1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/btf.h> 11 #include <linux/filter.h> 12 #include <linux/uaccess.h> 13 #include <linux/ctype.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/syscalls.h> 17 #include <linux/error-injection.h> 18 #include <linux/btf_ids.h> 19 #include <linux/bpf_lsm.h> 20 21 #include <net/bpf_sk_storage.h> 22 23 #include <uapi/linux/bpf.h> 24 #include <uapi/linux/btf.h> 25 26 #include <asm/tlb.h> 27 28 #include "trace_probe.h" 29 #include "trace.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "bpf_trace.h" 33 34 #define bpf_event_rcu_dereference(p) \ 35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 36 37 #ifdef CONFIG_MODULES 38 struct bpf_trace_module { 39 struct module *module; 40 struct list_head list; 41 }; 42 43 static LIST_HEAD(bpf_trace_modules); 44 static DEFINE_MUTEX(bpf_module_mutex); 45 46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 47 { 48 struct bpf_raw_event_map *btp, *ret = NULL; 49 struct bpf_trace_module *btm; 50 unsigned int i; 51 52 mutex_lock(&bpf_module_mutex); 53 list_for_each_entry(btm, &bpf_trace_modules, list) { 54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 55 btp = &btm->module->bpf_raw_events[i]; 56 if (!strcmp(btp->tp->name, name)) { 57 if (try_module_get(btm->module)) 58 ret = btp; 59 goto out; 60 } 61 } 62 } 63 out: 64 mutex_unlock(&bpf_module_mutex); 65 return ret; 66 } 67 #else 68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 69 { 70 return NULL; 71 } 72 #endif /* CONFIG_MODULES */ 73 74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 76 77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 78 u64 flags, const struct btf **btf, 79 s32 *btf_id); 80 81 /** 82 * trace_call_bpf - invoke BPF program 83 * @call: tracepoint event 84 * @ctx: opaque context pointer 85 * 86 * kprobe handlers execute BPF programs via this helper. 87 * Can be used from static tracepoints in the future. 88 * 89 * Return: BPF programs always return an integer which is interpreted by 90 * kprobe handler as: 91 * 0 - return from kprobe (event is filtered out) 92 * 1 - store kprobe event into ring buffer 93 * Other values are reserved and currently alias to 1 94 */ 95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 96 { 97 unsigned int ret; 98 99 cant_sleep(); 100 101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 102 /* 103 * since some bpf program is already running on this cpu, 104 * don't call into another bpf program (same or different) 105 * and don't send kprobe event into ring-buffer, 106 * so return zero here 107 */ 108 ret = 0; 109 goto out; 110 } 111 112 /* 113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 114 * to all call sites, we did a bpf_prog_array_valid() there to check 115 * whether call->prog_array is empty or not, which is 116 * a heuristic to speed up execution. 117 * 118 * If bpf_prog_array_valid() fetched prog_array was 119 * non-NULL, we go into trace_call_bpf() and do the actual 120 * proper rcu_dereference() under RCU lock. 121 * If it turns out that prog_array is NULL then, we bail out. 122 * For the opposite, if the bpf_prog_array_valid() fetched pointer 123 * was NULL, you'll skip the prog_array with the risk of missing 124 * out of events when it was updated in between this and the 125 * rcu_dereference() which is accepted risk. 126 */ 127 ret = BPF_PROG_RUN_ARRAY(call->prog_array, ctx, bpf_prog_run); 128 129 out: 130 __this_cpu_dec(bpf_prog_active); 131 132 return ret; 133 } 134 135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 137 { 138 regs_set_return_value(regs, rc); 139 override_function_with_return(regs); 140 return 0; 141 } 142 143 static const struct bpf_func_proto bpf_override_return_proto = { 144 .func = bpf_override_return, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_PTR_TO_CTX, 148 .arg2_type = ARG_ANYTHING, 149 }; 150 #endif 151 152 static __always_inline int 153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 154 { 155 int ret; 156 157 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 158 if (unlikely(ret < 0)) 159 memset(dst, 0, size); 160 return ret; 161 } 162 163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 164 const void __user *, unsafe_ptr) 165 { 166 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 167 } 168 169 const struct bpf_func_proto bpf_probe_read_user_proto = { 170 .func = bpf_probe_read_user, 171 .gpl_only = true, 172 .ret_type = RET_INTEGER, 173 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 174 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 175 .arg3_type = ARG_ANYTHING, 176 }; 177 178 static __always_inline int 179 bpf_probe_read_user_str_common(void *dst, u32 size, 180 const void __user *unsafe_ptr) 181 { 182 int ret; 183 184 /* 185 * NB: We rely on strncpy_from_user() not copying junk past the NUL 186 * terminator into `dst`. 