1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 /* Defined by vmlinux.lds.h see the commment above arch_ftrace_ops_list_func for details */ 123 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct ftrace_regs *fregs); 125 126 static inline void ftrace_ops_init(struct ftrace_ops *ops) 127 { 128 #ifdef CONFIG_DYNAMIC_FTRACE 129 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 130 mutex_init(&ops->local_hash.regex_lock); 131 ops->func_hash = &ops->local_hash; 132 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 133 } 134 #endif 135 } 136 137 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 138 struct ftrace_ops *op, struct ftrace_regs *fregs) 139 { 140 struct trace_array *tr = op->private; 141 int pid; 142 143 if (tr) { 144 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 145 if (pid == FTRACE_PID_IGNORE) 146 return; 147 if (pid != FTRACE_PID_TRACE && 148 pid != current->pid) 149 return; 150 } 151 152 op->saved_func(ip, parent_ip, op, fregs); 153 } 154 155 static void ftrace_sync_ipi(void *data) 156 { 157 /* Probably not needed, but do it anyway */ 158 smp_rmb(); 159 } 160 161 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 162 { 163 /* 164 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 165 * then it needs to call the list anyway. 166 */ 167 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 168 FTRACE_FORCE_LIST_FUNC) 169 return ftrace_ops_list_func; 170 171 return ftrace_ops_get_func(ops); 172 } 173 174 static void update_ftrace_function(void) 175 { 176 ftrace_func_t func; 177 178 /* 179 * Prepare the ftrace_ops that the arch callback will use. 180 * If there's only one ftrace_ops registered, the ftrace_ops_list 181 * will point to the ops we want. 182 */ 183 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 184 lockdep_is_held(&ftrace_lock)); 185 186 /* If there's no ftrace_ops registered, just call the stub function */ 187 if (set_function_trace_op == &ftrace_list_end) { 188 func = ftrace_stub; 189 190 /* 191 * If we are at the end of the list and this ops is 192 * recursion safe and not dynamic and the arch supports passing ops, 193 * then have the mcount trampoline call the function directly. 194 */ 195 } else if (rcu_dereference_protected(ftrace_ops_list->next, 196 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 197 func = ftrace_ops_get_list_func(ftrace_ops_list); 198 199 } else { 200 /* Just use the default ftrace_ops */ 201 set_function_trace_op = &ftrace_list_end; 202 func = ftrace_ops_list_func; 203 } 204 205 update_function_graph_func(); 206 207 /* If there's no change, then do nothing more here */ 208 if (ftrace_trace_function == func) 209 return; 210 211 /* 212 * If we are using the list function, it doesn't care 213 * about the function_trace_ops. 214 */ 215 if (func == ftrace_ops_list_func) { 216 ftrace_trace_function = func; 217 /* 218 * Don't even bother setting function_trace_ops, 219 * it would be racy to do so anyway. 220 */ 221 return; 222 } 223 224 #ifndef CONFIG_DYNAMIC_FTRACE 225 /* 226 * For static tracing, we need to be a bit more careful. 227 * The function change takes affect immediately. Thus, 228 * we need to coordinate the setting of the function_trace_ops 229 * with the setting of the ftrace_trace_function. 230 * 231 * Set the function to the list ops, which will call the 232 * function we want, albeit indirectly, but it handles the 233 * ftrace_ops and doesn't depend on function_trace_op. 234 */ 235 ftrace_trace_function = ftrace_ops_list_func; 236 /* 237 * Make sure all CPUs see this. Yes this is slow, but static 238 * tracing is slow and nasty to have enabled. 239 */ 240 synchronize_rcu_tasks_rude(); 241 /* Now all cpus are using the list ops. */ 242 function_trace_op = set_function_trace_op; 243 /* Make sure the function_trace_op is visible on all CPUs */ 244 smp_wmb(); 245 /* Nasty way to force a rmb on all cpus */ 246 smp_call_function(ftrace_sync_ipi, NULL, 1); 247 /* OK, we are all set to update the ftrace_trace_function now! */ 248 #endif /* !CONFIG_DYNAMIC_FTRACE */ 249 250 ftrace_trace_function = func; 251 } 252 253 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 254 struct ftrace_ops *ops) 255 { 256 rcu_assign_pointer(ops->next, *list); 257 258 /* 259 * We are entering ops into the list but another 260 * CPU might be walking that list. We need to make sure 261 * the ops->next pointer is valid before another CPU sees 262 * the ops pointer included into the list. 263 */ 264 rcu_assign_pointer(*list, ops); 265 } 266 267 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 268 struct ftrace_ops *ops) 269 { 270 struct ftrace_ops **p; 271 272 /* 273 * If we are removing the last function, then simply point 274 * to the ftrace_stub. 275 */ 276 if (rcu_dereference_protected(*list, 277 lockdep_is_held(&ftrace_lock)) == ops && 278 rcu_dereference_protected(ops->next, 279 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 280 *list = &ftrace_list_end; 281 return 0; 282 } 283 284 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 285 if (*p == ops) 286 break; 287 288 if (*p != ops) 289 return -1; 290 291 *p = (*p)->next; 292 return 0; 293 } 294 295 static void ftrace_update_trampoline(struct ftrace_ops *ops); 296 297 int __register_ftrace_function(struct ftrace_ops *ops) 298 { 299 if (ops->flags & FTRACE_OPS_FL_DELETED) 300 return -EINVAL; 301 302 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 303 return -EBUSY; 304 305 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 306 /* 307 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 308 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 309 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 310 */ 311 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 312 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 313 return -EINVAL; 314 315 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 316 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 317 #endif 318 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 319 return -EBUSY; 320 321 if (!is_kernel_core_data((unsigned long)ops)) 322 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 323 324 add_ftrace_ops(&ftrace_ops_list, ops); 325 326 /* Always save the function, and reset at unregistering */ 327 ops->saved_func = ops->func; 328 329 if (ftrace_pids_enabled(ops)) 330 ops->func = ftrace_pid_func; 331 332 ftrace_update_trampoline(ops); 333 334 if (ftrace_enabled) 335 update_ftrace_function(); 336 337 return 0; 338 } 339 340 int __unregister_ftrace_function(struct ftrace_ops *ops) 341 { 342 int ret; 343 344 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 345 return -EBUSY; 346 347 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 348 349 if (ret < 0) 350 return ret; 351 352 if (ftrace_enabled) 353 update_ftrace_function(); 354 355 ops->func = ops->saved_func; 356 357 return 0; 358 } 359 360 static void ftrace_update_pid_func(void) 361 { 362 struct ftrace_ops *op; 363 364 /* Only do something if we are tracing something */ 365 if (ftrace_trace_function == ftrace_stub) 366 return; 367 368 do_for_each_ftrace_op(op, ftrace_ops_list) { 369 if (op->flags & FTRACE_OPS_FL_PID) { 370 op->func = ftrace_pids_enabled(op) ? 371 ftrace_pid_func : op->saved_func; 372 ftrace_update_trampoline(op); 373 } 374 } while_for_each_ftrace_op(op); 375 376 update_ftrace_function(); 377 } 378 379 #ifdef CONFIG_FUNCTION_PROFILER 380 struct ftrace_profile { 381 struct hlist_node node; 382 unsigned long ip; 383 unsigned long counter; 384 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 385 unsigned long long time; 386 unsigned long long time_squared; 387 #endif 388 }; 389 390 struct ftrace_profile_page { 391 struct ftrace_profile_page *next; 392 unsigned long index; 393 struct ftrace_profile records[]; 394 }; 395 396 struct ftrace_profile_stat { 397 atomic_t disabled; 398 struct hlist_head *hash; 399 struct ftrace_profile_page *pages; 400 struct ftrace_profile_page *start; 401 struct tracer_stat stat; 402 }; 403 404 #define PROFILE_RECORDS_SIZE \ 405 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 406 407 #define PROFILES_PER_PAGE \ 408 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 409 410 static int ftrace_profile_enabled __read_mostly; 411 412 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 413 static DEFINE_MUTEX(ftrace_profile_lock); 414 415 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 416 417 #define FTRACE_PROFILE_HASH_BITS 10 418 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 419 420 static void * 421 function_stat_next(void *v, int idx) 422 { 423 struct ftrace_profile *rec = v; 424 struct ftrace_profile_page *pg; 425 426 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 427 428 again: 429 if (idx != 0) 430 rec++; 431 432 if ((void *)rec >= (void *)&pg->records[pg->index]) { 433 pg = pg->next; 434 if (!pg) 435 return NULL; 436 rec = &pg->records[0]; 437 if (!rec->counter) 438 goto again; 439 } 440 441 return rec; 442 } 443 444 static void *function_stat_start(struct tracer_stat *trace) 445 { 446 struct ftrace_profile_stat *stat = 447 container_of(trace, struct ftrace_profile_stat, stat); 448 449 if (!stat || !stat->start) 450 return NULL; 451 452 return function_stat_next(&stat->start->records[0], 0); 453 } 454 455 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 456 /* function graph compares on total time */ 457 static int function_stat_cmp(const void *p1, const void *p2) 458 { 459 const struct ftrace_profile *a = p1; 460 const struct ftrace_profile *b = p2; 461 462 if (a->time < b->time) 463 return -1; 464 if (a->time > b->time) 465 return 1; 466 else 467 return 0; 468 } 469 #else 470 /* not function graph compares against hits */ 471 static int function_stat_cmp(const void *p1, const void *p2) 472 { 473 const struct ftrace_profile *a = p1; 474 const struct ftrace_profile *b = p2; 475 476 if (a->counter < b->counter) 477 return -1; 478 if (a->counter > b->counter) 479 return 1; 480 else 481 return 0; 482 } 483 #endif 484 485 static int function_stat_headers(struct seq_file *m) 486 { 487 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 488 seq_puts(m, " Function " 489 "Hit Time Avg s^2\n" 490 " -------- " 491 "--- ---- --- ---\n"); 492 #else 493 seq_puts(m, " Function Hit\n" 494 " -------- ---\n"); 495 #endif 496 return 0; 497 } 498 499 static int function_stat_show(struct seq_file *m, void *v) 500 { 501 struct ftrace_profile *rec = v; 502 char str[KSYM_SYMBOL_LEN]; 503 int ret = 0; 504 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 505 static struct trace_seq s; 506 unsigned long long avg; 507 unsigned long long stddev; 508 #endif 509 mutex_lock(&ftrace_profile_lock); 510 511 /* we raced with function_profile_reset() */ 512 if (unlikely(rec->counter == 0)) { 513 ret = -EBUSY; 514 goto out; 515 } 516 517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 518 avg = div64_ul(rec->time, rec->counter); 519 if (tracing_thresh && (avg < tracing_thresh)) 520 goto out; 521 #endif 522 523 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 524 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 525 526 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 527 seq_puts(m, " "); 528 529 /* Sample standard deviation (s^2) */ 530 if (rec->counter <= 1) 531 stddev = 0; 532 else { 533 /* 534 * Apply Welford's method: 535 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 536 */ 537 stddev = rec->counter * rec->time_squared - 538 rec->time * rec->time; 539 540 /* 541 * Divide only 1000 for ns^2 -> us^2 conversion. 542 * trace_print_graph_duration will divide 1000 again. 543 */ 544 stddev = div64_ul(stddev, 545 rec->counter * (rec->counter - 1) * 1000); 546 } 547 548 trace_seq_init(&s); 549 trace_print_graph_duration(rec->time, &s); 550 trace_seq_puts(&s, " "); 551 trace_print_graph_duration(avg, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(stddev, &s); 554 trace_print_seq(m, &s); 555 #endif 556 seq_putc(m, '\n'); 557 out: 558 mutex_unlock(&ftrace_profile_lock); 559 560 return ret; 561 } 562 563 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 564 { 565 struct ftrace_profile_page *pg; 566 567 pg = stat->pages = stat->start; 568 569 while (pg) { 570 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 571 pg->index = 0; 572 pg = pg->next; 573 } 574 575 memset(stat->hash, 0, 576 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 577 } 578 579 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 580 { 581 struct ftrace_profile_page *pg; 582 int functions; 583 int pages; 584 int i; 585 586 /* If we already allocated, do nothing */ 587 if (stat->pages) 588 return 0; 589 590 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 591 if (!stat->pages) 592 return -ENOMEM; 593 594 #ifdef CONFIG_DYNAMIC_FTRACE 595 functions = ftrace_update_tot_cnt; 596 #else 597 /* 598 * We do not know the number of functions that exist because 599 * dynamic tracing is what counts them. With past experience 600 * we have around 20K functions. That should be more than enough. 601 * It is highly unlikely we will execute every function in 602 * the kernel. 603 */ 604 functions = 20000; 605 #endif 606 607 pg = stat->start = stat->pages; 608 609 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 610 611 for (i = 1; i < pages; i++) { 612 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 613 if (!pg->next) 614 goto out_free; 615 pg = pg->next; 616 } 617 618 return 0; 619 620 out_free: 621 pg = stat->start; 622 while (pg) { 623 unsigned long tmp = (unsigned long)pg; 624 625 pg = pg->next; 626 free_page(tmp); 627 } 628 629 stat->pages = NULL; 630 stat->start = NULL; 631 632 return -ENOMEM; 633 } 634 635 static int ftrace_profile_init_cpu(int cpu) 636 { 637 struct ftrace_profile_stat *stat; 638 int size; 639 640 stat = &per_cpu(ftrace_profile_stats, cpu); 641 642 if (stat->hash) { 643 /* If the profile is already created, simply reset it */ 644 ftrace_profile_reset(stat); 645 return 0; 646 } 647 648 /* 649 * We are profiling all functions, but usually only a few thousand 650 * functions are hit. We'll make a hash of 1024 items. 651 */ 652 size = FTRACE_PROFILE_HASH_SIZE; 653 654 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 655 656 if (!stat->hash) 657 return -ENOMEM; 658 659 /* Preallocate the function profiling pages */ 660 if (ftrace_profile_pages_init(stat) < 0) { 661 kfree(stat->hash); 662 stat->hash = NULL; 663 return -ENOMEM; 664 } 665 666 return 0; 667 } 668 669 static int ftrace_profile_init(void) 670 { 671 int cpu; 672 int ret = 0; 673 674 for_each_possible_cpu(cpu) { 675 ret = ftrace_profile_init_cpu(cpu); 676 if (ret) 677 break; 678 } 679 680 return ret; 681 } 682 683 /* interrupts must be disabled */ 684 static struct ftrace_profile * 685 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 686 { 687 struct ftrace_profile *rec; 688 struct hlist_head *hhd; 689 unsigned long key; 690 691 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 692 hhd = &stat->hash[key]; 693 694 if (hlist_empty(hhd)) 695 return NULL; 696 697 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 698 if (rec->ip == ip) 699 return rec; 700 } 701 702 return NULL; 703 } 704 705 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 706 struct ftrace_profile *rec) 707 { 708 unsigned long key; 709 710 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 711 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 712 } 713 714 /* 715 * The memory is already allocated, this simply finds a new record to use. 716 */ 717 static struct ftrace_profile * 718 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 719 { 720 struct ftrace_profile *rec = NULL; 721 722 /* prevent recursion (from NMIs) */ 723 if (atomic_inc_return(&stat->disabled) != 1) 724 goto out; 725 726 /* 727 * Try to find the function again since an NMI 728 * could have added it 729 */ 730 rec = ftrace_find_profiled_func(stat, ip); 731 if (rec) 732 goto out; 733 734 if (stat->pages->index == PROFILES_PER_PAGE) { 735 if (!stat->pages->next) 736 goto out; 737 stat->pages = stat->pages->next; 738 } 739 740 rec = &stat->pages->records[stat->pages->index++]; 741 rec->ip = ip; 742 ftrace_add_profile(stat, rec); 743 744 out: 745 atomic_dec(&stat->disabled); 746 747 return rec; 748 } 749 750 static void 751 function_profile_call(unsigned long ip, unsigned long parent_ip, 752 struct ftrace_ops *ops, struct ftrace_regs *fregs) 753 { 754 struct ftrace_profile_stat *stat; 755 struct ftrace_profile *rec; 756 unsigned long flags; 757 758 if (!ftrace_profile_enabled) 759 return; 760 761 local_irq_save(flags); 762 763 stat = this_cpu_ptr(&ftrace_profile_stats); 764 if (!stat->hash || !ftrace_profile_enabled) 765 goto out; 766 767 rec = ftrace_find_profiled_func(stat, ip); 768 if (!rec) { 769 rec = ftrace_profile_alloc(stat, ip); 770 if (!rec) 771 goto out; 772 } 773 774 rec->counter++; 775 out: 776 local_irq_restore(flags); 777 } 778 779 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 780 static bool fgraph_graph_time = true; 781 782 void ftrace_graph_graph_time_control(bool enable) 783 { 784 fgraph_graph_time = enable; 785 } 786 787 static int profile_graph_entry(struct ftrace_graph_ent *trace) 788 { 789 struct ftrace_ret_stack *ret_stack; 790 791 function_profile_call(trace->func, 0, NULL, NULL); 792 793 /* If function graph is shutting down, ret_stack can be NULL */ 794 if (!current->ret_stack) 795 return 0; 796 797 ret_stack = ftrace_graph_get_ret_stack(current, 0); 798 if (ret_stack) 799 ret_stack->subtime = 0; 800 801 return 1; 802 } 803 804 static void profile_graph_return(struct ftrace_graph_ret *trace) 805 { 806 struct ftrace_ret_stack *ret_stack; 807 struct ftrace_profile_stat *stat; 808 unsigned long long calltime; 809 struct ftrace_profile *rec; 810 unsigned long flags; 811 812 local_irq_save(flags); 813 stat = this_cpu_ptr(&ftrace_profile_stats); 814 if (!stat->hash || !ftrace_profile_enabled) 815 goto out; 816 817 /* If the calltime was zero'd ignore it */ 818 if (!trace->calltime) 819 goto out; 820 821 calltime = trace->rettime - trace->calltime; 822 823 if (!fgraph_graph_time) { 824 825 /* Append this call time to the parent time to subtract */ 826 ret_stack = ftrace_graph_get_ret_stack(current, 1); 827 if (ret_stack) 828 ret_stack->subtime += calltime; 829 830 ret_stack = ftrace_graph_get_ret_stack(current, 0); 831 if (ret_stack && ret_stack->subtime < calltime) 832 calltime -= ret_stack->subtime; 833 else 834 calltime = 0; 835 } 836 837 rec = ftrace_find_profiled_func(stat, trace->func); 838 if (rec) { 839 rec->time += calltime; 840 rec->time_squared += calltime * calltime; 841 } 842 843 out: 844 local_irq_restore(flags); 845 } 846 847 static struct fgraph_ops fprofiler_ops = { 848 .entryfunc = &profile_graph_entry, 849 .retfunc = &profile_graph_return, 850 }; 851 852 static int register_ftrace_profiler(void) 853 { 854 return register_ftrace_graph(&fprofiler_ops); 855 } 856 857 static void unregister_ftrace_profiler(void) 858 { 859 unregister_ftrace_graph(&fprofiler_ops); 860 } 861 #else 862 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 863 .func = function_profile_call, 864 .flags = FTRACE_OPS_FL_INITIALIZED, 865 INIT_OPS_HASH(ftrace_profile_ops) 866 }; 867 868 static int register_ftrace_profiler(void) 869 { 870 return register_ftrace_function(&ftrace_profile_ops); 871 } 872 873 static void unregister_ftrace_profiler(void) 874 { 875 unregister_ftrace_function(&ftrace_profile_ops); 876 } 877 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 878 879 static ssize_t 880 ftrace_profile_write(struct file *filp, const char __user *ubuf, 881 size_t cnt, loff_t *ppos) 882 { 883 unsigned long val; 884 int ret; 885 886 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 887 if (ret) 888 return ret; 889 890 val = !!val; 891 892 mutex_lock(&ftrace_profile_lock); 893 if (ftrace_profile_enabled ^ val) { 894 if (val) { 895 ret = ftrace_profile_init(); 896 if (ret < 0) { 897 cnt = ret; 898 goto out; 899 } 900 901 ret = register_ftrace_profiler(); 902 if (ret < 0) { 903 cnt = ret; 904 goto out; 905 } 906 ftrace_profile_enabled = 1; 907 } else { 908 ftrace_profile_enabled = 0; 909 /* 910 * unregister_ftrace_profiler calls stop_machine 911 * so this acts like an synchronize_rcu. 912 */ 913 unregister_ftrace_profiler(); 914 } 915 } 916 out: 917 mutex_unlock(&ftrace_profile_lock); 918 919 *ppos += cnt; 920 921 return cnt; 922 } 923 924 static ssize_t 925 ftrace_profile_read(struct file *filp, char __user *ubuf, 926 size_t cnt, loff_t *ppos) 927 { 928 char buf[64]; /* big enough to hold a number */ 929 int r; 930 931 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 932 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 933 } 934 935 static const struct file_operations ftrace_profile_fops = { 936 .open = tracing_open_generic, 937 .read = ftrace_profile_read, 938 .write = ftrace_profile_write, 939 .llseek = default_llseek, 940 }; 941 942 /* used to initialize the real stat files */ 943 static struct tracer_stat function_stats __initdata = { 944 .name = "functions", 945 .stat_start = function_stat_start, 946 .stat_next = function_stat_next, 947 .stat_cmp = function_stat_cmp, 948 .stat_headers = function_stat_headers, 949 .stat_show = function_stat_show 950 }; 951 952 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 953 { 954 struct ftrace_profile_stat *stat; 955 struct dentry *entry; 956 char *name; 957 int ret; 958 int cpu; 959 960 for_each_possible_cpu(cpu) { 961 stat = &per_cpu(ftrace_profile_stats, cpu); 962 963 name = kasprintf(GFP_KERNEL, "function%d", cpu); 964 if (!name) { 965 /* 966 * The files created are permanent, if something happens 967 * we still do not free memory. 968 */ 969 WARN(1, 970 "Could not allocate stat file for cpu %d\n", 971 cpu); 972 return; 973 } 974 stat->stat = function_stats; 975 stat->stat.name = name; 976 ret = register_stat_tracer(&stat->stat); 977 if (ret) { 978 WARN(1, 979 "Could not register function stat for cpu %d\n", 980 cpu); 981 kfree(name); 982 return; 983 } 984 } 985 986 entry = tracefs_create_file("function_profile_enabled", 987 TRACE_MODE_WRITE, d_tracer, NULL, 988 &ftrace_profile_fops); 989 if (!entry) 990 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 991 } 992 993 #else /* CONFIG_FUNCTION_PROFILER */ 994 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 995 { 996 } 997 #endif /* CONFIG_FUNCTION_PROFILER */ 998 999 #ifdef CONFIG_DYNAMIC_FTRACE 1000 1001 static struct ftrace_ops *removed_ops; 1002 1003 /* 1004 * Set when doing a global update, like enabling all recs or disabling them. 1005 * It is not set when just updating a single ftrace_ops. 1006 */ 1007 static bool update_all_ops; 1008 1009 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1010 # error Dynamic ftrace depends on MCOUNT_RECORD 1011 #endif 1012 1013 struct ftrace_func_probe { 1014 struct ftrace_probe_ops *probe_ops; 1015 struct ftrace_ops ops; 1016 struct trace_array *tr; 1017 struct list_head list; 1018 void *data; 1019 int ref; 1020 }; 1021 1022 /* 1023 * We make these constant because no one should touch them, 1024 * but they are used as the default "empty hash", to avoid allocating 1025 * it all the time. These are in a read only section such that if 1026 * anyone does try to modify it, it will cause an exception. 1027 */ 1028 static const struct hlist_head empty_buckets[1]; 1029 static const struct ftrace_hash empty_hash = { 1030 .buckets = (struct hlist_head *)empty_buckets, 1031 }; 1032 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1033 1034 struct ftrace_ops global_ops = { 1035 .func = ftrace_stub, 1036 .local_hash.notrace_hash = EMPTY_HASH, 1037 .local_hash.filter_hash = EMPTY_HASH, 1038 INIT_OPS_HASH(global_ops) 1039 .flags = FTRACE_OPS_FL_INITIALIZED | 1040 FTRACE_OPS_FL_PID, 1041 }; 1042 1043 /* 1044 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1045 */ 1046 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1047 { 1048 struct ftrace_ops *op = NULL; 1049 1050 /* 1051 * Some of the ops may be dynamically allocated, 1052 * they are freed after a synchronize_rcu(). 1053 */ 1054 preempt_disable_notrace(); 1055 1056 do_for_each_ftrace_op(op, ftrace_ops_list) { 1057 /* 1058 * This is to check for dynamically allocated trampolines. 1059 * Trampolines that are in kernel text will have 1060 * core_kernel_text() return true. 1061 */ 1062 if (op->trampoline && op->trampoline_size) 1063 if (addr >= op->trampoline && 1064 addr < op->trampoline + op->trampoline_size) { 1065 preempt_enable_notrace(); 1066 return op; 1067 } 1068 } while_for_each_ftrace_op(op); 1069 preempt_enable_notrace(); 1070 1071 return NULL; 1072 } 1073 1074 /* 1075 * This is used by __kernel_text_address() to return true if the 1076 * address is on a dynamically allocated trampoline that would 1077 * not return true for either core_kernel_text() or 1078 * is_module_text_address(). 1079 */ 1080 bool is_ftrace_trampoline(unsigned long addr) 1081 { 1082 return ftrace_ops_trampoline(addr) != NULL; 1083 } 1084 1085 struct ftrace_page { 1086 struct ftrace_page *next; 1087 struct dyn_ftrace *records; 1088 int index; 1089 int order; 1090 }; 1091 1092 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1093 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1094 1095 static struct ftrace_page *ftrace_pages_start; 1096 static struct ftrace_page *ftrace_pages; 1097 1098 static __always_inline unsigned long 1099 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1100 { 1101 if (hash->size_bits > 0) 1102 return hash_long(ip, hash->size_bits); 1103 1104 return 0; 1105 } 1106 1107 /* Only use this function if ftrace_hash_empty() has already been tested */ 1108 static __always_inline struct ftrace_func_entry * 1109 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1110 { 1111 unsigned long key; 1112 struct ftrace_func_entry *entry; 1113 struct hlist_head *hhd; 1114 1115 key = ftrace_hash_key(hash, ip); 1116 hhd = &hash->buckets[key]; 1117 1118 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1119 if (entry->ip == ip) 1120 return entry; 1121 } 1122 return NULL; 1123 } 1124 1125 /** 1126 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1127 * @hash: The hash to look at 1128 * @ip: The instruction pointer to test 1129 * 1130 * Search a given @hash to see if a given instruction pointer (@ip) 1131 * exists in it. 1132 * 1133 * Returns the entry that holds the @ip if found. NULL otherwise. 