1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/syscalls.h> 15 #include <linux/error-injection.h> 16 17 #include "trace_probe.h" 18 #include "trace.h" 19 20 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 21 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 22 23 /** 24 * trace_call_bpf - invoke BPF program 25 * @call: tracepoint event 26 * @ctx: opaque context pointer 27 * 28 * kprobe handlers execute BPF programs via this helper. 29 * Can be used from static tracepoints in the future. 30 * 31 * Return: BPF programs always return an integer which is interpreted by 32 * kprobe handler as: 33 * 0 - return from kprobe (event is filtered out) 34 * 1 - store kprobe event into ring buffer 35 * Other values are reserved and currently alias to 1 36 */ 37 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 38 { 39 unsigned int ret; 40 41 if (in_nmi()) /* not supported yet */ 42 return 1; 43 44 preempt_disable(); 45 46 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 47 /* 48 * since some bpf program is already running on this cpu, 49 * don't call into another bpf program (same or different) 50 * and don't send kprobe event into ring-buffer, 51 * so return zero here 52 */ 53 ret = 0; 54 goto out; 55 } 56 57 /* 58 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 59 * to all call sites, we did a bpf_prog_array_valid() there to check 60 * whether call->prog_array is empty or not, which is 61 * a heurisitc to speed up execution. 62 * 63 * If bpf_prog_array_valid() fetched prog_array was 64 * non-NULL, we go into trace_call_bpf() and do the actual 65 * proper rcu_dereference() under RCU lock. 66 * If it turns out that prog_array is NULL then, we bail out. 67 * For the opposite, if the bpf_prog_array_valid() fetched pointer 68 * was NULL, you'll skip the prog_array with the risk of missing 69 * out of events when it was updated in between this and the 70 * rcu_dereference() which is accepted risk. 71 */ 72 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 73 74 out: 75 __this_cpu_dec(bpf_prog_active); 76 preempt_enable(); 77 78 return ret; 79 } 80 EXPORT_SYMBOL_GPL(trace_call_bpf); 81 82 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 83 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 84 { 85 regs_set_return_value(regs, rc); 86 override_function_with_return(regs); 87 return 0; 88 } 89 90 static const struct bpf_func_proto bpf_override_return_proto = { 91 .func = bpf_override_return, 92 .gpl_only = true, 93 .ret_type = RET_INTEGER, 94 .arg1_type = ARG_PTR_TO_CTX, 95 .arg2_type = ARG_ANYTHING, 96 }; 97 #endif 98 99 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 100 { 101 int ret; 102 103 ret = probe_kernel_read(dst, unsafe_ptr, size); 104 if (unlikely(ret < 0)) 105 memset(dst, 0, size); 106 107 return ret; 108 } 109 110 static const struct bpf_func_proto bpf_probe_read_proto = { 111 .func = bpf_probe_read, 112 .gpl_only = true, 113 .ret_type = RET_INTEGER, 114 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 115 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 116 .arg3_type = ARG_ANYTHING, 117 }; 118 119 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 120 u32, size) 121 { 122 /* 123 * Ensure we're in user context which is safe for the helper to 124 * run. This helper has no business in a kthread. 125 * 126 * access_ok() should prevent writing to non-user memory, but in 127 * some situations (nommu, temporary switch, etc) access_ok() does 128 * not provide enough validation, hence the check on KERNEL_DS. 129 */ 130 131 if (unlikely(in_interrupt() || 132 current->flags & (PF_KTHREAD | PF_EXITING))) 133 return -EPERM; 134 if (unlikely(uaccess_kernel())) 135 return -EPERM; 136 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size)) 137 return -EPERM; 138 139 return probe_kernel_write(unsafe_ptr, src, size); 140 } 141 142 static const struct bpf_func_proto bpf_probe_write_user_proto = { 143 .func = bpf_probe_write_user, 144 .gpl_only = true, 145 .ret_type = RET_INTEGER, 146 .arg1_type = ARG_ANYTHING, 147 .arg2_type = ARG_PTR_TO_MEM, 148 .arg3_type = ARG_CONST_SIZE, 149 }; 150 151 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 152 { 153 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 154 current->comm, task_pid_nr(current)); 155 156 return &bpf_probe_write_user_proto; 157 } 158 159 /* 160 * Only limited trace_printk() conversion specifiers allowed: 161 