xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision db4278c55fa53760893266538e86e638330b03bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 
21 #include <net/bpf_sk_storage.h>
22 
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25 
26 #include <asm/tlb.h>
27 
28 #include "trace_probe.h"
29 #include "trace.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33 
34 #define bpf_event_rcu_dereference(p)					\
35 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36 
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 	struct module *module;
40 	struct list_head list;
41 };
42 
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45 
46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 	struct bpf_raw_event_map *btp, *ret = NULL;
49 	struct bpf_trace_module *btm;
50 	unsigned int i;
51 
52 	mutex_lock(&bpf_module_mutex);
53 	list_for_each_entry(btm, &bpf_trace_modules, list) {
54 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 			btp = &btm->module->bpf_raw_events[i];
56 			if (!strcmp(btp->tp->name, name)) {
57 				if (try_module_get(btm->module))
58 					ret = btp;
59 				goto out;
60 			}
61 		}
62 	}
63 out:
64 	mutex_unlock(&bpf_module_mutex);
65 	return ret;
66 }
67 #else
68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 	return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73 
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76 
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 				  u64 flags, const struct btf **btf,
79 				  s32 *btf_id);
80 
81 /**
82  * trace_call_bpf - invoke BPF program
83  * @call: tracepoint event
84  * @ctx: opaque context pointer
85  *
86  * kprobe handlers execute BPF programs via this helper.
87  * Can be used from static tracepoints in the future.
88  *
89  * Return: BPF programs always return an integer which is interpreted by
90  * kprobe handler as:
91  * 0 - return from kprobe (event is filtered out)
92  * 1 - store kprobe event into ring buffer
93  * Other values are reserved and currently alias to 1
94  */
95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 	unsigned int ret;
98 
99 	cant_sleep();
100 
101 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 		/*
103 		 * since some bpf program is already running on this cpu,
104 		 * don't call into another bpf program (same or different)
105 		 * and don't send kprobe event into ring-buffer,
106 		 * so return zero here
107 		 */
108 		ret = 0;
109 		goto out;
110 	}
111 
112 	/*
113 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 	 * to all call sites, we did a bpf_prog_array_valid() there to check
115 	 * whether call->prog_array is empty or not, which is
116 	 * a heuristic to speed up execution.
117 	 *
118 	 * If bpf_prog_array_valid() fetched prog_array was
119 	 * non-NULL, we go into trace_call_bpf() and do the actual
120 	 * proper rcu_dereference() under RCU lock.
121 	 * If it turns out that prog_array is NULL then, we bail out.
122 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 	 * was NULL, you'll skip the prog_array with the risk of missing
124 	 * out of events when it was updated in between this and the
125 	 * rcu_dereference() which is accepted risk.
126 	 */
127 	ret = BPF_PROG_RUN_ARRAY(call->prog_array, ctx, bpf_prog_run);
128 
129  out:
130 	__this_cpu_dec(bpf_prog_active);
131 
132 	return ret;
133 }
134 
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 	regs_set_return_value(regs, rc);
139 	override_function_with_return(regs);
140 	return 0;
141 }
142 
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 	.func		= bpf_override_return,
145 	.gpl_only	= true,
146 	.ret_type	= RET_INTEGER,
147 	.arg1_type	= ARG_PTR_TO_CTX,
148 	.arg2_type	= ARG_ANYTHING,
149 };
150 #endif
151 
152 static __always_inline int
153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 	int ret;
156 
157 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 	if (unlikely(ret < 0))
159 		memset(dst, 0, size);
160 	return ret;
161 }
162 
163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 	   const void __user *, unsafe_ptr)
165 {
166 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168 
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 	.func		= bpf_probe_read_user,
171 	.gpl_only	= true,
172 	.ret_type	= RET_INTEGER,
173 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
174 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
175 	.arg3_type	= ARG_ANYTHING,
176 };
177 
178 static __always_inline int
179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 			       const void __user *unsafe_ptr)
181 {
182 	int ret;
183 
184 	/*
185 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 	 * terminator into `dst`.
187 	 *
188 	 * strncpy_from_user() does long-sized strides in the fast path. If the
189 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 	 * and keys a hash map with it, then semantically identical strings can
192 	 * occupy multiple entries in the map.
193 	 */
194 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 	if (unlikely(ret < 0))
196 		memset(dst, 0, size);
197 	return ret;
198 }
199 
200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 	   const void __user *, unsafe_ptr)
202 {
203 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205 
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 	.func		= bpf_probe_read_user_str,
208 	.gpl_only	= true,
209 	.ret_type	= RET_INTEGER,
210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
212 	.arg3_type	= ARG_ANYTHING,
213 };
214 
215 static __always_inline int
216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 	int ret;
219 
220 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
221 	if (unlikely(ret < 0))
222 		memset(dst, 0, size);
223 	return ret;
224 }
225 
226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 	   const void *, unsafe_ptr)
228 {
229 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231 
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 	.func		= bpf_probe_read_kernel,
234 	.gpl_only	= true,
235 	.ret_type	= RET_INTEGER,
236 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
237 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
238 	.arg3_type	= ARG_ANYTHING,
239 };
240 
241 static __always_inline int
242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 	int ret;
245 
246 	/*
247 	 * The strncpy_from_kernel_nofault() call will likely not fill the
248 	 * entire buffer, but that's okay in this circumstance as we're probing
249 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 	 * as well probe the stack. Thus, memory is explicitly cleared
251 	 * only in error case, so that improper users ignoring return
252 	 * code altogether don't copy garbage; otherwise length of string
253 	 * is returned that can be used for bpf_perf_event_output() et al.
254 	 */
255 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 	if (unlikely(ret < 0))
257 		memset(dst, 0, size);
258 	return ret;
259 }
260 
261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 	   const void *, unsafe_ptr)
263 {
264 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266 
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 	.func		= bpf_probe_read_kernel_str,
269 	.gpl_only	= true,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
272 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
273 	.arg3_type	= ARG_ANYTHING,
274 };
275 
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 	   const void *, unsafe_ptr)
279 {
280 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 		return bpf_probe_read_user_common(dst, size,
282 				(__force void __user *)unsafe_ptr);
283 	}
284 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286 
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 	.func		= bpf_probe_read_compat,
289 	.gpl_only	= true,
290 	.ret_type	= RET_INTEGER,
291 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
292 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
293 	.arg3_type	= ARG_ANYTHING,
294 };
295 
296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 	   const void *, unsafe_ptr)
298 {
299 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 		return bpf_probe_read_user_str_common(dst, size,
301 				(__force void __user *)unsafe_ptr);
302 	}
303 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305 
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 	.func		= bpf_probe_read_compat_str,
308 	.gpl_only	= true,
309 	.ret_type	= RET_INTEGER,
310 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
311 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
312 	.arg3_type	= ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315 
316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 	   u32, size)
318 {
319 	/*
320 	 * Ensure we're in user context which is safe for the helper to
321 	 * run. This helper has no business in a kthread.
322 	 *
323 	 * access_ok() should prevent writing to non-user memory, but in
324 	 * some situations (nommu, temporary switch, etc) access_ok() does
325 	 * not provide enough validation, hence the check on KERNEL_DS.
326 	 *
327 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 	 * state, when the task or mm are switched. This is specifically
329 	 * required to prevent the use of temporary mm.
