xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision ebd09753)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include "trace_probe.h"
18 #include "trace.h"
19 
20 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
21 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
22 
23 /**
24  * trace_call_bpf - invoke BPF program
25  * @call: tracepoint event
26  * @ctx: opaque context pointer
27  *
28  * kprobe handlers execute BPF programs via this helper.
29  * Can be used from static tracepoints in the future.
30  *
31  * Return: BPF programs always return an integer which is interpreted by
32  * kprobe handler as:
33  * 0 - return from kprobe (event is filtered out)
34  * 1 - store kprobe event into ring buffer
35  * Other values are reserved and currently alias to 1
36  */
37 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
38 {
39 	unsigned int ret;
40 
41 	if (in_nmi()) /* not supported yet */
42 		return 1;
43 
44 	preempt_disable();
45 
46 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
47 		/*
48 		 * since some bpf program is already running on this cpu,
49 		 * don't call into another bpf program (same or different)
50 		 * and don't send kprobe event into ring-buffer,
51 		 * so return zero here
52 		 */
53 		ret = 0;
54 		goto out;
55 	}
56 
57 	/*
58 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
59 	 * to all call sites, we did a bpf_prog_array_valid() there to check
60 	 * whether call->prog_array is empty or not, which is
61 	 * a heurisitc to speed up execution.
62 	 *
63 	 * If bpf_prog_array_valid() fetched prog_array was
64 	 * non-NULL, we go into trace_call_bpf() and do the actual
65 	 * proper rcu_dereference() under RCU lock.
66 	 * If it turns out that prog_array is NULL then, we bail out.
67 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
68 	 * was NULL, you'll skip the prog_array with the risk of missing
69 	 * out of events when it was updated in between this and the
70 	 * rcu_dereference() which is accepted risk.
71 	 */
72 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
73 
74  out:
75 	__this_cpu_dec(bpf_prog_active);
76 	preempt_enable();
77 
78 	return ret;
79 }
80 EXPORT_SYMBOL_GPL(trace_call_bpf);
81 
82 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
83 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
84 {
85 	regs_set_return_value(regs, rc);
86 	override_function_with_return(regs);
87 	return 0;
88 }
89 
90 static const struct bpf_func_proto bpf_override_return_proto = {
91 	.func		= bpf_override_return,
92 	.gpl_only	= true,
93 	.ret_type	= RET_INTEGER,
94 	.arg1_type	= ARG_PTR_TO_CTX,
95 	.arg2_type	= ARG_ANYTHING,
96 };
97 #endif
98 
99 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
100 {
101 	int ret;
102 
103 	ret = probe_kernel_read(dst, unsafe_ptr, size);
104 	if (unlikely(ret < 0))
105 		memset(dst, 0, size);
106 
107 	return ret;
108 }
109 
110 static const struct bpf_func_proto bpf_probe_read_proto = {
111 	.func		= bpf_probe_read,
112 	.gpl_only	= true,
113 	.ret_type	= RET_INTEGER,
114 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
115 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
116 	.arg3_type	= ARG_ANYTHING,
117 };
118 
119 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
120 	   u32, size)
121 {
122 	/*
123 	 * Ensure we're in user context which is safe for the helper to
124 	 * run. This helper has no business in a kthread.
125 	 *
126 	 * access_ok() should prevent writing to non-user memory, but in
127 	 * some situations (nommu, temporary switch, etc) access_ok() does
128 	 * not provide enough validation, hence the check on KERNEL_DS.
