1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct pt_regs *regs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct pt_regs *regs) 144 { 145 struct trace_array *tr = op->private; 146 147 if (tr && this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid)) 148 return; 149 150 op->saved_func(ip, parent_ip, op, regs); 151 } 152 153 static void ftrace_sync(struct work_struct *work) 154 { 155 /* 156 * This function is just a stub to implement a hard force 157 * of synchronize_rcu(). This requires synchronizing 158 * tasks even in userspace and idle. 159 * 160 * Yes, function tracing is rude. 161 */ 162 } 163 164 static void ftrace_sync_ipi(void *data) 165 { 166 /* Probably not needed, but do it anyway */ 167 smp_rmb(); 168 } 169 170 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 171 { 172 /* 173 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 174 * then it needs to call the list anyway. 175 */ 176 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 177 FTRACE_FORCE_LIST_FUNC) 178 return ftrace_ops_list_func; 179 180 return ftrace_ops_get_func(ops); 181 } 182 183 static void update_ftrace_function(void) 184 { 185 ftrace_func_t func; 186 187 /* 188 * Prepare the ftrace_ops that the arch callback will use. 189 * If there's only one ftrace_ops registered, the ftrace_ops_list 190 * will point to the ops we want. 191 */ 192 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 193 lockdep_is_held(&ftrace_lock)); 194 195 /* If there's no ftrace_ops registered, just call the stub function */ 196 if (set_function_trace_op == &ftrace_list_end) { 197 func = ftrace_stub; 198 199 /* 200 * If we are at the end of the list and this ops is 201 * recursion safe and not dynamic and the arch supports passing ops, 202 * then have the mcount trampoline call the function directly. 203 */ 204 } else if (rcu_dereference_protected(ftrace_ops_list->next, 205 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 206 func = ftrace_ops_get_list_func(ftrace_ops_list); 207 208 } else { 209 /* Just use the default ftrace_ops */ 210 set_function_trace_op = &ftrace_list_end; 211 func = ftrace_ops_list_func; 212 } 213 214 update_function_graph_func(); 215 216 /* If there's no change, then do nothing more here */ 217 if (ftrace_trace_function == func) 218 return; 219 220 /* 221 * If we are using the list function, it doesn't care 222 * about the function_trace_ops. 223 */ 224 if (func == ftrace_ops_list_func) { 225 ftrace_trace_function = func; 226 /* 227 * Don't even bother setting function_trace_ops, 228 * it would be racy to do so anyway. 229 */ 230 return; 231 } 232 233 #ifndef CONFIG_DYNAMIC_FTRACE 234 /* 235 * For static tracing, we need to be a bit more careful. 236 * The function change takes affect immediately. Thus, 237 * we need to coorditate the setting of the function_trace_ops 238 * with the setting of the ftrace_trace_function. 239 * 240 * Set the function to the list ops, which will call the 241 * function we want, albeit indirectly, but it handles the 242 * ftrace_ops and doesn't depend on function_trace_op. 243 */ 244 ftrace_trace_function = ftrace_ops_list_func; 245 /* 246 * Make sure all CPUs see this. Yes this is slow, but static 247 * tracing is slow and nasty to have enabled. 248 */ 249 schedule_on_each_cpu(ftrace_sync); 250 /* Now all cpus are using the list ops. */ 251 function_trace_op = set_function_trace_op; 252 /* Make sure the function_trace_op is visible on all CPUs */ 253 smp_wmb(); 254 /* Nasty way to force a rmb on all cpus */ 255 smp_call_function(ftrace_sync_ipi, NULL, 1); 256 /* OK, we are all set to update the ftrace_trace_function now! */ 257 #endif /* !CONFIG_DYNAMIC_FTRACE */ 258 259 ftrace_trace_function = func; 260 } 261 262 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 263 struct ftrace_ops *ops) 264 { 265 rcu_assign_pointer(ops->next, *list); 266 267 /* 268 * We are entering ops into the list but another 269 * CPU might be walking that list. We need to make sure 270 * the ops->next pointer is valid before another CPU sees 271 * the ops pointer included into the list. 272 */ 273 rcu_assign_pointer(*list, ops); 274 } 275 276 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 277 struct ftrace_ops *ops) 278 { 279 struct ftrace_ops **p; 280 281 /* 282 * If we are removing the last function, then simply point 283 * to the ftrace_stub. 284 */ 285 if (rcu_dereference_protected(*list, 286 lockdep_is_held(&ftrace_lock)) == ops && 287 rcu_dereference_protected(ops->next, 288 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 289 *list = &ftrace_list_end; 290 return 0; 291 } 292 293 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 294 if (*p == ops) 295 break; 296 297 if (*p != ops) 298 return -1; 299 300 *p = (*p)->next; 301 return 0; 302 } 303 304 static void ftrace_update_trampoline(struct ftrace_ops *ops); 305 306 int __register_ftrace_function(struct ftrace_ops *ops) 307 { 308 if (ops->flags & FTRACE_OPS_FL_DELETED) 309 return -EINVAL; 310 311 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 312 return -EBUSY; 313 314 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 315 /* 316 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 317 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 318 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 319 */ 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 321 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 322 return -EINVAL; 323 324 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 325 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 326 #endif 327 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 328 return -EBUSY; 329 330 if (!core_kernel_data((unsigned long)ops)) 331 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 332 333 add_ftrace_ops(&ftrace_ops_list, ops); 334 335 /* Always save the function, and reset at unregistering */ 336 ops->saved_func = ops->func; 337 338 if (ftrace_pids_enabled(ops)) 339 ops->func = ftrace_pid_func; 340 341 ftrace_update_trampoline(ops); 342 343 if (ftrace_enabled) 344 update_ftrace_function(); 345 346 return 0; 347 } 348 349 int __unregister_ftrace_function(struct ftrace_ops *ops) 350 { 351 int ret; 352 353 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 354 return -EBUSY; 355 356 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 357 358 if (ret < 0) 359 return ret; 360 361 if (ftrace_enabled) 362 update_ftrace_function(); 363 364 ops->func = ops->saved_func; 365 366 return 0; 367 } 368 369 static void ftrace_update_pid_func(void) 370 { 371 struct ftrace_ops *op; 372 373 /* Only do something if we are tracing something */ 374 if (ftrace_trace_function == ftrace_stub) 375 return; 376 377 do_for_each_ftrace_op(op, ftrace_ops_list) { 378 if (op->flags & FTRACE_OPS_FL_PID) { 379 op->func = ftrace_pids_enabled(op) ? 380 ftrace_pid_func : op->saved_func; 381 ftrace_update_trampoline(op); 382 } 383 } while_for_each_ftrace_op(op); 384 385 update_ftrace_function(); 386 } 387 388 #ifdef CONFIG_FUNCTION_PROFILER 389 struct ftrace_profile { 390 struct hlist_node node; 391 unsigned long ip; 392 unsigned long counter; 393 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 394 unsigned long long time; 395 unsigned long long time_squared; 396 #endif 397 }; 398 399 struct ftrace_profile_page { 400 struct ftrace_profile_page *next; 401 unsigned long index; 402 struct ftrace_profile records[]; 403 }; 404 405 struct ftrace_profile_stat { 406 atomic_t disabled; 407 struct hlist_head *hash; 408 struct ftrace_profile_page *pages; 409 struct ftrace_profile_page *start; 410 struct tracer_stat stat; 411 }; 412 413 #define PROFILE_RECORDS_SIZE \ 414 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 415 416 #define PROFILES_PER_PAGE \ 417 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 418 419 static int ftrace_profile_enabled __read_mostly; 420 421 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 422 static DEFINE_MUTEX(ftrace_profile_lock); 423 424 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 425 426 #define FTRACE_PROFILE_HASH_BITS 10 427 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 428 429 static void * 430 function_stat_next(void *v, int idx) 431 { 432 struct ftrace_profile *rec = v; 433 struct ftrace_profile_page *pg; 434 435 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 436 437 again: 438 if (idx != 0) 439 rec++; 440 441 if ((void *)rec >= (void *)&pg->records[pg->index]) { 442 pg = pg->next; 443 if (!pg) 444 return NULL; 445 rec = &pg->records[0]; 446 if (!rec->counter) 447 goto again; 448 } 449 450 return rec; 451 } 452 453 static void *function_stat_start(struct tracer_stat *trace) 454 { 455 struct ftrace_profile_stat *stat = 456 container_of(trace, struct ftrace_profile_stat, stat); 457 458 if (!stat || !stat->start) 459 return NULL; 460 461 return function_stat_next(&stat->start->records[0], 0); 462 } 463 464 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 465 /* function graph compares on total time */ 466 static int function_stat_cmp(const void *p1, const void *p2) 467 { 468 const struct ftrace_profile *a = p1; 469 const struct ftrace_profile *b = p2; 470 471 if (a->time < b->time) 472 return -1; 473 if (a->time > b->time) 474 return 1; 475 else 476 return 0; 477 } 478 #else 479 /* not function graph compares against hits */ 480 static int function_stat_cmp(const void *p1, const void *p2) 481 { 482 const struct ftrace_profile *a = p1; 483 const struct ftrace_profile *b = p2; 484 485 if (a->counter < b->counter) 486 return -1; 487 if (a->counter > b->counter) 488 return 1; 489 else 490 return 0; 491 } 492 #endif 493 494 static int function_stat_headers(struct seq_file *m) 495 { 496 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 497 seq_puts(m, " Function " 498 "Hit Time Avg s^2\n" 499 " -------- " 500 "--- ---- --- ---\n"); 501 #else 502 seq_puts(m, " Function Hit\n" 503 " -------- ---\n"); 504 #endif 505 return 0; 506 } 507 508 static int function_stat_show(struct seq_file *m, void *v) 509 { 510 struct ftrace_profile *rec = v; 511 char str[KSYM_SYMBOL_LEN]; 512 int ret = 0; 513 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 514 static struct trace_seq s; 515 unsigned long long avg; 516 unsigned long long stddev; 517 #endif 518 mutex_lock(&ftrace_profile_lock); 519 520 /* we raced with function_profile_reset() */ 521 if (unlikely(rec->counter == 0)) { 522 ret = -EBUSY; 523 goto out; 524 } 525 526 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 527 avg = div64_ul(rec->time, rec->counter); 528 if (tracing_thresh && (avg < tracing_thresh)) 529 goto out; 530 #endif 531 532 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 533 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 534 535 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 536 seq_puts(m, " "); 537 538 /* Sample standard deviation (s^2) */ 539 if (rec->counter <= 1) 540 stddev = 0; 541 else { 542 /* 543 * Apply Welford's method: 544 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 545 */ 546 stddev = rec->counter * rec->time_squared - 547 rec->time * rec->time; 548 549 /* 550 * Divide only 1000 for ns^2 -> us^2 conversion. 551 * trace_print_graph_duration will divide 1000 again. 552 */ 553 stddev = div64_ul(stddev, 554 rec->counter * (rec->counter - 1) * 1000); 555 } 556 557 trace_seq_init(&s); 558 trace_print_graph_duration(rec->time, &s); 559 trace_seq_puts(&s, " "); 560 trace_print_graph_duration(avg, &s); 561 trace_seq_puts(&s, " "); 562 trace_print_graph_duration(stddev, &s); 563 trace_print_seq(m, &s); 564 #endif 565 seq_putc(m, '\n'); 566 out: 567 mutex_unlock(&ftrace_profile_lock); 568 569 return ret; 570 } 571 572 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 573 { 574 struct ftrace_profile_page *pg; 575 576 pg = stat->pages = stat->start; 577 578 while (pg) { 579 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 580 pg->index = 0; 581 pg = pg->next; 582 } 583 584 memset(stat->hash, 0, 585 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 586 } 587 588 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 589 { 590 struct ftrace_profile_page *pg; 591 int functions; 592 int pages; 593 int i; 594 595 /* If we already allocated, do nothing */ 596 if (stat->pages) 597 return 0; 598 599 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 600 if (!stat->pages) 601 return -ENOMEM; 602 603 #ifdef CONFIG_DYNAMIC_FTRACE 604 functions = ftrace_update_tot_cnt; 605 #else 606 /* 607 * We do not know the number of functions that exist because 608 * dynamic tracing is what counts them. With past experience 609 * we have around 20K functions. That should be more than enough. 610 * It is highly unlikely we will execute every function in 611 * the kernel. 612 */ 613 functions = 20000; 614 #endif 615 616 pg = stat->start = stat->pages; 617 618 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 619 620 for (i = 1; i < pages; i++) { 621 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 622 if (!pg->next) 623 goto out_free; 624 pg = pg->next; 625 } 626 627 return 0; 628 629 out_free: 630 pg = stat->start; 631 while (pg) { 632 unsigned long tmp = (unsigned long)pg; 633 634 pg = pg->next; 635 free_page(tmp); 636 } 637 638 stat->pages = NULL; 639 stat->start = NULL; 640 641 return -ENOMEM; 642 } 643 644 static int ftrace_profile_init_cpu(int cpu) 645 { 646 struct ftrace_profile_stat *stat; 647 int size; 648 649 stat = &per_cpu(ftrace_profile_stats, cpu); 650 651 if (stat->hash) { 652 /* If the profile is already created, simply reset it */ 653 ftrace_profile_reset(stat); 654 return 0; 655 } 656 657 /* 658 * We are profiling all functions, but usually only a few thousand 659 * functions are hit. We'll make a hash of 1024 items. 660 */ 661 size = FTRACE_PROFILE_HASH_SIZE; 662 663 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 664 665 if (!stat->hash) 666 return -ENOMEM; 667 668 /* Preallocate the function profiling pages */ 669 if (ftrace_profile_pages_init(stat) < 0) { 670 kfree(stat->hash); 671 stat->hash = NULL; 672 return -ENOMEM; 673 } 674 675 return 0; 676 } 677 678 static int ftrace_profile_init(void) 679 { 680 int cpu; 681 int ret = 0; 682 683 for_each_possible_cpu(cpu) { 684 ret = ftrace_profile_init_cpu(cpu); 685 if (ret) 686 break; 687 } 688 689 return ret; 690 } 691 692 /* interrupts must be disabled */ 693 static struct ftrace_profile * 694 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 695 { 696 struct ftrace_profile *rec; 697 struct hlist_head *hhd; 698 unsigned long key; 699 700 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 701 hhd = &stat->hash[key]; 702 703 if (hlist_empty(hhd)) 704 return NULL; 705 706 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 707 if (rec->ip == ip) 708 return rec; 709 } 710 711 return NULL; 712 } 713 714 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 715 struct ftrace_profile *rec) 716 { 717 unsigned long key; 718 719 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 720 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 721 } 722 723 /* 724 * The memory is already allocated, this simply finds a new record to use. 725 */ 726 static struct ftrace_profile * 727 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 728 { 729 struct ftrace_profile *rec = NULL; 730 731 /* prevent recursion (from NMIs) */ 732 if (atomic_inc_return(&stat->disabled) != 1) 733 goto out; 734 735 /* 736 * Try to find the function again since an NMI 737 * could have added it 738 */ 739 rec = ftrace_find_profiled_func(stat, ip); 740 if (rec) 741 goto out; 742 743 if (stat->pages->index == PROFILES_PER_PAGE) { 744 if (!stat->pages->next) 745 goto out; 746 stat->pages = stat->pages->next; 747 } 748 749 rec = &stat->pages->records[stat->pages->index++]; 750 rec->ip = ip; 751 ftrace_add_profile(stat, rec); 752 753 out: 754 atomic_dec(&stat->disabled); 755 756 return rec; 757 } 758 759 static void 760 function_profile_call(unsigned long ip, unsigned long parent_ip, 761 struct ftrace_ops *ops, struct pt_regs *regs) 762 { 763 struct ftrace_profile_stat *stat; 764 struct ftrace_profile *rec; 765 unsigned long flags; 766 767 if (!ftrace_profile_enabled) 768 return; 769 770 local_irq_save(flags); 771 772 stat = this_cpu_ptr(&ftrace_profile_stats); 773 if (!stat->hash || !ftrace_profile_enabled) 774 goto out; 775 776 rec = ftrace_find_profiled_func(stat, ip); 777 if (!rec) { 778 rec = ftrace_profile_alloc(stat, ip); 779 if (!rec) 780 goto out; 781 } 782 783 rec->counter++; 784 out: 785 local_irq_restore(flags); 786 } 787 788 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 789 static bool fgraph_graph_time = true; 790 791 void ftrace_graph_graph_time_control(bool enable) 792 { 793 fgraph_graph_time = enable; 794 } 795 796 static int profile_graph_entry(struct ftrace_graph_ent *trace) 797 { 798 struct ftrace_ret_stack *ret_stack; 799 800 function_profile_call(trace->func, 0, NULL, NULL); 801 802 /* If function graph is shutting down, ret_stack can be NULL */ 803 if (!current->ret_stack) 804 return 0; 805 806 ret_stack = ftrace_graph_get_ret_stack(current, 0); 807 if (ret_stack) 808 ret_stack->subtime = 0; 809 810 return 1; 811 } 812 813 static void profile_graph_return(struct ftrace_graph_ret *trace) 814 { 815 struct ftrace_ret_stack *ret_stack; 816 struct ftrace_profile_stat *stat; 817 unsigned long long calltime; 818 struct ftrace_profile *rec; 819 unsigned long flags; 820 821 local_irq_save(flags); 822 stat = this_cpu_ptr(&ftrace_profile_stats); 823 if (!stat->hash || !ftrace_profile_enabled) 824 goto out; 825 826 /* If the calltime was zero'd ignore it */ 827 if (!trace->calltime) 828 goto out; 829 830 calltime = trace->rettime - trace->calltime; 831 832 if (!fgraph_graph_time) { 833 834 /* Append this call time to the parent time to subtract */ 835 ret_stack = ftrace_graph_get_ret_stack(current, 1); 836 if (ret_stack) 837 ret_stack->subtime += calltime; 838 839 ret_stack = ftrace_graph_get_ret_stack(current, 0); 840 if (ret_stack && ret_stack->subtime < calltime) 841 calltime -= ret_stack->subtime; 842 else 843 calltime = 0; 844 } 845 846 rec = ftrace_find_profiled_func(stat, trace->func); 847 if (rec) { 848 rec->time += calltime; 849 rec->time_squared += calltime * calltime; 850 } 851 852 out: 853 local_irq_restore(flags); 854 } 855 856 static struct fgraph_ops fprofiler_ops = { 857 .entryfunc = &profile_graph_entry, 858 .retfunc = &profile_graph_return, 859 }; 860 861 static int register_ftrace_profiler(void) 862 { 863 return register_ftrace_graph(&fprofiler_ops); 864 } 865 866 static void unregister_ftrace_profiler(void) 867 { 868 unregister_ftrace_graph(&fprofiler_ops); 869 } 870 #else 871 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 872 .func = function_profile_call, 873 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 874 INIT_OPS_HASH(ftrace_profile_ops) 875 }; 876 877 static int register_ftrace_profiler(void) 878 { 879 return register_ftrace_function(&ftrace_profile_ops); 880 } 881 882 static void unregister_ftrace_profiler(void) 883 { 884 unregister_ftrace_function(&ftrace_profile_ops); 885 } 886 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 887 888 static ssize_t 889 ftrace_profile_write(struct file *filp, const char __user *ubuf, 890 size_t cnt, loff_t *ppos) 891 { 892 unsigned long val; 893 int ret; 894 895 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 896 if (ret) 897 return ret; 898 899 val = !!val; 900 901 mutex_lock(&ftrace_profile_lock); 902 if (ftrace_profile_enabled ^ val) { 903 if (val) { 904 ret = ftrace_profile_init(); 905 if (ret < 0) { 906 cnt = ret; 907 goto out; 908 } 909 910 ret = register_ftrace_profiler(); 911 if (ret < 0) { 912 cnt = ret; 913 goto out; 914 } 915 ftrace_profile_enabled = 1; 916 } else { 917 ftrace_profile_enabled = 0; 918 /* 919 * unregister_ftrace_profiler calls stop_machine 920 * so this acts like an synchronize_rcu. 921 */ 922 unregister_ftrace_profiler(); 923 } 924 } 925 out: 926 mutex_unlock(&ftrace_profile_lock); 927 928 *ppos += cnt; 929 930 return cnt; 931 } 932 933 static ssize_t 934 ftrace_profile_read(struct file *filp, char __user *ubuf, 935 size_t cnt, loff_t *ppos) 936 { 937 char buf[64]; /* big enough to hold a number */ 938 int r; 939 940 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 941 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 942 } 943 944 static const struct file_operations ftrace_profile_fops = { 945 .open = tracing_open_generic, 946 .read = ftrace_profile_read, 947 .write = ftrace_profile_write, 948 .llseek = default_llseek, 949 }; 950 951 /* used to initialize the real stat files */ 952 static struct tracer_stat function_stats __initdata = { 953 .name = "functions", 954 .stat_start = function_stat_start, 955 .stat_next = function_stat_next, 956 .stat_cmp = function_stat_cmp, 957 .stat_headers = function_stat_headers, 958 .stat_show = function_stat_show 959 }; 960 961 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 962 { 963 struct ftrace_profile_stat *stat; 964 struct dentry *entry; 965 char *name; 966 int ret; 967 int cpu; 968 969 for_each_possible_cpu(cpu) { 970 stat = &per_cpu(ftrace_profile_stats, cpu); 971 972 name = kasprintf(GFP_KERNEL, "function%d", cpu); 973 if (!name) { 974 /* 975 * The files created are permanent, if something happens 976 * we still do not free memory. 977 */ 978 WARN(1, 979 "Could not allocate stat file for cpu %d\n", 980 cpu); 981 return; 982 } 983 stat->stat = function_stats; 984 stat->stat.name = name; 985 ret = register_stat_tracer(&stat->stat); 986 if (ret) { 987 WARN(1, 988 "Could not register function stat for cpu %d\n", 989 cpu); 990 kfree(name); 991 return; 992 } 993 } 994 995 entry = tracefs_create_file("function_profile_enabled", 0644, 996 d_tracer, NULL, &ftrace_profile_fops); 997 if (!entry) 998 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 999 } 1000 1001 #else /* CONFIG_FUNCTION_PROFILER */ 1002 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1003 { 1004 } 1005 #endif /* CONFIG_FUNCTION_PROFILER */ 1006 1007 #ifdef CONFIG_DYNAMIC_FTRACE 1008 1009 static struct ftrace_ops *removed_ops; 1010 1011 /* 1012 * Set when doing a global update, like enabling all recs or disabling them. 1013 * It is not set when just updating a single ftrace_ops. 1014 */ 1015 static bool update_all_ops; 1016 1017 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1018 # error Dynamic ftrace depends on MCOUNT_RECORD 1019 #endif 1020 1021 struct ftrace_func_probe { 1022 struct ftrace_probe_ops *probe_ops; 1023 struct ftrace_ops ops; 1024 struct trace_array *tr; 1025 struct list_head list; 1026 void *data; 1027 int ref; 1028 }; 1029 1030 /* 1031 * We make these constant because no one should touch them, 1032 * but they are used as the default "empty hash", to avoid allocating 1033 * it all the time. These are in a read only section such that if 1034 * anyone does try to modify it, it will cause an exception. 1035 */ 1036 static const struct hlist_head empty_buckets[1]; 1037 static const struct ftrace_hash empty_hash = { 1038 .buckets = (struct hlist_head *)empty_buckets, 1039 }; 1040 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1041 1042 struct ftrace_ops global_ops = { 1043 .func = ftrace_stub, 1044 .local_hash.notrace_hash = EMPTY_HASH, 1045 .local_hash.filter_hash = EMPTY_HASH, 1046 INIT_OPS_HASH(global_ops) 1047 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1048 FTRACE_OPS_FL_INITIALIZED | 1049 FTRACE_OPS_FL_PID, 1050 }; 1051 1052 /* 1053 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1054 */ 1055 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1056 { 1057 struct ftrace_ops *op = NULL; 1058 1059 /* 1060 * Some of the ops may be dynamically allocated, 1061 * they are freed after a synchronize_rcu(). 1062 */ 1063 preempt_disable_notrace(); 1064 1065 do_for_each_ftrace_op(op, ftrace_ops_list) { 1066 /* 1067 * This is to check for dynamically allocated trampolines. 1068 * Trampolines that are in kernel text will have 1069 * core_kernel_text() return true. 1070 */ 1071 if (op->trampoline && op->trampoline_size) 1072 if (addr >= op->trampoline && 1073 addr < op->trampoline + op->trampoline_size) { 1074 preempt_enable_notrace(); 1075 return op; 1076 } 1077 } while_for_each_ftrace_op(op); 1078 preempt_enable_notrace(); 1079 1080 return NULL; 1081 } 1082 1083 /* 1084 * This is used by __kernel_text_address() to return true if the 1085 * address is on a dynamically allocated trampoline that would 1086 * not return true for either core_kernel_text() or 1087 * is_module_text_address(). 