187 * 188 * strncpy_from_user() does long-sized strides in the fast path. If the 189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 190 * then there could be junk after the NUL in `dst`. If user takes `dst` 191 * and keys a hash map with it, then semantically identical strings can 192 * occupy multiple entries in the map. 193 */ 194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 195 if (unlikely(ret < 0)) 196 memset(dst, 0, size); 197 return ret; 198 } 199 200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 201 const void __user *, unsafe_ptr) 202 { 203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 204 } 205 206 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 207 .func = bpf_probe_read_user_str, 208 .gpl_only = true, 209 .ret_type = RET_INTEGER, 210 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 211 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 212 .arg3_type = ARG_ANYTHING, 213 }; 214 215 static __always_inline int 216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 217 { 218 int ret; 219 220 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 221 if (unlikely(ret < 0)) 222 memset(dst, 0, size); 223 return ret; 224 } 225 226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 227 const void *, unsafe_ptr) 228 { 229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 230 } 231 232 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 233 .func = bpf_probe_read_kernel, 234 .gpl_only = true, 235 .ret_type = RET_INTEGER, 236 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 237 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 238 .arg3_type = ARG_ANYTHING, 239 }; 240 241 static __always_inline int 242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 243 { 244 int ret; 245 246 /* 247 * The strncpy_from_kernel_nofault() call will likely not fill the 248 * entire buffer, but that's okay in this circumstance as we're probing 249 * arbitrary memory anyway similar to bpf_probe_read_*() and might 250 * as well probe the stack. Thus, memory is explicitly cleared 251 * only in error case, so that improper users ignoring return 252 * code altogether don't copy garbage; otherwise length of string 253 * is returned that can be used for bpf_perf_event_output() et al. 254 */ 255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 256 if (unlikely(ret < 0)) 257 memset(dst, 0, size); 258 return ret; 259 } 260 261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 262 const void *, unsafe_ptr) 263 { 264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 265 } 266 267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 268 .func = bpf_probe_read_kernel_str, 269 .gpl_only = true, 270 .ret_type = RET_INTEGER, 271 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 272 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 273 .arg3_type = ARG_ANYTHING, 274 }; 275 276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 278 const void *, unsafe_ptr) 279 { 280 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 281 return bpf_probe_read_user_common(dst, size, 282 (__force void __user *)unsafe_ptr); 283 } 284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 285 } 286 287 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 288 .func = bpf_probe_read_compat, 289 .gpl_only = true, 290 .ret_type = RET_INTEGER, 291 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 292 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 293 .arg3_type = ARG_ANYTHING, 294 }; 295 296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 297 const void *, unsafe_ptr) 298 { 299 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 300 return bpf_probe_read_user_str_common(dst, size, 301 (__force void __user *)unsafe_ptr); 302 } 303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 304 } 305 306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 307 .func = bpf_probe_read_compat_str, 308 .gpl_only = true, 309 .ret_type = RET_INTEGER, 310 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 311 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 312 .arg3_type = ARG_ANYTHING, 313 }; 314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 315 316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 317 u32, size) 318 { 319 /* 320 * Ensure we're in user context which is safe for the helper to 321 * run. This helper has no business in a kthread. 