129 	 */
130 
131 	if (unlikely(in_interrupt() ||
132 		     current->flags & (PF_KTHREAD | PF_EXITING)))
133 		return -EPERM;
134 	if (unlikely(uaccess_kernel()))
135 		return -EPERM;
136 	if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
137 		return -EPERM;
138 
139 	return probe_kernel_write(unsafe_ptr, src, size);
140 }
141 
142 static const struct bpf_func_proto bpf_probe_write_user_proto = {
143 	.func		= bpf_probe_write_user,
144 	.gpl_only	= true,
145 	.ret_type	= RET_INTEGER,
146 	.arg1_type	= ARG_ANYTHING,
147 	.arg2_type	= ARG_PTR_TO_MEM,
148 	.arg3_type	= ARG_CONST_SIZE,
149 };
150 
151 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
152 {
153 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
154 			    current->comm, task_pid_nr(current));
155 
156 	return &bpf_probe_write_user_proto;
157 }
158 
159 /*
160  * Only limited trace_printk() conversion specifiers allowed:
161  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
162  */
163 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
164 	   u64, arg2, u64, arg3)
165 {
166 	bool str_seen = false;
167 	int mod[3] = {};
168 	int fmt_cnt = 0;
169 	u64 unsafe_addr;
170 	char buf[64];
171 	int i;
172 
173 	/*
174 	 * bpf_check()->check_func_arg()->check_stack_boundary()
175 	 * guarantees that fmt points to bpf program stack,
176 	 * fmt_size bytes of it were initialized and fmt_size > 0
177 	 */
178 	if (fmt[--fmt_size] != 0)
179 		return -EINVAL;
180 
181 	/* check format string for allowed specifiers */
182 	for (i = 0; i < fmt_size; i++) {
183 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
184 			return -EINVAL;
185 
186 		if (fmt[i] != '%')
187 			continue;
188 
189 		if (fmt_cnt >= 3)
190 			return -EINVAL;
191 
192 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
193 		i++;
194 		if (fmt[i] == 'l') {
195 			mod[fmt_cnt]++;
196 			i++;
197 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
198 			mod[fmt_cnt]++;
199 			i++;
200 			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
201 				return -EINVAL;
202 			fmt_cnt++;
203 			if (fmt[i - 1] == 's') {
204 				if (str_seen)
205 					/* allow only one '%s' per fmt string */
206 					return -EINVAL;
207 				str_seen = true;
208 
209 				switch (fmt_cnt) {
210 				case 1:
211 					unsafe_addr = arg1;
212 					arg1 = (long) buf;
213 					break;
214 				case 2:
215 					unsafe_addr = arg2;
216 					arg2 = (long) buf;
217 					break;
218 				case 3:
219 					unsafe_addr = arg3;
220 					arg3 = (long) buf;
221 					break;
222 				}
223 				buf[0] = 0;
224 				strncpy_from_unsafe(buf,
225 						    (void *) (long) unsafe_addr,
226 						    sizeof(buf));
227 			}
228 			continue;
229 		}
230 
231 		if (fmt[i] == 'l') {
232 			mod[fmt_cnt]++;
233 			i++;
234 		}
235 
236 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
237 		    fmt[i] != 'u' && fmt[i] != 'x')
238 			return -EINVAL;
239 		fmt_cnt++;
240 	}
241 
242 /* Horrid workaround for getting va_list handling working with different
243  * argument type combinations generically for 32 and 64 bit archs.
244  */
245 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
246 #define __BPF_TP(...)							\
247 	__trace_printk(0 /* Fake ip */,					\
248 		       fmt, ##__VA_ARGS__)
249 
250 #define __BPF_ARG1_TP(...)						\
251 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
252 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
253 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
254 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
255 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
256 
257 #define __BPF_ARG2_TP(...)						\
258 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
259 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
260 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
261 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
262 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
263 
264 #define __BPF_ARG3_TP(...)						\
265 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
266 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
267 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
268 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
269 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
270 
271 	return __BPF_TP_EMIT();
272 }
273 
274 static const struct bpf_func_proto bpf_trace_printk_proto = {
275 	.func		= bpf_trace_printk,
276 	.gpl_only	= true,
277 	.ret_type	= RET_INTEGER,
278 	.arg1_type	= ARG_PTR_TO_MEM,
279 	.arg2_type	= ARG_CONST_SIZE,
280 };
281 
282 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
283 {
284 	/*
285 	 * this program might be calling bpf_trace_printk,
286 	 * so allocate per-cpu printk buffers
287 	 */
288 	trace_printk_init_buffers();
289 
290 	return &bpf_trace_printk_proto;
291 }
292 
293 static __always_inline int
294 get_map_perf_counter(struct bpf_map *map, u64 flags,
295 		     u64 *value, u64 *enabled, u64 *running)
296 {
297 	struct bpf_array *array = container_of(map, struct bpf_array, map);
298 	unsigned int cpu = smp_processor_id();
299 	u64 index = flags & BPF_F_INDEX_MASK;
300 	struct bpf_event_entry *ee;
301 
302 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
303 		return -EINVAL;
304 	if (index == BPF_F_CURRENT_CPU)
305 		index = cpu;
306 	if (unlikely(index >= array->map.max_entries))
307 		return -E2BIG;
308 
309 	ee = READ_ONCE(array->ptrs[index]);
310 	if (!ee)
311 		return -ENOENT;
312 
313 	return perf_event_read_local(ee->event, value, enabled, running);
314 }
315 
