1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_WARN_ON(cond) \ 49 ({ \ 50 int ___r = cond; \ 51 if (WARN_ON(___r)) \ 52 ftrace_kill(); \ 53 ___r; \ 54 }) 55 56 #define FTRACE_WARN_ON_ONCE(cond) \ 57 ({ \ 58 int ___r = cond; \ 59 if (WARN_ON_ONCE(___r)) \ 60 ftrace_kill(); \ 61 ___r; \ 62 }) 63 64 /* hash bits for specific function selection */ 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #else 73 #define INIT_OPS_HASH(opsname) 74 #endif 75 76 enum { 77 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 79 }; 80 81 struct ftrace_ops ftrace_list_end __read_mostly = { 82 .func = ftrace_stub, 83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 84 INIT_OPS_HASH(ftrace_list_end) 85 }; 86 87 /* ftrace_enabled is a method to turn ftrace on or off */ 88 int ftrace_enabled __read_mostly; 89 static int last_ftrace_enabled; 90 91 /* Current function tracing op */ 92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 93 /* What to set function_trace_op to */ 94 static struct ftrace_ops *set_function_trace_op; 95 96 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 97 { 98 struct trace_array *tr; 99 100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 101 return false; 102 103 tr = ops->private; 104 105 return tr->function_pids != NULL || tr->function_no_pids != NULL; 106 } 107 108 static void ftrace_update_trampoline(struct ftrace_ops *ops); 109 110 /* 111 * ftrace_disabled is set when an anomaly is discovered. 112 * ftrace_disabled is much stronger than ftrace_enabled. 113 */ 114 static int ftrace_disabled __read_mostly; 115 116 DEFINE_MUTEX(ftrace_lock); 117 118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 120 struct ftrace_ops global_ops; 121 122 #if ARCH_SUPPORTS_FTRACE_OPS 123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 124 struct ftrace_ops *op, struct pt_regs *regs); 125 #else 126 /* See comment below, where ftrace_ops_list_func is defined */ 127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 129 #endif 130 131 static inline void ftrace_ops_init(struct ftrace_ops *ops) 132 { 133 #ifdef CONFIG_DYNAMIC_FTRACE 134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 135 mutex_init(&ops->local_hash.regex_lock); 136 ops->func_hash = &ops->local_hash; 137 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 138 } 139 #endif 140 } 141 142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 143 struct ftrace_ops *op, struct pt_regs *regs) 144 { 145 struct trace_array *tr = op->private; 146 int pid; 147 148 if (tr) { 149 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 150 if (pid == FTRACE_PID_IGNORE) 151 return; 152 if (pid != FTRACE_PID_TRACE && 153 pid != current->pid) 154 return; 155 } 156 157 op->saved_func(ip, parent_ip, op, regs); 158 } 159 160 static void ftrace_sync_ipi(void *data) 161 { 162 /* Probably not needed, but do it anyway */ 163 smp_rmb(); 164 } 165 166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 167 { 168 /* 169 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 170 * then it needs to call the list anyway. 171 */ 172 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 173 FTRACE_FORCE_LIST_FUNC) 174 return ftrace_ops_list_func; 175 176 return ftrace_ops_get_func(ops); 177 } 178 179 static void update_ftrace_function(void) 180 { 181 ftrace_func_t func; 182 183 /* 184 * Prepare the ftrace_ops that the arch callback will use. 185 * If there's only one ftrace_ops registered, the ftrace_ops_list 186 * will point to the ops we want. 187 */ 188 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 189 lockdep_is_held(&ftrace_lock)); 190 191 /* If there's no ftrace_ops registered, just call the stub function */ 192 if (set_function_trace_op == &ftrace_list_end) { 193 func = ftrace_stub; 194 195 /* 196 * If we are at the end of the list and this ops is 197 * recursion safe and not dynamic and the arch supports passing ops, 198 * then have the mcount trampoline call the function directly. 199 */ 200 } else if (rcu_dereference_protected(ftrace_ops_list->next, 201 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 202 func = ftrace_ops_get_list_func(ftrace_ops_list); 203 204 } else { 205 /* Just use the default ftrace_ops */ 206 set_function_trace_op = &ftrace_list_end; 207 func = ftrace_ops_list_func; 208 } 209 210 update_function_graph_func(); 211 212 /* If there's no change, then do nothing more here */ 213 if (ftrace_trace_function == func) 214 return; 215 216 /* 217 * If we are using the list function, it doesn't care 218 * about the function_trace_ops. 219 */ 220 if (func == ftrace_ops_list_func) { 221 ftrace_trace_function = func; 222 /* 223 * Don't even bother setting function_trace_ops, 224 * it would be racy to do so anyway. 225 */ 226 return; 227 } 228 229 #ifndef CONFIG_DYNAMIC_FTRACE 230 /* 231 * For static tracing, we need to be a bit more careful. 232 * The function change takes affect immediately. Thus, 233 * we need to coordinate the setting of the function_trace_ops 234 * with the setting of the ftrace_trace_function. 235 * 236 * Set the function to the list ops, which will call the 237 * function we want, albeit indirectly, but it handles the 238 * ftrace_ops and doesn't depend on function_trace_op. 239 */ 240 ftrace_trace_function = ftrace_ops_list_func; 241 /* 242 * Make sure all CPUs see this. Yes this is slow, but static 243 * tracing is slow and nasty to have enabled. 244 */ 245 synchronize_rcu_tasks_rude(); 246 /* Now all cpus are using the list ops. */ 247 function_trace_op = set_function_trace_op; 248 /* Make sure the function_trace_op is visible on all CPUs */ 249 smp_wmb(); 250 /* Nasty way to force a rmb on all cpus */ 251 smp_call_function(ftrace_sync_ipi, NULL, 1); 252 /* OK, we are all set to update the ftrace_trace_function now! */ 253 #endif /* !CONFIG_DYNAMIC_FTRACE */ 254 255 ftrace_trace_function = func; 256 } 257 258 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 259 struct ftrace_ops *ops) 260 { 261 rcu_assign_pointer(ops->next, *list); 262 263 /* 264 * We are entering ops into the list but another 265 * CPU might be walking that list. We need to make sure 266 * the ops->next pointer is valid before another CPU sees 267 * the ops pointer included into the list. 268 */ 269 rcu_assign_pointer(*list, ops); 270 } 271 272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 273 struct ftrace_ops *ops) 274 { 275 struct ftrace_ops **p; 276 277 /* 278 * If we are removing the last function, then simply point 279 * to the ftrace_stub. 280 */ 281 if (rcu_dereference_protected(*list, 282 lockdep_is_held(&ftrace_lock)) == ops && 283 rcu_dereference_protected(ops->next, 284 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 285 *list = &ftrace_list_end; 286 return 0; 287 } 288 289 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 290 if (*p == ops) 291 break; 292 293 if (*p != ops) 294 return -1; 295 296 *p = (*p)->next; 297 return 0; 298 } 299 300 static void ftrace_update_trampoline(struct ftrace_ops *ops); 301 302 int __register_ftrace_function(struct ftrace_ops *ops) 303 { 304 if (ops->flags & FTRACE_OPS_FL_DELETED) 305 return -EINVAL; 306 307 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 308 return -EBUSY; 309 310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 311 /* 312 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 313 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 314 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 315 */ 316 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 317 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 318 return -EINVAL; 319 320 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 321 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 322 #endif 323 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 324 return -EBUSY; 325 326 if (!core_kernel_data((unsigned long)ops)) 327 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 328 329 add_ftrace_ops(&ftrace_ops_list, ops); 330 331 /* Always save the function, and reset at unregistering */ 332 ops->saved_func = ops->func; 333 334 if (ftrace_pids_enabled(ops)) 335 ops->func = ftrace_pid_func; 336 337 ftrace_update_trampoline(ops); 338 339 if (ftrace_enabled) 340 update_ftrace_function(); 341 342 return 0; 343 } 344 345 int __unregister_ftrace_function(struct ftrace_ops *ops) 346 { 347 int ret; 348 349 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 350 return -EBUSY; 351 352 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 353 354 if (ret < 0) 355 return ret; 356 357 if (ftrace_enabled) 358 update_ftrace_function(); 359 360 ops->func = ops->saved_func; 361 362 return 0; 363 } 364 365 static void ftrace_update_pid_func(void) 366 { 367 struct ftrace_ops *op; 368 369 /* Only do something if we are tracing something */ 370 if (ftrace_trace_function == ftrace_stub) 371 return; 372 373 do_for_each_ftrace_op(op, ftrace_ops_list) { 374 if (op->flags & FTRACE_OPS_FL_PID) { 375 op->func = ftrace_pids_enabled(op) ? 376 ftrace_pid_func : op->saved_func; 377 ftrace_update_trampoline(op); 378 } 379 } while_for_each_ftrace_op(op); 380 381 update_ftrace_function(); 382 } 383 384 #ifdef CONFIG_FUNCTION_PROFILER 385 struct ftrace_profile { 386 struct hlist_node node; 387 unsigned long ip; 388 unsigned long counter; 389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 390 unsigned long long time; 391 unsigned long long time_squared; 392 #endif 393 }; 394 395 struct ftrace_profile_page { 396 struct ftrace_profile_page *next; 397 unsigned long index; 398 struct ftrace_profile records[]; 399 }; 400 401 struct ftrace_profile_stat { 402 atomic_t disabled; 403 struct hlist_head *hash; 404 struct ftrace_profile_page *pages; 405 struct ftrace_profile_page *start; 406 struct tracer_stat stat; 407 }; 408 409 #define PROFILE_RECORDS_SIZE \ 410 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 411 412 #define PROFILES_PER_PAGE \ 413 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 414 415 static int ftrace_profile_enabled __read_mostly; 416 417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 418 static DEFINE_MUTEX(ftrace_profile_lock); 419 420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 421 422 #define FTRACE_PROFILE_HASH_BITS 10 423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 424 425 static void * 426 function_stat_next(void *v, int idx) 427 { 428 struct ftrace_profile *rec = v; 429 struct ftrace_profile_page *pg; 430 431 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 432 433 again: 434 if (idx != 0) 435 rec++; 436 437 if ((void *)rec >= (void *)&pg->records[pg->index]) { 438 pg = pg->next; 439 if (!pg) 440 return NULL; 441 rec = &pg->records[0]; 442 if (!rec->counter) 443 goto again; 444 } 445 446 return rec; 447 } 448 449 static void *function_stat_start(struct tracer_stat *trace) 450 { 451 struct ftrace_profile_stat *stat = 452 container_of(trace, struct ftrace_profile_stat, stat); 453 454 if (!stat || !stat->start) 455 return NULL; 456 457 return function_stat_next(&stat->start->records[0], 0); 458 } 459 460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 461 /* function graph compares on total time */ 462 static int function_stat_cmp(const void *p1, const void *p2) 463 { 464 const struct ftrace_profile *a = p1; 465 const struct ftrace_profile *b = p2; 466 467 if (a->time < b->time) 468 return -1; 469 if (a->time > b->time) 470 return 1; 471 else 472 return 0; 473 } 474 #else 475 /* not function graph compares against hits */ 476 static int function_stat_cmp(const void *p1, const void *p2) 477 { 478 const struct ftrace_profile *a = p1; 479 const struct ftrace_profile *b = p2; 480 481 if (a->counter < b->counter) 482 return -1; 483 if (a->counter > b->counter) 484 return 1; 485 else 486 return 0; 487 } 488 #endif 489 490 static int function_stat_headers(struct seq_file *m) 491 { 492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 493 seq_puts(m, " Function " 494 "Hit Time Avg s^2\n" 495 " -------- " 496 "--- ---- --- ---\n"); 497 #else 498 seq_puts(m, " Function Hit\n" 499 " -------- ---\n"); 500 #endif 501 return 0; 502 } 503 504 static int function_stat_show(struct seq_file *m, void *v) 505 { 506 struct ftrace_profile *rec = v; 507 char str[KSYM_SYMBOL_LEN]; 508 int ret = 0; 509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 510 static struct trace_seq s; 511 unsigned long long avg; 512 unsigned long long stddev; 513 #endif 514 mutex_lock(&ftrace_profile_lock); 515 516 /* we raced with function_profile_reset() */ 517 if (unlikely(rec->counter == 0)) { 518 ret = -EBUSY; 519 goto out; 520 } 521 522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 523 avg = div64_ul(rec->time, rec->counter); 524 if (tracing_thresh && (avg < tracing_thresh)) 525 goto out; 526 #endif 527 528 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 529 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 530 531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 532 seq_puts(m, " "); 533 534 /* Sample standard deviation (s^2) */ 535 if (rec->counter <= 1) 536 stddev = 0; 537 else { 538 /* 539 * Apply Welford's method: 540 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 541 */ 542 stddev = rec->counter * rec->time_squared - 543 rec->time * rec->time; 544 545 /* 546 * Divide only 1000 for ns^2 -> us^2 conversion. 547 * trace_print_graph_duration will divide 1000 again. 548 */ 549 stddev = div64_ul(stddev, 550 rec->counter * (rec->counter - 1) * 1000); 551 } 552 553 trace_seq_init(&s); 554 trace_print_graph_duration(rec->time, &s); 555 trace_seq_puts(&s, " "); 556 trace_print_graph_duration(avg, &s); 557 trace_seq_puts(&s, " "); 558 trace_print_graph_duration(stddev, &s); 559 trace_print_seq(m, &s); 560 #endif 561 seq_putc(m, '\n'); 562 out: 563 mutex_unlock(&ftrace_profile_lock); 564 565 return ret; 566 } 567 568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 569 { 570 struct ftrace_profile_page *pg; 571 572 pg = stat->pages = stat->start; 573 574 while (pg) { 575 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 576 pg->index = 0; 577 pg = pg->next; 578 } 579 580 memset(stat->hash, 0, 581 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 582 } 583 584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 585 { 586 struct ftrace_profile_page *pg; 587 int functions; 588 int pages; 589 int i; 590 591 /* If we already allocated, do nothing */ 592 if (stat->pages) 593 return 0; 594 595 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 596 if (!stat->pages) 597 return -ENOMEM; 598 599 #ifdef CONFIG_DYNAMIC_FTRACE 600 functions = ftrace_update_tot_cnt; 601 #else 602 /* 603 * We do not know the number of functions that exist because 604 * dynamic tracing is what counts them. With past experience 605 * we have around 20K functions. That should be more than enough. 606 * It is highly unlikely we will execute every function in 607 * the kernel. 608 */ 609 functions = 20000; 610 #endif 611 612 pg = stat->start = stat->pages; 613 614 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 615 616 for (i = 1; i < pages; i++) { 617 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 618 if (!pg->next) 619 goto out_free; 620 pg = pg->next; 621 } 622 623 return 0; 624 625 out_free: 626 pg = stat->start; 627 while (pg) { 628 unsigned long tmp = (unsigned long)pg; 629 630 pg = pg->next; 631 free_page(tmp); 632 } 633 634 stat->pages = NULL; 635 stat->start = NULL; 636 637 return -ENOMEM; 638 } 639 640 static int ftrace_profile_init_cpu(int cpu) 641 { 642 struct ftrace_profile_stat *stat; 643 int size; 644 645 stat = &per_cpu(ftrace_profile_stats, cpu); 646 647 if (stat->hash) { 648 /* If the profile is already created, simply reset it */ 649 ftrace_profile_reset(stat); 650 return 0; 651 } 652 653 /* 654 * We are profiling all functions, but usually only a few thousand 655 * functions are hit. We'll make a hash of 1024 items. 656 */ 657 size = FTRACE_PROFILE_HASH_SIZE; 658 659 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 660 661 if (!stat->hash) 662 return -ENOMEM; 663 664 /* Preallocate the function profiling pages */ 665 if (ftrace_profile_pages_init(stat) < 0) { 666 kfree(stat->hash); 667 stat->hash = NULL; 668 return -ENOMEM; 669 } 670 671 return 0; 672 } 673 674 static int ftrace_profile_init(void) 675 { 676 int cpu; 677 int ret = 0; 678 679 for_each_possible_cpu(cpu) { 680 ret = ftrace_profile_init_cpu(cpu); 681 if (ret) 682 break; 683 } 684 685 return ret; 686 } 687 688 /* interrupts must be disabled */ 689 static struct ftrace_profile * 690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 691 { 692 struct ftrace_profile *rec; 693 struct hlist_head *hhd; 694 unsigned long key; 695 696 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 697 hhd = &stat->hash[key]; 698 699 if (hlist_empty(hhd)) 700 return NULL; 701 702 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 703 if (rec->ip == ip) 704 return rec; 705 } 706 707 return NULL; 708 } 709 710 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 711 struct ftrace_profile *rec) 712 { 713 unsigned long key; 714 715 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 716 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 717 } 718 719 /* 720 * The memory is already allocated, this simply finds a new record to use. 721 */ 722 static struct ftrace_profile * 723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec = NULL; 726 727 /* prevent recursion (from NMIs) */ 728 if (atomic_inc_return(&stat->disabled) != 1) 729 goto out; 730 731 /* 732 * Try to find the function again since an NMI 733 * could have added it 734 */ 735 rec = ftrace_find_profiled_func(stat, ip); 736 if (rec) 737 goto out; 738 739 if (stat->pages->index == PROFILES_PER_PAGE) { 740 if (!stat->pages->next) 741 goto out; 742 stat->pages = stat->pages->next; 743 } 744 745 rec = &stat->pages->records[stat->pages->index++]; 746 rec->ip = ip; 747 ftrace_add_profile(stat, rec); 748 749 out: 750 atomic_dec(&stat->disabled); 751 752 return rec; 753 } 754 755 static void 756 function_profile_call(unsigned long ip, unsigned long parent_ip, 757 struct ftrace_ops *ops, struct pt_regs *regs) 758 { 759 struct ftrace_profile_stat *stat; 760 struct ftrace_profile *rec; 761 unsigned long flags; 762 763 if (!ftrace_profile_enabled) 764 return; 765 766 local_irq_save(flags); 767 768 stat = this_cpu_ptr(&ftrace_profile_stats); 769 if (!stat->hash || !ftrace_profile_enabled) 770 goto out; 771 772 rec = ftrace_find_profiled_func(stat, ip); 773 if (!rec) { 774 rec = ftrace_profile_alloc(stat, ip); 775 if (!rec) 776 goto out; 777 } 778 779 rec->counter++; 780 out: 781 local_irq_restore(flags); 782 } 783 784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 785 static bool fgraph_graph_time = true; 786 787 void ftrace_graph_graph_time_control(bool enable) 788 { 789 fgraph_graph_time = enable; 790 } 791 792 static int profile_graph_entry(struct ftrace_graph_ent *trace) 793 { 794 struct ftrace_ret_stack *ret_stack; 795 796 function_profile_call(trace->func, 0, NULL, NULL); 797 798 /* If function graph is shutting down, ret_stack can be NULL */ 799 if (!current->ret_stack) 800 return 0; 801 802 ret_stack = ftrace_graph_get_ret_stack(current, 0); 803 if (ret_stack) 804 ret_stack->subtime = 0; 805 806 return 1; 807 } 808 809 static void profile_graph_return(struct ftrace_graph_ret *trace) 810 { 811 struct ftrace_ret_stack *ret_stack; 812 struct ftrace_profile_stat *stat; 813 unsigned long long calltime; 814 struct ftrace_profile *rec; 815 unsigned long flags; 816 817 local_irq_save(flags); 818 stat = this_cpu_ptr(&ftrace_profile_stats); 819 if (!stat->hash || !ftrace_profile_enabled) 820 goto out; 821 822 /* If the calltime was zero'd ignore it */ 823 if (!trace->calltime) 824 goto out; 825 826 calltime = trace->rettime - trace->calltime; 827 828 if (!fgraph_graph_time) { 829 830 /* Append this call time to the parent time to subtract */ 831 ret_stack = ftrace_graph_get_ret_stack(current, 1); 832 if (ret_stack) 833 ret_stack->subtime += calltime; 834 835 ret_stack = ftrace_graph_get_ret_stack(current, 0); 836 if (ret_stack && ret_stack->subtime < calltime) 837 calltime -= ret_stack->subtime; 838 else 839 calltime = 0; 840 } 841 842 rec = ftrace_find_profiled_func(stat, trace->func); 843 if (rec) { 844 rec->time += calltime; 845 rec->time_squared += calltime * calltime; 846 } 847 848 out: 849 local_irq_restore(flags); 850 } 851 852 static struct fgraph_ops fprofiler_ops = { 853 .entryfunc = &profile_graph_entry, 854 .retfunc = &profile_graph_return, 855 }; 856 857 static int register_ftrace_profiler(void) 858 { 859 return register_ftrace_graph(&fprofiler_ops); 860 } 861 862 static void unregister_ftrace_profiler(void) 863 { 864 unregister_ftrace_graph(&fprofiler_ops); 865 } 866 #else 867 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 868 .func = function_profile_call, 869 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 870 INIT_OPS_HASH(ftrace_profile_ops) 871 }; 872 873 static int register_ftrace_profiler(void) 874 { 875 return register_ftrace_function(&ftrace_profile_ops); 876 } 877 878 static void unregister_ftrace_profiler(void) 879 { 880 unregister_ftrace_function(&ftrace_profile_ops); 881 } 882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 883 884 static ssize_t 885 ftrace_profile_write(struct file *filp, const char __user *ubuf, 886 size_t cnt, loff_t *ppos) 887 { 888 unsigned long val; 889 int ret; 890 891 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 892 if (ret) 893 return ret; 894 895 val = !!val; 896 897 mutex_lock(&ftrace_profile_lock); 898 if (ftrace_profile_enabled ^ val) { 899 if (val) { 900 ret = ftrace_profile_init(); 901 if (ret < 0) { 902 cnt = ret; 903 goto out; 904 } 905 906 ret = register_ftrace_profiler(); 907 if (ret < 0) { 908 cnt = ret; 909 goto out; 910 } 911 ftrace_profile_enabled = 1; 912 } else { 913 ftrace_profile_enabled = 0; 914 /* 915 * unregister_ftrace_profiler calls stop_machine 916 * so this acts like an synchronize_rcu. 917 */ 918 unregister_ftrace_profiler(); 919 } 920 } 921 out: 922 mutex_unlock(&ftrace_profile_lock); 923 924 *ppos += cnt; 925 926 return cnt; 927 } 928 929 static ssize_t 930 ftrace_profile_read(struct file *filp, char __user *ubuf, 931 size_t cnt, loff_t *ppos) 932 { 933 char buf[64]; /* big enough to hold a number */ 934 int r; 935 936 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 937 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 938 } 939 940 static const struct file_operations ftrace_profile_fops = { 941 .open = tracing_open_generic, 942 .read = ftrace_profile_read, 943 .write = ftrace_profile_write, 944 .llseek = default_llseek, 945 }; 946 947 /* used to initialize the real stat files */ 948 static struct tracer_stat function_stats __initdata = { 949 .name = "functions", 950 .stat_start = function_stat_start, 951 .stat_next = function_stat_next, 952 .stat_cmp = function_stat_cmp, 953 .stat_headers = function_stat_headers, 954 .stat_show = function_stat_show 955 }; 956 957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 958 { 959 struct ftrace_profile_stat *stat; 960 struct dentry *entry; 961 char *name; 962 int ret; 963 int cpu; 964 965 for_each_possible_cpu(cpu) { 966 stat = &per_cpu(ftrace_profile_stats, cpu); 967 968 name = kasprintf(GFP_KERNEL, "function%d", cpu); 969 if (!name) { 970 /* 971 * The files created are permanent, if something happens 972 * we still do not free memory. 973 */ 974 WARN(1, 975 "Could not allocate stat file for cpu %d\n", 976 cpu); 977 return; 978 } 979 stat->stat = function_stats; 980 stat->stat.name = name; 981 ret = register_stat_tracer(&stat->stat); 982 if (ret) { 983 WARN(1, 984 "Could not register function stat for cpu %d\n", 985 cpu); 986 kfree(name); 987 return; 988 } 989 } 990 991 entry = tracefs_create_file("function_profile_enabled", 0644, 992 d_tracer, NULL, &ftrace_profile_fops); 993 if (!entry) 994 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 995 } 996 997 #else /* CONFIG_FUNCTION_PROFILER */ 998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 999 { 1000 } 1001 #endif /* CONFIG_FUNCTION_PROFILER */ 1002 1003 #ifdef CONFIG_DYNAMIC_FTRACE 1004 1005 static struct ftrace_ops *removed_ops; 1006 1007 /* 1008 * Set when doing a global update, like enabling all recs or disabling them. 1009 * It is not set when just updating a single ftrace_ops. 1010 */ 1011 static bool update_all_ops; 1012 1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1014 # error Dynamic ftrace depends on MCOUNT_RECORD 1015 #endif 1016 1017 struct ftrace_func_probe { 1018 struct ftrace_probe_ops *probe_ops; 1019 struct ftrace_ops ops; 1020 struct trace_array *tr; 1021 struct list_head list; 1022 void *data; 1023 int ref; 1024 }; 1025 1026 /* 1027 * We make these constant because no one should touch them, 1028 * but they are used as the default "empty hash", to avoid allocating 1029 * it all the time. These are in a read only section such that if 1030 * anyone does try to modify it, it will cause an exception. 1031 */ 1032 static const struct hlist_head empty_buckets[1]; 1033 static const struct ftrace_hash empty_hash = { 1034 .buckets = (struct hlist_head *)empty_buckets, 1035 }; 1036 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1037 1038 struct ftrace_ops global_ops = { 1039 .func = ftrace_stub, 1040 .local_hash.notrace_hash = EMPTY_HASH, 1041 .local_hash.filter_hash = EMPTY_HASH, 1042 INIT_OPS_HASH(global_ops) 1043 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1044 FTRACE_OPS_FL_INITIALIZED | 1045 FTRACE_OPS_FL_PID, 1046 }; 1047 1048 /* 1049 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1050 */ 1051 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1052 { 1053 struct ftrace_ops *op = NULL; 1054 1055 /* 1056 * Some of the ops may be dynamically allocated, 1057 * they are freed after a synchronize_rcu(). 