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 162 */ 163 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 164 u64, arg2, u64, arg3) 165 { 166 bool str_seen = false; 167 int mod[3] = {}; 168 int fmt_cnt = 0; 169 u64 unsafe_addr; 170 char buf[64]; 171 int i; 172 173 /* 174 * bpf_check()->check_func_arg()->check_stack_boundary() 175 * guarantees that fmt points to bpf program stack, 176 * fmt_size bytes of it were initialized and fmt_size > 0 177 */ 178 if (fmt[--fmt_size] != 0) 179 return -EINVAL; 180 181 /* check format string for allowed specifiers */ 182 for (i = 0; i < fmt_size; i++) { 183 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 184 return -EINVAL; 185 186 if (fmt[i] != '%') 187 continue; 188 189 if (fmt_cnt >= 3) 190 return -EINVAL; 191 192 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 193 i++; 194 if (fmt[i] == 'l') { 195 mod[fmt_cnt]++; 196 i++; 197 } else if (fmt[i] == 'p' || fmt[i] == 's') { 198 mod[fmt_cnt]++; 199 i++; 200 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0) 201 return -EINVAL; 202 fmt_cnt++; 203 if (fmt[i - 1] == 's') { 204 if (str_seen) 205 /* allow only one '%s' per fmt string */ 206 return -EINVAL; 207 str_seen = true; 208 209 switch (fmt_cnt) { 210 case 1: 211 unsafe_addr = arg1; 212 arg1 = (long) buf; 213 break; 214 case 2: 215 unsafe_addr = arg2; 216 arg2 = (long) buf; 217 break; 218 case 3: 219 unsafe_addr = arg3; 220 arg3 = (long) buf; 221 break; 222 } 223 buf[0] = 0; 224 strncpy_from_unsafe(buf, 225 (void *) (long) unsafe_addr, 226 sizeof(buf)); 227 } 228 continue; 229 } 230 231 if (fmt[i] == 'l') { 232 mod[fmt_cnt]++; 233 i++; 234 } 235 236 if (fmt[i] != 'i' && fmt[i] != 'd' && 237 fmt[i] != 'u' && fmt[i] != 'x') 238 return -EINVAL; 239 fmt_cnt++; 240 } 241 242 /* Horrid workaround for getting va_list handling working with different 243 * argument type combinations generically for 32 and 64 bit archs. 244 */ 245 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 246 #define __BPF_TP(...) \ 247 __trace_printk(0 /* Fake ip */, \ 248 fmt, ##__VA_ARGS__) 249 250 #define __BPF_ARG1_TP(...) \ 251 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 252 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 253 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 254 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 255 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 256 257 #define __BPF_ARG2_TP(...) \ 258 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 259 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 260 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 261 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 262 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 263 264 #define __BPF_ARG3_TP(...) \ 265 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 266 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 267 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 268 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 269 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 270 271 return __BPF_TP_EMIT(); 272 } 273 274 static const struct bpf_func_proto bpf_trace_printk_proto = { 275 .func = bpf_trace_printk, 276 .gpl_only = true, 277 .ret_type = RET_INTEGER, 278 .arg1_type = ARG_PTR_TO_MEM, 279 .arg2_type = ARG_CONST_SIZE, 280 }; 281 282 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 283 { 284 /* 285 * this program might be calling bpf_trace_printk, 286 * so allocate per-cpu printk buffers 287 */ 288 trace_printk_init_buffers(); 289 290 return &bpf_trace_printk_proto; 291 } 292 293 static __always_inline int 294 get_map_perf_counter(struct bpf_map *map, u64 flags, 295 u64 *value, u64 *enabled, u64 *running) 296 { 297 struct bpf_array *array = container_of(map, struct bpf_array, map); 298 unsigned int cpu = smp_processor_id(); 299 u64 index = flags & BPF_F_INDEX_MASK; 300 struct bpf_event_entry *ee; 301 302 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 303 return -EINVAL; 304 if (index == BPF_F_CURRENT_CPU) 305 index = cpu; 306 if (unlikely(index >= array->map.max_entries)) 307 return -E2BIG; 308 309 ee = READ_ONCE(array->ptrs[index]); 310 if (!ee) 311 return -ENOENT; 312 313 return perf_event_read_local(ee->event, value, enabled, running); 314 } 315 316 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 317 { 318 u64 value = 0; 319 int err; 320 321 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 322 /* 323 * this api is ugly since we miss [-22..