1134 */ 1135 struct ftrace_func_entry * 1136 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1137 { 1138 if (ftrace_hash_empty(hash)) 1139 return NULL; 1140 1141 return __ftrace_lookup_ip(hash, ip); 1142 } 1143 1144 static void __add_hash_entry(struct ftrace_hash *hash, 1145 struct ftrace_func_entry *entry) 1146 { 1147 struct hlist_head *hhd; 1148 unsigned long key; 1149 1150 key = ftrace_hash_key(hash, entry->ip); 1151 hhd = &hash->buckets[key]; 1152 hlist_add_head(&entry->hlist, hhd); 1153 hash->count++; 1154 } 1155 1156 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1157 { 1158 struct ftrace_func_entry *entry; 1159 1160 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1161 if (!entry) 1162 return -ENOMEM; 1163 1164 entry->ip = ip; 1165 __add_hash_entry(hash, entry); 1166 1167 return 0; 1168 } 1169 1170 static void 1171 free_hash_entry(struct ftrace_hash *hash, 1172 struct ftrace_func_entry *entry) 1173 { 1174 hlist_del(&entry->hlist); 1175 kfree(entry); 1176 hash->count--; 1177 } 1178 1179 static void 1180 remove_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 hlist_del_rcu(&entry->hlist); 1184 hash->count--; 1185 } 1186 1187 static void ftrace_hash_clear(struct ftrace_hash *hash) 1188 { 1189 struct hlist_head *hhd; 1190 struct hlist_node *tn; 1191 struct ftrace_func_entry *entry; 1192 int size = 1 << hash->size_bits; 1193 int i; 1194 1195 if (!hash->count) 1196 return; 1197 1198 for (i = 0; i < size; i++) { 1199 hhd = &hash->buckets[i]; 1200 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1201 free_hash_entry(hash, entry); 1202 } 1203 FTRACE_WARN_ON(hash->count); 1204 } 1205 1206 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1207 { 1208 list_del(&ftrace_mod->list); 1209 kfree(ftrace_mod->module); 1210 kfree(ftrace_mod->func); 1211 kfree(ftrace_mod); 1212 } 1213 1214 static void clear_ftrace_mod_list(struct list_head *head) 1215 { 1216 struct ftrace_mod_load *p, *n; 1217 1218 /* stack tracer isn't supported yet */ 1219 if (!head) 1220 return; 1221 1222 mutex_lock(&ftrace_lock); 1223 list_for_each_entry_safe(p, n, head, list) 1224 free_ftrace_mod(p); 1225 mutex_unlock(&ftrace_lock); 1226 } 1227 1228 static void free_ftrace_hash(struct ftrace_hash *hash) 1229 { 1230 if (!hash || hash == EMPTY_HASH) 1231 return; 1232 ftrace_hash_clear(hash); 1233 kfree(hash->buckets); 1234 kfree(hash); 1235 } 1236 1237 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1238 { 1239 struct ftrace_hash *hash; 1240 1241 hash = container_of(rcu, struct ftrace_hash, rcu); 1242 free_ftrace_hash(hash); 1243 } 1244 1245 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1246 { 1247 if (!hash || hash == EMPTY_HASH) 1248 return; 1249 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1250 } 1251 1252 void ftrace_free_filter(struct ftrace_ops *ops) 1253 { 1254 ftrace_ops_init(ops); 1255 free_ftrace_hash(ops->func_hash->filter_hash); 1256 free_ftrace_hash(ops->func_hash->notrace_hash); 1257 } 1258 1259 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1260 { 1261 struct ftrace_hash *hash; 1262 int size; 1263 1264 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1265 if (!hash) 1266 return NULL; 1267 1268 size = 1 << size_bits; 1269 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1270 1271 if (!hash->buckets) { 1272 kfree(hash); 1273 return NULL; 1274 } 1275 1276 hash->size_bits = size_bits; 1277 1278 return hash; 1279 } 1280 1281 1282 static int ftrace_add_mod(struct trace_array *tr, 1283 const char *func, const char *module, 1284 int enable) 1285 { 1286 struct ftrace_mod_load *ftrace_mod; 1287 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1288 1289 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1290 if (!ftrace_mod) 1291 return -ENOMEM; 1292 1293 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1294 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1295 ftrace_mod->enable = enable; 1296 1297 if (!ftrace_mod->func || !ftrace_mod->module) 1298 goto out_free; 1299 1300 list_add(&ftrace_mod->list, mod_head); 1301 1302 return 0; 1303 1304 out_free: 1305 free_ftrace_mod(ftrace_mod); 1306 1307 return -ENOMEM; 1308 } 1309 1310 static struct ftrace_hash * 1311 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1312 { 1313 struct ftrace_func_entry *entry; 1314 struct ftrace_hash *new_hash; 1315 int size; 1316 int ret; 1317 int i; 1318 1319 new_hash = alloc_ftrace_hash(size_bits); 1320 if (!new_hash) 1321 return NULL; 1322 1323 if (hash) 1324 new_hash->flags = hash->flags; 1325 1326 /* Empty hash? */ 1327 if (ftrace_hash_empty(hash)) 1328 return new_hash; 1329 1330 size = 1 << hash->size_bits; 1331 for (i = 0; i < size; i++) { 1332 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1333 ret = add_hash_entry(new_hash, entry->ip); 1334 if (ret < 0) 1335 goto free_hash; 1336 } 1337 } 1338 1339 FTRACE_WARN_ON(new_hash->count != hash->count); 1340 1341 return new_hash; 1342 1343 free_hash: 1344 free_ftrace_hash(new_hash); 1345 return NULL; 1346 } 1347 1348 static void 1349 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1350 static void 1351 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1352 1353 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1354 struct ftrace_hash *new_hash); 1355 1356 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1357 { 1358 struct ftrace_func_entry *entry; 1359 struct ftrace_hash *new_hash; 1360 struct hlist_head *hhd; 1361 struct hlist_node *tn; 1362 int bits = 0; 1363 int i; 1364 1365 /* 1366 * Use around half the size (max bit of it), but 1367 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1368 */ 1369 bits = fls(size / 2); 1370 1371 /* Don't allocate too much */ 1372 if (bits > FTRACE_HASH_MAX_BITS) 1373 bits = FTRACE_HASH_MAX_BITS; 1374 1375 new_hash = alloc_ftrace_hash(bits); 1376 if (!new_hash) 1377 return NULL; 1378 1379 new_hash->flags = src->flags; 1380 1381 size = 1 << src->size_bits; 1382 for (i = 0; i < size; i++) { 1383 hhd = &src->buckets[i]; 1384 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1385 remove_hash_entry(src, entry); 1386 __add_hash_entry(new_hash, entry); 1387 } 1388 } 1389 return new_hash; 1390 } 1391 1392 static struct ftrace_hash * 1393 __ftrace_hash_move(struct ftrace_hash *src) 1394 { 1395 int size = src->count; 1396 1397 /* 1398 * If the new source is empty, just return the empty_hash. 1399 */ 1400 if (ftrace_hash_empty(src)) 1401 return EMPTY_HASH; 1402 1403 return dup_hash(src, size); 1404 } 1405 1406 static int 1407 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1408 struct ftrace_hash **dst, struct ftrace_hash *src) 1409 { 1410 struct ftrace_hash *new_hash; 1411 int ret; 1412 1413 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1414 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1415 return -EINVAL; 1416 1417 new_hash = __ftrace_hash_move(src); 1418 if (!new_hash) 1419 return -ENOMEM; 1420 1421 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1422 if (enable) { 1423 /* IPMODIFY should be updated only when filter_hash updating */ 1424 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1425 if (ret < 0) { 1426 free_ftrace_hash(new_hash); 1427 return ret; 1428 } 1429 } 1430 1431 /* 1432 * Remove the current set, update the hash and add 1433 * them back. 1434 */ 1435 ftrace_hash_rec_disable_modify(ops, enable); 1436 1437 rcu_assign_pointer(*dst, new_hash); 1438 1439 ftrace_hash_rec_enable_modify(ops, enable); 1440 1441 return 0; 1442 } 1443 1444 static bool hash_contains_ip(unsigned long ip, 1445 struct ftrace_ops_hash *hash) 1446 { 1447 /* 1448 * The function record is a match if it exists in the filter 1449 * hash and not in the notrace hash. Note, an empty hash is 1450 * considered a match for the filter hash, but an empty 1451 * notrace hash is considered not in the notrace hash. 1452 */ 1453 return (ftrace_hash_empty(hash->filter_hash) || 1454 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1455 (ftrace_hash_empty(hash->notrace_hash) || 1456 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1457 } 1458 1459 /* 1460 * Test the hashes for this ops to see if we want to call 1461 * the ops->func or not. 1462 * 1463 * It's a match if the ip is in the ops->filter_hash or 1464 * the filter_hash does not exist or is empty, 1465 * AND 1466 * the ip is not in the ops->notrace_hash. 1467 * 1468 * This needs to be called with preemption disabled as 1469 * the hashes are freed with call_rcu(). 1470 */ 1471 int 1472 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1473 { 1474 struct ftrace_ops_hash hash; 1475 int ret; 1476 1477 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1478 /* 1479 * There's a small race when adding ops that the ftrace handler 1480 * that wants regs, may be called without them. We can not 1481 * allow that handler to be called if regs is NULL. 1482 */ 1483 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1484 return 0; 1485 #endif 1486 1487 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1488 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1489 1490 if (hash_contains_ip(ip, &hash)) 1491 ret = 1; 1492 else 1493 ret = 0; 1494 1495 return ret; 1496 } 1497 1498 /* 1499 * This is a double for. Do not use 'break' to break out of the loop, 1500 * you must use a goto. 1501 */ 1502 #define do_for_each_ftrace_rec(pg, rec) \ 1503 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1504 int _____i; \ 1505 for (_____i = 0; _____i < pg->index; _____i++) { \ 1506 rec = &pg->records[_____i]; 1507 1508 #define while_for_each_ftrace_rec() \ 1509 } \ 1510 } 1511 1512 1513 static int ftrace_cmp_recs(const void *a, const void *b) 1514 { 1515 const struct dyn_ftrace *key = a; 1516 const struct dyn_ftrace *rec = b; 1517 1518 if (key->flags < rec->ip) 1519 return -1; 1520 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1521 return 1; 1522 return 0; 1523 } 1524 1525 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1526 { 1527 struct ftrace_page *pg; 1528 struct dyn_ftrace *rec = NULL; 1529 struct dyn_ftrace key; 1530 1531 key.ip = start; 1532 key.flags = end; /* overload flags, as it is unsigned long */ 1533 1534 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1535 if (end < pg->records[0].ip || 1536 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1537 continue; 1538 rec = bsearch(&key, pg->records, pg->index, 1539 sizeof(struct dyn_ftrace), 1540 ftrace_cmp_recs); 1541 if (rec) 1542 break; 1543 } 1544 return rec; 1545 } 1546 1547 /** 1548 * ftrace_location_range - return the first address of a traced location 1549 * if it touches the given ip range 1550 * @start: start of range to search. 1551 * @end: end of range to search (inclusive). @end points to the last byte 1552 * to check. 1553 * 1554 * Returns rec->ip if the related ftrace location is a least partly within 1555 * the given address range. That is, the first address of the instruction 1556 * that is either a NOP or call to the function tracer. It checks the ftrace 1557 * internal tables to determine if the address belongs or not. 1558 */ 1559 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1560 { 1561 struct dyn_ftrace *rec; 1562 1563 rec = lookup_rec(start, end); 1564 if (rec) 1565 return rec->ip; 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * ftrace_location - return true if the ip giving is a traced location 1572 * @ip: the instruction pointer to check 1573 * 1574 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1575 * That is, the instruction that is either a NOP or call to 1576 * the function tracer. It checks the ftrace internal tables to 1577 * determine if the address belongs or not. 1578 */ 1579 unsigned long ftrace_location(unsigned long ip) 1580 { 1581 return ftrace_location_range(ip, ip); 1582 } 1583 1584 /** 1585 * ftrace_text_reserved - return true if range contains an ftrace location 1586 * @start: start of range to search 1587 * @end: end of range to search (inclusive). @end points to the last byte to check. 1588 * 1589 * Returns 1 if @start and @end contains a ftrace location. 1590 * That is, the instruction that is either a NOP or call to 1591 * the function tracer. It checks the ftrace internal tables to 1592 * determine if the address belongs or not. 1593 */ 1594 int ftrace_text_reserved(const void *start, const void *end) 1595 { 1596 unsigned long ret; 1597 1598 ret = ftrace_location_range((unsigned long)start, 1599 (unsigned long)end); 1600 1601 return (int)!!ret; 1602 } 1603 1604 /* Test if ops registered to this rec needs regs */ 1605 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1606 { 1607 struct ftrace_ops *ops; 1608 bool keep_regs = false; 1609 1610 for (ops = ftrace_ops_list; 1611 ops != &ftrace_list_end; ops = ops->next) { 1612 /* pass rec in as regs to have non-NULL val */ 1613 if (ftrace_ops_test(ops, rec->ip, rec)) { 1614 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1615 keep_regs = true; 1616 break; 1617 } 1618 } 1619 } 1620 1621 return keep_regs; 1622 } 1623 1624 static struct ftrace_ops * 1625 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1626 static struct ftrace_ops * 1627 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1628 static struct ftrace_ops * 1629 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1630 1631 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1632 int filter_hash, 1633 bool inc) 1634 { 1635 struct ftrace_hash *hash; 1636 struct ftrace_hash *other_hash; 1637 struct ftrace_page *pg; 1638 struct dyn_ftrace *rec; 1639 bool update = false; 1640 int count = 0; 1641 int all = false; 1642 1643 /* Only update if the ops has been registered */ 1644 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1645 return false; 1646 1647 /* 1648 * In the filter_hash case: 1649 * If the count is zero, we update all records. 1650 * Otherwise we just update the items in the hash. 1651 * 1652 * In the notrace_hash case: 1653 * We enable the update in the hash. 1654 * As disabling notrace means enabling the tracing, 1655 * and enabling notrace means disabling, the inc variable 1656 * gets inversed. 1657 */ 1658 if (filter_hash) { 1659 hash = ops->func_hash->filter_hash; 1660 other_hash = ops->func_hash->notrace_hash; 1661 if (ftrace_hash_empty(hash)) 1662 all = true; 1663 } else { 1664 inc = !inc; 1665 hash = ops->func_hash->notrace_hash; 1666 other_hash = ops->func_hash->filter_hash; 1667 /* 1668 * If the notrace hash has no items, 1669 * then there's nothing to do. 1670 */ 1671 if (ftrace_hash_empty(hash)) 1672 return false; 1673 } 1674 1675 do_for_each_ftrace_rec(pg, rec) { 1676 int in_other_hash = 0; 1677 int in_hash = 0; 1678 int match = 0; 1679 1680 if (rec->flags & FTRACE_FL_DISABLED) 1681 continue; 1682 1683 if (all) { 1684 /* 1685 * Only the filter_hash affects all records. 1686 * Update if the record is not in the notrace hash. 1687 */ 1688 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1689 match = 1; 1690 } else { 1691 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1692 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1693 1694 /* 1695 * If filter_hash is set, we want to match all functions 1696 * that are in the hash but not in the other hash. 1697 * 1698 * If filter_hash is not set, then we are decrementing. 1699 * That means we match anything that is in the hash 1700 * and also in the other_hash. That is, we need to turn 1701 * off functions in the other hash because they are disabled 1702 * by this hash. 1703 */ 1704 if (filter_hash && in_hash && !in_other_hash) 1705 match = 1; 1706 else if (!filter_hash && in_hash && 1707 (in_other_hash || ftrace_hash_empty(other_hash))) 1708 match = 1; 1709 } 1710 if (!match) 1711 continue; 1712 1713 if (inc) { 1714 rec->flags++; 1715 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1716 return false; 1717 1718 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1719 rec->flags |= FTRACE_FL_DIRECT; 1720 1721 /* 1722 * If there's only a single callback registered to a 1723 * function, and the ops has a trampoline registered 1724 * for it, then we can call it directly. 1725 */ 1726 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1727 rec->flags |= FTRACE_FL_TRAMP; 1728 else 1729 /* 1730 * If we are adding another function callback 1731 * to this function, and the previous had a 1732 * custom trampoline in use, then we need to go 1733 * back to the default trampoline. 1734 */ 1735 rec->flags &= ~FTRACE_FL_TRAMP; 1736 1737 /* 1738 * If any ops wants regs saved for this function 1739 * then all ops will get saved regs. 1740 */ 1741 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1742 rec->flags |= FTRACE_FL_REGS; 1743 } else { 1744 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1745 return false; 1746 rec->flags--; 1747 1748 /* 1749 * Only the internal direct_ops should have the 1750 * DIRECT flag set. Thus, if it is removing a 1751 * function, then that function should no longer 1752 * be direct. 1753 */ 1754 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1755 rec->flags &= ~FTRACE_FL_DIRECT; 1756 1757 /* 1758 * If the rec had REGS enabled and the ops that is 1759 * being removed had REGS set, then see if there is 1760 * still any ops for this record that wants regs. 1761 * If not, we can stop recording them. 1762 */ 1763 if (ftrace_rec_count(rec) > 0 && 1764 rec->flags & FTRACE_FL_REGS && 1765 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1766 if (!test_rec_ops_needs_regs(rec)) 1767 rec->flags &= ~FTRACE_FL_REGS; 1768 } 1769 1770 /* 1771 * The TRAMP needs to be set only if rec count 1772 * is decremented to one, and the ops that is 1773 * left has a trampoline. As TRAMP can only be 1774 * enabled if there is only a single ops attached 1775 * to it. 1776 */ 1777 if (ftrace_rec_count(rec) == 1 && 1778 ftrace_find_tramp_ops_any_other(rec, ops)) 1779 rec->flags |= FTRACE_FL_TRAMP; 1780 else 1781 rec->flags &= ~FTRACE_FL_TRAMP; 1782 1783 /* 1784 * flags will be cleared in ftrace_check_record() 1785 * if rec count is zero. 1786 */ 1787 } 1788 count++; 1789 1790 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1791 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1792 1793 /* Shortcut, if we handled all records, we are done. */ 1794 if (!all && count == hash->count) 1795 return update; 1796 } while_for_each_ftrace_rec(); 1797 1798 return update; 1799 } 1800 1801 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1802 int filter_hash) 1803 { 1804 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1805 } 1806 1807 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1808 int filter_hash) 1809 { 1810 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1811 } 1812 1813 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1814 int filter_hash, int inc) 1815 { 1816 struct ftrace_ops *op; 1817 1818 __ftrace_hash_rec_update(ops, filter_hash, inc); 1819 1820 if (ops->func_hash != &global_ops.local_hash) 1821 return; 1822 1823 /* 1824 * If the ops shares the global_ops hash, then we need to update 1825 * all ops that are enabled and use this hash. 1826 */ 1827 do_for_each_ftrace_op(op, ftrace_ops_list) { 1828 /* Already done */ 1829 if (op == ops) 1830 continue; 1831 if (op->func_hash == &global_ops.local_hash) 1832 __ftrace_hash_rec_update(op, filter_hash, inc); 1833 } while_for_each_ftrace_op(op); 1834 } 1835 1836 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1837 int filter_hash) 1838 { 1839 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1840 } 1841 1842 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1843 int filter_hash) 1844 { 1845 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1846 } 1847 1848 /* 1849 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1850 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1851 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1852 * Note that old_hash and new_hash has below meanings 1853 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1854 * - If the hash is EMPTY_HASH, it hits nothing 1855 * - Anything else hits the recs which match the hash entries. 1856 */ 1857 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1858 struct ftrace_hash *old_hash, 1859 struct ftrace_hash *new_hash) 1860 { 1861 struct ftrace_page *pg; 1862 struct dyn_ftrace *rec, *end = NULL; 1863 int in_old, in_new; 1864 1865 /* Only update if the ops has been registered */ 1866 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1867 return 0; 1868 1869 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1870 return 0; 1871 1872 /* 1873 * Since the IPMODIFY is a very address sensitive action, we do not 1874 * allow ftrace_ops to set all functions to new hash. 1875 */ 1876 if (!new_hash || !old_hash) 1877 return -EINVAL; 1878 1879 /* Update rec->flags */ 1880 do_for_each_ftrace_rec(pg, rec) { 1881 1882 if (rec->flags & FTRACE_FL_DISABLED) 1883 continue; 1884 1885 /* We need to update only differences of filter_hash */ 1886 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1887 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1888 if (in_old == in_new) 1889 continue; 1890 1891 if (in_new) { 1892 /* New entries must ensure no others are using it */ 1893 if (rec->flags & FTRACE_FL_IPMODIFY) 1894 goto rollback; 1895 rec->flags |= FTRACE_FL_IPMODIFY; 1896 } else /* Removed entry */ 1897 rec->flags &= ~FTRACE_FL_IPMODIFY; 1898 } while_for_each_ftrace_rec(); 1899 1900 return 0; 1901 1902 rollback: 1903 end = rec; 1904 1905 /* Roll back what we did above */ 1906 do_for_each_ftrace_rec(pg, rec) { 1907 1908 if (rec->flags & FTRACE_FL_DISABLED) 1909 continue; 1910 1911 if (rec == end) 1912 goto err_out; 1913 1914 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1915 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1916 if (in_old == in_new) 1917 continue; 1918 1919 if (in_new) 1920 rec->flags &= ~FTRACE_FL_IPMODIFY; 1921 else 1922 rec->flags |= FTRACE_FL_IPMODIFY; 1923 } while_for_each_ftrace_rec(); 1924 1925 err_out: 1926 return -EBUSY; 1927 } 1928 1929 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1930 { 1931 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1932 1933 if (ftrace_hash_empty(hash)) 1934 hash = NULL; 1935 1936 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1937 } 1938 1939 /* Disabling always succeeds */ 1940 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1941 { 1942 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1943 1944 if (ftrace_hash_empty(hash)) 1945 hash = NULL; 1946 1947 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1948 } 1949 1950 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1951 struct ftrace_hash *new_hash) 1952 { 1953 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1954 1955 if (ftrace_hash_empty(old_hash)) 1956 old_hash = NULL; 1957 1958 if (ftrace_hash_empty(new_hash)) 1959 new_hash = NULL; 1960 1961 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1962 } 1963 1964 static void print_ip_ins(const char *fmt, const unsigned char *p) 1965 { 1966 char ins[MCOUNT_INSN_SIZE]; 1967 int i; 1968 1969 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 1970 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 1971 return; 1972 } 1973 1974 printk(KERN_CONT "%s", fmt); 1975 1976 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1977 printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]); 1978 } 1979 1980 enum ftrace_bug_type ftrace_bug_type; 1981 const void *ftrace_expected; 1982 1983 static void print_bug_type(void) 1984 { 1985 switch (ftrace_bug_type) { 1986 case FTRACE_BUG_UNKNOWN: 1987 break; 1988 case FTRACE_BUG_INIT: 1989 pr_info("Initializing ftrace call sites\n"); 1990 break; 1991 case FTRACE_BUG_NOP: 1992 pr_info("Setting ftrace call site to NOP\n"); 1993 break; 1994 case FTRACE_BUG_CALL: 1995 pr_info("Setting ftrace call site to call ftrace function\n"); 1996 break; 1997 case FTRACE_BUG_UPDATE: 1998 pr_info("Updating ftrace call site to call a different ftrace function\n"); 1999 break; 2000 } 2001 } 2002 2003 /** 2004 * ftrace_bug - report and shutdown function tracer 2005 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2006 * @rec: The record that failed 2007 * 2008 * The arch code that enables or disables the function tracing 2009 * can call ftrace_bug() when it has detected a problem in 2010 * modifying the code. @failed should be one of either: 2011 * EFAULT - if the problem happens on reading the @ip address 2012 * EINVAL - if what is read at @ip is not what was expected 2013 * EPERM - if the problem happens on writing to the @ip address 2014 */ 2015 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2016 { 2017 unsigned long ip = rec ? rec->ip : 0; 2018 2019 pr_info("------------[ ftrace bug ]------------\n"); 2020 2021 switch (failed) { 2022 case -EFAULT: 2023 pr_info("ftrace faulted on modifying "); 2024 print_ip_sym(KERN_INFO, ip); 2025 break; 2026 case -EINVAL: 2027 pr_info("ftrace failed to modify "); 2028 print_ip_sym(KERN_INFO, ip); 2029 print_ip_ins(" actual: ", (unsigned char *)ip); 2030 pr_cont("\n"); 2031 if (ftrace_expected) { 2032 print_ip_ins(" expected: ", ftrace_expected); 2033 pr_cont("\n"); 2034 } 2035 break; 2036 case -EPERM: 2037 pr_info("ftrace faulted on writing "); 2038 print_ip_sym(KERN_INFO, ip); 2039 break; 2040 default: 2041 pr_info("ftrace faulted on unknown error "); 2042 print_ip_sym(KERN_INFO, ip); 2043 } 2044 print_bug_type(); 2045 if (rec) { 2046 struct ftrace_ops *ops = NULL; 2047 2048 pr_info("ftrace record flags: %lx\n", rec->flags); 2049 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2050 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2051 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2052 ops = ftrace_find_tramp_ops_any(rec); 2053 if (ops) { 2054 do { 2055 pr_cont("\ttramp: %pS (%pS)", 2056 (void *)ops->trampoline, 2057 (void *)ops->func); 2058 ops = ftrace_find_tramp_ops_next(rec, ops); 2059 } while (ops); 2060 } else 2061 pr_cont("\ttramp: ERROR!"); 2062 2063 } 2064 ip = ftrace_get_addr_curr(rec); 2065 pr_cont("\n expected tramp: %lx\n", ip); 2066 } 2067 2068 FTRACE_WARN_ON_ONCE(1); 2069 } 2070 2071 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2072 { 2073 unsigned long flag = 0UL; 2074 2075 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2076 2077 if (rec->flags & FTRACE_FL_DISABLED) 2078 return FTRACE_UPDATE_IGNORE; 2079 2080 /* 2081 * If we are updating calls: 2082 * 2083 * If the record has a ref count, then we need to enable it 2084 * because someone is using it. 2085 * 2086 * Otherwise we make sure its disabled. 2087 * 2088 * If we are disabling calls, then disable all records that 2089 * are enabled. 2090 */ 2091 if (enable && ftrace_rec_count(rec)) 2092 flag = FTRACE_FL_ENABLED; 2093 2094 /* 2095 * If enabling and the REGS flag does not match the REGS_EN, or 2096 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2097 * this record. Set flags to fail the compare against ENABLED. 