1088 */ 1089 bool is_ftrace_trampoline(unsigned long addr) 1090 { 1091 return ftrace_ops_trampoline(addr) != NULL; 1092 } 1093 1094 struct ftrace_page { 1095 struct ftrace_page *next; 1096 struct dyn_ftrace *records; 1097 int index; 1098 int size; 1099 }; 1100 1101 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1102 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1103 1104 static struct ftrace_page *ftrace_pages_start; 1105 static struct ftrace_page *ftrace_pages; 1106 1107 static __always_inline unsigned long 1108 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 if (hash->size_bits > 0) 1111 return hash_long(ip, hash->size_bits); 1112 1113 return 0; 1114 } 1115 1116 /* Only use this function if ftrace_hash_empty() has already been tested */ 1117 static __always_inline struct ftrace_func_entry * 1118 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1119 { 1120 unsigned long key; 1121 struct ftrace_func_entry *entry; 1122 struct hlist_head *hhd; 1123 1124 key = ftrace_hash_key(hash, ip); 1125 hhd = &hash->buckets[key]; 1126 1127 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1128 if (entry->ip == ip) 1129 return entry; 1130 } 1131 return NULL; 1132 } 1133 1134 /** 1135 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1136 * @hash: The hash to look at 1137 * @ip: The instruction pointer to test 1138 * 1139 * Search a given @hash to see if a given instruction pointer (@ip) 1140 * exists in it. 1141 * 1142 * Returns the entry that holds the @ip if found. NULL otherwise. 1143 */ 1144 struct ftrace_func_entry * 1145 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1146 { 1147 if (ftrace_hash_empty(hash)) 1148 return NULL; 1149 1150 return __ftrace_lookup_ip(hash, ip); 1151 } 1152 1153 static void __add_hash_entry(struct ftrace_hash *hash, 1154 struct ftrace_func_entry *entry) 1155 { 1156 struct hlist_head *hhd; 1157 unsigned long key; 1158 1159 key = ftrace_hash_key(hash, entry->ip); 1160 hhd = &hash->buckets[key]; 1161 hlist_add_head(&entry->hlist, hhd); 1162 hash->count++; 1163 } 1164 1165 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1166 { 1167 struct ftrace_func_entry *entry; 1168 1169 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1170 if (!entry) 1171 return -ENOMEM; 1172 1173 entry->ip = ip; 1174 __add_hash_entry(hash, entry); 1175 1176 return 0; 1177 } 1178 1179 static void 1180 free_hash_entry(struct ftrace_hash *hash, 1181 struct ftrace_func_entry *entry) 1182 { 1183 hlist_del(&entry->hlist); 1184 kfree(entry); 1185 hash->count--; 1186 } 1187 1188 static void 1189 remove_hash_entry(struct ftrace_hash *hash, 1190 struct ftrace_func_entry *entry) 1191 { 1192 hlist_del_rcu(&entry->hlist); 1193 hash->count--; 1194 } 1195 1196 static void ftrace_hash_clear(struct ftrace_hash *hash) 1197 { 1198 struct hlist_head *hhd; 1199 struct hlist_node *tn; 1200 struct ftrace_func_entry *entry; 1201 int size = 1 << hash->size_bits; 1202 int i; 1203 1204 if (!hash->count) 1205 return; 1206 1207 for (i = 0; i < size; i++) { 1208 hhd = &hash->buckets[i]; 1209 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1210 free_hash_entry(hash, entry); 1211 } 1212 FTRACE_WARN_ON(hash->count); 1213 } 1214 1215 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1216 { 1217 list_del(&ftrace_mod->list); 1218 kfree(ftrace_mod->module); 1219 kfree(ftrace_mod->func); 1220 kfree(ftrace_mod); 1221 } 1222 1223 static void clear_ftrace_mod_list(struct list_head *head) 1224 { 1225 struct ftrace_mod_load *p, *n; 1226 1227 /* stack tracer isn't supported yet */ 1228 if (!head) 1229 return; 1230 1231 mutex_lock(&ftrace_lock); 1232 list_for_each_entry_safe(p, n, head, list) 1233 free_ftrace_mod(p); 1234 mutex_unlock(&ftrace_lock); 1235 } 1236 1237 static void free_ftrace_hash(struct ftrace_hash *hash) 1238 { 1239 if (!hash || hash == EMPTY_HASH) 1240 return; 1241 ftrace_hash_clear(hash); 1242 kfree(hash->buckets); 1243 kfree(hash); 1244 } 1245 1246 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1247 { 1248 struct ftrace_hash *hash; 1249 1250 hash = container_of(rcu, struct ftrace_hash, rcu); 1251 free_ftrace_hash(hash); 1252 } 1253 1254 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1255 { 1256 if (!hash || hash == EMPTY_HASH) 1257 return; 1258 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1259 } 1260 1261 void ftrace_free_filter(struct ftrace_ops *ops) 1262 { 1263 ftrace_ops_init(ops); 1264 free_ftrace_hash(ops->func_hash->filter_hash); 1265 free_ftrace_hash(ops->func_hash->notrace_hash); 1266 } 1267 1268 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1269 { 1270 struct ftrace_hash *hash; 1271 int size; 1272 1273 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1274 if (!hash) 1275 return NULL; 1276 1277 size = 1 << size_bits; 1278 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1279 1280 if (!hash->buckets) { 1281 kfree(hash); 1282 return NULL; 1283 } 1284 1285 hash->size_bits = size_bits; 1286 1287 return hash; 1288 } 1289 1290 1291 static int ftrace_add_mod(struct trace_array *tr, 1292 const char *func, const char *module, 1293 int enable) 1294 { 1295 struct ftrace_mod_load *ftrace_mod; 1296 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1297 1298 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1299 if (!ftrace_mod) 1300 return -ENOMEM; 1301 1302 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1303 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1304 ftrace_mod->enable = enable; 1305 1306 if (!ftrace_mod->func || !ftrace_mod->module) 1307 goto out_free; 1308 1309 list_add(&ftrace_mod->list, mod_head); 1310 1311 return 0; 1312 1313 out_free: 1314 free_ftrace_mod(ftrace_mod); 1315 1316 return -ENOMEM; 1317 } 1318 1319 static struct ftrace_hash * 1320 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1321 { 1322 struct ftrace_func_entry *entry; 1323 struct ftrace_hash *new_hash; 1324 int size; 1325 int ret; 1326 int i; 1327 1328 new_hash = alloc_ftrace_hash(size_bits); 1329 if (!new_hash) 1330 return NULL; 1331 1332 if (hash) 1333 new_hash->flags = hash->flags; 1334 1335 /* Empty hash? */ 1336 if (ftrace_hash_empty(hash)) 1337 return new_hash; 1338 1339 size = 1 << hash->size_bits; 1340 for (i = 0; i < size; i++) { 1341 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1342 ret = add_hash_entry(new_hash, entry->ip); 1343 if (ret < 0) 1344 goto free_hash; 1345 } 1346 } 1347 1348 FTRACE_WARN_ON(new_hash->count != hash->count); 1349 1350 return new_hash; 1351 1352 free_hash: 1353 free_ftrace_hash(new_hash); 1354 return NULL; 1355 } 1356 1357 static void 1358 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1359 static void 1360 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1361 1362 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1363 struct ftrace_hash *new_hash); 1364 1365 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1366 { 1367 struct ftrace_func_entry *entry; 1368 struct ftrace_hash *new_hash; 1369 struct hlist_head *hhd; 1370 struct hlist_node *tn; 1371 int bits = 0; 1372 int i; 1373 1374 /* 1375 * Make the hash size about 1/2 the # found 1376 */ 1377 for (size /= 2; size; size >>= 1) 1378 bits++; 1379 1380 /* Don't allocate too much */ 1381 if (bits > FTRACE_HASH_MAX_BITS) 1382 bits = FTRACE_HASH_MAX_BITS; 1383 1384 new_hash = alloc_ftrace_hash(bits); 1385 if (!new_hash) 1386 return NULL; 1387 1388 new_hash->flags = src->flags; 1389 1390 size = 1 << src->size_bits; 1391 for (i = 0; i < size; i++) { 1392 hhd = &src->buckets[i]; 1393 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1394 remove_hash_entry(src, entry); 1395 __add_hash_entry(new_hash, entry); 1396 } 1397 } 1398 return new_hash; 1399 } 1400 1401 static struct ftrace_hash * 1402 __ftrace_hash_move(struct ftrace_hash *src) 1403 { 1404 int size = src->count; 1405 1406 /* 1407 * If the new source is empty, just return the empty_hash. 1408 */ 1409 if (ftrace_hash_empty(src)) 1410 return EMPTY_HASH; 1411 1412 return dup_hash(src, size); 1413 } 1414 1415 static int 1416 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1417 struct ftrace_hash **dst, struct ftrace_hash *src) 1418 { 1419 struct ftrace_hash *new_hash; 1420 int ret; 1421 1422 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1423 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1424 return -EINVAL; 1425 1426 new_hash = __ftrace_hash_move(src); 1427 if (!new_hash) 1428 return -ENOMEM; 1429 1430 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1431 if (enable) { 1432 /* IPMODIFY should be updated only when filter_hash updating */ 1433 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1434 if (ret < 0) { 1435 free_ftrace_hash(new_hash); 1436 return ret; 1437 } 1438 } 1439 1440 /* 1441 * Remove the current set, update the hash and add 1442 * them back. 1443 */ 1444 ftrace_hash_rec_disable_modify(ops, enable); 1445 1446 rcu_assign_pointer(*dst, new_hash); 1447 1448 ftrace_hash_rec_enable_modify(ops, enable); 1449 1450 return 0; 1451 } 1452 1453 static bool hash_contains_ip(unsigned long ip, 1454 struct ftrace_ops_hash *hash) 1455 { 1456 /* 1457 * The function record is a match if it exists in the filter 1458 * hash and not in the notrace hash. Note, an emty hash is 1459 * considered a match for the filter hash, but an empty 1460 * notrace hash is considered not in the notrace hash. 1461 */ 1462 return (ftrace_hash_empty(hash->filter_hash) || 1463 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1464 (ftrace_hash_empty(hash->notrace_hash) || 1465 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1466 } 1467 1468 /* 1469 * Test the hashes for this ops to see if we want to call 1470 * the ops->func or not. 1471 * 1472 * It's a match if the ip is in the ops->filter_hash or 1473 * the filter_hash does not exist or is empty, 1474 * AND 1475 * the ip is not in the ops->notrace_hash. 1476 * 1477 * This needs to be called with preemption disabled as 1478 * the hashes are freed with call_rcu(). 1479 */ 1480 int 1481 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1482 { 1483 struct ftrace_ops_hash hash; 1484 int ret; 1485 1486 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1487 /* 1488 * There's a small race when adding ops that the ftrace handler 1489 * that wants regs, may be called without them. We can not 1490 * allow that handler to be called if regs is NULL. 1491 */ 1492 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1493 return 0; 1494 #endif 1495 1496 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1497 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1498 1499 if (hash_contains_ip(ip, &hash)) 1500 ret = 1; 1501 else 1502 ret = 0; 1503 1504 return ret; 1505 } 1506 1507 /* 1508 * This is a double for. Do not use 'break' to break out of the loop, 1509 * you must use a goto. 1510 */ 1511 #define do_for_each_ftrace_rec(pg, rec) \ 1512 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1513 int _____i; \ 1514 for (_____i = 0; _____i < pg->index; _____i++) { \ 1515 rec = &pg->records[_____i]; 1516 1517 #define while_for_each_ftrace_rec() \ 1518 } \ 1519 } 1520 1521 1522 static int ftrace_cmp_recs(const void *a, const void *b) 1523 { 1524 const struct dyn_ftrace *key = a; 1525 const struct dyn_ftrace *rec = b; 1526 1527 if (key->flags < rec->ip) 1528 return -1; 1529 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1530 return 1; 1531 return 0; 1532 } 1533 1534 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1535 { 1536 struct ftrace_page *pg; 1537 struct dyn_ftrace *rec = NULL; 1538 struct dyn_ftrace key; 1539 1540 key.ip = start; 1541 key.flags = end; /* overload flags, as it is unsigned long */ 1542 1543 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1544 if (end < pg->records[0].ip || 1545 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1546 continue; 1547 rec = bsearch(&key, pg->records, pg->index, 1548 sizeof(struct dyn_ftrace), 1549 ftrace_cmp_recs); 1550 if (rec) 1551 break; 1552 } 1553 return rec; 1554 } 1555 1556 /** 1557 * ftrace_location_range - return the first address of a traced location 1558 * if it touches the given ip range 1559 * @start: start of range to search. 1560 * @end: end of range to search (inclusive). @end points to the last byte 1561 * to check. 1562 * 1563 * Returns rec->ip if the related ftrace location is a least partly within 1564 * the given address range. That is, the first address of the instruction 1565 * that is either a NOP or call to the function tracer. It checks the ftrace 1566 * internal tables to determine if the address belongs or not. 1567 */ 1568 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1569 { 1570 struct dyn_ftrace *rec; 1571 1572 rec = lookup_rec(start, end); 1573 if (rec) 1574 return rec->ip; 1575 1576 return 0; 1577 } 1578 1579 /** 1580 * ftrace_location - return true if the ip giving is a traced location 1581 * @ip: the instruction pointer to check 1582 * 1583 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1584 * That is, the instruction that is either a NOP or call to 1585 * the function tracer. It checks the ftrace internal tables to 1586 * determine if the address belongs or not. 1587 */ 1588 unsigned long ftrace_location(unsigned long ip) 1589 { 1590 return ftrace_location_range(ip, ip); 1591 } 1592 1593 /** 1594 * ftrace_text_reserved - return true if range contains an ftrace location 1595 * @start: start of range to search 1596 * @end: end of range to search (inclusive). @end points to the last byte to check. 1597 * 1598 * Returns 1 if @start and @end contains a ftrace location. 1599 * That is, the instruction that is either a NOP or call to 1600 * the function tracer. It checks the ftrace internal tables to 1601 * determine if the address belongs or not. 1602 */ 1603 int ftrace_text_reserved(const void *start, const void *end) 1604 { 1605 unsigned long ret; 1606 1607 ret = ftrace_location_range((unsigned long)start, 1608 (unsigned long)end); 1609 1610 return (int)!!ret; 1611 } 1612 1613 /* Test if ops registered to this rec needs regs */ 1614 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1615 { 1616 struct ftrace_ops *ops; 1617 bool keep_regs = false; 1618 1619 for (ops = ftrace_ops_list; 1620 ops != &ftrace_list_end; ops = ops->next) { 1621 /* pass rec in as regs to have non-NULL val */ 1622 if (ftrace_ops_test(ops, rec->ip, rec)) { 1623 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1624 keep_regs = true; 1625 break; 1626 } 1627 } 1628 } 1629 1630 return keep_regs; 1631 } 1632 1633 static struct ftrace_ops * 1634 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1635 static struct ftrace_ops * 1636 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1637 1638 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1639 int filter_hash, 1640 bool inc) 1641 { 1642 struct ftrace_hash *hash; 1643 struct ftrace_hash *other_hash; 1644 struct ftrace_page *pg; 1645 struct dyn_ftrace *rec; 1646 bool update = false; 1647 int count = 0; 1648 int all = false; 1649 1650 /* Only update if the ops has been registered */ 1651 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1652 return false; 1653 1654 /* 1655 * In the filter_hash case: 1656 * If the count is zero, we update all records. 1657 * Otherwise we just update the items in the hash. 1658 * 1659 * In the notrace_hash case: 1660 * We enable the update in the hash. 1661 * As disabling notrace means enabling the tracing, 1662 * and enabling notrace means disabling, the inc variable 1663 * gets inversed. 1664 */ 1665 if (filter_hash) { 1666 hash = ops->func_hash->filter_hash; 1667 other_hash = ops->func_hash->notrace_hash; 1668 if (ftrace_hash_empty(hash)) 1669 all = true; 1670 } else { 1671 inc = !inc; 1672 hash = ops->func_hash->notrace_hash; 1673 other_hash = ops->func_hash->filter_hash; 1674 /* 1675 * If the notrace hash has no items, 1676 * then there's nothing to do. 1677 */ 1678 if (ftrace_hash_empty(hash)) 1679 return false; 1680 } 1681 1682 do_for_each_ftrace_rec(pg, rec) { 1683 int in_other_hash = 0; 1684 int in_hash = 0; 1685 int match = 0; 1686 1687 if (rec->flags & FTRACE_FL_DISABLED) 1688 continue; 1689 1690 if (all) { 1691 /* 1692 * Only the filter_hash affects all records. 1693 * Update if the record is not in the notrace hash. 1694 */ 1695 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1696 match = 1; 1697 } else { 1698 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1699 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1700 1701 /* 1702 * If filter_hash is set, we want to match all functions 1703 * that are in the hash but not in the other hash. 1704 * 1705 * If filter_hash is not set, then we are decrementing. 1706 * That means we match anything that is in the hash 1707 * and also in the other_hash. That is, we need to turn 1708 * off functions in the other hash because they are disabled 1709 * by this hash. 1710 */ 1711 if (filter_hash && in_hash && !in_other_hash) 1712 match = 1; 1713 else if (!filter_hash && in_hash && 1714 (in_other_hash || ftrace_hash_empty(other_hash))) 1715 match = 1; 1716 } 1717 if (!match) 1718 continue; 1719 1720 if (inc) { 1721 rec->flags++; 1722 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1723 return false; 1724 1725 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1726 rec->flags |= FTRACE_FL_DIRECT; 1727 1728 /* 1729 * If there's only a single callback registered to a 1730 * function, and the ops has a trampoline registered 1731 * for it, then we can call it directly. 1732 */ 1733 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1734 rec->flags |= FTRACE_FL_TRAMP; 1735 else 1736 /* 1737 * If we are adding another function callback 1738 * to this function, and the previous had a 1739 * custom trampoline in use, then we need to go 1740 * back to the default trampoline. 1741 */ 1742 rec->flags &= ~FTRACE_FL_TRAMP; 1743 1744 /* 1745 * If any ops wants regs saved for this function 1746 * then all ops will get saved regs. 1747 */ 1748 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1749 rec->flags |= FTRACE_FL_REGS; 1750 } else { 1751 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1752 return false; 1753 rec->flags--; 1754 1755 /* 1756 * Only the internal direct_ops should have the 1757 * DIRECT flag set. Thus, if it is removing a 1758 * function, then that function should no longer 1759 * be direct. 1760 */ 1761 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1762 rec->flags &= ~FTRACE_FL_DIRECT; 1763 1764 /* 1765 * If the rec had REGS enabled and the ops that is 1766 * being removed had REGS set, then see if there is 1767 * still any ops for this record that wants regs. 1768 * If not, we can stop recording them. 1769 */ 1770 if (ftrace_rec_count(rec) > 0 && 1771 rec->flags & FTRACE_FL_REGS && 1772 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1773 if (!test_rec_ops_needs_regs(rec)) 1774 rec->flags &= ~FTRACE_FL_REGS; 1775 } 1776 1777 /* 1778 * The TRAMP needs to be set only if rec count 1779 * is decremented to one, and the ops that is 1780 * left has a trampoline. As TRAMP can only be 1781 * enabled if there is only a single ops attached 1782 * to it. 1783 */ 1784 if (ftrace_rec_count(rec) == 1 && 1785 ftrace_find_tramp_ops_any(rec)) 1786 rec->flags |= FTRACE_FL_TRAMP; 1787 else 1788 rec->flags &= ~FTRACE_FL_TRAMP; 1789 1790 /* 1791 * flags will be cleared in ftrace_check_record() 1792 * if rec count is zero. 1793 */ 1794 } 1795 count++; 1796 1797 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1798 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1799 1800 /* Shortcut, if we handled all records, we are done. */ 1801 if (!all && count == hash->count) 1802 return update; 1803 } while_for_each_ftrace_rec(); 1804 1805 return update; 1806 } 1807 1808 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1809 int filter_hash) 1810 { 1811 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1812 } 1813 1814 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1815 int filter_hash) 1816 { 1817 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1818 } 1819 1820 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1821 int filter_hash, int inc) 1822 { 1823 struct ftrace_ops *op; 1824 1825 __ftrace_hash_rec_update(ops, filter_hash, inc); 1826 1827 if (ops->func_hash != &global_ops.local_hash) 1828 return; 1829 1830 /* 1831 * If the ops shares the global_ops hash, then we need to update 1832 * all ops that are enabled and use this hash. 1833 */ 1834 do_for_each_ftrace_op(op, ftrace_ops_list) { 1835 /* Already done */ 1836 if (op == ops) 1837 continue; 1838 if (op->func_hash == &global_ops.local_hash) 1839 __ftrace_hash_rec_update(op, filter_hash, inc); 1840 } while_for_each_ftrace_op(op); 1841 } 1842 1843 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1844 int filter_hash) 1845 { 1846 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1847 } 1848 1849 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1850 int filter_hash) 1851 { 1852 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1853 } 1854 1855 /* 1856 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1857 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1858 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1859 * Note that old_hash and new_hash has below meanings 1860 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1861 * - If the hash is EMPTY_HASH, it hits nothing 1862 * - Anything else hits the recs which match the hash entries. 