424 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2425 * is not set, then it wants to convert to the normal callback. 2426 * 2427 * Returns the address of the trampoline to set to 2428 */ 2429 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2430 { 2431 struct ftrace_ops *ops; 2432 unsigned long addr; 2433 2434 if ((rec->flags & FTRACE_FL_DIRECT) && 2435 (ftrace_rec_count(rec) == 1)) { 2436 addr = ftrace_find_rec_direct(rec->ip); 2437 if (addr) 2438 return addr; 2439 WARN_ON_ONCE(1); 2440 } 2441 2442 /* Trampolines take precedence over regs */ 2443 if (rec->flags & FTRACE_FL_TRAMP) { 2444 ops = ftrace_find_tramp_ops_new(rec); 2445 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2446 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2447 (void *)rec->ip, (void *)rec->ip, rec->flags); 2448 /* Ftrace is shutting down, return anything */ 2449 return (unsigned long)FTRACE_ADDR; 2450 } 2451 return ops->trampoline; 2452 } 2453 2454 if (rec->flags & FTRACE_FL_REGS) 2455 return (unsigned long)FTRACE_REGS_ADDR; 2456 else 2457 return (unsigned long)FTRACE_ADDR; 2458 } 2459 2460 /** 2461 * ftrace_get_addr_curr - Get the call address that is already there 2462 * @rec: The ftrace record descriptor 2463 * 2464 * The FTRACE_FL_REGS_EN is set when the record already points to 2465 * a function that saves all the regs. Basically the '_EN' version 2466 * represents the current state of the function. 2467 * 2468 * Returns the address of the trampoline that is currently being called 2469 */ 2470 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2471 { 2472 struct ftrace_ops *ops; 2473 unsigned long addr; 2474 2475 /* Direct calls take precedence over trampolines */ 2476 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2477 addr = ftrace_find_rec_direct(rec->ip); 2478 if (addr) 2479 return addr; 2480 WARN_ON_ONCE(1); 2481 } 2482 2483 /* Trampolines take precedence over regs */ 2484 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2485 ops = ftrace_find_tramp_ops_curr(rec); 2486 if (FTRACE_WARN_ON(!ops)) { 2487 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2488 (void *)rec->ip, (void *)rec->ip); 2489 /* Ftrace is shutting down, return anything */ 2490 return (unsigned long)FTRACE_ADDR; 2491 } 2492 return ops->trampoline; 2493 } 2494 2495 if (rec->flags & FTRACE_FL_REGS_EN) 2496 return (unsigned long)FTRACE_REGS_ADDR; 2497 else 2498 return (unsigned long)FTRACE_ADDR; 2499 } 2500 2501 static int 2502 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2503 { 2504 unsigned long ftrace_old_addr; 2505 unsigned long ftrace_addr; 2506 int ret; 2507 2508 ftrace_addr = ftrace_get_addr_new(rec); 2509 2510 /* This needs to be done before we call ftrace_update_record */ 2511 ftrace_old_addr = ftrace_get_addr_curr(rec); 2512 2513 ret = ftrace_update_record(rec, enable); 2514 2515 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2516 2517 switch (ret) { 2518 case FTRACE_UPDATE_IGNORE: 2519 return 0; 2520 2521 case FTRACE_UPDATE_MAKE_CALL: 2522 ftrace_bug_type = FTRACE_BUG_CALL; 2523 return ftrace_make_call(rec, ftrace_addr); 2524 2525 case FTRACE_UPDATE_MAKE_NOP: 2526 ftrace_bug_type = FTRACE_BUG_NOP; 2527 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2528 2529 case FTRACE_UPDATE_MODIFY_CALL: 2530 ftrace_bug_type = FTRACE_BUG_UPDATE; 2531 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2532 } 2533 2534 return -1; /* unknown ftrace bug */ 2535 } 2536 2537 void __weak ftrace_replace_code(int mod_flags) 2538 { 2539 struct dyn_ftrace *rec; 2540 struct ftrace_page *pg; 2541 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2542 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2543 int failed; 2544 2545 if (unlikely(ftrace_disabled)) 2546 return; 2547 2548 do_for_each_ftrace_rec(pg, rec) { 2549 2550 if (rec->flags & FTRACE_FL_DISABLED) 2551 continue; 2552 2553 failed = __ftrace_replace_code(rec, enable); 2554 if (failed) { 2555 ftrace_bug(failed, rec); 2556 /* Stop processing */ 2557 return; 2558 } 2559 if (schedulable) 2560 cond_resched(); 2561 } while_for_each_ftrace_rec(); 2562 } 2563 2564 struct ftrace_rec_iter { 2565 struct ftrace_page *pg; 2566 int index; 2567 }; 2568 2569 /** 2570 * ftrace_rec_iter_start, start up iterating over traced functions 2571 * 2572 * Returns an iterator handle that is used to iterate over all 2573 * the records that represent address locations where functions 2574 * are traced. 2575 * 2576 * May return NULL if no records are available. 2577 */ 2578 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2579 { 2580 /* 2581 * We only use a single iterator. 2582 * Protected by the ftrace_lock mutex. 2583 */ 2584 static struct ftrace_rec_iter ftrace_rec_iter; 2585 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2586 2587 iter->pg = ftrace_pages_start; 2588 iter->index = 0; 2589 2590 /* Could have empty pages */ 2591 while (iter->pg && !iter->pg->index) 2592 iter->pg = iter->pg->next; 2593 2594 if (!iter->pg) 2595 return NULL; 2596 2597 return iter; 2598 } 2599 2600 /** 2601 * ftrace_rec_iter_next, get the next record to process. 2602 * @iter: The handle to the iterator. 2603 * 2604 * Returns the next iterator after the given iterator @iter. 2605 */ 2606 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2607 { 2608 iter->index++; 2609 2610 if (iter->index >= iter->pg->index) { 2611 iter->pg = iter->pg->next; 2612 iter->index = 0; 2613 2614 /* Could have empty pages */ 2615 while (iter->pg && !iter->pg->index) 2616 iter->pg = iter->pg->next; 2617 } 2618 2619 if (!iter->pg) 2620 return NULL; 2621 2622 return iter; 2623 } 2624 2625 /** 2626 * ftrace_rec_iter_record, get the record at the iterator location 2627 * @iter: The current iterator location 2628 * 2629 * Returns the record that the current @iter is at. 2630 */ 2631 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2632 { 2633 return &iter->pg->records[iter->index]; 2634 } 2635 2636 static int 2637 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2638 { 2639 int ret; 2640 2641 if (unlikely(ftrace_disabled)) 2642 return 0; 2643 2644 ret = ftrace_init_nop(mod, rec); 2645 if (ret) { 2646 ftrace_bug_type = FTRACE_BUG_INIT; 2647 ftrace_bug(ret, rec); 2648 return 0; 2649 } 2650 return 1; 2651 } 2652 2653 /* 2654 * archs can override this function if they must do something 2655 * before the modifying code is performed. 2656 */ 2657 int __weak ftrace_arch_code_modify_prepare(void) 2658 { 2659 return 0; 2660 } 2661 2662 /* 2663 * archs can override this function if they must do something 2664 * after the modifying code is performed. 2665 */ 2666 int __weak ftrace_arch_code_modify_post_process(void) 2667 { 2668 return 0; 2669 } 2670 2671 void ftrace_modify_all_code(int command) 2672 { 2673 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2674 int mod_flags = 0; 2675 int err = 0; 2676 2677 if (command & FTRACE_MAY_SLEEP) 2678 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2679 2680 /* 2681 * If the ftrace_caller calls a ftrace_ops func directly, 2682 * we need to make sure that it only traces functions it 2683 * expects to trace. When doing the switch of functions, 2684 * we need to update to the ftrace_ops_list_func first 2685 * before the transition between old and new calls are set, 2686 * as the ftrace_ops_list_func will check the ops hashes 2687 * to make sure the ops are having the right functions 2688 * traced. 2689 */ 2690 if (update) { 2691 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2692 if (FTRACE_WARN_ON(err)) 2693 return; 2694 } 2695 2696 if (command & FTRACE_UPDATE_CALLS) 2697 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2698 else if (command & FTRACE_DISABLE_CALLS) 2699 ftrace_replace_code(mod_flags); 2700 2701 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2702 function_trace_op = set_function_trace_op; 2703 smp_wmb(); 2704 /* If irqs are disabled, we are in stop machine */ 2705 if (!irqs_disabled()) 2706 smp_call_function(ftrace_sync_ipi, NULL, 1); 2707 err = ftrace_update_ftrace_func(ftrace_trace_function); 2708 if (FTRACE_WARN_ON(err)) 2709 return; 2710 } 2711 2712 if (command & FTRACE_START_FUNC_RET) 2713 err = ftrace_enable_ftrace_graph_caller(); 2714 else if (command & FTRACE_STOP_FUNC_RET) 2715 err = ftrace_disable_ftrace_graph_caller(); 2716 FTRACE_WARN_ON(err); 2717 } 2718 2719 static int __ftrace_modify_code(void *data) 2720 { 2721 int *command = data; 2722 2723 ftrace_modify_all_code(*command); 2724 2725 return 0; 2726 } 2727 2728 /** 2729 * ftrace_run_stop_machine, go back to the stop machine method 2730 * @command: The command to tell ftrace what to do 2731 * 2732 * If an arch needs to fall back to the stop machine method, the 2733 * it can call this function. 2734 */ 2735 void ftrace_run_stop_machine(int command) 2736 { 2737 stop_machine(__ftrace_modify_code, &command, NULL); 2738 } 2739 2740 /** 2741 * arch_ftrace_update_code, modify the code to trace or not trace 2742 * @command: The command that needs to be done 2743 * 2744 * Archs can override this function if it does not need to 2745 * run stop_machine() to modify code. 2746 */ 2747 void __weak arch_ftrace_update_code(int command) 2748 { 2749 ftrace_run_stop_machine(command); 2750 } 2751 2752 static void ftrace_run_update_code(int command) 2753 { 2754 int ret; 2755 2756 ret = ftrace_arch_code_modify_prepare(); 2757 FTRACE_WARN_ON(ret); 2758 if (ret) 2759 return; 2760 2761 /* 2762 * By default we use stop_machine() to modify the code. 2763 * But archs can do what ever they want as long as it 2764 * is safe. The stop_machine() is the safest, but also 2765 * produces the most overhead. 2766 */ 2767 arch_ftrace_update_code(command); 2768 2769 ret = ftrace_arch_code_modify_post_process(); 2770 FTRACE_WARN_ON(ret); 2771 } 2772 2773 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2774 struct ftrace_ops_hash *old_hash) 2775 { 2776 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2777 ops->old_hash.filter_hash = old_hash->filter_hash; 2778 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2779 ftrace_run_update_code(command); 2780 ops->old_hash.filter_hash = NULL; 2781 ops->old_hash.notrace_hash = NULL; 2782 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2783 } 2784 2785 static ftrace_func_t saved_ftrace_func; 2786 static int ftrace_start_up; 2787 2788 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2789 { 2790 } 2791 2792 /* List of trace_ops that have allocated trampolines */ 2793 static LIST_HEAD(ftrace_ops_trampoline_list); 2794 2795 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2796 { 2797 lockdep_assert_held(&ftrace_lock); 2798 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2799 } 2800 2801 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2802 { 2803 lockdep_assert_held(&ftrace_lock); 2804 list_del_rcu(&ops->list); 2805 synchronize_rcu(); 2806 } 2807 2808 /* 2809 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2810 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2811 * not a module. 2812 */ 2813 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2814 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2815 2816 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2817 { 2818 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2819 ops->trampoline) { 2820 /* 2821 * Record the text poke event before the ksymbol unregister 2822 * event. 2823 */ 2824 perf_event_text_poke((void *)ops->trampoline, 2825 (void *)ops->trampoline, 2826 ops->trampoline_size, NULL, 0); 2827 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2828 ops->trampoline, ops->trampoline_size, 2829 true, FTRACE_TRAMPOLINE_SYM); 2830 /* Remove from kallsyms after the perf events */ 2831 ftrace_remove_trampoline_from_kallsyms(ops); 2832 } 2833 2834 arch_ftrace_trampoline_free(ops); 2835 } 2836 2837 static void ftrace_startup_enable(int command) 2838 { 2839 if (saved_ftrace_func != ftrace_trace_function) { 2840 saved_ftrace_func = ftrace_trace_function; 2841 command |= FTRACE_UPDATE_TRACE_FUNC; 2842 } 2843 2844 if (!command || !ftrace_enabled) 2845 return; 2846 2847 ftrace_run_update_code(command); 2848 } 2849 2850 static void ftrace_startup_all(int command) 2851 { 2852 update_all_ops = true; 2853 ftrace_startup_enable(command); 2854 update_all_ops = false; 2855 } 2856 2857 int ftrace_startup(struct ftrace_ops *ops, int command) 2858 { 2859 int ret; 2860 2861 if (unlikely(ftrace_disabled)) 2862 return -ENODEV; 2863 2864 ret = __register_ftrace_function(ops); 2865 if (ret) 2866 return ret; 2867 2868 ftrace_start_up++; 2869 2870 /* 2871 * Note that ftrace probes uses this to start up 2872 * and modify functions it will probe. But we still 2873 * set the ADDING flag for modification, as probes 2874 * do not have trampolines. If they add them in the 2875 * future, then the probes will need to distinguish 2876 * between adding and updating probes. 2877 */ 2878 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2879 2880 ret = ftrace_hash_ipmodify_enable(ops); 2881 if (ret < 0) { 2882 /* Rollback registration process */ 2883 __unregister_ftrace_function(ops); 2884 ftrace_start_up--; 2885 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2886 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2887 ftrace_trampoline_free(ops); 2888 return ret; 2889 } 2890 2891 if (ftrace_hash_rec_enable(ops, 1)) 2892 command |= FTRACE_UPDATE_CALLS; 2893 2894 ftrace_startup_enable(command); 2895 2896 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2897 2898 return 0; 2899 } 2900 2901 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2902 { 2903 int ret; 2904 2905 if (unlikely(ftrace_disabled)) 2906 return -ENODEV; 2907 2908 ret = __unregister_ftrace_function(ops); 2909 if (ret) 2910 return ret; 2911 2912 ftrace_start_up--; 2913 /* 2914 * Just warn in case of unbalance, no need to kill ftrace, it's not 2915 * critical but the ftrace_call callers may be never nopped again after 2916 * further ftrace uses. 2917 */ 2918 WARN_ON_ONCE(ftrace_start_up < 0); 2919 2920 /* Disabling ipmodify never fails */ 2921 ftrace_hash_ipmodify_disable(ops); 2922 2923 if (ftrace_hash_rec_disable(ops, 1)) 2924 command |= FTRACE_UPDATE_CALLS; 2925 2926 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2927 2928 if (saved_ftrace_func != ftrace_trace_function) { 2929 saved_ftrace_func = ftrace_trace_function; 2930 command |= FTRACE_UPDATE_TRACE_FUNC; 2931 } 2932 2933 if (!command || !ftrace_enabled) { 2934 /* 2935 * If these are dynamic or per_cpu ops, they still 2936 * need their data freed. Since, function tracing is 2937 * not currently active, we can just free them 2938 * without synchronizing all CPUs. 2939 */ 2940 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2941 goto free_ops; 2942 2943 return 0; 2944 } 2945 2946 /* 2947 * If the ops uses a trampoline, then it needs to be 2948 * tested first on update. 2949 */ 2950 ops->flags |= FTRACE_OPS_FL_REMOVING; 2951 removed_ops = ops; 2952 2953 /* The trampoline logic checks the old hashes */ 2954 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2955 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2956 2957 ftrace_run_update_code(command); 2958 2959 /* 2960 * If there's no more ops registered with ftrace, run a 2961 * sanity check to make sure all rec flags are cleared. 2962 */ 2963 if (rcu_dereference_protected(ftrace_ops_list, 2964 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2965 struct ftrace_page *pg; 2966 struct dyn_ftrace *rec; 2967 2968 do_for_each_ftrace_rec(pg, rec) { 2969 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2970 pr_warn(" %pS flags:%lx\n", 2971 (void *)rec->ip, rec->flags); 2972 } while_for_each_ftrace_rec(); 2973 } 2974 2975 ops->old_hash.filter_hash = NULL; 2976 ops->old_hash.notrace_hash = NULL; 2977 2978 removed_ops = NULL; 2979 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2980 2981 /* 2982 * Dynamic ops may be freed, we must make sure that all 2983 * callers are done before leaving this function. 2984 * The same goes for freeing the per_cpu data of the per_cpu 2985 * ops. 2986 */ 2987 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2988 /* 2989 * We need to do a hard force of sched synchronization. 2990 * This is because we use preempt_disable() to do RCU, but 2991 * the function tracers can be called where RCU is not watching 2992 * (like before user_exit()). We can not rely on the RCU 2993 * infrastructure to do the synchronization, thus we must do it 2994 * ourselves. 2995 */ 2996 synchronize_rcu_tasks_rude(); 2997 2998 /* 2999 * When the kernel is preemptive, tasks can be preempted 3000 * while on a ftrace trampoline. Just scheduling a task on 3001 * a CPU is not good enough to flush them. Calling 3002 * synchornize_rcu_tasks() will wait for those tasks to 3003 * execute and either schedule voluntarily or enter user space. 3004 */ 3005 if (IS_ENABLED(CONFIG_PREEMPTION)) 3006 synchronize_rcu_tasks(); 3007 3008 free_ops: 3009 ftrace_trampoline_free(ops); 3010 } 3011 3012 return 0; 3013 } 3014 3015 static void ftrace_startup_sysctl(void) 3016 { 3017 int command; 3018 3019 if (unlikely(ftrace_disabled)) 3020 return; 3021 3022 /* Force update next time */ 3023 saved_ftrace_func = NULL; 3024 /* ftrace_start_up is true if we want ftrace running */ 3025 if (ftrace_start_up) { 3026 command = FTRACE_UPDATE_CALLS; 3027 if (ftrace_graph_active) 3028 command |= FTRACE_START_FUNC_RET; 3029 ftrace_startup_enable(command); 3030 } 3031 } 3032 3033 static void ftrace_shutdown_sysctl(void) 3034 { 3035 int command; 3036 3037 if (unlikely(ftrace_disabled)) 3038 return; 3039 3040 /* ftrace_start_up is true if ftrace is running */ 3041 if (ftrace_start_up) { 3042 command = FTRACE_DISABLE_CALLS; 3043 if (ftrace_graph_active) 3044 command |= FTRACE_STOP_FUNC_RET; 3045 ftrace_run_update_code(command); 3046 } 3047 } 3048 3049 static u64 ftrace_update_time; 3050 unsigned long ftrace_update_tot_cnt; 3051 unsigned long ftrace_number_of_pages; 3052 unsigned long ftrace_number_of_groups; 3053 3054 static inline int ops_traces_mod(struct ftrace_ops *ops) 3055 { 3056 /* 3057 * Filter_hash being empty will default to trace module. 