330 	 */
331 
332 	if (unlikely(in_interrupt() ||
333 		     current->flags & (PF_KTHREAD | PF_EXITING)))
334 		return -EPERM;
335 	if (unlikely(uaccess_kernel()))
336 		return -EPERM;
337 	if (unlikely(!nmi_uaccess_okay()))
338 		return -EPERM;
339 
340 	return copy_to_user_nofault(unsafe_ptr, src, size);
341 }
342 
343 static const struct bpf_func_proto bpf_probe_write_user_proto = {
344 	.func		= bpf_probe_write_user,
345 	.gpl_only	= true,
346 	.ret_type	= RET_INTEGER,
347 	.arg1_type	= ARG_ANYTHING,
348 	.arg2_type	= ARG_PTR_TO_MEM,
349 	.arg3_type	= ARG_CONST_SIZE,
350 };
351 
352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
353 {
354 	if (!capable(CAP_SYS_ADMIN))
355 		return NULL;
356 
357 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
358 			    current->comm, task_pid_nr(current));
359 
360 	return &bpf_probe_write_user_proto;
361 }
362 
363 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
364 
365 #define MAX_TRACE_PRINTK_VARARGS	3
366 #define BPF_TRACE_PRINTK_SIZE		1024
367 
368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
369 	   u64, arg2, u64, arg3)
370 {
371 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
372 	u32 *bin_args;
373 	static char buf[BPF_TRACE_PRINTK_SIZE];
374 	unsigned long flags;
375 	int ret;
376 
377 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
378 				  MAX_TRACE_PRINTK_VARARGS);
379 	if (ret < 0)
380 		return ret;
381 
382 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
383 	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
384 
385 	trace_bpf_trace_printk(buf);
386 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
387 
388 	bpf_bprintf_cleanup();
389 
390 	return ret;
391 }
392 
393 static const struct bpf_func_proto bpf_trace_printk_proto = {
394 	.func		= bpf_trace_printk,
395 	.gpl_only	= true,
396 	.ret_type	= RET_INTEGER,
397 	.arg1_type	= ARG_PTR_TO_MEM,
398 	.arg2_type	= ARG_CONST_SIZE,
399 };
400 
401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
402 {
403 	/*
404 	 * This program might be calling bpf_trace_printk,
405 	 * so enable the associated bpf_trace/bpf_trace_printk event.
406 	 * Repeat this each time as it is possible a user has
407 	 * disabled bpf_trace_printk events.  By loading a program
408 	 * calling bpf_trace_printk() however the user has expressed
409 	 * the intent to see such events.
410 	 */
411 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
412 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
413 
414 	return &bpf_trace_printk_proto;
415 }
416 
417 #define MAX_SEQ_PRINTF_VARARGS		12
418 
419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
420 	   const void *, data, u32, data_len)
421 {
422 	int err, num_args;
423 	u32 *bin_args;
424 
425 	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
426 	    (data_len && !data))
427 		return -EINVAL;
428 	num_args = data_len / 8;
429 
430 	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
431 	if (err < 0)
432 		return err;
433 
434 	seq_bprintf(m, fmt, bin_args);
435 
436 	bpf_bprintf_cleanup();
437 
438 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
439 }
440 
441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
442 
443 static const struct bpf_func_proto bpf_seq_printf_proto = {
444 	.func		= bpf_seq_printf,
445 	.gpl_only	= true,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_PTR_TO_BTF_ID,
448 	.arg1_btf_id	= &btf_seq_file_ids[0],
449 	.arg2_type	= ARG_PTR_TO_MEM,
450 	.arg3_type	= ARG_CONST_SIZE,
451 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
452 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
453 };
454 
455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
456 {
457 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
458 }
459 
460 static const struct bpf_func_proto bpf_seq_write_proto = {
461 	.func		= bpf_seq_write,
462 	.gpl_only	= true,
463 	.ret_type	= RET_INTEGER,
464 	.arg1_type	= ARG_PTR_TO_BTF_ID,
465 	.arg1_btf_id	= &btf_seq_file_ids[0],
466 	.arg2_type	= ARG_PTR_TO_MEM,
467 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
468 };
469 
470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
471 	   u32, btf_ptr_size, u64, flags)
472 {
473 	const struct btf *btf;
474 	s32 btf_id;
475 	int ret;
476 
477 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
478 	if (ret)
479 		return ret;
480 
481 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
482 }
483 
484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
485 	.func		= bpf_seq_printf_btf,
486 	.gpl_only	= true,
487 	.ret_type	= RET_INTEGER,
488 	.arg1_type	= ARG_PTR_TO_BTF_ID,
489 	.arg1_btf_id	= &btf_seq_file_ids[0],
490 	.arg2_type	= ARG_PTR_TO_MEM,
491 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
492 	.arg4_type	= ARG_ANYTHING,
493 };
494 
495 static __always_inline int
496 get_map_perf_counter(struct bpf_map *map, u64 flags,
497 		     u64 *value, u64 *enabled, u64 *running)
498 {
499 	struct bpf_array *array = container_of(map, struct bpf_array, map);
500 	unsigned int cpu = smp_processor_id();
501 	u64 index = flags & BPF_F_INDEX_MASK;
502 	struct bpf_event_entry *ee;
503 
504 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
505 		return -EINVAL;
506 	if (index == BPF_F_CURRENT_CPU)
507 		index = cpu;
508 	if (unlikely(index >= array->map.max_entries))
509 		return -E2BIG;
510 
511 	ee = READ_ONCE(array->ptrs[index]);
512 	if (!ee)
513 		return -ENOENT;
514 
515 	return perf_event_read_local(ee->event, value, enabled, running);
516 }
517 
518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
519 {
520 	u64 value = 0;
521 	int err;
522 
523 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
524 	/*
525 	 * this api is ugly since we miss [-22..-2] range of valid
526 	 * counter values, but that's uapi
527 	 */
528 	if (err)
529 		return err;
530 	return value;
531 }
532 
533 static const struct bpf_func_proto bpf_perf_event_read_proto = {
534 	.func		= bpf_perf_event_read,
535 	.gpl_only	= true,
536 	.ret_type	= RET_INTEGER,
537 	.arg1_type	= ARG_CONST_MAP_PTR,
538 	.arg2_type	= ARG_ANYTHING,
539 };
540 
541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
542 	   struct bpf_perf_event_value *, buf, u32, size)
543 {
544 	int err = -EINVAL;
545 
546 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
547 		goto clear;
548 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
549 				   &buf->running);
550 	if (unlikely(err))
551 		goto clear;
552 	return 0;
553 clear:
554 	memset(buf, 0, size);
555 	return err;
556 }
557 
558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
559 	.func		= bpf_perf_event_read_value,
560 	.gpl_only	= true,
561 	.ret_type	= RET_INTEGER,
562 	.arg1_type	= ARG_CONST_MAP_PTR,
563 	.arg2_type	= ARG_ANYTHING,
564 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
565 	.arg4_type	= ARG_CONST_SIZE,