1863 */ 1864 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1865 struct ftrace_hash *old_hash, 1866 struct ftrace_hash *new_hash) 1867 { 1868 struct ftrace_page *pg; 1869 struct dyn_ftrace *rec, *end = NULL; 1870 int in_old, in_new; 1871 1872 /* Only update if the ops has been registered */ 1873 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1874 return 0; 1875 1876 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1877 return 0; 1878 1879 /* 1880 * Since the IPMODIFY is a very address sensitive action, we do not 1881 * allow ftrace_ops to set all functions to new hash. 1882 */ 1883 if (!new_hash || !old_hash) 1884 return -EINVAL; 1885 1886 /* Update rec->flags */ 1887 do_for_each_ftrace_rec(pg, rec) { 1888 1889 if (rec->flags & FTRACE_FL_DISABLED) 1890 continue; 1891 1892 /* We need to update only differences of filter_hash */ 1893 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1894 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1895 if (in_old == in_new) 1896 continue; 1897 1898 if (in_new) { 1899 /* New entries must ensure no others are using it */ 1900 if (rec->flags & FTRACE_FL_IPMODIFY) 1901 goto rollback; 1902 rec->flags |= FTRACE_FL_IPMODIFY; 1903 } else /* Removed entry */ 1904 rec->flags &= ~FTRACE_FL_IPMODIFY; 1905 } while_for_each_ftrace_rec(); 1906 1907 return 0; 1908 1909 rollback: 1910 end = rec; 1911 1912 /* Roll back what we did above */ 1913 do_for_each_ftrace_rec(pg, rec) { 1914 1915 if (rec->flags & FTRACE_FL_DISABLED) 1916 continue; 1917 1918 if (rec == end) 1919 goto err_out; 1920 1921 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1922 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1923 if (in_old == in_new) 1924 continue; 1925 1926 if (in_new) 1927 rec->flags &= ~FTRACE_FL_IPMODIFY; 1928 else 1929 rec->flags |= FTRACE_FL_IPMODIFY; 1930 } while_for_each_ftrace_rec(); 1931 1932 err_out: 1933 return -EBUSY; 1934 } 1935 1936 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1937 { 1938 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1939 1940 if (ftrace_hash_empty(hash)) 1941 hash = NULL; 1942 1943 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1944 } 1945 1946 /* Disabling always succeeds */ 1947 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1948 { 1949 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1950 1951 if (ftrace_hash_empty(hash)) 1952 hash = NULL; 1953 1954 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1955 } 1956 1957 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1958 struct ftrace_hash *new_hash) 1959 { 1960 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1961 1962 if (ftrace_hash_empty(old_hash)) 1963 old_hash = NULL; 1964 1965 if (ftrace_hash_empty(new_hash)) 1966 new_hash = NULL; 1967 1968 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1969 } 1970 1971 static void print_ip_ins(const char *fmt, const unsigned char *p) 1972 { 1973 int i; 1974 1975 printk(KERN_CONT "%s", fmt); 1976 1977 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1978 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1979 } 1980 1981 enum ftrace_bug_type ftrace_bug_type; 1982 const void *ftrace_expected; 1983 1984 static void print_bug_type(void) 1985 { 1986 switch (ftrace_bug_type) { 1987 case FTRACE_BUG_UNKNOWN: 1988 break; 1989 case FTRACE_BUG_INIT: 1990 pr_info("Initializing ftrace call sites\n"); 1991 break; 1992 case FTRACE_BUG_NOP: 1993 pr_info("Setting ftrace call site to NOP\n"); 1994 break; 1995 case FTRACE_BUG_CALL: 1996 pr_info("Setting ftrace call site to call ftrace function\n"); 1997 break; 1998 case FTRACE_BUG_UPDATE: 1999 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2000 break; 2001 } 2002 } 2003 2004 /** 2005 * ftrace_bug - report and shutdown function tracer 2006 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2007 * @rec: The record that failed 2008 * 2009 * The arch code that enables or disables the function tracing 2010 * can call ftrace_bug() when it has detected a problem in 2011 * modifying the code. @failed should be one of either: 2012 * EFAULT - if the problem happens on reading the @ip address 2013 * EINVAL - if what is read at @ip is not what was expected 2014 * EPERM - if the problem happens on writing to the @ip address 2015 */ 2016 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2017 { 2018 unsigned long ip = rec ? rec->ip : 0; 2019 2020 switch (failed) { 2021 case -EFAULT: 2022 FTRACE_WARN_ON_ONCE(1); 2023 pr_info("ftrace faulted on modifying "); 2024 print_ip_sym(ip); 2025 break; 2026 case -EINVAL: 2027 FTRACE_WARN_ON_ONCE(1); 2028 pr_info("ftrace failed to modify "); 2029 print_ip_sym(ip); 2030 print_ip_ins(" actual: ", (unsigned char *)ip); 2031 pr_cont("\n"); 2032 if (ftrace_expected) { 2033 print_ip_ins(" expected: ", ftrace_expected); 2034 pr_cont("\n"); 2035 } 2036 break; 2037 case -EPERM: 2038 FTRACE_WARN_ON_ONCE(1); 2039 pr_info("ftrace faulted on writing "); 2040 print_ip_sym(ip); 2041 break; 2042 default: 2043 FTRACE_WARN_ON_ONCE(1); 2044 pr_info("ftrace faulted on unknown error "); 2045 print_ip_sym(ip); 2046 } 2047 print_bug_type(); 2048 if (rec) { 2049 struct ftrace_ops *ops = NULL; 2050 2051 pr_info("ftrace record flags: %lx\n", rec->flags); 2052 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2053 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2054 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2055 ops = ftrace_find_tramp_ops_any(rec); 2056 if (ops) { 2057 do { 2058 pr_cont("\ttramp: %pS (%pS)", 2059 (void *)ops->trampoline, 2060 (void *)ops->func); 2061 ops = ftrace_find_tramp_ops_next(rec, ops); 2062 } while (ops); 2063 } else 2064 pr_cont("\ttramp: ERROR!"); 2065 2066 } 2067 ip = ftrace_get_addr_curr(rec); 2068 pr_cont("\n expected tramp: %lx\n", ip); 2069 } 2070 } 2071 2072 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2073 { 2074 unsigned long flag = 0UL; 2075 2076 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2077 2078 if (rec->flags & FTRACE_FL_DISABLED) 2079 return FTRACE_UPDATE_IGNORE; 2080 2081 /* 2082 * If we are updating calls: 2083 * 2084 * If the record has a ref count, then we need to enable it 2085 * because someone is using it. 2086 * 2087 * Otherwise we make sure its disabled. 2088 * 2089 * If we are disabling calls, then disable all records that 2090 * are enabled. 2091 */ 2092 if (enable && ftrace_rec_count(rec)) 2093 flag = FTRACE_FL_ENABLED; 2094 2095 /* 2096 * If enabling and the REGS flag does not match the REGS_EN, or 2097 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2098 * this record. Set flags to fail the compare against ENABLED. 2099 * Same for direct calls. 2100 */ 2101 if (flag) { 2102 if (!(rec->flags & FTRACE_FL_REGS) != 2103 !(rec->flags & FTRACE_FL_REGS_EN)) 2104 flag |= FTRACE_FL_REGS; 2105 2106 if (!(rec->flags & FTRACE_FL_TRAMP) != 2107 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2108 flag |= FTRACE_FL_TRAMP; 2109 2110 /* 2111 * Direct calls are special, as count matters. 2112 * We must test the record for direct, if the 2113 * DIRECT and DIRECT_EN do not match, but only 2114 * if the count is 1. That's because, if the 2115 * count is something other than one, we do not 2116 * want the direct enabled (it will be done via the 2117 * direct helper). But if DIRECT_EN is set, and 2118 * the count is not one, we need to clear it. 2119 */ 2120 if (ftrace_rec_count(rec) == 1) { 2121 if (!(rec->flags & FTRACE_FL_DIRECT) != 2122 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2123 flag |= FTRACE_FL_DIRECT; 2124 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2125 flag |= FTRACE_FL_DIRECT; 2126 } 2127 } 2128 2129 /* If the state of this record hasn't changed, then do nothing */ 2130 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2131 return FTRACE_UPDATE_IGNORE; 2132 2133 if (flag) { 2134 /* Save off if rec is being enabled (for return value) */ 2135 flag ^= rec->flags & FTRACE_FL_ENABLED; 2136 2137 if (update) { 2138 rec->flags |= FTRACE_FL_ENABLED; 2139 if (flag & FTRACE_FL_REGS) { 2140 if (rec->flags & FTRACE_FL_REGS) 2141 rec->flags |= FTRACE_FL_REGS_EN; 2142 else 2143 rec->flags &= ~FTRACE_FL_REGS_EN; 2144 } 2145 if (flag & FTRACE_FL_TRAMP) { 2146 if (rec->flags & FTRACE_FL_TRAMP) 2147 rec->flags |= FTRACE_FL_TRAMP_EN; 2148 else 2149 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2150 } 2151 if (flag & FTRACE_FL_DIRECT) { 2152 /* 2153 * If there's only one user (direct_ops helper) 2154 * then we can call the direct function 2155 * directly (no ftrace trampoline). 2156 */ 2157 if (ftrace_rec_count(rec) == 1) { 2158 if (rec->flags & FTRACE_FL_DIRECT) 2159 rec->flags |= FTRACE_FL_DIRECT_EN; 2160 else 2161 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2162 } else { 2163 /* 2164 * Can only call directly if there's 2165 * only one callback to the function. 2166 */ 2167 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2168 } 2169 } 2170 } 2171 2172 /* 2173 * If this record is being updated from a nop, then 2174 * return UPDATE_MAKE_CALL. 2175 * Otherwise, 2176 * return UPDATE_MODIFY_CALL to tell the caller to convert 2177 * from the save regs, to a non-save regs function or 2178 * vice versa, or from a trampoline call. 2179 */ 2180 if (flag & FTRACE_FL_ENABLED) { 2181 ftrace_bug_type = FTRACE_BUG_CALL; 2182 return FTRACE_UPDATE_MAKE_CALL; 2183 } 2184 2185 ftrace_bug_type = FTRACE_BUG_UPDATE; 2186 return FTRACE_UPDATE_MODIFY_CALL; 2187 } 2188 2189 if (update) { 2190 /* If there's no more users, clear all flags */ 2191 if (!ftrace_rec_count(rec)) 2192 rec->flags = 0; 2193 else 2194 /* 2195 * Just disable the record, but keep the ops TRAMP 2196 * and REGS states. The _EN flags must be disabled though. 2197 */ 2198 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2199 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2200 } 2201 2202 ftrace_bug_type = FTRACE_BUG_NOP; 2203 return FTRACE_UPDATE_MAKE_NOP; 2204 } 2205 2206 /** 2207 * ftrace_update_record, set a record that now is tracing or not 2208 * @rec: the record to update 2209 * @enable: set to true if the record is tracing, false to force disable 2210 * 2211 * The records that represent all functions that can be traced need 2212 * to be updated when tracing has been enabled. 2213 */ 2214 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2215 { 2216 return ftrace_check_record(rec, enable, true); 2217 } 2218 2219 /** 2220 * ftrace_test_record, check if the record has been enabled or not 2221 * @rec: the record to test 2222 * @enable: set to true to check if enabled, false if it is disabled 2223 * 2224 * The arch code may need to test if a record is already set to 2225 * tracing to determine how to modify the function code that it 2226 * represents. 2227 */ 2228 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2229 { 2230 return ftrace_check_record(rec, enable, false); 2231 } 2232 2233 static struct ftrace_ops * 2234 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2235 { 2236 struct ftrace_ops *op; 2237 unsigned long ip = rec->ip; 2238 2239 do_for_each_ftrace_op(op, ftrace_ops_list) { 2240 2241 if (!op->trampoline) 2242 continue; 2243 2244 if (hash_contains_ip(ip, op->func_hash)) 2245 return op; 2246 } while_for_each_ftrace_op(op); 2247 2248 return NULL; 2249 } 2250 2251 static struct ftrace_ops * 2252 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2253 struct ftrace_ops *op) 2254 { 2255 unsigned long ip = rec->ip; 2256 2257 while_for_each_ftrace_op(op) { 2258 2259 if (!op->trampoline) 2260 continue; 2261 2262 if (hash_contains_ip(ip, op->func_hash)) 2263 return op; 2264 } 2265 2266 return NULL; 2267 } 2268 2269 static struct ftrace_ops * 2270 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2271 { 2272 struct ftrace_ops *op; 2273 unsigned long ip = rec->ip; 2274 2275 /* 2276 * Need to check removed ops first. 2277 * If they are being removed, and this rec has a tramp, 2278 * and this rec is in the ops list, then it would be the 2279 * one with the tramp. 2280 */ 2281 if (removed_ops) { 2282 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2283 return removed_ops; 2284 } 2285 2286 /* 2287 * Need to find the current trampoline for a rec. 2288 * Now, a trampoline is only attached to a rec if there 2289 * was a single 'ops' attached to it. But this can be called 2290 * when we are adding another op to the rec or removing the 2291 * current one. Thus, if the op is being added, we can 2292 * ignore it because it hasn't attached itself to the rec 2293 * yet. 2294 * 2295 * If an ops is being modified (hooking to different functions) 2296 * then we don't care about the new functions that are being 2297 * added, just the old ones (that are probably being removed). 2298 * 2299 * If we are adding an ops to a function that already is using 2300 * a trampoline, it needs to be removed (trampolines are only 2301 * for single ops connected), then an ops that is not being 2302 * modified also needs to be checked. 2303 */ 2304 do_for_each_ftrace_op(op, ftrace_ops_list) { 2305 2306 if (!op->trampoline) 2307 continue; 2308 2309 /* 2310 * If the ops is being added, it hasn't gotten to 2311 * the point to be removed from this tree yet. 2312 */ 2313 if (op->flags & FTRACE_OPS_FL_ADDING) 2314 continue; 2315 2316 2317 /* 2318 * If the ops is being modified and is in the old 2319 * hash, then it is probably being removed from this 2320 * function. 2321 */ 2322 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2323 hash_contains_ip(ip, &op->old_hash)) 2324 return op; 2325 /* 2326 * If the ops is not being added or modified, and it's 2327 * in its normal filter hash, then this must be the one 2328 * we want! 2329 */ 2330 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2331 hash_contains_ip(ip, op->func_hash)) 2332 return op; 2333 2334 } while_for_each_ftrace_op(op); 2335 2336 return NULL; 2337 } 2338 2339 static struct ftrace_ops * 2340 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2341 { 2342 struct ftrace_ops *op; 2343 unsigned long ip = rec->ip; 2344 2345 do_for_each_ftrace_op(op, ftrace_ops_list) { 2346 /* pass rec in as regs to have non-NULL val */ 2347 if (hash_contains_ip(ip, op->func_hash)) 2348 return op; 2349 } while_for_each_ftrace_op(op); 2350 2351 return NULL; 2352 } 2353 2354 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2355 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2356 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2357 static DEFINE_MUTEX(direct_mutex); 2358 int ftrace_direct_func_count; 2359 2360 /* 2361 * Search the direct_functions hash to see if the given instruction pointer 2362 * has a direct caller attached to it. 2363 */ 2364 unsigned long ftrace_find_rec_direct(unsigned long ip) 2365 { 2366 struct ftrace_func_entry *entry; 2367 2368 entry = __ftrace_lookup_ip(direct_functions, ip); 2369 if (!entry) 2370 return 0; 2371 2372 return entry->direct; 2373 } 2374 2375 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2376 struct ftrace_ops *ops, struct pt_regs *regs) 2377 { 2378 unsigned long addr; 2379 2380 addr = ftrace_find_rec_direct(ip); 2381 if (!addr) 2382 return; 2383 2384 arch_ftrace_set_direct_caller(regs, addr); 2385 } 2386 2387 struct ftrace_ops direct_ops = { 2388 .func = call_direct_funcs, 2389 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2390 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2391 | FTRACE_OPS_FL_PERMANENT, 2392 }; 2393 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2394 2395 /** 2396 * ftrace_get_addr_new - Get the call address to set to 2397 * @rec: The ftrace record descriptor 2398 * 2399 * If the record has the FTRACE_FL_REGS set, that means that it 2400 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2401 * is not not set, then it wants to convert to the normal callback. 2402 * 2403 * Returns the address of the trampoline to set to 2404 */ 2405 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2406 { 2407 struct ftrace_ops *ops; 2408 unsigned long addr; 2409 2410 if ((rec->flags & FTRACE_FL_DIRECT) && 2411 (ftrace_rec_count(rec) == 1)) { 2412 addr = ftrace_find_rec_direct(rec->ip); 2413 if (addr) 2414 return addr; 2415 WARN_ON_ONCE(1); 2416 } 2417 2418 /* Trampolines take precedence over regs */ 2419 if (rec->flags & FTRACE_FL_TRAMP) { 2420 ops = ftrace_find_tramp_ops_new(rec); 2421 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2422 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2423 (void *)rec->ip, (void *)rec->ip, rec->flags); 2424 /* Ftrace is shutting down, return anything */ 2425 return (unsigned long)FTRACE_ADDR; 2426 } 2427 return ops->trampoline; 2428 } 2429 2430 if (rec->flags & FTRACE_FL_REGS) 2431 return (unsigned long)FTRACE_REGS_ADDR; 2432 else 2433 return (unsigned long)FTRACE_ADDR; 2434 } 2435 2436 /** 2437 * ftrace_get_addr_curr - Get the call address that is already there 2438 * @rec: The ftrace record descriptor 2439 * 2440 * The FTRACE_FL_REGS_EN is set when the record already points to 2441 * a function that saves all the regs. Basically the '_EN' version 2442 * represents the current state of the function. 2443 * 2444 * Returns the address of the trampoline that is currently being called 2445 */ 2446 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2447 { 2448 struct ftrace_ops *ops; 2449 unsigned long addr; 2450 2451 /* Direct calls take precedence over trampolines */ 2452 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2453 addr = ftrace_find_rec_direct(rec->ip); 2454 if (addr) 2455 return addr; 2456 WARN_ON_ONCE(1); 2457 } 2458 2459 /* Trampolines take precedence over regs */ 2460 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2461 ops = ftrace_find_tramp_ops_curr(rec); 2462 if (FTRACE_WARN_ON(!ops)) { 2463 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2464 (void *)rec->ip, (void *)rec->ip); 2465 /* Ftrace is shutting down, return anything */ 2466 return (unsigned long)FTRACE_ADDR; 2467 } 2468 return ops->trampoline; 2469 } 2470 2471 if (rec->flags & FTRACE_FL_REGS_EN) 2472 return (unsigned long)FTRACE_REGS_ADDR; 2473 else 2474 return (unsigned long)FTRACE_ADDR; 2475 } 2476 2477 static int 2478 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2479 { 2480 unsigned long ftrace_old_addr; 2481 unsigned long ftrace_addr; 2482 int ret; 2483 2484 ftrace_addr = ftrace_get_addr_new(rec); 2485 2486 /* This needs to be done before we call ftrace_update_record */ 2487 ftrace_old_addr = ftrace_get_addr_curr(rec); 2488 2489 ret = ftrace_update_record(rec, enable); 2490 2491 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2492 2493 switch (ret) { 2494 case FTRACE_UPDATE_IGNORE: 2495 return 0; 2496 2497 case FTRACE_UPDATE_MAKE_CALL: 2498 ftrace_bug_type = FTRACE_BUG_CALL; 2499 return ftrace_make_call(rec, ftrace_addr); 2500 2501 case FTRACE_UPDATE_MAKE_NOP: 2502 ftrace_bug_type = FTRACE_BUG_NOP; 2503 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2504 2505 case FTRACE_UPDATE_MODIFY_CALL: 2506 ftrace_bug_type = FTRACE_BUG_UPDATE; 2507 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2508 } 2509 2510 return -1; /* unknown ftrace bug */ 2511 } 2512 2513 void __weak ftrace_replace_code(int mod_flags) 2514 { 2515 struct dyn_ftrace *rec; 2516 struct ftrace_page *pg; 2517 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2518 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2519 int failed; 2520 2521 if (unlikely(ftrace_disabled)) 2522 return; 2523 2524 do_for_each_ftrace_rec(pg, rec) { 2525 2526 if (rec->flags & FTRACE_FL_DISABLED) 2527 continue; 2528 2529 failed = __ftrace_replace_code(rec, enable); 2530 if (failed) { 2531 ftrace_bug(failed, rec); 2532 /* Stop processing */ 2533 return; 2534 } 2535 if (schedulable) 2536 cond_resched(); 2537 } while_for_each_ftrace_rec(); 2538 } 2539 2540 struct ftrace_rec_iter { 2541 struct ftrace_page *pg; 2542 int index; 2543 }; 2544 2545 /** 2546 * ftrace_rec_iter_start, start up iterating over traced functions 2547 * 2548 * Returns an iterator handle that is used to iterate over all 2549 * the records that represent address locations where functions 2550 * are traced. 2551 * 2552 * May return NULL if no records are available. 2553 */ 2554 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2555 { 2556 /* 2557 * We only use a single iterator. 2558 * Protected by the ftrace_lock mutex. 2559 */ 2560 static struct ftrace_rec_iter ftrace_rec_iter; 2561 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2562 2563 iter->pg = ftrace_pages_start; 2564 iter->index = 0; 2565 2566 /* Could have empty pages */ 2567 while (iter->pg && !iter->pg->index) 2568 iter->pg = iter->pg->next; 2569 2570 if (!iter->pg) 2571 return NULL; 2572 2573 return iter; 2574 } 2575 2576 /** 2577 * ftrace_rec_iter_next, get the next record to process. 2578 * @iter: The handle to the iterator. 2579 * 2580 * Returns the next iterator after the given iterator @iter. 2581 */ 2582 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2583 { 2584 iter->index++; 2585 2586 if (iter->index >= iter->pg->index) { 2587 iter->pg = iter->pg->next; 2588 iter->index = 0; 2589 2590 /* Could have empty pages */ 2591 while (iter->pg && !iter->pg->index) 2592 iter->pg = iter->pg->next; 2593 } 2594 2595 if (!iter->pg) 2596 return NULL; 2597 2598 return iter; 2599 } 2600 2601 /** 2602 * ftrace_rec_iter_record, get the record at the iterator location 2603 * @iter: The current iterator location 2604 * 2605 * Returns the record that the current @iter is at. 2606 */ 2607 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2608 { 2609 return &iter->pg->records[iter->index]; 2610 } 2611 2612 static int 2613 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2614 { 2615 int ret; 2616 2617 if (unlikely(ftrace_disabled)) 2618 return 0; 2619 2620 ret = ftrace_init_nop(mod, rec); 2621 if (ret) { 2622 ftrace_bug_type = FTRACE_BUG_INIT; 2623 ftrace_bug(ret, rec); 2624 return 0; 2625 } 2626 return 1; 2627 } 2628 2629 /* 2630 * archs can override this function if they must do something 2631 * before the modifying code is performed. 2632 */ 2633 int __weak ftrace_arch_code_modify_prepare(void) 2634 { 2635 return 0; 2636 } 2637 2638 /* 2639 * archs can override this function if they must do something 2640 * after the modifying code is performed. 2641 */ 2642 int __weak ftrace_arch_code_modify_post_process(void) 2643 { 2644 return 0; 2645 } 2646 2647 void ftrace_modify_all_code(int command) 2648 { 2649 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2650 int mod_flags = 0; 2651 int err = 0; 2652 2653 if (command & FTRACE_MAY_SLEEP) 2654 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2655 2656 /* 2657 * If the ftrace_caller calls a ftrace_ops func directly, 2658 * we need to make sure that it only traces functions it 2659 * expects to trace. When doing the switch of functions, 2660 * we need to update to the ftrace_ops_list_func first 2661 * before the transition between old and new calls are set, 2662 * as the ftrace_ops_list_func will check the ops hashes 2663 * to make sure the ops are having the right functions 2664 * traced. 2665 */ 2666 if (update) { 2667 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2668 if (FTRACE_WARN_ON(err)) 2669 return; 2670 } 2671 2672 if (command & FTRACE_UPDATE_CALLS) 2673 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2674 else if (command & FTRACE_DISABLE_CALLS) 2675 ftrace_replace_code(mod_flags); 2676 2677 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2678 function_trace_op = set_function_trace_op; 2679 smp_wmb(); 2680 /* If irqs are disabled, we are in stop machine */ 2681 if (!irqs_disabled()) 2682 smp_call_function(ftrace_sync_ipi, NULL, 1); 2683 err = ftrace_update_ftrace_func(ftrace_trace_function); 2684 if (FTRACE_WARN_ON(err)) 2685 return; 2686 } 2687 2688 if (command & FTRACE_START_FUNC_RET) 2689 err = ftrace_enable_ftrace_graph_caller(); 2690 else if (command & FTRACE_STOP_FUNC_RET) 2691 err = ftrace_disable_ftrace_graph_caller(); 2692 FTRACE_WARN_ON(err); 2693 } 2694 2695 static int __ftrace_modify_code(void *data) 2696 { 2697 int *command = data; 2698 2699 ftrace_modify_all_code(*command); 2700 2701 return 0; 2702 } 2703 2704 /** 2705 * ftrace_run_stop_machine, go back to the stop machine method 2706 * @command: The command to tell ftrace what to do 2707 * 2708 * If an arch needs to fall back to the stop machine method, the 2709 * it can call this function. 2710 */ 2711 void ftrace_run_stop_machine(int command) 2712 { 2713 stop_machine(__ftrace_modify_code, &command, NULL); 2714 } 2715 2716 /** 2717 * arch_ftrace_update_code, modify the code to trace or not trace 2718 * @command: The command that needs to be done 2719 * 2720 * Archs can override this function if it does not need to 2721 * run stop_machine() to modify code. 2722 */ 2723 void __weak arch_ftrace_update_code(int command) 2724 { 2725 ftrace_run_stop_machine(command); 2726 } 2727 2728 static void ftrace_run_update_code(int command) 2729 { 2730 int ret; 2731 2732 ret = ftrace_arch_code_modify_prepare(); 2733 FTRACE_WARN_ON(ret); 2734 if (ret) 2735 return; 2736 2737 /* 2738 * By default we use stop_machine() to modify the code. 2739 * But archs can do what ever they want as long as it 2740 * is safe. The stop_machine() is the safest, but also 2741 * produces the most overhead. 2742 */ 2743 arch_ftrace_update_code(command); 2744 2745 ret = ftrace_arch_code_modify_post_process(); 2746 FTRACE_WARN_ON(ret); 2747 } 2748 2749 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2750 struct ftrace_ops_hash *old_hash) 2751 { 2752 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2753 ops->old_hash.filter_hash = old_hash->filter_hash; 2754 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2755 ftrace_run_update_code(command); 2756 ops->old_hash.filter_hash = NULL; 2757 ops->old_hash.notrace_hash = NULL; 2758 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2759 } 2760 2761 static ftrace_func_t saved_ftrace_func; 2762 static int ftrace_start_up; 2763 2764 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2765 { 2766 } 2767 2768 static void ftrace_startup_enable(int command) 2769 { 2770 if (saved_ftrace_func != ftrace_trace_function) { 2771 saved_ftrace_func = ftrace_trace_function; 2772 command |= FTRACE_UPDATE_TRACE_FUNC; 2773 } 2774 2775 if (!command || !ftrace_enabled) 2776 return; 2777 2778 ftrace_run_update_code(command); 2779 } 2780 2781 static void ftrace_startup_all(int command) 2782 { 2783 update_all_ops = true; 2784 ftrace_startup_enable(command); 2785 update_all_ops = false; 2786 } 2787 2788 int ftrace_startup(struct ftrace_ops *ops, int command) 2789 { 2790 int ret; 2791 2792 if (unlikely(ftrace_disabled)) 2793 return -ENODEV; 2794 2795 ret = __register_ftrace_function(ops); 2796 if (ret) 2797 return ret; 2798 2799 ftrace_start_up++; 2800 2801 /* 2802 * Note that ftrace probes uses this to start up 2803 * and modify functions it will probe. But we still 2804 * set the ADDING flag for modification, as probes 2805 * do not have trampolines. If they add them in the 2806 * future, then the probes will need to distinguish 2807 * between adding and updating probes. 