322 * 323 * access_ok() should prevent writing to non-user memory, but in 324 * some situations (nommu, temporary switch, etc) access_ok() does 325 * not provide enough validation, hence the check on KERNEL_DS. 326 * 327 * nmi_uaccess_okay() ensures the probe is not run in an interim 328 * state, when the task or mm are switched. This is specifically 329 * required to prevent the use of temporary mm. 330 */ 331 332 if (unlikely(in_interrupt() || 333 current->flags & (PF_KTHREAD | PF_EXITING))) 334 return -EPERM; 335 if (unlikely(uaccess_kernel())) 336 return -EPERM; 337 if (unlikely(!nmi_uaccess_okay())) 338 return -EPERM; 339 340 return copy_to_user_nofault(unsafe_ptr, src, size); 341 } 342 343 static const struct bpf_func_proto bpf_probe_write_user_proto = { 344 .func = bpf_probe_write_user, 345 .gpl_only = true, 346 .ret_type = RET_INTEGER, 347 .arg1_type = ARG_ANYTHING, 348 .arg2_type = ARG_PTR_TO_MEM, 349 .arg3_type = ARG_CONST_SIZE, 350 }; 351 352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 353 { 354 if (!capable(CAP_SYS_ADMIN)) 355 return NULL; 356 357 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 358 current->comm, task_pid_nr(current)); 359 360 return &bpf_probe_write_user_proto; 361 } 362 363 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 364 365 #define MAX_TRACE_PRINTK_VARARGS 3 366 #define BPF_TRACE_PRINTK_SIZE 1024 367 368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 369 u64, arg2, u64, arg3) 370 { 371 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 372 u32 *bin_args; 373 static char buf[BPF_TRACE_PRINTK_SIZE]; 374 unsigned long flags; 375 int ret; 376 377 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args, 378 MAX_TRACE_PRINTK_VARARGS); 379 if (ret < 0) 380 return ret; 381 382 raw_spin_lock_irqsave(&trace_printk_lock, flags); 383 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 384 385 trace_bpf_trace_printk(buf); 386 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 387 388 bpf_bprintf_cleanup(); 389 390 return ret; 391 } 392 393 static const struct bpf_func_proto bpf_trace_printk_proto = { 394 .func = bpf_trace_printk, 395 .gpl_only = true, 396 .ret_type = RET_INTEGER, 397 .arg1_type = ARG_PTR_TO_MEM, 398 .arg2_type = ARG_CONST_SIZE, 399 }; 400 401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 402 { 403 /* 404 * This program might be calling bpf_trace_printk, 405 * so enable the associated bpf_trace/bpf_trace_printk event. 406 * Repeat this each time as it is possible a user has 407 * disabled bpf_trace_printk events. By loading a program 408 * calling bpf_trace_printk() however the user has expressed 409 * the intent to see such events. 410 */ 411 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 412 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 413 414 return &bpf_trace_printk_proto; 415 } 416 417 #define MAX_SEQ_PRINTF_VARARGS 12 418 419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 420 const void *, data, u32, data_len) 421 { 422 int err, num_args; 423 u32 *bin_args; 424 425 if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 || 426 (data_len && !data)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 431 if (err < 0) 432 return err; 433 434 seq_bprintf(m, fmt, bin_args); 435 436 bpf_bprintf_cleanup(); 437 438 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 439 } 440 441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 442 443 static const struct bpf_func_proto bpf_seq_printf_proto = { 444 .func = bpf_seq_printf, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_BTF_ID, 448 .arg1_btf_id = &btf_seq_file_ids[0], 449 .arg2_type = ARG_PTR_TO_MEM, 450 .arg3_type = ARG_CONST_SIZE, 451 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 452 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 453 }; 454 