1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/security.h> 22 #include <linux/seq_file.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 #include <linux/kprobes.h> 38 39 #include <trace/events/sched.h> 40 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 44 #include "ftrace_internal.h" 45 #include "trace_output.h" 46 #include "trace_stat.h" 47 48 #define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__" 49 50 #define FTRACE_WARN_ON(cond) \ 51 ({ \ 52 int ___r = cond; \ 53 if (WARN_ON(___r)) \ 54 ftrace_kill(); \ 55 ___r; \ 56 }) 57 58 #define FTRACE_WARN_ON_ONCE(cond) \ 59 ({ \ 60 int ___r = cond; \ 61 if (WARN_ON_ONCE(___r)) \ 62 ftrace_kill(); \ 63 ___r; \ 64 }) 65 66 /* hash bits for specific function selection */ 67 #define FTRACE_HASH_DEFAULT_BITS 10 68 #define FTRACE_HASH_MAX_BITS 12 69 70 #ifdef CONFIG_DYNAMIC_FTRACE 71 #define INIT_OPS_HASH(opsname) \ 72 .func_hash = &opsname.local_hash, \ 73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 74 #else 75 #define INIT_OPS_HASH(opsname) 76 #endif 77 78 enum { 79 FTRACE_MODIFY_ENABLE_FL = (1 << 0), 80 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1), 81 }; 82 83 struct ftrace_ops ftrace_list_end __read_mostly = { 84 .func = ftrace_stub, 85 .flags = FTRACE_OPS_FL_STUB, 86 INIT_OPS_HASH(ftrace_list_end) 87 }; 88 89 /* ftrace_enabled is a method to turn ftrace on or off */ 90 int ftrace_enabled __read_mostly; 91 static int __maybe_unused last_ftrace_enabled; 92 93 /* Current function tracing op */ 94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 95 /* What to set function_trace_op to */ 96 static struct ftrace_ops *set_function_trace_op; 97 98 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 99 { 100 struct trace_array *tr; 101 102 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 103 return false; 104 105 tr = ops->private; 106 107 return tr->function_pids != NULL || tr->function_no_pids != NULL; 108 } 109 110 static void ftrace_update_trampoline(struct ftrace_ops *ops); 111 112 /* 113 * ftrace_disabled is set when an anomaly is discovered. 114 * ftrace_disabled is much stronger than ftrace_enabled. 115 */ 116 static int ftrace_disabled __read_mostly; 117 118 DEFINE_MUTEX(ftrace_lock); 119 120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 122 struct ftrace_ops global_ops; 123 124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */ 125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 126 struct ftrace_ops *op, struct ftrace_regs *fregs); 127 128 static inline void ftrace_ops_init(struct ftrace_ops *ops) 129 { 130 #ifdef CONFIG_DYNAMIC_FTRACE 131 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 132 mutex_init(&ops->local_hash.regex_lock); 133 ops->func_hash = &ops->local_hash; 134 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 135 } 136 #endif 137 } 138 139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 140 struct ftrace_ops *op, struct ftrace_regs *fregs) 141 { 142 struct trace_array *tr = op->private; 143 int pid; 144 145 if (tr) { 146 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid); 147 if (pid == FTRACE_PID_IGNORE) 148 return; 149 if (pid != FTRACE_PID_TRACE && 150 pid != current->pid) 151 return; 152 } 153 154 op->saved_func(ip, parent_ip, op, fregs); 155 } 156 157 static void ftrace_sync_ipi(void *data) 158 { 159 /* Probably not needed, but do it anyway */ 160 smp_rmb(); 161 } 162 163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 164 { 165 /* 166 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 167 * then it needs to call the list anyway. 168 */ 169 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 170 FTRACE_FORCE_LIST_FUNC) 171 return ftrace_ops_list_func; 172 173 return ftrace_ops_get_func(ops); 174 } 175 176 static void update_ftrace_function(void) 177 { 178 ftrace_func_t func; 179 180 /* 181 * Prepare the ftrace_ops that the arch callback will use. 182 * If there's only one ftrace_ops registered, the ftrace_ops_list 183 * will point to the ops we want. 184 */ 185 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 186 lockdep_is_held(&ftrace_lock)); 187 188 /* If there's no ftrace_ops registered, just call the stub function */ 189 if (set_function_trace_op == &ftrace_list_end) { 190 func = ftrace_stub; 191 192 /* 193 * If we are at the end of the list and this ops is 194 * recursion safe and not dynamic and the arch supports passing ops, 195 * then have the mcount trampoline call the function directly. 196 */ 197 } else if (rcu_dereference_protected(ftrace_ops_list->next, 198 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 199 func = ftrace_ops_get_list_func(ftrace_ops_list); 200 201 } else { 202 /* Just use the default ftrace_ops */ 203 set_function_trace_op = &ftrace_list_end; 204 func = ftrace_ops_list_func; 205 } 206 207 update_function_graph_func(); 208 209 /* If there's no change, then do nothing more here */ 210 if (ftrace_trace_function == func) 211 return; 212 213 /* 214 * If we are using the list function, it doesn't care 215 * about the function_trace_ops. 216 */ 217 if (func == ftrace_ops_list_func) { 218 ftrace_trace_function = func; 219 /* 220 * Don't even bother setting function_trace_ops, 221 * it would be racy to do so anyway. 222 */ 223 return; 224 } 225 226 #ifndef CONFIG_DYNAMIC_FTRACE 227 /* 228 * For static tracing, we need to be a bit more careful. 229 * The function change takes affect immediately. Thus, 230 * we need to coordinate the setting of the function_trace_ops 231 * with the setting of the ftrace_trace_function. 232 * 233 * Set the function to the list ops, which will call the 234 * function we want, albeit indirectly, but it handles the 235 * ftrace_ops and doesn't depend on function_trace_op. 236 */ 237 ftrace_trace_function = ftrace_ops_list_func; 238 /* 239 * Make sure all CPUs see this. Yes this is slow, but static 240 * tracing is slow and nasty to have enabled. 241 */ 242 synchronize_rcu_tasks_rude(); 243 /* Now all cpus are using the list ops. */ 244 function_trace_op = set_function_trace_op; 245 /* Make sure the function_trace_op is visible on all CPUs */ 246 smp_wmb(); 247 /* Nasty way to force a rmb on all cpus */ 248 smp_call_function(ftrace_sync_ipi, NULL, 1); 249 /* OK, we are all set to update the ftrace_trace_function now! */ 250 #endif /* !CONFIG_DYNAMIC_FTRACE */ 251 252 ftrace_trace_function = func; 253 } 254 255 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 256 struct ftrace_ops *ops) 257 { 258 rcu_assign_pointer(ops->next, *list); 259 260 /* 261 * We are entering ops into the list but another 262 * CPU might be walking that list. We need to make sure 263 * the ops->next pointer is valid before another CPU sees 264 * the ops pointer included into the list. 265 */ 266 rcu_assign_pointer(*list, ops); 267 } 268 269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 270 struct ftrace_ops *ops) 271 { 272 struct ftrace_ops **p; 273 274 /* 275 * If we are removing the last function, then simply point 276 * to the ftrace_stub. 277 */ 278 if (rcu_dereference_protected(*list, 279 lockdep_is_held(&ftrace_lock)) == ops && 280 rcu_dereference_protected(ops->next, 281 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 282 *list = &ftrace_list_end; 283 return 0; 284 } 285 286 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 287 if (*p == ops) 288 break; 289 290 if (*p != ops) 291 return -1; 292 293 *p = (*p)->next; 294 return 0; 295 } 296 297 static void ftrace_update_trampoline(struct ftrace_ops *ops); 298 299 int __register_ftrace_function(struct ftrace_ops *ops) 300 { 301 if (ops->flags & FTRACE_OPS_FL_DELETED) 302 return -EINVAL; 303 304 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 305 return -EBUSY; 306 307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 308 /* 309 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 310 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 311 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 312 */ 313 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 314 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 315 return -EINVAL; 316 317 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 318 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 319 #endif 320 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT)) 321 return -EBUSY; 322 323 if (!is_kernel_core_data((unsigned long)ops)) 324 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 325 326 add_ftrace_ops(&ftrace_ops_list, ops); 327 328 /* Always save the function, and reset at unregistering */ 329 ops->saved_func = ops->func; 330 331 if (ftrace_pids_enabled(ops)) 332 ops->func = ftrace_pid_func; 333 334 ftrace_update_trampoline(ops); 335 336 if (ftrace_enabled) 337 update_ftrace_function(); 338 339 return 0; 340 } 341 342 int __unregister_ftrace_function(struct ftrace_ops *ops) 343 { 344 int ret; 345 346 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 347 return -EBUSY; 348 349 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 350 351 if (ret < 0) 352 return ret; 353 354 if (ftrace_enabled) 355 update_ftrace_function(); 356 357 ops->func = ops->saved_func; 358 359 return 0; 360 } 361 362 static void ftrace_update_pid_func(void) 363 { 364 struct ftrace_ops *op; 365 366 /* Only do something if we are tracing something */ 367 if (ftrace_trace_function == ftrace_stub) 368 return; 369 370 do_for_each_ftrace_op(op, ftrace_ops_list) { 371 if (op->flags & FTRACE_OPS_FL_PID) { 372 op->func = ftrace_pids_enabled(op) ? 373 ftrace_pid_func : op->saved_func; 374 ftrace_update_trampoline(op); 375 } 376 } while_for_each_ftrace_op(op); 377 378 update_ftrace_function(); 379 } 380 381 #ifdef CONFIG_FUNCTION_PROFILER 382 struct ftrace_profile { 383 struct hlist_node node; 384 unsigned long ip; 385 unsigned long counter; 386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 387 unsigned long long time; 388 unsigned long long time_squared; 389 #endif 390 }; 391 392 struct ftrace_profile_page { 393 struct ftrace_profile_page *next; 394 unsigned long index; 395 struct ftrace_profile records[]; 396 }; 397 398 struct ftrace_profile_stat { 399 atomic_t disabled; 400 struct hlist_head *hash; 401 struct ftrace_profile_page *pages; 402 struct ftrace_profile_page *start; 403 struct tracer_stat stat; 404 }; 405 406 #define PROFILE_RECORDS_SIZE \ 407 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 408 409 #define PROFILES_PER_PAGE \ 410 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 411 412 static int ftrace_profile_enabled __read_mostly; 413 414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 415 static DEFINE_MUTEX(ftrace_profile_lock); 416 417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 418 419 #define FTRACE_PROFILE_HASH_BITS 10 420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 421 422 static void * 423 function_stat_next(void *v, int idx) 424 { 425 struct ftrace_profile *rec = v; 426 struct ftrace_profile_page *pg; 427 428 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 429 430 again: 431 if (idx != 0) 432 rec++; 433 434 if ((void *)rec >= (void *)&pg->records[pg->index]) { 435 pg = pg->next; 436 if (!pg) 437 return NULL; 438 rec = &pg->records[0]; 439 if (!rec->counter) 440 goto again; 441 } 442 443 return rec; 444 } 445 446 static void *function_stat_start(struct tracer_stat *trace) 447 { 448 struct ftrace_profile_stat *stat = 449 container_of(trace, struct ftrace_profile_stat, stat); 450 451 if (!stat || !stat->start) 452 return NULL; 453 454 return function_stat_next(&stat->start->records[0], 0); 455 } 456 457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 458 /* function graph compares on total time */ 459 static int function_stat_cmp(const void *p1, const void *p2) 460 { 461 const struct ftrace_profile *a = p1; 462 const struct ftrace_profile *b = p2; 463 464 if (a->time < b->time) 465 return -1; 466 if (a->time > b->time) 467 return 1; 468 else 469 return 0; 470 } 471 #else 472 /* not function graph compares against hits */ 473 static int function_stat_cmp(const void *p1, const void *p2) 474 { 475 const struct ftrace_profile *a = p1; 476 const struct ftrace_profile *b = p2; 477 478 if (a->counter < b->counter) 479 return -1; 480 if (a->counter > b->counter) 481 return 1; 482 else 483 return 0; 484 } 485 #endif 486 487 static int function_stat_headers(struct seq_file *m) 488 { 489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 490 seq_puts(m, " Function " 491 "Hit Time Avg s^2\n" 492 " -------- " 493 "--- ---- --- ---\n"); 494 #else 495 seq_puts(m, " Function Hit\n" 496 " -------- ---\n"); 497 #endif 498 return 0; 499 } 500 501 static int function_stat_show(struct seq_file *m, void *v) 502 { 503 struct ftrace_profile *rec = v; 504 char str[KSYM_SYMBOL_LEN]; 505 int ret = 0; 506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 507 static struct trace_seq s; 508 unsigned long long avg; 509 unsigned long long stddev; 510 #endif 511 mutex_lock(&ftrace_profile_lock); 512 513 /* we raced with function_profile_reset() */ 514 if (unlikely(rec->counter == 0)) { 515 ret = -EBUSY; 516 goto out; 517 } 518 519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 520 avg = div64_ul(rec->time, rec->counter); 521 if (tracing_thresh && (avg < tracing_thresh)) 522 goto out; 523 #endif 524 525 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 526 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 527 528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 529 seq_puts(m, " "); 530 531 /* Sample standard deviation (s^2) */ 532 if (rec->counter <= 1) 533 stddev = 0; 534 else { 535 /* 536 * Apply Welford's method: 537 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 538 */ 539 stddev = rec->counter * rec->time_squared - 540 rec->time * rec->time; 541 542 /* 543 * Divide only 1000 for ns^2 -> us^2 conversion. 544 * trace_print_graph_duration will divide 1000 again. 545 */ 546 stddev = div64_ul(stddev, 547 rec->counter * (rec->counter - 1) * 1000); 548 } 549 550 trace_seq_init(&s); 551 trace_print_graph_duration(rec->time, &s); 552 trace_seq_puts(&s, " "); 553 trace_print_graph_duration(avg, &s); 554 trace_seq_puts(&s, " "); 555 trace_print_graph_duration(stddev, &s); 556 trace_print_seq(m, &s); 557 #endif 558 seq_putc(m, '\n'); 559 out: 560 mutex_unlock(&ftrace_profile_lock); 561 562 return ret; 563 } 564 565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 566 { 567 struct ftrace_profile_page *pg; 568 569 pg = stat->pages = stat->start; 570 571 while (pg) { 572 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 573 pg->index = 0; 574 pg = pg->next; 575 } 576 577 memset(stat->hash, 0, 578 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 579 } 580 581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 582 { 583 struct ftrace_profile_page *pg; 584 int functions; 585 int pages; 586 int i; 587 588 /* If we already allocated, do nothing */ 589 if (stat->pages) 590 return 0; 591 592 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!stat->pages) 594 return -ENOMEM; 595 596 #ifdef CONFIG_DYNAMIC_FTRACE 597 functions = ftrace_update_tot_cnt; 598 #else 599 /* 600 * We do not know the number of functions that exist because 601 * dynamic tracing is what counts them. With past experience 602 * we have around 20K functions. That should be more than enough. 603 * It is highly unlikely we will execute every function in 604 * the kernel. 605 */ 606 functions = 20000; 607 #endif 608 609 pg = stat->start = stat->pages; 610 611 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 612 613 for (i = 1; i < pages; i++) { 614 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 615 if (!pg->next) 616 goto out_free; 617 pg = pg->next; 618 } 619 620 return 0; 621 622 out_free: 623 pg = stat->start; 624 while (pg) { 625 unsigned long tmp = (unsigned long)pg; 626 627 pg = pg->next; 628 free_page(tmp); 629 } 630 631 stat->pages = NULL; 632 stat->start = NULL; 633 634 return -ENOMEM; 635 } 636 637 static int ftrace_profile_init_cpu(int cpu) 638 { 639 struct ftrace_profile_stat *stat; 640 int size; 641 642 stat = &per_cpu(ftrace_profile_stats, cpu); 643 644 if (stat->hash) { 645 /* If the profile is already created, simply reset it */ 646 ftrace_profile_reset(stat); 647 return 0; 648 } 649 650 /* 651 * We are profiling all functions, but usually only a few thousand 652 * functions are hit. We'll make a hash of 1024 items. 653 */ 654 size = FTRACE_PROFILE_HASH_SIZE; 655 656 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 657 658 if (!stat->hash) 659 return -ENOMEM; 660 661 /* Preallocate the function profiling pages */ 662 if (ftrace_profile_pages_init(stat) < 0) { 663 kfree(stat->hash); 664 stat->hash = NULL; 665 return -ENOMEM; 666 } 667 668 return 0; 669 } 670 671 static int ftrace_profile_init(void) 672 { 673 int cpu; 674 int ret = 0; 675 676 for_each_possible_cpu(cpu) { 677 ret = ftrace_profile_init_cpu(cpu); 678 if (ret) 679 break; 680 } 681 682 return ret; 683 } 684 685 /* interrupts must be disabled */ 686 static struct ftrace_profile * 687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 688 { 689 struct ftrace_profile *rec; 690 struct hlist_head *hhd; 691 unsigned long key; 692 693 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 694 hhd = &stat->hash[key]; 695 696 if (hlist_empty(hhd)) 697 return NULL; 698 699 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 700 if (rec->ip == ip) 701 return rec; 702 } 703 704 return NULL; 705 } 706 707 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 708 struct ftrace_profile *rec) 709 { 710 unsigned long key; 711 712 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 713 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 714 } 715 716 /* 717 * The memory is already allocated, this simply finds a new record to use. 718 */ 719 static struct ftrace_profile * 720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 721 { 722 struct ftrace_profile *rec = NULL; 723 724 /* prevent recursion (from NMIs) */ 725 if (atomic_inc_return(&stat->disabled) != 1) 726 goto out; 727 728 /* 729 * Try to find the function again since an NMI 730 * could have added it 731 */ 732 rec = ftrace_find_profiled_func(stat, ip); 733 if (rec) 734 goto out; 735 736 if (stat->pages->index == PROFILES_PER_PAGE) { 737 if (!stat->pages->next) 738 goto out; 739 stat->pages = stat->pages->next; 740 } 741 742 rec = &stat->pages->records[stat->pages->index++]; 743 rec->ip = ip; 744 ftrace_add_profile(stat, rec); 745 746 out: 747 atomic_dec(&stat->disabled); 748 749 return rec; 750 } 751 752 static void 753 function_profile_call(unsigned long ip, unsigned long parent_ip, 754 struct ftrace_ops *ops, struct ftrace_regs *fregs) 755 { 756 struct ftrace_profile_stat *stat; 757 struct ftrace_profile *rec; 758 unsigned long flags; 759 760 if (!ftrace_profile_enabled) 761 return; 762 763 local_irq_save(flags); 764 765 stat = this_cpu_ptr(&ftrace_profile_stats); 766 if (!stat->hash || !ftrace_profile_enabled) 767 goto out; 768 769 rec = ftrace_find_profiled_func(stat, ip); 770 if (!rec) { 771 rec = ftrace_profile_alloc(stat, ip); 772 if (!rec) 773 goto out; 774 } 775 776 rec->counter++; 777 out: 778 local_irq_restore(flags); 779 } 780 781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 782 static bool fgraph_graph_time = true; 783 784 void ftrace_graph_graph_time_control(bool enable) 785 { 786 fgraph_graph_time = enable; 787 } 788 789 static int profile_graph_entry(struct ftrace_graph_ent *trace) 790 { 791 struct ftrace_ret_stack *ret_stack; 792 793 function_profile_call(trace->func, 0, NULL, NULL); 794 795 /* If function graph is shutting down, ret_stack can be NULL */ 796 if (!current->ret_stack) 797 return 0; 798 799 ret_stack = ftrace_graph_get_ret_stack(current, 0); 800 if (ret_stack) 801 ret_stack->subtime = 0; 802 803 return 1; 804 } 805 806 static void profile_graph_return(struct ftrace_graph_ret *trace) 807 { 808 struct ftrace_ret_stack *ret_stack; 809 struct ftrace_profile_stat *stat; 810 unsigned long long calltime; 811 struct ftrace_profile *rec; 812 unsigned long flags; 813 814 local_irq_save(flags); 815 stat = this_cpu_ptr(&ftrace_profile_stats); 816 if (!stat->hash || !ftrace_profile_enabled) 817 goto out; 818 819 /* If the calltime was zero'd ignore it */ 820 if (!trace->calltime) 821 goto out; 822 823 calltime = trace->rettime - trace->calltime; 824 825 if (!fgraph_graph_time) { 826 827 /* Append this call time to the parent time to subtract */ 828 ret_stack = ftrace_graph_get_ret_stack(current, 1); 829 if (ret_stack) 830 ret_stack->subtime += calltime; 831 832 ret_stack = ftrace_graph_get_ret_stack(current, 0); 833 if (ret_stack && ret_stack->subtime < calltime) 834 calltime -= ret_stack->subtime; 835 else 836 calltime = 0; 837 } 838 839 rec = ftrace_find_profiled_func(stat, trace->func); 840 if (rec) { 841 rec->time += calltime; 842 rec->time_squared += calltime * calltime; 843 } 844 845 out: 846 local_irq_restore(flags); 847 } 848 849 static struct fgraph_ops fprofiler_ops = { 850 .entryfunc = &profile_graph_entry, 851 .retfunc = &profile_graph_return, 852 }; 853 854 static int register_ftrace_profiler(void) 855 { 856 return register_ftrace_graph(&fprofiler_ops); 857 } 858 859 static void unregister_ftrace_profiler(void) 860 { 861 unregister_ftrace_graph(&fprofiler_ops); 862 } 863 #else 864 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 865 .func = function_profile_call, 866 .flags = FTRACE_OPS_FL_INITIALIZED, 867 INIT_OPS_HASH(ftrace_profile_ops) 868 }; 869 870 static int register_ftrace_profiler(void) 871 { 872 return register_ftrace_function(&ftrace_profile_ops); 873 } 874 875 static void unregister_ftrace_profiler(void) 876 { 877 unregister_ftrace_function(&ftrace_profile_ops); 878 } 879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 880 881 static ssize_t 882 ftrace_profile_write(struct file *filp, const char __user *ubuf, 883 size_t cnt, loff_t *ppos) 884 { 885 unsigned long val; 886 int ret; 887 888 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 889 if (ret) 890 return ret; 891 892 val = !!val; 893 894 mutex_lock(&ftrace_profile_lock); 895 if (ftrace_profile_enabled ^ val) { 896 if (val) { 897 ret = ftrace_profile_init(); 898 if (ret < 0) { 899 cnt = ret; 900 goto out; 901 } 902 903 ret = register_ftrace_profiler(); 904 if (ret < 0) { 905 cnt = ret; 906 goto out; 907 } 908 ftrace_profile_enabled = 1; 909 } else { 910 ftrace_profile_enabled = 0; 911 /* 912 * unregister_ftrace_profiler calls stop_machine 913 * so this acts like an synchronize_rcu. 914 */ 915 unregister_ftrace_profiler(); 916 } 917 } 918 out: 919 mutex_unlock(&ftrace_profile_lock); 920 921 *ppos += cnt; 922 923 return cnt; 924 } 925 926 static ssize_t 927 ftrace_profile_read(struct file *filp, char __user *ubuf, 928 size_t cnt, loff_t *ppos) 929 { 930 char buf[64]; /* big enough to hold a number */ 931 int r; 932 933 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 934 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 935 } 936 937 static const struct file_operations ftrace_profile_fops = { 938 .open = tracing_open_generic, 939 .read = ftrace_profile_read, 940 .write = ftrace_profile_write, 941 .llseek = default_llseek, 942 }; 943 944 /* used to initialize the real stat files */ 945 static struct tracer_stat function_stats __initdata = { 946 .name = "functions", 947 .stat_start = function_stat_start, 948 .stat_next = function_stat_next, 949 .stat_cmp = function_stat_cmp, 950 .stat_headers = function_stat_headers, 951 .stat_show = function_stat_show 952 }; 953 954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 955 { 956 struct ftrace_profile_stat *stat; 957 char *name; 958 int ret; 959 int cpu; 960 961 for_each_possible_cpu(cpu) { 962 stat = &per_cpu(ftrace_profile_stats, cpu); 963 964 name = kasprintf(GFP_KERNEL, "function%d", cpu); 965 if (!name) { 966 /* 967 * The files created are permanent, if something happens 968 * we still do not free memory. 969 */ 970 WARN(1, 971 "Could not allocate stat file for cpu %d\n", 972 cpu); 973 return; 974 } 975 stat->stat = function_stats; 976 stat->stat.name = name; 977 ret = register_stat_tracer(&stat->stat); 978 if (ret) { 979 WARN(1, 980 "Could not register function stat for cpu %d\n", 981 cpu); 982 kfree(name); 983 return; 984 } 985 } 986 987 trace_create_file("function_profile_enabled", 988 TRACE_MODE_WRITE, d_tracer, NULL, 989 &ftrace_profile_fops); 990 } 991 992 #else /* CONFIG_FUNCTION_PROFILER */ 993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 994 { 995 } 996 #endif /* CONFIG_FUNCTION_PROFILER */ 997 998 #ifdef CONFIG_DYNAMIC_FTRACE 999 1000 static struct ftrace_ops *removed_ops; 1001 1002 /* 1003 * Set when doing a global update, like enabling all recs or disabling them. 1004 * It is not set when just updating a single ftrace_ops. 1005 */ 1006 static bool update_all_ops; 1007 1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1009 # error Dynamic ftrace depends on MCOUNT_RECORD 1010 #endif 1011 1012 struct ftrace_func_probe { 1013 struct ftrace_probe_ops *probe_ops; 1014 struct ftrace_ops ops; 1015 struct trace_array *tr; 1016 struct list_head list; 1017 void *data; 1018 int ref; 1019 }; 1020 1021 /* 1022 * We make these constant because no one should touch them, 1023 * but they are used as the default "empty hash", to avoid allocating 1024 * it all the time. These are in a read only section such that if 1025 * anyone does try to modify it, it will cause an exception. 1026 */ 1027 static const struct hlist_head empty_buckets[1]; 1028 static const struct ftrace_hash empty_hash = { 1029 .buckets = (struct hlist_head *)empty_buckets, 1030 }; 1031 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1032 1033 struct ftrace_ops global_ops = { 1034 .func = ftrace_stub, 1035 .local_hash.notrace_hash = EMPTY_HASH, 1036 .local_hash.filter_hash = EMPTY_HASH, 1037 INIT_OPS_HASH(global_ops) 1038 .flags = FTRACE_OPS_FL_INITIALIZED | 1039 FTRACE_OPS_FL_PID, 1040 }; 1041 1042 /* 1043 * Used by the stack unwinder to know about dynamic ftrace trampolines. 1044 */ 1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1046 { 1047 struct ftrace_ops *op = NULL; 1048 1049 /* 1050 * Some of the ops may be dynamically allocated, 1051 * they are freed after a synchronize_rcu(). 1052 */ 1053 preempt_disable_notrace(); 1054 1055 do_for_each_ftrace_op(op, ftrace_ops_list) { 1056 /* 1057 * This is to check for dynamically allocated trampolines. 1058 * Trampolines that are in kernel text will have 1059 * core_kernel_text() return true. 1060 */ 1061 if (op->trampoline && op->trampoline_size) 1062 if (addr >= op->trampoline && 1063 addr < op->trampoline + op->trampoline_size) { 1064 preempt_enable_notrace(); 1065 return op; 1066 } 1067 } while_for_each_ftrace_op(op); 1068 preempt_enable_notrace(); 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * This is used by __kernel_text_address() to return true if the 1075 * address is on a dynamically allocated trampoline that would 1076 * not return true for either core_kernel_text() or 1077 * is_module_text_address(). 1078 */ 1079 bool is_ftrace_trampoline(unsigned long addr) 1080 { 1081 return ftrace_ops_trampoline(addr) != NULL; 1082 } 1083 1084 struct ftrace_page { 1085 struct ftrace_page *next; 1086 struct dyn_ftrace *records; 1087 int index; 1088 int order; 1089 }; 1090 1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1093 1094 static struct ftrace_page *ftrace_pages_start; 1095 static struct ftrace_page *ftrace_pages; 1096 1097 static __always_inline unsigned long 1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1099 { 1100 if (hash->size_bits > 0) 1101 return hash_long(ip, hash->size_bits); 1102 1103 return 0; 1104 } 1105 1106 /* Only use this function if ftrace_hash_empty() has already been tested */ 1107 static __always_inline struct ftrace_func_entry * 1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1109 { 1110 unsigned long key; 1111 struct ftrace_func_entry *entry; 1112 struct hlist_head *hhd; 1113 1114 key = ftrace_hash_key(hash, ip); 1115 hhd = &hash->buckets[key]; 1116 1117 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1118 if (entry->ip == ip) 1119 return entry; 1120 } 1121 return NULL; 1122 } 1123 1124 /** 1125 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1126 * @hash: The hash to look at 1127 * @ip: The instruction pointer to test 1128 * 1129 * Search a given @hash to see if a given instruction pointer (@ip) 1130 * exists in it. 1131 * 1132 * Returns the entry that holds the @ip if found. NULL otherwise. 