2808 */ 2809 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2810 2811 ret = ftrace_hash_ipmodify_enable(ops); 2812 if (ret < 0) { 2813 /* Rollback registration process */ 2814 __unregister_ftrace_function(ops); 2815 ftrace_start_up--; 2816 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2817 return ret; 2818 } 2819 2820 if (ftrace_hash_rec_enable(ops, 1)) 2821 command |= FTRACE_UPDATE_CALLS; 2822 2823 ftrace_startup_enable(command); 2824 2825 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2826 2827 return 0; 2828 } 2829 2830 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2831 { 2832 int ret; 2833 2834 if (unlikely(ftrace_disabled)) 2835 return -ENODEV; 2836 2837 ret = __unregister_ftrace_function(ops); 2838 if (ret) 2839 return ret; 2840 2841 ftrace_start_up--; 2842 /* 2843 * Just warn in case of unbalance, no need to kill ftrace, it's not 2844 * critical but the ftrace_call callers may be never nopped again after 2845 * further ftrace uses. 2846 */ 2847 WARN_ON_ONCE(ftrace_start_up < 0); 2848 2849 /* Disabling ipmodify never fails */ 2850 ftrace_hash_ipmodify_disable(ops); 2851 2852 if (ftrace_hash_rec_disable(ops, 1)) 2853 command |= FTRACE_UPDATE_CALLS; 2854 2855 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2856 2857 if (saved_ftrace_func != ftrace_trace_function) { 2858 saved_ftrace_func = ftrace_trace_function; 2859 command |= FTRACE_UPDATE_TRACE_FUNC; 2860 } 2861 2862 if (!command || !ftrace_enabled) { 2863 /* 2864 * If these are dynamic or per_cpu ops, they still 2865 * need their data freed. Since, function tracing is 2866 * not currently active, we can just free them 2867 * without synchronizing all CPUs. 2868 */ 2869 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2870 goto free_ops; 2871 2872 return 0; 2873 } 2874 2875 /* 2876 * If the ops uses a trampoline, then it needs to be 2877 * tested first on update. 2878 */ 2879 ops->flags |= FTRACE_OPS_FL_REMOVING; 2880 removed_ops = ops; 2881 2882 /* The trampoline logic checks the old hashes */ 2883 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2884 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2885 2886 ftrace_run_update_code(command); 2887 2888 /* 2889 * If there's no more ops registered with ftrace, run a 2890 * sanity check to make sure all rec flags are cleared. 2891 */ 2892 if (rcu_dereference_protected(ftrace_ops_list, 2893 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2894 struct ftrace_page *pg; 2895 struct dyn_ftrace *rec; 2896 2897 do_for_each_ftrace_rec(pg, rec) { 2898 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2899 pr_warn(" %pS flags:%lx\n", 2900 (void *)rec->ip, rec->flags); 2901 } while_for_each_ftrace_rec(); 2902 } 2903 2904 ops->old_hash.filter_hash = NULL; 2905 ops->old_hash.notrace_hash = NULL; 2906 2907 removed_ops = NULL; 2908 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2909 2910 /* 2911 * Dynamic ops may be freed, we must make sure that all 2912 * callers are done before leaving this function. 2913 * The same goes for freeing the per_cpu data of the per_cpu 2914 * ops. 2915 */ 2916 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2917 /* 2918 * We need to do a hard force of sched synchronization. 2919 * This is because we use preempt_disable() to do RCU, but 2920 * the function tracers can be called where RCU is not watching 2921 * (like before user_exit()). We can not rely on the RCU 2922 * infrastructure to do the synchronization, thus we must do it 2923 * ourselves. 2924 */ 2925 schedule_on_each_cpu(ftrace_sync); 2926 2927 /* 2928 * When the kernel is preeptive, tasks can be preempted 2929 * while on a ftrace trampoline. Just scheduling a task on 2930 * a CPU is not good enough to flush them. Calling 2931 * synchornize_rcu_tasks() will wait for those tasks to 2932 * execute and either schedule voluntarily or enter user space. 2933 */ 2934 if (IS_ENABLED(CONFIG_PREEMPTION)) 2935 synchronize_rcu_tasks(); 2936 2937 free_ops: 2938 arch_ftrace_trampoline_free(ops); 2939 } 2940 2941 return 0; 2942 } 2943 2944 static void ftrace_startup_sysctl(void) 2945 { 2946 int command; 2947 2948 if (unlikely(ftrace_disabled)) 2949 return; 2950 2951 /* Force update next time */ 2952 saved_ftrace_func = NULL; 2953 /* ftrace_start_up is true if we want ftrace running */ 2954 if (ftrace_start_up) { 2955 command = FTRACE_UPDATE_CALLS; 2956 if (ftrace_graph_active) 2957 command |= FTRACE_START_FUNC_RET; 2958 ftrace_startup_enable(command); 2959 } 2960 } 2961 2962 static void ftrace_shutdown_sysctl(void) 2963 { 2964 int command; 2965 2966 if (unlikely(ftrace_disabled)) 2967 return; 2968 2969 /* ftrace_start_up is true if ftrace is running */ 2970 if (ftrace_start_up) { 2971 command = FTRACE_DISABLE_CALLS; 2972 if (ftrace_graph_active) 2973 command |= FTRACE_STOP_FUNC_RET; 2974 ftrace_run_update_code(command); 2975 } 2976 } 2977 2978 static u64 ftrace_update_time; 2979 unsigned long ftrace_update_tot_cnt; 2980 unsigned long ftrace_number_of_pages; 2981 unsigned long ftrace_number_of_groups; 2982 2983 static inline int ops_traces_mod(struct ftrace_ops *ops) 2984 { 2985 /* 2986 * Filter_hash being empty will default to trace module. 2987 * But notrace hash requires a test of individual module functions. 2988 */ 2989 return ftrace_hash_empty(ops->func_hash->filter_hash) && 2990 ftrace_hash_empty(ops->func_hash->notrace_hash); 2991 } 2992 2993 /* 2994 * Check if the current ops references the record. 2995 * 2996 * If the ops traces all functions, then it was already accounted for. 2997 * If the ops does not trace the current record function, skip it. 2998 * If the ops ignores the function via notrace filter, skip it. 2999 */ 3000 static inline bool 3001 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3002 { 3003 /* If ops isn't enabled, ignore it */ 3004 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3005 return false; 3006 3007 /* If ops traces all then it includes this function */ 3008 if (ops_traces_mod(ops)) 3009 return true; 3010 3011 /* The function must be in the filter */ 3012 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3013 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3014 return false; 3015 3016 /* If in notrace hash, we ignore it too */ 3017 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3018 return false; 3019 3020 return true; 3021 } 3022 3023 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3024 { 3025 struct ftrace_page *pg; 3026 struct dyn_ftrace *p; 3027 u64 start, stop; 3028 unsigned long update_cnt = 0; 3029 unsigned long rec_flags = 0; 3030 int i; 3031 3032 start = ftrace_now(raw_smp_processor_id()); 3033 3034 /* 3035 * When a module is loaded, this function is called to convert 3036 * the calls to mcount in its text to nops, and also to create 3037 * an entry in the ftrace data. Now, if ftrace is activated 3038 * after this call, but before the module sets its text to 3039 * read-only, the modification of enabling ftrace can fail if 3040 * the read-only is done while ftrace is converting the calls. 3041 * To prevent this, the module's records are set as disabled 3042 * and will be enabled after the call to set the module's text 3043 * to read-only. 3044 */ 3045 if (mod) 3046 rec_flags |= FTRACE_FL_DISABLED; 3047 3048 for (pg = new_pgs; pg; pg = pg->next) { 3049 3050 for (i = 0; i < pg->index; i++) { 3051 3052 /* If something went wrong, bail without enabling anything */ 3053 if (unlikely(ftrace_disabled)) 3054 return -1; 3055 3056 p = &pg->records[i]; 3057 p->flags = rec_flags; 3058 3059 /* 3060 * Do the initial record conversion from mcount jump 3061 * to the NOP instructions. 3062 */ 3063 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3064 !ftrace_nop_initialize(mod, p)) 3065 break; 3066 3067 update_cnt++; 3068 } 3069 } 3070 3071 stop = ftrace_now(raw_smp_processor_id()); 3072 ftrace_update_time = stop - start; 3073 ftrace_update_tot_cnt += update_cnt; 3074 3075 return 0; 3076 } 3077 3078 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3079 { 3080 int order; 3081 int cnt; 3082 3083 if (WARN_ON(!count)) 3084 return -EINVAL; 3085 3086 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 3087 3088 /* 3089 * We want to fill as much as possible. No more than a page 3090 * may be empty. 3091 */ 3092 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 3093 order--; 3094 3095 again: 3096 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3097 3098 if (!pg->records) { 3099 /* if we can't allocate this size, try something smaller */ 3100 if (!order) 3101 return -ENOMEM; 3102 order >>= 1; 3103 goto again; 3104 } 3105 3106 ftrace_number_of_pages += 1 << order; 3107 ftrace_number_of_groups++; 3108 3109 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3110 pg->size = cnt; 3111 3112 if (cnt > count) 3113 cnt = count; 3114 3115 return cnt; 3116 } 3117 3118 static struct ftrace_page * 3119 ftrace_allocate_pages(unsigned long num_to_init) 3120 { 3121 struct ftrace_page *start_pg; 3122 struct ftrace_page *pg; 3123 int order; 3124 int cnt; 3125 3126 if (!num_to_init) 3127 return NULL; 3128 3129 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3130 if (!pg) 3131 return NULL; 3132 3133 /* 3134 * Try to allocate as much as possible in one continues 3135 * location that fills in all of the space. We want to 3136 * waste as little space as possible. 3137 */ 3138 for (;;) { 3139 cnt = ftrace_allocate_records(pg, num_to_init); 3140 if (cnt < 0) 3141 goto free_pages; 3142 3143 num_to_init -= cnt; 3144 if (!num_to_init) 3145 break; 3146 3147 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3148 if (!pg->next) 3149 goto free_pages; 3150 3151 pg = pg->next; 3152 } 3153 3154 return start_pg; 3155 3156 free_pages: 3157 pg = start_pg; 3158 while (pg) { 3159 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3160 free_pages((unsigned long)pg->records, order); 3161 start_pg = pg->next; 3162 kfree(pg); 3163 pg = start_pg; 3164 ftrace_number_of_pages -= 1 << order; 3165 ftrace_number_of_groups--; 3166 } 3167 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3168 return NULL; 3169 } 3170 3171 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3172 3173 struct ftrace_iterator { 3174 loff_t pos; 3175 loff_t func_pos; 3176 loff_t mod_pos; 3177 struct ftrace_page *pg; 3178 struct dyn_ftrace *func; 3179 struct ftrace_func_probe *probe; 3180 struct ftrace_func_entry *probe_entry; 3181 struct trace_parser parser; 3182 struct ftrace_hash *hash; 3183 struct ftrace_ops *ops; 3184 struct trace_array *tr; 3185 struct list_head *mod_list; 3186 int pidx; 3187 int idx; 3188 unsigned flags; 3189 }; 3190 3191 static void * 3192 t_probe_next(struct seq_file *m, loff_t *pos) 3193 { 3194 struct ftrace_iterator *iter = m->private; 3195 struct trace_array *tr = iter->ops->private; 3196 struct list_head *func_probes; 3197 struct ftrace_hash *hash; 3198 struct list_head *next; 3199 struct hlist_node *hnd = NULL; 3200 struct hlist_head *hhd; 3201 int size; 3202 3203 (*pos)++; 3204 iter->pos = *pos; 3205 3206 if (!tr) 3207 return NULL; 3208 3209 func_probes = &tr->func_probes; 3210 if (list_empty(func_probes)) 3211 return NULL; 3212 3213 if (!iter->probe) { 3214 next = func_probes->next; 3215 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3216 } 3217 3218 if (iter->probe_entry) 3219 hnd = &iter->probe_entry->hlist; 3220 3221 hash = iter->probe->ops.func_hash->filter_hash; 3222 3223 /* 3224 * A probe being registered may temporarily have an empty hash 3225 * and it's at the end of the func_probes list. 3226 */ 3227 if (!hash || hash == EMPTY_HASH) 3228 return NULL; 3229 3230 size = 1 << hash->size_bits; 3231 3232 retry: 3233 if (iter->pidx >= size) { 3234 if (iter->probe->list.next == func_probes) 3235 return NULL; 3236 next = iter->probe->list.next; 3237 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3238 hash = iter->probe->ops.func_hash->filter_hash; 3239 size = 1 << hash->size_bits; 3240 iter->pidx = 0; 3241 } 3242 3243 hhd = &hash->buckets[iter->pidx]; 3244 3245 if (hlist_empty(hhd)) { 3246 iter->pidx++; 3247 hnd = NULL; 3248 goto retry; 3249 } 3250 3251 if (!hnd) 3252 hnd = hhd->first; 3253 else { 3254 hnd = hnd->next; 3255 if (!hnd) { 3256 iter->pidx++; 3257 goto retry; 3258 } 3259 } 3260 3261 if (WARN_ON_ONCE(!hnd)) 3262 return NULL; 3263 3264 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3265 3266 return iter; 3267 } 3268 3269 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3270 { 3271 struct ftrace_iterator *iter = m->private; 3272 void *p = NULL; 3273 loff_t l; 3274 3275 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3276 return NULL; 3277 3278 if (iter->mod_pos > *pos) 3279 return NULL; 3280 3281 iter->probe = NULL; 3282 iter->probe_entry = NULL; 3283 iter->pidx = 0; 3284 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3285 p = t_probe_next(m, &l); 3286 if (!p) 3287 break; 3288 } 3289 if (!p) 3290 return NULL; 3291 3292 /* Only set this if we have an item */ 3293 iter->flags |= FTRACE_ITER_PROBE; 3294 3295 return iter; 3296 } 3297 3298 static int 3299 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3300 { 3301 struct ftrace_func_entry *probe_entry; 3302 struct ftrace_probe_ops *probe_ops; 3303 struct ftrace_func_probe *probe; 3304 3305 probe = iter->probe; 3306 probe_entry = iter->probe_entry; 3307 3308 if (WARN_ON_ONCE(!probe || !probe_entry)) 3309 return -EIO; 3310 3311 probe_ops = probe->probe_ops; 3312 3313 if (probe_ops->print) 3314 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3315 3316 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3317 (void *)probe_ops->func); 3318 3319 return 0; 3320 } 3321 3322 static void * 3323 t_mod_next(struct seq_file *m, loff_t *pos) 3324 { 3325 struct ftrace_iterator *iter = m->private; 3326 struct trace_array *tr = iter->tr; 3327 3328 (*pos)++; 3329 iter->pos = *pos; 3330 3331 iter->mod_list = iter->mod_list->next; 3332 3333 if (iter->mod_list == &tr->mod_trace || 3334 iter->mod_list == &tr->mod_notrace) { 3335 iter->flags &= ~FTRACE_ITER_MOD; 3336 return NULL; 3337 } 3338 3339 iter->mod_pos = *pos; 3340 3341 return iter; 3342 } 3343 3344 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3345 { 3346 struct ftrace_iterator *iter = m->private; 3347 void *p = NULL; 3348 loff_t l; 3349 3350 if (iter->func_pos > *pos) 3351 return NULL; 3352 3353 iter->mod_pos = iter->func_pos; 3354 3355 /* probes are only available if tr is set */ 3356 if (!iter->tr) 3357 return NULL; 3358 3359 for (l = 0; l <= (*pos - iter->func_pos); ) { 3360 p = t_mod_next(m, &l); 3361 if (!p) 3362 break; 3363 } 3364 if (!p) { 3365 iter->flags &= ~FTRACE_ITER_MOD; 3366 return t_probe_start(m, pos); 3367 } 3368 3369 /* Only set this if we have an item */ 3370 iter->flags |= FTRACE_ITER_MOD; 3371 3372 return iter; 3373 } 3374 3375 static int 3376 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3377 { 3378 struct ftrace_mod_load *ftrace_mod; 3379 struct trace_array *tr = iter->tr; 3380 3381 if (WARN_ON_ONCE(!iter->mod_list) || 3382 iter->mod_list == &tr->mod_trace || 3383 iter->mod_list == &tr->mod_notrace) 3384 return -EIO; 3385 3386 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3387 3388 if (ftrace_mod->func) 3389 seq_printf(m, "%s", ftrace_mod->func); 3390 else 3391 seq_putc(m, '*'); 3392 3393 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3394 3395 return 0; 3396 } 3397 3398 static void * 3399 t_func_next(struct seq_file *m, loff_t *pos) 3400 { 3401 struct ftrace_iterator *iter = m->private; 3402 struct dyn_ftrace *rec = NULL; 3403 3404 (*pos)++; 3405 3406 retry: 3407 if (iter->idx >= iter->pg->index) { 3408 if (iter->pg->next) { 3409 iter->pg = iter->pg->next; 3410 iter->idx = 0; 3411 goto retry; 3412 } 3413 } else { 3414 rec = &iter->pg->records[iter->idx++]; 3415 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3416 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3417 3418 ((iter->flags & FTRACE_ITER_ENABLED) && 3419 !(rec->flags & FTRACE_FL_ENABLED))) { 3420 3421 rec = NULL; 3422 goto retry; 3423 } 3424 } 3425 3426 if (!rec) 3427 return NULL; 3428 3429 iter->pos = iter->func_pos = *pos; 3430 iter->func = rec; 3431 3432 return iter; 3433 } 3434 3435 static void * 3436 t_next(struct seq_file *m, void *v, loff_t *pos) 3437 { 3438 struct ftrace_iterator *iter = m->private; 3439 loff_t l = *pos; /* t_probe_start() must use original pos */ 3440 void *ret; 3441 3442 if (unlikely(ftrace_disabled)) 3443 return NULL; 3444 3445 if (iter->flags & FTRACE_ITER_PROBE) 3446 return t_probe_next(m, pos); 3447 3448 if (iter->flags & FTRACE_ITER_MOD) 3449 return t_mod_next(m, pos); 3450 3451 if (iter->flags & FTRACE_ITER_PRINTALL) { 3452 /* next must increment pos, and t_probe_start does not */ 3453 (*pos)++; 3454 return t_mod_start(m, &l); 3455 } 3456 3457 ret = t_func_next(m, pos); 3458 3459 if (!ret) 3460 return t_mod_start(m, &l); 3461 3462 return ret; 3463 } 3464 3465 static void reset_iter_read(struct ftrace_iterator *iter) 3466 { 3467 iter->pos = 0; 3468 iter->func_pos = 0; 3469 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3470 } 3471 3472 static void *t_start(struct seq_file *m, loff_t *pos) 3473 { 3474 struct ftrace_iterator *iter = m->private; 3475 void *p = NULL; 3476 loff_t l; 3477 3478 mutex_lock(&ftrace_lock); 3479 3480 if (unlikely(ftrace_disabled)) 3481 return NULL; 3482 3483 /* 3484 * If an lseek was done, then reset and start from beginning. 3485 */ 3486 if (*pos < iter->pos) 3487 reset_iter_read(iter); 3488 3489 /* 3490 * For set_ftrace_filter reading, if we have the filter 3491 * off, we can short cut and just print out that all 3492 * functions are enabled. 3493 */ 3494 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3495 ftrace_hash_empty(iter->hash)) { 3496 iter->func_pos = 1; /* Account for the message */ 3497 if (*pos > 0) 3498 return t_mod_start(m, pos); 3499 iter->flags |= FTRACE_ITER_PRINTALL; 3500 /* reset in case of seek/pread */ 3501 iter->flags &= ~FTRACE_ITER_PROBE; 3502 return iter; 3503 } 3504 3505 if (iter->flags & FTRACE_ITER_MOD) 3506 return t_mod_start(m, pos); 3507 3508 /* 3509 * Unfortunately, we need to restart at ftrace_pages_start 3510 * every time we let go of the ftrace_mutex. This is because 3511 * those pointers can change without the lock. 3512 */ 3513 iter->pg = ftrace_pages_start; 3514 iter->idx = 0; 3515 for (l = 0; l <= *pos; ) { 3516 p = t_func_next(m, &l); 3517 if (!p) 3518 break; 3519 } 3520 3521 if (!p) 3522 return t_mod_start(m, pos); 3523 3524 return iter; 3525 } 3526 3527 static void t_stop(struct seq_file *m, void *p) 3528 { 3529 mutex_unlock(&ftrace_lock); 3530 } 3531 3532 void * __weak 3533 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3534 { 3535 return NULL; 3536 } 3537 3538 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3539 struct dyn_ftrace *rec) 3540 { 3541 void *ptr; 3542 3543 ptr = arch_ftrace_trampoline_func(ops, rec); 3544 if (ptr) 3545 seq_printf(m, " ->%pS", ptr); 3546 } 3547 3548 static int t_show(struct seq_file *m, void *v) 3549 { 3550 struct ftrace_iterator *iter = m->private; 3551 struct dyn_ftrace *rec; 3552 3553 if (iter->flags & FTRACE_ITER_PROBE) 3554 return t_probe_show(m, iter); 3555 3556 if (iter->flags & FTRACE_ITER_MOD) 3557 return t_mod_show(m, iter); 3558 3559 if (iter->flags & FTRACE_ITER_PRINTALL) { 3560 if (iter->flags & FTRACE_ITER_NOTRACE) 3561 seq_puts(m, "#### no functions disabled ####\n"); 3562 else 3563 seq_puts(m, "#### all functions enabled ####\n"); 3564 return 0; 3565 } 3566 3567 rec = iter->func; 3568 3569 if (!rec) 3570 return 0; 3571 3572 seq_printf(m, "%ps", (void *)rec->ip); 3573 if (iter->flags & FTRACE_ITER_ENABLED) { 3574 struct ftrace_ops *ops; 3575 3576 seq_printf(m, " (%ld)%s%s%s", 3577 ftrace_rec_count(rec), 3578 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3579 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3580 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3581 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3582 ops = ftrace_find_tramp_ops_any(rec); 3583 if (ops) { 3584 do { 3585 seq_printf(m, "\ttramp: %pS (%pS)", 3586 (void *)ops->trampoline, 3587 (void *)ops->func); 3588 add_trampoline_func(m, ops, rec); 3589 ops = ftrace_find_tramp_ops_next(rec, ops); 3590 } while (ops); 3591 } else 3592 seq_puts(m, "\ttramp: ERROR!"); 3593 } else { 3594 add_trampoline_func(m, NULL, rec); 3595 } 3596 if (rec->flags & FTRACE_FL_DIRECT) { 3597 unsigned long direct; 3598 3599 direct = ftrace_find_rec_direct(rec->ip); 3600 if (direct) 3601 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3602 } 3603 } 3604 3605 seq_putc(m, '\n'); 3606 3607 return 0; 3608 } 3609 3610 static const struct seq_operations show_ftrace_seq_ops = { 3611 .start = t_start, 3612 .next = t_next, 3613 .stop = t_stop, 3614 .show = t_show, 3615 }; 3616 3617 static int 3618 ftrace_avail_open(struct inode *inode, struct file *file) 3619 { 3620 struct ftrace_iterator *iter; 3621 int ret; 3622 3623 ret = security_locked_down(LOCKDOWN_TRACEFS); 3624 if (ret) 3625 return ret; 3626 3627 if (unlikely(ftrace_disabled)) 3628 return -ENODEV; 3629 3630 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3631 if (!iter) 3632 return -ENOMEM; 3633 3634 iter->pg = ftrace_pages_start; 3635 iter->ops = &global_ops; 3636 3637 return 0; 3638 } 3639 3640 static int 3641 ftrace_enabled_open(struct inode *inode, struct file *file) 3642 { 3643 struct ftrace_iterator *iter; 3644 3645 /* 3646 * This shows us what functions are currently being 3647 * traced and by what. Not sure if we want lockdown 3648 * to hide such critical information for an admin. 3649 * Although, perhaps it can show information we don't 3650 * want people to see, but if something is tracing 3651 * something, we probably want to know about it. 3652 */ 3653 3654 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3655 if (!iter) 3656 return -ENOMEM; 3657 3658 iter->pg = ftrace_pages_start; 3659 iter->flags = FTRACE_ITER_ENABLED; 3660 iter->ops = &global_ops; 3661 3662 return 0; 3663 } 3664 3665 /** 3666 * ftrace_regex_open - initialize function tracer filter files 3667 * @ops: The ftrace_ops that hold the hash filters 3668 * @flag: The type of filter to process 3669 * @inode: The inode, usually passed in to your open routine 3670 * @file: The file, usually passed in to your open routine 3671 * 3672 * ftrace_regex_open() initializes the filter files for the 3673 * @ops. Depending on @flag it may process the filter hash or 3674 * the notrace hash of @ops. With this called from the open 3675 * routine, you can use ftrace_filter_write() for the write 3676 * routine if @flag has FTRACE_ITER_FILTER set, or 3677 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3678 * tracing_lseek() should be used as the lseek routine, and 3679 * release must call ftrace_regex_release(). 