1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Infrastructure for profiling code inserted by 'gcc -pg'. 4 * 5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com> 6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com> 7 * 8 * Originally ported from the -rt patch by: 9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com> 10 * 11 * Based on code in the latency_tracer, that is: 12 * 13 * Copyright (C) 2004-2006 Ingo Molnar 14 * Copyright (C) 2004 Nadia Yvette Chambers 15 */ 16 17 #include <linux/stop_machine.h> 18 #include <linux/clocksource.h> 19 #include <linux/sched/task.h> 20 #include <linux/kallsyms.h> 21 #include <linux/seq_file.h> 22 #include <linux/suspend.h> 23 #include <linux/tracefs.h> 24 #include <linux/hardirq.h> 25 #include <linux/kthread.h> 26 #include <linux/uaccess.h> 27 #include <linux/bsearch.h> 28 #include <linux/module.h> 29 #include <linux/ftrace.h> 30 #include <linux/sysctl.h> 31 #include <linux/slab.h> 32 #include <linux/ctype.h> 33 #include <linux/sort.h> 34 #include <linux/list.h> 35 #include <linux/hash.h> 36 #include <linux/rcupdate.h> 37 38 #include <trace/events/sched.h> 39 40 #include <asm/sections.h> 41 #include <asm/setup.h> 42 43 #include "trace_output.h" 44 #include "trace_stat.h" 45 46 #define FTRACE_WARN_ON(cond) \ 47 ({ \ 48 int ___r = cond; \ 49 if (WARN_ON(___r)) \ 50 ftrace_kill(); \ 51 ___r; \ 52 }) 53 54 #define FTRACE_WARN_ON_ONCE(cond) \ 55 ({ \ 56 int ___r = cond; \ 57 if (WARN_ON_ONCE(___r)) \ 58 ftrace_kill(); \ 59 ___r; \ 60 }) 61 62 /* hash bits for specific function selection */ 63 #define FTRACE_HASH_BITS 7 64 #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS) 65 #define FTRACE_HASH_DEFAULT_BITS 10 66 #define FTRACE_HASH_MAX_BITS 12 67 68 #ifdef CONFIG_DYNAMIC_FTRACE 69 #define INIT_OPS_HASH(opsname) \ 70 .func_hash = &opsname.local_hash, \ 71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 72 #define ASSIGN_OPS_HASH(opsname, val) \ 73 .func_hash = val, \ 74 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock), 75 #else 76 #define INIT_OPS_HASH(opsname) 77 #define ASSIGN_OPS_HASH(opsname, val) 78 #endif 79 80 static struct ftrace_ops ftrace_list_end __read_mostly = { 81 .func = ftrace_stub, 82 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB, 83 INIT_OPS_HASH(ftrace_list_end) 84 }; 85 86 /* ftrace_enabled is a method to turn ftrace on or off */ 87 int ftrace_enabled __read_mostly; 88 static int last_ftrace_enabled; 89 90 /* Current function tracing op */ 91 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end; 92 /* What to set function_trace_op to */ 93 static struct ftrace_ops *set_function_trace_op; 94 95 static bool ftrace_pids_enabled(struct ftrace_ops *ops) 96 { 97 struct trace_array *tr; 98 99 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private) 100 return false; 101 102 tr = ops->private; 103 104 return tr->function_pids != NULL; 105 } 106 107 static void ftrace_update_trampoline(struct ftrace_ops *ops); 108 109 /* 110 * ftrace_disabled is set when an anomaly is discovered. 111 * ftrace_disabled is much stronger than ftrace_enabled. 112 */ 113 static int ftrace_disabled __read_mostly; 114 115 static DEFINE_MUTEX(ftrace_lock); 116 117 static struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end; 118 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub; 119 static struct ftrace_ops global_ops; 120 121 #if ARCH_SUPPORTS_FTRACE_OPS 122 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 123 struct ftrace_ops *op, struct pt_regs *regs); 124 #else 125 /* See comment below, where ftrace_ops_list_func is defined */ 126 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip); 127 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops) 128 #endif 129 130 /* 131 * Traverse the ftrace_global_list, invoking all entries. The reason that we 132 * can use rcu_dereference_raw_notrace() is that elements removed from this list 133 * are simply leaked, so there is no need to interact with a grace-period 134 * mechanism. The rcu_dereference_raw_notrace() calls are needed to handle 135 * concurrent insertions into the ftrace_global_list. 136 * 137 * Silly Alpha and silly pointer-speculation compiler optimizations! 138 */ 139 #define do_for_each_ftrace_op(op, list) \ 140 op = rcu_dereference_raw_notrace(list); \ 141 do 142 143 /* 144 * Optimized for just a single item in the list (as that is the normal case). 145 */ 146 #define while_for_each_ftrace_op(op) \ 147 while (likely(op = rcu_dereference_raw_notrace((op)->next)) && \ 148 unlikely((op) != &ftrace_list_end)) 149 150 static inline void ftrace_ops_init(struct ftrace_ops *ops) 151 { 152 #ifdef CONFIG_DYNAMIC_FTRACE 153 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) { 154 mutex_init(&ops->local_hash.regex_lock); 155 ops->func_hash = &ops->local_hash; 156 ops->flags |= FTRACE_OPS_FL_INITIALIZED; 157 } 158 #endif 159 } 160 161 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, 162 struct ftrace_ops *op, struct pt_regs *regs) 163 { 164 struct trace_array *tr = op->private; 165 166 if (tr && this_cpu_read(tr->trace_buffer.data->ftrace_ignore_pid)) 167 return; 168 169 op->saved_func(ip, parent_ip, op, regs); 170 } 171 172 static void ftrace_sync(struct work_struct *work) 173 { 174 /* 175 * This function is just a stub to implement a hard force 176 * of synchronize_sched(). This requires synchronizing 177 * tasks even in userspace and idle. 178 * 179 * Yes, function tracing is rude. 180 */ 181 } 182 183 static void ftrace_sync_ipi(void *data) 184 { 185 /* Probably not needed, but do it anyway */ 186 smp_rmb(); 187 } 188 189 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 190 static void update_function_graph_func(void); 191 192 /* Both enabled by default (can be cleared by function_graph tracer flags */ 193 static bool fgraph_sleep_time = true; 194 static bool fgraph_graph_time = true; 195 196 #else 197 static inline void update_function_graph_func(void) { } 198 #endif 199 200 201 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops) 202 { 203 /* 204 * If this is a dynamic, RCU, or per CPU ops, or we force list func, 205 * then it needs to call the list anyway. 206 */ 207 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) || 208 FTRACE_FORCE_LIST_FUNC) 209 return ftrace_ops_list_func; 210 211 return ftrace_ops_get_func(ops); 212 } 213 214 static void update_ftrace_function(void) 215 { 216 ftrace_func_t func; 217 218 /* 219 * Prepare the ftrace_ops that the arch callback will use. 220 * If there's only one ftrace_ops registered, the ftrace_ops_list 221 * will point to the ops we want. 222 */ 223 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list, 224 lockdep_is_held(&ftrace_lock)); 225 226 /* If there's no ftrace_ops registered, just call the stub function */ 227 if (set_function_trace_op == &ftrace_list_end) { 228 func = ftrace_stub; 229 230 /* 231 * If we are at the end of the list and this ops is 232 * recursion safe and not dynamic and the arch supports passing ops, 233 * then have the mcount trampoline call the function directly. 234 */ 235 } else if (rcu_dereference_protected(ftrace_ops_list->next, 236 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 237 func = ftrace_ops_get_list_func(ftrace_ops_list); 238 239 } else { 240 /* Just use the default ftrace_ops */ 241 set_function_trace_op = &ftrace_list_end; 242 func = ftrace_ops_list_func; 243 } 244 245 update_function_graph_func(); 246 247 /* If there's no change, then do nothing more here */ 248 if (ftrace_trace_function == func) 249 return; 250 251 /* 252 * If we are using the list function, it doesn't care 253 * about the function_trace_ops. 254 */ 255 if (func == ftrace_ops_list_func) { 256 ftrace_trace_function = func; 257 /* 258 * Don't even bother setting function_trace_ops, 259 * it would be racy to do so anyway. 260 */ 261 return; 262 } 263 264 #ifndef CONFIG_DYNAMIC_FTRACE 265 /* 266 * For static tracing, we need to be a bit more careful. 267 * The function change takes affect immediately. Thus, 268 * we need to coorditate the setting of the function_trace_ops 269 * with the setting of the ftrace_trace_function. 270 * 271 * Set the function to the list ops, which will call the 272 * function we want, albeit indirectly, but it handles the 273 * ftrace_ops and doesn't depend on function_trace_op. 274 */ 275 ftrace_trace_function = ftrace_ops_list_func; 276 /* 277 * Make sure all CPUs see this. Yes this is slow, but static 278 * tracing is slow and nasty to have enabled. 279 */ 280 schedule_on_each_cpu(ftrace_sync); 281 /* Now all cpus are using the list ops. */ 282 function_trace_op = set_function_trace_op; 283 /* Make sure the function_trace_op is visible on all CPUs */ 284 smp_wmb(); 285 /* Nasty way to force a rmb on all cpus */ 286 smp_call_function(ftrace_sync_ipi, NULL, 1); 287 /* OK, we are all set to update the ftrace_trace_function now! */ 288 #endif /* !CONFIG_DYNAMIC_FTRACE */ 289 290 ftrace_trace_function = func; 291 } 292 293 static void add_ftrace_ops(struct ftrace_ops __rcu **list, 294 struct ftrace_ops *ops) 295 { 296 rcu_assign_pointer(ops->next, *list); 297 298 /* 299 * We are entering ops into the list but another 300 * CPU might be walking that list. We need to make sure 301 * the ops->next pointer is valid before another CPU sees 302 * the ops pointer included into the list. 303 */ 304 rcu_assign_pointer(*list, ops); 305 } 306 307 static int remove_ftrace_ops(struct ftrace_ops __rcu **list, 308 struct ftrace_ops *ops) 309 { 310 struct ftrace_ops **p; 311 312 /* 313 * If we are removing the last function, then simply point 314 * to the ftrace_stub. 315 */ 316 if (rcu_dereference_protected(*list, 317 lockdep_is_held(&ftrace_lock)) == ops && 318 rcu_dereference_protected(ops->next, 319 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 320 *list = &ftrace_list_end; 321 return 0; 322 } 323 324 for (p = list; *p != &ftrace_list_end; p = &(*p)->next) 325 if (*p == ops) 326 break; 327 328 if (*p != ops) 329 return -1; 330 331 *p = (*p)->next; 332 return 0; 333 } 334 335 static void ftrace_update_trampoline(struct ftrace_ops *ops); 336 337 static int __register_ftrace_function(struct ftrace_ops *ops) 338 { 339 if (ops->flags & FTRACE_OPS_FL_DELETED) 340 return -EINVAL; 341 342 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED)) 343 return -EBUSY; 344 345 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS 346 /* 347 * If the ftrace_ops specifies SAVE_REGS, then it only can be used 348 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set. 349 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant. 350 */ 351 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS && 352 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)) 353 return -EINVAL; 354 355 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED) 356 ops->flags |= FTRACE_OPS_FL_SAVE_REGS; 357 #endif 358 359 if (!core_kernel_data((unsigned long)ops)) 360 ops->flags |= FTRACE_OPS_FL_DYNAMIC; 361 362 add_ftrace_ops(&ftrace_ops_list, ops); 363 364 /* Always save the function, and reset at unregistering */ 365 ops->saved_func = ops->func; 366 367 if (ftrace_pids_enabled(ops)) 368 ops->func = ftrace_pid_func; 369 370 ftrace_update_trampoline(ops); 371 372 if (ftrace_enabled) 373 update_ftrace_function(); 374 375 return 0; 376 } 377 378 static int __unregister_ftrace_function(struct ftrace_ops *ops) 379 { 380 int ret; 381 382 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED))) 383 return -EBUSY; 384 385 ret = remove_ftrace_ops(&ftrace_ops_list, ops); 386 387 if (ret < 0) 388 return ret; 389 390 if (ftrace_enabled) 391 update_ftrace_function(); 392 393 ops->func = ops->saved_func; 394 395 return 0; 396 } 397 398 static void ftrace_update_pid_func(void) 399 { 400 struct ftrace_ops *op; 401 402 /* Only do something if we are tracing something */ 403 if (ftrace_trace_function == ftrace_stub) 404 return; 405 406 do_for_each_ftrace_op(op, ftrace_ops_list) { 407 if (op->flags & FTRACE_OPS_FL_PID) { 408 op->func = ftrace_pids_enabled(op) ? 409 ftrace_pid_func : op->saved_func; 410 ftrace_update_trampoline(op); 411 } 412 } while_for_each_ftrace_op(op); 413 414 update_ftrace_function(); 415 } 416 417 #ifdef CONFIG_FUNCTION_PROFILER 418 struct ftrace_profile { 419 struct hlist_node node; 420 unsigned long ip; 421 unsigned long counter; 422 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 423 unsigned long long time; 424 unsigned long long time_squared; 425 #endif 426 }; 427 428 struct ftrace_profile_page { 429 struct ftrace_profile_page *next; 430 unsigned long index; 431 struct ftrace_profile records[]; 432 }; 433 434 struct ftrace_profile_stat { 435 atomic_t disabled; 436 struct hlist_head *hash; 437 struct ftrace_profile_page *pages; 438 struct ftrace_profile_page *start; 439 struct tracer_stat stat; 440 }; 441 442 #define PROFILE_RECORDS_SIZE \ 443 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records)) 444 445 #define PROFILES_PER_PAGE \ 446 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile)) 447 448 static int ftrace_profile_enabled __read_mostly; 449 450 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */ 451 static DEFINE_MUTEX(ftrace_profile_lock); 452 453 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats); 454 455 #define FTRACE_PROFILE_HASH_BITS 10 456 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS) 457 458 static void * 459 function_stat_next(void *v, int idx) 460 { 461 struct ftrace_profile *rec = v; 462 struct ftrace_profile_page *pg; 463 464 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK); 465 466 again: 467 if (idx != 0) 468 rec++; 469 470 if ((void *)rec >= (void *)&pg->records[pg->index]) { 471 pg = pg->next; 472 if (!pg) 473 return NULL; 474 rec = &pg->records[0]; 475 if (!rec->counter) 476 goto again; 477 } 478 479 return rec; 480 } 481 482 static void *function_stat_start(struct tracer_stat *trace) 483 { 484 struct ftrace_profile_stat *stat = 485 container_of(trace, struct ftrace_profile_stat, stat); 486 487 if (!stat || !stat->start) 488 return NULL; 489 490 return function_stat_next(&stat->start->records[0], 0); 491 } 492 493 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 494 /* function graph compares on total time */ 495 static int function_stat_cmp(void *p1, void *p2) 496 { 497 struct ftrace_profile *a = p1; 498 struct ftrace_profile *b = p2; 499 500 if (a->time < b->time) 501 return -1; 502 if (a->time > b->time) 503 return 1; 504 else 505 return 0; 506 } 507 #else 508 /* not function graph compares against hits */ 509 static int function_stat_cmp(void *p1, void *p2) 510 { 511 struct ftrace_profile *a = p1; 512 struct ftrace_profile *b = p2; 513 514 if (a->counter < b->counter) 515 return -1; 516 if (a->counter > b->counter) 517 return 1; 518 else 519 return 0; 520 } 521 #endif 522 523 static int function_stat_headers(struct seq_file *m) 524 { 525 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 526 seq_puts(m, " Function " 527 "Hit Time Avg s^2\n" 528 " -------- " 529 "--- ---- --- ---\n"); 530 #else 531 seq_puts(m, " Function Hit\n" 532 " -------- ---\n"); 533 #endif 534 return 0; 535 } 536 537 static int function_stat_show(struct seq_file *m, void *v) 538 { 539 struct ftrace_profile *rec = v; 540 char str[KSYM_SYMBOL_LEN]; 541 int ret = 0; 542 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 543 static struct trace_seq s; 544 unsigned long long avg; 545 unsigned long long stddev; 546 #endif 547 mutex_lock(&ftrace_profile_lock); 548 549 /* we raced with function_profile_reset() */ 550 if (unlikely(rec->counter == 0)) { 551 ret = -EBUSY; 552 goto out; 553 } 554 555 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 556 avg = rec->time; 557 do_div(avg, rec->counter); 558 if (tracing_thresh && (avg < tracing_thresh)) 559 goto out; 560 #endif 561 562 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); 563 seq_printf(m, " %-30.30s %10lu", str, rec->counter); 564 565 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 566 seq_puts(m, " "); 567 568 /* Sample standard deviation (s^2) */ 569 if (rec->counter <= 1) 570 stddev = 0; 571 else { 572 /* 573 * Apply Welford's method: 574 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2) 575 */ 576 stddev = rec->counter * rec->time_squared - 577 rec->time * rec->time; 578 579 /* 580 * Divide only 1000 for ns^2 -> us^2 conversion. 581 * trace_print_graph_duration will divide 1000 again. 582 */ 583 do_div(stddev, rec->counter * (rec->counter - 1) * 1000); 584 } 585 586 trace_seq_init(&s); 587 trace_print_graph_duration(rec->time, &s); 588 trace_seq_puts(&s, " "); 589 trace_print_graph_duration(avg, &s); 590 trace_seq_puts(&s, " "); 591 trace_print_graph_duration(stddev, &s); 592 trace_print_seq(m, &s); 593 #endif 594 seq_putc(m, '\n'); 595 out: 596 mutex_unlock(&ftrace_profile_lock); 597 598 return ret; 599 } 600 601 static void ftrace_profile_reset(struct ftrace_profile_stat *stat) 602 { 603 struct ftrace_profile_page *pg; 604 605 pg = stat->pages = stat->start; 606 607 while (pg) { 608 memset(pg->records, 0, PROFILE_RECORDS_SIZE); 609 pg->index = 0; 610 pg = pg->next; 611 } 612 613 memset(stat->hash, 0, 614 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head)); 615 } 616 617 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat) 618 { 619 struct ftrace_profile_page *pg; 620 int functions; 621 int pages; 622 int i; 623 624 /* If we already allocated, do nothing */ 625 if (stat->pages) 626 return 0; 627 628 stat->pages = (void *)get_zeroed_page(GFP_KERNEL); 629 if (!stat->pages) 630 return -ENOMEM; 631 632 #ifdef CONFIG_DYNAMIC_FTRACE 633 functions = ftrace_update_tot_cnt; 634 #else 635 /* 636 * We do not know the number of functions that exist because 637 * dynamic tracing is what counts them. With past experience 638 * we have around 20K functions. That should be more than enough. 639 * It is highly unlikely we will execute every function in 640 * the kernel. 641 */ 642 functions = 20000; 643 #endif 644 645 pg = stat->start = stat->pages; 646 647 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE); 648 649 for (i = 1; i < pages; i++) { 650 pg->next = (void *)get_zeroed_page(GFP_KERNEL); 651 if (!pg->next) 652 goto out_free; 653 pg = pg->next; 654 } 655 656 return 0; 657 658 out_free: 659 pg = stat->start; 660 while (pg) { 661 unsigned long tmp = (unsigned long)pg; 662 663 pg = pg->next; 664 free_page(tmp); 665 } 666 667 stat->pages = NULL; 668 stat->start = NULL; 669 670 return -ENOMEM; 671 } 672 673 static int ftrace_profile_init_cpu(int cpu) 674 { 675 struct ftrace_profile_stat *stat; 676 int size; 677 678 stat = &per_cpu(ftrace_profile_stats, cpu); 679 680 if (stat->hash) { 681 /* If the profile is already created, simply reset it */ 682 ftrace_profile_reset(stat); 683 return 0; 684 } 685 686 /* 687 * We are profiling all functions, but usually only a few thousand 688 * functions are hit. We'll make a hash of 1024 items. 689 */ 690 size = FTRACE_PROFILE_HASH_SIZE; 691 692 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL); 693 694 if (!stat->hash) 695 return -ENOMEM; 696 697 /* Preallocate the function profiling pages */ 698 if (ftrace_profile_pages_init(stat) < 0) { 699 kfree(stat->hash); 700 stat->hash = NULL; 701 return -ENOMEM; 702 } 703 704 return 0; 705 } 706 707 static int ftrace_profile_init(void) 708 { 709 int cpu; 710 int ret = 0; 711 712 for_each_possible_cpu(cpu) { 713 ret = ftrace_profile_init_cpu(cpu); 714 if (ret) 715 break; 716 } 717 718 return ret; 719 } 720 721 /* interrupts must be disabled */ 722 static struct ftrace_profile * 723 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip) 724 { 725 struct ftrace_profile *rec; 726 struct hlist_head *hhd; 727 unsigned long key; 728 729 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS); 730 hhd = &stat->hash[key]; 731 732 if (hlist_empty(hhd)) 733 return NULL; 734 735 hlist_for_each_entry_rcu_notrace(rec, hhd, node) { 736 if (rec->ip == ip) 737 return rec; 738 } 739 740 return NULL; 741 } 742 743 static void ftrace_add_profile(struct ftrace_profile_stat *stat, 744 struct ftrace_profile *rec) 745 { 746 unsigned long key; 747 748 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS); 749 hlist_add_head_rcu(&rec->node, &stat->hash[key]); 750 } 751 752 /* 753 * The memory is already allocated, this simply finds a new record to use. 754 */ 755 static struct ftrace_profile * 756 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip) 757 { 758 struct ftrace_profile *rec = NULL; 759 760 /* prevent recursion (from NMIs) */ 761 if (atomic_inc_return(&stat->disabled) != 1) 762 goto out; 763 764 /* 765 * Try to find the function again since an NMI 766 * could have added it 767 */ 768 rec = ftrace_find_profiled_func(stat, ip); 769 if (rec) 770 goto out; 771 772 if (stat->pages->index == PROFILES_PER_PAGE) { 773 if (!stat->pages->next) 774 goto out; 775 stat->pages = stat->pages->next; 776 } 777 778 rec = &stat->pages->records[stat->pages->index++]; 779 rec->ip = ip; 780 ftrace_add_profile(stat, rec); 781 782 out: 783 atomic_dec(&stat->disabled); 784 785 return rec; 786 } 787 788 static void 789 function_profile_call(unsigned long ip, unsigned long parent_ip, 790 struct ftrace_ops *ops, struct pt_regs *regs) 791 { 792 struct ftrace_profile_stat *stat; 793 struct ftrace_profile *rec; 794 unsigned long flags; 795 796 if (!ftrace_profile_enabled) 797 return; 798 799 local_irq_save(flags); 800 801 stat = this_cpu_ptr(&ftrace_profile_stats); 802 if (!stat->hash || !ftrace_profile_enabled) 803 goto out; 804 805 rec = ftrace_find_profiled_func(stat, ip); 806 if (!rec) { 807 rec = ftrace_profile_alloc(stat, ip); 808 if (!rec) 809 goto out; 810 } 811 812 rec->counter++; 813 out: 814 local_irq_restore(flags); 815 } 816 817 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 818 static int profile_graph_entry(struct ftrace_graph_ent *trace) 819 { 820 int index = trace->depth; 821 822 function_profile_call(trace->func, 0, NULL, NULL); 823 824 /* If function graph is shutting down, ret_stack can be NULL */ 825 if (!current->ret_stack) 826 return 0; 827 828 if (index >= 0 && index < FTRACE_RETFUNC_DEPTH) 829 current->ret_stack[index].subtime = 0; 830 831 return 1; 832 } 833 834 static void profile_graph_return(struct ftrace_graph_ret *trace) 835 { 836 struct ftrace_profile_stat *stat; 837 unsigned long long calltime; 838 struct ftrace_profile *rec; 839 unsigned long flags; 840 841 local_irq_save(flags); 842 stat = this_cpu_ptr(&ftrace_profile_stats); 843 if (!stat->hash || !ftrace_profile_enabled) 844 goto out; 845 846 /* If the calltime was zero'd ignore it */ 847 if (!trace->calltime) 848 goto out; 849 850 calltime = trace->rettime - trace->calltime; 851 852 if (!fgraph_graph_time) { 853 int index; 854 855 index = trace->depth; 856 857 /* Append this call time to the parent time to subtract */ 858 if (index) 859 current->ret_stack[index - 1].subtime += calltime; 860 861 if (current->ret_stack[index].subtime < calltime) 862 calltime -= current->ret_stack[index].subtime; 863 else 864 calltime = 0; 865 } 866 867 rec = ftrace_find_profiled_func(stat, trace->func); 868 if (rec) { 869 rec->time += calltime; 870 rec->time_squared += calltime * calltime; 871 } 872 873 out: 874 local_irq_restore(flags); 875 } 876 877 static int register_ftrace_profiler(void) 878 { 879 return register_ftrace_graph(&profile_graph_return, 880 &profile_graph_entry); 881 } 882 883 static void unregister_ftrace_profiler(void) 884 { 885 unregister_ftrace_graph(); 886 } 887 #else 888 static struct ftrace_ops ftrace_profile_ops __read_mostly = { 889 .func = function_profile_call, 890 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED, 891 INIT_OPS_HASH(ftrace_profile_ops) 892 }; 893 894 static int register_ftrace_profiler(void) 895 { 896 return register_ftrace_function(&ftrace_profile_ops); 897 } 898 899 static void unregister_ftrace_profiler(void) 900 { 901 unregister_ftrace_function(&ftrace_profile_ops); 902 } 903 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 904 905 static ssize_t 906 ftrace_profile_write(struct file *filp, const char __user *ubuf, 907 size_t cnt, loff_t *ppos) 908 { 909 unsigned long val; 910 int ret; 911 912 ret = kstrtoul_from_user(ubuf, cnt, 10, &val); 913 if (ret) 914 return ret; 915 916 val = !!val; 917 918 mutex_lock(&ftrace_profile_lock); 919 if (ftrace_profile_enabled ^ val) { 920 if (val) { 921 ret = ftrace_profile_init(); 922 if (ret < 0) { 923 cnt = ret; 924 goto out; 925 } 926 927 ret = register_ftrace_profiler(); 928 if (ret < 0) { 929 cnt = ret; 930 goto out; 931 } 932 ftrace_profile_enabled = 1; 933 } else { 934 ftrace_profile_enabled = 0; 935 /* 936 * unregister_ftrace_profiler calls stop_machine 937 * so this acts like an synchronize_sched. 