1133 */ 1134 struct ftrace_func_entry * 1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1136 { 1137 if (ftrace_hash_empty(hash)) 1138 return NULL; 1139 1140 return __ftrace_lookup_ip(hash, ip); 1141 } 1142 1143 static void __add_hash_entry(struct ftrace_hash *hash, 1144 struct ftrace_func_entry *entry) 1145 { 1146 struct hlist_head *hhd; 1147 unsigned long key; 1148 1149 key = ftrace_hash_key(hash, entry->ip); 1150 hhd = &hash->buckets[key]; 1151 hlist_add_head(&entry->hlist, hhd); 1152 hash->count++; 1153 } 1154 1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1156 { 1157 struct ftrace_func_entry *entry; 1158 1159 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1160 if (!entry) 1161 return -ENOMEM; 1162 1163 entry->ip = ip; 1164 __add_hash_entry(hash, entry); 1165 1166 return 0; 1167 } 1168 1169 static void 1170 free_hash_entry(struct ftrace_hash *hash, 1171 struct ftrace_func_entry *entry) 1172 { 1173 hlist_del(&entry->hlist); 1174 kfree(entry); 1175 hash->count--; 1176 } 1177 1178 static void 1179 remove_hash_entry(struct ftrace_hash *hash, 1180 struct ftrace_func_entry *entry) 1181 { 1182 hlist_del_rcu(&entry->hlist); 1183 hash->count--; 1184 } 1185 1186 static void ftrace_hash_clear(struct ftrace_hash *hash) 1187 { 1188 struct hlist_head *hhd; 1189 struct hlist_node *tn; 1190 struct ftrace_func_entry *entry; 1191 int size = 1 << hash->size_bits; 1192 int i; 1193 1194 if (!hash->count) 1195 return; 1196 1197 for (i = 0; i < size; i++) { 1198 hhd = &hash->buckets[i]; 1199 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1200 free_hash_entry(hash, entry); 1201 } 1202 FTRACE_WARN_ON(hash->count); 1203 } 1204 1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1206 { 1207 list_del(&ftrace_mod->list); 1208 kfree(ftrace_mod->module); 1209 kfree(ftrace_mod->func); 1210 kfree(ftrace_mod); 1211 } 1212 1213 static void clear_ftrace_mod_list(struct list_head *head) 1214 { 1215 struct ftrace_mod_load *p, *n; 1216 1217 /* stack tracer isn't supported yet */ 1218 if (!head) 1219 return; 1220 1221 mutex_lock(&ftrace_lock); 1222 list_for_each_entry_safe(p, n, head, list) 1223 free_ftrace_mod(p); 1224 mutex_unlock(&ftrace_lock); 1225 } 1226 1227 static void free_ftrace_hash(struct ftrace_hash *hash) 1228 { 1229 if (!hash || hash == EMPTY_HASH) 1230 return; 1231 ftrace_hash_clear(hash); 1232 kfree(hash->buckets); 1233 kfree(hash); 1234 } 1235 1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1237 { 1238 struct ftrace_hash *hash; 1239 1240 hash = container_of(rcu, struct ftrace_hash, rcu); 1241 free_ftrace_hash(hash); 1242 } 1243 1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1245 { 1246 if (!hash || hash == EMPTY_HASH) 1247 return; 1248 call_rcu(&hash->rcu, __free_ftrace_hash_rcu); 1249 } 1250 1251 void ftrace_free_filter(struct ftrace_ops *ops) 1252 { 1253 ftrace_ops_init(ops); 1254 free_ftrace_hash(ops->func_hash->filter_hash); 1255 free_ftrace_hash(ops->func_hash->notrace_hash); 1256 } 1257 1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1259 { 1260 struct ftrace_hash *hash; 1261 int size; 1262 1263 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1264 if (!hash) 1265 return NULL; 1266 1267 size = 1 << size_bits; 1268 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1269 1270 if (!hash->buckets) { 1271 kfree(hash); 1272 return NULL; 1273 } 1274 1275 hash->size_bits = size_bits; 1276 1277 return hash; 1278 } 1279 1280 1281 static int ftrace_add_mod(struct trace_array *tr, 1282 const char *func, const char *module, 1283 int enable) 1284 { 1285 struct ftrace_mod_load *ftrace_mod; 1286 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1287 1288 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1289 if (!ftrace_mod) 1290 return -ENOMEM; 1291 1292 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1293 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1294 ftrace_mod->enable = enable; 1295 1296 if (!ftrace_mod->func || !ftrace_mod->module) 1297 goto out_free; 1298 1299 list_add(&ftrace_mod->list, mod_head); 1300 1301 return 0; 1302 1303 out_free: 1304 free_ftrace_mod(ftrace_mod); 1305 1306 return -ENOMEM; 1307 } 1308 1309 static struct ftrace_hash * 1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1311 { 1312 struct ftrace_func_entry *entry; 1313 struct ftrace_hash *new_hash; 1314 int size; 1315 int ret; 1316 int i; 1317 1318 new_hash = alloc_ftrace_hash(size_bits); 1319 if (!new_hash) 1320 return NULL; 1321 1322 if (hash) 1323 new_hash->flags = hash->flags; 1324 1325 /* Empty hash? */ 1326 if (ftrace_hash_empty(hash)) 1327 return new_hash; 1328 1329 size = 1 << hash->size_bits; 1330 for (i = 0; i < size; i++) { 1331 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1332 ret = add_hash_entry(new_hash, entry->ip); 1333 if (ret < 0) 1334 goto free_hash; 1335 } 1336 } 1337 1338 FTRACE_WARN_ON(new_hash->count != hash->count); 1339 1340 return new_hash; 1341 1342 free_hash: 1343 free_ftrace_hash(new_hash); 1344 return NULL; 1345 } 1346 1347 static void 1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1349 static void 1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1351 1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1353 struct ftrace_hash *new_hash); 1354 1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size) 1356 { 1357 struct ftrace_func_entry *entry; 1358 struct ftrace_hash *new_hash; 1359 struct hlist_head *hhd; 1360 struct hlist_node *tn; 1361 int bits = 0; 1362 int i; 1363 1364 /* 1365 * Use around half the size (max bit of it), but 1366 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits). 1367 */ 1368 bits = fls(size / 2); 1369 1370 /* Don't allocate too much */ 1371 if (bits > FTRACE_HASH_MAX_BITS) 1372 bits = FTRACE_HASH_MAX_BITS; 1373 1374 new_hash = alloc_ftrace_hash(bits); 1375 if (!new_hash) 1376 return NULL; 1377 1378 new_hash->flags = src->flags; 1379 1380 size = 1 << src->size_bits; 1381 for (i = 0; i < size; i++) { 1382 hhd = &src->buckets[i]; 1383 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1384 remove_hash_entry(src, entry); 1385 __add_hash_entry(new_hash, entry); 1386 } 1387 } 1388 return new_hash; 1389 } 1390 1391 static struct ftrace_hash * 1392 __ftrace_hash_move(struct ftrace_hash *src) 1393 { 1394 int size = src->count; 1395 1396 /* 1397 * If the new source is empty, just return the empty_hash. 1398 */ 1399 if (ftrace_hash_empty(src)) 1400 return EMPTY_HASH; 1401 1402 return dup_hash(src, size); 1403 } 1404 1405 static int 1406 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1407 struct ftrace_hash **dst, struct ftrace_hash *src) 1408 { 1409 struct ftrace_hash *new_hash; 1410 int ret; 1411 1412 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1413 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1414 return -EINVAL; 1415 1416 new_hash = __ftrace_hash_move(src); 1417 if (!new_hash) 1418 return -ENOMEM; 1419 1420 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1421 if (enable) { 1422 /* IPMODIFY should be updated only when filter_hash updating */ 1423 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1424 if (ret < 0) { 1425 free_ftrace_hash(new_hash); 1426 return ret; 1427 } 1428 } 1429 1430 /* 1431 * Remove the current set, update the hash and add 1432 * them back. 1433 */ 1434 ftrace_hash_rec_disable_modify(ops, enable); 1435 1436 rcu_assign_pointer(*dst, new_hash); 1437 1438 ftrace_hash_rec_enable_modify(ops, enable); 1439 1440 return 0; 1441 } 1442 1443 static bool hash_contains_ip(unsigned long ip, 1444 struct ftrace_ops_hash *hash) 1445 { 1446 /* 1447 * The function record is a match if it exists in the filter 1448 * hash and not in the notrace hash. Note, an empty hash is 1449 * considered a match for the filter hash, but an empty 1450 * notrace hash is considered not in the notrace hash. 1451 */ 1452 return (ftrace_hash_empty(hash->filter_hash) || 1453 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1454 (ftrace_hash_empty(hash->notrace_hash) || 1455 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1456 } 1457 1458 /* 1459 * Test the hashes for this ops to see if we want to call 1460 * the ops->func or not. 1461 * 1462 * It's a match if the ip is in the ops->filter_hash or 1463 * the filter_hash does not exist or is empty, 1464 * AND 1465 * the ip is not in the ops->notrace_hash. 1466 * 1467 * This needs to be called with preemption disabled as 1468 * the hashes are freed with call_rcu(). 1469 */ 1470 int 1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1472 { 1473 struct ftrace_ops_hash hash; 1474 int ret; 1475 1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1477 /* 1478 * There's a small race when adding ops that the ftrace handler 1479 * that wants regs, may be called without them. We can not 1480 * allow that handler to be called if regs is NULL. 1481 */ 1482 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1483 return 0; 1484 #endif 1485 1486 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1487 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1488 1489 if (hash_contains_ip(ip, &hash)) 1490 ret = 1; 1491 else 1492 ret = 0; 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * This is a double for. Do not use 'break' to break out of the loop, 1499 * you must use a goto. 1500 */ 1501 #define do_for_each_ftrace_rec(pg, rec) \ 1502 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1503 int _____i; \ 1504 for (_____i = 0; _____i < pg->index; _____i++) { \ 1505 rec = &pg->records[_____i]; 1506 1507 #define while_for_each_ftrace_rec() \ 1508 } \ 1509 } 1510 1511 1512 static int ftrace_cmp_recs(const void *a, const void *b) 1513 { 1514 const struct dyn_ftrace *key = a; 1515 const struct dyn_ftrace *rec = b; 1516 1517 if (key->flags < rec->ip) 1518 return -1; 1519 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1520 return 1; 1521 return 0; 1522 } 1523 1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end) 1525 { 1526 struct ftrace_page *pg; 1527 struct dyn_ftrace *rec = NULL; 1528 struct dyn_ftrace key; 1529 1530 key.ip = start; 1531 key.flags = end; /* overload flags, as it is unsigned long */ 1532 1533 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1534 if (end < pg->records[0].ip || 1535 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1536 continue; 1537 rec = bsearch(&key, pg->records, pg->index, 1538 sizeof(struct dyn_ftrace), 1539 ftrace_cmp_recs); 1540 if (rec) 1541 break; 1542 } 1543 return rec; 1544 } 1545 1546 /** 1547 * ftrace_location_range - return the first address of a traced location 1548 * if it touches the given ip range 1549 * @start: start of range to search. 1550 * @end: end of range to search (inclusive). @end points to the last byte 1551 * to check. 1552 * 1553 * Returns rec->ip if the related ftrace location is a least partly within 1554 * the given address range. That is, the first address of the instruction 1555 * that is either a NOP or call to the function tracer. It checks the ftrace 1556 * internal tables to determine if the address belongs or not. 1557 */ 1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1559 { 1560 struct dyn_ftrace *rec; 1561 1562 rec = lookup_rec(start, end); 1563 if (rec) 1564 return rec->ip; 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * ftrace_location - return the ftrace location 1571 * @ip: the instruction pointer to check 1572 * 1573 * If @ip matches the ftrace location, return @ip. 1574 * If @ip matches sym+0, return sym's ftrace location. 1575 * Otherwise, return 0. 1576 */ 1577 unsigned long ftrace_location(unsigned long ip) 1578 { 1579 struct dyn_ftrace *rec; 1580 unsigned long offset; 1581 unsigned long size; 1582 1583 rec = lookup_rec(ip, ip); 1584 if (!rec) { 1585 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) 1586 goto out; 1587 1588 /* map sym+0 to __fentry__ */ 1589 if (!offset) 1590 rec = lookup_rec(ip, ip + size - 1); 1591 } 1592 1593 if (rec) 1594 return rec->ip; 1595 1596 out: 1597 return 0; 1598 } 1599 1600 /** 1601 * ftrace_text_reserved - return true if range contains an ftrace location 1602 * @start: start of range to search 1603 * @end: end of range to search (inclusive). @end points to the last byte to check. 1604 * 1605 * Returns 1 if @start and @end contains a ftrace location. 1606 * That is, the instruction that is either a NOP or call to 1607 * the function tracer. It checks the ftrace internal tables to 1608 * determine if the address belongs or not. 1609 */ 1610 int ftrace_text_reserved(const void *start, const void *end) 1611 { 1612 unsigned long ret; 1613 1614 ret = ftrace_location_range((unsigned long)start, 1615 (unsigned long)end); 1616 1617 return (int)!!ret; 1618 } 1619 1620 /* Test if ops registered to this rec needs regs */ 1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1622 { 1623 struct ftrace_ops *ops; 1624 bool keep_regs = false; 1625 1626 for (ops = ftrace_ops_list; 1627 ops != &ftrace_list_end; ops = ops->next) { 1628 /* pass rec in as regs to have non-NULL val */ 1629 if (ftrace_ops_test(ops, rec->ip, rec)) { 1630 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1631 keep_regs = true; 1632 break; 1633 } 1634 } 1635 } 1636 1637 return keep_regs; 1638 } 1639 1640 static struct ftrace_ops * 1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1642 static struct ftrace_ops * 1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude); 1644 static struct ftrace_ops * 1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1646 1647 static bool skip_record(struct dyn_ftrace *rec) 1648 { 1649 /* 1650 * At boot up, weak functions are set to disable. Function tracing 1651 * can be enabled before they are, and they still need to be disabled now. 1652 * If the record is disabled, still continue if it is marked as already 1653 * enabled (this is needed to keep the accounting working). 1654 */ 1655 return rec->flags & FTRACE_FL_DISABLED && 1656 !(rec->flags & FTRACE_FL_ENABLED); 1657 } 1658 1659 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1660 int filter_hash, 1661 bool inc) 1662 { 1663 struct ftrace_hash *hash; 1664 struct ftrace_hash *other_hash; 1665 struct ftrace_page *pg; 1666 struct dyn_ftrace *rec; 1667 bool update = false; 1668 int count = 0; 1669 int all = false; 1670 1671 /* Only update if the ops has been registered */ 1672 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1673 return false; 1674 1675 /* 1676 * In the filter_hash case: 1677 * If the count is zero, we update all records. 1678 * Otherwise we just update the items in the hash. 1679 * 1680 * In the notrace_hash case: 1681 * We enable the update in the hash. 1682 * As disabling notrace means enabling the tracing, 1683 * and enabling notrace means disabling, the inc variable 1684 * gets inversed. 1685 */ 1686 if (filter_hash) { 1687 hash = ops->func_hash->filter_hash; 1688 other_hash = ops->func_hash->notrace_hash; 1689 if (ftrace_hash_empty(hash)) 1690 all = true; 1691 } else { 1692 inc = !inc; 1693 hash = ops->func_hash->notrace_hash; 1694 other_hash = ops->func_hash->filter_hash; 1695 /* 1696 * If the notrace hash has no items, 1697 * then there's nothing to do. 1698 */ 1699 if (ftrace_hash_empty(hash)) 1700 return false; 1701 } 1702 1703 do_for_each_ftrace_rec(pg, rec) { 1704 int in_other_hash = 0; 1705 int in_hash = 0; 1706 int match = 0; 1707 1708 if (skip_record(rec)) 1709 continue; 1710 1711 if (all) { 1712 /* 1713 * Only the filter_hash affects all records. 1714 * Update if the record is not in the notrace hash. 1715 */ 1716 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1717 match = 1; 1718 } else { 1719 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1720 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1721 1722 /* 1723 * If filter_hash is set, we want to match all functions 1724 * that are in the hash but not in the other hash. 1725 * 1726 * If filter_hash is not set, then we are decrementing. 1727 * That means we match anything that is in the hash 1728 * and also in the other_hash. That is, we need to turn 1729 * off functions in the other hash because they are disabled 1730 * by this hash. 1731 */ 1732 if (filter_hash && in_hash && !in_other_hash) 1733 match = 1; 1734 else if (!filter_hash && in_hash && 1735 (in_other_hash || ftrace_hash_empty(other_hash))) 1736 match = 1; 1737 } 1738 if (!match) 1739 continue; 1740 1741 if (inc) { 1742 rec->flags++; 1743 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1744 return false; 1745 1746 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1747 rec->flags |= FTRACE_FL_DIRECT; 1748 1749 /* 1750 * If there's only a single callback registered to a 1751 * function, and the ops has a trampoline registered 1752 * for it, then we can call it directly. 1753 */ 1754 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1755 rec->flags |= FTRACE_FL_TRAMP; 1756 else 1757 /* 1758 * If we are adding another function callback 1759 * to this function, and the previous had a 1760 * custom trampoline in use, then we need to go 1761 * back to the default trampoline. 1762 */ 1763 rec->flags &= ~FTRACE_FL_TRAMP; 1764 1765 /* 1766 * If any ops wants regs saved for this function 1767 * then all ops will get saved regs. 1768 */ 1769 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1770 rec->flags |= FTRACE_FL_REGS; 1771 } else { 1772 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1773 return false; 1774 rec->flags--; 1775 1776 /* 1777 * Only the internal direct_ops should have the 1778 * DIRECT flag set. Thus, if it is removing a 1779 * function, then that function should no longer 1780 * be direct. 1781 */ 1782 if (ops->flags & FTRACE_OPS_FL_DIRECT) 1783 rec->flags &= ~FTRACE_FL_DIRECT; 1784 1785 /* 1786 * If the rec had REGS enabled and the ops that is 1787 * being removed had REGS set, then see if there is 1788 * still any ops for this record that wants regs. 1789 * If not, we can stop recording them. 1790 */ 1791 if (ftrace_rec_count(rec) > 0 && 1792 rec->flags & FTRACE_FL_REGS && 1793 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1794 if (!test_rec_ops_needs_regs(rec)) 1795 rec->flags &= ~FTRACE_FL_REGS; 1796 } 1797 1798 /* 1799 * The TRAMP needs to be set only if rec count 1800 * is decremented to one, and the ops that is 1801 * left has a trampoline. As TRAMP can only be 1802 * enabled if there is only a single ops attached 1803 * to it. 1804 */ 1805 if (ftrace_rec_count(rec) == 1 && 1806 ftrace_find_tramp_ops_any_other(rec, ops)) 1807 rec->flags |= FTRACE_FL_TRAMP; 1808 else 1809 rec->flags &= ~FTRACE_FL_TRAMP; 1810 1811 /* 1812 * flags will be cleared in ftrace_check_record() 1813 * if rec count is zero. 1814 */ 1815 } 1816 count++; 1817 1818 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1819 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE; 1820 1821 /* Shortcut, if we handled all records, we are done. */ 1822 if (!all && count == hash->count) 1823 return update; 1824 } while_for_each_ftrace_rec(); 1825 1826 return update; 1827 } 1828 1829 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1830 int filter_hash) 1831 { 1832 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1833 } 1834 1835 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1836 int filter_hash) 1837 { 1838 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1839 } 1840 1841 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1842 int filter_hash, int inc) 1843 { 1844 struct ftrace_ops *op; 1845 1846 __ftrace_hash_rec_update(ops, filter_hash, inc); 1847 1848 if (ops->func_hash != &global_ops.local_hash) 1849 return; 1850 1851 /* 1852 * If the ops shares the global_ops hash, then we need to update 1853 * all ops that are enabled and use this hash. 1854 */ 1855 do_for_each_ftrace_op(op, ftrace_ops_list) { 1856 /* Already done */ 1857 if (op == ops) 1858 continue; 1859 if (op->func_hash == &global_ops.local_hash) 1860 __ftrace_hash_rec_update(op, filter_hash, inc); 1861 } while_for_each_ftrace_op(op); 1862 } 1863 1864 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1865 int filter_hash) 1866 { 1867 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1868 } 1869 1870 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1871 int filter_hash) 1872 { 1873 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1874 } 1875 1876 /* 1877 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1878 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1879 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1880 * Note that old_hash and new_hash has below meanings 1881 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1882 * - If the hash is EMPTY_HASH, it hits nothing 1883 * - Anything else hits the recs which match the hash entries. 1884 * 1885 * DIRECT ops does not have IPMODIFY flag, but we still need to check it 1886 * against functions with FTRACE_FL_IPMODIFY. If there is any overlap, call 1887 * ops_func(SHARE_IPMODIFY_SELF) to make sure current ops can share with 1888 * IPMODIFY. If ops_func(SHARE_IPMODIFY_SELF) returns non-zero, propagate 1889 * the return value to the caller and eventually to the owner of the DIRECT 1890 * ops. 1891 */ 1892 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1893 struct ftrace_hash *old_hash, 1894 struct ftrace_hash *new_hash) 1895 { 1896 struct ftrace_page *pg; 1897 struct dyn_ftrace *rec, *end = NULL; 1898 int in_old, in_new; 1899 bool is_ipmodify, is_direct; 1900 1901 /* Only update if the ops has been registered */ 1902 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1903 return 0; 1904 1905 is_ipmodify = ops->flags & FTRACE_OPS_FL_IPMODIFY; 1906 is_direct = ops->flags & FTRACE_OPS_FL_DIRECT; 1907 1908 /* neither IPMODIFY nor DIRECT, skip */ 1909 if (!is_ipmodify && !is_direct) 1910 return 0; 1911 1912 if (WARN_ON_ONCE(is_ipmodify && is_direct)) 1913 return 0; 1914 1915 /* 1916 * Since the IPMODIFY and DIRECT are very address sensitive 1917 * actions, we do not allow ftrace_ops to set all functions to new 1918 * hash. 1919 */ 1920 if (!new_hash || !old_hash) 1921 return -EINVAL; 1922 1923 /* Update rec->flags */ 1924 do_for_each_ftrace_rec(pg, rec) { 1925 1926 if (rec->flags & FTRACE_FL_DISABLED) 1927 continue; 1928 1929 /* We need to update only differences of filter_hash */ 1930 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1931 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1932 if (in_old == in_new) 1933 continue; 1934 1935 if (in_new) { 1936 if (rec->flags & FTRACE_FL_IPMODIFY) { 1937 int ret; 1938 1939 /* Cannot have two ipmodify on same rec */ 1940 if (is_ipmodify) 1941 goto rollback; 1942 1943 FTRACE_WARN_ON(rec->flags & FTRACE_FL_DIRECT); 1944 1945 /* 1946 * Another ops with IPMODIFY is already 1947 * attached. We are now attaching a direct 1948 * ops. Run SHARE_IPMODIFY_SELF, to check 1949 * whether sharing is supported. 1950 */ 1951 if (!ops->ops_func) 1952 return -EBUSY; 1953 ret = ops->ops_func(ops, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF); 1954 if (ret) 1955 return ret; 1956 } else if (is_ipmodify) { 1957 rec->flags |= FTRACE_FL_IPMODIFY; 1958 } 1959 } else if (is_ipmodify) { 1960 rec->flags &= ~FTRACE_FL_IPMODIFY; 1961 } 1962 } while_for_each_ftrace_rec(); 1963 1964 return 0; 1965 1966 rollback: 1967 end = rec; 1968 1969 /* Roll back what we did above */ 1970 do_for_each_ftrace_rec(pg, rec) { 1971 1972 if (rec->flags & FTRACE_FL_DISABLED) 1973 continue; 1974 1975 if (rec == end) 1976 goto err_out; 1977 1978 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1979 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1980 if (in_old == in_new) 1981 continue; 1982 1983 if (in_new) 1984 rec->flags &= ~FTRACE_FL_IPMODIFY; 1985 else 1986 rec->flags |= FTRACE_FL_IPMODIFY; 1987 } while_for_each_ftrace_rec(); 1988 1989 err_out: 1990 return -EBUSY; 1991 } 1992 1993 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1994 { 1995 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1996 1997 if (ftrace_hash_empty(hash)) 1998 hash = NULL; 1999 2000 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 2001 } 2002 2003 /* Disabling always succeeds */ 2004 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 2005 { 2006 struct ftrace_hash *hash = ops->func_hash->filter_hash; 2007 2008 if (ftrace_hash_empty(hash)) 2009 hash = NULL; 2010 2011 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 2012 } 2013 2014 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 2015 struct ftrace_hash *new_hash) 2016 { 2017 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 2018 2019 if (ftrace_hash_empty(old_hash)) 2020 old_hash = NULL; 2021 2022 if (ftrace_hash_empty(new_hash)) 2023 new_hash = NULL; 2024 2025 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 2026 } 2027 2028 static void print_ip_ins(const char *fmt, const unsigned char *p) 2029 { 2030 char ins[MCOUNT_INSN_SIZE]; 2031 2032 if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) { 2033 printk(KERN_CONT "%s[FAULT] %px\n", fmt, p); 2034 return; 2035 } 2036 2037 printk(KERN_CONT "%s", fmt); 2038 pr_cont("%*phC", MCOUNT_INSN_SIZE, ins); 2039 } 2040 2041 enum ftrace_bug_type ftrace_bug_type; 2042 const void *ftrace_expected; 2043 2044 static void print_bug_type(void) 2045 { 2046 switch (ftrace_bug_type) { 2047 case FTRACE_BUG_UNKNOWN: 2048 break; 2049 case FTRACE_BUG_INIT: 2050 pr_info("Initializing ftrace call sites\n"); 2051 break; 2052 case FTRACE_BUG_NOP: 2053 pr_info("Setting ftrace call site to NOP\n"); 2054 break; 2055 case FTRACE_BUG_CALL: 2056 pr_info("Setting ftrace call site to call ftrace function\n"); 2057 break; 2058 case FTRACE_BUG_UPDATE: 2059 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2060 break; 2061 } 2062 } 2063 2064 /** 2065 * ftrace_bug - report and shutdown function tracer 2066 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2067 * @rec: The record that failed 2068 * 2069 * The arch code that enables or disables the function tracing 2070 * can call ftrace_bug() when it has detected a problem in 2071 * modifying the code. @failed should be one of either: 2072 * EFAULT - if the problem happens on reading the @ip address 2073 * EINVAL - if what is read at @ip is not what was expected 2074 * EPERM - if the problem happens on writing to the @ip address 2075 */ 2076 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2077 { 2078 unsigned long ip = rec ? rec->ip : 0; 2079 2080 pr_info("------------[ ftrace bug ]------------\n"); 2081 2082 switch (failed) { 2083 case -EFAULT: 2084 pr_info("ftrace faulted on modifying "); 2085 print_ip_sym(KERN_INFO, ip); 2086 break; 2087 case -EINVAL: 2088 pr_info("ftrace failed to modify "); 2089 print_ip_sym(KERN_INFO, ip); 2090 print_ip_ins(" actual: ", (unsigned char *)ip); 2091 pr_cont("\n"); 2092 if (ftrace_expected) { 2093 print_ip_ins(" expected: ", ftrace_expected); 2094 pr_cont("\n"); 2095 } 2096 break; 2097 case -EPERM: 2098 pr_info("ftrace faulted on writing "); 2099 print_ip_sym(KERN_INFO, ip); 2100 break; 2101 default: 2102 pr_info("ftrace faulted on unknown error "); 2103 print_ip_sym(KERN_INFO, ip); 2104 } 2105 print_bug_type(); 2106 if (rec) { 2107 struct ftrace_ops *ops = NULL; 2108 2109 pr_info("ftrace record flags: %lx\n", rec->flags); 2110 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2111 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2112 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2113 ops = ftrace_find_tramp_ops_any(rec); 2114 if (ops) { 2115 do { 2116 pr_cont("\ttramp: %pS (%pS)", 2117 (void *)ops->trampoline, 2118 (void *)ops->func); 2119 ops = ftrace_find_tramp_ops_next(rec, ops); 2120 } while (ops); 2121 } else 2122 pr_cont("\ttramp: ERROR!"); 2123 2124 } 2125 ip = ftrace_get_addr_curr(rec); 2126 pr_cont("\n expected tramp: %lx\n", ip); 2127 } 2128 2129 FTRACE_WARN_ON_ONCE(1); 2130 } 2131 2132 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update) 2133 { 2134 unsigned long flag = 0UL; 2135 2136 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2137 2138 if (skip_record(rec)) 2139 return FTRACE_UPDATE_IGNORE; 2140 2141 /* 2142 * If we are updating calls: 2143 * 2144 * If the record has a ref count, then we need to enable it 2145 * because someone is using it. 2146 * 2147 * Otherwise we make sure its disabled. 2148 * 2149 * If we are disabling calls, then disable all records that 2150 * are enabled. 2151 */ 2152 if (enable && ftrace_rec_count(rec)) 2153 flag = FTRACE_FL_ENABLED; 2154 2155 /* 2156 * If enabling and the REGS flag does not match the REGS_EN, or 2157 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2158 * this record. Set flags to fail the compare against ENABLED. 2159 * Same for direct calls. 2160 */ 2161 if (flag) { 2162 if (!(rec->flags & FTRACE_FL_REGS) != 2163 !(rec->flags & FTRACE_FL_REGS_EN)) 2164 flag |= FTRACE_FL_REGS; 2165 2166 if (!(rec->flags & FTRACE_FL_TRAMP) != 2167 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2168 flag |= FTRACE_FL_TRAMP; 2169 2170 /* 2171 * Direct calls are special, as count matters. 2172 * We must test the record for direct, if the 2173 * DIRECT and DIRECT_EN do not match, but only 2174 * if the count is 1. That's because, if the 2175 * count is something other than one, we do not 2176 * want the direct enabled (it will be done via the 2177 * direct helper). But if DIRECT_EN is set, and 2178 * the count is not one, we need to clear it. 2179 */ 2180 if (ftrace_rec_count(rec) == 1) { 2181 if (!