2098 * Same for direct calls. 2099 */ 2100 if (flag) { 2101 if (!(rec->flags & FTRACE_FL_REGS) != 2102 !(rec->flags & FTRACE_FL_REGS_EN)) 2103 flag |= FTRACE_FL_REGS; 2104 2105 if (!(rec->flags & FTRACE_FL_TRAMP) != 2106 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2107 flag |= FTRACE_FL_TRAMP; 2108 2109 /* 2110 * Direct calls are special, as count matters. 2111 * We must test the record for direct, if the 2112 * DIRECT and DIRECT_EN do not match, but only 2113 * if the count is 1. That's because, if the 2114 * count is something other than one, we do not 2115 * want the direct enabled (it will be done via the 2116 * direct helper). But if DIRECT_EN is set, and 2117 * the count is not one, we need to clear it. 2118 */ 2119 if (ftrace_rec_count(rec) == 1) { 2120 if (!(rec->flags & FTRACE_FL_DIRECT) != 2121 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2122 flag |= FTRACE_FL_DIRECT; 2123 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2124 flag |= FTRACE_FL_DIRECT; 2125 } 2126 } 2127 2128 /* If the state of this record hasn't changed, then do nothing */ 2129 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2130 return FTRACE_UPDATE_IGNORE; 2131 2132 if (flag) { 2133 /* Save off if rec is being enabled (for return value) */ 2134 flag ^= rec->flags & FTRACE_FL_ENABLED; 2135 2136 if (update) { 2137 rec->flags |= FTRACE_FL_ENABLED; 2138 if (flag & FTRACE_FL_REGS) { 2139 if (rec->flags & FTRACE_FL_REGS) 2140 rec->flags |= FTRACE_FL_REGS_EN; 2141 else 2142 rec->flags &= ~FTRACE_FL_REGS_EN; 2143 } 2144 if (flag & FTRACE_FL_TRAMP) { 2145 if (rec->flags & FTRACE_FL_TRAMP) 2146 rec->flags |= FTRACE_FL_TRAMP_EN; 2147 else 2148 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2149 } 2150 2151 if (flag & FTRACE_FL_DIRECT) { 2152 /* 2153 * If there's only one user (direct_ops helper) 2154 * then we can call the direct function 2155 * directly (no ftrace trampoline). 2156 */ 2157 if (ftrace_rec_count(rec) == 1) { 2158 if (rec->flags & FTRACE_FL_DIRECT) 2159 rec->flags |= FTRACE_FL_DIRECT_EN; 2160 else 2161 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2162 } else { 2163 /* 2164 * Can only call directly if there's 2165 * only one callback to the function. 2166 */ 2167 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2168 } 2169 } 2170 } 2171 2172 /* 2173 * If this record is being updated from a nop, then 2174 * return UPDATE_MAKE_CALL. 2175 * Otherwise, 2176 * return UPDATE_MODIFY_CALL to tell the caller to convert 2177 * from the save regs, to a non-save regs function or 2178 * vice versa, or from a trampoline call. 2179 */ 2180 if (flag & FTRACE_FL_ENABLED) { 2181 ftrace_bug_type = FTRACE_BUG_CALL; 2182 return FTRACE_UPDATE_MAKE_CALL; 2183 } 2184 2185 ftrace_bug_type = FTRACE_BUG_UPDATE; 2186 return FTRACE_UPDATE_MODIFY_CALL; 2187 } 2188 2189 if (update) { 2190 /* If there's no more users, clear all flags */ 2191 if (!ftrace_rec_count(rec)) 2192 rec->flags = 0; 2193 else 2194 /* 2195 * Just disable the record, but keep the ops TRAMP 2196 * and REGS states. The _EN flags must be disabled though. 2197 */ 2198 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2199 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2200 } 2201 2202 ftrace_bug_type = FTRACE_BUG_NOP; 2203 return FTRACE_UPDATE_MAKE_NOP; 2204 } 2205 2206 /** 2207 * ftrace_update_record - set a record that now is tracing or not 2208 * @rec: the record to update 2209 * @enable: set to true if the record is tracing, false to force disable 2210 * 2211 * The records that represent all functions that can be traced need 2212 * to be updated when tracing has been enabled. 2213 */ 2214 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2215 { 2216 return ftrace_check_record(rec, enable, true); 2217 } 2218 2219 /** 2220 * ftrace_test_record - check if the record has been enabled or not 2221 * @rec: the record to test 2222 * @enable: set to true to check if enabled, false if it is disabled 2223 * 2224 * The arch code may need to test if a record is already set to 2225 * tracing to determine how to modify the function code that it 2226 * represents. 2227 */ 2228 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2229 { 2230 return ftrace_check_record(rec, enable, false); 2231 } 2232 2233 static struct ftrace_ops * 2234 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2235 { 2236 struct ftrace_ops *op; 2237 unsigned long ip = rec->ip; 2238 2239 do_for_each_ftrace_op(op, ftrace_ops_list) { 2240 2241 if (!op->trampoline) 2242 continue; 2243 2244 if (hash_contains_ip(ip, op->func_hash)) 2245 return op; 2246 } while_for_each_ftrace_op(op); 2247 2248 return NULL; 2249 } 2250 2251 static struct ftrace_ops * 2252 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2253 { 2254 struct ftrace_ops *op; 2255 unsigned long ip = rec->ip; 2256 2257 do_for_each_ftrace_op(op, ftrace_ops_list) { 2258 2259 if (op == op_exclude || !op->trampoline) 2260 continue; 2261 2262 if (hash_contains_ip(ip, op->func_hash)) 2263 return op; 2264 } while_for_each_ftrace_op(op); 2265 2266 return NULL; 2267 } 2268 2269 static struct ftrace_ops * 2270 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2271 struct ftrace_ops *op) 2272 { 2273 unsigned long ip = rec->ip; 2274 2275 while_for_each_ftrace_op(op) { 2276 2277 if (!op->trampoline) 2278 continue; 2279 2280 if (hash_contains_ip(ip, op->func_hash)) 2281 return op; 2282 } 2283 2284 return NULL; 2285 } 2286 2287 static struct ftrace_ops * 2288 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2289 { 2290 struct ftrace_ops *op; 2291 unsigned long ip = rec->ip; 2292 2293 /* 2294 * Need to check removed ops first. 2295 * If they are being removed, and this rec has a tramp, 2296 * and this rec is in the ops list, then it would be the 2297 * one with the tramp. 2298 */ 2299 if (removed_ops) { 2300 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2301 return removed_ops; 2302 } 2303 2304 /* 2305 * Need to find the current trampoline for a rec. 2306 * Now, a trampoline is only attached to a rec if there 2307 * was a single 'ops' attached to it. But this can be called 2308 * when we are adding another op to the rec or removing the 2309 * current one. Thus, if the op is being added, we can 2310 * ignore it because it hasn't attached itself to the rec 2311 * yet. 2312 * 2313 * If an ops is being modified (hooking to different functions) 2314 * then we don't care about the new functions that are being 2315 * added, just the old ones (that are probably being removed). 2316 * 2317 * If we are adding an ops to a function that already is using 2318 * a trampoline, it needs to be removed (trampolines are only 2319 * for single ops connected), then an ops that is not being 2320 * modified also needs to be checked. 2321 */ 2322 do_for_each_ftrace_op(op, ftrace_ops_list) { 2323 2324 if (!op->trampoline) 2325 continue; 2326 2327 /* 2328 * If the ops is being added, it hasn't gotten to 2329 * the point to be removed from this tree yet. 2330 */ 2331 if (op->flags & FTRACE_OPS_FL_ADDING) 2332 continue; 2333 2334 2335 /* 2336 * If the ops is being modified and is in the old 2337 * hash, then it is probably being removed from this 2338 * function. 2339 */ 2340 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2341 hash_contains_ip(ip, &op->old_hash)) 2342 return op; 2343 /* 2344 * If the ops is not being added or modified, and it's 2345 * in its normal filter hash, then this must be the one 2346 * we want! 2347 */ 2348 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2349 hash_contains_ip(ip, op->func_hash)) 2350 return op; 2351 2352 } while_for_each_ftrace_op(op); 2353 2354 return NULL; 2355 } 2356 2357 static struct ftrace_ops * 2358 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2359 { 2360 struct ftrace_ops *op; 2361 unsigned long ip = rec->ip; 2362 2363 do_for_each_ftrace_op(op, ftrace_ops_list) { 2364 /* pass rec in as regs to have non-NULL val */ 2365 if (hash_contains_ip(ip, op->func_hash)) 2366 return op; 2367 } while_for_each_ftrace_op(op); 2368 2369 return NULL; 2370 } 2371 2372 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2373 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2374 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2375 static DEFINE_MUTEX(direct_mutex); 2376 int ftrace_direct_func_count; 2377 2378 /* 2379 * Search the direct_functions hash to see if the given instruction pointer 2380 * has a direct caller attached to it. 2381 */ 2382 unsigned long ftrace_find_rec_direct(unsigned long ip) 2383 { 2384 struct ftrace_func_entry *entry; 2385 2386 entry = __ftrace_lookup_ip(direct_functions, ip); 2387 if (!entry) 2388 return 0; 2389 2390 return entry->direct; 2391 } 2392 2393 static struct ftrace_func_entry* 2394 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2395 struct ftrace_hash **free_hash) 2396 { 2397 struct ftrace_func_entry *entry; 2398 2399 if (ftrace_hash_empty(direct_functions) || 2400 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2401 struct ftrace_hash *new_hash; 2402 int size = ftrace_hash_empty(direct_functions) ? 0 : 2403 direct_functions->count + 1; 2404 2405 if (size < 32) 2406 size = 32; 2407 2408 new_hash = dup_hash(direct_functions, size); 2409 if (!new_hash) 2410 return NULL; 2411 2412 *free_hash = direct_functions; 2413 direct_functions = new_hash; 2414 } 2415 2416 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2417 if (!entry) 2418 return NULL; 2419 2420 entry->ip = ip; 2421 entry->direct = addr; 2422 __add_hash_entry(direct_functions, entry); 2423 return entry; 2424 } 2425 2426 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2427 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2428 { 2429 struct pt_regs *regs = ftrace_get_regs(fregs); 2430 unsigned long addr; 2431 2432 addr = ftrace_find_rec_direct(ip); 2433 if (!addr) 2434 return; 2435 2436 arch_ftrace_set_direct_caller(regs, addr); 2437 } 2438 2439 struct ftrace_ops direct_ops = { 2440 .func = call_direct_funcs, 2441 .flags = FTRACE_OPS_FL_IPMODIFY 2442 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2443 | FTRACE_OPS_FL_PERMANENT, 2444 /* 2445 * By declaring the main trampoline as this trampoline 2446 * it will never have one allocated for it. Allocated 2447 * trampolines should not call direct functions. 2448 * The direct_ops should only be called by the builtin 2449 * ftrace_regs_caller trampoline. 2450 */ 2451 .trampoline = FTRACE_REGS_ADDR, 2452 }; 2453 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2454 2455 /** 2456 * ftrace_get_addr_new - Get the call address to set to 2457 * @rec: The ftrace record descriptor 2458 * 2459 * If the record has the FTRACE_FL_REGS set, that means that it 2460 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2461 * is not set, then it wants to convert to the normal callback. 2462 * 2463 * Returns the address of the trampoline to set to 2464 */ 2465 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2466 { 2467 struct ftrace_ops *ops; 2468 unsigned long addr; 2469 2470 if ((rec->flags & FTRACE_FL_DIRECT) && 2471 (ftrace_rec_count(rec) == 1)) { 2472 addr = ftrace_find_rec_direct(rec->ip); 2473 if (addr) 2474 return addr; 2475 WARN_ON_ONCE(1); 2476 } 2477 2478 /* Trampolines take precedence over regs */ 2479 if (rec->flags & FTRACE_FL_TRAMP) { 2480 ops = ftrace_find_tramp_ops_new(rec); 2481 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2482 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2483 (void *)rec->ip, (void *)rec->ip, rec->flags); 2484 /* Ftrace is shutting down, return anything */ 2485 return (unsigned long)FTRACE_ADDR; 2486 } 2487 return ops->trampoline; 2488 } 2489 2490 if (rec->flags & FTRACE_FL_REGS) 2491 return (unsigned long)FTRACE_REGS_ADDR; 2492 else 2493 return (unsigned long)FTRACE_ADDR; 2494 } 2495 2496 /** 2497 * ftrace_get_addr_curr - Get the call address that is already there 2498 * @rec: The ftrace record descriptor 2499 * 2500 * The FTRACE_FL_REGS_EN is set when the record already points to 2501 * a function that saves all the regs. Basically the '_EN' version 2502 * represents the current state of the function. 2503 * 2504 * Returns the address of the trampoline that is currently being called 2505 */ 2506 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2507 { 2508 struct ftrace_ops *ops; 2509 unsigned long addr; 2510 2511 /* Direct calls take precedence over trampolines */ 2512 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2513 addr = ftrace_find_rec_direct(rec->ip); 2514 if (addr) 2515 return addr; 2516 WARN_ON_ONCE(1); 2517 } 2518 2519 /* Trampolines take precedence over regs */ 2520 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2521 ops = ftrace_find_tramp_ops_curr(rec); 2522 if (FTRACE_WARN_ON(!ops)) { 2523 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2524 (void *)rec->ip, (void *)rec->ip); 2525 /* Ftrace is shutting down, return anything */ 2526 return (unsigned long)FTRACE_ADDR; 2527 } 2528 return ops->trampoline; 2529 } 2530 2531 if (rec->flags & FTRACE_FL_REGS_EN) 2532 return (unsigned long)FTRACE_REGS_ADDR; 2533 else 2534 return (unsigned long)FTRACE_ADDR; 2535 } 2536 2537 static int 2538 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2539 { 2540 unsigned long ftrace_old_addr; 2541 unsigned long ftrace_addr; 2542 int ret; 2543 2544 ftrace_addr = ftrace_get_addr_new(rec); 2545 2546 /* This needs to be done before we call ftrace_update_record */ 2547 ftrace_old_addr = ftrace_get_addr_curr(rec); 2548 2549 ret = ftrace_update_record(rec, enable); 2550 2551 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2552 2553 switch (ret) { 2554 case FTRACE_UPDATE_IGNORE: 2555 return 0; 2556 2557 case FTRACE_UPDATE_MAKE_CALL: 2558 ftrace_bug_type = FTRACE_BUG_CALL; 2559 return ftrace_make_call(rec, ftrace_addr); 2560 2561 case FTRACE_UPDATE_MAKE_NOP: 2562 ftrace_bug_type = FTRACE_BUG_NOP; 2563 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2564 2565 case FTRACE_UPDATE_MODIFY_CALL: 2566 ftrace_bug_type = FTRACE_BUG_UPDATE; 2567 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2568 } 2569 2570 return -1; /* unknown ftrace bug */ 2571 } 2572 2573 void __weak ftrace_replace_code(int mod_flags) 2574 { 2575 struct dyn_ftrace *rec; 2576 struct ftrace_page *pg; 2577 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2578 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2579 int failed; 2580 2581 if (unlikely(ftrace_disabled)) 2582 return; 2583 2584 do_for_each_ftrace_rec(pg, rec) { 2585 2586 if (rec->flags & FTRACE_FL_DISABLED) 2587 continue; 2588 2589 failed = __ftrace_replace_code(rec, enable); 2590 if (failed) { 2591 ftrace_bug(failed, rec); 2592 /* Stop processing */ 2593 return; 2594 } 2595 if (schedulable) 2596 cond_resched(); 2597 } while_for_each_ftrace_rec(); 2598 } 2599 2600 struct ftrace_rec_iter { 2601 struct ftrace_page *pg; 2602 int index; 2603 }; 2604 2605 /** 2606 * ftrace_rec_iter_start - start up iterating over traced functions 2607 * 2608 * Returns an iterator handle that is used to iterate over all 2609 * the records that represent address locations where functions 2610 * are traced. 2611 * 2612 * May return NULL if no records are available. 2613 */ 2614 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2615 { 2616 /* 2617 * We only use a single iterator. 2618 * Protected by the ftrace_lock mutex. 2619 */ 2620 static struct ftrace_rec_iter ftrace_rec_iter; 2621 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2622 2623 iter->pg = ftrace_pages_start; 2624 iter->index = 0; 2625 2626 /* Could have empty pages */ 2627 while (iter->pg && !iter->pg->index) 2628 iter->pg = iter->pg->next; 2629 2630 if (!iter->pg) 2631 return NULL; 2632 2633 return iter; 2634 } 2635 2636 /** 2637 * ftrace_rec_iter_next - get the next record to process. 2638 * @iter: The handle to the iterator. 2639 * 2640 * Returns the next iterator after the given iterator @iter. 2641 */ 2642 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2643 { 2644 iter->index++; 2645 2646 if (iter->index >= iter->pg->index) { 2647 iter->pg = iter->pg->next; 2648 iter->index = 0; 2649 2650 /* Could have empty pages */ 2651 while (iter->pg && !iter->pg->index) 2652 iter->pg = iter->pg->next; 2653 } 2654 2655 if (!iter->pg) 2656 return NULL; 2657 2658 return iter; 2659 } 2660 2661 /** 2662 * ftrace_rec_iter_record - get the record at the iterator location 2663 * @iter: The current iterator location 2664 * 2665 * Returns the record that the current @iter is at. 2666 */ 2667 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2668 { 2669 return &iter->pg->records[iter->index]; 2670 } 2671 2672 static int 2673 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2674 { 2675 int ret; 2676 2677 if (unlikely(ftrace_disabled)) 2678 return 0; 2679 2680 ret = ftrace_init_nop(mod, rec); 2681 if (ret) { 2682 ftrace_bug_type = FTRACE_BUG_INIT; 2683 ftrace_bug(ret, rec); 2684 return 0; 2685 } 2686 return 1; 2687 } 2688 2689 /* 2690 * archs can override this function if they must do something 2691 * before the modifying code is performed. 2692 */ 2693 int __weak ftrace_arch_code_modify_prepare(void) 2694 { 2695 return 0; 2696 } 2697 2698 /* 2699 * archs can override this function if they must do something 2700 * after the modifying code is performed. 2701 */ 2702 int __weak ftrace_arch_code_modify_post_process(void) 2703 { 2704 return 0; 2705 } 2706 2707 void ftrace_modify_all_code(int command) 2708 { 2709 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2710 int mod_flags = 0; 2711 int err = 0; 2712 2713 if (command & FTRACE_MAY_SLEEP) 2714 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2715 2716 /* 2717 * If the ftrace_caller calls a ftrace_ops func directly, 2718 * we need to make sure that it only traces functions it 2719 * expects to trace. When doing the switch of functions, 2720 * we need to update to the ftrace_ops_list_func first 2721 * before the transition between old and new calls are set, 2722 * as the ftrace_ops_list_func will check the ops hashes 2723 * to make sure the ops are having the right functions 2724 * traced. 2725 */ 2726 if (update) { 2727 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2728 if (FTRACE_WARN_ON(err)) 2729 return; 2730 } 2731 2732 if (command & FTRACE_UPDATE_CALLS) 2733 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2734 else if (command & FTRACE_DISABLE_CALLS) 2735 ftrace_replace_code(mod_flags); 2736 2737 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2738 function_trace_op = set_function_trace_op; 2739 smp_wmb(); 2740 /* If irqs are disabled, we are in stop machine */ 2741 if (!irqs_disabled()) 2742 smp_call_function(ftrace_sync_ipi, NULL, 1); 2743 err = ftrace_update_ftrace_func(ftrace_trace_function); 2744 if (FTRACE_WARN_ON(err)) 2745 return; 2746 } 2747 2748 if (command & FTRACE_START_FUNC_RET) 2749 err = ftrace_enable_ftrace_graph_caller(); 2750 else if (command & FTRACE_STOP_FUNC_RET) 2751 err = ftrace_disable_ftrace_graph_caller(); 2752 FTRACE_WARN_ON(err); 2753 } 2754 2755 static int __ftrace_modify_code(void *data) 2756 { 2757 int *command = data; 2758 2759 ftrace_modify_all_code(*command); 2760 2761 return 0; 2762 } 2763 2764 /** 2765 * ftrace_run_stop_machine - go back to the stop machine method 2766 * @command: The command to tell ftrace what to do 2767 * 2768 * If an arch needs to fall back to the stop machine method, the 2769 * it can call this function. 2770 */ 2771 void ftrace_run_stop_machine(int command) 2772 { 2773 stop_machine(__ftrace_modify_code, &command, NULL); 2774 } 2775 2776 /** 2777 * arch_ftrace_update_code - modify the code to trace or not trace 2778 * @command: The command that needs to be done 2779 * 2780 * Archs can override this function if it does not need to 2781 * run stop_machine() to modify code. 2782 */ 2783 void __weak arch_ftrace_update_code(int command) 2784 { 2785 ftrace_run_stop_machine(command); 2786 } 2787 2788 static void ftrace_run_update_code(int command) 2789 { 2790 int ret; 2791 2792 ret = ftrace_arch_code_modify_prepare(); 2793 FTRACE_WARN_ON(ret); 2794 if (ret) 2795 return; 2796 2797 /* 2798 * By default we use stop_machine() to modify the code. 2799 * But archs can do what ever they want as long as it 2800 * is safe. The stop_machine() is the safest, but also 2801 * produces the most overhead. 2802 */ 2803 arch_ftrace_update_code(command); 2804 2805 ret = ftrace_arch_code_modify_post_process(); 2806 FTRACE_WARN_ON(ret); 2807 } 2808 2809 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2810 struct ftrace_ops_hash *old_hash) 2811 { 2812 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2813 ops->old_hash.filter_hash = old_hash->filter_hash; 2814 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2815 ftrace_run_update_code(command); 2816 ops->old_hash.filter_hash = NULL; 2817 ops->old_hash.notrace_hash = NULL; 2818 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2819 } 2820 2821 static ftrace_func_t saved_ftrace_func; 2822 static int ftrace_start_up; 2823 2824 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2825 { 2826 } 2827 2828 /* List of trace_ops that have allocated trampolines */ 2829 static LIST_HEAD(ftrace_ops_trampoline_list); 2830 2831 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2832 { 2833 lockdep_assert_held(&ftrace_lock); 2834 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2835 } 2836 2837 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2838 { 2839 lockdep_assert_held(&ftrace_lock); 2840 list_del_rcu(&ops->list); 2841 synchronize_rcu(); 2842 } 2843 2844 /* 2845 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2846 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2847 * not a module. 2848 */ 2849 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2850 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2851 2852 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2853 { 2854 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2855 ops->trampoline) { 2856 /* 2857 * Record the text poke event before the ksymbol unregister 2858 * event. 2859 */ 2860 perf_event_text_poke((void *)ops->trampoline, 2861 (void *)ops->trampoline, 2862 ops->trampoline_size, NULL, 0); 2863 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2864 ops->trampoline, ops->trampoline_size, 2865 true, FTRACE_TRAMPOLINE_SYM); 2866 /* Remove from kallsyms after the perf events */ 2867 ftrace_remove_trampoline_from_kallsyms(ops); 2868 } 2869 2870 arch_ftrace_trampoline_free(ops); 2871 } 2872 2873 static void ftrace_startup_enable(int command) 2874 { 2875 if (saved_ftrace_func != ftrace_trace_function) { 2876 saved_ftrace_func = ftrace_trace_function; 2877 command |= FTRACE_UPDATE_TRACE_FUNC; 2878 } 2879 2880 if (!command || !ftrace_enabled) 2881 return; 2882 2883 ftrace_run_update_code(command); 2884 } 2885 2886 static void ftrace_startup_all(int command) 2887 { 2888 update_all_ops = true; 2889 ftrace_startup_enable(command); 2890 update_all_ops = false; 2891 } 2892 2893 int ftrace_startup(struct ftrace_ops *ops, int command) 2894 { 2895 int ret; 2896 2897 if (unlikely(ftrace_disabled)) 2898 return -ENODEV; 2899 2900 ret = __register_ftrace_function(ops); 2901 if (ret) 2902 return ret; 2903 2904 ftrace_start_up++; 2905 2906 /* 2907 * Note that ftrace probes uses this to start up 2908 * and modify functions it will probe. But we still 2909 * set the ADDING flag for modification, as probes 2910 * do not have trampolines. If they add them in the 2911 * future, then the probes will need to distinguish 2912 * between adding and updating probes. 2913 */ 2914 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2915 2916 ret = ftrace_hash_ipmodify_enable(ops); 2917 if (ret < 0) { 2918 /* Rollback registration process */ 2919 __unregister_ftrace_function(ops); 2920 ftrace_start_up--; 2921 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2922 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2923 ftrace_trampoline_free(ops); 2924 return ret; 2925 } 2926 2927 if (ftrace_hash_rec_enable(ops, 1)) 2928 command |= FTRACE_UPDATE_CALLS; 2929 2930 ftrace_startup_enable(command); 2931 2932 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2933 2934 return 0; 2935 } 2936 2937 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2938 { 2939 int ret; 2940 2941 if (unlikely(ftrace_disabled)) 2942 return -ENODEV; 2943 2944 ret = __unregister_ftrace_function(ops); 2945 if (ret) 2946 return ret; 2947 2948 ftrace_start_up--; 2949 /* 2950 * Just warn in case of unbalance, no need to kill ftrace, it's not 2951 * critical but the ftrace_call callers may be never nopped again after 2952 * further ftrace uses. 2953 */ 2954 WARN_ON_ONCE(ftrace_start_up < 0); 2955 2956 /* Disabling ipmodify never fails */ 2957 ftrace_hash_ipmodify_disable(ops); 2958 2959 if (ftrace_hash_rec_disable(ops, 1)) 2960 command |= FTRACE_UPDATE_CALLS; 2961 2962 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2963 2964 if (saved_ftrace_func != ftrace_trace_function) { 2965 saved_ftrace_func = ftrace_trace_function; 2966 command |= FTRACE_UPDATE_TRACE_FUNC; 2967 } 2968 2969 if (!command || !ftrace_enabled) { 2970 /* 2971 * If these are dynamic or per_cpu ops, they still 2972 * need their data freed. Since, function tracing is 2973 * not currently active, we can just free them 2974 * without synchronizing all CPUs. 2975 */ 2976 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2977 goto free_ops; 2978 2979 return 0; 2980 } 2981 2982 /* 2983 * If the ops uses a trampoline, then it needs to be 2984 * tested first on update. 2985 */ 2986 ops->flags |= FTRACE_OPS_FL_REMOVING; 2987 removed_ops = ops; 2988 2989 /* The trampoline logic checks the old hashes */ 2990 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2991 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2992 2993 ftrace_run_update_code(command); 2994 2995 /* 2996 * If there's no more ops registered with ftrace, run a 2997 * sanity check to make sure all rec flags are cleared. 2998 */ 2999 if (rcu_dereference_protected(ftrace_ops_list, 3000 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3001 struct ftrace_page *pg; 3002 struct dyn_ftrace *rec; 3003 3004 do_for_each_ftrace_rec(pg, rec) { 3005 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3006 pr_warn(" %pS flags:%lx\n", 3007 (void *)rec->ip, rec->flags); 3008 } while_for_each_ftrace_rec(); 3009 } 3010 3011 ops->old_hash.filter_hash = NULL; 3012 ops->old_hash.notrace_hash = NULL; 3013 3014 removed_ops = NULL; 3015 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3016 3017 /* 3018 * Dynamic ops may be freed, we must make sure that all 3019 * callers are done before leaving this function. 