3680 */ 3681 int 3682 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3683 struct inode *inode, struct file *file) 3684 { 3685 struct ftrace_iterator *iter; 3686 struct ftrace_hash *hash; 3687 struct list_head *mod_head; 3688 struct trace_array *tr = ops->private; 3689 int ret = -ENOMEM; 3690 3691 ftrace_ops_init(ops); 3692 3693 if (unlikely(ftrace_disabled)) 3694 return -ENODEV; 3695 3696 if (tracing_check_open_get_tr(tr)) 3697 return -ENODEV; 3698 3699 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3700 if (!iter) 3701 goto out; 3702 3703 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3704 goto out; 3705 3706 iter->ops = ops; 3707 iter->flags = flag; 3708 iter->tr = tr; 3709 3710 mutex_lock(&ops->func_hash->regex_lock); 3711 3712 if (flag & FTRACE_ITER_NOTRACE) { 3713 hash = ops->func_hash->notrace_hash; 3714 mod_head = tr ? &tr->mod_notrace : NULL; 3715 } else { 3716 hash = ops->func_hash->filter_hash; 3717 mod_head = tr ? &tr->mod_trace : NULL; 3718 } 3719 3720 iter->mod_list = mod_head; 3721 3722 if (file->f_mode & FMODE_WRITE) { 3723 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3724 3725 if (file->f_flags & O_TRUNC) { 3726 iter->hash = alloc_ftrace_hash(size_bits); 3727 clear_ftrace_mod_list(mod_head); 3728 } else { 3729 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3730 } 3731 3732 if (!iter->hash) { 3733 trace_parser_put(&iter->parser); 3734 goto out_unlock; 3735 } 3736 } else 3737 iter->hash = hash; 3738 3739 ret = 0; 3740 3741 if (file->f_mode & FMODE_READ) { 3742 iter->pg = ftrace_pages_start; 3743 3744 ret = seq_open(file, &show_ftrace_seq_ops); 3745 if (!ret) { 3746 struct seq_file *m = file->private_data; 3747 m->private = iter; 3748 } else { 3749 /* Failed */ 3750 free_ftrace_hash(iter->hash); 3751 trace_parser_put(&iter->parser); 3752 } 3753 } else 3754 file->private_data = iter; 3755 3756 out_unlock: 3757 mutex_unlock(&ops->func_hash->regex_lock); 3758 3759 out: 3760 if (ret) { 3761 kfree(iter); 3762 if (tr) 3763 trace_array_put(tr); 3764 } 3765 3766 return ret; 3767 } 3768 3769 static int 3770 ftrace_filter_open(struct inode *inode, struct file *file) 3771 { 3772 struct ftrace_ops *ops = inode->i_private; 3773 3774 /* Checks for tracefs lockdown */ 3775 return ftrace_regex_open(ops, 3776 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3777 inode, file); 3778 } 3779 3780 static int 3781 ftrace_notrace_open(struct inode *inode, struct file *file) 3782 { 3783 struct ftrace_ops *ops = inode->i_private; 3784 3785 /* Checks for tracefs lockdown */ 3786 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3787 inode, file); 3788 } 3789 3790 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3791 struct ftrace_glob { 3792 char *search; 3793 unsigned len; 3794 int type; 3795 }; 3796 3797 /* 3798 * If symbols in an architecture don't correspond exactly to the user-visible 3799 * name of what they represent, it is possible to define this function to 3800 * perform the necessary adjustments. 3801 */ 3802 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3803 { 3804 return str; 3805 } 3806 3807 static int ftrace_match(char *str, struct ftrace_glob *g) 3808 { 3809 int matched = 0; 3810 int slen; 3811 3812 str = arch_ftrace_match_adjust(str, g->search); 3813 3814 switch (g->type) { 3815 case MATCH_FULL: 3816 if (strcmp(str, g->search) == 0) 3817 matched = 1; 3818 break; 3819 case MATCH_FRONT_ONLY: 3820 if (strncmp(str, g->search, g->len) == 0) 3821 matched = 1; 3822 break; 3823 case MATCH_MIDDLE_ONLY: 3824 if (strstr(str, g->search)) 3825 matched = 1; 3826 break; 3827 case MATCH_END_ONLY: 3828 slen = strlen(str); 3829 if (slen >= g->len && 3830 memcmp(str + slen - g->len, g->search, g->len) == 0) 3831 matched = 1; 3832 break; 3833 case MATCH_GLOB: 3834 if (glob_match(g->search, str)) 3835 matched = 1; 3836 break; 3837 } 3838 3839 return matched; 3840 } 3841 3842 static int 3843 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3844 { 3845 struct ftrace_func_entry *entry; 3846 int ret = 0; 3847 3848 entry = ftrace_lookup_ip(hash, rec->ip); 3849 if (clear_filter) { 3850 /* Do nothing if it doesn't exist */ 3851 if (!entry) 3852 return 0; 3853 3854 free_hash_entry(hash, entry); 3855 } else { 3856 /* Do nothing if it exists */ 3857 if (entry) 3858 return 0; 3859 3860 ret = add_hash_entry(hash, rec->ip); 3861 } 3862 return ret; 3863 } 3864 3865 static int 3866 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3867 int clear_filter) 3868 { 3869 long index = simple_strtoul(func_g->search, NULL, 0); 3870 struct ftrace_page *pg; 3871 struct dyn_ftrace *rec; 3872 3873 /* The index starts at 1 */ 3874 if (--index < 0) 3875 return 0; 3876 3877 do_for_each_ftrace_rec(pg, rec) { 3878 if (pg->index <= index) { 3879 index -= pg->index; 3880 /* this is a double loop, break goes to the next page */ 3881 break; 3882 } 3883 rec = &pg->records[index]; 3884 enter_record(hash, rec, clear_filter); 3885 return 1; 3886 } while_for_each_ftrace_rec(); 3887 return 0; 3888 } 3889 3890 static int 3891 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3892 struct ftrace_glob *mod_g, int exclude_mod) 3893 { 3894 char str[KSYM_SYMBOL_LEN]; 3895 char *modname; 3896 3897 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3898 3899 if (mod_g) { 3900 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3901 3902 /* blank module name to match all modules */ 3903 if (!mod_g->len) { 3904 /* blank module globbing: modname xor exclude_mod */ 3905 if (!exclude_mod != !modname) 3906 goto func_match; 3907 return 0; 3908 } 3909 3910 /* 3911 * exclude_mod is set to trace everything but the given 3912 * module. If it is set and the module matches, then 3913 * return 0. If it is not set, and the module doesn't match 3914 * also return 0. Otherwise, check the function to see if 3915 * that matches. 3916 */ 3917 if (!mod_matches == !exclude_mod) 3918 return 0; 3919 func_match: 3920 /* blank search means to match all funcs in the mod */ 3921 if (!func_g->len) 3922 return 1; 3923 } 3924 3925 return ftrace_match(str, func_g); 3926 } 3927 3928 static int 3929 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3930 { 3931 struct ftrace_page *pg; 3932 struct dyn_ftrace *rec; 3933 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3934 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3935 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3936 int exclude_mod = 0; 3937 int found = 0; 3938 int ret; 3939 int clear_filter = 0; 3940 3941 if (func) { 3942 func_g.type = filter_parse_regex(func, len, &func_g.search, 3943 &clear_filter); 3944 func_g.len = strlen(func_g.search); 3945 } 3946 3947 if (mod) { 3948 mod_g.type = filter_parse_regex(mod, strlen(mod), 3949 &mod_g.search, &exclude_mod); 3950 mod_g.len = strlen(mod_g.search); 3951 } 3952 3953 mutex_lock(&ftrace_lock); 3954 3955 if (unlikely(ftrace_disabled)) 3956 goto out_unlock; 3957 3958 if (func_g.type == MATCH_INDEX) { 3959 found = add_rec_by_index(hash, &func_g, clear_filter); 3960 goto out_unlock; 3961 } 3962 3963 do_for_each_ftrace_rec(pg, rec) { 3964 3965 if (rec->flags & FTRACE_FL_DISABLED) 3966 continue; 3967 3968 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 3969 ret = enter_record(hash, rec, clear_filter); 3970 if (ret < 0) { 3971 found = ret; 3972 goto out_unlock; 3973 } 3974 found = 1; 3975 } 3976 } while_for_each_ftrace_rec(); 3977 out_unlock: 3978 mutex_unlock(&ftrace_lock); 3979 3980 return found; 3981 } 3982 3983 static int 3984 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 3985 { 3986 return match_records(hash, buff, len, NULL); 3987 } 3988 3989 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3990 struct ftrace_ops_hash *old_hash) 3991 { 3992 struct ftrace_ops *op; 3993 3994 if (!ftrace_enabled) 3995 return; 3996 3997 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 3998 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 3999 return; 4000 } 4001 4002 /* 4003 * If this is the shared global_ops filter, then we need to 4004 * check if there is another ops that shares it, is enabled. 4005 * If so, we still need to run the modify code. 4006 */ 4007 if (ops->func_hash != &global_ops.local_hash) 4008 return; 4009 4010 do_for_each_ftrace_op(op, ftrace_ops_list) { 4011 if (op->func_hash == &global_ops.local_hash && 4012 op->flags & FTRACE_OPS_FL_ENABLED) { 4013 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4014 /* Only need to do this once */ 4015 return; 4016 } 4017 } while_for_each_ftrace_op(op); 4018 } 4019 4020 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4021 struct ftrace_hash **orig_hash, 4022 struct ftrace_hash *hash, 4023 int enable) 4024 { 4025 struct ftrace_ops_hash old_hash_ops; 4026 struct ftrace_hash *old_hash; 4027 int ret; 4028 4029 old_hash = *orig_hash; 4030 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4031 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4032 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4033 if (!ret) { 4034 ftrace_ops_update_code(ops, &old_hash_ops); 4035 free_ftrace_hash_rcu(old_hash); 4036 } 4037 return ret; 4038 } 4039 4040 static bool module_exists(const char *module) 4041 { 4042 /* All modules have the symbol __this_module */ 4043 static const char this_mod[] = "__this_module"; 4044 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4045 unsigned long val; 4046 int n; 4047 4048 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4049 4050 if (n > sizeof(modname) - 1) 4051 return false; 4052 4053 val = module_kallsyms_lookup_name(modname); 4054 return val != 0; 4055 } 4056 4057 static int cache_mod(struct trace_array *tr, 4058 const char *func, char *module, int enable) 4059 { 4060 struct ftrace_mod_load *ftrace_mod, *n; 4061 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4062 int ret; 4063 4064 mutex_lock(&ftrace_lock); 4065 4066 /* We do not cache inverse filters */ 4067 if (func[0] == '!') { 4068 func++; 4069 ret = -EINVAL; 4070 4071 /* Look to remove this hash */ 4072 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4073 if (strcmp(ftrace_mod->module, module) != 0) 4074 continue; 4075 4076 /* no func matches all */ 4077 if (strcmp(func, "*") == 0 || 4078 (ftrace_mod->func && 4079 strcmp(ftrace_mod->func, func) == 0)) { 4080 ret = 0; 4081 free_ftrace_mod(ftrace_mod); 4082 continue; 4083 } 4084 } 4085 goto out; 4086 } 4087 4088 ret = -EINVAL; 4089 /* We only care about modules that have not been loaded yet */ 4090 if (module_exists(module)) 4091 goto out; 4092 4093 /* Save this string off, and execute it when the module is loaded */ 4094 ret = ftrace_add_mod(tr, func, module, enable); 4095 out: 4096 mutex_unlock(&ftrace_lock); 4097 4098 return ret; 4099 } 4100 4101 static int 4102 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4103 int reset, int enable); 4104 4105 #ifdef CONFIG_MODULES 4106 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4107 char *mod, bool enable) 4108 { 4109 struct ftrace_mod_load *ftrace_mod, *n; 4110 struct ftrace_hash **orig_hash, *new_hash; 4111 LIST_HEAD(process_mods); 4112 char *func; 4113 int ret; 4114 4115 mutex_lock(&ops->func_hash->regex_lock); 4116 4117 if (enable) 4118 orig_hash = &ops->func_hash->filter_hash; 4119 else 4120 orig_hash = &ops->func_hash->notrace_hash; 4121 4122 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4123 *orig_hash); 4124 if (!new_hash) 4125 goto out; /* warn? */ 4126 4127 mutex_lock(&ftrace_lock); 4128 4129 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4130 4131 if (strcmp(ftrace_mod->module, mod) != 0) 4132 continue; 4133 4134 if (ftrace_mod->func) 4135 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4136 else 4137 func = kstrdup("*", GFP_KERNEL); 4138 4139 if (!func) /* warn? */ 4140 continue; 4141 4142 list_del(&ftrace_mod->list); 4143 list_add(&ftrace_mod->list, &process_mods); 4144 4145 /* Use the newly allocated func, as it may be "*" */ 4146 kfree(ftrace_mod->func); 4147 ftrace_mod->func = func; 4148 } 4149 4150 mutex_unlock(&ftrace_lock); 4151 4152 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4153 4154 func = ftrace_mod->func; 4155 4156 /* Grabs ftrace_lock, which is why we have this extra step */ 4157 match_records(new_hash, func, strlen(func), mod); 4158 free_ftrace_mod(ftrace_mod); 4159 } 4160 4161 if (enable && list_empty(head)) 4162 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4163 4164 mutex_lock(&ftrace_lock); 4165 4166 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4167 new_hash, enable); 4168 mutex_unlock(&ftrace_lock); 4169 4170 out: 4171 mutex_unlock(&ops->func_hash->regex_lock); 4172 4173 free_ftrace_hash(new_hash); 4174 } 4175 4176 static void process_cached_mods(const char *mod_name) 4177 { 4178 struct trace_array *tr; 4179 char *mod; 4180 4181 mod = kstrdup(mod_name, GFP_KERNEL); 4182 if (!mod) 4183 return; 4184 4185 mutex_lock(&trace_types_lock); 4186 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4187 if (!list_empty(&tr->mod_trace)) 4188 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4189 if (!list_empty(&tr->mod_notrace)) 4190 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4191 } 4192 mutex_unlock(&trace_types_lock); 4193 4194 kfree(mod); 4195 } 4196 #endif 4197 4198 /* 4199 * We register the module command as a template to show others how 4200 * to register the a command as well. 4201 */ 4202 4203 static int 4204 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4205 char *func_orig, char *cmd, char *module, int enable) 4206 { 4207 char *func; 4208 int ret; 4209 4210 /* match_records() modifies func, and we need the original */ 4211 func = kstrdup(func_orig, GFP_KERNEL); 4212 if (!func) 4213 return -ENOMEM; 4214 4215 /* 4216 * cmd == 'mod' because we only registered this func 4217 * for the 'mod' ftrace_func_command. 4218 * But if you register one func with multiple commands, 4219 * you can tell which command was used by the cmd 4220 * parameter. 4221 */ 4222 ret = match_records(hash, func, strlen(func), module); 4223 kfree(func); 4224 4225 if (!ret) 4226 return cache_mod(tr, func_orig, module, enable); 4227 if (ret < 0) 4228 return ret; 4229 return 0; 4230 } 4231 4232 static struct ftrace_func_command ftrace_mod_cmd = { 4233 .name = "mod", 4234 .func = ftrace_mod_callback, 4235 }; 4236 4237 static int __init ftrace_mod_cmd_init(void) 4238 { 4239 return register_ftrace_command(&ftrace_mod_cmd); 4240 } 4241 core_initcall(ftrace_mod_cmd_init); 4242 4243 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4244 struct ftrace_ops *op, struct pt_regs *pt_regs) 4245 { 4246 struct ftrace_probe_ops *probe_ops; 4247 struct ftrace_func_probe *probe; 4248 4249 probe = container_of(op, struct ftrace_func_probe, ops); 4250 probe_ops = probe->probe_ops; 4251 4252 /* 4253 * Disable preemption for these calls to prevent a RCU grace 4254 * period. This syncs the hash iteration and freeing of items 4255 * on the hash. rcu_read_lock is too dangerous here. 4256 */ 4257 preempt_disable_notrace(); 4258 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4259 preempt_enable_notrace(); 4260 } 4261 4262 struct ftrace_func_map { 4263 struct ftrace_func_entry entry; 4264 void *data; 4265 }; 4266 4267 struct ftrace_func_mapper { 4268 struct ftrace_hash hash; 4269 }; 4270 4271 /** 4272 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4273 * 4274 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4275 */ 4276 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4277 { 4278 struct ftrace_hash *hash; 4279 4280 /* 4281 * The mapper is simply a ftrace_hash, but since the entries 4282 * in the hash are not ftrace_func_entry type, we define it 4283 * as a separate structure. 4284 */ 4285 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4286 return (struct ftrace_func_mapper *)hash; 4287 } 4288 4289 /** 4290 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4291 * @mapper: The mapper that has the ip maps 4292 * @ip: the instruction pointer to find the data for 4293 * 4294 * Returns the data mapped to @ip if found otherwise NULL. The return 4295 * is actually the address of the mapper data pointer. The address is 4296 * returned for use cases where the data is no bigger than a long, and 4297 * the user can use the data pointer as its data instead of having to 4298 * allocate more memory for the reference. 4299 */ 4300 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4301 unsigned long ip) 4302 { 4303 struct ftrace_func_entry *entry; 4304 struct ftrace_func_map *map; 4305 4306 entry = ftrace_lookup_ip(&mapper->hash, ip); 4307 if (!entry) 4308 return NULL; 4309 4310 map = (struct ftrace_func_map *)entry; 4311 return &map->data; 4312 } 4313 4314 /** 4315 * ftrace_func_mapper_add_ip - Map some data to an ip 4316 * @mapper: The mapper that has the ip maps 4317 * @ip: The instruction pointer address to map @data to 4318 * @data: The data to map to @ip 4319 * 4320 * Returns 0 on succes otherwise an error. 4321 */ 4322 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4323 unsigned long ip, void *data) 4324 { 4325 struct ftrace_func_entry *entry; 4326 struct ftrace_func_map *map; 4327 4328 entry = ftrace_lookup_ip(&mapper->hash, ip); 4329 if (entry) 4330 return -EBUSY; 4331 4332 map = kmalloc(sizeof(*map), GFP_KERNEL); 4333 if (!map) 4334 return -ENOMEM; 4335 4336 map->entry.ip = ip; 4337 map->data = data; 4338 4339 __add_hash_entry(&mapper->hash, &map->entry); 4340 4341 return 0; 4342 } 4343 4344 /** 4345 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4346 * @mapper: The mapper that has the ip maps 4347 * @ip: The instruction pointer address to remove the data from 4348 * 4349 * Returns the data if it is found, otherwise NULL. 4350 * Note, if the data pointer is used as the data itself, (see 4351 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4352 * if the data pointer was set to zero. 4353 */ 4354 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4355 unsigned long ip) 4356 { 4357 struct ftrace_func_entry *entry; 4358 struct ftrace_func_map *map; 4359 void *data; 4360 4361 entry = ftrace_lookup_ip(&mapper->hash, ip); 4362 if (!entry) 4363 return NULL; 4364 4365 map = (struct ftrace_func_map *)entry; 4366 data = map->data; 4367 4368 remove_hash_entry(&mapper->hash, entry); 4369 kfree(entry); 4370 4371 return data; 4372 } 4373 4374 /** 4375 * free_ftrace_func_mapper - free a mapping of ips and data 4376 * @mapper: The mapper that has the ip maps 4377 * @free_func: A function to be called on each data item. 4378 * 4379 * This is used to free the function mapper. The @free_func is optional 4380 * and can be used if the data needs to be freed as well. 4381 */ 4382 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4383 ftrace_mapper_func free_func) 4384 { 4385 struct ftrace_func_entry *entry; 4386 struct ftrace_func_map *map; 4387 struct hlist_head *hhd; 4388 int size, i; 4389 4390 if (!mapper) 4391 return; 4392 4393 if (free_func && mapper->hash.count) { 4394 size = 1 << mapper->hash.size_bits; 4395 for (i = 0; i < size; i++) { 4396 hhd = &mapper->hash.buckets[i]; 4397 hlist_for_each_entry(entry, hhd, hlist) { 4398 map = (struct ftrace_func_map *)entry; 4399 free_func(map); 4400 } 4401 } 4402 } 4403 free_ftrace_hash(&mapper->hash); 4404 } 4405 4406 static void release_probe(struct ftrace_func_probe *probe) 4407 { 4408 struct ftrace_probe_ops *probe_ops; 4409 4410 mutex_lock(&ftrace_lock); 4411 4412 WARN_ON(probe->ref <= 0); 4413 4414 /* Subtract the ref that was used to protect this instance */ 4415 probe->ref--; 4416 4417 if (!probe->ref) { 4418 probe_ops = probe->probe_ops; 4419 /* 4420 * Sending zero as ip tells probe_ops to free 4421 * the probe->data itself 4422 */ 4423 if (probe_ops->free) 4424 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4425 list_del(&probe->list); 4426 kfree(probe); 4427 } 4428 mutex_unlock(&ftrace_lock); 4429 } 4430 4431 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4432 { 4433 /* 4434 * Add one ref to keep it from being freed when releasing the 4435 * ftrace_lock mutex. 4436 */ 4437 probe->ref++; 4438 } 4439 4440 int 4441 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4442 struct ftrace_probe_ops *probe_ops, 4443 void *data) 4444 { 4445 struct ftrace_func_entry *entry; 4446 struct ftrace_func_probe *probe; 4447 struct ftrace_hash **orig_hash; 4448 struct ftrace_hash *old_hash; 4449 struct ftrace_hash *hash; 4450 int count = 0; 4451 int size; 4452 int ret; 4453 int i; 4454 4455 if (WARN_ON(!tr)) 4456 return -EINVAL; 4457 4458 /* We do not support '!' for function probes */ 4459 if (WARN_ON(glob[0] == '!')) 4460 return -EINVAL; 4461 4462 4463 mutex_lock(&ftrace_lock); 4464 /* Check if the probe_ops is already registered */ 4465 list_for_each_entry(probe, &tr->func_probes, list) { 4466 if (probe->probe_ops == probe_ops) 4467 break; 4468 } 4469 if (&probe->list == &tr->func_probes) { 4470 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4471 if (!probe) { 4472 mutex_unlock(&ftrace_lock); 4473 return -ENOMEM; 4474 } 4475 probe->probe_ops = probe_ops; 4476 probe->ops.func = function_trace_probe_call; 4477 probe->tr = tr; 4478 ftrace_ops_init(&probe->ops); 4479 list_add(&probe->list, &tr->func_probes); 4480 } 4481 4482 acquire_probe_locked(probe); 4483 4484 mutex_unlock(&ftrace_lock); 4485 4486 /* 4487 * Note, there's a small window here that the func_hash->filter_hash 4488 * may be NULL or empty. Need to be carefule when reading the loop. 4489 */ 4490 mutex_lock(&probe->ops.func_hash->regex_lock); 4491 4492 orig_hash = &probe->ops.func_hash->filter_hash; 4493 old_hash = *orig_hash; 4494 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4495 4496 if (!hash) { 4497 ret = -ENOMEM; 4498 goto out; 4499 } 4500 4501 ret = ftrace_match_records(hash, glob, strlen(glob)); 4502 4503 /* Nothing found? */ 4504 if (!ret) 4505 ret = -EINVAL; 4506 4507 if (ret < 0) 4508 goto out; 4509 4510 size = 1 << hash->size_bits; 4511 for (i = 0; i < size; i++) { 4512 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4513 if (ftrace_lookup_ip(old_hash, entry->ip)) 4514 continue; 4515 /* 4516 * The caller might want to do something special 4517 * for each function we find. We call the callback 4518 * to give the caller an opportunity to do so. 4519 */ 4520 if (probe_ops->init) { 4521 ret = probe_ops->init(probe_ops, tr, 4522 entry->ip, data, 4523 &probe->data); 4524 if (ret < 0) { 4525 if (probe_ops->free && count) 4526 probe_ops->free(probe_ops, tr, 4527 0, probe->data); 4528 probe->data = NULL; 4529 goto out; 4530 } 4531 } 4532 count++; 4533 } 4534 } 4535 4536 mutex_lock(&ftrace_lock); 4537 4538 if (!count) { 4539 /* Nothing was added? */ 4540 ret = -EINVAL; 4541 goto out_unlock; 4542 } 4543 4544 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4545 hash, 1); 4546 if (ret < 0) 4547 goto err_unlock; 4548 4549 /* One ref for each new function traced */ 4550 probe->ref += count; 4551 4552 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4553 ret = ftrace_startup(&probe->ops, 0); 4554 4555 out_unlock: 4556 mutex_unlock(&ftrace_lock); 4557 4558 if (!ret) 4559 ret = count; 4560 out: 4561 mutex_unlock(&probe->ops.func_hash->regex_lock); 4562 free_ftrace_hash(hash); 4563 4564 release_probe(probe); 4565 4566 return ret; 4567 4568 err_unlock: 4569 if (!probe_ops->free || !count) 4570 goto out_unlock; 4571 4572 /* Failed to do the move, need to call the free functions */ 4573 for (i = 0; i < size; i++) { 4574 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4575 if (ftrace_lookup_ip(old_hash, entry->ip)) 4576 continue; 4577 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4578 } 4579 } 4580 goto out_unlock; 4581 } 4582 4583 int 4584 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4585 struct ftrace_probe_ops *probe_ops) 4586 { 4587 struct ftrace_ops_hash old_hash_ops; 4588 struct ftrace_func_entry *entry; 4589 struct ftrace_func_probe *probe; 4590 struct ftrace_glob func_g; 4591 struct ftrace_hash **orig_hash; 4592 struct ftrace_hash *old_hash; 4593 struct ftrace_hash *hash = NULL; 4594 struct hlist_node *tmp; 4595 struct hlist_head hhd; 4596 char str[KSYM_SYMBOL_LEN]; 4597 int count = 0; 4598 int i, ret = -ENODEV; 4599 int size; 4600 4601 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4602 func_g.search = NULL; 4603 else { 4604 int not; 4605 4606 func_g.type = filter_parse_regex(glob, strlen(glob), 4607 &func_g.search, ¬); 4608 func_g.len = strlen(func_g.search); 4609 4610 /* we do not support '!' for function probes */ 4611 if (WARN_ON(not)) 4612 return -EINVAL; 4613 } 4614 4615 mutex_lock(&ftrace_lock); 4616 /* Check if the probe_ops is already registered */ 4617 list_for_each_entry(probe, &tr->func_probes, list) { 4618 if (probe->probe_ops == probe_ops) 4619 break; 4620 } 4621 if (&probe->list == &tr->func_probes) 4622 goto err_unlock_ftrace; 4623 4624 ret = -EINVAL; 4625 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4626 goto err_unlock_ftrace; 4627 4628 acquire_probe_locked(probe); 4629 4630 mutex_unlock(&ftrace_lock); 4631 4632 mutex_lock(&probe->ops.func_hash->regex_lock); 4633 4634 orig_hash = &probe->ops.func_hash->filter_hash; 4635 old_hash = *orig_hash; 4636 4637 if (ftrace_hash_empty(old_hash)) 4638 goto out_unlock; 4639 4640 old_hash_ops.filter_hash = old_hash; 4641 /* Probes only have filters */ 4642 old_hash_ops.notrace_hash = NULL; 4643 4644 ret = -ENOMEM; 4645 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4646 if (!hash) 4647 goto out_unlock; 4648 4649 INIT_HLIST_HEAD(&hhd); 4650 4651 size = 1 << hash->size_bits; 4652 for (i = 0; i < size; i++) { 4653 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4654 4655 if (func_g.search) { 4656 kallsyms_lookup(entry->ip, NULL, NULL, 4657 NULL, str); 4658 if (!ftrace_match(str, &func_g)) 4659 