(rec->flags & FTRACE_FL_DIRECT) != 2182 !(rec->flags & FTRACE_FL_DIRECT_EN)) 2183 flag |= FTRACE_FL_DIRECT; 2184 } else if (rec->flags & FTRACE_FL_DIRECT_EN) { 2185 flag |= FTRACE_FL_DIRECT; 2186 } 2187 } 2188 2189 /* If the state of this record hasn't changed, then do nothing */ 2190 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2191 return FTRACE_UPDATE_IGNORE; 2192 2193 if (flag) { 2194 /* Save off if rec is being enabled (for return value) */ 2195 flag ^= rec->flags & FTRACE_FL_ENABLED; 2196 2197 if (update) { 2198 rec->flags |= FTRACE_FL_ENABLED; 2199 if (flag & FTRACE_FL_REGS) { 2200 if (rec->flags & FTRACE_FL_REGS) 2201 rec->flags |= FTRACE_FL_REGS_EN; 2202 else 2203 rec->flags &= ~FTRACE_FL_REGS_EN; 2204 } 2205 if (flag & FTRACE_FL_TRAMP) { 2206 if (rec->flags & FTRACE_FL_TRAMP) 2207 rec->flags |= FTRACE_FL_TRAMP_EN; 2208 else 2209 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2210 } 2211 2212 if (flag & FTRACE_FL_DIRECT) { 2213 /* 2214 * If there's only one user (direct_ops helper) 2215 * then we can call the direct function 2216 * directly (no ftrace trampoline). 2217 */ 2218 if (ftrace_rec_count(rec) == 1) { 2219 if (rec->flags & FTRACE_FL_DIRECT) 2220 rec->flags |= FTRACE_FL_DIRECT_EN; 2221 else 2222 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2223 } else { 2224 /* 2225 * Can only call directly if there's 2226 * only one callback to the function. 2227 */ 2228 rec->flags &= ~FTRACE_FL_DIRECT_EN; 2229 } 2230 } 2231 } 2232 2233 /* 2234 * If this record is being updated from a nop, then 2235 * return UPDATE_MAKE_CALL. 2236 * Otherwise, 2237 * return UPDATE_MODIFY_CALL to tell the caller to convert 2238 * from the save regs, to a non-save regs function or 2239 * vice versa, or from a trampoline call. 2240 */ 2241 if (flag & FTRACE_FL_ENABLED) { 2242 ftrace_bug_type = FTRACE_BUG_CALL; 2243 return FTRACE_UPDATE_MAKE_CALL; 2244 } 2245 2246 ftrace_bug_type = FTRACE_BUG_UPDATE; 2247 return FTRACE_UPDATE_MODIFY_CALL; 2248 } 2249 2250 if (update) { 2251 /* If there's no more users, clear all flags */ 2252 if (!ftrace_rec_count(rec)) 2253 rec->flags &= FTRACE_FL_DISABLED; 2254 else 2255 /* 2256 * Just disable the record, but keep the ops TRAMP 2257 * and REGS states. The _EN flags must be disabled though. 2258 */ 2259 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2260 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN); 2261 } 2262 2263 ftrace_bug_type = FTRACE_BUG_NOP; 2264 return FTRACE_UPDATE_MAKE_NOP; 2265 } 2266 2267 /** 2268 * ftrace_update_record - set a record that now is tracing or not 2269 * @rec: the record to update 2270 * @enable: set to true if the record is tracing, false to force disable 2271 * 2272 * The records that represent all functions that can be traced need 2273 * to be updated when tracing has been enabled. 2274 */ 2275 int ftrace_update_record(struct dyn_ftrace *rec, bool enable) 2276 { 2277 return ftrace_check_record(rec, enable, true); 2278 } 2279 2280 /** 2281 * ftrace_test_record - check if the record has been enabled or not 2282 * @rec: the record to test 2283 * @enable: set to true to check if enabled, false if it is disabled 2284 * 2285 * The arch code may need to test if a record is already set to 2286 * tracing to determine how to modify the function code that it 2287 * represents. 2288 */ 2289 int ftrace_test_record(struct dyn_ftrace *rec, bool enable) 2290 { 2291 return ftrace_check_record(rec, enable, false); 2292 } 2293 2294 static struct ftrace_ops * 2295 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2296 { 2297 struct ftrace_ops *op; 2298 unsigned long ip = rec->ip; 2299 2300 do_for_each_ftrace_op(op, ftrace_ops_list) { 2301 2302 if (!op->trampoline) 2303 continue; 2304 2305 if (hash_contains_ip(ip, op->func_hash)) 2306 return op; 2307 } while_for_each_ftrace_op(op); 2308 2309 return NULL; 2310 } 2311 2312 static struct ftrace_ops * 2313 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude) 2314 { 2315 struct ftrace_ops *op; 2316 unsigned long ip = rec->ip; 2317 2318 do_for_each_ftrace_op(op, ftrace_ops_list) { 2319 2320 if (op == op_exclude || !op->trampoline) 2321 continue; 2322 2323 if (hash_contains_ip(ip, op->func_hash)) 2324 return op; 2325 } while_for_each_ftrace_op(op); 2326 2327 return NULL; 2328 } 2329 2330 static struct ftrace_ops * 2331 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2332 struct ftrace_ops *op) 2333 { 2334 unsigned long ip = rec->ip; 2335 2336 while_for_each_ftrace_op(op) { 2337 2338 if (!op->trampoline) 2339 continue; 2340 2341 if (hash_contains_ip(ip, op->func_hash)) 2342 return op; 2343 } 2344 2345 return NULL; 2346 } 2347 2348 static struct ftrace_ops * 2349 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2350 { 2351 struct ftrace_ops *op; 2352 unsigned long ip = rec->ip; 2353 2354 /* 2355 * Need to check removed ops first. 2356 * If they are being removed, and this rec has a tramp, 2357 * and this rec is in the ops list, then it would be the 2358 * one with the tramp. 2359 */ 2360 if (removed_ops) { 2361 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2362 return removed_ops; 2363 } 2364 2365 /* 2366 * Need to find the current trampoline for a rec. 2367 * Now, a trampoline is only attached to a rec if there 2368 * was a single 'ops' attached to it. But this can be called 2369 * when we are adding another op to the rec or removing the 2370 * current one. Thus, if the op is being added, we can 2371 * ignore it because it hasn't attached itself to the rec 2372 * yet. 2373 * 2374 * If an ops is being modified (hooking to different functions) 2375 * then we don't care about the new functions that are being 2376 * added, just the old ones (that are probably being removed). 2377 * 2378 * If we are adding an ops to a function that already is using 2379 * a trampoline, it needs to be removed (trampolines are only 2380 * for single ops connected), then an ops that is not being 2381 * modified also needs to be checked. 2382 */ 2383 do_for_each_ftrace_op(op, ftrace_ops_list) { 2384 2385 if (!op->trampoline) 2386 continue; 2387 2388 /* 2389 * If the ops is being added, it hasn't gotten to 2390 * the point to be removed from this tree yet. 2391 */ 2392 if (op->flags & FTRACE_OPS_FL_ADDING) 2393 continue; 2394 2395 2396 /* 2397 * If the ops is being modified and is in the old 2398 * hash, then it is probably being removed from this 2399 * function. 2400 */ 2401 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2402 hash_contains_ip(ip, &op->old_hash)) 2403 return op; 2404 /* 2405 * If the ops is not being added or modified, and it's 2406 * in its normal filter hash, then this must be the one 2407 * we want! 2408 */ 2409 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2410 hash_contains_ip(ip, op->func_hash)) 2411 return op; 2412 2413 } while_for_each_ftrace_op(op); 2414 2415 return NULL; 2416 } 2417 2418 static struct ftrace_ops * 2419 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2420 { 2421 struct ftrace_ops *op; 2422 unsigned long ip = rec->ip; 2423 2424 do_for_each_ftrace_op(op, ftrace_ops_list) { 2425 /* pass rec in as regs to have non-NULL val */ 2426 if (hash_contains_ip(ip, op->func_hash)) 2427 return op; 2428 } while_for_each_ftrace_op(op); 2429 2430 return NULL; 2431 } 2432 2433 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 2434 /* Protected by rcu_tasks for reading, and direct_mutex for writing */ 2435 static struct ftrace_hash *direct_functions = EMPTY_HASH; 2436 static DEFINE_MUTEX(direct_mutex); 2437 int ftrace_direct_func_count; 2438 2439 /* 2440 * Search the direct_functions hash to see if the given instruction pointer 2441 * has a direct caller attached to it. 2442 */ 2443 unsigned long ftrace_find_rec_direct(unsigned long ip) 2444 { 2445 struct ftrace_func_entry *entry; 2446 2447 entry = __ftrace_lookup_ip(direct_functions, ip); 2448 if (!entry) 2449 return 0; 2450 2451 return entry->direct; 2452 } 2453 2454 static struct ftrace_func_entry* 2455 ftrace_add_rec_direct(unsigned long ip, unsigned long addr, 2456 struct ftrace_hash **free_hash) 2457 { 2458 struct ftrace_func_entry *entry; 2459 2460 if (ftrace_hash_empty(direct_functions) || 2461 direct_functions->count > 2 * (1 << direct_functions->size_bits)) { 2462 struct ftrace_hash *new_hash; 2463 int size = ftrace_hash_empty(direct_functions) ? 0 : 2464 direct_functions->count + 1; 2465 2466 if (size < 32) 2467 size = 32; 2468 2469 new_hash = dup_hash(direct_functions, size); 2470 if (!new_hash) 2471 return NULL; 2472 2473 *free_hash = direct_functions; 2474 direct_functions = new_hash; 2475 } 2476 2477 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2478 if (!entry) 2479 return NULL; 2480 2481 entry->ip = ip; 2482 entry->direct = addr; 2483 __add_hash_entry(direct_functions, entry); 2484 return entry; 2485 } 2486 2487 static void call_direct_funcs(unsigned long ip, unsigned long pip, 2488 struct ftrace_ops *ops, struct ftrace_regs *fregs) 2489 { 2490 unsigned long addr; 2491 2492 addr = ftrace_find_rec_direct(ip); 2493 if (!addr) 2494 return; 2495 2496 arch_ftrace_set_direct_caller(fregs, addr); 2497 } 2498 2499 struct ftrace_ops direct_ops = { 2500 .func = call_direct_funcs, 2501 .flags = FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS 2502 | FTRACE_OPS_FL_PERMANENT, 2503 /* 2504 * By declaring the main trampoline as this trampoline 2505 * it will never have one allocated for it. Allocated 2506 * trampolines should not call direct functions. 2507 * The direct_ops should only be called by the builtin 2508 * ftrace_regs_caller trampoline. 2509 */ 2510 .trampoline = FTRACE_REGS_ADDR, 2511 }; 2512 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 2513 2514 /** 2515 * ftrace_get_addr_new - Get the call address to set to 2516 * @rec: The ftrace record descriptor 2517 * 2518 * If the record has the FTRACE_FL_REGS set, that means that it 2519 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2520 * is not set, then it wants to convert to the normal callback. 2521 * 2522 * Returns the address of the trampoline to set to 2523 */ 2524 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2525 { 2526 struct ftrace_ops *ops; 2527 unsigned long addr; 2528 2529 if ((rec->flags & FTRACE_FL_DIRECT) && 2530 (ftrace_rec_count(rec) == 1)) { 2531 addr = ftrace_find_rec_direct(rec->ip); 2532 if (addr) 2533 return addr; 2534 WARN_ON_ONCE(1); 2535 } 2536 2537 /* Trampolines take precedence over regs */ 2538 if (rec->flags & FTRACE_FL_TRAMP) { 2539 ops = ftrace_find_tramp_ops_new(rec); 2540 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2541 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2542 (void *)rec->ip, (void *)rec->ip, rec->flags); 2543 /* Ftrace is shutting down, return anything */ 2544 return (unsigned long)FTRACE_ADDR; 2545 } 2546 return ops->trampoline; 2547 } 2548 2549 if (rec->flags & FTRACE_FL_REGS) 2550 return (unsigned long)FTRACE_REGS_ADDR; 2551 else 2552 return (unsigned long)FTRACE_ADDR; 2553 } 2554 2555 /** 2556 * ftrace_get_addr_curr - Get the call address that is already there 2557 * @rec: The ftrace record descriptor 2558 * 2559 * The FTRACE_FL_REGS_EN is set when the record already points to 2560 * a function that saves all the regs. Basically the '_EN' version 2561 * represents the current state of the function. 2562 * 2563 * Returns the address of the trampoline that is currently being called 2564 */ 2565 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2566 { 2567 struct ftrace_ops *ops; 2568 unsigned long addr; 2569 2570 /* Direct calls take precedence over trampolines */ 2571 if (rec->flags & FTRACE_FL_DIRECT_EN) { 2572 addr = ftrace_find_rec_direct(rec->ip); 2573 if (addr) 2574 return addr; 2575 WARN_ON_ONCE(1); 2576 } 2577 2578 /* Trampolines take precedence over regs */ 2579 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2580 ops = ftrace_find_tramp_ops_curr(rec); 2581 if (FTRACE_WARN_ON(!ops)) { 2582 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2583 (void *)rec->ip, (void *)rec->ip); 2584 /* Ftrace is shutting down, return anything */ 2585 return (unsigned long)FTRACE_ADDR; 2586 } 2587 return ops->trampoline; 2588 } 2589 2590 if (rec->flags & FTRACE_FL_REGS_EN) 2591 return (unsigned long)FTRACE_REGS_ADDR; 2592 else 2593 return (unsigned long)FTRACE_ADDR; 2594 } 2595 2596 static int 2597 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable) 2598 { 2599 unsigned long ftrace_old_addr; 2600 unsigned long ftrace_addr; 2601 int ret; 2602 2603 ftrace_addr = ftrace_get_addr_new(rec); 2604 2605 /* This needs to be done before we call ftrace_update_record */ 2606 ftrace_old_addr = ftrace_get_addr_curr(rec); 2607 2608 ret = ftrace_update_record(rec, enable); 2609 2610 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2611 2612 switch (ret) { 2613 case FTRACE_UPDATE_IGNORE: 2614 return 0; 2615 2616 case FTRACE_UPDATE_MAKE_CALL: 2617 ftrace_bug_type = FTRACE_BUG_CALL; 2618 return ftrace_make_call(rec, ftrace_addr); 2619 2620 case FTRACE_UPDATE_MAKE_NOP: 2621 ftrace_bug_type = FTRACE_BUG_NOP; 2622 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2623 2624 case FTRACE_UPDATE_MODIFY_CALL: 2625 ftrace_bug_type = FTRACE_BUG_UPDATE; 2626 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2627 } 2628 2629 return -1; /* unknown ftrace bug */ 2630 } 2631 2632 void __weak ftrace_replace_code(int mod_flags) 2633 { 2634 struct dyn_ftrace *rec; 2635 struct ftrace_page *pg; 2636 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL; 2637 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL; 2638 int failed; 2639 2640 if (unlikely(ftrace_disabled)) 2641 return; 2642 2643 do_for_each_ftrace_rec(pg, rec) { 2644 2645 if (skip_record(rec)) 2646 continue; 2647 2648 failed = __ftrace_replace_code(rec, enable); 2649 if (failed) { 2650 ftrace_bug(failed, rec); 2651 /* Stop processing */ 2652 return; 2653 } 2654 if (schedulable) 2655 cond_resched(); 2656 } while_for_each_ftrace_rec(); 2657 } 2658 2659 struct ftrace_rec_iter { 2660 struct ftrace_page *pg; 2661 int index; 2662 }; 2663 2664 /** 2665 * ftrace_rec_iter_start - start up iterating over traced functions 2666 * 2667 * Returns an iterator handle that is used to iterate over all 2668 * the records that represent address locations where functions 2669 * are traced. 2670 * 2671 * May return NULL if no records are available. 2672 */ 2673 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2674 { 2675 /* 2676 * We only use a single iterator. 2677 * Protected by the ftrace_lock mutex. 2678 */ 2679 static struct ftrace_rec_iter ftrace_rec_iter; 2680 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2681 2682 iter->pg = ftrace_pages_start; 2683 iter->index = 0; 2684 2685 /* Could have empty pages */ 2686 while (iter->pg && !iter->pg->index) 2687 iter->pg = iter->pg->next; 2688 2689 if (!iter->pg) 2690 return NULL; 2691 2692 return iter; 2693 } 2694 2695 /** 2696 * ftrace_rec_iter_next - get the next record to process. 2697 * @iter: The handle to the iterator. 2698 * 2699 * Returns the next iterator after the given iterator @iter. 2700 */ 2701 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2702 { 2703 iter->index++; 2704 2705 if (iter->index >= iter->pg->index) { 2706 iter->pg = iter->pg->next; 2707 iter->index = 0; 2708 2709 /* Could have empty pages */ 2710 while (iter->pg && !iter->pg->index) 2711 iter->pg = iter->pg->next; 2712 } 2713 2714 if (!iter->pg) 2715 return NULL; 2716 2717 return iter; 2718 } 2719 2720 /** 2721 * ftrace_rec_iter_record - get the record at the iterator location 2722 * @iter: The current iterator location 2723 * 2724 * Returns the record that the current @iter is at. 2725 */ 2726 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2727 { 2728 return &iter->pg->records[iter->index]; 2729 } 2730 2731 static int 2732 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec) 2733 { 2734 int ret; 2735 2736 if (unlikely(ftrace_disabled)) 2737 return 0; 2738 2739 ret = ftrace_init_nop(mod, rec); 2740 if (ret) { 2741 ftrace_bug_type = FTRACE_BUG_INIT; 2742 ftrace_bug(ret, rec); 2743 return 0; 2744 } 2745 return 1; 2746 } 2747 2748 /* 2749 * archs can override this function if they must do something 2750 * before the modifying code is performed. 2751 */ 2752 void __weak ftrace_arch_code_modify_prepare(void) 2753 { 2754 } 2755 2756 /* 2757 * archs can override this function if they must do something 2758 * after the modifying code is performed. 2759 */ 2760 void __weak ftrace_arch_code_modify_post_process(void) 2761 { 2762 } 2763 2764 void ftrace_modify_all_code(int command) 2765 { 2766 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2767 int mod_flags = 0; 2768 int err = 0; 2769 2770 if (command & FTRACE_MAY_SLEEP) 2771 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL; 2772 2773 /* 2774 * If the ftrace_caller calls a ftrace_ops func directly, 2775 * we need to make sure that it only traces functions it 2776 * expects to trace. When doing the switch of functions, 2777 * we need to update to the ftrace_ops_list_func first 2778 * before the transition between old and new calls are set, 2779 * as the ftrace_ops_list_func will check the ops hashes 2780 * to make sure the ops are having the right functions 2781 * traced. 2782 */ 2783 if (update) { 2784 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2785 if (FTRACE_WARN_ON(err)) 2786 return; 2787 } 2788 2789 if (command & FTRACE_UPDATE_CALLS) 2790 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL); 2791 else if (command & FTRACE_DISABLE_CALLS) 2792 ftrace_replace_code(mod_flags); 2793 2794 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2795 function_trace_op = set_function_trace_op; 2796 smp_wmb(); 2797 /* If irqs are disabled, we are in stop machine */ 2798 if (!irqs_disabled()) 2799 smp_call_function(ftrace_sync_ipi, NULL, 1); 2800 err = ftrace_update_ftrace_func(ftrace_trace_function); 2801 if (FTRACE_WARN_ON(err)) 2802 return; 2803 } 2804 2805 if (command & FTRACE_START_FUNC_RET) 2806 err = ftrace_enable_ftrace_graph_caller(); 2807 else if (command & FTRACE_STOP_FUNC_RET) 2808 err = ftrace_disable_ftrace_graph_caller(); 2809 FTRACE_WARN_ON(err); 2810 } 2811 2812 static int __ftrace_modify_code(void *data) 2813 { 2814 int *command = data; 2815 2816 ftrace_modify_all_code(*command); 2817 2818 return 0; 2819 } 2820 2821 /** 2822 * ftrace_run_stop_machine - go back to the stop machine method 2823 * @command: The command to tell ftrace what to do 2824 * 2825 * If an arch needs to fall back to the stop machine method, the 2826 * it can call this function. 2827 */ 2828 void ftrace_run_stop_machine(int command) 2829 { 2830 stop_machine(__ftrace_modify_code, &command, NULL); 2831 } 2832 2833 /** 2834 * arch_ftrace_update_code - modify the code to trace or not trace 2835 * @command: The command that needs to be done 2836 * 2837 * Archs can override this function if it does not need to 2838 * run stop_machine() to modify code. 2839 */ 2840 void __weak arch_ftrace_update_code(int command) 2841 { 2842 ftrace_run_stop_machine(command); 2843 } 2844 2845 static void ftrace_run_update_code(int command) 2846 { 2847 ftrace_arch_code_modify_prepare(); 2848 2849 /* 2850 * By default we use stop_machine() to modify the code. 2851 * But archs can do what ever they want as long as it 2852 * is safe. The stop_machine() is the safest, but also 2853 * produces the most overhead. 2854 */ 2855 arch_ftrace_update_code(command); 2856 2857 ftrace_arch_code_modify_post_process(); 2858 } 2859 2860 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2861 struct ftrace_ops_hash *old_hash) 2862 { 2863 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2864 ops->old_hash.filter_hash = old_hash->filter_hash; 2865 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2866 ftrace_run_update_code(command); 2867 ops->old_hash.filter_hash = NULL; 2868 ops->old_hash.notrace_hash = NULL; 2869 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2870 } 2871 2872 static ftrace_func_t saved_ftrace_func; 2873 static int ftrace_start_up; 2874 2875 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2876 { 2877 } 2878 2879 /* List of trace_ops that have allocated trampolines */ 2880 static LIST_HEAD(ftrace_ops_trampoline_list); 2881 2882 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops) 2883 { 2884 lockdep_assert_held(&ftrace_lock); 2885 list_add_rcu(&ops->list, &ftrace_ops_trampoline_list); 2886 } 2887 2888 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops) 2889 { 2890 lockdep_assert_held(&ftrace_lock); 2891 list_del_rcu(&ops->list); 2892 synchronize_rcu(); 2893 } 2894 2895 /* 2896 * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols 2897 * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is 2898 * not a module. 2899 */ 2900 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace" 2901 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline" 2902 2903 static void ftrace_trampoline_free(struct ftrace_ops *ops) 2904 { 2905 if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) && 2906 ops->trampoline) { 2907 /* 2908 * Record the text poke event before the ksymbol unregister 2909 * event. 2910 */ 2911 perf_event_text_poke((void *)ops->trampoline, 2912 (void *)ops->trampoline, 2913 ops->trampoline_size, NULL, 0); 2914 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 2915 ops->trampoline, ops->trampoline_size, 2916 true, FTRACE_TRAMPOLINE_SYM); 2917 /* Remove from kallsyms after the perf events */ 2918 ftrace_remove_trampoline_from_kallsyms(ops); 2919 } 2920 2921 arch_ftrace_trampoline_free(ops); 2922 } 2923 2924 static void ftrace_startup_enable(int command) 2925 { 2926 if (saved_ftrace_func != ftrace_trace_function) { 2927 saved_ftrace_func = ftrace_trace_function; 2928 command |= FTRACE_UPDATE_TRACE_FUNC; 2929 } 2930 2931 if (!command || !ftrace_enabled) 2932 return; 2933 2934 ftrace_run_update_code(command); 2935 } 2936 2937 static void ftrace_startup_all(int command) 2938 { 2939 update_all_ops = true; 2940 ftrace_startup_enable(command); 2941 update_all_ops = false; 2942 } 2943 2944 int ftrace_startup(struct ftrace_ops *ops, int command) 2945 { 2946 int ret; 2947 2948 if (unlikely(ftrace_disabled)) 2949 return -ENODEV; 2950 2951 ret = __register_ftrace_function(ops); 2952 if (ret) 2953 return ret; 2954 2955 ftrace_start_up++; 2956 2957 /* 2958 * Note that ftrace probes uses this to start up 2959 * and modify functions it will probe. But we still 2960 * set the ADDING flag for modification, as probes 2961 * do not have trampolines. If they add them in the 2962 * future, then the probes will need to distinguish 2963 * between adding and updating probes. 2964 */ 2965 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2966 2967 ret = ftrace_hash_ipmodify_enable(ops); 2968 if (ret < 0) { 2969 /* Rollback registration process */ 2970 __unregister_ftrace_function(ops); 2971 ftrace_start_up--; 2972 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2973 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2974 ftrace_trampoline_free(ops); 2975 return ret; 2976 } 2977 2978 if (ftrace_hash_rec_enable(ops, 1)) 2979 command |= FTRACE_UPDATE_CALLS; 2980 2981 ftrace_startup_enable(command); 2982 2983 /* 2984 * If ftrace is in an undefined state, we just remove ops from list 2985 * to prevent the NULL pointer, instead of totally rolling it back and 2986 * free trampoline, because those actions could cause further damage. 2987 */ 2988 if (unlikely(ftrace_disabled)) { 2989 __unregister_ftrace_function(ops); 2990 return -ENODEV; 2991 } 2992 2993 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2994 2995 return 0; 2996 } 2997 2998 int ftrace_shutdown(struct ftrace_ops *ops, int command) 2999 { 3000 int ret; 3001 3002 if (unlikely(ftrace_disabled)) 3003 return -ENODEV; 3004 3005 ret = __unregister_ftrace_function(ops); 3006 if (ret) 3007 return ret; 3008 3009 ftrace_start_up--; 3010 /* 3011 * Just warn in case of unbalance, no need to kill ftrace, it's not 3012 * critical but the ftrace_call callers may be never nopped again after 3013 * further ftrace uses. 3014 */ 3015 WARN_ON_ONCE(ftrace_start_up < 0); 3016 3017 /* Disabling ipmodify never fails */ 3018 ftrace_hash_ipmodify_disable(ops); 3019 3020 if (ftrace_hash_rec_disable(ops, 1)) 3021 command |= FTRACE_UPDATE_CALLS; 3022 3023 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 3024 3025 if (saved_ftrace_func != ftrace_trace_function) { 3026 saved_ftrace_func = ftrace_trace_function; 3027 command |= FTRACE_UPDATE_TRACE_FUNC; 3028 } 3029 3030 if (!command || !ftrace_enabled) 3031 goto out; 3032 3033 /* 3034 * If the ops uses a trampoline, then it needs to be 3035 * tested first on update. 3036 */ 3037 ops->flags |= FTRACE_OPS_FL_REMOVING; 3038 removed_ops = ops; 3039 3040 /* The trampoline logic checks the old hashes */ 3041 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 3042 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 3043 3044 ftrace_run_update_code(command); 3045 3046 /* 3047 * If there's no more ops registered with ftrace, run a 3048 * sanity check to make sure all rec flags are cleared. 3049 */ 3050 if (rcu_dereference_protected(ftrace_ops_list, 3051 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 3052 struct ftrace_page *pg; 3053 struct dyn_ftrace *rec; 3054 3055 do_for_each_ftrace_rec(pg, rec) { 3056 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 3057 pr_warn(" %pS flags:%lx\n", 3058 (void *)rec->ip, rec->flags); 3059 } while_for_each_ftrace_rec(); 3060 } 3061 3062 ops->old_hash.filter_hash = NULL; 3063 ops->old_hash.notrace_hash = NULL; 3064 3065 removed_ops = NULL; 3066 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 3067 3068 out: 3069 /* 3070 * Dynamic ops may be freed, we must make sure that all 3071 * callers are done before leaving this function. 3072 * The same goes for freeing the per_cpu data of the per_cpu 3073 * ops. 3074 */ 3075 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 3076 /* 3077 * We need to do a hard force of sched synchronization. 3078 * This is because we use preempt_disable() to do RCU, but 3079 * the function tracers can be called where RCU is not watching 3080 * (like before user_exit()). We can not rely on the RCU 3081 * infrastructure to do the synchronization, thus we must do it 3082 * ourselves. 3083 */ 3084 synchronize_rcu_tasks_rude(); 3085 3086 /* 3087 * When the kernel is preemptive, tasks can be preempted 3088 * while on a ftrace trampoline. Just scheduling a task on 3089 * a CPU is not good enough to flush them. Calling 3090 * synchronize_rcu_tasks() will wait for those tasks to 3091 * execute and either schedule voluntarily or enter user space. 3092 */ 3093 if (IS_ENABLED(CONFIG_PREEMPTION)) 3094 synchronize_rcu_tasks(); 3095 3096 ftrace_trampoline_free(ops); 3097 } 3098 3099 return 0; 3100 } 3101 3102 static u64 ftrace_update_time; 3103 unsigned long ftrace_update_tot_cnt; 3104 unsigned long ftrace_number_of_pages; 3105 unsigned long ftrace_number_of_groups; 3106 3107 static inline int ops_traces_mod(struct ftrace_ops *ops) 3108 { 3109 /* 3110 * Filter_hash being empty will default to trace module. 3111 * But notrace hash requires a test of individual module functions. 3112 */ 3113 return ftrace_hash_empty(ops->func_hash->filter_hash) && 3114 ftrace_hash_empty(ops->func_hash->notrace_hash); 3115 } 3116 3117 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 3118 { 3119 bool init_nop = ftrace_need_init_nop(); 3120 struct ftrace_page *pg; 3121 struct dyn_ftrace *p; 3122 u64 start, stop; 3123 unsigned long update_cnt = 0; 3124 unsigned long rec_flags = 0; 3125 int i; 3126 3127 start = ftrace_now(raw_smp_processor_id()); 3128 3129 /* 3130 * When a module is loaded, this function is called to convert 3131 * the calls to mcount in its text to nops, and also to create 3132 * an entry in the ftrace data. Now, if ftrace is activated 3133 * after this call, but before the module sets its text to 3134 * read-only, the modification of enabling ftrace can fail if 3135 * the read-only is done while ftrace is converting the calls. 3136 * To prevent this, the module's records are set as disabled 3137 * and will be enabled after the call to set the module's text 3138 * to read-only. 3139 */ 3140 if (mod) 3141 rec_flags |= FTRACE_FL_DISABLED; 3142 3143 for (pg = new_pgs; pg; pg = pg->next) { 3144 3145 for (i = 0; i < pg->index; i++) { 3146 3147 /* If something went wrong, bail without enabling anything */ 3148 if (unlikely(ftrace_disabled)) 3149 return -1; 3150 3151 p = &pg->records[i]; 3152 p->flags = rec_flags; 3153 3154 /* 3155 * Do the initial record conversion from mcount jump 3156 * to the NOP instructions. 