xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision efe4a1ac)
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include "trace.h"
17 
18 /**
19  * trace_call_bpf - invoke BPF program
20  * @prog: BPF program
21  * @ctx: opaque context pointer
22  *
23  * kprobe handlers execute BPF programs via this helper.
24  * Can be used from static tracepoints in the future.
25  *
26  * Return: BPF programs always return an integer which is interpreted by
27  * kprobe handler as:
28  * 0 - return from kprobe (event is filtered out)
29  * 1 - store kprobe event into ring buffer
30  * Other values are reserved and currently alias to 1
31  */
32 unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
33 {
34 	unsigned int ret;
35 
36 	if (in_nmi()) /* not supported yet */
37 		return 1;
38 
39 	preempt_disable();
40 
41 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
42 		/*
43 		 * since some bpf program is already running on this cpu,
44 		 * don't call into another bpf program (same or different)
45 		 * and don't send kprobe event into ring-buffer,
46 		 * so return zero here
47 		 */
48 		ret = 0;
49 		goto out;
50 	}
51 
52 	rcu_read_lock();
53 	ret = BPF_PROG_RUN(prog, ctx);
54 	rcu_read_unlock();
55 
56  out:
57 	__this_cpu_dec(bpf_prog_active);
58 	preempt_enable();
59 
60 	return ret;
61 }
62 EXPORT_SYMBOL_GPL(trace_call_bpf);
63 
64 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
65 {
66 	int ret;
67 
68 	ret = probe_kernel_read(dst, unsafe_ptr, size);
69 	if (unlikely(ret < 0))
70 		memset(dst, 0, size);
71 
72 	return ret;
73 }
74 
75 static const struct bpf_func_proto bpf_probe_read_proto = {
76 	.func		= bpf_probe_read,
77 	.gpl_only	= true,
78 	.ret_type	= RET_INTEGER,
79 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
80 	.arg2_type	= ARG_CONST_SIZE,
81 	.arg3_type	= ARG_ANYTHING,
82 };
83 
84 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
85 	   u32, size)
86 {
87 	/*
88 	 * Ensure we're in user context which is safe for the helper to
89 	 * run. This helper has no business in a kthread.
90 	 *
91 	 * access_ok() should prevent writing to non-user memory, but in
92 	 * some situations (nommu, temporary switch, etc) access_ok() does
93 	 * not provide enough validation, hence the check on KERNEL_DS.
94 	 */
95 
96 	if (unlikely(in_interrupt() ||
97 		     current->flags & (PF_KTHREAD | PF_EXITING)))
98 		return -EPERM;
99 	if (unlikely(uaccess_kernel()))
100 		return -EPERM;
101 	if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
102 		return -EPERM;
103 
104 	return probe_kernel_write(unsafe_ptr, src, size);
105 }
106 
107 static const struct bpf_func_proto bpf_probe_write_user_proto = {
108 	.func		= bpf_probe_write_user,
109 	.gpl_only	= true,
110 	.ret_type	= RET_INTEGER,
111 	.arg1_type	= ARG_ANYTHING,
112 	.arg2_type	= ARG_PTR_TO_MEM,
113 	.arg3_type	= ARG_CONST_SIZE,
114 };
115 
116 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
117 {
118 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
119 			    current->comm, task_pid_nr(current));
120 
121 	return &bpf_probe_write_user_proto;
122 }
123 
124 /*
125  * limited trace_printk()
126  * only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed
127  */
128 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
129 	   u64, arg2, u64, arg3)
130 {
131 	bool str_seen = false;
132 	int mod[3] = {};
133 	int fmt_cnt = 0;
134 	u64 unsafe_addr;
135 	char buf[64];
136 	int i;
137 
138 	/*
139 	 * bpf_check()->check_func_arg()->check_stack_boundary()