455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 456 { 457 return seq_write(m, data, len) ? -EOVERFLOW : 0; 458 } 459 460 static const struct bpf_func_proto bpf_seq_write_proto = { 461 .func = bpf_seq_write, 462 .gpl_only = true, 463 .ret_type = RET_INTEGER, 464 .arg1_type = ARG_PTR_TO_BTF_ID, 465 .arg1_btf_id = &btf_seq_file_ids[0], 466 .arg2_type = ARG_PTR_TO_MEM, 467 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 468 }; 469 470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 471 u32, btf_ptr_size, u64, flags) 472 { 473 const struct btf *btf; 474 s32 btf_id; 475 int ret; 476 477 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 478 if (ret) 479 return ret; 480 481 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 482 } 483 484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 485 .func = bpf_seq_printf_btf, 486 .gpl_only = true, 487 .ret_type = RET_INTEGER, 488 .arg1_type = ARG_PTR_TO_BTF_ID, 489 .arg1_btf_id = &btf_seq_file_ids[0], 490 .arg2_type = ARG_PTR_TO_MEM, 491 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 492 .arg4_type = ARG_ANYTHING, 493 }; 494 495 static __always_inline int 496 get_map_perf_counter(struct bpf_map *map, u64 flags, 497 u64 *value, u64 *enabled, u64 *running) 498 { 499 struct bpf_array *array = container_of(map, struct bpf_array, map); 500 unsigned int cpu = smp_processor_id(); 501 u64 index = flags & BPF_F_INDEX_MASK; 502 struct bpf_event_entry *ee; 503 504 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 505 return -EINVAL; 506 if (index == BPF_F_CURRENT_CPU) 507 index = cpu; 508 if (unlikely(index >= array->map.max_entries)) 509 return -E2BIG; 510 511 ee = READ_ONCE(array->ptrs[index]); 512 if (!ee) 513 return -ENOENT; 514 515 return perf_event_read_local(ee->event, value, enabled, running); 516 } 517 518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 519 { 520 u64 value = 0; 521 int err; 522 523 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 524 /* 525 * this api is ugly since we miss [-22..-2] range of valid 526 * counter values, but that's uapi 527 */ 528 if (err) 529 return err; 530 return value; 531 } 532 533 static const struct bpf_func_proto bpf_perf_event_read_proto = { 534 .func = bpf_perf_event_read, 535 .gpl_only = true, 536 .ret_type = RET_INTEGER, 537 .arg1_type = ARG_CONST_MAP_PTR, 538 .arg2_type = ARG_ANYTHING, 539 }; 540 541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 542 struct bpf_perf_event_value *, buf, u32, size) 543 { 544 int err = -EINVAL; 545 546 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 547 goto clear; 548 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 549 &buf->running); 550 if (unlikely(err)) 551 goto clear; 552 return 0; 553 clear: 554 memset(buf, 0, size); 555 return err; 556 } 557 558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 559 .func = bpf_perf_event_read_value, 560 .gpl_only = true, 561 .ret_type = RET_INTEGER, 562 .arg1_type = ARG_CONST_MAP_PTR, 563 .arg2_type = ARG_ANYTHING, 564 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 565 .arg4_type = ARG_CONST_SIZE, 566 }; 567 568 static __always_inline u64 569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 570 u64 flags, struct perf_sample_data *sd) 571 { 572 struct bpf_array *array = container_of(map, struct bpf_array, map); 573 unsigned int cpu = smp_processor_id(); 574 u64 index = flags & BPF_F_INDEX_MASK; 575 struct bpf_event_entry *ee; 576 struct perf_event *event; 577 578 if (index == BPF_F_CURRENT_CPU) 579 index = cpu; 580 if (unlikely(index >= array->map.max_entries)) 581 return -E2BIG; 582 583 ee = READ_ONCE(array->ptrs[index]); 584 if (!ee) 585 return -ENOENT; 586 587 event = ee->event; 588 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 589 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 590 return -EINVAL; 591 592 if (unlikely(event->oncpu != cpu)) 593 return -EOPNOTSUPP; 594 595 return perf_event_output(event, sd, regs); 596 } 597 598 /* 599 * Support executing tracepoints in normal, irq, and nmi context that each call 600 * bpf_perf_event_output 601 */ 602 struct bpf_trace_sample_data { 603 struct perf_sample_data sds[3]; 604 }; 605 606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 607 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 609 u64, flags, void *, data, u64, size) 610 { 611 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 