3058 * But notrace hash requires a test of individual module functions. 3059 */ 3060 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3061 ftrace_hash_empty(ops->func_hash->notrace_hash); 3062 } 3063 3064 /* 3065 * Check if the current ops references the record. 3066 * 3067 * If the ops traces all functions, then it was already accounted for. 3068 * If the ops does not trace the current record function, skip it. 3069 * If the ops ignores the function via notrace filter, skip it. 3070 */ 3071 static inline bool 3072 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3073 { 3074 /* If ops isn't enabled, ignore it */ 3075 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3076 return false; 3077 3078 /* If ops traces all then it includes this function */ 3079 if (ops_traces_mod(ops)) 3080 return true; 3081 3082 /* The function must be in the filter */ 3083 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3084 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3085 return false; 3086 3087 /* If in notrace hash, we ignore it too */ 3088 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3089 return false; 3090 3091 return true; 3092 } 3093 3094 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3095 { 3096 struct ftrace_page *pg; 3097 struct dyn_ftrace *p; 3098 u64 start, stop; 3099 unsigned long update_cnt = 0; 3100 unsigned long rec_flags = 0; 3101 int i; 3102 3103 start = ftrace_now(raw_smp_processor_id()); 3104 3105 /* 3106 * When a module is loaded, this function is called to convert 3107 * the calls to mcount in its text to nops, and also to create 3108 * an entry in the ftrace data. Now, if ftrace is activated 3109 * after this call, but before the module sets its text to 3110 * read-only, the modification of enabling ftrace can fail if 3111 * the read-only is done while ftrace is converting the calls. 3112 * To prevent this, the module's records are set as disabled 3113 * and will be enabled after the call to set the module's text 3114 * to read-only. 3115 */ 3116 if (mod) 3117 rec_flags |= FTRACE_FL_DISABLED; 3118 3119 for (pg = new_pgs; pg; pg = pg->next) { 3120 3121 for (i = 0; i < pg->index; i++) { 3122 3123 /* If something went wrong, bail without enabling anything */ 3124 if (unlikely(ftrace_disabled)) 3125 return -1; 3126 3127 p = &pg->records[i]; 3128 p->flags = rec_flags; 3129 3130 /* 3131 * Do the initial record conversion from mcount jump 3132 * to the NOP instructions. 3133 */ 3134 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3135 !ftrace_nop_initialize(mod, p)) 3136 break; 3137 3138 update_cnt++; 3139 } 3140 } 3141 3142 stop = ftrace_now(raw_smp_processor_id()); 3143 ftrace_update_time = stop - start; 3144 ftrace_update_tot_cnt += update_cnt; 3145 3146 return 0; 3147 } 3148 3149 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3150 { 3151 int order; 3152 int pages; 3153 int cnt; 3154 3155 if (WARN_ON(!count)) 3156 return -EINVAL; 3157 3158 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3159 order = get_count_order(pages); 3160 3161 /* 3162 * We want to fill as much as possible. No more than a page 3163 * may be empty. 3164 */ 3165 if (!is_power_of_2(pages)) 3166 order--; 3167 3168 again: 3169 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3170 3171 if (!pg->records) { 3172 /* if we can't allocate this size, try something smaller */ 3173 if (!order) 3174 return -ENOMEM; 3175 order >>= 1; 3176 goto again; 3177 } 3178 3179 ftrace_number_of_pages += 1 << order; 3180 ftrace_number_of_groups++; 3181 3182 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3183 pg->size = cnt; 3184 3185 if (cnt > count) 3186 cnt = count; 3187 3188 return cnt; 3189 } 3190 3191 static struct ftrace_page * 3192 ftrace_allocate_pages(unsigned long num_to_init) 3193 { 3194 struct ftrace_page *start_pg; 3195 struct ftrace_page *pg; 3196 int order; 3197 int cnt; 3198 3199 if (!num_to_init) 3200 return NULL; 3201 3202 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3203 if (!pg) 3204 return NULL; 3205 3206 /* 3207 * Try to allocate as much as possible in one continues 3208 * location that fills in all of the space. We want to 3209 * waste as little space as possible. 3210 */ 3211 for (;;) { 3212 cnt = ftrace_allocate_records(pg, num_to_init); 3213 if (cnt < 0) 3214 goto free_pages; 3215 3216 num_to_init -= cnt; 3217 if (!num_to_init) 3218 break; 3219 3220 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3221 if (!pg->next) 3222 goto free_pages; 3223 3224 pg = pg->next; 3225 } 3226 3227 return start_pg; 3228 3229 free_pages: 3230 pg = start_pg; 3231 while (pg) { 3232 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3233 free_pages((unsigned long)pg->records, order); 3234 start_pg = pg->next; 3235 kfree(pg); 3236 pg = start_pg; 3237 ftrace_number_of_pages -= 1 << order; 3238 ftrace_number_of_groups--; 3239 } 3240 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3241 return NULL; 3242 } 3243 3244 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3245 3246 struct ftrace_iterator { 3247 loff_t pos; 3248 loff_t func_pos; 3249 loff_t mod_pos; 3250 struct ftrace_page *pg; 3251 struct dyn_ftrace *func; 3252 struct ftrace_func_probe *probe; 3253 struct ftrace_func_entry *probe_entry; 3254 struct trace_parser parser; 3255 struct ftrace_hash *hash; 3256 struct ftrace_ops *ops; 3257 struct trace_array *tr; 3258 struct list_head *mod_list; 3259 int pidx; 3260 int idx; 3261 unsigned flags; 3262 }; 3263 3264 static void * 3265 t_probe_next(struct seq_file *m, loff_t *pos) 3266 { 3267 struct ftrace_iterator *iter = m->private; 3268 struct trace_array *tr = iter->ops->private; 3269 struct list_head *func_probes; 3270 struct ftrace_hash *hash; 3271 struct list_head *next; 3272 struct hlist_node *hnd = NULL; 3273 struct hlist_head *hhd; 3274 int size; 3275 3276 (*pos)++; 3277 iter->pos = *pos; 3278 3279 if (!tr) 3280 return NULL; 3281 3282 func_probes = &tr->func_probes; 3283 if (list_empty(func_probes)) 3284 return NULL; 3285 3286 if (!iter->probe) { 3287 next = func_probes->next; 3288 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3289 } 3290 3291 if (iter->probe_entry) 3292 hnd = &iter->probe_entry->hlist; 3293 3294 hash = iter->probe->ops.func_hash->filter_hash; 3295 3296 /* 3297 * A probe being registered may temporarily have an empty hash 3298 * and it's at the end of the func_probes list. 3299 */ 3300 if (!hash || hash == EMPTY_HASH) 3301 return NULL; 3302 3303 size = 1 << hash->size_bits; 3304 3305 retry: 3306 if (iter->pidx >= size) { 3307 if (iter->probe->list.next == func_probes) 3308 return NULL; 3309 next = iter->probe->list.next; 3310 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3311 hash = iter->probe->ops.func_hash->filter_hash; 3312 size = 1 << hash->size_bits; 3313 iter->pidx = 0; 3314 } 3315 3316 hhd = &hash->buckets[iter->pidx]; 3317 3318 if (hlist_empty(hhd)) { 3319 iter->pidx++; 3320 hnd = NULL; 3321 goto retry; 3322 } 3323 3324 if (!hnd) 3325 hnd = hhd->first; 3326 else { 3327 hnd = hnd->next; 3328 if (!hnd) { 3329 iter->pidx++; 3330 goto retry; 3331 } 3332 } 3333 3334 if (WARN_ON_ONCE(!hnd)) 3335 return NULL; 3336 3337 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3338 3339 return iter; 3340 } 3341 3342 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3343 { 3344 struct ftrace_iterator *iter = m->private; 3345 void *p = NULL; 3346 loff_t l; 3347 3348 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3349 return NULL; 3350 3351 if (iter->mod_pos > *pos) 3352 return NULL; 3353 3354 iter->probe = NULL; 3355 iter->probe_entry = NULL; 3356 iter->pidx = 0; 3357 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3358 p = t_probe_next(m, &l); 3359 if (!p) 3360 break; 3361 } 3362 if (!p) 3363 return NULL; 3364 3365 /* Only set this if we have an item */ 3366 iter->flags |= FTRACE_ITER_PROBE; 3367 3368 return iter; 3369 } 3370 3371 static int 3372 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3373 { 3374 struct ftrace_func_entry *probe_entry; 3375 struct ftrace_probe_ops *probe_ops; 3376 struct ftrace_func_probe *probe; 3377 3378 probe = iter->probe; 3379 probe_entry = iter->probe_entry; 3380 3381 if (WARN_ON_ONCE(!probe || !probe_entry)) 3382 return -EIO; 3383 3384 probe_ops = probe->probe_ops; 3385 3386 if (probe_ops->print) 3387 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3388 3389 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3390 (void *)probe_ops->func); 3391 3392 return 0; 3393 } 3394 3395 static void * 3396 t_mod_next(struct seq_file *m, loff_t *pos) 3397 { 3398 struct ftrace_iterator *iter = m->private; 3399 struct trace_array *tr = iter->tr; 3400 3401 (*pos)++; 3402 iter->pos = *pos; 3403 3404 iter->mod_list = iter->mod_list->next; 3405 3406 if (iter->mod_list == &tr->mod_trace || 3407 iter->mod_list == &tr->mod_notrace) { 3408 iter->flags &= ~FTRACE_ITER_MOD; 3409 return NULL; 3410 } 3411 3412 iter->mod_pos = *pos; 3413 3414 return iter; 3415 } 3416 3417 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3418 { 3419 struct ftrace_iterator *iter = m->private; 3420 void *p = NULL; 3421 loff_t l; 3422 3423 if (iter->func_pos > *pos) 3424 return NULL; 3425 3426 iter->mod_pos = iter->func_pos; 3427 3428 /* probes are only available if tr is set */ 3429 if (!iter->tr) 3430 return NULL; 3431 3432 for (l = 0; l <= (*pos - iter->func_pos); ) { 3433 p = t_mod_next(m, &l); 3434 if (!p) 3435 break; 3436 } 3437 if (!p) { 3438 iter->flags &= ~FTRACE_ITER_MOD; 3439 return t_probe_start(m, pos); 3440 } 3441 3442 /* Only set this if we have an item */ 3443 iter->flags |= FTRACE_ITER_MOD; 3444 3445 return iter; 3446 } 3447 3448 static int 3449 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3450 { 3451 struct ftrace_mod_load *ftrace_mod; 3452 struct trace_array *tr = iter->tr; 3453 3454 if (WARN_ON_ONCE(!iter->mod_list) || 3455 iter->mod_list == &tr->mod_trace || 3456 iter->mod_list == &tr->mod_notrace) 3457 return -EIO; 3458 3459 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3460 3461 if (ftrace_mod->func) 3462 seq_printf(m, "%s", ftrace_mod->func); 3463 else 3464 seq_putc(m, '*'); 3465 3466 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3467 3468 return 0; 3469 } 3470 3471 static void * 3472 t_func_next(struct seq_file *m, loff_t *pos) 3473 { 3474 struct ftrace_iterator *iter = m->private; 3475 struct dyn_ftrace *rec = NULL; 3476 3477 (*pos)++; 3478 3479 retry: 3480 if (iter->idx >= iter->pg->index) { 3481 if (iter->pg->next) { 3482 iter->pg = iter->pg->next; 3483 iter->idx = 0; 3484 goto retry; 3485 } 3486 } else { 3487 rec = &iter->pg->records[iter->idx++]; 3488 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3489 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3490 3491 ((iter->flags & FTRACE_ITER_ENABLED) && 3492 !(rec->flags & FTRACE_FL_ENABLED))) { 3493 3494 rec = NULL; 3495 goto retry; 3496 } 3497 } 3498 3499 if (!rec) 3500 return NULL; 3501 3502 iter->pos = iter->func_pos = *pos; 3503 iter->func = rec; 3504 3505 return iter; 3506 } 3507 3508 static void * 3509 t_next(struct seq_file *m, void *v, loff_t *pos) 3510 { 3511 struct ftrace_iterator *iter = m->private; 3512 loff_t l = *pos; /* t_probe_start() must use original pos */ 3513 void *ret; 3514 3515 if (unlikely(ftrace_disabled)) 3516 return NULL; 3517 3518 if (iter->flags & FTRACE_ITER_PROBE) 3519 return t_probe_next(m, pos); 3520 3521 if (iter->flags & FTRACE_ITER_MOD) 3522 return t_mod_next(m, pos); 3523 3524 if (iter->flags & FTRACE_ITER_PRINTALL) { 3525 /* next must increment pos, and t_probe_start does not */ 3526 (*pos)++; 3527 return t_mod_start(m, &l); 3528 } 3529 3530 ret = t_func_next(m, pos); 3531 3532 if (!ret) 3533 return t_mod_start(m, &l); 3534 3535 return ret; 3536 } 3537 3538 static void reset_iter_read(struct ftrace_iterator *iter) 3539 { 3540 iter->pos = 0; 3541 iter->func_pos = 0; 3542 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3543 } 3544 3545 static void *t_start(struct seq_file *m, loff_t *pos) 3546 { 3547 struct ftrace_iterator *iter = m->private; 3548 void *p = NULL; 3549 loff_t l; 3550 3551 mutex_lock(&ftrace_lock); 3552 3553 if (unlikely(ftrace_disabled)) 3554 return NULL; 3555 3556 /* 3557 * If an lseek was done, then reset and start from beginning. 3558 */ 3559 if (*pos < iter->pos) 3560 reset_iter_read(iter); 3561 3562 /* 3563 * For set_ftrace_filter reading, if we have the filter 3564 * off, we can short cut and just print out that all 3565 * functions are enabled. 3566 */ 3567 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3568 ftrace_hash_empty(iter->hash)) { 3569 iter->func_pos = 1; /* Account for the message */ 3570 if (*pos > 0) 3571 return t_mod_start(m, pos); 3572 iter->flags |= FTRACE_ITER_PRINTALL; 3573 /* reset in case of seek/pread */ 3574 iter->flags &= ~FTRACE_ITER_PROBE; 3575 return iter; 3576 } 3577 3578 if (iter->flags & FTRACE_ITER_MOD) 3579 return t_mod_start(m, pos); 3580 3581 /* 3582 * Unfortunately, we need to restart at ftrace_pages_start 3583 * every time we let go of the ftrace_mutex. This is because 3584 * those pointers can change without the lock. 3585 */ 3586 iter->pg = ftrace_pages_start; 3587 iter->idx = 0; 3588 for (l = 0; l <= *pos; ) { 3589 p = t_func_next(m, &l); 3590 if (!p) 3591 break; 3592 } 3593 3594 if (!p) 3595 return t_mod_start(m, pos); 3596 3597 return iter; 3598 } 3599 3600 static void t_stop(struct seq_file *m, void *p) 3601 { 3602 mutex_unlock(&ftrace_lock); 3603 } 3604 3605 void * __weak 3606 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3607 { 3608 return NULL; 3609 } 3610 3611 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3612 struct dyn_ftrace *rec) 3613 { 3614 void *ptr; 3615 3616 ptr = arch_ftrace_trampoline_func(ops, rec); 3617 if (ptr) 3618 seq_printf(m, " ->%pS", ptr); 3619 } 3620 3621 static int t_show(struct seq_file *m, void *v) 3622 { 3623 struct ftrace_iterator *iter = m->private; 3624 struct dyn_ftrace *rec; 3625 3626 if (iter->flags & FTRACE_ITER_PROBE) 3627 return t_probe_show(m, iter); 3628 3629 if (iter->flags & FTRACE_ITER_MOD) 3630 return t_mod_show(m, iter); 3631 3632 if (iter->flags & FTRACE_ITER_PRINTALL) { 3633 if (iter->flags & FTRACE_ITER_NOTRACE) 3634 seq_puts(m, "#### no functions disabled ####\n"); 3635 else 3636 seq_puts(m, "#### all functions enabled ####\n"); 3637 return 0; 3638 } 3639 3640 rec = iter->func; 3641 3642 if (!rec) 3643 return 0; 3644 3645 seq_printf(m, "%ps", (void *)rec->ip); 3646 if (iter->flags & FTRACE_ITER_ENABLED) { 3647 struct ftrace_ops *ops; 3648 3649 seq_printf(m, " (%ld)%s%s%s", 3650 ftrace_rec_count(rec), 3651 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3652 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3653 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3654 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3655 ops = ftrace_find_tramp_ops_any(rec); 3656 if (ops) { 3657 do { 3658 seq_printf(m, "\ttramp: %pS (%pS)", 3659 (void *)ops->trampoline, 3660 (void *)ops->func); 3661 add_trampoline_func(m, ops, rec); 3662 ops = ftrace_find_tramp_ops_next(rec, ops); 3663 } while (ops); 3664 } else 3665 seq_puts(m, "\ttramp: ERROR!"); 3666 } else { 3667 add_trampoline_func(m, NULL, rec); 3668 } 3669 if (rec->flags & FTRACE_FL_DIRECT) { 3670 unsigned long direct; 3671 3672 direct = ftrace_find_rec_direct(rec->ip); 3673 if (direct) 3674 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3675 } 3676 } 3677 3678 seq_putc(m, '\n'); 3679 3680 return 0; 3681 } 3682 3683 static const struct seq_operations show_ftrace_seq_ops = { 3684 .start = t_start, 3685 .next = t_next, 3686 .stop = t_stop, 3687 .show = t_show, 3688 }; 3689 3690 static int 3691 ftrace_avail_open(struct inode *inode, struct file *file) 3692 { 3693 struct ftrace_iterator *iter; 3694 int ret; 3695 3696 ret = security_locked_down(LOCKDOWN_TRACEFS); 3697 if (ret) 3698 return ret; 3699 3700 if (unlikely(ftrace_disabled)) 3701 return -ENODEV; 3702 3703 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3704 if (!iter) 3705 return -ENOMEM; 3706 3707 iter->pg = ftrace_pages_start; 3708 iter->ops = &global_ops; 3709 3710 return 0; 3711 } 3712 3713 static int 3714 ftrace_enabled_open(struct inode *inode, struct file *file) 3715 { 3716 struct ftrace_iterator *iter; 3717 3718 /* 3719 * This shows us what functions are currently being 3720 * traced and by what. Not sure if we want lockdown 3721 * to hide such critical information for an admin. 3722 * Although, perhaps it can show information we don't 3723 * want people to see, but if something is tracing 3724 * something, we probably want to know about it. 3725 */ 3726 3727 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3728 if (!iter) 3729 return -ENOMEM; 3730 3731 iter->pg = ftrace_pages_start; 3732 iter->flags = FTRACE_ITER_ENABLED; 3733 iter->ops = &global_ops; 3734 3735 return 0; 3736 } 3737 3738 /** 3739 * ftrace_regex_open - initialize function tracer filter files 3740 * @ops: The ftrace_ops that hold the hash filters 3741 * @flag: The type of filter to process 3742 * @inode: The inode, usually passed in to your open routine 3743 * @file: The file, usually passed in to your open routine 3744 * 3745 * ftrace_regex_open() initializes the filter files for the 3746 * @ops. Depending on @flag it may process the filter hash or 3747 * the notrace hash of @ops. With this called from the open 3748 * routine, you can use ftrace_filter_write() for the write 3749 * routine if @flag has FTRACE_ITER_FILTER set, or 3750 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3751 * tracing_lseek() should be used as the lseek routine, and 3752 * release must call ftrace_regex_release(). 