1058 */ 1059 preempt_disable_notrace(); 1060 1061 do_for_each_ftrace_op(op, ftrace_ops_list) { 1062 /* 1063 * This is to check for dynamically allocated trampolines. 1064 * Trampolines that are in kernel text will have 1065 * core_kernel_text() return true. 1066 */ 1067 if (op->trampoline && op->trampoline_size) 1068 if (addr >= op->trampoline && 1069 addr < op->trampoline + op->trampoline_size) { 1070 preempt_enable_notrace(); 1071 return op; 1072 } 1073 } while_for_each_ftrace_op(op); 1074 preempt_enable_notrace(); 1075 1076 return NULL; 1077 } 1078 1079 /* 1080 * This is used by __kernel_text_address() to return true if the 1081 * address is on a dynamically allocated trampoline that would 1082 * not return true for either core_kernel_text() or 1083 * is_module_text_address(). 1084 */ 1085 bool is_ftrace_trampoline(unsigned long addr) 1086 { 1087 return ftrace_ops_trampoline(addr) != NULL; 1088 } 1089 1090 struct ftrace_page { 1091 struct ftrace_page *next; 1092 struct dyn_ftrace *records; 1093 int index; 1094 int size; 1095 }; 1096 1097 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1098 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1099 1100 static struct ftrace_page *ftrace_pages_start; 1101 static struct ftrace_page *ftrace_pages; 1102 1103 static __always_inline unsigned long 1104 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1105 { 1106 if (hash->size_bits > 0) 1107 return hash_long(ip, hash->size_bits); 1108 1109 return 0; 1110 } 1111 1112 /* Only use this function if ftrace_hash_empty() has already been tested */ 1113 static __always_inline struct ftrace_func_entry * 1114 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1115 { 1116 unsigned long key; 1117 struct ftrace_func_entry *entry; 1118 struct hlist_head *hhd; 1119 1120 key = ftrace_hash_key(hash, ip); 1121 hhd = &hash->buckets[key]; 1122 1123 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1124 if (entry->ip == ip) 1125 return entry; 1126 } 1127 return NULL; 1128 } 1129 1130 /** 1131 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1132 * @hash: The hash to look at 1133 * @ip: The instruction pointer to test 1134 * 1135 * Search a given @hash to see if a given instruction pointer (@ip) 1136 * exists in it. 1137 * 1138 * Returns the entry that holds the @ip if found. NULL otherwise. 1139 */ 1140 struct ftrace_func_entry * 1141 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1142 { 1143 if (ftrace_hash_empty(hash)) 1144 return NULL; 1145 1146 return __ftrace_lookup_ip(hash, ip); 1147 } 1148 1149 static void __add_hash_entry(struct ftrace_hash *hash, 1150 struct ftrace_func_entry *entry) 1151 { 1152 struct hlist_head *hhd; 1153 unsigned long key; 1154 1155 key = ftrace_hash_key(hash, entry->ip); 1156 hhd = &hash->buckets[key]; 1157 hlist_add_head(&entry->hlist, hhd); 1158 hash->count++; 1159 } 1160 1161 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1162 { 1163 struct ftrace_func_entry *entry; 1164 1165 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1166 if (!entry) 1167 return -ENOMEM; 1168 1169 entry->ip = ip; 1170 __add_hash_entry(hash, entry); 1171 1172 return 0; 1173 } 1174 1175 static void 1176 free_hash_entry(struct ftrace_hash *hash, 1177 struct ftrace_func_entry *entry) 1178 { 1179 hlist_del(&entry->hlist); 1180 kfree(entry); 1181 hash->count--; 1182 } 1183 1184 static void 1185 remove_hash_entry(struct ftrace_hash *hash, 1186 struct ftrace_func_entry *entry) 1187 { 1188 hlist_del_rcu(&entry->hlist); 1189 hash->count--; 1190 } 1191 1192 static void ftrace_hash_clear(struct ftrace_hash *hash) 1193 { 1194 struct hlist_head *hhd; 1195 struct hlist_node *tn; 1196 struct ftrace_func_entry *entry; 1197 int size = 1 << hash->size_bits; 1198 int i; 1199 1200 if (!hash->count) 1201 return; 1202 1203 for (i = 0; i < size; i++) { 1204 hhd = &hash->buckets[i]; 1205 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1206 free_hash_entry(hash, entry); 1207 } 1208 FTRACE_WARN_ON(hash->count); 1209 } 1210 1211 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1212 { 1213 list_del(&ftrace_mod->list); 1214 kfree(ftrace_mod->module); 1215 kfree(ftrace_mod->func); 1216 kfree(ftrace_mod); 1217 } 1218 1219 static void clear_ftrace_mod_list(struct list_head *head) 1220 { 1221 struct ftrace_mod_load *p, *n; 1222 1223 /* stack tracer isn't supported yet */ 1224 if (!head) 1225 return; 1226 1227 mutex_lock(&ftrace_lock); 1228 list_for_each_entry_safe(p, n, head, list) 1229 free_ftrace_mod(p); 1230 mutex_unlock(&ftrace_lock); 1231 } 1232 1233 static void free_ftrace_hash(struct ftrace_hash *hash) 1234 { 1235 if (!hash || hash == EMPTY_HASH) 1236 return; 1237 ftrace_hash_clear(hash); 1238 kfree(hash->buckets); 1239 kfree(hash); 1240 } 1241 1242 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1243 { 1244 struct ftrace_hash *hash; 1245 1246 hash = container_of(rcu, struct ftrace_hash, rcu); 1247 free_ftrace_hash(hash); 1248 } 1249 1250 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1251 { 1252 if (!hash || hash == EMPTY_HASH) 1253 return; 1254 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1255 } 1256 1257 void ftrace_free_filter(struct ftrace_ops *ops) 1258 { 1259 ftrace_ops_init(ops); 1260 free_ftrace_hash(ops->func_hash->filter_hash); 1261 free_ftrace_hash(ops->func_hash->notrace_hash); 1262 } 1263 1264 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1265 { 1266 struct ftrace_hash *hash; 1267 int size; 1268 1269 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1270 if (!hash) 1271 return NULL; 1272 1273 size = 1 << size_bits; 1274 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1275 1276 if (!hash->buckets) { 1277 kfree(hash); 1278 return NULL; 1279 } 1280 1281 hash->size_bits = size_bits; 1282 1283 return hash; 1284 } 1285 1286 1287 static int ftrace_add_mod(struct trace_array *tr, 1288 const char *func, const char *module, 1289 int enable) 1290 { 1291 struct ftrace_mod_load *ftrace_mod; 1292 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1293 1294 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1295 if (!ftrace_mod) 1296 return -ENOMEM; 1297 1298 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1299 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1300 ftrace_mod->enable = enable; 1301 1302 if (!ftrace_mod->func || !ftrace_mod->module) 1303 goto out_free; 1304 1305 list_add(&ftrace_mod->list, mod_head); 1306 1307 return 0; 1308 1309 out_free: 1310 free_ftrace_mod(ftrace_mod); 1311 1312 return -ENOMEM; 1313 } 1314 1315 static struct ftrace_hash * 1316 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1317 { 1318 struct ftrace_func_entry *entry; 1319 struct ftrace_hash *new_hash; 1320 int size; 1321 int ret; 1322 int i; 1323 1324 new_hash = alloc_ftrace_hash(size_bits); 1325 if (!new_hash) 1326 return NULL; 1327 1328 if (hash) 1329 new_hash->flags = hash->flags; 1330 1331 /* Empty hash? */ 1332 if (ftrace_hash_empty(hash)) 1333 return new_hash; 1334 1335 size = 1 << hash->size_bits; 1336 for (i = 0; i < size; i++) { 1337 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1338 ret = add_hash_entry(new_hash, entry->ip); 1339 if (ret < 0) 1340 goto free_hash; 1341 } 1342 } 1343 1344 FTRACE_WARN_ON(new_hash->count != hash->count); 1345 1346 return new_hash; 1347 1348 free_hash: 1349 free_ftrace_hash(new_hash); 1350 return NULL; 1351 } 1352 1353 static void 1354 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1355 static void 1356 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1357 1358 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1359 struct ftrace_hash *new_hash); 1360 1361 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1362 { 1363 struct ftrace_func_entry *entry; 1364 struct ftrace_hash *new_hash; 1365 struct hlist_head *hhd; 1366 struct hlist_node *tn; 1367 int bits = 0; 1368 int i; 1369 1370 /* 1371 * Use around half the size (max bit of it), but 1372 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1373 */ 1374 bits = fls(size / 2); 1375 1376 /* Don't allocate too much */ 1377 if (bits > FTRACE_HASH_MAX_BITS) 1378 bits = FTRACE_HASH_MAX_BITS; 1379 1380 new_hash = alloc_ftrace_hash(bits); 1381 if (!new_hash) 1382 return NULL; 1383 1384 new_hash->flags = src->flags; 1385 1386 size = 1 << src->size_bits; 1387 for (i = 0; i < size; i++) { 1388 hhd = &src->buckets[i]; 1389 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1390 remove_hash_entry(src, entry); 1391 __add_hash_entry(new_hash, entry); 1392 } 1393 } 1394 return new_hash; 1395 } 1396 1397 static struct ftrace_hash * 1398 __ftrace_hash_move(struct ftrace_hash *src) 1399 { 1400 int size = src->count; 1401 1402 /* 1403 * If the new source is empty, just return the empty_hash. 1404 */ 1405 if (ftrace_hash_empty(src)) 1406 return EMPTY_HASH; 1407 1408 return dup_hash(src, size); 1409 } 1410 1411 static int 1412 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1413 struct ftrace_hash **dst, struct ftrace_hash *src) 1414 { 1415 struct ftrace_hash *new_hash; 1416 int ret; 1417 1418 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1419 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1420 return -EINVAL; 1421 1422 new_hash = __ftrace_hash_move(src); 1423 if (!new_hash) 1424 return -ENOMEM; 1425 1426 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1427 if (enable) { 1428 /* IPMODIFY should be updated only when filter_hash updating */ 1429 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1430 if (ret < 0) { 1431 free_ftrace_hash(new_hash); 1432 return ret; 1433 } 1434 } 1435 1436 /* 1437 * Remove the current set, update the hash and add 1438 * them back. 1439 */ 1440 ftrace_hash_rec_disable_modify(ops, enable); 1441 1442 rcu_assign_pointer(*dst, new_hash); 1443 1444 ftrace_hash_rec_enable_modify(ops, enable); 1445 1446 return 0; 1447 } 1448 1449 static bool hash_contains_ip(unsigned long ip, 1450 struct ftrace_ops_hash *hash) 1451 { 1452 /* 1453 * The function record is a match if it exists in the filter 1454 * hash and not in the notrace hash. Note, an empty hash is 1455 * considered a match for the filter hash, but an empty 1456 * notrace hash is considered not in the notrace hash. 1457 */ 1458 return (ftrace_hash_empty(hash->filter_hash) || 1459 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1460 (ftrace_hash_empty(hash->notrace_hash) || 1461 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1462 } 1463 1464 /* 1465 * Test the hashes for this ops to see if we want to call 1466 * the ops->func or not. 1467 * 1468 * It's a match if the ip is in the ops->filter_hash or 1469 * the filter_hash does not exist or is empty, 1470 * AND 1471 * the ip is not in the ops->notrace_hash. 1472 * 1473 * This needs to be called with preemption disabled as 1474 * the hashes are freed with call_rcu(). 1475 */ 1476 int 1477 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1478 { 1479 struct ftrace_ops_hash hash; 1480 int ret; 1481 1482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1483 /* 1484 * There's a small race when adding ops that the ftrace handler 1485 * that wants regs, may be called without them. We can not 1486 * allow that handler to be called if regs is NULL. 1487 */ 1488 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1489 return 0; 1490 #endif 1491 1492 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1493 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1494 1495 if (hash_contains_ip(ip, &hash)) 1496 ret = 1; 1497 else 1498 ret = 0; 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * This is a double for. Do not use 'break' to break out of the loop, 1505 * you must use a goto. 1506 */ 1507 #define do_for_each_ftrace_rec(pg, rec) \ 1508 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1509 int _____i; \ 1510 for (_____i = 0; _____i < pg->index; _____i++) { \ 1511 rec = &pg->records[_____i]; 1512 1513 #define while_for_each_ftrace_rec() \ 1514 } \ 1515 } 1516 1517 1518 static int ftrace_cmp_recs(const void *a, const void *b) 1519 { 1520 const struct dyn_ftrace *key = a; 1521 const struct dyn_ftrace *rec = b; 1522 1523 if (key->flags < rec->ip) 1524 return -1; 1525 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1526 return 1; 1527 return 0; 1528 } 1529 1530 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1531 { 1532 struct ftrace_page *pg; 1533 struct dyn_ftrace *rec = NULL; 1534 struct dyn_ftrace key; 1535 1536 key.ip = start; 1537 key.flags = end; /* overload flags, as it is unsigned long */ 1538 1539 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1540 if (end < pg->records[0].ip || 1541 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1542 continue; 1543 rec = bsearch(&key, pg->records, pg->index, 1544 sizeof(struct dyn_ftrace), 1545 ftrace_cmp_recs); 1546 if (rec) 1547 break; 1548 } 1549 return rec; 1550 } 1551 1552 /** 1553 * ftrace_location_range - return the first address of a traced location 1554 * if it touches the given ip range 1555 * @start: start of range to search. 1556 * @end: end of range to search (inclusive). @end points to the last byte 1557 * to check. 1558 * 1559 * Returns rec->ip if the related ftrace location is a least partly within 1560 * the given address range. That is, the first address of the instruction 1561 * that is either a NOP or call to the function tracer. It checks the ftrace 1562 * internal tables to determine if the address belongs or not. 1563 */ 1564 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1565 { 1566 struct dyn_ftrace *rec; 1567 1568 rec = lookup_rec(start, end); 1569 if (rec) 1570 return rec->ip; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * ftrace_location - return true if the ip giving is a traced location 1577 * @ip: the instruction pointer to check 1578 * 1579 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1580 * That is, the instruction that is either a NOP or call to 1581 * the function tracer. It checks the ftrace internal tables to 1582 * determine if the address belongs or not. 1583 */ 1584 unsigned long ftrace_location(unsigned long ip) 1585 { 1586 return ftrace_location_range(ip, ip); 1587 } 1588 1589 /** 1590 * ftrace_text_reserved - return true if range contains an ftrace location 1591 * @start: start of range to search 1592 * @end: end of range to search (inclusive). @end points to the last byte to check. 1593 * 1594 * Returns 1 if @start and @end contains a ftrace location. 1595 * That is, the instruction that is either a NOP or call to 1596 * the function tracer. It checks the ftrace internal tables to 1597 * determine if the address belongs or not. 1598 */ 1599 int ftrace_text_reserved(const void *start, const void *end) 1600 { 1601 unsigned long ret; 1602 1603 ret = ftrace_location_range((unsigned long)start, 1604 (unsigned long)end); 1605 1606 return (int)!!ret; 1607 } 1608 1609 /* Test if ops registered to this rec needs regs */ 1610 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1611 { 1612 struct ftrace_ops *ops; 1613 bool keep_regs = false; 1614 1615 for (ops = ftrace_ops_list; 1616 ops != &ftrace_list_end; ops = ops->next) { 1617 /* pass rec in as regs to have non-NULL val */ 1618 if (ftrace_ops_test(ops, rec->ip, rec)) { 1619 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1620 keep_regs = true; 1621 break; 1622 } 1623 } 1624 } 1625 1626 return keep_regs; 1627 } 1628 1629 static struct ftrace_ops * 1630 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1631 static struct ftrace_ops * 1632 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1633 1634 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1635 int filter_hash, 1636 bool inc) 1637 { 1638 struct ftrace_hash *hash; 1639 struct ftrace_hash *other_hash; 1640 struct ftrace_page *pg; 1641 struct dyn_ftrace *rec; 1642 bool update = false; 1643 int count = 0; 1644 int all = false; 1645 1646 /* Only update if the ops has been registered */ 1647 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1648 return false; 1649 1650 /* 1651 * In the filter_hash case: 1652 * If the count is zero, we update all records. 1653 * Otherwise we just update the items in the hash. 1654 * 1655 * In the notrace_hash case: 1656 * We enable the update in the hash. 1657 * As disabling notrace means enabling the tracing, 1658 * and enabling notrace means disabling, the inc variable 1659 * gets inversed. 1660 */ 1661 if (filter_hash) { 1662 hash = ops->func_hash->filter_hash; 1663 other_hash = ops->func_hash->notrace_hash; 1664 if (ftrace_hash_empty(hash)) 1665 all = true; 1666 } else { 1667 inc = !inc; 1668 hash = ops->func_hash->notrace_hash; 1669 other_hash = ops->func_hash->filter_hash; 1670 /* 1671 * If the notrace hash has no items, 1672 * then there's nothing to do. 1673 */ 1674 if (ftrace_hash_empty(hash)) 1675 return false; 1676 } 1677 1678 do_for_each_ftrace_rec(pg, rec) { 1679 int in_other_hash = 0; 1680 int in_hash = 0; 1681 int match = 0; 1682 1683 if (rec->flags & FTRACE_FL_DISABLED) 1684 continue; 1685 1686 if (all) { 1687 /* 1688 * Only the filter_hash affects all records. 1689 * Update if the record is not in the notrace hash. 1690 */ 1691 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1692 match = 1; 1693 } else { 1694 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1695 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1696 1697 /* 1698 * If filter_hash is set, we want to match all functions 1699 * that are in the hash but not in the other hash. 1700 * 1701 * If filter_hash is not set, then we are decrementing. 1702 * That means we match anything that is in the hash 1703 * and also in the other_hash. That is, we need to turn 1704 * off functions in the other hash because they are disabled 1705 * by this hash. 1706 */ 1707 if (filter_hash && in_hash && !in_other_hash) 1708 match = 1; 1709 else if (!filter_hash && in_hash && 1710 (in_other_hash || ftrace_hash_empty(other_hash))) 1711 match = 1; 1712 } 1713 if (!match) 1714 continue; 1715 1716 if (inc) { 1717 rec->flags++; 1718 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1719 return false; 1720 1721 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1722 rec->flags |= FTRACE_FL_DIRECT; 1723 1724 /* 1725 * If there's only a single callback registered to a 1726 * function, and the ops has a trampoline registered 1727 * for it, then we can call it directly. 1728 */ 1729 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1730 rec->flags |= FTRACE_FL_TRAMP; 1731 else 1732 /* 1733 * If we are adding another function callback 1734 * to this function, and the previous had a 1735 * custom trampoline in use, then we need to go 1736 * back to the default trampoline. 1737 */ 1738 rec->flags &= ~FTRACE_FL_TRAMP; 1739 1740 /* 1741 * If any ops wants regs saved for this function 1742 * then all ops will get saved regs. 1743 */ 1744 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1745 rec->flags |= FTRACE_FL_REGS; 1746 } else { 1747 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1748 return false; 1749 rec->flags--; 1750 1751 /* 1752 * Only the internal direct_ops should have the 1753 * DIRECT flag set. Thus, if it is removing a 1754 * function, then that function should no longer 1755 * be direct. 1756 */ 1757 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1758 rec->flags &= ~FTRACE_FL_DIRECT; 1759 1760 /* 1761 * If the rec had REGS enabled and the ops that is 1762 * being removed had REGS set, then see if there is 1763 * still any ops for this record that wants regs. 1764 * If not, we can stop recording them. 1765 */ 1766 if (ftrace_rec_count(rec) > 0 && 1767 rec->flags & FTRACE_FL_REGS && 1768 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1769 if (!test_rec_ops_needs_regs(rec)) 1770 rec->flags &= ~FTRACE_FL_REGS; 1771 } 1772 1773 /* 1774 * The TRAMP needs to be set only if rec count 1775 * is decremented to one, and the ops that is 1776 * left has a trampoline. As TRAMP can only be 1777 * enabled if there is only a single ops attached 1778 * to it. 1779 */ 1780 if (ftrace_rec_count(rec) == 1 && 1781 ftrace_find_tramp_ops_any(rec)) 1782 rec->flags |= FTRACE_FL_TRAMP; 1783 else 1784 rec->flags &= ~FTRACE_FL_TRAMP; 1785 1786 /* 1787 * flags will be cleared in ftrace_check_record() 1788 * if rec count is zero. 1789 */ 1790 } 1791 count++; 1792 1793 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1794 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1795 1796 /* Shortcut, if we handled all records, we are done. */ 1797 if (!all && count == hash->count) 1798 return update; 1799 } while_for_each_ftrace_rec(); 1800 1801 return update; 1802 } 1803 1804 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1805 int filter_hash) 1806 { 1807 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1808 } 1809 1810 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1811 int filter_hash) 1812 { 1813 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1814 } 1815 1816 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1817 int filter_hash, int inc) 1818 { 1819 struct ftrace_ops *op; 1820 1821 __ftrace_hash_rec_update(ops, filter_hash, inc); 1822 1823 if (ops->func_hash != &global_ops.local_hash) 1824 return; 1825 1826 /* 1827 * If the ops shares the global_ops hash, then we need to update 1828 * all ops that are enabled and use this hash. 1829 */ 1830 do_for_each_ftrace_op(op, ftrace_ops_list) { 1831 /* Already done */ 1832 if (op == ops) 1833 continue; 1834 if (op->func_hash == &global_ops.local_hash) 1835 __ftrace_hash_rec_update(op, filter_hash, inc); 1836 } while_for_each_ftrace_op(op); 1837 } 1838 1839 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1840 int filter_hash) 1841 { 1842 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1843 } 1844 1845 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1846 int filter_hash) 1847 { 1848 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1849 } 1850 1851 /* 1852 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1853 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1854 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1855 * Note that old_hash and new_hash has below meanings 1856 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1857 * - If the hash is EMPTY_HASH, it hits nothing 1858 * - Anything else hits the recs which match the hash entries. 