3157 */ 3158 if (init_nop && !ftrace_nop_initialize(mod, p)) 3159 break; 3160 3161 update_cnt++; 3162 } 3163 } 3164 3165 stop = ftrace_now(raw_smp_processor_id()); 3166 ftrace_update_time = stop - start; 3167 ftrace_update_tot_cnt += update_cnt; 3168 3169 return 0; 3170 } 3171 3172 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 3173 { 3174 int order; 3175 int pages; 3176 int cnt; 3177 3178 if (WARN_ON(!count)) 3179 return -EINVAL; 3180 3181 /* We want to fill as much as possible, with no empty pages */ 3182 pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE); 3183 order = fls(pages) - 1; 3184 3185 again: 3186 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 3187 3188 if (!pg->records) { 3189 /* if we can't allocate this size, try something smaller */ 3190 if (!order) 3191 return -ENOMEM; 3192 order >>= 1; 3193 goto again; 3194 } 3195 3196 ftrace_number_of_pages += 1 << order; 3197 ftrace_number_of_groups++; 3198 3199 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3200 pg->order = order; 3201 3202 if (cnt > count) 3203 cnt = count; 3204 3205 return cnt; 3206 } 3207 3208 static struct ftrace_page * 3209 ftrace_allocate_pages(unsigned long num_to_init) 3210 { 3211 struct ftrace_page *start_pg; 3212 struct ftrace_page *pg; 3213 int cnt; 3214 3215 if (!num_to_init) 3216 return NULL; 3217 3218 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3219 if (!pg) 3220 return NULL; 3221 3222 /* 3223 * Try to allocate as much as possible in one continues 3224 * location that fills in all of the space. We want to 3225 * waste as little space as possible. 3226 */ 3227 for (;;) { 3228 cnt = ftrace_allocate_records(pg, num_to_init); 3229 if (cnt < 0) 3230 goto free_pages; 3231 3232 num_to_init -= cnt; 3233 if (!num_to_init) 3234 break; 3235 3236 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3237 if (!pg->next) 3238 goto free_pages; 3239 3240 pg = pg->next; 3241 } 3242 3243 return start_pg; 3244 3245 free_pages: 3246 pg = start_pg; 3247 while (pg) { 3248 if (pg->records) { 3249 free_pages((unsigned long)pg->records, pg->order); 3250 ftrace_number_of_pages -= 1 << pg->order; 3251 } 3252 start_pg = pg->next; 3253 kfree(pg); 3254 pg = start_pg; 3255 ftrace_number_of_groups--; 3256 } 3257 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3258 return NULL; 3259 } 3260 3261 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3262 3263 struct ftrace_iterator { 3264 loff_t pos; 3265 loff_t func_pos; 3266 loff_t mod_pos; 3267 struct ftrace_page *pg; 3268 struct dyn_ftrace *func; 3269 struct ftrace_func_probe *probe; 3270 struct ftrace_func_entry *probe_entry; 3271 struct trace_parser parser; 3272 struct ftrace_hash *hash; 3273 struct ftrace_ops *ops; 3274 struct trace_array *tr; 3275 struct list_head *mod_list; 3276 int pidx; 3277 int idx; 3278 unsigned flags; 3279 }; 3280 3281 static void * 3282 t_probe_next(struct seq_file *m, loff_t *pos) 3283 { 3284 struct ftrace_iterator *iter = m->private; 3285 struct trace_array *tr = iter->ops->private; 3286 struct list_head *func_probes; 3287 struct ftrace_hash *hash; 3288 struct list_head *next; 3289 struct hlist_node *hnd = NULL; 3290 struct hlist_head *hhd; 3291 int size; 3292 3293 (*pos)++; 3294 iter->pos = *pos; 3295 3296 if (!tr) 3297 return NULL; 3298 3299 func_probes = &tr->func_probes; 3300 if (list_empty(func_probes)) 3301 return NULL; 3302 3303 if (!iter->probe) { 3304 next = func_probes->next; 3305 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3306 } 3307 3308 if (iter->probe_entry) 3309 hnd = &iter->probe_entry->hlist; 3310 3311 hash = iter->probe->ops.func_hash->filter_hash; 3312 3313 /* 3314 * A probe being registered may temporarily have an empty hash 3315 * and it's at the end of the func_probes list. 3316 */ 3317 if (!hash || hash == EMPTY_HASH) 3318 return NULL; 3319 3320 size = 1 << hash->size_bits; 3321 3322 retry: 3323 if (iter->pidx >= size) { 3324 if (iter->probe->list.next == func_probes) 3325 return NULL; 3326 next = iter->probe->list.next; 3327 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3328 hash = iter->probe->ops.func_hash->filter_hash; 3329 size = 1 << hash->size_bits; 3330 iter->pidx = 0; 3331 } 3332 3333 hhd = &hash->buckets[iter->pidx]; 3334 3335 if (hlist_empty(hhd)) { 3336 iter->pidx++; 3337 hnd = NULL; 3338 goto retry; 3339 } 3340 3341 if (!hnd) 3342 hnd = hhd->first; 3343 else { 3344 hnd = hnd->next; 3345 if (!hnd) { 3346 iter->pidx++; 3347 goto retry; 3348 } 3349 } 3350 3351 if (WARN_ON_ONCE(!hnd)) 3352 return NULL; 3353 3354 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3355 3356 return iter; 3357 } 3358 3359 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3360 { 3361 struct ftrace_iterator *iter = m->private; 3362 void *p = NULL; 3363 loff_t l; 3364 3365 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3366 return NULL; 3367 3368 if (iter->mod_pos > *pos) 3369 return NULL; 3370 3371 iter->probe = NULL; 3372 iter->probe_entry = NULL; 3373 iter->pidx = 0; 3374 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3375 p = t_probe_next(m, &l); 3376 if (!p) 3377 break; 3378 } 3379 if (!p) 3380 return NULL; 3381 3382 /* Only set this if we have an item */ 3383 iter->flags |= FTRACE_ITER_PROBE; 3384 3385 return iter; 3386 } 3387 3388 static int 3389 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3390 { 3391 struct ftrace_func_entry *probe_entry; 3392 struct ftrace_probe_ops *probe_ops; 3393 struct ftrace_func_probe *probe; 3394 3395 probe = iter->probe; 3396 probe_entry = iter->probe_entry; 3397 3398 if (WARN_ON_ONCE(!probe || !probe_entry)) 3399 return -EIO; 3400 3401 probe_ops = probe->probe_ops; 3402 3403 if (probe_ops->print) 3404 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3405 3406 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3407 (void *)probe_ops->func); 3408 3409 return 0; 3410 } 3411 3412 static void * 3413 t_mod_next(struct seq_file *m, loff_t *pos) 3414 { 3415 struct ftrace_iterator *iter = m->private; 3416 struct trace_array *tr = iter->tr; 3417 3418 (*pos)++; 3419 iter->pos = *pos; 3420 3421 iter->mod_list = iter->mod_list->next; 3422 3423 if (iter->mod_list == &tr->mod_trace || 3424 iter->mod_list == &tr->mod_notrace) { 3425 iter->flags &= ~FTRACE_ITER_MOD; 3426 return NULL; 3427 } 3428 3429 iter->mod_pos = *pos; 3430 3431 return iter; 3432 } 3433 3434 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3435 { 3436 struct ftrace_iterator *iter = m->private; 3437 void *p = NULL; 3438 loff_t l; 3439 3440 if (iter->func_pos > *pos) 3441 return NULL; 3442 3443 iter->mod_pos = iter->func_pos; 3444 3445 /* probes are only available if tr is set */ 3446 if (!iter->tr) 3447 return NULL; 3448 3449 for (l = 0; l <= (*pos - iter->func_pos); ) { 3450 p = t_mod_next(m, &l); 3451 if (!p) 3452 break; 3453 } 3454 if (!p) { 3455 iter->flags &= ~FTRACE_ITER_MOD; 3456 return t_probe_start(m, pos); 3457 } 3458 3459 /* Only set this if we have an item */ 3460 iter->flags |= FTRACE_ITER_MOD; 3461 3462 return iter; 3463 } 3464 3465 static int 3466 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3467 { 3468 struct ftrace_mod_load *ftrace_mod; 3469 struct trace_array *tr = iter->tr; 3470 3471 if (WARN_ON_ONCE(!iter->mod_list) || 3472 iter->mod_list == &tr->mod_trace || 3473 iter->mod_list == &tr->mod_notrace) 3474 return -EIO; 3475 3476 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3477 3478 if (ftrace_mod->func) 3479 seq_printf(m, "%s", ftrace_mod->func); 3480 else 3481 seq_putc(m, '*'); 3482 3483 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3484 3485 return 0; 3486 } 3487 3488 static void * 3489 t_func_next(struct seq_file *m, loff_t *pos) 3490 { 3491 struct ftrace_iterator *iter = m->private; 3492 struct dyn_ftrace *rec = NULL; 3493 3494 (*pos)++; 3495 3496 retry: 3497 if (iter->idx >= iter->pg->index) { 3498 if (iter->pg->next) { 3499 iter->pg = iter->pg->next; 3500 iter->idx = 0; 3501 goto retry; 3502 } 3503 } else { 3504 rec = &iter->pg->records[iter->idx++]; 3505 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3506 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3507 3508 ((iter->flags & FTRACE_ITER_ENABLED) && 3509 !(rec->flags & FTRACE_FL_ENABLED))) { 3510 3511 rec = NULL; 3512 goto retry; 3513 } 3514 } 3515 3516 if (!rec) 3517 return NULL; 3518 3519 iter->pos = iter->func_pos = *pos; 3520 iter->func = rec; 3521 3522 return iter; 3523 } 3524 3525 static void * 3526 t_next(struct seq_file *m, void *v, loff_t *pos) 3527 { 3528 struct ftrace_iterator *iter = m->private; 3529 loff_t l = *pos; /* t_probe_start() must use original pos */ 3530 void *ret; 3531 3532 if (unlikely(ftrace_disabled)) 3533 return NULL; 3534 3535 if (iter->flags & FTRACE_ITER_PROBE) 3536 return t_probe_next(m, pos); 3537 3538 if (iter->flags & FTRACE_ITER_MOD) 3539 return t_mod_next(m, pos); 3540 3541 if (iter->flags & FTRACE_ITER_PRINTALL) { 3542 /* next must increment pos, and t_probe_start does not */ 3543 (*pos)++; 3544 return t_mod_start(m, &l); 3545 } 3546 3547 ret = t_func_next(m, pos); 3548 3549 if (!ret) 3550 return t_mod_start(m, &l); 3551 3552 return ret; 3553 } 3554 3555 static void reset_iter_read(struct ftrace_iterator *iter) 3556 { 3557 iter->pos = 0; 3558 iter->func_pos = 0; 3559 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3560 } 3561 3562 static void *t_start(struct seq_file *m, loff_t *pos) 3563 { 3564 struct ftrace_iterator *iter = m->private; 3565 void *p = NULL; 3566 loff_t l; 3567 3568 mutex_lock(&ftrace_lock); 3569 3570 if (unlikely(ftrace_disabled)) 3571 return NULL; 3572 3573 /* 3574 * If an lseek was done, then reset and start from beginning. 3575 */ 3576 if (*pos < iter->pos) 3577 reset_iter_read(iter); 3578 3579 /* 3580 * For set_ftrace_filter reading, if we have the filter 3581 * off, we can short cut and just print out that all 3582 * functions are enabled. 3583 */ 3584 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3585 ftrace_hash_empty(iter->hash)) { 3586 iter->func_pos = 1; /* Account for the message */ 3587 if (*pos > 0) 3588 return t_mod_start(m, pos); 3589 iter->flags |= FTRACE_ITER_PRINTALL; 3590 /* reset in case of seek/pread */ 3591 iter->flags &= ~FTRACE_ITER_PROBE; 3592 return iter; 3593 } 3594 3595 if (iter->flags & FTRACE_ITER_MOD) 3596 return t_mod_start(m, pos); 3597 3598 /* 3599 * Unfortunately, we need to restart at ftrace_pages_start 3600 * every time we let go of the ftrace_mutex. This is because 3601 * those pointers can change without the lock. 3602 */ 3603 iter->pg = ftrace_pages_start; 3604 iter->idx = 0; 3605 for (l = 0; l <= *pos; ) { 3606 p = t_func_next(m, &l); 3607 if (!p) 3608 break; 3609 } 3610 3611 if (!p) 3612 return t_mod_start(m, pos); 3613 3614 return iter; 3615 } 3616 3617 static void t_stop(struct seq_file *m, void *p) 3618 { 3619 mutex_unlock(&ftrace_lock); 3620 } 3621 3622 void * __weak 3623 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3624 { 3625 return NULL; 3626 } 3627 3628 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3629 struct dyn_ftrace *rec) 3630 { 3631 void *ptr; 3632 3633 ptr = arch_ftrace_trampoline_func(ops, rec); 3634 if (ptr) 3635 seq_printf(m, " ->%pS", ptr); 3636 } 3637 3638 #ifdef FTRACE_MCOUNT_MAX_OFFSET 3639 /* 3640 * Weak functions can still have an mcount/fentry that is saved in 3641 * the __mcount_loc section. These can be detected by having a 3642 * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the 3643 * symbol found by kallsyms is not the function that the mcount/fentry 3644 * is part of. The offset is much greater in these cases. 3645 * 3646 * Test the record to make sure that the ip points to a valid kallsyms 3647 * and if not, mark it disabled. 3648 */ 3649 static int test_for_valid_rec(struct dyn_ftrace *rec) 3650 { 3651 char str[KSYM_SYMBOL_LEN]; 3652 unsigned long offset; 3653 const char *ret; 3654 3655 ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str); 3656 3657 /* Weak functions can cause invalid addresses */ 3658 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3659 rec->flags |= FTRACE_FL_DISABLED; 3660 return 0; 3661 } 3662 return 1; 3663 } 3664 3665 static struct workqueue_struct *ftrace_check_wq __initdata; 3666 static struct work_struct ftrace_check_work __initdata; 3667 3668 /* 3669 * Scan all the mcount/fentry entries to make sure they are valid. 3670 */ 3671 static __init void ftrace_check_work_func(struct work_struct *work) 3672 { 3673 struct ftrace_page *pg; 3674 struct dyn_ftrace *rec; 3675 3676 mutex_lock(&ftrace_lock); 3677 do_for_each_ftrace_rec(pg, rec) { 3678 test_for_valid_rec(rec); 3679 } while_for_each_ftrace_rec(); 3680 mutex_unlock(&ftrace_lock); 3681 } 3682 3683 static int __init ftrace_check_for_weak_functions(void) 3684 { 3685 INIT_WORK(&ftrace_check_work, ftrace_check_work_func); 3686 3687 ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0); 3688 3689 queue_work(ftrace_check_wq, &ftrace_check_work); 3690 return 0; 3691 } 3692 3693 static int __init ftrace_check_sync(void) 3694 { 3695 /* Make sure the ftrace_check updates are finished */ 3696 if (ftrace_check_wq) 3697 destroy_workqueue(ftrace_check_wq); 3698 return 0; 3699 } 3700 3701 late_initcall_sync(ftrace_check_sync); 3702 subsys_initcall(ftrace_check_for_weak_functions); 3703 3704 static int print_rec(struct seq_file *m, unsigned long ip) 3705 { 3706 unsigned long offset; 3707 char str[KSYM_SYMBOL_LEN]; 3708 char *modname; 3709 const char *ret; 3710 3711 ret = kallsyms_lookup(ip, NULL, &offset, &modname, str); 3712 /* Weak functions can cause invalid addresses */ 3713 if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) { 3714 snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld", 3715 FTRACE_INVALID_FUNCTION, offset); 3716 ret = NULL; 3717 } 3718 3719 seq_puts(m, str); 3720 if (modname) 3721 seq_printf(m, " [%s]", modname); 3722 return ret == NULL ? -1 : 0; 3723 } 3724 #else 3725 static inline int test_for_valid_rec(struct dyn_ftrace *rec) 3726 { 3727 return 1; 3728 } 3729 3730 static inline int print_rec(struct seq_file *m, unsigned long ip) 3731 { 3732 seq_printf(m, "%ps", (void *)ip); 3733 return 0; 3734 } 3735 #endif 3736 3737 static int t_show(struct seq_file *m, void *v) 3738 { 3739 struct ftrace_iterator *iter = m->private; 3740 struct dyn_ftrace *rec; 3741 3742 if (iter->flags & FTRACE_ITER_PROBE) 3743 return t_probe_show(m, iter); 3744 3745 if (iter->flags & FTRACE_ITER_MOD) 3746 return t_mod_show(m, iter); 3747 3748 if (iter->flags & FTRACE_ITER_PRINTALL) { 3749 if (iter->flags & FTRACE_ITER_NOTRACE) 3750 seq_puts(m, "#### no functions disabled ####\n"); 3751 else 3752 seq_puts(m, "#### all functions enabled ####\n"); 3753 return 0; 3754 } 3755 3756 rec = iter->func; 3757 3758 if (!rec) 3759 return 0; 3760 3761 if (print_rec(m, rec->ip)) { 3762 /* This should only happen when a rec is disabled */ 3763 WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED)); 3764 seq_putc(m, '\n'); 3765 return 0; 3766 } 3767 3768 if (iter->flags & FTRACE_ITER_ENABLED) { 3769 struct ftrace_ops *ops; 3770 3771 seq_printf(m, " (%ld)%s%s%s", 3772 ftrace_rec_count(rec), 3773 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3774 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ", 3775 rec->flags & FTRACE_FL_DIRECT ? " D" : " "); 3776 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3777 ops = ftrace_find_tramp_ops_any(rec); 3778 if (ops) { 3779 do { 3780 seq_printf(m, "\ttramp: %pS (%pS)", 3781 (void *)ops->trampoline, 3782 (void *)ops->func); 3783 add_trampoline_func(m, ops, rec); 3784 ops = ftrace_find_tramp_ops_next(rec, ops); 3785 } while (ops); 3786 } else 3787 seq_puts(m, "\ttramp: ERROR!"); 3788 } else { 3789 add_trampoline_func(m, NULL, rec); 3790 } 3791 if (rec->flags & FTRACE_FL_DIRECT) { 3792 unsigned long direct; 3793 3794 direct = ftrace_find_rec_direct(rec->ip); 3795 if (direct) 3796 seq_printf(m, "\n\tdirect-->%pS", (void *)direct); 3797 } 3798 } 3799 3800 seq_putc(m, '\n'); 3801 3802 return 0; 3803 } 3804 3805 static const struct seq_operations show_ftrace_seq_ops = { 3806 .start = t_start, 3807 .next = t_next, 3808 .stop = t_stop, 3809 .show = t_show, 3810 }; 3811 3812 static int 3813 ftrace_avail_open(struct inode *inode, struct file *file) 3814 { 3815 struct ftrace_iterator *iter; 3816 int ret; 3817 3818 ret = security_locked_down(LOCKDOWN_TRACEFS); 3819 if (ret) 3820 return ret; 3821 3822 if (unlikely(ftrace_disabled)) 3823 return -ENODEV; 3824 3825 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3826 if (!iter) 3827 return -ENOMEM; 3828 3829 iter->pg = ftrace_pages_start; 3830 iter->ops = &global_ops; 3831 3832 return 0; 3833 } 3834 3835 static int 3836 ftrace_enabled_open(struct inode *inode, struct file *file) 3837 { 3838 struct ftrace_iterator *iter; 3839 3840 /* 3841 * This shows us what functions are currently being 3842 * traced and by what. Not sure if we want lockdown 3843 * to hide such critical information for an admin. 3844 * Although, perhaps it can show information we don't 3845 * want people to see, but if something is tracing 3846 * something, we probably want to know about it. 3847 */ 3848 3849 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3850 if (!iter) 3851 return -ENOMEM; 3852 3853 iter->pg = ftrace_pages_start; 3854 iter->flags = FTRACE_ITER_ENABLED; 3855 iter->ops = &global_ops; 3856 3857 return 0; 3858 } 3859 3860 /** 3861 * ftrace_regex_open - initialize function tracer filter files 3862 * @ops: The ftrace_ops that hold the hash filters 3863 * @flag: The type of filter to process 3864 * @inode: The inode, usually passed in to your open routine 3865 * @file: The file, usually passed in to your open routine 3866 * 3867 * ftrace_regex_open() initializes the filter files for the 3868 * @ops. Depending on @flag it may process the filter hash or 3869 * the notrace hash of @ops. With this called from the open 3870 * routine, you can use ftrace_filter_write() for the write 3871 * routine if @flag has FTRACE_ITER_FILTER set, or 3872 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3873 * tracing_lseek() should be used as the lseek routine, and 3874 * release must call ftrace_regex_release(). 3875 */ 3876 int 3877 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3878 struct inode *inode, struct file *file) 3879 { 3880 struct ftrace_iterator *iter; 3881 struct ftrace_hash *hash; 3882 struct list_head *mod_head; 3883 struct trace_array *tr = ops->private; 3884 int ret = -ENOMEM; 3885 3886 ftrace_ops_init(ops); 3887 3888 if (unlikely(ftrace_disabled)) 3889 return -ENODEV; 3890 3891 if (tracing_check_open_get_tr(tr)) 3892 return -ENODEV; 3893 3894 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3895 if (!iter) 3896 goto out; 3897 3898 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) 3899 goto out; 3900 3901 iter->ops = ops; 3902 iter->flags = flag; 3903 iter->tr = tr; 3904 3905 mutex_lock(&ops->func_hash->regex_lock); 3906 3907 if (flag & FTRACE_ITER_NOTRACE) { 3908 hash = ops->func_hash->notrace_hash; 3909 mod_head = tr ? &tr->mod_notrace : NULL; 3910 } else { 3911 hash = ops->func_hash->filter_hash; 3912 mod_head = tr ? &tr->mod_trace : NULL; 3913 } 3914 3915 iter->mod_list = mod_head; 3916 3917 if (file->f_mode & FMODE_WRITE) { 3918 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3919 3920 if (file->f_flags & O_TRUNC) { 3921 iter->hash = alloc_ftrace_hash(size_bits); 3922 clear_ftrace_mod_list(mod_head); 3923 } else { 3924 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3925 } 3926 3927 if (!iter->hash) { 3928 trace_parser_put(&iter->parser); 3929 goto out_unlock; 3930 } 3931 } else 3932 iter->hash = hash; 3933 3934 ret = 0; 3935 3936 if (file->f_mode & FMODE_READ) { 3937 iter->pg = ftrace_pages_start; 3938 3939 ret = seq_open(file, &show_ftrace_seq_ops); 3940 if (!ret) { 3941 struct seq_file *m = file->private_data; 3942 m->private = iter; 3943 } else { 3944 /* Failed */ 3945 free_ftrace_hash(iter->hash); 3946 trace_parser_put(&iter->parser); 3947 } 3948 } else 3949 file->private_data = iter; 3950 3951 out_unlock: 3952 mutex_unlock(&ops->func_hash->regex_lock); 3953 3954 out: 3955 if (ret) { 3956 kfree(iter); 3957 if (tr) 3958 trace_array_put(tr); 3959 } 3960 3961 return ret; 3962 } 3963 3964 static int 3965 ftrace_filter_open(struct inode *inode, struct file *file) 3966 { 3967 struct ftrace_ops *ops = inode->i_private; 3968 3969 /* Checks for tracefs lockdown */ 3970 return ftrace_regex_open(ops, 3971 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3972 inode, file); 3973 } 3974 3975 static int 3976 ftrace_notrace_open(struct inode *inode, struct file *file) 3977 { 3978 struct ftrace_ops *ops = inode->i_private; 3979 3980 /* Checks for tracefs lockdown */ 3981 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3982 inode, file); 3983 } 3984 3985 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3986 struct ftrace_glob { 3987 char *search; 3988 unsigned len; 3989 int type; 3990 }; 3991 3992 /* 3993 * If symbols in an architecture don't correspond exactly to the user-visible 3994 * name of what they represent, it is possible to define this function to 3995 * perform the necessary adjustments. 3996 */ 3997 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3998 { 3999 return str; 4000 } 4001 4002 static int ftrace_match(char *str, struct ftrace_glob *g) 4003 { 4004 int matched = 0; 4005 int slen; 4006 4007 str = arch_ftrace_match_adjust(str, g->search); 4008 4009 switch (g->type) { 4010 case MATCH_FULL: 4011 if (strcmp(str, g->search) == 0) 4012 matched = 1; 4013 break; 4014 case MATCH_FRONT_ONLY: 4015 if (strncmp(str, g->search, g->len) == 0) 4016 matched = 1; 4017 break; 4018 case MATCH_MIDDLE_ONLY: 4019 if (strstr(str, g->search)) 4020 matched = 1; 4021 break; 4022 case MATCH_END_ONLY: 4023 slen = strlen(str); 4024 if (slen >= g->len && 4025 memcmp(str + slen - g->len, g->search, g->len) == 0) 4026 matched = 1; 4027 break; 4028 case MATCH_GLOB: 4029 if (glob_match(g->search, str)) 4030 matched = 1; 4031 break; 4032 } 4033 4034 return matched; 4035 } 4036 4037 static int 4038 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 4039 { 4040 struct ftrace_func_entry *entry; 4041 int ret = 0; 4042 4043 entry = ftrace_lookup_ip(hash, rec->ip); 4044 if (clear_filter) { 4045 /* Do nothing if it doesn't exist */ 4046 if (!entry) 4047 return 0; 4048 4049 free_hash_entry(hash, entry); 4050 } else { 4051 /* Do nothing if it exists */ 4052 if (entry) 4053 return 0; 4054 4055 ret = add_hash_entry(hash, rec->ip); 4056 } 4057 return ret; 4058 } 4059 4060 static int 4061 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g, 4062 int clear_filter) 4063 { 4064 long index = simple_strtoul(func_g->search, NULL, 0); 4065 struct ftrace_page *pg; 4066 struct dyn_ftrace *rec; 4067 4068 /* The index starts at 1 */ 4069 if (--index < 0) 4070 return 0; 4071 4072 do_for_each_ftrace_rec(pg, rec) { 4073 if (pg->index <= index) { 4074 index -= pg->index; 4075 /* this is a double loop, break goes to the next page */ 4076 break; 4077 } 4078 rec = &pg->records[index]; 4079 enter_record(hash, rec, clear_filter); 4080 return 1; 4081 } while_for_each_ftrace_rec(); 4082 return 0; 4083 } 4084 4085 #ifdef FTRACE_MCOUNT_MAX_OFFSET 4086 static int lookup_ip(unsigned long ip, char **modname, char *str) 4087 { 4088 unsigned long offset; 4089 4090 kallsyms_lookup(ip, NULL, &offset, modname, str); 4091 if (offset > FTRACE_MCOUNT_MAX_OFFSET) 4092 return -1; 4093 return 0; 4094 } 4095 #else 4096 static int lookup_ip(unsigned long ip, char **modname, char *str) 4097 { 4098 kallsyms_lookup(ip, NULL, NULL, modname, str); 4099 return 0; 4100 } 4101 #endif 4102 4103 static int 4104 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 4105 struct ftrace_glob *mod_g, int exclude_mod) 4106 { 4107 char str[KSYM_SYMBOL_LEN]; 4108 char *modname; 4109 4110 if (lookup_ip(rec->ip, &modname, str)) { 4111 /* This should only happen when a rec is disabled */ 4112 WARN_ON_ONCE(system_state == SYSTEM_RUNNING && 4113 !(rec->flags & FTRACE_FL_DISABLED)); 4114 return 0; 4115 } 4116 4117 if (mod_g) { 4118 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 4119 4120 /* blank module name to match all modules */ 4121 if (!mod_g->len) { 4122 /* blank module globbing: modname xor exclude_mod */ 4123 if (!exclude_mod != !modname) 4124 goto func_match; 4125 return 0; 4126 } 4127 4128 /* 4129 * exclude_mod is set to trace everything but the given 4130 * module. If it is set and the module matches, then 4131 * return 0. If it is not set, and the module doesn't match 4132 * also return 0. Otherwise, check the function to see if 4133 * that matches. 4134 */ 4135 if (!mod_matches == !exclude_mod) 4136 return 0; 4137 func_match: 4138 /* blank search means to match all funcs in the mod */ 4139 if (!func_g->len) 4140 return 1; 4141 } 4142 4143 return ftrace_match(str, func_g); 4144 } 4145 4146 static int 4147 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 4148 { 4149 struct ftrace_page *pg; 4150 struct dyn_ftrace *rec; 4151 struct ftrace_glob func_g = { .type = MATCH_FULL }; 4152 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 4153 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 4154 int exclude_mod = 0; 4155 int found = 0; 4156 int ret; 4157 int clear_filter = 0; 4158 4159 if (func) { 4160 func_g.type = filter_parse_regex(func, len, &func_g.search, 4161 &clear_filter); 4162 func_g.len = strlen(func_g.search); 4163 } 4164 4165 if (mod) { 4166 mod_g.type = filter_parse_regex(mod, strlen(mod), 4167 &mod_g.search, &exclude_mod); 4168 mod_g.len = strlen(mod_g.search); 4169 } 4170 4171 mutex_lock(&ftrace_lock); 4172 4173 if (unlikely(ftrace_disabled)) 4174 goto out_unlock; 4175 4176 if (func_g.type == MATCH_INDEX) { 4177 found = add_rec_by_index(hash, &func_g, clear_filter); 4178 goto out_unlock; 4179 } 4180 4181 do_for_each_ftrace_rec(pg, rec) { 4182 4183 if (rec->flags & FTRACE_FL_DISABLED) 4184 continue; 4185 4186 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 4187 ret = enter_record(hash, rec, clear_filter); 4188 if (ret < 0) { 4189 found = ret; 4190 goto out_unlock; 4191 } 4192 found = 1; 4193 } 4194 } while_for_each_ftrace_rec(); 4195 out_unlock: 4196 mutex_unlock(&ftrace_lock); 4197 4198 return found; 4199 } 4200 4201 static int 4202 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 4203 { 4204 return match_records(hash, buff, len, NULL); 4205 } 4206 4207 static void ftrace_ops_update_code(struct ftrace_ops *ops, 4208 struct ftrace_ops_hash *old_hash) 4209 { 4210 struct ftrace_ops *op; 4211 4212 if (!ftrace_enabled) 4213 return; 4214 4215 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 4216 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 4217 return; 4218 } 4219 4220 /* 4221 * If this is the shared global_ops filter, then we need to 4222 * check if there is another ops that shares it, is enabled. 