3753 */ 3754 int 3755 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3756 struct inode *inode, struct file *file) 3757 { 3758 struct ftrace_iterator *iter; 3759 struct ftrace_hash *hash; 3760 struct list_head *mod_head; 3761 struct trace_array *tr = ops->private; 3762 int ret = -ENOMEM; 3763 3764 ftrace_ops_init(ops); 3765 3766 if (unlikely(ftrace_disabled)) 3767 return -ENODEV; 3768 3769 if (tracing_check_open_get_tr(tr)) 3770 return -ENODEV; 3771 3772 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3773 if (!iter) 3774 goto out; 3775 3776 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3777 goto out; 3778 3779 iter->ops = ops; 3780 iter->flags = flag; 3781 iter->tr = tr; 3782 3783 mutex_lock(&ops->func_hash->regex_lock); 3784 3785 if (flag & FTRACE_ITER_NOTRACE) { 3786 hash = ops->func_hash->notrace_hash; 3787 mod_head = tr ? &tr->mod_notrace : NULL; 3788 } else { 3789 hash = ops->func_hash->filter_hash; 3790 mod_head = tr ? &tr->mod_trace : NULL; 3791 } 3792 3793 iter->mod_list = mod_head; 3794 3795 if (file->f_mode & FMODE_WRITE) { 3796 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3797 3798 if (file->f_flags & O_TRUNC) { 3799 iter->hash = alloc_ftrace_hash(size_bits); 3800 clear_ftrace_mod_list(mod_head); 3801 } else { 3802 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3803 } 3804 3805 if (!iter->hash) { 3806 trace_parser_put(&iter->parser); 3807 goto out_unlock; 3808 } 3809 } else 3810 iter->hash = hash; 3811 3812 ret = 0; 3813 3814 if (file->f_mode & FMODE_READ) { 3815 iter->pg = ftrace_pages_start; 3816 3817 ret = seq_open(file, &show_ftrace_seq_ops); 3818 if (!ret) { 3819 struct seq_file *m = file->private_data; 3820 m->private = iter; 3821 } else { 3822 /* Failed */ 3823 free_ftrace_hash(iter->hash); 3824 trace_parser_put(&iter->parser); 3825 } 3826 } else 3827 file->private_data = iter; 3828 3829 out_unlock: 3830 mutex_unlock(&ops->func_hash->regex_lock); 3831 3832 out: 3833 if (ret) { 3834 kfree(iter); 3835 if (tr) 3836 trace_array_put(tr); 3837 } 3838 3839 return ret; 3840 } 3841 3842 static int 3843 ftrace_filter_open(struct inode *inode, struct file *file) 3844 { 3845 struct ftrace_ops *ops = inode->i_private; 3846 3847 /* Checks for tracefs lockdown */ 3848 return ftrace_regex_open(ops, 3849 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3850 inode, file); 3851 } 3852 3853 static int 3854 ftrace_notrace_open(struct inode *inode, struct file *file) 3855 { 3856 struct ftrace_ops *ops = inode->i_private; 3857 3858 /* Checks for tracefs lockdown */ 3859 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3860 inode, file); 3861 } 3862 3863 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3864 struct ftrace_glob { 3865 char *search; 3866 unsigned len; 3867 int type; 3868 }; 3869 3870 /* 3871 * If symbols in an architecture don't correspond exactly to the user-visible 3872 * name of what they represent, it is possible to define this function to 3873 * perform the necessary adjustments. 3874 */ 3875 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3876 { 3877 return str; 3878 } 3879 3880 static int ftrace_match(char *str, struct ftrace_glob *g) 3881 { 3882 int matched = 0; 3883 int slen; 3884 3885 str = arch_ftrace_match_adjust(str, g->search); 3886 3887 switch (g->type) { 3888 case MATCH_FULL: 3889 if (strcmp(str, g->search) == 0) 3890 matched = 1; 3891 break; 3892 case MATCH_FRONT_ONLY: 3893 if (strncmp(str, g->search, g->len) == 0) 3894 matched = 1; 3895 break; 3896 case MATCH_MIDDLE_ONLY: 3897 if (strstr(str, g->search)) 3898 matched = 1; 3899 break; 3900 case MATCH_END_ONLY: 3901 slen = strlen(str); 3902 if (slen >= g->len && 3903 memcmp(str + slen - g->len, g->search, g->len) == 0) 3904 matched = 1; 3905 break; 3906 case MATCH_GLOB: 3907 if (glob_match(g->search, str)) 3908 matched = 1; 3909 break; 3910 } 3911 3912 return matched; 3913 } 3914 3915 static int 3916 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3917 { 3918 struct ftrace_func_entry *entry; 3919 int ret = 0; 3920 3921 entry = ftrace_lookup_ip(hash, rec->ip); 3922 if (clear_filter) { 3923 /* Do nothing if it doesn't exist */ 3924 if (!entry) 3925 return 0; 3926 3927 free_hash_entry(hash, entry); 3928 } else { 3929 /* Do nothing if it exists */ 3930 if (entry) 3931 return 0; 3932 3933 ret = add_hash_entry(hash, rec->ip); 3934 } 3935 return ret; 3936 } 3937 3938 static int 3939 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3940 int clear_filter) 3941 { 3942 long index = simple_strtoul(func_g->search, NULL, 0); 3943 struct ftrace_page *pg; 3944 struct dyn_ftrace *rec; 3945 3946 /* The index starts at 1 */ 3947 if (--index < 0) 3948 return 0; 3949 3950 do_for_each_ftrace_rec(pg, rec) { 3951 if (pg->index <= index) { 3952 index -= pg->index; 3953 /* this is a double loop, break goes to the next page */ 3954 break; 3955 } 3956 rec = &pg->records[index]; 3957 enter_record(hash, rec, clear_filter); 3958 return 1; 3959 } while_for_each_ftrace_rec(); 3960 return 0; 3961 } 3962 3963 static int 3964 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3965 struct ftrace_glob *mod_g, int exclude_mod) 3966 { 3967 char str[KSYM_SYMBOL_LEN]; 3968 char *modname; 3969 3970 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3971 3972 if (mod_g) { 3973 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3974 3975 /* blank module name to match all modules */ 3976 if (!mod_g->len) { 3977 /* blank module globbing: modname xor exclude_mod */ 3978 if (!exclude_mod != !modname) 3979 goto func_match; 3980 return 0; 3981 } 3982 3983 /* 3984 * exclude_mod is set to trace everything but the given 3985 * module. If it is set and the module matches, then 3986 * return 0. If it is not set, and the module doesn't match 3987 * also return 0. Otherwise, check the function to see if 3988 * that matches. 3989 */ 3990 if (!mod_matches == !exclude_mod) 3991 return 0; 3992 func_match: 3993 /* blank search means to match all funcs in the mod */ 3994 if (!func_g->len) 3995 return 1; 3996 } 3997 3998 return ftrace_match(str, func_g); 3999 } 4000 4001 static int 4002 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4003 { 4004 struct ftrace_page *pg; 4005 struct dyn_ftrace *rec; 4006 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4007 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4008 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4009 int exclude_mod = 0; 4010 int found = 0; 4011 int ret; 4012 int clear_filter = 0; 4013 4014 if (func) { 4015 func_g.type = filter_parse_regex(func, len, &func_g.search, 4016 &clear_filter); 4017 func_g.len = strlen(func_g.search); 4018 } 4019 4020 if (mod) { 4021 mod_g.type = filter_parse_regex(mod, strlen(mod), 4022 &mod_g.search, &exclude_mod); 4023 mod_g.len = strlen(mod_g.search); 4024 } 4025 4026 mutex_lock(&ftrace_lock); 4027 4028 if (unlikely(ftrace_disabled)) 4029 goto out_unlock; 4030 4031 if (func_g.type == MATCH_INDEX) { 4032 found = add_rec_by_index(hash, &func_g, clear_filter); 4033 goto out_unlock; 4034 } 4035 4036 do_for_each_ftrace_rec(pg, rec) { 4037 4038 if (rec->flags & FTRACE_FL_DISABLED) 4039 continue; 4040 4041 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4042 ret = enter_record(hash, rec, clear_filter); 4043 if (ret < 0) { 4044 found = ret; 4045 goto out_unlock; 4046 } 4047 found = 1; 4048 } 4049 } while_for_each_ftrace_rec(); 4050 out_unlock: 4051 mutex_unlock(&ftrace_lock); 4052 4053 return found; 4054 } 4055 4056 static int 4057 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4058 { 4059 return match_records(hash, buff, len, NULL); 4060 } 4061 4062 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4063 struct ftrace_ops_hash *old_hash) 4064 { 4065 struct ftrace_ops *op; 4066 4067 if (!ftrace_enabled) 4068 return; 4069 4070 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4071 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4072 return; 4073 } 4074 4075 /* 4076 * If this is the shared global_ops filter, then we need to 4077 * check if there is another ops that shares it, is enabled. 4078 * If so, we still need to run the modify code. 4079 */ 4080 if (ops->func_hash != &global_ops.local_hash) 4081 return; 4082 4083 do_for_each_ftrace_op(op, ftrace_ops_list) { 4084 if (op->func_hash == &global_ops.local_hash && 4085 op->flags & FTRACE_OPS_FL_ENABLED) { 4086 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4087 /* Only need to do this once */ 4088 return; 4089 } 4090 } while_for_each_ftrace_op(op); 4091 } 4092 4093 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4094 struct ftrace_hash **orig_hash, 4095 struct ftrace_hash *hash, 4096 int enable) 4097 { 4098 struct ftrace_ops_hash old_hash_ops; 4099 struct ftrace_hash *old_hash; 4100 int ret; 4101 4102 old_hash = *orig_hash; 4103 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4104 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4105 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4106 if (!ret) { 4107 ftrace_ops_update_code(ops, &old_hash_ops); 4108 free_ftrace_hash_rcu(old_hash); 4109 } 4110 return ret; 4111 } 4112 4113 static bool module_exists(const char *module) 4114 { 4115 /* All modules have the symbol __this_module */ 4116 static const char this_mod[] = "__this_module"; 4117 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4118 unsigned long val; 4119 int n; 4120 4121 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4122 4123 if (n > sizeof(modname) - 1) 4124 return false; 4125 4126 val = module_kallsyms_lookup_name(modname); 4127 return val != 0; 4128 } 4129 4130 static int cache_mod(struct trace_array *tr, 4131 const char *func, char *module, int enable) 4132 { 4133 struct ftrace_mod_load *ftrace_mod, *n; 4134 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4135 int ret; 4136 4137 mutex_lock(&ftrace_lock); 4138 4139 /* We do not cache inverse filters */ 4140 if (func[0] == '!') { 4141 func++; 4142 ret = -EINVAL; 4143 4144 /* Look to remove this hash */ 4145 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4146 if (strcmp(ftrace_mod->module, module) != 0) 4147 continue; 4148 4149 /* no func matches all */ 4150 if (strcmp(func, "*") == 0 || 4151 (ftrace_mod->func && 4152 strcmp(ftrace_mod->func, func) == 0)) { 4153 ret = 0; 4154 free_ftrace_mod(ftrace_mod); 4155 continue; 4156 } 4157 } 4158 goto out; 4159 } 4160 4161 ret = -EINVAL; 4162 /* We only care about modules that have not been loaded yet */ 4163 if (module_exists(module)) 4164 goto out; 4165 4166 /* Save this string off, and execute it when the module is loaded */ 4167 ret = ftrace_add_mod(tr, func, module, enable); 4168 out: 4169 mutex_unlock(&ftrace_lock); 4170 4171 return ret; 4172 } 4173 4174 static int 4175 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4176 int reset, int enable); 4177 4178 #ifdef CONFIG_MODULES 4179 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4180 char *mod, bool enable) 4181 { 4182 struct ftrace_mod_load *ftrace_mod, *n; 4183 struct ftrace_hash **orig_hash, *new_hash; 4184 LIST_HEAD(process_mods); 4185 char *func; 4186 int ret; 4187 4188 mutex_lock(&ops->func_hash->regex_lock); 4189 4190 if (enable) 4191 orig_hash = &ops->func_hash->filter_hash; 4192 else 4193 orig_hash = &ops->func_hash->notrace_hash; 4194 4195 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4196 *orig_hash); 4197 if (!new_hash) 4198 goto out; /* warn? */ 4199 4200 mutex_lock(&ftrace_lock); 4201 4202 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4203 4204 if (strcmp(ftrace_mod->module, mod) != 0) 4205 continue; 4206 4207 if (ftrace_mod->func) 4208 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4209 else 4210 func = kstrdup("*", GFP_KERNEL); 4211 4212 if (!func) /* warn? */ 4213 continue; 4214 4215 list_del(&ftrace_mod->list); 4216 list_add(&ftrace_mod->list, &process_mods); 4217 4218 /* Use the newly allocated func, as it may be "*" */ 4219 kfree(ftrace_mod->func); 4220 ftrace_mod->func = func; 4221 } 4222 4223 mutex_unlock(&ftrace_lock); 4224 4225 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4226 4227 func = ftrace_mod->func; 4228 4229 /* Grabs ftrace_lock, which is why we have this extra step */ 4230 match_records(new_hash, func, strlen(func), mod); 4231 free_ftrace_mod(ftrace_mod); 4232 } 4233 4234 if (enable && list_empty(head)) 4235 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4236 4237 mutex_lock(&ftrace_lock); 4238 4239 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4240 new_hash, enable); 4241 mutex_unlock(&ftrace_lock); 4242 4243 out: 4244 mutex_unlock(&ops->func_hash->regex_lock); 4245 4246 free_ftrace_hash(new_hash); 4247 } 4248 4249 static void process_cached_mods(const char *mod_name) 4250 { 4251 struct trace_array *tr; 4252 char *mod; 4253 4254 mod = kstrdup(mod_name, GFP_KERNEL); 4255 if (!mod) 4256 return; 4257 4258 mutex_lock(&trace_types_lock); 4259 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4260 if (!list_empty(&tr->mod_trace)) 4261 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4262 if (!list_empty(&tr->mod_notrace)) 4263 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4264 } 4265 mutex_unlock(&trace_types_lock); 4266 4267 kfree(mod); 4268 } 4269 #endif 4270 4271 /* 4272 * We register the module command as a template to show others how 4273 * to register the a command as well. 4274 */ 4275 4276 static int 4277 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4278 char *func_orig, char *cmd, char *module, int enable) 4279 { 4280 char *func; 4281 int ret; 4282 4283 /* match_records() modifies func, and we need the original */ 4284 func = kstrdup(func_orig, GFP_KERNEL); 4285 if (!func) 4286 return -ENOMEM; 4287 4288 /* 4289 * cmd == 'mod' because we only registered this func 4290 * for the 'mod' ftrace_func_command. 4291 * But if you register one func with multiple commands, 4292 * you can tell which command was used by the cmd 4293 * parameter. 4294 */ 4295 ret = match_records(hash, func, strlen(func), module); 4296 kfree(func); 4297 4298 if (!ret) 4299 return cache_mod(tr, func_orig, module, enable); 4300 if (ret < 0) 4301 return ret; 4302 return 0; 4303 } 4304 4305 static struct ftrace_func_command ftrace_mod_cmd = { 4306 .name = "mod", 4307 .func = ftrace_mod_callback, 4308 }; 4309 4310 static int __init ftrace_mod_cmd_init(void) 4311 { 4312 return register_ftrace_command(&ftrace_mod_cmd); 4313 } 4314 core_initcall(ftrace_mod_cmd_init); 4315 4316 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4317 struct ftrace_ops *op, struct pt_regs *pt_regs) 4318 { 4319 struct ftrace_probe_ops *probe_ops; 4320 struct ftrace_func_probe *probe; 4321 4322 probe = container_of(op, struct ftrace_func_probe, ops); 4323 probe_ops = probe->probe_ops; 4324 4325 /* 4326 * Disable preemption for these calls to prevent a RCU grace 4327 * period. This syncs the hash iteration and freeing of items 4328 * on the hash. rcu_read_lock is too dangerous here. 4329 */ 4330 preempt_disable_notrace(); 4331 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4332 preempt_enable_notrace(); 4333 } 4334 4335 struct ftrace_func_map { 4336 struct ftrace_func_entry entry; 4337 void *data; 4338 }; 4339 4340 struct ftrace_func_mapper { 4341 struct ftrace_hash hash; 4342 }; 4343 4344 /** 4345 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4346 * 4347 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4348 */ 4349 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4350 { 4351 struct ftrace_hash *hash; 4352 4353 /* 4354 * The mapper is simply a ftrace_hash, but since the entries 4355 * in the hash are not ftrace_func_entry type, we define it 4356 * as a separate structure. 4357 */ 4358 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4359 return (struct ftrace_func_mapper *)hash; 4360 } 4361 4362 /** 4363 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4364 * @mapper: The mapper that has the ip maps 4365 * @ip: the instruction pointer to find the data for 4366 * 4367 * Returns the data mapped to @ip if found otherwise NULL. The return 4368 * is actually the address of the mapper data pointer. The address is 4369 * returned for use cases where the data is no bigger than a long, and 4370 * the user can use the data pointer as its data instead of having to 4371 * allocate more memory for the reference. 4372 */ 4373 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4374 unsigned long ip) 4375 { 4376 struct ftrace_func_entry *entry; 4377 struct ftrace_func_map *map; 4378 4379 entry = ftrace_lookup_ip(&mapper->hash, ip); 4380 if (!entry) 4381 return NULL; 4382 4383 map = (struct ftrace_func_map *)entry; 4384 return &map->data; 4385 } 4386 4387 /** 4388 * ftrace_func_mapper_add_ip - Map some data to an ip 4389 * @mapper: The mapper that has the ip maps 4390 * @ip: The instruction pointer address to map @data to 4391 * @data: The data to map to @ip 4392 * 4393 * Returns 0 on success otherwise an error. 