continue; 4660 } 4661 count++; 4662 remove_hash_entry(hash, entry); 4663 hlist_add_head(&entry->hlist, &hhd); 4664 } 4665 } 4666 4667 /* Nothing found? */ 4668 if (!count) { 4669 ret = -EINVAL; 4670 goto out_unlock; 4671 } 4672 4673 mutex_lock(&ftrace_lock); 4674 4675 WARN_ON(probe->ref < count); 4676 4677 probe->ref -= count; 4678 4679 if (ftrace_hash_empty(hash)) 4680 ftrace_shutdown(&probe->ops, 0); 4681 4682 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4683 hash, 1); 4684 4685 /* still need to update the function call sites */ 4686 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4687 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4688 &old_hash_ops); 4689 synchronize_rcu(); 4690 4691 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4692 hlist_del(&entry->hlist); 4693 if (probe_ops->free) 4694 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4695 kfree(entry); 4696 } 4697 mutex_unlock(&ftrace_lock); 4698 4699 out_unlock: 4700 mutex_unlock(&probe->ops.func_hash->regex_lock); 4701 free_ftrace_hash(hash); 4702 4703 release_probe(probe); 4704 4705 return ret; 4706 4707 err_unlock_ftrace: 4708 mutex_unlock(&ftrace_lock); 4709 return ret; 4710 } 4711 4712 void clear_ftrace_function_probes(struct trace_array *tr) 4713 { 4714 struct ftrace_func_probe *probe, *n; 4715 4716 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4717 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4718 } 4719 4720 static LIST_HEAD(ftrace_commands); 4721 static DEFINE_MUTEX(ftrace_cmd_mutex); 4722 4723 /* 4724 * Currently we only register ftrace commands from __init, so mark this 4725 * __init too. 4726 */ 4727 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4728 { 4729 struct ftrace_func_command *p; 4730 int ret = 0; 4731 4732 mutex_lock(&ftrace_cmd_mutex); 4733 list_for_each_entry(p, &ftrace_commands, list) { 4734 if (strcmp(cmd->name, p->name) == 0) { 4735 ret = -EBUSY; 4736 goto out_unlock; 4737 } 4738 } 4739 list_add(&cmd->list, &ftrace_commands); 4740 out_unlock: 4741 mutex_unlock(&ftrace_cmd_mutex); 4742 4743 return ret; 4744 } 4745 4746 /* 4747 * Currently we only unregister ftrace commands from __init, so mark 4748 * this __init too. 4749 */ 4750 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4751 { 4752 struct ftrace_func_command *p, *n; 4753 int ret = -ENODEV; 4754 4755 mutex_lock(&ftrace_cmd_mutex); 4756 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4757 if (strcmp(cmd->name, p->name) == 0) { 4758 ret = 0; 4759 list_del_init(&p->list); 4760 goto out_unlock; 4761 } 4762 } 4763 out_unlock: 4764 mutex_unlock(&ftrace_cmd_mutex); 4765 4766 return ret; 4767 } 4768 4769 static int ftrace_process_regex(struct ftrace_iterator *iter, 4770 char *buff, int len, int enable) 4771 { 4772 struct ftrace_hash *hash = iter->hash; 4773 struct trace_array *tr = iter->ops->private; 4774 char *func, *command, *next = buff; 4775 struct ftrace_func_command *p; 4776 int ret = -EINVAL; 4777 4778 func = strsep(&next, ":"); 4779 4780 if (!next) { 4781 ret = ftrace_match_records(hash, func, len); 4782 if (!ret) 4783 ret = -EINVAL; 4784 if (ret < 0) 4785 return ret; 4786 return 0; 4787 } 4788 4789 /* command found */ 4790 4791 command = strsep(&next, ":"); 4792 4793 mutex_lock(&ftrace_cmd_mutex); 4794 list_for_each_entry(p, &ftrace_commands, list) { 4795 if (strcmp(p->name, command) == 0) { 4796 ret = p->func(tr, hash, func, command, next, enable); 4797 goto out_unlock; 4798 } 4799 } 4800 out_unlock: 4801 mutex_unlock(&ftrace_cmd_mutex); 4802 4803 return ret; 4804 } 4805 4806 static ssize_t 4807 ftrace_regex_write(struct file *file, const char __user *ubuf, 4808 size_t cnt, loff_t *ppos, int enable) 4809 { 4810 struct ftrace_iterator *iter; 4811 struct trace_parser *parser; 4812 ssize_t ret, read; 4813 4814 if (!cnt) 4815 return 0; 4816 4817 if (file->f_mode & FMODE_READ) { 4818 struct seq_file *m = file->private_data; 4819 iter = m->private; 4820 } else 4821 iter = file->private_data; 4822 4823 if (unlikely(ftrace_disabled)) 4824 return -ENODEV; 4825 4826 /* iter->hash is a local copy, so we don't need regex_lock */ 4827 4828 parser = &iter->parser; 4829 read = trace_get_user(parser, ubuf, cnt, ppos); 4830 4831 if (read >= 0 && trace_parser_loaded(parser) && 4832 !trace_parser_cont(parser)) { 4833 ret = ftrace_process_regex(iter, parser->buffer, 4834 parser->idx, enable); 4835 trace_parser_clear(parser); 4836 if (ret < 0) 4837 goto out; 4838 } 4839 4840 ret = read; 4841 out: 4842 return ret; 4843 } 4844 4845 ssize_t 4846 ftrace_filter_write(struct file *file, const char __user *ubuf, 4847 size_t cnt, loff_t *ppos) 4848 { 4849 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4850 } 4851 4852 ssize_t 4853 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4854 size_t cnt, loff_t *ppos) 4855 { 4856 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4857 } 4858 4859 static int 4860 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4861 { 4862 struct ftrace_func_entry *entry; 4863 4864 if (!ftrace_location(ip)) 4865 return -EINVAL; 4866 4867 if (remove) { 4868 entry = ftrace_lookup_ip(hash, ip); 4869 if (!entry) 4870 return -ENOENT; 4871 free_hash_entry(hash, entry); 4872 return 0; 4873 } 4874 4875 return add_hash_entry(hash, ip); 4876 } 4877 4878 static int 4879 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4880 unsigned long ip, int remove, int reset, int enable) 4881 { 4882 struct ftrace_hash **orig_hash; 4883 struct ftrace_hash *hash; 4884 int ret; 4885 4886 if (unlikely(ftrace_disabled)) 4887 return -ENODEV; 4888 4889 mutex_lock(&ops->func_hash->regex_lock); 4890 4891 if (enable) 4892 orig_hash = &ops->func_hash->filter_hash; 4893 else 4894 orig_hash = &ops->func_hash->notrace_hash; 4895 4896 if (reset) 4897 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4898 else 4899 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4900 4901 if (!hash) { 4902 ret = -ENOMEM; 4903 goto out_regex_unlock; 4904 } 4905 4906 if (buf && !ftrace_match_records(hash, buf, len)) { 4907 ret = -EINVAL; 4908 goto out_regex_unlock; 4909 } 4910 if (ip) { 4911 ret = ftrace_match_addr(hash, ip, remove); 4912 if (ret < 0) 4913 goto out_regex_unlock; 4914 } 4915 4916 mutex_lock(&ftrace_lock); 4917 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4918 mutex_unlock(&ftrace_lock); 4919 4920 out_regex_unlock: 4921 mutex_unlock(&ops->func_hash->regex_lock); 4922 4923 free_ftrace_hash(hash); 4924 return ret; 4925 } 4926 4927 static int 4928 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4929 int reset, int enable) 4930 { 4931 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4932 } 4933 4934 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4935 4936 struct ftrace_direct_func { 4937 struct list_head next; 4938 unsigned long addr; 4939 int count; 4940 }; 4941 4942 static LIST_HEAD(ftrace_direct_funcs); 4943 4944 /** 4945 * ftrace_find_direct_func - test an address if it is a registered direct caller 4946 * @addr: The address of a registered direct caller 4947 * 4948 * This searches to see if a ftrace direct caller has been registered 4949 * at a specific address, and if so, it returns a descriptor for it. 4950 * 4951 * This can be used by architecture code to see if an address is 4952 * a direct caller (trampoline) attached to a fentry/mcount location. 4953 * This is useful for the function_graph tracer, as it may need to 4954 * do adjustments if it traced a location that also has a direct 4955 * trampoline attached to it. 4956 */ 4957 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 4958 { 4959 struct ftrace_direct_func *entry; 4960 bool found = false; 4961 4962 /* May be called by fgraph trampoline (protected by rcu tasks) */ 4963 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 4964 if (entry->addr == addr) { 4965 found = true; 4966 break; 4967 } 4968 } 4969 if (found) 4970 return entry; 4971 4972 return NULL; 4973 } 4974 4975 /** 4976 * register_ftrace_direct - Call a custom trampoline directly 4977 * @ip: The address of the nop at the beginning of a function 4978 * @addr: The address of the trampoline to call at @ip 4979 * 4980 * This is used to connect a direct call from the nop location (@ip) 4981 * at the start of ftrace traced functions. The location that it calls 4982 * (@addr) must be able to handle a direct call, and save the parameters 4983 * of the function being traced, and restore them (or inject new ones 4984 * if needed), before returning. 4985 * 4986 * Returns: 4987 * 0 on success 4988 * -EBUSY - Another direct function is already attached (there can be only one) 4989 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 4990 * -ENOMEM - There was an allocation failure. 4991 */ 4992 int register_ftrace_direct(unsigned long ip, unsigned long addr) 4993 { 4994 struct ftrace_direct_func *direct; 4995 struct ftrace_func_entry *entry; 4996 struct ftrace_hash *free_hash = NULL; 4997 struct dyn_ftrace *rec; 4998 int ret = -EBUSY; 4999 5000 mutex_lock(&direct_mutex); 5001 5002 /* See if there's a direct function at @ip already */ 5003 if (ftrace_find_rec_direct(ip)) 5004 goto out_unlock; 5005 5006 ret = -ENODEV; 5007 rec = lookup_rec(ip, ip); 5008 if (!rec) 5009 goto out_unlock; 5010 5011 /* 5012 * Check if the rec says it has a direct call but we didn't 5013 * find one earlier? 5014 */ 5015 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5016 goto out_unlock; 5017 5018 /* Make sure the ip points to the exact record */ 5019 if (ip != rec->ip) { 5020 ip = rec->ip; 5021 /* Need to check this ip for a direct. */ 5022 if (ftrace_find_rec_direct(ip)) 5023 goto out_unlock; 5024 } 5025 5026 ret = -ENOMEM; 5027 if (ftrace_hash_empty(direct_functions) || 5028 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5029 struct ftrace_hash *new_hash; 5030 int size = ftrace_hash_empty(direct_functions) ? 0 : 5031 direct_functions->count + 1; 5032 5033 if (size < 32) 5034 size = 32; 5035 5036 new_hash = dup_hash(direct_functions, size); 5037 if (!new_hash) 5038 goto out_unlock; 5039 5040 free_hash = direct_functions; 5041 direct_functions = new_hash; 5042 } 5043 5044 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5045 if (!entry) 5046 goto out_unlock; 5047 5048 direct = ftrace_find_direct_func(addr); 5049 if (!direct) { 5050 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5051 if (!direct) { 5052 kfree(entry); 5053 goto out_unlock; 5054 } 5055 direct->addr = addr; 5056 direct->count = 0; 5057 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5058 ftrace_direct_func_count++; 5059 } 5060 5061 entry->ip = ip; 5062 entry->direct = addr; 5063 __add_hash_entry(direct_functions, entry); 5064 5065 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5066 if (ret) 5067 remove_hash_entry(direct_functions, entry); 5068 5069 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5070 ret = register_ftrace_function(&direct_ops); 5071 if (ret) 5072 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5073 } 5074 5075 if (ret) { 5076 kfree(entry); 5077 if (!direct->count) { 5078 list_del_rcu(&direct->next); 5079 synchronize_rcu_tasks(); 5080 kfree(direct); 5081 if (free_hash) 5082 free_ftrace_hash(free_hash); 5083 free_hash = NULL; 5084 ftrace_direct_func_count--; 5085 } 5086 } else { 5087 direct->count++; 5088 } 5089 out_unlock: 5090 mutex_unlock(&direct_mutex); 5091 5092 if (free_hash) { 5093 synchronize_rcu_tasks(); 5094 free_ftrace_hash(free_hash); 5095 } 5096 5097 return ret; 5098 } 5099 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5100 5101 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5102 struct dyn_ftrace **recp) 5103 { 5104 struct ftrace_func_entry *entry; 5105 struct dyn_ftrace *rec; 5106 5107 rec = lookup_rec(*ip, *ip); 5108 if (!rec) 5109 return NULL; 5110 5111 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5112 if (!entry) { 5113 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5114 return NULL; 5115 } 5116 5117 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5118 5119 /* Passed in ip just needs to be on the call site */ 5120 *ip = rec->ip; 5121 5122 if (recp) 5123 *recp = rec; 5124 5125 return entry; 5126 } 5127 5128 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5129 { 5130 struct ftrace_direct_func *direct; 5131 struct ftrace_func_entry *entry; 5132 int ret = -ENODEV; 5133 5134 mutex_lock(&direct_mutex); 5135 5136 entry = find_direct_entry(&ip, NULL); 5137 if (!entry) 5138 goto out_unlock; 5139 5140 if (direct_functions->count == 1) 5141 unregister_ftrace_function(&direct_ops); 5142 5143 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5144 5145 WARN_ON(ret); 5146 5147 remove_hash_entry(direct_functions, entry); 5148 5149 direct = ftrace_find_direct_func(addr); 5150 if (!WARN_ON(!direct)) { 5151 /* This is the good path (see the ! before WARN) */ 5152 direct->count--; 5153 WARN_ON(direct->count < 0); 5154 if (!direct->count) { 5155 list_del_rcu(&direct->next); 5156 synchronize_rcu_tasks(); 5157 kfree(direct); 5158 ftrace_direct_func_count--; 5159 } 5160 } 5161 out_unlock: 5162 mutex_unlock(&direct_mutex); 5163 5164 return ret; 5165 } 5166 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5167 5168 static struct ftrace_ops stub_ops = { 5169 .func = ftrace_stub, 5170 }; 5171 5172 /** 5173 * ftrace_modify_direct_caller - modify ftrace nop directly 5174 * @entry: The ftrace hash entry of the direct helper for @rec 5175 * @rec: The record representing the function site to patch 5176 * @old_addr: The location that the site at @rec->ip currently calls 5177 * @new_addr: The location that the site at @rec->ip should call 5178 * 5179 * An architecture may overwrite this function to optimize the 5180 * changing of the direct callback on an ftrace nop location. 5181 * This is called with the ftrace_lock mutex held, and no other 5182 * ftrace callbacks are on the associated record (@rec). Thus, 5183 * it is safe to modify the ftrace record, where it should be 5184 * currently calling @old_addr directly, to call @new_addr. 5185 * 5186 * Safety checks should be made to make sure that the code at 5187 * @rec->ip is currently calling @old_addr. And this must 5188 * also update entry->direct to @new_addr. 5189 */ 5190 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5191 struct dyn_ftrace *rec, 5192 unsigned long old_addr, 5193 unsigned long new_addr) 5194 { 5195 unsigned long ip = rec->ip; 5196 int ret; 5197 5198 /* 5199 * The ftrace_lock was used to determine if the record 5200 * had more than one registered user to it. If it did, 5201 * we needed to prevent that from changing to do the quick 5202 * switch. But if it did not (only a direct caller was attached) 5203 * then this function is called. But this function can deal 5204 * with attached callers to the rec that we care about, and 5205 * since this function uses standard ftrace calls that take 5206 * the ftrace_lock mutex, we need to release it. 5207 */ 5208 mutex_unlock(&ftrace_lock); 5209 5210 /* 5211 * By setting a stub function at the same address, we force 5212 * the code to call the iterator and the direct_ops helper. 5213 * This means that @ip does not call the direct call, and 5214 * we can simply modify it. 5215 */ 5216 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5217 if (ret) 5218 goto out_lock; 5219 5220 ret = register_ftrace_function(&stub_ops); 5221 if (ret) { 5222 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5223 goto out_lock; 5224 } 5225 5226 entry->direct = new_addr; 5227 5228 /* 5229 * By removing the stub, we put back the direct call, calling 5230 * the @new_addr. 5231 */ 5232 unregister_ftrace_function(&stub_ops); 5233 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5234 5235 out_lock: 5236 mutex_lock(&ftrace_lock); 5237 5238 return ret; 5239 } 5240 5241 /** 5242 * modify_ftrace_direct - Modify an existing direct call to call something else 5243 * @ip: The instruction pointer to modify 5244 * @old_addr: The address that the current @ip calls directly 5245 * @new_addr: The address that the @ip should call 5246 * 5247 * This modifies a ftrace direct caller at an instruction pointer without 5248 * having to disable it first. The direct call will switch over to the 5249 * @new_addr without missing anything. 5250 * 5251 * Returns: zero on success. Non zero on error, which includes: 5252 * -ENODEV : the @ip given has no direct caller attached 5253 * -EINVAL : the @old_addr does not match the current direct caller 5254 */ 5255 int modify_ftrace_direct(unsigned long ip, 5256 unsigned long old_addr, unsigned long new_addr) 5257 { 5258 struct ftrace_func_entry *entry; 5259 struct dyn_ftrace *rec; 5260 int ret = -ENODEV; 5261 5262 mutex_lock(&direct_mutex); 5263 5264 mutex_lock(&ftrace_lock); 5265 entry = find_direct_entry(&ip, &rec); 5266 if (!entry) 5267 goto out_unlock; 5268 5269 ret = -EINVAL; 5270 if (entry->direct != old_addr) 5271 goto out_unlock; 5272 5273 /* 5274 * If there's no other ftrace callback on the rec->ip location, 5275 * then it can be changed directly by the architecture. 5276 * If there is another caller, then we just need to change the 5277 * direct caller helper to point to @new_addr. 5278 */ 5279 if (ftrace_rec_count(rec) == 1) { 5280 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5281 } else { 5282 entry->direct = new_addr; 5283 ret = 0; 5284 } 5285 5286 out_unlock: 5287 mutex_unlock(&ftrace_lock); 5288 mutex_unlock(&direct_mutex); 5289 return ret; 5290 } 5291 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5292 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5293 5294 /** 5295 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5296 * @ops - the ops to set the filter with 5297 * @ip - the address to add to or remove from the filter. 5298 * @remove - non zero to remove the ip from the filter 5299 * @reset - non zero to reset all filters before applying this filter. 5300 * 5301 * Filters denote which functions should be enabled when tracing is enabled 5302 * If @ip is NULL, it failes to update filter. 5303 */ 5304 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5305 int remove, int reset) 5306 { 5307 ftrace_ops_init(ops); 5308 return ftrace_set_addr(ops, ip, remove, reset, 1); 5309 } 5310 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5311 5312 /** 5313 * ftrace_ops_set_global_filter - setup ops to use global filters 5314 * @ops - the ops which will use the global filters 5315 * 5316 * ftrace users who need global function trace filtering should call this. 5317 * It can set the global filter only if ops were not initialized before. 5318 */ 5319 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5320 { 5321 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5322 return; 5323 5324 ftrace_ops_init(ops); 5325 ops->func_hash = &global_ops.local_hash; 5326 } 5327 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5328 5329 static int 5330 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5331 int reset, int enable) 5332 { 5333 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5334 } 5335 5336 /** 5337 * ftrace_set_filter - set a function to filter on in ftrace 5338 * @ops - the ops to set the filter with 5339 * @buf - the string that holds the function filter text. 5340 * @len - the length of the string. 5341 * @reset - non zero to reset all filters before applying this filter. 5342 * 5343 * Filters denote which functions should be enabled when tracing is enabled. 5344 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5345 */ 5346 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5347 int len, int reset) 5348 { 5349 ftrace_ops_init(ops); 5350 return ftrace_set_regex(ops, buf, len, reset, 1); 5351 } 5352 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5353 5354 /** 5355 * ftrace_set_notrace - set a function to not trace in ftrace 5356 * @ops - the ops to set the notrace filter with 5357 * @buf - the string that holds the function notrace text. 5358 * @len - the length of the string. 5359 * @reset - non zero to reset all filters before applying this filter. 5360 * 5361 * Notrace Filters denote which functions should not be enabled when tracing 5362 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5363 * for tracing. 5364 */ 5365 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5366 int len, int reset) 5367 { 5368 ftrace_ops_init(ops); 5369 return ftrace_set_regex(ops, buf, len, reset, 0); 5370 } 5371 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5372 /** 5373 * ftrace_set_global_filter - set a function to filter on with global tracers 5374 * @buf - the string that holds the function filter text. 5375 * @len - the length of the string. 5376 * @reset - non zero to reset all filters before applying this filter. 5377 * 5378 * Filters denote which functions should be enabled when tracing is enabled. 5379 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5380 */ 5381 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5382 { 5383 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5384 } 5385 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5386 5387 /** 5388 * ftrace_set_global_notrace - set a function to not trace with global tracers 5389 * @buf - the string that holds the function notrace text. 5390 * @len - the length of the string. 5391 * @reset - non zero to reset all filters before applying this filter. 5392 * 5393 * Notrace Filters denote which functions should not be enabled when tracing 5394 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5395 * for tracing. 