566 };
567 
568 static __always_inline u64
569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
570 			u64 flags, struct perf_sample_data *sd)
571 {
572 	struct bpf_array *array = container_of(map, struct bpf_array, map);
573 	unsigned int cpu = smp_processor_id();
574 	u64 index = flags & BPF_F_INDEX_MASK;
575 	struct bpf_event_entry *ee;
576 	struct perf_event *event;
577 
578 	if (index == BPF_F_CURRENT_CPU)
579 		index = cpu;
580 	if (unlikely(index >= array->map.max_entries))
581 		return -E2BIG;
582 
583 	ee = READ_ONCE(array->ptrs[index]);
584 	if (!ee)
585 		return -ENOENT;
586 
587 	event = ee->event;
588 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
589 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
590 		return -EINVAL;
591 
592 	if (unlikely(event->oncpu != cpu))
593 		return -EOPNOTSUPP;
594 
595 	return perf_event_output(event, sd, regs);
596 }
597 
598 /*
599  * Support executing tracepoints in normal, irq, and nmi context that each call
600  * bpf_perf_event_output
601  */
602 struct bpf_trace_sample_data {
603 	struct perf_sample_data sds[3];
604 };
605 
606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
607 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
609 	   u64, flags, void *, data, u64, size)
610 {
611 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
612 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
613 	struct perf_raw_record raw = {
614 		.frag = {
615 			.size = size,
616 			.data = data,
617 		},
618 	};
619 	struct perf_sample_data *sd;
620 	int err;
621 
622 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
623 		err = -EBUSY;
624 		goto out;
625 	}
626 
627 	sd = &sds->sds[nest_level - 1];
628 
629 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
630 		err = -EINVAL;
631 		goto out;
632 	}
633 
634 	perf_sample_data_init(sd, 0, 0);
635 	sd->raw = &raw;
636 
637 	err = __bpf_perf_event_output(regs, map, flags, sd);
638 
639 out:
640 	this_cpu_dec(bpf_trace_nest_level);
641 	return err;
642 }
643 
644 static const struct bpf_func_proto bpf_perf_event_output_proto = {
645 	.func		= bpf_perf_event_output,
646 	.gpl_only	= true,
647 	.ret_type	= RET_INTEGER,
648 	.arg1_type	= ARG_PTR_TO_CTX,
649 	.arg2_type	= ARG_CONST_MAP_PTR,
650 	.arg3_type	= ARG_ANYTHING,
651 	.arg4_type	= ARG_PTR_TO_MEM,
652 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
653 };
654 
655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
656 struct bpf_nested_pt_regs {
657 	struct pt_regs regs[3];
658 };
659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
661 
662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
663 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
664 {
665 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
666 	struct perf_raw_frag frag = {
667 		.copy		= ctx_copy,
668 		.size		= ctx_size,
669 		.data		= ctx,
670 	};
671 	struct perf_raw_record raw = {
672 		.frag = {
673 			{
674 				.next	= ctx_size ? &frag : NULL,
675 			},
676 			.size	= meta_size,
677 			.data	= meta,
678 		},
679 	};
680 	struct perf_sample_data *sd;
681 	struct pt_regs *regs;
682 	u64 ret;
683 
684 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
685 		ret = -EBUSY;
686 		goto out;
687 	}
688 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
689 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
690 
691 	perf_fetch_caller_regs(regs);
692 	perf_sample_data_init(sd, 0, 0);
693 	sd->raw = &raw;
694 
695 	ret = __bpf_perf_event_output(regs, map, flags, sd);
696 out:
697 	this_cpu_dec(bpf_event_output_nest_level);
698 	return ret;
699 }
700 
701 BPF_CALL_0(bpf_get_current_task)
702 {
703 	return (long) current;
704 }
705 
706 const struct bpf_func_proto bpf_get_current_task_proto = {
707 	.func		= bpf_get_current_task,
708 	.gpl_only	= true,
709 	.ret_type	= RET_INTEGER,
710 };
711 
712 BPF_CALL_0(bpf_get_current_task_btf)
713 {
714 	return (unsigned long) current;
715 }
716 
717 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
718 	.func		= bpf_get_current_task_btf,
719 	.gpl_only	= true,
720 	.ret_type	= RET_PTR_TO_BTF_ID,
721 	.ret_btf_id	= &btf_task_struct_ids[0],
722 };
723 
724 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
725 {
726 	return (unsigned long) task_pt_regs(task);
727 }
728 
729 BTF_ID_LIST(bpf_task_pt_regs_ids)
730 BTF_ID(struct, pt_regs)
731 
732 const struct bpf_func_proto bpf_task_pt_regs_proto = {
733 	.func		= bpf_task_pt_regs,
734 	.gpl_only	= true,
735 	.arg1_type	= ARG_PTR_TO_BTF_ID,
736 	.arg1_btf_id	= &btf_task_struct_ids[0],
737 	.ret_type	= RET_PTR_TO_BTF_ID,
738 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
739 };
740 
741 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
742 {
743 	struct bpf_array *array = container_of(map, struct bpf_array, map);
744 	struct cgroup *cgrp;
745 
746 	if (unlikely(idx >= array->map.max_entries))
747 		return -E2BIG;
748 
749 	cgrp = READ_ONCE(array->ptrs[idx]);
750 	if (unlikely(!cgrp))
751 		return -EAGAIN;
752 
753 	return task_under_cgroup_hierarchy(current, cgrp);
754 }
755 
756 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
757 	.func           = bpf_current_task_under_cgroup,
758 	.gpl_only       = false,
759 	.ret_type       = RET_INTEGER,
760 	.arg1_type      = ARG_CONST_MAP_PTR,
761 	.arg2_type      = ARG_ANYTHING,
762 };
763 
764 struct send_signal_irq_work {
765 	struct irq_work irq_work;
766 	struct task_struct *task;
767 	u32 sig;
768 	enum pid_type type;
769 };
770 
771 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
772 
773 static void do_bpf_send_signal(struct irq_work *entry)
774 {
775 	struct send_signal_irq_work *work;
776 
777 	work = container_of(entry, struct send_signal_irq_work, irq_work);
778 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
779 }
780 
781 static int bpf_send_signal_common(u32 sig, enum pid_type type)
782 {
783 	struct send_signal_irq_work *work = NULL;
784 
785 	/* Similar to bpf_probe_write_user, task needs to be
786 	 * in a sound condition and kernel memory access be
787 	 * permitted in order to send signal to the current
788 	 * task.
789 	 */
790 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
791 		return -EPERM;
792 	if (unlikely(uaccess_kernel()))
793 		return -EPERM;
794 	if (unlikely(!nmi_uaccess_okay()))
795 		return -EPERM;
796 
797 	if (irqs_disabled()) {
798 		/* Do an early check on signal validity. Otherwise,
799 		 * the error is lost in deferred irq_work.
800 		 */
801 		if (unlikely(!valid_signal(sig)))
802 			return -EINVAL;
803 
804 		work = this_cpu_ptr(&send_signal_work);
805 		if (irq_work_is_busy(&work->irq_work))
806 			return -EBUSY;
807 
808 		/* Add the current task, which is the target of sending signal,
809 		 * to the irq_work. The current task may change when queued
810 		 * irq works get executed.