1859 */ 1860 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1861 struct ftrace_hash *old_hash, 1862 struct ftrace_hash *new_hash) 1863 { 1864 struct ftrace_page *pg; 1865 struct dyn_ftrace *rec, *end = NULL; 1866 int in_old, in_new; 1867 1868 /* Only update if the ops has been registered */ 1869 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1870 return 0; 1871 1872 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1873 return 0; 1874 1875 /* 1876 * Since the IPMODIFY is a very address sensitive action, we do not 1877 * allow ftrace_ops to set all functions to new hash. 1878 */ 1879 if (!new_hash || !old_hash) 1880 return -EINVAL; 1881 1882 /* Update rec->flags */ 1883 do_for_each_ftrace_rec(pg, rec) { 1884 1885 if (rec->flags & FTRACE_FL_DISABLED) 1886 continue; 1887 1888 /* We need to update only differences of filter_hash */ 1889 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1890 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1891 if (in_old == in_new) 1892 continue; 1893 1894 if (in_new) { 1895 /* New entries must ensure no others are using it */ 1896 if (rec->flags & FTRACE_FL_IPMODIFY) 1897 goto rollback; 1898 rec->flags |= FTRACE_FL_IPMODIFY; 1899 } else /* Removed entry */ 1900 rec->flags &= ~FTRACE_FL_IPMODIFY; 1901 } while_for_each_ftrace_rec(); 1902 1903 return 0; 1904 1905 rollback: 1906 end = rec; 1907 1908 /* Roll back what we did above */ 1909 do_for_each_ftrace_rec(pg, rec) { 1910 1911 if (rec->flags & FTRACE_FL_DISABLED) 1912 continue; 1913 1914 if (rec == end) 1915 goto err_out; 1916 1917 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1918 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1919 if (in_old == in_new) 1920 continue; 1921 1922 if (in_new) 1923 rec->flags &= ~FTRACE_FL_IPMODIFY; 1924 else 1925 rec->flags |= FTRACE_FL_IPMODIFY; 1926 } while_for_each_ftrace_rec(); 1927 1928 err_out: 1929 return -EBUSY; 1930 } 1931 1932 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1933 { 1934 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1935 1936 if (ftrace_hash_empty(hash)) 1937 hash = NULL; 1938 1939 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1940 } 1941 1942 /* Disabling always succeeds */ 1943 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1944 { 1945 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1946 1947 if (ftrace_hash_empty(hash)) 1948 hash = NULL; 1949 1950 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1951 } 1952 1953 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1954 struct ftrace_hash *new_hash) 1955 { 1956 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1957 1958 if (ftrace_hash_empty(old_hash)) 1959 old_hash = NULL; 1960 1961 if (ftrace_hash_empty(new_hash)) 1962 new_hash = NULL; 1963 1964 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1965 } 1966 1967 static void print_ip_ins(const char *fmt, const unsigned char *p) 1968 { 1969 int i; 1970 1971 printk(KERN_CONT "%s", fmt); 1972 1973 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1974 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1975 } 1976 1977 enum ftrace_bug_type ftrace_bug_type; 1978 const void *ftrace_expected; 1979 1980 static void print_bug_type(void) 1981 { 1982 switch (ftrace_bug_type) { 1983 case FTRACE_BUG_UNKNOWN: 1984 break; 1985 case FTRACE_BUG_INIT: 1986 pr_info("Initializing ftrace call sites\n"); 1987 break; 1988 case FTRACE_BUG_NOP: 1989 pr_info("Setting ftrace call site to NOP\n"); 1990 break; 1991 case FTRACE_BUG_CALL: 1992 pr_info("Setting ftrace call site to call ftrace function\n"); 1993 break; 1994 case FTRACE_BUG_UPDATE: 1995 pr_info("Updating ftrace call site to call a different ftrace function\n"); 1996 break; 1997 } 1998 } 1999 2000 /** 2001 * ftrace_bug - report and shutdown function tracer 2002 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2003 * @rec: The record that failed 2004 * 2005 * The arch code that enables or disables the function tracing 2006 * can call ftrace_bug() when it has detected a problem in 2007 * modifying the code. @failed should be one of either: 2008 * EFAULT - if the problem happens on reading the @ip address 2009 * EINVAL - if what is read at @ip is not what was expected 2010 * EPERM - if the problem happens on writing to the @ip address 2011 */ 2012 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2013 { 2014 unsigned long ip = rec ? rec->ip : 0; 2015 2016 pr_info("------------[ ftrace bug ]------------\n"); 2017 2018 switch (failed) { 2019 case -EFAULT: 2020 pr_info("ftrace faulted on modifying "); 2021 print_ip_sym(KERN_INFO, ip); 2022 break; 2023 case -EINVAL: 2024 pr_info("ftrace failed to modify "); 2025 print_ip_sym(KERN_INFO, ip); 2026 print_ip_ins(" actual: ", (unsigned char *)ip); 2027 pr_cont("\n"); 2028 if (ftrace_expected) { 2029 print_ip_ins(" expected: ", ftrace_expected); 2030 pr_cont("\n"); 2031 } 2032 break; 2033 case -EPERM: 2034 pr_info("ftrace faulted on writing "); 2035 print_ip_sym(KERN_INFO, ip); 2036 break; 2037 default: 2038 pr_info("ftrace faulted on unknown error "); 2039 print_ip_sym(KERN_INFO, ip); 2040 } 2041 print_bug_type(); 2042 if (rec) { 2043 struct ftrace_ops *ops = NULL; 2044 2045 pr_info("ftrace record flags: %lx\n", rec->flags); 2046 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2047 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2048 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2049 ops = ftrace_find_tramp_ops_any(rec); 2050 if (ops) { 2051 do { 2052 pr_cont("\ttramp: %pS (%pS)", 2053 (void *)ops->trampoline, 2054 (void *)ops->func); 2055 ops = ftrace_find_tramp_ops_next(rec, ops); 2056 } while (ops); 2057 } else 2058 pr_cont("\ttramp: ERROR!"); 2059 2060 } 2061 ip = ftrace_get_addr_curr(rec); 2062 pr_cont("\n expected tramp: %lx\n", ip); 2063 } 2064 2065 FTRACE_WARN_ON_ONCE(1); 2066 } 2067 2068 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2069 { 2070 unsigned long flag = 0UL; 2071 2072 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2073 2074 if (rec->flags & FTRACE_FL_DISABLED) 2075 return FTRACE_UPDATE_IGNORE; 2076 2077 /* 2078 * If we are updating calls: 2079 * 2080 * If the record has a ref count, then we need to enable it 2081 * because someone is using it. 2082 * 2083 * Otherwise we make sure its disabled. 2084 * 2085 * If we are disabling calls, then disable all records that 2086 * are enabled. 2087 */ 2088 if (enable && ftrace_rec_count(rec)) 2089 flag = FTRACE_FL_ENABLED; 2090 2091 /* 2092 * If enabling and the REGS flag does not match the REGS_EN, or 2093 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2094 * this record. Set flags to fail the compare against ENABLED. 2095 * Same for direct calls. 2096 */ 2097 if (flag) { 2098 if (!(rec->flags & FTRACE_FL_REGS) != 2099 !(rec->flags & FTRACE_FL_REGS_EN)) 2100 flag |= FTRACE_FL_REGS; 2101 2102 if (!(rec->flags & FTRACE_FL_TRAMP) != 2103 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2104 flag |= FTRACE_FL_TRAMP; 2105 2106 /* 2107 * Direct calls are special, as count matters. 2108 * We must test the record for direct, if the 2109 * DIRECT and DIRECT_EN do not match, but only 2110 * if the count is 1. That's because, if the 2111 * count is something other than one, we do not 2112 * want the direct enabled (it will be done via the 2113 * direct helper). But if DIRECT_EN is set, and 2114 * the count is not one, we need to clear it. 2115 */ 2116 if (ftrace_rec_count(rec) == 1) { 2117 if (!(rec->flags & FTRACE_FL_DIRECT) != 2118 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2119 flag |= FTRACE_FL_DIRECT; 2120 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2121 flag |= FTRACE_FL_DIRECT; 2122 } 2123 } 2124 2125 /* If the state of this record hasn't changed, then do nothing */ 2126 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2127 return FTRACE_UPDATE_IGNORE; 2128 2129 if (flag) { 2130 /* Save off if rec is being enabled (for return value) */ 2131 flag ^= rec->flags & FTRACE_FL_ENABLED; 2132 2133 if (update) { 2134 rec->flags |= FTRACE_FL_ENABLED; 2135 if (flag & FTRACE_FL_REGS) { 2136 if (rec->flags & FTRACE_FL_REGS) 2137 rec->flags |= FTRACE_FL_REGS_EN; 2138 else 2139 rec->flags &= ~FTRACE_FL_REGS_EN; 2140 } 2141 if (flag & FTRACE_FL_TRAMP) { 2142 if (rec->flags & FTRACE_FL_TRAMP) 2143 rec->flags |= FTRACE_FL_TRAMP_EN; 2144 else 2145 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2146 } 2147 if (flag & FTRACE_FL_DIRECT) { 2148 /* 2149 * If there's only one user (direct_ops helper) 2150 * then we can call the direct function 2151 * directly (no ftrace trampoline). 2152 */ 2153 if (ftrace_rec_count(rec) == 1) { 2154 if (rec->flags & FTRACE_FL_DIRECT) 2155 rec->flags |= FTRACE_FL_DIRECT_EN; 2156 else 2157 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2158 } else { 2159 /* 2160 * Can only call directly if there's 2161 * only one callback to the function. 2162 */ 2163 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2164 } 2165 } 2166 } 2167 2168 /* 2169 * If this record is being updated from a nop, then 2170 * return UPDATE_MAKE_CALL. 2171 * Otherwise, 2172 * return UPDATE_MODIFY_CALL to tell the caller to convert 2173 * from the save regs, to a non-save regs function or 2174 * vice versa, or from a trampoline call. 2175 */ 2176 if (flag & FTRACE_FL_ENABLED) { 2177 ftrace_bug_type = FTRACE_BUG_CALL; 2178 return FTRACE_UPDATE_MAKE_CALL; 2179 } 2180 2181 ftrace_bug_type = FTRACE_BUG_UPDATE; 2182 return FTRACE_UPDATE_MODIFY_CALL; 2183 } 2184 2185 if (update) { 2186 /* If there's no more users, clear all flags */ 2187 if (!ftrace_rec_count(rec)) 2188 rec->flags = 0; 2189 else 2190 /* 2191 * Just disable the record, but keep the ops TRAMP 2192 * and REGS states. The _EN flags must be disabled though. 2193 */ 2194 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2195 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2196 } 2197 2198 ftrace_bug_type = FTRACE_BUG_NOP; 2199 return FTRACE_UPDATE_MAKE_NOP; 2200 } 2201 2202 /** 2203 * ftrace_update_record, set a record that now is tracing or not 2204 * @rec: the record to update 2205 * @enable: set to true if the record is tracing, false to force disable 2206 * 2207 * The records that represent all functions that can be traced need 2208 * to be updated when tracing has been enabled. 2209 */ 2210 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2211 { 2212 return ftrace_check_record(rec, enable, true); 2213 } 2214 2215 /** 2216 * ftrace_test_record, check if the record has been enabled or not 2217 * @rec: the record to test 2218 * @enable: set to true to check if enabled, false if it is disabled 2219 * 2220 * The arch code may need to test if a record is already set to 2221 * tracing to determine how to modify the function code that it 2222 * represents. 2223 */ 2224 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2225 { 2226 return ftrace_check_record(rec, enable, false); 2227 } 2228 2229 static struct ftrace_ops * 2230 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2231 { 2232 struct ftrace_ops *op; 2233 unsigned long ip = rec->ip; 2234 2235 do_for_each_ftrace_op(op, ftrace_ops_list) { 2236 2237 if (!op->trampoline) 2238 continue; 2239 2240 if (hash_contains_ip(ip, op->func_hash)) 2241 return op; 2242 } while_for_each_ftrace_op(op); 2243 2244 return NULL; 2245 } 2246 2247 static struct ftrace_ops * 2248 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2249 struct ftrace_ops *op) 2250 { 2251 unsigned long ip = rec->ip; 2252 2253 while_for_each_ftrace_op(op) { 2254 2255 if (!op->trampoline) 2256 continue; 2257 2258 if (hash_contains_ip(ip, op->func_hash)) 2259 return op; 2260 } 2261 2262 return NULL; 2263 } 2264 2265 static struct ftrace_ops * 2266 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2267 { 2268 struct ftrace_ops *op; 2269 unsigned long ip = rec->ip; 2270 2271 /* 2272 * Need to check removed ops first. 2273 * If they are being removed, and this rec has a tramp, 2274 * and this rec is in the ops list, then it would be the 2275 * one with the tramp. 2276 */ 2277 if (removed_ops) { 2278 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2279 return removed_ops; 2280 } 2281 2282 /* 2283 * Need to find the current trampoline for a rec. 2284 * Now, a trampoline is only attached to a rec if there 2285 * was a single 'ops' attached to it. But this can be called 2286 * when we are adding another op to the rec or removing the 2287 * current one. Thus, if the op is being added, we can 2288 * ignore it because it hasn't attached itself to the rec 2289 * yet. 2290 * 2291 * If an ops is being modified (hooking to different functions) 2292 * then we don't care about the new functions that are being 2293 * added, just the old ones (that are probably being removed). 2294 * 2295 * If we are adding an ops to a function that already is using 2296 * a trampoline, it needs to be removed (trampolines are only 2297 * for single ops connected), then an ops that is not being 2298 * modified also needs to be checked. 2299 */ 2300 do_for_each_ftrace_op(op, ftrace_ops_list) { 2301 2302 if (!op->trampoline) 2303 continue; 2304 2305 /* 2306 * If the ops is being added, it hasn't gotten to 2307 * the point to be removed from this tree yet. 2308 */ 2309 if (op->flags & FTRACE_OPS_FL_ADDING) 2310 continue; 2311 2312 2313 /* 2314 * If the ops is being modified and is in the old 2315 * hash, then it is probably being removed from this 2316 * function. 2317 */ 2318 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2319 hash_contains_ip(ip, &op->old_hash)) 2320 return op; 2321 /* 2322 * If the ops is not being added or modified, and it's 2323 * in its normal filter hash, then this must be the one 2324 * we want! 2325 */ 2326 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2327 hash_contains_ip(ip, op->func_hash)) 2328 return op; 2329 2330 } while_for_each_ftrace_op(op); 2331 2332 return NULL; 2333 } 2334 2335 static struct ftrace_ops * 2336 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2337 { 2338 struct ftrace_ops *op; 2339 unsigned long ip = rec->ip; 2340 2341 do_for_each_ftrace_op(op, ftrace_ops_list) { 2342 /* pass rec in as regs to have non-NULL val */ 2343 if (hash_contains_ip(ip, op->func_hash)) 2344 return op; 2345 } while_for_each_ftrace_op(op); 2346 2347 return NULL; 2348 } 2349 2350 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2351 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2352 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2353 static DEFINE_MUTEX(direct_mutex); 2354 int ftrace_direct_func_count; 2355 2356 /* 2357 * Search the direct_functions hash to see if the given instruction pointer 2358 * has a direct caller attached to it. 2359 */ 2360 unsigned long ftrace_find_rec_direct(unsigned long ip) 2361 { 2362 struct ftrace_func_entry *entry; 2363 2364 entry = __ftrace_lookup_ip(direct_functions, ip); 2365 if (!entry) 2366 return 0; 2367 2368 return entry->direct; 2369 } 2370 2371 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2372 struct ftrace_ops *ops, struct pt_regs *regs) 2373 { 2374 unsigned long addr; 2375 2376 addr = ftrace_find_rec_direct(ip); 2377 if (!addr) 2378 return; 2379 2380 arch_ftrace_set_direct_caller(regs, addr); 2381 } 2382 2383 struct ftrace_ops direct_ops = { 2384 .func = call_direct_funcs, 2385 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE 2386 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2387 | FTRACE_OPS_FL_PERMANENT, 2388 /* 2389 * By declaring the main trampoline as this trampoline 2390 * it will never have one allocated for it. Allocated 2391 * trampolines should not call direct functions. 2392 * The direct_ops should only be called by the builtin 2393 * ftrace_regs_caller trampoline. 2394 */ 2395 .trampoline = FTRACE_REGS_ADDR, 2396 }; 2397 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2398 2399 /** 2400 * ftrace_get_addr_new - Get the call address to set to 2401 * @rec: The ftrace record descriptor 2402 * 2403 * If the record has the FTRACE_FL_REGS set, that means that it 2404 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2405 * is not set, then it wants to convert to the normal callback. 2406 * 2407 * Returns the address of the trampoline to set to 2408 */ 2409 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2410 { 2411 struct ftrace_ops *ops; 2412 unsigned long addr; 2413 2414 if ((rec->flags & FTRACE_FL_DIRECT) && 2415 (ftrace_rec_count(rec) == 1)) { 2416 addr = ftrace_find_rec_direct(rec->ip); 2417 if (addr) 2418 return addr; 2419 WARN_ON_ONCE(1); 2420 } 2421 2422 /* Trampolines take precedence over regs */ 2423 if (rec->flags & FTRACE_FL_TRAMP) { 2424 ops = ftrace_find_tramp_ops_new(rec); 2425 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2426 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2427 (void *)rec->ip, (void *)rec->ip, rec->flags); 2428 /* Ftrace is shutting down, return anything */ 2429 return (unsigned long)FTRACE_ADDR; 2430 } 2431 return ops->trampoline; 2432 } 2433 2434 if (rec->flags & FTRACE_FL_REGS) 2435 return (unsigned long)FTRACE_REGS_ADDR; 2436 else 2437 return (unsigned long)FTRACE_ADDR; 2438 } 2439 2440 /** 2441 * ftrace_get_addr_curr - Get the call address that is already there 2442 * @rec: The ftrace record descriptor 2443 * 2444 * The FTRACE_FL_REGS_EN is set when the record already points to 2445 * a function that saves all the regs. Basically the '_EN' version 2446 * represents the current state of the function. 2447 * 2448 * Returns the address of the trampoline that is currently being called 2449 */ 2450 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2451 { 2452 struct ftrace_ops *ops; 2453 unsigned long addr; 2454 2455 /* Direct calls take precedence over trampolines */ 2456 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2457 addr = ftrace_find_rec_direct(rec->ip); 2458 if (addr) 2459 return addr; 2460 WARN_ON_ONCE(1); 2461 } 2462 2463 /* Trampolines take precedence over regs */ 2464 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2465 ops = ftrace_find_tramp_ops_curr(rec); 2466 if (FTRACE_WARN_ON(!ops)) { 2467 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2468 (void *)rec->ip, (void *)rec->ip); 2469 /* Ftrace is shutting down, return anything */ 2470 return (unsigned long)FTRACE_ADDR; 2471 } 2472 return ops->trampoline; 2473 } 2474 2475 if (rec->flags & FTRACE_FL_REGS_EN) 2476 return (unsigned long)FTRACE_REGS_ADDR; 2477 else 2478 return (unsigned long)FTRACE_ADDR; 2479 } 2480 2481 static int 2482 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2483 { 2484 unsigned long ftrace_old_addr; 2485 unsigned long ftrace_addr; 2486 int ret; 2487 2488 ftrace_addr = ftrace_get_addr_new(rec); 2489 2490 /* This needs to be done before we call ftrace_update_record */ 2491 ftrace_old_addr = ftrace_get_addr_curr(rec); 2492 2493 ret = ftrace_update_record(rec, enable); 2494 2495 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2496 2497 switch (ret) { 2498 case FTRACE_UPDATE_IGNORE: 2499 return 0; 2500 2501 case FTRACE_UPDATE_MAKE_CALL: 2502 ftrace_bug_type = FTRACE_BUG_CALL; 2503 return ftrace_make_call(rec, ftrace_addr); 2504 2505 case FTRACE_UPDATE_MAKE_NOP: 2506 ftrace_bug_type = FTRACE_BUG_NOP; 2507 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2508 2509 case FTRACE_UPDATE_MODIFY_CALL: 2510 ftrace_bug_type = FTRACE_BUG_UPDATE; 2511 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2512 } 2513 2514 return -1; /* unknown ftrace bug */ 2515 } 2516 2517 void __weak ftrace_replace_code(int mod_flags) 2518 { 2519 struct dyn_ftrace *rec; 2520 struct ftrace_page *pg; 2521 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2522 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2523 int failed; 2524 2525 if (unlikely(ftrace_disabled)) 2526 return; 2527 2528 do_for_each_ftrace_rec(pg, rec) { 2529 2530 if (rec->flags & FTRACE_FL_DISABLED) 2531 continue; 2532 2533 failed = __ftrace_replace_code(rec, enable); 2534 if (failed) { 2535 ftrace_bug(failed, rec); 2536 /* Stop processing */ 2537 return; 2538 } 2539 if (schedulable) 2540 cond_resched(); 2541 } while_for_each_ftrace_rec(); 2542 } 2543 2544 struct ftrace_rec_iter { 2545 struct ftrace_page *pg; 2546 int index; 2547 }; 2548 2549 /** 2550 * ftrace_rec_iter_start, start up iterating over traced functions 2551 * 2552 * Returns an iterator handle that is used to iterate over all 2553 * the records that represent address locations where functions 2554 * are traced. 2555 * 2556 * May return NULL if no records are available. 2557 */ 2558 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2559 { 2560 /* 2561 * We only use a single iterator. 2562 * Protected by the ftrace_lock mutex. 2563 */ 2564 static struct ftrace_rec_iter ftrace_rec_iter; 2565 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2566 2567 iter->pg = ftrace_pages_start; 2568 iter->index = 0; 2569 2570 /* Could have empty pages */ 2571 while (iter->pg && !iter->pg->index) 2572 iter->pg = iter->pg->next; 2573 2574 if (!iter->pg) 2575 return NULL; 2576 2577 return iter; 2578 } 2579 2580 /** 2581 * ftrace_rec_iter_next, get the next record to process. 2582 * @iter: The handle to the iterator. 2583 * 2584 * Returns the next iterator after the given iterator @iter. 2585 */ 2586 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2587 { 2588 iter->index++; 2589 2590 if (iter->index >= iter->pg->index) { 2591 iter->pg = iter->pg->next; 2592 iter->index = 0; 2593 2594 /* Could have empty pages */ 2595 while (iter->pg && !iter->pg->index) 2596 iter->pg = iter->pg->next; 2597 } 2598 2599 if (!iter->pg) 2600 return NULL; 2601 2602 return iter; 2603 } 2604 2605 /** 2606 * ftrace_rec_iter_record, get the record at the iterator location 2607 * @iter: The current iterator location 2608 * 2609 * Returns the record that the current @iter is at. 2610 */ 2611 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2612 { 2613 return &iter->pg->records[iter->index]; 2614 } 2615 2616 static int 2617 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2618 { 2619 int ret; 2620 2621 if (unlikely(ftrace_disabled)) 2622 return 0; 2623 2624 ret = ftrace_init_nop(mod, rec); 2625 if (ret) { 2626 ftrace_bug_type = FTRACE_BUG_INIT; 2627 ftrace_bug(ret, rec); 2628 return 0; 2629 } 2630 return 1; 2631 } 2632 2633 /* 2634 * archs can override this function if they must do something 2635 * before the modifying code is performed. 2636 */ 2637 int __weak ftrace_arch_code_modify_prepare(void) 2638 { 2639 return 0; 2640 } 2641 2642 /* 2643 * archs can override this function if they must do something 2644 * after the modifying code is performed. 2645 */ 2646 int __weak ftrace_arch_code_modify_post_process(void) 2647 { 2648 return 0; 2649 } 2650 2651 void ftrace_modify_all_code(int command) 2652 { 2653 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2654 int mod_flags = 0; 2655 int err = 0; 2656 2657 if (command & FTRACE_MAY_SLEEP) 2658 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2659 2660 /* 2661 * If the ftrace_caller calls a ftrace_ops func directly, 2662 * we need to make sure that it only traces functions it 2663 * expects to trace. When doing the switch of functions, 2664 * we need to update to the ftrace_ops_list_func first 2665 * before the transition between old and new calls are set, 2666 * as the ftrace_ops_list_func will check the ops hashes 2667 * to make sure the ops are having the right functions 2668 * traced. 2669 */ 2670 if (update) { 2671 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2672 if (FTRACE_WARN_ON(err)) 2673 return; 2674 } 2675 2676 if (command & FTRACE_UPDATE_CALLS) 2677 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2678 else if (command & FTRACE_DISABLE_CALLS) 2679 ftrace_replace_code(mod_flags); 2680 2681 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2682 function_trace_op = set_function_trace_op; 2683 smp_wmb(); 2684 /* If irqs are disabled, we are in stop machine */ 2685 if (!irqs_disabled()) 2686 smp_call_function(ftrace_sync_ipi, NULL, 1); 2687 err = ftrace_update_ftrace_func(ftrace_trace_function); 2688 if (FTRACE_WARN_ON(err)) 2689 return; 2690 } 2691 2692 if (command & FTRACE_START_FUNC_RET) 2693 err = ftrace_enable_ftrace_graph_caller(); 2694 else if (command & FTRACE_STOP_FUNC_RET) 2695 err = ftrace_disable_ftrace_graph_caller(); 2696 FTRACE_WARN_ON(err); 2697 } 2698 2699 static int __ftrace_modify_code(void *data) 2700 { 2701 int *command = data; 2702 2703 ftrace_modify_all_code(*command); 2704 2705 return 0; 2706 } 2707 2708 /** 2709 * ftrace_run_stop_machine, go back to the stop machine method 2710 * @command: The command to tell ftrace what to do 2711 * 2712 * If an arch needs to fall back to the stop machine method, the 2713 * it can call this function. 2714 */ 2715 void ftrace_run_stop_machine(int command) 2716 { 2717 stop_machine(__ftrace_modify_code, &command, NULL); 2718 } 2719 2720 /** 2721 * arch_ftrace_update_code, modify the code to trace or not trace 2722 * @command: The command that needs to be done 2723 * 2724 * Archs can override this function if it does not need to 2725 * run stop_machine() to modify code. 2726 */ 2727 void __weak arch_ftrace_update_code(int command) 2728 { 2729 ftrace_run_stop_machine(command); 2730 } 2731 2732 static void ftrace_run_update_code(int command) 2733 { 2734 int ret; 2735 2736 ret = ftrace_arch_code_modify_prepare(); 2737 FTRACE_WARN_ON(ret); 2738 if (ret) 2739 return; 2740 2741 /* 2742 * By default we use stop_machine() to modify the code. 2743 * But archs can do what ever they want as long as it 2744 * is safe. The stop_machine() is the safest, but also 2745 * produces the most overhead. 2746 */ 2747 arch_ftrace_update_code(command); 2748 2749 ret = ftrace_arch_code_modify_post_process(); 2750 FTRACE_WARN_ON(ret); 2751 } 2752 2753 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2754 struct ftrace_ops_hash *old_hash) 2755 { 2756 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2757 ops->old_hash.filter_hash = old_hash->filter_hash; 2758 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2759 ftrace_run_update_code(command); 2760 ops->old_hash.filter_hash = NULL; 2761 ops->old_hash.notrace_hash = NULL; 2762 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2763 } 2764 2765 static ftrace_func_t saved_ftrace_func; 2766 static int ftrace_start_up; 2767 2768 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2769 { 2770 } 2771 2772 /* List of trace_ops that have allocated trampolines */ 2773 static LIST_HEAD(ftrace_ops_trampoline_list); 2774 2775 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2776 { 2777 lockdep_assert_held(&ftrace_lock); 2778 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2779 } 2780 2781 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2782 { 2783 lockdep_assert_held(&ftrace_lock); 2784 list_del_rcu(&ops->list); 2785 synchronize_rcu(); 2786 } 2787 2788 /* 2789 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2790 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2791 * not a module. 2792 */ 2793 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2794 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2795 2796 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2797 { 2798 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2799 ops->trampoline) { 2800 /* 2801 * Record the text poke event before the ksymbol unregister 2802 * event. 2803 */ 2804 perf_event_text_poke((void *)ops->trampoline, 2805 (void *)ops->trampoline, 2806 ops->trampoline_size, NULL, 0); 2807 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2808 ops->trampoline, ops->trampoline_size, 2809 true, FTRACE_TRAMPOLINE_SYM); 2810 /* Remove from kallsyms after the perf events */ 2811 ftrace_remove_trampoline_from_kallsyms(ops); 2812 } 2813 2814 arch_ftrace_trampoline_free(ops); 2815 } 2816 2817 static void ftrace_startup_enable(int command) 2818 { 2819 if (saved_ftrace_func != ftrace_trace_function) { 2820 saved_ftrace_func = ftrace_trace_function; 2821 command |= FTRACE_UPDATE_TRACE_FUNC; 2822 } 2823 2824 if (!command || !ftrace_enabled) 2825 return; 2826 2827 ftrace_run_update_code(command); 2828 } 2829 2830 static void ftrace_startup_all(int command) 2831 { 2832 update_all_ops = true; 2833 ftrace_startup_enable(command); 2834 update_all_ops = false; 2835 } 2836 2837 int ftrace_startup(struct ftrace_ops *ops, int command) 2838 { 2839 int ret; 2840 2841 if (unlikely(ftrace_disabled)) 2842 return -ENODEV; 2843 2844 ret = __register_ftrace_function(ops); 2845 if (ret) 2846 return ret; 2847 2848 ftrace_start_up++; 2849 2850 /* 2851 * Note that ftrace probes uses this to start up 2852 * and modify functions it will probe. But we still 2853 * set the ADDING flag for modification, as probes 2854 * do not have trampolines. If they add them in the 2855 * future, then the probes will need to distinguish 2856 * between adding and updating probes. 