938 */ 939 unregister_ftrace_profiler(); 940 } 941 } 942 out: 943 mutex_unlock(&ftrace_profile_lock); 944 945 *ppos += cnt; 946 947 return cnt; 948 } 949 950 static ssize_t 951 ftrace_profile_read(struct file *filp, char __user *ubuf, 952 size_t cnt, loff_t *ppos) 953 { 954 char buf[64]; /* big enough to hold a number */ 955 int r; 956 957 r = sprintf(buf, "%u\n", ftrace_profile_enabled); 958 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 959 } 960 961 static const struct file_operations ftrace_profile_fops = { 962 .open = tracing_open_generic, 963 .read = ftrace_profile_read, 964 .write = ftrace_profile_write, 965 .llseek = default_llseek, 966 }; 967 968 /* used to initialize the real stat files */ 969 static struct tracer_stat function_stats __initdata = { 970 .name = "functions", 971 .stat_start = function_stat_start, 972 .stat_next = function_stat_next, 973 .stat_cmp = function_stat_cmp, 974 .stat_headers = function_stat_headers, 975 .stat_show = function_stat_show 976 }; 977 978 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 979 { 980 struct ftrace_profile_stat *stat; 981 struct dentry *entry; 982 char *name; 983 int ret; 984 int cpu; 985 986 for_each_possible_cpu(cpu) { 987 stat = &per_cpu(ftrace_profile_stats, cpu); 988 989 name = kasprintf(GFP_KERNEL, "function%d", cpu); 990 if (!name) { 991 /* 992 * The files created are permanent, if something happens 993 * we still do not free memory. 994 */ 995 WARN(1, 996 "Could not allocate stat file for cpu %d\n", 997 cpu); 998 return; 999 } 1000 stat->stat = function_stats; 1001 stat->stat.name = name; 1002 ret = register_stat_tracer(&stat->stat); 1003 if (ret) { 1004 WARN(1, 1005 "Could not register function stat for cpu %d\n", 1006 cpu); 1007 kfree(name); 1008 return; 1009 } 1010 } 1011 1012 entry = tracefs_create_file("function_profile_enabled", 0644, 1013 d_tracer, NULL, &ftrace_profile_fops); 1014 if (!entry) 1015 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n"); 1016 } 1017 1018 #else /* CONFIG_FUNCTION_PROFILER */ 1019 static __init void ftrace_profile_tracefs(struct dentry *d_tracer) 1020 { 1021 } 1022 #endif /* CONFIG_FUNCTION_PROFILER */ 1023 1024 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1025 static int ftrace_graph_active; 1026 #else 1027 # define ftrace_graph_active 0 1028 #endif 1029 1030 #ifdef CONFIG_DYNAMIC_FTRACE 1031 1032 static struct ftrace_ops *removed_ops; 1033 1034 /* 1035 * Set when doing a global update, like enabling all recs or disabling them. 1036 * It is not set when just updating a single ftrace_ops. 1037 */ 1038 static bool update_all_ops; 1039 1040 #ifndef CONFIG_FTRACE_MCOUNT_RECORD 1041 # error Dynamic ftrace depends on MCOUNT_RECORD 1042 #endif 1043 1044 struct ftrace_func_entry { 1045 struct hlist_node hlist; 1046 unsigned long ip; 1047 }; 1048 1049 struct ftrace_func_probe { 1050 struct ftrace_probe_ops *probe_ops; 1051 struct ftrace_ops ops; 1052 struct trace_array *tr; 1053 struct list_head list; 1054 void *data; 1055 int ref; 1056 }; 1057 1058 /* 1059 * We make these constant because no one should touch them, 1060 * but they are used as the default "empty hash", to avoid allocating 1061 * it all the time. These are in a read only section such that if 1062 * anyone does try to modify it, it will cause an exception. 1063 */ 1064 static const struct hlist_head empty_buckets[1]; 1065 static const struct ftrace_hash empty_hash = { 1066 .buckets = (struct hlist_head *)empty_buckets, 1067 }; 1068 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash) 1069 1070 static struct ftrace_ops global_ops = { 1071 .func = ftrace_stub, 1072 .local_hash.notrace_hash = EMPTY_HASH, 1073 .local_hash.filter_hash = EMPTY_HASH, 1074 INIT_OPS_HASH(global_ops) 1075 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 1076 FTRACE_OPS_FL_INITIALIZED | 1077 FTRACE_OPS_FL_PID, 1078 }; 1079 1080 /* 1081 * Used by the stack undwinder to know about dynamic ftrace trampolines. 1082 */ 1083 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr) 1084 { 1085 struct ftrace_ops *op = NULL; 1086 1087 /* 1088 * Some of the ops may be dynamically allocated, 1089 * they are freed after a synchronize_sched(). 1090 */ 1091 preempt_disable_notrace(); 1092 1093 do_for_each_ftrace_op(op, ftrace_ops_list) { 1094 /* 1095 * This is to check for dynamically allocated trampolines. 1096 * Trampolines that are in kernel text will have 1097 * core_kernel_text() return true. 1098 */ 1099 if (op->trampoline && op->trampoline_size) 1100 if (addr >= op->trampoline && 1101 addr < op->trampoline + op->trampoline_size) { 1102 preempt_enable_notrace(); 1103 return op; 1104 } 1105 } while_for_each_ftrace_op(op); 1106 preempt_enable_notrace(); 1107 1108 return NULL; 1109 } 1110 1111 /* 1112 * This is used by __kernel_text_address() to return true if the 1113 * address is on a dynamically allocated trampoline that would 1114 * not return true for either core_kernel_text() or 1115 * is_module_text_address(). 1116 */ 1117 bool is_ftrace_trampoline(unsigned long addr) 1118 { 1119 return ftrace_ops_trampoline(addr) != NULL; 1120 } 1121 1122 struct ftrace_page { 1123 struct ftrace_page *next; 1124 struct dyn_ftrace *records; 1125 int index; 1126 int size; 1127 }; 1128 1129 #define ENTRY_SIZE sizeof(struct dyn_ftrace) 1130 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE) 1131 1132 /* estimate from running different kernels */ 1133 #define NR_TO_INIT 10000 1134 1135 static struct ftrace_page *ftrace_pages_start; 1136 static struct ftrace_page *ftrace_pages; 1137 1138 static __always_inline unsigned long 1139 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip) 1140 { 1141 if (hash->size_bits > 0) 1142 return hash_long(ip, hash->size_bits); 1143 1144 return 0; 1145 } 1146 1147 /* Only use this function if ftrace_hash_empty() has already been tested */ 1148 static __always_inline struct ftrace_func_entry * 1149 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1150 { 1151 unsigned long key; 1152 struct ftrace_func_entry *entry; 1153 struct hlist_head *hhd; 1154 1155 key = ftrace_hash_key(hash, ip); 1156 hhd = &hash->buckets[key]; 1157 1158 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) { 1159 if (entry->ip == ip) 1160 return entry; 1161 } 1162 return NULL; 1163 } 1164 1165 /** 1166 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash 1167 * @hash: The hash to look at 1168 * @ip: The instruction pointer to test 1169 * 1170 * Search a given @hash to see if a given instruction pointer (@ip) 1171 * exists in it. 1172 * 1173 * Returns the entry that holds the @ip if found. NULL otherwise. 1174 */ 1175 struct ftrace_func_entry * 1176 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip) 1177 { 1178 if (ftrace_hash_empty(hash)) 1179 return NULL; 1180 1181 return __ftrace_lookup_ip(hash, ip); 1182 } 1183 1184 static void __add_hash_entry(struct ftrace_hash *hash, 1185 struct ftrace_func_entry *entry) 1186 { 1187 struct hlist_head *hhd; 1188 unsigned long key; 1189 1190 key = ftrace_hash_key(hash, entry->ip); 1191 hhd = &hash->buckets[key]; 1192 hlist_add_head(&entry->hlist, hhd); 1193 hash->count++; 1194 } 1195 1196 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip) 1197 { 1198 struct ftrace_func_entry *entry; 1199 1200 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1201 if (!entry) 1202 return -ENOMEM; 1203 1204 entry->ip = ip; 1205 __add_hash_entry(hash, entry); 1206 1207 return 0; 1208 } 1209 1210 static void 1211 free_hash_entry(struct ftrace_hash *hash, 1212 struct ftrace_func_entry *entry) 1213 { 1214 hlist_del(&entry->hlist); 1215 kfree(entry); 1216 hash->count--; 1217 } 1218 1219 static void 1220 remove_hash_entry(struct ftrace_hash *hash, 1221 struct ftrace_func_entry *entry) 1222 { 1223 hlist_del_rcu(&entry->hlist); 1224 hash->count--; 1225 } 1226 1227 static void ftrace_hash_clear(struct ftrace_hash *hash) 1228 { 1229 struct hlist_head *hhd; 1230 struct hlist_node *tn; 1231 struct ftrace_func_entry *entry; 1232 int size = 1 << hash->size_bits; 1233 int i; 1234 1235 if (!hash->count) 1236 return; 1237 1238 for (i = 0; i < size; i++) { 1239 hhd = &hash->buckets[i]; 1240 hlist_for_each_entry_safe(entry, tn, hhd, hlist) 1241 free_hash_entry(hash, entry); 1242 } 1243 FTRACE_WARN_ON(hash->count); 1244 } 1245 1246 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod) 1247 { 1248 list_del(&ftrace_mod->list); 1249 kfree(ftrace_mod->module); 1250 kfree(ftrace_mod->func); 1251 kfree(ftrace_mod); 1252 } 1253 1254 static void clear_ftrace_mod_list(struct list_head *head) 1255 { 1256 struct ftrace_mod_load *p, *n; 1257 1258 /* stack tracer isn't supported yet */ 1259 if (!head) 1260 return; 1261 1262 mutex_lock(&ftrace_lock); 1263 list_for_each_entry_safe(p, n, head, list) 1264 free_ftrace_mod(p); 1265 mutex_unlock(&ftrace_lock); 1266 } 1267 1268 static void free_ftrace_hash(struct ftrace_hash *hash) 1269 { 1270 if (!hash || hash == EMPTY_HASH) 1271 return; 1272 ftrace_hash_clear(hash); 1273 kfree(hash->buckets); 1274 kfree(hash); 1275 } 1276 1277 static void __free_ftrace_hash_rcu(struct rcu_head *rcu) 1278 { 1279 struct ftrace_hash *hash; 1280 1281 hash = container_of(rcu, struct ftrace_hash, rcu); 1282 free_ftrace_hash(hash); 1283 } 1284 1285 static void free_ftrace_hash_rcu(struct ftrace_hash *hash) 1286 { 1287 if (!hash || hash == EMPTY_HASH) 1288 return; 1289 call_rcu_sched(&hash->rcu, __free_ftrace_hash_rcu); 1290 } 1291 1292 void ftrace_free_filter(struct ftrace_ops *ops) 1293 { 1294 ftrace_ops_init(ops); 1295 free_ftrace_hash(ops->func_hash->filter_hash); 1296 free_ftrace_hash(ops->func_hash->notrace_hash); 1297 } 1298 1299 static struct ftrace_hash *alloc_ftrace_hash(int size_bits) 1300 { 1301 struct ftrace_hash *hash; 1302 int size; 1303 1304 hash = kzalloc(sizeof(*hash), GFP_KERNEL); 1305 if (!hash) 1306 return NULL; 1307 1308 size = 1 << size_bits; 1309 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL); 1310 1311 if (!hash->buckets) { 1312 kfree(hash); 1313 return NULL; 1314 } 1315 1316 hash->size_bits = size_bits; 1317 1318 return hash; 1319 } 1320 1321 1322 static int ftrace_add_mod(struct trace_array *tr, 1323 const char *func, const char *module, 1324 int enable) 1325 { 1326 struct ftrace_mod_load *ftrace_mod; 1327 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace; 1328 1329 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL); 1330 if (!ftrace_mod) 1331 return -ENOMEM; 1332 1333 ftrace_mod->func = kstrdup(func, GFP_KERNEL); 1334 ftrace_mod->module = kstrdup(module, GFP_KERNEL); 1335 ftrace_mod->enable = enable; 1336 1337 if (!ftrace_mod->func || !ftrace_mod->module) 1338 goto out_free; 1339 1340 list_add(&ftrace_mod->list, mod_head); 1341 1342 return 0; 1343 1344 out_free: 1345 free_ftrace_mod(ftrace_mod); 1346 1347 return -ENOMEM; 1348 } 1349 1350 static struct ftrace_hash * 1351 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash) 1352 { 1353 struct ftrace_func_entry *entry; 1354 struct ftrace_hash *new_hash; 1355 int size; 1356 int ret; 1357 int i; 1358 1359 new_hash = alloc_ftrace_hash(size_bits); 1360 if (!new_hash) 1361 return NULL; 1362 1363 if (hash) 1364 new_hash->flags = hash->flags; 1365 1366 /* Empty hash? */ 1367 if (ftrace_hash_empty(hash)) 1368 return new_hash; 1369 1370 size = 1 << hash->size_bits; 1371 for (i = 0; i < size; i++) { 1372 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 1373 ret = add_hash_entry(new_hash, entry->ip); 1374 if (ret < 0) 1375 goto free_hash; 1376 } 1377 } 1378 1379 FTRACE_WARN_ON(new_hash->count != hash->count); 1380 1381 return new_hash; 1382 1383 free_hash: 1384 free_ftrace_hash(new_hash); 1385 return NULL; 1386 } 1387 1388 static void 1389 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash); 1390 static void 1391 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash); 1392 1393 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1394 struct ftrace_hash *new_hash); 1395 1396 static struct ftrace_hash * 1397 __ftrace_hash_move(struct ftrace_hash *src) 1398 { 1399 struct ftrace_func_entry *entry; 1400 struct hlist_node *tn; 1401 struct hlist_head *hhd; 1402 struct ftrace_hash *new_hash; 1403 int size = src->count; 1404 int bits = 0; 1405 int i; 1406 1407 /* 1408 * If the new source is empty, just return the empty_hash. 1409 */ 1410 if (ftrace_hash_empty(src)) 1411 return EMPTY_HASH; 1412 1413 /* 1414 * Make the hash size about 1/2 the # found 1415 */ 1416 for (size /= 2; size; size >>= 1) 1417 bits++; 1418 1419 /* Don't allocate too much */ 1420 if (bits > FTRACE_HASH_MAX_BITS) 1421 bits = FTRACE_HASH_MAX_BITS; 1422 1423 new_hash = alloc_ftrace_hash(bits); 1424 if (!new_hash) 1425 return NULL; 1426 1427 new_hash->flags = src->flags; 1428 1429 size = 1 << src->size_bits; 1430 for (i = 0; i < size; i++) { 1431 hhd = &src->buckets[i]; 1432 hlist_for_each_entry_safe(entry, tn, hhd, hlist) { 1433 remove_hash_entry(src, entry); 1434 __add_hash_entry(new_hash, entry); 1435 } 1436 } 1437 1438 return new_hash; 1439 } 1440 1441 static int 1442 ftrace_hash_move(struct ftrace_ops *ops, int enable, 1443 struct ftrace_hash **dst, struct ftrace_hash *src) 1444 { 1445 struct ftrace_hash *new_hash; 1446 int ret; 1447 1448 /* Reject setting notrace hash on IPMODIFY ftrace_ops */ 1449 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable) 1450 return -EINVAL; 1451 1452 new_hash = __ftrace_hash_move(src); 1453 if (!new_hash) 1454 return -ENOMEM; 1455 1456 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */ 1457 if (enable) { 1458 /* IPMODIFY should be updated only when filter_hash updating */ 1459 ret = ftrace_hash_ipmodify_update(ops, new_hash); 1460 if (ret < 0) { 1461 free_ftrace_hash(new_hash); 1462 return ret; 1463 } 1464 } 1465 1466 /* 1467 * Remove the current set, update the hash and add 1468 * them back. 1469 */ 1470 ftrace_hash_rec_disable_modify(ops, enable); 1471 1472 rcu_assign_pointer(*dst, new_hash); 1473 1474 ftrace_hash_rec_enable_modify(ops, enable); 1475 1476 return 0; 1477 } 1478 1479 static bool hash_contains_ip(unsigned long ip, 1480 struct ftrace_ops_hash *hash) 1481 { 1482 /* 1483 * The function record is a match if it exists in the filter 1484 * hash and not in the notrace hash. Note, an emty hash is 1485 * considered a match for the filter hash, but an empty 1486 * notrace hash is considered not in the notrace hash. 1487 */ 1488 return (ftrace_hash_empty(hash->filter_hash) || 1489 __ftrace_lookup_ip(hash->filter_hash, ip)) && 1490 (ftrace_hash_empty(hash->notrace_hash) || 1491 !__ftrace_lookup_ip(hash->notrace_hash, ip)); 1492 } 1493 1494 /* 1495 * Test the hashes for this ops to see if we want to call 1496 * the ops->func or not. 1497 * 1498 * It's a match if the ip is in the ops->filter_hash or 1499 * the filter_hash does not exist or is empty, 1500 * AND 1501 * the ip is not in the ops->notrace_hash. 1502 * 1503 * This needs to be called with preemption disabled as 1504 * the hashes are freed with call_rcu_sched(). 1505 */ 1506 static int 1507 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 1508 { 1509 struct ftrace_ops_hash hash; 1510 int ret; 1511 1512 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS 1513 /* 1514 * There's a small race when adding ops that the ftrace handler 1515 * that wants regs, may be called without them. We can not 1516 * allow that handler to be called if regs is NULL. 1517 */ 1518 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS)) 1519 return 0; 1520 #endif 1521 1522 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash); 1523 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash); 1524 1525 if (hash_contains_ip(ip, &hash)) 1526 ret = 1; 1527 else 1528 ret = 0; 1529 1530 return ret; 1531 } 1532 1533 /* 1534 * This is a double for. Do not use 'break' to break out of the loop, 1535 * you must use a goto. 1536 */ 1537 #define do_for_each_ftrace_rec(pg, rec) \ 1538 for (pg = ftrace_pages_start; pg; pg = pg->next) { \ 1539 int _____i; \ 1540 for (_____i = 0; _____i < pg->index; _____i++) { \ 1541 rec = &pg->records[_____i]; 1542 1543 #define while_for_each_ftrace_rec() \ 1544 } \ 1545 } 1546 1547 1548 static int ftrace_cmp_recs(const void *a, const void *b) 1549 { 1550 const struct dyn_ftrace *key = a; 1551 const struct dyn_ftrace *rec = b; 1552 1553 if (key->flags < rec->ip) 1554 return -1; 1555 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE) 1556 return 1; 1557 return 0; 1558 } 1559 1560 /** 1561 * ftrace_location_range - return the first address of a traced location 1562 * if it touches the given ip range 1563 * @start: start of range to search. 1564 * @end: end of range to search (inclusive). @end points to the last byte 1565 * to check. 1566 * 1567 * Returns rec->ip if the related ftrace location is a least partly within 1568 * the given address range. That is, the first address of the instruction 1569 * that is either a NOP or call to the function tracer. It checks the ftrace 1570 * internal tables to determine if the address belongs or not. 1571 */ 1572 unsigned long ftrace_location_range(unsigned long start, unsigned long end) 1573 { 1574 struct ftrace_page *pg; 1575 struct dyn_ftrace *rec; 1576 struct dyn_ftrace key; 1577 1578 key.ip = start; 1579 key.flags = end; /* overload flags, as it is unsigned long */ 1580 1581 for (pg = ftrace_pages_start; pg; pg = pg->next) { 1582 if (end < pg->records[0].ip || 1583 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 1584 continue; 1585 rec = bsearch(&key, pg->records, pg->index, 1586 sizeof(struct dyn_ftrace), 1587 ftrace_cmp_recs); 1588 if (rec) 1589 return rec->ip; 1590 } 1591 1592 return 0; 1593 } 1594 1595 /** 1596 * ftrace_location - return true if the ip giving is a traced location 1597 * @ip: the instruction pointer to check 1598 * 1599 * Returns rec->ip if @ip given is a pointer to a ftrace location. 1600 * That is, the instruction that is either a NOP or call to 1601 * the function tracer. It checks the ftrace internal tables to 1602 * determine if the address belongs or not. 1603 */ 1604 unsigned long ftrace_location(unsigned long ip) 1605 { 1606 return ftrace_location_range(ip, ip); 1607 } 1608 1609 /** 1610 * ftrace_text_reserved - return true if range contains an ftrace location 1611 * @start: start of range to search 1612 * @end: end of range to search (inclusive). @end points to the last byte to check. 1613 * 1614 * Returns 1 if @start and @end contains a ftrace location. 1615 * That is, the instruction that is either a NOP or call to 1616 * the function tracer. It checks the ftrace internal tables to 1617 * determine if the address belongs or not. 1618 */ 1619 int ftrace_text_reserved(const void *start, const void *end) 1620 { 1621 unsigned long ret; 1622 1623 ret = ftrace_location_range((unsigned long)start, 1624 (unsigned long)end); 1625 1626 return (int)!!ret; 1627 } 1628 1629 /* Test if ops registered to this rec needs regs */ 1630 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec) 1631 { 1632 struct ftrace_ops *ops; 1633 bool keep_regs = false; 1634 1635 for (ops = ftrace_ops_list; 1636 ops != &ftrace_list_end; ops = ops->next) { 1637 /* pass rec in as regs to have non-NULL val */ 1638 if (ftrace_ops_test(ops, rec->ip, rec)) { 1639 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1640 keep_regs = true; 1641 break; 1642 } 1643 } 1644 } 1645 1646 return keep_regs; 1647 } 1648 1649 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops, 1650 int filter_hash, 1651 bool inc) 1652 { 1653 struct ftrace_hash *hash; 1654 struct ftrace_hash *other_hash; 1655 struct ftrace_page *pg; 1656 struct dyn_ftrace *rec; 1657 bool update = false; 1658 int count = 0; 1659 int all = false; 1660 1661 /* Only update if the ops has been registered */ 1662 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1663 return false; 1664 1665 /* 1666 * In the filter_hash case: 1667 * If the count is zero, we update all records. 1668 * Otherwise we just update the items in the hash. 1669 * 1670 * In the notrace_hash case: 1671 * We enable the update in the hash. 1672 * As disabling notrace means enabling the tracing, 1673 * and enabling notrace means disabling, the inc variable 1674 * gets inversed. 1675 */ 1676 if (filter_hash) { 1677 hash = ops->func_hash->filter_hash; 1678 other_hash = ops->func_hash->notrace_hash; 1679 if (ftrace_hash_empty(hash)) 1680 all = true; 1681 } else { 1682 inc = !inc; 1683 hash = ops->func_hash->notrace_hash; 1684 other_hash = ops->func_hash->filter_hash; 1685 /* 1686 * If the notrace hash has no items, 1687 * then there's nothing to do. 1688 */ 1689 if (ftrace_hash_empty(hash)) 1690 return false; 1691 } 1692 1693 do_for_each_ftrace_rec(pg, rec) { 1694 int in_other_hash = 0; 1695 int in_hash = 0; 1696 int match = 0; 1697 1698 if (rec->flags & FTRACE_FL_DISABLED) 1699 continue; 1700 1701 if (all) { 1702 /* 1703 * Only the filter_hash affects all records. 1704 * Update if the record is not in the notrace hash. 1705 */ 1706 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip)) 1707 match = 1; 1708 } else { 1709 in_hash = !!ftrace_lookup_ip(hash, rec->ip); 1710 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip); 1711 1712 /* 1713 * If filter_hash is set, we want to match all functions 1714 * that are in the hash but not in the other hash. 1715 * 1716 * If filter_hash is not set, then we are decrementing. 1717 * That means we match anything that is in the hash 1718 * and also in the other_hash. That is, we need to turn 1719 * off functions in the other hash because they are disabled 1720 * by this hash. 1721 */ 1722 if (filter_hash && in_hash && !in_other_hash) 1723 match = 1; 1724 else if (!filter_hash && in_hash && 1725 (in_other_hash || ftrace_hash_empty(other_hash))) 1726 match = 1; 1727 } 1728 if (!match) 1729 continue; 1730 1731 if (inc) { 1732 rec->flags++; 1733 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX)) 1734 return false; 1735 1736 /* 1737 * If there's only a single callback registered to a 1738 * function, and the ops has a trampoline registered 1739 * for it, then we can call it directly. 1740 */ 1741 if (ftrace_rec_count(rec) == 1 && ops->trampoline) 1742 rec->flags |= FTRACE_FL_TRAMP; 1743 else 1744 /* 1745 * If we are adding another function callback 1746 * to this function, and the previous had a 1747 * custom trampoline in use, then we need to go 1748 * back to the default trampoline. 1749 */ 1750 rec->flags &= ~FTRACE_FL_TRAMP; 1751 1752 /* 1753 * If any ops wants regs saved for this function 1754 * then all ops will get saved regs. 1755 */ 1756 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) 1757 rec->flags |= FTRACE_FL_REGS; 1758 } else { 1759 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0)) 1760 return false; 1761 rec->flags--; 1762 1763 /* 1764 * If the rec had REGS enabled and the ops that is 1765 * being removed had REGS set, then see if there is 1766 * still any ops for this record that wants regs. 1767 * If not, we can stop recording them. 1768 */ 1769 if (ftrace_rec_count(rec) > 0 && 1770 rec->flags & FTRACE_FL_REGS && 1771 ops->flags & FTRACE_OPS_FL_SAVE_REGS) { 1772 if (!test_rec_ops_needs_regs(rec)) 1773 rec->flags &= ~FTRACE_FL_REGS; 1774 } 1775 1776 /* 1777 * If the rec had TRAMP enabled, then it needs to 1778 * be cleared. As TRAMP can only be enabled iff 1779 * there is only a single ops attached to it. 1780 * In otherwords, always disable it on decrementing. 