811 		 */
812 		work->task = current;
813 		work->sig = sig;
814 		work->type = type;
815 		irq_work_queue(&work->irq_work);
816 		return 0;
817 	}
818 
819 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
820 }
821 
822 BPF_CALL_1(bpf_send_signal, u32, sig)
823 {
824 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
825 }
826 
827 static const struct bpf_func_proto bpf_send_signal_proto = {
828 	.func		= bpf_send_signal,
829 	.gpl_only	= false,
830 	.ret_type	= RET_INTEGER,
831 	.arg1_type	= ARG_ANYTHING,
832 };
833 
834 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
835 {
836 	return bpf_send_signal_common(sig, PIDTYPE_PID);
837 }
838 
839 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
840 	.func		= bpf_send_signal_thread,
841 	.gpl_only	= false,
842 	.ret_type	= RET_INTEGER,
843 	.arg1_type	= ARG_ANYTHING,
844 };
845 
846 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
847 {
848 	long len;
849 	char *p;
850 
851 	if (!sz)
852 		return 0;
853 
854 	p = d_path(path, buf, sz);
855 	if (IS_ERR(p)) {
856 		len = PTR_ERR(p);
857 	} else {
858 		len = buf + sz - p;
859 		memmove(buf, p, len);
860 	}
861 
862 	return len;
863 }
864 
865 BTF_SET_START(btf_allowlist_d_path)
866 #ifdef CONFIG_SECURITY
867 BTF_ID(func, security_file_permission)
868 BTF_ID(func, security_inode_getattr)
869 BTF_ID(func, security_file_open)
870 #endif
871 #ifdef CONFIG_SECURITY_PATH
872 BTF_ID(func, security_path_truncate)
873 #endif
874 BTF_ID(func, vfs_truncate)
875 BTF_ID(func, vfs_fallocate)
876 BTF_ID(func, dentry_open)
877 BTF_ID(func, vfs_getattr)
878 BTF_ID(func, filp_close)
879 BTF_SET_END(btf_allowlist_d_path)
880 
881 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
882 {
883 	if (prog->type == BPF_PROG_TYPE_TRACING &&
884 	    prog->expected_attach_type == BPF_TRACE_ITER)
885 		return true;
886 
887 	if (prog->type == BPF_PROG_TYPE_LSM)
888 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
889 
890 	return btf_id_set_contains(&btf_allowlist_d_path,
891 				   prog->aux->attach_btf_id);
892 }
893 
894 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
895 
896 static const struct bpf_func_proto bpf_d_path_proto = {
897 	.func		= bpf_d_path,
898 	.gpl_only	= false,
899 	.ret_type	= RET_INTEGER,
900 	.arg1_type	= ARG_PTR_TO_BTF_ID,
901 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
902 	.arg2_type	= ARG_PTR_TO_MEM,
903 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
904 	.allowed	= bpf_d_path_allowed,
905 };
906 
907 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
908 			 BTF_F_PTR_RAW | BTF_F_ZERO)
909 
910 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
911 				  u64 flags, const struct btf **btf,
912 				  s32 *btf_id)
913 {
914 	const struct btf_type *t;
915 
916 	if (unlikely(flags & ~(BTF_F_ALL)))
917 		return -EINVAL;
918 
919 	if (btf_ptr_size != sizeof(struct btf_ptr))
920 		return -EINVAL;
921 
922 	*btf = bpf_get_btf_vmlinux();
923 
924 	if (IS_ERR_OR_NULL(*btf))
925 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
926 
927 	if (ptr->type_id > 0)
928 		*btf_id = ptr->type_id;
929 	else
930 		return -EINVAL;
931 
932 	if (*btf_id > 0)
933 		t = btf_type_by_id(*btf, *btf_id);
934 	if (*btf_id <= 0 || !t)
935 		return -ENOENT;
936 
937 	return 0;
938 }
939 
940 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
941 	   u32, btf_ptr_size, u64, flags)
942 {
943 	const struct btf *btf;
944 	s32 btf_id;
945 	int ret;
946 
947 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
948 	if (ret)
949 		return ret;
950 
951 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
952 				      flags);
953 }
954 
955 const struct bpf_func_proto bpf_snprintf_btf_proto = {
956 	.func		= bpf_snprintf_btf,
957 	.gpl_only	= false,
958 	.ret_type	= RET_INTEGER,
959 	.arg1_type	= ARG_PTR_TO_MEM,
960 	.arg2_type	= ARG_CONST_SIZE,
961 	.arg3_type	= ARG_PTR_TO_MEM,
962 	.arg4_type	= ARG_CONST_SIZE,
963 	.arg5_type	= ARG_ANYTHING,
964 };
965 
966 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
967 {
968 	/* This helper call is inlined by verifier. */
969 	return ((u64 *)ctx)[-1];
970 }
971 
972 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
973 	.func		= bpf_get_func_ip_tracing,
974 	.gpl_only	= true,
975 	.ret_type	= RET_INTEGER,
976 	.arg1_type	= ARG_PTR_TO_CTX,
977 };
978 
979 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
980 {
981 	struct kprobe *kp = kprobe_running();
982 
983 	return kp ? (uintptr_t)kp->addr : 0;
984 }
985 
986 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
987 	.func		= bpf_get_func_ip_kprobe,
988 	.gpl_only	= true,
989 	.ret_type	= RET_INTEGER,
990 	.arg1_type	= ARG_PTR_TO_CTX,
991 };
992 
993 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
994 {
995 	struct bpf_trace_run_ctx *run_ctx;
996 
997 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
998 	return run_ctx->bpf_cookie;
999 }
1000 
1001 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1002 	.func		= bpf_get_attach_cookie_trace,
1003 	.gpl_only	= false,
1004 	.ret_type	= RET_INTEGER,
1005 	.arg1_type	= ARG_PTR_TO_CTX,
1006 };
1007 
1008 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1009 {
1010 	return ctx->event->bpf_cookie;
1011 }
1012 
1013 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1014 	.func		= bpf_get_attach_cookie_pe,
1015 	.gpl_only	= false,
1016 	.ret_type	= RET_INTEGER,
1017 	.arg1_type	= ARG_PTR_TO_CTX,
1018 };
1019 
1020 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1021 {
1022 #ifndef CONFIG_X86
1023 	return -ENOENT;
1024 #else
1025 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1026 	u32 entry_cnt = size / br_entry_size;
1027 
1028 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1029 
1030 	if (unlikely(flags))
1031 		return -EINVAL;
1032 
1033 	if (!entry_cnt)
1034 		return -ENOENT;
1035 
1036 	return entry_cnt * br_entry_size;
1037 #endif
1038 }
1039 
1040 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1041 	.func		= bpf_get_branch_snapshot,
1042 	.gpl_only	= true,
1043 	.ret_type	= RET_INTEGER,
1044 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1045 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1046 };
1047 
1048 static const struct bpf_func_proto *
1049 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1050 {
1051 	switch (func_id) {
1052 	case BPF_FUNC_map_lookup_elem:
1053 		return &bpf_map_lookup_elem_proto;
1054 	case BPF_FUNC_map_update_elem:
1055 		return &bpf_map_update_elem_proto;
1056 	case BPF_FUNC_map_delete_elem:
1057 		return &bpf_map_delete_elem_proto;
1058 	case BPF_FUNC_map_push_elem:
1059 		return &bpf_map_push_elem_proto;
1060 	case BPF_FUNC_map_pop_elem:
1061 		return &bpf_map_pop_elem_proto;
1062 	case BPF_FUNC_map_peek_elem:
1063 		return &bpf_map_peek_elem_proto;
1064 	case BPF_FUNC_ktime_get_ns:
1065 		return &bpf_ktime_get_ns_proto;
1066 	case BPF_FUNC_ktime_get_boot_ns:
1067 		return &bpf_ktime_get_boot_ns_proto;