612 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 613 struct perf_raw_record raw = { 614 .frag = { 615 .size = size, 616 .data = data, 617 }, 618 }; 619 struct perf_sample_data *sd; 620 int err; 621 622 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 623 err = -EBUSY; 624 goto out; 625 } 626 627 sd = &sds->sds[nest_level - 1]; 628 629 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 630 err = -EINVAL; 631 goto out; 632 } 633 634 perf_sample_data_init(sd, 0, 0); 635 sd->raw = &raw; 636 637 err = __bpf_perf_event_output(regs, map, flags, sd); 638 639 out: 640 this_cpu_dec(bpf_trace_nest_level); 641 return err; 642 } 643 644 static const struct bpf_func_proto bpf_perf_event_output_proto = { 645 .func = bpf_perf_event_output, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 656 struct bpf_nested_pt_regs { 657 struct pt_regs regs[3]; 658 }; 659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 661 662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 663 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 664 { 665 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 666 struct perf_raw_frag frag = { 667 .copy = ctx_copy, 668 .size = ctx_size, 669 .data = ctx, 670 }; 671 struct perf_raw_record raw = { 672 .frag = { 673 { 674 .next = ctx_size ? &frag : NULL, 675 }, 676 .size = meta_size, 677 .data = meta, 678 }, 679 }; 680 struct perf_sample_data *sd; 681 struct pt_regs *regs; 682 u64 ret; 683 684 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 685 ret = -EBUSY; 686 goto out; 687 } 688 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 689 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 690 691 perf_fetch_caller_regs(regs); 692 perf_sample_data_init(sd, 0, 0); 693 sd->raw = &raw; 694 695 ret = __bpf_perf_event_output(regs, map, flags, sd); 696 out: 697 this_cpu_dec(bpf_event_output_nest_level); 698 return ret; 699 } 700 701 BPF_CALL_0(bpf_get_current_task) 702 { 703 return (long) current; 704 } 705 706 const struct bpf_func_proto bpf_get_current_task_proto = { 707 .func = bpf_get_current_task, 708 .gpl_only = true, 709 .ret_type = RET_INTEGER, 710 }; 711 712 BPF_CALL_0(bpf_get_current_task_btf) 713 { 714 return (unsigned long) current; 715 } 716 717 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 718 .func = bpf_get_current_task_btf, 719 .gpl_only = true, 720 .ret_type = RET_PTR_TO_BTF_ID, 721 .ret_btf_id = &btf_task_struct_ids[0], 722 }; 723 724 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 725 { 726 return (unsigned long) task_pt_regs(task); 727 } 728 729 BTF_ID_LIST(bpf_task_pt_regs_ids) 730 BTF_ID(struct, pt_regs) 731 732 const struct bpf_func_proto bpf_task_pt_regs_proto = { 733 .func = bpf_task_pt_regs, 734 .gpl_only = true, 735 .arg1_type = ARG_PTR_TO_BTF_ID, 736 .arg1_btf_id = &btf_task_struct_ids[0], 737 .ret_type = RET_PTR_TO_BTF_ID, 738 .ret_btf_id = &bpf_task_pt_regs_ids[0], 739 }; 740 741 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 742 { 743 struct bpf_array *array = container_of(map, struct bpf_array, map); 744 struct cgroup *cgrp; 745 746 if (unlikely(idx >= array->map.max_entries)) 747 return -E2BIG; 748 749 cgrp = READ_ONCE(array->ptrs[idx]); 750 if (unlikely(!cgrp)) 751 return -EAGAIN; 752 753 return task_under_cgroup_hierarchy(current, cgrp); 754 } 755 756 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 757 .func = bpf_current_task_under_cgroup, 758 .gpl_only = false, 759 .ret_type = RET_INTEGER, 760 .arg1_type = ARG_CONST_MAP_PTR, 761 .arg2_type = ARG_ANYTHING, 762 }; 763 764 struct send_signal_irq_work { 765 struct irq_work irq_work; 766 struct task_struct *task; 767 u32 sig; 768 enum pid_type type; 769 }; 770 771 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 772 773 static void do_bpf_send_signal(struct irq_work *entry) 774 { 775 struct send_signal_irq_work *work; 776 777 work = container_of(entry, struct send_signal_irq_work, irq_work); 778 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 779 } 780 781 static int bpf_send_signal_common(u32 sig, enum pid_type type) 782 { 783 struct send_signal_irq_work *work = NULL; 784 785 /* Similar to bpf_probe_write_user, task needs to be 786 * in a sound condition and kernel memory access be 787 * permitted in order to send signal to the current 788 * task. 789 */ 790 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 791 return -EPERM; 792 if (unlikely(uaccess_kernel())) 793 return -EPERM; 794 if (unlikely(!nmi_uaccess_okay())) 795 return -EPERM; 796 797 if (irqs_disabled()) { 798 /* Do an early check on signal validity. Otherwise, 799 * the error is lost in deferred irq_work. 800 */ 801 if (unlikely(!valid_signal(sig))) 802 return -EINVAL; 803 804 work = this_cpu_ptr(&send_signal_work); 805 if (irq_work_is_busy(&work->irq_work)) 806 return -EBUSY; 807 808 /* Add the current task, which is the target of sending signal, 809 * to the irq_work. The current task may change when queued 810 * irq works get executed. 