1781 * In the future, we may set it if rec count is 1782 * decremented to one, and the ops that is left 1783 * has a trampoline. 1784 */ 1785 rec->flags &= ~FTRACE_FL_TRAMP; 1786 1787 /* 1788 * flags will be cleared in ftrace_check_record() 1789 * if rec count is zero. 1790 */ 1791 } 1792 count++; 1793 1794 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */ 1795 update |= ftrace_test_record(rec, 1) != FTRACE_UPDATE_IGNORE; 1796 1797 /* Shortcut, if we handled all records, we are done. */ 1798 if (!all && count == hash->count) 1799 return update; 1800 } while_for_each_ftrace_rec(); 1801 1802 return update; 1803 } 1804 1805 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops, 1806 int filter_hash) 1807 { 1808 return __ftrace_hash_rec_update(ops, filter_hash, 0); 1809 } 1810 1811 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops, 1812 int filter_hash) 1813 { 1814 return __ftrace_hash_rec_update(ops, filter_hash, 1); 1815 } 1816 1817 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops, 1818 int filter_hash, int inc) 1819 { 1820 struct ftrace_ops *op; 1821 1822 __ftrace_hash_rec_update(ops, filter_hash, inc); 1823 1824 if (ops->func_hash != &global_ops.local_hash) 1825 return; 1826 1827 /* 1828 * If the ops shares the global_ops hash, then we need to update 1829 * all ops that are enabled and use this hash. 1830 */ 1831 do_for_each_ftrace_op(op, ftrace_ops_list) { 1832 /* Already done */ 1833 if (op == ops) 1834 continue; 1835 if (op->func_hash == &global_ops.local_hash) 1836 __ftrace_hash_rec_update(op, filter_hash, inc); 1837 } while_for_each_ftrace_op(op); 1838 } 1839 1840 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, 1841 int filter_hash) 1842 { 1843 ftrace_hash_rec_update_modify(ops, filter_hash, 0); 1844 } 1845 1846 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, 1847 int filter_hash) 1848 { 1849 ftrace_hash_rec_update_modify(ops, filter_hash, 1); 1850 } 1851 1852 /* 1853 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK 1854 * or no-needed to update, -EBUSY if it detects a conflict of the flag 1855 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs. 1856 * Note that old_hash and new_hash has below meanings 1857 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected) 1858 * - If the hash is EMPTY_HASH, it hits nothing 1859 * - Anything else hits the recs which match the hash entries. 1860 */ 1861 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops, 1862 struct ftrace_hash *old_hash, 1863 struct ftrace_hash *new_hash) 1864 { 1865 struct ftrace_page *pg; 1866 struct dyn_ftrace *rec, *end = NULL; 1867 int in_old, in_new; 1868 1869 /* Only update if the ops has been registered */ 1870 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 1871 return 0; 1872 1873 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY)) 1874 return 0; 1875 1876 /* 1877 * Since the IPMODIFY is a very address sensitive action, we do not 1878 * allow ftrace_ops to set all functions to new hash. 1879 */ 1880 if (!new_hash || !old_hash) 1881 return -EINVAL; 1882 1883 /* Update rec->flags */ 1884 do_for_each_ftrace_rec(pg, rec) { 1885 1886 if (rec->flags & FTRACE_FL_DISABLED) 1887 continue; 1888 1889 /* We need to update only differences of filter_hash */ 1890 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1891 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1892 if (in_old == in_new) 1893 continue; 1894 1895 if (in_new) { 1896 /* New entries must ensure no others are using it */ 1897 if (rec->flags & FTRACE_FL_IPMODIFY) 1898 goto rollback; 1899 rec->flags |= FTRACE_FL_IPMODIFY; 1900 } else /* Removed entry */ 1901 rec->flags &= ~FTRACE_FL_IPMODIFY; 1902 } while_for_each_ftrace_rec(); 1903 1904 return 0; 1905 1906 rollback: 1907 end = rec; 1908 1909 /* Roll back what we did above */ 1910 do_for_each_ftrace_rec(pg, rec) { 1911 1912 if (rec->flags & FTRACE_FL_DISABLED) 1913 continue; 1914 1915 if (rec == end) 1916 goto err_out; 1917 1918 in_old = !!ftrace_lookup_ip(old_hash, rec->ip); 1919 in_new = !!ftrace_lookup_ip(new_hash, rec->ip); 1920 if (in_old == in_new) 1921 continue; 1922 1923 if (in_new) 1924 rec->flags &= ~FTRACE_FL_IPMODIFY; 1925 else 1926 rec->flags |= FTRACE_FL_IPMODIFY; 1927 } while_for_each_ftrace_rec(); 1928 1929 err_out: 1930 return -EBUSY; 1931 } 1932 1933 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops) 1934 { 1935 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1936 1937 if (ftrace_hash_empty(hash)) 1938 hash = NULL; 1939 1940 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash); 1941 } 1942 1943 /* Disabling always succeeds */ 1944 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops) 1945 { 1946 struct ftrace_hash *hash = ops->func_hash->filter_hash; 1947 1948 if (ftrace_hash_empty(hash)) 1949 hash = NULL; 1950 1951 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH); 1952 } 1953 1954 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops, 1955 struct ftrace_hash *new_hash) 1956 { 1957 struct ftrace_hash *old_hash = ops->func_hash->filter_hash; 1958 1959 if (ftrace_hash_empty(old_hash)) 1960 old_hash = NULL; 1961 1962 if (ftrace_hash_empty(new_hash)) 1963 new_hash = NULL; 1964 1965 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash); 1966 } 1967 1968 static void print_ip_ins(const char *fmt, const unsigned char *p) 1969 { 1970 int i; 1971 1972 printk(KERN_CONT "%s", fmt); 1973 1974 for (i = 0; i < MCOUNT_INSN_SIZE; i++) 1975 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]); 1976 } 1977 1978 static struct ftrace_ops * 1979 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec); 1980 static struct ftrace_ops * 1981 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops); 1982 1983 enum ftrace_bug_type ftrace_bug_type; 1984 const void *ftrace_expected; 1985 1986 static void print_bug_type(void) 1987 { 1988 switch (ftrace_bug_type) { 1989 case FTRACE_BUG_UNKNOWN: 1990 break; 1991 case FTRACE_BUG_INIT: 1992 pr_info("Initializing ftrace call sites\n"); 1993 break; 1994 case FTRACE_BUG_NOP: 1995 pr_info("Setting ftrace call site to NOP\n"); 1996 break; 1997 case FTRACE_BUG_CALL: 1998 pr_info("Setting ftrace call site to call ftrace function\n"); 1999 break; 2000 case FTRACE_BUG_UPDATE: 2001 pr_info("Updating ftrace call site to call a different ftrace function\n"); 2002 break; 2003 } 2004 } 2005 2006 /** 2007 * ftrace_bug - report and shutdown function tracer 2008 * @failed: The failed type (EFAULT, EINVAL, EPERM) 2009 * @rec: The record that failed 2010 * 2011 * The arch code that enables or disables the function tracing 2012 * can call ftrace_bug() when it has detected a problem in 2013 * modifying the code. @failed should be one of either: 2014 * EFAULT - if the problem happens on reading the @ip address 2015 * EINVAL - if what is read at @ip is not what was expected 2016 * EPERM - if the problem happens on writting to the @ip address 2017 */ 2018 void ftrace_bug(int failed, struct dyn_ftrace *rec) 2019 { 2020 unsigned long ip = rec ? rec->ip : 0; 2021 2022 switch (failed) { 2023 case -EFAULT: 2024 FTRACE_WARN_ON_ONCE(1); 2025 pr_info("ftrace faulted on modifying "); 2026 print_ip_sym(ip); 2027 break; 2028 case -EINVAL: 2029 FTRACE_WARN_ON_ONCE(1); 2030 pr_info("ftrace failed to modify "); 2031 print_ip_sym(ip); 2032 print_ip_ins(" actual: ", (unsigned char *)ip); 2033 pr_cont("\n"); 2034 if (ftrace_expected) { 2035 print_ip_ins(" expected: ", ftrace_expected); 2036 pr_cont("\n"); 2037 } 2038 break; 2039 case -EPERM: 2040 FTRACE_WARN_ON_ONCE(1); 2041 pr_info("ftrace faulted on writing "); 2042 print_ip_sym(ip); 2043 break; 2044 default: 2045 FTRACE_WARN_ON_ONCE(1); 2046 pr_info("ftrace faulted on unknown error "); 2047 print_ip_sym(ip); 2048 } 2049 print_bug_type(); 2050 if (rec) { 2051 struct ftrace_ops *ops = NULL; 2052 2053 pr_info("ftrace record flags: %lx\n", rec->flags); 2054 pr_cont(" (%ld)%s", ftrace_rec_count(rec), 2055 rec->flags & FTRACE_FL_REGS ? " R" : " "); 2056 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2057 ops = ftrace_find_tramp_ops_any(rec); 2058 if (ops) { 2059 do { 2060 pr_cont("\ttramp: %pS (%pS)", 2061 (void *)ops->trampoline, 2062 (void *)ops->func); 2063 ops = ftrace_find_tramp_ops_next(rec, ops); 2064 } while (ops); 2065 } else 2066 pr_cont("\ttramp: ERROR!"); 2067 2068 } 2069 ip = ftrace_get_addr_curr(rec); 2070 pr_cont("\n expected tramp: %lx\n", ip); 2071 } 2072 } 2073 2074 static int ftrace_check_record(struct dyn_ftrace *rec, int enable, int update) 2075 { 2076 unsigned long flag = 0UL; 2077 2078 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2079 2080 if (rec->flags & FTRACE_FL_DISABLED) 2081 return FTRACE_UPDATE_IGNORE; 2082 2083 /* 2084 * If we are updating calls: 2085 * 2086 * If the record has a ref count, then we need to enable it 2087 * because someone is using it. 2088 * 2089 * Otherwise we make sure its disabled. 2090 * 2091 * If we are disabling calls, then disable all records that 2092 * are enabled. 2093 */ 2094 if (enable && ftrace_rec_count(rec)) 2095 flag = FTRACE_FL_ENABLED; 2096 2097 /* 2098 * If enabling and the REGS flag does not match the REGS_EN, or 2099 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore 2100 * this record. Set flags to fail the compare against ENABLED. 2101 */ 2102 if (flag) { 2103 if (!(rec->flags & FTRACE_FL_REGS) != 2104 !(rec->flags & FTRACE_FL_REGS_EN)) 2105 flag |= FTRACE_FL_REGS; 2106 2107 if (!(rec->flags & FTRACE_FL_TRAMP) != 2108 !(rec->flags & FTRACE_FL_TRAMP_EN)) 2109 flag |= FTRACE_FL_TRAMP; 2110 } 2111 2112 /* If the state of this record hasn't changed, then do nothing */ 2113 if ((rec->flags & FTRACE_FL_ENABLED) == flag) 2114 return FTRACE_UPDATE_IGNORE; 2115 2116 if (flag) { 2117 /* Save off if rec is being enabled (for return value) */ 2118 flag ^= rec->flags & FTRACE_FL_ENABLED; 2119 2120 if (update) { 2121 rec->flags |= FTRACE_FL_ENABLED; 2122 if (flag & FTRACE_FL_REGS) { 2123 if (rec->flags & FTRACE_FL_REGS) 2124 rec->flags |= FTRACE_FL_REGS_EN; 2125 else 2126 rec->flags &= ~FTRACE_FL_REGS_EN; 2127 } 2128 if (flag & FTRACE_FL_TRAMP) { 2129 if (rec->flags & FTRACE_FL_TRAMP) 2130 rec->flags |= FTRACE_FL_TRAMP_EN; 2131 else 2132 rec->flags &= ~FTRACE_FL_TRAMP_EN; 2133 } 2134 } 2135 2136 /* 2137 * If this record is being updated from a nop, then 2138 * return UPDATE_MAKE_CALL. 2139 * Otherwise, 2140 * return UPDATE_MODIFY_CALL to tell the caller to convert 2141 * from the save regs, to a non-save regs function or 2142 * vice versa, or from a trampoline call. 2143 */ 2144 if (flag & FTRACE_FL_ENABLED) { 2145 ftrace_bug_type = FTRACE_BUG_CALL; 2146 return FTRACE_UPDATE_MAKE_CALL; 2147 } 2148 2149 ftrace_bug_type = FTRACE_BUG_UPDATE; 2150 return FTRACE_UPDATE_MODIFY_CALL; 2151 } 2152 2153 if (update) { 2154 /* If there's no more users, clear all flags */ 2155 if (!ftrace_rec_count(rec)) 2156 rec->flags = 0; 2157 else 2158 /* 2159 * Just disable the record, but keep the ops TRAMP 2160 * and REGS states. The _EN flags must be disabled though. 2161 */ 2162 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN | 2163 FTRACE_FL_REGS_EN); 2164 } 2165 2166 ftrace_bug_type = FTRACE_BUG_NOP; 2167 return FTRACE_UPDATE_MAKE_NOP; 2168 } 2169 2170 /** 2171 * ftrace_update_record, set a record that now is tracing or not 2172 * @rec: the record to update 2173 * @enable: set to 1 if the record is tracing, zero to force disable 2174 * 2175 * The records that represent all functions that can be traced need 2176 * to be updated when tracing has been enabled. 2177 */ 2178 int ftrace_update_record(struct dyn_ftrace *rec, int enable) 2179 { 2180 return ftrace_check_record(rec, enable, 1); 2181 } 2182 2183 /** 2184 * ftrace_test_record, check if the record has been enabled or not 2185 * @rec: the record to test 2186 * @enable: set to 1 to check if enabled, 0 if it is disabled 2187 * 2188 * The arch code may need to test if a record is already set to 2189 * tracing to determine how to modify the function code that it 2190 * represents. 2191 */ 2192 int ftrace_test_record(struct dyn_ftrace *rec, int enable) 2193 { 2194 return ftrace_check_record(rec, enable, 0); 2195 } 2196 2197 static struct ftrace_ops * 2198 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec) 2199 { 2200 struct ftrace_ops *op; 2201 unsigned long ip = rec->ip; 2202 2203 do_for_each_ftrace_op(op, ftrace_ops_list) { 2204 2205 if (!op->trampoline) 2206 continue; 2207 2208 if (hash_contains_ip(ip, op->func_hash)) 2209 return op; 2210 } while_for_each_ftrace_op(op); 2211 2212 return NULL; 2213 } 2214 2215 static struct ftrace_ops * 2216 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, 2217 struct ftrace_ops *op) 2218 { 2219 unsigned long ip = rec->ip; 2220 2221 while_for_each_ftrace_op(op) { 2222 2223 if (!op->trampoline) 2224 continue; 2225 2226 if (hash_contains_ip(ip, op->func_hash)) 2227 return op; 2228 } 2229 2230 return NULL; 2231 } 2232 2233 static struct ftrace_ops * 2234 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec) 2235 { 2236 struct ftrace_ops *op; 2237 unsigned long ip = rec->ip; 2238 2239 /* 2240 * Need to check removed ops first. 2241 * If they are being removed, and this rec has a tramp, 2242 * and this rec is in the ops list, then it would be the 2243 * one with the tramp. 2244 */ 2245 if (removed_ops) { 2246 if (hash_contains_ip(ip, &removed_ops->old_hash)) 2247 return removed_ops; 2248 } 2249 2250 /* 2251 * Need to find the current trampoline for a rec. 2252 * Now, a trampoline is only attached to a rec if there 2253 * was a single 'ops' attached to it. But this can be called 2254 * when we are adding another op to the rec or removing the 2255 * current one. Thus, if the op is being added, we can 2256 * ignore it because it hasn't attached itself to the rec 2257 * yet. 2258 * 2259 * If an ops is being modified (hooking to different functions) 2260 * then we don't care about the new functions that are being 2261 * added, just the old ones (that are probably being removed). 2262 * 2263 * If we are adding an ops to a function that already is using 2264 * a trampoline, it needs to be removed (trampolines are only 2265 * for single ops connected), then an ops that is not being 2266 * modified also needs to be checked. 2267 */ 2268 do_for_each_ftrace_op(op, ftrace_ops_list) { 2269 2270 if (!op->trampoline) 2271 continue; 2272 2273 /* 2274 * If the ops is being added, it hasn't gotten to 2275 * the point to be removed from this tree yet. 2276 */ 2277 if (op->flags & FTRACE_OPS_FL_ADDING) 2278 continue; 2279 2280 2281 /* 2282 * If the ops is being modified and is in the old 2283 * hash, then it is probably being removed from this 2284 * function. 2285 */ 2286 if ((op->flags & FTRACE_OPS_FL_MODIFYING) && 2287 hash_contains_ip(ip, &op->old_hash)) 2288 return op; 2289 /* 2290 * If the ops is not being added or modified, and it's 2291 * in its normal filter hash, then this must be the one 2292 * we want! 2293 */ 2294 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) && 2295 hash_contains_ip(ip, op->func_hash)) 2296 return op; 2297 2298 } while_for_each_ftrace_op(op); 2299 2300 return NULL; 2301 } 2302 2303 static struct ftrace_ops * 2304 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec) 2305 { 2306 struct ftrace_ops *op; 2307 unsigned long ip = rec->ip; 2308 2309 do_for_each_ftrace_op(op, ftrace_ops_list) { 2310 /* pass rec in as regs to have non-NULL val */ 2311 if (hash_contains_ip(ip, op->func_hash)) 2312 return op; 2313 } while_for_each_ftrace_op(op); 2314 2315 return NULL; 2316 } 2317 2318 /** 2319 * ftrace_get_addr_new - Get the call address to set to 2320 * @rec: The ftrace record descriptor 2321 * 2322 * If the record has the FTRACE_FL_REGS set, that means that it 2323 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS 2324 * is not not set, then it wants to convert to the normal callback. 2325 * 2326 * Returns the address of the trampoline to set to 2327 */ 2328 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec) 2329 { 2330 struct ftrace_ops *ops; 2331 2332 /* Trampolines take precedence over regs */ 2333 if (rec->flags & FTRACE_FL_TRAMP) { 2334 ops = ftrace_find_tramp_ops_new(rec); 2335 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) { 2336 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n", 2337 (void *)rec->ip, (void *)rec->ip, rec->flags); 2338 /* Ftrace is shutting down, return anything */ 2339 return (unsigned long)FTRACE_ADDR; 2340 } 2341 return ops->trampoline; 2342 } 2343 2344 if (rec->flags & FTRACE_FL_REGS) 2345 return (unsigned long)FTRACE_REGS_ADDR; 2346 else 2347 return (unsigned long)FTRACE_ADDR; 2348 } 2349 2350 /** 2351 * ftrace_get_addr_curr - Get the call address that is already there 2352 * @rec: The ftrace record descriptor 2353 * 2354 * The FTRACE_FL_REGS_EN is set when the record already points to 2355 * a function that saves all the regs. Basically the '_EN' version 2356 * represents the current state of the function. 2357 * 2358 * Returns the address of the trampoline that is currently being called 2359 */ 2360 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec) 2361 { 2362 struct ftrace_ops *ops; 2363 2364 /* Trampolines take precedence over regs */ 2365 if (rec->flags & FTRACE_FL_TRAMP_EN) { 2366 ops = ftrace_find_tramp_ops_curr(rec); 2367 if (FTRACE_WARN_ON(!ops)) { 2368 pr_warn("Bad trampoline accounting at: %p (%pS)\n", 2369 (void *)rec->ip, (void *)rec->ip); 2370 /* Ftrace is shutting down, return anything */ 2371 return (unsigned long)FTRACE_ADDR; 2372 } 2373 return ops->trampoline; 2374 } 2375 2376 if (rec->flags & FTRACE_FL_REGS_EN) 2377 return (unsigned long)FTRACE_REGS_ADDR; 2378 else 2379 return (unsigned long)FTRACE_ADDR; 2380 } 2381 2382 static int 2383 __ftrace_replace_code(struct dyn_ftrace *rec, int enable) 2384 { 2385 unsigned long ftrace_old_addr; 2386 unsigned long ftrace_addr; 2387 int ret; 2388 2389 ftrace_addr = ftrace_get_addr_new(rec); 2390 2391 /* This needs to be done before we call ftrace_update_record */ 2392 ftrace_old_addr = ftrace_get_addr_curr(rec); 2393 2394 ret = ftrace_update_record(rec, enable); 2395 2396 ftrace_bug_type = FTRACE_BUG_UNKNOWN; 2397 2398 switch (ret) { 2399 case FTRACE_UPDATE_IGNORE: 2400 return 0; 2401 2402 case FTRACE_UPDATE_MAKE_CALL: 2403 ftrace_bug_type = FTRACE_BUG_CALL; 2404 return ftrace_make_call(rec, ftrace_addr); 2405 2406 case FTRACE_UPDATE_MAKE_NOP: 2407 ftrace_bug_type = FTRACE_BUG_NOP; 2408 return ftrace_make_nop(NULL, rec, ftrace_old_addr); 2409 2410 case FTRACE_UPDATE_MODIFY_CALL: 2411 ftrace_bug_type = FTRACE_BUG_UPDATE; 2412 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr); 2413 } 2414 2415 return -1; /* unknow ftrace bug */ 2416 } 2417 2418 void __weak ftrace_replace_code(int enable) 2419 { 2420 struct dyn_ftrace *rec; 2421 struct ftrace_page *pg; 2422 int failed; 2423 2424 if (unlikely(ftrace_disabled)) 2425 return; 2426 2427 do_for_each_ftrace_rec(pg, rec) { 2428 2429 if (rec->flags & FTRACE_FL_DISABLED) 2430 continue; 2431 2432 failed = __ftrace_replace_code(rec, enable); 2433 if (failed) { 2434 ftrace_bug(failed, rec); 2435 /* Stop processing */ 2436 return; 2437 } 2438 } while_for_each_ftrace_rec(); 2439 } 2440 2441 struct ftrace_rec_iter { 2442 struct ftrace_page *pg; 2443 int index; 2444 }; 2445 2446 /** 2447 * ftrace_rec_iter_start, start up iterating over traced functions 2448 * 2449 * Returns an iterator handle that is used to iterate over all 2450 * the records that represent address locations where functions 2451 * are traced. 2452 * 2453 * May return NULL if no records are available. 2454 */ 2455 struct ftrace_rec_iter *ftrace_rec_iter_start(void) 2456 { 2457 /* 2458 * We only use a single iterator. 2459 * Protected by the ftrace_lock mutex. 2460 */ 2461 static struct ftrace_rec_iter ftrace_rec_iter; 2462 struct ftrace_rec_iter *iter = &ftrace_rec_iter; 2463 2464 iter->pg = ftrace_pages_start; 2465 iter->index = 0; 2466 2467 /* Could have empty pages */ 2468 while (iter->pg && !iter->pg->index) 2469 iter->pg = iter->pg->next; 2470 2471 if (!iter->pg) 2472 return NULL; 2473 2474 return iter; 2475 } 2476 2477 /** 2478 * ftrace_rec_iter_next, get the next record to process. 2479 * @iter: The handle to the iterator. 2480 * 2481 * Returns the next iterator after the given iterator @iter. 2482 */ 2483 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter) 2484 { 2485 iter->index++; 2486 2487 if (iter->index >= iter->pg->index) { 2488 iter->pg = iter->pg->next; 2489 iter->index = 0; 2490 2491 /* Could have empty pages */ 2492 while (iter->pg && !iter->pg->index) 2493 iter->pg = iter->pg->next; 2494 } 2495 2496 if (!iter->pg) 2497 return NULL; 2498 2499 return iter; 2500 } 2501 2502 /** 2503 * ftrace_rec_iter_record, get the record at the iterator location 2504 * @iter: The current iterator location 2505 * 2506 * Returns the record that the current @iter is at. 2507 */ 2508 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter) 2509 { 2510 return &iter->pg->records[iter->index]; 2511 } 2512 2513 static int 2514 ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec) 2515 { 2516 int ret; 2517 2518 if (unlikely(ftrace_disabled)) 2519 return 0; 2520 2521 ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR); 2522 if (ret) { 2523 ftrace_bug_type = FTRACE_BUG_INIT; 2524 ftrace_bug(ret, rec); 2525 return 0; 2526 } 2527 return 1; 2528 } 2529 2530 /* 2531 * archs can override this function if they must do something 2532 * before the modifying code is performed. 2533 */ 2534 int __weak ftrace_arch_code_modify_prepare(void) 2535 { 2536 return 0; 2537 } 2538 2539 /* 2540 * archs can override this function if they must do something 2541 * after the modifying code is performed. 2542 */ 2543 int __weak ftrace_arch_code_modify_post_process(void) 2544 { 2545 return 0; 2546 } 2547 2548 void ftrace_modify_all_code(int command) 2549 { 2550 int update = command & FTRACE_UPDATE_TRACE_FUNC; 2551 int err = 0; 2552 2553 /* 2554 * If the ftrace_caller calls a ftrace_ops func directly, 2555 * we need to make sure that it only traces functions it 2556 * expects to trace. When doing the switch of functions, 2557 * we need to update to the ftrace_ops_list_func first 2558 * before the transition between old and new calls are set, 2559 * as the ftrace_ops_list_func will check the ops hashes 2560 * to make sure the ops are having the right functions 2561 * traced. 2562 */ 2563 if (update) { 2564 err = ftrace_update_ftrace_func(ftrace_ops_list_func); 2565 if (FTRACE_WARN_ON(err)) 2566 return; 2567 } 2568 2569 if (command & FTRACE_UPDATE_CALLS) 2570 ftrace_replace_code(1); 2571 else if (command & FTRACE_DISABLE_CALLS) 2572 ftrace_replace_code(0); 2573 2574 if (update && ftrace_trace_function != ftrace_ops_list_func) { 2575 function_trace_op = set_function_trace_op; 2576 smp_wmb(); 2577 /* If irqs are disabled, we are in stop machine */ 2578 if (!irqs_disabled()) 2579 smp_call_function(ftrace_sync_ipi, NULL, 1); 2580 err = ftrace_update_ftrace_func(ftrace_trace_function); 2581 if (FTRACE_WARN_ON(err)) 2582 return; 2583 } 2584 2585 if (command & FTRACE_START_FUNC_RET) 2586 err = ftrace_enable_ftrace_graph_caller(); 2587 else if (command & FTRACE_STOP_FUNC_RET) 2588 err = ftrace_disable_ftrace_graph_caller(); 2589 FTRACE_WARN_ON(err); 2590 } 2591 2592 static int __ftrace_modify_code(void *data) 2593 { 2594 int *command = data; 2595 2596 ftrace_modify_all_code(*command); 2597 2598 return 0; 2599 } 2600 2601 /** 2602 * ftrace_run_stop_machine, go back to the stop machine method 2603 * @command: The command to tell ftrace what to do 2604 * 2605 * If an arch needs to fall back to the stop machine method, the 2606 * it can call this function. 