2857 */ 2858 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2859 2860 ret = ftrace_hash_ipmodify_enable(ops); 2861 if (ret < 0) { 2862 /* Rollback registration process */ 2863 __unregister_ftrace_function(ops); 2864 ftrace_start_up--; 2865 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2866 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2867 ftrace_trampoline_free(ops); 2868 return ret; 2869 } 2870 2871 if (ftrace_hash_rec_enable(ops, 1)) 2872 command |= FTRACE_UPDATE_CALLS; 2873 2874 ftrace_startup_enable(command); 2875 2876 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2877 2878 return 0; 2879 } 2880 2881 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2882 { 2883 int ret; 2884 2885 if (unlikely(ftrace_disabled)) 2886 return -ENODEV; 2887 2888 ret = __unregister_ftrace_function(ops); 2889 if (ret) 2890 return ret; 2891 2892 ftrace_start_up--; 2893 /* 2894 * Just warn in case of unbalance, no need to kill ftrace, it's not 2895 * critical but the ftrace_call callers may be never nopped again after 2896 * further ftrace uses. 2897 */ 2898 WARN_ON_ONCE(ftrace_start_up < 0); 2899 2900 /* Disabling ipmodify never fails */ 2901 ftrace_hash_ipmodify_disable(ops); 2902 2903 if (ftrace_hash_rec_disable(ops, 1)) 2904 command |= FTRACE_UPDATE_CALLS; 2905 2906 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2907 2908 if (saved_ftrace_func != ftrace_trace_function) { 2909 saved_ftrace_func = ftrace_trace_function; 2910 command |= FTRACE_UPDATE_TRACE_FUNC; 2911 } 2912 2913 if (!command || !ftrace_enabled) { 2914 /* 2915 * If these are dynamic or per_cpu ops, they still 2916 * need their data freed. Since, function tracing is 2917 * not currently active, we can just free them 2918 * without synchronizing all CPUs. 2919 */ 2920 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2921 goto free_ops; 2922 2923 return 0; 2924 } 2925 2926 /* 2927 * If the ops uses a trampoline, then it needs to be 2928 * tested first on update. 2929 */ 2930 ops->flags |= FTRACE_OPS_FL_REMOVING; 2931 removed_ops = ops; 2932 2933 /* The trampoline logic checks the old hashes */ 2934 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2935 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2936 2937 ftrace_run_update_code(command); 2938 2939 /* 2940 * If there's no more ops registered with ftrace, run a 2941 * sanity check to make sure all rec flags are cleared. 2942 */ 2943 if (rcu_dereference_protected(ftrace_ops_list, 2944 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2945 struct ftrace_page *pg; 2946 struct dyn_ftrace *rec; 2947 2948 do_for_each_ftrace_rec(pg, rec) { 2949 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2950 pr_warn(" %pS flags:%lx\n", 2951 (void *)rec->ip, rec->flags); 2952 } while_for_each_ftrace_rec(); 2953 } 2954 2955 ops->old_hash.filter_hash = NULL; 2956 ops->old_hash.notrace_hash = NULL; 2957 2958 removed_ops = NULL; 2959 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2960 2961 /* 2962 * Dynamic ops may be freed, we must make sure that all 2963 * callers are done before leaving this function. 2964 * The same goes for freeing the per_cpu data of the per_cpu 2965 * ops. 2966 */ 2967 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2968 /* 2969 * We need to do a hard force of sched synchronization. 2970 * This is because we use preempt_disable() to do RCU, but 2971 * the function tracers can be called where RCU is not watching 2972 * (like before user_exit()). We can not rely on the RCU 2973 * infrastructure to do the synchronization, thus we must do it 2974 * ourselves. 2975 */ 2976 synchronize_rcu_tasks_rude(); 2977 2978 /* 2979 * When the kernel is preemptive, tasks can be preempted 2980 * while on a ftrace trampoline. Just scheduling a task on 2981 * a CPU is not good enough to flush them. Calling 2982 * synchornize_rcu_tasks() will wait for those tasks to 2983 * execute and either schedule voluntarily or enter user space. 2984 */ 2985 if (IS_ENABLED(CONFIG_PREEMPTION)) 2986 synchronize_rcu_tasks(); 2987 2988 free_ops: 2989 ftrace_trampoline_free(ops); 2990 } 2991 2992 return 0; 2993 } 2994 2995 static void ftrace_startup_sysctl(void) 2996 { 2997 int command; 2998 2999 if (unlikely(ftrace_disabled)) 3000 return; 3001 3002 /* Force update next time */ 3003 saved_ftrace_func = NULL; 3004 /* ftrace_start_up is true if we want ftrace running */ 3005 if (ftrace_start_up) { 3006 command = FTRACE_UPDATE_CALLS; 3007 if (ftrace_graph_active) 3008 command |= FTRACE_START_FUNC_RET; 3009 ftrace_startup_enable(command); 3010 } 3011 } 3012 3013 static void ftrace_shutdown_sysctl(void) 3014 { 3015 int command; 3016 3017 if (unlikely(ftrace_disabled)) 3018 return; 3019 3020 /* ftrace_start_up is true if ftrace is running */ 3021 if (ftrace_start_up) { 3022 command = FTRACE_DISABLE_CALLS; 3023 if (ftrace_graph_active) 3024 command |= FTRACE_STOP_FUNC_RET; 3025 ftrace_run_update_code(command); 3026 } 3027 } 3028 3029 static u64 ftrace_update_time; 3030 unsigned long ftrace_update_tot_cnt; 3031 unsigned long ftrace_number_of_pages; 3032 unsigned long ftrace_number_of_groups; 3033 3034 static inline int ops_traces_mod(struct ftrace_ops *ops) 3035 { 3036 /* 3037 * Filter_hash being empty will default to trace module. 3038 * But notrace hash requires a test of individual module functions. 3039 */ 3040 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3041 ftrace_hash_empty(ops->func_hash->notrace_hash); 3042 } 3043 3044 /* 3045 * Check if the current ops references the record. 3046 * 3047 * If the ops traces all functions, then it was already accounted for. 3048 * If the ops does not trace the current record function, skip it. 3049 * If the ops ignores the function via notrace filter, skip it. 3050 */ 3051 static inline bool 3052 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3053 { 3054 /* If ops isn't enabled, ignore it */ 3055 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 3056 return false; 3057 3058 /* If ops traces all then it includes this function */ 3059 if (ops_traces_mod(ops)) 3060 return true; 3061 3062 /* The function must be in the filter */ 3063 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 3064 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 3065 return false; 3066 3067 /* If in notrace hash, we ignore it too */ 3068 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 3069 return false; 3070 3071 return true; 3072 } 3073 3074 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3075 { 3076 struct ftrace_page *pg; 3077 struct dyn_ftrace *p; 3078 u64 start, stop; 3079 unsigned long update_cnt = 0; 3080 unsigned long rec_flags = 0; 3081 int i; 3082 3083 start = ftrace_now(raw_smp_processor_id()); 3084 3085 /* 3086 * When a module is loaded, this function is called to convert 3087 * the calls to mcount in its text to nops, and also to create 3088 * an entry in the ftrace data. Now, if ftrace is activated 3089 * after this call, but before the module sets its text to 3090 * read-only, the modification of enabling ftrace can fail if 3091 * the read-only is done while ftrace is converting the calls. 3092 * To prevent this, the module's records are set as disabled 3093 * and will be enabled after the call to set the module's text 3094 * to read-only. 3095 */ 3096 if (mod) 3097 rec_flags |= FTRACE_FL_DISABLED; 3098 3099 for (pg = new_pgs; pg; pg = pg->next) { 3100 3101 for (i = 0; i < pg->index; i++) { 3102 3103 /* If something went wrong, bail without enabling anything */ 3104 if (unlikely(ftrace_disabled)) 3105 return -1; 3106 3107 p = &pg->records[i]; 3108 p->flags = rec_flags; 3109 3110 /* 3111 * Do the initial record conversion from mcount jump 3112 * to the NOP instructions. 3113 */ 3114 if (!__is_defined(CC_USING_NOP_MCOUNT) && 3115 !ftrace_nop_initialize(mod, p)) 3116 break; 3117 3118 update_cnt++; 3119 } 3120 } 3121 3122 stop = ftrace_now(raw_smp_processor_id()); 3123 ftrace_update_time = stop - start; 3124 ftrace_update_tot_cnt += update_cnt; 3125 3126 return 0; 3127 } 3128 3129 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3130 { 3131 int order; 3132 int pages; 3133 int cnt; 3134 3135 if (WARN_ON(!count)) 3136 return -EINVAL; 3137 3138 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3139 order = get_count_order(pages); 3140 3141 /* 3142 * We want to fill as much as possible. No more than a page 3143 * may be empty. 3144 */ 3145 if (!is_power_of_2(pages)) 3146 order--; 3147 3148 again: 3149 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3150 3151 if (!pg->records) { 3152 /* if we can't allocate this size, try something smaller */ 3153 if (!order) 3154 return -ENOMEM; 3155 order >>= 1; 3156 goto again; 3157 } 3158 3159 ftrace_number_of_pages += 1 << order; 3160 ftrace_number_of_groups++; 3161 3162 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3163 pg->size = cnt; 3164 3165 if (cnt > count) 3166 cnt = count; 3167 3168 return cnt; 3169 } 3170 3171 static struct ftrace_page * 3172 ftrace_allocate_pages(unsigned long num_to_init) 3173 { 3174 struct ftrace_page *start_pg; 3175 struct ftrace_page *pg; 3176 int order; 3177 int cnt; 3178 3179 if (!num_to_init) 3180 return NULL; 3181 3182 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3183 if (!pg) 3184 return NULL; 3185 3186 /* 3187 * Try to allocate as much as possible in one continues 3188 * location that fills in all of the space. We want to 3189 * waste as little space as possible. 3190 */ 3191 for (;;) { 3192 cnt = ftrace_allocate_records(pg, num_to_init); 3193 if (cnt < 0) 3194 goto free_pages; 3195 3196 num_to_init -= cnt; 3197 if (!num_to_init) 3198 break; 3199 3200 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3201 if (!pg->next) 3202 goto free_pages; 3203 3204 pg = pg->next; 3205 } 3206 3207 return start_pg; 3208 3209 free_pages: 3210 pg = start_pg; 3211 while (pg) { 3212 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3213 free_pages((unsigned long)pg->records, order); 3214 start_pg = pg->next; 3215 kfree(pg); 3216 pg = start_pg; 3217 ftrace_number_of_pages -= 1 << order; 3218 ftrace_number_of_groups--; 3219 } 3220 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3221 return NULL; 3222 } 3223 3224 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3225 3226 struct ftrace_iterator { 3227 loff_t pos; 3228 loff_t func_pos; 3229 loff_t mod_pos; 3230 struct ftrace_page *pg; 3231 struct dyn_ftrace *func; 3232 struct ftrace_func_probe *probe; 3233 struct ftrace_func_entry *probe_entry; 3234 struct trace_parser parser; 3235 struct ftrace_hash *hash; 3236 struct ftrace_ops *ops; 3237 struct trace_array *tr; 3238 struct list_head *mod_list; 3239 int pidx; 3240 int idx; 3241 unsigned flags; 3242 }; 3243 3244 static void * 3245 t_probe_next(struct seq_file *m, loff_t *pos) 3246 { 3247 struct ftrace_iterator *iter = m->private; 3248 struct trace_array *tr = iter->ops->private; 3249 struct list_head *func_probes; 3250 struct ftrace_hash *hash; 3251 struct list_head *next; 3252 struct hlist_node *hnd = NULL; 3253 struct hlist_head *hhd; 3254 int size; 3255 3256 (*pos)++; 3257 iter->pos = *pos; 3258 3259 if (!tr) 3260 return NULL; 3261 3262 func_probes = &tr->func_probes; 3263 if (list_empty(func_probes)) 3264 return NULL; 3265 3266 if (!iter->probe) { 3267 next = func_probes->next; 3268 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3269 } 3270 3271 if (iter->probe_entry) 3272 hnd = &iter->probe_entry->hlist; 3273 3274 hash = iter->probe->ops.func_hash->filter_hash; 3275 3276 /* 3277 * A probe being registered may temporarily have an empty hash 3278 * and it's at the end of the func_probes list. 3279 */ 3280 if (!hash || hash == EMPTY_HASH) 3281 return NULL; 3282 3283 size = 1 << hash->size_bits; 3284 3285 retry: 3286 if (iter->pidx >= size) { 3287 if (iter->probe->list.next == func_probes) 3288 return NULL; 3289 next = iter->probe->list.next; 3290 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3291 hash = iter->probe->ops.func_hash->filter_hash; 3292 size = 1 << hash->size_bits; 3293 iter->pidx = 0; 3294 } 3295 3296 hhd = &hash->buckets[iter->pidx]; 3297 3298 if (hlist_empty(hhd)) { 3299 iter->pidx++; 3300 hnd = NULL; 3301 goto retry; 3302 } 3303 3304 if (!hnd) 3305 hnd = hhd->first; 3306 else { 3307 hnd = hnd->next; 3308 if (!hnd) { 3309 iter->pidx++; 3310 goto retry; 3311 } 3312 } 3313 3314 if (WARN_ON_ONCE(!hnd)) 3315 return NULL; 3316 3317 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3318 3319 return iter; 3320 } 3321 3322 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3323 { 3324 struct ftrace_iterator *iter = m->private; 3325 void *p = NULL; 3326 loff_t l; 3327 3328 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3329 return NULL; 3330 3331 if (iter->mod_pos > *pos) 3332 return NULL; 3333 3334 iter->probe = NULL; 3335 iter->probe_entry = NULL; 3336 iter->pidx = 0; 3337 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3338 p = t_probe_next(m, &l); 3339 if (!p) 3340 break; 3341 } 3342 if (!p) 3343 return NULL; 3344 3345 /* Only set this if we have an item */ 3346 iter->flags |= FTRACE_ITER_PROBE; 3347 3348 return iter; 3349 } 3350 3351 static int 3352 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3353 { 3354 struct ftrace_func_entry *probe_entry; 3355 struct ftrace_probe_ops *probe_ops; 3356 struct ftrace_func_probe *probe; 3357 3358 probe = iter->probe; 3359 probe_entry = iter->probe_entry; 3360 3361 if (WARN_ON_ONCE(!probe || !probe_entry)) 3362 return -EIO; 3363 3364 probe_ops = probe->probe_ops; 3365 3366 if (probe_ops->print) 3367 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3368 3369 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3370 (void *)probe_ops->func); 3371 3372 return 0; 3373 } 3374 3375 static void * 3376 t_mod_next(struct seq_file *m, loff_t *pos) 3377 { 3378 struct ftrace_iterator *iter = m->private; 3379 struct trace_array *tr = iter->tr; 3380 3381 (*pos)++; 3382 iter->pos = *pos; 3383 3384 iter->mod_list = iter->mod_list->next; 3385 3386 if (iter->mod_list == &tr->mod_trace || 3387 iter->mod_list == &tr->mod_notrace) { 3388 iter->flags &= ~FTRACE_ITER_MOD; 3389 return NULL; 3390 } 3391 3392 iter->mod_pos = *pos; 3393 3394 return iter; 3395 } 3396 3397 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3398 { 3399 struct ftrace_iterator *iter = m->private; 3400 void *p = NULL; 3401 loff_t l; 3402 3403 if (iter->func_pos > *pos) 3404 return NULL; 3405 3406 iter->mod_pos = iter->func_pos; 3407 3408 /* probes are only available if tr is set */ 3409 if (!iter->tr) 3410 return NULL; 3411 3412 for (l = 0; l <= (*pos - iter->func_pos); ) { 3413 p = t_mod_next(m, &l); 3414 if (!p) 3415 break; 3416 } 3417 if (!p) { 3418 iter->flags &= ~FTRACE_ITER_MOD; 3419 return t_probe_start(m, pos); 3420 } 3421 3422 /* Only set this if we have an item */ 3423 iter->flags |= FTRACE_ITER_MOD; 3424 3425 return iter; 3426 } 3427 3428 static int 3429 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3430 { 3431 struct ftrace_mod_load *ftrace_mod; 3432 struct trace_array *tr = iter->tr; 3433 3434 if (WARN_ON_ONCE(!iter->mod_list) || 3435 iter->mod_list == &tr->mod_trace || 3436 iter->mod_list == &tr->mod_notrace) 3437 return -EIO; 3438 3439 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3440 3441 if (ftrace_mod->func) 3442 seq_printf(m, "%s", ftrace_mod->func); 3443 else 3444 seq_putc(m, '*'); 3445 3446 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3447 3448 return 0; 3449 } 3450 3451 static void * 3452 t_func_next(struct seq_file *m, loff_t *pos) 3453 { 3454 struct ftrace_iterator *iter = m->private; 3455 struct dyn_ftrace *rec = NULL; 3456 3457 (*pos)++; 3458 3459 retry: 3460 if (iter->idx >= iter->pg->index) { 3461 if (iter->pg->next) { 3462 iter->pg = iter->pg->next; 3463 iter->idx = 0; 3464 goto retry; 3465 } 3466 } else { 3467 rec = &iter->pg->records[iter->idx++]; 3468 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3469 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3470 3471 ((iter->flags & FTRACE_ITER_ENABLED) && 3472 !(rec->flags & FTRACE_FL_ENABLED))) { 3473 3474 rec = NULL; 3475 goto retry; 3476 } 3477 } 3478 3479 if (!rec) 3480 return NULL; 3481 3482 iter->pos = iter->func_pos = *pos; 3483 iter->func = rec; 3484 3485 return iter; 3486 } 3487 3488 static void * 3489 t_next(struct seq_file *m, void *v, loff_t *pos) 3490 { 3491 struct ftrace_iterator *iter = m->private; 3492 loff_t l = *pos; /* t_probe_start() must use original pos */ 3493 void *ret; 3494 3495 if (unlikely(ftrace_disabled)) 3496 return NULL; 3497 3498 if (iter->flags & FTRACE_ITER_PROBE) 3499 return t_probe_next(m, pos); 3500 3501 if (iter->flags & FTRACE_ITER_MOD) 3502 return t_mod_next(m, pos); 3503 3504 if (iter->flags & FTRACE_ITER_PRINTALL) { 3505 /* next must increment pos, and t_probe_start does not */ 3506 (*pos)++; 3507 return t_mod_start(m, &l); 3508 } 3509 3510 ret = t_func_next(m, pos); 3511 3512 if (!ret) 3513 return t_mod_start(m, &l); 3514 3515 return ret; 3516 } 3517 3518 static void reset_iter_read(struct ftrace_iterator *iter) 3519 { 3520 iter->pos = 0; 3521 iter->func_pos = 0; 3522 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3523 } 3524 3525 static void *t_start(struct seq_file *m, loff_t *pos) 3526 { 3527 struct ftrace_iterator *iter = m->private; 3528 void *p = NULL; 3529 loff_t l; 3530 3531 mutex_lock(&ftrace_lock); 3532 3533 if (unlikely(ftrace_disabled)) 3534 return NULL; 3535 3536 /* 3537 * If an lseek was done, then reset and start from beginning. 3538 */ 3539 if (*pos < iter->pos) 3540 reset_iter_read(iter); 3541 3542 /* 3543 * For set_ftrace_filter reading, if we have the filter 3544 * off, we can short cut and just print out that all 3545 * functions are enabled. 3546 */ 3547 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3548 ftrace_hash_empty(iter->hash)) { 3549 iter->func_pos = 1; /* Account for the message */ 3550 if (*pos > 0) 3551 return t_mod_start(m, pos); 3552 iter->flags |= FTRACE_ITER_PRINTALL; 3553 /* reset in case of seek/pread */ 3554 iter->flags &= ~FTRACE_ITER_PROBE; 3555 return iter; 3556 } 3557 3558 if (iter->flags & FTRACE_ITER_MOD) 3559 return t_mod_start(m, pos); 3560 3561 /* 3562 * Unfortunately, we need to restart at ftrace_pages_start 3563 * every time we let go of the ftrace_mutex. This is because 3564 * those pointers can change without the lock. 3565 */ 3566 iter->pg = ftrace_pages_start; 3567 iter->idx = 0; 3568 for (l = 0; l <= *pos; ) { 3569 p = t_func_next(m, &l); 3570 if (!p) 3571 break; 3572 } 3573 3574 if (!p) 3575 return t_mod_start(m, pos); 3576 3577 return iter; 3578 } 3579 3580 static void t_stop(struct seq_file *m, void *p) 3581 { 3582 mutex_unlock(&ftrace_lock); 3583 } 3584 3585 void * __weak 3586 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3587 { 3588 return NULL; 3589 } 3590 3591 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3592 struct dyn_ftrace *rec) 3593 { 3594 void *ptr; 3595 3596 ptr = arch_ftrace_trampoline_func(ops, rec); 3597 if (ptr) 3598 seq_printf(m, " ->%pS", ptr); 3599 } 3600 3601 static int t_show(struct seq_file *m, void *v) 3602 { 3603 struct ftrace_iterator *iter = m->private; 3604 struct dyn_ftrace *rec; 3605 3606 if (iter->flags & FTRACE_ITER_PROBE) 3607 return t_probe_show(m, iter); 3608 3609 if (iter->flags & FTRACE_ITER_MOD) 3610 return t_mod_show(m, iter); 3611 3612 if (iter->flags & FTRACE_ITER_PRINTALL) { 3613 if (iter->flags & FTRACE_ITER_NOTRACE) 3614 seq_puts(m, "#### no functions disabled ####\n"); 3615 else 3616 seq_puts(m, "#### all functions enabled ####\n"); 3617 return 0; 3618 } 3619 3620 rec = iter->func; 3621 3622 if (!rec) 3623 return 0; 3624 3625 seq_printf(m, "%ps", (void *)rec->ip); 3626 if (iter->flags & FTRACE_ITER_ENABLED) { 3627 struct ftrace_ops *ops; 3628 3629 seq_printf(m, " (%ld)%s%s%s", 3630 ftrace_rec_count(rec), 3631 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3632 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3633 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3634 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3635 ops = ftrace_find_tramp_ops_any(rec); 3636 if (ops) { 3637 do { 3638 seq_printf(m, "\ttramp: %pS (%pS)", 3639 (void *)ops->trampoline, 3640 (void *)ops->func); 3641 add_trampoline_func(m, ops, rec); 3642 ops = ftrace_find_tramp_ops_next(rec, ops); 3643 } while (ops); 3644 } else 3645 seq_puts(m, "\ttramp: ERROR!"); 3646 } else { 3647 add_trampoline_func(m, NULL, rec); 3648 } 3649 if (rec->flags & FTRACE_FL_DIRECT) { 3650 unsigned long direct; 3651 3652 direct = ftrace_find_rec_direct(rec->ip); 3653 if (direct) 3654 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3655 } 3656 } 3657 3658 seq_putc(m, '\n'); 3659 3660 return 0; 3661 } 3662 3663 static const struct seq_operations show_ftrace_seq_ops = { 3664 .start = t_start, 3665 .next = t_next, 3666 .stop = t_stop, 3667 .show = t_show, 3668 }; 3669 3670 static int 3671 ftrace_avail_open(struct inode *inode, struct file *file) 3672 { 3673 struct ftrace_iterator *iter; 3674 int ret; 3675 3676 ret = security_locked_down(LOCKDOWN_TRACEFS); 3677 if (ret) 3678 return ret; 3679 3680 if (unlikely(ftrace_disabled)) 3681 return -ENODEV; 3682 3683 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3684 if (!iter) 3685 return -ENOMEM; 3686 3687 iter->pg = ftrace_pages_start; 3688 iter->ops = &global_ops; 3689 3690 return 0; 3691 } 3692 3693 static int 3694 ftrace_enabled_open(struct inode *inode, struct file *file) 3695 { 3696 struct ftrace_iterator *iter; 3697 3698 /* 3699 * This shows us what functions are currently being 3700 * traced and by what. Not sure if we want lockdown 3701 * to hide such critical information for an admin. 3702 * Although, perhaps it can show information we don't 3703 * want people to see, but if something is tracing 3704 * something, we probably want to know about it. 3705 */ 3706 3707 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3708 if (!iter) 3709 return -ENOMEM; 3710 3711 iter->pg = ftrace_pages_start; 3712 iter->flags = FTRACE_ITER_ENABLED; 3713 iter->ops = &global_ops; 3714 3715 return 0; 3716 } 3717 3718 /** 3719 * ftrace_regex_open - initialize function tracer filter files 3720 * @ops: The ftrace_ops that hold the hash filters 3721 * @flag: The type of filter to process 3722 * @inode: The inode, usually passed in to your open routine 3723 * @file: The file, usually passed in to your open routine 3724 * 3725 * ftrace_regex_open() initializes the filter files for the 3726 * @ops. Depending on @flag it may process the filter hash or 3727 * the notrace hash of @ops. With this called from the open 3728 * routine, you can use ftrace_filter_write() for the write 3729 * routine if @flag has FTRACE_ITER_FILTER set, or 3730 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3731 * tracing_lseek() should be used as the lseek routine, and 3732 * release must call ftrace_regex_release(). 3733 */ 3734 int 3735 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3736 struct inode *inode, struct file *file) 3737 { 3738 struct ftrace_iterator *iter; 3739 struct ftrace_hash *hash; 3740 struct list_head *mod_head; 3741 struct trace_array *tr = ops->private; 3742 int ret = -ENOMEM; 3743 3744 ftrace_ops_init(ops); 3745 3746 if (unlikely(ftrace_disabled)) 3747 return -ENODEV; 3748 3749 if (tracing_check_open_get_tr(tr)) 3750 return -ENODEV; 3751 3752 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3753 if (!iter) 3754 goto out; 3755 3756 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3757 goto out; 3758 3759 iter->ops = ops; 3760 iter->flags = flag; 3761 iter->tr = tr; 3762 3763 mutex_lock(&ops->func_hash->regex_lock); 3764 3765 if (flag & FTRACE_ITER_NOTRACE) { 3766 hash = ops->func_hash->notrace_hash; 3767 mod_head = tr ? &tr->mod_notrace : NULL; 3768 } else { 3769 hash = ops->func_hash->filter_hash; 3770 mod_head = tr ? &tr->mod_trace : NULL; 3771 } 3772 3773 iter->mod_list = mod_head; 3774 3775 if (file->f_mode & FMODE_WRITE) { 3776 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3777 3778 if (file->f_flags & O_TRUNC) { 3779 iter->hash = alloc_ftrace_hash(size_bits); 3780 clear_ftrace_mod_list(mod_head); 3781 } else { 3782 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3783 } 3784 3785 if (!iter->hash) { 3786 trace_parser_put(&iter->parser); 3787 goto out_unlock; 3788 } 3789 } else 3790 iter->hash = hash; 3791 3792 ret = 0; 3793 3794 if (file->f_mode & FMODE_READ) { 3795 iter->pg = ftrace_pages_start; 3796 3797 ret = seq_open(file, &show_ftrace_seq_ops); 3798 if (!ret) { 3799 struct seq_file *m = file->private_data; 3800 m->private = iter; 3801 } else { 3802 /* Failed */ 3803 free_ftrace_hash(iter->hash); 3804 trace_parser_put(&iter->parser); 3805 } 3806 } else 3807 file->private_data = iter; 3808 3809 out_unlock: 3810 mutex_unlock(&ops->func_hash->regex_lock); 3811 3812 out: 3813 if (ret) { 3814 kfree(iter); 3815 if (tr) 3816 trace_array_put(tr); 3817 } 3818 3819 return ret; 3820 } 3821 3822 static int 3823 ftrace_filter_open(struct inode *inode, struct file *file) 3824 { 3825 struct ftrace_ops *ops = inode->i_private; 3826 3827 /* Checks for tracefs lockdown */ 3828 return ftrace_regex_open(ops, 3829 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3830 inode, file); 3831 } 3832 3833 static int 3834 ftrace_notrace_open(struct inode *inode, struct file *file) 3835 { 3836 struct ftrace_ops *ops = inode->i_private; 3837 3838 /* Checks for tracefs lockdown */ 3839 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3840 inode, file); 3841 } 3842 3843 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3844 struct ftrace_glob { 3845 char *search; 3846 unsigned len; 3847 int type; 3848 }; 3849 3850 /* 3851 * If symbols in an architecture don't correspond exactly to the user-visible 3852 * name of what they represent, it is possible to define this function to 3853 * perform the necessary adjustments. 