140 	 * guarantees that fmt points to bpf program stack,
141 	 * fmt_size bytes of it were initialized and fmt_size > 0
142 	 */
143 	if (fmt[--fmt_size] != 0)
144 		return -EINVAL;
145 
146 	/* check format string for allowed specifiers */
147 	for (i = 0; i < fmt_size; i++) {
148 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
149 			return -EINVAL;
150 
151 		if (fmt[i] != '%')
152 			continue;
153 
154 		if (fmt_cnt >= 3)
155 			return -EINVAL;
156 
157 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
158 		i++;
159 		if (fmt[i] == 'l') {
160 			mod[fmt_cnt]++;
161 			i++;
162 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
163 			mod[fmt_cnt]++;
164 			i++;
165 			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
166 				return -EINVAL;
167 			fmt_cnt++;
168 			if (fmt[i - 1] == 's') {
169 				if (str_seen)
170 					/* allow only one '%s' per fmt string */
171 					return -EINVAL;
172 				str_seen = true;
173 
174 				switch (fmt_cnt) {
175 				case 1:
176 					unsafe_addr = arg1;
177 					arg1 = (long) buf;
178 					break;
179 				case 2:
180 					unsafe_addr = arg2;
181 					arg2 = (long) buf;
182 					break;
183 				case 3:
184 					unsafe_addr = arg3;
185 					arg3 = (long) buf;
186 					break;
187 				}
188 				buf[0] = 0;
189 				strncpy_from_unsafe(buf,
190 						    (void *) (long) unsafe_addr,
191 						    sizeof(buf));
192 			}
193 			continue;
194 		}
195 
196 		if (fmt[i] == 'l') {
197 			mod[fmt_cnt]++;
198 			i++;
199 		}
200 
201 		if (fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x')
202 			return -EINVAL;
203 		fmt_cnt++;
204 	}
205 
206 	return __trace_printk(1/* fake ip will not be printed */, fmt,
207 			      mod[0] == 2 ? arg1 : mod[0] == 1 ? (long) arg1 : (u32) arg1,
208 			      mod[1] == 2 ? arg2 : mod[1] == 1 ? (long) arg2 : (u32) arg2,
209 			      mod[2] == 2 ? arg3 : mod[2] == 1 ? (long) arg3 : (u32) arg3);
210 }
211 
212 static const struct bpf_func_proto bpf_trace_printk_proto = {
213 	.func		= bpf_trace_printk,
214 	.gpl_only	= true,
215 	.ret_type	= RET_INTEGER,
216 	.arg1_type	= ARG_PTR_TO_MEM,
217 	.arg2_type	= ARG_CONST_SIZE,
218 };
219 
220 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
221 {
222 	/*
223 	 * this program might be calling bpf_trace_printk,
224 	 * so allocate per-cpu printk buffers
225 	 */
226 	trace_printk_init_buffers();
227 
228 	return &bpf_trace_printk_proto;
229 }
230 
231 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
232 {
233 	struct bpf_array *array = container_of(map, struct bpf_array, map);
234 	unsigned int cpu = smp_processor_id();
235 	u64 index = flags & BPF_F_INDEX_MASK;
236 	struct bpf_event_entry *ee;
237 	struct perf_event *event;
238 
239 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
240 		return -EINVAL;
241 	if (index == BPF_F_CURRENT_CPU)
242 		index = cpu;
243 	if (unlikely(index >= array->map.max_entries))
244 		return -E2BIG;
245 
246 	ee = READ_ONCE(array->ptrs[index]);
247 	if (!ee)
248 		return -ENOENT;
249 
250 	event = ee->event;
251 	if (unlikely(event->attr.type != PERF_TYPE_HARDWARE &&
252 		     event->attr.type != PERF_TYPE_RAW))
253 		return -EINVAL;
254 
255 	/* make sure event is local and doesn't have pmu::count */
256 	if (unlikely(event->oncpu != cpu || event->pmu->count))
257 		return -EINVAL;
258 
259 	/*
260 	 * we don't know if the function is run successfully by the
261 	 * return value. It can be judged in other places, such as
262 	 * eBPF programs.