316 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
317 {
318 	u64 value = 0;
319 	int err;
320 
321 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
322 	/*
323 	 * this api is ugly since we miss [-22..-2] range of valid
324 	 * counter values, but that's uapi
325 	 */
326 	if (err)
327 		return err;
328 	return value;
329 }
330 
331 static const struct bpf_func_proto bpf_perf_event_read_proto = {
332 	.func		= bpf_perf_event_read,
333 	.gpl_only	= true,
334 	.ret_type	= RET_INTEGER,
335 	.arg1_type	= ARG_CONST_MAP_PTR,
336 	.arg2_type	= ARG_ANYTHING,
337 };
338 
339 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
340 	   struct bpf_perf_event_value *, buf, u32, size)
341 {
342 	int err = -EINVAL;
343 
344 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
345 		goto clear;
346 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
347 				   &buf->running);
348 	if (unlikely(err))
349 		goto clear;
350 	return 0;
351 clear:
352 	memset(buf, 0, size);
353 	return err;
354 }
355 
356 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
357 	.func		= bpf_perf_event_read_value,
358 	.gpl_only	= true,
359 	.ret_type	= RET_INTEGER,
360 	.arg1_type	= ARG_CONST_MAP_PTR,
361 	.arg2_type	= ARG_ANYTHING,
362 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
363 	.arg4_type	= ARG_CONST_SIZE,
364 };
365 
366 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
367 
368 static __always_inline u64
369 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
370 			u64 flags, struct perf_sample_data *sd)
371 {
372 	struct bpf_array *array = container_of(map, struct bpf_array, map);
373 	unsigned int cpu = smp_processor_id();
374 	u64 index = flags & BPF_F_INDEX_MASK;
375 	struct bpf_event_entry *ee;
376 	struct perf_event *event;
377 
378 	if (index == BPF_F_CURRENT_CPU)
379 		index = cpu;
380 	if (unlikely(index >= array->map.max_entries))
381 		return -E2BIG;
382 
383 	ee = READ_ONCE(array->ptrs[index]);
384 	if (!ee)
385 		return -ENOENT;
386 
387 	event = ee->event;
388 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
389 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
390 		return -EINVAL;
391 
392 	if (unlikely(event->oncpu != cpu))
393 		return -EOPNOTSUPP;
394 
395 	perf_event_output(event, sd, regs);
396 	return 0;
397 }
398 
399 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
400 	   u64, flags, void *, data, u64, size)
401 {
402 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
403 	struct perf_raw_record raw = {
404 		.frag = {
405 			.size = size,
406 			.data = data,
407 		},
408 	};
409 
410 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
411 		return -EINVAL;
412 
413 	perf_sample_data_init(sd, 0, 0);
414 	sd->raw = &raw;
415 
416 	return __bpf_perf_event_output(regs, map, flags, sd);
417 }
418 
419 static const struct bpf_func_proto bpf_perf_event_output_proto = {
420 	.func		= bpf_perf_event_output,
421 	.gpl_only	= true,
422 	.ret_type	= RET_INTEGER,
423 	.arg1_type	= ARG_PTR_TO_CTX,
424 	.arg2_type	= ARG_CONST_MAP_PTR,
425 	.arg3_type	= ARG_ANYTHING,
426 	.arg4_type	= ARG_PTR_TO_MEM,
427 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
428 };
429 
430 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
431 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
432 
433 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
434 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
435 {
436 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
437 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
438 	struct perf_raw_frag frag = {
439 		.copy		= ctx_copy,
440 		.size		= ctx_size,
441 		.data		= ctx,
442 	};
443 	struct perf_raw_record raw = {
444 		.frag = {
445 			{
446 				.next	= ctx_size ? &frag : NULL,
447 			},
448 			.size	= meta_size,
449 			.data	= meta,
450 		},
451 	};
452 
453 	perf_fetch_caller_regs(regs);
454 	perf_sample_data_init(sd, 0, 0);
455 	sd->raw = &raw;
456 
457 	return __bpf_perf_event_output(regs, map, flags, sd);
458 }
459 
460 BPF_CALL_0(bpf_get_current_task)
461 {
462 	return (long) current;
463 }
464 
465 static const struct bpf_func_proto bpf_get_current_task_proto = {
466 	.func		= bpf_get_current_task,
467 	.gpl_only	= true,
468 	.ret_type	= RET_INTEGER,
469 };
470 
471 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
472 {
473 	struct bpf_array *array = container_of(map, struct bpf_array, map);
474 	struct cgroup *cgrp;
475 
476 	if (unlikely(idx >= array->map.max_entries))
477 		return -E2BIG;
478 
479 	cgrp = READ_ONCE(array->ptrs[idx]);
480 	if (unlikely(!cgrp))
481 		return -EAGAIN;
482 
483 	return task_under_cgroup_hierarchy(current, cgrp);
484 }
485 
486 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
487 	.func           = bpf_current_task_under_cgroup,
488 	.gpl_only       = false,
489 	.ret_type       = RET_INTEGER,
490 	.arg1_type      = ARG_CONST_MAP_PTR,
491 	.arg2_type      = ARG_ANYTHING,
492 };
493 
494 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
495 	   const void *, unsafe_ptr)
496 {
497 	int ret;
498 
499 	/*
500 	 * The strncpy_from_unsafe() call will likely not fill the entire
501 	 * buffer, but that's okay in this circumstance as we're probing
502 	 * arbitrary memory anyway similar to bpf_probe_read() and might
503 	 * as well probe the stack. Thus, memory is explicitly cleared
504 	 * only in error case, so that improper users ignoring return
505 	 * code altogether don't copy garbage; otherwise length of string
506 	 * is returned that can be used for bpf_perf_event_output() et al.