4223 * If so, we still need to run the modify code. 4224 */ 4225 if (ops->func_hash != &global_ops.local_hash) 4226 return; 4227 4228 do_for_each_ftrace_op(op, ftrace_ops_list) { 4229 if (op->func_hash == &global_ops.local_hash && 4230 op->flags & FTRACE_OPS_FL_ENABLED) { 4231 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 4232 /* Only need to do this once */ 4233 return; 4234 } 4235 } while_for_each_ftrace_op(op); 4236 } 4237 4238 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 4239 struct ftrace_hash **orig_hash, 4240 struct ftrace_hash *hash, 4241 int enable) 4242 { 4243 struct ftrace_ops_hash old_hash_ops; 4244 struct ftrace_hash *old_hash; 4245 int ret; 4246 4247 old_hash = *orig_hash; 4248 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 4249 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 4250 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 4251 if (!ret) { 4252 ftrace_ops_update_code(ops, &old_hash_ops); 4253 free_ftrace_hash_rcu(old_hash); 4254 } 4255 return ret; 4256 } 4257 4258 static bool module_exists(const char *module) 4259 { 4260 /* All modules have the symbol __this_module */ 4261 static const char this_mod[] = "__this_module"; 4262 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 4263 unsigned long val; 4264 int n; 4265 4266 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 4267 4268 if (n > sizeof(modname) - 1) 4269 return false; 4270 4271 val = module_kallsyms_lookup_name(modname); 4272 return val != 0; 4273 } 4274 4275 static int cache_mod(struct trace_array *tr, 4276 const char *func, char *module, int enable) 4277 { 4278 struct ftrace_mod_load *ftrace_mod, *n; 4279 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 4280 int ret; 4281 4282 mutex_lock(&ftrace_lock); 4283 4284 /* We do not cache inverse filters */ 4285 if (func[0] == '!') { 4286 func++; 4287 ret = -EINVAL; 4288 4289 /* Look to remove this hash */ 4290 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4291 if (strcmp(ftrace_mod->module, module) != 0) 4292 continue; 4293 4294 /* no func matches all */ 4295 if (strcmp(func, "*") == 0 || 4296 (ftrace_mod->func && 4297 strcmp(ftrace_mod->func, func) == 0)) { 4298 ret = 0; 4299 free_ftrace_mod(ftrace_mod); 4300 continue; 4301 } 4302 } 4303 goto out; 4304 } 4305 4306 ret = -EINVAL; 4307 /* We only care about modules that have not been loaded yet */ 4308 if (module_exists(module)) 4309 goto out; 4310 4311 /* Save this string off, and execute it when the module is loaded */ 4312 ret = ftrace_add_mod(tr, func, module, enable); 4313 out: 4314 mutex_unlock(&ftrace_lock); 4315 4316 return ret; 4317 } 4318 4319 static int 4320 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4321 int reset, int enable); 4322 4323 #ifdef CONFIG_MODULES 4324 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 4325 char *mod, bool enable) 4326 { 4327 struct ftrace_mod_load *ftrace_mod, *n; 4328 struct ftrace_hash **orig_hash, *new_hash; 4329 LIST_HEAD(process_mods); 4330 char *func; 4331 4332 mutex_lock(&ops->func_hash->regex_lock); 4333 4334 if (enable) 4335 orig_hash = &ops->func_hash->filter_hash; 4336 else 4337 orig_hash = &ops->func_hash->notrace_hash; 4338 4339 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 4340 *orig_hash); 4341 if (!new_hash) 4342 goto out; /* warn? */ 4343 4344 mutex_lock(&ftrace_lock); 4345 4346 list_for_each_entry_safe(ftrace_mod, n, head, list) { 4347 4348 if (strcmp(ftrace_mod->module, mod) != 0) 4349 continue; 4350 4351 if (ftrace_mod->func) 4352 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 4353 else 4354 func = kstrdup("*", GFP_KERNEL); 4355 4356 if (!func) /* warn? */ 4357 continue; 4358 4359 list_move(&ftrace_mod->list, &process_mods); 4360 4361 /* Use the newly allocated func, as it may be "*" */ 4362 kfree(ftrace_mod->func); 4363 ftrace_mod->func = func; 4364 } 4365 4366 mutex_unlock(&ftrace_lock); 4367 4368 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 4369 4370 func = ftrace_mod->func; 4371 4372 /* Grabs ftrace_lock, which is why we have this extra step */ 4373 match_records(new_hash, func, strlen(func), mod); 4374 free_ftrace_mod(ftrace_mod); 4375 } 4376 4377 if (enable && list_empty(head)) 4378 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 4379 4380 mutex_lock(&ftrace_lock); 4381 4382 ftrace_hash_move_and_update_ops(ops, orig_hash, 4383 new_hash, enable); 4384 mutex_unlock(&ftrace_lock); 4385 4386 out: 4387 mutex_unlock(&ops->func_hash->regex_lock); 4388 4389 free_ftrace_hash(new_hash); 4390 } 4391 4392 static void process_cached_mods(const char *mod_name) 4393 { 4394 struct trace_array *tr; 4395 char *mod; 4396 4397 mod = kstrdup(mod_name, GFP_KERNEL); 4398 if (!mod) 4399 return; 4400 4401 mutex_lock(&trace_types_lock); 4402 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4403 if (!list_empty(&tr->mod_trace)) 4404 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4405 if (!list_empty(&tr->mod_notrace)) 4406 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4407 } 4408 mutex_unlock(&trace_types_lock); 4409 4410 kfree(mod); 4411 } 4412 #endif 4413 4414 /* 4415 * We register the module command as a template to show others how 4416 * to register the a command as well. 4417 */ 4418 4419 static int 4420 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4421 char *func_orig, char *cmd, char *module, int enable) 4422 { 4423 char *func; 4424 int ret; 4425 4426 /* match_records() modifies func, and we need the original */ 4427 func = kstrdup(func_orig, GFP_KERNEL); 4428 if (!func) 4429 return -ENOMEM; 4430 4431 /* 4432 * cmd == 'mod' because we only registered this func 4433 * for the 'mod' ftrace_func_command. 4434 * But if you register one func with multiple commands, 4435 * you can tell which command was used by the cmd 4436 * parameter. 4437 */ 4438 ret = match_records(hash, func, strlen(func), module); 4439 kfree(func); 4440 4441 if (!ret) 4442 return cache_mod(tr, func_orig, module, enable); 4443 if (ret < 0) 4444 return ret; 4445 return 0; 4446 } 4447 4448 static struct ftrace_func_command ftrace_mod_cmd = { 4449 .name = "mod", 4450 .func = ftrace_mod_callback, 4451 }; 4452 4453 static int __init ftrace_mod_cmd_init(void) 4454 { 4455 return register_ftrace_command(&ftrace_mod_cmd); 4456 } 4457 core_initcall(ftrace_mod_cmd_init); 4458 4459 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4460 struct ftrace_ops *op, struct ftrace_regs *fregs) 4461 { 4462 struct ftrace_probe_ops *probe_ops; 4463 struct ftrace_func_probe *probe; 4464 4465 probe = container_of(op, struct ftrace_func_probe, ops); 4466 probe_ops = probe->probe_ops; 4467 4468 /* 4469 * Disable preemption for these calls to prevent a RCU grace 4470 * period. This syncs the hash iteration and freeing of items 4471 * on the hash. rcu_read_lock is too dangerous here. 4472 */ 4473 preempt_disable_notrace(); 4474 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4475 preempt_enable_notrace(); 4476 } 4477 4478 struct ftrace_func_map { 4479 struct ftrace_func_entry entry; 4480 void *data; 4481 }; 4482 4483 struct ftrace_func_mapper { 4484 struct ftrace_hash hash; 4485 }; 4486 4487 /** 4488 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4489 * 4490 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4491 */ 4492 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4493 { 4494 struct ftrace_hash *hash; 4495 4496 /* 4497 * The mapper is simply a ftrace_hash, but since the entries 4498 * in the hash are not ftrace_func_entry type, we define it 4499 * as a separate structure. 4500 */ 4501 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4502 return (struct ftrace_func_mapper *)hash; 4503 } 4504 4505 /** 4506 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4507 * @mapper: The mapper that has the ip maps 4508 * @ip: the instruction pointer to find the data for 4509 * 4510 * Returns the data mapped to @ip if found otherwise NULL. The return 4511 * is actually the address of the mapper data pointer. The address is 4512 * returned for use cases where the data is no bigger than a long, and 4513 * the user can use the data pointer as its data instead of having to 4514 * allocate more memory for the reference. 4515 */ 4516 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4517 unsigned long ip) 4518 { 4519 struct ftrace_func_entry *entry; 4520 struct ftrace_func_map *map; 4521 4522 entry = ftrace_lookup_ip(&mapper->hash, ip); 4523 if (!entry) 4524 return NULL; 4525 4526 map = (struct ftrace_func_map *)entry; 4527 return &map->data; 4528 } 4529 4530 /** 4531 * ftrace_func_mapper_add_ip - Map some data to an ip 4532 * @mapper: The mapper that has the ip maps 4533 * @ip: The instruction pointer address to map @data to 4534 * @data: The data to map to @ip 4535 * 4536 * Returns 0 on success otherwise an error. 4537 */ 4538 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4539 unsigned long ip, void *data) 4540 { 4541 struct ftrace_func_entry *entry; 4542 struct ftrace_func_map *map; 4543 4544 entry = ftrace_lookup_ip(&mapper->hash, ip); 4545 if (entry) 4546 return -EBUSY; 4547 4548 map = kmalloc(sizeof(*map), GFP_KERNEL); 4549 if (!map) 4550 return -ENOMEM; 4551 4552 map->entry.ip = ip; 4553 map->data = data; 4554 4555 __add_hash_entry(&mapper->hash, &map->entry); 4556 4557 return 0; 4558 } 4559 4560 /** 4561 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4562 * @mapper: The mapper that has the ip maps 4563 * @ip: The instruction pointer address to remove the data from 4564 * 4565 * Returns the data if it is found, otherwise NULL. 4566 * Note, if the data pointer is used as the data itself, (see 4567 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4568 * if the data pointer was set to zero. 4569 */ 4570 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4571 unsigned long ip) 4572 { 4573 struct ftrace_func_entry *entry; 4574 struct ftrace_func_map *map; 4575 void *data; 4576 4577 entry = ftrace_lookup_ip(&mapper->hash, ip); 4578 if (!entry) 4579 return NULL; 4580 4581 map = (struct ftrace_func_map *)entry; 4582 data = map->data; 4583 4584 remove_hash_entry(&mapper->hash, entry); 4585 kfree(entry); 4586 4587 return data; 4588 } 4589 4590 /** 4591 * free_ftrace_func_mapper - free a mapping of ips and data 4592 * @mapper: The mapper that has the ip maps 4593 * @free_func: A function to be called on each data item. 4594 * 4595 * This is used to free the function mapper. The @free_func is optional 4596 * and can be used if the data needs to be freed as well. 4597 */ 4598 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4599 ftrace_mapper_func free_func) 4600 { 4601 struct ftrace_func_entry *entry; 4602 struct ftrace_func_map *map; 4603 struct hlist_head *hhd; 4604 int size, i; 4605 4606 if (!mapper) 4607 return; 4608 4609 if (free_func && mapper->hash.count) { 4610 size = 1 << mapper->hash.size_bits; 4611 for (i = 0; i < size; i++) { 4612 hhd = &mapper->hash.buckets[i]; 4613 hlist_for_each_entry(entry, hhd, hlist) { 4614 map = (struct ftrace_func_map *)entry; 4615 free_func(map); 4616 } 4617 } 4618 } 4619 free_ftrace_hash(&mapper->hash); 4620 } 4621 4622 static void release_probe(struct ftrace_func_probe *probe) 4623 { 4624 struct ftrace_probe_ops *probe_ops; 4625 4626 mutex_lock(&ftrace_lock); 4627 4628 WARN_ON(probe->ref <= 0); 4629 4630 /* Subtract the ref that was used to protect this instance */ 4631 probe->ref--; 4632 4633 if (!probe->ref) { 4634 probe_ops = probe->probe_ops; 4635 /* 4636 * Sending zero as ip tells probe_ops to free 4637 * the probe->data itself 4638 */ 4639 if (probe_ops->free) 4640 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4641 list_del(&probe->list); 4642 kfree(probe); 4643 } 4644 mutex_unlock(&ftrace_lock); 4645 } 4646 4647 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4648 { 4649 /* 4650 * Add one ref to keep it from being freed when releasing the 4651 * ftrace_lock mutex. 4652 */ 4653 probe->ref++; 4654 } 4655 4656 int 4657 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4658 struct ftrace_probe_ops *probe_ops, 4659 void *data) 4660 { 4661 struct ftrace_func_probe *probe = NULL, *iter; 4662 struct ftrace_func_entry *entry; 4663 struct ftrace_hash **orig_hash; 4664 struct ftrace_hash *old_hash; 4665 struct ftrace_hash *hash; 4666 int count = 0; 4667 int size; 4668 int ret; 4669 int i; 4670 4671 if (WARN_ON(!tr)) 4672 return -EINVAL; 4673 4674 /* We do not support '!' for function probes */ 4675 if (WARN_ON(glob[0] == '!')) 4676 return -EINVAL; 4677 4678 4679 mutex_lock(&ftrace_lock); 4680 /* Check if the probe_ops is already registered */ 4681 list_for_each_entry(iter, &tr->func_probes, list) { 4682 if (iter->probe_ops == probe_ops) { 4683 probe = iter; 4684 break; 4685 } 4686 } 4687 if (!probe) { 4688 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4689 if (!probe) { 4690 mutex_unlock(&ftrace_lock); 4691 return -ENOMEM; 4692 } 4693 probe->probe_ops = probe_ops; 4694 probe->ops.func = function_trace_probe_call; 4695 probe->tr = tr; 4696 ftrace_ops_init(&probe->ops); 4697 list_add(&probe->list, &tr->func_probes); 4698 } 4699 4700 acquire_probe_locked(probe); 4701 4702 mutex_unlock(&ftrace_lock); 4703 4704 /* 4705 * Note, there's a small window here that the func_hash->filter_hash 4706 * may be NULL or empty. Need to be careful when reading the loop. 4707 */ 4708 mutex_lock(&probe->ops.func_hash->regex_lock); 4709 4710 orig_hash = &probe->ops.func_hash->filter_hash; 4711 old_hash = *orig_hash; 4712 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4713 4714 if (!hash) { 4715 ret = -ENOMEM; 4716 goto out; 4717 } 4718 4719 ret = ftrace_match_records(hash, glob, strlen(glob)); 4720 4721 /* Nothing found? */ 4722 if (!ret) 4723 ret = -EINVAL; 4724 4725 if (ret < 0) 4726 goto out; 4727 4728 size = 1 << hash->size_bits; 4729 for (i = 0; i < size; i++) { 4730 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4731 if (ftrace_lookup_ip(old_hash, entry->ip)) 4732 continue; 4733 /* 4734 * The caller might want to do something special 4735 * for each function we find. We call the callback 4736 * to give the caller an opportunity to do so. 4737 */ 4738 if (probe_ops->init) { 4739 ret = probe_ops->init(probe_ops, tr, 4740 entry->ip, data, 4741 &probe->data); 4742 if (ret < 0) { 4743 if (probe_ops->free && count) 4744 probe_ops->free(probe_ops, tr, 4745 0, probe->data); 4746 probe->data = NULL; 4747 goto out; 4748 } 4749 } 4750 count++; 4751 } 4752 } 4753 4754 mutex_lock(&ftrace_lock); 4755 4756 if (!count) { 4757 /* Nothing was added? */ 4758 ret = -EINVAL; 4759 goto out_unlock; 4760 } 4761 4762 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4763 hash, 1); 4764 if (ret < 0) 4765 goto err_unlock; 4766 4767 /* One ref for each new function traced */ 4768 probe->ref += count; 4769 4770 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4771 ret = ftrace_startup(&probe->ops, 0); 4772 4773 out_unlock: 4774 mutex_unlock(&ftrace_lock); 4775 4776 if (!ret) 4777 ret = count; 4778 out: 4779 mutex_unlock(&probe->ops.func_hash->regex_lock); 4780 free_ftrace_hash(hash); 4781 4782 release_probe(probe); 4783 4784 return ret; 4785 4786 err_unlock: 4787 if (!probe_ops->free || !count) 4788 goto out_unlock; 4789 4790 /* Failed to do the move, need to call the free functions */ 4791 for (i = 0; i < size; i++) { 4792 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4793 if (ftrace_lookup_ip(old_hash, entry->ip)) 4794 continue; 4795 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4796 } 4797 } 4798 goto out_unlock; 4799 } 4800 4801 int 4802 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4803 struct ftrace_probe_ops *probe_ops) 4804 { 4805 struct ftrace_func_probe *probe = NULL, *iter; 4806 struct ftrace_ops_hash old_hash_ops; 4807 struct ftrace_func_entry *entry; 4808 struct ftrace_glob func_g; 4809 struct ftrace_hash **orig_hash; 4810 struct ftrace_hash *old_hash; 4811 struct ftrace_hash *hash = NULL; 4812 struct hlist_node *tmp; 4813 struct hlist_head hhd; 4814 char str[KSYM_SYMBOL_LEN]; 4815 int count = 0; 4816 int i, ret = -ENODEV; 4817 int size; 4818 4819 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4820 func_g.search = NULL; 4821 else { 4822 int not; 4823 4824 func_g.type = filter_parse_regex(glob, strlen(glob), 4825 &func_g.search, ¬); 4826 func_g.len = strlen(func_g.search); 4827 4828 /* we do not support '!' for function probes */ 4829 if (WARN_ON(not)) 4830 return -EINVAL; 4831 } 4832 4833 mutex_lock(&ftrace_lock); 4834 /* Check if the probe_ops is already registered */ 4835 list_for_each_entry(iter, &tr->func_probes, list) { 4836 if (iter->probe_ops == probe_ops) { 4837 probe = iter; 4838 break; 4839 } 4840 } 4841 if (!probe) 4842 goto err_unlock_ftrace; 4843 4844 ret = -EINVAL; 4845 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4846 goto err_unlock_ftrace; 4847 4848 acquire_probe_locked(probe); 4849 4850 mutex_unlock(&ftrace_lock); 4851 4852 mutex_lock(&probe->ops.func_hash->regex_lock); 4853 4854 orig_hash = &probe->ops.func_hash->filter_hash; 4855 old_hash = *orig_hash; 4856 4857 if (ftrace_hash_empty(old_hash)) 4858 goto out_unlock; 4859 4860 old_hash_ops.filter_hash = old_hash; 4861 /* Probes only have filters */ 4862 old_hash_ops.notrace_hash = NULL; 4863 4864 ret = -ENOMEM; 4865 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4866 if (!hash) 4867 goto out_unlock; 4868 4869 INIT_HLIST_HEAD(&hhd); 4870 4871 size = 1 << hash->size_bits; 4872 for (i = 0; i < size; i++) { 4873 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4874 4875 if (func_g.search) { 4876 kallsyms_lookup(entry->ip, NULL, NULL, 4877 NULL, str); 4878 if (!ftrace_match(str, &func_g)) 4879 continue; 4880 } 4881 count++; 4882 remove_hash_entry(hash, entry); 4883 hlist_add_head(&entry->hlist, &hhd); 4884 } 4885 } 4886 4887 /* Nothing found? */ 4888 if (!count) { 4889 ret = -EINVAL; 4890 goto out_unlock; 4891 } 4892 4893 mutex_lock(&ftrace_lock); 4894 4895 WARN_ON(probe->ref < count); 4896 4897 probe->ref -= count; 4898 4899 if (ftrace_hash_empty(hash)) 4900 ftrace_shutdown(&probe->ops, 0); 4901 4902 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4903 hash, 1); 4904 4905 /* still need to update the function call sites */ 4906 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4907 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4908 &old_hash_ops); 4909 synchronize_rcu(); 4910 4911 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4912 hlist_del(&entry->hlist); 4913 if (probe_ops->free) 4914 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4915 kfree(entry); 4916 } 4917 mutex_unlock(&ftrace_lock); 4918 4919 out_unlock: 4920 mutex_unlock(&probe->ops.func_hash->regex_lock); 4921 free_ftrace_hash(hash); 4922 4923 release_probe(probe); 4924 4925 return ret; 4926 4927 err_unlock_ftrace: 4928 mutex_unlock(&ftrace_lock); 4929 return ret; 4930 } 4931 4932 void clear_ftrace_function_probes(struct trace_array *tr) 4933 { 4934 struct ftrace_func_probe *probe, *n; 4935 4936 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4937 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4938 } 4939 4940 static LIST_HEAD(ftrace_commands); 4941 static DEFINE_MUTEX(ftrace_cmd_mutex); 4942 4943 /* 4944 * Currently we only register ftrace commands from __init, so mark this 4945 * __init too. 4946 */ 4947 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4948 { 4949 struct ftrace_func_command *p; 4950 int ret = 0; 4951 4952 mutex_lock(&ftrace_cmd_mutex); 4953 list_for_each_entry(p, &ftrace_commands, list) { 4954 if (strcmp(cmd->name, p->name) == 0) { 4955 ret = -EBUSY; 4956 goto out_unlock; 4957 } 4958 } 4959 list_add(&cmd->list, &ftrace_commands); 4960 out_unlock: 4961 mutex_unlock(&ftrace_cmd_mutex); 4962 4963 return ret; 4964 } 4965 4966 /* 4967 * Currently we only unregister ftrace commands from __init, so mark 4968 * this __init too. 4969 */ 4970 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4971 { 4972 struct ftrace_func_command *p, *n; 4973 int ret = -ENODEV; 4974 4975 mutex_lock(&ftrace_cmd_mutex); 4976 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4977 if (strcmp(cmd->name, p->name) == 0) { 4978 ret = 0; 4979 list_del_init(&p->list); 4980 goto out_unlock; 4981 } 4982 } 4983 out_unlock: 4984 mutex_unlock(&ftrace_cmd_mutex); 4985 4986 return ret; 4987 } 4988 4989 static int ftrace_process_regex(struct ftrace_iterator *iter, 4990 char *buff, int len, int enable) 4991 { 4992 struct ftrace_hash *hash = iter->hash; 4993 struct trace_array *tr = iter->ops->private; 4994 char *func, *command, *next = buff; 4995 struct ftrace_func_command *p; 4996 int ret = -EINVAL; 4997 4998 func = strsep(&next, ":"); 4999 5000 if (!next) { 5001 ret = ftrace_match_records(hash, func, len); 5002 if (!ret) 5003 ret = -EINVAL; 5004 if (ret < 0) 5005 return ret; 5006 return 0; 5007 } 5008 5009 /* command found */ 5010 5011 command = strsep(&next, ":"); 5012 5013 mutex_lock(&ftrace_cmd_mutex); 5014 list_for_each_entry(p, &ftrace_commands, list) { 5015 if (strcmp(p->name, command) == 0) { 5016 ret = p->func(tr, hash, func, command, next, enable); 5017 goto out_unlock; 5018 } 5019 } 5020 out_unlock: 5021 mutex_unlock(&ftrace_cmd_mutex); 5022 5023 return ret; 5024 } 5025 5026 static ssize_t 5027 ftrace_regex_write(struct file *file, const char __user *ubuf, 5028 size_t cnt, loff_t *ppos, int enable) 5029 { 5030 struct ftrace_iterator *iter; 5031 struct trace_parser *parser; 5032 ssize_t ret, read; 5033 5034 if (!cnt) 5035 return 0; 5036 5037 if (file->f_mode & FMODE_READ) { 5038 struct seq_file *m = file->private_data; 5039 iter = m->private; 5040 } else 5041 iter = file->private_data; 5042 5043 if (unlikely(ftrace_disabled)) 5044 return -ENODEV; 5045 5046 /* iter->hash is a local copy, so we don't need regex_lock */ 5047 5048 parser = &iter->parser; 5049 read = trace_get_user(parser, ubuf, cnt, ppos); 5050 5051 if (read >= 0 && trace_parser_loaded(parser) && 5052 !trace_parser_cont(parser)) { 5053 ret = ftrace_process_regex(iter, parser->buffer, 5054 parser->idx, enable); 5055 trace_parser_clear(parser); 5056 if (ret < 0) 5057 goto out; 5058 } 5059 5060 ret = read; 5061 out: 5062 return ret; 5063 } 5064 5065 ssize_t 5066 ftrace_filter_write(struct file *file, const char __user *ubuf, 5067 size_t cnt, loff_t *ppos) 5068 { 5069 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 5070 } 5071 5072 ssize_t 5073 ftrace_notrace_write(struct file *file, const char __user *ubuf, 5074 size_t cnt, loff_t *ppos) 5075 { 5076 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 5077 } 5078 5079 static int 5080 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 5081 { 5082 struct ftrace_func_entry *entry; 5083 5084 ip = ftrace_location(ip); 5085 if (!ip) 5086 return -EINVAL; 5087 5088 if (remove) { 5089 entry = ftrace_lookup_ip(hash, ip); 5090 if (!entry) 5091 return -ENOENT; 5092 free_hash_entry(hash, entry); 5093 return 0; 5094 } 5095 5096 return add_hash_entry(hash, ip); 5097 } 5098 5099 static int 5100 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips, 5101 unsigned int cnt, int remove) 5102 { 5103 unsigned int i; 5104 int err; 5105 5106 for (i = 0; i < cnt; i++) { 5107 err = __ftrace_match_addr(hash, ips[i], remove); 5108 if (err) { 5109 /* 5110 * This expects the @hash is a temporary hash and if this 5111 * fails the caller must free the @hash. 5112 */ 5113 return err; 5114 } 5115 } 5116 return 0; 5117 } 5118 5119 static int 5120 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 5121 unsigned long *ips, unsigned int cnt, 5122 int remove, int reset, int enable) 5123 { 5124 struct ftrace_hash **orig_hash; 5125 struct ftrace_hash *hash; 5126 int ret; 5127 5128 if (unlikely(ftrace_disabled)) 5129 return -ENODEV; 5130 5131 mutex_lock(&ops->func_hash->regex_lock); 5132 5133 if (enable) 5134 orig_hash = &ops->func_hash->filter_hash; 5135 else 5136 orig_hash = &ops->func_hash->notrace_hash; 5137 5138 if (reset) 5139 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 5140 else 5141 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 5142 5143 if (!hash) { 5144 ret = -ENOMEM; 5145 goto out_regex_unlock; 5146 } 5147 5148 if (buf && !ftrace_match_records(hash, buf, len)) { 5149 ret = -EINVAL; 5150 goto out_regex_unlock; 5151 } 5152 if (ips) { 5153 ret = ftrace_match_addr(hash, ips, cnt, remove); 5154 if (ret < 0) 5155 goto out_regex_unlock; 5156 } 5157 5158 mutex_lock(&ftrace_lock); 5159 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 5160 mutex_unlock(&ftrace_lock); 5161 5162 out_regex_unlock: 5163 mutex_unlock(&ops->func_hash->regex_lock); 5164 5165 free_ftrace_hash(hash); 5166 return ret; 5167 } 5168 5169 static int 5170 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt, 5171 int remove, int reset, int enable) 5172 { 5173 return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable); 5174 } 5175 5176 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 5177 5178 struct ftrace_direct_func { 5179 struct list_head next; 5180 unsigned long addr; 5181 int count; 5182 }; 5183 5184 static LIST_HEAD(ftrace_direct_funcs); 5185 5186 /** 5187 * ftrace_find_direct_func - test an address if it is a registered direct caller 5188 * @addr: The address of a registered direct caller 5189 * 5190 * This searches to see if a ftrace direct caller has been registered 5191 * at a specific address, and if so, it returns a descriptor for it. 5192 * 5193 * This can be used by architecture code to see if an address is 5194 * a direct caller (trampoline) attached to a fentry/mcount location. 5195 * This is useful for the function_graph tracer, as it may need to 5196 * do adjustments if it traced a location that also has a direct 5197 * trampoline attached to it. 5198 */ 5199 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr) 5200 { 5201 struct ftrace_direct_func *entry; 5202 bool found = false; 5203 5204 /* May be called by fgraph trampoline (protected by rcu tasks) */ 5205 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) { 5206 if (entry->addr == addr) { 5207 found = true; 5208 break; 5209 } 5210 } 5211 if (found) 5212 return entry; 5213 5214 return NULL; 5215 } 5216 5217 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr) 5218 { 5219 struct ftrace_direct_func *direct; 5220 5221 direct = kmalloc(sizeof(*direct), GFP_KERNEL); 5222 if (!direct) 5223 return NULL; 5224 direct->addr = addr; 5225 direct->count = 0; 5226 list_add_rcu(&direct->next, &ftrace_direct_funcs); 5227 ftrace_direct_func_count++; 5228 return direct; 5229 } 5230 5231 static int register_ftrace_function_nolock(struct ftrace_ops *ops); 5232 5233 /** 5234 * register_ftrace_direct - Call a custom trampoline directly 5235 * @ip: The address of the nop at the beginning of a function 5236 * @addr: The address of the trampoline to call at @ip 5237 * 5238 * This is used to connect a direct call from the nop location (@ip) 5239 * at the start of ftrace traced functions. The location that it calls 5240 * (@addr) must be able to handle a direct call, and save the parameters 5241 * of the function being traced, and restore them (or inject new ones 5242 * if needed), before returning. 5243 * 5244 * Returns: 5245 * 0 on success 5246 * -EBUSY - Another direct function is already attached (there can be only one) 5247 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5248 * -ENOMEM - There was an allocation failure. 5249 */ 5250 int register_ftrace_direct(unsigned long ip, unsigned long addr) 5251 { 5252 struct ftrace_direct_func *direct; 5253 struct ftrace_func_entry *entry; 5254 struct ftrace_hash *free_hash = NULL; 5255 struct dyn_ftrace *rec; 5256 int ret = -ENODEV; 5257 5258 mutex_lock(&direct_mutex); 5259 5260 ip = ftrace_location(ip); 5261 if (!ip) 5262 goto out_unlock; 5263 5264 /* See if there's a direct function at @ip already */ 5265 ret = -EBUSY; 5266 if (ftrace_find_rec_direct(ip)) 5267 goto out_unlock; 5268 5269 ret = -ENODEV; 5270 rec = lookup_rec(ip, ip); 5271 if (!rec) 5272 goto out_unlock; 5273 5274 /* 5275 * Check if the rec says it has a direct call but we didn't 5276 * find one earlier? 5277 */ 5278 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT)) 5279 goto out_unlock; 5280 5281 /* Make sure the ip points to the exact record */ 5282 if (ip != rec->ip) { 5283 ip = rec->ip; 5284 /* Need to check this ip for a direct. */ 5285 if (ftrace_find_rec_direct(ip)) 5286 goto out_unlock; 5287 } 5288 5289 ret = -ENOMEM; 5290 direct = ftrace_find_direct_func(addr); 5291 if (!direct) { 5292 direct = ftrace_alloc_direct_func(addr); 5293 if (!direct) 5294 goto out_unlock; 5295 } 5296 5297 entry = ftrace_add_rec_direct(ip, addr, &free_hash); 5298 if (!entry) 5299 goto out_unlock; 5300 5301 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0); 5302 5303 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) { 5304 ret = register_ftrace_function_nolock(&direct_ops); 5305 if (ret) 5306 ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5307 } 5308 5309 if (ret) { 5310 remove_hash_entry(direct_functions, entry); 5311 kfree(entry); 5312 if (!direct->count) { 5313 list_del_rcu(&direct->next); 5314 synchronize_rcu_tasks(); 5315 kfree(direct); 5316 if (free_hash) 5317 free_ftrace_hash(free_hash); 5318 free_hash = NULL; 5319 ftrace_direct_func_count--; 5320 } 5321 } else { 5322 direct->count++; 5323 } 5324 out_unlock: 5325 mutex_unlock(&direct_mutex); 5326 5327 if (free_hash) { 5328 synchronize_rcu_tasks(); 5329 free_ftrace_hash(free_hash); 5330 } 5331 5332 return ret; 5333 } 5334 EXPORT_SYMBOL_GPL(register_ftrace_direct); 5335 5336 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip, 5337 struct dyn_ftrace **recp) 5338 { 5339 struct ftrace_func_entry *entry; 5340 struct dyn_ftrace *rec; 5341 5342 rec = lookup_rec(*ip, *ip); 5343 if (!rec) 5344 return NULL; 5345 5346 entry = __ftrace_lookup_ip(direct_functions, rec->ip); 5347 if (!entry) { 5348 WARN_ON(rec->flags & FTRACE_FL_DIRECT); 5349 return NULL; 5350 } 5351 5352 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT)); 5353 5354 /* Passed in ip just needs to be on the call site */ 5355 *ip = rec->ip; 5356 5357 if (recp) 5358 *recp = rec; 5359 5360 return entry; 5361 } 5362 5363 int unregister_ftrace_direct(unsigned long ip, unsigned long addr) 5364 { 5365 struct ftrace_direct_func *direct; 5366 struct ftrace_func_entry *entry; 5367 struct ftrace_hash *hash; 5368 int ret = -ENODEV; 5369 5370 mutex_lock(&direct_mutex); 5371 5372 ip = ftrace_location(ip); 5373 if (!ip) 5374 goto out_unlock; 5375 5376 entry = find_direct_entry(&ip, NULL); 5377 if (!entry) 5378 goto out_unlock; 5379 5380 hash = direct_ops.func_hash->filter_hash; 5381 if (hash->count == 1) 5382 unregister_ftrace_function(&direct_ops); 5383 5384 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0); 5385 5386 WARN_ON(ret); 5387 5388 remove_hash_entry(direct_functions, entry); 5389 5390 direct = ftrace_find_direct_func(addr); 5391 if (!WARN_ON(!direct)) { 5392 /* This is the good path (see the ! before WARN) */ 5393 direct->count--; 5394 WARN_ON(direct->count < 0); 5395 if (!direct->count) { 5396 list_del_rcu(&direct->next); 5397 synchronize_rcu_tasks(); 5398 kfree(direct); 5399 kfree(entry); 5400 ftrace_direct_func_count--; 5401 } 5402 } 5403 out_unlock: 5404 mutex_unlock(&direct_mutex); 5405 5406 return ret; 5407 } 5408 EXPORT_SYMBOL_GPL(unregister_ftrace_direct); 5409 5410 static struct ftrace_ops stub_ops = { 5411 .func = ftrace_stub, 5412 }; 5413 5414 /** 5415 * ftrace_modify_direct_caller - modify ftrace nop directly 5416 * @entry: The ftrace hash entry of the direct helper for @rec 5417 * @rec: The record representing the function site to patch 5418 * @old_addr: The location that the site at @rec->ip currently calls 5419 * @new_addr: The location that the site at @rec->ip should call 5420 * 5421 * An architecture may overwrite this function to optimize the 5422 * changing of the direct callback on an ftrace nop location. 