4394 */ 4395 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4396 unsigned long ip, void *data) 4397 { 4398 struct ftrace_func_entry *entry; 4399 struct ftrace_func_map *map; 4400 4401 entry = ftrace_lookup_ip(&mapper->hash, ip); 4402 if (entry) 4403 return -EBUSY; 4404 4405 map = kmalloc(sizeof(*map), GFP_KERNEL); 4406 if (!map) 4407 return -ENOMEM; 4408 4409 map->entry.ip = ip; 4410 map->data = data; 4411 4412 __add_hash_entry(&mapper->hash, &map->entry); 4413 4414 return 0; 4415 } 4416 4417 /** 4418 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4419 * @mapper: The mapper that has the ip maps 4420 * @ip: The instruction pointer address to remove the data from 4421 * 4422 * Returns the data if it is found, otherwise NULL. 4423 * Note, if the data pointer is used as the data itself, (see 4424 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4425 * if the data pointer was set to zero. 4426 */ 4427 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4428 unsigned long ip) 4429 { 4430 struct ftrace_func_entry *entry; 4431 struct ftrace_func_map *map; 4432 void *data; 4433 4434 entry = ftrace_lookup_ip(&mapper->hash, ip); 4435 if (!entry) 4436 return NULL; 4437 4438 map = (struct ftrace_func_map *)entry; 4439 data = map->data; 4440 4441 remove_hash_entry(&mapper->hash, entry); 4442 kfree(entry); 4443 4444 return data; 4445 } 4446 4447 /** 4448 * free_ftrace_func_mapper - free a mapping of ips and data 4449 * @mapper: The mapper that has the ip maps 4450 * @free_func: A function to be called on each data item. 4451 * 4452 * This is used to free the function mapper. The @free_func is optional 4453 * and can be used if the data needs to be freed as well. 4454 */ 4455 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4456 ftrace_mapper_func free_func) 4457 { 4458 struct ftrace_func_entry *entry; 4459 struct ftrace_func_map *map; 4460 struct hlist_head *hhd; 4461 int size, i; 4462 4463 if (!mapper) 4464 return; 4465 4466 if (free_func && mapper->hash.count) { 4467 size = 1 << mapper->hash.size_bits; 4468 for (i = 0; i < size; i++) { 4469 hhd = &mapper->hash.buckets[i]; 4470 hlist_for_each_entry(entry, hhd, hlist) { 4471 map = (struct ftrace_func_map *)entry; 4472 free_func(map); 4473 } 4474 } 4475 } 4476 free_ftrace_hash(&mapper->hash); 4477 } 4478 4479 static void release_probe(struct ftrace_func_probe *probe) 4480 { 4481 struct ftrace_probe_ops *probe_ops; 4482 4483 mutex_lock(&ftrace_lock); 4484 4485 WARN_ON(probe->ref <= 0); 4486 4487 /* Subtract the ref that was used to protect this instance */ 4488 probe->ref--; 4489 4490 if (!probe->ref) { 4491 probe_ops = probe->probe_ops; 4492 /* 4493 * Sending zero as ip tells probe_ops to free 4494 * the probe->data itself 4495 */ 4496 if (probe_ops->free) 4497 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4498 list_del(&probe->list); 4499 kfree(probe); 4500 } 4501 mutex_unlock(&ftrace_lock); 4502 } 4503 4504 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4505 { 4506 /* 4507 * Add one ref to keep it from being freed when releasing the 4508 * ftrace_lock mutex. 4509 */ 4510 probe->ref++; 4511 } 4512 4513 int 4514 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4515 struct ftrace_probe_ops *probe_ops, 4516 void *data) 4517 { 4518 struct ftrace_func_entry *entry; 4519 struct ftrace_func_probe *probe; 4520 struct ftrace_hash **orig_hash; 4521 struct ftrace_hash *old_hash; 4522 struct ftrace_hash *hash; 4523 int count = 0; 4524 int size; 4525 int ret; 4526 int i; 4527 4528 if (WARN_ON(!tr)) 4529 return -EINVAL; 4530 4531 /* We do not support '!' for function probes */ 4532 if (WARN_ON(glob[0] == '!')) 4533 return -EINVAL; 4534 4535 4536 mutex_lock(&ftrace_lock); 4537 /* Check if the probe_ops is already registered */ 4538 list_for_each_entry(probe, &tr->func_probes, list) { 4539 if (probe->probe_ops == probe_ops) 4540 break; 4541 } 4542 if (&probe->list == &tr->func_probes) { 4543 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4544 if (!probe) { 4545 mutex_unlock(&ftrace_lock); 4546 return -ENOMEM; 4547 } 4548 probe->probe_ops = probe_ops; 4549 probe->ops.func = function_trace_probe_call; 4550 probe->tr = tr; 4551 ftrace_ops_init(&probe->ops); 4552 list_add(&probe->list, &tr->func_probes); 4553 } 4554 4555 acquire_probe_locked(probe); 4556 4557 mutex_unlock(&ftrace_lock); 4558 4559 /* 4560 * Note, there's a small window here that the func_hash->filter_hash 4561 * may be NULL or empty. Need to be careful when reading the loop. 4562 */ 4563 mutex_lock(&probe->ops.func_hash->regex_lock); 4564 4565 orig_hash = &probe->ops.func_hash->filter_hash; 4566 old_hash = *orig_hash; 4567 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4568 4569 if (!hash) { 4570 ret = -ENOMEM; 4571 goto out; 4572 } 4573 4574 ret = ftrace_match_records(hash, glob, strlen(glob)); 4575 4576 /* Nothing found? */ 4577 if (!ret) 4578 ret = -EINVAL; 4579 4580 if (ret < 0) 4581 goto out; 4582 4583 size = 1 << hash->size_bits; 4584 for (i = 0; i < size; i++) { 4585 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4586 if (ftrace_lookup_ip(old_hash, entry->ip)) 4587 continue; 4588 /* 4589 * The caller might want to do something special 4590 * for each function we find. We call the callback 4591 * to give the caller an opportunity to do so. 4592 */ 4593 if (probe_ops->init) { 4594 ret = probe_ops->init(probe_ops, tr, 4595 entry->ip, data, 4596 &probe->data); 4597 if (ret < 0) { 4598 if (probe_ops->free && count) 4599 probe_ops->free(probe_ops, tr, 4600 0, probe->data); 4601 probe->data = NULL; 4602 goto out; 4603 } 4604 } 4605 count++; 4606 } 4607 } 4608 4609 mutex_lock(&ftrace_lock); 4610 4611 if (!count) { 4612 /* Nothing was added? */ 4613 ret = -EINVAL; 4614 goto out_unlock; 4615 } 4616 4617 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4618 hash, 1); 4619 if (ret < 0) 4620 goto err_unlock; 4621 4622 /* One ref for each new function traced */ 4623 probe->ref += count; 4624 4625 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4626 ret = ftrace_startup(&probe->ops, 0); 4627 4628 out_unlock: 4629 mutex_unlock(&ftrace_lock); 4630 4631 if (!ret) 4632 ret = count; 4633 out: 4634 mutex_unlock(&probe->ops.func_hash->regex_lock); 4635 free_ftrace_hash(hash); 4636 4637 release_probe(probe); 4638 4639 return ret; 4640 4641 err_unlock: 4642 if (!probe_ops->free || !count) 4643 goto out_unlock; 4644 4645 /* Failed to do the move, need to call the free functions */ 4646 for (i = 0; i < size; i++) { 4647 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4648 if (ftrace_lookup_ip(old_hash, entry->ip)) 4649 continue; 4650 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4651 } 4652 } 4653 goto out_unlock; 4654 } 4655 4656 int 4657 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4658 struct ftrace_probe_ops *probe_ops) 4659 { 4660 struct ftrace_ops_hash old_hash_ops; 4661 struct ftrace_func_entry *entry; 4662 struct ftrace_func_probe *probe; 4663 struct ftrace_glob func_g; 4664 struct ftrace_hash **orig_hash; 4665 struct ftrace_hash *old_hash; 4666 struct ftrace_hash *hash = NULL; 4667 struct hlist_node *tmp; 4668 struct hlist_head hhd; 4669 char str[KSYM_SYMBOL_LEN]; 4670 int count = 0; 4671 int i, ret = -ENODEV; 4672 int size; 4673 4674 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4675 func_g.search = NULL; 4676 else { 4677 int not; 4678 4679 func_g.type = filter_parse_regex(glob, strlen(glob), 4680 &func_g.search, ¬); 4681 func_g.len = strlen(func_g.search); 4682 4683 /* we do not support '!' for function probes */ 4684 if (WARN_ON(not)) 4685 return -EINVAL; 4686 } 4687 4688 mutex_lock(&ftrace_lock); 4689 /* Check if the probe_ops is already registered */ 4690 list_for_each_entry(probe, &tr->func_probes, list) { 4691 if (probe->probe_ops == probe_ops) 4692 break; 4693 } 4694 if (&probe->list == &tr->func_probes) 4695 goto err_unlock_ftrace; 4696 4697 ret = -EINVAL; 4698 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4699 goto err_unlock_ftrace; 4700 4701 acquire_probe_locked(probe); 4702 4703 mutex_unlock(&ftrace_lock); 4704 4705 mutex_lock(&probe->ops.func_hash->regex_lock); 4706 4707 orig_hash = &probe->ops.func_hash->filter_hash; 4708 old_hash = *orig_hash; 4709 4710 if (ftrace_hash_empty(old_hash)) 4711 goto out_unlock; 4712 4713 old_hash_ops.filter_hash = old_hash; 4714 /* Probes only have filters */ 4715 old_hash_ops.notrace_hash = NULL; 4716 4717 ret = -ENOMEM; 4718 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4719 if (!hash) 4720 goto out_unlock; 4721 4722 INIT_HLIST_HEAD(&hhd); 4723 4724 size = 1 << hash->size_bits; 4725 for (i = 0; i < size; i++) { 4726 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4727 4728 if (func_g.search) { 4729 kallsyms_lookup(entry->ip, NULL, NULL, 4730 NULL, str); 4731 if (!ftrace_match(str, &func_g)) 4732 continue; 4733 } 4734 count++; 4735 remove_hash_entry(hash, entry); 4736 hlist_add_head(&entry->hlist, &hhd); 4737 } 4738 } 4739 4740 /* Nothing found? */ 4741 if (!count) { 4742 ret = -EINVAL; 4743 goto out_unlock; 4744 } 4745 4746 mutex_lock(&ftrace_lock); 4747 4748 WARN_ON(probe->ref < count); 4749 4750 probe->ref -= count; 4751 4752 if (ftrace_hash_empty(hash)) 4753 ftrace_shutdown(&probe->ops, 0); 4754 4755 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4756 hash, 1); 4757 4758 /* still need to update the function call sites */ 4759 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4760 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4761 &old_hash_ops); 4762 synchronize_rcu(); 4763 4764 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4765 hlist_del(&entry->hlist); 4766 if (probe_ops->free) 4767 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4768 kfree(entry); 4769 } 4770 mutex_unlock(&ftrace_lock); 4771 4772 out_unlock: 4773 mutex_unlock(&probe->ops.func_hash->regex_lock); 4774 free_ftrace_hash(hash); 4775 4776 release_probe(probe); 4777 4778 return ret; 4779 4780 err_unlock_ftrace: 4781 mutex_unlock(&ftrace_lock); 4782 return ret; 4783 } 4784 4785 void clear_ftrace_function_probes(struct trace_array *tr) 4786 { 4787 struct ftrace_func_probe *probe, *n; 4788 4789 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4790 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4791 } 4792 4793 static LIST_HEAD(ftrace_commands); 4794 static DEFINE_MUTEX(ftrace_cmd_mutex); 4795 4796 /* 4797 * Currently we only register ftrace commands from __init, so mark this 4798 * __init too. 4799 */ 4800 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4801 { 4802 struct ftrace_func_command *p; 4803 int ret = 0; 4804 4805 mutex_lock(&ftrace_cmd_mutex); 4806 list_for_each_entry(p, &ftrace_commands, list) { 4807 if (strcmp(cmd->name, p->name) == 0) { 4808 ret = -EBUSY; 4809 goto out_unlock; 4810 } 4811 } 4812 list_add(&cmd->list, &ftrace_commands); 4813 out_unlock: 4814 mutex_unlock(&ftrace_cmd_mutex); 4815 4816 return ret; 4817 } 4818 4819 /* 4820 * Currently we only unregister ftrace commands from __init, so mark 4821 * this __init too. 4822 */ 4823 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4824 { 4825 struct ftrace_func_command *p, *n; 4826 int ret = -ENODEV; 4827 4828 mutex_lock(&ftrace_cmd_mutex); 4829 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4830 if (strcmp(cmd->name, p->name) == 0) { 4831 ret = 0; 4832 list_del_init(&p->list); 4833 goto out_unlock; 4834 } 4835 } 4836 out_unlock: 4837 mutex_unlock(&ftrace_cmd_mutex); 4838 4839 return ret; 4840 } 4841 4842 static int ftrace_process_regex(struct ftrace_iterator *iter, 4843 char *buff, int len, int enable) 4844 { 4845 struct ftrace_hash *hash = iter->hash; 4846 struct trace_array *tr = iter->ops->private; 4847 char *func, *command, *next = buff; 4848 struct ftrace_func_command *p; 4849 int ret = -EINVAL; 4850 4851 func = strsep(&next, ":"); 4852 4853 if (!next) { 4854 ret = ftrace_match_records(hash, func, len); 4855 if (!ret) 4856 ret = -EINVAL; 4857 if (ret < 0) 4858 return ret; 4859 return 0; 4860 } 4861 4862 /* command found */ 4863 4864 command = strsep(&next, ":"); 4865 4866 mutex_lock(&ftrace_cmd_mutex); 4867 list_for_each_entry(p, &ftrace_commands, list) { 4868 if (strcmp(p->name, command) == 0) { 4869 ret = p->func(tr, hash, func, command, next, enable); 4870 goto out_unlock; 4871 } 4872 } 4873 out_unlock: 4874 mutex_unlock(&ftrace_cmd_mutex); 4875 4876 return ret; 4877 } 4878 4879 static ssize_t 4880 ftrace_regex_write(struct file *file, const char __user *ubuf, 4881 size_t cnt, loff_t *ppos, int enable) 4882 { 4883 struct ftrace_iterator *iter; 4884 struct trace_parser *parser; 4885 ssize_t ret, read; 4886 4887 if (!cnt) 4888 return 0; 4889 4890 if (file->f_mode & FMODE_READ) { 4891 struct seq_file *m = file->private_data; 4892 iter = m->private; 4893 } else 4894 iter = file->private_data; 4895 4896 if (unlikely(ftrace_disabled)) 4897 return -ENODEV; 4898 4899 /* iter->hash is a local copy, so we don't need regex_lock */ 4900 4901 parser = &iter->parser; 4902 read = trace_get_user(parser, ubuf, cnt, ppos); 4903 4904 if (read >= 0 && trace_parser_loaded(parser) && 4905 !trace_parser_cont(parser)) { 4906 ret = ftrace_process_regex(iter, parser->buffer, 4907 parser->idx, enable); 4908 trace_parser_clear(parser); 4909 if (ret < 0) 4910 goto out; 4911 } 4912 4913 ret = read; 4914 out: 4915 return ret; 4916 } 4917 4918 ssize_t 4919 ftrace_filter_write(struct file *file, const char __user *ubuf, 4920 size_t cnt, loff_t *ppos) 4921 { 4922 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4923 } 4924 4925 ssize_t 4926 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4927 size_t cnt, loff_t *ppos) 4928 { 4929 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4930 } 4931 4932 static int 4933 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4934 { 4935 struct ftrace_func_entry *entry; 4936 4937 if (!ftrace_location(ip)) 4938 return -EINVAL; 4939 4940 if (remove) { 4941 entry = ftrace_lookup_ip(hash, ip); 4942 if (!entry) 4943 return -ENOENT; 4944 free_hash_entry(hash, entry); 4945 return 0; 4946 } 4947 4948 return add_hash_entry(hash, ip); 4949 } 4950 4951 static int 4952 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4953 unsigned long ip, int remove, int reset, int enable) 4954 { 4955 struct ftrace_hash **orig_hash; 4956 struct ftrace_hash *hash; 4957 int ret; 4958 4959 if (unlikely(ftrace_disabled)) 4960 return -ENODEV; 4961 4962 mutex_lock(&ops->func_hash->regex_lock); 4963 4964 if (enable) 4965 orig_hash = &ops->func_hash->filter_hash; 4966 else 4967 orig_hash = &ops->func_hash->notrace_hash; 4968 4969 if (reset) 4970 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4971 else 4972 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4973 4974 if (!hash) { 4975 ret = -ENOMEM; 4976 goto out_regex_unlock; 4977 } 4978 4979 if (buf && !ftrace_match_records(hash, buf, len)) { 4980 ret = -EINVAL; 4981 goto out_regex_unlock; 4982 } 4983 if (ip) { 4984 ret = ftrace_match_addr(hash, ip, remove); 4985 if (ret < 0) 4986 goto out_regex_unlock; 4987 } 4988 4989 mutex_lock(&ftrace_lock); 4990 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4991 mutex_unlock(&ftrace_lock); 4992 4993 out_regex_unlock: 4994 mutex_unlock(&ops->func_hash->regex_lock); 4995 4996 free_ftrace_hash(hash); 4997 return ret; 4998 } 4999 5000 static int 5001 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 5002 int reset, int enable) 5003 { 5004 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 5005 } 5006 5007 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5008 5009 struct ftrace_direct_func { 5010 struct list_head next; 5011 unsigned long addr; 5012 int count; 5013 }; 5014 5015 static LIST_HEAD(ftrace_direct_funcs); 5016 5017 /** 5018 * ftrace_find_direct_func - test an address if it is a registered direct caller 5019 * @addr: The address of a registered direct caller 5020 * 5021 * This searches to see if a ftrace direct caller has been registered 5022 * at a specific address, and if so, it returns a descriptor for it. 5023 * 5024 * This can be used by architecture code to see if an address is 5025 * a direct caller (trampoline) attached to a fentry/mcount location. 5026 * This is useful for the function_graph tracer, as it may need to 5027 * do adjustments if it traced a location that also has a direct 5028 * trampoline attached to it. 5029 */ 5030 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5031 { 5032 struct ftrace_direct_func *entry; 5033 bool found = false; 5034 5035 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5036 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5037 if (entry->addr == addr) { 5038 found = true; 5039 break; 5040 } 5041 } 5042 if (found) 5043 return entry; 5044 5045 return NULL; 5046 } 5047 5048 /** 5049 * register_ftrace_direct - Call a custom trampoline directly 5050 * @ip: The address of the nop at the beginning of a function 5051 * @addr: The address of the trampoline to call at @ip 5052 * 5053 * This is used to connect a direct call from the nop location (@ip) 5054 * at the start of ftrace traced functions. The location that it calls 5055 * (@addr) must be able to handle a direct call, and save the parameters 5056 * of the function being traced, and restore them (or inject new ones 5057 * if needed), before returning. 5058 * 5059 * Returns: 5060 * 0 on success 5061 * -EBUSY - Another direct function is already attached (there can be only one) 5062 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5063 * -ENOMEM - There was an allocation failure. 