507 	 */
508 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
509 	if (unlikely(ret < 0))
510 		memset(dst, 0, size);
511 
512 	return ret;
513 }
514 
515 static const struct bpf_func_proto bpf_probe_read_str_proto = {
516 	.func		= bpf_probe_read_str,
517 	.gpl_only	= true,
518 	.ret_type	= RET_INTEGER,
519 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
520 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
521 	.arg3_type	= ARG_ANYTHING,
522 };
523 
524 static const struct bpf_func_proto *
525 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
526 {
527 	switch (func_id) {
528 	case BPF_FUNC_map_lookup_elem:
529 		return &bpf_map_lookup_elem_proto;
530 	case BPF_FUNC_map_update_elem:
531 		return &bpf_map_update_elem_proto;
532 	case BPF_FUNC_map_delete_elem:
533 		return &bpf_map_delete_elem_proto;
534 	case BPF_FUNC_probe_read:
535 		return &bpf_probe_read_proto;
536 	case BPF_FUNC_ktime_get_ns:
537 		return &bpf_ktime_get_ns_proto;
538 	case BPF_FUNC_tail_call:
539 		return &bpf_tail_call_proto;
540 	case BPF_FUNC_get_current_pid_tgid:
541 		return &bpf_get_current_pid_tgid_proto;
542 	case BPF_FUNC_get_current_task:
543 		return &bpf_get_current_task_proto;
544 	case BPF_FUNC_get_current_uid_gid:
545 		return &bpf_get_current_uid_gid_proto;
546 	case BPF_FUNC_get_current_comm:
547 		return &bpf_get_current_comm_proto;
548 	case BPF_FUNC_trace_printk:
549 		return bpf_get_trace_printk_proto();
550 	case BPF_FUNC_get_smp_processor_id:
551 		return &bpf_get_smp_processor_id_proto;
552 	case BPF_FUNC_get_numa_node_id:
553 		return &bpf_get_numa_node_id_proto;
554 	case BPF_FUNC_perf_event_read:
555 		return &bpf_perf_event_read_proto;
556 	case BPF_FUNC_probe_write_user:
557 		return bpf_get_probe_write_proto();
558 	case BPF_FUNC_current_task_under_cgroup:
559 		return &bpf_current_task_under_cgroup_proto;
560 	case BPF_FUNC_get_prandom_u32:
561 		return &bpf_get_prandom_u32_proto;
562 	case BPF_FUNC_probe_read_str:
563 		return &bpf_probe_read_str_proto;
564 #ifdef CONFIG_CGROUPS
565 	case BPF_FUNC_get_current_cgroup_id:
566 		return &bpf_get_current_cgroup_id_proto;
567 #endif
568 	default:
569 		return NULL;
570 	}
571 }
572 
573 static const struct bpf_func_proto *
574 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
575 {
576 	switch (func_id) {
577 	case BPF_FUNC_perf_event_output:
578 		return &bpf_perf_event_output_proto;
579 	case BPF_FUNC_get_stackid:
580 		return &bpf_get_stackid_proto;
581 	case BPF_FUNC_get_stack:
582 		return &bpf_get_stack_proto;
583 	case BPF_FUNC_perf_event_read_value:
584 		return &bpf_perf_event_read_value_proto;
585 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
586 	case BPF_FUNC_override_return:
587 		return &bpf_override_return_proto;
588 #endif
589 	default:
590 		return tracing_func_proto(func_id, prog);
591 	}
592 }
593 
594 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
595 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
596 					const struct bpf_prog *prog,
597 					struct bpf_insn_access_aux *info)
598 {
599 	if (off < 0 || off >= sizeof(struct pt_regs))
600 		return false;
601 	if (type != BPF_READ)
602 		return false;
603 	if (off % size != 0)
604 		return false;
605 	/*
606 	 * Assertion for 32 bit to make sure last 8 byte access
607 	 * (BPF_DW) to the last 4 byte member is disallowed.