5423 * This is called with the ftrace_lock mutex held, and no other 5424 * ftrace callbacks are on the associated record (@rec). Thus, 5425 * it is safe to modify the ftrace record, where it should be 5426 * currently calling @old_addr directly, to call @new_addr. 5427 * 5428 * This is called with direct_mutex locked. 5429 * 5430 * Safety checks should be made to make sure that the code at 5431 * @rec->ip is currently calling @old_addr. And this must 5432 * also update entry->direct to @new_addr. 5433 */ 5434 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry, 5435 struct dyn_ftrace *rec, 5436 unsigned long old_addr, 5437 unsigned long new_addr) 5438 { 5439 unsigned long ip = rec->ip; 5440 int ret; 5441 5442 lockdep_assert_held(&direct_mutex); 5443 5444 /* 5445 * The ftrace_lock was used to determine if the record 5446 * had more than one registered user to it. If it did, 5447 * we needed to prevent that from changing to do the quick 5448 * switch. But if it did not (only a direct caller was attached) 5449 * then this function is called. But this function can deal 5450 * with attached callers to the rec that we care about, and 5451 * since this function uses standard ftrace calls that take 5452 * the ftrace_lock mutex, we need to release it. 5453 */ 5454 mutex_unlock(&ftrace_lock); 5455 5456 /* 5457 * By setting a stub function at the same address, we force 5458 * the code to call the iterator and the direct_ops helper. 5459 * This means that @ip does not call the direct call, and 5460 * we can simply modify it. 5461 */ 5462 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0); 5463 if (ret) 5464 goto out_lock; 5465 5466 ret = register_ftrace_function_nolock(&stub_ops); 5467 if (ret) { 5468 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5469 goto out_lock; 5470 } 5471 5472 entry->direct = new_addr; 5473 5474 /* 5475 * By removing the stub, we put back the direct call, calling 5476 * the @new_addr. 5477 */ 5478 unregister_ftrace_function(&stub_ops); 5479 ftrace_set_filter_ip(&stub_ops, ip, 1, 0); 5480 5481 out_lock: 5482 mutex_lock(&ftrace_lock); 5483 5484 return ret; 5485 } 5486 5487 /** 5488 * modify_ftrace_direct - Modify an existing direct call to call something else 5489 * @ip: The instruction pointer to modify 5490 * @old_addr: The address that the current @ip calls directly 5491 * @new_addr: The address that the @ip should call 5492 * 5493 * This modifies a ftrace direct caller at an instruction pointer without 5494 * having to disable it first. The direct call will switch over to the 5495 * @new_addr without missing anything. 5496 * 5497 * Returns: zero on success. Non zero on error, which includes: 5498 * -ENODEV : the @ip given has no direct caller attached 5499 * -EINVAL : the @old_addr does not match the current direct caller 5500 */ 5501 int modify_ftrace_direct(unsigned long ip, 5502 unsigned long old_addr, unsigned long new_addr) 5503 { 5504 struct ftrace_direct_func *direct, *new_direct = NULL; 5505 struct ftrace_func_entry *entry; 5506 struct dyn_ftrace *rec; 5507 int ret = -ENODEV; 5508 5509 mutex_lock(&direct_mutex); 5510 5511 mutex_lock(&ftrace_lock); 5512 5513 ip = ftrace_location(ip); 5514 if (!ip) 5515 goto out_unlock; 5516 5517 entry = find_direct_entry(&ip, &rec); 5518 if (!entry) 5519 goto out_unlock; 5520 5521 ret = -EINVAL; 5522 if (entry->direct != old_addr) 5523 goto out_unlock; 5524 5525 direct = ftrace_find_direct_func(old_addr); 5526 if (WARN_ON(!direct)) 5527 goto out_unlock; 5528 if (direct->count > 1) { 5529 ret = -ENOMEM; 5530 new_direct = ftrace_alloc_direct_func(new_addr); 5531 if (!new_direct) 5532 goto out_unlock; 5533 direct->count--; 5534 new_direct->count++; 5535 } else { 5536 direct->addr = new_addr; 5537 } 5538 5539 /* 5540 * If there's no other ftrace callback on the rec->ip location, 5541 * then it can be changed directly by the architecture. 5542 * If there is another caller, then we just need to change the 5543 * direct caller helper to point to @new_addr. 5544 */ 5545 if (ftrace_rec_count(rec) == 1) { 5546 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr); 5547 } else { 5548 entry->direct = new_addr; 5549 ret = 0; 5550 } 5551 5552 if (unlikely(ret && new_direct)) { 5553 direct->count++; 5554 list_del_rcu(&new_direct->next); 5555 synchronize_rcu_tasks(); 5556 kfree(new_direct); 5557 ftrace_direct_func_count--; 5558 } 5559 5560 out_unlock: 5561 mutex_unlock(&ftrace_lock); 5562 mutex_unlock(&direct_mutex); 5563 return ret; 5564 } 5565 EXPORT_SYMBOL_GPL(modify_ftrace_direct); 5566 5567 #define MULTI_FLAGS (FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS) 5568 5569 static int check_direct_multi(struct ftrace_ops *ops) 5570 { 5571 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5572 return -EINVAL; 5573 if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS) 5574 return -EINVAL; 5575 return 0; 5576 } 5577 5578 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr) 5579 { 5580 struct ftrace_func_entry *entry, *del; 5581 int size, i; 5582 5583 size = 1 << hash->size_bits; 5584 for (i = 0; i < size; i++) { 5585 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5586 del = __ftrace_lookup_ip(direct_functions, entry->ip); 5587 if (del && del->direct == addr) { 5588 remove_hash_entry(direct_functions, del); 5589 kfree(del); 5590 } 5591 } 5592 } 5593 } 5594 5595 /** 5596 * register_ftrace_direct_multi - Call a custom trampoline directly 5597 * for multiple functions registered in @ops 5598 * @ops: The address of the struct ftrace_ops object 5599 * @addr: The address of the trampoline to call at @ops functions 5600 * 5601 * This is used to connect a direct calls to @addr from the nop locations 5602 * of the functions registered in @ops (with by ftrace_set_filter_ip 5603 * function). 5604 * 5605 * The location that it calls (@addr) must be able to handle a direct call, 5606 * and save the parameters of the function being traced, and restore them 5607 * (or inject new ones if needed), before returning. 5608 * 5609 * Returns: 5610 * 0 on success 5611 * -EINVAL - The @ops object was already registered with this call or 5612 * when there are no functions in @ops object. 5613 * -EBUSY - Another direct function is already attached (there can be only one) 5614 * -ENODEV - @ip does not point to a ftrace nop location (or not supported) 5615 * -ENOMEM - There was an allocation failure. 5616 */ 5617 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5618 { 5619 struct ftrace_hash *hash, *free_hash = NULL; 5620 struct ftrace_func_entry *entry, *new; 5621 int err = -EBUSY, size, i; 5622 5623 if (ops->func || ops->trampoline) 5624 return -EINVAL; 5625 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) 5626 return -EINVAL; 5627 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5628 return -EINVAL; 5629 5630 hash = ops->func_hash->filter_hash; 5631 if (ftrace_hash_empty(hash)) 5632 return -EINVAL; 5633 5634 mutex_lock(&direct_mutex); 5635 5636 /* Make sure requested entries are not already registered.. */ 5637 size = 1 << hash->size_bits; 5638 for (i = 0; i < size; i++) { 5639 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5640 if (ftrace_find_rec_direct(entry->ip)) 5641 goto out_unlock; 5642 } 5643 } 5644 5645 /* ... and insert them to direct_functions hash. */ 5646 err = -ENOMEM; 5647 for (i = 0; i < size; i++) { 5648 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 5649 new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); 5650 if (!new) 5651 goto out_remove; 5652 entry->direct = addr; 5653 } 5654 } 5655 5656 ops->func = call_direct_funcs; 5657 ops->flags = MULTI_FLAGS; 5658 ops->trampoline = FTRACE_REGS_ADDR; 5659 5660 err = register_ftrace_function_nolock(ops); 5661 5662 out_remove: 5663 if (err) 5664 remove_direct_functions_hash(hash, addr); 5665 5666 out_unlock: 5667 mutex_unlock(&direct_mutex); 5668 5669 if (free_hash) { 5670 synchronize_rcu_tasks(); 5671 free_ftrace_hash(free_hash); 5672 } 5673 return err; 5674 } 5675 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi); 5676 5677 /** 5678 * unregister_ftrace_direct_multi - Remove calls to custom trampoline 5679 * previously registered by register_ftrace_direct_multi for @ops object. 5680 * @ops: The address of the struct ftrace_ops object 5681 * 5682 * This is used to remove a direct calls to @addr from the nop locations 5683 * of the functions registered in @ops (with by ftrace_set_filter_ip 5684 * function). 5685 * 5686 * Returns: 5687 * 0 on success 5688 * -EINVAL - The @ops object was not properly registered. 5689 */ 5690 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5691 { 5692 struct ftrace_hash *hash = ops->func_hash->filter_hash; 5693 int err; 5694 5695 if (check_direct_multi(ops)) 5696 return -EINVAL; 5697 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5698 return -EINVAL; 5699 5700 mutex_lock(&direct_mutex); 5701 err = unregister_ftrace_function(ops); 5702 remove_direct_functions_hash(hash, addr); 5703 mutex_unlock(&direct_mutex); 5704 5705 /* cleanup for possible another register call */ 5706 ops->func = NULL; 5707 ops->trampoline = 0; 5708 return err; 5709 } 5710 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi); 5711 5712 static int 5713 __modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5714 { 5715 struct ftrace_hash *hash; 5716 struct ftrace_func_entry *entry, *iter; 5717 static struct ftrace_ops tmp_ops = { 5718 .func = ftrace_stub, 5719 .flags = FTRACE_OPS_FL_STUB, 5720 }; 5721 int i, size; 5722 int err; 5723 5724 lockdep_assert_held_once(&direct_mutex); 5725 5726 /* Enable the tmp_ops to have the same functions as the direct ops */ 5727 ftrace_ops_init(&tmp_ops); 5728 tmp_ops.func_hash = ops->func_hash; 5729 5730 err = register_ftrace_function_nolock(&tmp_ops); 5731 if (err) 5732 return err; 5733 5734 /* 5735 * Now the ftrace_ops_list_func() is called to do the direct callers. 5736 * We can safely change the direct functions attached to each entry. 5737 */ 5738 mutex_lock(&ftrace_lock); 5739 5740 hash = ops->func_hash->filter_hash; 5741 size = 1 << hash->size_bits; 5742 for (i = 0; i < size; i++) { 5743 hlist_for_each_entry(iter, &hash->buckets[i], hlist) { 5744 entry = __ftrace_lookup_ip(direct_functions, iter->ip); 5745 if (!entry) 5746 continue; 5747 entry->direct = addr; 5748 } 5749 } 5750 5751 mutex_unlock(&ftrace_lock); 5752 5753 /* Removing the tmp_ops will add the updated direct callers to the functions */ 5754 unregister_ftrace_function(&tmp_ops); 5755 5756 return err; 5757 } 5758 5759 /** 5760 * modify_ftrace_direct_multi_nolock - Modify an existing direct 'multi' call 5761 * to call something else 5762 * @ops: The address of the struct ftrace_ops object 5763 * @addr: The address of the new trampoline to call at @ops functions 5764 * 5765 * This is used to unregister currently registered direct caller and 5766 * register new one @addr on functions registered in @ops object. 5767 * 5768 * Note there's window between ftrace_shutdown and ftrace_startup calls 5769 * where there will be no callbacks called. 5770 * 5771 * Caller should already have direct_mutex locked, so we don't lock 5772 * direct_mutex here. 5773 * 5774 * Returns: zero on success. Non zero on error, which includes: 5775 * -EINVAL - The @ops object was not properly registered. 5776 */ 5777 int modify_ftrace_direct_multi_nolock(struct ftrace_ops *ops, unsigned long addr) 5778 { 5779 if (check_direct_multi(ops)) 5780 return -EINVAL; 5781 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5782 return -EINVAL; 5783 5784 return __modify_ftrace_direct_multi(ops, addr); 5785 } 5786 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi_nolock); 5787 5788 /** 5789 * modify_ftrace_direct_multi - Modify an existing direct 'multi' call 5790 * to call something else 5791 * @ops: The address of the struct ftrace_ops object 5792 * @addr: The address of the new trampoline to call at @ops functions 5793 * 5794 * This is used to unregister currently registered direct caller and 5795 * register new one @addr on functions registered in @ops object. 5796 * 5797 * Note there's window between ftrace_shutdown and ftrace_startup calls 5798 * where there will be no callbacks called. 5799 * 5800 * Returns: zero on success. Non zero on error, which includes: 5801 * -EINVAL - The @ops object was not properly registered. 5802 */ 5803 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr) 5804 { 5805 int err; 5806 5807 if (check_direct_multi(ops)) 5808 return -EINVAL; 5809 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 5810 return -EINVAL; 5811 5812 mutex_lock(&direct_mutex); 5813 err = __modify_ftrace_direct_multi(ops, addr); 5814 mutex_unlock(&direct_mutex); 5815 return err; 5816 } 5817 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi); 5818 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 5819 5820 /** 5821 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 5822 * @ops - the ops to set the filter with 5823 * @ip - the address to add to or remove from the filter. 5824 * @remove - non zero to remove the ip from the filter 5825 * @reset - non zero to reset all filters before applying this filter. 5826 * 5827 * Filters denote which functions should be enabled when tracing is enabled 5828 * If @ip is NULL, it fails to update filter. 5829 */ 5830 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 5831 int remove, int reset) 5832 { 5833 ftrace_ops_init(ops); 5834 return ftrace_set_addr(ops, &ip, 1, remove, reset, 1); 5835 } 5836 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 5837 5838 /** 5839 * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses 5840 * @ops - the ops to set the filter with 5841 * @ips - the array of addresses to add to or remove from the filter. 5842 * @cnt - the number of addresses in @ips 5843 * @remove - non zero to remove ips from the filter 5844 * @reset - non zero to reset all filters before applying this filter. 5845 * 5846 * Filters denote which functions should be enabled when tracing is enabled 5847 * If @ips array or any ip specified within is NULL , it fails to update filter. 5848 */ 5849 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips, 5850 unsigned int cnt, int remove, int reset) 5851 { 5852 ftrace_ops_init(ops); 5853 return ftrace_set_addr(ops, ips, cnt, remove, reset, 1); 5854 } 5855 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips); 5856 5857 /** 5858 * ftrace_ops_set_global_filter - setup ops to use global filters 5859 * @ops - the ops which will use the global filters 5860 * 5861 * ftrace users who need global function trace filtering should call this. 5862 * It can set the global filter only if ops were not initialized before. 5863 */ 5864 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 5865 { 5866 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 5867 return; 5868 5869 ftrace_ops_init(ops); 5870 ops->func_hash = &global_ops.local_hash; 5871 } 5872 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 5873 5874 static int 5875 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 5876 int reset, int enable) 5877 { 5878 return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable); 5879 } 5880 5881 /** 5882 * ftrace_set_filter - set a function to filter on in ftrace 5883 * @ops - the ops to set the filter with 5884 * @buf - the string that holds the function filter text. 5885 * @len - the length of the string. 5886 * @reset - non zero to reset all filters before applying this filter. 5887 * 5888 * Filters denote which functions should be enabled when tracing is enabled. 5889 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5890 */ 5891 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 5892 int len, int reset) 5893 { 5894 ftrace_ops_init(ops); 5895 return ftrace_set_regex(ops, buf, len, reset, 1); 5896 } 5897 EXPORT_SYMBOL_GPL(ftrace_set_filter); 5898 5899 /** 5900 * ftrace_set_notrace - set a function to not trace in ftrace 5901 * @ops - the ops to set the notrace filter with 5902 * @buf - the string that holds the function notrace text. 5903 * @len - the length of the string. 5904 * @reset - non zero to reset all filters before applying this filter. 5905 * 5906 * Notrace Filters denote which functions should not be enabled when tracing 5907 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5908 * for tracing. 5909 */ 5910 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 5911 int len, int reset) 5912 { 5913 ftrace_ops_init(ops); 5914 return ftrace_set_regex(ops, buf, len, reset, 0); 5915 } 5916 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 5917 /** 5918 * ftrace_set_global_filter - set a function to filter on with global tracers 5919 * @buf - the string that holds the function filter text. 5920 * @len - the length of the string. 5921 * @reset - non zero to reset all filters before applying this filter. 5922 * 5923 * Filters denote which functions should be enabled when tracing is enabled. 5924 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 5925 */ 5926 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 5927 { 5928 ftrace_set_regex(&global_ops, buf, len, reset, 1); 5929 } 5930 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 5931 5932 /** 5933 * ftrace_set_global_notrace - set a function to not trace with global tracers 5934 * @buf - the string that holds the function notrace text. 5935 * @len - the length of the string. 5936 * @reset - non zero to reset all filters before applying this filter. 5937 * 5938 * Notrace Filters denote which functions should not be enabled when tracing 5939 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 5940 * for tracing. 5941 */ 5942 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 5943 { 5944 ftrace_set_regex(&global_ops, buf, len, reset, 0); 5945 } 5946 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 5947 5948 /* 5949 * command line interface to allow users to set filters on boot up. 5950 */ 5951 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 5952 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5953 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 5954 5955 /* Used by function selftest to not test if filter is set */ 5956 bool ftrace_filter_param __initdata; 5957 5958 static int __init set_ftrace_notrace(char *str) 5959 { 5960 ftrace_filter_param = true; 5961 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 5962 return 1; 5963 } 5964 __setup("ftrace_notrace=", set_ftrace_notrace); 5965 5966 static int __init set_ftrace_filter(char *str) 5967 { 5968 ftrace_filter_param = true; 5969 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 5970 return 1; 5971 } 5972 __setup("ftrace_filter=", set_ftrace_filter); 5973 5974 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5975 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 5976 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 5977 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 5978 5979 static int __init set_graph_function(char *str) 5980 { 5981 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 5982 return 1; 5983 } 5984 __setup("ftrace_graph_filter=", set_graph_function); 5985 5986 static int __init set_graph_notrace_function(char *str) 5987 { 5988 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 5989 return 1; 5990 } 5991 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 5992 5993 static int __init set_graph_max_depth_function(char *str) 5994 { 5995 if (!str) 5996 return 0; 5997 fgraph_max_depth = simple_strtoul(str, NULL, 0); 5998 return 1; 5999 } 6000 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 6001 6002 static void __init set_ftrace_early_graph(char *buf, int enable) 6003 { 6004 int ret; 6005 char *func; 6006 struct ftrace_hash *hash; 6007 6008 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 6009 if (MEM_FAIL(!hash, "Failed to allocate hash\n")) 6010 return; 6011 6012 while (buf) { 6013 func = strsep(&buf, ","); 6014 /* we allow only one expression at a time */ 6015 ret = ftrace_graph_set_hash(hash, func); 6016 if (ret) 6017 printk(KERN_DEBUG "ftrace: function %s not " 6018 "traceable\n", func); 6019 } 6020 6021 if (enable) 6022 ftrace_graph_hash = hash; 6023 else 6024 ftrace_graph_notrace_hash = hash; 6025 } 6026 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6027 6028 void __init 6029 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 6030 { 6031 char *func; 6032 6033 ftrace_ops_init(ops); 6034 6035 while (buf) { 6036 func = strsep(&buf, ","); 6037 ftrace_set_regex(ops, func, strlen(func), 0, enable); 6038 } 6039 } 6040 6041 static void __init set_ftrace_early_filters(void) 6042 { 6043 if (ftrace_filter_buf[0]) 6044 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 6045 if (ftrace_notrace_buf[0]) 6046 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 6047 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6048 if (ftrace_graph_buf[0]) 6049 set_ftrace_early_graph(ftrace_graph_buf, 1); 6050 if (ftrace_graph_notrace_buf[0]) 6051 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 6052 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6053 } 6054 6055 int ftrace_regex_release(struct inode *inode, struct file *file) 6056 { 6057 struct seq_file *m = (struct seq_file *)file->private_data; 6058 struct ftrace_iterator *iter; 6059 struct ftrace_hash **orig_hash; 6060 struct trace_parser *parser; 6061 int filter_hash; 6062 6063 if (file->f_mode & FMODE_READ) { 6064 iter = m->private; 6065 seq_release(inode, file); 6066 } else 6067 iter = file->private_data; 6068 6069 parser = &iter->parser; 6070 if (trace_parser_loaded(parser)) { 6071 int enable = !(iter->flags & FTRACE_ITER_NOTRACE); 6072 6073 ftrace_process_regex(iter, parser->buffer, 6074 parser->idx, enable); 6075 } 6076 6077 trace_parser_put(parser); 6078 6079 mutex_lock(&iter->ops->func_hash->regex_lock); 6080 6081 if (file->f_mode & FMODE_WRITE) { 6082 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 6083 6084 if (filter_hash) { 6085 orig_hash = &iter->ops->func_hash->filter_hash; 6086 if (iter->tr) { 6087 if (list_empty(&iter->tr->mod_trace)) 6088 iter->hash->flags &= ~FTRACE_HASH_FL_MOD; 6089 else 6090 iter->hash->flags |= FTRACE_HASH_FL_MOD; 6091 } 6092 } else 6093 orig_hash = &iter->ops->func_hash->notrace_hash; 6094 6095 mutex_lock(&ftrace_lock); 6096 ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 6097 iter->hash, filter_hash); 6098 mutex_unlock(&ftrace_lock); 6099 } else { 6100 /* For read only, the hash is the ops hash */ 6101 iter->hash = NULL; 6102 } 6103 6104 mutex_unlock(&iter->ops->func_hash->regex_lock); 6105 free_ftrace_hash(iter->hash); 6106 if (iter->tr) 6107 trace_array_put(iter->tr); 6108 kfree(iter); 6109 6110 return 0; 6111 } 6112 6113 static const struct file_operations ftrace_avail_fops = { 6114 .open = ftrace_avail_open, 6115 .read = seq_read, 6116 .llseek = seq_lseek, 6117 .release = seq_release_private, 6118 }; 6119 6120 static const struct file_operations ftrace_enabled_fops = { 6121 .open = ftrace_enabled_open, 6122 .read = seq_read, 6123 .llseek = seq_lseek, 6124 .release = seq_release_private, 6125 }; 6126 6127 static const struct file_operations ftrace_filter_fops = { 6128 .open = ftrace_filter_open, 6129 .read = seq_read, 6130 .write = ftrace_filter_write, 6131 .llseek = tracing_lseek, 6132 .release = ftrace_regex_release, 6133 }; 6134 6135 static const struct file_operations ftrace_notrace_fops = { 6136 .open = ftrace_notrace_open, 6137 .read = seq_read, 6138 .write = ftrace_notrace_write, 6139 .llseek = tracing_lseek, 6140 .release = ftrace_regex_release, 6141 }; 6142 6143 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6144 6145 static DEFINE_MUTEX(graph_lock); 6146 6147 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH; 6148 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH; 6149 6150 enum graph_filter_type { 6151 GRAPH_FILTER_NOTRACE = 0, 6152 GRAPH_FILTER_FUNCTION, 6153 }; 6154 6155 #define FTRACE_GRAPH_EMPTY ((void *)1) 6156 6157 struct ftrace_graph_data { 6158 struct ftrace_hash *hash; 6159 struct ftrace_func_entry *entry; 6160 int idx; /* for hash table iteration */ 6161 enum graph_filter_type type; 6162 struct ftrace_hash *new_hash; 6163 const struct seq_operations *seq_ops; 6164 struct trace_parser parser; 6165 }; 6166 6167 static void * 6168 __g_next(struct seq_file *m, loff_t *pos) 6169 { 6170 struct ftrace_graph_data *fgd = m->private; 6171 struct ftrace_func_entry *entry = fgd->entry; 6172 struct hlist_head *head; 6173 int i, idx = fgd->idx; 6174 6175 if (*pos >= fgd->hash->count) 6176 return NULL; 6177 6178 if (entry) { 6179 hlist_for_each_entry_continue(entry, hlist) { 6180 fgd->entry = entry; 6181 return entry; 6182 } 6183 6184 idx++; 6185 } 6186 6187 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 6188 head = &fgd->hash->buckets[i]; 6189 hlist_for_each_entry(entry, head, hlist) { 6190 fgd->entry = entry; 6191 fgd->idx = i; 6192 return entry; 6193 } 6194 } 6195 return NULL; 6196 } 6197 6198 static void * 6199 g_next(struct seq_file *m, void *v, loff_t *pos) 6200 { 6201 (*pos)++; 6202 return __g_next(m, pos); 6203 } 6204 6205 static void *g_start(struct seq_file *m, loff_t *pos) 6206 { 6207 struct ftrace_graph_data *fgd = m->private; 6208 6209 mutex_lock(&graph_lock); 6210 6211 if (fgd->type == GRAPH_FILTER_FUNCTION) 6212 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6213 lockdep_is_held(&graph_lock)); 6214 else 6215 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6216 lockdep_is_held(&graph_lock)); 6217 6218 /* Nothing, tell g_show to print all functions are enabled */ 6219 if (ftrace_hash_empty(fgd->hash) && !*pos) 6220 return FTRACE_GRAPH_EMPTY; 6221 6222 fgd->idx = 0; 6223 fgd->entry = NULL; 6224 return __g_next(m, pos); 6225 } 6226 6227 static void g_stop(struct seq_file *m, void *p) 6228 { 6229 mutex_unlock(&graph_lock); 6230 } 6231 6232 static int g_show(struct seq_file *m, void *v) 6233 { 6234 struct ftrace_func_entry *entry = v; 6235 6236 if (!entry) 6237 return 0; 6238 6239 if (entry == FTRACE_GRAPH_EMPTY) { 6240 struct ftrace_graph_data *fgd = m->private; 6241 6242 if (fgd->type == GRAPH_FILTER_FUNCTION) 6243 seq_puts(m, "#### all functions enabled ####\n"); 6244 else 6245 seq_puts(m, "#### no functions disabled ####\n"); 6246 return 0; 6247 } 6248 6249 seq_printf(m, "%ps\n", (void *)entry->ip); 6250 6251 return 0; 6252 } 6253 6254 static const struct seq_operations ftrace_graph_seq_ops = { 6255 .start = g_start, 6256 .next = g_next, 6257 .stop = g_stop, 6258 .show = g_show, 6259 }; 6260 6261 static int 6262 __ftrace_graph_open(struct inode *inode, struct file *file, 6263 struct ftrace_graph_data *fgd) 6264 { 6265 int ret; 6266 struct ftrace_hash *new_hash = NULL; 6267 6268 ret = security_locked_down(LOCKDOWN_TRACEFS); 6269 if (ret) 6270 return ret; 6271 6272 if (file->f_mode & FMODE_WRITE) { 6273 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 6274 6275 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 6276 return -ENOMEM; 6277 6278 if (file->f_flags & O_TRUNC) 6279 new_hash = alloc_ftrace_hash(size_bits); 6280 else 6281 new_hash = alloc_and_copy_ftrace_hash(size_bits, 6282 fgd->hash); 6283 if (!new_hash) { 6284 ret = -ENOMEM; 6285 goto out; 6286 } 6287 } 6288 6289 if (file->f_mode & FMODE_READ) { 6290 ret = seq_open(file, &ftrace_graph_seq_ops); 6291 if (!ret) { 6292 struct seq_file *m = file->private_data; 6293 m->private = fgd; 6294 } else { 6295 /* Failed */ 6296 free_ftrace_hash(new_hash); 6297 new_hash = NULL; 6298 } 6299 } else 6300 file->private_data = fgd; 6301 6302 out: 6303 if (ret < 0 && file->f_mode & FMODE_WRITE) 6304 trace_parser_put(&fgd->parser); 6305 6306 fgd->new_hash = new_hash; 6307 6308 /* 6309 * All uses of fgd->hash must be taken with the graph_lock 6310 * held. The graph_lock is going to be released, so force 6311 * fgd->hash to be reinitialized when it is taken again. 