1068 	case BPF_FUNC_ktime_get_coarse_ns:
1069 		return &bpf_ktime_get_coarse_ns_proto;
1070 	case BPF_FUNC_tail_call:
1071 		return &bpf_tail_call_proto;
1072 	case BPF_FUNC_get_current_pid_tgid:
1073 		return &bpf_get_current_pid_tgid_proto;
1074 	case BPF_FUNC_get_current_task:
1075 		return &bpf_get_current_task_proto;
1076 	case BPF_FUNC_get_current_task_btf:
1077 		return &bpf_get_current_task_btf_proto;
1078 	case BPF_FUNC_task_pt_regs:
1079 		return &bpf_task_pt_regs_proto;
1080 	case BPF_FUNC_get_current_uid_gid:
1081 		return &bpf_get_current_uid_gid_proto;
1082 	case BPF_FUNC_get_current_comm:
1083 		return &bpf_get_current_comm_proto;
1084 	case BPF_FUNC_trace_printk:
1085 		return bpf_get_trace_printk_proto();
1086 	case BPF_FUNC_get_smp_processor_id:
1087 		return &bpf_get_smp_processor_id_proto;
1088 	case BPF_FUNC_get_numa_node_id:
1089 		return &bpf_get_numa_node_id_proto;
1090 	case BPF_FUNC_perf_event_read:
1091 		return &bpf_perf_event_read_proto;
1092 	case BPF_FUNC_current_task_under_cgroup:
1093 		return &bpf_current_task_under_cgroup_proto;
1094 	case BPF_FUNC_get_prandom_u32:
1095 		return &bpf_get_prandom_u32_proto;
1096 	case BPF_FUNC_probe_write_user:
1097 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1098 		       NULL : bpf_get_probe_write_proto();
1099 	case BPF_FUNC_probe_read_user:
1100 		return &bpf_probe_read_user_proto;
1101 	case BPF_FUNC_probe_read_kernel:
1102 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1103 		       NULL : &bpf_probe_read_kernel_proto;
1104 	case BPF_FUNC_probe_read_user_str:
1105 		return &bpf_probe_read_user_str_proto;
1106 	case BPF_FUNC_probe_read_kernel_str:
1107 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1108 		       NULL : &bpf_probe_read_kernel_str_proto;
1109 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1110 	case BPF_FUNC_probe_read:
1111 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1112 		       NULL : &bpf_probe_read_compat_proto;
1113 	case BPF_FUNC_probe_read_str:
1114 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1115 		       NULL : &bpf_probe_read_compat_str_proto;
1116 #endif
1117 #ifdef CONFIG_CGROUPS
1118 	case BPF_FUNC_get_current_cgroup_id:
1119 		return &bpf_get_current_cgroup_id_proto;
1120 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1121 		return &bpf_get_current_ancestor_cgroup_id_proto;
1122 #endif
1123 	case BPF_FUNC_send_signal:
1124 		return &bpf_send_signal_proto;
1125 	case BPF_FUNC_send_signal_thread:
1126 		return &bpf_send_signal_thread_proto;
1127 	case BPF_FUNC_perf_event_read_value:
1128 		return &bpf_perf_event_read_value_proto;
1129 	case BPF_FUNC_get_ns_current_pid_tgid:
1130 		return &bpf_get_ns_current_pid_tgid_proto;
1131 	case BPF_FUNC_ringbuf_output:
1132 		return &bpf_ringbuf_output_proto;
1133 	case BPF_FUNC_ringbuf_reserve:
1134 		return &bpf_ringbuf_reserve_proto;
1135 	case BPF_FUNC_ringbuf_submit:
1136 		return &bpf_ringbuf_submit_proto;
1137 	case BPF_FUNC_ringbuf_discard:
1138 		return &bpf_ringbuf_discard_proto;
1139 	case BPF_FUNC_ringbuf_query:
1140 		return &bpf_ringbuf_query_proto;
1141 	case BPF_FUNC_jiffies64:
1142 		return &bpf_jiffies64_proto;
1143 	case BPF_FUNC_get_task_stack:
1144 		return &bpf_get_task_stack_proto;
1145 	case BPF_FUNC_copy_from_user:
1146 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1147 	case BPF_FUNC_snprintf_btf:
1148 		return &bpf_snprintf_btf_proto;
1149 	case BPF_FUNC_per_cpu_ptr:
1150 		return &bpf_per_cpu_ptr_proto;
1151 	case BPF_FUNC_this_cpu_ptr:
1152 		return &bpf_this_cpu_ptr_proto;
1153 	case BPF_FUNC_task_storage_get:
1154 		return &bpf_task_storage_get_proto;
1155 	case BPF_FUNC_task_storage_delete:
1156 		return &bpf_task_storage_delete_proto;
1157 	case BPF_FUNC_for_each_map_elem:
1158 		return &bpf_for_each_map_elem_proto;
1159 	case BPF_FUNC_snprintf:
1160 		return &bpf_snprintf_proto;
1161 	case BPF_FUNC_get_func_ip:
1162 		return &bpf_get_func_ip_proto_tracing;
1163 	case BPF_FUNC_get_branch_snapshot:
1164 		return &bpf_get_branch_snapshot_proto;
1165 	default:
1166 		return bpf_base_func_proto(func_id);
1167 	}
1168 }
1169 
1170 static const struct bpf_func_proto *
1171 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1172 {
1173 	switch (func_id) {
1174 	case BPF_FUNC_perf_event_output:
1175 		return &bpf_perf_event_output_proto;
1176 	case BPF_FUNC_get_stackid:
1177 		return &bpf_get_stackid_proto;
1178 	case BPF_FUNC_get_stack:
1179 		return &bpf_get_stack_proto;
1180 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1181 	case BPF_FUNC_override_return:
1182 		return &bpf_override_return_proto;
1183 #endif
1184 	case BPF_FUNC_get_func_ip:
1185 		return &bpf_get_func_ip_proto_kprobe;
1186 	case BPF_FUNC_get_attach_cookie:
1187 		return &bpf_get_attach_cookie_proto_trace;
1188 	default:
1189 		return bpf_tracing_func_proto(func_id, prog);
1190 	}
1191 }
1192 
1193 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1194 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1195 					const struct bpf_prog *prog,
1196 					struct bpf_insn_access_aux *info)
1197 {
1198 	if (off < 0 || off >= sizeof(struct pt_regs))
1199 		return false;
1200 	if (type != BPF_READ)
1201 		return false;
1202 	if (off % size != 0)
1203 		return false;
1204 	/*
1205 	 * Assertion for 32 bit to make sure last 8 byte access
1206 	 * (BPF_DW) to the last 4 byte member is disallowed.
1207 	 */
1208 	if (off + size > sizeof(struct pt_regs))
1209 		return false;
1210 
1211 	return true;
1212 }
1213 
1214 const struct bpf_verifier_ops kprobe_verifier_ops = {
1215 	.get_func_proto  = kprobe_prog_func_proto,
1216 	.is_valid_access = kprobe_prog_is_valid_access,
1217 };
1218 
1219 const struct bpf_prog_ops kprobe_prog_ops = {
1220 };
1221 
1222 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1223 	   u64, flags, void *, data, u64, size)
1224 {
1225 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1226 
1227 	/*
1228 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1229 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1230 	 * from there and call the same bpf_perf_event_output() helper inline.
1231 	 */
1232 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1233 }
1234 
1235 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1236 	.func		= bpf_perf_event_output_tp,
1237 	.gpl_only	= true,
1238 	.ret_type	= RET_INTEGER,
1239 	.arg1_type	= ARG_PTR_TO_CTX,
1240 	.arg2_type	= ARG_CONST_MAP_PTR,
1241 	.arg3_type	= ARG_ANYTHING,
1242 	.arg4_type	= ARG_PTR_TO_MEM,
1243 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1244 };
1245 
1246 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1247 	   u64, flags)
1248 {
1249 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1250 
1251 	/*
1252 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1253 	 * the other helper's function body cannot be inlined due to being
1254 	 * external, thus we need to call raw helper function.