608 	 */
609 	if (off + size > sizeof(struct pt_regs))
610 		return false;
611 
612 	return true;
613 }
614 
615 const struct bpf_verifier_ops kprobe_verifier_ops = {
616 	.get_func_proto  = kprobe_prog_func_proto,
617 	.is_valid_access = kprobe_prog_is_valid_access,
618 };
619 
620 const struct bpf_prog_ops kprobe_prog_ops = {
621 };
622 
623 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
624 	   u64, flags, void *, data, u64, size)
625 {
626 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
627 
628 	/*
629 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
630 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
631 	 * from there and call the same bpf_perf_event_output() helper inline.
632 	 */
633 	return ____bpf_perf_event_output(regs, map, flags, data, size);
634 }
635 
636 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
637 	.func		= bpf_perf_event_output_tp,
638 	.gpl_only	= true,
639 	.ret_type	= RET_INTEGER,
640 	.arg1_type	= ARG_PTR_TO_CTX,
641 	.arg2_type	= ARG_CONST_MAP_PTR,
642 	.arg3_type	= ARG_ANYTHING,
643 	.arg4_type	= ARG_PTR_TO_MEM,
644 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
645 };
646 
647 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
648 	   u64, flags)
649 {
650 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
651 
652 	/*
653 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
654 	 * the other helper's function body cannot be inlined due to being
655 	 * external, thus we need to call raw helper function.
656 	 */
657 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
658 			       flags, 0, 0);
659 }
660 
661 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
662 	.func		= bpf_get_stackid_tp,
663 	.gpl_only	= true,
664 	.ret_type	= RET_INTEGER,
665 	.arg1_type	= ARG_PTR_TO_CTX,
666 	.arg2_type	= ARG_CONST_MAP_PTR,
667 	.arg3_type	= ARG_ANYTHING,
668 };
669 
670 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
671 	   u64, flags)
672 {
673 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
674 
675 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
676 			     (unsigned long) size, flags, 0);
677 }
678 
679 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
680 	.func		= bpf_get_stack_tp,
681 	.gpl_only	= true,
682 	.ret_type	= RET_INTEGER,
683 	.arg1_type	= ARG_PTR_TO_CTX,
684 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
685 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
686 	.arg4_type	= ARG_ANYTHING,
687 };
688 
689 static const struct bpf_func_proto *
690 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
691 {
692 	switch (func_id) {
693 	case BPF_FUNC_perf_event_output:
694 		return &bpf_perf_event_output_proto_tp;
695 	case BPF_FUNC_get_stackid:
696 		return &bpf_get_stackid_proto_tp;
697 	case BPF_FUNC_get_stack:
698 		return &bpf_get_stack_proto_tp;
699 	default:
700 		return tracing_func_proto(func_id, prog);
701 	}
702 }
703 
704 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
705 				    const struct bpf_prog *prog,
706 				    struct bpf_insn_access_aux *info)
707 {
708 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
709 		return false;
710 	if (type != BPF_READ)
711 		return false;
712 	if (off % size != 0)
713 		return false;
714 
715 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
716 	return true;
717 }
718 
719 const struct bpf_verifier_ops tracepoint_verifier_ops = {
720 	.get_func_proto  = tp_prog_func_proto,
721 	.is_valid_access = tp_prog_is_valid_access,
722 };
723 
724 const struct bpf_prog_ops tracepoint_prog_ops = {
725 };
726 
727 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
728 	   struct bpf_perf_event_value *, buf, u32, size)
729 {
730 	int err = -EINVAL;
731 
732 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
733 		goto clear;
734 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
735 				    &buf->running);
736 	if (unlikely(err))
737 		goto clear;
738 	return 0;
739 clear:
740 	memset(buf, 0, size);
741 	return err;
742 }
743 
744 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
745          .func           = bpf_perf_prog_read_value,
746          .gpl_only       = true,
747          .ret_type       = RET_INTEGER,
748          .arg1_type      = ARG_PTR_TO_CTX,
749          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
750          .arg3_type      = ARG_CONST_SIZE,
751 };
752 
753 static const struct bpf_func_proto *
754 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
755 {
756 	switch (func_id) {
757 	case BPF_FUNC_perf_event_output:
758 		return &bpf_perf_event_output_proto_tp;
759 	case BPF_FUNC_get_stackid:
760 		return &bpf_get_stackid_proto_tp;
761 	case BPF_FUNC_get_stack:
762 		return &bpf_get_stack_proto_tp;
763 	case BPF_FUNC_perf_prog_read_value:
764 		return &bpf_perf_prog_read_value_proto;
765 	default:
766 		return tracing_func_proto(func_id, prog);
767 	}
768 }
769 
770 /*
771  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
772  * to avoid potential recursive reuse issue when/if tracepoints are added
773  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
774  */
775 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
776 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
777 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
778 {
779 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
780 
781 	perf_fetch_caller_regs(regs);
782 	return ____bpf_perf_event_output(regs, map, flags, data, size);
783 }
784 
785 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
786 	.func		= bpf_perf_event_output_raw_tp,
787 	.gpl_only	= true,
788 	.ret_type	= RET_INTEGER,
789 	.arg1_type	= ARG_PTR_TO_CTX,
790 	.arg2_type	= ARG_CONST_MAP_PTR,
791 	.arg3_type	= ARG_ANYTHING,
792 	.arg4_type	= ARG_PTR_TO_MEM,
793 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
794 };
795 
796 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
797 	   struct bpf_map *, map, u64, flags)
798 {
799 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
800 
801 	perf_fetch_caller_regs(regs);
802 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
803 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
804 			       flags, 0, 0);
805 }
806 
807 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
808 	.func		= bpf_get_stackid_raw_tp,
809 	.gpl_only	= true,
810 	.ret_type	= RET_INTEGER,
811 	.arg1_type	= ARG_PTR_TO_CTX,
812 	.arg2_type	= ARG_CONST_MAP_PTR,
813 	.arg3_type	= ARG_ANYTHING,
814 };
815 
816 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
817 	   void *, buf, u32, size, u64, flags)
818 {
819 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
820 
821 	perf_fetch_caller_regs(regs);
822 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
823 			     (unsigned long) size, flags, 0);
824 }
825 
826 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
827 	.func		= bpf_get_stack_raw_tp,
828 	.gpl_only	= true,
829 	.ret_type	= RET_INTEGER,
830 	.arg1_type	= ARG_PTR_TO_CTX,
831 	.arg2_type	= ARG_PTR_TO_MEM,
832 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
833 	.arg4_type	= ARG_ANYTHING,
834 };
835 
836 static const struct bpf_func_proto *
837 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
838 {
839 	switch (func_id) {
840 	case BPF_FUNC_perf_event_output:
841 		return &bpf_perf_event_output_proto_raw_tp;
842 	case BPF_FUNC_get_stackid:
843 		return &bpf_get_stackid_proto_raw_tp;
844 	case BPF_FUNC_get_stack:
845 		return &bpf_get_stack_proto_raw_tp;
846 	default:
847 		return tracing_func_proto(func_id, prog);
848 	}
849 }
850 
851 static bool raw_tp_prog_is_valid_access(int off, int size,
852 					enum bpf_access_type type,
853 					const struct bpf_prog *prog,
854 					struct bpf_insn_access_aux *info)
855 {
856 	/* largest tracepoint in the kernel has 12 args */
857 	if (off < 0 || off >= sizeof(__u64) * 12)
858 		return false;
859 	if (type != BPF_READ)
860 		return false;
861 	if (off % size != 0)
862 		return false;
863 	return true;
864 }
865 
866 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
867 	.get_func_proto  = raw_tp_prog_func_proto,
868 	.is_valid_access = raw_tp_prog_is_valid_access,
869 };
870 
871 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
872 };
873 
874 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
875 				    const struct bpf_prog *prog,
876 				    struct bpf_insn_access_aux *info)
877 {
878 	const int size_u64 = sizeof(u64);
879 
880 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
881 		return false;
882 	if (type != BPF_READ)
883 		return false;
884 	if (off % size != 0) {
885 		if (sizeof(unsigned long) != 4)
886 			return false;
887 		if (size != 8)
888 			return false;
889 		if (off % size != 4)
890 			return false;
891 	}
892 
893 	switch (off) {
894 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
895 		bpf_ctx_record_field_size(info, size_u64);
896 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
897 			return false;
898 		break;
899 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
900 		bpf_ctx_record_field_size(info, size_u64);
901 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
902 			return false;
903 		break;
904 	default:
905 		if (size != sizeof(long))
906 			return false;
907 	}
908 
909 	return true;