5064 */ 5065 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5066 { 5067 struct ftrace_direct_func *direct; 5068 struct ftrace_func_entry *entry; 5069 struct ftrace_hash *free_hash = NULL; 5070 struct dyn_ftrace *rec; 5071 int ret = -EBUSY; 5072 5073 mutex_lock(&direct_mutex); 5074 5075 /* See if there's a direct function at @ip already */ 5076 if (ftrace_find_rec_direct(ip)) 5077 goto out_unlock; 5078 5079 ret = -ENODEV; 5080 rec = lookup_rec(ip, ip); 5081 if (!rec) 5082 goto out_unlock; 5083 5084 /* 5085 * Check if the rec says it has a direct call but we didn't 5086 * find one earlier? 5087 */ 5088 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5089 goto out_unlock; 5090 5091 /* Make sure the ip points to the exact record */ 5092 if (ip != rec->ip) { 5093 ip = rec->ip; 5094 /* Need to check this ip for a direct. */ 5095 if (ftrace_find_rec_direct(ip)) 5096 goto out_unlock; 5097 } 5098 5099 ret = -ENOMEM; 5100 if (ftrace_hash_empty(direct_functions) || 5101 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5102 struct ftrace_hash *new_hash; 5103 int size = ftrace_hash_empty(direct_functions) ? 0 : 5104 direct_functions->count + 1; 5105 5106 if (size < 32) 5107 size = 32; 5108 5109 new_hash = dup_hash(direct_functions, size); 5110 if (!new_hash) 5111 goto out_unlock; 5112 5113 free_hash = direct_functions; 5114 direct_functions = new_hash; 5115 } 5116 5117 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5118 if (!entry) 5119 goto out_unlock; 5120 5121 direct = ftrace_find_direct_func(addr); 5122 if (!direct) { 5123 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5124 if (!direct) { 5125 kfree(entry); 5126 goto out_unlock; 5127 } 5128 direct->addr = addr; 5129 direct->count = 0; 5130 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5131 ftrace_direct_func_count++; 5132 } 5133 5134 entry->ip = ip; 5135 entry->direct = addr; 5136 __add_hash_entry(direct_functions, entry); 5137 5138 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5139 if (ret) 5140 remove_hash_entry(direct_functions, entry); 5141 5142 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5143 ret = register_ftrace_function(&direct_ops); 5144 if (ret) 5145 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5146 } 5147 5148 if (ret) { 5149 kfree(entry); 5150 if (!direct->count) { 5151 list_del_rcu(&direct->next); 5152 synchronize_rcu_tasks(); 5153 kfree(direct); 5154 if (free_hash) 5155 free_ftrace_hash(free_hash); 5156 free_hash = NULL; 5157 ftrace_direct_func_count--; 5158 } 5159 } else { 5160 direct->count++; 5161 } 5162 out_unlock: 5163 mutex_unlock(&direct_mutex); 5164 5165 if (free_hash) { 5166 synchronize_rcu_tasks(); 5167 free_ftrace_hash(free_hash); 5168 } 5169 5170 return ret; 5171 } 5172 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5173 5174 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5175 struct dyn_ftrace **recp) 5176 { 5177 struct ftrace_func_entry *entry; 5178 struct dyn_ftrace *rec; 5179 5180 rec = lookup_rec(*ip, *ip); 5181 if (!rec) 5182 return NULL; 5183 5184 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5185 if (!entry) { 5186 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5187 return NULL; 5188 } 5189 5190 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5191 5192 /* Passed in ip just needs to be on the call site */ 5193 *ip = rec->ip; 5194 5195 if (recp) 5196 *recp = rec; 5197 5198 return entry; 5199 } 5200 5201 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5202 { 5203 struct ftrace_direct_func *direct; 5204 struct ftrace_func_entry *entry; 5205 int ret = -ENODEV; 5206 5207 mutex_lock(&direct_mutex); 5208 5209 entry = find_direct_entry(&ip, NULL); 5210 if (!entry) 5211 goto out_unlock; 5212 5213 if (direct_functions->count == 1) 5214 unregister_ftrace_function(&direct_ops); 5215 5216 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5217 5218 WARN_ON(ret); 5219 5220 remove_hash_entry(direct_functions, entry); 5221 5222 direct = ftrace_find_direct_func(addr); 5223 if (!WARN_ON(!direct)) { 5224 /* This is the good path (see the ! before WARN) */ 5225 direct->count--; 5226 WARN_ON(direct->count < 0); 5227 if (!direct->count) { 5228 list_del_rcu(&direct->next); 5229 synchronize_rcu_tasks(); 5230 kfree(direct); 5231 kfree(entry); 5232 ftrace_direct_func_count--; 5233 } 5234 } 5235 out_unlock: 5236 mutex_unlock(&direct_mutex); 5237 5238 return ret; 5239 } 5240 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5241 5242 static struct ftrace_ops stub_ops = { 5243 .func = ftrace_stub, 5244 }; 5245 5246 /** 5247 * ftrace_modify_direct_caller - modify ftrace nop directly 5248 * @entry: The ftrace hash entry of the direct helper for @rec 5249 * @rec: The record representing the function site to patch 5250 * @old_addr: The location that the site at @rec->ip currently calls 5251 * @new_addr: The location that the site at @rec->ip should call 5252 * 5253 * An architecture may overwrite this function to optimize the 5254 * changing of the direct callback on an ftrace nop location. 5255 * This is called with the ftrace_lock mutex held, and no other 5256 * ftrace callbacks are on the associated record (@rec). Thus, 5257 * it is safe to modify the ftrace record, where it should be 5258 * currently calling @old_addr directly, to call @new_addr. 5259 * 5260 * Safety checks should be made to make sure that the code at 5261 * @rec->ip is currently calling @old_addr. And this must 5262 * also update entry->direct to @new_addr. 5263 */ 5264 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5265 struct dyn_ftrace *rec, 5266 unsigned long old_addr, 5267 unsigned long new_addr) 5268 { 5269 unsigned long ip = rec->ip; 5270 int ret; 5271 5272 /* 5273 * The ftrace_lock was used to determine if the record 5274 * had more than one registered user to it. If it did, 5275 * we needed to prevent that from changing to do the quick 5276 * switch. But if it did not (only a direct caller was attached) 5277 * then this function is called. But this function can deal 5278 * with attached callers to the rec that we care about, and 5279 * since this function uses standard ftrace calls that take 5280 * the ftrace_lock mutex, we need to release it. 5281 */ 5282 mutex_unlock(&ftrace_lock); 5283 5284 /* 5285 * By setting a stub function at the same address, we force 5286 * the code to call the iterator and the direct_ops helper. 5287 * This means that @ip does not call the direct call, and 5288 * we can simply modify it. 5289 */ 5290 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5291 if (ret) 5292 goto out_lock; 5293 5294 ret = register_ftrace_function(&stub_ops); 5295 if (ret) { 5296 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5297 goto out_lock; 5298 } 5299 5300 entry->direct = new_addr; 5301 5302 /* 5303 * By removing the stub, we put back the direct call, calling 5304 * the @new_addr. 5305 */ 5306 unregister_ftrace_function(&stub_ops); 5307 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5308 5309 out_lock: 5310 mutex_lock(&ftrace_lock); 5311 5312 return ret; 5313 } 5314 5315 /** 5316 * modify_ftrace_direct - Modify an existing direct call to call something else 5317 * @ip: The instruction pointer to modify 5318 * @old_addr: The address that the current @ip calls directly 5319 * @new_addr: The address that the @ip should call 5320 * 5321 * This modifies a ftrace direct caller at an instruction pointer without 5322 * having to disable it first. The direct call will switch over to the 5323 * @new_addr without missing anything. 5324 * 5325 * Returns: zero on success. Non zero on error, which includes: 5326 * -ENODEV : the @ip given has no direct caller attached 5327 * -EINVAL : the @old_addr does not match the current direct caller 5328 */ 5329 int modify_ftrace_direct(unsigned long ip, 5330 unsigned long old_addr, unsigned long new_addr) 5331 { 5332 struct ftrace_func_entry *entry; 5333 struct dyn_ftrace *rec; 5334 int ret = -ENODEV; 5335 5336 mutex_lock(&direct_mutex); 5337 5338 mutex_lock(&ftrace_lock); 5339 entry = find_direct_entry(&ip, &rec); 5340 if (!entry) 5341 goto out_unlock; 5342 5343 ret = -EINVAL; 5344 if (entry->direct != old_addr) 5345 goto out_unlock; 5346 5347 /* 5348 * If there's no other ftrace callback on the rec->ip location, 5349 * then it can be changed directly by the architecture. 5350 * If there is another caller, then we just need to change the 5351 * direct caller helper to point to @new_addr. 5352 */ 5353 if (ftrace_rec_count(rec) == 1) { 5354 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5355 } else { 5356 entry->direct = new_addr; 5357 ret = 0; 5358 } 5359 5360 out_unlock: 5361 mutex_unlock(&ftrace_lock); 5362 mutex_unlock(&direct_mutex); 5363 return ret; 5364 } 5365 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5366 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5367 5368 /** 5369 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5370 * @ops - the ops to set the filter with 5371 * @ip - the address to add to or remove from the filter. 5372 * @remove - non zero to remove the ip from the filter 5373 * @reset - non zero to reset all filters before applying this filter. 5374 * 5375 * Filters denote which functions should be enabled when tracing is enabled 5376 * If @ip is NULL, it failes to update filter. 5377 */ 5378 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5379 int remove, int reset) 5380 { 5381 ftrace_ops_init(ops); 5382 return ftrace_set_addr(ops, ip, remove, reset, 1); 5383 } 5384 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5385 5386 /** 5387 * ftrace_ops_set_global_filter - setup ops to use global filters 5388 * @ops - the ops which will use the global filters 5389 * 5390 * ftrace users who need global function trace filtering should call this. 5391 * It can set the global filter only if ops were not initialized before. 5392 */ 5393 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5394 { 5395 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5396 return; 5397 5398 ftrace_ops_init(ops); 5399 ops->func_hash = &global_ops.local_hash; 5400 } 5401 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5402 5403 static int 5404 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5405 int reset, int enable) 5406 { 5407 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5408 } 5409 5410 /** 5411 * ftrace_set_filter - set a function to filter on in ftrace 5412 * @ops - the ops to set the filter with 5413 * @buf - the string that holds the function filter text. 5414 * @len - the length of the string. 5415 * @reset - non zero to reset all filters before applying this filter. 5416 * 5417 * Filters denote which functions should be enabled when tracing is enabled. 5418 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5419 */ 5420 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5421 int len, int reset) 5422 { 5423 ftrace_ops_init(ops); 5424 return ftrace_set_regex(ops, buf, len, reset, 1); 5425 } 5426 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5427 5428 /** 5429 * ftrace_set_notrace - set a function to not trace in ftrace 5430 * @ops - the ops to set the notrace filter with 5431 * @buf - the string that holds the function notrace text. 5432 * @len - the length of the string. 5433 * @reset - non zero to reset all filters before applying this filter. 5434 * 5435 * Notrace Filters denote which functions should not be enabled when tracing 5436 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5437 * for tracing. 5438 */ 5439 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5440 int len, int reset) 5441 { 5442 ftrace_ops_init(ops); 5443 return ftrace_set_regex(ops, buf, len, reset, 0); 5444 } 5445 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5446 /** 5447 * ftrace_set_global_filter - set a function to filter on with global tracers 5448 * @buf - the string that holds the function filter text. 5449 * @len - the length of the string. 5450 * @reset - non zero to reset all filters before applying this filter. 5451 * 5452 * Filters denote which functions should be enabled when tracing is enabled. 5453 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5454 */ 5455 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5456 { 5457 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5458 } 5459 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5460 5461 /** 5462 * ftrace_set_global_notrace - set a function to not trace with global tracers 5463 * @buf - the string that holds the function notrace text. 5464 * @len - the length of the string. 5465 * @reset - non zero to reset all filters before applying this filter. 5466 * 5467 * Notrace Filters denote which functions should not be enabled when tracing 5468 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5469 * for tracing. 5470 */ 5471 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5472 { 5473 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5474 } 5475 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5476 5477 /* 5478 * command line interface to allow users to set filters on boot up. 5479 */ 5480 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5481 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5482 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5483 5484 /* Used by function selftest to not test if filter is set */ 5485 bool ftrace_filter_param __initdata; 5486 5487 static int __init set_ftrace_notrace(char *str) 5488 { 5489 ftrace_filter_param = true; 5490 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5491 return 1; 5492 } 5493 __setup("ftrace_notrace=", set_ftrace_notrace); 5494 5495 static int __init set_ftrace_filter(char *str) 5496 { 5497 ftrace_filter_param = true; 5498 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5499 return 1; 5500 } 5501 __setup("ftrace_filter=", set_ftrace_filter); 5502 5503 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5504 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5505 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5506 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5507 5508 static int __init set_graph_function(char *str) 5509 { 5510 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5511 return 1; 5512 } 5513 __setup("ftrace_graph_filter=", set_graph_function); 5514 5515 static int __init set_graph_notrace_function(char *str) 5516 { 5517 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5518 return 1; 5519 } 5520 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5521 5522 static int __init set_graph_max_depth_function(char *str) 5523 { 5524 if (!str) 5525 return 0; 5526 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5527 return 1; 5528 } 5529 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5530 5531 static void __init set_ftrace_early_graph(char *buf, int enable) 5532 { 5533 int ret; 5534 char *func; 5535 struct ftrace_hash *hash; 5536 5537 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5538 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5539 return; 5540 5541 while (buf) { 5542 func = strsep(&buf, ","); 5543 /* we allow only one expression at a time */ 5544 ret = ftrace_graph_set_hash(hash, func); 5545 if (ret) 5546 printk(KERN_DEBUG "ftrace: function %s not " 5547 "traceable\n", func); 5548 } 5549 5550 if (enable) 5551 ftrace_graph_hash = hash; 5552 else 5553 ftrace_graph_notrace_hash = hash; 5554 } 5555 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5556 5557 void __init 5558 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5559 { 5560 char *func; 5561 5562 ftrace_ops_init(ops); 5563 5564 while (buf) { 5565 func = strsep(&buf, ","); 5566 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5567 } 5568 } 5569 5570 static void __init set_ftrace_early_filters(void) 5571 { 5572 if (ftrace_filter_buf[0]) 5573 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5574 if (ftrace_notrace_buf[0]) 5575 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5576 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5577 if (ftrace_graph_buf[0]) 5578 set_ftrace_early_graph(ftrace_graph_buf, 1); 5579 if (ftrace_graph_notrace_buf[0]) 5580 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5581 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5582 } 5583 5584 int ftrace_regex_release(struct inode *inode, struct file *file) 5585 { 5586 struct seq_file *m = (struct seq_file *)file->private_data; 5587 struct ftrace_iterator *iter; 5588 struct ftrace_hash **orig_hash; 5589 struct trace_parser *parser; 5590 int filter_hash; 5591 int ret; 5592 5593 if (file->f_mode & FMODE_READ) { 5594 iter = m->private; 5595 seq_release(inode, file); 5596 } else 5597 iter = file->private_data; 5598 5599 parser = &iter->parser; 5600 if (trace_parser_loaded(parser)) { 5601 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5602 } 5603 5604 trace_parser_put(parser); 5605 5606 mutex_lock(&iter->ops->func_hash->regex_lock); 5607 5608 if (file->f_mode & FMODE_WRITE) { 5609 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5610 5611 if (filter_hash) { 5612 orig_hash = &iter->ops->func_hash->filter_hash; 5613 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5614 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5615 } else 5616 orig_hash = &iter->ops->func_hash->notrace_hash; 5617 5618 mutex_lock(&ftrace_lock); 5619 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5620 iter->hash, filter_hash); 5621 mutex_unlock(&ftrace_lock); 5622 } else { 5623 /* For read only, the hash is the ops hash */ 5624 iter->hash = NULL; 5625 } 5626 5627 mutex_unlock(&iter->ops->func_hash->regex_lock); 5628 free_ftrace_hash(iter->hash); 5629 if (iter->tr) 5630 trace_array_put(iter->tr); 5631 kfree(iter); 5632 5633 return 0; 5634 } 5635 5636 static const struct