-2] range of valid 324 * counter values, but that's uapi 325 */ 326 if (err) 327 return err; 328 return value; 329 } 330 331 static const struct bpf_func_proto bpf_perf_event_read_proto = { 332 .func = bpf_perf_event_read, 333 .gpl_only = true, 334 .ret_type = RET_INTEGER, 335 .arg1_type = ARG_CONST_MAP_PTR, 336 .arg2_type = ARG_ANYTHING, 337 }; 338 339 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 340 struct bpf_perf_event_value *, buf, u32, size) 341 { 342 int err = -EINVAL; 343 344 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 345 goto clear; 346 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 347 &buf->running); 348 if (unlikely(err)) 349 goto clear; 350 return 0; 351 clear: 352 memset(buf, 0, size); 353 return err; 354 } 355 356 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 357 .func = bpf_perf_event_read_value, 358 .gpl_only = true, 359 .ret_type = RET_INTEGER, 360 .arg1_type = ARG_CONST_MAP_PTR, 361 .arg2_type = ARG_ANYTHING, 362 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 363 .arg4_type = ARG_CONST_SIZE, 364 }; 365 366 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd); 367 368 static __always_inline u64 369 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 370 u64 flags, struct perf_sample_data *sd) 371 { 372 struct bpf_array *array = container_of(map, struct bpf_array, map); 373 unsigned int cpu = smp_processor_id(); 374 u64 index = flags & BPF_F_INDEX_MASK; 375 struct bpf_event_entry *ee; 376 struct perf_event *event; 377 378 if (index == BPF_F_CURRENT_CPU) 379 index = cpu; 380 if (unlikely(index >= array->map.max_entries)) 381 return -E2BIG; 382 383 ee = READ_ONCE(array->ptrs[index]); 384 if (!ee) 385 return -ENOENT; 386 387 event = ee->event; 388 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 389 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 390 return -EINVAL; 391 392 if (unlikely(event->oncpu != cpu)) 393 return -EOPNOTSUPP; 394 395 perf_event_output(event, sd, regs); 396 return 0; 397 } 398 399 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 400 u64, flags, void *, data, u64, size) 401 { 402 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd); 403 struct perf_raw_record raw = { 404 .frag = { 405 .size = size, 406 .data = data, 407 }, 408 }; 409 410 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 411 return -EINVAL; 412 413 perf_sample_data_init(sd, 0, 0); 414 sd->raw = &raw; 415 416 return __bpf_perf_event_output(regs, map, flags, sd); 417 } 418 419 static const struct bpf_func_proto bpf_perf_event_output_proto = { 420 .func = bpf_perf_event_output, 421 .gpl_only = true, 422 .ret_type = RET_INTEGER, 423 .arg1_type = ARG_PTR_TO_CTX, 424 .arg2_type = ARG_CONST_MAP_PTR, 425 .arg3_type = ARG_ANYTHING, 426 .arg4_type = ARG_PTR_TO_MEM, 427 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 428 }; 429 430 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 431 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd); 432 433 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 434 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 435 { 436 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd); 437 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 438 struct perf_raw_frag frag = { 439 .copy = ctx_copy, 440 .size = ctx_size, 441 .data = ctx, 442 }; 443 struct perf_raw_record raw = { 444 .frag = { 445 { 446 .next = ctx_size ? &frag : NULL, 447 }, 448 .size = meta_size, 449 .data = meta, 450 }, 451 }; 452 453 perf_fetch_caller_regs(regs); 454 perf_sample_data_init(sd, 0, 0); 455 sd->raw = &raw; 456 457 return __bpf_perf_event_output(regs, map, flags, sd); 458 } 459 460 BPF_CALL_0(bpf_get_current_task) 461 { 462 return (long) current; 463 } 464 465 static const struct bpf_func_proto bpf_get_current_task_proto = { 466 .func = bpf_get_current_task, 467 .gpl_only = true, 468 .ret_type = RET_INTEGER, 469 }; 470 471 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 472 { 473 struct bpf_array *array = container_of(map, struct bpf_array, map); 474 struct cgroup *cgrp; 475 476 if (unlikely(idx >= array->map.max_entries)) 477 return -E2BIG; 478 479 cgrp = READ_ONCE(array->ptrs[idx]); 480 if (unlikely(!cgrp)) 481 return -EAGAIN; 482 483 return task_under_cgroup_hierarchy(current, cgrp); 484 } 485 486 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 487 .func = bpf_current_task_under_cgroup, 488 .gpl_only = false, 489 .ret_type = RET_INTEGER, 490 .arg1_type = ARG_CONST_MAP_PTR, 491 .arg2_type = ARG_ANYTHING, 492 }; 493 494 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 495 const void *, unsafe_ptr) 496 { 497 int ret; 498 499 /* 500 * The strncpy_from_unsafe() call will likely not fill the entire 501 * buffer, but that's okay in this circumstance as we're probing 502 * arbitrary memory anyway similar to bpf_probe_read() and might 503 * as well probe the stack. Thus, memory is explicitly cleared 504 * only in error case, so that improper users ignoring return 505 * code altogether don't copy garbage; otherwise length of string 506 * is returned that can be used for bpf_perf_event_output() et al. 507 */ 508 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 509 if (unlikely(ret < 0)) 510 memset(dst, 0, size); 511 512 return ret; 513 } 514 515 static const struct bpf_func_proto bpf_probe_read_str_proto = { 516 .func = bpf_probe_read_str, 517 .gpl_only = true, 518 .ret_type = RET_INTEGER, 519 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 520 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 521 .arg3_type = ARG_ANYTHING, 522 }; 523 524 static const struct bpf_func_proto * 525 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 526 { 527 switch (func_id) { 528 case BPF_FUNC_map_lookup_elem: 529 return &bpf_map_lookup_elem_proto; 530 case BPF_FUNC_map_update_elem: 531 return &bpf_map_update_elem_proto; 532 case BPF_FUNC_map_delete_elem: 533 return &bpf_map_delete_elem_proto; 534 case BPF_FUNC_probe_read: 535 return &bpf_probe_read_proto; 536 case BPF_FUNC_ktime_get_ns: 537 return &bpf_ktime_get_ns_proto; 538 case BPF_FUNC_tail_call: 539 return &bpf_tail_call_proto; 540 case BPF_FUNC_get_current_pid_tgid: 541 return &bpf_get_current_pid_tgid_proto; 542 case BPF_FUNC_get_current_task: 543 return &bpf_get_current_task_proto; 544 case BPF_FUNC_get_current_uid_gid: 545 return &bpf_get_current_uid_gid_proto; 546 case BPF_FUNC_get_current_comm: 547 return &bpf_get_current_comm_proto; 548 case BPF_FUNC_trace_printk: 549 return bpf_get_trace_printk_proto(); 550 case BPF_FUNC_get_smp_processor_id: 551 return &bpf_get_smp_processor_id_proto; 552 case BPF_FUNC_get_numa_node_id: 553 return &bpf_get_numa_node_id_proto; 554 case BPF_FUNC_perf_event_read: 555 return &bpf_perf_event_read_proto; 556 case BPF_FUNC_probe_write_user: 557 return bpf_get_probe_write_proto(); 558 case BPF_FUNC_current_task_under_cgroup: 559 return &bpf_current_task_under_cgroup_proto; 560 case BPF_FUNC_get_prandom_u32: 561 return &bpf_get_prandom_u32_proto; 562 case BPF_FUNC_probe_read_str: 563 return &bpf_probe_read_str_proto; 564 #ifdef CONFIG_CGROUPS 565 case BPF_FUNC_get_current_cgroup_id: 566 return &bpf_get_current_cgroup_id_proto; 567 #endif 568 default: 569 return NULL; 570 } 571 } 572 573 static const struct bpf_func_proto * 574 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 575 { 576 switch (func_id) { 577 case BPF_FUNC_perf_event_output: 578 return &bpf_perf_event_output_proto; 579 case BPF_FUNC_get_stackid: 580 return &bpf_get_stackid_proto; 581 case BPF_FUNC_get_stack: 582 return &bpf_get_stack_proto; 583 case BPF_FUNC_perf_event_read_value: 584 return &bpf_perf_event_read_value_proto; 585 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 586 case BPF_FUNC_override_return: 587 return &bpf_override_return_proto; 588 #endif 589 default: 590 return tracing_func_proto(func_id, prog); 591 } 592 } 593 594 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 595 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 596 const struct bpf_prog *prog, 597 struct bpf_insn_access_aux *info) 598 { 599 if (off < 0 || off >= sizeof(struct pt_regs)) 600 return false; 601 if (type != BPF_READ) 602 return false; 603 if (off % size != 0) 604 return false; 605 /* 606 * Assertion for 32 bit to make sure last 8 byte access 607 * (BPF_DW) to the last 4 byte member is disallowed. 608 */ 609 if (off + size > sizeof(struct pt_regs)) 610 return false; 611 612 return true; 613 } 614 615 const struct bpf_verifier_ops kprobe_verifier_ops = { 616 .get_func_proto = kprobe_prog_func_proto, 617 .is_valid_access = kprobe_prog_is_valid_access, 618 }; 619 620 const struct bpf_prog_ops kprobe_prog_ops = { 621 }; 622 623 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 624 u64, flags, void *, data, u64, size) 625 { 626 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 627 628 /* 629 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 630 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 631 * from there and call the same bpf_perf_event_output() helper inline. 