910 }
911 
912 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
913 				      const struct bpf_insn *si,
914 				      struct bpf_insn *insn_buf,
915 				      struct bpf_prog *prog, u32 *target_size)
916 {
917 	struct bpf_insn *insn = insn_buf;
918 
919 	switch (si->off) {
920 	case offsetof(struct bpf_perf_event_data, sample_period):
921 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
922 						       data), si->dst_reg, si->src_reg,
923 				      offsetof(struct bpf_perf_event_data_kern, data));
924 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
925 				      bpf_target_off(struct perf_sample_data, period, 8,
926 						     target_size));
927 		break;
928 	case offsetof(struct bpf_perf_event_data, addr):
929 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
930 						       data), si->dst_reg, si->src_reg,
931 				      offsetof(struct bpf_perf_event_data_kern, data));
932 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
933 				      bpf_target_off(struct perf_sample_data, addr, 8,
934 						     target_size));
935 		break;
936 	default:
937 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
938 						       regs), si->dst_reg, si->src_reg,
939 				      offsetof(struct bpf_perf_event_data_kern, regs));
940 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
941 				      si->off);
942 		break;
943 	}
944 
945 	return insn - insn_buf;
946 }
947 
948 const struct bpf_verifier_ops perf_event_verifier_ops = {
949 	.get_func_proto		= pe_prog_func_proto,
950 	.is_valid_access	= pe_prog_is_valid_access,
951 	.convert_ctx_access	= pe_prog_convert_ctx_access,
952 };
953 
954 const struct bpf_prog_ops perf_event_prog_ops = {
955 };
956 
957 static DEFINE_MUTEX(bpf_event_mutex);
958 
959 #define BPF_TRACE_MAX_PROGS 64
960 
961 int perf_event_attach_bpf_prog(struct perf_event *event,
962 			       struct bpf_prog *prog)
963 {
964 	struct bpf_prog_array __rcu *old_array;
965 	struct bpf_prog_array *new_array;
966 	int ret = -EEXIST;
967 
968 	/*
969 	 * Kprobe override only works if they are on the function entry,
970 	 * and only if they are on the opt-in list.
971 	 */
972 	if (prog->kprobe_override &&
973 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
974 	     !trace_kprobe_error_injectable(event->tp_event)))
975 		return -EINVAL;
976 
977 	mutex_lock(&bpf_event_mutex);
978 
979 	if (event->prog)
980 		goto unlock;
981 
982 	old_array = event->tp_event->prog_array;
983 	if (old_array &&
984 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
985 		ret = -E2BIG;
986 		goto unlock;
987 	}
988 
989 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
990 	if (ret < 0)
991 		goto unlock;
992 
993 	/* set the new array to event->tp_event and set event->prog */
994 	event->prog = prog;
995 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
996 	bpf_prog_array_free(old_array);
997 
998 unlock:
999 	mutex_unlock(&bpf_event_mutex);
1000 	return ret;
1001 }
1002 
1003 void perf_event_detach_bpf_prog(struct perf_event *event)
1004 {
1005 	struct bpf_prog_array __rcu *old_array;
1006 	struct bpf_prog_array *new_array;
1007 	int ret;
1008 
1009 	mutex_lock(&bpf_event_mutex);
1010 
1011 	if (!event->prog)
1012 		goto unlock;
1013 
1014 	old_array = event->tp_event->prog_array;
1015 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1016 	if (ret == -ENOENT)
1017 		goto unlock;
1018 	if (ret < 0) {
1019 		bpf_prog_array_delete_safe(old_array, event->prog);
1020 	} else {
1021 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1022 		bpf_prog_array_free(old_array);
1023 	}
1024 
1025 	bpf_prog_put(event->prog);
1026 	event->prog = NULL;
1027 
1028 unlock:
1029 	mutex_unlock(&bpf_event_mutex);
1030 }
1031 
1032 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1033 {
1034 	struct perf_event_query_bpf __user *uquery = info;
1035 	struct perf_event_query_bpf query = {};
1036 	u32 *ids, prog_cnt, ids_len;
1037 	int ret;
1038 
1039 	if (!capable(CAP_SYS_ADMIN))
1040 		return -EPERM;
1041 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1042 		return -EINVAL;
1043 	if (copy_from_user(&query, uquery, sizeof(query)))
1044 		return -EFAULT;
1045 
1046 	ids_len = query.ids_len;
1047 	if (ids_len > BPF_TRACE_MAX_PROGS)
1048 		return -E2BIG;
1049 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1050 	if (!ids)
1051 		return -ENOMEM;
1052 	/*
1053 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1054 	 * is required when user only wants to check for uquery->prog_cnt.
1055 	 * There is no need to check for it since the case is handled
1056 	 * gracefully in bpf_prog_array_copy_info.