file_operations ftrace_avail_fops = { 5637 .open = ftrace_avail_open, 5638 .read = seq_read, 5639 .llseek = seq_lseek, 5640 .release = seq_release_private, 5641 }; 5642 5643 static const struct file_operations ftrace_enabled_fops = { 5644 .open = ftrace_enabled_open, 5645 .read = seq_read, 5646 .llseek = seq_lseek, 5647 .release = seq_release_private, 5648 }; 5649 5650 static const struct file_operations ftrace_filter_fops = { 5651 .open = ftrace_filter_open, 5652 .read = seq_read, 5653 .write = ftrace_filter_write, 5654 .llseek = tracing_lseek, 5655 .release = ftrace_regex_release, 5656 }; 5657 5658 static const struct file_operations ftrace_notrace_fops = { 5659 .open = ftrace_notrace_open, 5660 .read = seq_read, 5661 .write = ftrace_notrace_write, 5662 .llseek = tracing_lseek, 5663 .release = ftrace_regex_release, 5664 }; 5665 5666 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5667 5668 static DEFINE_MUTEX(graph_lock); 5669 5670 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5671 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5672 5673 enum graph_filter_type { 5674 GRAPH_FILTER_NOTRACE = 0, 5675 GRAPH_FILTER_FUNCTION, 5676 }; 5677 5678 #define FTRACE_GRAPH_EMPTY ((void *)1) 5679 5680 struct ftrace_graph_data { 5681 struct ftrace_hash *hash; 5682 struct ftrace_func_entry *entry; 5683 int idx; /* for hash table iteration */ 5684 enum graph_filter_type type; 5685 struct ftrace_hash *new_hash; 5686 const struct seq_operations *seq_ops; 5687 struct trace_parser parser; 5688 }; 5689 5690 static void * 5691 __g_next(struct seq_file *m, loff_t *pos) 5692 { 5693 struct ftrace_graph_data *fgd = m->private; 5694 struct ftrace_func_entry *entry = fgd->entry; 5695 struct hlist_head *head; 5696 int i, idx = fgd->idx; 5697 5698 if (*pos >= fgd->hash->count) 5699 return NULL; 5700 5701 if (entry) { 5702 hlist_for_each_entry_continue(entry, hlist) { 5703 fgd->entry = entry; 5704 return entry; 5705 } 5706 5707 idx++; 5708 } 5709 5710 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5711 head = &fgd->hash->buckets[i]; 5712 hlist_for_each_entry(entry, head, hlist) { 5713 fgd->entry = entry; 5714 fgd->idx = i; 5715 return entry; 5716 } 5717 } 5718 return NULL; 5719 } 5720 5721 static void * 5722 g_next(struct seq_file *m, void *v, loff_t *pos) 5723 { 5724 (*pos)++; 5725 return __g_next(m, pos); 5726 } 5727 5728 static void *g_start(struct seq_file *m, loff_t *pos) 5729 { 5730 struct ftrace_graph_data *fgd = m->private; 5731 5732 mutex_lock(&graph_lock); 5733 5734 if (fgd->type == GRAPH_FILTER_FUNCTION) 5735 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5736 lockdep_is_held(&graph_lock)); 5737 else 5738 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5739 lockdep_is_held(&graph_lock)); 5740 5741 /* Nothing, tell g_show to print all functions are enabled */ 5742 if (ftrace_hash_empty(fgd->hash) && !*pos) 5743 return FTRACE_GRAPH_EMPTY; 5744 5745 fgd->idx = 0; 5746 fgd->entry = NULL; 5747 return __g_next(m, pos); 5748 } 5749 5750 static void g_stop(struct seq_file *m, void *p) 5751 { 5752 mutex_unlock(&graph_lock); 5753 } 5754 5755 static int g_show(struct seq_file *m, void *v) 5756 { 5757 struct ftrace_func_entry *entry = v; 5758 5759 if (!entry) 5760 return 0; 5761 5762 if (entry == FTRACE_GRAPH_EMPTY) { 5763 struct ftrace_graph_data *fgd = m->private; 5764 5765 if (fgd->type == GRAPH_FILTER_FUNCTION) 5766 seq_puts(m, "#### all functions enabled ####\n"); 5767 else 5768 seq_puts(m, "#### no functions disabled ####\n"); 5769 return 0; 5770 } 5771 5772 seq_printf(m, "%ps\n", (void *)entry->ip); 5773 5774 return 0; 5775 } 5776 5777 static const struct seq_operations ftrace_graph_seq_ops = { 5778 .start = g_start, 5779 .next = g_next, 5780 .stop = g_stop, 5781 .show = g_show, 5782 }; 5783 5784 static int 5785 __ftrace_graph_open(struct inode *inode, struct file *file, 5786 struct ftrace_graph_data *fgd) 5787 { 5788 int ret; 5789 struct ftrace_hash *new_hash = NULL; 5790 5791 ret = security_locked_down(LOCKDOWN_TRACEFS); 5792 if (ret) 5793 return ret; 5794 5795 if (file->f_mode & FMODE_WRITE) { 5796 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5797 5798 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5799 return -ENOMEM; 5800 5801 if (file->f_flags & O_TRUNC) 5802 new_hash = alloc_ftrace_hash(size_bits); 5803 else 5804 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5805 fgd->hash); 5806 if (!new_hash) { 5807 ret = -ENOMEM; 5808 goto out; 5809 } 5810 } 5811 5812 if (file->f_mode & FMODE_READ) { 5813 ret = seq_open(file, &ftrace_graph_seq_ops); 5814 if (!ret) { 5815 struct seq_file *m = file->private_data; 5816 m->private = fgd; 5817 } else { 5818 /* Failed */ 5819 free_ftrace_hash(new_hash); 5820 new_hash = NULL; 5821 } 5822 } else 5823 file->private_data = fgd; 5824 5825 out: 5826 if (ret < 0 && file->f_mode & FMODE_WRITE) 5827 trace_parser_put(&fgd->parser); 5828 5829 fgd->new_hash = new_hash; 5830 5831 /* 5832 * All uses of fgd->hash must be taken with the graph_lock 5833 * held. The graph_lock is going to be released, so force 5834 * fgd->hash to be reinitialized when it is taken again. 5835 */ 5836 fgd->hash = NULL; 5837 5838 return ret; 5839 } 5840 5841 static int 5842 ftrace_graph_open(struct inode *inode, struct file *file) 5843 { 5844 struct ftrace_graph_data *fgd; 5845 int ret; 5846 5847 if (unlikely(ftrace_disabled)) 5848 return -ENODEV; 5849 5850 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5851 if (fgd == NULL) 5852 return -ENOMEM; 5853 5854 mutex_lock(&graph_lock); 5855 5856 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5857 lockdep_is_held(&graph_lock)); 5858 fgd->type = GRAPH_FILTER_FUNCTION; 5859 fgd->seq_ops = &ftrace_graph_seq_ops; 5860 5861 ret = __ftrace_graph_open(inode, file, fgd); 5862 if (ret < 0) 5863 kfree(fgd); 5864 5865 mutex_unlock(&graph_lock); 5866 return ret; 5867 } 5868 5869 static int 5870 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5871 { 5872 struct ftrace_graph_data *fgd; 5873 int ret; 5874 5875 if (unlikely(ftrace_disabled)) 5876 return -ENODEV; 5877 5878 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5879 if (fgd == NULL) 5880 return -ENOMEM; 5881 5882 mutex_lock(&graph_lock); 5883 5884 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5885 lockdep_is_held(&graph_lock)); 5886 fgd->type = GRAPH_FILTER_NOTRACE; 5887 fgd->seq_ops = &ftrace_graph_seq_ops; 5888 5889 ret = __ftrace_graph_open(inode, file, fgd); 5890 if (ret < 0) 5891 kfree(fgd); 5892 5893 mutex_unlock(&graph_lock); 5894 return ret; 5895 } 5896 5897 static int 5898 ftrace_graph_release(struct inode *inode, struct file *file) 5899 { 5900 struct ftrace_graph_data *fgd; 5901 struct ftrace_hash *old_hash, *new_hash; 5902 struct trace_parser *parser; 5903 int ret = 0; 5904 5905 if (file->f_mode & FMODE_READ) { 5906 struct seq_file *m = file->private_data; 5907 5908 fgd = m->private; 5909 seq_release(inode, file); 5910 } else { 5911 fgd = file->private_data; 5912 } 5913 5914 5915 if (file->f_mode & FMODE_WRITE) { 5916 5917 parser = &fgd->parser; 5918 5919 if (trace_parser_loaded((parser))) { 5920 ret = ftrace_graph_set_hash(fgd->new_hash, 5921 parser->buffer); 5922 } 5923 5924 trace_parser_put(parser); 5925 5926 new_hash = __ftrace_hash_move(fgd->new_hash); 5927 if (!new_hash) { 5928 ret = -ENOMEM; 5929 goto out; 5930 } 5931 5932 mutex_lock(&graph_lock); 5933 5934 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5935 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5936 lockdep_is_held(&graph_lock)); 5937 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5938 } else { 5939 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5940 lockdep_is_held(&graph_lock)); 5941 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5942 } 5943 5944 mutex_unlock(&graph_lock); 5945 5946 /* 5947 * We need to do a hard force of sched synchronization. 5948 * This is because we use preempt_disable() to do RCU, but 5949 * the function tracers can be called where RCU is not watching 5950 * (like before user_exit()). We can not rely on the RCU 5951 * infrastructure to do the synchronization, thus we must do it 5952 * ourselves. 5953 */ 5954 synchronize_rcu_tasks_rude(); 5955 5956 free_ftrace_hash(old_hash); 5957 } 5958 5959 out: 5960 free_ftrace_hash(fgd->new_hash); 5961 kfree(fgd); 5962 5963 return ret; 5964 } 5965 5966 static int 5967 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5968 { 5969 struct ftrace_glob func_g; 5970 struct dyn_ftrace *rec; 5971 struct ftrace_page *pg; 5972 struct ftrace_func_entry *entry; 5973 int fail = 1; 5974 int not; 5975 5976 /* decode regex */ 5977 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5978 &func_g.search, ¬); 5979 5980 func_g.len = strlen(func_g.search); 5981 5982 mutex_lock(&ftrace_lock); 5983 5984 if (unlikely(ftrace_disabled)) { 5985 mutex_unlock(&ftrace_lock); 5986 return -ENODEV; 5987 } 5988 5989 do_for_each_ftrace_rec(pg, rec) { 5990 5991 if (rec->flags & FTRACE_FL_DISABLED) 5992 continue; 5993 5994 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5995 entry = ftrace_lookup_ip(hash, rec->ip); 5996 5997 if (!not) { 5998 fail = 0; 5999 6000 if (entry) 6001 continue; 6002 if (add_hash_entry(hash, rec->ip) < 0) 6003 goto out; 6004 } else { 6005 if (entry) { 6006 free_hash_entry(hash, entry); 6007 fail = 0; 6008 } 6009 } 6010 } 6011 } while_for_each_ftrace_rec(); 6012 out: 6013 mutex_unlock(&ftrace_lock); 6014 6015 if (fail) 6016 return -EINVAL; 6017 6018 return 0; 6019 } 6020 6021 static ssize_t 6022 ftrace_graph_write(struct file *file, const char __user *ubuf, 6023 size_t cnt, loff_t *ppos) 6024 { 6025 ssize_t read, ret = 0; 6026 struct ftrace_graph_data *fgd = file->private_data; 6027 struct trace_parser *parser; 6028 6029 if (!cnt) 6030 return 0; 6031 6032 /* Read mode uses seq functions */ 6033 if (file->f_mode & FMODE_READ) { 6034 struct seq_file *m = file->private_data; 6035 fgd = m->private; 6036 } 6037 6038 parser = &fgd->parser; 6039 6040 read = trace_get_user(parser, ubuf, cnt, ppos); 6041 6042 if (read >= 0 && trace_parser_loaded(parser) && 6043 !trace_parser_cont(parser)) { 6044 6045 ret = ftrace_graph_set_hash(fgd->new_hash, 6046 parser->buffer); 6047 trace_parser_clear(parser); 6048 } 6049 6050 if (!ret) 6051 ret = read; 6052 6053 return ret; 6054 } 6055 6056 static const struct file_operations ftrace_graph_fops = { 6057 .open = ftrace_graph_open, 6058 .read = seq_read, 6059 .write = ftrace_graph_write, 6060 .llseek = tracing_lseek, 6061 .release = ftrace_graph_release, 6062 }; 6063 6064 static const struct file_operations ftrace_graph_notrace_fops = { 6065 .open = ftrace_graph_notrace_open, 6066 .read = seq_read, 6067 .write = ftrace_graph_write, 6068 .llseek = tracing_lseek, 6069 .release = ftrace_graph_release, 6070 }; 6071 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6072 6073 void ftrace_create_filter_files(struct ftrace_ops *ops, 6074 struct dentry *parent) 6075 { 6076 6077 trace_create_file("set_ftrace_filter", 0644, parent, 6078 ops, &ftrace_filter_fops); 6079 6080 trace_create_file("set_ftrace_notrace", 0644, parent, 6081 ops, &ftrace_notrace_fops); 6082 } 6083 6084 /* 6085 * The name "destroy_filter_files" is really a misnomer. Although 6086 * in the future, it may actually delete the files, but this is 6087 * really intended to make sure the ops passed in are disabled 6088 * and that when this function returns, the caller is free to 6089 * free the ops. 6090 * 6091 * The "destroy" name is only to match the "create" name that this 6092 * should be paired with. 6093 */ 6094 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6095 { 6096 mutex_lock(&ftrace_lock); 6097 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6098 ftrace_shutdown(ops, 0); 6099 ops->flags |= FTRACE_OPS_FL_DELETED; 6100 ftrace_free_filter(ops); 6101 mutex_unlock(&ftrace_lock); 6102 } 6103 6104 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6105 { 6106 6107 trace_create_file("available_filter_functions", 0444, 6108 d_tracer, NULL, &ftrace_avail_fops); 6109 6110 trace_create_file("enabled_functions", 0444, 6111 d_tracer, NULL, &ftrace_enabled_fops); 6112 6113 ftrace_create_filter_files(&global_ops, d_tracer); 6114 6115 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6116 trace_create_file("set_graph_function", 0644, d_tracer, 6117 NULL, 6118 &ftrace_graph_fops); 6119 trace_create_file("set_graph_notrace", 0644, d_tracer, 6120 NULL, 6121 &ftrace_graph_notrace_fops); 6122 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6123 6124 return 0; 6125 } 6126 6127 static int ftrace_cmp_ips(const void *a, const void *b) 6128 { 6129 const unsigned long *ipa = a; 6130 const unsigned long *ipb = b; 6131 6132 if (*ipa > *ipb) 6133 return 1; 6134 if (*ipa < *ipb) 6135 return -1; 6136 return 0; 6137 } 6138 6139 static int ftrace_process_locs(struct module *mod, 6140 unsigned long *start, 6141 unsigned long *end) 6142 { 6143 struct ftrace_page *start_pg; 6144 struct ftrace_page *pg; 6145 struct dyn_ftrace *rec; 6146 unsigned long count; 6147 unsigned long *p; 6148 unsigned long addr; 6149 unsigned long flags = 0; /* Shut up gcc */ 6150 int ret = -ENOMEM; 6151 6152 count = end - start; 6153 6154 if (!count) 6155 return 0; 6156 6157 sort(start, count, sizeof(*start), 6158 ftrace_cmp_ips, NULL); 6159 6160 start_pg = ftrace_allocate_pages(count); 6161 if (!start_pg) 6162 return -ENOMEM; 6163 6164 mutex_lock(&ftrace_lock); 6165 6166 /* 6167 * Core and each module needs their own pages, as 6168 * modules will free them when they are removed. 6169 * Force a new page to be allocated for modules. 6170 */ 6171 if (!mod) { 6172 WARN_ON(ftrace_pages || ftrace_pages_start); 6173 /* First initialization */ 6174 ftrace_pages = ftrace_pages_start = start_pg; 6175 } else { 6176 if (!ftrace_pages) 6177 goto out; 6178 6179 if (WARN_ON(ftrace_pages->next)) { 6180 /* Hmm, we have free pages? */ 6181 while (ftrace_pages->next) 6182 ftrace_pages = ftrace_pages->next; 6183 } 6184 6185 ftrace_pages->next = start_pg; 6186 } 6187 6188 p = start; 6189 pg = start_pg; 6190 while (p < end) { 6191 addr = ftrace_call_adjust(*p++); 6192 /* 6193 * Some architecture linkers will pad between 6194 * the different mcount_loc sections of different 6195 * object files to satisfy alignments. 6196 * Skip any NULL pointers. 6197 */ 6198 if (!addr) 6199 continue; 6200 6201 if (pg->index == pg->size) { 6202 /* We should have allocated enough */ 6203 if (WARN_ON(!pg->next)) 6204 break; 6205 pg = pg->next; 6206 } 6207 6208 rec = &pg->records[pg->index++]; 6209 rec->ip = addr; 6210 } 6211 6212 /* We should have used all pages */ 6213 WARN_ON(pg->next); 6214 6215 /* Assign the last page to ftrace_pages */ 6216 ftrace_pages = pg; 6217 6218 /* 6219 * We only need to disable interrupts on start up 6220 * because we are modifying code that an interrupt 6221 * may execute, and the modification is not atomic. 6222 * But for modules, nothing runs the code we modify 6223 * until we are finished with it, and there's no 6224 * reason to cause large interrupt latencies while we do it. 6225 */ 6226 if (!mod) 6227 local_irq_save(flags); 6228 ftrace_update_code(mod, start_pg); 6229 if (!mod) 6230 local_irq_restore(flags); 6231 ret = 0; 6232 out: 6233 mutex_unlock(&ftrace_lock); 6234 6235 return ret; 6236 } 6237 6238 struct ftrace_mod_func { 6239 struct list_head list; 6240 char *name; 6241 unsigned long ip; 6242 unsigned int size; 6243 }; 6244 6245 struct ftrace_mod_map { 6246 struct rcu_head rcu; 6247 struct list_head list; 6248 struct module *mod; 6249 unsigned long start_addr; 6250 unsigned long end_addr; 6251 struct list_head funcs; 6252 unsigned int num_funcs; 6253 }; 6254 6255 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6256 unsigned long *value, char *type, 6257 char *name, char *module_name, 6258 int *exported) 6259 { 6260 struct ftrace_ops *op; 6261 6262 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6263 if (!op->trampoline || symnum--) 6264 continue; 6265 *value = op->trampoline; 6266 *type = 't'; 6267 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6268 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6269 *exported = 0; 6270 return 0; 6271 } 6272 6273 return -ERANGE; 6274 } 6275 6276 #ifdef CONFIG_MODULES 6277 6278 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6279 6280 static LIST_HEAD(ftrace_mod_maps); 6281 6282 static int referenced_filters(struct dyn_ftrace *rec) 6283 { 6284 struct ftrace_ops *ops; 6285 int cnt = 0; 6286 6287 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6288 if (ops_references_rec(ops, rec)) { 6289 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6290 continue; 6291 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6292 continue; 6293 cnt++; 6294 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6295 rec->flags |= FTRACE_FL_REGS; 6296 if (cnt == 1 && ops->trampoline) 6297 rec->flags |= FTRACE_FL_TRAMP; 6298 else 6299 rec->flags &= ~FTRACE_FL_TRAMP; 6300 } 6301 } 6302 6303 return cnt; 6304 } 6305 6306 static void 6307 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6308 { 6309 struct ftrace_func_entry *entry; 6310 struct dyn_ftrace *rec; 6311 int i; 6312 6313 if (ftrace_hash_empty(hash)) 6314 return; 6315 6316 for (i = 0; i < pg->index; i++) { 6317 rec = &pg->records[i]; 6318 entry = __ftrace_lookup_ip(hash, rec->ip); 6319 /* 6320 * Do not allow this rec to match again. 6321 * Yeah, it may waste some memory, but will be removed 6322 * if/when the hash is modified again. 