632 */ 633 return ____bpf_perf_event_output(regs, map, flags, data, size); 634 } 635 636 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 637 .func = bpf_perf_event_output_tp, 638 .gpl_only = true, 639 .ret_type = RET_INTEGER, 640 .arg1_type = ARG_PTR_TO_CTX, 641 .arg2_type = ARG_CONST_MAP_PTR, 642 .arg3_type = ARG_ANYTHING, 643 .arg4_type = ARG_PTR_TO_MEM, 644 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 645 }; 646 647 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 648 u64, flags) 649 { 650 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 651 652 /* 653 * Same comment as in bpf_perf_event_output_tp(), only that this time 654 * the other helper's function body cannot be inlined due to being 655 * external, thus we need to call raw helper function. 656 */ 657 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 658 flags, 0, 0); 659 } 660 661 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 662 .func = bpf_get_stackid_tp, 663 .gpl_only = true, 664 .ret_type = RET_INTEGER, 665 .arg1_type = ARG_PTR_TO_CTX, 666 .arg2_type = ARG_CONST_MAP_PTR, 667 .arg3_type = ARG_ANYTHING, 668 }; 669 670 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 671 u64, flags) 672 { 673 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 674 675 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 676 (unsigned long) size, flags, 0); 677 } 678 679 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 680 .func = bpf_get_stack_tp, 681 .gpl_only = true, 682 .ret_type = RET_INTEGER, 683 .arg1_type = ARG_PTR_TO_CTX, 684 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 685 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 686 .arg4_type = ARG_ANYTHING, 687 }; 688 689 static const struct bpf_func_proto * 690 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 691 { 692 switch (func_id) { 693 case BPF_FUNC_perf_event_output: 694 return &bpf_perf_event_output_proto_tp; 695 case BPF_FUNC_get_stackid: 696 return &bpf_get_stackid_proto_tp; 697 case BPF_FUNC_get_stack: 698 return &bpf_get_stack_proto_tp; 699 default: 700 return tracing_func_proto(func_id, prog); 701 } 702 } 703 704 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 705 const struct bpf_prog *prog, 706 struct bpf_insn_access_aux *info) 707 { 708 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 709 return false; 710 if (type != BPF_READ) 711 return false; 712 if (off % size != 0) 713 return false; 714 715 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 716 return true; 717 } 718 719 const struct bpf_verifier_ops tracepoint_verifier_ops = { 720 .get_func_proto = tp_prog_func_proto, 721 .is_valid_access = tp_prog_is_valid_access, 722 }; 723 724 const struct bpf_prog_ops tracepoint_prog_ops = { 725 }; 726 727 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 728 struct bpf_perf_event_value *, buf, u32, size) 729 { 730 int err = -EINVAL; 731 732 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 733 goto clear; 734 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 735 &buf->running); 736 if (unlikely(err)) 737 goto clear; 738 return 0; 739 clear: 740 memset(buf, 0, size); 741 return err; 742 } 743 744 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 745 .func = bpf_perf_prog_read_value, 746 .gpl_only = true, 747 .ret_type = RET_INTEGER, 748 .arg1_type = ARG_PTR_TO_CTX, 749 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 750 .arg3_type = ARG_CONST_SIZE, 751 }; 752 753 static const struct bpf_func_proto * 754 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 755 { 756 switch (func_id) { 757 case BPF_FUNC_perf_event_output: 758 return &bpf_perf_event_output_proto_tp; 759 case BPF_FUNC_get_stackid: 760 return &bpf_get_stackid_proto_tp; 761 case BPF_FUNC_get_stack: 762 return &bpf_get_stack_proto_tp; 763 case BPF_FUNC_perf_prog_read_value: 764 return &bpf_perf_prog_read_value_proto; 765 default: 766 return tracing_func_proto(func_id, prog); 767 } 768 } 769 770 /* 771 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 772 * to avoid potential recursive reuse issue when/if tracepoints are added 773 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack 774 */ 775 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs); 776 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 777 struct bpf_map *, map, u64, flags, void *, data, u64, size) 778 { 779 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 780 781 perf_fetch_caller_regs(regs); 782 return ____bpf_perf_event_output(regs, map, flags, data, size); 783 } 784 785 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 786 .func = bpf_perf_event_output_raw_tp, 787 .gpl_only = true, 788 .ret_type = RET_INTEGER, 789 .arg1_type = ARG_PTR_TO_CTX, 790 .arg2_type = ARG_CONST_MAP_PTR, 791 .arg3_type = ARG_ANYTHING, 792 .arg4_type = ARG_PTR_TO_MEM, 793 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 794 }; 795 796 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 797 struct bpf_map *, map, u64, flags) 798 { 799 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 800 801 perf_fetch_caller_regs(regs); 802 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 803 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 804 flags, 0, 0); 805 } 806 807 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 808 .func = bpf_get_stackid_raw_tp, 809 .gpl_only = true, 810 .ret_type = RET_INTEGER, 811 .arg1_type = ARG_PTR_TO_CTX, 812 .arg2_type = ARG_CONST_MAP_PTR, 813 .arg3_type = ARG_ANYTHING, 814 }; 815 816 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 817 void *, buf, u32, size, u64, flags) 818 { 819 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 820 821 perf_fetch_caller_regs(regs); 822 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 823 (unsigned long) size, flags, 0); 824 } 825 826 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 827 .func = bpf_get_stack_raw_tp, 828 .gpl_only = true, 829 .ret_type = RET_INTEGER, 830 .arg1_type = ARG_PTR_TO_CTX, 831 .arg2_type = ARG_PTR_TO_MEM, 832 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 833 .arg4_type = ARG_ANYTHING, 834 }; 835 836 static const struct bpf_func_proto * 837 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 838 { 839 switch (func_id) { 840 case BPF_FUNC_perf_event_output: 841 return &bpf_perf_event_output_proto_raw_tp; 842 case BPF_FUNC_get_stackid: 843 return &bpf_get_stackid_proto_raw_tp; 844 case BPF_FUNC_get_stack: 845 return &bpf_get_stack_proto_raw_tp; 846 default: 847 return tracing_func_proto(func_id, prog); 848 } 849 } 850 851 static bool raw_tp_prog_is_valid_access(int off, int size, 852 enum bpf_access_type type, 853 const struct bpf_prog *prog, 854 struct bpf_insn_access_aux *info) 855 { 856 /* largest tracepoint in the kernel has 12 args */ 857 if (off < 0 || off >= sizeof(__u64) * 12) 858 return false; 859 if (type != BPF_READ) 860 return false; 861 if (off % size != 0) 862 return false; 863 return true; 864 } 865 866 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 867 .get_func_proto = raw_tp_prog_func_proto, 868 .is_valid_access = raw_tp_prog_is_valid_access, 869 }; 870 871 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 872 }; 873 874 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 875 const struct bpf_prog *prog, 876 struct bpf_insn_access_aux *info) 877 { 878 const int size_u64 = sizeof(u64); 879 880 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 881 return false; 882 if (type != BPF_READ) 883 return false; 884 if (off % size != 0) { 885 if (sizeof(unsigned long) != 4) 886 return false; 887 if (size != 8) 888 return false; 889 if (off % size != 4) 890 return false; 891 } 892 893 switch (off) { 894 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 895 bpf_ctx_record_field_size(info, size_u64); 896 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 897 return false; 898 break; 899 case bpf_ctx_range(struct bpf_perf_event_data, addr): 900 bpf_ctx_record_field_size(info, size_u64); 901 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 902 return false; 903 break; 904 default: 905 if (size != sizeof(long)) 906 return false; 907 } 908 909 return true; 910 } 911 912 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 913 const struct bpf_insn *si, 914 struct bpf_insn *insn_buf, 915 struct bpf_prog *prog, u32 *target_size) 916 { 917 struct bpf_insn *insn = insn_buf; 918 919 switch (si->off) { 920 case offsetof(struct bpf_perf_event_data, sample_period): 921 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 922 data), si->dst_reg, si->src_reg, 923 offsetof(struct