1255 	 */
1256 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1257 			       flags, 0, 0);
1258 }
1259 
1260 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1261 	.func		= bpf_get_stackid_tp,
1262 	.gpl_only	= true,
1263 	.ret_type	= RET_INTEGER,
1264 	.arg1_type	= ARG_PTR_TO_CTX,
1265 	.arg2_type	= ARG_CONST_MAP_PTR,
1266 	.arg3_type	= ARG_ANYTHING,
1267 };
1268 
1269 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1270 	   u64, flags)
1271 {
1272 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1273 
1274 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1275 			     (unsigned long) size, flags, 0);
1276 }
1277 
1278 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1279 	.func		= bpf_get_stack_tp,
1280 	.gpl_only	= true,
1281 	.ret_type	= RET_INTEGER,
1282 	.arg1_type	= ARG_PTR_TO_CTX,
1283 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1284 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1285 	.arg4_type	= ARG_ANYTHING,
1286 };
1287 
1288 static const struct bpf_func_proto *
1289 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1290 {
1291 	switch (func_id) {
1292 	case BPF_FUNC_perf_event_output:
1293 		return &bpf_perf_event_output_proto_tp;
1294 	case BPF_FUNC_get_stackid:
1295 		return &bpf_get_stackid_proto_tp;
1296 	case BPF_FUNC_get_stack:
1297 		return &bpf_get_stack_proto_tp;
1298 	case BPF_FUNC_get_attach_cookie:
1299 		return &bpf_get_attach_cookie_proto_trace;
1300 	default:
1301 		return bpf_tracing_func_proto(func_id, prog);
1302 	}
1303 }
1304 
1305 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1306 				    const struct bpf_prog *prog,
1307 				    struct bpf_insn_access_aux *info)
1308 {
1309 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1310 		return false;
1311 	if (type != BPF_READ)
1312 		return false;
1313 	if (off % size != 0)
1314 		return false;
1315 
1316 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1317 	return true;
1318 }
1319 
1320 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1321 	.get_func_proto  = tp_prog_func_proto,
1322 	.is_valid_access = tp_prog_is_valid_access,
1323 };
1324 
1325 const struct bpf_prog_ops tracepoint_prog_ops = {
1326 };
1327 
1328 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1329 	   struct bpf_perf_event_value *, buf, u32, size)
1330 {
1331 	int err = -EINVAL;
1332 
1333 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1334 		goto clear;
1335 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1336 				    &buf->running);
1337 	if (unlikely(err))
1338 		goto clear;
1339 	return 0;
1340 clear:
1341 	memset(buf, 0, size);
1342 	return err;
1343 }
1344 
1345 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1346          .func           = bpf_perf_prog_read_value,
1347          .gpl_only       = true,
1348          .ret_type       = RET_INTEGER,
1349          .arg1_type      = ARG_PTR_TO_CTX,
1350          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1351          .arg3_type      = ARG_CONST_SIZE,
1352 };
1353 
1354 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1355 	   void *, buf, u32, size, u64, flags)
1356 {
1357 #ifndef CONFIG_X86
1358 	return -ENOENT;
1359 #else
1360 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1361 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1362 	u32 to_copy;
1363 
1364 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1365 		return -EINVAL;
1366 
1367 	if (unlikely(!br_stack))
1368 		return -EINVAL;
1369 
1370 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1371 		return br_stack->nr * br_entry_size;
1372 
1373 	if (!buf || (size % br_entry_size != 0))
1374 		return -EINVAL;
1375 
1376 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1377 	memcpy(buf, br_stack->entries, to_copy);
1378 
1379 	return to_copy;
1380 #endif
1381 }
1382 
1383 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1384 	.func           = bpf_read_branch_records,
1385 	.gpl_only       = true,
1386 	.ret_type       = RET_INTEGER,
1387 	.arg1_type      = ARG_PTR_TO_CTX,
1388 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1389 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1390 	.arg4_type      = ARG_ANYTHING,
1391 };
1392 
1393 static const struct bpf_func_proto *
1394 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1395 {
1396 	switch (func_id) {
1397 	case BPF_FUNC_perf_event_output:
1398 		return &bpf_perf_event_output_proto_tp;
1399 	case BPF_FUNC_get_stackid:
1400 		return &bpf_get_stackid_proto_pe;
1401 	case BPF_FUNC_get_stack:
1402 		return &bpf_get_stack_proto_pe;
1403 	case BPF_FUNC_perf_prog_read_value:
1404 		return &bpf_perf_prog_read_value_proto;
1405 	case BPF_FUNC_read_branch_records:
1406 		return &bpf_read_branch_records_proto;
1407 	case BPF_FUNC_get_attach_cookie:
1408 		return &bpf_get_attach_cookie_proto_pe;
1409 	default:
1410 		return bpf_tracing_func_proto(func_id, prog);
1411 	}
1412 }
1413 
1414 /*
1415  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1416  * to avoid potential recursive reuse issue when/if tracepoints are added
1417  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1418  *
1419  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1420  * in normal, irq, and nmi context.
1421  */
1422 struct bpf_raw_tp_regs {
1423 	struct pt_regs regs[3];
1424 };
1425 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1426 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1427 static struct pt_regs *get_bpf_raw_tp_regs(void)
1428 {
1429 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1430 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1431 
1432 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1433 		this_cpu_dec(bpf_raw_tp_nest_level);
1434 		return ERR_PTR(-EBUSY);
1435 	}
1436 
1437 	return &tp_regs->regs[nest_level - 1];
1438 }
1439 
1440 static void put_bpf_raw_tp_regs(void)
1441 {
1442 	this_cpu_dec(bpf_raw_tp_nest_level);
1443 }
1444 
1445 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1446 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1447 {
1448 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1449 	int ret;
1450 
1451 	if (IS_ERR(regs))
1452 		return PTR_ERR(regs);
1453 
1454 	perf_fetch_caller_regs(regs);
1455 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1456 
1457 	put_bpf_raw_tp_regs();
1458 	return ret;
1459 }
1460 
1461 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1462 	.func		= bpf_perf_event_output_raw_tp,
1463 	.gpl_only	= true,
1464 	.ret_type	= RET_INTEGER,
1465 	.arg1_type	= ARG_PTR_TO_CTX,
1466 	.arg2_type	= ARG_CONST_MAP_PTR,
1467 	.arg3_type	= ARG_ANYTHING,
1468 	.arg4_type	= ARG_PTR_TO_MEM,
1469 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1470 };
1471 
1472 extern const struct bpf_func_proto bpf_skb_output_proto;
1473 extern const struct bpf_func_proto bpf_xdp_output_proto;
1474 
1475 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1476 	   struct bpf_map *, map, u64, flags)
1477 {
1478 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1479 	int ret;
1480 
1481 	if (IS_ERR(regs))
1482 		return PTR_ERR(regs);
1483 
1484 	perf_fetch_caller_regs(regs);
1485 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1486 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1487 			      flags, 0, 0);
1488 	put_bpf_raw_tp_regs();
1489 	return ret;
1490 }
1491 
1492 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1493 	.func		= bpf_get_stackid_raw_tp,
1494 	.gpl_only	= true,
1495 	.ret_type	= RET_INTEGER,
1496 	.arg1_type	= ARG_PTR_TO_CTX,
1497 	.arg2_type	= ARG_CONST_MAP_PTR,
1498 	.arg3_type	= ARG_ANYTHING,
1499 };
1500 
1501 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1502 	   void *, buf, u32, size, u64, flags)
1503 {
1504 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1505 	int ret;
1506 
1507 	if (IS_ERR(regs))
1508 		return PTR_ERR(regs);
1509 
1510 	perf_fetch_caller_regs(regs);
1511 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1512 			    (unsigned long) size, flags, 0);
1513 	put_bpf_raw_tp_regs();
1514 	return ret;
1515 }
1516 
1517 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1518 	.func		= bpf_get_stack_raw_tp,
1519 	.gpl_only	= true,
1520 	.ret_type	= RET_INTEGER,
1521 	.arg1_type	= ARG_PTR_TO_CTX,
1522 	.arg2_type	= ARG_PTR_TO_MEM,
1523 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1524 	.arg4_type	= ARG_ANYTHING,
1525 };
1526 
1527 static const struct bpf_func_proto *
1528 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1529 {
1530 	switch (func_id) {
1531 	case BPF_FUNC_perf_event_output:
1532 		return &bpf_perf_event_output_proto_raw_tp;
1533 	case BPF_FUNC_get_stackid:
1534 		return &bpf_get_stackid_proto_raw_tp;
1535 	case BPF_FUNC_get_stack:
1536 		return &bpf_get_stack_proto_raw_tp;
1537 	default:
1538 		return bpf_tracing_func_proto(func_id, prog);
1539 	}
1540 }
1541 
1542 const struct bpf_func_proto *
1543 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1544 {
1545 	const struct bpf_func_proto *fn;
1546 
1547 	switch (func_id) {
1548 #ifdef CONFIG_NET
1549 	case BPF_FUNC_skb_output:
1550 		return &bpf_skb_output_proto;
1551 	case BPF_FUNC_xdp_output:
1552 		return &bpf_xdp_output_proto;
1553 	case BPF_FUNC_skc_to_tcp6_sock:
1554 		return &bpf_skc_to_tcp6_sock_proto;
1555 	case BPF_FUNC_skc_to_tcp_sock:
1556 		return &bpf_skc_to_tcp_sock_proto;