2607 */ 2608 void ftrace_run_stop_machine(int command) 2609 { 2610 stop_machine(__ftrace_modify_code, &command, NULL); 2611 } 2612 2613 /** 2614 * arch_ftrace_update_code, modify the code to trace or not trace 2615 * @command: The command that needs to be done 2616 * 2617 * Archs can override this function if it does not need to 2618 * run stop_machine() to modify code. 2619 */ 2620 void __weak arch_ftrace_update_code(int command) 2621 { 2622 ftrace_run_stop_machine(command); 2623 } 2624 2625 static void ftrace_run_update_code(int command) 2626 { 2627 int ret; 2628 2629 ret = ftrace_arch_code_modify_prepare(); 2630 FTRACE_WARN_ON(ret); 2631 if (ret) 2632 return; 2633 2634 /* 2635 * By default we use stop_machine() to modify the code. 2636 * But archs can do what ever they want as long as it 2637 * is safe. The stop_machine() is the safest, but also 2638 * produces the most overhead. 2639 */ 2640 arch_ftrace_update_code(command); 2641 2642 ret = ftrace_arch_code_modify_post_process(); 2643 FTRACE_WARN_ON(ret); 2644 } 2645 2646 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command, 2647 struct ftrace_ops_hash *old_hash) 2648 { 2649 ops->flags |= FTRACE_OPS_FL_MODIFYING; 2650 ops->old_hash.filter_hash = old_hash->filter_hash; 2651 ops->old_hash.notrace_hash = old_hash->notrace_hash; 2652 ftrace_run_update_code(command); 2653 ops->old_hash.filter_hash = NULL; 2654 ops->old_hash.notrace_hash = NULL; 2655 ops->flags &= ~FTRACE_OPS_FL_MODIFYING; 2656 } 2657 2658 static ftrace_func_t saved_ftrace_func; 2659 static int ftrace_start_up; 2660 2661 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops) 2662 { 2663 } 2664 2665 static void ftrace_startup_enable(int command) 2666 { 2667 if (saved_ftrace_func != ftrace_trace_function) { 2668 saved_ftrace_func = ftrace_trace_function; 2669 command |= FTRACE_UPDATE_TRACE_FUNC; 2670 } 2671 2672 if (!command || !ftrace_enabled) 2673 return; 2674 2675 ftrace_run_update_code(command); 2676 } 2677 2678 static void ftrace_startup_all(int command) 2679 { 2680 update_all_ops = true; 2681 ftrace_startup_enable(command); 2682 update_all_ops = false; 2683 } 2684 2685 static int ftrace_startup(struct ftrace_ops *ops, int command) 2686 { 2687 int ret; 2688 2689 if (unlikely(ftrace_disabled)) 2690 return -ENODEV; 2691 2692 ret = __register_ftrace_function(ops); 2693 if (ret) 2694 return ret; 2695 2696 ftrace_start_up++; 2697 2698 /* 2699 * Note that ftrace probes uses this to start up 2700 * and modify functions it will probe. But we still 2701 * set the ADDING flag for modification, as probes 2702 * do not have trampolines. If they add them in the 2703 * future, then the probes will need to distinguish 2704 * between adding and updating probes. 2705 */ 2706 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING; 2707 2708 ret = ftrace_hash_ipmodify_enable(ops); 2709 if (ret < 0) { 2710 /* Rollback registration process */ 2711 __unregister_ftrace_function(ops); 2712 ftrace_start_up--; 2713 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2714 return ret; 2715 } 2716 2717 if (ftrace_hash_rec_enable(ops, 1)) 2718 command |= FTRACE_UPDATE_CALLS; 2719 2720 ftrace_startup_enable(command); 2721 2722 ops->flags &= ~FTRACE_OPS_FL_ADDING; 2723 2724 return 0; 2725 } 2726 2727 static int ftrace_shutdown(struct ftrace_ops *ops, int command) 2728 { 2729 int ret; 2730 2731 if (unlikely(ftrace_disabled)) 2732 return -ENODEV; 2733 2734 ret = __unregister_ftrace_function(ops); 2735 if (ret) 2736 return ret; 2737 2738 ftrace_start_up--; 2739 /* 2740 * Just warn in case of unbalance, no need to kill ftrace, it's not 2741 * critical but the ftrace_call callers may be never nopped again after 2742 * further ftrace uses. 2743 */ 2744 WARN_ON_ONCE(ftrace_start_up < 0); 2745 2746 /* Disabling ipmodify never fails */ 2747 ftrace_hash_ipmodify_disable(ops); 2748 2749 if (ftrace_hash_rec_disable(ops, 1)) 2750 command |= FTRACE_UPDATE_CALLS; 2751 2752 ops->flags &= ~FTRACE_OPS_FL_ENABLED; 2753 2754 if (saved_ftrace_func != ftrace_trace_function) { 2755 saved_ftrace_func = ftrace_trace_function; 2756 command |= FTRACE_UPDATE_TRACE_FUNC; 2757 } 2758 2759 if (!command || !ftrace_enabled) { 2760 /* 2761 * If these are dynamic or per_cpu ops, they still 2762 * need their data freed. Since, function tracing is 2763 * not currently active, we can just free them 2764 * without synchronizing all CPUs. 2765 */ 2766 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) 2767 goto free_ops; 2768 2769 return 0; 2770 } 2771 2772 /* 2773 * If the ops uses a trampoline, then it needs to be 2774 * tested first on update. 2775 */ 2776 ops->flags |= FTRACE_OPS_FL_REMOVING; 2777 removed_ops = ops; 2778 2779 /* The trampoline logic checks the old hashes */ 2780 ops->old_hash.filter_hash = ops->func_hash->filter_hash; 2781 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash; 2782 2783 ftrace_run_update_code(command); 2784 2785 /* 2786 * If there's no more ops registered with ftrace, run a 2787 * sanity check to make sure all rec flags are cleared. 2788 */ 2789 if (rcu_dereference_protected(ftrace_ops_list, 2790 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) { 2791 struct ftrace_page *pg; 2792 struct dyn_ftrace *rec; 2793 2794 do_for_each_ftrace_rec(pg, rec) { 2795 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED)) 2796 pr_warn(" %pS flags:%lx\n", 2797 (void *)rec->ip, rec->flags); 2798 } while_for_each_ftrace_rec(); 2799 } 2800 2801 ops->old_hash.filter_hash = NULL; 2802 ops->old_hash.notrace_hash = NULL; 2803 2804 removed_ops = NULL; 2805 ops->flags &= ~FTRACE_OPS_FL_REMOVING; 2806 2807 /* 2808 * Dynamic ops may be freed, we must make sure that all 2809 * callers are done before leaving this function. 2810 * The same goes for freeing the per_cpu data of the per_cpu 2811 * ops. 2812 */ 2813 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) { 2814 /* 2815 * We need to do a hard force of sched synchronization. 2816 * This is because we use preempt_disable() to do RCU, but 2817 * the function tracers can be called where RCU is not watching 2818 * (like before user_exit()). We can not rely on the RCU 2819 * infrastructure to do the synchronization, thus we must do it 2820 * ourselves. 2821 */ 2822 schedule_on_each_cpu(ftrace_sync); 2823 2824 /* 2825 * When the kernel is preeptive, tasks can be preempted 2826 * while on a ftrace trampoline. Just scheduling a task on 2827 * a CPU is not good enough to flush them. Calling 2828 * synchornize_rcu_tasks() will wait for those tasks to 2829 * execute and either schedule voluntarily or enter user space. 2830 */ 2831 if (IS_ENABLED(CONFIG_PREEMPT)) 2832 synchronize_rcu_tasks(); 2833 2834 free_ops: 2835 arch_ftrace_trampoline_free(ops); 2836 } 2837 2838 return 0; 2839 } 2840 2841 static void ftrace_startup_sysctl(void) 2842 { 2843 int command; 2844 2845 if (unlikely(ftrace_disabled)) 2846 return; 2847 2848 /* Force update next time */ 2849 saved_ftrace_func = NULL; 2850 /* ftrace_start_up is true if we want ftrace running */ 2851 if (ftrace_start_up) { 2852 command = FTRACE_UPDATE_CALLS; 2853 if (ftrace_graph_active) 2854 command |= FTRACE_START_FUNC_RET; 2855 ftrace_startup_enable(command); 2856 } 2857 } 2858 2859 static void ftrace_shutdown_sysctl(void) 2860 { 2861 int command; 2862 2863 if (unlikely(ftrace_disabled)) 2864 return; 2865 2866 /* ftrace_start_up is true if ftrace is running */ 2867 if (ftrace_start_up) { 2868 command = FTRACE_DISABLE_CALLS; 2869 if (ftrace_graph_active) 2870 command |= FTRACE_STOP_FUNC_RET; 2871 ftrace_run_update_code(command); 2872 } 2873 } 2874 2875 static u64 ftrace_update_time; 2876 unsigned long ftrace_update_tot_cnt; 2877 2878 static inline int ops_traces_mod(struct ftrace_ops *ops) 2879 { 2880 /* 2881 * Filter_hash being empty will default to trace module. 2882 * But notrace hash requires a test of individual module functions. 2883 */ 2884 return ftrace_hash_empty(ops->func_hash->filter_hash) && 2885 ftrace_hash_empty(ops->func_hash->notrace_hash); 2886 } 2887 2888 /* 2889 * Check if the current ops references the record. 2890 * 2891 * If the ops traces all functions, then it was already accounted for. 2892 * If the ops does not trace the current record function, skip it. 2893 * If the ops ignores the function via notrace filter, skip it. 2894 */ 2895 static inline bool 2896 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec) 2897 { 2898 /* If ops isn't enabled, ignore it */ 2899 if (!(ops->flags & FTRACE_OPS_FL_ENABLED)) 2900 return false; 2901 2902 /* If ops traces all then it includes this function */ 2903 if (ops_traces_mod(ops)) 2904 return true; 2905 2906 /* The function must be in the filter */ 2907 if (!ftrace_hash_empty(ops->func_hash->filter_hash) && 2908 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip)) 2909 return false; 2910 2911 /* If in notrace hash, we ignore it too */ 2912 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) 2913 return false; 2914 2915 return true; 2916 } 2917 2918 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs) 2919 { 2920 struct ftrace_page *pg; 2921 struct dyn_ftrace *p; 2922 u64 start, stop; 2923 unsigned long update_cnt = 0; 2924 unsigned long rec_flags = 0; 2925 int i; 2926 2927 start = ftrace_now(raw_smp_processor_id()); 2928 2929 /* 2930 * When a module is loaded, this function is called to convert 2931 * the calls to mcount in its text to nops, and also to create 2932 * an entry in the ftrace data. Now, if ftrace is activated 2933 * after this call, but before the module sets its text to 2934 * read-only, the modification of enabling ftrace can fail if 2935 * the read-only is done while ftrace is converting the calls. 2936 * To prevent this, the module's records are set as disabled 2937 * and will be enabled after the call to set the module's text 2938 * to read-only. 2939 */ 2940 if (mod) 2941 rec_flags |= FTRACE_FL_DISABLED; 2942 2943 for (pg = new_pgs; pg; pg = pg->next) { 2944 2945 for (i = 0; i < pg->index; i++) { 2946 2947 /* If something went wrong, bail without enabling anything */ 2948 if (unlikely(ftrace_disabled)) 2949 return -1; 2950 2951 p = &pg->records[i]; 2952 p->flags = rec_flags; 2953 2954 #ifndef CC_USING_NOP_MCOUNT 2955 /* 2956 * Do the initial record conversion from mcount jump 2957 * to the NOP instructions. 2958 */ 2959 if (!ftrace_code_disable(mod, p)) 2960 break; 2961 #endif 2962 2963 update_cnt++; 2964 } 2965 } 2966 2967 stop = ftrace_now(raw_smp_processor_id()); 2968 ftrace_update_time = stop - start; 2969 ftrace_update_tot_cnt += update_cnt; 2970 2971 return 0; 2972 } 2973 2974 static int ftrace_allocate_records(struct ftrace_page *pg, int count) 2975 { 2976 int order; 2977 int cnt; 2978 2979 if (WARN_ON(!count)) 2980 return -EINVAL; 2981 2982 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE)); 2983 2984 /* 2985 * We want to fill as much as possible. No more than a page 2986 * may be empty. 2987 */ 2988 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE) 2989 order--; 2990 2991 again: 2992 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 2993 2994 if (!pg->records) { 2995 /* if we can't allocate this size, try something smaller */ 2996 if (!order) 2997 return -ENOMEM; 2998 order >>= 1; 2999 goto again; 3000 } 3001 3002 cnt = (PAGE_SIZE << order) / ENTRY_SIZE; 3003 pg->size = cnt; 3004 3005 if (cnt > count) 3006 cnt = count; 3007 3008 return cnt; 3009 } 3010 3011 static struct ftrace_page * 3012 ftrace_allocate_pages(unsigned long num_to_init) 3013 { 3014 struct ftrace_page *start_pg; 3015 struct ftrace_page *pg; 3016 int order; 3017 int cnt; 3018 3019 if (!num_to_init) 3020 return 0; 3021 3022 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL); 3023 if (!pg) 3024 return NULL; 3025 3026 /* 3027 * Try to allocate as much as possible in one continues 3028 * location that fills in all of the space. We want to 3029 * waste as little space as possible. 3030 */ 3031 for (;;) { 3032 cnt = ftrace_allocate_records(pg, num_to_init); 3033 if (cnt < 0) 3034 goto free_pages; 3035 3036 num_to_init -= cnt; 3037 if (!num_to_init) 3038 break; 3039 3040 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL); 3041 if (!pg->next) 3042 goto free_pages; 3043 3044 pg = pg->next; 3045 } 3046 3047 return start_pg; 3048 3049 free_pages: 3050 pg = start_pg; 3051 while (pg) { 3052 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 3053 free_pages((unsigned long)pg->records, order); 3054 start_pg = pg->next; 3055 kfree(pg); 3056 pg = start_pg; 3057 } 3058 pr_info("ftrace: FAILED to allocate memory for functions\n"); 3059 return NULL; 3060 } 3061 3062 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ 3063 3064 struct ftrace_iterator { 3065 loff_t pos; 3066 loff_t func_pos; 3067 loff_t mod_pos; 3068 struct ftrace_page *pg; 3069 struct dyn_ftrace *func; 3070 struct ftrace_func_probe *probe; 3071 struct ftrace_func_entry *probe_entry; 3072 struct trace_parser parser; 3073 struct ftrace_hash *hash; 3074 struct ftrace_ops *ops; 3075 struct trace_array *tr; 3076 struct list_head *mod_list; 3077 int pidx; 3078 int idx; 3079 unsigned flags; 3080 }; 3081 3082 static void * 3083 t_probe_next(struct seq_file *m, loff_t *pos) 3084 { 3085 struct ftrace_iterator *iter = m->private; 3086 struct trace_array *tr = iter->ops->private; 3087 struct list_head *func_probes; 3088 struct ftrace_hash *hash; 3089 struct list_head *next; 3090 struct hlist_node *hnd = NULL; 3091 struct hlist_head *hhd; 3092 int size; 3093 3094 (*pos)++; 3095 iter->pos = *pos; 3096 3097 if (!tr) 3098 return NULL; 3099 3100 func_probes = &tr->func_probes; 3101 if (list_empty(func_probes)) 3102 return NULL; 3103 3104 if (!iter->probe) { 3105 next = func_probes->next; 3106 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3107 } 3108 3109 if (iter->probe_entry) 3110 hnd = &iter->probe_entry->hlist; 3111 3112 hash = iter->probe->ops.func_hash->filter_hash; 3113 size = 1 << hash->size_bits; 3114 3115 retry: 3116 if (iter->pidx >= size) { 3117 if (iter->probe->list.next == func_probes) 3118 return NULL; 3119 next = iter->probe->list.next; 3120 iter->probe = list_entry(next, struct ftrace_func_probe, list); 3121 hash = iter->probe->ops.func_hash->filter_hash; 3122 size = 1 << hash->size_bits; 3123 iter->pidx = 0; 3124 } 3125 3126 hhd = &hash->buckets[iter->pidx]; 3127 3128 if (hlist_empty(hhd)) { 3129 iter->pidx++; 3130 hnd = NULL; 3131 goto retry; 3132 } 3133 3134 if (!hnd) 3135 hnd = hhd->first; 3136 else { 3137 hnd = hnd->next; 3138 if (!hnd) { 3139 iter->pidx++; 3140 goto retry; 3141 } 3142 } 3143 3144 if (WARN_ON_ONCE(!hnd)) 3145 return NULL; 3146 3147 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist); 3148 3149 return iter; 3150 } 3151 3152 static void *t_probe_start(struct seq_file *m, loff_t *pos) 3153 { 3154 struct ftrace_iterator *iter = m->private; 3155 void *p = NULL; 3156 loff_t l; 3157 3158 if (!(iter->flags & FTRACE_ITER_DO_PROBES)) 3159 return NULL; 3160 3161 if (iter->mod_pos > *pos) 3162 return NULL; 3163 3164 iter->probe = NULL; 3165 iter->probe_entry = NULL; 3166 iter->pidx = 0; 3167 for (l = 0; l <= (*pos - iter->mod_pos); ) { 3168 p = t_probe_next(m, &l); 3169 if (!p) 3170 break; 3171 } 3172 if (!p) 3173 return NULL; 3174 3175 /* Only set this if we have an item */ 3176 iter->flags |= FTRACE_ITER_PROBE; 3177 3178 return iter; 3179 } 3180 3181 static int 3182 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter) 3183 { 3184 struct ftrace_func_entry *probe_entry; 3185 struct ftrace_probe_ops *probe_ops; 3186 struct ftrace_func_probe *probe; 3187 3188 probe = iter->probe; 3189 probe_entry = iter->probe_entry; 3190 3191 if (WARN_ON_ONCE(!probe || !probe_entry)) 3192 return -EIO; 3193 3194 probe_ops = probe->probe_ops; 3195 3196 if (probe_ops->print) 3197 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data); 3198 3199 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip, 3200 (void *)probe_ops->func); 3201 3202 return 0; 3203 } 3204 3205 static void * 3206 t_mod_next(struct seq_file *m, loff_t *pos) 3207 { 3208 struct ftrace_iterator *iter = m->private; 3209 struct trace_array *tr = iter->tr; 3210 3211 (*pos)++; 3212 iter->pos = *pos; 3213 3214 iter->mod_list = iter->mod_list->next; 3215 3216 if (iter->mod_list == &tr->mod_trace || 3217 iter->mod_list == &tr->mod_notrace) { 3218 iter->flags &= ~FTRACE_ITER_MOD; 3219 return NULL; 3220 } 3221 3222 iter->mod_pos = *pos; 3223 3224 return iter; 3225 } 3226 3227 static void *t_mod_start(struct seq_file *m, loff_t *pos) 3228 { 3229 struct ftrace_iterator *iter = m->private; 3230 void *p = NULL; 3231 loff_t l; 3232 3233 if (iter->func_pos > *pos) 3234 return NULL; 3235 3236 iter->mod_pos = iter->func_pos; 3237 3238 /* probes are only available if tr is set */ 3239 if (!iter->tr) 3240 return NULL; 3241 3242 for (l = 0; l <= (*pos - iter->func_pos); ) { 3243 p = t_mod_next(m, &l); 3244 if (!p) 3245 break; 3246 } 3247 if (!p) { 3248 iter->flags &= ~FTRACE_ITER_MOD; 3249 return t_probe_start(m, pos); 3250 } 3251 3252 /* Only set this if we have an item */ 3253 iter->flags |= FTRACE_ITER_MOD; 3254 3255 return iter; 3256 } 3257 3258 static int 3259 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter) 3260 { 3261 struct ftrace_mod_load *ftrace_mod; 3262 struct trace_array *tr = iter->tr; 3263 3264 if (WARN_ON_ONCE(!iter->mod_list) || 3265 iter->mod_list == &tr->mod_trace || 3266 iter->mod_list == &tr->mod_notrace) 3267 return -EIO; 3268 3269 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list); 3270 3271 if (ftrace_mod->func) 3272 seq_printf(m, "%s", ftrace_mod->func); 3273 else 3274 seq_putc(m, '*'); 3275 3276 seq_printf(m, ":mod:%s\n", ftrace_mod->module); 3277 3278 return 0; 3279 } 3280 3281 static void * 3282 t_func_next(struct seq_file *m, loff_t *pos) 3283 { 3284 struct ftrace_iterator *iter = m->private; 3285 struct dyn_ftrace *rec = NULL; 3286 3287 (*pos)++; 3288 3289 retry: 3290 if (iter->idx >= iter->pg->index) { 3291 if (iter->pg->next) { 3292 iter->pg = iter->pg->next; 3293 iter->idx = 0; 3294 goto retry; 3295 } 3296 } else { 3297 rec = &iter->pg->records[iter->idx++]; 3298 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3299 !ftrace_lookup_ip(iter->hash, rec->ip)) || 3300 3301 ((iter->flags & FTRACE_ITER_ENABLED) && 3302 !(rec->flags & FTRACE_FL_ENABLED))) { 3303 3304 rec = NULL; 3305 goto retry; 3306 } 3307 } 3308 3309 if (!rec) 3310 return NULL; 3311 3312 iter->pos = iter->func_pos = *pos; 3313 iter->func = rec; 3314 3315 return iter; 3316 } 3317 3318 static void * 3319 t_next(struct seq_file *m, void *v, loff_t *pos) 3320 { 3321 struct ftrace_iterator *iter = m->private; 3322 loff_t l = *pos; /* t_probe_start() must use original pos */ 3323 void *ret; 3324 3325 if (unlikely(ftrace_disabled)) 3326 return NULL; 3327 3328 if (iter->flags & FTRACE_ITER_PROBE) 3329 return t_probe_next(m, pos); 3330 3331 if (iter->flags & FTRACE_ITER_MOD) 3332 return t_mod_next(m, pos); 3333 3334 if (iter->flags & FTRACE_ITER_PRINTALL) { 3335 /* next must increment pos, and t_probe_start does not */ 3336 (*pos)++; 3337 return t_mod_start(m, &l); 3338 } 3339 3340 ret = t_func_next(m, pos); 3341 3342 if (!ret) 3343 return t_mod_start(m, &l); 3344 3345 return ret; 3346 } 3347 3348 static void reset_iter_read(struct ftrace_iterator *iter) 3349 { 3350 iter->pos = 0; 3351 iter->func_pos = 0; 3352 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD); 3353 } 3354 3355 static void *t_start(struct seq_file *m, loff_t *pos) 3356 { 3357 struct ftrace_iterator *iter = m->private; 3358 void *p = NULL; 3359 loff_t l; 3360 3361 mutex_lock(&ftrace_lock); 3362 3363 if (unlikely(ftrace_disabled)) 3364 return NULL; 3365 3366 /* 3367 * If an lseek was done, then reset and start from beginning. 3368 */ 3369 if (*pos < iter->pos) 3370 reset_iter_read(iter); 3371 3372 /* 3373 * For set_ftrace_filter reading, if we have the filter 3374 * off, we can short cut and just print out that all 3375 * functions are enabled. 3376 */ 3377 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) && 3378 ftrace_hash_empty(iter->hash)) { 3379 iter->func_pos = 1; /* Account for the message */ 3380 if (*pos > 0) 3381 return t_mod_start(m, pos); 3382 iter->flags |= FTRACE_ITER_PRINTALL; 3383 /* reset in case of seek/pread */ 3384 iter->flags &= ~FTRACE_ITER_PROBE; 3385 return iter; 3386 } 3387 3388 if (iter->flags & FTRACE_ITER_MOD) 3389 return t_mod_start(m, pos); 3390 3391 /* 3392 * Unfortunately, we need to restart at ftrace_pages_start 3393 * every time we let go of the ftrace_mutex. This is because 3394 * those pointers can change without the lock. 3395 */ 3396 iter->pg = ftrace_pages_start; 3397 iter->idx = 0; 3398 for (l = 0; l <= *pos; ) { 3399 p = t_func_next(m, &l); 3400 if (!p) 3401 break; 3402 } 3403 3404 if (!p) 3405 return t_mod_start(m, pos); 3406 3407 return iter; 3408 } 3409 3410 static void t_stop(struct seq_file *m, void *p) 3411 { 3412 mutex_unlock(&ftrace_lock); 3413 } 3414 3415 void * __weak 3416 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec) 3417 { 3418 return NULL; 3419 } 3420 3421 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops, 3422 struct dyn_ftrace *rec) 3423 { 3424 void *ptr; 3425 3426 ptr = arch_ftrace_trampoline_func(ops, rec); 3427 if (ptr) 3428 seq_printf(m, " ->%pS", ptr); 3429 } 3430 3431 static int t_show(struct seq_file *m, void *v) 3432 { 3433 struct ftrace_iterator *iter = m->private; 3434 struct dyn_ftrace *rec; 3435 3436 if (iter->flags & FTRACE_ITER_PROBE) 3437 return t_probe_show(m, iter); 3438 3439 if (iter->flags & FTRACE_ITER_MOD) 3440 return t_mod_show(m, iter); 3441 3442 if (iter->flags & FTRACE_ITER_PRINTALL) { 3443 if (iter->flags & FTRACE_ITER_NOTRACE) 3444 seq_puts(m, "#### no functions disabled ####\n"); 3445 else 3446 seq_puts(m, "#### all functions enabled ####\n"); 3447 return 0; 3448 } 3449 3450 rec = iter->func; 3451 3452 if (!rec) 3453 return 0; 3454 3455 seq_printf(m, "%ps", (void *)rec->ip); 3456 if (iter->flags & FTRACE_ITER_ENABLED) { 3457 struct ftrace_ops *ops; 3458 3459 seq_printf(m, " (%ld)%s%s", 3460 ftrace_rec_count(rec), 3461 rec->flags & FTRACE_FL_REGS ? " R" : " ", 3462 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " "); 3463 if (rec->flags & FTRACE_FL_TRAMP_EN) { 3464 ops = ftrace_find_tramp_ops_any(rec); 3465 if (ops) { 3466 do { 3467 seq_printf(m, "\ttramp: %pS (%pS)", 3468 (void *)ops->trampoline, 3469 (void *)ops->func); 3470 add_trampoline_func(m, ops, rec); 3471 ops = ftrace_find_tramp_ops_next(rec, ops); 3472 } while (ops); 3473 } else 3474 seq_puts(m, "\ttramp: ERROR!"); 3475 } else { 3476 add_trampoline_func(m, NULL, rec); 3477 } 3478 } 3479 3480 seq_putc(m, '\n'); 3481 3482 return 0; 3483 } 3484 3485 static const struct seq_operations show_ftrace_seq_ops = { 3486 .start = t_start, 3487 .next = t_next, 3488 .stop = t_stop, 3489 .show = t_show, 3490 }; 3491 3492 static int 3493 ftrace_avail_open(struct inode *inode, struct file *file) 3494 { 3495 struct ftrace_iterator *iter; 3496 3497 if (unlikely(ftrace_disabled)) 3498 return -ENODEV; 3499 3500 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3501 if (!iter) 3502 return -ENOMEM; 3503 3504 iter->pg = ftrace_pages_start; 3505 iter->ops = &global_ops; 3506 3507 return 0; 3508 } 3509 3510 static int 3511 ftrace_enabled_open(struct inode *inode, struct file *file) 3512 { 3513 struct ftrace_iterator *iter; 3514 3515 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter)); 3516 if (!iter) 3517 return -ENOMEM; 3518 3519 iter->pg = ftrace_pages_start; 3520 iter->flags = FTRACE_ITER_ENABLED; 3521 iter->ops = &global_ops; 3522 3523 return 0; 3524 } 3525 3526 /** 3527 * ftrace_regex_open - initialize function tracer filter files 3528 * @ops: The ftrace_ops that hold the hash filters 3529 * @flag: The type of filter to process 3530 * @inode: The inode, usually passed in to your open routine 3531 * @file: The file, usually passed in to your open routine 3532 * 3533 * ftrace_regex_open() initializes the filter files for the 3534 * @ops. Depending on @flag it may process the filter hash or 3535 * the notrace hash of @ops. With this called from the open 3536 * routine, you can use ftrace_filter_write() for the write 3537 * routine if @flag has FTRACE_ITER_FILTER set, or 3538 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set. 3539 * tracing_lseek() should be used as the lseek routine, and 3540 * release must call ftrace_regex_release(). 