bpf_perf_event_data_kern, data)); 924 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 925 bpf_target_off(struct perf_sample_data, period, 8, 926 target_size)); 927 break; 928 case offsetof(struct bpf_perf_event_data, addr): 929 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 930 data), si->dst_reg, si->src_reg, 931 offsetof(struct bpf_perf_event_data_kern, data)); 932 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 933 bpf_target_off(struct perf_sample_data, addr, 8, 934 target_size)); 935 break; 936 default: 937 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 938 regs), si->dst_reg, si->src_reg, 939 offsetof(struct bpf_perf_event_data_kern, regs)); 940 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 941 si->off); 942 break; 943 } 944 945 return insn - insn_buf; 946 } 947 948 const struct bpf_verifier_ops perf_event_verifier_ops = { 949 .get_func_proto = pe_prog_func_proto, 950 .is_valid_access = pe_prog_is_valid_access, 951 .convert_ctx_access = pe_prog_convert_ctx_access, 952 }; 953 954 const struct bpf_prog_ops perf_event_prog_ops = { 955 }; 956 957 static DEFINE_MUTEX(bpf_event_mutex); 958 959 #define BPF_TRACE_MAX_PROGS 64 960 961 int perf_event_attach_bpf_prog(struct perf_event *event, 962 struct bpf_prog *prog) 963 { 964 struct bpf_prog_array __rcu *old_array; 965 struct bpf_prog_array *new_array; 966 int ret = -EEXIST; 967 968 /* 969 * Kprobe override only works if they are on the function entry, 970 * and only if they are on the opt-in list. 971 */ 972 if (prog->kprobe_override && 973 (!trace_kprobe_on_func_entry(event->tp_event) || 974 !trace_kprobe_error_injectable(event->tp_event))) 975 return -EINVAL; 976 977 mutex_lock(&bpf_event_mutex); 978 979 if (event->prog) 980 goto unlock; 981 982 old_array = event->tp_event->prog_array; 983 if (old_array && 984 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 985 ret = -E2BIG; 986 goto unlock; 987 } 988 989 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 990 if (ret < 0) 991 goto unlock; 992 993 /* set the new array to event->tp_event and set event->prog */ 994 event->prog = prog; 995 rcu_assign_pointer(event->tp_event->prog_array, new_array); 996 bpf_prog_array_free(old_array); 997 998 unlock: 999 mutex_unlock(&bpf_event_mutex); 1000 return ret; 1001 } 1002 1003 void perf_event_detach_bpf_prog(struct perf_event *event) 1004 { 1005 struct bpf_prog_array __rcu *old_array; 1006 struct bpf_prog_array *new_array; 1007 int ret; 1008 1009 mutex_lock(&bpf_event_mutex); 1010 1011 if (!event->prog) 1012 goto unlock; 1013 1014 old_array = event->tp_event->prog_array; 1015 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1016 if (ret == -ENOENT) 1017 goto unlock; 1018 if (ret < 0) { 1019 bpf_prog_array_delete_safe(old_array, event->prog); 1020 } else { 1021 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1022 bpf_prog_array_free(old_array); 1023 } 1024 1025 bpf_prog_put(event->prog); 1026 event->prog = NULL; 1027 1028 unlock: 1029 mutex_unlock(&bpf_event_mutex); 1030 } 1031 1032 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1033 { 1034 struct perf_event_query_bpf __user *uquery = info; 1035 struct perf_event_query_bpf query = {}; 1036 u32 *ids, prog_cnt, ids_len; 1037 int ret; 1038 1039 if (!capable(CAP_SYS_ADMIN)) 1040 return -EPERM; 1041 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1042 return -EINVAL; 1043 if (copy_from_user(&query, uquery, sizeof(query))) 1044 return -EFAULT; 1045 1046 ids_len = query.ids_len; 1047 if (ids_len > BPF_TRACE_MAX_PROGS) 1048 return -E2BIG; 1049 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1050 if (!ids) 1051 return -ENOMEM; 1052 /* 1053 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1054 * is required when user only wants to check for uquery->prog_cnt. 1055 * There is no need to check for it since the case is handled 1056 * gracefully in bpf_prog_array_copy_info. 1057 */ 1058 1059 mutex_lock(&bpf_event_mutex); 1060 ret = bpf_prog_array_copy_info(event->tp_event->prog_array, 1061 ids, 1062 ids_len, 1063 &prog_cnt); 1064 mutex_unlock(&bpf_event_mutex); 1065 1066 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1067 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1068 ret = -EFAULT; 1069 1070 kfree(ids); 1071 return ret; 1072 } 1073 1074 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1075 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1076 1077 struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name) 1078 { 1079 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1080 1081 for (; btp < __stop__bpf_raw_tp; btp++) { 1082 if (!strcmp(btp->tp->name, name)) 1083 return btp; 1084 } 1085 return NULL; 1086 } 1087 1088 static __always_inline 1089 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1090 { 1091 rcu_read_lock(); 1092 preempt_disable(); 1093 (void) BPF_PROG_RUN(prog, args); 1094 preempt_enable(); 1095 rcu_read_unlock(); 1096 } 1097 1098 #define UNPACK(...) __VA_ARGS__ 1099 #define REPEAT_1(FN, DL, X, ...) FN(X) 1100 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1101 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1102 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1103 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1104 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1105 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1106 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1107 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1108 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1109 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1110 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1111 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1112 1113 #define SARG(X) u64 arg##X 1114 #define COPY(X) args[X] = arg##X 1115 1116 #define __DL_COM (,) 1117 #define __DL_SEM (;) 1118 1119 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1120 1121 #define BPF_TRACE_DEFN_x(x) \ 1122 void bpf_trace_run##x(struct bpf_prog *prog, \ 1123 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1124 { \ 1125 u64 args[x]; \ 1126 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1127 __bpf_trace_run(prog, args); \ 1128 } \ 1129 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1130 BPF_TRACE_DEFN_x(1); 1131 BPF_TRACE_DEFN_x(2); 1132 BPF_TRACE_DEFN_x(3); 1133 BPF_TRACE_DEFN_x(4); 1134 BPF_TRACE_DEFN_x(5); 1135 BPF_TRACE_DEFN_x(6); 1136 BPF_TRACE_DEFN_x(7); 1137 BPF_TRACE_DEFN_x(8); 1138 BPF_TRACE_DEFN_x(9); 1139 BPF_TRACE_DEFN_x(10); 1140 BPF_TRACE_DEFN_x(11); 1141 BPF_TRACE_DEFN_x(12); 1142 1143 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1144 { 1145 struct tracepoint *tp = btp->tp; 1146 1147 /* 1148 * check that program doesn't access arguments beyond what's 1149 * available in this tracepoint 1150 */ 1151 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1152 return -EINVAL; 1153 1154 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1155 } 1156 1157 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1158 { 1159 int err; 1160 1161 mutex_lock(&bpf_event_mutex); 1162 err = __bpf_probe_register(btp, prog); 1163 mutex_unlock(&bpf_event_mutex); 1164 return err; 1165 } 1166 1167 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1168 { 1169 int err; 1170 1171 mutex_lock(&bpf_event_mutex); 1172 err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1173 mutex_unlock(&bpf_event_mutex); 1174 return err; 1175 } 1176 1177 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1178 u32 *fd_type, const char **buf, 1179 u64 *probe_offset, u64 *probe_addr) 1180 { 1181 bool is_tracepoint, is_syscall_tp; 1182 struct bpf_prog *prog; 1183 int flags, err = 0; 1184 1185 prog = event->prog; 1186 if (!prog) 1187 return -ENOENT; 1188 1189 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1190 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1191 return -EOPNOTSUPP; 1192 1193 *prog_id = prog->aux->id; 1194 flags = event->tp_event->flags; 1195 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1196 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1197 1198 if (is_tracepoint || is_syscall_tp) { 1199 *buf = is_tracepoint ? event->tp_event->tp->name 1200 : event->tp_event->name; 1201 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1202 *probe_offset = 0x0; 1203 *probe_addr = 0x0; 1204 } else { 1205 /* kprobe/uprobe */ 1206 err = -EOPNOTSUPP; 1207 #ifdef CONFIG_KPROBE_EVENTS 1208 if (flags & TRACE_EVENT_FL_KPROBE) 1209 err = bpf_get_kprobe_info(event, fd_type, buf, 1210 probe_offset, probe_addr, 1211 event->attr.type == PERF_TYPE_TRACEPOINT); 1212 #endif 1213 #ifdef CONFIG_UPROBE_EVENTS 1214 if (flags & TRACE_EVENT_FL_UPROBE) 1215 err = bpf_get_uprobe_info(event, fd_type, buf, 1216 probe_offset, 1217 event->attr.type == PERF_TYPE_TRACEPOINT); 1218 #endif 1219 } 1220 1221 return err; 1222 } 1223