5396 */ 5397 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5398 { 5399 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5400 } 5401 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5402 5403 /* 5404 * command line interface to allow users to set filters on boot up. 5405 */ 5406 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5407 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5408 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5409 5410 /* Used by function selftest to not test if filter is set */ 5411 bool ftrace_filter_param __initdata; 5412 5413 static int __init set_ftrace_notrace(char *str) 5414 { 5415 ftrace_filter_param = true; 5416 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5417 return 1; 5418 } 5419 __setup("ftrace_notrace=", set_ftrace_notrace); 5420 5421 static int __init set_ftrace_filter(char *str) 5422 { 5423 ftrace_filter_param = true; 5424 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5425 return 1; 5426 } 5427 __setup("ftrace_filter=", set_ftrace_filter); 5428 5429 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5430 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5431 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5432 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5433 5434 static int __init set_graph_function(char *str) 5435 { 5436 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5437 return 1; 5438 } 5439 __setup("ftrace_graph_filter=", set_graph_function); 5440 5441 static int __init set_graph_notrace_function(char *str) 5442 { 5443 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5444 return 1; 5445 } 5446 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5447 5448 static int __init set_graph_max_depth_function(char *str) 5449 { 5450 if (!str) 5451 return 0; 5452 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5453 return 1; 5454 } 5455 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5456 5457 static void __init set_ftrace_early_graph(char *buf, int enable) 5458 { 5459 int ret; 5460 char *func; 5461 struct ftrace_hash *hash; 5462 5463 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5464 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5465 return; 5466 5467 while (buf) { 5468 func = strsep(&buf, ","); 5469 /* we allow only one expression at a time */ 5470 ret = ftrace_graph_set_hash(hash, func); 5471 if (ret) 5472 printk(KERN_DEBUG "ftrace: function %s not " 5473 "traceable\n", func); 5474 } 5475 5476 if (enable) 5477 ftrace_graph_hash = hash; 5478 else 5479 ftrace_graph_notrace_hash = hash; 5480 } 5481 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5482 5483 void __init 5484 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5485 { 5486 char *func; 5487 5488 ftrace_ops_init(ops); 5489 5490 while (buf) { 5491 func = strsep(&buf, ","); 5492 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5493 } 5494 } 5495 5496 static void __init set_ftrace_early_filters(void) 5497 { 5498 if (ftrace_filter_buf[0]) 5499 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5500 if (ftrace_notrace_buf[0]) 5501 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5503 if (ftrace_graph_buf[0]) 5504 set_ftrace_early_graph(ftrace_graph_buf, 1); 5505 if (ftrace_graph_notrace_buf[0]) 5506 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5507 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5508 } 5509 5510 int ftrace_regex_release(struct inode *inode, struct file *file) 5511 { 5512 struct seq_file *m = (struct seq_file *)file->private_data; 5513 struct ftrace_iterator *iter; 5514 struct ftrace_hash **orig_hash; 5515 struct trace_parser *parser; 5516 int filter_hash; 5517 int ret; 5518 5519 if (file->f_mode & FMODE_READ) { 5520 iter = m->private; 5521 seq_release(inode, file); 5522 } else 5523 iter = file->private_data; 5524 5525 parser = &iter->parser; 5526 if (trace_parser_loaded(parser)) { 5527 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5528 } 5529 5530 trace_parser_put(parser); 5531 5532 mutex_lock(&iter->ops->func_hash->regex_lock); 5533 5534 if (file->f_mode & FMODE_WRITE) { 5535 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5536 5537 if (filter_hash) { 5538 orig_hash = &iter->ops->func_hash->filter_hash; 5539 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5540 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5541 } else 5542 orig_hash = &iter->ops->func_hash->notrace_hash; 5543 5544 mutex_lock(&ftrace_lock); 5545 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5546 iter->hash, filter_hash); 5547 mutex_unlock(&ftrace_lock); 5548 } else { 5549 /* For read only, the hash is the ops hash */ 5550 iter->hash = NULL; 5551 } 5552 5553 mutex_unlock(&iter->ops->func_hash->regex_lock); 5554 free_ftrace_hash(iter->hash); 5555 if (iter->tr) 5556 trace_array_put(iter->tr); 5557 kfree(iter); 5558 5559 return 0; 5560 } 5561 5562 static const struct file_operations ftrace_avail_fops = { 5563 .open = ftrace_avail_open, 5564 .read = seq_read, 5565 .llseek = seq_lseek, 5566 .release = seq_release_private, 5567 }; 5568 5569 static const struct file_operations ftrace_enabled_fops = { 5570 .open = ftrace_enabled_open, 5571 .read = seq_read, 5572 .llseek = seq_lseek, 5573 .release = seq_release_private, 5574 }; 5575 5576 static const struct file_operations ftrace_filter_fops = { 5577 .open = ftrace_filter_open, 5578 .read = seq_read, 5579 .write = ftrace_filter_write, 5580 .llseek = tracing_lseek, 5581 .release = ftrace_regex_release, 5582 }; 5583 5584 static const struct file_operations ftrace_notrace_fops = { 5585 .open = ftrace_notrace_open, 5586 .read = seq_read, 5587 .write = ftrace_notrace_write, 5588 .llseek = tracing_lseek, 5589 .release = ftrace_regex_release, 5590 }; 5591 5592 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5593 5594 static DEFINE_MUTEX(graph_lock); 5595 5596 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5597 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5598 5599 enum graph_filter_type { 5600 GRAPH_FILTER_NOTRACE = 0, 5601 GRAPH_FILTER_FUNCTION, 5602 }; 5603 5604 #define FTRACE_GRAPH_EMPTY ((void *)1) 5605 5606 struct ftrace_graph_data { 5607 struct ftrace_hash *hash; 5608 struct ftrace_func_entry *entry; 5609 int idx; /* for hash table iteration */ 5610 enum graph_filter_type type; 5611 struct ftrace_hash *new_hash; 5612 const struct seq_operations *seq_ops; 5613 struct trace_parser parser; 5614 }; 5615 5616 static void * 5617 __g_next(struct seq_file *m, loff_t *pos) 5618 { 5619 struct ftrace_graph_data *fgd = m->private; 5620 struct ftrace_func_entry *entry = fgd->entry; 5621 struct hlist_head *head; 5622 int i, idx = fgd->idx; 5623 5624 if (*pos >= fgd->hash->count) 5625 return NULL; 5626 5627 if (entry) { 5628 hlist_for_each_entry_continue(entry, hlist) { 5629 fgd->entry = entry; 5630 return entry; 5631 } 5632 5633 idx++; 5634 } 5635 5636 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5637 head = &fgd->hash->buckets[i]; 5638 hlist_for_each_entry(entry, head, hlist) { 5639 fgd->entry = entry; 5640 fgd->idx = i; 5641 return entry; 5642 } 5643 } 5644 return NULL; 5645 } 5646 5647 static void * 5648 g_next(struct seq_file *m, void *v, loff_t *pos) 5649 { 5650 (*pos)++; 5651 return __g_next(m, pos); 5652 } 5653 5654 static void *g_start(struct seq_file *m, loff_t *pos) 5655 { 5656 struct ftrace_graph_data *fgd = m->private; 5657 5658 mutex_lock(&graph_lock); 5659 5660 if (fgd->type == GRAPH_FILTER_FUNCTION) 5661 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5662 lockdep_is_held(&graph_lock)); 5663 else 5664 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5665 lockdep_is_held(&graph_lock)); 5666 5667 /* Nothing, tell g_show to print all functions are enabled */ 5668 if (ftrace_hash_empty(fgd->hash) && !*pos) 5669 return FTRACE_GRAPH_EMPTY; 5670 5671 fgd->idx = 0; 5672 fgd->entry = NULL; 5673 return __g_next(m, pos); 5674 } 5675 5676 static void g_stop(struct seq_file *m, void *p) 5677 { 5678 mutex_unlock(&graph_lock); 5679 } 5680 5681 static int g_show(struct seq_file *m, void *v) 5682 { 5683 struct ftrace_func_entry *entry = v; 5684 5685 if (!entry) 5686 return 0; 5687 5688 if (entry == FTRACE_GRAPH_EMPTY) { 5689 struct ftrace_graph_data *fgd = m->private; 5690 5691 if (fgd->type == GRAPH_FILTER_FUNCTION) 5692 seq_puts(m, "#### all functions enabled ####\n"); 5693 else 5694 seq_puts(m, "#### no functions disabled ####\n"); 5695 return 0; 5696 } 5697 5698 seq_printf(m, "%ps\n", (void *)entry->ip); 5699 5700 return 0; 5701 } 5702 5703 static const struct seq_operations ftrace_graph_seq_ops = { 5704 .start = g_start, 5705 .next = g_next, 5706 .stop = g_stop, 5707 .show = g_show, 5708 }; 5709 5710 static int 5711 __ftrace_graph_open(struct inode *inode, struct file *file, 5712 struct ftrace_graph_data *fgd) 5713 { 5714 int ret; 5715 struct ftrace_hash *new_hash = NULL; 5716 5717 ret = security_locked_down(LOCKDOWN_TRACEFS); 5718 if (ret) 5719 return ret; 5720 5721 if (file->f_mode & FMODE_WRITE) { 5722 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5723 5724 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5725 return -ENOMEM; 5726 5727 if (file->f_flags & O_TRUNC) 5728 new_hash = alloc_ftrace_hash(size_bits); 5729 else 5730 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5731 fgd->hash); 5732 if (!new_hash) { 5733 ret = -ENOMEM; 5734 goto out; 5735 } 5736 } 5737 5738 if (file->f_mode & FMODE_READ) { 5739 ret = seq_open(file, &ftrace_graph_seq_ops); 5740 if (!ret) { 5741 struct seq_file *m = file->private_data; 5742 m->private = fgd; 5743 } else { 5744 /* Failed */ 5745 free_ftrace_hash(new_hash); 5746 new_hash = NULL; 5747 } 5748 } else 5749 file->private_data = fgd; 5750 5751 out: 5752 if (ret < 0 && file->f_mode & FMODE_WRITE) 5753 trace_parser_put(&fgd->parser); 5754 5755 fgd->new_hash = new_hash; 5756 5757 /* 5758 * All uses of fgd->hash must be taken with the graph_lock 5759 * held. The graph_lock is going to be released, so force 5760 * fgd->hash to be reinitialized when it is taken again. 5761 */ 5762 fgd->hash = NULL; 5763 5764 return ret; 5765 } 5766 5767 static int 5768 ftrace_graph_open(struct inode *inode, struct file *file) 5769 { 5770 struct ftrace_graph_data *fgd; 5771 int ret; 5772 5773 if (unlikely(ftrace_disabled)) 5774 return -ENODEV; 5775 5776 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5777 if (fgd == NULL) 5778 return -ENOMEM; 5779 5780 mutex_lock(&graph_lock); 5781 5782 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5783 lockdep_is_held(&graph_lock)); 5784 fgd->type = GRAPH_FILTER_FUNCTION; 5785 fgd->seq_ops = &ftrace_graph_seq_ops; 5786 5787 ret = __ftrace_graph_open(inode, file, fgd); 5788 if (ret < 0) 5789 kfree(fgd); 5790 5791 mutex_unlock(&graph_lock); 5792 return ret; 5793 } 5794 5795 static int 5796 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5797 { 5798 struct ftrace_graph_data *fgd; 5799 int ret; 5800 5801 if (unlikely(ftrace_disabled)) 5802 return -ENODEV; 5803 5804 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5805 if (fgd == NULL) 5806 return -ENOMEM; 5807 5808 mutex_lock(&graph_lock); 5809 5810 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5811 lockdep_is_held(&graph_lock)); 5812 fgd->type = GRAPH_FILTER_NOTRACE; 5813 fgd->seq_ops = &ftrace_graph_seq_ops; 5814 5815 ret = __ftrace_graph_open(inode, file, fgd); 5816 if (ret < 0) 5817 kfree(fgd); 5818 5819 mutex_unlock(&graph_lock); 5820 return ret; 5821 } 5822 5823 static int 5824 ftrace_graph_release(struct inode *inode, struct file *file) 5825 { 5826 struct ftrace_graph_data *fgd; 5827 struct ftrace_hash *old_hash, *new_hash; 5828 struct trace_parser *parser; 5829 int ret = 0; 5830 5831 if (file->f_mode & FMODE_READ) { 5832 struct seq_file *m = file->private_data; 5833 5834 fgd = m->private; 5835 seq_release(inode, file); 5836 } else { 5837 fgd = file->private_data; 5838 } 5839 5840 5841 if (file->f_mode & FMODE_WRITE) { 5842 5843 parser = &fgd->parser; 5844 5845 if (trace_parser_loaded((parser))) { 5846 ret = ftrace_graph_set_hash(fgd->new_hash, 5847 parser->buffer); 5848 } 5849 5850 trace_parser_put(parser); 5851 5852 new_hash = __ftrace_hash_move(fgd->new_hash); 5853 if (!new_hash) { 5854 ret = -ENOMEM; 5855 goto out; 5856 } 5857 5858 mutex_lock(&graph_lock); 5859 5860 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5861 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5862 lockdep_is_held(&graph_lock)); 5863 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5864 } else { 5865 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5866 lockdep_is_held(&graph_lock)); 5867 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5868 } 5869 5870 mutex_unlock(&graph_lock); 5871 5872 /* 5873 * We need to do a hard force of sched synchronization. 5874 * This is because we use preempt_disable() to do RCU, but 5875 * the function tracers can be called where RCU is not watching 5876 * (like before user_exit()). We can not rely on the RCU 5877 * infrastructure to do the synchronization, thus we must do it 5878 * ourselves. 5879 */ 5880 schedule_on_each_cpu(ftrace_sync); 5881 5882 free_ftrace_hash(old_hash); 5883 } 5884 5885 out: 5886 free_ftrace_hash(fgd->new_hash); 5887 kfree(fgd); 5888 5889 return ret; 5890 } 5891 5892 static int 5893 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5894 { 5895 struct ftrace_glob func_g; 5896 struct dyn_ftrace *rec; 5897 struct ftrace_page *pg; 5898 struct ftrace_func_entry *entry; 5899 int fail = 1; 5900 int not; 5901 5902 /* decode regex */ 5903 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5904 &func_g.search, ¬); 5905 5906 func_g.len = strlen(func_g.search); 5907 5908 mutex_lock(&ftrace_lock); 5909 5910 if (unlikely(ftrace_disabled)) { 5911 mutex_unlock(&ftrace_lock); 5912 return -ENODEV; 5913 } 5914 5915 do_for_each_ftrace_rec(pg, rec) { 5916 5917 if (rec->flags & FTRACE_FL_DISABLED) 5918 continue; 5919 5920 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5921 entry = ftrace_lookup_ip(hash, rec->ip); 5922 5923 if (!not) { 5924 fail = 0; 5925 5926 if (entry) 5927 continue; 5928 if (add_hash_entry(hash, rec->ip) < 0) 5929 goto out; 5930 } else { 5931 if (entry) { 5932 free_hash_entry(hash, entry); 5933 fail = 0; 5934 } 5935 } 5936 } 5937 } while_for_each_ftrace_rec(); 5938 out: 5939 mutex_unlock(&ftrace_lock); 5940 5941 if (fail) 5942 return -EINVAL; 5943 5944 return 0; 5945 } 5946 5947 static ssize_t 5948 ftrace_graph_write(struct file *file, const char __user *ubuf, 5949 size_t cnt, loff_t *ppos) 5950 { 5951 ssize_t read, ret = 0; 5952 struct ftrace_graph_data *fgd = file->private_data; 5953 struct trace_parser *parser; 5954 5955 if (!cnt) 5956 return 0; 5957 5958 /* Read mode uses seq functions */ 5959 if (file->f_mode & FMODE_READ) { 5960 struct seq_file *m = file->private_data; 5961 fgd = m->private; 5962 } 5963 5964 parser = &fgd->parser; 5965 5966 read = trace_get_user(parser, ubuf, cnt, ppos); 5967 5968 if (read >= 0 && trace_parser_loaded(parser) && 5969 !trace_parser_cont(parser)) { 5970 5971 ret = ftrace_graph_set_hash(fgd->new_hash, 5972 parser->buffer); 5973 trace_parser_clear(parser); 5974 } 5975 5976 if (!ret) 5977 ret = read; 5978 5979 return ret; 5980 } 5981 5982 static const struct file_operations ftrace_graph_fops = { 5983 .open = ftrace_graph_open, 5984 .read = seq_read, 5985 .write = ftrace_graph_write, 5986 .llseek = tracing_lseek, 5987 .release = ftrace_graph_release, 5988 }; 5989 5990 static const struct file_operations ftrace_graph_notrace_fops = { 5991 .open = ftrace_graph_notrace_open, 5992 .read = seq_read, 5993 .write = ftrace_graph_write, 5994 .llseek = tracing_lseek, 5995 .release = ftrace_graph_release, 5996 }; 5997 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5998 5999 void ftrace_create_filter_files(struct ftrace_ops *ops, 6000 struct dentry *parent) 6001 { 6002 6003 trace_create_file("set_ftrace_filter", 0644, parent, 6004 ops, &ftrace_filter_fops); 6005 6006 trace_create_file("set_ftrace_notrace", 0644, parent, 6007 ops, &ftrace_notrace_fops); 6008 } 6009 6010 /* 6011 * The name "destroy_filter_files" is really a misnomer. Although 6012 * in the future, it may actually delete the files, but this is 6013 * really intended to make sure the ops passed in are disabled 6014 * and that when this function returns, the caller is free to 6015 * free the ops. 6016 * 6017 * The "destroy" name is only to match the "create" name that this 6018 * should be paired with. 6019 */ 6020 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6021 { 6022 mutex_lock(&ftrace_lock); 6023 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6024 ftrace_shutdown(ops, 0); 6025 ops->flags |= FTRACE_OPS_FL_DELETED; 6026 ftrace_free_filter(ops); 6027 mutex_unlock(&ftrace_lock); 6028 } 6029 6030 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6031 { 6032 6033 trace_create_file("available_filter_functions", 0444, 6034 d_tracer, NULL, &ftrace_avail_fops); 6035 6036 trace_create_file("enabled_functions", 0444, 6037 d_tracer, NULL, &ftrace_enabled_fops); 6038 6039 ftrace_create_filter_files(&global_ops, d_tracer); 6040 6041 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6042 trace_create_file("set_graph_function", 0644, d_tracer, 6043 NULL, 6044 &ftrace_graph_fops); 6045 trace_create_file("set_graph_notrace", 0644, d_tracer, 6046 NULL, 6047 &ftrace_graph_notrace_fops); 6048 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6049 6050 return 0; 6051 } 6052 6053 static int ftrace_cmp_ips(const void *a, const void *b) 6054 { 6055 const unsigned long *ipa = a; 6056 const unsigned long *ipb = b; 6057 6058 if (*ipa > *ipb) 6059 return 1; 6060 if (*ipa < *ipb) 6061 return -1; 6062 return 0; 6063 } 6064 6065 static int ftrace_process_locs(struct module *mod, 6066 unsigned long *start, 6067 unsigned long *end) 6068 { 6069 struct ftrace_page *start_pg; 6070 struct ftrace_page *pg; 6071 struct dyn_ftrace *rec; 6072 unsigned long count; 6073 unsigned long *p; 6074 unsigned long addr; 6075 unsigned long flags = 0; /* Shut up gcc */ 6076 int ret = -ENOMEM; 6077 6078 count = end - start; 6079 6080 if (!count) 6081 return 0; 6082 6083 sort(start, count, sizeof(*start), 6084 ftrace_cmp_ips, NULL); 6085 6086 start_pg = ftrace_allocate_pages(count); 6087 if (!start_pg) 6088 return -ENOMEM; 6089 6090 mutex_lock(&ftrace_lock); 6091 6092 /* 6093 * Core and each module needs their own pages, as 6094 * modules will free them when they are removed. 6095 * Force a new page to be allocated for modules. 6096 */ 6097 if (!mod) { 6098 WARN_ON(ftrace_pages || ftrace_pages_start); 6099 /* First initialization */ 6100 ftrace_pages = ftrace_pages_start = start_pg; 6101 } else { 6102 if (!ftrace_pages) 6103 goto out; 6104 6105 if (WARN_ON(ftrace_pages->next)) { 6106 /* Hmm, we have free pages? */ 6107 while (ftrace_pages->next) 6108 ftrace_pages = ftrace_pages->next; 6109 } 6110 6111 ftrace_pages->next = start_pg; 6112 } 6113 6114 p = start; 6115 pg = start_pg; 6116 while (p < end) { 6117 addr = ftrace_call_adjust(*p++); 6118 /* 6119 * Some architecture linkers will pad between 6120 * the different mcount_loc sections of different 6121 * object files to satisfy alignments. 6122 * Skip any NULL pointers. 6123 */ 6124 if (!addr) 6125 continue; 6126 6127 if (pg->index == pg->size) { 6128 /* We should have allocated enough */ 6129 if (WARN_ON(!pg->next)) 6130 break; 6131 pg = pg->next; 6132 } 6133 6134 rec = &pg->records[pg->index++]; 6135 rec->ip = addr; 6136 } 6137 6138 /* We should have used all pages */ 6139 WARN_ON(pg->next); 6140 6141 /* Assign the last page to ftrace_pages */ 6142 ftrace_pages = pg; 6143 6144 /* 6145 * We only need to disable interrupts on start up 6146 * because we are modifying code that an interrupt 6147 * may execute, and the modification is not atomic. 6148 * But for modules, nothing runs the code we modify 6149 * until we are finished with it, and there's no 6150 * reason to cause large interrupt latencies while we do it. 6151 */ 6152 if (!mod) 6153 local_irq_save(flags); 6154 ftrace_update_code(mod, start_pg); 6155 if (!mod) 6156 local_irq_restore(flags); 6157 ret = 0; 6158 out: 6159 mutex_unlock(&ftrace_lock); 6160 6161 return ret; 6162 } 6163 6164 struct ftrace_mod_func { 6165 struct list_head list; 6166 char *name; 6167 unsigned long ip; 6168 unsigned int size; 6169 }; 6170 6171 struct ftrace_mod_map { 6172 struct rcu_head rcu; 6173 struct list_head list; 6174 struct module *mod; 6175 unsigned long start_addr; 6176 unsigned long end_addr; 6177 struct list_head funcs; 6178 unsigned int num_funcs; 6179 }; 6180 6181 #ifdef CONFIG_MODULES 6182 6183 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6184 6185 static LIST_HEAD(ftrace_mod_maps); 6186 6187 static int referenced_filters(struct dyn_ftrace *rec) 6188 { 6189 struct ftrace_ops *ops; 6190 int cnt = 0; 6191 6192 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6193 if (ops_references_rec(ops, rec)) 6194 cnt++; 6195 } 6196 6197 return cnt; 6198 } 6199 6200 static void 6201 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6202 { 6203 struct ftrace_func_entry *entry; 6204 struct dyn_ftrace *rec; 6205 int i; 6206 6207 if (ftrace_hash_empty(hash)) 6208 return; 6209 6210 for (i = 0; i < pg->index; i++) { 6211 rec = &pg->records[i]; 6212 entry = __ftrace_lookup_ip(hash, rec->ip); 6213 /* 6214 * Do not allow this rec to match again. 6215 * Yeah, it may waste some memory, but will be removed 6216 * if/when the hash is modified again. 6217 */ 6218 if (entry) 6219 entry->ip = 0; 6220 } 6221 } 6222 6223 /* Clear any records from hashs */ 6224 static void clear_mod_from_hashes(struct ftrace_page *pg) 6225 { 6226 struct trace_array *tr; 6227 6228 mutex_lock(&trace_types_lock); 6229 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6230 if (!tr->ops || !tr->ops->func_hash) 6231 continue; 6232 mutex_lock(&tr->ops->func_hash->regex_lock); 6233 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6234 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6235 mutex_unlock(&tr->ops->func_hash->regex_lock); 6236 } 6237 mutex_unlock(&trace_types_lock); 6238 } 6239 6240 static void ftrace_free_mod_map(struct rcu_head *rcu) 6241 { 6242 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6243 struct ftrace_mod_func *mod_func; 6244 struct ftrace_mod_func *n; 6245 6246 /* All the contents of mod_map are now not visible to readers */ 6247 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6248 kfree(mod_func->name); 6249 list_del(&mod_func->list); 6250 kfree(mod_func); 6251 } 6252 6253 kfree(mod_map); 6254 } 6255 6256 void ftrace_release_mod(struct module *mod) 6257 { 6258 struct ftrace_mod_map *mod_map; 6259 struct ftrace_mod_map *n; 6260 struct dyn_ftrace *rec; 6261 struct ftrace_page **last_pg; 6262 struct ftrace_page *tmp_page = NULL; 6263 struct ftrace_page *pg; 6264 int order; 6265 6266 mutex_lock(&ftrace_lock); 6267 6268 if (ftrace_disabled) 6269 goto out_unlock; 6270 6271 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6272 if (mod_map->mod == mod) { 6273 list_del_rcu(&mod_map->list); 6274 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6275 break; 6276 } 6277 } 6278 6279 /* 6280 * Each module has its own ftrace_pages, remove 6281 * them from the list. 6282 */ 6283 last_pg = &ftrace_pages_start; 6284 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6285 rec = &pg->records[0]; 6286 if (within_module_core(rec->ip, mod) || 6287 within_module_init(rec->ip, mod)) { 6288 /* 6289 * As core pages are first, the first 6290 * page should never be a module page. 6291 */ 6292 if (WARN_ON(pg == ftrace_pages_start)) 6293 goto out_unlock; 6294 6295 /* Check if we are deleting the last page */ 6296 if (pg == ftrace_pages) 6297 ftrace_pages = next_to_ftrace_page(last_pg); 6298 6299 ftrace_update_tot_cnt -= pg->index; 6300 *last_pg = pg->next; 6301 6302 pg->next = tmp_page; 6303 tmp_page = pg; 6304 } else 6305 last_pg = &pg->next; 6306 } 6307 out_unlock: 6308 mutex_unlock(&ftrace_lock); 6309 6310 for (pg = tmp_page; pg; pg = tmp_page) { 6311 6312 /* Needs to be called outside of ftrace_lock */ 6313 clear_mod_from_hashes(pg); 6314 6315 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6316 free_pages((unsigned long)pg->records, order); 6317 tmp_page = pg->next; 6318 kfree(pg); 6319 ftrace_number_of_pages -= 1 << order; 6320 ftrace_number_of_groups--; 6321 } 6322 } 6323 6324 void ftrace_module_enable(struct module *mod) 6325 { 6326 struct dyn_ftrace *rec; 6327 struct ftrace_page *pg; 6328 6329 mutex_lock(&ftrace_lock); 6330 6331 if (ftrace_disabled) 6332 goto out_unlock; 6333 6334 /* 6335 * If the tracing is enabled, go ahead and enable the record. 6336 * 6337 * The reason not to enable the record immediately is the 6338 * inherent check of ftrace_make_nop/ftrace_make_call for 6339 * correct previous instructions. Making first the NOP 6340 * conversion puts the module to the correct state, thus 6341 * passing the ftrace_make_call check. 6342 * 6343 * We also delay this to after the module code already set the 6344 * text to read-only, as we now need to set it back to read-write 6345 * so that we can modify the text. 6346 */ 6347 if (ftrace_start_up) 6348 ftrace_arch_code_modify_prepare(); 6349 6350 do_for_each_ftrace_rec(pg, rec) { 6351 int cnt; 6352 /* 6353 * do_for_each_ftrace_rec() is a double loop. 6354 * module text shares the pg. If a record is 6355 * not part of this module, then skip this pg, 6356 * which the "break" will do. 6357 */ 6358 if (!within_module_core(rec->ip, mod) && 6359 !within_module_init(rec->ip, mod)) 6360 break; 6361 6362 cnt = 0; 6363 6364 /* 6365 * When adding a module, we need to check if tracers are 6366 * currently enabled and if they are, and can trace this record, 6367 * we need to enable the module functions as well as update the 6368 * reference counts for those function records. 