6312 */ 6313 fgd->hash = NULL; 6314 6315 return ret; 6316 } 6317 6318 static int 6319 ftrace_graph_open(struct inode *inode, struct file *file) 6320 { 6321 struct ftrace_graph_data *fgd; 6322 int ret; 6323 6324 if (unlikely(ftrace_disabled)) 6325 return -ENODEV; 6326 6327 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6328 if (fgd == NULL) 6329 return -ENOMEM; 6330 6331 mutex_lock(&graph_lock); 6332 6333 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 6334 lockdep_is_held(&graph_lock)); 6335 fgd->type = GRAPH_FILTER_FUNCTION; 6336 fgd->seq_ops = &ftrace_graph_seq_ops; 6337 6338 ret = __ftrace_graph_open(inode, file, fgd); 6339 if (ret < 0) 6340 kfree(fgd); 6341 6342 mutex_unlock(&graph_lock); 6343 return ret; 6344 } 6345 6346 static int 6347 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 6348 { 6349 struct ftrace_graph_data *fgd; 6350 int ret; 6351 6352 if (unlikely(ftrace_disabled)) 6353 return -ENODEV; 6354 6355 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 6356 if (fgd == NULL) 6357 return -ENOMEM; 6358 6359 mutex_lock(&graph_lock); 6360 6361 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6362 lockdep_is_held(&graph_lock)); 6363 fgd->type = GRAPH_FILTER_NOTRACE; 6364 fgd->seq_ops = &ftrace_graph_seq_ops; 6365 6366 ret = __ftrace_graph_open(inode, file, fgd); 6367 if (ret < 0) 6368 kfree(fgd); 6369 6370 mutex_unlock(&graph_lock); 6371 return ret; 6372 } 6373 6374 static int 6375 ftrace_graph_release(struct inode *inode, struct file *file) 6376 { 6377 struct ftrace_graph_data *fgd; 6378 struct ftrace_hash *old_hash, *new_hash; 6379 struct trace_parser *parser; 6380 int ret = 0; 6381 6382 if (file->f_mode & FMODE_READ) { 6383 struct seq_file *m = file->private_data; 6384 6385 fgd = m->private; 6386 seq_release(inode, file); 6387 } else { 6388 fgd = file->private_data; 6389 } 6390 6391 6392 if (file->f_mode & FMODE_WRITE) { 6393 6394 parser = &fgd->parser; 6395 6396 if (trace_parser_loaded((parser))) { 6397 ret = ftrace_graph_set_hash(fgd->new_hash, 6398 parser->buffer); 6399 } 6400 6401 trace_parser_put(parser); 6402 6403 new_hash = __ftrace_hash_move(fgd->new_hash); 6404 if (!new_hash) { 6405 ret = -ENOMEM; 6406 goto out; 6407 } 6408 6409 mutex_lock(&graph_lock); 6410 6411 if (fgd->type == GRAPH_FILTER_FUNCTION) { 6412 old_hash = rcu_dereference_protected(ftrace_graph_hash, 6413 lockdep_is_held(&graph_lock)); 6414 rcu_assign_pointer(ftrace_graph_hash, new_hash); 6415 } else { 6416 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 6417 lockdep_is_held(&graph_lock)); 6418 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 6419 } 6420 6421 mutex_unlock(&graph_lock); 6422 6423 /* 6424 * We need to do a hard force of sched synchronization. 6425 * This is because we use preempt_disable() to do RCU, but 6426 * the function tracers can be called where RCU is not watching 6427 * (like before user_exit()). We can not rely on the RCU 6428 * infrastructure to do the synchronization, thus we must do it 6429 * ourselves. 6430 */ 6431 if (old_hash != EMPTY_HASH) 6432 synchronize_rcu_tasks_rude(); 6433 6434 free_ftrace_hash(old_hash); 6435 } 6436 6437 out: 6438 free_ftrace_hash(fgd->new_hash); 6439 kfree(fgd); 6440 6441 return ret; 6442 } 6443 6444 static int 6445 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 6446 { 6447 struct ftrace_glob func_g; 6448 struct dyn_ftrace *rec; 6449 struct ftrace_page *pg; 6450 struct ftrace_func_entry *entry; 6451 int fail = 1; 6452 int not; 6453 6454 /* decode regex */ 6455 func_g.type = filter_parse_regex(buffer, strlen(buffer), 6456 &func_g.search, ¬); 6457 6458 func_g.len = strlen(func_g.search); 6459 6460 mutex_lock(&ftrace_lock); 6461 6462 if (unlikely(ftrace_disabled)) { 6463 mutex_unlock(&ftrace_lock); 6464 return -ENODEV; 6465 } 6466 6467 do_for_each_ftrace_rec(pg, rec) { 6468 6469 if (rec->flags & FTRACE_FL_DISABLED) 6470 continue; 6471 6472 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 6473 entry = ftrace_lookup_ip(hash, rec->ip); 6474 6475 if (!not) { 6476 fail = 0; 6477 6478 if (entry) 6479 continue; 6480 if (add_hash_entry(hash, rec->ip) < 0) 6481 goto out; 6482 } else { 6483 if (entry) { 6484 free_hash_entry(hash, entry); 6485 fail = 0; 6486 } 6487 } 6488 } 6489 } while_for_each_ftrace_rec(); 6490 out: 6491 mutex_unlock(&ftrace_lock); 6492 6493 if (fail) 6494 return -EINVAL; 6495 6496 return 0; 6497 } 6498 6499 static ssize_t 6500 ftrace_graph_write(struct file *file, const char __user *ubuf, 6501 size_t cnt, loff_t *ppos) 6502 { 6503 ssize_t read, ret = 0; 6504 struct ftrace_graph_data *fgd = file->private_data; 6505 struct trace_parser *parser; 6506 6507 if (!cnt) 6508 return 0; 6509 6510 /* Read mode uses seq functions */ 6511 if (file->f_mode & FMODE_READ) { 6512 struct seq_file *m = file->private_data; 6513 fgd = m->private; 6514 } 6515 6516 parser = &fgd->parser; 6517 6518 read = trace_get_user(parser, ubuf, cnt, ppos); 6519 6520 if (read >= 0 && trace_parser_loaded(parser) && 6521 !trace_parser_cont(parser)) { 6522 6523 ret = ftrace_graph_set_hash(fgd->new_hash, 6524 parser->buffer); 6525 trace_parser_clear(parser); 6526 } 6527 6528 if (!ret) 6529 ret = read; 6530 6531 return ret; 6532 } 6533 6534 static const struct file_operations ftrace_graph_fops = { 6535 .open = ftrace_graph_open, 6536 .read = seq_read, 6537 .write = ftrace_graph_write, 6538 .llseek = tracing_lseek, 6539 .release = ftrace_graph_release, 6540 }; 6541 6542 static const struct file_operations ftrace_graph_notrace_fops = { 6543 .open = ftrace_graph_notrace_open, 6544 .read = seq_read, 6545 .write = ftrace_graph_write, 6546 .llseek = tracing_lseek, 6547 .release = ftrace_graph_release, 6548 }; 6549 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6550 6551 void ftrace_create_filter_files(struct ftrace_ops *ops, 6552 struct dentry *parent) 6553 { 6554 6555 trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent, 6556 ops, &ftrace_filter_fops); 6557 6558 trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent, 6559 ops, &ftrace_notrace_fops); 6560 } 6561 6562 /* 6563 * The name "destroy_filter_files" is really a misnomer. Although 6564 * in the future, it may actually delete the files, but this is 6565 * really intended to make sure the ops passed in are disabled 6566 * and that when this function returns, the caller is free to 6567 * free the ops. 6568 * 6569 * The "destroy" name is only to match the "create" name that this 6570 * should be paired with. 6571 */ 6572 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 6573 { 6574 mutex_lock(&ftrace_lock); 6575 if (ops->flags & FTRACE_OPS_FL_ENABLED) 6576 ftrace_shutdown(ops, 0); 6577 ops->flags |= FTRACE_OPS_FL_DELETED; 6578 ftrace_free_filter(ops); 6579 mutex_unlock(&ftrace_lock); 6580 } 6581 6582 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 6583 { 6584 6585 trace_create_file("available_filter_functions", TRACE_MODE_READ, 6586 d_tracer, NULL, &ftrace_avail_fops); 6587 6588 trace_create_file("enabled_functions", TRACE_MODE_READ, 6589 d_tracer, NULL, &ftrace_enabled_fops); 6590 6591 ftrace_create_filter_files(&global_ops, d_tracer); 6592 6593 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6594 trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer, 6595 NULL, 6596 &ftrace_graph_fops); 6597 trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer, 6598 NULL, 6599 &ftrace_graph_notrace_fops); 6600 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 6601 6602 return 0; 6603 } 6604 6605 static int ftrace_cmp_ips(const void *a, const void *b) 6606 { 6607 const unsigned long *ipa = a; 6608 const unsigned long *ipb = b; 6609 6610 if (*ipa > *ipb) 6611 return 1; 6612 if (*ipa < *ipb) 6613 return -1; 6614 return 0; 6615 } 6616 6617 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST 6618 static void test_is_sorted(unsigned long *start, unsigned long count) 6619 { 6620 int i; 6621 6622 for (i = 1; i < count; i++) { 6623 if (WARN(start[i - 1] > start[i], 6624 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i, 6625 (void *)start[i - 1], start[i - 1], 6626 (void *)start[i], start[i])) 6627 break; 6628 } 6629 if (i == count) 6630 pr_info("ftrace section at %px sorted properly\n", start); 6631 } 6632 #else 6633 static void test_is_sorted(unsigned long *start, unsigned long count) 6634 { 6635 } 6636 #endif 6637 6638 static int ftrace_process_locs(struct module *mod, 6639 unsigned long *start, 6640 unsigned long *end) 6641 { 6642 struct ftrace_page *start_pg; 6643 struct ftrace_page *pg; 6644 struct dyn_ftrace *rec; 6645 unsigned long count; 6646 unsigned long *p; 6647 unsigned long addr; 6648 unsigned long flags = 0; /* Shut up gcc */ 6649 int ret = -ENOMEM; 6650 6651 count = end - start; 6652 6653 if (!count) 6654 return 0; 6655 6656 /* 6657 * Sorting mcount in vmlinux at build time depend on 6658 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in 6659 * modules can not be sorted at build time. 6660 */ 6661 if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) { 6662 sort(start, count, sizeof(*start), 6663 ftrace_cmp_ips, NULL); 6664 } else { 6665 test_is_sorted(start, count); 6666 } 6667 6668 start_pg = ftrace_allocate_pages(count); 6669 if (!start_pg) 6670 return -ENOMEM; 6671 6672 mutex_lock(&ftrace_lock); 6673 6674 /* 6675 * Core and each module needs their own pages, as 6676 * modules will free them when they are removed. 6677 * Force a new page to be allocated for modules. 6678 */ 6679 if (!mod) { 6680 WARN_ON(ftrace_pages || ftrace_pages_start); 6681 /* First initialization */ 6682 ftrace_pages = ftrace_pages_start = start_pg; 6683 } else { 6684 if (!ftrace_pages) 6685 goto out; 6686 6687 if (WARN_ON(ftrace_pages->next)) { 6688 /* Hmm, we have free pages? */ 6689 while (ftrace_pages->next) 6690 ftrace_pages = ftrace_pages->next; 6691 } 6692 6693 ftrace_pages->next = start_pg; 6694 } 6695 6696 p = start; 6697 pg = start_pg; 6698 while (p < end) { 6699 unsigned long end_offset; 6700 addr = ftrace_call_adjust(*p++); 6701 /* 6702 * Some architecture linkers will pad between 6703 * the different mcount_loc sections of different 6704 * object files to satisfy alignments. 6705 * Skip any NULL pointers. 6706 */ 6707 if (!addr) 6708 continue; 6709 6710 end_offset = (pg->index+1) * sizeof(pg->records[0]); 6711 if (end_offset > PAGE_SIZE << pg->order) { 6712 /* We should have allocated enough */ 6713 if (WARN_ON(!pg->next)) 6714 break; 6715 pg = pg->next; 6716 } 6717 6718 rec = &pg->records[pg->index++]; 6719 rec->ip = addr; 6720 } 6721 6722 /* We should have used all pages */ 6723 WARN_ON(pg->next); 6724 6725 /* Assign the last page to ftrace_pages */ 6726 ftrace_pages = pg; 6727 6728 /* 6729 * We only need to disable interrupts on start up 6730 * because we are modifying code that an interrupt 6731 * may execute, and the modification is not atomic. 6732 * But for modules, nothing runs the code we modify 6733 * until we are finished with it, and there's no 6734 * reason to cause large interrupt latencies while we do it. 6735 */ 6736 if (!mod) 6737 local_irq_save(flags); 6738 ftrace_update_code(mod, start_pg); 6739 if (!mod) 6740 local_irq_restore(flags); 6741 ret = 0; 6742 out: 6743 mutex_unlock(&ftrace_lock); 6744 6745 return ret; 6746 } 6747 6748 struct ftrace_mod_func { 6749 struct list_head list; 6750 char *name; 6751 unsigned long ip; 6752 unsigned int size; 6753 }; 6754 6755 struct ftrace_mod_map { 6756 struct rcu_head rcu; 6757 struct list_head list; 6758 struct module *mod; 6759 unsigned long start_addr; 6760 unsigned long end_addr; 6761 struct list_head funcs; 6762 unsigned int num_funcs; 6763 }; 6764 6765 static int ftrace_get_trampoline_kallsym(unsigned int symnum, 6766 unsigned long *value, char *type, 6767 char *name, char *module_name, 6768 int *exported) 6769 { 6770 struct ftrace_ops *op; 6771 6772 list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) { 6773 if (!op->trampoline || symnum--) 6774 continue; 6775 *value = op->trampoline; 6776 *type = 't'; 6777 strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN); 6778 strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN); 6779 *exported = 0; 6780 return 0; 6781 } 6782 6783 return -ERANGE; 6784 } 6785 6786 #if defined(CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS) || defined(CONFIG_MODULES) 6787 /* 6788 * Check if the current ops references the given ip. 6789 * 6790 * If the ops traces all functions, then it was already accounted for. 6791 * If the ops does not trace the current record function, skip it. 6792 * If the ops ignores the function via notrace filter, skip it. 6793 */ 6794 static bool 6795 ops_references_ip(struct ftrace_ops *ops, unsigned long ip) 6796 { 6797 /* If ops isn't enabled, ignore it */ 6798 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 6799 return false; 6800 6801 /* If ops traces all then it includes this function */ 6802 if (ops_traces_mod(ops)) 6803 return true; 6804 6805 /* The function must be in the filter */ 6806 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 6807 !__ftrace_lookup_ip(ops->func_hash->filter_hash, ip)) 6808 return false; 6809 6810 /* If in notrace hash, we ignore it too */ 6811 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, ip)) 6812 return false; 6813 6814 return true; 6815 } 6816 #endif 6817 6818 #ifdef CONFIG_MODULES 6819 6820 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 6821 6822 static LIST_HEAD(ftrace_mod_maps); 6823 6824 static int referenced_filters(struct dyn_ftrace *rec) 6825 { 6826 struct ftrace_ops *ops; 6827 int cnt = 0; 6828 6829 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 6830 if (ops_references_ip(ops, rec->ip)) { 6831 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT)) 6832 continue; 6833 if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 6834 continue; 6835 cnt++; 6836 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 6837 rec->flags |= FTRACE_FL_REGS; 6838 if (cnt == 1 && ops->trampoline) 6839 rec->flags |= FTRACE_FL_TRAMP; 6840 else 6841 rec->flags &= ~FTRACE_FL_TRAMP; 6842 } 6843 } 6844 6845 return cnt; 6846 } 6847 6848 static void 6849 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 6850 { 6851 struct ftrace_func_entry *entry; 6852 struct dyn_ftrace *rec; 6853 int i; 6854 6855 if (ftrace_hash_empty(hash)) 6856 return; 6857 6858 for (i = 0; i < pg->index; i++) { 6859 rec = &pg->records[i]; 6860 entry = __ftrace_lookup_ip(hash, rec->ip); 6861 /* 6862 * Do not allow this rec to match again. 6863 * Yeah, it may waste some memory, but will be removed 6864 * if/when the hash is modified again. 6865 */ 6866 if (entry) 6867 entry->ip = 0; 6868 } 6869 } 6870 6871 /* Clear any records from hashes */ 6872 static void clear_mod_from_hashes(struct ftrace_page *pg) 6873 { 6874 struct trace_array *tr; 6875 6876 mutex_lock(&trace_types_lock); 6877 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6878 if (!tr->ops || !tr->ops->func_hash) 6879 continue; 6880 mutex_lock(&tr->ops->func_hash->regex_lock); 6881 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 6882 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 6883 mutex_unlock(&tr->ops->func_hash->regex_lock); 6884 } 6885 mutex_unlock(&trace_types_lock); 6886 } 6887 6888 static void ftrace_free_mod_map(struct rcu_head *rcu) 6889 { 6890 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 6891 struct ftrace_mod_func *mod_func; 6892 struct ftrace_mod_func *n; 6893 6894 /* All the contents of mod_map are now not visible to readers */ 6895 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 6896 kfree(mod_func->name); 6897 list_del(&mod_func->list); 6898 kfree(mod_func); 6899 } 6900 6901 kfree(mod_map); 6902 } 6903 6904 void ftrace_release_mod(struct module *mod) 6905 { 6906 struct ftrace_mod_map *mod_map; 6907 struct ftrace_mod_map *n; 6908 struct dyn_ftrace *rec; 6909 struct ftrace_page **last_pg; 6910 struct ftrace_page *tmp_page = NULL; 6911 struct ftrace_page *pg; 6912 6913 mutex_lock(&ftrace_lock); 6914 6915 if (ftrace_disabled) 6916 goto out_unlock; 6917 6918 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 6919 if (mod_map->mod == mod) { 6920 list_del_rcu(&mod_map->list); 6921 call_rcu(&mod_map->rcu, ftrace_free_mod_map); 6922 break; 6923 } 6924 } 6925 6926 /* 6927 * Each module has its own ftrace_pages, remove 6928 * them from the list. 6929 */ 6930 last_pg = &ftrace_pages_start; 6931 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 6932 rec = &pg->records[0]; 6933 if (within_module_core(rec->ip, mod) || 6934 within_module_init(rec->ip, mod)) { 6935 /* 6936 * As core pages are first, the first 6937 * page should never be a module page. 6938 */ 6939 if (WARN_ON(pg == ftrace_pages_start)) 6940 goto out_unlock; 6941 6942 /* Check if we are deleting the last page */ 6943 if (pg == ftrace_pages) 6944 ftrace_pages = next_to_ftrace_page(last_pg); 6945 6946 ftrace_update_tot_cnt -= pg->index; 6947 *last_pg = pg->next; 6948 6949 pg->next = tmp_page; 6950 tmp_page = pg; 6951 } else 6952 last_pg = &pg->next; 6953 } 6954 out_unlock: 6955 mutex_unlock(&ftrace_lock); 6956 6957 for (pg = tmp_page; pg; pg = tmp_page) { 6958 6959 /* Needs to be called outside of ftrace_lock */ 6960 clear_mod_from_hashes(pg); 6961 6962 if (pg->records) { 6963 free_pages((unsigned long)pg->records, pg->order); 6964 ftrace_number_of_pages -= 1 << pg->order; 6965 } 6966 tmp_page = pg->next; 6967 kfree(pg); 6968 ftrace_number_of_groups--; 6969 } 6970 } 6971 6972 void ftrace_module_enable(struct module *mod) 6973 { 6974 struct dyn_ftrace *rec; 6975 struct ftrace_page *pg; 6976 6977 mutex_lock(&ftrace_lock); 6978 6979 if (ftrace_disabled) 6980 goto out_unlock; 6981 6982 /* 6983 * If the tracing is enabled, go ahead and enable the record. 6984 * 6985 * The reason not to enable the record immediately is the 6986 * inherent check of ftrace_make_nop/ftrace_make_call for 6987 * correct previous instructions. Making first the NOP 6988 * conversion puts the module to the correct state, thus 6989 * passing the ftrace_make_call check. 6990 * 6991 * We also delay this to after the module code already set the 6992 * text to read-only, as we now need to set it back to read-write 6993 * so that we can modify the text. 6994 */ 6995 if (ftrace_start_up) 6996 ftrace_arch_code_modify_prepare(); 6997 6998 do_for_each_ftrace_rec(pg, rec) { 6999 int cnt; 7000 /* 7001 * do_for_each_ftrace_rec() is a double loop. 7002 * module text shares the pg. If a record is 7003 * not part of this module, then skip this pg, 7004 * which the "break" will do. 7005 */ 7006 if (!within_module_core(rec->ip, mod) && 7007 !within_module_init(rec->ip, mod)) 7008 break; 7009 7010 /* Weak functions should still be ignored */ 7011 if (!test_for_valid_rec(rec)) { 7012 /* Clear all other flags. Should not be enabled anyway */ 7013 rec->flags = FTRACE_FL_DISABLED; 7014 continue; 7015 } 7016 7017 cnt = 0; 7018 7019 /* 7020 * When adding a module, we need to check if tracers are 7021 * currently enabled and if they are, and can trace this record, 7022 * we need to enable the module functions as well as update the 7023 * reference counts for those function records. 7024 */ 7025 if (ftrace_start_up) 7026 cnt += referenced_filters(rec); 7027 7028 rec->flags &= ~FTRACE_FL_DISABLED; 7029 rec->flags += cnt; 7030 7031 if (ftrace_start_up && cnt) { 7032 int failed = __ftrace_replace_code(rec, 1); 7033 if (failed) { 7034 ftrace_bug(failed, rec); 7035 goto out_loop; 7036 } 7037 } 7038 7039 } while_for_each_ftrace_rec(); 7040 7041 out_loop: 7042 if (ftrace_start_up) 7043 ftrace_arch_code_modify_post_process(); 7044 7045 out_unlock: 7046 mutex_unlock(&ftrace_lock); 7047 7048 process_cached_mods(mod->name); 7049 } 7050 7051 void ftrace_module_init(struct module *mod) 7052 { 7053 int ret; 7054 7055 if (ftrace_disabled || !mod->num_ftrace_callsites) 7056 return; 7057 7058 ret = ftrace_process_locs(mod, mod->ftrace_callsites, 7059 mod->ftrace_callsites + mod->num_ftrace_callsites); 7060 if (ret) 7061 pr_warn("ftrace: failed to allocate entries for module '%s' functions\n", 7062 mod->name); 7063 } 7064 7065 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7066 struct dyn_ftrace *rec) 7067 { 7068 struct ftrace_mod_func *mod_func; 7069 unsigned long symsize; 7070 unsigned long offset; 7071 char str[KSYM_SYMBOL_LEN]; 7072 char *modname; 7073 const char *ret; 7074 7075 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 7076 if (!ret) 7077 return; 7078 7079 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 7080 if (!mod_func) 7081 return; 7082 7083 mod_func->name = kstrdup(str, GFP_KERNEL); 7084 if (!mod_func->name) { 7085 kfree(mod_func); 7086 return; 7087 } 7088 7089 mod_func->ip = rec->ip - offset; 7090 mod_func->size = symsize; 7091 7092 mod_map->num_funcs++; 7093 7094 list_add_rcu(&mod_func->list, &mod_map->funcs); 7095 } 7096 7097 static struct ftrace_mod_map * 7098 allocate_ftrace_mod_map(struct module *mod, 7099 unsigned long start, unsigned long end) 7100 { 7101 struct ftrace_mod_map *mod_map; 7102 7103 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 7104 if (!mod_map) 7105 return NULL; 7106 7107 mod_map->mod = mod; 7108 mod_map->start_addr = start; 7109 mod_map->end_addr = end; 7110 mod_map->num_funcs = 0; 7111 7112 INIT_LIST_HEAD_RCU(&mod_map->funcs); 7113 7114 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 7115 7116 return mod_map; 7117 } 7118 7119 static const char * 7120 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 7121 unsigned long addr, unsigned long *size, 7122 unsigned long *off, char *sym) 7123 { 7124 struct ftrace_mod_func *found_func = NULL; 7125 struct ftrace_mod_func *mod_func; 7126 7127 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7128 if (addr >= mod_func->ip && 7129 addr < mod_func->ip + mod_func->size) { 7130 found_func = mod_func; 7131 break; 7132 } 7133 } 7134 7135 if (found_func) { 7136 if (size) 7137 *size = found_func->size; 7138 if (off) 7139 *off = addr - found_func->ip; 7140 if (sym) 7141 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 7142 7143 return found_func->name; 7144 } 7145 7146 return NULL; 7147 } 7148 7149 const char * 7150 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 7151 unsigned long *off, char **modname, char *sym) 7152 { 7153 struct ftrace_mod_map *mod_map; 7154 const char *ret = NULL; 7155 7156 /* mod_map is freed via call_rcu() */ 7157 preempt_disable(); 7158 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7159 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 7160 if (ret) { 7161 if (modname) 7162 *modname = mod_map->mod->name; 7163 break; 7164 } 7165 } 7166 preempt_enable(); 7167 7168 return ret; 7169 } 7170 7171 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7172 char *type, char *name, 7173 char *module_name, int *exported) 7174 { 7175 struct ftrace_mod_map *mod_map; 7176 struct ftrace_mod_func *mod_func; 7177 int ret; 7178 7179 preempt_disable(); 7180 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 7181 7182 if (symnum >= mod_map->num_funcs) { 7183 symnum -= mod_map->num_funcs; 7184 continue; 7185 } 7186 7187 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 7188 if (symnum > 1) { 7189 symnum--; 7190 continue; 7191 } 7192 7193 *value = mod_func->ip; 7194 *type = 'T'; 7195 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 7196 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 7197 *exported = 1; 7198 preempt_enable(); 7199 return 0; 7200 } 7201 WARN_ON(1); 7202 break; 7203 } 7204 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7205 module_name, exported); 7206 preempt_enable(); 7207 return ret; 7208 } 7209 7210 #else 7211 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 7212 struct dyn_ftrace *rec) { } 7213 static inline struct ftrace_mod_map * 7214 allocate_ftrace_mod_map(struct module *mod, 7215 unsigned long start, unsigned long end) 7216 { 7217 return NULL; 7218 } 7219 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 7220 char *type, char *name, char *module_name, 7221 int *exported) 7222 { 7223 int ret; 7224 7225 preempt_disable(); 7226 ret = ftrace_get_trampoline_kallsym(symnum, value, type, name, 7227 module_name, exported); 7228 preempt_enable(); 7229 return ret; 7230 } 7231 #endif /* CONFIG_MODULES */ 7232 7233 struct ftrace_init_func { 7234 struct list_head list; 7235 unsigned long ip; 7236 }; 7237 7238 /* Clear any init ips from hashes */ 7239 static void 7240 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 7241 { 7242 struct ftrace_func_entry *entry; 7243 7244 entry = ftrace_lookup_ip(hash, func->ip); 7245 /* 7246 * Do not allow this rec to match again. 7247 * Yeah, it may waste some memory, but will be removed 7248 * if/when the hash is modified again. 7249 */ 7250 if (entry) 7251 entry->ip = 0; 7252 } 7253 7254 static void 7255 clear_func_from_hashes(struct ftrace_init_func *func) 7256 { 7257 struct trace_array *tr; 7258 7259 mutex_lock(&trace_types_lock); 7260 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 7261 if (!tr->ops || !tr->ops->func_hash) 7262 continue; 7263 mutex_lock(&tr->ops->func_hash->regex_lock); 7264 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 7265 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 7266 mutex_unlock(&tr->ops->func_hash->regex_lock); 7267 } 7268 mutex_unlock(&trace_types_lock); 7269 } 7270 7271 static void add_to_clear_hash_list(struct list_head *clear_list, 7272 struct dyn_ftrace *rec) 7273 { 7274 struct ftrace_init_func *func; 7275 7276 func = kmalloc(sizeof(*func), GFP_KERNEL); 7277 if (!func) { 7278 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n"); 7279 return; 7280 } 7281 7282 func->ip = rec->ip; 7283 list_add(&func->list, clear_list); 7284 } 7285 7286 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 7287 { 7288 unsigned long start = (unsigned long)(start_ptr); 7289 unsigned long end = (unsigned long)(end_ptr); 7290 struct ftrace_page **last_pg = &ftrace_pages_start; 7291 struct ftrace_page *pg; 7292 struct dyn_ftrace *rec; 7293 struct dyn_ftrace key; 7294 struct ftrace_mod_map *mod_map = NULL; 7295 struct ftrace_init_func *func, *func_next; 7296 struct list_head clear_hash; 7297 7298 INIT_LIST_HEAD(&clear_hash); 7299 7300 key.ip = start; 7301 key.flags = end; /* overload flags, as it is unsigned long */ 7302 7303 mutex_lock(&ftrace_lock); 7304 7305 /* 7306 * If we are freeing module init memory, then check if 7307 * any tracer is active. If so, we need to save a mapping of 7308 * the module functions being freed with the address. 7309 */ 7310 if (mod && ftrace_ops_list != &ftrace_list_end) 7311 mod_map = allocate_ftrace_mod_map(mod, start, end); 7312 7313 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 7314 if (end < pg->records[0].ip || 7315 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 7316 continue; 7317 again: 7318 rec = bsearch(&key, pg->records, pg->index, 7319 sizeof(struct dyn_ftrace), 7320 ftrace_cmp_recs); 7321 if (!rec) 7322 continue; 7323 7324 /* rec will be cleared from hashes after ftrace_lock unlock */ 7325 add_to_clear_hash_list(&clear_hash, rec); 7326 7327 if (mod_map) 7328 save_ftrace_mod_rec(mod_map, rec); 7329 7330 pg->index--; 7331 ftrace_update_tot_cnt--; 7332 if (!pg->index) { 7333 *last_pg = pg->next; 7334 if (pg->records) { 7335 free_pages((unsigned long)pg->records, pg->order); 7336 ftrace_number_of_pages -= 1 << pg->order; 7337 } 7338 ftrace_number_of_groups--; 7339 kfree(pg); 7340 pg = container_of(last_pg, struct ftrace_page, next); 7341 if (!(*last_pg)) 7342 ftrace_pages = pg; 7343 continue; 7344 } 7345 memmove(rec, rec + 1, 7346 (pg->index - (rec - pg->records)) * sizeof(*rec)); 7347 /* More than one function may be in this block */ 7348 goto again; 7349 } 7350 mutex_unlock(&ftrace_lock); 7351 7352 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 7353 clear_func_from_hashes(func); 7354 kfree(func); 7355 } 7356 } 7357 7358 void __init ftrace_free_init_mem(void) 7359 { 7360 void *start = (void *)(&__init_begin); 7361 void *end = (void *)(&__init_end); 7362 7363 ftrace_boot_snapshot(); 7364 7365 ftrace_free_mem(NULL, start, end); 7366 } 7367 7368 int __init __weak ftrace_dyn_arch_init(void) 7369 { 7370 return 0; 7371 } 7372 7373 void __init ftrace_init(void) 7374 { 7375 extern unsigned long __start_mcount_loc[]; 7376 extern unsigned long __stop_mcount_loc[]; 7377 unsigned long count, flags; 7378 int ret; 7379 7380 local_irq_save(flags); 7381 ret = ftrace_dyn_arch_init(); 7382 local_irq_restore(flags); 7383 if (ret) 7384 goto failed; 7385 7386 count = __stop_mcount_loc - __start_mcount_loc; 7387 if (!count) { 7388 pr_info("ftrace: No functions to be traced?