3020 * The same goes for freeing the per_cpu data of the per_cpu 3021 * ops. 3022 */ 3023 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3024 /* 3025 * We need to do a hard force of sched synchronization. 3026 * This is because we use preempt_disable() to do RCU, but 3027 * the function tracers can be called where RCU is not watching 3028 * (like before user_exit()). We can not rely on the RCU 3029 * infrastructure to do the synchronization, thus we must do it 3030 * ourselves. 3031 */ 3032 synchronize_rcu_tasks_rude(); 3033 3034 /* 3035 * When the kernel is preemptive, tasks can be preempted 3036 * while on a ftrace trampoline. Just scheduling a task on 3037 * a CPU is not good enough to flush them. Calling 3038 * synchronize_rcu_tasks() will wait for those tasks to 3039 * execute and either schedule voluntarily or enter user space. 3040 */ 3041 if (IS_ENABLED(CONFIG_PREEMPTION)) 3042 synchronize_rcu_tasks(); 3043 3044 free_ops: 3045 ftrace_trampoline_free(ops); 3046 } 3047 3048 return 0; 3049 } 3050 3051 static void ftrace_startup_sysctl(void) 3052 { 3053 int command; 3054 3055 if (unlikely(ftrace_disabled)) 3056 return; 3057 3058 /* Force update next time */ 3059 saved_ftrace_func = NULL; 3060 /* ftrace_start_up is true if we want ftrace running */ 3061 if (ftrace_start_up) { 3062 command = FTRACE_UPDATE_CALLS; 3063 if (ftrace_graph_active) 3064 command |= FTRACE_START_FUNC_RET; 3065 ftrace_startup_enable(command); 3066 } 3067 } 3068 3069 static void ftrace_shutdown_sysctl(void) 3070 { 3071 int command; 3072 3073 if (unlikely(ftrace_disabled)) 3074 return; 3075 3076 /* ftrace_start_up is true if ftrace is running */ 3077 if (ftrace_start_up) { 3078 command = FTRACE_DISABLE_CALLS; 3079 if (ftrace_graph_active) 3080 command |= FTRACE_STOP_FUNC_RET; 3081 ftrace_run_update_code(command); 3082 } 3083 } 3084 3085 static u64 ftrace_update_time; 3086 unsigned long ftrace_update_tot_cnt; 3087 unsigned long ftrace_number_of_pages; 3088 unsigned long ftrace_number_of_groups; 3089 3090 static inline int ops_traces_mod(struct ftrace_ops *ops) 3091 { 3092 /* 3093 * Filter_hash being empty will default to trace module. 3094 * But notrace hash requires a test of individual module functions. 3095 */ 3096 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3097 ftrace_hash_empty(ops->func_hash->notrace_hash); 3098 } 3099 3100 /* 3101 * Check if the current ops references the record. 3102 * 3103 * If the ops traces all functions, then it was already accounted for. 3104 * If the ops does not trace the current record function, skip it. 3105 * If the ops ignores the function via notrace filter, skip it. 3106 */ 3107 static inline bool 3108 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3109 { 3110 /* If ops isn't enabled, ignore it */ 3111 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3112 return false; 3113 3114 /* If ops traces all then it includes this function */ 3115 if (ops_traces_mod(ops)) 3116 return true; 3117 3118 /* The function must be in the filter */ 3119 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3120 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3121 return false; 3122 3123 /* If in notrace hash, we ignore it too */ 3124 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3125 return false; 3126 3127 return true; 3128 } 3129 3130 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3131 { 3132 bool init_nop = ftrace_need_init_nop(); 3133 struct ftrace_page *pg; 3134 struct dyn_ftrace *p; 3135 u64 start, stop; 3136 unsigned long update_cnt = 0; 3137 unsigned long rec_flags = 0; 3138 int i; 3139 3140 start = ftrace_now(raw_smp_processor_id()); 3141 3142 /* 3143 * When a module is loaded, this function is called to convert 3144 * the calls to mcount in its text to nops, and also to create 3145 * an entry in the ftrace data. Now, if ftrace is activated 3146 * after this call, but before the module sets its text to 3147 * read-only, the modification of enabling ftrace can fail if 3148 * the read-only is done while ftrace is converting the calls. 3149 * To prevent this, the module's records are set as disabled 3150 * and will be enabled after the call to set the module's text 3151 * to read-only. 3152 */ 3153 if (mod) 3154 rec_flags |= FTRACE_FL_DISABLED; 3155 3156 for (pg = new_pgs; pg; pg = pg->next) { 3157 3158 for (i = 0; i < pg->index; i++) { 3159 3160 /* If something went wrong, bail without enabling anything */ 3161 if (unlikely(ftrace_disabled)) 3162 return -1; 3163 3164 p = &pg->records[i]; 3165 p->flags = rec_flags; 3166 3167 /* 3168 * Do the initial record conversion from mcount jump 3169 * to the NOP instructions. 3170 */ 3171 if (init_nop && !ftrace_nop_initialize(mod, p)) 3172 break; 3173 3174 update_cnt++; 3175 } 3176 } 3177 3178 stop = ftrace_now(raw_smp_processor_id()); 3179 ftrace_update_time = stop - start; 3180 ftrace_update_tot_cnt += update_cnt; 3181 3182 return 0; 3183 } 3184 3185 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3186 { 3187 int order; 3188 int pages; 3189 int cnt; 3190 3191 if (WARN_ON(!count)) 3192 return -EINVAL; 3193 3194 /* We want to fill as much as possible, with no empty pages */ 3195 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3196 order = fls(pages) - 1; 3197 3198 again: 3199 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3200 3201 if (!pg->records) { 3202 /* if we can't allocate this size, try something smaller */ 3203 if (!order) 3204 return -ENOMEM; 3205 order >>= 1; 3206 goto again; 3207 } 3208 3209 ftrace_number_of_pages += 1 << order; 3210 ftrace_number_of_groups++; 3211 3212 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3213 pg->order = order; 3214 3215 if (cnt > count) 3216 cnt = count; 3217 3218 return cnt; 3219 } 3220 3221 static struct ftrace_page * 3222 ftrace_allocate_pages(unsigned long num_to_init) 3223 { 3224 struct ftrace_page *start_pg; 3225 struct ftrace_page *pg; 3226 int cnt; 3227 3228 if (!num_to_init) 3229 return NULL; 3230 3231 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3232 if (!pg) 3233 return NULL; 3234 3235 /* 3236 * Try to allocate as much as possible in one continues 3237 * location that fills in all of the space. We want to 3238 * waste as little space as possible. 3239 */ 3240 for (;;) { 3241 cnt = ftrace_allocate_records(pg, num_to_init); 3242 if (cnt < 0) 3243 goto free_pages; 3244 3245 num_to_init -= cnt; 3246 if (!num_to_init) 3247 break; 3248 3249 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3250 if (!pg->next) 3251 goto free_pages; 3252 3253 pg = pg->next; 3254 } 3255 3256 return start_pg; 3257 3258 free_pages: 3259 pg = start_pg; 3260 while (pg) { 3261 if (pg->records) { 3262 free_pages((unsigned long)pg->records, pg->order); 3263 ftrace_number_of_pages -= 1 << pg->order; 3264 } 3265 start_pg = pg->next; 3266 kfree(pg); 3267 pg = start_pg; 3268 ftrace_number_of_groups--; 3269 } 3270 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3271 return NULL; 3272 } 3273 3274 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3275 3276 struct ftrace_iterator { 3277 loff_t pos; 3278 loff_t func_pos; 3279 loff_t mod_pos; 3280 struct ftrace_page *pg; 3281 struct dyn_ftrace *func; 3282 struct ftrace_func_probe *probe; 3283 struct ftrace_func_entry *probe_entry; 3284 struct trace_parser parser; 3285 struct ftrace_hash *hash; 3286 struct ftrace_ops *ops; 3287 struct trace_array *tr; 3288 struct list_head *mod_list; 3289 int pidx; 3290 int idx; 3291 unsigned flags; 3292 }; 3293 3294 static void * 3295 t_probe_next(struct seq_file *m, loff_t *pos) 3296 { 3297 struct ftrace_iterator *iter = m->private; 3298 struct trace_array *tr = iter->ops->private; 3299 struct list_head *func_probes; 3300 struct ftrace_hash *hash; 3301 struct list_head *next; 3302 struct hlist_node *hnd = NULL; 3303 struct hlist_head *hhd; 3304 int size; 3305 3306 (*pos)++; 3307 iter->pos = *pos; 3308 3309 if (!tr) 3310 return NULL; 3311 3312 func_probes = &tr->func_probes; 3313 if (list_empty(func_probes)) 3314 return NULL; 3315 3316 if (!iter->probe) { 3317 next = func_probes->next; 3318 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3319 } 3320 3321 if (iter->probe_entry) 3322 hnd = &iter->probe_entry->hlist; 3323 3324 hash = iter->probe->ops.func_hash->filter_hash; 3325 3326 /* 3327 * A probe being registered may temporarily have an empty hash 3328 * and it's at the end of the func_probes list. 3329 */ 3330 if (!hash || hash == EMPTY_HASH) 3331 return NULL; 3332 3333 size = 1 << hash->size_bits; 3334 3335 retry: 3336 if (iter->pidx >= size) { 3337 if (iter->probe->list.next == func_probes) 3338 return NULL; 3339 next = iter->probe->list.next; 3340 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3341 hash = iter->probe->ops.func_hash->filter_hash; 3342 size = 1 << hash->size_bits; 3343 iter->pidx = 0; 3344 } 3345 3346 hhd = &hash->buckets[iter->pidx]; 3347 3348 if (hlist_empty(hhd)) { 3349 iter->pidx++; 3350 hnd = NULL; 3351 goto retry; 3352 } 3353 3354 if (!hnd) 3355 hnd = hhd->first; 3356 else { 3357 hnd = hnd->next; 3358 if (!hnd) { 3359 iter->pidx++; 3360 goto retry; 3361 } 3362 } 3363 3364 if (WARN_ON_ONCE(!hnd)) 3365 return NULL; 3366 3367 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3368 3369 return iter; 3370 } 3371 3372 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3373 { 3374 struct ftrace_iterator *iter = m->private; 3375 void *p = NULL; 3376 loff_t l; 3377 3378 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3379 return NULL; 3380 3381 if (iter->mod_pos > *pos) 3382 return NULL; 3383 3384 iter->probe = NULL; 3385 iter->probe_entry = NULL; 3386 iter->pidx = 0; 3387 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3388 p = t_probe_next(m, &l); 3389 if (!p) 3390 break; 3391 } 3392 if (!p) 3393 return NULL; 3394 3395 /* Only set this if we have an item */ 3396 iter->flags |= FTRACE_ITER_PROBE; 3397 3398 return iter; 3399 } 3400 3401 static int 3402 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3403 { 3404 struct ftrace_func_entry *probe_entry; 3405 struct ftrace_probe_ops *probe_ops; 3406 struct ftrace_func_probe *probe; 3407 3408 probe = iter->probe; 3409 probe_entry = iter->probe_entry; 3410 3411 if (WARN_ON_ONCE(!probe || !probe_entry)) 3412 return -EIO; 3413 3414 probe_ops = probe->probe_ops; 3415 3416 if (probe_ops->print) 3417 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3418 3419 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3420 (void *)probe_ops->func); 3421 3422 return 0; 3423 } 3424 3425 static void * 3426 t_mod_next(struct seq_file *m, loff_t *pos) 3427 { 3428 struct ftrace_iterator *iter = m->private; 3429 struct trace_array *tr = iter->tr; 3430 3431 (*pos)++; 3432 iter->pos = *pos; 3433 3434 iter->mod_list = iter->mod_list->next; 3435 3436 if (iter->mod_list == &tr->mod_trace || 3437 iter->mod_list == &tr->mod_notrace) { 3438 iter->flags &= ~FTRACE_ITER_MOD; 3439 return NULL; 3440 } 3441 3442 iter->mod_pos = *pos; 3443 3444 return iter; 3445 } 3446 3447 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3448 { 3449 struct ftrace_iterator *iter = m->private; 3450 void *p = NULL; 3451 loff_t l; 3452 3453 if (iter->func_pos > *pos) 3454 return NULL; 3455 3456 iter->mod_pos = iter->func_pos; 3457 3458 /* probes are only available if tr is set */ 3459 if (!iter->tr) 3460 return NULL; 3461 3462 for (l = 0; l <= (*pos - iter->func_pos); ) { 3463 p = t_mod_next(m, &l); 3464 if (!p) 3465 break; 3466 } 3467 if (!p) { 3468 iter->flags &= ~FTRACE_ITER_MOD; 3469 return t_probe_start(m, pos); 3470 } 3471 3472 /* Only set this if we have an item */ 3473 iter->flags |= FTRACE_ITER_MOD; 3474 3475 return iter; 3476 } 3477 3478 static int 3479 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3480 { 3481 struct ftrace_mod_load *ftrace_mod; 3482 struct trace_array *tr = iter->tr; 3483 3484 if (WARN_ON_ONCE(!iter->mod_list) || 3485 iter->mod_list == &tr->mod_trace || 3486 iter->mod_list == &tr->mod_notrace) 3487 return -EIO; 3488 3489 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3490 3491 if (ftrace_mod->func) 3492 seq_printf(m, "%s", ftrace_mod->func); 3493 else 3494 seq_putc(m, '*'); 3495 3496 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3497 3498 return 0; 3499 } 3500 3501 static void * 3502 t_func_next(struct seq_file *m, loff_t *pos) 3503 { 3504 struct ftrace_iterator *iter = m->private; 3505 struct dyn_ftrace *rec = NULL; 3506 3507 (*pos)++; 3508 3509 retry: 3510 if (iter->idx >= iter->pg->index) { 3511 if (iter->pg->next) { 3512 iter->pg = iter->pg->next; 3513 iter->idx = 0; 3514 goto retry; 3515 } 3516 } else { 3517 rec = &iter->pg->records[iter->idx++]; 3518 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3519 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3520 3521 ((iter->flags & FTRACE_ITER_ENABLED) && 3522 !(rec->flags & FTRACE_FL_ENABLED))) { 3523 3524 rec = NULL; 3525 goto retry; 3526 } 3527 } 3528 3529 if (!rec) 3530 return NULL; 3531 3532 iter->pos = iter->func_pos = *pos; 3533 iter->func = rec; 3534 3535 return iter; 3536 } 3537 3538 static void * 3539 t_next(struct seq_file *m, void *v, loff_t *pos) 3540 { 3541 struct ftrace_iterator *iter = m->private; 3542 loff_t l = *pos; /* t_probe_start() must use original pos */ 3543 void *ret; 3544 3545 if (unlikely(ftrace_disabled)) 3546 return NULL; 3547 3548 if (iter->flags & FTRACE_ITER_PROBE) 3549 return t_probe_next(m, pos); 3550 3551 if (iter->flags & FTRACE_ITER_MOD) 3552 return t_mod_next(m, pos); 3553 3554 if (iter->flags & FTRACE_ITER_PRINTALL) { 3555 /* next must increment pos, and t_probe_start does not */ 3556 (*pos)++; 3557 return t_mod_start(m, &l); 3558 } 3559 3560 ret = t_func_next(m, pos); 3561 3562 if (!ret) 3563 return t_mod_start(m, &l); 3564 3565 return ret; 3566 } 3567 3568 static void reset_iter_read(struct ftrace_iterator *iter) 3569 { 3570 iter->pos = 0; 3571 iter->func_pos = 0; 3572 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3573 } 3574 3575 static void *t_start(struct seq_file *m, loff_t *pos) 3576 { 3577 struct ftrace_iterator *iter = m->private; 3578 void *p = NULL; 3579 loff_t l; 3580 3581 mutex_lock(&ftrace_lock); 3582 3583 if (unlikely(ftrace_disabled)) 3584 return NULL; 3585 3586 /* 3587 * If an lseek was done, then reset and start from beginning. 3588 */ 3589 if (*pos < iter->pos) 3590 reset_iter_read(iter); 3591 3592 /* 3593 * For set_ftrace_filter reading, if we have the filter 3594 * off, we can short cut and just print out that all 3595 * functions are enabled. 3596 */ 3597 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3598 ftrace_hash_empty(iter->hash)) { 3599 iter->func_pos = 1; /* Account for the message */ 3600 if (*pos > 0) 3601 return t_mod_start(m, pos); 3602 iter->flags |= FTRACE_ITER_PRINTALL; 3603 /* reset in case of seek/pread */ 3604 iter->flags &= ~FTRACE_ITER_PROBE; 3605 return iter; 3606 } 3607 3608 if (iter->flags & FTRACE_ITER_MOD) 3609 return t_mod_start(m, pos); 3610 3611 /* 3612 * Unfortunately, we need to restart at ftrace_pages_start 3613 * every time we let go of the ftrace_mutex. This is because 3614 * those pointers can change without the lock. 3615 */ 3616 iter->pg = ftrace_pages_start; 3617 iter->idx = 0; 3618 for (l = 0; l <= *pos; ) { 3619 p = t_func_next(m, &l); 3620 if (!p) 3621 break; 3622 } 3623 3624 if (!p) 3625 return t_mod_start(m, pos); 3626 3627 return iter; 3628 } 3629 3630 static void t_stop(struct seq_file *m, void *p) 3631 { 3632 mutex_unlock(&ftrace_lock); 3633 } 3634 3635 void * __weak 3636 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3637 { 3638 return NULL; 3639 } 3640 3641 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3642 struct dyn_ftrace *rec) 3643 { 3644 void *ptr; 3645 3646 ptr = arch_ftrace_trampoline_func(ops, rec); 3647 if (ptr) 3648 seq_printf(m, " ->%pS", ptr); 3649 } 3650 3651 static int t_show(struct seq_file *m, void *v) 3652 { 3653 struct ftrace_iterator *iter = m->private; 3654 struct dyn_ftrace *rec; 3655 3656 if (iter->flags & FTRACE_ITER_PROBE) 3657 return t_probe_show(m, iter); 3658 3659 if (iter->flags & FTRACE_ITER_MOD) 3660 return t_mod_show(m, iter); 3661 3662 if (iter->flags & FTRACE_ITER_PRINTALL) { 3663 if (iter->flags & FTRACE_ITER_NOTRACE) 3664 seq_puts(m, "#### no functions disabled ####\n"); 3665 else 3666 seq_puts(m, "#### all functions enabled ####\n"); 3667 return 0; 3668 } 3669 3670 rec = iter->func; 3671 3672 if (!rec) 3673 return 0; 3674 3675 seq_printf(m, "%ps", (void *)rec->ip); 3676 if (iter->flags & FTRACE_ITER_ENABLED) { 3677 struct ftrace_ops *ops; 3678 3679 seq_printf(m, " (%ld)%s%s%s", 3680 ftrace_rec_count(rec), 3681 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3682 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3683 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3684 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3685 ops = ftrace_find_tramp_ops_any(rec); 3686 if (ops) { 3687 do { 3688 seq_printf(m, "\ttramp: %pS (%pS)", 3689 (void *)ops->trampoline, 3690 (void *)ops->func); 3691 add_trampoline_func(m, ops, rec); 3692 ops = ftrace_find_tramp_ops_next(rec, ops); 3693 } while (ops); 3694 } else 3695 seq_puts(m, "\ttramp: ERROR!"); 3696 } else { 3697 add_trampoline_func(m, NULL, rec); 3698 } 3699 if (rec->flags & FTRACE_FL_DIRECT) { 3700 unsigned long direct; 3701 3702 direct = ftrace_find_rec_direct(rec->ip); 3703 if (direct) 3704 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3705 } 3706 } 3707 3708 seq_putc(m, '\n'); 3709 3710 return 0; 3711 } 3712 3713 static const struct seq_operations show_ftrace_seq_ops = { 3714 .start = t_start, 3715 .next = t_next, 3716 .stop = t_stop, 3717 .show = t_show, 3718 }; 3719 3720 static int 3721 ftrace_avail_open(struct inode *inode, struct file *file) 3722 { 3723 struct ftrace_iterator *iter; 3724 int ret; 3725 3726 ret = security_locked_down(LOCKDOWN_TRACEFS); 3727 if (ret) 3728 return ret; 3729 3730 if (unlikely(ftrace_disabled)) 3731 return -ENODEV; 3732 3733 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3734 if (!iter) 3735 return -ENOMEM; 3736 3737 iter->pg = ftrace_pages_start; 3738 iter->ops = &global_ops; 3739 3740 return 0; 3741 } 3742 3743 static int 3744 ftrace_enabled_open(struct inode *inode, struct file *file) 3745 { 3746 struct ftrace_iterator *iter; 3747 3748 /* 3749 * This shows us what functions are currently being 3750 * traced and by what. Not sure if we want lockdown 3751 * to hide such critical information for an admin. 3752 * Although, perhaps it can show information we don't 3753 * want people to see, but if something is tracing 3754 * something, we probably want to know about it. 3755 */ 3756 3757 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3758 if (!iter) 3759 return -ENOMEM; 3760 3761 iter->pg = ftrace_pages_start; 3762 iter->flags = FTRACE_ITER_ENABLED; 3763 iter->ops = &global_ops; 3764 3765 return 0; 3766 } 3767 3768 /** 3769 * ftrace_regex_open - initialize function tracer filter files 3770 * @ops: The ftrace_ops that hold the hash filters 3771 * @flag: The type of filter to process 3772 * @inode: The inode, usually passed in to your open routine 3773 * @file: The file, usually passed in to your open routine 3774 * 3775 * ftrace_regex_open() initializes the filter files for the 3776 * @ops. Depending on @flag it may process the filter hash or 3777 * the notrace hash of @ops. With this called from the open 3778 * routine, you can use ftrace_filter_write() for the write 3779 * routine if @flag has FTRACE_ITER_FILTER set, or 3780 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3781 * tracing_lseek() should be used as the lseek routine, and 3782 * release must call ftrace_regex_release(). 3783 */ 3784 int 3785 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3786 struct inode *inode, struct file *file) 3787 { 3788 struct ftrace_iterator *iter; 3789 struct ftrace_hash *hash; 3790 struct list_head *mod_head; 3791 struct trace_array *tr = ops->private; 3792 int ret = -ENOMEM; 3793 3794 ftrace_ops_init(ops); 3795 3796 if (unlikely(ftrace_disabled)) 3797 return -ENODEV; 3798 3799 if (tracing_check_open_get_tr(tr)) 3800 return -ENODEV; 3801 3802 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3803 if (!iter) 3804 goto out; 3805 3806 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3807 goto out; 3808 3809 iter->ops = ops; 3810 iter->flags = flag; 3811 iter->tr = tr; 3812 3813 mutex_lock(&ops->func_hash->regex_lock); 3814 3815 if (flag & FTRACE_ITER_NOTRACE) { 3816 hash = ops->func_hash->notrace_hash; 3817 mod_head = tr ? &tr->mod_notrace : NULL; 3818 } else { 3819 hash = ops->func_hash->filter_hash; 3820 mod_head = tr ? &tr->mod_trace : NULL; 3821 } 3822 3823 iter->mod_list = mod_head; 3824 3825 if (file->f_mode & FMODE_WRITE) { 3826 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3827 3828 if (file->f_flags & O_TRUNC) { 3829 iter->hash = alloc_ftrace_hash(size_bits); 3830 clear_ftrace_mod_list(mod_head); 3831 } else { 3832 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3833 } 3834 3835 if (!iter->hash) { 3836 trace_parser_put(&iter->parser); 3837 goto out_unlock; 3838 } 3839 } else 3840 iter->hash = hash; 3841 3842 ret = 0; 3843 3844 if (file->f_mode & FMODE_READ) { 3845 iter->pg = ftrace_pages_start; 3846 3847 ret = seq_open(file, &show_ftrace_seq_ops); 3848 if (!ret) { 3849 struct seq_file *m = file->private_data; 3850 m->private = iter; 3851 } else { 3852 /* Failed */ 3853 free_ftrace_hash(iter->hash); 3854 trace_parser_put(&iter->parser); 3855 } 3856 } else 3857 file->private_data = iter; 3858 3859 out_unlock: 3860 mutex_unlock(&ops->func_hash->regex_lock); 3861 3862 out: 3863 if (ret) { 3864 kfree(iter); 3865 if (tr) 3866 trace_array_put(tr); 3867 } 3868 3869 return ret; 3870 } 3871 3872 static int 3873 ftrace_filter_open(struct inode *inode, struct file *file) 3874 { 3875 struct ftrace_ops *ops = inode->i_private; 3876 3877 /* Checks for tracefs lockdown */ 3878 return ftrace_regex_open(ops, 3879 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3880 inode, file); 3881 } 3882 3883 static int 3884 ftrace_notrace_open(struct inode *inode, struct file *file) 3885 { 3886 struct ftrace_ops *ops = inode->i_private; 3887 3888 /* Checks for tracefs lockdown */ 3889 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3890 inode, file); 3891 } 3892 3893 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3894 struct ftrace_glob { 3895 char *search; 3896 unsigned len; 3897 int type; 3898 }; 3899 3900 /* 3901 * If symbols in an architecture don't correspond exactly to the user-visible 3902 * name of what they represent, it is possible to define this function to 3903 * perform the necessary adjustments. 3904 */ 3905 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3906 { 3907 return str; 3908 } 3909 3910 static int ftrace_match(char *str, struct ftrace_glob *g) 3911 { 3912 int matched = 0; 3913 int slen; 3914 3915 str = arch_ftrace_match_adjust(str, g->search); 3916 3917 switch (g->type) { 3918 case MATCH_FULL: 3919 if (strcmp(str, g->search) == 0) 3920 matched = 1; 3921 break; 3922 case MATCH_FRONT_ONLY: 3923 if (strncmp(str, g->search, g->len) == 0) 3924 matched = 1; 3925 break; 3926 case MATCH_MIDDLE_ONLY: 3927 if (strstr(str, g->search)) 3928 matched = 1; 3929 break; 3930 case MATCH_END_ONLY: 3931 slen = strlen(str); 3932 if (slen >= g->len && 3933 memcmp(str + slen - g->len, g->search, g->len) == 0) 3934 matched = 1; 3935 break; 3936 case MATCH_GLOB: 3937 if (glob_match(g->search, str)) 3938 matched = 1; 3939 break; 3940 } 3941 3942 return matched; 3943 } 3944 3945 static int 3946 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3947 { 3948 struct ftrace_func_entry *entry; 3949 int ret = 0; 3950 3951 entry = ftrace_lookup_ip(hash, rec->ip); 3952 if (clear_filter) { 3953 /* Do nothing if it doesn't exist */ 3954 if (!entry) 3955 return 0; 3956 3957 free_hash_entry(hash, entry); 3958 } else { 3959 /* Do nothing if it exists */ 3960 if (entry) 3961 return 0; 3962 3963 ret = add_hash_entry(hash, rec->ip); 3964 } 3965 return ret; 3966 } 3967 3968 static int 3969 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3970 int clear_filter) 3971 { 3972 long index = simple_strtoul(func_g->search, NULL, 0); 3973 struct ftrace_page *pg; 3974 struct dyn_ftrace *rec; 3975 3976 /* The index starts at 1 */ 3977 if (--index < 0) 3978 return 0; 3979 3980 do_for_each_ftrace_rec(pg, rec) { 3981 if (pg->index <= index) { 3982 index -= pg->index; 3983 /* this is a double loop, break goes to the next page */ 3984 break; 3985 } 3986 rec = &pg->records[index]; 3987 enter_record(hash, rec, clear_filter); 3988 return 1; 3989 } while_for_each_ftrace_rec(); 3990 return 0; 3991 } 3992 3993 static int 3994 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3995 struct ftrace_glob *mod_g, int exclude_mod) 3996 { 3997 char str[KSYM_SYMBOL_LEN]; 3998 char *modname; 3999 4000 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 4001 4002 if (mod_g) { 4003 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4004 4005 /* blank module name to match all modules */ 4006 if (!mod_g->len) { 4007 /* blank module globbing: modname xor exclude_mod */ 4008 if (!exclude_mod != !modname) 4009 goto func_match; 4010 return 0; 4011 } 4012 4013 /* 4014 * exclude_mod is set to trace everything but the given 4015 * module. If it is set and the module matches, then 4016 * return 0. If it is not set, and the module doesn't match 4017 * also return 0. Otherwise, check the function to see if 4018 * that matches. 