3854 */ 3855 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3856 { 3857 return str; 3858 } 3859 3860 static int ftrace_match(char *str, struct ftrace_glob *g) 3861 { 3862 int matched = 0; 3863 int slen; 3864 3865 str = arch_ftrace_match_adjust(str, g->search); 3866 3867 switch (g->type) { 3868 case MATCH_FULL: 3869 if (strcmp(str, g->search) == 0) 3870 matched = 1; 3871 break; 3872 case MATCH_FRONT_ONLY: 3873 if (strncmp(str, g->search, g->len) == 0) 3874 matched = 1; 3875 break; 3876 case MATCH_MIDDLE_ONLY: 3877 if (strstr(str, g->search)) 3878 matched = 1; 3879 break; 3880 case MATCH_END_ONLY: 3881 slen = strlen(str); 3882 if (slen >= g->len && 3883 memcmp(str + slen - g->len, g->search, g->len) == 0) 3884 matched = 1; 3885 break; 3886 case MATCH_GLOB: 3887 if (glob_match(g->search, str)) 3888 matched = 1; 3889 break; 3890 } 3891 3892 return matched; 3893 } 3894 3895 static int 3896 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3897 { 3898 struct ftrace_func_entry *entry; 3899 int ret = 0; 3900 3901 entry = ftrace_lookup_ip(hash, rec->ip); 3902 if (clear_filter) { 3903 /* Do nothing if it doesn't exist */ 3904 if (!entry) 3905 return 0; 3906 3907 free_hash_entry(hash, entry); 3908 } else { 3909 /* Do nothing if it exists */ 3910 if (entry) 3911 return 0; 3912 3913 ret = add_hash_entry(hash, rec->ip); 3914 } 3915 return ret; 3916 } 3917 3918 static int 3919 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 3920 int clear_filter) 3921 { 3922 long index = simple_strtoul(func_g->search, NULL, 0); 3923 struct ftrace_page *pg; 3924 struct dyn_ftrace *rec; 3925 3926 /* The index starts at 1 */ 3927 if (--index < 0) 3928 return 0; 3929 3930 do_for_each_ftrace_rec(pg, rec) { 3931 if (pg->index <= index) { 3932 index -= pg->index; 3933 /* this is a double loop, break goes to the next page */ 3934 break; 3935 } 3936 rec = &pg->records[index]; 3937 enter_record(hash, rec, clear_filter); 3938 return 1; 3939 } while_for_each_ftrace_rec(); 3940 return 0; 3941 } 3942 3943 static int 3944 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3945 struct ftrace_glob *mod_g, int exclude_mod) 3946 { 3947 char str[KSYM_SYMBOL_LEN]; 3948 char *modname; 3949 3950 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3951 3952 if (mod_g) { 3953 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3954 3955 /* blank module name to match all modules */ 3956 if (!mod_g->len) { 3957 /* blank module globbing: modname xor exclude_mod */ 3958 if (!exclude_mod != !modname) 3959 goto func_match; 3960 return 0; 3961 } 3962 3963 /* 3964 * exclude_mod is set to trace everything but the given 3965 * module. If it is set and the module matches, then 3966 * return 0. If it is not set, and the module doesn't match 3967 * also return 0. Otherwise, check the function to see if 3968 * that matches. 3969 */ 3970 if (!mod_matches == !exclude_mod) 3971 return 0; 3972 func_match: 3973 /* blank search means to match all funcs in the mod */ 3974 if (!func_g->len) 3975 return 1; 3976 } 3977 3978 return ftrace_match(str, func_g); 3979 } 3980 3981 static int 3982 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3983 { 3984 struct ftrace_page *pg; 3985 struct dyn_ftrace *rec; 3986 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3987 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3988 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3989 int exclude_mod = 0; 3990 int found = 0; 3991 int ret; 3992 int clear_filter = 0; 3993 3994 if (func) { 3995 func_g.type = filter_parse_regex(func, len, &func_g.search, 3996 &clear_filter); 3997 func_g.len = strlen(func_g.search); 3998 } 3999 4000 if (mod) { 4001 mod_g.type = filter_parse_regex(mod, strlen(mod), 4002 &mod_g.search, &exclude_mod); 4003 mod_g.len = strlen(mod_g.search); 4004 } 4005 4006 mutex_lock(&ftrace_lock); 4007 4008 if (unlikely(ftrace_disabled)) 4009 goto out_unlock; 4010 4011 if (func_g.type == MATCH_INDEX) { 4012 found = add_rec_by_index(hash, &func_g, clear_filter); 4013 goto out_unlock; 4014 } 4015 4016 do_for_each_ftrace_rec(pg, rec) { 4017 4018 if (rec->flags & FTRACE_FL_DISABLED) 4019 continue; 4020 4021 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4022 ret = enter_record(hash, rec, clear_filter); 4023 if (ret < 0) { 4024 found = ret; 4025 goto out_unlock; 4026 } 4027 found = 1; 4028 } 4029 } while_for_each_ftrace_rec(); 4030 out_unlock: 4031 mutex_unlock(&ftrace_lock); 4032 4033 return found; 4034 } 4035 4036 static int 4037 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4038 { 4039 return match_records(hash, buff, len, NULL); 4040 } 4041 4042 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4043 struct ftrace_ops_hash *old_hash) 4044 { 4045 struct ftrace_ops *op; 4046 4047 if (!ftrace_enabled) 4048 return; 4049 4050 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4051 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4052 return; 4053 } 4054 4055 /* 4056 * If this is the shared global_ops filter, then we need to 4057 * check if there is another ops that shares it, is enabled. 4058 * If so, we still need to run the modify code. 4059 */ 4060 if (ops->func_hash != &global_ops.local_hash) 4061 return; 4062 4063 do_for_each_ftrace_op(op, ftrace_ops_list) { 4064 if (op->func_hash == &global_ops.local_hash && 4065 op->flags & FTRACE_OPS_FL_ENABLED) { 4066 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4067 /* Only need to do this once */ 4068 return; 4069 } 4070 } while_for_each_ftrace_op(op); 4071 } 4072 4073 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4074 struct ftrace_hash **orig_hash, 4075 struct ftrace_hash *hash, 4076 int enable) 4077 { 4078 struct ftrace_ops_hash old_hash_ops; 4079 struct ftrace_hash *old_hash; 4080 int ret; 4081 4082 old_hash = *orig_hash; 4083 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4084 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4085 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4086 if (!ret) { 4087 ftrace_ops_update_code(ops, &old_hash_ops); 4088 free_ftrace_hash_rcu(old_hash); 4089 } 4090 return ret; 4091 } 4092 4093 static bool module_exists(const char *module) 4094 { 4095 /* All modules have the symbol __this_module */ 4096 static const char this_mod[] = "__this_module"; 4097 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4098 unsigned long val; 4099 int n; 4100 4101 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4102 4103 if (n > sizeof(modname) - 1) 4104 return false; 4105 4106 val = module_kallsyms_lookup_name(modname); 4107 return val != 0; 4108 } 4109 4110 static int cache_mod(struct trace_array *tr, 4111 const char *func, char *module, int enable) 4112 { 4113 struct ftrace_mod_load *ftrace_mod, *n; 4114 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4115 int ret; 4116 4117 mutex_lock(&ftrace_lock); 4118 4119 /* We do not cache inverse filters */ 4120 if (func[0] == '!') { 4121 func++; 4122 ret = -EINVAL; 4123 4124 /* Look to remove this hash */ 4125 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4126 if (strcmp(ftrace_mod->module, module) != 0) 4127 continue; 4128 4129 /* no func matches all */ 4130 if (strcmp(func, "*") == 0 || 4131 (ftrace_mod->func && 4132 strcmp(ftrace_mod->func, func) == 0)) { 4133 ret = 0; 4134 free_ftrace_mod(ftrace_mod); 4135 continue; 4136 } 4137 } 4138 goto out; 4139 } 4140 4141 ret = -EINVAL; 4142 /* We only care about modules that have not been loaded yet */ 4143 if (module_exists(module)) 4144 goto out; 4145 4146 /* Save this string off, and execute it when the module is loaded */ 4147 ret = ftrace_add_mod(tr, func, module, enable); 4148 out: 4149 mutex_unlock(&ftrace_lock); 4150 4151 return ret; 4152 } 4153 4154 static int 4155 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4156 int reset, int enable); 4157 4158 #ifdef CONFIG_MODULES 4159 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4160 char *mod, bool enable) 4161 { 4162 struct ftrace_mod_load *ftrace_mod, *n; 4163 struct ftrace_hash **orig_hash, *new_hash; 4164 LIST_HEAD(process_mods); 4165 char *func; 4166 int ret; 4167 4168 mutex_lock(&ops->func_hash->regex_lock); 4169 4170 if (enable) 4171 orig_hash = &ops->func_hash->filter_hash; 4172 else 4173 orig_hash = &ops->func_hash->notrace_hash; 4174 4175 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4176 *orig_hash); 4177 if (!new_hash) 4178 goto out; /* warn? */ 4179 4180 mutex_lock(&ftrace_lock); 4181 4182 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4183 4184 if (strcmp(ftrace_mod->module, mod) != 0) 4185 continue; 4186 4187 if (ftrace_mod->func) 4188 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4189 else 4190 func = kstrdup("*", GFP_KERNEL); 4191 4192 if (!func) /* warn? */ 4193 continue; 4194 4195 list_del(&ftrace_mod->list); 4196 list_add(&ftrace_mod->list, &process_mods); 4197 4198 /* Use the newly allocated func, as it may be "*" */ 4199 kfree(ftrace_mod->func); 4200 ftrace_mod->func = func; 4201 } 4202 4203 mutex_unlock(&ftrace_lock); 4204 4205 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4206 4207 func = ftrace_mod->func; 4208 4209 /* Grabs ftrace_lock, which is why we have this extra step */ 4210 match_records(new_hash, func, strlen(func), mod); 4211 free_ftrace_mod(ftrace_mod); 4212 } 4213 4214 if (enable && list_empty(head)) 4215 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4216 4217 mutex_lock(&ftrace_lock); 4218 4219 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 4220 new_hash, enable); 4221 mutex_unlock(&ftrace_lock); 4222 4223 out: 4224 mutex_unlock(&ops->func_hash->regex_lock); 4225 4226 free_ftrace_hash(new_hash); 4227 } 4228 4229 static void process_cached_mods(const char *mod_name) 4230 { 4231 struct trace_array *tr; 4232 char *mod; 4233 4234 mod = kstrdup(mod_name, GFP_KERNEL); 4235 if (!mod) 4236 return; 4237 4238 mutex_lock(&trace_types_lock); 4239 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4240 if (!list_empty(&tr->mod_trace)) 4241 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4242 if (!list_empty(&tr->mod_notrace)) 4243 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4244 } 4245 mutex_unlock(&trace_types_lock); 4246 4247 kfree(mod); 4248 } 4249 #endif 4250 4251 /* 4252 * We register the module command as a template to show others how 4253 * to register the a command as well. 4254 */ 4255 4256 static int 4257 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4258 char *func_orig, char *cmd, char *module, int enable) 4259 { 4260 char *func; 4261 int ret; 4262 4263 /* match_records() modifies func, and we need the original */ 4264 func = kstrdup(func_orig, GFP_KERNEL); 4265 if (!func) 4266 return -ENOMEM; 4267 4268 /* 4269 * cmd == 'mod' because we only registered this func 4270 * for the 'mod' ftrace_func_command. 4271 * But if you register one func with multiple commands, 4272 * you can tell which command was used by the cmd 4273 * parameter. 4274 */ 4275 ret = match_records(hash, func, strlen(func), module); 4276 kfree(func); 4277 4278 if (!ret) 4279 return cache_mod(tr, func_orig, module, enable); 4280 if (ret < 0) 4281 return ret; 4282 return 0; 4283 } 4284 4285 static struct ftrace_func_command ftrace_mod_cmd = { 4286 .name = "mod", 4287 .func = ftrace_mod_callback, 4288 }; 4289 4290 static int __init ftrace_mod_cmd_init(void) 4291 { 4292 return register_ftrace_command(&ftrace_mod_cmd); 4293 } 4294 core_initcall(ftrace_mod_cmd_init); 4295 4296 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4297 struct ftrace_ops *op, struct pt_regs *pt_regs) 4298 { 4299 struct ftrace_probe_ops *probe_ops; 4300 struct ftrace_func_probe *probe; 4301 4302 probe = container_of(op, struct ftrace_func_probe, ops); 4303 probe_ops = probe->probe_ops; 4304 4305 /* 4306 * Disable preemption for these calls to prevent a RCU grace 4307 * period. This syncs the hash iteration and freeing of items 4308 * on the hash. rcu_read_lock is too dangerous here. 4309 */ 4310 preempt_disable_notrace(); 4311 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4312 preempt_enable_notrace(); 4313 } 4314 4315 struct ftrace_func_map { 4316 struct ftrace_func_entry entry; 4317 void *data; 4318 }; 4319 4320 struct ftrace_func_mapper { 4321 struct ftrace_hash hash; 4322 }; 4323 4324 /** 4325 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4326 * 4327 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4328 */ 4329 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4330 { 4331 struct ftrace_hash *hash; 4332 4333 /* 4334 * The mapper is simply a ftrace_hash, but since the entries 4335 * in the hash are not ftrace_func_entry type, we define it 4336 * as a separate structure. 4337 */ 4338 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4339 return (struct ftrace_func_mapper *)hash; 4340 } 4341 4342 /** 4343 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4344 * @mapper: The mapper that has the ip maps 4345 * @ip: the instruction pointer to find the data for 4346 * 4347 * Returns the data mapped to @ip if found otherwise NULL. The return 4348 * is actually the address of the mapper data pointer. The address is 4349 * returned for use cases where the data is no bigger than a long, and 4350 * the user can use the data pointer as its data instead of having to 4351 * allocate more memory for the reference. 4352 */ 4353 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4354 unsigned long ip) 4355 { 4356 struct ftrace_func_entry *entry; 4357 struct ftrace_func_map *map; 4358 4359 entry = ftrace_lookup_ip(&mapper->hash, ip); 4360 if (!entry) 4361 return NULL; 4362 4363 map = (struct ftrace_func_map *)entry; 4364 return &map->data; 4365 } 4366 4367 /** 4368 * ftrace_func_mapper_add_ip - Map some data to an ip 4369 * @mapper: The mapper that has the ip maps 4370 * @ip: The instruction pointer address to map @data to 4371 * @data: The data to map to @ip 4372 * 4373 * Returns 0 on success otherwise an error. 4374 */ 4375 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4376 unsigned long ip, void *data) 4377 { 4378 struct ftrace_func_entry *entry; 4379 struct ftrace_func_map *map; 4380 4381 entry = ftrace_lookup_ip(&mapper->hash, ip); 4382 if (entry) 4383 return -EBUSY; 4384 4385 map = kmalloc(sizeof(*map), GFP_KERNEL); 4386 if (!map) 4387 return -ENOMEM; 4388 4389 map->entry.ip = ip; 4390 map->data = data; 4391 4392 __add_hash_entry(&mapper->hash, &map->entry); 4393 4394 return 0; 4395 } 4396 4397 /** 4398 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4399 * @mapper: The mapper that has the ip maps 4400 * @ip: The instruction pointer address to remove the data from 4401 * 4402 * Returns the data if it is found, otherwise NULL. 4403 * Note, if the data pointer is used as the data itself, (see 4404 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4405 * if the data pointer was set to zero. 4406 */ 4407 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4408 unsigned long ip) 4409 { 4410 struct ftrace_func_entry *entry; 4411 struct ftrace_func_map *map; 4412 void *data; 4413 4414 entry = ftrace_lookup_ip(&mapper->hash, ip); 4415 if (!entry) 4416 return NULL; 4417 4418 map = (struct ftrace_func_map *)entry; 4419 data = map->data; 4420 4421 remove_hash_entry(&mapper->hash, entry); 4422 kfree(entry); 4423 4424 return data; 4425 } 4426 4427 /** 4428 * free_ftrace_func_mapper - free a mapping of ips and data 4429 * @mapper: The mapper that has the ip maps 4430 * @free_func: A function to be called on each data item. 4431 * 4432 * This is used to free the function mapper. The @free_func is optional 4433 * and can be used if the data needs to be freed as well. 4434 */ 4435 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4436 ftrace_mapper_func free_func) 4437 { 4438 struct ftrace_func_entry *entry; 4439 struct ftrace_func_map *map; 4440 struct hlist_head *hhd; 4441 int size, i; 4442 4443 if (!mapper) 4444 return; 4445 4446 if (free_func && mapper->hash.count) { 4447 size = 1 << mapper->hash.size_bits; 4448 for (i = 0; i < size; i++) { 4449 hhd = &mapper->hash.buckets[i]; 4450 hlist_for_each_entry(entry, hhd, hlist) { 4451 map = (struct ftrace_func_map *)entry; 4452 free_func(map); 4453 } 4454 } 4455 } 4456 free_ftrace_hash(&mapper->hash); 4457 } 4458 4459 static void release_probe(struct ftrace_func_probe *probe) 4460 { 4461 struct ftrace_probe_ops *probe_ops; 4462 4463 mutex_lock(&ftrace_lock); 4464 4465 WARN_ON(probe->ref <= 0); 4466 4467 /* Subtract the ref that was used to protect this instance */ 4468 probe->ref--; 4469 4470 if (!probe->ref) { 4471 probe_ops = probe->probe_ops; 4472 /* 4473 * Sending zero as ip tells probe_ops to free 4474 * the probe->data itself 4475 */ 4476 if (probe_ops->free) 4477 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4478 list_del(&probe->list); 4479 kfree(probe); 4480 } 4481 mutex_unlock(&ftrace_lock); 4482 } 4483 4484 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4485 { 4486 /* 4487 * Add one ref to keep it from being freed when releasing the 4488 * ftrace_lock mutex. 4489 */ 4490 probe->ref++; 4491 } 4492 4493 int 4494 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4495 struct ftrace_probe_ops *probe_ops, 4496 void *data) 4497 { 4498 struct ftrace_func_entry *entry; 4499 struct ftrace_func_probe *probe; 4500 struct ftrace_hash **orig_hash; 4501 struct ftrace_hash *old_hash; 4502 struct ftrace_hash *hash; 4503 int count = 0; 4504 int size; 4505 int ret; 4506 int i; 4507 4508 if (WARN_ON(!tr)) 4509 return -EINVAL; 4510 4511 /* We do not support '!' for function probes */ 4512 if (WARN_ON(glob[0] == '!')) 4513 return -EINVAL; 4514 4515 4516 mutex_lock(&ftrace_lock); 4517 /* Check if the probe_ops is already registered */ 4518 list_for_each_entry(probe, &tr->func_probes, list) { 4519 if (probe->probe_ops == probe_ops) 4520 break; 4521 } 4522 if (&probe->list == &tr->func_probes) { 4523 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4524 if (!probe) { 4525 mutex_unlock(&ftrace_lock); 4526 return -ENOMEM; 4527 } 4528 probe->probe_ops = probe_ops; 4529 probe->ops.func = function_trace_probe_call; 4530 probe->tr = tr; 4531 ftrace_ops_init(&probe->ops); 4532 list_add(&probe->list, &tr->func_probes); 4533 } 4534 4535 acquire_probe_locked(probe); 4536 4537 mutex_unlock(&ftrace_lock); 4538 4539 /* 4540 * Note, there's a small window here that the func_hash->filter_hash 4541 * may be NULL or empty. Need to be careful when reading the loop. 4542 */ 4543 mutex_lock(&probe->ops.func_hash->regex_lock); 4544 4545 orig_hash = &probe->ops.func_hash->filter_hash; 4546 old_hash = *orig_hash; 4547 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4548 4549 if (!hash) { 4550 ret = -ENOMEM; 4551 goto out; 4552 } 4553 4554 ret = ftrace_match_records(hash, glob, strlen(glob)); 4555 4556 /* Nothing found? */ 4557 if (!ret) 4558 ret = -EINVAL; 4559 4560 if (ret < 0) 4561 goto out; 4562 4563 size = 1 << hash->size_bits; 4564 for (i = 0; i < size; i++) { 4565 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4566 if (ftrace_lookup_ip(old_hash, entry->ip)) 4567 continue; 4568 /* 4569 * The caller might want to do something special 4570 * for each function we find. We call the callback 4571 * to give the caller an opportunity to do so. 4572 */ 4573 if (probe_ops->init) { 4574 ret = probe_ops->init(probe_ops, tr, 4575 entry->ip, data, 4576 &probe->data); 4577 if (ret < 0) { 4578 if (probe_ops->free && count) 4579 probe_ops->free(probe_ops, tr, 4580 0, probe->data); 4581 probe->data = NULL; 4582 goto out; 4583 } 4584 } 4585 count++; 4586 } 4587 } 4588 4589 mutex_lock(&ftrace_lock); 4590 4591 if (!count) { 4592 /* Nothing was added? */ 4593 ret = -EINVAL; 4594 goto out_unlock; 4595 } 4596 4597 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4598 hash, 1); 4599 if (ret < 0) 4600 goto err_unlock; 4601 4602 /* One ref for each new function traced */ 4603 probe->ref += count; 4604 4605 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4606 ret = ftrace_startup(&probe->ops, 0); 4607 4608 out_unlock: 4609 mutex_unlock(&ftrace_lock); 4610 4611 if (!ret) 4612 ret = count; 4613 out: 4614 mutex_unlock(&probe->ops.func_hash->regex_lock); 4615 free_ftrace_hash(hash); 4616 4617 release_probe(probe); 4618 4619 return ret; 4620 4621 err_unlock: 4622 if (!probe_ops->free || !count) 4623 goto out_unlock; 4624 4625 /* Failed to do the move, need to call the free functions */ 4626 for (i = 0; i < size; i++) { 4627 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4628 if (ftrace_lookup_ip(old_hash, entry->ip)) 4629 continue; 4630 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4631 } 4632 } 4633 goto out_unlock; 4634 } 4635 4636 int 4637 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4638 struct ftrace_probe_ops *probe_ops) 4639 { 4640 struct ftrace_ops_hash old_hash_ops; 4641 struct ftrace_func_entry *entry; 4642 struct ftrace_func_probe *probe; 4643 struct ftrace_glob func_g; 4644 struct ftrace_hash **orig_hash; 4645 struct ftrace_hash *old_hash; 4646 struct ftrace_hash *hash = NULL; 4647 struct hlist_node *tmp; 4648 struct hlist_head hhd; 4649 char str[KSYM_SYMBOL_LEN]; 4650 int count = 0; 4651 int i, ret = -ENODEV; 4652 int size; 4653 4654 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4655 func_g.search = NULL; 4656 else { 4657 int not; 4658 4659 func_g.type = filter_parse_regex(glob, strlen(glob), 4660 &func_g.search, ¬); 4661 func_g.len = strlen(func_g.search); 4662 4663 /* we do not support '!' for function probes */ 4664 if (WARN_ON(not)) 4665 return -EINVAL; 4666 } 4667 4668 mutex_lock(&ftrace_lock); 4669 /* Check if the probe_ops is already registered */ 4670 list_for_each_entry(probe, &tr->func_probes, list) { 4671 if (probe->probe_ops == probe_ops) 4672 break; 4673 } 4674 if (&probe->list == &tr->func_probes) 4675 goto err_unlock_ftrace; 4676 4677 ret = -EINVAL; 4678 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4679 goto err_unlock_ftrace; 4680 4681 acquire_probe_locked(probe); 4682 4683 mutex_unlock(&ftrace_lock); 4684 4685 mutex_lock(&probe->ops.func_hash->regex_lock); 4686 4687 orig_hash = &probe->ops.func_hash->filter_hash; 4688 old_hash = *orig_hash; 4689 4690 if (ftrace_hash_empty(old_hash)) 4691 goto out_unlock; 4692 4693 old_hash_ops.filter_hash = old_hash; 4694 /* Probes only have filters */ 4695 old_hash_ops.notrace_hash = NULL; 4696 4697 ret = -ENOMEM; 4698 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4699 if (!hash) 4700 goto out_unlock; 4701 4702 INIT_HLIST_HEAD(&hhd); 4703 4704 size = 1 << hash->size_bits; 4705 for (i = 0; i < size; i++) { 4706 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4707 4708 if (func_g.search) { 4709 kallsyms_lookup(entry->ip, NULL, NULL, 4710 NULL, str); 4711 if (!ftrace_match(str, &func_g)) 4712 continue; 4713 } 4714 count++; 4715 remove_hash_entry(hash, entry); 4716 hlist_add_head(&entry->hlist, &hhd); 4717 } 4718 } 4719 4720 /* Nothing found? */ 4721 if (!count) { 4722 ret = -EINVAL; 4723 goto out_unlock; 4724 } 4725 4726 mutex_lock(&ftrace_lock); 4727 4728 WARN_ON(probe->ref < count); 4729 4730 probe->ref -= count; 4731 4732 if (ftrace_hash_empty(hash)) 4733 ftrace_shutdown(&probe->ops, 0); 4734 4735 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4736 hash, 1); 4737 4738 /* still need to update the function call sites */ 4739 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4740 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4741 &old_hash_ops); 4742 synchronize_rcu(); 4743 4744 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4745 hlist_del(&entry->hlist); 4746 if (probe_ops->free) 4747 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4748 kfree(entry); 4749 } 4750 mutex_unlock(&ftrace_lock); 4751 4752 out_unlock: 4753 mutex_unlock(&probe->ops.func_hash->regex_lock); 4754 free_ftrace_hash(hash); 4755 4756 release_probe(probe); 4757 4758 return ret; 4759 4760 err_unlock_ftrace: 4761 mutex_unlock(&ftrace_lock); 4762 return ret; 4763 } 4764 4765 void clear_ftrace_function_probes(struct trace_array *tr) 4766 { 4767 struct ftrace_func_probe *probe, *n; 4768 4769 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4770 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4771 } 4772 4773 static LIST_HEAD(ftrace_commands); 4774 static DEFINE_MUTEX(ftrace_cmd_mutex); 4775 4776 /* 4777 * Currently we only register ftrace commands from __init, so mark this 4778 * __init too. 4779 */ 4780 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4781 { 4782 struct ftrace_func_command *p; 4783 int ret = 0; 4784 4785 mutex_lock(&ftrace_cmd_mutex); 4786 list_for_each_entry(p, &ftrace_commands, list) { 4787 if (strcmp(cmd->name, p->name) == 0) { 4788 ret = -EBUSY; 4789 goto out_unlock; 4790 } 4791 } 4792 list_add(&cmd->list, &ftrace_commands); 4793 out_unlock: 4794 mutex_unlock(&ftrace_cmd_mutex); 4795 4796 return ret; 4797 } 4798 4799 /* 4800 * Currently we only unregister ftrace commands from __init, so mark 4801 * this __init too. 4802 */ 4803 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4804 { 4805 struct ftrace_func_command *p, *n; 4806 int ret = -ENODEV; 4807 4808 mutex_lock(&ftrace_cmd_mutex); 4809 