6323 */ 6324 if (entry) 6325 entry->ip = 0; 6326 } 6327 } 6328 6329 /* Clear any records from hashs */ 6330 static void clear_mod_from_hashes(struct ftrace_page *pg) 6331 { 6332 struct trace_array *tr; 6333 6334 mutex_lock(&trace_types_lock); 6335 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6336 if (!tr->ops || !tr->ops->func_hash) 6337 continue; 6338 mutex_lock(&tr->ops->func_hash->regex_lock); 6339 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6340 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6341 mutex_unlock(&tr->ops->func_hash->regex_lock); 6342 } 6343 mutex_unlock(&trace_types_lock); 6344 } 6345 6346 static void ftrace_free_mod_map(struct rcu_head *rcu) 6347 { 6348 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6349 struct ftrace_mod_func *mod_func; 6350 struct ftrace_mod_func *n; 6351 6352 /* All the contents of mod_map are now not visible to readers */ 6353 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6354 kfree(mod_func->name); 6355 list_del(&mod_func->list); 6356 kfree(mod_func); 6357 } 6358 6359 kfree(mod_map); 6360 } 6361 6362 void ftrace_release_mod(struct module *mod) 6363 { 6364 struct ftrace_mod_map *mod_map; 6365 struct ftrace_mod_map *n; 6366 struct dyn_ftrace *rec; 6367 struct ftrace_page **last_pg; 6368 struct ftrace_page *tmp_page = NULL; 6369 struct ftrace_page *pg; 6370 int order; 6371 6372 mutex_lock(&ftrace_lock); 6373 6374 if (ftrace_disabled) 6375 goto out_unlock; 6376 6377 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6378 if (mod_map->mod == mod) { 6379 list_del_rcu(&mod_map->list); 6380 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6381 break; 6382 } 6383 } 6384 6385 /* 6386 * Each module has its own ftrace_pages, remove 6387 * them from the list. 6388 */ 6389 last_pg = &ftrace_pages_start; 6390 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6391 rec = &pg->records[0]; 6392 if (within_module_core(rec->ip, mod) || 6393 within_module_init(rec->ip, mod)) { 6394 /* 6395 * As core pages are first, the first 6396 * page should never be a module page. 6397 */ 6398 if (WARN_ON(pg == ftrace_pages_start)) 6399 goto out_unlock; 6400 6401 /* Check if we are deleting the last page */ 6402 if (pg == ftrace_pages) 6403 ftrace_pages = next_to_ftrace_page(last_pg); 6404 6405 ftrace_update_tot_cnt -= pg->index; 6406 *last_pg = pg->next; 6407 6408 pg->next = tmp_page; 6409 tmp_page = pg; 6410 } else 6411 last_pg = &pg->next; 6412 } 6413 out_unlock: 6414 mutex_unlock(&ftrace_lock); 6415 6416 for (pg = tmp_page; pg; pg = tmp_page) { 6417 6418 /* Needs to be called outside of ftrace_lock */ 6419 clear_mod_from_hashes(pg); 6420 6421 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6422 free_pages((unsigned long)pg->records, order); 6423 tmp_page = pg->next; 6424 kfree(pg); 6425 ftrace_number_of_pages -= 1 << order; 6426 ftrace_number_of_groups--; 6427 } 6428 } 6429 6430 void ftrace_module_enable(struct module *mod) 6431 { 6432 struct dyn_ftrace *rec; 6433 struct ftrace_page *pg; 6434 6435 mutex_lock(&ftrace_lock); 6436 6437 if (ftrace_disabled) 6438 goto out_unlock; 6439 6440 /* 6441 * If the tracing is enabled, go ahead and enable the record. 6442 * 6443 * The reason not to enable the record immediately is the 6444 * inherent check of ftrace_make_nop/ftrace_make_call for 6445 * correct previous instructions. Making first the NOP 6446 * conversion puts the module to the correct state, thus 6447 * passing the ftrace_make_call check. 6448 * 6449 * We also delay this to after the module code already set the 6450 * text to read-only, as we now need to set it back to read-write 6451 * so that we can modify the text. 6452 */ 6453 if (ftrace_start_up) 6454 ftrace_arch_code_modify_prepare(); 6455 6456 do_for_each_ftrace_rec(pg, rec) { 6457 int cnt; 6458 /* 6459 * do_for_each_ftrace_rec() is a double loop. 6460 * module text shares the pg. If a record is 6461 * not part of this module, then skip this pg, 6462 * which the "break" will do. 6463 */ 6464 if (!within_module_core(rec->ip, mod) && 6465 !within_module_init(rec->ip, mod)) 6466 break; 6467 6468 cnt = 0; 6469 6470 /* 6471 * When adding a module, we need to check if tracers are 6472 * currently enabled and if they are, and can trace this record, 6473 * we need to enable the module functions as well as update the 6474 * reference counts for those function records. 6475 */ 6476 if (ftrace_start_up) 6477 cnt += referenced_filters(rec); 6478 6479 rec->flags &= ~FTRACE_FL_DISABLED; 6480 rec->flags += cnt; 6481 6482 if (ftrace_start_up && cnt) { 6483 int failed = __ftrace_replace_code(rec, 1); 6484 if (failed) { 6485 ftrace_bug(failed, rec); 6486 goto out_loop; 6487 } 6488 } 6489 6490 } while_for_each_ftrace_rec(); 6491 6492 out_loop: 6493 if (ftrace_start_up) 6494 ftrace_arch_code_modify_post_process(); 6495 6496 out_unlock: 6497 mutex_unlock(&ftrace_lock); 6498 6499 process_cached_mods(mod->name); 6500 } 6501 6502 void ftrace_module_init(struct module *mod) 6503 { 6504 if (ftrace_disabled || !mod->num_ftrace_callsites) 6505 return; 6506 6507 ftrace_process_locs(mod, mod->ftrace_callsites, 6508 mod->ftrace_callsites + mod->num_ftrace_callsites); 6509 } 6510 6511 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6512 struct dyn_ftrace *rec) 6513 { 6514 struct ftrace_mod_func *mod_func; 6515 unsigned long symsize; 6516 unsigned long offset; 6517 char str[KSYM_SYMBOL_LEN]; 6518 char *modname; 6519 const char *ret; 6520 6521 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6522 if (!ret) 6523 return; 6524 6525 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6526 if (!mod_func) 6527 return; 6528 6529 mod_func->name = kstrdup(str, GFP_KERNEL); 6530 if (!mod_func->name) { 6531 kfree(mod_func); 6532 return; 6533 } 6534 6535 mod_func->ip = rec->ip - offset; 6536 mod_func->size = symsize; 6537 6538 mod_map->num_funcs++; 6539 6540 list_add_rcu(&mod_func->list, &mod_map->funcs); 6541 } 6542 6543 static struct ftrace_mod_map * 6544 allocate_ftrace_mod_map(struct module *mod, 6545 unsigned long start, unsigned long end) 6546 { 6547 struct ftrace_mod_map *mod_map; 6548 6549 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6550 if (!mod_map) 6551 return NULL; 6552 6553 mod_map->mod = mod; 6554 mod_map->start_addr = start; 6555 mod_map->end_addr = end; 6556 mod_map->num_funcs = 0; 6557 6558 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6559 6560 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6561 6562 return mod_map; 6563 } 6564 6565 static const char * 6566 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6567 unsigned long addr, unsigned long *size, 6568 unsigned long *off, char *sym) 6569 { 6570 struct ftrace_mod_func *found_func = NULL; 6571 struct ftrace_mod_func *mod_func; 6572 6573 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6574 if (addr >= mod_func->ip && 6575 addr < mod_func->ip + mod_func->size) { 6576 found_func = mod_func; 6577 break; 6578 } 6579 } 6580 6581 if (found_func) { 6582 if (size) 6583 *size = found_func->size; 6584 if (off) 6585 *off = addr - found_func->ip; 6586 if (sym) 6587 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6588 6589 return found_func->name; 6590 } 6591 6592 return NULL; 6593 } 6594 6595 const char * 6596 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6597 unsigned long *off, char **modname, char *sym) 6598 { 6599 struct ftrace_mod_map *mod_map; 6600 const char *ret = NULL; 6601 6602 /* mod_map is freed via call_rcu() */ 6603 preempt_disable(); 6604 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6605 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6606 if (ret) { 6607 if (modname) 6608 *modname = mod_map->mod->name; 6609 break; 6610 } 6611 } 6612 preempt_enable(); 6613 6614 return ret; 6615 } 6616 6617 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6618 char *type, char *name, 6619 char *module_name, int *exported) 6620 { 6621 struct ftrace_mod_map *mod_map; 6622 struct ftrace_mod_func *mod_func; 6623 int ret; 6624 6625 preempt_disable(); 6626 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6627 6628 if (symnum >= mod_map->num_funcs) { 6629 symnum -= mod_map->num_funcs; 6630 continue; 6631 } 6632 6633 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6634 if (symnum > 1) { 6635 symnum--; 6636 continue; 6637 } 6638 6639 *value = mod_func->ip; 6640 *type = 'T'; 6641 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6642 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6643 *exported = 1; 6644 preempt_enable(); 6645 return 0; 6646 } 6647 WARN_ON(1); 6648 break; 6649 } 6650 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6651 module_name, exported); 6652 preempt_enable(); 6653 return ret; 6654 } 6655 6656 #else 6657 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6658 struct dyn_ftrace *rec) { } 6659 static inline struct ftrace_mod_map * 6660 allocate_ftrace_mod_map(struct module *mod, 6661 unsigned long start, unsigned long end) 6662 { 6663 return NULL; 6664 } 6665 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6666 char *type, char *name, char *module_name, 6667 int *exported) 6668 { 6669 int ret; 6670 6671 preempt_disable(); 6672 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6673 module_name, exported); 6674 preempt_enable(); 6675 return ret; 6676 } 6677 #endif /* CONFIG_MODULES */ 6678 6679 struct ftrace_init_func { 6680 struct list_head list; 6681 unsigned long ip; 6682 }; 6683 6684 /* Clear any init ips from hashes */ 6685 static void 6686 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6687 { 6688 struct ftrace_func_entry *entry; 6689 6690 entry = ftrace_lookup_ip(hash, func->ip); 6691 /* 6692 * Do not allow this rec to match again. 6693 * Yeah, it may waste some memory, but will be removed 6694 * if/when the hash is modified again. 6695 */ 6696 if (entry) 6697 entry->ip = 0; 6698 } 6699 6700 static void 6701 clear_func_from_hashes(struct ftrace_init_func *func) 6702 { 6703 struct trace_array *tr; 6704 6705 mutex_lock(&trace_types_lock); 6706 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6707 if (!tr->ops || !tr->ops->func_hash) 6708 continue; 6709 mutex_lock(&tr->ops->func_hash->regex_lock); 6710 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6711 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6712 mutex_unlock(&tr->ops->func_hash->regex_lock); 6713 } 6714 mutex_unlock(&trace_types_lock); 6715 } 6716 6717 static void add_to_clear_hash_list(struct list_head *clear_list, 6718 struct dyn_ftrace *rec) 6719 { 6720 struct ftrace_init_func *func; 6721 6722 func = kmalloc(sizeof(*func), GFP_KERNEL); 6723 if (!func) { 6724 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6725 return; 6726 } 6727 6728 func->ip = rec->ip; 6729 list_add(&func->list, clear_list); 6730 } 6731 6732 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6733 { 6734 unsigned long start = (unsigned long)(start_ptr); 6735 unsigned long end = (unsigned long)(end_ptr); 6736 struct ftrace_page **last_pg = &ftrace_pages_start; 6737 struct ftrace_page *pg; 6738 struct dyn_ftrace *rec; 6739 struct dyn_ftrace key; 6740 struct ftrace_mod_map *mod_map = NULL; 6741 struct ftrace_init_func *func, *func_next; 6742 struct list_head clear_hash; 6743 int order; 6744 6745 INIT_LIST_HEAD(&clear_hash); 6746 6747 key.ip = start; 6748 key.flags = end; /* overload flags, as it is unsigned long */ 6749 6750 mutex_lock(&ftrace_lock); 6751 6752 /* 6753 * If we are freeing module init memory, then check if 6754 * any tracer is active. If so, we need to save a mapping of 6755 * the module functions being freed with the address. 6756 */ 6757 if (mod && ftrace_ops_list != &ftrace_list_end) 6758 mod_map = allocate_ftrace_mod_map(mod, start, end); 6759 6760 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6761 if (end < pg->records[0].ip || 6762 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6763 continue; 6764 again: 6765 rec = bsearch(&key, pg->records, pg->index, 6766 sizeof(struct dyn_ftrace), 6767 ftrace_cmp_recs); 6768 if (!rec) 6769 continue; 6770 6771 /* rec will be cleared from hashes after ftrace_lock unlock */ 6772 add_to_clear_hash_list(&clear_hash, rec); 6773 6774 if (mod_map) 6775 save_ftrace_mod_rec(mod_map, rec); 6776 6777 pg->index--; 6778 ftrace_update_tot_cnt--; 6779 if (!pg->index) { 6780 *last_pg = pg->next; 6781 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6782 free_pages((unsigned long)pg->records, order); 6783 ftrace_number_of_pages -= 1 << order; 6784 ftrace_number_of_groups--; 6785 kfree(pg); 6786 pg = container_of(last_pg, struct ftrace_page, next); 6787 if (!(*last_pg)) 6788 ftrace_pages = pg; 6789 continue; 6790 } 6791 memmove(rec, rec + 1, 6792 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6793 /* More than one function may be in this block */ 6794 goto again; 6795 } 6796 mutex_unlock(&ftrace_lock); 6797 6798 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6799 clear_func_from_hashes(func); 6800 kfree(func); 6801 } 6802 } 6803 6804 void __init ftrace_free_init_mem(void) 6805 { 6806 void *start = (void *)(&__init_begin); 6807 void *end = (void *)(&__init_end); 6808 6809 ftrace_free_mem(NULL, start, end); 6810 } 6811 6812 void __init ftrace_init(void) 6813 { 6814 extern unsigned long __start_mcount_loc[]; 6815 extern unsigned long __stop_mcount_loc[]; 6816 unsigned long count, flags; 6817 int ret; 6818 6819 local_irq_save(flags); 6820 ret = ftrace_dyn_arch_init(); 6821 local_irq_restore(flags); 6822 if (ret) 6823 goto failed; 6824 6825 count = __stop_mcount_loc - __start_mcount_loc; 6826 if (!count) { 6827 pr_info("ftrace: No functions to be traced?\n"); 6828 goto failed; 6829 } 6830 6831 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6832 count, count / ENTRIES_PER_PAGE + 1); 6833 6834 last_ftrace_enabled = ftrace_enabled = 1; 6835 6836 ret = ftrace_process_locs(NULL, 6837 __start_mcount_loc, 6838 __stop_mcount_loc); 6839 6840 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6841 ftrace_number_of_pages, ftrace_number_of_groups); 6842 6843 set_ftrace_early_filters(); 6844 6845 return; 6846 failed: 6847 ftrace_disabled = 1; 6848 } 6849 6850 /* Do nothing if arch does not support this */ 6851 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6852 { 6853 } 6854 6855 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6856 { 6857 unsigned long trampoline = ops->trampoline; 6858 6859 arch_ftrace_update_trampoline(ops); 6860 if (ops->trampoline && ops->trampoline != trampoline && 6861 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 6862 /* Add to kallsyms before the perf events */ 6863 ftrace_add_trampoline_to_kallsyms(ops); 6864 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 6865 ops->trampoline, ops->trampoline_size, false, 6866 FTRACE_TRAMPOLINE_SYM); 6867 /* 6868 * Record the perf text poke event after the ksymbol register 6869 * event. 6870 */ 6871 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 6872 (void *)ops->trampoline, 6873 ops->trampoline_size); 6874 } 6875 } 6876 6877 void ftrace_init_trace_array(struct trace_array *tr) 6878 { 6879 INIT_LIST_HEAD(&tr->func_probes); 6880 INIT_LIST_HEAD(&tr->mod_trace); 6881 INIT_LIST_HEAD(&tr->mod_notrace); 6882 } 6883 #else 6884 6885 struct ftrace_ops global_ops = { 6886 .func = ftrace_stub, 6887 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6888 FTRACE_OPS_FL_INITIALIZED | 6889 FTRACE_OPS_FL_PID, 6890 }; 6891 6892 static int __init ftrace_nodyn_init(void) 6893 { 6894 ftrace_enabled = 1; 6895 return 0; 6896 } 6897 core_initcall(ftrace_nodyn_init); 6898 6899 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6900 static inline void ftrace_startup_enable(int command) { } 6901 static inline void ftrace_startup_all(int command) { } 6902 6903 # define ftrace_startup_sysctl() do { } while (0) 6904 # define ftrace_shutdown_sysctl() do { } while (0) 6905 6906 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6907 { 6908 } 6909 6910 #endif /* CONFIG_DYNAMIC_FTRACE */ 6911 6912 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6913 { 6914 tr->ops = &global_ops; 6915 tr->ops->private = tr; 6916 ftrace_init_trace_array(tr); 6917 } 6918 6919 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6920 { 6921 /* If we filter on pids, update to use the pid function */ 6922 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6923 if (WARN_ON(tr->ops->func != ftrace_stub)) 6924 printk("ftrace ops had %pS for function\n", 6925 tr->ops->func); 6926 } 6927 tr->ops->func = func; 6928 tr->ops->private = tr; 6929 } 6930 6931 void ftrace_reset_array_ops(struct trace_array *tr) 6932 { 6933 tr->ops->func = ftrace_stub; 6934 } 6935 6936 static nokprobe_inline void 6937 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6938 struct ftrace_ops *ignored, struct pt_regs *regs) 6939 { 6940 struct ftrace_ops *op; 6941 int bit; 6942 6943 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6944 if (bit < 0) 6945 return; 6946 6947 /* 6948 * Some of the ops may be dynamically allocated, 6949 * they must be freed after a synchronize_rcu(). 6950 */ 6951 preempt_disable_notrace(); 6952 6953 do_for_each_ftrace_op(op, ftrace_ops_list) { 6954 /* Stub functions don't need to be called nor tested */ 6955 if (op->flags & FTRACE_OPS_FL_STUB) 6956 continue; 6957 /* 6958 * Check the following for each ops before calling their func: 6959 * if RCU flag is set, then rcu_is_watching() must be true 6960 * if PER_CPU is set, then ftrace_function_local_disable() 6961 * must be false 6962 * Otherwise test if the ip matches the ops filter 6963 * 6964 * If any of the above fails then the op->func() is not executed. 