3541 */ 3542 int 3543 ftrace_regex_open(struct ftrace_ops *ops, int flag, 3544 struct inode *inode, struct file *file) 3545 { 3546 struct ftrace_iterator *iter; 3547 struct ftrace_hash *hash; 3548 struct list_head *mod_head; 3549 struct trace_array *tr = ops->private; 3550 int ret = 0; 3551 3552 ftrace_ops_init(ops); 3553 3554 if (unlikely(ftrace_disabled)) 3555 return -ENODEV; 3556 3557 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 3558 if (!iter) 3559 return -ENOMEM; 3560 3561 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) { 3562 kfree(iter); 3563 return -ENOMEM; 3564 } 3565 3566 iter->ops = ops; 3567 iter->flags = flag; 3568 iter->tr = tr; 3569 3570 mutex_lock(&ops->func_hash->regex_lock); 3571 3572 if (flag & FTRACE_ITER_NOTRACE) { 3573 hash = ops->func_hash->notrace_hash; 3574 mod_head = tr ? &tr->mod_notrace : NULL; 3575 } else { 3576 hash = ops->func_hash->filter_hash; 3577 mod_head = tr ? &tr->mod_trace : NULL; 3578 } 3579 3580 iter->mod_list = mod_head; 3581 3582 if (file->f_mode & FMODE_WRITE) { 3583 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 3584 3585 if (file->f_flags & O_TRUNC) { 3586 iter->hash = alloc_ftrace_hash(size_bits); 3587 clear_ftrace_mod_list(mod_head); 3588 } else { 3589 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash); 3590 } 3591 3592 if (!iter->hash) { 3593 trace_parser_put(&iter->parser); 3594 kfree(iter); 3595 ret = -ENOMEM; 3596 goto out_unlock; 3597 } 3598 } else 3599 iter->hash = hash; 3600 3601 if (file->f_mode & FMODE_READ) { 3602 iter->pg = ftrace_pages_start; 3603 3604 ret = seq_open(file, &show_ftrace_seq_ops); 3605 if (!ret) { 3606 struct seq_file *m = file->private_data; 3607 m->private = iter; 3608 } else { 3609 /* Failed */ 3610 free_ftrace_hash(iter->hash); 3611 trace_parser_put(&iter->parser); 3612 kfree(iter); 3613 } 3614 } else 3615 file->private_data = iter; 3616 3617 out_unlock: 3618 mutex_unlock(&ops->func_hash->regex_lock); 3619 3620 return ret; 3621 } 3622 3623 static int 3624 ftrace_filter_open(struct inode *inode, struct file *file) 3625 { 3626 struct ftrace_ops *ops = inode->i_private; 3627 3628 return ftrace_regex_open(ops, 3629 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES, 3630 inode, file); 3631 } 3632 3633 static int 3634 ftrace_notrace_open(struct inode *inode, struct file *file) 3635 { 3636 struct ftrace_ops *ops = inode->i_private; 3637 3638 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE, 3639 inode, file); 3640 } 3641 3642 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */ 3643 struct ftrace_glob { 3644 char *search; 3645 unsigned len; 3646 int type; 3647 }; 3648 3649 /* 3650 * If symbols in an architecture don't correspond exactly to the user-visible 3651 * name of what they represent, it is possible to define this function to 3652 * perform the necessary adjustments. 3653 */ 3654 char * __weak arch_ftrace_match_adjust(char *str, const char *search) 3655 { 3656 return str; 3657 } 3658 3659 static int ftrace_match(char *str, struct ftrace_glob *g) 3660 { 3661 int matched = 0; 3662 int slen; 3663 3664 str = arch_ftrace_match_adjust(str, g->search); 3665 3666 switch (g->type) { 3667 case MATCH_FULL: 3668 if (strcmp(str, g->search) == 0) 3669 matched = 1; 3670 break; 3671 case MATCH_FRONT_ONLY: 3672 if (strncmp(str, g->search, g->len) == 0) 3673 matched = 1; 3674 break; 3675 case MATCH_MIDDLE_ONLY: 3676 if (strstr(str, g->search)) 3677 matched = 1; 3678 break; 3679 case MATCH_END_ONLY: 3680 slen = strlen(str); 3681 if (slen >= g->len && 3682 memcmp(str + slen - g->len, g->search, g->len) == 0) 3683 matched = 1; 3684 break; 3685 case MATCH_GLOB: 3686 if (glob_match(g->search, str)) 3687 matched = 1; 3688 break; 3689 } 3690 3691 return matched; 3692 } 3693 3694 static int 3695 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter) 3696 { 3697 struct ftrace_func_entry *entry; 3698 int ret = 0; 3699 3700 entry = ftrace_lookup_ip(hash, rec->ip); 3701 if (clear_filter) { 3702 /* Do nothing if it doesn't exist */ 3703 if (!entry) 3704 return 0; 3705 3706 free_hash_entry(hash, entry); 3707 } else { 3708 /* Do nothing if it exists */ 3709 if (entry) 3710 return 0; 3711 3712 ret = add_hash_entry(hash, rec->ip); 3713 } 3714 return ret; 3715 } 3716 3717 static int 3718 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g, 3719 struct ftrace_glob *mod_g, int exclude_mod) 3720 { 3721 char str[KSYM_SYMBOL_LEN]; 3722 char *modname; 3723 3724 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str); 3725 3726 if (mod_g) { 3727 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0; 3728 3729 /* blank module name to match all modules */ 3730 if (!mod_g->len) { 3731 /* blank module globbing: modname xor exclude_mod */ 3732 if (!exclude_mod != !modname) 3733 goto func_match; 3734 return 0; 3735 } 3736 3737 /* 3738 * exclude_mod is set to trace everything but the given 3739 * module. If it is set and the module matches, then 3740 * return 0. If it is not set, and the module doesn't match 3741 * also return 0. Otherwise, check the function to see if 3742 * that matches. 3743 */ 3744 if (!mod_matches == !exclude_mod) 3745 return 0; 3746 func_match: 3747 /* blank search means to match all funcs in the mod */ 3748 if (!func_g->len) 3749 return 1; 3750 } 3751 3752 return ftrace_match(str, func_g); 3753 } 3754 3755 static int 3756 match_records(struct ftrace_hash *hash, char *func, int len, char *mod) 3757 { 3758 struct ftrace_page *pg; 3759 struct dyn_ftrace *rec; 3760 struct ftrace_glob func_g = { .type = MATCH_FULL }; 3761 struct ftrace_glob mod_g = { .type = MATCH_FULL }; 3762 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL; 3763 int exclude_mod = 0; 3764 int found = 0; 3765 int ret; 3766 int clear_filter = 0; 3767 3768 if (func) { 3769 func_g.type = filter_parse_regex(func, len, &func_g.search, 3770 &clear_filter); 3771 func_g.len = strlen(func_g.search); 3772 } 3773 3774 if (mod) { 3775 mod_g.type = filter_parse_regex(mod, strlen(mod), 3776 &mod_g.search, &exclude_mod); 3777 mod_g.len = strlen(mod_g.search); 3778 } 3779 3780 mutex_lock(&ftrace_lock); 3781 3782 if (unlikely(ftrace_disabled)) 3783 goto out_unlock; 3784 3785 do_for_each_ftrace_rec(pg, rec) { 3786 3787 if (rec->flags & FTRACE_FL_DISABLED) 3788 continue; 3789 3790 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) { 3791 ret = enter_record(hash, rec, clear_filter); 3792 if (ret < 0) { 3793 found = ret; 3794 goto out_unlock; 3795 } 3796 found = 1; 3797 } 3798 } while_for_each_ftrace_rec(); 3799 out_unlock: 3800 mutex_unlock(&ftrace_lock); 3801 3802 return found; 3803 } 3804 3805 static int 3806 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len) 3807 { 3808 return match_records(hash, buff, len, NULL); 3809 } 3810 3811 static void ftrace_ops_update_code(struct ftrace_ops *ops, 3812 struct ftrace_ops_hash *old_hash) 3813 { 3814 struct ftrace_ops *op; 3815 3816 if (!ftrace_enabled) 3817 return; 3818 3819 if (ops->flags & FTRACE_OPS_FL_ENABLED) { 3820 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash); 3821 return; 3822 } 3823 3824 /* 3825 * If this is the shared global_ops filter, then we need to 3826 * check if there is another ops that shares it, is enabled. 3827 * If so, we still need to run the modify code. 3828 */ 3829 if (ops->func_hash != &global_ops.local_hash) 3830 return; 3831 3832 do_for_each_ftrace_op(op, ftrace_ops_list) { 3833 if (op->func_hash == &global_ops.local_hash && 3834 op->flags & FTRACE_OPS_FL_ENABLED) { 3835 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash); 3836 /* Only need to do this once */ 3837 return; 3838 } 3839 } while_for_each_ftrace_op(op); 3840 } 3841 3842 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops, 3843 struct ftrace_hash **orig_hash, 3844 struct ftrace_hash *hash, 3845 int enable) 3846 { 3847 struct ftrace_ops_hash old_hash_ops; 3848 struct ftrace_hash *old_hash; 3849 int ret; 3850 3851 old_hash = *orig_hash; 3852 old_hash_ops.filter_hash = ops->func_hash->filter_hash; 3853 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash; 3854 ret = ftrace_hash_move(ops, enable, orig_hash, hash); 3855 if (!ret) { 3856 ftrace_ops_update_code(ops, &old_hash_ops); 3857 free_ftrace_hash_rcu(old_hash); 3858 } 3859 return ret; 3860 } 3861 3862 static bool module_exists(const char *module) 3863 { 3864 /* All modules have the symbol __this_module */ 3865 const char this_mod[] = "__this_module"; 3866 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2]; 3867 unsigned long val; 3868 int n; 3869 3870 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod); 3871 3872 if (n > sizeof(modname) - 1) 3873 return false; 3874 3875 val = module_kallsyms_lookup_name(modname); 3876 return val != 0; 3877 } 3878 3879 static int cache_mod(struct trace_array *tr, 3880 const char *func, char *module, int enable) 3881 { 3882 struct ftrace_mod_load *ftrace_mod, *n; 3883 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace; 3884 int ret; 3885 3886 mutex_lock(&ftrace_lock); 3887 3888 /* We do not cache inverse filters */ 3889 if (func[0] == '!') { 3890 func++; 3891 ret = -EINVAL; 3892 3893 /* Look to remove this hash */ 3894 list_for_each_entry_safe(ftrace_mod, n, head, list) { 3895 if (strcmp(ftrace_mod->module, module) != 0) 3896 continue; 3897 3898 /* no func matches all */ 3899 if (strcmp(func, "*") == 0 || 3900 (ftrace_mod->func && 3901 strcmp(ftrace_mod->func, func) == 0)) { 3902 ret = 0; 3903 free_ftrace_mod(ftrace_mod); 3904 continue; 3905 } 3906 } 3907 goto out; 3908 } 3909 3910 ret = -EINVAL; 3911 /* We only care about modules that have not been loaded yet */ 3912 if (module_exists(module)) 3913 goto out; 3914 3915 /* Save this string off, and execute it when the module is loaded */ 3916 ret = ftrace_add_mod(tr, func, module, enable); 3917 out: 3918 mutex_unlock(&ftrace_lock); 3919 3920 return ret; 3921 } 3922 3923 static int 3924 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 3925 int reset, int enable); 3926 3927 #ifdef CONFIG_MODULES 3928 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops, 3929 char *mod, bool enable) 3930 { 3931 struct ftrace_mod_load *ftrace_mod, *n; 3932 struct ftrace_hash **orig_hash, *new_hash; 3933 LIST_HEAD(process_mods); 3934 char *func; 3935 int ret; 3936 3937 mutex_lock(&ops->func_hash->regex_lock); 3938 3939 if (enable) 3940 orig_hash = &ops->func_hash->filter_hash; 3941 else 3942 orig_hash = &ops->func_hash->notrace_hash; 3943 3944 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, 3945 *orig_hash); 3946 if (!new_hash) 3947 goto out; /* warn? */ 3948 3949 mutex_lock(&ftrace_lock); 3950 3951 list_for_each_entry_safe(ftrace_mod, n, head, list) { 3952 3953 if (strcmp(ftrace_mod->module, mod) != 0) 3954 continue; 3955 3956 if (ftrace_mod->func) 3957 func = kstrdup(ftrace_mod->func, GFP_KERNEL); 3958 else 3959 func = kstrdup("*", GFP_KERNEL); 3960 3961 if (!func) /* warn? */ 3962 continue; 3963 3964 list_del(&ftrace_mod->list); 3965 list_add(&ftrace_mod->list, &process_mods); 3966 3967 /* Use the newly allocated func, as it may be "*" */ 3968 kfree(ftrace_mod->func); 3969 ftrace_mod->func = func; 3970 } 3971 3972 mutex_unlock(&ftrace_lock); 3973 3974 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) { 3975 3976 func = ftrace_mod->func; 3977 3978 /* Grabs ftrace_lock, which is why we have this extra step */ 3979 match_records(new_hash, func, strlen(func), mod); 3980 free_ftrace_mod(ftrace_mod); 3981 } 3982 3983 if (enable && list_empty(head)) 3984 new_hash->flags &= ~FTRACE_HASH_FL_MOD; 3985 3986 mutex_lock(&ftrace_lock); 3987 3988 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, 3989 new_hash, enable); 3990 mutex_unlock(&ftrace_lock); 3991 3992 out: 3993 mutex_unlock(&ops->func_hash->regex_lock); 3994 3995 free_ftrace_hash(new_hash); 3996 } 3997 3998 static void process_cached_mods(const char *mod_name) 3999 { 4000 struct trace_array *tr; 4001 char *mod; 4002 4003 mod = kstrdup(mod_name, GFP_KERNEL); 4004 if (!mod) 4005 return; 4006 4007 mutex_lock(&trace_types_lock); 4008 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 4009 if (!list_empty(&tr->mod_trace)) 4010 process_mod_list(&tr->mod_trace, tr->ops, mod, true); 4011 if (!list_empty(&tr->mod_notrace)) 4012 process_mod_list(&tr->mod_notrace, tr->ops, mod, false); 4013 } 4014 mutex_unlock(&trace_types_lock); 4015 4016 kfree(mod); 4017 } 4018 #endif 4019 4020 /* 4021 * We register the module command as a template to show others how 4022 * to register the a command as well. 4023 */ 4024 4025 static int 4026 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash, 4027 char *func_orig, char *cmd, char *module, int enable) 4028 { 4029 char *func; 4030 int ret; 4031 4032 /* match_records() modifies func, and we need the original */ 4033 func = kstrdup(func_orig, GFP_KERNEL); 4034 if (!func) 4035 return -ENOMEM; 4036 4037 /* 4038 * cmd == 'mod' because we only registered this func 4039 * for the 'mod' ftrace_func_command. 4040 * But if you register one func with multiple commands, 4041 * you can tell which command was used by the cmd 4042 * parameter. 4043 */ 4044 ret = match_records(hash, func, strlen(func), module); 4045 kfree(func); 4046 4047 if (!ret) 4048 return cache_mod(tr, func_orig, module, enable); 4049 if (ret < 0) 4050 return ret; 4051 return 0; 4052 } 4053 4054 static struct ftrace_func_command ftrace_mod_cmd = { 4055 .name = "mod", 4056 .func = ftrace_mod_callback, 4057 }; 4058 4059 static int __init ftrace_mod_cmd_init(void) 4060 { 4061 return register_ftrace_command(&ftrace_mod_cmd); 4062 } 4063 core_initcall(ftrace_mod_cmd_init); 4064 4065 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip, 4066 struct ftrace_ops *op, struct pt_regs *pt_regs) 4067 { 4068 struct ftrace_probe_ops *probe_ops; 4069 struct ftrace_func_probe *probe; 4070 4071 probe = container_of(op, struct ftrace_func_probe, ops); 4072 probe_ops = probe->probe_ops; 4073 4074 /* 4075 * Disable preemption for these calls to prevent a RCU grace 4076 * period. This syncs the hash iteration and freeing of items 4077 * on the hash. rcu_read_lock is too dangerous here. 4078 */ 4079 preempt_disable_notrace(); 4080 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data); 4081 preempt_enable_notrace(); 4082 } 4083 4084 struct ftrace_func_map { 4085 struct ftrace_func_entry entry; 4086 void *data; 4087 }; 4088 4089 struct ftrace_func_mapper { 4090 struct ftrace_hash hash; 4091 }; 4092 4093 /** 4094 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper 4095 * 4096 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data. 4097 */ 4098 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void) 4099 { 4100 struct ftrace_hash *hash; 4101 4102 /* 4103 * The mapper is simply a ftrace_hash, but since the entries 4104 * in the hash are not ftrace_func_entry type, we define it 4105 * as a separate structure. 4106 */ 4107 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4108 return (struct ftrace_func_mapper *)hash; 4109 } 4110 4111 /** 4112 * ftrace_func_mapper_find_ip - Find some data mapped to an ip 4113 * @mapper: The mapper that has the ip maps 4114 * @ip: the instruction pointer to find the data for 4115 * 4116 * Returns the data mapped to @ip if found otherwise NULL. The return 4117 * is actually the address of the mapper data pointer. The address is 4118 * returned for use cases where the data is no bigger than a long, and 4119 * the user can use the data pointer as its data instead of having to 4120 * allocate more memory for the reference. 4121 */ 4122 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, 4123 unsigned long ip) 4124 { 4125 struct ftrace_func_entry *entry; 4126 struct ftrace_func_map *map; 4127 4128 entry = ftrace_lookup_ip(&mapper->hash, ip); 4129 if (!entry) 4130 return NULL; 4131 4132 map = (struct ftrace_func_map *)entry; 4133 return &map->data; 4134 } 4135 4136 /** 4137 * ftrace_func_mapper_add_ip - Map some data to an ip 4138 * @mapper: The mapper that has the ip maps 4139 * @ip: The instruction pointer address to map @data to 4140 * @data: The data to map to @ip 4141 * 4142 * Returns 0 on succes otherwise an error. 4143 */ 4144 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, 4145 unsigned long ip, void *data) 4146 { 4147 struct ftrace_func_entry *entry; 4148 struct ftrace_func_map *map; 4149 4150 entry = ftrace_lookup_ip(&mapper->hash, ip); 4151 if (entry) 4152 return -EBUSY; 4153 4154 map = kmalloc(sizeof(*map), GFP_KERNEL); 4155 if (!map) 4156 return -ENOMEM; 4157 4158 map->entry.ip = ip; 4159 map->data = data; 4160 4161 __add_hash_entry(&mapper->hash, &map->entry); 4162 4163 return 0; 4164 } 4165 4166 /** 4167 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping 4168 * @mapper: The mapper that has the ip maps 4169 * @ip: The instruction pointer address to remove the data from 4170 * 4171 * Returns the data if it is found, otherwise NULL. 4172 * Note, if the data pointer is used as the data itself, (see 4173 * ftrace_func_mapper_find_ip(), then the return value may be meaningless, 4174 * if the data pointer was set to zero. 4175 */ 4176 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, 4177 unsigned long ip) 4178 { 4179 struct ftrace_func_entry *entry; 4180 struct ftrace_func_map *map; 4181 void *data; 4182 4183 entry = ftrace_lookup_ip(&mapper->hash, ip); 4184 if (!entry) 4185 return NULL; 4186 4187 map = (struct ftrace_func_map *)entry; 4188 data = map->data; 4189 4190 remove_hash_entry(&mapper->hash, entry); 4191 kfree(entry); 4192 4193 return data; 4194 } 4195 4196 /** 4197 * free_ftrace_func_mapper - free a mapping of ips and data 4198 * @mapper: The mapper that has the ip maps 4199 * @free_func: A function to be called on each data item. 4200 * 4201 * This is used to free the function mapper. The @free_func is optional 4202 * and can be used if the data needs to be freed as well. 4203 */ 4204 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, 4205 ftrace_mapper_func free_func) 4206 { 4207 struct ftrace_func_entry *entry; 4208 struct ftrace_func_map *map; 4209 struct hlist_head *hhd; 4210 int size = 1 << mapper->hash.size_bits; 4211 int i; 4212 4213 if (free_func && mapper->hash.count) { 4214 for (i = 0; i < size; i++) { 4215 hhd = &mapper->hash.buckets[i]; 4216 hlist_for_each_entry(entry, hhd, hlist) { 4217 map = (struct ftrace_func_map *)entry; 4218 free_func(map); 4219 } 4220 } 4221 } 4222 free_ftrace_hash(&mapper->hash); 4223 } 4224 4225 static void release_probe(struct ftrace_func_probe *probe) 4226 { 4227 struct ftrace_probe_ops *probe_ops; 4228 4229 mutex_lock(&ftrace_lock); 4230 4231 WARN_ON(probe->ref <= 0); 4232 4233 /* Subtract the ref that was used to protect this instance */ 4234 probe->ref--; 4235 4236 if (!probe->ref) { 4237 probe_ops = probe->probe_ops; 4238 /* 4239 * Sending zero as ip tells probe_ops to free 4240 * the probe->data itself 4241 */ 4242 if (probe_ops->free) 4243 probe_ops->free(probe_ops, probe->tr, 0, probe->data); 4244 list_del(&probe->list); 4245 kfree(probe); 4246 } 4247 mutex_unlock(&ftrace_lock); 4248 } 4249 4250 static void acquire_probe_locked(struct ftrace_func_probe *probe) 4251 { 4252 /* 4253 * Add one ref to keep it from being freed when releasing the 4254 * ftrace_lock mutex. 4255 */ 4256 probe->ref++; 4257 } 4258 4259 int 4260 register_ftrace_function_probe(char *glob, struct trace_array *tr, 4261 struct ftrace_probe_ops *probe_ops, 4262 void *data) 4263 { 4264 struct ftrace_func_entry *entry; 4265 struct ftrace_func_probe *probe; 4266 struct ftrace_hash **orig_hash; 4267 struct ftrace_hash *old_hash; 4268 struct ftrace_hash *hash; 4269 int count = 0; 4270 int size; 4271 int ret; 4272 int i; 4273 4274 if (WARN_ON(!tr)) 4275 return -EINVAL; 4276 4277 /* We do not support '!' for function probes */ 4278 if (WARN_ON(glob[0] == '!')) 4279 return -EINVAL; 4280 4281 4282 mutex_lock(&ftrace_lock); 4283 /* Check if the probe_ops is already registered */ 4284 list_for_each_entry(probe, &tr->func_probes, list) { 4285 if (probe->probe_ops == probe_ops) 4286 break; 4287 } 4288 if (&probe->list == &tr->func_probes) { 4289 probe = kzalloc(sizeof(*probe), GFP_KERNEL); 4290 if (!probe) { 4291 mutex_unlock(&ftrace_lock); 4292 return -ENOMEM; 4293 } 4294 probe->probe_ops = probe_ops; 4295 probe->ops.func = function_trace_probe_call; 4296 probe->tr = tr; 4297 ftrace_ops_init(&probe->ops); 4298 list_add(&probe->list, &tr->func_probes); 4299 } 4300 4301 acquire_probe_locked(probe); 4302 4303 mutex_unlock(&ftrace_lock); 4304 4305 mutex_lock(&probe->ops.func_hash->regex_lock); 4306 4307 orig_hash = &probe->ops.func_hash->filter_hash; 4308 old_hash = *orig_hash; 4309 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4310 4311 ret = ftrace_match_records(hash, glob, strlen(glob)); 4312 4313 /* Nothing found? */ 4314 if (!ret) 4315 ret = -EINVAL; 4316 4317 if (ret < 0) 4318 goto out; 4319 4320 size = 1 << hash->size_bits; 4321 for (i = 0; i < size; i++) { 4322 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4323 if (ftrace_lookup_ip(old_hash, entry->ip)) 4324 continue; 4325 /* 4326 * The caller might want to do something special 4327 * for each function we find. We call the callback 4328 * to give the caller an opportunity to do so. 4329 */ 4330 if (probe_ops->init) { 4331 ret = probe_ops->init(probe_ops, tr, 4332 entry->ip, data, 4333 &probe->data); 4334 if (ret < 0) { 4335 if (probe_ops->free && count) 4336 probe_ops->free(probe_ops, tr, 4337 0, probe->data); 4338 probe->data = NULL; 4339 goto out; 4340 } 4341 } 4342 count++; 4343 } 4344 } 4345 4346 mutex_lock(&ftrace_lock); 4347 4348 if (!count) { 4349 /* Nothing was added? */ 4350 ret = -EINVAL; 4351 goto out_unlock; 4352 } 4353 4354 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4355 hash, 1); 4356 if (ret < 0) 4357 goto err_unlock; 4358 4359 /* One ref for each new function traced */ 4360 probe->ref += count; 4361 4362 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED)) 4363 ret = ftrace_startup(&probe->ops, 0); 4364 4365 out_unlock: 4366 mutex_unlock(&ftrace_lock); 4367 4368 if (!ret) 4369 ret = count; 4370 out: 4371 mutex_unlock(&probe->ops.func_hash->regex_lock); 4372 free_ftrace_hash(hash); 4373 4374 release_probe(probe); 4375 4376 return ret; 4377 4378 err_unlock: 4379 if (!probe_ops->free || !count) 4380 goto out_unlock; 4381 4382 /* Failed to do the move, need to call the free functions */ 4383 for (i = 0; i < size; i++) { 4384 hlist_for_each_entry(entry, &hash->buckets[i], hlist) { 4385 if (ftrace_lookup_ip(old_hash, entry->ip)) 4386 continue; 4387 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4388 } 4389 } 4390 goto out_unlock; 4391 } 4392 4393 int 4394 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, 4395 struct ftrace_probe_ops *probe_ops) 4396 { 4397 struct ftrace_ops_hash old_hash_ops; 4398 struct ftrace_func_entry *entry; 4399 struct ftrace_func_probe *probe; 4400 struct ftrace_glob func_g; 4401 struct ftrace_hash **orig_hash; 4402 struct ftrace_hash *old_hash; 4403 struct ftrace_hash *hash = NULL; 4404 struct hlist_node *tmp; 4405 struct hlist_head hhd; 4406 char str[KSYM_SYMBOL_LEN]; 4407 int count = 0; 4408 int i, ret = -ENODEV; 4409 int size; 4410 4411 if (!glob || !strlen(glob) || !strcmp(glob, "*")) 4412 func_g.search = NULL; 4413 else { 4414 int not; 4415 4416 func_g.type = filter_parse_regex(glob, strlen(glob), 4417 &func_g.search, ¬); 4418 func_g.len = strlen(func_g.search); 4419 4420 /* we do not support '!' for function probes */ 4421 if (WARN_ON(not)) 4422 return -EINVAL; 4423 } 4424 4425 mutex_lock(&ftrace_lock); 4426 /* Check if the probe_ops is already registered */ 4427 list_for_each_entry(probe, &tr->func_probes, list) { 4428 if (probe->probe_ops == probe_ops) 4429 break; 4430 } 4431 if (&probe->list == &tr->func_probes) 4432 goto err_unlock_ftrace; 4433 4434 ret = -EINVAL; 4435 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED)) 4436 goto err_unlock_ftrace; 4437 4438 acquire_probe_locked(probe); 4439 4440 mutex_unlock(&ftrace_lock); 4441 4442 mutex_lock(&probe->ops.func_hash->regex_lock); 4443 4444 orig_hash = &probe->ops.func_hash->filter_hash; 4445 old_hash = *orig_hash; 4446 4447 if (ftrace_hash_empty(old_hash)) 4448 goto out_unlock; 4449 4450 old_hash_ops.filter_hash = old_hash; 4451 /* Probes only have filters */ 4452 old_hash_ops.notrace_hash = NULL; 4453 4454 ret = -ENOMEM; 4455 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash); 4456 if (!hash) 4457 goto out_unlock; 4458 4459 INIT_HLIST_HEAD(&hhd); 4460 4461 size = 1 << hash->size_bits; 4462 for (i = 0; i < size; i++) { 4463 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) { 4464 4465 if (func_g.search) { 4466 kallsyms_lookup(entry->ip, NULL, NULL, 4467 NULL, str); 4468 if (!ftrace_match(str, &func_g)) 4469 continue; 4470 } 4471 count++; 4472 remove_hash_entry(hash, entry); 4473 hlist_add_head(&entry->hlist, &hhd); 4474 } 4475 } 4476 4477 /* Nothing found? */ 4478 if (!count) { 4479 ret = -EINVAL; 4480 goto out_unlock; 4481 } 4482 4483 mutex_lock(&ftrace_lock); 4484 4485 WARN_ON(probe->ref < count); 4486 4487 probe->ref -= count; 4488 4489 if (ftrace_hash_empty(hash)) 4490 ftrace_shutdown(&probe->ops, 0); 4491 4492 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash, 4493 hash, 1); 4494 4495 /* still need to update the function call sites */ 4496 if (ftrace_enabled && !ftrace_hash_empty(hash)) 4497 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS, 4498 &old_hash_ops); 4499 synchronize_sched(); 4500 4501 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) { 4502 hlist_del(&entry->hlist); 4503 if (probe_ops->free) 4504 probe_ops->free(probe_ops, tr, entry->ip, probe->data); 4505 kfree(entry); 4506 } 4507 mutex_unlock(&ftrace_lock); 4508 4509 out_unlock: 4510 mutex_unlock(&probe->ops.func_hash->regex_lock); 4511 free_ftrace_hash(hash); 4512 4513 release_probe(probe); 4514 4515 return ret; 4516 4517 err_unlock_ftrace: 4518 mutex_unlock(&ftrace_lock); 4519 return ret; 4520 } 4521 4522 void clear_ftrace_function_probes(struct trace_array *tr) 4523 { 4524 struct ftrace_func_probe *probe, *n; 4525 4526 list_for_each_entry_safe(probe, n, &tr->func_probes, list) 4527 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops); 4528 } 4529 4530 static LIST_HEAD(ftrace_commands); 4531 static DEFINE_MUTEX(ftrace_cmd_mutex); 4532 4533 /* 4534 * Currently we only register ftrace commands from __init, so mark this 4535 * __init too. 4536 */ 4537 __init int register_ftrace_command(struct ftrace_func_command *cmd) 4538 { 4539 struct ftrace_func_command *p; 4540 int ret = 0; 4541 4542 mutex_lock(&ftrace_cmd_mutex); 4543 list_for_each_entry(p, &ftrace_commands, list) { 4544 if (strcmp(cmd->name, p->name) == 0) { 4545 ret = -EBUSY; 4546 goto out_unlock; 4547 } 4548 } 4549 list_add(&cmd->list, &ftrace_commands); 4550 out_unlock: 4551 mutex_unlock(&ftrace_cmd_mutex); 4552 4553 return ret; 4554 } 4555 4556 /* 4557 * Currently we only unregister ftrace commands from __init, so mark 4558 * this __init too. 4559 */ 4560 __init int unregister_ftrace_command(struct ftrace_func_command *cmd) 4561 { 4562 struct ftrace_func_command *p, *n; 4563 int ret = -ENODEV; 4564 4565 mutex_lock(&ftrace_cmd_mutex); 4566 list_for_each_entry_safe(p, n, &ftrace_commands, list) { 4567 if (strcmp(cmd->name, p->name) == 0) { 4568 ret = 0; 4569 list_del_init(&p->list); 4570 goto out_unlock; 4571 } 4572 } 4573 out_unlock: 4574 mutex_unlock(&ftrace_cmd_mutex); 4575 4576 return ret; 4577 } 4578 4579 static int ftrace_process_regex(struct ftrace_iterator *iter, 4580 char *buff, int len, int enable) 4581 { 4582 struct ftrace_hash *hash = iter->hash; 4583 struct trace_array *tr = iter->ops->private; 4584 char *func, *command, *next = buff; 4585 struct ftrace_func_command *p; 4586 int ret = -EINVAL; 4587 4588 func = strsep(&next, ":"); 4589 4590 if (!next) { 4591 ret = ftrace_match_records(hash, func, len); 4592 if (!ret) 4593 ret = -EINVAL; 4594 if (ret < 0) 4595 return ret; 4596 return 0; 4597 } 4598 4599 /* command found */ 4600 4601 command = strsep(&next, ":"); 4602 4603 mutex_lock(&ftrace_cmd_mutex); 4604 list_for_each_entry(p, &ftrace_commands, list) { 4605 if (strcmp(p->name, command) == 0) { 4606 ret = p->func(tr, hash, func, command, next, enable); 4607 goto out_unlock; 4608 } 4609 } 4610 out_unlock: 4611 mutex_unlock(&ftrace_cmd_mutex); 4612 4613 return ret; 4614 } 4615 4616 static ssize_t 4617 ftrace_regex_write(struct file *file, const char __user *ubuf, 4618 size_t cnt, loff_t *ppos, int enable) 4619 { 4620 struct ftrace_iterator *iter; 4621 struct trace_parser *parser; 4622 ssize_t ret, read; 4623 4624 if (!cnt) 4625 return 0; 4626 4627 if (file->f_mode & FMODE_READ) { 4628 struct seq_file *m = file->private_data; 4629 iter = m->private; 4630 } else 4631 iter = file->private_data; 4632 4633 if (unlikely(ftrace_disabled)) 4634 return -ENODEV; 4635 4636 /* iter->hash is a local copy, so we don't need regex_lock */ 4637 4638 parser = &iter->parser; 4639 read = trace_get_user(parser, ubuf, cnt, ppos); 4640 4641 if (read >= 0 && trace_parser_loaded(parser) && 4642 !trace_parser_cont(parser)) { 4643 ret = ftrace_process_regex(iter, parser->buffer, 4644 parser->idx, enable); 4645 trace_parser_clear(parser); 4646 if (ret < 0) 4647 goto out; 4648 } 4649 4650 ret = read; 4651 out: 4652 return ret; 4653 } 4654 4655 ssize_t 4656 ftrace_filter_write(struct file *file, const char __user *ubuf, 4657 size_t cnt, loff_t *ppos) 4658 { 4659 return ftrace_regex_write(file, ubuf, cnt, ppos, 1); 4660 } 4661 4662 ssize_t 4663 ftrace_notrace_write(struct file *file, const char __user *ubuf, 4664 size_t cnt, loff_t *ppos) 4665 { 4666 return ftrace_regex_write(file, ubuf, cnt, ppos, 0); 4667 } 4668 4669 static int 4670 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove) 4671 { 4672 struct ftrace_func_entry *entry; 4673 4674 if (!ftrace_location(ip)) 4675 return -EINVAL; 4676 4677 if (remove) { 4678 entry = ftrace_lookup_ip(hash, ip); 4679 if (!entry) 4680 return -ENOENT; 4681 free_hash_entry(hash, entry); 4682 return 0; 4683 } 4684 4685 return add_hash_entry(hash, ip); 4686 } 4687 4688 static int 4689 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len, 4690 unsigned long ip, int remove, int reset, int enable) 4691 { 4692 struct ftrace_hash **orig_hash; 4693 struct ftrace_hash *hash; 4694 int ret; 4695 4696 if (unlikely(ftrace_disabled)) 4697 return -ENODEV; 4698 4699 mutex_lock(&ops->func_hash->regex_lock); 4700 4701 if (enable) 4702 orig_hash = &ops->func_hash->filter_hash; 4703 else 4704 orig_hash = &ops->func_hash->notrace_hash; 4705 4706 if (reset) 4707 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4708 else 4709 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash); 4710 4711 if (!hash) { 4712 ret = -ENOMEM; 4713 goto out_regex_unlock; 4714 } 4715 4716 if (buf && !ftrace_match_records(hash, buf, len)) { 4717 ret = -EINVAL; 4718 goto out_regex_unlock; 4719 } 4720 if (ip) { 4721 ret = ftrace_match_addr(hash, ip, remove); 4722 if (ret < 0) 4723 goto out_regex_unlock; 4724 } 4725 4726 mutex_lock(&ftrace_lock); 4727 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable); 4728 mutex_unlock(&ftrace_lock); 4729 4730 out_regex_unlock: 4731 mutex_unlock(&ops->func_hash->regex_lock); 4732 4733 free_ftrace_hash(hash); 4734 return ret; 4735 } 4736 4737 static int 4738 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove, 4739 int reset, int enable) 4740 { 4741 return ftrace_set_hash(ops, 0, 0, ip, remove, reset, enable); 4742 } 4743 4744 /** 4745 * ftrace_set_filter_ip - set a function to filter on in ftrace by address 4746 * @ops - the ops to set the filter with 4747 * @ip - the address to add to or remove from the filter. 4748 * @remove - non zero to remove the ip from the filter 4749 * @reset - non zero to reset all filters before applying this filter. 4750 * 4751 * Filters denote which functions should be enabled when tracing is enabled 4752 * If @ip is NULL, it failes to update filter. 4753 */ 4754 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip, 4755 int remove, int reset) 4756 { 4757 ftrace_ops_init(ops); 4758 return ftrace_set_addr(ops, ip, remove, reset, 1); 4759 } 4760 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip); 4761 4762 /** 4763 * ftrace_ops_set_global_filter - setup ops to use global filters 4764 * @ops - the ops which will use the global filters 4765 * 4766 * ftrace users who need global function trace filtering should call this. 4767 * It can set the global filter only if ops were not initialized before. 4768 */ 4769 void ftrace_ops_set_global_filter(struct ftrace_ops *ops) 4770 { 4771 if (ops->flags & FTRACE_OPS_FL_INITIALIZED) 4772 return; 4773 4774 ftrace_ops_init(ops); 4775 ops->func_hash = &global_ops.local_hash; 4776 } 4777 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter); 4778 4779 static int 4780 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len, 4781 int reset, int enable) 4782 { 4783 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable); 4784 } 4785 4786 /** 4787 * ftrace_set_filter - set a function to filter on in ftrace 4788 * @ops - the ops to set the filter with 4789 * @buf - the string that holds the function filter text. 4790 * @len - the length of the string. 4791 * @reset - non zero to reset all filters before applying this filter. 4792 * 4793 * Filters denote which functions should be enabled when tracing is enabled. 4794 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 4795 */ 4796 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, 4797 int len, int reset) 4798 { 4799 ftrace_ops_init(ops); 4800 return ftrace_set_regex(ops, buf, len, reset, 1); 4801 } 4802 EXPORT_SYMBOL_GPL(ftrace_set_filter); 4803 4804 /** 4805 * ftrace_set_notrace - set a function to not trace in ftrace 4806 * @ops - the ops to set the notrace filter with 4807 * @buf - the string that holds the function notrace text. 4808 * @len - the length of the string. 4809 * @reset - non zero to reset all filters before applying this filter. 4810 * 4811 * Notrace Filters denote which functions should not be enabled when tracing 4812 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 4813 * for tracing. 4814 */ 4815 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, 4816 int len, int reset) 4817 { 4818 ftrace_ops_init(ops); 4819 return ftrace_set_regex(ops, buf, len, reset, 0); 4820 } 4821 EXPORT_SYMBOL_GPL(ftrace_set_notrace); 4822 /** 4823 * ftrace_set_global_filter - set a function to filter on with global tracers 4824 * @buf - the string that holds the function filter text. 4825 * @len - the length of the string. 4826 * @reset - non zero to reset all filters before applying this filter. 4827 * 4828 * Filters denote which functions should be enabled when tracing is enabled. 4829 * If @buf is NULL and reset is set, all functions will be enabled for tracing. 4830 */ 4831 void ftrace_set_global_filter(unsigned char *buf, int len, int reset) 4832 { 4833 ftrace_set_regex(&global_ops, buf, len, reset, 1); 4834 } 4835 EXPORT_SYMBOL_GPL(ftrace_set_global_filter); 4836 4837 /** 4838 * ftrace_set_global_notrace - set a function to not trace with global tracers 4839 * @buf - the string that holds the function notrace text. 4840 * @len - the length of the string. 4841 * @reset - non zero to reset all filters before applying this filter. 4842 * 4843 * Notrace Filters denote which functions should not be enabled when tracing 4844 * is enabled. If @buf is NULL and reset is set, all functions will be enabled 4845 * for tracing. 4846 */ 4847 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset) 4848 { 4849 ftrace_set_regex(&global_ops, buf, len, reset, 0); 4850 } 4851 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace); 4852 4853 /* 4854 * command line interface to allow users to set filters on boot up. 4855 */ 4856 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE 4857 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 4858 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata; 4859 4860 /* Used by function selftest to not test if filter is set */ 4861 bool ftrace_filter_param __initdata; 4862 4863 static int __init set_ftrace_notrace(char *str) 4864 { 4865 ftrace_filter_param = true; 4866 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE); 4867 return 1; 4868 } 4869 __setup("ftrace_notrace=", set_ftrace_notrace); 4870 4871 static int __init set_ftrace_filter(char *str) 4872 { 4873 ftrace_filter_param = true; 4874 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE); 4875 return 1; 4876 } 4877 __setup("ftrace_filter=", set_ftrace_filter); 4878 4879 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 4880 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata; 4881 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata; 4882 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer); 4883 4884 static int __init set_graph_function(char *str) 4885 { 4886 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE); 4887 return 1; 4888 } 4889 __setup("ftrace_graph_filter=", set_graph_function); 4890 4891 static int __init set_graph_notrace_function(char *str) 4892 { 4893 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE); 4894 return 1; 4895 } 4896 __setup("ftrace_graph_notrace=", set_graph_notrace_function); 4897 4898 static int __init set_graph_max_depth_function(char *str) 4899 { 4900 if (!str) 4901 return 0; 4902 fgraph_max_depth = simple_strtoul(str, NULL, 0); 4903 return 1; 4904 } 4905 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function); 4906 4907 static void __init set_ftrace_early_graph(char *buf, int enable) 4908 { 4909 int ret; 4910 char *func; 4911 struct ftrace_hash *hash; 4912 4913 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS); 4914 if (WARN_ON(!hash)) 4915 return; 4916 4917 while (buf) { 4918 func = strsep(&buf, ","); 4919 /* we allow only one expression at a time */ 4920 ret = ftrace_graph_set_hash(hash, func); 4921 if (ret) 4922 printk(KERN_DEBUG "ftrace: function %s not " 4923 "traceable\n", func); 4924 } 4925 4926 if (enable) 4927 ftrace_graph_hash = hash; 4928 else 4929 ftrace_graph_notrace_hash = hash; 4930 } 4931 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 4932 4933 void __init 4934 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable) 4935 { 4936 char *func; 4937 4938 ftrace_ops_init(ops); 4939 4940 while (buf) { 4941 func = strsep(&buf, ","); 4942 ftrace_set_regex(ops, func, strlen(func), 0, enable); 4943 } 4944 } 4945 4946 static void __init set_ftrace_early_filters(void) 4947 { 4948 if (ftrace_filter_buf[0]) 4949 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1); 4950 if (ftrace_notrace_buf[0]) 4951 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0); 4952 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 4953 if (ftrace_graph_buf[0]) 4954 set_ftrace_early_graph(ftrace_graph_buf, 1); 4955 if (ftrace_graph_notrace_buf[0]) 4956 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0); 4957 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 4958 } 4959 4960 int ftrace_regex_release(struct inode *inode, struct file *file) 4961 { 4962 struct seq_file *m = (struct seq_file *)file->private_data; 4963 struct ftrace_iterator *iter; 4964 struct ftrace_hash **orig_hash; 4965 struct trace_parser *parser; 4966 int filter_hash; 4967 int ret; 4968 4969 if (file->f_mode & FMODE_READ) { 4970 iter = m->private; 4971 seq_release(inode, file); 4972 } else 4973 iter = file->private_data; 4974 4975 parser = &iter->parser; 4976 if (trace_parser_loaded(parser)) { 4977 ftrace_match_records(iter->hash, parser->buffer, parser->idx); 4978 } 4979 4980 trace_parser_put(parser); 4981 4982 mutex_lock(&iter->ops->func_hash->regex_lock); 4983 4984 if (file->f_mode & FMODE_WRITE) { 4985 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER); 4986 4987 if (filter_hash) { 4988 orig_hash = &iter->ops->func_hash->filter_hash; 4989 if (iter->tr && !list_empty(&iter->tr->mod_trace)) 4990 iter->hash->flags |= FTRACE_HASH_FL_MOD; 4991 } else 4992 orig_hash = &iter->ops->func_hash->notrace_hash; 4993 4994 mutex_lock(&ftrace_lock); 4995 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash, 4996 iter->hash, filter_hash); 4997 mutex_unlock(&ftrace_lock); 4998 } else { 4999 /* For read only, the hash is the ops hash */ 5000 iter->hash = NULL; 5001 } 5002 5003 mutex_unlock(&iter->ops->func_hash->regex_lock); 5004 free_ftrace_hash(iter->hash); 5005 kfree(iter); 5006 5007 return 0; 5008 } 5009 5010 static const struct file_operations ftrace_avail_fops = { 5011 .open = ftrace_avail_open, 5012 .read = seq_read, 5013 .llseek = seq_lseek, 5014 .release = seq_release_private, 5015 }; 5016 5017 static const struct file_operations ftrace_enabled_fops = { 5018 .open = ftrace_enabled_open, 5019 .read = seq_read, 5020 .llseek = seq_lseek, 5021 .release = seq_release_private, 5022 }; 5023 5024 static const struct file_operations ftrace_filter_fops = { 5025 .open = ftrace_filter_open, 5026 .read = seq_read, 5027 .write = ftrace_filter_write, 5028 .llseek = tracing_lseek, 5029 .release = ftrace_regex_release, 5030 }; 5031 5032 static const struct file_operations ftrace_notrace_fops = { 5033 .open = ftrace_notrace_open, 5034 .read = seq_read, 5035 .write = ftrace_notrace_write, 5036 .llseek = tracing_lseek, 5037 .release = ftrace_regex_release, 5038 }; 5039 5040 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5041 5042 static DEFINE_MUTEX(graph_lock); 5043 5044 struct ftrace_hash *ftrace_graph_hash = EMPTY_HASH; 5045 struct ftrace_hash *ftrace_graph_notrace_hash = EMPTY_HASH; 5046 5047 enum graph_filter_type { 5048 GRAPH_FILTER_NOTRACE = 0, 5049 GRAPH_FILTER_FUNCTION, 5050 }; 5051 5052 #define FTRACE_GRAPH_EMPTY ((void *)1) 5053 5054 struct ftrace_graph_data { 5055 struct ftrace_hash *hash; 5056 struct ftrace_func_entry *entry; 5057 int idx; /* for hash table iteration */ 5058 enum graph_filter_type type; 5059 struct ftrace_hash *new_hash; 5060 const struct seq_operations *seq_ops; 5061 struct trace_parser parser; 5062 }; 5063 5064 static void * 5065 __g_next(struct seq_file *m, loff_t *pos) 5066 { 5067 struct ftrace_graph_data *fgd = m->private; 5068 struct ftrace_func_entry *entry = fgd->entry; 5069 struct hlist_head *head; 5070 int i, idx = fgd->idx; 5071 5072 if (*pos >= fgd->hash->count) 5073 return NULL; 5074 5075 if (entry) { 5076 hlist_for_each_entry_continue(entry, hlist) { 5077 fgd->entry = entry; 5078 return entry; 5079 } 5080 5081 idx++; 5082 } 5083 5084 for (i = idx; i < 1 << fgd->hash->size_bits; i++) { 5085 head = &fgd->hash->buckets[i]; 5086 hlist_for_each_entry(entry, head, hlist) { 5087 fgd->entry = entry; 5088 fgd->idx = i; 5089 return entry; 5090 } 5091 } 5092 return NULL; 5093 } 5094 5095 static void * 5096 g_next(struct seq_file *m, void *v, loff_t *pos) 5097 { 5098 (*pos)++; 5099 return __g_next(m, pos); 5100 } 5101 5102 static void *g_start(struct seq_file *m, loff_t *pos) 5103 { 5104 struct ftrace_graph_data *fgd = m->private; 5105 5106 mutex_lock(&graph_lock); 5107 5108 if (fgd->type == GRAPH_FILTER_FUNCTION) 5109 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5110 lockdep_is_held(&graph_lock)); 5111 else 5112 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5113 lockdep_is_held(&graph_lock)); 5114 5115 /* Nothing, tell g_show to print all functions are enabled */ 5116 if (ftrace_hash_empty(fgd->hash) && !*pos) 5117 return FTRACE_GRAPH_EMPTY; 5118 5119 fgd->idx = 0; 5120 fgd->entry = NULL; 5121 return __g_next(m, pos); 5122 } 5123 5124 static void g_stop(struct seq_file *m, void *p) 5125 { 5126 mutex_unlock(&graph_lock); 5127 } 5128 5129 static int g_show(struct seq_file *m, void *v) 5130 { 5131 struct ftrace_func_entry *entry = v; 5132 5133 if (!entry) 5134 return 0; 5135 5136 if (entry == FTRACE_GRAPH_EMPTY) { 5137 struct ftrace_graph_data *fgd = m->private; 5138 5139 if (fgd->type == GRAPH_FILTER_FUNCTION) 5140 seq_puts(m, "#### all functions enabled ####\n"); 5141 else 5142 seq_puts(m, "#### no functions disabled ####\n"); 5143 return 0; 5144 } 5145 5146 seq_printf(m, "%ps\n", (void *)entry->ip); 5147 5148 return 0; 5149 } 5150 5151 static const struct seq_operations ftrace_graph_seq_ops = { 5152 .start = g_start, 5153 .next = g_next, 5154 .stop = g_stop, 5155 .show = g_show, 5156 }; 5157 5158 static int 5159 __ftrace_graph_open(struct inode *inode, struct file *file, 5160 struct ftrace_graph_data *fgd) 5161 { 5162 int ret = 0; 5163 struct ftrace_hash *new_hash = NULL; 5164 5165 if (file->f_mode & FMODE_WRITE) { 5166 const int size_bits = FTRACE_HASH_DEFAULT_BITS; 5167 5168 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX)) 5169 return -ENOMEM; 5170 5171 if (file->f_flags & O_TRUNC) 5172 new_hash = alloc_ftrace_hash(size_bits); 5173 else 5174 new_hash = alloc_and_copy_ftrace_hash(size_bits, 5175 fgd->hash); 5176 if (!new_hash) { 5177 ret = -ENOMEM; 5178 goto out; 5179 } 5180 } 5181 5182 if (file->f_mode & FMODE_READ) { 5183 ret = seq_open(file, &ftrace_graph_seq_ops); 5184 if (!ret) { 5185 struct seq_file *m = file->private_data; 5186 m->private = fgd; 5187 } else { 5188 /* Failed */ 5189 free_ftrace_hash(new_hash); 5190 new_hash = NULL; 5191 } 5192 } else 5193 file->private_data = fgd; 5194 5195 out: 5196 if (ret < 0 && file->f_mode & FMODE_WRITE) 5197 trace_parser_put(&fgd->parser); 5198 5199 fgd->new_hash = new_hash; 5200 5201 /* 5202 * All uses of fgd->hash must be taken with the graph_lock 5203 * held. The graph_lock is going to be released, so force 5204 * fgd->hash to be reinitialized when it is taken again. 