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4810 if (strcmp(cmd->name, p->name) == 0) { 4811 ret = 0; 4812 list_del_init(&p->list); 4813 goto out_unlock; 4814 } 4815 } 4816 out_unlock: 4817 mutex_unlock(&ftrace_cmd_mutex); 4818 4819 return ret; 4820 } 4821 4822 static int ftrace_process_regex(struct ftrace_iterator *iter, 4823 char *buff, int len, int enable) 4824 { 4825 struct ftrace_hash *hash = iter->hash; 4826 struct trace_array *tr = iter->ops->private; 4827 char *func, *command, *next = buff; 4828 struct ftrace_func_command *p; 4829 int ret = -EINVAL; 4830 4831 func = strsep(&next, ":"); 4832 4833 if (!next) { 4834 ret = ftrace_match_records(hash, func, len); 4835 if (!ret) 4836 ret = -EINVAL; 4837 if (ret < 0) 4838 return ret; 4839 return 0; 4840 } 4841 4842 /* command found */ 4843 4844 command = strsep(&next, ":"); 4845 4846 mutex_lock(&ftrace_cmd_mutex); 4847 list_for_each_entry(p, &ftrace_commands, list) { 4848 if (strcmp(p->name, command) == 0) { 4849 ret = p->func(tr, hash, func, command, next, enable); 4850 goto out_unlock; 4851 } 4852 } 4853 out_unlock: 4854 mutex_unlock(&ftrace_cmd_mutex); 4855 4856 return ret; 4857 } 4858 4859 static ssize_t 4860 ftrace_regex_write(struct file *file, const char __user *ubuf, 4861 size_t cnt, loff_t *ppos, int enable) 4862 { 4863 struct ftrace_iterator *iter; 4864 struct trace_parser *parser; 4865 ssize_t ret, read; 4866 4867 if (!cnt) 4868 return 0; 4869 4870 if (file->f_mode & FMODE_READ) { 4871 struct seq_file *m = file->private_data; 4872 iter = m->private; 4873 } else 4874 iter = file->private_data; 4875 4876 if (unlikely(ftrace_disabled)) 4877 return -ENODEV; 4878 4879 /* iter->hash is a local copy, so we don't need regex_lock */ 4880 4881 parser = &iter->parser; 4882 read = trace_get_user(parser, ubuf, cnt, ppos); 4883 4884 if (read >= 0 && trace_parser_loaded(parser) && 4885 !trace_parser_cont(parser)) { 4886 ret = ftrace_process_regex(iter, parser->buffer, 4887 parser->idx, enable); 4888 trace_parser_clear(parser); 4889 if (ret < 0) 4890 goto out; 4891 } 4892 4893 ret = read; 4894 out: 4895 return ret; 4896 } 4897 4898 ssize_t 4899 ftrace_filter_write(struct file *file, const char __user *ubuf, 4900 size_t cnt, loff_t *ppos) 4901 { 4902 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4903 } 4904 4905 ssize_t 4906 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4907 size_t cnt, loff_t *ppos) 4908 { 4909 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4910 } 4911 4912 static int 4913 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4914 { 4915 struct ftrace_func_entry *entry; 4916 4917 if (!ftrace_location(ip)) 4918 return -EINVAL; 4919 4920 if (remove) { 4921 entry = ftrace_lookup_ip(hash, ip); 4922 if (!entry) 4923 return -ENOENT; 4924 free_hash_entry(hash, entry); 4925 return 0; 4926 } 4927 4928 return add_hash_entry(hash, ip); 4929 } 4930 4931 static int 4932 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4933 unsigned long ip, int remove, int reset, int enable) 4934 { 4935 struct ftrace_hash **orig_hash; 4936 struct ftrace_hash *hash; 4937 int ret; 4938 4939 if (unlikely(ftrace_disabled)) 4940 return -ENODEV; 4941 4942 mutex_lock(&ops->func_hash->regex_lock); 4943 4944 if (enable) 4945 orig_hash = &ops->func_hash->filter_hash; 4946 else 4947 orig_hash = &ops->func_hash->notrace_hash; 4948 4949 if (reset) 4950 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4951 else 4952 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4953 4954 if (!hash) { 4955 ret = -ENOMEM; 4956 goto out_regex_unlock; 4957 } 4958 4959 if (buf && !ftrace_match_records(hash, buf, len)) { 4960 ret = -EINVAL; 4961 goto out_regex_unlock; 4962 } 4963 if (ip) { 4964 ret = ftrace_match_addr(hash, ip, remove); 4965 if (ret < 0) 4966 goto out_regex_unlock; 4967 } 4968 4969 mutex_lock(&ftrace_lock); 4970 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4971 mutex_unlock(&ftrace_lock); 4972 4973 out_regex_unlock: 4974 mutex_unlock(&ops->func_hash->regex_lock); 4975 4976 free_ftrace_hash(hash); 4977 return ret; 4978 } 4979 4980 static int 4981 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4982 int reset, int enable) 4983 { 4984 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable); 4985 } 4986 4987 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 4988 4989 struct ftrace_direct_func { 4990 struct list_head next; 4991 unsigned long addr; 4992 int count; 4993 }; 4994 4995 static LIST_HEAD(ftrace_direct_funcs); 4996 4997 /** 4998 * ftrace_find_direct_func - test an address if it is a registered direct caller 4999 * @addr: The address of a registered direct caller 5000 * 5001 * This searches to see if a ftrace direct caller has been registered 5002 * at a specific address, and if so, it returns a descriptor for it. 5003 * 5004 * This can be used by architecture code to see if an address is 5005 * a direct caller (trampoline) attached to a fentry/mcount location. 5006 * This is useful for the function_graph tracer, as it may need to 5007 * do adjustments if it traced a location that also has a direct 5008 * trampoline attached to it. 5009 */ 5010 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5011 { 5012 struct ftrace_direct_func *entry; 5013 bool found = false; 5014 5015 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5016 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5017 if (entry->addr == addr) { 5018 found = true; 5019 break; 5020 } 5021 } 5022 if (found) 5023 return entry; 5024 5025 return NULL; 5026 } 5027 5028 /** 5029 * register_ftrace_direct - Call a custom trampoline directly 5030 * @ip: The address of the nop at the beginning of a function 5031 * @addr: The address of the trampoline to call at @ip 5032 * 5033 * This is used to connect a direct call from the nop location (@ip) 5034 * at the start of ftrace traced functions. The location that it calls 5035 * (@addr) must be able to handle a direct call, and save the parameters 5036 * of the function being traced, and restore them (or inject new ones 5037 * if needed), before returning. 5038 * 5039 * Returns: 5040 * 0 on success 5041 * -EBUSY - Another direct function is already attached (there can be only one) 5042 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5043 * -ENOMEM - There was an allocation failure. 5044 */ 5045 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5046 { 5047 struct ftrace_direct_func *direct; 5048 struct ftrace_func_entry *entry; 5049 struct ftrace_hash *free_hash = NULL; 5050 struct dyn_ftrace *rec; 5051 int ret = -EBUSY; 5052 5053 mutex_lock(&direct_mutex); 5054 5055 /* See if there's a direct function at @ip already */ 5056 if (ftrace_find_rec_direct(ip)) 5057 goto out_unlock; 5058 5059 ret = -ENODEV; 5060 rec = lookup_rec(ip, ip); 5061 if (!rec) 5062 goto out_unlock; 5063 5064 /* 5065 * Check if the rec says it has a direct call but we didn't 5066 * find one earlier? 5067 */ 5068 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5069 goto out_unlock; 5070 5071 /* Make sure the ip points to the exact record */ 5072 if (ip != rec->ip) { 5073 ip = rec->ip; 5074 /* Need to check this ip for a direct. */ 5075 if (ftrace_find_rec_direct(ip)) 5076 goto out_unlock; 5077 } 5078 5079 ret = -ENOMEM; 5080 if (ftrace_hash_empty(direct_functions) || 5081 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 5082 struct ftrace_hash *new_hash; 5083 int size = ftrace_hash_empty(direct_functions) ? 0 : 5084 direct_functions->count + 1; 5085 5086 if (size < 32) 5087 size = 32; 5088 5089 new_hash = dup_hash(direct_functions, size); 5090 if (!new_hash) 5091 goto out_unlock; 5092 5093 free_hash = direct_functions; 5094 direct_functions = new_hash; 5095 } 5096 5097 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 5098 if (!entry) 5099 goto out_unlock; 5100 5101 direct = ftrace_find_direct_func(addr); 5102 if (!direct) { 5103 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5104 if (!direct) { 5105 kfree(entry); 5106 goto out_unlock; 5107 } 5108 direct->addr = addr; 5109 direct->count = 0; 5110 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5111 ftrace_direct_func_count++; 5112 } 5113 5114 entry->ip = ip; 5115 entry->direct = addr; 5116 __add_hash_entry(direct_functions, entry); 5117 5118 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5119 if (ret) 5120 remove_hash_entry(direct_functions, entry); 5121 5122 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5123 ret = register_ftrace_function(&direct_ops); 5124 if (ret) 5125 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5126 } 5127 5128 if (ret) { 5129 kfree(entry); 5130 if (!direct->count) { 5131 list_del_rcu(&direct->next); 5132 synchronize_rcu_tasks(); 5133 kfree(direct); 5134 if (free_hash) 5135 free_ftrace_hash(free_hash); 5136 free_hash = NULL; 5137 ftrace_direct_func_count--; 5138 } 5139 } else { 5140 direct->count++; 5141 } 5142 out_unlock: 5143 mutex_unlock(&direct_mutex); 5144 5145 if (free_hash) { 5146 synchronize_rcu_tasks(); 5147 free_ftrace_hash(free_hash); 5148 } 5149 5150 return ret; 5151 } 5152 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5153 5154 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5155 struct dyn_ftrace **recp) 5156 { 5157 struct ftrace_func_entry *entry; 5158 struct dyn_ftrace *rec; 5159 5160 rec = lookup_rec(*ip, *ip); 5161 if (!rec) 5162 return NULL; 5163 5164 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5165 if (!entry) { 5166 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5167 return NULL; 5168 } 5169 5170 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5171 5172 /* Passed in ip just needs to be on the call site */ 5173 *ip = rec->ip; 5174 5175 if (recp) 5176 *recp = rec; 5177 5178 return entry; 5179 } 5180 5181 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5182 { 5183 struct ftrace_direct_func *direct; 5184 struct ftrace_func_entry *entry; 5185 int ret = -ENODEV; 5186 5187 mutex_lock(&direct_mutex); 5188 5189 entry = find_direct_entry(&ip, NULL); 5190 if (!entry) 5191 goto out_unlock; 5192 5193 if (direct_functions->count == 1) 5194 unregister_ftrace_function(&direct_ops); 5195 5196 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5197 5198 WARN_ON(ret); 5199 5200 remove_hash_entry(direct_functions, entry); 5201 5202 direct = ftrace_find_direct_func(addr); 5203 if (!WARN_ON(!direct)) { 5204 /* This is the good path (see the ! before WARN) */ 5205 direct->count--; 5206 WARN_ON(direct->count < 0); 5207 if (!direct->count) { 5208 list_del_rcu(&direct->next); 5209 synchronize_rcu_tasks(); 5210 kfree(direct); 5211 kfree(entry); 5212 ftrace_direct_func_count--; 5213 } 5214 } 5215 out_unlock: 5216 mutex_unlock(&direct_mutex); 5217 5218 return ret; 5219 } 5220 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5221 5222 static struct ftrace_ops stub_ops = { 5223 .func = ftrace_stub, 5224 }; 5225 5226 /** 5227 * ftrace_modify_direct_caller - modify ftrace nop directly 5228 * @entry: The ftrace hash entry of the direct helper for @rec 5229 * @rec: The record representing the function site to patch 5230 * @old_addr: The location that the site at @rec->ip currently calls 5231 * @new_addr: The location that the site at @rec->ip should call 5232 * 5233 * An architecture may overwrite this function to optimize the 5234 * changing of the direct callback on an ftrace nop location. 5235 * This is called with the ftrace_lock mutex held, and no other 5236 * ftrace callbacks are on the associated record (@rec). Thus, 5237 * it is safe to modify the ftrace record, where it should be 5238 * currently calling @old_addr directly, to call @new_addr. 5239 * 5240 * Safety checks should be made to make sure that the code at 5241 * @rec->ip is currently calling @old_addr. And this must 5242 * also update entry->direct to @new_addr. 5243 */ 5244 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5245 struct dyn_ftrace *rec, 5246 unsigned long old_addr, 5247 unsigned long new_addr) 5248 { 5249 unsigned long ip = rec->ip; 5250 int ret; 5251 5252 /* 5253 * The ftrace_lock was used to determine if the record 5254 * had more than one registered user to it. If it did, 5255 * we needed to prevent that from changing to do the quick 5256 * switch. But if it did not (only a direct caller was attached) 5257 * then this function is called. But this function can deal 5258 * with attached callers to the rec that we care about, and 5259 * since this function uses standard ftrace calls that take 5260 * the ftrace_lock mutex, we need to release it. 5261 */ 5262 mutex_unlock(&ftrace_lock); 5263 5264 /* 5265 * By setting a stub function at the same address, we force 5266 * the code to call the iterator and the direct_ops helper. 5267 * This means that @ip does not call the direct call, and 5268 * we can simply modify it. 5269 */ 5270 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5271 if (ret) 5272 goto out_lock; 5273 5274 ret = register_ftrace_function(&stub_ops); 5275 if (ret) { 5276 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5277 goto out_lock; 5278 } 5279 5280 entry->direct = new_addr; 5281 5282 /* 5283 * By removing the stub, we put back the direct call, calling 5284 * the @new_addr. 5285 */ 5286 unregister_ftrace_function(&stub_ops); 5287 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5288 5289 out_lock: 5290 mutex_lock(&ftrace_lock); 5291 5292 return ret; 5293 } 5294 5295 /** 5296 * modify_ftrace_direct - Modify an existing direct call to call something else 5297 * @ip: The instruction pointer to modify 5298 * @old_addr: The address that the current @ip calls directly 5299 * @new_addr: The address that the @ip should call 5300 * 5301 * This modifies a ftrace direct caller at an instruction pointer without 5302 * having to disable it first. The direct call will switch over to the 5303 * @new_addr without missing anything. 5304 * 5305 * Returns: zero on success. Non zero on error, which includes: 5306 * -ENODEV : the @ip given has no direct caller attached 5307 * -EINVAL : the @old_addr does not match the current direct caller 5308 */ 5309 int modify_ftrace_direct(unsigned long ip, 5310 unsigned long old_addr, unsigned long new_addr) 5311 { 5312 struct ftrace_func_entry *entry; 5313 struct dyn_ftrace *rec; 5314 int ret = -ENODEV; 5315 5316 mutex_lock(&direct_mutex); 5317 5318 mutex_lock(&ftrace_lock); 5319 entry = find_direct_entry(&ip, &rec); 5320 if (!entry) 5321 goto out_unlock; 5322 5323 ret = -EINVAL; 5324 if (entry->direct != old_addr) 5325 goto out_unlock; 5326 5327 /* 5328 * If there's no other ftrace callback on the rec->ip location, 5329 * then it can be changed directly by the architecture. 5330 * If there is another caller, then we just need to change the 5331 * direct caller helper to point to @new_addr. 5332 */ 5333 if (ftrace_rec_count(rec) == 1) { 5334 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5335 } else { 5336 entry->direct = new_addr; 5337 ret = 0; 5338 } 5339 5340 out_unlock: 5341 mutex_unlock(&ftrace_lock); 5342 mutex_unlock(&direct_mutex); 5343 return ret; 5344 } 5345 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5346 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5347 5348 /** 5349 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5350 * @ops - the ops to set the filter with 5351 * @ip - the address to add to or remove from the filter. 5352 * @remove - non zero to remove the ip from the filter 5353 * @reset - non zero to reset all filters before applying this filter. 5354 * 5355 * Filters denote which functions should be enabled when tracing is enabled 5356 * If @ip is NULL, it failes to update filter. 5357 */ 5358 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5359 int remove, int reset) 5360 { 5361 ftrace_ops_init(ops); 5362 return ftrace_set_addr(ops, ip, remove, reset, 1); 5363 } 5364 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5365 5366 /** 5367 * ftrace_ops_set_global_filter - setup ops to use global filters 5368 * @ops - the ops which will use the global filters 5369 * 5370 * ftrace users who need global function trace filtering should call this. 5371 * It can set the global filter only if ops were not initialized before. 5372 */ 5373 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5374 { 5375 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5376 return; 5377 5378 ftrace_ops_init(ops); 5379 ops->func_hash = &global_ops.local_hash; 5380 } 5381 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5382 5383 static int 5384 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5385 int reset, int enable) 5386 { 5387 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 5388 } 5389 5390 /** 5391 * ftrace_set_filter - set a function to filter on in ftrace 5392 * @ops - the ops to set the filter with 5393 * @buf - the string that holds the function filter text. 5394 * @len - the length of the string. 5395 * @reset - non zero to reset all filters before applying this filter. 5396 * 5397 * Filters denote which functions should be enabled when tracing is enabled. 5398 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5399 */ 5400 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5401 int len, int reset) 5402 { 5403 ftrace_ops_init(ops); 5404 return ftrace_set_regex(ops, buf, len, reset, 1); 5405 } 5406 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5407 5408 /** 5409 * ftrace_set_notrace - set a function to not trace in ftrace 5410 * @ops - the ops to set the notrace filter with 5411 * @buf - the string that holds the function notrace text. 5412 * @len - the length of the string. 5413 * @reset - non zero to reset all filters before applying this filter. 5414 * 5415 * Notrace Filters denote which functions should not be enabled when tracing 5416 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5417 * for tracing. 5418 */ 5419 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5420 int len, int reset) 5421 { 5422 ftrace_ops_init(ops); 5423 return ftrace_set_regex(ops, buf, len, reset, 0); 5424 } 5425 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5426 /** 5427 * ftrace_set_global_filter - set a function to filter on with global tracers 5428 * @buf - the string that holds the function filter text. 5429 * @len - the length of the string. 5430 * @reset - non zero to reset all filters before applying this filter. 5431 * 5432 * Filters denote which functions should be enabled when tracing is enabled. 5433 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5434 */ 5435 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5436 { 5437 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5438 } 5439 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5440 5441 /** 5442 * ftrace_set_global_notrace - set a function to not trace with global tracers 5443 * @buf - the string that holds the function notrace text. 5444 * @len - the length of the string. 5445 * @reset - non zero to reset all filters before applying this filter. 5446 * 5447 * Notrace Filters denote which functions should not be enabled when tracing 5448 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5449 * for tracing. 5450 */ 5451 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5452 { 5453 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5454 } 5455 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5456 5457 /* 5458 * command line interface to allow users to set filters on boot up. 5459 */ 5460 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5461 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5462 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5463 5464 /* Used by function selftest to not test if filter is set */ 5465 bool ftrace_filter_param __initdata; 5466 5467 static int __init set_ftrace_notrace(char *str) 5468 { 5469 ftrace_filter_param = true; 5470 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5471 return 1; 5472 } 5473 __setup("ftrace_notrace=", set_ftrace_notrace); 5474 5475 static int __init set_ftrace_filter(char *str) 5476 { 5477 ftrace_filter_param = true; 5478 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5479 return 1; 5480 } 5481 __setup("ftrace_filter=", set_ftrace_filter); 5482 5483 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5484 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5485 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5486 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5487 5488 static int __init set_graph_function(char *str) 5489 { 5490 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5491 return 1; 5492 } 5493 __setup("ftrace_graph_filter=", set_graph_function); 5494 5495 static int __init set_graph_notrace_function(char *str) 5496 { 5497 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5498 return 1; 5499 } 5500 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5501 5502 static int __init set_graph_max_depth_function(char *str) 5503 { 5504 if (!str) 5505 return 0; 5506 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5507 return 1; 5508 } 5509 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 5510 5511 static void __init set_ftrace_early_graph(char *buf, int enable) 5512 { 5513 int ret; 5514 char *func; 5515 struct ftrace_hash *hash; 5516 5517 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5518 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 5519 return; 5520 5521 while (buf) { 5522 func = strsep(&buf, ","); 5523 /* we allow only one expression at a time */ 5524 ret = ftrace_graph_set_hash(hash, func); 5525 if (ret) 5526 printk(KERN_DEBUG "ftrace: function %s not " 5527 "traceable\n", func); 5528 } 5529 5530 if (enable) 5531 ftrace_graph_hash = hash; 5532 else 5533 ftrace_graph_notrace_hash = hash; 5534 } 5535 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5536 5537 void __init 5538 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 5539 { 5540 char *func; 5541 5542 ftrace_ops_init(ops); 5543 5544 while (buf) { 5545 func = strsep(&buf, ","); 5546 ftrace_set_regex(ops, func, strlen(func), 0, enable); 5547 } 5548 } 5549 5550 static void __init set_ftrace_early_filters(void) 5551 { 5552 if (ftrace_filter_buf[0]) 5553 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 5554 if (ftrace_notrace_buf[0]) 5555 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 5556 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5557 if (ftrace_graph_buf[0]) 5558 set_ftrace_early_graph(ftrace_graph_buf, 1); 5559 if (ftrace_graph_notrace_buf[0]) 5560 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 5561 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5562 } 5563 5564 int ftrace_regex_release(struct inode *inode, struct file *file) 5565 { 5566 struct seq_file *m = (struct seq_file *)file->private_data; 5567 struct ftrace_iterator *iter; 5568 struct ftrace_hash **orig_hash; 5569 struct trace_parser *parser; 5570 int filter_hash; 5571 int ret; 5572 5573 if (file->f_mode & FMODE_READ) { 5574 iter = m->private; 5575 seq_release(inode, file); 5576 } else 5577 iter = file->private_data; 5578 5579 parser = &iter->parser; 5580 if (trace_parser_loaded(parser)) { 5581 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 5582 } 5583 5584 trace_parser_put(parser); 5585 5586 mutex_lock(&iter->ops->func_hash->regex_lock); 5587 5588 if (file->f_mode & FMODE_WRITE) { 5589 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 5590 5591 if (filter_hash) { 5592 orig_hash = &iter->ops->func_hash->filter_hash; 5593 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 5594 iter->hash->flags |= FTRACE_HASH_FL_MOD; 5595 } else 5596 orig_hash = &iter->ops->func_hash->notrace_hash; 5597 5598 mutex_lock(&ftrace_lock); 5599 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 5600 iter->hash, filter_hash); 5601 mutex_unlock(&ftrace_lock); 5602 } else { 5603 /* For read only, the hash is the ops hash */ 5604 iter->hash = NULL; 5605 } 5606 5607 mutex_unlock(&iter->ops->func_hash->regex_lock); 5608 free_ftrace_hash(iter->hash); 5609 if (iter->tr) 5610 trace_array_put(iter->tr); 5611 kfree(iter); 5612 5613 return 0; 5614 } 5615 5616 static const struct file_operations ftrace_avail_fops = { 5617 .open = ftrace_avail_open, 5618 .read = seq_read, 5619 .llseek = seq_lseek, 5620 .release = seq_release_private, 5621 }; 5622 5623 static const struct file_operations ftrace_enabled_fops = { 5624 .open = ftrace_enabled_open, 5625 .read = seq_read, 5626 .llseek = seq_lseek, 5627 .release = seq_release_private, 5628 }; 5629 5630 static const struct file_operations ftrace_filter_fops = { 5631 .open = ftrace_filter_open, 5632 .read = seq_read, 5633 .write = ftrace_filter_write, 5634 .llseek = tracing_lseek, 5635 .release = ftrace_regex_release, 5636 }; 5637 5638 static const struct file_operations ftrace_notrace_fops = { 5639 .open = ftrace_notrace_open, 5640 .read = seq_read, 5641 .write = ftrace_notrace_write, 5642 .llseek = tracing_lseek, 5643 .release = ftrace_regex_release, 5644 }; 5645 5646 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5647 5648 static DEFINE_MUTEX(graph_lock); 5649 5650 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 5651 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 5652 5653 enum graph_filter_type { 5654 GRAPH_FILTER_NOTRACE = 0, 5655 GRAPH_FILTER_FUNCTION, 5656 }; 5657 5658 #define FTRACE_GRAPH_EMPTY ((void *)1) 5659 5660 struct ftrace_graph_data { 5661 struct ftrace_hash *hash; 5662 struct ftrace_func_entry *entry; 5663 int idx; /* for hash table iteration */ 5664 enum graph_filter_type type; 5665 struct ftrace_hash *new_hash; 5666 const struct seq_operations *seq_ops; 5667 struct trace_parser parser; 5668 }; 5669 5670 static void * 5671 __g_next(struct seq_file *m, loff_t *pos) 5672 { 5673 struct ftrace_graph_data *fgd = m->private; 5674 struct ftrace_func_entry *entry = fgd->entry; 5675 struct hlist_head *head; 5676 int i, idx = fgd->idx; 5677 5678 if (*pos >= fgd->hash->count) 5679 return NULL; 5680 5681 if (entry) { 5682 hlist_for_each_entry_continue(entry, hlist) { 5683 fgd->entry = entry; 5684 return entry; 5685 } 5686 5687 idx++; 5688 } 5689 5690 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5691 head = &fgd->hash->buckets[i]; 5692 hlist_for_each_entry(entry, head, hlist) { 5693 fgd->entry = entry; 5694 fgd->idx = i; 5695 return entry; 5696 } 5697 } 5698 return NULL; 5699 } 5700 5701 static void * 5702 g_next(struct seq_file *m, void *v, loff_t *pos) 5703 { 5704 (*pos)++; 5705 return __g_next(m, pos); 5706 } 5707 5708 static void *g_start(struct seq_file *m, loff_t *pos) 5709 { 5710 struct ftrace_graph_data *fgd = m->private; 5711 5712 mutex_lock(&graph_lock); 5713 5714 if (fgd->type == GRAPH_FILTER_FUNCTION) 5715 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5716 lockdep_is_held(&graph_lock)); 5717 else 5718 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5719 lockdep_is_held(&graph_lock)); 5720 5721 /* Nothing, tell g_show to print all functions are enabled */ 5722 if (ftrace_hash_empty(fgd->hash) && !