1057 	 */
1058 
1059 	mutex_lock(&bpf_event_mutex);
1060 	ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1061 				       ids,
1062 				       ids_len,
1063 				       &prog_cnt);
1064 	mutex_unlock(&bpf_event_mutex);
1065 
1066 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1067 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1068 		ret = -EFAULT;
1069 
1070 	kfree(ids);
1071 	return ret;
1072 }
1073 
1074 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1075 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1076 
1077 struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name)
1078 {
1079 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1080 
1081 	for (; btp < __stop__bpf_raw_tp; btp++) {
1082 		if (!strcmp(btp->tp->name, name))
1083 			return btp;
1084 	}
1085 	return NULL;
1086 }
1087 
1088 static __always_inline
1089 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1090 {
1091 	rcu_read_lock();
1092 	preempt_disable();
1093 	(void) BPF_PROG_RUN(prog, args);
1094 	preempt_enable();
1095 	rcu_read_unlock();
1096 }
1097 
1098 #define UNPACK(...)			__VA_ARGS__
1099 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1100 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1101 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1102 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1103 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1104 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1105 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1106 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1107 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1108 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1109 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1110 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1111 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1112 
1113 #define SARG(X)		u64 arg##X
1114 #define COPY(X)		args[X] = arg##X
1115 
1116 #define __DL_COM	(,)
1117 #define __DL_SEM	(;)
1118 
1119 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1120 
1121 #define BPF_TRACE_DEFN_x(x)						\
1122 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1123 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1124 	{								\
1125 		u64 args[x];						\
1126 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1127 		__bpf_trace_run(prog, args);				\
1128 	}								\
1129 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1130 BPF_TRACE_DEFN_x(1);
1131 BPF_TRACE_DEFN_x(2);
1132 BPF_TRACE_DEFN_x(3);
1133 BPF_TRACE_DEFN_x(4);
1134 BPF_TRACE_DEFN_x(5);
1135 BPF_TRACE_DEFN_x(6);
1136 BPF_TRACE_DEFN_x(7);
1137 BPF_TRACE_DEFN_x(8);
1138 BPF_TRACE_DEFN_x(9);
1139 BPF_TRACE_DEFN_x(10);
1140 BPF_TRACE_DEFN_x(11);
1141 BPF_TRACE_DEFN_x(12);
1142 
1143 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1144 {
1145 	struct tracepoint *tp = btp->tp;
1146 
1147 	/*
1148 	 * check that program doesn't access arguments beyond what's
1149 	 * available in this tracepoint
1150 	 */
1151 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1152 		return -EINVAL;
1153 
1154 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1155 }
1156 
1157 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1158 {
1159 	int err;
1160 
1161 	mutex_lock(&bpf_event_mutex);
1162 	err = __bpf_probe_register(btp, prog);
1163 	mutex_unlock(&bpf_event_mutex);
1164 	return err;
1165 }
1166 
1167 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1168 {
1169 	int err;
1170 
1171 	mutex_lock(&bpf_event_mutex);
1172 	err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1173 	mutex_unlock(&bpf_event_mutex);
1174 	return err;
1175 }
1176 
1177 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1178 			    u32 *fd_type, const char **buf,
1179 			    u64 *probe_offset, u64 *probe_addr)
1180 {
1181 	bool is_tracepoint, is_syscall_tp;
1182 	struct bpf_prog *prog;
1183 	int flags, err = 0;
1184 
1185 	prog = event->prog;
1186 	if (!prog)
1187 		return -ENOENT;
1188 
1189 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1190 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1191 		return -EOPNOTSUPP;
1192 
1193 	*prog_id = prog->aux->id;
1194 	flags = event->tp_event->flags;
1195 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1196 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1197 
1198 	if (is_tracepoint || is_syscall_tp) {
1199 		*buf = is_tracepoint ? event->tp_event->tp->name
1200 				     : event->tp_event->name;
1201 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1202 		*probe_offset = 0x0;
1203 		*probe_addr = 0x0;
1204 	} else {
1205 		/* kprobe/uprobe */
1206 		err = -EOPNOTSUPP;
1207 #ifdef CONFIG_KPROBE_EVENTS
1208 		if (flags & TRACE_EVENT_FL_KPROBE)
1209 			err = bpf_get_kprobe_info(event, fd_type, buf,
1210 						  probe_offset, probe_addr,
1211 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1212 #endif
1213 #ifdef CONFIG_UPROBE_EVENTS
1214 		if (flags & TRACE_EVENT_FL_UPROBE)
1215 			err = bpf_get_uprobe_info(event, fd_type, buf,
1216 						  probe_offset,
1217 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1218 #endif
1219 	}
1220 
1221 	return err;
1222 }
1223