5205 */ 5206 fgd->hash = NULL; 5207 5208 return ret; 5209 } 5210 5211 static int 5212 ftrace_graph_open(struct inode *inode, struct file *file) 5213 { 5214 struct ftrace_graph_data *fgd; 5215 int ret; 5216 5217 if (unlikely(ftrace_disabled)) 5218 return -ENODEV; 5219 5220 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5221 if (fgd == NULL) 5222 return -ENOMEM; 5223 5224 mutex_lock(&graph_lock); 5225 5226 fgd->hash = rcu_dereference_protected(ftrace_graph_hash, 5227 lockdep_is_held(&graph_lock)); 5228 fgd->type = GRAPH_FILTER_FUNCTION; 5229 fgd->seq_ops = &ftrace_graph_seq_ops; 5230 5231 ret = __ftrace_graph_open(inode, file, fgd); 5232 if (ret < 0) 5233 kfree(fgd); 5234 5235 mutex_unlock(&graph_lock); 5236 return ret; 5237 } 5238 5239 static int 5240 ftrace_graph_notrace_open(struct inode *inode, struct file *file) 5241 { 5242 struct ftrace_graph_data *fgd; 5243 int ret; 5244 5245 if (unlikely(ftrace_disabled)) 5246 return -ENODEV; 5247 5248 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL); 5249 if (fgd == NULL) 5250 return -ENOMEM; 5251 5252 mutex_lock(&graph_lock); 5253 5254 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5255 lockdep_is_held(&graph_lock)); 5256 fgd->type = GRAPH_FILTER_NOTRACE; 5257 fgd->seq_ops = &ftrace_graph_seq_ops; 5258 5259 ret = __ftrace_graph_open(inode, file, fgd); 5260 if (ret < 0) 5261 kfree(fgd); 5262 5263 mutex_unlock(&graph_lock); 5264 return ret; 5265 } 5266 5267 static int 5268 ftrace_graph_release(struct inode *inode, struct file *file) 5269 { 5270 struct ftrace_graph_data *fgd; 5271 struct ftrace_hash *old_hash, *new_hash; 5272 struct trace_parser *parser; 5273 int ret = 0; 5274 5275 if (file->f_mode & FMODE_READ) { 5276 struct seq_file *m = file->private_data; 5277 5278 fgd = m->private; 5279 seq_release(inode, file); 5280 } else { 5281 fgd = file->private_data; 5282 } 5283 5284 5285 if (file->f_mode & FMODE_WRITE) { 5286 5287 parser = &fgd->parser; 5288 5289 if (trace_parser_loaded((parser))) { 5290 ret = ftrace_graph_set_hash(fgd->new_hash, 5291 parser->buffer); 5292 } 5293 5294 trace_parser_put(parser); 5295 5296 new_hash = __ftrace_hash_move(fgd->new_hash); 5297 if (!new_hash) { 5298 ret = -ENOMEM; 5299 goto out; 5300 } 5301 5302 mutex_lock(&graph_lock); 5303 5304 if (fgd->type == GRAPH_FILTER_FUNCTION) { 5305 old_hash = rcu_dereference_protected(ftrace_graph_hash, 5306 lockdep_is_held(&graph_lock)); 5307 rcu_assign_pointer(ftrace_graph_hash, new_hash); 5308 } else { 5309 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, 5310 lockdep_is_held(&graph_lock)); 5311 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash); 5312 } 5313 5314 mutex_unlock(&graph_lock); 5315 5316 /* Wait till all users are no longer using the old hash */ 5317 synchronize_sched(); 5318 5319 free_ftrace_hash(old_hash); 5320 } 5321 5322 out: 5323 free_ftrace_hash(fgd->new_hash); 5324 kfree(fgd); 5325 5326 return ret; 5327 } 5328 5329 static int 5330 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer) 5331 { 5332 struct ftrace_glob func_g; 5333 struct dyn_ftrace *rec; 5334 struct ftrace_page *pg; 5335 struct ftrace_func_entry *entry; 5336 int fail = 1; 5337 int not; 5338 5339 /* decode regex */ 5340 func_g.type = filter_parse_regex(buffer, strlen(buffer), 5341 &func_g.search, ¬); 5342 5343 func_g.len = strlen(func_g.search); 5344 5345 mutex_lock(&ftrace_lock); 5346 5347 if (unlikely(ftrace_disabled)) { 5348 mutex_unlock(&ftrace_lock); 5349 return -ENODEV; 5350 } 5351 5352 do_for_each_ftrace_rec(pg, rec) { 5353 5354 if (rec->flags & FTRACE_FL_DISABLED) 5355 continue; 5356 5357 if (ftrace_match_record(rec, &func_g, NULL, 0)) { 5358 entry = ftrace_lookup_ip(hash, rec->ip); 5359 5360 if (!not) { 5361 fail = 0; 5362 5363 if (entry) 5364 continue; 5365 if (add_hash_entry(hash, rec->ip) < 0) 5366 goto out; 5367 } else { 5368 if (entry) { 5369 free_hash_entry(hash, entry); 5370 fail = 0; 5371 } 5372 } 5373 } 5374 } while_for_each_ftrace_rec(); 5375 out: 5376 mutex_unlock(&ftrace_lock); 5377 5378 if (fail) 5379 return -EINVAL; 5380 5381 return 0; 5382 } 5383 5384 static ssize_t 5385 ftrace_graph_write(struct file *file, const char __user *ubuf, 5386 size_t cnt, loff_t *ppos) 5387 { 5388 ssize_t read, ret = 0; 5389 struct ftrace_graph_data *fgd = file->private_data; 5390 struct trace_parser *parser; 5391 5392 if (!cnt) 5393 return 0; 5394 5395 /* Read mode uses seq functions */ 5396 if (file->f_mode & FMODE_READ) { 5397 struct seq_file *m = file->private_data; 5398 fgd = m->private; 5399 } 5400 5401 parser = &fgd->parser; 5402 5403 read = trace_get_user(parser, ubuf, cnt, ppos); 5404 5405 if (read >= 0 && trace_parser_loaded(parser) && 5406 !trace_parser_cont(parser)) { 5407 5408 ret = ftrace_graph_set_hash(fgd->new_hash, 5409 parser->buffer); 5410 trace_parser_clear(parser); 5411 } 5412 5413 if (!ret) 5414 ret = read; 5415 5416 return ret; 5417 } 5418 5419 static const struct file_operations ftrace_graph_fops = { 5420 .open = ftrace_graph_open, 5421 .read = seq_read, 5422 .write = ftrace_graph_write, 5423 .llseek = tracing_lseek, 5424 .release = ftrace_graph_release, 5425 }; 5426 5427 static const struct file_operations ftrace_graph_notrace_fops = { 5428 .open = ftrace_graph_notrace_open, 5429 .read = seq_read, 5430 .write = ftrace_graph_write, 5431 .llseek = tracing_lseek, 5432 .release = ftrace_graph_release, 5433 }; 5434 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5435 5436 void ftrace_create_filter_files(struct ftrace_ops *ops, 5437 struct dentry *parent) 5438 { 5439 5440 trace_create_file("set_ftrace_filter", 0644, parent, 5441 ops, &ftrace_filter_fops); 5442 5443 trace_create_file("set_ftrace_notrace", 0644, parent, 5444 ops, &ftrace_notrace_fops); 5445 } 5446 5447 /* 5448 * The name "destroy_filter_files" is really a misnomer. Although 5449 * in the future, it may actualy delete the files, but this is 5450 * really intended to make sure the ops passed in are disabled 5451 * and that when this function returns, the caller is free to 5452 * free the ops. 5453 * 5454 * The "destroy" name is only to match the "create" name that this 5455 * should be paired with. 5456 */ 5457 void ftrace_destroy_filter_files(struct ftrace_ops *ops) 5458 { 5459 mutex_lock(&ftrace_lock); 5460 if (ops->flags & FTRACE_OPS_FL_ENABLED) 5461 ftrace_shutdown(ops, 0); 5462 ops->flags |= FTRACE_OPS_FL_DELETED; 5463 mutex_unlock(&ftrace_lock); 5464 } 5465 5466 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer) 5467 { 5468 5469 trace_create_file("available_filter_functions", 0444, 5470 d_tracer, NULL, &ftrace_avail_fops); 5471 5472 trace_create_file("enabled_functions", 0444, 5473 d_tracer, NULL, &ftrace_enabled_fops); 5474 5475 ftrace_create_filter_files(&global_ops, d_tracer); 5476 5477 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 5478 trace_create_file("set_graph_function", 0644, d_tracer, 5479 NULL, 5480 &ftrace_graph_fops); 5481 trace_create_file("set_graph_notrace", 0644, d_tracer, 5482 NULL, 5483 &ftrace_graph_notrace_fops); 5484 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ 5485 5486 return 0; 5487 } 5488 5489 static int ftrace_cmp_ips(const void *a, const void *b) 5490 { 5491 const unsigned long *ipa = a; 5492 const unsigned long *ipb = b; 5493 5494 if (*ipa > *ipb) 5495 return 1; 5496 if (*ipa < *ipb) 5497 return -1; 5498 return 0; 5499 } 5500 5501 static int ftrace_process_locs(struct module *mod, 5502 unsigned long *start, 5503 unsigned long *end) 5504 { 5505 struct ftrace_page *start_pg; 5506 struct ftrace_page *pg; 5507 struct dyn_ftrace *rec; 5508 unsigned long count; 5509 unsigned long *p; 5510 unsigned long addr; 5511 unsigned long flags = 0; /* Shut up gcc */ 5512 int ret = -ENOMEM; 5513 5514 count = end - start; 5515 5516 if (!count) 5517 return 0; 5518 5519 sort(start, count, sizeof(*start), 5520 ftrace_cmp_ips, NULL); 5521 5522 start_pg = ftrace_allocate_pages(count); 5523 if (!start_pg) 5524 return -ENOMEM; 5525 5526 mutex_lock(&ftrace_lock); 5527 5528 /* 5529 * Core and each module needs their own pages, as 5530 * modules will free them when they are removed. 5531 * Force a new page to be allocated for modules. 5532 */ 5533 if (!mod) { 5534 WARN_ON(ftrace_pages || ftrace_pages_start); 5535 /* First initialization */ 5536 ftrace_pages = ftrace_pages_start = start_pg; 5537 } else { 5538 if (!ftrace_pages) 5539 goto out; 5540 5541 if (WARN_ON(ftrace_pages->next)) { 5542 /* Hmm, we have free pages? */ 5543 while (ftrace_pages->next) 5544 ftrace_pages = ftrace_pages->next; 5545 } 5546 5547 ftrace_pages->next = start_pg; 5548 } 5549 5550 p = start; 5551 pg = start_pg; 5552 while (p < end) { 5553 addr = ftrace_call_adjust(*p++); 5554 /* 5555 * Some architecture linkers will pad between 5556 * the different mcount_loc sections of different 5557 * object files to satisfy alignments. 5558 * Skip any NULL pointers. 5559 */ 5560 if (!addr) 5561 continue; 5562 5563 if (pg->index == pg->size) { 5564 /* We should have allocated enough */ 5565 if (WARN_ON(!pg->next)) 5566 break; 5567 pg = pg->next; 5568 } 5569 5570 rec = &pg->records[pg->index++]; 5571 rec->ip = addr; 5572 } 5573 5574 /* We should have used all pages */ 5575 WARN_ON(pg->next); 5576 5577 /* Assign the last page to ftrace_pages */ 5578 ftrace_pages = pg; 5579 5580 /* 5581 * We only need to disable interrupts on start up 5582 * because we are modifying code that an interrupt 5583 * may execute, and the modification is not atomic. 5584 * But for modules, nothing runs the code we modify 5585 * until we are finished with it, and there's no 5586 * reason to cause large interrupt latencies while we do it. 5587 */ 5588 if (!mod) 5589 local_irq_save(flags); 5590 ftrace_update_code(mod, start_pg); 5591 if (!mod) 5592 local_irq_restore(flags); 5593 ret = 0; 5594 out: 5595 mutex_unlock(&ftrace_lock); 5596 5597 return ret; 5598 } 5599 5600 struct ftrace_mod_func { 5601 struct list_head list; 5602 char *name; 5603 unsigned long ip; 5604 unsigned int size; 5605 }; 5606 5607 struct ftrace_mod_map { 5608 struct rcu_head rcu; 5609 struct list_head list; 5610 struct module *mod; 5611 unsigned long start_addr; 5612 unsigned long end_addr; 5613 struct list_head funcs; 5614 unsigned int num_funcs; 5615 }; 5616 5617 #ifdef CONFIG_MODULES 5618 5619 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next) 5620 5621 static LIST_HEAD(ftrace_mod_maps); 5622 5623 static int referenced_filters(struct dyn_ftrace *rec) 5624 { 5625 struct ftrace_ops *ops; 5626 int cnt = 0; 5627 5628 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) { 5629 if (ops_references_rec(ops, rec)) 5630 cnt++; 5631 } 5632 5633 return cnt; 5634 } 5635 5636 static void 5637 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash) 5638 { 5639 struct ftrace_func_entry *entry; 5640 struct dyn_ftrace *rec; 5641 int i; 5642 5643 if (ftrace_hash_empty(hash)) 5644 return; 5645 5646 for (i = 0; i < pg->index; i++) { 5647 rec = &pg->records[i]; 5648 entry = __ftrace_lookup_ip(hash, rec->ip); 5649 /* 5650 * Do not allow this rec to match again. 5651 * Yeah, it may waste some memory, but will be removed 5652 * if/when the hash is modified again. 5653 */ 5654 if (entry) 5655 entry->ip = 0; 5656 } 5657 } 5658 5659 /* Clear any records from hashs */ 5660 static void clear_mod_from_hashes(struct ftrace_page *pg) 5661 { 5662 struct trace_array *tr; 5663 5664 mutex_lock(&trace_types_lock); 5665 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 5666 if (!tr->ops || !tr->ops->func_hash) 5667 continue; 5668 mutex_lock(&tr->ops->func_hash->regex_lock); 5669 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash); 5670 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash); 5671 mutex_unlock(&tr->ops->func_hash->regex_lock); 5672 } 5673 mutex_unlock(&trace_types_lock); 5674 } 5675 5676 static void ftrace_free_mod_map(struct rcu_head *rcu) 5677 { 5678 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu); 5679 struct ftrace_mod_func *mod_func; 5680 struct ftrace_mod_func *n; 5681 5682 /* All the contents of mod_map are now not visible to readers */ 5683 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) { 5684 kfree(mod_func->name); 5685 list_del(&mod_func->list); 5686 kfree(mod_func); 5687 } 5688 5689 kfree(mod_map); 5690 } 5691 5692 void ftrace_release_mod(struct module *mod) 5693 { 5694 struct ftrace_mod_map *mod_map; 5695 struct ftrace_mod_map *n; 5696 struct dyn_ftrace *rec; 5697 struct ftrace_page **last_pg; 5698 struct ftrace_page *tmp_page = NULL; 5699 struct ftrace_page *pg; 5700 int order; 5701 5702 mutex_lock(&ftrace_lock); 5703 5704 if (ftrace_disabled) 5705 goto out_unlock; 5706 5707 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) { 5708 if (mod_map->mod == mod) { 5709 list_del_rcu(&mod_map->list); 5710 call_rcu_sched(&mod_map->rcu, ftrace_free_mod_map); 5711 break; 5712 } 5713 } 5714 5715 /* 5716 * Each module has its own ftrace_pages, remove 5717 * them from the list. 5718 */ 5719 last_pg = &ftrace_pages_start; 5720 for (pg = ftrace_pages_start; pg; pg = *last_pg) { 5721 rec = &pg->records[0]; 5722 if (within_module_core(rec->ip, mod) || 5723 within_module_init(rec->ip, mod)) { 5724 /* 5725 * As core pages are first, the first 5726 * page should never be a module page. 5727 */ 5728 if (WARN_ON(pg == ftrace_pages_start)) 5729 goto out_unlock; 5730 5731 /* Check if we are deleting the last page */ 5732 if (pg == ftrace_pages) 5733 ftrace_pages = next_to_ftrace_page(last_pg); 5734 5735 ftrace_update_tot_cnt -= pg->index; 5736 *last_pg = pg->next; 5737 5738 pg->next = tmp_page; 5739 tmp_page = pg; 5740 } else 5741 last_pg = &pg->next; 5742 } 5743 out_unlock: 5744 mutex_unlock(&ftrace_lock); 5745 5746 for (pg = tmp_page; pg; pg = tmp_page) { 5747 5748 /* Needs to be called outside of ftrace_lock */ 5749 clear_mod_from_hashes(pg); 5750 5751 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 5752 free_pages((unsigned long)pg->records, order); 5753 tmp_page = pg->next; 5754 kfree(pg); 5755 } 5756 } 5757 5758 void ftrace_module_enable(struct module *mod) 5759 { 5760 struct dyn_ftrace *rec; 5761 struct ftrace_page *pg; 5762 5763 mutex_lock(&ftrace_lock); 5764 5765 if (ftrace_disabled) 5766 goto out_unlock; 5767 5768 /* 5769 * If the tracing is enabled, go ahead and enable the record. 5770 * 5771 * The reason not to enable the record immediatelly is the 5772 * inherent check of ftrace_make_nop/ftrace_make_call for 5773 * correct previous instructions. Making first the NOP 5774 * conversion puts the module to the correct state, thus 5775 * passing the ftrace_make_call check. 5776 * 5777 * We also delay this to after the module code already set the 5778 * text to read-only, as we now need to set it back to read-write 5779 * so that we can modify the text. 5780 */ 5781 if (ftrace_start_up) 5782 ftrace_arch_code_modify_prepare(); 5783 5784 do_for_each_ftrace_rec(pg, rec) { 5785 int cnt; 5786 /* 5787 * do_for_each_ftrace_rec() is a double loop. 5788 * module text shares the pg. If a record is 5789 * not part of this module, then skip this pg, 5790 * which the "break" will do. 5791 */ 5792 if (!within_module_core(rec->ip, mod) && 5793 !within_module_init(rec->ip, mod)) 5794 break; 5795 5796 cnt = 0; 5797 5798 /* 5799 * When adding a module, we need to check if tracers are 5800 * currently enabled and if they are, and can trace this record, 5801 * we need to enable the module functions as well as update the 5802 * reference counts for those function records. 5803 */ 5804 if (ftrace_start_up) 5805 cnt += referenced_filters(rec); 5806 5807 /* This clears FTRACE_FL_DISABLED */ 5808 rec->flags = cnt; 5809 5810 if (ftrace_start_up && cnt) { 5811 int failed = __ftrace_replace_code(rec, 1); 5812 if (failed) { 5813 ftrace_bug(failed, rec); 5814 goto out_loop; 5815 } 5816 } 5817 5818 } while_for_each_ftrace_rec(); 5819 5820 out_loop: 5821 if (ftrace_start_up) 5822 ftrace_arch_code_modify_post_process(); 5823 5824 out_unlock: 5825 mutex_unlock(&ftrace_lock); 5826 5827 process_cached_mods(mod->name); 5828 } 5829 5830 void ftrace_module_init(struct module *mod) 5831 { 5832 if (ftrace_disabled || !mod->num_ftrace_callsites) 5833 return; 5834 5835 ftrace_process_locs(mod, mod->ftrace_callsites, 5836 mod->ftrace_callsites + mod->num_ftrace_callsites); 5837 } 5838 5839 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 5840 struct dyn_ftrace *rec) 5841 { 5842 struct ftrace_mod_func *mod_func; 5843 unsigned long symsize; 5844 unsigned long offset; 5845 char str[KSYM_SYMBOL_LEN]; 5846 char *modname; 5847 const char *ret; 5848 5849 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str); 5850 if (!ret) 5851 return; 5852 5853 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL); 5854 if (!mod_func) 5855 return; 5856 5857 mod_func->name = kstrdup(str, GFP_KERNEL); 5858 if (!mod_func->name) { 5859 kfree(mod_func); 5860 return; 5861 } 5862 5863 mod_func->ip = rec->ip - offset; 5864 mod_func->size = symsize; 5865 5866 mod_map->num_funcs++; 5867 5868 list_add_rcu(&mod_func->list, &mod_map->funcs); 5869 } 5870 5871 static struct ftrace_mod_map * 5872 allocate_ftrace_mod_map(struct module *mod, 5873 unsigned long start, unsigned long end) 5874 { 5875 struct ftrace_mod_map *mod_map; 5876 5877 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL); 5878 if (!mod_map) 5879 return NULL; 5880 5881 mod_map->mod = mod; 5882 mod_map->start_addr = start; 5883 mod_map->end_addr = end; 5884 mod_map->num_funcs = 0; 5885 5886 INIT_LIST_HEAD_RCU(&mod_map->funcs); 5887 5888 list_add_rcu(&mod_map->list, &ftrace_mod_maps); 5889 5890 return mod_map; 5891 } 5892 5893 static const char * 5894 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map, 5895 unsigned long addr, unsigned long *size, 5896 unsigned long *off, char *sym) 5897 { 5898 struct ftrace_mod_func *found_func = NULL; 5899 struct ftrace_mod_func *mod_func; 5900 5901 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 5902 if (addr >= mod_func->ip && 5903 addr < mod_func->ip + mod_func->size) { 5904 found_func = mod_func; 5905 break; 5906 } 5907 } 5908 5909 if (found_func) { 5910 if (size) 5911 *size = found_func->size; 5912 if (off) 5913 *off = addr - found_func->ip; 5914 if (sym) 5915 strlcpy(sym, found_func->name, KSYM_NAME_LEN); 5916 5917 return found_func->name; 5918 } 5919 5920 return NULL; 5921 } 5922 5923 const char * 5924 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size, 5925 unsigned long *off, char **modname, char *sym) 5926 { 5927 struct ftrace_mod_map *mod_map; 5928 const char *ret = NULL; 5929 5930 /* mod_map is freed via call_rcu_sched() */ 5931 preempt_disable(); 5932 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 5933 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym); 5934 if (ret) { 5935 if (modname) 5936 *modname = mod_map->mod->name; 5937 break; 5938 } 5939 } 5940 preempt_enable(); 5941 5942 return ret; 5943 } 5944 5945 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value, 5946 char *type, char *name, 5947 char *module_name, int *exported) 5948 { 5949 struct ftrace_mod_map *mod_map; 5950 struct ftrace_mod_func *mod_func; 5951 5952 preempt_disable(); 5953 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) { 5954 5955 if (symnum >= mod_map->num_funcs) { 5956 symnum -= mod_map->num_funcs; 5957 continue; 5958 } 5959 5960 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) { 5961 if (symnum > 1) { 5962 symnum--; 5963 continue; 5964 } 5965 5966 *value = mod_func->ip; 5967 *type = 'T'; 5968 strlcpy(name, mod_func->name, KSYM_NAME_LEN); 5969 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN); 5970 *exported = 1; 5971 preempt_enable(); 5972 return 0; 5973 } 5974 WARN_ON(1); 5975 break; 5976 } 5977 preempt_enable(); 5978 return -ERANGE; 5979 } 5980 5981 #else 5982 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map, 5983 struct dyn_ftrace *rec) { } 5984 static inline struct ftrace_mod_map * 5985 allocate_ftrace_mod_map(struct module *mod, 5986 unsigned long start, unsigned long end) 5987 { 5988 return NULL; 5989 } 5990 #endif /* CONFIG_MODULES */ 5991 5992 struct ftrace_init_func { 5993 struct list_head list; 5994 unsigned long ip; 5995 }; 5996 5997 /* Clear any init ips from hashes */ 5998 static void 5999 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash) 6000 { 6001 struct ftrace_func_entry *entry; 6002 6003 if (ftrace_hash_empty(hash)) 6004 return; 6005 6006 entry = __ftrace_lookup_ip(hash, func->ip); 6007 6008 /* 6009 * Do not allow this rec to match again. 6010 * Yeah, it may waste some memory, but will be removed 6011 * if/when the hash is modified again. 6012 */ 6013 if (entry) 6014 entry->ip = 0; 6015 } 6016 6017 static void 6018 clear_func_from_hashes(struct ftrace_init_func *func) 6019 { 6020 struct trace_array *tr; 6021 6022 mutex_lock(&trace_types_lock); 6023 list_for_each_entry(tr, &ftrace_trace_arrays, list) { 6024 if (!tr->ops || !tr->ops->func_hash) 6025 continue; 6026 mutex_lock(&tr->ops->func_hash->regex_lock); 6027 clear_func_from_hash(func, tr->ops->func_hash->filter_hash); 6028 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash); 6029 mutex_unlock(&tr->ops->func_hash->regex_lock); 6030 } 6031 mutex_unlock(&trace_types_lock); 6032 } 6033 6034 static void add_to_clear_hash_list(struct list_head *clear_list, 6035 struct dyn_ftrace *rec) 6036 { 6037 struct ftrace_init_func *func; 6038 6039 func = kmalloc(sizeof(*func), GFP_KERNEL); 6040 if (!func) { 6041 WARN_ONCE(1, "alloc failure, ftrace filter could be stale\n"); 6042 return; 6043 } 6044 6045 func->ip = rec->ip; 6046 list_add(&func->list, clear_list); 6047 } 6048 6049 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr) 6050 { 6051 unsigned long start = (unsigned long)(start_ptr); 6052 unsigned long end = (unsigned long)(end_ptr); 6053 struct ftrace_page **last_pg = &ftrace_pages_start; 6054 struct ftrace_page *pg; 6055 struct dyn_ftrace *rec; 6056 struct dyn_ftrace key; 6057 struct ftrace_mod_map *mod_map = NULL; 6058 struct ftrace_init_func *func, *func_next; 6059 struct list_head clear_hash; 6060 int order; 6061 6062 INIT_LIST_HEAD(&clear_hash); 6063 6064 key.ip = start; 6065 key.flags = end; /* overload flags, as it is unsigned long */ 6066 6067 mutex_lock(&ftrace_lock); 6068 6069 /* 6070 * If we are freeing module init memory, then check if 6071 * any tracer is active. If so, we need to save a mapping of 6072 * the module functions being freed with the address. 6073 */ 6074 if (mod && ftrace_ops_list != &ftrace_list_end) 6075 mod_map = allocate_ftrace_mod_map(mod, start, end); 6076 6077 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) { 6078 if (end < pg->records[0].ip || 6079 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE)) 6080 continue; 6081 again: 6082 rec = bsearch(&key, pg->records, pg->index, 6083 sizeof(struct dyn_ftrace), 6084 ftrace_cmp_recs); 6085 if (!rec) 6086 continue; 6087 6088 /* rec will be cleared from hashes after ftrace_lock unlock */ 6089 add_to_clear_hash_list(&clear_hash, rec); 6090 6091 if (mod_map) 6092 save_ftrace_mod_rec(mod_map, rec); 6093 6094 pg->index--; 6095 ftrace_update_tot_cnt--; 6096 if (!pg->index) { 6097 *last_pg = pg->next; 6098 order = get_count_order(pg->size / ENTRIES_PER_PAGE); 6099 free_pages((unsigned long)pg->records, order); 6100 kfree(pg); 6101 pg = container_of(last_pg, struct ftrace_page, next); 6102 if (!(*last_pg)) 6103 ftrace_pages = pg; 6104 continue; 6105 } 6106 memmove(rec, rec + 1, 6107 (pg->index - (rec - pg->records)) * sizeof(*rec)); 6108 /* More than one function may be in this block */ 6109 goto again; 6110 } 6111 mutex_unlock(&ftrace_lock); 6112 6113 list_for_each_entry_safe(func, func_next, &clear_hash, list) { 6114 clear_func_from_hashes(func); 6115 kfree(func); 6116 } 6117 } 6118 6119 void __init ftrace_free_init_mem(void) 6120 { 6121 void *start = (void *)(&__init_begin); 6122 void *end = (void *)(&__init_end); 6123 6124 ftrace_free_mem(NULL, start, end); 6125 } 6126 6127 void __init ftrace_init(void) 6128 { 6129 extern unsigned long __start_mcount_loc[]; 6130 extern unsigned long __stop_mcount_loc[]; 6131 unsigned long count, flags; 6132 int ret; 6133 6134 local_irq_save(flags); 6135 ret = ftrace_dyn_arch_init(); 6136 local_irq_restore(flags); 6137 if (ret) 6138 goto failed; 6139 6140 count = __stop_mcount_loc - __start_mcount_loc; 6141 if (!count) { 6142 pr_info("ftrace: No functions to be traced?\n"); 6143 goto failed; 6144 } 6145 6146 pr_info("ftrace: allocating %ld entries in %ld pages\n", 6147 count, count / ENTRIES_PER_PAGE + 1); 6148 6149 last_ftrace_enabled = ftrace_enabled = 1; 6150 6151 ret = ftrace_process_locs(NULL, 6152 __start_mcount_loc, 6153 __stop_mcount_loc); 6154 6155 set_ftrace_early_filters(); 6156 6157 return; 6158 failed: 6159 ftrace_disabled = 1; 6160 } 6161 6162 /* Do nothing if arch does not support this */ 6163 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops) 6164 { 6165 } 6166 6167 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6168 { 6169 arch_ftrace_update_trampoline(ops); 6170 } 6171 6172 void ftrace_init_trace_array(struct trace_array *tr) 6173 { 6174 INIT_LIST_HEAD(&tr->func_probes); 6175 INIT_LIST_HEAD(&tr->mod_trace); 6176 INIT_LIST_HEAD(&tr->mod_notrace); 6177 } 6178 #else 6179 6180 static struct ftrace_ops global_ops = { 6181 .func = ftrace_stub, 6182 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6183 FTRACE_OPS_FL_INITIALIZED | 6184 FTRACE_OPS_FL_PID, 6185 }; 6186 6187 static int __init ftrace_nodyn_init(void) 6188 { 6189 ftrace_enabled = 1; 6190 return 0; 6191 } 6192 core_initcall(ftrace_nodyn_init); 6193 6194 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; } 6195 static inline void ftrace_startup_enable(int command) { } 6196 static inline void ftrace_startup_all(int command) { } 6197 /* Keep as macros so we do not need to define the commands */ 6198 # define ftrace_startup(ops, command) \ 6199 ({ \ 6200 int ___ret = __register_ftrace_function(ops); \ 6201 if (!___ret) \ 6202 (ops)->flags |= FTRACE_OPS_FL_ENABLED; \ 6203 ___ret; \ 6204 }) 6205 # define ftrace_shutdown(ops, command) \ 6206 ({ \ 6207 int ___ret = __unregister_ftrace_function(ops); \ 6208 if (!