1557 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1558 		return &bpf_skc_to_tcp_timewait_sock_proto;
1559 	case BPF_FUNC_skc_to_tcp_request_sock:
1560 		return &bpf_skc_to_tcp_request_sock_proto;
1561 	case BPF_FUNC_skc_to_udp6_sock:
1562 		return &bpf_skc_to_udp6_sock_proto;
1563 	case BPF_FUNC_sk_storage_get:
1564 		return &bpf_sk_storage_get_tracing_proto;
1565 	case BPF_FUNC_sk_storage_delete:
1566 		return &bpf_sk_storage_delete_tracing_proto;
1567 	case BPF_FUNC_sock_from_file:
1568 		return &bpf_sock_from_file_proto;
1569 	case BPF_FUNC_get_socket_cookie:
1570 		return &bpf_get_socket_ptr_cookie_proto;
1571 #endif
1572 	case BPF_FUNC_seq_printf:
1573 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1574 		       &bpf_seq_printf_proto :
1575 		       NULL;
1576 	case BPF_FUNC_seq_write:
1577 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1578 		       &bpf_seq_write_proto :
1579 		       NULL;
1580 	case BPF_FUNC_seq_printf_btf:
1581 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1582 		       &bpf_seq_printf_btf_proto :
1583 		       NULL;
1584 	case BPF_FUNC_d_path:
1585 		return &bpf_d_path_proto;
1586 	default:
1587 		fn = raw_tp_prog_func_proto(func_id, prog);
1588 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1589 			fn = bpf_iter_get_func_proto(func_id, prog);
1590 		return fn;
1591 	}
1592 }
1593 
1594 static bool raw_tp_prog_is_valid_access(int off, int size,
1595 					enum bpf_access_type type,
1596 					const struct bpf_prog *prog,
1597 					struct bpf_insn_access_aux *info)
1598 {
1599 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1600 		return false;
1601 	if (type != BPF_READ)
1602 		return false;
1603 	if (off % size != 0)
1604 		return false;
1605 	return true;
1606 }
1607 
1608 static bool tracing_prog_is_valid_access(int off, int size,
1609 					 enum bpf_access_type type,
1610 					 const struct bpf_prog *prog,
1611 					 struct bpf_insn_access_aux *info)
1612 {
1613 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1614 		return false;
1615 	if (type != BPF_READ)
1616 		return false;
1617 	if (off % size != 0)
1618 		return false;
1619 	return btf_ctx_access(off, size, type, prog, info);
1620 }
1621 
1622 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1623 				     const union bpf_attr *kattr,
1624 				     union bpf_attr __user *uattr)
1625 {
1626 	return -ENOTSUPP;
1627 }
1628 
1629 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1630 	.get_func_proto  = raw_tp_prog_func_proto,
1631 	.is_valid_access = raw_tp_prog_is_valid_access,
1632 };
1633 
1634 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1635 #ifdef CONFIG_NET
1636 	.test_run = bpf_prog_test_run_raw_tp,
1637 #endif
1638 };
1639 
1640 const struct bpf_verifier_ops tracing_verifier_ops = {
1641 	.get_func_proto  = tracing_prog_func_proto,
1642 	.is_valid_access = tracing_prog_is_valid_access,
1643 };
1644 
1645 const struct bpf_prog_ops tracing_prog_ops = {
1646 	.test_run = bpf_prog_test_run_tracing,
1647 };
1648 
1649 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1650 						 enum bpf_access_type type,
1651 						 const struct bpf_prog *prog,
1652 						 struct bpf_insn_access_aux *info)
1653 {
1654 	if (off == 0) {
1655 		if (size != sizeof(u64) || type != BPF_READ)
1656 			return false;
1657 		info->reg_type = PTR_TO_TP_BUFFER;
1658 	}
1659 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1660 }
1661 
1662 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1663 	.get_func_proto  = raw_tp_prog_func_proto,
1664 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1665 };
1666 
1667 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1668 };
1669 
1670 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1671 				    const struct bpf_prog *prog,
1672 				    struct bpf_insn_access_aux *info)
1673 {
1674 	const int size_u64 = sizeof(u64);
1675 
1676 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1677 		return false;
1678 	if (type != BPF_READ)
1679 		return false;
1680 	if (off % size != 0) {
1681 		if (sizeof(unsigned long) != 4)
1682 			return false;
1683 		if (size != 8)
1684 			return false;
1685 		if (off % size != 4)
1686 			return false;
1687 	}
1688 
1689 	switch (off) {
1690 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1691 		bpf_ctx_record_field_size(info, size_u64);
1692 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1693 			return false;
1694 		break;
1695 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1696 		bpf_ctx_record_field_size(info, size_u64);
1697 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1698 			return false;
1699 		break;
1700 	default:
1701 		if (size != sizeof(long))
1702 			return false;
1703 	}
1704 
1705 	return true;
1706 }
1707 
1708 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1709 				      const struct bpf_insn *si,
1710 				      struct bpf_insn *insn_buf,
1711 				      struct bpf_prog *prog, u32 *target_size)
1712 {
1713 	struct bpf_insn *insn = insn_buf;
1714 
1715 	switch (si->off) {
1716 	case offsetof(struct bpf_perf_event_data, sample_period):
1717 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1718 						       data), si->dst_reg, si->src_reg,
1719 				      offsetof(struct bpf_perf_event_data_kern, data));
1720 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1721 				      bpf_target_off(struct perf_sample_data, period, 8,
1722 						     target_size));
1723 		break;
1724 	case offsetof(struct bpf_perf_event_data, addr):
1725 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1726 						       data), si->dst_reg, si->src_reg,
1727 				      offsetof(struct bpf_perf_event_data_kern, data));
1728 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1729 				      bpf_target_off(struct perf_sample_data, addr, 8,
1730 						     target_size));
1731 		break;
1732 	default:
1733 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1734 						       regs), si->dst_reg, si->src_reg,
1735 				      offsetof(struct bpf_perf_event_data_kern, regs));
1736 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1737 				      si->off);
1738 		break;
1739 	}
1740 
1741 	return insn - insn_buf;
1742 }
1743 
1744 const struct bpf_verifier_ops perf_event_verifier_ops = {
1745 	.get_func_proto		= pe_prog_func_proto,
1746 	.is_valid_access	= pe_prog_is_valid_access,
1747 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1748 };
1749 
1750 const struct bpf_prog_ops perf_event_prog_ops = {
1751 };
1752 
1753 static DEFINE_MUTEX(bpf_event_mutex);
1754 
1755 #define BPF_TRACE_MAX_PROGS 64
1756 
1757 int perf_event_attach_bpf_prog(struct perf_event *event,
1758 			       struct bpf_prog *prog,
1759 			       u64 bpf_cookie)
1760 {
1761 	struct bpf_prog_array *old_array;
1762 	struct bpf_prog_array *new_array;
1763 	int ret = -EEXIST;
1764 
1765 	/*
1766 	 * Kprobe override only works if they are on the function entry,
1767 	 * and only if they are on the opt-in list.
1768 	 */
1769 	if (prog->kprobe_override &&
1770 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1771 	     !trace_kprobe_error_injectable(event->tp_event)))
1772 		return -EINVAL;
1773 
1774 	mutex_lock(&bpf_event_mutex);
1775 
1776 	if (event->prog)
1777 		goto unlock;
1778 
1779 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1780 	if (old_array &&
1781 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1782 		ret = -E2BIG;
1783 		goto unlock;
1784 	}
1785 
1786 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1787 	if (ret < 0)
1788 		goto unlock;
1789 
1790 	/* set the new array to event->tp_event and set event->prog */
1791 	event->prog = prog;
1792 	event->bpf_cookie = bpf_cookie;
1793 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1794 	bpf_prog_array_free(old_array);
1795 
1796 unlock:
1797 	mutex_unlock(&bpf_event_mutex);
1798 	return ret;
1799 }
1800 
1801 void perf_event_detach_bpf_prog(struct perf_event *event)
1802 {
1803 	struct bpf_prog_array *old_array;
1804 	struct bpf_prog_array *new_array;
1805 	int ret;
1806 
1807 	mutex_lock(&bpf_event_mutex);
1808 
1809 	if (!event->prog)
1810 		goto unlock;
1811 
1812 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1813 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1814 	if (ret == -ENOENT)
1815 		goto unlock;
1816 	if (ret < 0) {
1817 		bpf_prog_array_delete_safe(old_array, event->prog);
1818 	} else {
1819 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1820 		bpf_prog_array_free(old_array);
1821 	}
1822 
1823 	bpf_prog_put(event->prog);
1824 	event->prog = NULL;
1825 
1826 unlock:
1827 	mutex_unlock(&bpf_event_mutex);
1828 }
1829 
1830 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1831 {
1832 	struct perf_event_query_bpf __user *uquery = info;
1833 	struct perf_event_query_bpf query = {};
1834 	struct bpf_prog_array *progs;
1835 	u32 *ids, prog_cnt, ids_len;
1836 	int ret;
1837 
1838 	if (!perfmon_capable())
1839 		return -EPERM;
1840 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1841 		return -EINVAL;
1842 	if (copy_from_user(&query, uquery, sizeof(query)))
1843 		return -EFAULT;
1844 
1845 	ids_len = query.ids_len;
1846 	if (ids_len > BPF_TRACE_MAX_PROGS)
1847 		return -E2BIG;
1848 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1849 	if (!ids)
1850 		return -ENOMEM;
1851 	/*
1852 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1853 	 * is required when user only wants to check for uquery->prog_cnt.