6369 */ 6370 if (ftrace_start_up) 6371 cnt += referenced_filters(rec); 6372 6373 /* This clears FTRACE_FL_DISABLED */ 6374 rec->flags = cnt; 6375 6376 if (ftrace_start_up && cnt) { 6377 int failed = __ftrace_replace_code(rec, 1); 6378 if (failed) { 6379 ftrace_bug(failed, rec); 6380 goto out_loop; 6381 } 6382 } 6383 6384 } while_for_each_ftrace_rec(); 6385 6386 out_loop: 6387 if (ftrace_start_up) 6388 ftrace_arch_code_modify_post_process(); 6389 6390 out_unlock: 6391 mutex_unlock(&ftrace_lock); 6392 6393 process_cached_mods(mod->name); 6394 } 6395 6396 void ftrace_module_init(struct module *mod) 6397 { 6398 if (ftrace_disabled || !mod->num_ftrace_callsites) 6399 return; 6400 6401 ftrace_process_locs(mod, mod->ftrace_callsites, 6402 mod->ftrace_callsites + mod->num_ftrace_callsites); 6403 } 6404 6405 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6406 struct dyn_ftrace *rec) 6407 { 6408 struct ftrace_mod_func *mod_func; 6409 unsigned long symsize; 6410 unsigned long offset; 6411 char str[KSYM_SYMBOL_LEN]; 6412 char *modname; 6413 const char *ret; 6414 6415 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6416 if (!ret) 6417 return; 6418 6419 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6420 if (!mod_func) 6421 return; 6422 6423 mod_func->name = kstrdup(str, GFP_KERNEL); 6424 if (!mod_func->name) { 6425 kfree(mod_func); 6426 return; 6427 } 6428 6429 mod_func->ip = rec->ip - offset; 6430 mod_func->size = symsize; 6431 6432 mod_map->num_funcs++; 6433 6434 list_add_rcu(&mod_func->list, &mod_map->funcs); 6435 } 6436 6437 static struct ftrace_mod_map * 6438 allocate_ftrace_mod_map(struct module *mod, 6439 unsigned long start, unsigned long end) 6440 { 6441 struct ftrace_mod_map *mod_map; 6442 6443 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6444 if (!mod_map) 6445 return NULL; 6446 6447 mod_map->mod = mod; 6448 mod_map->start_addr = start; 6449 mod_map->end_addr = end; 6450 mod_map->num_funcs = 0; 6451 6452 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6453 6454 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6455 6456 return mod_map; 6457 } 6458 6459 static const char * 6460 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6461 unsigned long addr, unsigned long *size, 6462 unsigned long *off, char *sym) 6463 { 6464 struct ftrace_mod_func *found_func = NULL; 6465 struct ftrace_mod_func *mod_func; 6466 6467 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6468 if (addr >= mod_func->ip && 6469 addr < mod_func->ip + mod_func->size) { 6470 found_func = mod_func; 6471 break; 6472 } 6473 } 6474 6475 if (found_func) { 6476 if (size) 6477 *size = found_func->size; 6478 if (off) 6479 *off = addr - found_func->ip; 6480 if (sym) 6481 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6482 6483 return found_func->name; 6484 } 6485 6486 return NULL; 6487 } 6488 6489 const char * 6490 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6491 unsigned long *off, char **modname, char *sym) 6492 { 6493 struct ftrace_mod_map *mod_map; 6494 const char *ret = NULL; 6495 6496 /* mod_map is freed via call_rcu() */ 6497 preempt_disable(); 6498 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6499 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6500 if (ret) { 6501 if (modname) 6502 *modname = mod_map->mod->name; 6503 break; 6504 } 6505 } 6506 preempt_enable(); 6507 6508 return ret; 6509 } 6510 6511 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6512 char *type, char *name, 6513 char *module_name, int *exported) 6514 { 6515 struct ftrace_mod_map *mod_map; 6516 struct ftrace_mod_func *mod_func; 6517 6518 preempt_disable(); 6519 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6520 6521 if (symnum >= mod_map->num_funcs) { 6522 symnum -= mod_map->num_funcs; 6523 continue; 6524 } 6525 6526 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6527 if (symnum > 1) { 6528 symnum--; 6529 continue; 6530 } 6531 6532 *value = mod_func->ip; 6533 *type = 'T'; 6534 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6535 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6536 *exported = 1; 6537 preempt_enable(); 6538 return 0; 6539 } 6540 WARN_ON(1); 6541 break; 6542 } 6543 preempt_enable(); 6544 return -ERANGE; 6545 } 6546 6547 #else 6548 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6549 struct dyn_ftrace *rec) { } 6550 static inline struct ftrace_mod_map * 6551 allocate_ftrace_mod_map(struct module *mod, 6552 unsigned long start, unsigned long end) 6553 { 6554 return NULL; 6555 } 6556 #endif /* CONFIG_MODULES */ 6557 6558 struct ftrace_init_func { 6559 struct list_head list; 6560 unsigned long ip; 6561 }; 6562 6563 /* Clear any init ips from hashes */ 6564 static void 6565 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6566 { 6567 struct ftrace_func_entry *entry; 6568 6569 entry = ftrace_lookup_ip(hash, func->ip); 6570 /* 6571 * Do not allow this rec to match again. 6572 * Yeah, it may waste some memory, but will be removed 6573 * if/when the hash is modified again. 6574 */ 6575 if (entry) 6576 entry->ip = 0; 6577 } 6578 6579 static void 6580 clear_func_from_hashes(struct ftrace_init_func *func) 6581 { 6582 struct trace_array *tr; 6583 6584 mutex_lock(&trace_types_lock); 6585 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6586 if (!tr->ops || !tr->ops->func_hash) 6587 continue; 6588 mutex_lock(&tr->ops->func_hash->regex_lock); 6589 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6590 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6591 mutex_unlock(&tr->ops->func_hash->regex_lock); 6592 } 6593 mutex_unlock(&trace_types_lock); 6594 } 6595 6596 static void add_to_clear_hash_list(struct list_head *clear_list, 6597 struct dyn_ftrace *rec) 6598 { 6599 struct ftrace_init_func *func; 6600 6601 func = kmalloc(sizeof(*func), GFP_KERNEL); 6602 if (!func) { 6603 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6604 return; 6605 } 6606 6607 func->ip = rec->ip; 6608 list_add(&func->list, clear_list); 6609 } 6610 6611 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6612 { 6613 unsigned long start = (unsigned long)(start_ptr); 6614 unsigned long end = (unsigned long)(end_ptr); 6615 struct ftrace_page **last_pg = &ftrace_pages_start; 6616 struct ftrace_page *pg; 6617 struct dyn_ftrace *rec; 6618 struct dyn_ftrace key; 6619 struct ftrace_mod_map *mod_map = NULL; 6620 struct ftrace_init_func *func, *func_next; 6621 struct list_head clear_hash; 6622 int order; 6623 6624 INIT_LIST_HEAD(&clear_hash); 6625 6626 key.ip = start; 6627 key.flags = end; /* overload flags, as it is unsigned long */ 6628 6629 mutex_lock(&ftrace_lock); 6630 6631 /* 6632 * If we are freeing module init memory, then check if 6633 * any tracer is active. If so, we need to save a mapping of 6634 * the module functions being freed with the address. 6635 */ 6636 if (mod && ftrace_ops_list != &ftrace_list_end) 6637 mod_map = allocate_ftrace_mod_map(mod, start, end); 6638 6639 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6640 if (end < pg->records[0].ip || 6641 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6642 continue; 6643 again: 6644 rec = bsearch(&key, pg->records, pg->index, 6645 sizeof(struct dyn_ftrace), 6646 ftrace_cmp_recs); 6647 if (!rec) 6648 continue; 6649 6650 /* rec will be cleared from hashes after ftrace_lock unlock */ 6651 add_to_clear_hash_list(&clear_hash, rec); 6652 6653 if (mod_map) 6654 save_ftrace_mod_rec(mod_map, rec); 6655 6656 pg->index--; 6657 ftrace_update_tot_cnt--; 6658 if (!pg->index) { 6659 *last_pg = pg->next; 6660 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6661 free_pages((unsigned long)pg->records, order); 6662 ftrace_number_of_pages -= 1 << order; 6663 ftrace_number_of_groups--; 6664 kfree(pg); 6665 pg = container_of(last_pg, struct ftrace_page, next); 6666 if (!(*last_pg)) 6667 ftrace_pages = pg; 6668 continue; 6669 } 6670 memmove(rec, rec + 1, 6671 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6672 /* More than one function may be in this block */ 6673 goto again; 6674 } 6675 mutex_unlock(&ftrace_lock); 6676 6677 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6678 clear_func_from_hashes(func); 6679 kfree(func); 6680 } 6681 } 6682 6683 void __init ftrace_free_init_mem(void) 6684 { 6685 void *start = (void *)(&__init_begin); 6686 void *end = (void *)(&__init_end); 6687 6688 ftrace_free_mem(NULL, start, end); 6689 } 6690 6691 void __init ftrace_init(void) 6692 { 6693 extern unsigned long __start_mcount_loc[]; 6694 extern unsigned long __stop_mcount_loc[]; 6695 unsigned long count, flags; 6696 int ret; 6697 6698 local_irq_save(flags); 6699 ret = ftrace_dyn_arch_init(); 6700 local_irq_restore(flags); 6701 if (ret) 6702 goto failed; 6703 6704 count = __stop_mcount_loc - __start_mcount_loc; 6705 if (!count) { 6706 pr_info("ftrace: No functions to be traced?\n"); 6707 goto failed; 6708 } 6709 6710 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6711 count, count / ENTRIES_PER_PAGE + 1); 6712 6713 last_ftrace_enabled = ftrace_enabled = 1; 6714 6715 ret = ftrace_process_locs(NULL, 6716 __start_mcount_loc, 6717 __stop_mcount_loc); 6718 6719 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6720 ftrace_number_of_pages, ftrace_number_of_groups); 6721 6722 set_ftrace_early_filters(); 6723 6724 return; 6725 failed: 6726 ftrace_disabled = 1; 6727 } 6728 6729 /* Do nothing if arch does not support this */ 6730 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6731 { 6732 } 6733 6734 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6735 { 6736 arch_ftrace_update_trampoline(ops); 6737 } 6738 6739 void ftrace_init_trace_array(struct trace_array *tr) 6740 { 6741 INIT_LIST_HEAD(&tr->func_probes); 6742 INIT_LIST_HEAD(&tr->mod_trace); 6743 INIT_LIST_HEAD(&tr->mod_notrace); 6744 } 6745 #else 6746 6747 struct ftrace_ops global_ops = { 6748 .func = ftrace_stub, 6749 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6750 FTRACE_OPS_FL_INITIALIZED | 6751 FTRACE_OPS_FL_PID, 6752 }; 6753 6754 static int __init ftrace_nodyn_init(void) 6755 { 6756 ftrace_enabled = 1; 6757 return 0; 6758 } 6759 core_initcall(ftrace_nodyn_init); 6760 6761 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6762 static inline void ftrace_startup_enable(int command) { } 6763 static inline void ftrace_startup_all(int command) { } 6764 6765 # define ftrace_startup_sysctl() do { } while (0) 6766 # define ftrace_shutdown_sysctl() do { } while (0) 6767 6768 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6769 { 6770 } 6771 6772 #endif /* CONFIG_DYNAMIC_FTRACE */ 6773 6774 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6775 { 6776 tr->ops = &global_ops; 6777 tr->ops->private = tr; 6778 ftrace_init_trace_array(tr); 6779 } 6780 6781 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6782 { 6783 /* If we filter on pids, update to use the pid function */ 6784 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6785 if (WARN_ON(tr->ops->func != ftrace_stub)) 6786 printk("ftrace ops had %pS for function\n", 6787 tr->ops->func); 6788 } 6789 tr->ops->func = func; 6790 tr->ops->private = tr; 6791 } 6792 6793 void ftrace_reset_array_ops(struct trace_array *tr) 6794 { 6795 tr->ops->func = ftrace_stub; 6796 } 6797 6798 static nokprobe_inline void 6799 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6800 struct ftrace_ops *ignored, struct pt_regs *regs) 6801 { 6802 struct ftrace_ops *op; 6803 int bit; 6804 6805 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6806 if (bit < 0) 6807 return; 6808 6809 /* 6810 * Some of the ops may be dynamically allocated, 6811 * they must be freed after a synchronize_rcu(). 6812 */ 6813 preempt_disable_notrace(); 6814 6815 do_for_each_ftrace_op(op, ftrace_ops_list) { 6816 /* Stub functions don't need to be called nor tested */ 6817 if (op->flags & FTRACE_OPS_FL_STUB) 6818 continue; 6819 /* 6820 * Check the following for each ops before calling their func: 6821 * if RCU flag is set, then rcu_is_watching() must be true 6822 * if PER_CPU is set, then ftrace_function_local_disable() 6823 * must be false 6824 * Otherwise test if the ip matches the ops filter 6825 * 6826 * If any of the above fails then the op->func() is not executed. 6827 */ 6828 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6829 ftrace_ops_test(op, ip, regs)) { 6830 if (FTRACE_WARN_ON(!op->func)) { 6831 pr_warn("op=%p %pS\n", op, op); 6832 goto out; 6833 } 6834 op->func(ip, parent_ip, op, regs); 6835 } 6836 } while_for_each_ftrace_op(op); 6837 out: 6838 preempt_enable_notrace(); 6839 trace_clear_recursion(bit); 6840 } 6841 6842 /* 6843 * Some archs only support passing ip and parent_ip. Even though 6844 * the list function ignores the op parameter, we do not want any 6845 * C side effects, where a function is called without the caller 6846 * sending a third parameter. 6847 * Archs are to support both the regs and ftrace_ops at the same time. 6848 * If they support ftrace_ops, it is assumed they support regs. 6849 * If call backs want to use regs, they must either check for regs 6850 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6851 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6852 * An architecture can pass partial regs with ftrace_ops and still 6853 * set the ARCH_SUPPORTS_FTRACE_OPS. 6854 */ 6855 #if ARCH_SUPPORTS_FTRACE_OPS 6856 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6857 struct ftrace_ops *op, struct pt_regs *regs) 6858 { 6859 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6860 } 6861 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6862 #else 6863 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6864 { 6865 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6866 } 6867 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6868 #endif 6869 6870 /* 6871 * If there's only one function registered but it does not support 6872 * recursion, needs RCU protection and/or requires per cpu handling, then 6873 * this function will be called by the mcount trampoline. 6874 */ 6875 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6876 struct ftrace_ops *op, struct pt_regs *regs) 6877 { 6878 int bit; 6879 6880 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6881 return; 6882 6883 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6884 if (bit < 0) 6885 return; 6886 6887 preempt_disable_notrace(); 6888 6889 op->func(ip, parent_ip, op, regs); 6890 6891 preempt_enable_notrace(); 6892 trace_clear_recursion(bit); 6893 } 6894 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 6895 6896 /** 6897 * ftrace_ops_get_func - get the function a trampoline should call 6898 * @ops: the ops to get the function for 6899 * 6900 * Normally the mcount trampoline will call the ops->func, but there 6901 * are times that it should not. For example, if the ops does not 6902 * have its own recursion protection, then it should call the 6903 * ftrace_ops_assist_func() instead. 6904 * 6905 * Returns the function that the trampoline should call for @ops. 6906 */ 6907 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 6908 { 6909 /* 6910 * If the function does not handle recursion, needs to be RCU safe, 6911 * or does per cpu logic, then we need to call the assist handler. 6912 */ 6913 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 6914 ops->flags & FTRACE_OPS_FL_RCU) 6915 return ftrace_ops_assist_func; 6916 6917 return ops->func; 6918 } 6919 6920 static void 6921 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 6922 struct task_struct *prev, struct task_struct *next) 6923 { 6924 struct trace_array *tr = data; 6925 struct trace_pid_list *pid_list; 6926 6927 pid_list = rcu_dereference_sched(tr->function_pids); 6928 6929 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 6930 trace_ignore_this_task(pid_list, next)); 6931 } 6932 6933 static void 6934 ftrace_pid_follow_sched_process_fork(void *data, 6935 struct task_struct *self, 6936 struct task_struct *task) 6937 { 6938 struct trace_pid_list *pid_list; 6939 struct trace_array *tr = data; 6940 6941 pid_list = rcu_dereference_sched(tr->function_pids); 6942 trace_filter_add_remove_task(pid_list, self, task); 6943 } 6944 6945 static void 6946 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 6947 { 6948 struct trace_pid_list *pid_list; 6949 struct trace_array *tr = data; 6950 6951 pid_list = rcu_dereference_sched(tr->function_pids); 6952 trace_filter_add_remove_task(pid_list, NULL, task); 6953 } 6954 6955 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 6956 { 6957 if (enable) { 6958 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6959 tr); 6960 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6961 tr); 6962 } else { 6963 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6964 tr); 6965 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6966 tr); 6967 } 6968 } 6969 6970 static void clear_ftrace_pids(struct trace_array *tr) 6971 { 6972 struct trace_pid_list *pid_list; 6973 int cpu; 6974 6975 pid_list = rcu_dereference_protected(tr->function_pids, 6976 lockdep_is_held(&ftrace_lock)); 6977 if (!pid_list) 6978 return; 6979 6980 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6981 6982 for_each_possible_cpu(cpu) 6983 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = false; 6984 6985 rcu_assign_pointer(tr->function_pids, NULL); 6986 6987 /* Wait till all users are no longer using pid filtering */ 6988 synchronize_rcu(); 6989 6990 trace_free_pid_list(pid_list); 6991 } 6992 6993 void ftrace_clear_pids(struct trace_array *tr) 6994 { 6995 mutex_lock(&ftrace_lock); 6996 6997 clear_ftrace_pids(tr); 6998 6999 mutex_unlock(&ftrace_lock); 7000 } 7001 7002 static void ftrace_pid_reset(struct trace_array *tr) 7003 { 7004 mutex_lock(&ftrace_lock); 7005 clear_ftrace_pids(tr); 7006 7007 ftrace_update_pid_func(); 7008 ftrace_startup_all(0); 7009 7010 mutex_unlock(&ftrace_lock); 7011 } 7012 7013 /* Greater than any max PID */ 7014 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7015 7016 static void *fpid_start(struct seq_file *m, loff_t *pos) 7017 __acquires(RCU) 7018 { 7019 struct trace_pid_list *pid_list; 7020 struct trace_array *tr = m->private; 7021 7022 mutex_lock(&ftrace_lock); 7023 rcu_read_lock_sched(); 7024 7025 pid_list = rcu_dereference_sched(tr->function_pids); 7026 7027 if (!pid_list) 7028 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7029 7030 return trace_pid_start(pid_list, pos); 7031 } 7032 7033 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7034 { 7035 struct trace_array *tr = m->private; 7036 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7037 7038 if (v == FTRACE_NO_PIDS) { 7039 (*pos)++; 7040 return NULL; 7041 } 7042 return trace_pid_next(pid_list, v, pos); 7043 } 7044 7045 static void fpid_stop(struct seq_file *m, void *p) 7046 __releases(RCU) 7047 { 7048 rcu_read_unlock_sched(); 7049 mutex_unlock(&ftrace_lock); 7050 } 7051 7052 static int fpid_show(struct seq_file *m, void *v) 7053 { 7054 if (v == FTRACE_NO_PIDS) { 7055 seq_puts(m, "no pid\n"); 7056 return 0; 7057 } 7058 7059 return trace_pid_show(m, v); 7060 } 7061 7062 static const struct seq_operations ftrace_pid_sops = { 7063 .start = fpid_start, 7064 .next = fpid_next, 7065 .stop = fpid_stop, 7066 .show = fpid_show, 7067 }; 7068 7069 static int 7070 ftrace_pid_open(struct inode *inode, struct file *file) 7071 { 7072 struct trace_array *tr = inode->i_private; 7073 struct seq_file *m; 7074 int ret = 0; 7075 7076 ret = tracing_check_open_get_tr(tr); 7077 if (ret) 7078 return ret; 7079 7080 if ((file->f_mode & FMODE_WRITE) && 7081 (file->f_flags & O_TRUNC)) 7082 ftrace_pid_reset(tr); 7083 7084 ret = seq_open(file, &ftrace_pid_sops); 7085 if (ret < 0) { 7086 trace_array_put(tr); 7087 } else { 7088 m = file->private_data; 7089 /* copy tr over to seq ops */ 7090 m->private = tr; 7091 } 7092 7093 return ret; 7094 } 7095 7096 static void ignore_task_cpu(void *data) 7097 { 7098 struct trace_array *tr = data; 7099 struct trace_pid_list *pid_list; 7100 7101 /* 7102 * This function is called by on_each_cpu() while the 7103 * event_mutex is held. 7104 */ 7105 pid_list = rcu_dereference_protected(tr->function_pids, 7106 mutex_is_locked(&ftrace_lock)); 7107 7108 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7109 trace_ignore_this_task(pid_list, current)); 7110 } 7111 7112 static ssize_t 7113 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7114 size_t cnt, loff_t *ppos) 7115 { 7116 struct seq_file *m = filp->private_data; 7117 struct trace_array *tr = m->private; 7118 struct trace_pid_list *filtered_pids = NULL; 7119 struct trace_pid_list *pid_list; 7120 ssize_t ret; 7121 7122 if (!cnt) 7123 return 0; 7124 7125 mutex_lock(&ftrace_lock); 7126 7127 filtered_pids = rcu_dereference_protected(tr->function_pids, 7128 lockdep_is_held(&ftrace_lock)); 7129 7130 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7131 if (ret < 0) 7132 goto out; 7133 7134 rcu_assign_pointer(tr->function_pids, pid_list); 7135 7136 if (filtered_pids) { 7137 synchronize_rcu(); 7138 trace_free_pid_list(filtered_pids); 7139 } else if (pid_list) { 7140 /* Register a probe to set whether to ignore the tracing of a task */ 7141 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7142 } 7143 7144 /* 7145 * Ignoring of pids is done at task switch. But we have to 7146 * check for those tasks that are currently running. 7147 * Always do this in case a pid was appended or removed. 7148 */ 7149 on_each_cpu(ignore_task_cpu, tr, 1); 7150 7151 ftrace_update_pid_func(); 7152 ftrace_startup_all(0); 7153 out: 7154 mutex_unlock(&ftrace_lock); 7155 7156 if (ret > 0) 7157 *ppos += ret; 7158 7159 return ret; 7160 } 7161 7162 static int 7163 ftrace_pid_release(struct inode *inode, struct file *file) 7164 { 7165 struct trace_array *tr = inode->i_private; 7166 7167 trace_array_put(tr); 7168 7169 return seq_release(inode, file); 7170 } 7171 7172 static const struct file_operations ftrace_pid_fops = { 7173 .open = ftrace_pid_open, 7174 .write = ftrace_pid_write, 7175 .read = seq_read, 7176 .llseek = tracing_lseek, 7177 .release = ftrace_pid_release, 7178 }; 7179 7180 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7181 { 7182 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7183 tr, &ftrace_pid_fops); 7184 } 7185 7186 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7187 struct dentry *d_tracer) 7188 { 7189 /* Only the top level directory has the dyn_tracefs and profile */ 7190 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7191 7192 ftrace_init_dyn_tracefs(d_tracer); 7193 ftrace_profile_tracefs(d_tracer); 7194 } 7195 7196 /** 7197 * ftrace_kill - kill ftrace 7198 * 7199 * This function should be used by panic code. It stops ftrace 7200 * but in a not so nice way. If you need to simply kill ftrace 7201 * from a non-atomic section, use ftrace_kill. 7202 */ 7203 void ftrace_kill(void) 7204 { 7205 ftrace_disabled = 1; 7206 ftrace_enabled = 0; 7207 ftrace_trace_function = ftrace_stub; 7208 } 7209 7210 /** 7211 * Test if ftrace is dead or not. 7212 */ 7213 int ftrace_is_dead(void) 7214 { 7215 return ftrace_disabled; 7216 } 7217 7218 /** 7219 * register_ftrace_function - register a function for profiling 7220 * @ops - ops structure that holds the function for profiling. 7221 * 7222 * Register a function to be called by all functions in the 7223 * kernel. 7224 * 7225 * Note: @ops->func and all the functions it calls must be labeled 7226 * with "notrace", otherwise it will go into a 7227 * recursive loop. 7228 */ 7229 int register_ftrace_function(struct ftrace_ops *ops) 7230 { 7231 int ret = -1; 7232 7233 ftrace_ops_init(ops); 7234 7235 mutex_lock(&ftrace_lock); 7236 7237 ret = ftrace_startup(ops, 0); 7238 7239 mutex_unlock(&ftrace_lock); 7240 7241 return ret; 7242 } 7243 EXPORT_SYMBOL_GPL(register_ftrace_function); 7244 7245 /** 7246 * unregister_ftrace_function - unregister a function for profiling. 7247 * @ops - ops structure that holds the function to unregister 7248 * 7249 * Unregister a function that was added to be called by ftrace profiling. 7250 */ 7251 int unregister_ftrace_function(struct ftrace_ops *ops) 7252 { 7253 int ret; 7254 7255 mutex_lock(&ftrace_lock); 7256 ret = ftrace_shutdown(ops, 0); 7257 mutex_unlock(&ftrace_lock); 7258 7259 return ret; 7260 } 7261 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7262 7263 static bool is_permanent_ops_registered(void) 7264 { 7265 struct ftrace_ops *op; 7266 7267 do_for_each_ftrace_op(op, ftrace_ops_list) { 7268 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7269 return true; 7270 } while_for_each_ftrace_op(op); 7271 7272 return false; 7273 } 7274 7275 int 7276 ftrace_enable_sysctl(struct ctl_table *table, int write, 7277 void __user *buffer, size_t *lenp, 7278 loff_t *ppos) 7279 { 7280 int ret = -ENODEV; 7281 7282 mutex_lock(&ftrace_lock); 7283 7284 if (unlikely(ftrace_disabled)) 7285 goto out; 7286 7287 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7288 7289 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7290 goto out; 7291 7292 if (ftrace_enabled) { 7293 7294 /* we are starting ftrace again */ 7295 if (rcu_dereference_protected(ftrace_ops_list, 7296 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7297 update_ftrace_function(); 7298 7299 ftrace_startup_sysctl(); 7300 7301 } else { 7302 if (is_permanent_ops_registered()) { 7303 ftrace_enabled = true; 7304 ret = -EBUSY; 7305 goto out; 7306 } 7307 7308 /* stopping ftrace calls (just send to ftrace_stub) */ 7309 ftrace_trace_function = ftrace_stub; 7310 7311 ftrace_shutdown_sysctl(); 7312 } 7313 7314 last_ftrace_enabled = !!ftrace_enabled; 7315 out: 7316 mutex_unlock(&ftrace_lock); 7317 return ret; 7318 } 7319