___ret) \ 6209 (ops)->flags &= ~FTRACE_OPS_FL_ENABLED; \ 6210 ___ret; \ 6211 }) 6212 6213 # define ftrace_startup_sysctl() do { } while (0) 6214 # define ftrace_shutdown_sysctl() do { } while (0) 6215 6216 static inline int 6217 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs) 6218 { 6219 return 1; 6220 } 6221 6222 static void ftrace_update_trampoline(struct ftrace_ops *ops) 6223 { 6224 } 6225 6226 #endif /* CONFIG_DYNAMIC_FTRACE */ 6227 6228 __init void ftrace_init_global_array_ops(struct trace_array *tr) 6229 { 6230 tr->ops = &global_ops; 6231 tr->ops->private = tr; 6232 ftrace_init_trace_array(tr); 6233 } 6234 6235 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func) 6236 { 6237 /* If we filter on pids, update to use the pid function */ 6238 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) { 6239 if (WARN_ON(tr->ops->func != ftrace_stub)) 6240 printk("ftrace ops had %pS for function\n", 6241 tr->ops->func); 6242 } 6243 tr->ops->func = func; 6244 tr->ops->private = tr; 6245 } 6246 6247 void ftrace_reset_array_ops(struct trace_array *tr) 6248 { 6249 tr->ops->func = ftrace_stub; 6250 } 6251 6252 static inline void 6253 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6254 struct ftrace_ops *ignored, struct pt_regs *regs) 6255 { 6256 struct ftrace_ops *op; 6257 int bit; 6258 6259 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6260 if (bit < 0) 6261 return; 6262 6263 /* 6264 * Some of the ops may be dynamically allocated, 6265 * they must be freed after a synchronize_sched(). 6266 */ 6267 preempt_disable_notrace(); 6268 6269 do_for_each_ftrace_op(op, ftrace_ops_list) { 6270 /* 6271 * Check the following for each ops before calling their func: 6272 * if RCU flag is set, then rcu_is_watching() must be true 6273 * if PER_CPU is set, then ftrace_function_local_disable() 6274 * must be false 6275 * Otherwise test if the ip matches the ops filter 6276 * 6277 * If any of the above fails then the op->func() is not executed. 6278 */ 6279 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) && 6280 ftrace_ops_test(op, ip, regs)) { 6281 if (FTRACE_WARN_ON(!op->func)) { 6282 pr_warn("op=%p %pS\n", op, op); 6283 goto out; 6284 } 6285 op->func(ip, parent_ip, op, regs); 6286 } 6287 } while_for_each_ftrace_op(op); 6288 out: 6289 preempt_enable_notrace(); 6290 trace_clear_recursion(bit); 6291 } 6292 6293 /* 6294 * Some archs only support passing ip and parent_ip. Even though 6295 * the list function ignores the op parameter, we do not want any 6296 * C side effects, where a function is called without the caller 6297 * sending a third parameter. 6298 * Archs are to support both the regs and ftrace_ops at the same time. 6299 * If they support ftrace_ops, it is assumed they support regs. 6300 * If call backs want to use regs, they must either check for regs 6301 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS. 6302 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved. 6303 * An architecture can pass partial regs with ftrace_ops and still 6304 * set the ARCH_SUPPORTS_FTRACE_OPS. 6305 */ 6306 #if ARCH_SUPPORTS_FTRACE_OPS 6307 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip, 6308 struct ftrace_ops *op, struct pt_regs *regs) 6309 { 6310 __ftrace_ops_list_func(ip, parent_ip, NULL, regs); 6311 } 6312 #else 6313 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip) 6314 { 6315 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL); 6316 } 6317 #endif 6318 6319 /* 6320 * If there's only one function registered but it does not support 6321 * recursion, needs RCU protection and/or requires per cpu handling, then 6322 * this function will be called by the mcount trampoline. 6323 */ 6324 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip, 6325 struct ftrace_ops *op, struct pt_regs *regs) 6326 { 6327 int bit; 6328 6329 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching()) 6330 return; 6331 6332 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX); 6333 if (bit < 0) 6334 return; 6335 6336 preempt_disable_notrace(); 6337 6338 op->func(ip, parent_ip, op, regs); 6339 6340 preempt_enable_notrace(); 6341 trace_clear_recursion(bit); 6342 } 6343 6344 /** 6345 * ftrace_ops_get_func - get the function a trampoline should call 6346 * @ops: the ops to get the function for 6347 * 6348 * Normally the mcount trampoline will call the ops->func, but there 6349 * are times that it should not. For example, if the ops does not 6350 * have its own recursion protection, then it should call the 6351 * ftrace_ops_assist_func() instead. 6352 * 6353 * Returns the function that the trampoline should call for @ops. 6354 */ 6355 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops) 6356 { 6357 /* 6358 * If the function does not handle recursion, needs to be RCU safe, 6359 * or does per cpu logic, then we need to call the assist handler. 6360 */ 6361 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) || 6362 ops->flags & FTRACE_OPS_FL_RCU) 6363 return ftrace_ops_assist_func; 6364 6365 return ops->func; 6366 } 6367 6368 static void 6369 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt, 6370 struct task_struct *prev, struct task_struct *next) 6371 { 6372 struct trace_array *tr = data; 6373 struct trace_pid_list *pid_list; 6374 6375 pid_list = rcu_dereference_sched(tr->function_pids); 6376 6377 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 6378 trace_ignore_this_task(pid_list, next)); 6379 } 6380 6381 static void 6382 ftrace_pid_follow_sched_process_fork(void *data, 6383 struct task_struct *self, 6384 struct task_struct *task) 6385 { 6386 struct trace_pid_list *pid_list; 6387 struct trace_array *tr = data; 6388 6389 pid_list = rcu_dereference_sched(tr->function_pids); 6390 trace_filter_add_remove_task(pid_list, self, task); 6391 } 6392 6393 static void 6394 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task) 6395 { 6396 struct trace_pid_list *pid_list; 6397 struct trace_array *tr = data; 6398 6399 pid_list = rcu_dereference_sched(tr->function_pids); 6400 trace_filter_add_remove_task(pid_list, NULL, task); 6401 } 6402 6403 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) 6404 { 6405 if (enable) { 6406 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6407 tr); 6408 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6409 tr); 6410 } else { 6411 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork, 6412 tr); 6413 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit, 6414 tr); 6415 } 6416 } 6417 6418 static void clear_ftrace_pids(struct trace_array *tr) 6419 { 6420 struct trace_pid_list *pid_list; 6421 int cpu; 6422 6423 pid_list = rcu_dereference_protected(tr->function_pids, 6424 lockdep_is_held(&ftrace_lock)); 6425 if (!pid_list) 6426 return; 6427 6428 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6429 6430 for_each_possible_cpu(cpu) 6431 per_cpu_ptr(tr->trace_buffer.data, cpu)->ftrace_ignore_pid = false; 6432 6433 rcu_assign_pointer(tr->function_pids, NULL); 6434 6435 /* Wait till all users are no longer using pid filtering */ 6436 synchronize_sched(); 6437 6438 trace_free_pid_list(pid_list); 6439 } 6440 6441 void ftrace_clear_pids(struct trace_array *tr) 6442 { 6443 mutex_lock(&ftrace_lock); 6444 6445 clear_ftrace_pids(tr); 6446 6447 mutex_unlock(&ftrace_lock); 6448 } 6449 6450 static void ftrace_pid_reset(struct trace_array *tr) 6451 { 6452 mutex_lock(&ftrace_lock); 6453 clear_ftrace_pids(tr); 6454 6455 ftrace_update_pid_func(); 6456 ftrace_startup_all(0); 6457 6458 mutex_unlock(&ftrace_lock); 6459 } 6460 6461 /* Greater than any max PID */ 6462 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1) 6463 6464 static void *fpid_start(struct seq_file *m, loff_t *pos) 6465 __acquires(RCU) 6466 { 6467 struct trace_pid_list *pid_list; 6468 struct trace_array *tr = m->private; 6469 6470 mutex_lock(&ftrace_lock); 6471 rcu_read_lock_sched(); 6472 6473 pid_list = rcu_dereference_sched(tr->function_pids); 6474 6475 if (!pid_list) 6476 return !(*pos) ? FTRACE_NO_PIDS : NULL; 6477 6478 return trace_pid_start(pid_list, pos); 6479 } 6480 6481 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos) 6482 { 6483 struct trace_array *tr = m->private; 6484 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids); 6485 6486 if (v == FTRACE_NO_PIDS) 6487 return NULL; 6488 6489 return trace_pid_next(pid_list, v, pos); 6490 } 6491 6492 static void fpid_stop(struct seq_file *m, void *p) 6493 __releases(RCU) 6494 { 6495 rcu_read_unlock_sched(); 6496 mutex_unlock(&ftrace_lock); 6497 } 6498 6499 static int fpid_show(struct seq_file *m, void *v) 6500 { 6501 if (v == FTRACE_NO_PIDS) { 6502 seq_puts(m, "no pid\n"); 6503 return 0; 6504 } 6505 6506 return trace_pid_show(m, v); 6507 } 6508 6509 static const struct seq_operations ftrace_pid_sops = { 6510 .start = fpid_start, 6511 .next = fpid_next, 6512 .stop = fpid_stop, 6513 .show = fpid_show, 6514 }; 6515 6516 static int 6517 ftrace_pid_open(struct inode *inode, struct file *file) 6518 { 6519 struct trace_array *tr = inode->i_private; 6520 struct seq_file *m; 6521 int ret = 0; 6522 6523 if (trace_array_get(tr) < 0) 6524 return -ENODEV; 6525 6526 if ((file->f_mode & FMODE_WRITE) && 6527 (file->f_flags & O_TRUNC)) 6528 ftrace_pid_reset(tr); 6529 6530 ret = seq_open(file, &ftrace_pid_sops); 6531 if (ret < 0) { 6532 trace_array_put(tr); 6533 } else { 6534 m = file->private_data; 6535 /* copy tr over to seq ops */ 6536 m->private = tr; 6537 } 6538 6539 return ret; 6540 } 6541 6542 static void ignore_task_cpu(void *data) 6543 { 6544 struct trace_array *tr = data; 6545 struct trace_pid_list *pid_list; 6546 6547 /* 6548 * This function is called by on_each_cpu() while the 6549 * event_mutex is held. 6550 */ 6551 pid_list = rcu_dereference_protected(tr->function_pids, 6552 mutex_is_locked(&ftrace_lock)); 6553 6554 this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid, 6555 trace_ignore_this_task(pid_list, current)); 6556 } 6557 6558 static ssize_t 6559 ftrace_pid_write(struct file *filp, const char __user *ubuf, 6560 size_t cnt, loff_t *ppos) 6561 { 6562 struct seq_file *m = filp->private_data; 6563 struct trace_array *tr = m->private; 6564 struct trace_pid_list *filtered_pids = NULL; 6565 struct trace_pid_list *pid_list; 6566 ssize_t ret; 6567 6568 if (!cnt) 6569 return 0; 6570 6571 mutex_lock(&ftrace_lock); 6572 6573 filtered_pids = rcu_dereference_protected(tr->function_pids, 6574 lockdep_is_held(&ftrace_lock)); 6575 6576 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); 6577 if (ret < 0) 6578 goto out; 6579 6580 rcu_assign_pointer(tr->function_pids, pid_list); 6581 6582 if (filtered_pids) { 6583 synchronize_sched(); 6584 trace_free_pid_list(filtered_pids); 6585 } else if (pid_list) { 6586 /* Register a probe to set whether to ignore the tracing of a task */ 6587 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr); 6588 } 6589 6590 /* 6591 * Ignoring of pids is done at task switch. But we have to 6592 * check for those tasks that are currently running. 6593 * Always do this in case a pid was appended or removed. 6594 */ 6595 on_each_cpu(ignore_task_cpu, tr, 1); 6596 6597 ftrace_update_pid_func(); 6598 ftrace_startup_all(0); 6599 out: 6600 mutex_unlock(&ftrace_lock); 6601 6602 if (ret > 0) 6603 *ppos += ret; 6604 6605 return ret; 6606 } 6607 6608 static int 6609 ftrace_pid_release(struct inode *inode, struct file *file) 6610 { 6611 struct trace_array *tr = inode->i_private; 6612 6613 trace_array_put(tr); 6614 6615 return seq_release(inode, file); 6616 } 6617 6618 static const struct file_operations ftrace_pid_fops = { 6619 .open = ftrace_pid_open, 6620 .write = ftrace_pid_write, 6621 .read = seq_read, 6622 .llseek = tracing_lseek, 6623 .release = ftrace_pid_release, 6624 }; 6625 6626 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer) 6627 { 6628 trace_create_file("set_ftrace_pid", 0644, d_tracer, 6629 tr, &ftrace_pid_fops); 6630 } 6631 6632 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr, 6633 struct dentry *d_tracer) 6634 { 6635 /* Only the top level directory has the dyn_tracefs and profile */ 6636 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); 6637 6638 ftrace_init_dyn_tracefs(d_tracer); 6639 ftrace_profile_tracefs(d_tracer); 6640 } 6641 6642 /** 6643 * ftrace_kill - kill ftrace 6644 * 6645 * This function should be used by panic code. It stops ftrace 6646 * but in a not so nice way. If you need to simply kill ftrace 6647 * from a non-atomic section, use ftrace_kill. 6648 */ 6649 void ftrace_kill(void) 6650 { 6651 ftrace_disabled = 1; 6652 ftrace_enabled = 0; 6653 ftrace_trace_function = ftrace_stub; 6654 } 6655 6656 /** 6657 * Test if ftrace is dead or not. 6658 */ 6659 int ftrace_is_dead(void) 6660 { 6661 return ftrace_disabled; 6662 } 6663 6664 /** 6665 * register_ftrace_function - register a function for profiling 6666 * @ops - ops structure that holds the function for profiling. 6667 * 6668 * Register a function to be called by all functions in the 6669 * kernel. 6670 * 6671 * Note: @ops->func and all the functions it calls must be labeled 6672 * with "notrace", otherwise it will go into a 6673 * recursive loop. 6674 */ 6675 int register_ftrace_function(struct ftrace_ops *ops) 6676 { 6677 int ret = -1; 6678 6679 ftrace_ops_init(ops); 6680 6681 mutex_lock(&ftrace_lock); 6682 6683 ret = ftrace_startup(ops, 0); 6684 6685 mutex_unlock(&ftrace_lock); 6686 6687 return ret; 6688 } 6689 EXPORT_SYMBOL_GPL(register_ftrace_function); 6690 6691 /** 6692 * unregister_ftrace_function - unregister a function for profiling. 6693 * @ops - ops structure that holds the function to unregister 6694 * 6695 * Unregister a function that was added to be called by ftrace profiling. 6696 */ 6697 int unregister_ftrace_function(struct ftrace_ops *ops) 6698 { 6699 int ret; 6700 6701 mutex_lock(&ftrace_lock); 6702 ret = ftrace_shutdown(ops, 0); 6703 mutex_unlock(&ftrace_lock); 6704 6705 return ret; 6706 } 6707 EXPORT_SYMBOL_GPL(unregister_ftrace_function); 6708 6709 int 6710 ftrace_enable_sysctl(struct ctl_table *table, int write, 6711 void __user *buffer, size_t *lenp, 6712 loff_t *ppos) 6713 { 6714 int ret = -ENODEV; 6715 6716 mutex_lock(&ftrace_lock); 6717 6718 if (unlikely(ftrace_disabled)) 6719 goto out; 6720 6721 ret = proc_dointvec(table, write, buffer, lenp, ppos); 6722 6723 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) 6724 goto out; 6725 6726 last_ftrace_enabled = !!ftrace_enabled; 6727 6728 if (ftrace_enabled) { 6729 6730 /* we are starting ftrace again */ 6731 if (rcu_dereference_protected(ftrace_ops_list, 6732 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end) 6733 update_ftrace_function(); 6734 6735 ftrace_startup_sysctl(); 6736 6737 } else { 6738 /* stopping ftrace calls (just send to ftrace_stub) */ 6739 ftrace_trace_function = ftrace_stub; 6740 6741 ftrace_shutdown_sysctl(); 6742 } 6743 6744 out: 6745 mutex_unlock(&ftrace_lock); 6746 return ret; 6747 } 6748 6749 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 6750 6751 static struct ftrace_ops graph_ops = { 6752 .func = ftrace_stub, 6753 .flags = FTRACE_OPS_FL_RECURSION_SAFE | 6754 FTRACE_OPS_FL_INITIALIZED | 6755 FTRACE_OPS_FL_PID | 6756 FTRACE_OPS_FL_STUB, 6757 #ifdef FTRACE_GRAPH_TRAMP_ADDR 6758 .trampoline = FTRACE_GRAPH_TRAMP_ADDR, 6759 /* trampoline_size is only needed for dynamically allocated tramps */ 6760 #endif 6761 ASSIGN_OPS_HASH(graph_ops, &global_ops.local_hash) 6762 }; 6763 6764 void ftrace_graph_sleep_time_control(bool enable) 6765 { 6766 fgraph_sleep_time = enable; 6767 } 6768 6769 void ftrace_graph_graph_time_control(bool enable) 6770 { 6771 fgraph_graph_time = enable; 6772 } 6773 6774 int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace) 6775 { 6776 return 0; 6777 } 6778 6779 /* The callbacks that hook a function */ 6780 trace_func_graph_ret_t ftrace_graph_return = 6781 (trace_func_graph_ret_t)ftrace_stub; 6782 trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub; 6783 static trace_func_graph_ent_t __ftrace_graph_entry = ftrace_graph_entry_stub; 6784 6785 /* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */ 6786 static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list) 6787 { 6788 int i; 6789 int ret = 0; 6790 int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE; 6791 struct task_struct *g, *t; 6792 6793 for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) { 6794 ret_stack_list[i] = 6795 kmalloc_array(FTRACE_RETFUNC_DEPTH, 6796 sizeof(struct ftrace_ret_stack), 6797 GFP_KERNEL); 6798 if (!ret_stack_list[i]) { 6799 start = 0; 6800 end = i; 6801 ret = -ENOMEM; 6802 goto free; 6803 } 6804 } 6805 6806 read_lock(&tasklist_lock); 6807 do_each_thread(g, t) { 6808 if (start == end) { 6809 ret = -EAGAIN; 6810 goto unlock; 6811 } 6812 6813 if (t->ret_stack == NULL) { 6814 atomic_set(&t->tracing_graph_pause, 0); 6815 atomic_set(&t->trace_overrun, 0); 6816 t->curr_ret_stack = -1; 6817 /* Make sure the tasks see the -1 first: */ 6818 smp_wmb(); 6819 t->ret_stack = ret_stack_list[start++]; 6820 } 6821 } while_each_thread(g, t); 6822 6823 unlock: 6824 read_unlock(&tasklist_lock); 6825 free: 6826 for (i = start; i < end; i++) 6827 kfree(ret_stack_list[i]); 6828 return ret; 6829 } 6830 6831 static void 6832 ftrace_graph_probe_sched_switch(void *ignore, bool preempt, 6833 struct task_struct *prev, struct task_struct *next) 6834 { 6835 unsigned long long timestamp; 6836 int index; 6837 6838 /* 6839 * Does the user want to count the time a function was asleep. 6840 * If so, do not update the time stamps. 6841 */ 6842 if (fgraph_sleep_time) 6843 return; 6844 6845 timestamp = trace_clock_local(); 6846 6847 prev->ftrace_timestamp = timestamp; 6848 6849 /* only process tasks that we timestamped */ 6850 if (!next->ftrace_timestamp) 6851 return; 6852 6853 /* 6854 * Update all the counters in next to make up for the 6855 * time next was sleeping. 6856 */ 6857 timestamp -= next->ftrace_timestamp; 6858 6859 for (index = next->curr_ret_stack; index >= 0; index--) 6860 next->ret_stack[index].calltime += timestamp; 6861 } 6862 6863 /* Allocate a return stack for each task */ 6864 static int start_graph_tracing(void) 6865 { 6866 struct ftrace_ret_stack **ret_stack_list; 6867 int ret, cpu; 6868 6869 ret_stack_list = kmalloc_array(FTRACE_RETSTACK_ALLOC_SIZE, 6870 sizeof(struct ftrace_ret_stack *), 6871 GFP_KERNEL); 6872 6873 if (!ret_stack_list) 6874 return -ENOMEM; 6875 6876 /* The cpu_boot init_task->ret_stack will never be freed */ 6877 for_each_online_cpu(cpu) { 6878 if (!idle_task(cpu)->ret_stack) 6879 ftrace_graph_init_idle_task(idle_task(cpu), cpu); 6880 } 6881 6882 do { 6883 ret = alloc_retstack_tasklist(ret_stack_list); 6884 } while (ret == -EAGAIN); 6885 6886 if (!ret) { 6887 ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL); 6888 if (ret) 6889 pr_info("ftrace_graph: Couldn't activate tracepoint" 6890 " probe to kernel_sched_switch\n"); 6891 } 6892 6893 kfree(ret_stack_list); 6894 return ret; 6895 } 6896 6897 /* 6898 * Hibernation protection. 6899 * The state of the current task is too much unstable during 6900 * suspend/restore to disk. We want to protect against that. 6901 */ 6902 static int 6903 ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state, 6904 void *unused) 6905 { 6906 switch (state) { 6907 case PM_HIBERNATION_PREPARE: 6908 pause_graph_tracing(); 6909 break; 6910 6911 case PM_POST_HIBERNATION: 6912 unpause_graph_tracing(); 6913 break; 6914 } 6915 return NOTIFY_DONE; 6916 } 6917 6918 static int ftrace_graph_entry_test(struct ftrace_graph_ent *trace) 6919 { 6920 if (!ftrace_ops_test(&global_ops, trace->func, NULL)) 6921 return 0; 6922 return __ftrace_graph_entry(trace); 6923 } 6924 6925 /* 6926 * The function graph tracer should only trace the functions defined 6927 * by set_ftrace_filter and set_ftrace_notrace. If another function 6928 * tracer ops is registered, the graph tracer requires testing the 6929 * function against the global ops, and not just trace any function 6930 * that any ftrace_ops registered. 6931 */ 6932 static void update_function_graph_func(void) 6933 { 6934 struct ftrace_ops *op; 6935 bool do_test = false; 6936 6937 /* 6938 * The graph and global ops share the same set of functions 6939 * to test. If any other ops is on the list, then 6940 * the graph tracing needs to test if its the function 6941 * it should call. 6942 */ 6943 do_for_each_ftrace_op(op, ftrace_ops_list) { 6944 if (op != &global_ops && op != &graph_ops && 6945 op != &ftrace_list_end) { 6946 do_test = true; 6947 /* in double loop, break out with goto */ 6948 goto out; 6949 } 6950 } while_for_each_ftrace_op(op); 6951 out: 6952 if (do_test) 6953 ftrace_graph_entry = ftrace_graph_entry_test; 6954 else 6955 ftrace_graph_entry = __ftrace_graph_entry; 6956 } 6957 6958 static struct notifier_block ftrace_suspend_notifier = { 6959 .notifier_call = ftrace_suspend_notifier_call, 6960 }; 6961 6962 int register_ftrace_graph(trace_func_graph_ret_t retfunc, 6963 trace_func_graph_ent_t entryfunc) 6964 { 6965 int ret = 0; 6966 6967 mutex_lock(&ftrace_lock); 6968 6969 /* we currently allow only one tracer registered at a time */ 6970 if (ftrace_graph_active) { 6971 ret = -EBUSY; 6972 goto out; 6973 } 6974 6975 register_pm_notifier(&ftrace_suspend_notifier); 6976 6977 ftrace_graph_active++; 6978 ret = start_graph_tracing(); 6979 if (ret) { 6980 ftrace_graph_active--; 6981 goto out; 6982 } 6983 6984 ftrace_graph_return = retfunc; 6985 6986 /* 6987 * Update the indirect function to the entryfunc, and the 6988 * function that gets called to the entry_test first. Then 6989 * call the update fgraph entry function to determine if 6990 * the entryfunc should be called directly or not. 6991 */ 6992 __ftrace_graph_entry = entryfunc; 6993 ftrace_graph_entry = ftrace_graph_entry_test; 6994 update_function_graph_func(); 6995 6996 ret = ftrace_startup(&graph_ops, FTRACE_START_FUNC_RET); 6997 out: 6998 mutex_unlock(&ftrace_lock); 6999 return ret; 7000 } 7001 7002 void unregister_ftrace_graph(void) 7003 { 7004 mutex_lock(&ftrace_lock); 7005 7006 if (unlikely(!ftrace_graph_active)) 7007 goto out; 7008 7009 ftrace_graph_active--; 7010 ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub; 7011 ftrace_graph_entry = ftrace_graph_entry_stub; 7012 __ftrace_graph_entry = ftrace_graph_entry_stub; 7013 ftrace_shutdown(&graph_ops, FTRACE_STOP_FUNC_RET); 7014 unregister_pm_notifier(&ftrace_suspend_notifier); 7015 unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL); 7016 7017 out: 7018 mutex_unlock(&ftrace_lock); 7019 } 7020 7021 static DEFINE_PER_CPU(struct ftrace_ret_stack *, idle_ret_stack); 7022 7023 static void 7024 graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack) 7025 { 7026 atomic_set(&t->tracing_graph_pause, 0); 7027 atomic_set(&t->trace_overrun, 0); 7028 t->ftrace_timestamp = 0; 7029 /* make curr_ret_stack visible before we add the ret_stack */ 7030 smp_wmb(); 7031 t->ret_stack = ret_stack; 7032 } 7033 7034 /* 7035 * Allocate a return stack for the idle task. May be the first 7036 * time through, or it may be done by CPU hotplug online. 7037 */ 7038 void ftrace_graph_init_idle_task(struct task_struct *t, int cpu) 7039 { 7040 t->curr_ret_stack = -1; 7041 /* 7042 * The idle task has no parent, it either has its own 7043 * stack or no stack at all. 7044 */ 7045 if (t->ret_stack) 7046 WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu)); 7047 7048 if (ftrace_graph_active) { 7049 struct ftrace_ret_stack *ret_stack; 7050 7051 ret_stack = per_cpu(idle_ret_stack, cpu); 7052 if (!ret_stack) { 7053 ret_stack = 7054 kmalloc_array(FTRACE_RETFUNC_DEPTH, 7055 sizeof(struct ftrace_ret_stack), 7056 GFP_KERNEL); 7057 if (!ret_stack) 7058 return; 7059 per_cpu(idle_ret_stack, cpu) = ret_stack; 7060 } 7061 graph_init_task(t, ret_stack); 7062 } 7063 } 7064 7065 /* Allocate a return stack for newly created task */ 7066 void ftrace_graph_init_task(struct task_struct *t) 7067 { 7068 /* Make sure we do not use the parent ret_stack */ 7069 t->ret_stack = NULL; 7070 t->curr_ret_stack = -1; 7071 7072 if (ftrace_graph_active) { 7073 struct ftrace_ret_stack *ret_stack; 7074 7075 ret_stack = kmalloc_array(FTRACE_RETFUNC_DEPTH, 7076 sizeof(struct ftrace_ret_stack), 7077 GFP_KERNEL); 7078 if (!ret_stack) 7079 return; 7080 graph_init_task(t, ret_stack); 7081 } 7082 } 7083 7084 void ftrace_graph_exit_task(struct task_struct *t) 7085 { 7086 struct ftrace_ret_stack *ret_stack = t->ret_stack; 7087 7088 t->ret_stack = NULL; 7089 /* NULL must become visible to IRQs before we free it: */ 7090 barrier(); 7091 7092 kfree(ret_stack); 7093 } 7094 #endif 7095