4019 */ 4020 if (!mod_matches == !exclude_mod) 4021 return 0; 4022 func_match: 4023 /* blank search means to match all funcs in the mod */ 4024 if (!func_g->len) 4025 return 1; 4026 } 4027 4028 return ftrace_match(str, func_g); 4029 } 4030 4031 static int 4032 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4033 { 4034 struct ftrace_page *pg; 4035 struct dyn_ftrace *rec; 4036 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4037 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4038 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4039 int exclude_mod = 0; 4040 int found = 0; 4041 int ret; 4042 int clear_filter = 0; 4043 4044 if (func) { 4045 func_g.type = filter_parse_regex(func, len, &func_g.search, 4046 &clear_filter); 4047 func_g.len = strlen(func_g.search); 4048 } 4049 4050 if (mod) { 4051 mod_g.type = filter_parse_regex(mod, strlen(mod), 4052 &mod_g.search, &exclude_mod); 4053 mod_g.len = strlen(mod_g.search); 4054 } 4055 4056 mutex_lock(&ftrace_lock); 4057 4058 if (unlikely(ftrace_disabled)) 4059 goto out_unlock; 4060 4061 if (func_g.type == MATCH_INDEX) { 4062 found = add_rec_by_index(hash, &func_g, clear_filter); 4063 goto out_unlock; 4064 } 4065 4066 do_for_each_ftrace_rec(pg, rec) { 4067 4068 if (rec->flags & FTRACE_FL_DISABLED) 4069 continue; 4070 4071 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4072 ret = enter_record(hash, rec, clear_filter); 4073 if (ret < 0) { 4074 found = ret; 4075 goto out_unlock; 4076 } 4077 found = 1; 4078 } 4079 } while_for_each_ftrace_rec(); 4080 out_unlock: 4081 mutex_unlock(&ftrace_lock); 4082 4083 return found; 4084 } 4085 4086 static int 4087 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4088 { 4089 return match_records(hash, buff, len, NULL); 4090 } 4091 4092 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4093 struct ftrace_ops_hash *old_hash) 4094 { 4095 struct ftrace_ops *op; 4096 4097 if (!ftrace_enabled) 4098 return; 4099 4100 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4101 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4102 return; 4103 } 4104 4105 /* 4106 * If this is the shared global_ops filter, then we need to 4107 * check if there is another ops that shares it, is enabled. 4108 * If so, we still need to run the modify code. 4109 */ 4110 if (ops->func_hash != &global_ops.local_hash) 4111 return; 4112 4113 do_for_each_ftrace_op(op, ftrace_ops_list) { 4114 if (op->func_hash == &global_ops.local_hash && 4115 op->flags & FTRACE_OPS_FL_ENABLED) { 4116 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4117 /* Only need to do this once */ 4118 return; 4119 } 4120 } while_for_each_ftrace_op(op); 4121 } 4122 4123 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4124 struct ftrace_hash **orig_hash, 4125 struct ftrace_hash *hash, 4126 int enable) 4127 { 4128 struct ftrace_ops_hash old_hash_ops; 4129 struct ftrace_hash *old_hash; 4130 int ret; 4131 4132 old_hash = *orig_hash; 4133 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4134 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4135 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4136 if (!ret) { 4137 ftrace_ops_update_code(ops, &old_hash_ops); 4138 free_ftrace_hash_rcu(old_hash); 4139 } 4140 return ret; 4141 } 4142 4143 static bool module_exists(const char *module) 4144 { 4145 /* All modules have the symbol __this_module */ 4146 static const char this_mod[] = "__this_module"; 4147 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4148 unsigned long val; 4149 int n; 4150 4151 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4152 4153 if (n > sizeof(modname) - 1) 4154 return false; 4155 4156 val = module_kallsyms_lookup_name(modname); 4157 return val != 0; 4158 } 4159 4160 static int cache_mod(struct trace_array *tr, 4161 const char *func, char *module, int enable) 4162 { 4163 struct ftrace_mod_load *ftrace_mod, *n; 4164 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4165 int ret; 4166 4167 mutex_lock(&ftrace_lock); 4168 4169 /* We do not cache inverse filters */ 4170 if (func[0] == '!') { 4171 func++; 4172 ret = -EINVAL; 4173 4174 /* Look to remove this hash */ 4175 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4176 if (strcmp(ftrace_mod->module, module) != 0) 4177 continue; 4178 4179 /* no func matches all */ 4180 if (strcmp(func, "*") == 0 || 4181 (ftrace_mod->func && 4182 strcmp(ftrace_mod->func, func) == 0)) { 4183 ret = 0; 4184 free_ftrace_mod(ftrace_mod); 4185 continue; 4186 } 4187 } 4188 goto out; 4189 } 4190 4191 ret = -EINVAL; 4192 /* We only care about modules that have not been loaded yet */ 4193 if (module_exists(module)) 4194 goto out; 4195 4196 /* Save this string off, and execute it when the module is loaded */ 4197 ret = ftrace_add_mod(tr, func, module, enable); 4198 out: 4199 mutex_unlock(&ftrace_lock); 4200 4201 return ret; 4202 } 4203 4204 static int 4205 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4206 int reset, int enable); 4207 4208 #ifdef CONFIG_MODULES 4209 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4210 char *mod, bool enable) 4211 { 4212 struct ftrace_mod_load *ftrace_mod, *n; 4213 struct ftrace_hash **orig_hash, *new_hash; 4214 LIST_HEAD(process_mods); 4215 char *func; 4216 4217 mutex_lock(&ops->func_hash->regex_lock); 4218 4219 if (enable) 4220 orig_hash = &ops->func_hash->filter_hash; 4221 else 4222 orig_hash = &ops->func_hash->notrace_hash; 4223 4224 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4225 *orig_hash); 4226 if (!new_hash) 4227 goto out; /* warn? */ 4228 4229 mutex_lock(&ftrace_lock); 4230 4231 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4232 4233 if (strcmp(ftrace_mod->module, mod) != 0) 4234 continue; 4235 4236 if (ftrace_mod->func) 4237 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4238 else 4239 func = kstrdup("*", GFP_KERNEL); 4240 4241 if (!func) /* warn? */ 4242 continue; 4243 4244 list_move(&ftrace_mod->list, &process_mods); 4245 4246 /* Use the newly allocated func, as it may be "*" */ 4247 kfree(ftrace_mod->func); 4248 ftrace_mod->func = func; 4249 } 4250 4251 mutex_unlock(&ftrace_lock); 4252 4253 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4254 4255 func = ftrace_mod->func; 4256 4257 /* Grabs ftrace_lock, which is why we have this extra step */ 4258 match_records(new_hash, func, strlen(func), mod); 4259 free_ftrace_mod(ftrace_mod); 4260 } 4261 4262 if (enable && list_empty(head)) 4263 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4264 4265 mutex_lock(&ftrace_lock); 4266 4267 ftrace_hash_move_and_update_ops(ops, orig_hash, 4268 new_hash, enable); 4269 mutex_unlock(&ftrace_lock); 4270 4271 out: 4272 mutex_unlock(&ops->func_hash->regex_lock); 4273 4274 free_ftrace_hash(new_hash); 4275 } 4276 4277 static void process_cached_mods(const char *mod_name) 4278 { 4279 struct trace_array *tr; 4280 char *mod; 4281 4282 mod = kstrdup(mod_name, GFP_KERNEL); 4283 if (!mod) 4284 return; 4285 4286 mutex_lock(&trace_types_lock); 4287 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4288 if (!list_empty(&tr->mod_trace)) 4289 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4290 if (!list_empty(&tr->mod_notrace)) 4291 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4292 } 4293 mutex_unlock(&trace_types_lock); 4294 4295 kfree(mod); 4296 } 4297 #endif 4298 4299 /* 4300 * We register the module command as a template to show others how 4301 * to register the a command as well. 4302 */ 4303 4304 static int 4305 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4306 char *func_orig, char *cmd, char *module, int enable) 4307 { 4308 char *func; 4309 int ret; 4310 4311 /* match_records() modifies func, and we need the original */ 4312 func = kstrdup(func_orig, GFP_KERNEL); 4313 if (!func) 4314 return -ENOMEM; 4315 4316 /* 4317 * cmd == 'mod' because we only registered this func 4318 * for the 'mod' ftrace_func_command. 4319 * But if you register one func with multiple commands, 4320 * you can tell which command was used by the cmd 4321 * parameter. 4322 */ 4323 ret = match_records(hash, func, strlen(func), module); 4324 kfree(func); 4325 4326 if (!ret) 4327 return cache_mod(tr, func_orig, module, enable); 4328 if (ret < 0) 4329 return ret; 4330 return 0; 4331 } 4332 4333 static struct ftrace_func_command ftrace_mod_cmd = { 4334 .name = "mod", 4335 .func = ftrace_mod_callback, 4336 }; 4337 4338 static int __init ftrace_mod_cmd_init(void) 4339 { 4340 return register_ftrace_command(&ftrace_mod_cmd); 4341 } 4342 core_initcall(ftrace_mod_cmd_init); 4343 4344 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4345 struct ftrace_ops *op, struct ftrace_regs *fregs) 4346 { 4347 struct ftrace_probe_ops *probe_ops; 4348 struct ftrace_func_probe *probe; 4349 4350 probe = container_of(op, struct ftrace_func_probe, ops); 4351 probe_ops = probe->probe_ops; 4352 4353 /* 4354 * Disable preemption for these calls to prevent a RCU grace 4355 * period. This syncs the hash iteration and freeing of items 4356 * on the hash. rcu_read_lock is too dangerous here. 4357 */ 4358 preempt_disable_notrace(); 4359 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4360 preempt_enable_notrace(); 4361 } 4362 4363 struct ftrace_func_map { 4364 struct ftrace_func_entry entry; 4365 void *data; 4366 }; 4367 4368 struct ftrace_func_mapper { 4369 struct ftrace_hash hash; 4370 }; 4371 4372 /** 4373 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4374 * 4375 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4376 */ 4377 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4378 { 4379 struct ftrace_hash *hash; 4380 4381 /* 4382 * The mapper is simply a ftrace_hash, but since the entries 4383 * in the hash are not ftrace_func_entry type, we define it 4384 * as a separate structure. 4385 */ 4386 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4387 return (struct ftrace_func_mapper *)hash; 4388 } 4389 4390 /** 4391 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4392 * @mapper: The mapper that has the ip maps 4393 * @ip: the instruction pointer to find the data for 4394 * 4395 * Returns the data mapped to @ip if found otherwise NULL. The return 4396 * is actually the address of the mapper data pointer. The address is 4397 * returned for use cases where the data is no bigger than a long, and 4398 * the user can use the data pointer as its data instead of having to 4399 * allocate more memory for the reference. 4400 */ 4401 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4402 unsigned long ip) 4403 { 4404 struct ftrace_func_entry *entry; 4405 struct ftrace_func_map *map; 4406 4407 entry = ftrace_lookup_ip(&mapper->hash, ip); 4408 if (!entry) 4409 return NULL; 4410 4411 map = (struct ftrace_func_map *)entry; 4412 return &map->data; 4413 } 4414 4415 /** 4416 * ftrace_func_mapper_add_ip - Map some data to an ip 4417 * @mapper: The mapper that has the ip maps 4418 * @ip: The instruction pointer address to map @data to 4419 * @data: The data to map to @ip 4420 * 4421 * Returns 0 on success otherwise an error. 4422 */ 4423 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4424 unsigned long ip, void *data) 4425 { 4426 struct ftrace_func_entry *entry; 4427 struct ftrace_func_map *map; 4428 4429 entry = ftrace_lookup_ip(&mapper->hash, ip); 4430 if (entry) 4431 return -EBUSY; 4432 4433 map = kmalloc(sizeof(*map), GFP_KERNEL); 4434 if (!map) 4435 return -ENOMEM; 4436 4437 map->entry.ip = ip; 4438 map->data = data; 4439 4440 __add_hash_entry(&mapper->hash, &map->entry); 4441 4442 return 0; 4443 } 4444 4445 /** 4446 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4447 * @mapper: The mapper that has the ip maps 4448 * @ip: The instruction pointer address to remove the data from 4449 * 4450 * Returns the data if it is found, otherwise NULL. 4451 * Note, if the data pointer is used as the data itself, (see 4452 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4453 * if the data pointer was set to zero. 4454 */ 4455 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4456 unsigned long ip) 4457 { 4458 struct ftrace_func_entry *entry; 4459 struct ftrace_func_map *map; 4460 void *data; 4461 4462 entry = ftrace_lookup_ip(&mapper->hash, ip); 4463 if (!entry) 4464 return NULL; 4465 4466 map = (struct ftrace_func_map *)entry; 4467 data = map->data; 4468 4469 remove_hash_entry(&mapper->hash, entry); 4470 kfree(entry); 4471 4472 return data; 4473 } 4474 4475 /** 4476 * free_ftrace_func_mapper - free a mapping of ips and data 4477 * @mapper: The mapper that has the ip maps 4478 * @free_func: A function to be called on each data item. 4479 * 4480 * This is used to free the function mapper. The @free_func is optional 4481 * and can be used if the data needs to be freed as well. 4482 */ 4483 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4484 ftrace_mapper_func free_func) 4485 { 4486 struct ftrace_func_entry *entry; 4487 struct ftrace_func_map *map; 4488 struct hlist_head *hhd; 4489 int size, i; 4490 4491 if (!mapper) 4492 return; 4493 4494 if (free_func && mapper->hash.count) { 4495 size = 1 << mapper->hash.size_bits; 4496 for (i = 0; i < size; i++) { 4497 hhd = &mapper->hash.buckets[i]; 4498 hlist_for_each_entry(entry, hhd, hlist) { 4499 map = (struct ftrace_func_map *)entry; 4500 free_func(map); 4501 } 4502 } 4503 } 4504 free_ftrace_hash(&mapper->hash); 4505 } 4506 4507 static void release_probe(struct ftrace_func_probe *probe) 4508 { 4509 struct ftrace_probe_ops *probe_ops; 4510 4511 mutex_lock(&ftrace_lock); 4512 4513 WARN_ON(probe->ref <= 0); 4514 4515 /* Subtract the ref that was used to protect this instance */ 4516 probe->ref--; 4517 4518 if (!probe->ref) { 4519 probe_ops = probe->probe_ops; 4520 /* 4521 * Sending zero as ip tells probe_ops to free 4522 * the probe->data itself 4523 */ 4524 if (probe_ops->free) 4525 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4526 list_del(&probe->list); 4527 kfree(probe); 4528 } 4529 mutex_unlock(&ftrace_lock); 4530 } 4531 4532 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4533 { 4534 /* 4535 * Add one ref to keep it from being freed when releasing the 4536 * ftrace_lock mutex. 4537 */ 4538 probe->ref++; 4539 } 4540 4541 int 4542 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4543 struct ftrace_probe_ops *probe_ops, 4544 void *data) 4545 { 4546 struct ftrace_func_entry *entry; 4547 struct ftrace_func_probe *probe; 4548 struct ftrace_hash **orig_hash; 4549 struct ftrace_hash *old_hash; 4550 struct ftrace_hash *hash; 4551 int count = 0; 4552 int size; 4553 int ret; 4554 int i; 4555 4556 if (WARN_ON(!tr)) 4557 return -EINVAL; 4558 4559 /* We do not support '!' for function probes */ 4560 if (WARN_ON(glob[0] == '!')) 4561 return -EINVAL; 4562 4563 4564 mutex_lock(&ftrace_lock); 4565 /* Check if the probe_ops is already registered */ 4566 list_for_each_entry(probe, &tr->func_probes, list) { 4567 if (probe->probe_ops == probe_ops) 4568 break; 4569 } 4570 if (&probe->list == &tr->func_probes) { 4571 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4572 if (!probe) { 4573 mutex_unlock(&ftrace_lock); 4574 return -ENOMEM; 4575 } 4576 probe->probe_ops = probe_ops; 4577 probe->ops.func = function_trace_probe_call; 4578 probe->tr = tr; 4579 ftrace_ops_init(&probe->ops); 4580 list_add(&probe->list, &tr->func_probes); 4581 } 4582 4583 acquire_probe_locked(probe); 4584 4585 mutex_unlock(&ftrace_lock); 4586 4587 /* 4588 * Note, there's a small window here that the func_hash->filter_hash 4589 * may be NULL or empty. Need to be careful when reading the loop. 4590 */ 4591 mutex_lock(&probe->ops.func_hash->regex_lock); 4592 4593 orig_hash = &probe->ops.func_hash->filter_hash; 4594 old_hash = *orig_hash; 4595 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4596 4597 if (!hash) { 4598 ret = -ENOMEM; 4599 goto out; 4600 } 4601 4602 ret = ftrace_match_records(hash, glob, strlen(glob)); 4603 4604 /* Nothing found? */ 4605 if (!ret) 4606 ret = -EINVAL; 4607 4608 if (ret < 0) 4609 goto out; 4610 4611 size = 1 << hash->size_bits; 4612 for (i = 0; i < size; i++) { 4613 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4614 if (ftrace_lookup_ip(old_hash, entry->ip)) 4615 continue; 4616 /* 4617 * The caller might want to do something special 4618 * for each function we find. We call the callback 4619 * to give the caller an opportunity to do so. 4620 */ 4621 if (probe_ops->init) { 4622 ret = probe_ops->init(probe_ops, tr, 4623 entry->ip, data, 4624 &probe->data); 4625 if (ret < 0) { 4626 if (probe_ops->free && count) 4627 probe_ops->free(probe_ops, tr, 4628 0, probe->data); 4629 probe->data = NULL; 4630 goto out; 4631 } 4632 } 4633 count++; 4634 } 4635 } 4636 4637 mutex_lock(&ftrace_lock); 4638 4639 if (!count) { 4640 /* Nothing was added? */ 4641 ret = -EINVAL; 4642 goto out_unlock; 4643 } 4644 4645 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4646 hash, 1); 4647 if (ret < 0) 4648 goto err_unlock; 4649 4650 /* One ref for each new function traced */ 4651 probe->ref += count; 4652 4653 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4654 ret = ftrace_startup(&probe->ops, 0); 4655 4656 out_unlock: 4657 mutex_unlock(&ftrace_lock); 4658 4659 if (!ret) 4660 ret = count; 4661 out: 4662 mutex_unlock(&probe->ops.func_hash->regex_lock); 4663 free_ftrace_hash(hash); 4664 4665 release_probe(probe); 4666 4667 return ret; 4668 4669 err_unlock: 4670 if (!probe_ops->free || !count) 4671 goto out_unlock; 4672 4673 /* Failed to do the move, need to call the free functions */ 4674 for (i = 0; i < size; i++) { 4675 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4676 if (ftrace_lookup_ip(old_hash, entry->ip)) 4677 continue; 4678 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4679 } 4680 } 4681 goto out_unlock; 4682 } 4683 4684 int 4685 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4686 struct ftrace_probe_ops *probe_ops) 4687 { 4688 struct ftrace_ops_hash old_hash_ops; 4689 struct ftrace_func_entry *entry; 4690 struct ftrace_func_probe *probe; 4691 struct ftrace_glob func_g; 4692 struct ftrace_hash **orig_hash; 4693 struct ftrace_hash *old_hash; 4694 struct ftrace_hash *hash = NULL; 4695 struct hlist_node *tmp; 4696 struct hlist_head hhd; 4697 char str[KSYM_SYMBOL_LEN]; 4698 int count = 0; 4699 int i, ret = -ENODEV; 4700 int size; 4701 4702 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4703 func_g.search = NULL; 4704 else { 4705 int not; 4706 4707 func_g.type = filter_parse_regex(glob, strlen(glob), 4708 &func_g.search, ¬); 4709 func_g.len = strlen(func_g.search); 4710 4711 /* we do not support '!' for function probes */ 4712 if (WARN_ON(not)) 4713 return -EINVAL; 4714 } 4715 4716 mutex_lock(&ftrace_lock); 4717 /* Check if the probe_ops is already registered */ 4718 list_for_each_entry(probe, &tr->func_probes, list) { 4719 if (probe->probe_ops == probe_ops) 4720 break; 4721 } 4722 if (&probe->list == &tr->func_probes) 4723 goto err_unlock_ftrace; 4724 4725 ret = -EINVAL; 4726 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4727 goto err_unlock_ftrace; 4728 4729 acquire_probe_locked(probe); 4730 4731 mutex_unlock(&ftrace_lock); 4732 4733 mutex_lock(&probe->ops.func_hash->regex_lock); 4734 4735 orig_hash = &probe->ops.func_hash->filter_hash; 4736 old_hash = *orig_hash; 4737 4738 if (ftrace_hash_empty(old_hash)) 4739 goto out_unlock; 4740 4741 old_hash_ops.filter_hash = old_hash; 4742 /* Probes only have filters */ 4743 old_hash_ops.notrace_hash = NULL; 4744 4745 ret = -ENOMEM; 4746 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4747 if (!hash) 4748 goto out_unlock; 4749 4750 INIT_HLIST_HEAD(&hhd); 4751 4752 size = 1 << hash->size_bits; 4753 for (i = 0; i < size; i++) { 4754 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4755 4756 if (func_g.search) { 4757 kallsyms_lookup(entry->ip, NULL, NULL, 4758 NULL, str); 4759 if (!ftrace_match(str, &func_g)) 4760 continue; 4761 } 4762 count++; 4763 remove_hash_entry(hash, entry); 4764 hlist_add_head(&entry->hlist, &hhd); 4765 } 4766 } 4767 4768 /* Nothing found? */ 4769 if (!count) { 4770 ret = -EINVAL; 4771 goto out_unlock; 4772 } 4773 4774 mutex_lock(&ftrace_lock); 4775 4776 WARN_ON(probe->ref < count); 4777 4778 probe->ref -= count; 4779 4780 if (ftrace_hash_empty(hash)) 4781 ftrace_shutdown(&probe->ops, 0); 4782 4783 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4784 hash, 1); 4785 4786 /* still need to update the function call sites */ 4787 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4788 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4789 &old_hash_ops); 4790 synchronize_rcu(); 4791 4792 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4793 hlist_del(&entry->hlist); 4794 if (probe_ops->free) 4795 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4796 kfree(entry); 4797 } 4798 mutex_unlock(&ftrace_lock); 4799 4800 out_unlock: 4801 mutex_unlock(&probe->ops.func_hash->regex_lock); 4802 free_ftrace_hash(hash); 4803 4804 release_probe(probe); 4805 4806 return ret; 4807 4808 err_unlock_ftrace: 4809 mutex_unlock(&ftrace_lock); 4810 return ret; 4811 } 4812 4813 void clear_ftrace_function_probes(struct trace_array *tr) 4814 { 4815 struct ftrace_func_probe *probe, *n; 4816 4817 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4818 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4819 } 4820 4821 static LIST_HEAD(ftrace_commands); 4822 static DEFINE_MUTEX(ftrace_cmd_mutex); 4823 4824 /* 4825 * Currently we only register ftrace commands from __init, so mark this 4826 * __init too. 4827 */ 4828 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4829 { 4830 struct ftrace_func_command *p; 4831 int ret = 0; 4832 4833 mutex_lock(&ftrace_cmd_mutex); 4834 list_for_each_entry(p, &ftrace_commands, list) { 4835 if (strcmp(cmd->name, p->name) == 0) { 4836 ret = -EBUSY; 4837 goto out_unlock; 4838 } 4839 } 4840 list_add(&cmd->list, &ftrace_commands); 4841 out_unlock: 4842 mutex_unlock(&ftrace_cmd_mutex); 4843 4844 return ret; 4845 } 4846 4847 /* 4848 * Currently we only unregister ftrace commands from __init, so mark 4849 * this __init too. 4850 */ 4851 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4852 { 4853 struct ftrace_func_command *p, *n; 4854 int ret = -ENODEV; 4855 4856 mutex_lock(&ftrace_cmd_mutex); 4857 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4858 if (strcmp(cmd->name, p->name) == 0) { 4859 ret = 0; 4860 list_del_init(&p->list); 4861 goto out_unlock; 4862 } 4863 } 4864 out_unlock: 4865 mutex_unlock(&ftrace_cmd_mutex); 4866 4867 return ret; 4868 } 4869 4870 static int ftrace_process_regex(struct ftrace_iterator *iter, 4871 char *buff, int len, int enable) 4872 { 4873 struct ftrace_hash *hash = iter->hash; 4874 struct trace_array *tr = iter->ops->private; 4875 char *func, *command, *next = buff; 4876 struct ftrace_func_command *p; 4877 int ret = -EINVAL; 4878 4879 func = strsep(&next, ":"); 4880 4881 if (!next) { 4882 ret = ftrace_match_records(hash, func, len); 4883 if (!ret) 4884 ret = -EINVAL; 4885 if (ret < 0) 4886 return ret; 4887 return 0; 4888 } 4889 4890 /* command found */ 4891 4892 command = strsep(&next, ":"); 4893 4894 mutex_lock(&ftrace_cmd_mutex); 4895 list_for_each_entry(p, &ftrace_commands, list) { 4896 if (strcmp(p->name, command) == 0) { 4897 ret = p->func(tr, hash, func, command, next, enable); 4898 goto out_unlock; 4899 } 4900 } 4901 out_unlock: 4902 mutex_unlock(&ftrace_cmd_mutex); 4903 4904 return ret; 4905 } 4906 4907 static ssize_t 4908 ftrace_regex_write(struct file *file, const char __user *ubuf, 4909 size_t cnt, loff_t *ppos, int enable) 4910 { 4911 struct ftrace_iterator *iter; 4912 struct trace_parser *parser; 4913 ssize_t ret, read; 4914 4915 if (!cnt) 4916 return 0; 4917 4918 if (file->f_mode & FMODE_READ) { 4919 struct seq_file *m = file->private_data; 4920 iter = m->private; 4921 } else 4922 iter = file->private_data; 4923 4924 if (unlikely(ftrace_disabled)) 4925 return -ENODEV; 4926 4927 /* iter->hash is a local copy, so we don't need regex_lock */ 4928 4929 parser = &iter->parser; 4930 read = trace_get_user(parser, ubuf, cnt, ppos); 4931 4932 if (read >= 0 && trace_parser_loaded(parser) && 4933 !trace_parser_cont(parser)) { 4934 ret = ftrace_process_regex(iter, parser->buffer, 4935 parser->idx, enable); 4936 trace_parser_clear(parser); 4937 if (ret < 0) 4938 goto out; 4939 } 4940 4941 ret = read; 4942 out: 4943 return ret; 4944 } 4945 4946 ssize_t 4947 ftrace_filter_write(struct file *file, const char __user *ubuf, 4948 size_t cnt, loff_t *ppos) 4949 { 4950 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4951 } 4952 4953 ssize_t 4954 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4955 size_t cnt, loff_t *ppos) 4956 { 4957 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4958 } 4959 4960 static int 4961 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4962 { 4963 struct ftrace_func_entry *entry; 4964 4965 if (!ftrace_location(ip)) 4966 return -EINVAL; 4967 4968 if (remove) { 4969 entry = ftrace_lookup_ip(hash, ip); 4970 if (!entry) 4971 return -ENOENT; 4972 free_hash_entry(hash, entry); 4973 return 0; 4974 } 4975 4976 return add_hash_entry(hash, ip); 4977 } 4978 4979 static int 4980 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4981 unsigned long ip, int remove, int reset, int enable) 4982 { 4983 struct ftrace_hash **orig_hash; 4984 struct ftrace_hash *hash; 4985 int ret; 4986 4987 if (unlikely(ftrace_disabled)) 4988 return -ENODEV; 4989 4990 mutex_lock(&ops->func_hash->regex_lock); 4991 4992 if (enable) 4993 orig_hash = &ops->func_hash->filter_hash; 4994 else 4995 orig_hash = &ops->func_hash->notrace_hash; 4996 4997 if (reset) 4998 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4999 else 5000 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5001 5002 if (!hash) { 5003 ret = -ENOMEM; 5004 goto out_regex_unlock; 5005 } 5006 5007 if (buf && !ftrace_match_records(hash, buf, len)) { 5008 ret = -EINVAL; 5009 goto out_regex_unlock; 5010 } 5011 if (ip) { 5012 ret = ftrace_match_addr(hash, ip, remove); 5013 if (ret < 0) 5014 goto out_regex_unlock; 5015 } 5016 5017 mutex_lock(&ftrace_lock); 5018 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5019 mutex_unlock(&ftrace_lock); 5020 5021 out_regex_unlock: 5022 mutex_unlock(&ops->func_hash->regex_lock); 5023 5024 free_ftrace_hash(hash); 5025 return ret; 5026 } 5027 5028 static int 5029 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 5030 int reset, int enable) 5031 { 5032 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 5033 } 5034 5035 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5036 5037 struct ftrace_direct_func { 5038 struct list_head next; 5039 unsigned long addr; 5040 int count; 5041 }; 5042 5043 static LIST_HEAD(ftrace_direct_funcs); 5044 5045 /** 5046 * ftrace_find_direct_func - test an address if it is a registered direct caller 5047 * @addr: The address of a registered direct caller 5048 * 5049 * This searches to see if a ftrace direct caller has been registered 5050 * at a specific address, and if so, it returns a descriptor for it. 5051 * 5052 * This can be used by architecture code to see if an address is 5053 * a direct caller (trampoline) attached to a fentry/mcount location. 