263 	 */
264 	return perf_event_read_local(event);
265 }
266 
267 static const struct bpf_func_proto bpf_perf_event_read_proto = {
268 	.func		= bpf_perf_event_read,
269 	.gpl_only	= true,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_CONST_MAP_PTR,
272 	.arg2_type	= ARG_ANYTHING,
273 };
274 
275 static __always_inline u64
276 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
277 			u64 flags, struct perf_raw_record *raw)
278 {
279 	struct bpf_array *array = container_of(map, struct bpf_array, map);
280 	unsigned int cpu = smp_processor_id();
281 	u64 index = flags & BPF_F_INDEX_MASK;
282 	struct perf_sample_data sample_data;
283 	struct bpf_event_entry *ee;
284 	struct perf_event *event;
285 
286 	if (index == BPF_F_CURRENT_CPU)
287 		index = cpu;
288 	if (unlikely(index >= array->map.max_entries))
289 		return -E2BIG;
290 
291 	ee = READ_ONCE(array->ptrs[index]);
292 	if (!ee)
293 		return -ENOENT;
294 
295 	event = ee->event;
296 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
297 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
298 		return -EINVAL;
299 
300 	if (unlikely(event->oncpu != cpu))
301 		return -EOPNOTSUPP;
302 
303 	perf_sample_data_init(&sample_data, 0, 0);
304 	sample_data.raw = raw;
305 	perf_event_output(event, &sample_data, regs);
306 	return 0;
307 }
308 
309 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
310 	   u64, flags, void *, data, u64, size)
311 {
312 	struct perf_raw_record raw = {
313 		.frag = {
314 			.size = size,
315 			.data = data,
316 		},
317 	};
318 
319 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
320 		return -EINVAL;
321 
322 	return __bpf_perf_event_output(regs, map, flags, &raw);
323 }
324 
325 static const struct bpf_func_proto bpf_perf_event_output_proto = {
326 	.func		= bpf_perf_event_output,
327 	.gpl_only	= true,
328 	.ret_type	= RET_INTEGER,
329 	.arg1_type	= ARG_PTR_TO_CTX,
330 	.arg2_type	= ARG_CONST_MAP_PTR,
331 	.arg3_type	= ARG_ANYTHING,
332 	.arg4_type	= ARG_PTR_TO_MEM,
333 	.arg5_type	= ARG_CONST_SIZE,
334 };
335 
336 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
337 
338 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
339 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
340 {
341 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
342 	struct perf_raw_frag frag = {
343 		.copy		= ctx_copy,
344 		.size		= ctx_size,
345 		.data		= ctx,
346 	};
347 	struct perf_raw_record raw = {
348 		.frag = {
349 			{
350 				.next	= ctx_size ? &frag : NULL,
351 			},
352 			.size	= meta_size,
353 			.data	= meta,
354 		},
355 	};
356 
357 	perf_fetch_caller_regs(regs);
358 
359 	return __bpf_perf_event_output(regs, map, flags, &raw);
360 }
361 
362 BPF_CALL_0(bpf_get_current_task)
363 {
364 	return (long) current;
365 }
366 
367 static const struct bpf_func_proto bpf_get_current_task_proto = {
368 	.func		= bpf_get_current_task,
369 	.gpl_only	= true,
370 	.ret_type	= RET_INTEGER,
371 };
372 
373 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
374 {
375 	struct bpf_array *array = container_of(map, struct bpf_array, map);
376 	struct cgroup *cgrp;
377 
378 	if (unlikely(in_interrupt()))
379 		return -EINVAL;
380 	if (unlikely(idx >= array->map.max_entries))
381 		return -E2BIG;
382 
383 	cgrp = READ_ONCE(array->ptrs[idx]);
384 	if (unlikely(!cgrp))
385 		return -EAGAIN;
386 
387 	return task_under_cgroup_hierarchy(current, cgrp);
388 }
389 
390 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
391 	.func           = bpf_current_task_under_cgroup,
392 	.gpl_only       = false,
393 	.ret_type       = RET_INTEGER,
394 	.arg1_type      = ARG_CONST_MAP_PTR,
395 	.arg2_type      = ARG_ANYTHING,
396 };
397 
398 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
399 	   const void *, unsafe_ptr)
400 {
401 	int ret;
402 
403 	/*
404 	 * The strncpy_from_unsafe() call will likely not fill the entire
405 	 * buffer, but that's okay in this circumstance as we're probing
406 	 * arbitrary memory anyway similar to bpf_probe_read() and might
407 	 * as well probe the stack. Thus, memory is explicitly cleared
408 	 * only in error case, so that improper users ignoring return
409 	 * code altogether don't copy garbage; otherwise length of string
410 	 * is returned that can be used for bpf_perf_event_output() et al.