\n"); 7389 goto failed; 7390 } 7391 7392 pr_info("ftrace: allocating %ld entries in %ld pages\n", 7393 count, count / ENTRIES_PER_PAGE + 1); 7394 7395 ret = ftrace_process_locs(NULL, 7396 __start_mcount_loc, 7397 __stop_mcount_loc); 7398 if (ret) { 7399 pr_warn("ftrace: failed to allocate entries for functions\n"); 7400 goto failed; 7401 } 7402 7403 pr_info("ftrace: allocated %ld pages with %ld groups\n", 7404 ftrace_number_of_pages, ftrace_number_of_groups); 7405 7406 last_ftrace_enabled = ftrace_enabled = 1; 7407 7408 set_ftrace_early_filters(); 7409 7410 return; 7411 failed: 7412 ftrace_disabled = 1; 7413 } 7414 7415 /* Do nothing if arch does not support this */ 7416 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 7417 { 7418 } 7419 7420 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7421 { 7422 unsigned long trampoline = ops->trampoline; 7423 7424 arch_ftrace_update_trampoline(ops); 7425 if (ops->trampoline && ops->trampoline != trampoline && 7426 (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) { 7427 /* Add to kallsyms before the perf events */ 7428 ftrace_add_trampoline_to_kallsyms(ops); 7429 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 7430 ops->trampoline, ops->trampoline_size, false, 7431 FTRACE_TRAMPOLINE_SYM); 7432 /* 7433 * Record the perf text poke event after the ksymbol register 7434 * event. 7435 */ 7436 perf_event_text_poke((void *)ops->trampoline, NULL, 0, 7437 (void *)ops->trampoline, 7438 ops->trampoline_size); 7439 } 7440 } 7441 7442 void ftrace_init_trace_array(struct trace_array *tr) 7443 { 7444 INIT_LIST_HEAD(&tr->func_probes); 7445 INIT_LIST_HEAD(&tr->mod_trace); 7446 INIT_LIST_HEAD(&tr->mod_notrace); 7447 } 7448 #else 7449 7450 struct ftrace_ops global_ops = { 7451 .func = ftrace_stub, 7452 .flags = FTRACE_OPS_FL_INITIALIZED | 7453 FTRACE_OPS_FL_PID, 7454 }; 7455 7456 static int __init ftrace_nodyn_init(void) 7457 { 7458 ftrace_enabled = 1; 7459 return 0; 7460 } 7461 core_initcall(ftrace_nodyn_init); 7462 7463 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 7464 static inline void ftrace_startup_all(int command) { } 7465 7466 static void ftrace_update_trampoline(struct ftrace_ops *ops) 7467 { 7468 } 7469 7470 #endif /* CONFIG_DYNAMIC_FTRACE */ 7471 7472 __init void ftrace_init_global_array_ops(struct trace_array *tr) 7473 { 7474 tr->ops = &global_ops; 7475 tr->ops->private = tr; 7476 ftrace_init_trace_array(tr); 7477 } 7478 7479 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 7480 { 7481 /* If we filter on pids, update to use the pid function */ 7482 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 7483 if (WARN_ON(tr->ops->func != ftrace_stub)) 7484 printk("ftrace ops had %pS for function\n", 7485 tr->ops->func); 7486 } 7487 tr->ops->func = func; 7488 tr->ops->private = tr; 7489 } 7490 7491 void ftrace_reset_array_ops(struct trace_array *tr) 7492 { 7493 tr->ops->func = ftrace_stub; 7494 } 7495 7496 static nokprobe_inline void 7497 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7498 struct ftrace_ops *ignored, struct ftrace_regs *fregs) 7499 { 7500 struct pt_regs *regs = ftrace_get_regs(fregs); 7501 struct ftrace_ops *op; 7502 int bit; 7503 7504 /* 7505 * The ftrace_test_and_set_recursion() will disable preemption, 7506 * which is required since some of the ops may be dynamically 7507 * allocated, they must be freed after a synchronize_rcu(). 7508 */ 7509 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7510 if (bit < 0) 7511 return; 7512 7513 do_for_each_ftrace_op(op, ftrace_ops_list) { 7514 /* Stub functions don't need to be called nor tested */ 7515 if (op->flags & FTRACE_OPS_FL_STUB) 7516 continue; 7517 /* 7518 * Check the following for each ops before calling their func: 7519 * if RCU flag is set, then rcu_is_watching() must be true 7520 * if PER_CPU is set, then ftrace_function_local_disable() 7521 * must be false 7522 * Otherwise test if the ip matches the ops filter 7523 * 7524 * If any of the above fails then the op->func() is not executed. 7525 */ 7526 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 7527 ftrace_ops_test(op, ip, regs)) { 7528 if (FTRACE_WARN_ON(!op->func)) { 7529 pr_warn("op=%p %pS\n", op, op); 7530 goto out; 7531 } 7532 op->func(ip, parent_ip, op, fregs); 7533 } 7534 } while_for_each_ftrace_op(op); 7535 out: 7536 trace_clear_recursion(bit); 7537 } 7538 7539 /* 7540 * Some archs only support passing ip and parent_ip. Even though 7541 * the list function ignores the op parameter, we do not want any 7542 * C side effects, where a function is called without the caller 7543 * sending a third parameter. 7544 * Archs are to support both the regs and ftrace_ops at the same time. 7545 * If they support ftrace_ops, it is assumed they support regs. 7546 * If call backs want to use regs, they must either check for regs 7547 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 7548 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 7549 * An architecture can pass partial regs with ftrace_ops and still 7550 * set the ARCH_SUPPORTS_FTRACE_OPS. 7551 * 7552 * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be 7553 * arch_ftrace_ops_list_func. 7554 */ 7555 #if ARCH_SUPPORTS_FTRACE_OPS 7556 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 7557 struct ftrace_ops *op, struct ftrace_regs *fregs) 7558 { 7559 __ftrace_ops_list_func(ip, parent_ip, NULL, fregs); 7560 } 7561 #else 7562 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip) 7563 { 7564 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 7565 } 7566 #endif 7567 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func); 7568 7569 /* 7570 * If there's only one function registered but it does not support 7571 * recursion, needs RCU protection and/or requires per cpu handling, then 7572 * this function will be called by the mcount trampoline. 7573 */ 7574 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 7575 struct ftrace_ops *op, struct ftrace_regs *fregs) 7576 { 7577 int bit; 7578 7579 bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START); 7580 if (bit < 0) 7581 return; 7582 7583 if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) 7584 op->func(ip, parent_ip, op, fregs); 7585 7586 trace_clear_recursion(bit); 7587 } 7588 NOKPROBE_SYMBOL(ftrace_ops_assist_func); 7589 7590 /** 7591 * ftrace_ops_get_func - get the function a trampoline should call 7592 * @ops: the ops to get the function for 7593 * 7594 * Normally the mcount trampoline will call the ops->func, but there 7595 * are times that it should not. For example, if the ops does not 7596 * have its own recursion protection, then it should call the 7597 * ftrace_ops_assist_func() instead. 7598 * 7599 * Returns the function that the trampoline should call for @ops. 7600 */ 7601 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 7602 { 7603 /* 7604 * If the function does not handle recursion or needs to be RCU safe, 7605 * then we need to call the assist handler. 7606 */ 7607 if (ops->flags & (FTRACE_OPS_FL_RECURSION | 7608 FTRACE_OPS_FL_RCU)) 7609 return ftrace_ops_assist_func; 7610 7611 return ops->func; 7612 } 7613 7614 static void 7615 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 7616 struct task_struct *prev, 7617 struct task_struct *next, 7618 unsigned int prev_state) 7619 { 7620 struct trace_array *tr = data; 7621 struct trace_pid_list *pid_list; 7622 struct trace_pid_list *no_pid_list; 7623 7624 pid_list = rcu_dereference_sched(tr->function_pids); 7625 no_pid_list = rcu_dereference_sched(tr->function_no_pids); 7626 7627 if (trace_ignore_this_task(pid_list, no_pid_list, next)) 7628 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7629 FTRACE_PID_IGNORE); 7630 else 7631 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7632 next->pid); 7633 } 7634 7635 static void 7636 ftrace_pid_follow_sched_process_fork(void *data, 7637 struct task_struct *self, 7638 struct task_struct *task) 7639 { 7640 struct trace_pid_list *pid_list; 7641 struct trace_array *tr = data; 7642 7643 pid_list = rcu_dereference_sched(tr->function_pids); 7644 trace_filter_add_remove_task(pid_list, self, task); 7645 7646 pid_list = rcu_dereference_sched(tr->function_no_pids); 7647 trace_filter_add_remove_task(pid_list, self, task); 7648 } 7649 7650 static void 7651 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 7652 { 7653 struct trace_pid_list *pid_list; 7654 struct trace_array *tr = data; 7655 7656 pid_list = rcu_dereference_sched(tr->function_pids); 7657 trace_filter_add_remove_task(pid_list, NULL, task); 7658 7659 pid_list = rcu_dereference_sched(tr->function_no_pids); 7660 trace_filter_add_remove_task(pid_list, NULL, task); 7661 } 7662 7663 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 7664 { 7665 if (enable) { 7666 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7667 tr); 7668 register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7669 tr); 7670 } else { 7671 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 7672 tr); 7673 unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit, 7674 tr); 7675 } 7676 } 7677 7678 static void clear_ftrace_pids(struct trace_array *tr, int type) 7679 { 7680 struct trace_pid_list *pid_list; 7681 struct trace_pid_list *no_pid_list; 7682 int cpu; 7683 7684 pid_list = rcu_dereference_protected(tr->function_pids, 7685 lockdep_is_held(&ftrace_lock)); 7686 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7687 lockdep_is_held(&ftrace_lock)); 7688 7689 /* Make sure there's something to do */ 7690 if (!pid_type_enabled(type, pid_list, no_pid_list)) 7691 return; 7692 7693 /* See if the pids still need to be checked after this */ 7694 if (!still_need_pid_events(type, pid_list, no_pid_list)) { 7695 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7696 for_each_possible_cpu(cpu) 7697 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE; 7698 } 7699 7700 if (type & TRACE_PIDS) 7701 rcu_assign_pointer(tr->function_pids, NULL); 7702 7703 if (type & TRACE_NO_PIDS) 7704 rcu_assign_pointer(tr->function_no_pids, NULL); 7705 7706 /* Wait till all users are no longer using pid filtering */ 7707 synchronize_rcu(); 7708 7709 if ((type & TRACE_PIDS) && pid_list) 7710 trace_pid_list_free(pid_list); 7711 7712 if ((type & TRACE_NO_PIDS) && no_pid_list) 7713 trace_pid_list_free(no_pid_list); 7714 } 7715 7716 void ftrace_clear_pids(struct trace_array *tr) 7717 { 7718 mutex_lock(&ftrace_lock); 7719 7720 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); 7721 7722 mutex_unlock(&ftrace_lock); 7723 } 7724 7725 static void ftrace_pid_reset(struct trace_array *tr, int type) 7726 { 7727 mutex_lock(&ftrace_lock); 7728 clear_ftrace_pids(tr, type); 7729 7730 ftrace_update_pid_func(); 7731 ftrace_startup_all(0); 7732 7733 mutex_unlock(&ftrace_lock); 7734 } 7735 7736 /* Greater than any max PID */ 7737 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 7738 7739 static void *fpid_start(struct seq_file *m, loff_t *pos) 7740 __acquires(RCU) 7741 { 7742 struct trace_pid_list *pid_list; 7743 struct trace_array *tr = m->private; 7744 7745 mutex_lock(&ftrace_lock); 7746 rcu_read_lock_sched(); 7747 7748 pid_list = rcu_dereference_sched(tr->function_pids); 7749 7750 if (!pid_list) 7751 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7752 7753 return trace_pid_start(pid_list, pos); 7754 } 7755 7756 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 7757 { 7758 struct trace_array *tr = m->private; 7759 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 7760 7761 if (v == FTRACE_NO_PIDS) { 7762 (*pos)++; 7763 return NULL; 7764 } 7765 return trace_pid_next(pid_list, v, pos); 7766 } 7767 7768 static void fpid_stop(struct seq_file *m, void *p) 7769 __releases(RCU) 7770 { 7771 rcu_read_unlock_sched(); 7772 mutex_unlock(&ftrace_lock); 7773 } 7774 7775 static int fpid_show(struct seq_file *m, void *v) 7776 { 7777 if (v == FTRACE_NO_PIDS) { 7778 seq_puts(m, "no pid\n"); 7779 return 0; 7780 } 7781 7782 return trace_pid_show(m, v); 7783 } 7784 7785 static const struct seq_operations ftrace_pid_sops = { 7786 .start = fpid_start, 7787 .next = fpid_next, 7788 .stop = fpid_stop, 7789 .show = fpid_show, 7790 }; 7791 7792 static void *fnpid_start(struct seq_file *m, loff_t *pos) 7793 __acquires(RCU) 7794 { 7795 struct trace_pid_list *pid_list; 7796 struct trace_array *tr = m->private; 7797 7798 mutex_lock(&ftrace_lock); 7799 rcu_read_lock_sched(); 7800 7801 pid_list = rcu_dereference_sched(tr->function_no_pids); 7802 7803 if (!pid_list) 7804 return !(*pos) ? FTRACE_NO_PIDS : NULL; 7805 7806 return trace_pid_start(pid_list, pos); 7807 } 7808 7809 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos) 7810 { 7811 struct trace_array *tr = m->private; 7812 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids); 7813 7814 if (v == FTRACE_NO_PIDS) { 7815 (*pos)++; 7816 return NULL; 7817 } 7818 return trace_pid_next(pid_list, v, pos); 7819 } 7820 7821 static const struct seq_operations ftrace_no_pid_sops = { 7822 .start = fnpid_start, 7823 .next = fnpid_next, 7824 .stop = fpid_stop, 7825 .show = fpid_show, 7826 }; 7827 7828 static int pid_open(struct inode *inode, struct file *file, int type) 7829 { 7830 const struct seq_operations *seq_ops; 7831 struct trace_array *tr = inode->i_private; 7832 struct seq_file *m; 7833 int ret = 0; 7834 7835 ret = tracing_check_open_get_tr(tr); 7836 if (ret) 7837 return ret; 7838 7839 if ((file->f_mode & FMODE_WRITE) && 7840 (file->f_flags & O_TRUNC)) 7841 ftrace_pid_reset(tr, type); 7842 7843 switch (type) { 7844 case TRACE_PIDS: 7845 seq_ops = &ftrace_pid_sops; 7846 break; 7847 case TRACE_NO_PIDS: 7848 seq_ops = &ftrace_no_pid_sops; 7849 break; 7850 default: 7851 trace_array_put(tr); 7852 WARN_ON_ONCE(1); 7853 return -EINVAL; 7854 } 7855 7856 ret = seq_open(file, seq_ops); 7857 if (ret < 0) { 7858 trace_array_put(tr); 7859 } else { 7860 m = file->private_data; 7861 /* copy tr over to seq ops */ 7862 m->private = tr; 7863 } 7864 7865 return ret; 7866 } 7867 7868 static int 7869 ftrace_pid_open(struct inode *inode, struct file *file) 7870 { 7871 return pid_open(inode, file, TRACE_PIDS); 7872 } 7873 7874 static int 7875 ftrace_no_pid_open(struct inode *inode, struct file *file) 7876 { 7877 return pid_open(inode, file, TRACE_NO_PIDS); 7878 } 7879 7880 static void ignore_task_cpu(void *data) 7881 { 7882 struct trace_array *tr = data; 7883 struct trace_pid_list *pid_list; 7884 struct trace_pid_list *no_pid_list; 7885 7886 /* 7887 * This function is called by on_each_cpu() while the 7888 * event_mutex is held. 7889 */ 7890 pid_list = rcu_dereference_protected(tr->function_pids, 7891 mutex_is_locked(&ftrace_lock)); 7892 no_pid_list = rcu_dereference_protected(tr->function_no_pids, 7893 mutex_is_locked(&ftrace_lock)); 7894 7895 if (trace_ignore_this_task(pid_list, no_pid_list, current)) 7896 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7897 FTRACE_PID_IGNORE); 7898 else 7899 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid, 7900 current->pid); 7901 } 7902 7903 static ssize_t 7904 pid_write(struct file *filp, const char __user *ubuf, 7905 size_t cnt, loff_t *ppos, int type) 7906 { 7907 struct seq_file *m = filp->private_data; 7908 struct trace_array *tr = m->private; 7909 struct trace_pid_list *filtered_pids; 7910 struct trace_pid_list *other_pids; 7911 struct trace_pid_list *pid_list; 7912 ssize_t ret; 7913 7914 if (!cnt) 7915 return 0; 7916 7917 mutex_lock(&ftrace_lock); 7918 7919 switch (type) { 7920 case TRACE_PIDS: 7921 filtered_pids = rcu_dereference_protected(tr->function_pids, 7922 lockdep_is_held(&ftrace_lock)); 7923 other_pids = rcu_dereference_protected(tr->function_no_pids, 7924 lockdep_is_held(&ftrace_lock)); 7925 break; 7926 case TRACE_NO_PIDS: 7927 filtered_pids = rcu_dereference_protected(tr->function_no_pids, 7928 lockdep_is_held(&ftrace_lock)); 7929 other_pids = rcu_dereference_protected(tr->function_pids, 7930 lockdep_is_held(&ftrace_lock)); 7931 break; 7932 default: 7933 ret = -EINVAL; 7934 WARN_ON_ONCE(1); 7935 goto out; 7936 } 7937 7938 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 7939 if (ret < 0) 7940 goto out; 7941 7942 switch (type) { 7943 case TRACE_PIDS: 7944 rcu_assign_pointer(tr->function_pids, pid_list); 7945 break; 7946 case TRACE_NO_PIDS: 7947 rcu_assign_pointer(tr->function_no_pids, pid_list); 7948 break; 7949 } 7950 7951 7952 if (filtered_pids) { 7953 synchronize_rcu(); 7954 trace_pid_list_free(filtered_pids); 7955 } else if (pid_list && !other_pids) { 7956 /* Register a probe to set whether to ignore the tracing of a task */ 7957 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 7958 } 7959 7960 /* 7961 * Ignoring of pids is done at task switch. But we have to 7962 * check for those tasks that are currently running. 7963 * Always do this in case a pid was appended or removed. 7964 */ 7965 on_each_cpu(ignore_task_cpu, tr, 1); 7966 7967 ftrace_update_pid_func(); 7968 ftrace_startup_all(0); 7969 out: 7970 mutex_unlock(&ftrace_lock); 7971 7972 if (ret > 0) 7973 *ppos += ret; 7974 7975 return ret; 7976 } 7977 7978 static ssize_t 7979 ftrace_pid_write(struct file *filp, const char __user *ubuf, 7980 size_t cnt, loff_t *ppos) 7981 { 7982 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); 7983 } 7984 7985 static ssize_t 7986 ftrace_no_pid_write(struct file *filp, const char __user *ubuf, 7987 size_t cnt, loff_t *ppos) 7988 { 7989 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); 7990 } 7991 7992 static int 7993 ftrace_pid_release(struct inode *inode, struct file *file) 7994 { 7995 struct trace_array *tr = inode->i_private; 7996 7997 trace_array_put(tr); 7998 7999 return seq_release(inode, file); 8000 } 8001 8002 static const struct file_operations ftrace_pid_fops = { 8003 .open = ftrace_pid_open, 8004 .write = ftrace_pid_write, 8005 .read = seq_read, 8006 .llseek = tracing_lseek, 8007 .release = ftrace_pid_release, 8008 }; 8009 8010 static const struct file_operations ftrace_no_pid_fops = { 8011 .open = ftrace_no_pid_open, 8012 .write = ftrace_no_pid_write, 8013 .read = seq_read, 8014 .llseek = tracing_lseek, 8015 .release = ftrace_pid_release, 8016 }; 8017 8018 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 8019 { 8020 trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer, 8021 tr, &ftrace_pid_fops); 8022 trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE, 8023 d_tracer, tr, &ftrace_no_pid_fops); 8024 } 8025 8026 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 8027 struct dentry *d_tracer) 8028 { 8029 /* Only the top level directory has the dyn_tracefs and profile */ 8030 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 8031 8032 ftrace_init_dyn_tracefs(d_tracer); 8033 ftrace_profile_tracefs(d_tracer); 8034 } 8035 8036 /** 8037 * ftrace_kill - kill ftrace 8038 * 8039 * This function should be used by panic code. It stops ftrace 8040 * but in a not so nice way. If you need to simply kill ftrace 8041 * from a non-atomic section, use ftrace_kill. 8042 */ 8043 void ftrace_kill(void) 8044 { 8045 ftrace_disabled = 1; 8046 ftrace_enabled = 0; 8047 ftrace_trace_function = ftrace_stub; 8048 } 8049 8050 /** 8051 * ftrace_is_dead - Test if ftrace is dead or not. 8052 * 8053 * Returns 1 if ftrace is "dead", zero otherwise. 8054 */ 8055 int ftrace_is_dead(void) 8056 { 8057 return ftrace_disabled; 8058 } 8059 8060 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 8061 /* 8062 * When registering ftrace_ops with IPMODIFY, it is necessary to make sure 8063 * it doesn't conflict with any direct ftrace_ops. If there is existing 8064 * direct ftrace_ops on a kernel function being patched, call 8065 * FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER on it to enable sharing. 8066 * 8067 * @ops: ftrace_ops being registered. 8068 * 8069 * Returns: 8070 * 0 on success; 8071 * Negative on failure. 8072 */ 8073 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8074 { 8075 struct ftrace_func_entry *entry; 8076 struct ftrace_hash *hash; 8077 struct ftrace_ops *op; 8078 int size, i, ret; 8079 8080 lockdep_assert_held_once(&direct_mutex); 8081 8082 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8083 return 0; 8084 8085 hash = ops->func_hash->filter_hash; 8086 size = 1 << hash->size_bits; 8087 for (i = 0; i < size; i++) { 8088 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8089 unsigned long ip = entry->ip; 8090 bool found_op = false; 8091 8092 mutex_lock(&ftrace_lock); 8093 do_for_each_ftrace_op(op, ftrace_ops_list) { 8094 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8095 continue; 8096 if (ops_references_ip(op, ip)) { 8097 found_op = true; 8098 break; 8099 } 8100 } while_for_each_ftrace_op(op); 8101 mutex_unlock(&ftrace_lock); 8102 8103 if (found_op) { 8104 if (!op->ops_func) 8105 return -EBUSY; 8106 8107 ret = op->ops_func(op, FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER); 8108 if (ret) 8109 return ret; 8110 } 8111 } 8112 } 8113 8114 return 0; 8115 } 8116 8117 /* 8118 * Similar to prepare_direct_functions_for_ipmodify, clean up after ops 8119 * with IPMODIFY is unregistered. The cleanup is optional for most DIRECT 8120 * ops. 8121 */ 8122 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8123 { 8124 struct ftrace_func_entry *entry; 8125 struct ftrace_hash *hash; 8126 struct ftrace_ops *op; 8127 int size, i; 8128 8129 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 8130 return; 8131 8132 mutex_lock(&direct_mutex); 8133 8134 hash = ops->func_hash->filter_hash; 8135 size = 1 << hash->size_bits; 8136 for (i = 0; i < size; i++) { 8137 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 8138 unsigned long ip = entry->ip; 8139 bool found_op = false; 8140 8141 mutex_lock(&ftrace_lock); 8142 do_for_each_ftrace_op(op, ftrace_ops_list) { 8143 if (!(op->flags & FTRACE_OPS_FL_DIRECT)) 8144 continue; 8145 if (ops_references_ip(op, ip)) { 8146 found_op = true; 8147 break; 8148 } 8149 } while_for_each_ftrace_op(op); 8150 mutex_unlock(&ftrace_lock); 8151 8152 /* The cleanup is optional, ignore any errors */ 8153 if (found_op && op->ops_func) 8154 op->ops_func(op, FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER); 8155 } 8156 } 8157 mutex_unlock(&direct_mutex); 8158 } 8159 8160 #define lock_direct_mutex() mutex_lock(&direct_mutex) 8161 #define unlock_direct_mutex() mutex_unlock(&direct_mutex) 8162 8163 #else /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8164 8165 static int prepare_direct_functions_for_ipmodify(struct ftrace_ops *ops) 8166 { 8167 return 0; 8168 } 8169 8170 static void cleanup_direct_functions_after_ipmodify(struct ftrace_ops *ops) 8171 { 8172 } 8173 8174 #define lock_direct_mutex() do { } while (0) 8175 #define unlock_direct_mutex() do { } while (0) 8176 8177 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */ 8178 8179 /* 8180 * Similar to register_ftrace_function, except we don't lock direct_mutex. 8181 */ 8182 static int register_ftrace_function_nolock(struct ftrace_ops *ops) 8183 { 8184 int ret; 8185 8186 ftrace_ops_init(ops); 8187 8188 mutex_lock(&ftrace_lock); 8189 8190 ret = ftrace_startup(ops, 0); 8191 8192 mutex_unlock(&ftrace_lock); 8193 8194 return ret; 8195 } 8196 8197 /** 8198 * register_ftrace_function - register a function for profiling 8199 * @ops: ops structure that holds the function for profiling. 8200 * 8201 * Register a function to be called by all functions in the 8202 * kernel. 8203 * 8204 * Note: @ops->func and all the functions it calls must be labeled 8205 * with "notrace", otherwise it will go into a 8206 * recursive loop. 8207 */ 8208 int register_ftrace_function(struct ftrace_ops *ops) 8209 { 8210 int ret; 8211 8212 lock_direct_mutex(); 8213 ret = prepare_direct_functions_for_ipmodify(ops); 8214 if (ret < 0) 8215 goto out_unlock; 8216 8217 ret = register_ftrace_function_nolock(ops); 8218 8219 out_unlock: 8220 unlock_direct_mutex(); 8221 return ret; 8222 } 8223 EXPORT_SYMBOL_GPL(register_ftrace_function); 8224 8225 /** 8226 * unregister_ftrace_function - unregister a function for profiling. 8227 * @ops: ops structure that holds the function to unregister 8228 * 8229 * Unregister a function that was added to be called by ftrace profiling. 8230 */ 8231 int unregister_ftrace_function(struct ftrace_ops *ops) 8232 { 8233 int ret; 8234 8235 mutex_lock(&ftrace_lock); 8236 ret = ftrace_shutdown(ops, 0); 8237 mutex_unlock(&ftrace_lock); 8238 8239 cleanup_direct_functions_after_ipmodify(ops); 8240 return ret; 8241 } 8242 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 8243 8244 static int symbols_cmp(const void *a, const void *b) 8245 { 8246 const char **str_a = (const char **) a; 8247 const char **str_b = (const char **) b; 8248 8249 return strcmp(*str_a, *str_b); 8250 } 8251 8252 struct kallsyms_data { 8253 unsigned long *addrs; 8254 const char **syms; 8255 size_t cnt; 8256 size_t found; 8257 }; 8258 8259 static int kallsyms_callback(void *data, const char *name, 8260 struct module *mod, unsigned long addr) 8261 { 8262 struct kallsyms_data *args = data; 8263 const char **sym; 8264 int idx; 8265 8266 sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp); 8267 if (!sym) 8268 return 0; 8269 8270 idx = sym - args->syms; 8271 if (args->addrs[idx]) 8272 return 0; 8273 8274 if (!ftrace_location(addr)) 8275 return 0; 8276 8277 args->addrs[idx] = addr; 8278 args->found++; 8279 return args->found == args->cnt ? 1 : 0; 8280 } 8281 8282 /** 8283 * ftrace_lookup_symbols - Lookup addresses for array of symbols 8284 * 8285 * @sorted_syms: array of symbols pointers symbols to resolve, 8286 * must be alphabetically sorted 8287 * @cnt: number of symbols/addresses in @syms/@addrs arrays 8288 * @addrs: array for storing resulting addresses 8289 * 8290 * This function looks up addresses for array of symbols provided in 8291 * @syms array (must be alphabetically sorted) and stores them in 8292 * @addrs array, which needs to be big enough to store at least @cnt 8293 * addresses. 8294 * 8295 * This function returns 0 if all provided symbols are found, 8296 * -ESRCH otherwise. 8297 */ 8298 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs) 8299 { 8300 struct kallsyms_data args; 8301 int err; 8302 8303 memset(addrs, 0, sizeof(*addrs) * cnt); 8304 args.addrs = addrs; 8305 args.syms = sorted_syms; 8306 args.cnt = cnt; 8307 args.found = 0; 8308 err = kallsyms_on_each_symbol(kallsyms_callback, &args); 8309 if (err < 0) 8310 return err; 8311 return args.found == args.cnt ? 0 : -ESRCH; 8312 } 8313 8314 #ifdef CONFIG_SYSCTL 8315 8316 #ifdef CONFIG_DYNAMIC_FTRACE 8317 static void ftrace_startup_sysctl(void) 8318 { 8319 int command; 8320 8321 if (unlikely(ftrace_disabled)) 8322 return; 8323 8324 /* Force update next time */ 8325 saved_ftrace_func = NULL; 8326 /* ftrace_start_up is true if we want ftrace running */ 8327 if (ftrace_start_up) { 8328 command = FTRACE_UPDATE_CALLS; 8329 if (ftrace_graph_active) 8330 command |= FTRACE_START_FUNC_RET; 8331 ftrace_startup_enable(command); 8332 } 8333 } 8334 8335 static void ftrace_shutdown_sysctl(void) 8336 { 8337 int command; 8338 8339 if (unlikely(ftrace_disabled)) 8340 return; 8341 8342 /* ftrace_start_up is true if ftrace is running */ 8343 if (ftrace_start_up) { 8344 command = FTRACE_DISABLE_CALLS; 8345 if (ftrace_graph_active) 8346 command |= FTRACE_STOP_FUNC_RET; 8347 ftrace_run_update_code(command); 8348 } 8349 } 8350 #else 8351 # define ftrace_startup_sysctl() do { } while (0) 8352 # define ftrace_shutdown_sysctl() do { } while (0) 8353 #endif /* CONFIG_DYNAMIC_FTRACE */ 8354 8355 static bool is_permanent_ops_registered(void) 8356 { 8357 struct ftrace_ops *op; 8358 8359 do_for_each_ftrace_op(op, ftrace_ops_list) { 8360 if (op->flags & FTRACE_OPS_FL_PERMANENT) 8361 return true; 8362 } while_for_each_ftrace_op(op); 8363 8364 return false; 8365 } 8366 8367 static int 8368 ftrace_enable_sysctl(struct ctl_table *table, int write, 8369 void *buffer, size_t *lenp, loff_t *ppos) 8370 { 8371 int ret = -ENODEV; 8372 8373 mutex_lock(&ftrace_lock); 8374 8375 if (unlikely(ftrace_disabled)) 8376 goto out; 8377 8378 ret = proc_dointvec(table, write, buffer, lenp, ppos); 8379 8380 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 8381 goto out; 8382 8383 if (ftrace_enabled) { 8384 8385 /* we are starting ftrace again */ 8386 if (rcu_dereference_protected(ftrace_ops_list, 8387 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 8388 update_ftrace_function(); 8389 8390 ftrace_startup_sysctl(); 8391 8392 } else { 8393 if (is_permanent_ops_registered()) { 8394 ftrace_enabled = true; 8395 ret = -EBUSY; 8396 goto out; 8397 } 8398 8399 /* stopping ftrace calls (just send to ftrace_stub) */ 8400 ftrace_trace_function = ftrace_stub; 8401 8402 ftrace_shutdown_sysctl(); 8403 } 8404 8405 last_ftrace_enabled = !!ftrace_enabled; 8406 out: 8407 mutex_unlock(&ftrace_lock); 8408 return ret; 8409 } 8410 8411 static struct ctl_table ftrace_sysctls[] = { 8412 { 8413 .procname = "ftrace_enabled", 8414 .data = &ftrace_enabled, 8415 .maxlen = sizeof(int), 8416 .mode = 0644, 8417 .proc_handler = ftrace_enable_sysctl, 8418 }, 8419 {} 8420 }; 8421 8422 static int __init ftrace_sysctl_init(void) 8423 { 8424 register_sysctl_init("kernel", ftrace_sysctls); 8425 return 0; 8426 } 8427 late_initcall(ftrace_sysctl_init); 8428 #endif 8429