5054 * This is useful for the function_graph tracer, as it may need to 5055 * do adjustments if it traced a location that also has a direct 5056 * trampoline attached to it. 5057 */ 5058 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5059 { 5060 struct ftrace_direct_func *entry; 5061 bool found = false; 5062 5063 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5064 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5065 if (entry->addr == addr) { 5066 found = true; 5067 break; 5068 } 5069 } 5070 if (found) 5071 return entry; 5072 5073 return NULL; 5074 } 5075 5076 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5077 { 5078 struct ftrace_direct_func *direct; 5079 5080 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5081 if (!direct) 5082 return NULL; 5083 direct->addr = addr; 5084 direct->count = 0; 5085 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5086 ftrace_direct_func_count++; 5087 return direct; 5088 } 5089 5090 /** 5091 * register_ftrace_direct - Call a custom trampoline directly 5092 * @ip: The address of the nop at the beginning of a function 5093 * @addr: The address of the trampoline to call at @ip 5094 * 5095 * This is used to connect a direct call from the nop location (@ip) 5096 * at the start of ftrace traced functions. The location that it calls 5097 * (@addr) must be able to handle a direct call, and save the parameters 5098 * of the function being traced, and restore them (or inject new ones 5099 * if needed), before returning. 5100 * 5101 * Returns: 5102 * 0 on success 5103 * -EBUSY - Another direct function is already attached (there can be only one) 5104 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5105 * -ENOMEM - There was an allocation failure. 5106 */ 5107 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5108 { 5109 struct ftrace_direct_func *direct; 5110 struct ftrace_func_entry *entry; 5111 struct ftrace_hash *free_hash = NULL; 5112 struct dyn_ftrace *rec; 5113 int ret = -EBUSY; 5114 5115 mutex_lock(&direct_mutex); 5116 5117 /* See if there's a direct function at @ip already */ 5118 if (ftrace_find_rec_direct(ip)) 5119 goto out_unlock; 5120 5121 ret = -ENODEV; 5122 rec = lookup_rec(ip, ip); 5123 if (!rec) 5124 goto out_unlock; 5125 5126 /* 5127 * Check if the rec says it has a direct call but we didn't 5128 * find one earlier? 5129 */ 5130 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5131 goto out_unlock; 5132 5133 /* Make sure the ip points to the exact record */ 5134 if (ip != rec->ip) { 5135 ip = rec->ip; 5136 /* Need to check this ip for a direct. */ 5137 if (ftrace_find_rec_direct(ip)) 5138 goto out_unlock; 5139 } 5140 5141 ret = -ENOMEM; 5142 direct = ftrace_find_direct_func(addr); 5143 if (!direct) { 5144 direct = ftrace_alloc_direct_func(addr); 5145 if (!direct) 5146 goto out_unlock; 5147 } 5148 5149 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5150 if (!entry) 5151 goto out_unlock; 5152 5153 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5154 if (ret) 5155 remove_hash_entry(direct_functions, entry); 5156 5157 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5158 ret = register_ftrace_function(&direct_ops); 5159 if (ret) 5160 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5161 } 5162 5163 if (ret) { 5164 kfree(entry); 5165 if (!direct->count) { 5166 list_del_rcu(&direct->next); 5167 synchronize_rcu_tasks(); 5168 kfree(direct); 5169 if (free_hash) 5170 free_ftrace_hash(free_hash); 5171 free_hash = NULL; 5172 ftrace_direct_func_count--; 5173 } 5174 } else { 5175 direct->count++; 5176 } 5177 out_unlock: 5178 mutex_unlock(&direct_mutex); 5179 5180 if (free_hash) { 5181 synchronize_rcu_tasks(); 5182 free_ftrace_hash(free_hash); 5183 } 5184 5185 return ret; 5186 } 5187 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5188 5189 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5190 struct dyn_ftrace **recp) 5191 { 5192 struct ftrace_func_entry *entry; 5193 struct dyn_ftrace *rec; 5194 5195 rec = lookup_rec(*ip, *ip); 5196 if (!rec) 5197 return NULL; 5198 5199 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5200 if (!entry) { 5201 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5202 return NULL; 5203 } 5204 5205 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5206 5207 /* Passed in ip just needs to be on the call site */ 5208 *ip = rec->ip; 5209 5210 if (recp) 5211 *recp = rec; 5212 5213 return entry; 5214 } 5215 5216 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5217 { 5218 struct ftrace_direct_func *direct; 5219 struct ftrace_func_entry *entry; 5220 struct ftrace_hash *hash; 5221 int ret = -ENODEV; 5222 5223 mutex_lock(&direct_mutex); 5224 5225 entry = find_direct_entry(&ip, NULL); 5226 if (!entry) 5227 goto out_unlock; 5228 5229 hash = direct_ops.func_hash->filter_hash; 5230 if (hash->count == 1) 5231 unregister_ftrace_function(&direct_ops); 5232 5233 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5234 5235 WARN_ON(ret); 5236 5237 remove_hash_entry(direct_functions, entry); 5238 5239 direct = ftrace_find_direct_func(addr); 5240 if (!WARN_ON(!direct)) { 5241 /* This is the good path (see the ! before WARN) */ 5242 direct->count--; 5243 WARN_ON(direct->count < 0); 5244 if (!direct->count) { 5245 list_del_rcu(&direct->next); 5246 synchronize_rcu_tasks(); 5247 kfree(direct); 5248 kfree(entry); 5249 ftrace_direct_func_count--; 5250 } 5251 } 5252 out_unlock: 5253 mutex_unlock(&direct_mutex); 5254 5255 return ret; 5256 } 5257 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5258 5259 static struct ftrace_ops stub_ops = { 5260 .func = ftrace_stub, 5261 }; 5262 5263 /** 5264 * ftrace_modify_direct_caller - modify ftrace nop directly 5265 * @entry: The ftrace hash entry of the direct helper for @rec 5266 * @rec: The record representing the function site to patch 5267 * @old_addr: The location that the site at @rec->ip currently calls 5268 * @new_addr: The location that the site at @rec->ip should call 5269 * 5270 * An architecture may overwrite this function to optimize the 5271 * changing of the direct callback on an ftrace nop location. 5272 * This is called with the ftrace_lock mutex held, and no other 5273 * ftrace callbacks are on the associated record (@rec). Thus, 5274 * it is safe to modify the ftrace record, where it should be 5275 * currently calling @old_addr directly, to call @new_addr. 5276 * 5277 * Safety checks should be made to make sure that the code at 5278 * @rec->ip is currently calling @old_addr. And this must 5279 * also update entry->direct to @new_addr. 5280 */ 5281 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5282 struct dyn_ftrace *rec, 5283 unsigned long old_addr, 5284 unsigned long new_addr) 5285 { 5286 unsigned long ip = rec->ip; 5287 int ret; 5288 5289 /* 5290 * The ftrace_lock was used to determine if the record 5291 * had more than one registered user to it. If it did, 5292 * we needed to prevent that from changing to do the quick 5293 * switch. But if it did not (only a direct caller was attached) 5294 * then this function is called. But this function can deal 5295 * with attached callers to the rec that we care about, and 5296 * since this function uses standard ftrace calls that take 5297 * the ftrace_lock mutex, we need to release it. 5298 */ 5299 mutex_unlock(&ftrace_lock); 5300 5301 /* 5302 * By setting a stub function at the same address, we force 5303 * the code to call the iterator and the direct_ops helper. 5304 * This means that @ip does not call the direct call, and 5305 * we can simply modify it. 5306 */ 5307 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5308 if (ret) 5309 goto out_lock; 5310 5311 ret = register_ftrace_function(&stub_ops); 5312 if (ret) { 5313 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5314 goto out_lock; 5315 } 5316 5317 entry->direct = new_addr; 5318 5319 /* 5320 * By removing the stub, we put back the direct call, calling 5321 * the @new_addr. 5322 */ 5323 unregister_ftrace_function(&stub_ops); 5324 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5325 5326 out_lock: 5327 mutex_lock(&ftrace_lock); 5328 5329 return ret; 5330 } 5331 5332 /** 5333 * modify_ftrace_direct - Modify an existing direct call to call something else 5334 * @ip: The instruction pointer to modify 5335 * @old_addr: The address that the current @ip calls directly 5336 * @new_addr: The address that the @ip should call 5337 * 5338 * This modifies a ftrace direct caller at an instruction pointer without 5339 * having to disable it first. The direct call will switch over to the 5340 * @new_addr without missing anything. 5341 * 5342 * Returns: zero on success. Non zero on error, which includes: 5343 * -ENODEV : the @ip given has no direct caller attached 5344 * -EINVAL : the @old_addr does not match the current direct caller 5345 */ 5346 int modify_ftrace_direct(unsigned long ip, 5347 unsigned long old_addr, unsigned long new_addr) 5348 { 5349 struct ftrace_direct_func *direct, *new_direct = NULL; 5350 struct ftrace_func_entry *entry; 5351 struct dyn_ftrace *rec; 5352 int ret = -ENODEV; 5353 5354 mutex_lock(&direct_mutex); 5355 5356 mutex_lock(&ftrace_lock); 5357 entry = find_direct_entry(&ip, &rec); 5358 if (!entry) 5359 goto out_unlock; 5360 5361 ret = -EINVAL; 5362 if (entry->direct != old_addr) 5363 goto out_unlock; 5364 5365 direct = ftrace_find_direct_func(old_addr); 5366 if (WARN_ON(!direct)) 5367 goto out_unlock; 5368 if (direct->count > 1) { 5369 ret = -ENOMEM; 5370 new_direct = ftrace_alloc_direct_func(new_addr); 5371 if (!new_direct) 5372 goto out_unlock; 5373 direct->count--; 5374 new_direct->count++; 5375 } else { 5376 direct->addr = new_addr; 5377 } 5378 5379 /* 5380 * If there's no other ftrace callback on the rec->ip location, 5381 * then it can be changed directly by the architecture. 5382 * If there is another caller, then we just need to change the 5383 * direct caller helper to point to @new_addr. 5384 */ 5385 if (ftrace_rec_count(rec) == 1) { 5386 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5387 } else { 5388 entry->direct = new_addr; 5389 ret = 0; 5390 } 5391 5392 if (unlikely(ret && new_direct)) { 5393 direct->count++; 5394 list_del_rcu(&new_direct->next); 5395 synchronize_rcu_tasks(); 5396 kfree(new_direct); 5397 ftrace_direct_func_count--; 5398 } 5399 5400 out_unlock: 5401 mutex_unlock(&ftrace_lock); 5402 mutex_unlock(&direct_mutex); 5403 return ret; 5404 } 5405 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5406 5407 #define MULTI_FLAGS (FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_DIRECT | \ 5408 FTRACE_OPS_FL_SAVE_REGS) 5409 5410 static int check_direct_multi(struct ftrace_ops *ops) 5411 { 5412 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5413 return -EINVAL; 5414 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5415 return -EINVAL; 5416 return 0; 5417 } 5418 5419 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5420 { 5421 struct ftrace_func_entry *entry, *del; 5422 int size, i; 5423 5424 size = 1 << hash->size_bits; 5425 for (i = 0; i < size; i++) { 5426 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5427 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5428 if (del && del->direct == addr) { 5429 remove_hash_entry(direct_functions, del); 5430 kfree(del); 5431 } 5432 } 5433 } 5434 } 5435 5436 /** 5437 * register_ftrace_direct_multi - Call a custom trampoline directly 5438 * for multiple functions registered in @ops 5439 * @ops: The address of the struct ftrace_ops object 5440 * @addr: The address of the trampoline to call at @ops functions 5441 * 5442 * This is used to connect a direct calls to @addr from the nop locations 5443 * of the functions registered in @ops (with by ftrace_set_filter_ip 5444 * function). 5445 * 5446 * The location that it calls (@addr) must be able to handle a direct call, 5447 * and save the parameters of the function being traced, and restore them 5448 * (or inject new ones if needed), before returning. 5449 * 5450 * Returns: 5451 * 0 on success 5452 * -EINVAL - The @ops object was already registered with this call or 5453 * when there are no functions in @ops object. 5454 * -EBUSY - Another direct function is already attached (there can be only one) 5455 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5456 * -ENOMEM - There was an allocation failure. 5457 */ 5458 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5459 { 5460 struct ftrace_hash *hash, *free_hash = NULL; 5461 struct ftrace_func_entry *entry, *new; 5462 int err = -EBUSY, size, i; 5463 5464 if (ops->func || ops->trampoline) 5465 return -EINVAL; 5466 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5467 return -EINVAL; 5468 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5469 return -EINVAL; 5470 5471 hash = ops->func_hash->filter_hash; 5472 if (ftrace_hash_empty(hash)) 5473 return -EINVAL; 5474 5475 mutex_lock(&direct_mutex); 5476 5477 /* Make sure requested entries are not already registered.. */ 5478 size = 1 << hash->size_bits; 5479 for (i = 0; i < size; i++) { 5480 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5481 if (ftrace_find_rec_direct(entry->ip)) 5482 goto out_unlock; 5483 } 5484 } 5485 5486 /* ... and insert them to direct_functions hash. */ 5487 err = -ENOMEM; 5488 for (i = 0; i < size; i++) { 5489 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5490 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5491 if (!new) 5492 goto out_remove; 5493 entry->direct = addr; 5494 } 5495 } 5496 5497 ops->func = call_direct_funcs; 5498 ops->flags = MULTI_FLAGS; 5499 ops->trampoline = FTRACE_REGS_ADDR; 5500 5501 err = register_ftrace_function(ops); 5502 5503 out_remove: 5504 if (err) 5505 remove_direct_functions_hash(hash, addr); 5506 5507 out_unlock: 5508 mutex_unlock(&direct_mutex); 5509 5510 if (free_hash) { 5511 synchronize_rcu_tasks(); 5512 free_ftrace_hash(free_hash); 5513 } 5514 return err; 5515 } 5516 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5517 5518 /** 5519 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5520 * previously registered by register_ftrace_direct_multi for @ops object. 5521 * @ops: The address of the struct ftrace_ops object 5522 * 5523 * This is used to remove a direct calls to @addr from the nop locations 5524 * of the functions registered in @ops (with by ftrace_set_filter_ip 5525 * function). 5526 * 5527 * Returns: 5528 * 0 on success 5529 * -EINVAL - The @ops object was not properly registered. 5530 */ 5531 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5532 { 5533 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5534 int err; 5535 5536 if (check_direct_multi(ops)) 5537 return -EINVAL; 5538 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5539 return -EINVAL; 5540 5541 mutex_lock(&direct_mutex); 5542 err = unregister_ftrace_function(ops); 5543 remove_direct_functions_hash(hash, addr); 5544 mutex_unlock(&direct_mutex); 5545 5546 /* cleanup for possible another register call */ 5547 ops->func = NULL; 5548 ops->trampoline = 0; 5549 return err; 5550 } 5551 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5552 5553 /** 5554 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5555 * to call something else 5556 * @ops: The address of the struct ftrace_ops object 5557 * @addr: The address of the new trampoline to call at @ops functions 5558 * 5559 * This is used to unregister currently registered direct caller and 5560 * register new one @addr on functions registered in @ops object. 5561 * 5562 * Note there's window between ftrace_shutdown and ftrace_startup calls 5563 * where there will be no callbacks called. 5564 * 5565 * Returns: zero on success. Non zero on error, which includes: 5566 * -EINVAL - The @ops object was not properly registered. 5567 */ 5568 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5569 { 5570 struct ftrace_hash *hash; 5571 struct ftrace_func_entry *entry, *iter; 5572 static struct ftrace_ops tmp_ops = { 5573 .func = ftrace_stub, 5574 .flags = FTRACE_OPS_FL_STUB, 5575 }; 5576 int i, size; 5577 int err; 5578 5579 if (check_direct_multi(ops)) 5580 return -EINVAL; 5581 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5582 return -EINVAL; 5583 5584 mutex_lock(&direct_mutex); 5585 5586 /* Enable the tmp_ops to have the same functions as the direct ops */ 5587 ftrace_ops_init(&tmp_ops); 5588 tmp_ops.func_hash = ops->func_hash; 5589 5590 err = register_ftrace_function(&tmp_ops); 5591 if (err) 5592 goto out_direct; 5593 5594 /* 5595 * Now the ftrace_ops_list_func() is called to do the direct callers. 5596 * We can safely change the direct functions attached to each entry. 5597 */ 5598 mutex_lock(&ftrace_lock); 5599 5600 hash = ops->func_hash->filter_hash; 5601 size = 1 << hash->size_bits; 5602 for (i = 0; i < size; i++) { 5603 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5604 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5605 if (!entry) 5606 continue; 5607 entry->direct = addr; 5608 } 5609 } 5610 5611 mutex_unlock(&ftrace_lock); 5612 5613 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5614 unregister_ftrace_function(&tmp_ops); 5615 5616 out_direct: 5617 mutex_unlock(&direct_mutex); 5618 return err; 5619 } 5620 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5621 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5622 5623 /** 5624 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5625 * @ops - the ops to set the filter with 5626 * @ip - the address to add to or remove from the filter. 5627 * @remove - non zero to remove the ip from the filter 5628 * @reset - non zero to reset all filters before applying this filter. 5629 * 5630 * Filters denote which functions should be enabled when tracing is enabled 5631 * If @ip is NULL, it fails to update filter. 5632 */ 5633 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5634 int remove, int reset) 5635 { 5636 ftrace_ops_init(ops); 5637 return ftrace_set_addr(ops, ip, remove, reset, 1); 5638 } 5639 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5640 5641 /** 5642 * ftrace_ops_set_global_filter - setup ops to use global filters 5643 * @ops - the ops which will use the global filters 5644 * 5645 * ftrace users who need global function trace filtering should call this. 5646 * It can set the global filter only if ops were not initialized before. 5647 */ 5648 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5649 { 5650 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5651 return; 5652 5653 ftrace_ops_init(ops); 5654 ops->func_hash = &global_ops.local_hash; 5655 } 5656 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5657 5658 static int 5659 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5660 int reset, int enable) 5661 { 5662 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5663 } 5664 5665 /** 5666 * ftrace_set_filter - set a function to filter on in ftrace 5667 * @ops - the ops to set the filter with 5668 * @buf - the string that holds the function filter text. 5669 * @len - the length of the string. 5670 * @reset - non zero to reset all filters before applying this filter. 5671 * 5672 * Filters denote which functions should be enabled when tracing is enabled. 5673 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5674 */ 5675 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5676 int len, int reset) 5677 { 5678 ftrace_ops_init(ops); 5679 return ftrace_set_regex(ops, buf, len, reset, 1); 5680 } 5681 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5682 5683 /** 5684 * ftrace_set_notrace - set a function to not trace in ftrace 5685 * @ops - the ops to set the notrace filter with 5686 * @buf - the string that holds the function notrace text. 5687 * @len - the length of the string. 5688 * @reset - non zero to reset all filters before applying this filter. 5689 * 5690 * Notrace Filters denote which functions should not be enabled when tracing 5691 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5692 * for tracing. 5693 */ 5694 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5695 int len, int reset) 5696 { 5697 ftrace_ops_init(ops); 5698 return ftrace_set_regex(ops, buf, len, reset, 0); 5699 } 5700 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5701 /** 5702 * ftrace_set_global_filter - set a function to filter on with global tracers 5703 * @buf - the string that holds the function filter text. 5704 * @len - the length of the string. 5705 * @reset - non zero to reset all filters before applying this filter. 5706 * 5707 * Filters denote which functions should be enabled when tracing is enabled. 5708 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5709 */ 5710 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5711 { 5712 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5713 } 5714 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5715 5716 /** 5717 * ftrace_set_global_notrace - set a function to not trace with global tracers 5718 * @buf - the string that holds the function notrace text. 5719 * @len - the length of the string. 5720 * @reset - non zero to reset all filters before applying this filter. 5721 * 5722 * Notrace Filters denote which functions should not be enabled when tracing 5723 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5724 * for tracing. 5725 */ 5726 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5727 { 5728 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5729 } 5730 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5731 5732 /* 5733 * command line interface to allow users to set filters on boot up. 5734 */ 5735 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5736 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5737 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5738 5739 /* Used by function selftest to not test if filter is set */ 5740 bool ftrace_filter_param __initdata; 5741 5742 static int __init set_ftrace_notrace(char *str) 5743 { 5744 ftrace_filter_param = true; 5745 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5746 return 1; 5747 } 5748 __setup("ftrace_notrace=", set_ftrace_notrace); 5749 5750 static int __init set_ftrace_filter(char *str) 5751 { 5752 ftrace_filter_param = true; 5753 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5754 return 1; 5755 } 5756 __setup("ftrace_filter=", set_ftrace_filter); 5757 5758 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5759 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5760 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5761 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5762 5763 static int __init set_graph_function(char *str) 5764 { 5765 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5766 return 1; 5767 } 5768 __setup("ftrace_graph_filter=", set_graph_function); 5769 5770 static int __init set_graph_notrace_function(char *str) 5771 { 5772 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5773 return 1; 5774 } 5775 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5776 5777 static int __init set_graph_max_depth_function(char *str) 5778 { 5779 if (!str) 5780 return 0; 5781 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5782 return 1; 5783 } 5784 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5785 5786 static void __init set_ftrace_early_graph(char *buf, int enable) 5787 { 5788 int ret; 5789 char *func; 5790 struct ftrace_hash *hash; 5791 5792 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5793 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5794 return; 5795 5796 while (buf) { 5797 func = strsep(&buf, ","); 5798 /* we allow only one expression at a time */ 5799 ret = ftrace_graph_set_hash(hash, func); 5800 if (ret) 5801 printk(KERN_DEBUG "ftrace: function %s not " 5802 "traceable\n", func); 5803 } 5804 5805 if (enable) 5806 ftrace_graph_hash = hash; 5807 else 5808 ftrace_graph_notrace_hash = hash; 5809 } 5810 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5811 5812 void __init 5813 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5814 { 5815 char *func; 5816 5817 ftrace_ops_init(ops); 5818 5819 while (buf) { 5820 func = strsep(&buf, ","); 5821 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5822 } 5823 } 5824 5825 static void __init set_ftrace_early_filters(void) 5826 { 5827 if (ftrace_filter_buf[0]) 5828 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5829 if (ftrace_notrace_buf[0]) 5830 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5831 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5832 if (ftrace_graph_buf[0]) 5833 set_ftrace_early_graph(ftrace_graph_buf, 1); 5834 if (ftrace_graph_notrace_buf[0]) 5835 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5836 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5837 } 5838 5839 int ftrace_regex_release(struct inode *inode, struct file *file) 5840 { 5841 struct seq_file *m = (struct seq_file *)file->private_data; 5842 struct ftrace_iterator *iter; 5843 struct ftrace_hash **orig_hash; 5844 struct trace_parser *parser; 5845 int filter_hash; 5846 5847 if (file->f_mode & FMODE_READ) { 5848 iter = m->private; 5849 seq_release(inode, file); 5850 } else 5851 iter = file->private_data; 5852 5853 parser = &iter->parser; 5854 if (trace_parser_loaded(parser)) { 5855 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 5856 5857 ftrace_process_regex(iter, parser->buffer, 5858 parser->idx, enable); 5859 } 5860 5861 trace_parser_put(parser); 5862 5863 mutex_lock(&iter->ops->func_hash->regex_lock); 5864 5865 if (file->f_mode & FMODE_WRITE) { 5866 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5867 5868 if (filter_hash) { 5869 orig_hash = &iter->ops->func_hash->filter_hash; 5870 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5871 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5872 } else 5873 orig_hash = &iter->ops->func_hash->notrace_hash; 5874 5875 mutex_lock(&ftrace_lock); 5876 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5877 iter->hash, filter_hash); 5878 mutex_unlock(&ftrace_lock); 5879 } else { 5880 /* For read only, the hash is the ops hash */ 5881 iter->hash = NULL; 5882 } 5883 5884 mutex_unlock(&iter->ops->func_hash->regex_lock); 5885 free_ftrace_hash(iter->hash); 5886 if (iter->tr) 5887 trace_array_put(iter->tr); 5888 kfree(iter); 5889 5890 return 0; 5891 } 5892 5893 static const struct file_operations ftrace_avail_fops = { 5894 .open = ftrace_avail_open, 5895 .read = seq_read, 5896 .llseek = seq_lseek, 5897 .release = seq_release_private, 5898 }; 5899 5900 static const struct file_operations ftrace_enabled_fops = { 5901 .open = ftrace_enabled_open, 5902 .read = seq_read, 5903 .llseek = seq_lseek, 5904 .release = seq_release_private, 5905 }; 5906 5907 static const struct file_operations ftrace_filter_fops = { 5908 .open = ftrace_filter_open, 5909 .read = seq_read, 5910 .write = ftrace_filter_write, 5911 .llseek = tracing_lseek, 5912 .release = ftrace_regex_release, 5913 }; 5914 5915 static const struct file_operations ftrace_notrace_fops = { 5916 .open = ftrace_notrace_open, 5917 .read = seq_read, 5918 .write = ftrace_notrace_write, 5919 .llseek = tracing_lseek, 5920 .release = ftrace_regex_release, 5921 }; 5922 5923 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5924 5925 static DEFINE_MUTEX(graph_lock); 5926 5927 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5928 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5929 5930 enum graph_filter_type { 5931 GRAPH_FILTER_NOTRACE = 0, 5932 GRAPH_FILTER_FUNCTION, 5933 }; 5934 5935 #define FTRACE_GRAPH_EMPTY ((void *)1) 5936 5937 struct ftrace_graph_data { 5938 struct ftrace_hash *hash; 5939 struct ftrace_func_entry *entry; 5940 int idx; /* for hash table iteration */ 5941 enum graph_filter_type type; 5942 struct ftrace_hash *new_hash; 5943 const struct seq_operations *seq_ops; 5944 struct trace_parser parser; 5945 }; 5946 5947 static void * 5948 __g_next(struct seq_file *m, loff_t *pos) 5949 { 5950 struct ftrace_graph_data *fgd = m->private; 5951 struct ftrace_func_entry *entry = fgd->entry; 5952 struct hlist_head *head; 5953 int i, idx = fgd->idx; 5954 5955 if (*pos >= fgd->hash->count) 5956 return NULL; 5957 5958 if (entry) { 5959 hlist_for_each_entry_continue(entry, hlist) { 5960 fgd->entry = entry; 5961 return entry; 5962 } 5963 5964 idx++; 5965 } 5966 5967 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5968 head = &fgd->hash->buckets[i]; 5969 hlist_for_each_entry(entry, head, hlist) { 5970 fgd->entry = entry; 5971 fgd->idx = i; 5972 return entry; 5973 } 5974 } 5975 return NULL; 5976 } 5977 5978 static void * 5979 g_next(struct seq_file *m, void *v, loff_t *pos) 5980 { 5981 (*pos)++; 5982 return __g_next(m, pos); 5983 } 5984 5985 static void *g_start(struct seq_file *m, loff_t *pos) 5986 { 5987 struct ftrace_graph_data *fgd = m->private; 5988 5989 mutex_lock(&graph_lock); 5990 5991 if (fgd->type == GRAPH_FILTER_FUNCTION) 5992 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5993 lockdep_is_held(&graph_lock)); 5994 else 5995 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5996 lockdep_is_held(&graph_lock)); 5997 5998 /* Nothing, tell g_show to print all functions are enabled */ 5999 if (ftrace_hash_empty(fgd->hash) && !