411 	 */
412 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
413 	if (unlikely(ret < 0))
414 		memset(dst, 0, size);
415 
416 	return ret;
417 }
418 
419 static const struct bpf_func_proto bpf_probe_read_str_proto = {
420 	.func		= bpf_probe_read_str,
421 	.gpl_only	= true,
422 	.ret_type	= RET_INTEGER,
423 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
424 	.arg2_type	= ARG_CONST_SIZE,
425 	.arg3_type	= ARG_ANYTHING,
426 };
427 
428 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
429 {
430 	switch (func_id) {
431 	case BPF_FUNC_map_lookup_elem:
432 		return &bpf_map_lookup_elem_proto;
433 	case BPF_FUNC_map_update_elem:
434 		return &bpf_map_update_elem_proto;
435 	case BPF_FUNC_map_delete_elem:
436 		return &bpf_map_delete_elem_proto;
437 	case BPF_FUNC_probe_read:
438 		return &bpf_probe_read_proto;
439 	case BPF_FUNC_ktime_get_ns:
440 		return &bpf_ktime_get_ns_proto;
441 	case BPF_FUNC_tail_call:
442 		return &bpf_tail_call_proto;
443 	case BPF_FUNC_get_current_pid_tgid:
444 		return &bpf_get_current_pid_tgid_proto;
445 	case BPF_FUNC_get_current_task:
446 		return &bpf_get_current_task_proto;
447 	case BPF_FUNC_get_current_uid_gid:
448 		return &bpf_get_current_uid_gid_proto;
449 	case BPF_FUNC_get_current_comm:
450 		return &bpf_get_current_comm_proto;
451 	case BPF_FUNC_trace_printk:
452 		return bpf_get_trace_printk_proto();
453 	case BPF_FUNC_get_smp_processor_id:
454 		return &bpf_get_smp_processor_id_proto;
455 	case BPF_FUNC_get_numa_node_id:
456 		return &bpf_get_numa_node_id_proto;
457 	case BPF_FUNC_perf_event_read:
458 		return &bpf_perf_event_read_proto;
459 	case BPF_FUNC_probe_write_user:
460 		return bpf_get_probe_write_proto();
461 	case BPF_FUNC_current_task_under_cgroup:
462 		return &bpf_current_task_under_cgroup_proto;
463 	case BPF_FUNC_get_prandom_u32:
464 		return &bpf_get_prandom_u32_proto;
465 	case BPF_FUNC_probe_read_str:
466 		return &bpf_probe_read_str_proto;
467 	default:
468 		return NULL;
469 	}
470 }
471 
472 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
473 {
474 	switch (func_id) {
475 	case BPF_FUNC_perf_event_output:
476 		return &bpf_perf_event_output_proto;
477 	case BPF_FUNC_get_stackid:
478 		return &bpf_get_stackid_proto;
479 	default:
480 		return tracing_func_proto(func_id);
481 	}
482 }
483 
484 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
485 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
486 					enum bpf_reg_type *reg_type)
487 {
488 	if (off < 0 || off >= sizeof(struct pt_regs))
489 		return false;
490 	if (type != BPF_READ)
491 		return false;
492 	if (off % size != 0)
493 		return false;
494 	/*
495 	 * Assertion for 32 bit to make sure last 8 byte access
496 	 * (BPF_DW) to the last 4 byte member is disallowed.