*pos) 5723 return FTRACE_GRAPH_EMPTY; 5724 5725 fgd->idx = 0; 5726 fgd->entry = NULL; 5727 return __g_next(m, pos); 5728 } 5729 5730 static void g_stop(struct seq_file *m, void *p) 5731 { 5732 mutex_unlock(&graph_lock); 5733 } 5734 5735 static int g_show(struct seq_file *m, void *v) 5736 { 5737 struct ftrace_func_entry *entry = v; 5738 5739 if (!entry) 5740 return 0; 5741 5742 if (entry == FTRACE_GRAPH_EMPTY) { 5743 struct ftrace_graph_data *fgd = m->private; 5744 5745 if (fgd->type == GRAPH_FILTER_FUNCTION) 5746 seq_puts(m, "#### all functions enabled ####\n"); 5747 else 5748 seq_puts(m, "#### no functions disabled ####\n"); 5749 return 0; 5750 } 5751 5752 seq_printf(m, "%ps\n", (void *)entry->ip); 5753 5754 return 0; 5755 } 5756 5757 static const struct seq_operations ftrace_graph_seq_ops = { 5758 .start = g_start, 5759 .next = g_next, 5760 .stop = g_stop, 5761 .show = g_show, 5762 }; 5763 5764 static int 5765 __ftrace_graph_open(struct inode *inode, struct file *file, 5766 struct ftrace_graph_data *fgd) 5767 { 5768 int ret; 5769 struct ftrace_hash *new_hash = NULL; 5770 5771 ret = security_locked_down(LOCKDOWN_TRACEFS); 5772 if (ret) 5773 return ret; 5774 5775 if (file->f_mode & FMODE_WRITE) { 5776 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5777 5778 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5779 return -ENOMEM; 5780 5781 if (file->f_flags & O_TRUNC) 5782 new_hash = alloc_ftrace_hash(size_bits); 5783 else 5784 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5785 fgd->hash); 5786 if (!new_hash) { 5787 ret = -ENOMEM; 5788 goto out; 5789 } 5790 } 5791 5792 if (file->f_mode & FMODE_READ) { 5793 ret = seq_open(file, &ftrace_graph_seq_ops); 5794 if (!ret) { 5795 struct seq_file *m = file->private_data; 5796 m->private = fgd; 5797 } else { 5798 /* Failed */ 5799 free_ftrace_hash(new_hash); 5800 new_hash = NULL; 5801 } 5802 } else 5803 file->private_data = fgd; 5804 5805 out: 5806 if (ret < 0 && file->f_mode & FMODE_WRITE) 5807 trace_parser_put(&fgd->parser); 5808 5809 fgd->new_hash = new_hash; 5810 5811 /* 5812 * All uses of fgd->hash must be taken with the graph_lock 5813 * held. The graph_lock is going to be released, so force 5814 * fgd->hash to be reinitialized when it is taken again. 5815 */ 5816 fgd->hash = NULL; 5817 5818 return ret; 5819 } 5820 5821 static int 5822 ftrace_graph_open(struct inode *inode, struct file *file) 5823 { 5824 struct ftrace_graph_data *fgd; 5825 int ret; 5826 5827 if (unlikely(ftrace_disabled)) 5828 return -ENODEV; 5829 5830 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5831 if (fgd == NULL) 5832 return -ENOMEM; 5833 5834 mutex_lock(&graph_lock); 5835 5836 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5837 lockdep_is_held(&graph_lock)); 5838 fgd->type = GRAPH_FILTER_FUNCTION; 5839 fgd->seq_ops = &ftrace_graph_seq_ops; 5840 5841 ret = __ftrace_graph_open(inode, file, fgd); 5842 if (ret < 0) 5843 kfree(fgd); 5844 5845 mutex_unlock(&graph_lock); 5846 return ret; 5847 } 5848 5849 static int 5850 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5851 { 5852 struct ftrace_graph_data *fgd; 5853 int ret; 5854 5855 if (unlikely(ftrace_disabled)) 5856 return -ENODEV; 5857 5858 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5859 if (fgd == NULL) 5860 return -ENOMEM; 5861 5862 mutex_lock(&graph_lock); 5863 5864 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5865 lockdep_is_held(&graph_lock)); 5866 fgd->type = GRAPH_FILTER_NOTRACE; 5867 fgd->seq_ops = &ftrace_graph_seq_ops; 5868 5869 ret = __ftrace_graph_open(inode, file, fgd); 5870 if (ret < 0) 5871 kfree(fgd); 5872 5873 mutex_unlock(&graph_lock); 5874 return ret; 5875 } 5876 5877 static int 5878 ftrace_graph_release(struct inode *inode, struct file *file) 5879 { 5880 struct ftrace_graph_data *fgd; 5881 struct ftrace_hash *old_hash, *new_hash; 5882 struct trace_parser *parser; 5883 int ret = 0; 5884 5885 if (file->f_mode & FMODE_READ) { 5886 struct seq_file *m = file->private_data; 5887 5888 fgd = m->private; 5889 seq_release(inode, file); 5890 } else { 5891 fgd = file->private_data; 5892 } 5893 5894 5895 if (file->f_mode & FMODE_WRITE) { 5896 5897 parser = &fgd->parser; 5898 5899 if (trace_parser_loaded((parser))) { 5900 ret = ftrace_graph_set_hash(fgd->new_hash, 5901 parser->buffer); 5902 } 5903 5904 trace_parser_put(parser); 5905 5906 new_hash = __ftrace_hash_move(fgd->new_hash); 5907 if (!new_hash) { 5908 ret = -ENOMEM; 5909 goto out; 5910 } 5911 5912 mutex_lock(&graph_lock); 5913 5914 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5915 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5916 lockdep_is_held(&graph_lock)); 5917 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5918 } else { 5919 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5920 lockdep_is_held(&graph_lock)); 5921 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5922 } 5923 5924 mutex_unlock(&graph_lock); 5925 5926 /* 5927 * We need to do a hard force of sched synchronization. 5928 * This is because we use preempt_disable() to do RCU, but 5929 * the function tracers can be called where RCU is not watching 5930 * (like before user_exit()). We can not rely on the RCU 5931 * infrastructure to do the synchronization, thus we must do it 5932 * ourselves. 5933 */ 5934 synchronize_rcu_tasks_rude(); 5935 5936 free_ftrace_hash(old_hash); 5937 } 5938 5939 out: 5940 free_ftrace_hash(fgd->new_hash); 5941 kfree(fgd); 5942 5943 return ret; 5944 } 5945 5946 static int 5947 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5948 { 5949 struct ftrace_glob func_g; 5950 struct dyn_ftrace *rec; 5951 struct ftrace_page *pg; 5952 struct ftrace_func_entry *entry; 5953 int fail = 1; 5954 int not; 5955 5956 /* decode regex */ 5957 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5958 &func_g.search, ¬); 5959 5960 func_g.len = strlen(func_g.search); 5961 5962 mutex_lock(&ftrace_lock); 5963 5964 if (unlikely(ftrace_disabled)) { 5965 mutex_unlock(&ftrace_lock); 5966 return -ENODEV; 5967 } 5968 5969 do_for_each_ftrace_rec(pg, rec) { 5970 5971 if (rec->flags & FTRACE_FL_DISABLED) 5972 continue; 5973 5974 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5975 entry = ftrace_lookup_ip(hash, rec->ip); 5976 5977 if (!not) { 5978 fail = 0; 5979 5980 if (entry) 5981 continue; 5982 if (add_hash_entry(hash, rec->ip) < 0) 5983 goto out; 5984 } else { 5985 if (entry) { 5986 free_hash_entry(hash, entry); 5987 fail = 0; 5988 } 5989 } 5990 } 5991 } while_for_each_ftrace_rec(); 5992 out: 5993 mutex_unlock(&ftrace_lock); 5994 5995 if (fail) 5996 return -EINVAL; 5997 5998 return 0; 5999 } 6000 6001 static ssize_t 6002 ftrace_graph_write(struct file *file, const char __user *ubuf, 6003 size_t cnt, loff_t *ppos) 6004 { 6005 ssize_t read, ret = 0; 6006 struct ftrace_graph_data *fgd = file->private_data; 6007 struct trace_parser *parser; 6008 6009 if (!cnt) 6010 return 0; 6011 6012 /* Read mode uses seq functions */ 6013 if (file->f_mode & FMODE_READ) { 6014 struct seq_file *m = file->private_data; 6015 fgd = m->private; 6016 } 6017 6018 parser = &fgd->parser; 6019 6020 read = trace_get_user(parser, ubuf, cnt, ppos); 6021 6022 if (read >= 0 && trace_parser_loaded(parser) && 6023 !trace_parser_cont(parser)) { 6024 6025 ret = ftrace_graph_set_hash(fgd->new_hash, 6026 parser->buffer); 6027 trace_parser_clear(parser); 6028 } 6029 6030 if (!ret) 6031 ret = read; 6032 6033 return ret; 6034 } 6035 6036 static const struct file_operations ftrace_graph_fops = { 6037 .open = ftrace_graph_open, 6038 .read = seq_read, 6039 .write = ftrace_graph_write, 6040 .llseek = tracing_lseek, 6041 .release = ftrace_graph_release, 6042 }; 6043 6044 static const struct file_operations ftrace_graph_notrace_fops = { 6045 .open = ftrace_graph_notrace_open, 6046 .read = seq_read, 6047 .write = ftrace_graph_write, 6048 .llseek = tracing_lseek, 6049 .release = ftrace_graph_release, 6050 }; 6051 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6052 6053 void ftrace_create_filter_files(struct ftrace_ops *ops, 6054 struct dentry *parent) 6055 { 6056 6057 trace_create_file("set_ftrace_filter", 0644, parent, 6058 ops, &ftrace_filter_fops); 6059 6060 trace_create_file("set_ftrace_notrace", 0644, parent, 6061 ops, &ftrace_notrace_fops); 6062 } 6063 6064 /* 6065 * The name "destroy_filter_files" is really a misnomer. Although 6066 * in the future, it may actually delete the files, but this is 6067 * really intended to make sure the ops passed in are disabled 6068 * and that when this function returns, the caller is free to 6069 * free the ops. 6070 * 6071 * The "destroy" name is only to match the "create" name that this 6072 * should be paired with. 6073 */ 6074 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6075 { 6076 mutex_lock(&ftrace_lock); 6077 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6078 ftrace_shutdown(ops, 0); 6079 ops->flags |= FTRACE_OPS_FL_DELETED; 6080 ftrace_free_filter(ops); 6081 mutex_unlock(&ftrace_lock); 6082 } 6083 6084 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6085 { 6086 6087 trace_create_file("available_filter_functions", 0444, 6088 d_tracer, NULL, &ftrace_avail_fops); 6089 6090 trace_create_file("enabled_functions", 0444, 6091 d_tracer, NULL, &ftrace_enabled_fops); 6092 6093 ftrace_create_filter_files(&global_ops, d_tracer); 6094 6095 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6096 trace_create_file("set_graph_function", 0644, d_tracer, 6097 NULL, 6098 &ftrace_graph_fops); 6099 trace_create_file("set_graph_notrace", 0644, d_tracer, 6100 NULL, 6101 &ftrace_graph_notrace_fops); 6102 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6103 6104 return 0; 6105 } 6106 6107 static int ftrace_cmp_ips(const void *a, const void *b) 6108 { 6109 const unsigned long *ipa = a; 6110 const unsigned long *ipb = b; 6111 6112 if (*ipa > *ipb) 6113 return 1; 6114 if (*ipa < *ipb) 6115 return -1; 6116 return 0; 6117 } 6118 6119 static int ftrace_process_locs(struct module *mod, 6120 unsigned long *start, 6121 unsigned long *end) 6122 { 6123 struct ftrace_page *start_pg; 6124 struct ftrace_page *pg; 6125 struct dyn_ftrace *rec; 6126 unsigned long count; 6127 unsigned long *p; 6128 unsigned long addr; 6129 unsigned long flags = 0; /* Shut up gcc */ 6130 int ret = -ENOMEM; 6131 6132 count = end - start; 6133 6134 if (!count) 6135 return 0; 6136 6137 sort(start, count, sizeof(*start), 6138 ftrace_cmp_ips, NULL); 6139 6140 start_pg = ftrace_allocate_pages(count); 6141 if (!start_pg) 6142 return -ENOMEM; 6143 6144 mutex_lock(&ftrace_lock); 6145 6146 /* 6147 * Core and each module needs their own pages, as 6148 * modules will free them when they are removed. 6149 * Force a new page to be allocated for modules. 6150 */ 6151 if (!mod) { 6152 WARN_ON(ftrace_pages || ftrace_pages_start); 6153 /* First initialization */ 6154 ftrace_pages = ftrace_pages_start = start_pg; 6155 } else { 6156 if (!ftrace_pages) 6157 goto out; 6158 6159 if (WARN_ON(ftrace_pages->next)) { 6160 /* Hmm, we have free pages? */ 6161 while (ftrace_pages->next) 6162 ftrace_pages = ftrace_pages->next; 6163 } 6164 6165 ftrace_pages->next = start_pg; 6166 } 6167 6168 p = start; 6169 pg = start_pg; 6170 while (p < end) { 6171 addr = ftrace_call_adjust(*p++); 6172 /* 6173 * Some architecture linkers will pad between 6174 * the different mcount_loc sections of different 6175 * object files to satisfy alignments. 6176 * Skip any NULL pointers. 6177 */ 6178 if (!addr) 6179 continue; 6180 6181 if (pg->index == pg->size) { 6182 /* We should have allocated enough */ 6183 if (WARN_ON(!pg->next)) 6184 break; 6185 pg = pg->next; 6186 } 6187 6188 rec = &pg->records[pg->index++]; 6189 rec->ip = addr; 6190 } 6191 6192 /* We should have used all pages */ 6193 WARN_ON(pg->next); 6194 6195 /* Assign the last page to ftrace_pages */ 6196 ftrace_pages = pg; 6197 6198 /* 6199 * We only need to disable interrupts on start up 6200 * because we are modifying code that an interrupt 6201 * may execute, and the modification is not atomic. 6202 * But for modules, nothing runs the code we modify 6203 * until we are finished with it, and there's no 6204 * reason to cause large interrupt latencies while we do it. 6205 */ 6206 if (!mod) 6207 local_irq_save(flags); 6208 ftrace_update_code(mod, start_pg); 6209 if (!mod) 6210 local_irq_restore(flags); 6211 ret = 0; 6212 out: 6213 mutex_unlock(&ftrace_lock); 6214 6215 return ret; 6216 } 6217 6218 struct ftrace_mod_func { 6219 struct list_head list; 6220 char *name; 6221 unsigned long ip; 6222 unsigned int size; 6223 }; 6224 6225 struct ftrace_mod_map { 6226 struct rcu_head rcu; 6227 struct list_head list; 6228 struct module *mod; 6229 unsigned long start_addr; 6230 unsigned long end_addr; 6231 struct list_head funcs; 6232 unsigned int num_funcs; 6233 }; 6234 6235 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6236 unsigned long *value, char *type, 6237 char *name, char *module_name, 6238 int *exported) 6239 { 6240 struct ftrace_ops *op; 6241 6242 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6243 if (!op->trampoline || symnum--) 6244 continue; 6245 *value = op->trampoline; 6246 *type = 't'; 6247 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6248 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6249 *exported = 0; 6250 return 0; 6251 } 6252 6253 return -ERANGE; 6254 } 6255 6256 #ifdef CONFIG_MODULES 6257 6258 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6259 6260 static LIST_HEAD(ftrace_mod_maps); 6261 6262 static int referenced_filters(struct dyn_ftrace *rec) 6263 { 6264 struct ftrace_ops *ops; 6265 int cnt = 0; 6266 6267 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6268 if (ops_references_rec(ops, rec)) { 6269 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6270 continue; 6271 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6272 continue; 6273 cnt++; 6274 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6275 rec->flags |= FTRACE_FL_REGS; 6276 if (cnt == 1 && ops->trampoline) 6277 rec->flags |= FTRACE_FL_TRAMP; 6278 else 6279 rec->flags &= ~FTRACE_FL_TRAMP; 6280 } 6281 } 6282 6283 return cnt; 6284 } 6285 6286 static void 6287 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6288 { 6289 struct ftrace_func_entry *entry; 6290 struct dyn_ftrace *rec; 6291 int i; 6292 6293 if (ftrace_hash_empty(hash)) 6294 return; 6295 6296 for (i = 0; i < pg->index; i++) { 6297 rec = &pg->records[i]; 6298 entry = __ftrace_lookup_ip(hash, rec->ip); 6299 /* 6300 * Do not allow this rec to match again. 6301 * Yeah, it may waste some memory, but will be removed 6302 * if/when the hash is modified again. 6303 */ 6304 if (entry) 6305 entry->ip = 0; 6306 } 6307 } 6308 6309 /* Clear any records from hashs */ 6310 static void clear_mod_from_hashes(struct ftrace_page *pg) 6311 { 6312 struct trace_array *tr; 6313 6314 mutex_lock(&trace_types_lock); 6315 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6316 if (!tr->ops || !tr->ops->func_hash) 6317 continue; 6318 mutex_lock(&tr->ops->func_hash->regex_lock); 6319 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6320 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6321 mutex_unlock(&tr->ops->func_hash->regex_lock); 6322 } 6323 mutex_unlock(&trace_types_lock); 6324 } 6325 6326 static void ftrace_free_mod_map(struct rcu_head *rcu) 6327 { 6328 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6329 struct ftrace_mod_func *mod_func; 6330 struct ftrace_mod_func *n; 6331 6332 /* All the contents of mod_map are now not visible to readers */ 6333 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6334 kfree(mod_func->name); 6335 list_del(&mod_func->list); 6336 kfree(mod_func); 6337 } 6338 6339 kfree(mod_map); 6340 } 6341 6342 void ftrace_release_mod(struct module *mod) 6343 { 6344 struct ftrace_mod_map *mod_map; 6345 struct ftrace_mod_map *n; 6346 struct dyn_ftrace *rec; 6347 struct ftrace_page **last_pg; 6348 struct ftrace_page *tmp_page = NULL; 6349 struct ftrace_page *pg; 6350 int order; 6351 6352 mutex_lock(&ftrace_lock); 6353 6354 if (ftrace_disabled) 6355 goto out_unlock; 6356 6357 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6358 if (mod_map->mod == mod) { 6359 list_del_rcu(&mod_map->list); 6360 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6361 break; 6362 } 6363 } 6364 6365 /* 6366 * Each module has its own ftrace_pages, remove 6367 * them from the list. 6368 */ 6369 last_pg = &ftrace_pages_start; 6370 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6371 rec = &pg->records[0]; 6372 if (within_module_core(rec->ip, mod) || 6373 within_module_init(rec->ip, mod)) { 6374 /* 6375 * As core pages are first, the first 6376 * page should never be a module page. 6377 */ 6378 if (WARN_ON(pg == ftrace_pages_start)) 6379 goto out_unlock; 6380 6381 /* Check if we are deleting the last page */ 6382 if (pg == ftrace_pages) 6383 ftrace_pages = next_to_ftrace_page(last_pg); 6384 6385 ftrace_update_tot_cnt -= pg->index; 6386 *last_pg = pg->next; 6387 6388 pg->next = tmp_page; 6389 tmp_page = pg; 6390 } else 6391 last_pg = &pg->next; 6392 } 6393 out_unlock: 6394 mutex_unlock(&ftrace_lock); 6395 6396 for (pg = tmp_page; pg; pg = tmp_page) { 6397 6398 /* Needs to be called outside of ftrace_lock */ 6399 clear_mod_from_hashes(pg); 6400 6401 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6402 free_pages((unsigned long)pg->records, order); 6403 tmp_page = pg->next; 6404 kfree(pg); 6405 ftrace_number_of_pages -= 1 << order; 6406 ftrace_number_of_groups--; 6407 } 6408 } 6409 6410 void ftrace_module_enable(struct module *mod) 6411 { 6412 struct dyn_ftrace *rec; 6413 struct ftrace_page *pg; 6414 6415 mutex_lock(&ftrace_lock); 6416 6417 if (ftrace_disabled) 6418 goto out_unlock; 6419 6420 /* 6421 * If the tracing is enabled, go ahead and enable the record. 6422 * 6423 * The reason not to enable the record immediately is the 6424 * inherent check of ftrace_make_nop/ftrace_make_call for 6425 * correct previous instructions. Making first the NOP 6426 * conversion puts the module to the correct state, thus 6427 * passing the ftrace_make_call check. 6428 * 6429 * We also delay this to after the module code already set the 6430 * text to read-only, as we now need to set it back to read-write 6431 * so that we can modify the text. 6432 */ 6433 if (ftrace_start_up) 6434 ftrace_arch_code_modify_prepare(); 6435 6436 do_for_each_ftrace_rec(pg, rec) { 6437 int cnt; 6438 /* 6439 * do_for_each_ftrace_rec() is a double loop. 6440 * module text shares the pg. If a record is 6441 * not part of this module, then skip this pg, 6442 * which the "break" will do. 6443 */ 6444 if (!within_module_core(rec->ip, mod) && 6445 !within_module_init(rec->ip, mod)) 6446 break; 6447 6448 cnt = 0; 6449 6450 /* 6451 * When adding a module, we need to check if tracers are 6452 * currently enabled and if they are, and can trace this record, 6453 * we need to enable the module functions as well as update the 6454 * reference counts for those function records. 6455 */ 6456 if (ftrace_start_up) 6457 cnt += referenced_filters(rec); 6458 6459 rec->flags &= ~FTRACE_FL_DISABLED; 6460 rec->flags += cnt; 6461 6462 if (ftrace_start_up && cnt) { 6463 int failed = __ftrace_replace_code(rec, 1); 6464 if (failed) { 6465 ftrace_bug(failed, rec); 6466 goto out_loop; 6467 } 6468 } 6469 6470 } while_for_each_ftrace_rec(); 6471 6472 out_loop: 6473 if (ftrace_start_up) 6474 ftrace_arch_code_modify_post_process(); 6475 6476 out_unlock: 6477 mutex_unlock(&ftrace_lock); 6478 6479 process_cached_mods(mod->name); 6480 } 6481 6482 void ftrace_module_init(struct module *mod) 6483 { 6484 if (ftrace_disabled || !mod->num_ftrace_callsites) 6485 return; 6486 6487 ftrace_process_locs(mod, mod->ftrace_callsites, 6488 mod->ftrace_callsites + mod->num_ftrace_callsites); 6489 } 6490 6491 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6492 struct dyn_ftrace *rec) 6493 { 6494 struct ftrace_mod_func *mod_func; 6495 unsigned long symsize; 6496 unsigned long offset; 6497 char str[KSYM_SYMBOL_LEN]; 6498 char *modname; 6499 const char *ret; 6500 6501 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 6502 if (!ret) 6503 return; 6504 6505 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 6506 if (!mod_func) 6507 return; 6508 6509 mod_func->name = kstrdup(str, GFP_KERNEL); 6510 if (!mod_func->name) { 6511 kfree(mod_func); 6512 return; 6513 } 6514 6515 mod_func->ip = rec->ip - offset; 6516 mod_func->size = symsize; 6517 6518 mod_map->num_funcs++; 6519 6520 list_add_rcu(&mod_func->list, &mod_map->funcs); 6521 } 6522 6523 static struct ftrace_mod_map * 6524 allocate_ftrace_mod_map(struct module *mod, 6525 unsigned long start, unsigned long end) 6526 { 6527 struct ftrace_mod_map *mod_map; 6528 6529 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 6530 if (!mod_map) 6531 return NULL; 6532 6533 mod_map->mod = mod; 6534 mod_map->start_addr = start; 6535 mod_map->end_addr = end; 6536 mod_map->num_funcs = 0; 6537 6538 INIT_LIST_HEAD_RCU(&mod_map->funcs); 6539 6540 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 6541 6542 return mod_map; 6543 } 6544 6545 static const char * 6546 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 6547 unsigned long addr, unsigned long *size, 6548 unsigned long *off, char *sym) 6549 { 6550 struct ftrace_mod_func *found_func = NULL; 6551 struct ftrace_mod_func *mod_func; 6552 6553 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6554 if (addr >= mod_func->ip && 6555 addr < mod_func->ip + mod_func->size) { 6556 found_func = mod_func; 6557 break; 6558 } 6559 } 6560 6561 if (found_func) { 6562 if (size) 6563 *size = found_func->size; 6564 if (off) 6565 *off = addr - found_func->ip; 6566 if (sym) 6567 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 6568 6569 return found_func->name; 6570 } 6571 6572 return NULL; 6573 } 6574 6575 const char * 6576 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 6577 unsigned long *off, char **modname, char *sym) 6578 { 6579 struct ftrace_mod_map *mod_map; 6580 const char *ret = NULL; 6581 6582 /* mod_map is freed via call_rcu() */ 6583 preempt_disable(); 6584 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6585 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 6586 if (ret) { 6587 if (modname) 6588 *modname = mod_map->mod->name; 6589 break; 6590 } 6591 } 6592 preempt_enable(); 6593 6594 return ret; 6595 } 6596 6597 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6598 char *type, char *name, 6599 char *module_name, int *exported) 6600 { 6601 struct ftrace_mod_map *mod_map; 6602 struct ftrace_mod_func *mod_func; 6603 int ret; 6604 6605 preempt_disable(); 6606 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 6607 6608 if (symnum >= mod_map->num_funcs) { 6609 symnum -= mod_map->num_funcs; 6610 continue; 6611 } 6612 6613 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 6614 if (symnum > 1) { 6615 symnum--; 6616 continue; 6617 } 6618 6619 *value = mod_func->ip; 6620 *type = 'T'; 6621 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 6622 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 6623 *exported = 1; 6624 preempt_enable(); 6625 return 0; 6626 } 6627 WARN_ON(1); 6628 break; 6629 } 6630 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6631 module_name, exported); 6632 preempt_enable(); 6633 return ret; 6634 } 6635 6636 #else 6637 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 6638 struct dyn_ftrace *rec) { } 6639 static inline struct ftrace_mod_map * 6640 allocate_ftrace_mod_map(struct module *mod, 6641 unsigned long start, unsigned long end) 6642 { 6643 return NULL; 6644 } 6645 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 6646 char *type, char *name, char *module_name, 6647 int *exported) 6648 { 6649 int ret; 6650 6651 preempt_disable(); 6652 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 6653 module_name, exported); 6654 preempt_enable(); 6655 return ret; 6656 } 6657 #endif /* CONFIG_MODULES */ 6658 6659 struct ftrace_init_func { 6660 struct list_head list; 6661 unsigned long ip; 6662 }; 6663 6664 /* Clear any init ips from hashes */ 6665 static void 6666 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6667 { 6668 struct ftrace_func_entry *entry; 6669 6670 entry = ftrace_lookup_ip(hash, func->ip); 6671 /* 6672 * Do not allow this rec to match again. 