*pos) 6000 return FTRACE_GRAPH_EMPTY; 6001 6002 fgd->idx = 0; 6003 fgd->entry = NULL; 6004 return __g_next(m, pos); 6005 } 6006 6007 static void g_stop(struct seq_file *m, void *p) 6008 { 6009 mutex_unlock(&graph_lock); 6010 } 6011 6012 static int g_show(struct seq_file *m, void *v) 6013 { 6014 struct ftrace_func_entry *entry = v; 6015 6016 if (!entry) 6017 return 0; 6018 6019 if (entry == FTRACE_GRAPH_EMPTY) { 6020 struct ftrace_graph_data *fgd = m->private; 6021 6022 if (fgd->type == GRAPH_FILTER_FUNCTION) 6023 seq_puts(m, "#### all functions enabled ####\n"); 6024 else 6025 seq_puts(m, "#### no functions disabled ####\n"); 6026 return 0; 6027 } 6028 6029 seq_printf(m, "%ps\n", (void *)entry->ip); 6030 6031 return 0; 6032 } 6033 6034 static const struct seq_operations ftrace_graph_seq_ops = { 6035 .start = g_start, 6036 .next = g_next, 6037 .stop = g_stop, 6038 .show = g_show, 6039 }; 6040 6041 static int 6042 __ftrace_graph_open(struct inode *inode, struct file *file, 6043 struct ftrace_graph_data *fgd) 6044 { 6045 int ret; 6046 struct ftrace_hash *new_hash = NULL; 6047 6048 ret = security_locked_down(LOCKDOWN_TRACEFS); 6049 if (ret) 6050 return ret; 6051 6052 if (file->f_mode & FMODE_WRITE) { 6053 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6054 6055 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6056 return -ENOMEM; 6057 6058 if (file->f_flags & O_TRUNC) 6059 new_hash = alloc_ftrace_hash(size_bits); 6060 else 6061 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6062 fgd->hash); 6063 if (!new_hash) { 6064 ret = -ENOMEM; 6065 goto out; 6066 } 6067 } 6068 6069 if (file->f_mode & FMODE_READ) { 6070 ret = seq_open(file, &ftrace_graph_seq_ops); 6071 if (!ret) { 6072 struct seq_file *m = file->private_data; 6073 m->private = fgd; 6074 } else { 6075 /* Failed */ 6076 free_ftrace_hash(new_hash); 6077 new_hash = NULL; 6078 } 6079 } else 6080 file->private_data = fgd; 6081 6082 out: 6083 if (ret < 0 && file->f_mode & FMODE_WRITE) 6084 trace_parser_put(&fgd->parser); 6085 6086 fgd->new_hash = new_hash; 6087 6088 /* 6089 * All uses of fgd->hash must be taken with the graph_lock 6090 * held. The graph_lock is going to be released, so force 6091 * fgd->hash to be reinitialized when it is taken again. 6092 */ 6093 fgd->hash = NULL; 6094 6095 return ret; 6096 } 6097 6098 static int 6099 ftrace_graph_open(struct inode *inode, struct file *file) 6100 { 6101 struct ftrace_graph_data *fgd; 6102 int ret; 6103 6104 if (unlikely(ftrace_disabled)) 6105 return -ENODEV; 6106 6107 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6108 if (fgd == NULL) 6109 return -ENOMEM; 6110 6111 mutex_lock(&graph_lock); 6112 6113 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6114 lockdep_is_held(&graph_lock)); 6115 fgd->type = GRAPH_FILTER_FUNCTION; 6116 fgd->seq_ops = &ftrace_graph_seq_ops; 6117 6118 ret = __ftrace_graph_open(inode, file, fgd); 6119 if (ret < 0) 6120 kfree(fgd); 6121 6122 mutex_unlock(&graph_lock); 6123 return ret; 6124 } 6125 6126 static int 6127 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6128 { 6129 struct ftrace_graph_data *fgd; 6130 int ret; 6131 6132 if (unlikely(ftrace_disabled)) 6133 return -ENODEV; 6134 6135 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6136 if (fgd == NULL) 6137 return -ENOMEM; 6138 6139 mutex_lock(&graph_lock); 6140 6141 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6142 lockdep_is_held(&graph_lock)); 6143 fgd->type = GRAPH_FILTER_NOTRACE; 6144 fgd->seq_ops = &ftrace_graph_seq_ops; 6145 6146 ret = __ftrace_graph_open(inode, file, fgd); 6147 if (ret < 0) 6148 kfree(fgd); 6149 6150 mutex_unlock(&graph_lock); 6151 return ret; 6152 } 6153 6154 static int 6155 ftrace_graph_release(struct inode *inode, struct file *file) 6156 { 6157 struct ftrace_graph_data *fgd; 6158 struct ftrace_hash *old_hash, *new_hash; 6159 struct trace_parser *parser; 6160 int ret = 0; 6161 6162 if (file->f_mode & FMODE_READ) { 6163 struct seq_file *m = file->private_data; 6164 6165 fgd = m->private; 6166 seq_release(inode, file); 6167 } else { 6168 fgd = file->private_data; 6169 } 6170 6171 6172 if (file->f_mode & FMODE_WRITE) { 6173 6174 parser = &fgd->parser; 6175 6176 if (trace_parser_loaded((parser))) { 6177 ret = ftrace_graph_set_hash(fgd->new_hash, 6178 parser->buffer); 6179 } 6180 6181 trace_parser_put(parser); 6182 6183 new_hash = __ftrace_hash_move(fgd->new_hash); 6184 if (!new_hash) { 6185 ret = -ENOMEM; 6186 goto out; 6187 } 6188 6189 mutex_lock(&graph_lock); 6190 6191 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6192 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6193 lockdep_is_held(&graph_lock)); 6194 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6195 } else { 6196 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6197 lockdep_is_held(&graph_lock)); 6198 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6199 } 6200 6201 mutex_unlock(&graph_lock); 6202 6203 /* 6204 * We need to do a hard force of sched synchronization. 6205 * This is because we use preempt_disable() to do RCU, but 6206 * the function tracers can be called where RCU is not watching 6207 * (like before user_exit()). We can not rely on the RCU 6208 * infrastructure to do the synchronization, thus we must do it 6209 * ourselves. 6210 */ 6211 if (old_hash != EMPTY_HASH) 6212 synchronize_rcu_tasks_rude(); 6213 6214 free_ftrace_hash(old_hash); 6215 } 6216 6217 out: 6218 free_ftrace_hash(fgd->new_hash); 6219 kfree(fgd); 6220 6221 return ret; 6222 } 6223 6224 static int 6225 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6226 { 6227 struct ftrace_glob func_g; 6228 struct dyn_ftrace *rec; 6229 struct ftrace_page *pg; 6230 struct ftrace_func_entry *entry; 6231 int fail = 1; 6232 int not; 6233 6234 /* decode regex */ 6235 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6236 &func_g.search, ¬); 6237 6238 func_g.len = strlen(func_g.search); 6239 6240 mutex_lock(&ftrace_lock); 6241 6242 if (unlikely(ftrace_disabled)) { 6243 mutex_unlock(&ftrace_lock); 6244 return -ENODEV; 6245 } 6246 6247 do_for_each_ftrace_rec(pg, rec) { 6248 6249 if (rec->flags & FTRACE_FL_DISABLED) 6250 continue; 6251 6252 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6253 entry = ftrace_lookup_ip(hash, rec->ip); 6254 6255 if (!not) { 6256 fail = 0; 6257 6258 if (entry) 6259 continue; 6260 if (add_hash_entry(hash, rec->ip) < 0) 6261 goto out; 6262 } else { 6263 if (entry) { 6264 free_hash_entry(hash, entry); 6265 fail = 0; 6266 } 6267 } 6268 } 6269 } while_for_each_ftrace_rec(); 6270 out: 6271 mutex_unlock(&ftrace_lock); 6272 6273 if (fail) 6274 return -EINVAL; 6275 6276 return 0; 6277 } 6278 6279 static ssize_t 6280 ftrace_graph_write(struct file *file, const char __user *ubuf, 6281 size_t cnt, loff_t *ppos) 6282 { 6283 ssize_t read, ret = 0; 6284 struct ftrace_graph_data *fgd = file->private_data; 6285 struct trace_parser *parser; 6286 6287 if (!cnt) 6288 return 0; 6289 6290 /* Read mode uses seq functions */ 6291 if (file->f_mode & FMODE_READ) { 6292 struct seq_file *m = file->private_data; 6293 fgd = m->private; 6294 } 6295 6296 parser = &fgd->parser; 6297 6298 read = trace_get_user(parser, ubuf, cnt, ppos); 6299 6300 if (read >= 0 && trace_parser_loaded(parser) && 6301 !trace_parser_cont(parser)) { 6302 6303 ret = ftrace_graph_set_hash(fgd->new_hash, 6304 parser->buffer); 6305 trace_parser_clear(parser); 6306 } 6307 6308 if (!ret) 6309 ret = read; 6310 6311 return ret; 6312 } 6313 6314 static const struct file_operations ftrace_graph_fops = { 6315 .open = ftrace_graph_open, 6316 .read = seq_read, 6317 .write = ftrace_graph_write, 6318 .llseek = tracing_lseek, 6319 .release = ftrace_graph_release, 6320 }; 6321 6322 static const struct file_operations ftrace_graph_notrace_fops = { 6323 .open = ftrace_graph_notrace_open, 6324 .read = seq_read, 6325 .write = ftrace_graph_write, 6326 .llseek = tracing_lseek, 6327 .release = ftrace_graph_release, 6328 }; 6329 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6330 6331 void ftrace_create_filter_files(struct ftrace_ops *ops, 6332 struct dentry *parent) 6333 { 6334 6335 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6336 ops, &ftrace_filter_fops); 6337 6338 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6339 ops, &ftrace_notrace_fops); 6340 } 6341 6342 /* 6343 * The name "destroy_filter_files" is really a misnomer. Although 6344 * in the future, it may actually delete the files, but this is 6345 * really intended to make sure the ops passed in are disabled 6346 * and that when this function returns, the caller is free to 6347 * free the ops. 6348 * 6349 * The "destroy" name is only to match the "create" name that this 6350 * should be paired with. 6351 */ 6352 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6353 { 6354 mutex_lock(&ftrace_lock); 6355 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6356 ftrace_shutdown(ops, 0); 6357 ops->flags |= FTRACE_OPS_FL_DELETED; 6358 ftrace_free_filter(ops); 6359 mutex_unlock(&ftrace_lock); 6360 } 6361 6362 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6363 { 6364 6365 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6366 d_tracer, NULL, &ftrace_avail_fops); 6367 6368 trace_create_file("enabled_functions", TRACE_MODE_READ, 6369 d_tracer, NULL, &ftrace_enabled_fops); 6370 6371 ftrace_create_filter_files(&global_ops, d_tracer); 6372 6373 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6374 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6375 NULL, 6376 &ftrace_graph_fops); 6377 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6378 NULL, 6379 &ftrace_graph_notrace_fops); 6380 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6381 6382 return 0; 6383 } 6384 6385 static int ftrace_cmp_ips(const void *a, const void *b) 6386 { 6387 const unsigned long *ipa = a; 6388 const unsigned long *ipb = b; 6389 6390 if (*ipa > *ipb) 6391 return 1; 6392 if (*ipa < *ipb) 6393 return -1; 6394 return 0; 6395 } 6396 6397 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6398 static void test_is_sorted(unsigned long *start, unsigned long count) 6399 { 6400 int i; 6401 6402 for (i = 1; i < count; i++) { 6403 if (WARN(start[i - 1] > start[i], 6404 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6405 (void *)start[i - 1], start[i - 1], 6406 (void *)start[i], start[i])) 6407 break; 6408 } 6409 if (i == count) 6410 pr_info("ftrace section at %px sorted properly\n", start); 6411 } 6412 #else 6413 static void test_is_sorted(unsigned long *start, unsigned long count) 6414 { 6415 } 6416 #endif 6417 6418 static int ftrace_process_locs(struct module *mod, 6419 unsigned long *start, 6420 unsigned long *end) 6421 { 6422 struct ftrace_page *start_pg; 6423 struct ftrace_page *pg; 6424 struct dyn_ftrace *rec; 6425 unsigned long count; 6426 unsigned long *p; 6427 unsigned long addr; 6428 unsigned long flags = 0; /* Shut up gcc */ 6429 int ret = -ENOMEM; 6430 6431 count = end - start; 6432 6433 if (!count) 6434 return 0; 6435 6436 /* 6437 * Sorting mcount in vmlinux at build time depend on 6438 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6439 * modules can not be sorted at build time. 6440 */ 6441 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6442 sort(start, count, sizeof(*start), 6443 ftrace_cmp_ips, NULL); 6444 } else { 6445 test_is_sorted(start, count); 6446 } 6447 6448 start_pg = ftrace_allocate_pages(count); 6449 if (!start_pg) 6450 return -ENOMEM; 6451 6452 mutex_lock(&ftrace_lock); 6453 6454 /* 6455 * Core and each module needs their own pages, as 6456 * modules will free them when they are removed. 6457 * Force a new page to be allocated for modules. 6458 */ 6459 if (!mod) { 6460 WARN_ON(ftrace_pages || ftrace_pages_start); 6461 /* First initialization */ 6462 ftrace_pages = ftrace_pages_start = start_pg; 6463 } else { 6464 if (!ftrace_pages) 6465 goto out; 6466 6467 if (WARN_ON(ftrace_pages->next)) { 6468 /* Hmm, we have free pages? */ 6469 while (ftrace_pages->next) 6470 ftrace_pages = ftrace_pages->next; 6471 } 6472 6473 ftrace_pages->next = start_pg; 6474 } 6475 6476 p = start; 6477 pg = start_pg; 6478 while (p < end) { 6479 unsigned long end_offset; 6480 addr = ftrace_call_adjust(*p++); 6481 /* 6482 * Some architecture linkers will pad between 6483 * the different mcount_loc sections of different 6484 * object files to satisfy alignments. 6485 * Skip any NULL pointers. 6486 */ 6487 if (!addr) 6488 continue; 6489 6490 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6491 if (end_offset > PAGE_SIZE << pg->order) { 6492 /* We should have allocated enough */ 6493 if (WARN_ON(!pg->next)) 6494 break; 6495 pg = pg->next; 6496 } 6497 6498 rec = &pg->records[pg->index++]; 6499 rec->ip = addr; 6500 } 6501 6502 /* We should have used all pages */ 6503 WARN_ON(pg->next); 6504 6505 /* Assign the last page to ftrace_pages */ 6506 ftrace_pages = pg; 6507 6508 /* 6509 * We only need to disable interrupts on start up 6510 * because we are modifying code that an interrupt 6511 * may execute, and the modification is not atomic. 6512 * But for modules, nothing runs the code we modify 6513 * until we are finished with it, and there's no 6514 * reason to cause large interrupt latencies while we do it. 6515 */ 6516 if (!mod) 6517 local_irq_save(flags); 6518 ftrace_update_code(mod, start_pg); 6519 if (!mod) 6520 local_irq_restore(flags); 6521 ret = 0; 6522 out: 6523 mutex_unlock(&ftrace_lock); 6524 6525 return ret; 6526 } 6527 6528 struct ftrace_mod_func { 6529 struct list_head list; 6530 char *name; 6531 unsigned long ip; 6532 unsigned int size; 6533 }; 6534 6535 struct ftrace_mod_map { 6536 struct rcu_head rcu; 6537 struct list_head list; 6538 struct module *mod; 6539 unsigned long start_addr; 6540 unsigned long end_addr; 6541 struct list_head funcs; 6542 unsigned int num_funcs; 6543 }; 6544 6545 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6546 unsigned long *value, char *type, 6547 char *name, char *module_name, 6548 int *exported) 6549 { 6550 struct ftrace_ops *op; 6551 6552 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6553 if (!op->trampoline || symnum--) 6554 continue; 6555 *value = op->trampoline; 6556 *type = 't'; 6557 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6558 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6559 *exported = 0; 6560 return 0; 6561 } 6562 6563 return -ERANGE; 6564 } 6565 6566 #ifdef CONFIG_MODULES 6567 6568 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6569 6570 static LIST_HEAD(ftrace_mod_maps); 6571 6572 static int referenced_filters(struct dyn_ftrace *rec) 6573 { 6574 struct ftrace_ops *ops; 6575 int cnt = 0; 6576 6577 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6578 if (ops_references_rec(ops, rec)) { 6579 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6580 continue; 6581 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6582 continue; 6583 cnt++; 6584 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6585 rec->flags |= FTRACE_FL_REGS; 6586 if (cnt == 1 && ops->trampoline) 6587 rec->flags |= FTRACE_FL_TRAMP; 6588 else 6589 rec->flags &= ~FTRACE_FL_TRAMP; 6590 } 6591 } 6592 6593 return cnt; 6594 } 6595 6596 static void 6597 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6598 { 6599 struct ftrace_func_entry *entry; 6600 struct dyn_ftrace *rec; 6601 int i; 6602 6603 if (ftrace_hash_empty(hash)) 6604 return; 6605 6606 for (i = 0; i < pg->index; i++) { 6607 rec = &pg->records[i]; 6608 entry = __ftrace_lookup_ip(hash, rec->ip); 6609 /* 6610 * Do not allow this rec to match again. 6611 * Yeah, it may waste some memory, but will be removed 6612 * if/when the hash is modified again. 6613 */ 6614 if (entry) 6615 entry->ip = 0; 6616 } 6617 } 6618 6619 /* Clear any records from hashes */ 6620 static void clear_mod_from_hashes(struct ftrace_page *pg) 6621 { 6622 struct trace_array *tr; 6623 6624 mutex_lock(&trace_types_lock); 6625 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6626 if (!tr->ops || !tr->ops->func_hash) 6627 continue; 6628 mutex_lock(&tr->ops->func_hash->regex_lock); 6629 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6630 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6631 mutex_unlock(&tr->ops->func_hash->regex_lock); 6632 } 6633 mutex_unlock(&trace_types_lock); 6634 } 6635 6636 static void ftrace_free_mod_map(struct rcu_head *rcu) 6637 { 6638 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6639 struct ftrace_mod_func *mod_func; 6640 struct ftrace_mod_func *n; 6641 6642 /* All the contents of mod_map are now not visible to readers */ 6643 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6644 kfree(mod_func->name); 6645 list_del(&mod_func->list); 6646 kfree(mod_func); 6647 } 6648 6649 kfree(mod_map); 6650 } 6651 6652 void ftrace_release_mod(struct module *mod) 6653 { 6654 struct ftrace_mod_map *mod_map; 6655 struct ftrace_mod_map *n; 6656 struct dyn_ftrace *rec; 6657 struct ftrace_page **last_pg; 6658 struct ftrace_page *tmp_page = NULL; 6659 struct ftrace_page *pg; 6660 6661 mutex_lock(&ftrace_lock); 6662 6663 if (ftrace_disabled) 6664 goto out_unlock; 6665 6666 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6667 if (mod_map->mod == mod) { 6668 list_del_rcu(&mod_map->list); 6669 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6670 break; 6671 } 6672 } 6673 6674 /* 6675 * Each module has its own ftrace_pages, remove 6676 * them from the list. 6677 */ 6678 last_pg = &ftrace_pages_start; 6679 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6680 rec = &pg->records[0]; 6681 if (within_module_core(rec->ip, mod) || 6682 within_module_init(rec->ip, mod)) { 6683 /* 6684 * As core pages are first, the first 6685 * page should never be a module page. 6686 */ 6687 if (WARN_ON(pg == ftrace_pages_start)) 6688 goto out_unlock; 6689 6690 /* Check if we are deleting the last page */ 6691 if (pg == ftrace_pages) 6692 ftrace_pages = next_to_ftrace_page(last_pg); 6693 6694 ftrace_update_tot_cnt -= pg->index; 6695 *last_pg = pg->next; 6696 6697 pg->next = tmp_page; 6698 tmp_page = pg; 6699 } else 6700 last_pg = &pg->next; 6701 } 6702 out_unlock: 6703 mutex_unlock(&ftrace_lock); 6704 6705 for (pg = tmp_page; pg; pg = tmp_page) { 6706 6707 /* Needs to be called outside of ftrace_lock */ 6708 clear_mod_from_hashes(pg); 6709 6710 if (pg->records) { 6711 free_pages((unsigned long)pg->records, pg->order); 6712 ftrace_number_of_pages -= 1 << pg->order; 6713 } 6714 tmp_page = pg->next; 6715 kfree(pg); 6716 ftrace_number_of_groups--; 6717 } 6718 } 6719 6720 void ftrace_module_enable(struct module *mod) 6721 { 6722 struct dyn_ftrace *rec; 6723 struct ftrace_page *pg; 6724 6725 mutex_lock(&ftrace_lock); 6726 6727 if (ftrace_disabled) 6728 goto out_unlock; 6729 6730 /* 6731 * If the tracing is enabled, go ahead and enable the record. 6732 * 6733 * The reason not to enable the record immediately is the 6734 * inherent check of ftrace_make_nop/ftrace_make_call for 6735 * correct previous instructions. Making first the NOP 6736 * conversion puts the module to the correct state, thus 6737 * passing the ftrace_make_call check. 6738 * 6739 * We also delay this to after the module code already set the 6740 * text to read-only, as we now need to set it back to read-write 6741 * so that we can modify the text. 6742 */ 6743 if (ftrace_start_up) 6744 ftrace_arch_code_modify_prepare(); 6745 6746 do_for_each_ftrace_rec(pg, rec) { 6747 int cnt; 6748 /* 6749 * do_for_each_ftrace_rec() is a double loop. 6750 * module text shares the pg. If a record is 6751 * not part of this module, then skip this pg, 6752 * which the "break" will do. 6753 */ 6754 if (!within_module_core(rec->ip, mod) && 6755 !within_module_init(rec->ip, mod)) 6756 break; 6757 6758 cnt = 0; 6759 6760 /* 6761 * When adding a module, we need to check if tracers are 6762 * currently enabled and if they are, and can trace this record, 6763 * we need to enable the module functions as well as update the 6764 * reference counts for those function records. 6765 */ 6766 if (ftrace_start_up) 6767 cnt += referenced_filters(rec); 6768 6769 rec->flags &= ~FTRACE_FL_DISABLED; 6770 rec->flags += cnt; 6771 6772 if (ftrace_start_up && cnt) { 6773 int failed = __ftrace_replace_code(rec, 1); 6774 if (failed) { 6775 ftrace_bug(failed, rec); 6776 goto out_loop; 6777 } 6778 } 6779 6780 } while_for_each_ftrace_rec(); 6781 6782 out_loop: 6783 if (ftrace_start_up) 6784 ftrace_arch_code_modify_post_process(); 6785 6786 out_unlock: 6787 mutex_unlock(&ftrace_lock); 6788 6789 process_cached_mods(mod->name); 6790 } 6791 6792 void ftrace_module_init(struct module *mod) 6793 { 6794 if (ftrace_disabled || !mod->num_ftrace_callsites) 6795 return; 6796 6797 ftrace_process_locs(mod, mod->ftrace_callsites, 6798 mod->ftrace_callsites + mod->num_ftrace_callsites); 6799 } 6800 6801 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6802 struct dyn_ftrace *rec) 6803 { 6804 struct ftrace_mod_func *mod_func; 6805 unsigned long symsize; 6806 unsigned long offset; 6807 char str[KSYM_SYMBOL_LEN]; 6808 char *modname; 6809 const char *ret; 6810 6811 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6812 if (!ret) 6813 return; 6814 6815 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6816 if (!mod_func) 6817 return; 6818 6819 mod_func->name = kstrdup(str, GFP_KERNEL); 6820 if (!mod_func->name) { 6821 kfree(mod_func); 6822 return; 6823 } 6824 6825 mod_func->ip = rec->ip - offset; 6826 mod_func->size = symsize; 6827 6828 mod_map->num_funcs++; 6829 6830 list_add_rcu(&mod_func->list, &mod_map->funcs); 6831 } 6832 6833 static struct ftrace_mod_map * 6834 allocate_ftrace_mod_map(struct module *mod, 6835 unsigned long start, unsigned long end) 6836 { 6837 struct ftrace_mod_map *mod_map; 6838 6839 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6840 if (!mod_map) 6841 return NULL; 6842 6843 mod_map->mod = mod; 6844 mod_map->start_addr = start; 6845 mod_map->end_addr = end; 6846 mod_map->num_funcs = 0; 6847 6848 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6849 6850 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6851 6852 return mod_map; 6853 } 6854 6855 static const char * 6856 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6857 unsigned long addr, unsigned long *size, 6858 unsigned long *off, char *sym) 6859 { 6860 struct ftrace_mod_func *found_func = NULL; 6861 struct ftrace_mod_func *mod_func; 6862 6863 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6864 if (addr >= mod_func->ip && 6865 addr < mod_func->ip + mod_func->size) { 6866 found_func = mod_func; 6867 break; 6868 } 6869 } 6870 6871 if (found_func) { 6872 if (size) 6873 *size = found_func->size; 6874 if (off) 6875 *off = addr - found_func->ip; 6876 if (sym) 6877 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6878 6879 return found_func->name; 6880 } 6881 6882 return NULL; 6883 } 6884 6885 const char * 6886 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6887 unsigned long *off, char **modname, char *sym) 6888 { 6889 struct ftrace_mod_map *mod_map; 6890 const char *ret = NULL; 6891 6892 /* mod_map is freed via call_rcu() */ 6893 preempt_disable(); 6894 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6895 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6896 if (ret) { 6897 if (modname) 6898 *modname = mod_map->mod->name; 6899 break; 6900 } 6901 } 6902 preempt_enable(); 6903 6904 return ret; 6905 } 6906 6907 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6908 char *type, char *name, 6909 char *module_name, int *exported) 6910 { 6911 struct ftrace_mod_map *mod_map; 6912 struct ftrace_mod_func *mod_func; 6913 int ret; 6914 6915 preempt_disable(); 6916 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6917 6918 if (symnum >= mod_map->num_funcs) { 6919 symnum -= mod_map->num_funcs; 6920 continue; 6921 } 6922 6923 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6924 if (symnum > 1) { 6925 symnum--; 6926 continue; 6927 } 6928 6929 *value = mod_func->ip; 6930 *type = 'T'; 6931 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6932 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6933 *exported = 1; 6934 preempt_enable(); 6935 return 0; 6936 } 6937 WARN_ON(1); 6938 break; 6939 } 6940 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6941 module_name, exported); 6942 preempt_enable(); 6943 return ret; 6944 } 6945 6946 #else 6947 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6948 struct dyn_ftrace *rec) { } 6949 static inline struct ftrace_mod_map * 6950 allocate_ftrace_mod_map(struct module *mod, 6951 unsigned long start, unsigned long end) 6952 { 6953 return NULL; 6954 } 6955 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6956 char *type, char *name, char *module_name, 6957 int *exported) 6958 { 6959 int ret; 6960 6961 preempt_disable(); 6962 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6963 module_name, exported); 6964 preempt_enable(); 6965 return ret; 6966 } 6967 #endif /* CONFIG_MODULES */ 6968 6969 struct ftrace_init_func { 6970 struct list_head list; 6971 unsigned long ip; 6972 }; 6973 6974 /* Clear any init ips from hashes */ 6975 static void 6976 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6977 { 6978 struct ftrace_func_entry *entry; 6979 6980 entry = ftrace_lookup_ip(hash, func->ip); 6981 /* 6982 * Do not allow this rec to match again. 