497 	 */
498 	if (off + size > sizeof(struct pt_regs))
499 		return false;
500 
501 	return true;
502 }
503 
504 const struct bpf_verifier_ops kprobe_prog_ops = {
505 	.get_func_proto  = kprobe_prog_func_proto,
506 	.is_valid_access = kprobe_prog_is_valid_access,
507 };
508 
509 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
510 	   u64, flags, void *, data, u64, size)
511 {
512 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
513 
514 	/*
515 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
516 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
517 	 * from there and call the same bpf_perf_event_output() helper inline.
518 	 */
519 	return ____bpf_perf_event_output(regs, map, flags, data, size);
520 }
521 
522 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
523 	.func		= bpf_perf_event_output_tp,
524 	.gpl_only	= true,
525 	.ret_type	= RET_INTEGER,
526 	.arg1_type	= ARG_PTR_TO_CTX,
527 	.arg2_type	= ARG_CONST_MAP_PTR,
528 	.arg3_type	= ARG_ANYTHING,
529 	.arg4_type	= ARG_PTR_TO_MEM,
530 	.arg5_type	= ARG_CONST_SIZE,
531 };
532 
533 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
534 	   u64, flags)
535 {
536 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
537 
538 	/*
539 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
540 	 * the other helper's function body cannot be inlined due to being
541 	 * external, thus we need to call raw helper function.
542 	 */
543 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
544 			       flags, 0, 0);
545 }
546 
547 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
548 	.func		= bpf_get_stackid_tp,
549 	.gpl_only	= true,
550 	.ret_type	= RET_INTEGER,
551 	.arg1_type	= ARG_PTR_TO_CTX,
552 	.arg2_type	= ARG_CONST_MAP_PTR,
553 	.arg3_type	= ARG_ANYTHING,
554 };
555 
556 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
557 {
558 	switch (func_id) {
559 	case BPF_FUNC_perf_event_output:
560 		return &bpf_perf_event_output_proto_tp;
561 	case BPF_FUNC_get_stackid:
562 		return &bpf_get_stackid_proto_tp;
563 	default:
564 		return tracing_func_proto(func_id);
565 	}
566 }
567 
568 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
569 				    enum bpf_reg_type *reg_type)
570 {
571 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
572 		return false;
573 	if (type != BPF_READ)
574 		return false;
575 	if (off % size != 0)
576 		return false;
577 
578 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
579 	return true;
580 }
581 
582 const struct bpf_verifier_ops tracepoint_prog_ops = {
583 	.get_func_proto  = tp_prog_func_proto,
584 	.is_valid_access = tp_prog_is_valid_access,
585 };
586 
587 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
588 				    enum bpf_reg_type *reg_type)
589 {
590 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
591 		return false;
592 	if (type != BPF_READ)
593 		return false;
594 	if (off % size != 0)
595 		return false;
596 	if (off == offsetof(struct bpf_perf_event_data, sample_period)) {
597 		if (size != sizeof(u64))
598 			return false;
599 	} else {
600 		if (size != sizeof(long))
601 			return false;
602 	}
603 	return true;
604 }
605 
606 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
607 				      const struct bpf_insn *si,
608 				      struct bpf_insn *insn_buf,
609 				      struct bpf_prog *prog)
610 {
611 	struct bpf_insn *insn = insn_buf;
612 
613 	switch (si->off) {
614 	case offsetof(struct bpf_perf_event_data, sample_period):
615 		BUILD_BUG_ON(FIELD_SIZEOF(struct perf_sample_data, period) != sizeof(u64));
616 
617 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
618 						       data), si->dst_reg, si->src_reg,
619 				      offsetof(struct bpf_perf_event_data_kern, data));
620 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
621 				      offsetof(struct perf_sample_data, period));
622 		break;
623 	default:
624 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
625 						       regs), si->dst_reg, si->src_reg,
626 				      offsetof(struct bpf_perf_event_data_kern, regs));
627 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
628 				      si->off);
629 		break;
630 	}
631 
632 	return insn - insn_buf;
633 }
634 
635 const struct bpf_verifier_ops perf_event_prog_ops = {
636 	.get_func_proto		= tp_prog_func_proto,
637 	.is_valid_access	= pe_prog_is_valid_access,
638 	.convert_ctx_access	= pe_prog_convert_ctx_access,
639 };
640