6673 * Yeah, it may waste some memory, but will be removed 6674 * if/when the hash is modified again. 6675 */ 6676 if (entry) 6677 entry->ip = 0; 6678 } 6679 6680 static void 6681 clear_func_from_hashes(struct ftrace_init_func *func) 6682 { 6683 struct trace_array *tr; 6684 6685 mutex_lock(&trace_types_lock); 6686 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6687 if (!tr->ops || !tr->ops->func_hash) 6688 continue; 6689 mutex_lock(&tr->ops->func_hash->regex_lock); 6690 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6691 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6692 mutex_unlock(&tr->ops->func_hash->regex_lock); 6693 } 6694 mutex_unlock(&trace_types_lock); 6695 } 6696 6697 static void add_to_clear_hash_list(struct list_head *clear_list, 6698 struct dyn_ftrace *rec) 6699 { 6700 struct ftrace_init_func *func; 6701 6702 func = kmalloc(sizeof(*func), GFP_KERNEL); 6703 if (!func) { 6704 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 6705 return; 6706 } 6707 6708 func->ip = rec->ip; 6709 list_add(&func->list, clear_list); 6710 } 6711 6712 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6713 { 6714 unsigned long start = (unsigned long)(start_ptr); 6715 unsigned long end = (unsigned long)(end_ptr); 6716 struct ftrace_page **last_pg = &ftrace_pages_start; 6717 struct ftrace_page *pg; 6718 struct dyn_ftrace *rec; 6719 struct dyn_ftrace key; 6720 struct ftrace_mod_map *mod_map = NULL; 6721 struct ftrace_init_func *func, *func_next; 6722 struct list_head clear_hash; 6723 int order; 6724 6725 INIT_LIST_HEAD(&clear_hash); 6726 6727 key.ip = start; 6728 key.flags = end; /* overload flags, as it is unsigned long */ 6729 6730 mutex_lock(&ftrace_lock); 6731 6732 /* 6733 * If we are freeing module init memory, then check if 6734 * any tracer is active. If so, we need to save a mapping of 6735 * the module functions being freed with the address. 6736 */ 6737 if (mod && ftrace_ops_list != &ftrace_list_end) 6738 mod_map = allocate_ftrace_mod_map(mod, start, end); 6739 6740 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6741 if (end < pg->records[0].ip || 6742 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6743 continue; 6744 again: 6745 rec = bsearch(&key, pg->records, pg->index, 6746 sizeof(struct dyn_ftrace), 6747 ftrace_cmp_recs); 6748 if (!rec) 6749 continue; 6750 6751 /* rec will be cleared from hashes after ftrace_lock unlock */ 6752 add_to_clear_hash_list(&clear_hash, rec); 6753 6754 if (mod_map) 6755 save_ftrace_mod_rec(mod_map, rec); 6756 6757 pg->index--; 6758 ftrace_update_tot_cnt--; 6759 if (!pg->index) { 6760 *last_pg = pg->next; 6761 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6762 free_pages((unsigned long)pg->records, order); 6763 ftrace_number_of_pages -= 1 << order; 6764 ftrace_number_of_groups--; 6765 kfree(pg); 6766 pg = container_of(last_pg, struct ftrace_page, next); 6767 if (!(*last_pg)) 6768 ftrace_pages = pg; 6769 continue; 6770 } 6771 memmove(rec, rec + 1, 6772 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6773 /* More than one function may be in this block */ 6774 goto again; 6775 } 6776 mutex_unlock(&ftrace_lock); 6777 6778 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6779 clear_func_from_hashes(func); 6780 kfree(func); 6781 } 6782 } 6783 6784 void __init ftrace_free_init_mem(void) 6785 { 6786 void *start = (void *)(&__init_begin); 6787 void *end = (void *)(&__init_end); 6788 6789 ftrace_free_mem(NULL, start, end); 6790 } 6791 6792 void __init ftrace_init(void) 6793 { 6794 extern unsigned long __start_mcount_loc[]; 6795 extern unsigned long __stop_mcount_loc[]; 6796 unsigned long count, flags; 6797 int ret; 6798 6799 local_irq_save(flags); 6800 ret = ftrace_dyn_arch_init(); 6801 local_irq_restore(flags); 6802 if (ret) 6803 goto failed; 6804 6805 count = __stop_mcount_loc - __start_mcount_loc; 6806 if (!count) { 6807 pr_info("ftrace: No functions to be traced?\n"); 6808 goto failed; 6809 } 6810 6811 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6812 count, count / ENTRIES_PER_PAGE + 1); 6813 6814 last_ftrace_enabled = ftrace_enabled = 1; 6815 6816 ret = ftrace_process_locs(NULL, 6817 __start_mcount_loc, 6818 __stop_mcount_loc); 6819 6820 pr_info("ftrace: allocated %ld pages with %ld groups\n", 6821 ftrace_number_of_pages, ftrace_number_of_groups); 6822 6823 set_ftrace_early_filters(); 6824 6825 return; 6826 failed: 6827 ftrace_disabled = 1; 6828 } 6829 6830 /* Do nothing if arch does not support this */ 6831 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6832 { 6833 } 6834 6835 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6836 { 6837 unsigned long trampoline = ops->trampoline; 6838 6839 arch_ftrace_update_trampoline(ops); 6840 if (ops->trampoline && ops->trampoline != trampoline && 6841 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 6842 /* Add to kallsyms before the perf events */ 6843 ftrace_add_trampoline_to_kallsyms(ops); 6844 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 6845 ops->trampoline, ops->trampoline_size, false, 6846 FTRACE_TRAMPOLINE_SYM); 6847 /* 6848 * Record the perf text poke event after the ksymbol register 6849 * event. 6850 */ 6851 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 6852 (void *)ops->trampoline, 6853 ops->trampoline_size); 6854 } 6855 } 6856 6857 void ftrace_init_trace_array(struct trace_array *tr) 6858 { 6859 INIT_LIST_HEAD(&tr->func_probes); 6860 INIT_LIST_HEAD(&tr->mod_trace); 6861 INIT_LIST_HEAD(&tr->mod_notrace); 6862 } 6863 #else 6864 6865 struct ftrace_ops global_ops = { 6866 .func = ftrace_stub, 6867 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6868 FTRACE_OPS_FL_INITIALIZED | 6869 FTRACE_OPS_FL_PID, 6870 }; 6871 6872 static int __init ftrace_nodyn_init(void) 6873 { 6874 ftrace_enabled = 1; 6875 return 0; 6876 } 6877 core_initcall(ftrace_nodyn_init); 6878 6879 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6880 static inline void ftrace_startup_enable(int command) { } 6881 static inline void ftrace_startup_all(int command) { } 6882 6883 # define ftrace_startup_sysctl() do { } while (0) 6884 # define ftrace_shutdown_sysctl() do { } while (0) 6885 6886 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6887 { 6888 } 6889 6890 #endif /* CONFIG_DYNAMIC_FTRACE */ 6891 6892 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6893 { 6894 tr->ops = &global_ops; 6895 tr->ops->private = tr; 6896 ftrace_init_trace_array(tr); 6897 } 6898 6899 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6900 { 6901 /* If we filter on pids, update to use the pid function */ 6902 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6903 if (WARN_ON(tr->ops->func != ftrace_stub)) 6904 printk("ftrace ops had %pS for function\n", 6905 tr->ops->func); 6906 } 6907 tr->ops->func = func; 6908 tr->ops->private = tr; 6909 } 6910 6911 void ftrace_reset_array_ops(struct trace_array *tr) 6912 { 6913 tr->ops->func = ftrace_stub; 6914 } 6915 6916 static nokprobe_inline void 6917 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6918 struct ftrace_ops *ignored, struct pt_regs *regs) 6919 { 6920 struct ftrace_ops *op; 6921 int bit; 6922 6923 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6924 if (bit < 0) 6925 return; 6926 6927 /* 6928 * Some of the ops may be dynamically allocated, 6929 * they must be freed after a synchronize_rcu(). 6930 */ 6931 preempt_disable_notrace(); 6932 6933 do_for_each_ftrace_op(op, ftrace_ops_list) { 6934 /* Stub functions don't need to be called nor tested */ 6935 if (op->flags & FTRACE_OPS_FL_STUB) 6936 continue; 6937 /* 6938 * Check the following for each ops before calling their func: 6939 * if RCU flag is set, then rcu_is_watching() must be true 6940 * if PER_CPU is set, then ftrace_function_local_disable() 6941 * must be false 6942 * Otherwise test if the ip matches the ops filter 6943 * 6944 * If any of the above fails then the op->func() is not executed. 6945 */ 6946 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6947 ftrace_ops_test(op, ip, regs)) { 6948 if (FTRACE_WARN_ON(!op->func)) { 6949 pr_warn("op=%p %pS\n", op, op); 6950 goto out; 6951 } 6952 op->func(ip, parent_ip, op, regs); 6953 } 6954 } while_for_each_ftrace_op(op); 6955 out: 6956 preempt_enable_notrace(); 6957 trace_clear_recursion(bit); 6958 } 6959 6960 /* 6961 * Some archs only support passing ip and parent_ip. Even though 6962 * the list function ignores the op parameter, we do not want any 6963 * C side effects, where a function is called without the caller 6964 * sending a third parameter. 6965 * Archs are to support both the regs and ftrace_ops at the same time. 6966 * If they support ftrace_ops, it is assumed they support regs. 6967 * If call backs want to use regs, they must either check for regs 6968 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6969 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6970 * An architecture can pass partial regs with ftrace_ops and still 6971 * set the ARCH_SUPPORTS_FTRACE_OPS. 6972 */ 6973 #if ARCH_SUPPORTS_FTRACE_OPS 6974 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6975 struct ftrace_ops *op, struct pt_regs *regs) 6976 { 6977 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6978 } 6979 NOKPROBE_SYMBOL(ftrace_ops_list_func); 6980 #else 6981 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6982 { 6983 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6984 } 6985 NOKPROBE_SYMBOL(ftrace_ops_no_ops); 6986 #endif 6987 6988 /* 6989 * If there's only one function registered but it does not support 6990 * recursion, needs RCU protection and/or requires per cpu handling, then 6991 * this function will be called by the mcount trampoline. 6992 */ 6993 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6994 struct ftrace_ops *op, struct pt_regs *regs) 6995 { 6996 int bit; 6997 6998 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6999 if (bit < 0) 7000 return; 7001 7002 preempt_disable_notrace(); 7003 7004 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7005 op->func(ip, parent_ip, op, regs); 7006 7007 preempt_enable_notrace(); 7008 trace_clear_recursion(bit); 7009 } 7010 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7011 7012 /** 7013 * ftrace_ops_get_func - get the function a trampoline should call 7014 * @ops: the ops to get the function for 7015 * 7016 * Normally the mcount trampoline will call the ops->func, but there 7017 * are times that it should not. For example, if the ops does not 7018 * have its own recursion protection, then it should call the 7019 * ftrace_ops_assist_func() instead. 7020 * 7021 * Returns the function that the trampoline should call for @ops. 7022 */ 7023 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7024 { 7025 /* 7026 * If the function does not handle recursion, needs to be RCU safe, 7027 * or does per cpu logic, then we need to call the assist handler. 7028 */ 7029 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 7030 ops->flags & FTRACE_OPS_FL_RCU) 7031 return ftrace_ops_assist_func; 7032 7033 return ops->func; 7034 } 7035 7036 static void 7037 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7038 struct task_struct *prev, struct task_struct *next) 7039 { 7040 struct trace_array *tr = data; 7041 struct trace_pid_list *pid_list; 7042 struct trace_pid_list *no_pid_list; 7043 7044 pid_list = rcu_dereference_sched(tr->function_pids); 7045 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7046 7047 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7048 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7049 FTRACE_PID_IGNORE); 7050 else 7051 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7052 next->pid); 7053 } 7054 7055 static void 7056 ftrace_pid_follow_sched_process_fork(void *data, 7057 struct task_struct *self, 7058 struct task_struct *task) 7059 { 7060 struct trace_pid_list *pid_list; 7061 struct trace_array *tr = data; 7062 7063 pid_list = rcu_dereference_sched(tr->function_pids); 7064 trace_filter_add_remove_task(pid_list, self, task); 7065 7066 pid_list = rcu_dereference_sched(tr->function_no_pids); 7067 trace_filter_add_remove_task(pid_list, self, task); 7068 } 7069 7070 static void 7071 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7072 { 7073 struct trace_pid_list *pid_list; 7074 struct trace_array *tr = data; 7075 7076 pid_list = rcu_dereference_sched(tr->function_pids); 7077 trace_filter_add_remove_task(pid_list, NULL, task); 7078 7079 pid_list = rcu_dereference_sched(tr->function_no_pids); 7080 trace_filter_add_remove_task(pid_list, NULL, task); 7081 } 7082 7083 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7084 { 7085 if (enable) { 7086 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7087 tr); 7088 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7089 tr); 7090 } else { 7091 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7092 tr); 7093 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7094 tr); 7095 } 7096 } 7097 7098 static void clear_ftrace_pids(struct trace_array *tr, int type) 7099 { 7100 struct trace_pid_list *pid_list; 7101 struct trace_pid_list *no_pid_list; 7102 int cpu; 7103 7104 pid_list = rcu_dereference_protected(tr->function_pids, 7105 lockdep_is_held(&ftrace_lock)); 7106 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7107 lockdep_is_held(&ftrace_lock)); 7108 7109 /* Make sure there's something to do */ 7110 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7111 return; 7112 7113 /* See if the pids still need to be checked after this */ 7114 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7115 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7116 for_each_possible_cpu(cpu) 7117 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7118 } 7119 7120 if (type & TRACE_PIDS) 7121 rcu_assign_pointer(tr->function_pids, NULL); 7122 7123 if (type & TRACE_NO_PIDS) 7124 rcu_assign_pointer(tr->function_no_pids, NULL); 7125 7126 /* Wait till all users are no longer using pid filtering */ 7127 synchronize_rcu(); 7128 7129 if ((type & TRACE_PIDS) && pid_list) 7130 trace_free_pid_list(pid_list); 7131 7132 if ((type & TRACE_NO_PIDS) && no_pid_list) 7133 trace_free_pid_list(no_pid_list); 7134 } 7135 7136 void ftrace_clear_pids(struct trace_array *tr) 7137 { 7138 mutex_lock(&ftrace_lock); 7139 7140 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7141 7142 mutex_unlock(&ftrace_lock); 7143 } 7144 7145 static void ftrace_pid_reset(struct trace_array *tr, int type) 7146 { 7147 mutex_lock(&ftrace_lock); 7148 clear_ftrace_pids(tr, type); 7149 7150 ftrace_update_pid_func(); 7151 ftrace_startup_all(0); 7152 7153 mutex_unlock(&ftrace_lock); 7154 } 7155 7156 /* Greater than any max PID */ 7157 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7158 7159 static void *fpid_start(struct seq_file *m, loff_t *pos) 7160 __acquires(RCU) 7161 { 7162 struct trace_pid_list *pid_list; 7163 struct trace_array *tr = m->private; 7164 7165 mutex_lock(&ftrace_lock); 7166 rcu_read_lock_sched(); 7167 7168 pid_list = rcu_dereference_sched(tr->function_pids); 7169 7170 if (!pid_list) 7171 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7172 7173 return trace_pid_start(pid_list, pos); 7174 } 7175 7176 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7177 { 7178 struct trace_array *tr = m->private; 7179 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7180 7181 if (v == FTRACE_NO_PIDS) { 7182 (*pos)++; 7183 return NULL; 7184 } 7185 return trace_pid_next(pid_list, v, pos); 7186 } 7187 7188 static void fpid_stop(struct seq_file *m, void *p) 7189 __releases(RCU) 7190 { 7191 rcu_read_unlock_sched(); 7192 mutex_unlock(&ftrace_lock); 7193 } 7194 7195 static int fpid_show(struct seq_file *m, void *v) 7196 { 7197 if (v == FTRACE_NO_PIDS) { 7198 seq_puts(m, "no pid\n"); 7199 return 0; 7200 } 7201 7202 return trace_pid_show(m, v); 7203 } 7204 7205 static const struct seq_operations ftrace_pid_sops = { 7206 .start = fpid_start, 7207 .next = fpid_next, 7208 .stop = fpid_stop, 7209 .show = fpid_show, 7210 }; 7211 7212 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7213 __acquires(RCU) 7214 { 7215 struct trace_pid_list *pid_list; 7216 struct trace_array *tr = m->private; 7217 7218 mutex_lock(&ftrace_lock); 7219 rcu_read_lock_sched(); 7220 7221 pid_list = rcu_dereference_sched(tr->function_no_pids); 7222 7223 if (!pid_list) 7224 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7225 7226 return trace_pid_start(pid_list, pos); 7227 } 7228 7229 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7230 { 7231 struct trace_array *tr = m->private; 7232 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7233 7234 if (v == FTRACE_NO_PIDS) { 7235 (*pos)++; 7236 return NULL; 7237 } 7238 return trace_pid_next(pid_list, v, pos); 7239 } 7240 7241 static const struct seq_operations ftrace_no_pid_sops = { 7242 .start = fnpid_start, 7243 .next = fnpid_next, 7244 .stop = fpid_stop, 7245 .show = fpid_show, 7246 }; 7247 7248 static int pid_open(struct inode *inode, struct file *file, int type) 7249 { 7250 const struct seq_operations *seq_ops; 7251 struct trace_array *tr = inode->i_private; 7252 struct seq_file *m; 7253 int ret = 0; 7254 7255 ret = tracing_check_open_get_tr(tr); 7256 if (ret) 7257 return ret; 7258 7259 if ((file->f_mode & FMODE_WRITE) && 7260 (file->f_flags & O_TRUNC)) 7261 ftrace_pid_reset(tr, type); 7262 7263 switch (type) { 7264 case TRACE_PIDS: 7265 seq_ops = &ftrace_pid_sops; 7266 break; 7267 case TRACE_NO_PIDS: 7268 seq_ops = &ftrace_no_pid_sops; 7269 break; 7270 default: 7271 trace_array_put(tr); 7272 WARN_ON_ONCE(1); 7273 return -EINVAL; 7274 } 7275 7276 ret = seq_open(file, seq_ops); 7277 if (ret < 0) { 7278 trace_array_put(tr); 7279 } else { 7280 m = file->private_data; 7281 /* copy tr over to seq ops */ 7282 m->private = tr; 7283 } 7284 7285 return ret; 7286 } 7287 7288 static int 7289 ftrace_pid_open(struct inode *inode, struct file *file) 7290 { 7291 return pid_open(inode, file, TRACE_PIDS); 7292 } 7293 7294 static int 7295 ftrace_no_pid_open(struct inode *inode, struct file *file) 7296 { 7297 return pid_open(inode, file, TRACE_NO_PIDS); 7298 } 7299 7300 static void ignore_task_cpu(void *data) 7301 { 7302 struct trace_array *tr = data; 7303 struct trace_pid_list *pid_list; 7304 struct trace_pid_list *no_pid_list; 7305 7306 /* 7307 * This function is called by on_each_cpu() while the 7308 * event_mutex is held. 7309 */ 7310 pid_list = rcu_dereference_protected(tr->function_pids, 7311 mutex_is_locked(&ftrace_lock)); 7312 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7313 mutex_is_locked(&ftrace_lock)); 7314 7315 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7316 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7317 FTRACE_PID_IGNORE); 7318 else 7319 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7320 current->pid); 7321 } 7322 7323 static ssize_t 7324 pid_write(struct file *filp, const char __user *ubuf, 7325 size_t cnt, loff_t *ppos, int type) 7326 { 7327 struct seq_file *m = filp->private_data; 7328 struct trace_array *tr = m->private; 7329 struct trace_pid_list *filtered_pids; 7330 struct trace_pid_list *other_pids; 7331 struct trace_pid_list *pid_list; 7332 ssize_t ret; 7333 7334 if (!cnt) 7335 return 0; 7336 7337 mutex_lock(&ftrace_lock); 7338 7339 switch (type) { 7340 case TRACE_PIDS: 7341 filtered_pids = rcu_dereference_protected(tr->function_pids, 7342 lockdep_is_held(&ftrace_lock)); 7343 other_pids = rcu_dereference_protected(tr->function_no_pids, 7344 lockdep_is_held(&ftrace_lock)); 7345 break; 7346 case TRACE_NO_PIDS: 7347 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7348 lockdep_is_held(&ftrace_lock)); 7349 other_pids = rcu_dereference_protected(tr->function_pids, 7350 lockdep_is_held(&ftrace_lock)); 7351 break; 7352 default: 7353 ret = -EINVAL; 7354 WARN_ON_ONCE(1); 7355 goto out; 7356 } 7357 7358 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7359 if (ret < 0) 7360 goto out; 7361 7362 switch (type) { 7363 case TRACE_PIDS: 7364 rcu_assign_pointer(tr->function_pids, pid_list); 7365 break; 7366 case TRACE_NO_PIDS: 7367 rcu_assign_pointer(tr->function_no_pids, pid_list); 7368 break; 7369 } 7370 7371 7372 if (filtered_pids) { 7373 synchronize_rcu(); 7374 trace_free_pid_list(filtered_pids); 7375 } else if (pid_list && !other_pids) { 7376 /* Register a probe to set whether to ignore the tracing of a task */ 7377 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7378 } 7379 7380 /* 7381 * Ignoring of pids is done at task switch. But we have to 7382 * check for those tasks that are currently running. 7383 * Always do this in case a pid was appended or removed. 7384 */ 7385 on_each_cpu(ignore_task_cpu, tr, 1); 7386 7387 ftrace_update_pid_func(); 7388 ftrace_startup_all(0); 7389 out: 7390 mutex_unlock(&ftrace_lock); 7391 7392 if (ret > 0) 7393 *ppos += ret; 7394 7395 return ret; 7396 } 7397 7398 static ssize_t 7399 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7400 size_t cnt, loff_t *ppos) 7401 { 7402 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7403 } 7404 7405 static ssize_t 7406 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7407 size_t cnt, loff_t *ppos) 7408 { 7409 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7410 } 7411 7412 static int 7413 ftrace_pid_release(struct inode *inode, struct file *file) 7414 { 7415 struct trace_array *tr = inode->i_private; 7416 7417 trace_array_put(tr); 7418 7419 return seq_release(inode, file); 7420 } 7421 7422 static const struct file_operations ftrace_pid_fops = { 7423 .open = ftrace_pid_open, 7424 .write = ftrace_pid_write, 7425 .read = seq_read, 7426 .llseek = tracing_lseek, 7427 .release = ftrace_pid_release, 7428 }; 7429 7430 static const struct file_operations ftrace_no_pid_fops = { 7431 .open = ftrace_no_pid_open, 7432 .write = ftrace_no_pid_write, 7433 .read = seq_read, 7434 .llseek = tracing_lseek, 7435 .release = ftrace_pid_release, 7436 }; 7437 7438 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 7439 { 7440 trace_create_file("set_ftrace_pid", 0644, d_tracer, 7441 tr, &ftrace_pid_fops); 7442 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer, 7443 tr, &ftrace_no_pid_fops); 7444 } 7445 7446 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 7447 struct dentry *d_tracer) 7448 { 7449 /* Only the top level directory has the dyn_tracefs and profile */ 7450 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 7451 7452 ftrace_init_dyn_tracefs(d_tracer); 7453 ftrace_profile_tracefs(d_tracer); 7454 } 7455 7456 /** 7457 * ftrace_kill - kill ftrace 7458 * 7459 * This function should be used by panic code. It stops ftrace 7460 * but in a not so nice way. If you need to simply kill ftrace 7461 * from a non-atomic section, use ftrace_kill. 7462 */ 7463 void ftrace_kill(void) 7464 { 7465 ftrace_disabled = 1; 7466 ftrace_enabled = 0; 7467 ftrace_trace_function = ftrace_stub; 7468 } 7469 7470 /** 7471 * Test if ftrace is dead or not. 7472 */ 7473 int ftrace_is_dead(void) 7474 { 7475 return ftrace_disabled; 7476 } 7477 7478 /** 7479 * register_ftrace_function - register a function for profiling 7480 * @ops - ops structure that holds the function for profiling. 7481 * 7482 * Register a function to be called by all functions in the 7483 * kernel. 7484 * 7485 * Note: @ops->func and all the functions it calls must be labeled 7486 * with "notrace", otherwise it will go into a 7487 * recursive loop. 7488 */ 7489 int register_ftrace_function(struct ftrace_ops *ops) 7490 { 7491 int ret = -1; 7492 7493 ftrace_ops_init(ops); 7494 7495 mutex_lock(&ftrace_lock); 7496 7497 ret = ftrace_startup(ops, 0); 7498 7499 mutex_unlock(&ftrace_lock); 7500 7501 return ret; 7502 } 7503 EXPORT_SYMBOL_GPL(register_ftrace_function); 7504 7505 /** 7506 * unregister_ftrace_function - unregister a function for profiling. 7507 * @ops - ops structure that holds the function to unregister 7508 * 7509 * Unregister a function that was added to be called by ftrace profiling. 7510 */ 7511 int unregister_ftrace_function(struct ftrace_ops *ops) 7512 { 7513 int ret; 7514 7515 mutex_lock(&ftrace_lock); 7516 ret = ftrace_shutdown(ops, 0); 7517 mutex_unlock(&ftrace_lock); 7518 7519 return ret; 7520 } 7521 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 7522 7523 static bool is_permanent_ops_registered(void) 7524 { 7525 struct ftrace_ops *op; 7526 7527 do_for_each_ftrace_op(op, ftrace_ops_list) { 7528 if (op->flags & FTRACE_OPS_FL_PERMANENT) 7529 return true; 7530 } while_for_each_ftrace_op(op); 7531 7532 return false; 7533 } 7534 7535 int 7536 ftrace_enable_sysctl(struct ctl_table *table, int write, 7537 void *buffer, size_t *lenp, loff_t *ppos) 7538 { 7539 int ret = -ENODEV; 7540 7541 mutex_lock(&ftrace_lock); 7542 7543 if (unlikely(ftrace_disabled)) 7544 goto out; 7545 7546 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7547 7548 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 7549 goto out; 7550 7551 if (ftrace_enabled) { 7552 7553 /* we are starting ftrace again */ 7554 if (rcu_dereference_protected(ftrace_ops_list, 7555 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 7556 update_ftrace_function(); 7557 7558 ftrace_startup_sysctl(); 7559 7560 } else { 7561 if (is_permanent_ops_registered()) { 7562 ftrace_enabled = true; 7563 ret = -EBUSY; 7564 goto out; 7565 } 7566 7567 /* stopping ftrace calls (just send to ftrace_stub) */ 7568 ftrace_trace_function = ftrace_stub; 7569 7570 ftrace_shutdown_sysctl(); 7571 } 7572 7573 last_ftrace_enabled = !!ftrace_enabled; 7574 out: 7575 mutex_unlock(&ftrace_lock); 7576 return ret; 7577 } 7578