6965 */ 6966 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6967 ftrace_ops_test(op, ip, regs)) { 6968 if (FTRACE_WARN_ON(!op->func)) { 6969 pr_warn("op=%p %pS\n", op, op); 6970 goto out; 6971 } 6972 op->func(ip, parent_ip, op, regs); 6973 } 6974 } while_for_each_ftrace_op(op); 6975 out: 6976 preempt_enable_notrace(); 6977 trace_clear_recursion(bit); 6978 } 6979 6980 /* 6981 * Some archs only support passing ip and parent_ip. Even though 6982 * the list function ignores the op parameter, we do not want any 6983 * C side effects, where a function is called without the caller 6984 * sending a third parameter. 6985 * Archs are to support both the regs and ftrace_ops at the same time. 6986 * If they support ftrace_ops, it is assumed they support regs. 6987 * If call backs want to use regs, they must either check for regs 6988 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6989 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6990 * An architecture can pass partial regs with ftrace_ops and still 6991 * set the ARCH_SUPPORTS_FTRACE_OPS. 6992 */ 6993 #if ARCH_SUPPORTS_FTRACE_OPS 6994 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6995 struct ftrace_ops *op, struct pt_regs *regs) 6996 { 6997 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6998 } 6999 NOKPROBE_SYMBOL(ftrace_ops_list_func); 7000 #else 7001 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 7002 { 7003 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7004 } 7005 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 7006 #endif 7007 7008 /* 7009 * If there's only one function registered but it does not support 7010 * recursion, needs RCU protection and/or requires per cpu handling, then 7011 * this function will be called by the mcount trampoline. 7012 */ 7013 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7014 struct ftrace_ops *op, struct pt_regs *regs) 7015 { 7016 int bit; 7017 7018 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 7019 if (bit < 0) 7020 return; 7021 7022 preempt_disable_notrace(); 7023 7024 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7025 op->func(ip, parent_ip, op, regs); 7026 7027 preempt_enable_notrace(); 7028 trace_clear_recursion(bit); 7029 } 7030 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7031 7032 /** 7033 * ftrace_ops_get_func - get the function a trampoline should call 7034 * @ops: the ops to get the function for 7035 * 7036 * Normally the mcount trampoline will call the ops->func, but there 7037 * are times that it should not. For example, if the ops does not 7038 * have its own recursion protection, then it should call the 7039 * ftrace_ops_assist_func() instead. 7040 * 7041 * Returns the function that the trampoline should call for @ops. 7042 */ 7043 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7044 { 7045 /* 7046 * If the function does not handle recursion, needs to be RCU safe, 7047 * or does per cpu logic, then we need to call the assist handler. 7048 */ 7049 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 7050 ops->flags & FTRACE_OPS_FL_RCU) 7051 return ftrace_ops_assist_func; 7052 7053 return ops->func; 7054 } 7055 7056 static void 7057 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7058 struct task_struct *prev, struct task_struct *next) 7059 { 7060 struct trace_array *tr = data; 7061 struct trace_pid_list *pid_list; 7062 struct trace_pid_list *no_pid_list; 7063 7064 pid_list = rcu_dereference_sched(tr->function_pids); 7065 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7066 7067 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7068 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7069 FTRACE_PID_IGNORE); 7070 else 7071 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7072 next->pid); 7073 } 7074 7075 static void 7076 ftrace_pid_follow_sched_process_fork(void *data, 7077 struct task_struct *self, 7078 struct task_struct *task) 7079 { 7080 struct trace_pid_list *pid_list; 7081 struct trace_array *tr = data; 7082 7083 pid_list = rcu_dereference_sched(tr->function_pids); 7084 trace_filter_add_remove_task(pid_list, self, task); 7085 7086 pid_list = rcu_dereference_sched(tr->function_no_pids); 7087 trace_filter_add_remove_task(pid_list, self, task); 7088 } 7089 7090 static void 7091 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7092 { 7093 struct trace_pid_list *pid_list; 7094 struct trace_array *tr = data; 7095 7096 pid_list = rcu_dereference_sched(tr->function_pids); 7097 trace_filter_add_remove_task(pid_list, NULL, task); 7098 7099 pid_list = rcu_dereference_sched(tr->function_no_pids); 7100 trace_filter_add_remove_task(pid_list, NULL, task); 7101 } 7102 7103 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7104 { 7105 if (enable) { 7106 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7107 tr); 7108 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7109 tr); 7110 } else { 7111 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7112 tr); 7113 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7114 tr); 7115 } 7116 } 7117 7118 static void clear_ftrace_pids(struct trace_array *tr, int type) 7119 { 7120 struct trace_pid_list *pid_list; 7121 struct trace_pid_list *no_pid_list; 7122 int cpu; 7123 7124 pid_list = rcu_dereference_protected(tr->function_pids, 7125 lockdep_is_held(&ftrace_lock)); 7126 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7127 lockdep_is_held(&ftrace_lock)); 7128 7129 /* Make sure there's something to do */ 7130 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7131 return; 7132 7133 /* See if the pids still need to be checked after this */ 7134 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7135 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7136 for_each_possible_cpu(cpu) 7137 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7138 } 7139 7140 if (type & TRACE_PIDS) 7141 rcu_assign_pointer(tr->function_pids, NULL); 7142 7143 if (type & TRACE_NO_PIDS) 7144 rcu_assign_pointer(tr->function_no_pids, NULL); 7145 7146 /* Wait till all users are no longer using pid filtering */ 7147 synchronize_rcu(); 7148 7149 if ((type & TRACE_PIDS) && pid_list) 7150 trace_free_pid_list(pid_list); 7151 7152 if ((type & TRACE_NO_PIDS) && no_pid_list) 7153 trace_free_pid_list(no_pid_list); 7154 } 7155 7156 void ftrace_clear_pids(struct trace_array *tr) 7157 { 7158 mutex_lock(&ftrace_lock); 7159 7160 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7161 7162 mutex_unlock(&ftrace_lock); 7163 } 7164 7165 static void ftrace_pid_reset(struct trace_array *tr, int type) 7166 { 7167 mutex_lock(&ftrace_lock); 7168 clear_ftrace_pids(tr, type); 7169 7170 ftrace_update_pid_func(); 7171 ftrace_startup_all(0); 7172 7173 mutex_unlock(&ftrace_lock); 7174 } 7175 7176 /* Greater than any max PID */ 7177 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7178 7179 static void *fpid_start(struct seq_file *m, loff_t *pos) 7180 __acquires(RCU) 7181 { 7182 struct trace_pid_list *pid_list; 7183 struct trace_array *tr = m->private; 7184 7185 mutex_lock(&ftrace_lock); 7186 rcu_read_lock_sched(); 7187 7188 pid_list = rcu_dereference_sched(tr->function_pids); 7189 7190 if (!pid_list) 7191 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7192 7193 return trace_pid_start(pid_list, pos); 7194 } 7195 7196 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7197 { 7198 struct trace_array *tr = m->private; 7199 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7200 7201 if (v == FTRACE_NO_PIDS) { 7202 (*pos)++; 7203 return NULL; 7204 } 7205 return trace_pid_next(pid_list, v, pos); 7206 } 7207 7208 static void fpid_stop(struct seq_file *m, void *p) 7209 __releases(RCU) 7210 { 7211 rcu_read_unlock_sched(); 7212 mutex_unlock(&ftrace_lock); 7213 } 7214 7215 static int fpid_show(struct seq_file *m, void *v) 7216 { 7217 if (v == FTRACE_NO_PIDS) { 7218 seq_puts(m, "no pid\n"); 7219 return 0; 7220 } 7221 7222 return trace_pid_show(m, v); 7223 } 7224 7225 static const struct seq_operations ftrace_pid_sops = { 7226 .start = fpid_start, 7227 .next = fpid_next, 7228 .stop = fpid_stop, 7229 .show = fpid_show, 7230 }; 7231 7232 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7233 __acquires(RCU) 7234 { 7235 struct trace_pid_list *pid_list; 7236 struct trace_array *tr = m->private; 7237 7238 mutex_lock(&ftrace_lock); 7239 rcu_read_lock_sched(); 7240 7241 pid_list = rcu_dereference_sched(tr->function_no_pids); 7242 7243 if (!pid_list) 7244 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7245 7246 return trace_pid_start(pid_list, pos); 7247 } 7248 7249 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7250 { 7251 struct trace_array *tr = m->private; 7252 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7253 7254 if (v == FTRACE_NO_PIDS) { 7255 (*pos)++; 7256 return NULL; 7257 } 7258 return trace_pid_next(pid_list, v, pos); 7259 } 7260 7261 static const struct seq_operations ftrace_no_pid_sops = { 7262 .start = fnpid_start, 7263 .next = fnpid_next, 7264 .stop = fpid_stop, 7265 .show = fpid_show, 7266 }; 7267 7268 static int pid_open(struct inode *inode, struct file *file, int type) 7269 { 7270 const struct seq_operations *seq_ops; 7271 struct trace_array *tr = inode->i_private; 7272 struct seq_file *m; 7273 int ret = 0; 7274 7275 ret = tracing_check_open_get_tr(tr); 7276 if (ret) 7277 return ret; 7278 7279 if ((file->f_mode & FMODE_WRITE) && 7280 (file->f_flags & O_TRUNC)) 7281 ftrace_pid_reset(tr, type); 7282 7283 switch (type) { 7284 case TRACE_PIDS: 7285 seq_ops = &ftrace_pid_sops; 7286 break; 7287 case TRACE_NO_PIDS: 7288 seq_ops = &ftrace_no_pid_sops; 7289 break; 7290 default: 7291 trace_array_put(tr); 7292 WARN_ON_ONCE(1); 7293 return -EINVAL; 7294 } 7295 7296 ret = seq_open(file, seq_ops); 7297 if (ret < 0) { 7298 trace_array_put(tr); 7299 } else { 7300 m = file->private_data; 7301 /* copy tr over to seq ops */ 7302 m->private = tr; 7303 } 7304 7305 return ret; 7306 } 7307 7308 static int 7309 ftrace_pid_open(struct inode *inode, struct file *file) 7310 { 7311 return pid_open(inode, file, TRACE_PIDS); 7312 } 7313 7314 static int 7315 ftrace_no_pid_open(struct inode *inode, struct file *file) 7316 { 7317 return pid_open(inode, file, TRACE_NO_PIDS); 7318 } 7319 7320 static void ignore_task_cpu(void *data) 7321 { 7322 struct trace_array *tr = data; 7323 struct trace_pid_list *pid_list; 7324 struct trace_pid_list *no_pid_list; 7325 7326 /* 7327 * This function is called by on_each_cpu() while the 7328 * event_mutex is held. 7329 */ 7330 pid_list = rcu_dereference_protected(tr->function_pids, 7331 mutex_is_locked(&ftrace_lock)); 7332 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7333 mutex_is_locked(&ftrace_lock)); 7334 7335 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7336 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7337 FTRACE_PID_IGNORE); 7338 else 7339 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7340 current->pid); 7341 } 7342 7343 static ssize_t 7344 pid_write(struct file *filp, const char __user *ubuf, 7345 size_t cnt, loff_t *ppos, int type) 7346 { 7347 struct seq_file *m = filp->private_data; 7348 struct trace_array *tr = m->private; 7349 struct trace_pid_list *filtered_pids; 7350 struct trace_pid_list *other_pids; 7351 struct trace_pid_list *pid_list; 7352 ssize_t ret; 7353 7354 if (!cnt) 7355 return 0; 7356 7357 mutex_lock(&ftrace_lock); 7358 7359 switch (type) { 7360 case TRACE_PIDS: 7361 filtered_pids = rcu_dereference_protected(tr->function_pids, 7362 lockdep_is_held(&ftrace_lock)); 7363 other_pids = rcu_dereference_protected(tr->function_no_pids, 7364 lockdep_is_held(&ftrace_lock)); 7365 break; 7366 case TRACE_NO_PIDS: 7367 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7368 lockdep_is_held(&ftrace_lock)); 7369 other_pids = rcu_dereference_protected(tr->function_pids, 7370 lockdep_is_held(&ftrace_lock)); 7371 break; 7372 default: 7373 ret = -EINVAL; 7374 WARN_ON_ONCE(1); 7375 goto out; 7376 } 7377 7378 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7379 if (ret < 0) 7380 goto out; 7381 7382 switch (type) { 7383 case TRACE_PIDS: 7384 rcu_assign_pointer(tr->function_pids, pid_list); 7385 break; 7386 case TRACE_NO_PIDS: 7387 rcu_assign_pointer(tr->function_no_pids, pid_list); 7388 break; 7389 } 7390 7391 7392 if (filtered_pids) { 7393 synchronize_rcu(); 7394 trace_free_pid_list(filtered_pids); 7395 } else if (pid_list && !other_pids) { 7396 /* Register a probe to set whether to ignore the tracing of a task */ 7397 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7398 } 7399 7400 /* 7401 * Ignoring of pids is done at task switch. But we have to 7402 * check for those tasks that are currently running. 7403 * Always do this in case a pid was appended or removed. 7404 */ 7405 on_each_cpu(ignore_task_cpu, tr, 1); 7406 7407 ftrace_update_pid_func(); 7408 ftrace_startup_all(0); 7409 out: 7410 mutex_unlock(&ftrace_lock); 7411 7412 if (ret > 0) 7413 *ppos += ret; 7414 7415 return ret; 7416 } 7417 7418 static ssize_t 7419 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7420 size_t cnt, loff_t *ppos) 7421 { 7422 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7423 } 7424 7425 static ssize_t 7426 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7427 size_t cnt, loff_t *ppos) 7428 { 7429 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7430 } 7431 7432 static int 7433 ftrace_pid_release(struct inode *inode, struct file *file) 7434 { 7435 struct trace_array *tr = inode->i_private; 7436 7437 trace_array_put(tr); 7438 7439 return seq_release(inode, file); 7440 } 7441 7442 static const struct file_operations ftrace_pid_fops = { 7443 .open = ftrace_pid_open, 7444 .write = ftrace_pid_write, 7445 .read = seq_read, 7446 .llseek = tracing_lseek, 7447 .release = ftrace_pid_release, 7448 }; 7449 7450 static const struct file_operations ftrace_no_pid_fops = { 7451 .open = ftrace_no_pid_open, 7452 .write = ftrace_no_pid_write, 7453 .read = seq_read, 7454 .llseek = tracing_lseek, 7455 .release = ftrace_pid_release, 7456 }; 7457 7458 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7459 { 7460 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7461 tr, &ftrace_pid_fops); 7462 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer, 7463 tr, &ftrace_no_pid_fops); 7464 } 7465 7466 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7467 struct dentry *d_tracer) 7468 { 7469 /* Only the top level directory has the dyn_tracefs and profile */ 7470 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7471 7472 ftrace_init_dyn_tracefs(d_tracer); 7473 ftrace_profile_tracefs(d_tracer); 7474 } 7475 7476 /** 7477 * ftrace_kill - kill ftrace 7478 * 7479 * This function should be used by panic code. It stops ftrace 7480 * but in a not so nice way. If you need to simply kill ftrace 7481 * from a non-atomic section, use ftrace_kill. 7482 */ 7483 void ftrace_kill(void) 7484 { 7485 ftrace_disabled = 1; 7486 ftrace_enabled = 0; 7487 ftrace_trace_function = ftrace_stub; 7488 } 7489 7490 /** 7491 * Test if ftrace is dead or not. 7492 */ 7493 int ftrace_is_dead(void) 7494 { 7495 return ftrace_disabled; 7496 } 7497 7498 /** 7499 * register_ftrace_function - register a function for profiling 7500 * @ops - ops structure that holds the function for profiling. 7501 * 7502 * Register a function to be called by all functions in the 7503 * kernel. 7504 * 7505 * Note: @ops->func and all the functions it calls must be labeled 7506 * with "notrace", otherwise it will go into a 7507 * recursive loop. 7508 */ 7509 int register_ftrace_function(struct ftrace_ops *ops) 7510 { 7511 int ret = -1; 7512 7513 ftrace_ops_init(ops); 7514 7515 mutex_lock(&ftrace_lock); 7516 7517 ret = ftrace_startup(ops, 0); 7518 7519 mutex_unlock(&ftrace_lock); 7520 7521 return ret; 7522 } 7523 EXPORT_SYMBOL_GPL(register_ftrace_function); 7524 7525 /** 7526 * unregister_ftrace_function - unregister a function for profiling. 7527 * @ops - ops structure that holds the function to unregister 7528 * 7529 * Unregister a function that was added to be called by ftrace profiling. 7530 */ 7531 int unregister_ftrace_function(struct ftrace_ops *ops) 7532 { 7533 int ret; 7534 7535 mutex_lock(&ftrace_lock); 7536 ret = ftrace_shutdown(ops, 0); 7537 mutex_unlock(&ftrace_lock); 7538 7539 return ret; 7540 } 7541 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7542 7543 static bool is_permanent_ops_registered(void) 7544 { 7545 struct ftrace_ops *op; 7546 7547 do_for_each_ftrace_op(op, ftrace_ops_list) { 7548 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7549 return true; 7550 } while_for_each_ftrace_op(op); 7551 7552 return false; 7553 } 7554 7555 int 7556 ftrace_enable_sysctl(struct ctl_table *table, int write, 7557 void *buffer, size_t *lenp, loff_t *ppos) 7558 { 7559 int ret = -ENODEV; 7560 7561 mutex_lock(&ftrace_lock); 7562 7563 if (unlikely(ftrace_disabled)) 7564 goto out; 7565 7566 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7567 7568 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7569 goto out; 7570 7571 if (ftrace_enabled) { 7572 7573 /* we are starting ftrace again */ 7574 if (rcu_dereference_protected(ftrace_ops_list, 7575 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7576 update_ftrace_function(); 7577 7578 ftrace_startup_sysctl(); 7579 7580 } else { 7581 if (is_permanent_ops_registered()) { 7582 ftrace_enabled = true; 7583 ret = -EBUSY; 7584 goto out; 7585 } 7586 7587 /* stopping ftrace calls (just send to ftrace_stub) */ 7588 ftrace_trace_function = ftrace_stub; 7589 7590 ftrace_shutdown_sysctl(); 7591 } 7592 7593 last_ftrace_enabled = !!ftrace_enabled; 7594 out: 7595 mutex_unlock(&ftrace_lock); 7596 return ret; 7597 } 7598