6983 * Yeah, it may waste some memory, but will be removed 6984 * if/when the hash is modified again. 6985 */ 6986 if (entry) 6987 entry->ip = 0; 6988 } 6989 6990 static void 6991 clear_func_from_hashes(struct ftrace_init_func *func) 6992 { 6993 struct trace_array *tr; 6994 6995 mutex_lock(&trace_types_lock); 6996 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6997 if (!tr->ops || !tr->ops->func_hash) 6998 continue; 6999 mutex_lock(&tr->ops->func_hash->regex_lock); 7000 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7001 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7002 mutex_unlock(&tr->ops->func_hash->regex_lock); 7003 } 7004 mutex_unlock(&trace_types_lock); 7005 } 7006 7007 static void add_to_clear_hash_list(struct list_head *clear_list, 7008 struct dyn_ftrace *rec) 7009 { 7010 struct ftrace_init_func *func; 7011 7012 func = kmalloc(sizeof(*func), GFP_KERNEL); 7013 if (!func) { 7014 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7015 return; 7016 } 7017 7018 func->ip = rec->ip; 7019 list_add(&func->list, clear_list); 7020 } 7021 7022 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7023 { 7024 unsigned long start = (unsigned long)(start_ptr); 7025 unsigned long end = (unsigned long)(end_ptr); 7026 struct ftrace_page **last_pg = &ftrace_pages_start; 7027 struct ftrace_page *pg; 7028 struct dyn_ftrace *rec; 7029 struct dyn_ftrace key; 7030 struct ftrace_mod_map *mod_map = NULL; 7031 struct ftrace_init_func *func, *func_next; 7032 struct list_head clear_hash; 7033 7034 INIT_LIST_HEAD(&clear_hash); 7035 7036 key.ip = start; 7037 key.flags = end; /* overload flags, as it is unsigned long */ 7038 7039 mutex_lock(&ftrace_lock); 7040 7041 /* 7042 * If we are freeing module init memory, then check if 7043 * any tracer is active. If so, we need to save a mapping of 7044 * the module functions being freed with the address. 7045 */ 7046 if (mod && ftrace_ops_list != &ftrace_list_end) 7047 mod_map = allocate_ftrace_mod_map(mod, start, end); 7048 7049 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7050 if (end < pg->records[0].ip || 7051 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7052 continue; 7053 again: 7054 rec = bsearch(&key, pg->records, pg->index, 7055 sizeof(struct dyn_ftrace), 7056 ftrace_cmp_recs); 7057 if (!rec) 7058 continue; 7059 7060 /* rec will be cleared from hashes after ftrace_lock unlock */ 7061 add_to_clear_hash_list(&clear_hash, rec); 7062 7063 if (mod_map) 7064 save_ftrace_mod_rec(mod_map, rec); 7065 7066 pg->index--; 7067 ftrace_update_tot_cnt--; 7068 if (!pg->index) { 7069 *last_pg = pg->next; 7070 if (pg->records) { 7071 free_pages((unsigned long)pg->records, pg->order); 7072 ftrace_number_of_pages -= 1 << pg->order; 7073 } 7074 ftrace_number_of_groups--; 7075 kfree(pg); 7076 pg = container_of(last_pg, struct ftrace_page, next); 7077 if (!(*last_pg)) 7078 ftrace_pages = pg; 7079 continue; 7080 } 7081 memmove(rec, rec + 1, 7082 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7083 /* More than one function may be in this block */ 7084 goto again; 7085 } 7086 mutex_unlock(&ftrace_lock); 7087 7088 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7089 clear_func_from_hashes(func); 7090 kfree(func); 7091 } 7092 } 7093 7094 void __init ftrace_free_init_mem(void) 7095 { 7096 void *start = (void *)(&__init_begin); 7097 void *end = (void *)(&__init_end); 7098 7099 ftrace_free_mem(NULL, start, end); 7100 } 7101 7102 int __init __weak ftrace_dyn_arch_init(void) 7103 { 7104 return 0; 7105 } 7106 7107 void __init ftrace_init(void) 7108 { 7109 extern unsigned long __start_mcount_loc[]; 7110 extern unsigned long __stop_mcount_loc[]; 7111 unsigned long count, flags; 7112 int ret; 7113 7114 local_irq_save(flags); 7115 ret = ftrace_dyn_arch_init(); 7116 local_irq_restore(flags); 7117 if (ret) 7118 goto failed; 7119 7120 count = __stop_mcount_loc - __start_mcount_loc; 7121 if (!count) { 7122 pr_info("ftrace: No functions to be traced?\n"); 7123 goto failed; 7124 } 7125 7126 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7127 count, count / ENTRIES_PER_PAGE + 1); 7128 7129 last_ftrace_enabled = ftrace_enabled = 1; 7130 7131 ret = ftrace_process_locs(NULL, 7132 __start_mcount_loc, 7133 __stop_mcount_loc); 7134 7135 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7136 ftrace_number_of_pages, ftrace_number_of_groups); 7137 7138 set_ftrace_early_filters(); 7139 7140 return; 7141 failed: 7142 ftrace_disabled = 1; 7143 } 7144 7145 /* Do nothing if arch does not support this */ 7146 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7147 { 7148 } 7149 7150 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7151 { 7152 unsigned long trampoline = ops->trampoline; 7153 7154 arch_ftrace_update_trampoline(ops); 7155 if (ops->trampoline && ops->trampoline != trampoline && 7156 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7157 /* Add to kallsyms before the perf events */ 7158 ftrace_add_trampoline_to_kallsyms(ops); 7159 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7160 ops->trampoline, ops->trampoline_size, false, 7161 FTRACE_TRAMPOLINE_SYM); 7162 /* 7163 * Record the perf text poke event after the ksymbol register 7164 * event. 7165 */ 7166 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7167 (void *)ops->trampoline, 7168 ops->trampoline_size); 7169 } 7170 } 7171 7172 void ftrace_init_trace_array(struct trace_array *tr) 7173 { 7174 INIT_LIST_HEAD(&tr->func_probes); 7175 INIT_LIST_HEAD(&tr->mod_trace); 7176 INIT_LIST_HEAD(&tr->mod_notrace); 7177 } 7178 #else 7179 7180 struct ftrace_ops global_ops = { 7181 .func = ftrace_stub, 7182 .flags = FTRACE_OPS_FL_INITIALIZED | 7183 FTRACE_OPS_FL_PID, 7184 }; 7185 7186 static int __init ftrace_nodyn_init(void) 7187 { 7188 ftrace_enabled = 1; 7189 return 0; 7190 } 7191 core_initcall(ftrace_nodyn_init); 7192 7193 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7194 static inline void ftrace_startup_enable(int command) { } 7195 static inline void ftrace_startup_all(int command) { } 7196 7197 # define ftrace_startup_sysctl() do { } while (0) 7198 # define ftrace_shutdown_sysctl() do { } while (0) 7199 7200 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7201 { 7202 } 7203 7204 #endif /* CONFIG_DYNAMIC_FTRACE */ 7205 7206 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7207 { 7208 tr->ops = &global_ops; 7209 tr->ops->private = tr; 7210 ftrace_init_trace_array(tr); 7211 } 7212 7213 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7214 { 7215 /* If we filter on pids, update to use the pid function */ 7216 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7217 if (WARN_ON(tr->ops->func != ftrace_stub)) 7218 printk("ftrace ops had %pS for function\n", 7219 tr->ops->func); 7220 } 7221 tr->ops->func = func; 7222 tr->ops->private = tr; 7223 } 7224 7225 void ftrace_reset_array_ops(struct trace_array *tr) 7226 { 7227 tr->ops->func = ftrace_stub; 7228 } 7229 7230 static nokprobe_inline void 7231 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7232 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7233 { 7234 struct pt_regs *regs = ftrace_get_regs(fregs); 7235 struct ftrace_ops *op; 7236 int bit; 7237 7238 /* 7239 * The ftrace_test_and_set_recursion() will disable preemption, 7240 * which is required since some of the ops may be dynamically 7241 * allocated, they must be freed after a synchronize_rcu(). 7242 */ 7243 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7244 if (bit < 0) 7245 return; 7246 7247 do_for_each_ftrace_op(op, ftrace_ops_list) { 7248 /* Stub functions don't need to be called nor tested */ 7249 if (op->flags & FTRACE_OPS_FL_STUB) 7250 continue; 7251 /* 7252 * Check the following for each ops before calling their func: 7253 * if RCU flag is set, then rcu_is_watching() must be true 7254 * if PER_CPU is set, then ftrace_function_local_disable() 7255 * must be false 7256 * Otherwise test if the ip matches the ops filter 7257 * 7258 * If any of the above fails then the op->func() is not executed. 7259 */ 7260 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7261 ftrace_ops_test(op, ip, regs)) { 7262 if (FTRACE_WARN_ON(!op->func)) { 7263 pr_warn("op=%p %pS\n", op, op); 7264 goto out; 7265 } 7266 op->func(ip, parent_ip, op, fregs); 7267 } 7268 } while_for_each_ftrace_op(op); 7269 out: 7270 trace_clear_recursion(bit); 7271 } 7272 7273 /* 7274 * Some archs only support passing ip and parent_ip. Even though 7275 * the list function ignores the op parameter, we do not want any 7276 * C side effects, where a function is called without the caller 7277 * sending a third parameter. 7278 * Archs are to support both the regs and ftrace_ops at the same time. 7279 * If they support ftrace_ops, it is assumed they support regs. 7280 * If call backs want to use regs, they must either check for regs 7281 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7282 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7283 * An architecture can pass partial regs with ftrace_ops and still 7284 * set the ARCH_SUPPORTS_FTRACE_OPS. 7285 * 7286 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7287 * arch_ftrace_ops_list_func. 7288 */ 7289 #if ARCH_SUPPORTS_FTRACE_OPS 7290 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7291 struct ftrace_ops *op, struct ftrace_regs *fregs) 7292 { 7293 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7294 } 7295 #else 7296 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7297 { 7298 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7299 } 7300 #endif 7301 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7302 7303 /* 7304 * If there's only one function registered but it does not support 7305 * recursion, needs RCU protection and/or requires per cpu handling, then 7306 * this function will be called by the mcount trampoline. 7307 */ 7308 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7309 struct ftrace_ops *op, struct ftrace_regs *fregs) 7310 { 7311 int bit; 7312 7313 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7314 if (bit < 0) 7315 return; 7316 7317 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7318 op->func(ip, parent_ip, op, fregs); 7319 7320 trace_clear_recursion(bit); 7321 } 7322 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7323 7324 /** 7325 * ftrace_ops_get_func - get the function a trampoline should call 7326 * @ops: the ops to get the function for 7327 * 7328 * Normally the mcount trampoline will call the ops->func, but there 7329 * are times that it should not. For example, if the ops does not 7330 * have its own recursion protection, then it should call the 7331 * ftrace_ops_assist_func() instead. 7332 * 7333 * Returns the function that the trampoline should call for @ops. 7334 */ 7335 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7336 { 7337 /* 7338 * If the function does not handle recursion or needs to be RCU safe, 7339 * then we need to call the assist handler. 7340 */ 7341 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7342 FTRACE_OPS_FL_RCU)) 7343 return ftrace_ops_assist_func; 7344 7345 return ops->func; 7346 } 7347 7348 static void 7349 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7350 struct task_struct *prev, struct task_struct *next) 7351 { 7352 struct trace_array *tr = data; 7353 struct trace_pid_list *pid_list; 7354 struct trace_pid_list *no_pid_list; 7355 7356 pid_list = rcu_dereference_sched(tr->function_pids); 7357 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7358 7359 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7360 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7361 FTRACE_PID_IGNORE); 7362 else 7363 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7364 next->pid); 7365 } 7366 7367 static void 7368 ftrace_pid_follow_sched_process_fork(void *data, 7369 struct task_struct *self, 7370 struct task_struct *task) 7371 { 7372 struct trace_pid_list *pid_list; 7373 struct trace_array *tr = data; 7374 7375 pid_list = rcu_dereference_sched(tr->function_pids); 7376 trace_filter_add_remove_task(pid_list, self, task); 7377 7378 pid_list = rcu_dereference_sched(tr->function_no_pids); 7379 trace_filter_add_remove_task(pid_list, self, task); 7380 } 7381 7382 static void 7383 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7384 { 7385 struct trace_pid_list *pid_list; 7386 struct trace_array *tr = data; 7387 7388 pid_list = rcu_dereference_sched(tr->function_pids); 7389 trace_filter_add_remove_task(pid_list, NULL, task); 7390 7391 pid_list = rcu_dereference_sched(tr->function_no_pids); 7392 trace_filter_add_remove_task(pid_list, NULL, task); 7393 } 7394 7395 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7396 { 7397 if (enable) { 7398 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7399 tr); 7400 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7401 tr); 7402 } else { 7403 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7404 tr); 7405 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7406 tr); 7407 } 7408 } 7409 7410 static void clear_ftrace_pids(struct trace_array *tr, int type) 7411 { 7412 struct trace_pid_list *pid_list; 7413 struct trace_pid_list *no_pid_list; 7414 int cpu; 7415 7416 pid_list = rcu_dereference_protected(tr->function_pids, 7417 lockdep_is_held(&ftrace_lock)); 7418 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7419 lockdep_is_held(&ftrace_lock)); 7420 7421 /* Make sure there's something to do */ 7422 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7423 return; 7424 7425 /* See if the pids still need to be checked after this */ 7426 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7427 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7428 for_each_possible_cpu(cpu) 7429 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7430 } 7431 7432 if (type & TRACE_PIDS) 7433 rcu_assign_pointer(tr->function_pids, NULL); 7434 7435 if (type & TRACE_NO_PIDS) 7436 rcu_assign_pointer(tr->function_no_pids, NULL); 7437 7438 /* Wait till all users are no longer using pid filtering */ 7439 synchronize_rcu(); 7440 7441 if ((type & TRACE_PIDS) && pid_list) 7442 trace_pid_list_free(pid_list); 7443 7444 if ((type & TRACE_NO_PIDS) && no_pid_list) 7445 trace_pid_list_free(no_pid_list); 7446 } 7447 7448 void ftrace_clear_pids(struct trace_array *tr) 7449 { 7450 mutex_lock(&ftrace_lock); 7451 7452 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7453 7454 mutex_unlock(&ftrace_lock); 7455 } 7456 7457 static void ftrace_pid_reset(struct trace_array *tr, int type) 7458 { 7459 mutex_lock(&ftrace_lock); 7460 clear_ftrace_pids(tr, type); 7461 7462 ftrace_update_pid_func(); 7463 ftrace_startup_all(0); 7464 7465 mutex_unlock(&ftrace_lock); 7466 } 7467 7468 /* Greater than any max PID */ 7469 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7470 7471 static void *fpid_start(struct seq_file *m, loff_t *pos) 7472 __acquires(RCU) 7473 { 7474 struct trace_pid_list *pid_list; 7475 struct trace_array *tr = m->private; 7476 7477 mutex_lock(&ftrace_lock); 7478 rcu_read_lock_sched(); 7479 7480 pid_list = rcu_dereference_sched(tr->function_pids); 7481 7482 if (!pid_list) 7483 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7484 7485 return trace_pid_start(pid_list, pos); 7486 } 7487 7488 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7489 { 7490 struct trace_array *tr = m->private; 7491 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7492 7493 if (v == FTRACE_NO_PIDS) { 7494 (*pos)++; 7495 return NULL; 7496 } 7497 return trace_pid_next(pid_list, v, pos); 7498 } 7499 7500 static void fpid_stop(struct seq_file *m, void *p) 7501 __releases(RCU) 7502 { 7503 rcu_read_unlock_sched(); 7504 mutex_unlock(&ftrace_lock); 7505 } 7506 7507 static int fpid_show(struct seq_file *m, void *v) 7508 { 7509 if (v == FTRACE_NO_PIDS) { 7510 seq_puts(m, "no pid\n"); 7511 return 0; 7512 } 7513 7514 return trace_pid_show(m, v); 7515 } 7516 7517 static const struct seq_operations ftrace_pid_sops = { 7518 .start = fpid_start, 7519 .next = fpid_next, 7520 .stop = fpid_stop, 7521 .show = fpid_show, 7522 }; 7523 7524 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7525 __acquires(RCU) 7526 { 7527 struct trace_pid_list *pid_list; 7528 struct trace_array *tr = m->private; 7529 7530 mutex_lock(&ftrace_lock); 7531 rcu_read_lock_sched(); 7532 7533 pid_list = rcu_dereference_sched(tr->function_no_pids); 7534 7535 if (!pid_list) 7536 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7537 7538 return trace_pid_start(pid_list, pos); 7539 } 7540 7541 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7542 { 7543 struct trace_array *tr = m->private; 7544 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7545 7546 if (v == FTRACE_NO_PIDS) { 7547 (*pos)++; 7548 return NULL; 7549 } 7550 return trace_pid_next(pid_list, v, pos); 7551 } 7552 7553 static const struct seq_operations ftrace_no_pid_sops = { 7554 .start = fnpid_start, 7555 .next = fnpid_next, 7556 .stop = fpid_stop, 7557 .show = fpid_show, 7558 }; 7559 7560 static int pid_open(struct inode *inode, struct file *file, int type) 7561 { 7562 const struct seq_operations *seq_ops; 7563 struct trace_array *tr = inode->i_private; 7564 struct seq_file *m; 7565 int ret = 0; 7566 7567 ret = tracing_check_open_get_tr(tr); 7568 if (ret) 7569 return ret; 7570 7571 if ((file->f_mode & FMODE_WRITE) && 7572 (file->f_flags & O_TRUNC)) 7573 ftrace_pid_reset(tr, type); 7574 7575 switch (type) { 7576 case TRACE_PIDS: 7577 seq_ops = &ftrace_pid_sops; 7578 break; 7579 case TRACE_NO_PIDS: 7580 seq_ops = &ftrace_no_pid_sops; 7581 break; 7582 default: 7583 trace_array_put(tr); 7584 WARN_ON_ONCE(1); 7585 return -EINVAL; 7586 } 7587 7588 ret = seq_open(file, seq_ops); 7589 if (ret < 0) { 7590 trace_array_put(tr); 7591 } else { 7592 m = file->private_data; 7593 /* copy tr over to seq ops */ 7594 m->private = tr; 7595 } 7596 7597 return ret; 7598 } 7599 7600 static int 7601 ftrace_pid_open(struct inode *inode, struct file *file) 7602 { 7603 return pid_open(inode, file, TRACE_PIDS); 7604 } 7605 7606 static int 7607 ftrace_no_pid_open(struct inode *inode, struct file *file) 7608 { 7609 return pid_open(inode, file, TRACE_NO_PIDS); 7610 } 7611 7612 static void ignore_task_cpu(void *data) 7613 { 7614 struct trace_array *tr = data; 7615 struct trace_pid_list *pid_list; 7616 struct trace_pid_list *no_pid_list; 7617 7618 /* 7619 * This function is called by on_each_cpu() while the 7620 * event_mutex is held. 7621 */ 7622 pid_list = rcu_dereference_protected(tr->function_pids, 7623 mutex_is_locked(&ftrace_lock)); 7624 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7625 mutex_is_locked(&ftrace_lock)); 7626 7627 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7628 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7629 FTRACE_PID_IGNORE); 7630 else 7631 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7632 current->pid); 7633 } 7634 7635 static ssize_t 7636 pid_write(struct file *filp, const char __user *ubuf, 7637 size_t cnt, loff_t *ppos, int type) 7638 { 7639 struct seq_file *m = filp->private_data; 7640 struct trace_array *tr = m->private; 7641 struct trace_pid_list *filtered_pids; 7642 struct trace_pid_list *other_pids; 7643 struct trace_pid_list *pid_list; 7644 ssize_t ret; 7645 7646 if (!cnt) 7647 return 0; 7648 7649 mutex_lock(&ftrace_lock); 7650 7651 switch (type) { 7652 case TRACE_PIDS: 7653 filtered_pids = rcu_dereference_protected(tr->function_pids, 7654 lockdep_is_held(&ftrace_lock)); 7655 other_pids = rcu_dereference_protected(tr->function_no_pids, 7656 lockdep_is_held(&ftrace_lock)); 7657 break; 7658 case TRACE_NO_PIDS: 7659 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7660 lockdep_is_held(&ftrace_lock)); 7661 other_pids = rcu_dereference_protected(tr->function_pids, 7662 lockdep_is_held(&ftrace_lock)); 7663 break; 7664 default: 7665 ret = -EINVAL; 7666 WARN_ON_ONCE(1); 7667 goto out; 7668 } 7669 7670 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7671 if (ret < 0) 7672 goto out; 7673 7674 switch (type) { 7675 case TRACE_PIDS: 7676 rcu_assign_pointer(tr->function_pids, pid_list); 7677 break; 7678 case TRACE_NO_PIDS: 7679 rcu_assign_pointer(tr->function_no_pids, pid_list); 7680 break; 7681 } 7682 7683 7684 if (filtered_pids) { 7685 synchronize_rcu(); 7686 trace_pid_list_free(filtered_pids); 7687 } else if (pid_list && !other_pids) { 7688 /* Register a probe to set whether to ignore the tracing of a task */ 7689 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7690 } 7691 7692 /* 7693 * Ignoring of pids is done at task switch. But we have to 7694 * check for those tasks that are currently running. 7695 * Always do this in case a pid was appended or removed. 7696 */ 7697 on_each_cpu(ignore_task_cpu, tr, 1); 7698 7699 ftrace_update_pid_func(); 7700 ftrace_startup_all(0); 7701 out: 7702 mutex_unlock(&ftrace_lock); 7703 7704 if (ret > 0) 7705 *ppos += ret; 7706 7707 return ret; 7708 } 7709 7710 static ssize_t 7711 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7712 size_t cnt, loff_t *ppos) 7713 { 7714 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7715 } 7716 7717 static ssize_t 7718 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7719 size_t cnt, loff_t *ppos) 7720 { 7721 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7722 } 7723 7724 static int 7725 ftrace_pid_release(struct inode *inode, struct file *file) 7726 { 7727 struct trace_array *tr = inode->i_private; 7728 7729 trace_array_put(tr); 7730 7731 return seq_release(inode, file); 7732 } 7733 7734 static const struct file_operations ftrace_pid_fops = { 7735 .open = ftrace_pid_open, 7736 .write = ftrace_pid_write, 7737 .read = seq_read, 7738 .llseek = tracing_lseek, 7739 .release = ftrace_pid_release, 7740 }; 7741 7742 static const struct file_operations ftrace_no_pid_fops = { 7743 .open = ftrace_no_pid_open, 7744 .write = ftrace_no_pid_write, 7745 .read = seq_read, 7746 .llseek = tracing_lseek, 7747 .release = ftrace_pid_release, 7748 }; 7749 7750 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7751 { 7752 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 7753 tr, &ftrace_pid_fops); 7754 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 7755 d_tracer, tr, &ftrace_no_pid_fops); 7756 } 7757 7758 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7759 struct dentry *d_tracer) 7760 { 7761 /* Only the top level directory has the dyn_tracefs and profile */ 7762 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7763 7764 ftrace_init_dyn_tracefs(d_tracer); 7765 ftrace_profile_tracefs(d_tracer); 7766 } 7767 7768 /** 7769 * ftrace_kill - kill ftrace 7770 * 7771 * This function should be used by panic code. It stops ftrace 7772 * but in a not so nice way. If you need to simply kill ftrace 7773 * from a non-atomic section, use ftrace_kill. 7774 */ 7775 void ftrace_kill(void) 7776 { 7777 ftrace_disabled = 1; 7778 ftrace_enabled = 0; 7779 ftrace_trace_function = ftrace_stub; 7780 } 7781 7782 /** 7783 * ftrace_is_dead - Test if ftrace is dead or not. 7784 * 7785 * Returns 1 if ftrace is "dead", zero otherwise. 7786 */ 7787 int ftrace_is_dead(void) 7788 { 7789 return ftrace_disabled; 7790 } 7791 7792 /** 7793 * register_ftrace_function - register a function for profiling 7794 * @ops - ops structure that holds the function for profiling. 7795 * 7796 * Register a function to be called by all functions in the 7797 * kernel. 7798 * 7799 * Note: @ops->func and all the functions it calls must be labeled 7800 * with "notrace", otherwise it will go into a 7801 * recursive loop. 7802 */ 7803 int register_ftrace_function(struct ftrace_ops *ops) 7804 { 7805 int ret; 7806 7807 ftrace_ops_init(ops); 7808 7809 mutex_lock(&ftrace_lock); 7810 7811 ret = ftrace_startup(ops, 0); 7812 7813 mutex_unlock(&ftrace_lock); 7814 7815 return ret; 7816 } 7817 EXPORT_SYMBOL_GPL(register_ftrace_function); 7818 7819 /** 7820 * unregister_ftrace_function - unregister a function for profiling. 7821 * @ops - ops structure that holds the function to unregister 7822 * 7823 * Unregister a function that was added to be called by ftrace profiling. 7824 */ 7825 int unregister_ftrace_function(struct ftrace_ops *ops) 7826 { 7827 int ret; 7828 7829 mutex_lock(&ftrace_lock); 7830 ret = ftrace_shutdown(ops, 0); 7831 mutex_unlock(&ftrace_lock); 7832 7833 return ret; 7834 } 7835 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7836 7837 static bool is_permanent_ops_registered(void) 7838 { 7839 struct ftrace_ops *op; 7840 7841 do_for_each_ftrace_op(op, ftrace_ops_list) { 7842 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7843 return true; 7844 } while_for_each_ftrace_op(op); 7845 7846 return false; 7847 } 7848 7849 int 7850 ftrace_enable_sysctl(struct ctl_table *table, int write, 7851 void *buffer, size_t *lenp, loff_t *ppos) 7852 { 7853 int ret = -ENODEV; 7854 7855 mutex_lock(&ftrace_lock); 7856 7857 if (unlikely(ftrace_disabled)) 7858 goto out; 7859 7860 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7861 7862 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7863 goto out; 7864 7865 if (ftrace_enabled) { 7866 7867 /* we are starting ftrace again */ 7868 if (rcu_dereference_protected(ftrace_ops_list, 7869 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7870 update_ftrace_function(); 7871 7872 ftrace_startup_sysctl(); 7873 7874 } else { 7875 if (is_permanent_ops_registered()) { 7876 ftrace_enabled = true; 7877 ret = -EBUSY; 7878 goto out; 7879 } 7880 7881 /* stopping ftrace calls (just send to ftrace_stub) */ 7882 ftrace_trace_function = ftrace_stub; 7883 7884 ftrace_shutdown_sysctl(); 7885 } 7886 7887 last_ftrace_enabled = !!ftrace_enabled; 7888 out: 7889 mutex_unlock(&ftrace_lock); 7890 return ret; 7891 } 7892