1854 	 * There is no need to check for it since the case is handled
1855 	 * gracefully in bpf_prog_array_copy_info.
1856 	 */
1857 
1858 	mutex_lock(&bpf_event_mutex);
1859 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1860 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1861 	mutex_unlock(&bpf_event_mutex);
1862 
1863 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1864 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1865 		ret = -EFAULT;
1866 
1867 	kfree(ids);
1868 	return ret;
1869 }
1870 
1871 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1872 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1873 
1874 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1875 {
1876 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1877 
1878 	for (; btp < __stop__bpf_raw_tp; btp++) {
1879 		if (!strcmp(btp->tp->name, name))
1880 			return btp;
1881 	}
1882 
1883 	return bpf_get_raw_tracepoint_module(name);
1884 }
1885 
1886 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1887 {
1888 	struct module *mod;
1889 
1890 	preempt_disable();
1891 	mod = __module_address((unsigned long)btp);
1892 	module_put(mod);
1893 	preempt_enable();
1894 }
1895 
1896 static __always_inline
1897 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1898 {
1899 	cant_sleep();
1900 	rcu_read_lock();
1901 	(void) bpf_prog_run(prog, args);
1902 	rcu_read_unlock();
1903 }
1904 
1905 #define UNPACK(...)			__VA_ARGS__
1906 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1907 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1908 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1909 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1910 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1911 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1912 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1913 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1914 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1915 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1916 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1917 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1918 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1919 
1920 #define SARG(X)		u64 arg##X
1921 #define COPY(X)		args[X] = arg##X
1922 
1923 #define __DL_COM	(,)
1924 #define __DL_SEM	(;)
1925 
1926 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1927 
1928 #define BPF_TRACE_DEFN_x(x)						\
1929 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1930 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1931 	{								\
1932 		u64 args[x];						\
1933 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1934 		__bpf_trace_run(prog, args);				\
1935 	}								\
1936 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1937 BPF_TRACE_DEFN_x(1);
1938 BPF_TRACE_DEFN_x(2);
1939 BPF_TRACE_DEFN_x(3);
1940 BPF_TRACE_DEFN_x(4);
1941 BPF_TRACE_DEFN_x(5);
1942 BPF_TRACE_DEFN_x(6);
1943 BPF_TRACE_DEFN_x(7);
1944 BPF_TRACE_DEFN_x(8);
1945 BPF_TRACE_DEFN_x(9);
1946 BPF_TRACE_DEFN_x(10);
1947 BPF_TRACE_DEFN_x(11);
1948 BPF_TRACE_DEFN_x(12);
1949 
1950 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1951 {
1952 	struct tracepoint *tp = btp->tp;
1953 
1954 	/*
1955 	 * check that program doesn't access arguments beyond what's
1956 	 * available in this tracepoint
1957 	 */
1958 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1959 		return -EINVAL;
1960 
1961 	if (prog->aux->max_tp_access > btp->writable_size)
1962 		return -EINVAL;
1963 
1964 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1965 						   prog);
1966 }
1967 
1968 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1969 {
1970 	return __bpf_probe_register(btp, prog);
1971 }
1972 
1973 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1974 {
1975 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1976 }
1977 
1978 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1979 			    u32 *fd_type, const char **buf,
1980 			    u64 *probe_offset, u64 *probe_addr)
1981 {
1982 	bool is_tracepoint, is_syscall_tp;
1983 	struct bpf_prog *prog;
1984 	int flags, err = 0;
1985 
1986 	prog = event->prog;
1987 	if (!prog)
1988 		return -ENOENT;
1989 
1990 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1991 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1992 		return -EOPNOTSUPP;
1993 
1994 	*prog_id = prog->aux->id;
1995 	flags = event->tp_event->flags;
1996 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1997 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1998 
1999 	if (is_tracepoint || is_syscall_tp) {
2000 		*buf = is_tracepoint ? event->tp_event->tp->name
2001 				     : event->tp_event->name;
2002 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2003 		*probe_offset = 0x0;
2004 		*probe_addr = 0x0;
2005 	} else {
2006 		/* kprobe/uprobe */
2007 		err = -EOPNOTSUPP;
2008 #ifdef CONFIG_KPROBE_EVENTS
2009 		if (flags & TRACE_EVENT_FL_KPROBE)
2010 			err = bpf_get_kprobe_info(event, fd_type, buf,
2011 						  probe_offset, probe_addr,
2012 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2013 #endif
2014 #ifdef CONFIG_UPROBE_EVENTS
2015 		if (flags & TRACE_EVENT_FL_UPROBE)
2016 			err = bpf_get_uprobe_info(event, fd_type, buf,
2017 						  probe_offset,
2018 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2019 #endif
2020 	}
2021 
2022 	return err;
2023 }
2024 
2025 static int __init send_signal_irq_work_init(void)
2026 {
2027 	int cpu;
2028 	struct send_signal_irq_work *work;
2029 
2030 	for_each_possible_cpu(cpu) {
2031 		work = per_cpu_ptr(&send_signal_work, cpu);
2032 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2033 	}
2034 	return 0;
2035 }
2036 
2037 subsys_initcall(send_signal_irq_work_init);
2038 
2039 #ifdef CONFIG_MODULES
2040 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2041 			    void *module)
2042 {
2043 	struct bpf_trace_module *btm, *tmp;
2044 	struct module *mod = module;
2045 	int ret = 0;
2046 
2047 	if (mod->num_bpf_raw_events == 0 ||
2048 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2049 		goto out;
2050 
2051 	mutex_lock(&bpf_module_mutex);
2052 
2053 	switch (op) {
2054 	case MODULE_STATE_COMING:
2055 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2056 		if (btm) {
2057 			btm->module = module;
2058 			list_add(&btm->list, &bpf_trace_modules);
2059 		} else {
2060 			ret = -ENOMEM;
2061 		}
2062 		break;
2063 	case MODULE_STATE_GOING:
2064 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2065 			if (btm->module == module) {
2066 				list_del(&btm->list);
2067 				kfree(btm);
2068 				break;
2069 			}
2070 		}
2071 		break;
2072 	}
2073 
2074 	mutex_unlock(&bpf_module_mutex);
2075 
2076 out:
2077 	return notifier_from_errno(ret);
2078 }
2079 
2080 static struct notifier_block bpf_module_nb = {
2081 	.notifier_call = bpf_event_notify,
2082 };
2083 
2084 static int __init bpf_event_init(void)
2085 {
2086 	register_module_notifier(&bpf_module_nb);
2087 	return 0;
2088 }
2089 
2090 fs_initcall(bpf_event_init);
2091 #endif /* CONFIG_MODULES */
2092