811 */ 812 work->task = current; 813 work->sig = sig; 814 work->type = type; 815 irq_work_queue(&work->irq_work); 816 return 0; 817 } 818 819 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 820 } 821 822 BPF_CALL_1(bpf_send_signal, u32, sig) 823 { 824 return bpf_send_signal_common(sig, PIDTYPE_TGID); 825 } 826 827 static const struct bpf_func_proto bpf_send_signal_proto = { 828 .func = bpf_send_signal, 829 .gpl_only = false, 830 .ret_type = RET_INTEGER, 831 .arg1_type = ARG_ANYTHING, 832 }; 833 834 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 835 { 836 return bpf_send_signal_common(sig, PIDTYPE_PID); 837 } 838 839 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 840 .func = bpf_send_signal_thread, 841 .gpl_only = false, 842 .ret_type = RET_INTEGER, 843 .arg1_type = ARG_ANYTHING, 844 }; 845 846 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 847 { 848 long len; 849 char *p; 850 851 if (!sz) 852 return 0; 853 854 p = d_path(path, buf, sz); 855 if (IS_ERR(p)) { 856 len = PTR_ERR(p); 857 } else { 858 len = buf + sz - p; 859 memmove(buf, p, len); 860 } 861 862 return len; 863 } 864 865 BTF_SET_START(btf_allowlist_d_path) 866 #ifdef CONFIG_SECURITY 867 BTF_ID(func, security_file_permission) 868 BTF_ID(func, security_inode_getattr) 869 BTF_ID(func, security_file_open) 870 #endif 871 #ifdef CONFIG_SECURITY_PATH 872 BTF_ID(func, security_path_truncate) 873 #endif 874 BTF_ID(func, vfs_truncate) 875 BTF_ID(func, vfs_fallocate) 876 BTF_ID(func, dentry_open) 877 BTF_ID(func, vfs_getattr) 878 BTF_ID(func, filp_close) 879 BTF_SET_END(btf_allowlist_d_path) 880 881 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 882 { 883 if (prog->type == BPF_PROG_TYPE_TRACING && 884 prog->expected_attach_type == BPF_TRACE_ITER) 885 return true; 886 887 if (prog->type == BPF_PROG_TYPE_LSM) 888 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 889 890 return btf_id_set_contains(&btf_allowlist_d_path, 891 prog->aux->attach_btf_id); 892 } 893 894 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 895 896 static const struct bpf_func_proto bpf_d_path_proto = { 897 .func = bpf_d_path, 898 .gpl_only = false, 899 .ret_type = RET_INTEGER, 900 .arg1_type = ARG_PTR_TO_BTF_ID, 901 .arg1_btf_id = &bpf_d_path_btf_ids[0], 902 .arg2_type = ARG_PTR_TO_MEM, 903 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 904 .allowed = bpf_d_path_allowed, 905 }; 906 907 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 908 BTF_F_PTR_RAW | BTF_F_ZERO) 909 910 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 911 u64 flags, const struct btf **btf, 912 s32 *btf_id) 913 { 914 const struct btf_type *t; 915 916 if (unlikely(flags & ~(BTF_F_ALL))) 917 return -EINVAL; 918 919 if (btf_ptr_size != sizeof(struct btf_ptr)) 920 return -EINVAL; 921 922 *btf = bpf_get_btf_vmlinux(); 923 924 if (IS_ERR_OR_NULL(*btf)) 925 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 926 927 if (ptr->type_id > 0) 928 *btf_id = ptr->type_id; 929 else 930 return -EINVAL; 931 932 if (*btf_id > 0) 933 t = btf_type_by_id(*btf, *btf_id); 934 if (*btf_id <= 0 || !t) 935 return -ENOENT; 936 937 return 0; 938 } 939 940 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 941 u32, btf_ptr_size, u64, flags) 942 { 943 const struct btf *btf; 944 s32 btf_id; 945 int ret; 946 947 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 948 if (ret) 949 return ret; 950 951 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 952 flags); 953 } 954 955 const struct bpf_func_proto bpf_snprintf_btf_proto = { 956 .func = bpf_snprintf_btf, 957 .gpl_only = false, 958 .ret_type = RET_INTEGER, 959 .arg1_type = ARG_PTR_TO_MEM, 960 .arg2_type = ARG_CONST_SIZE, 961 .arg3_type = ARG_PTR_TO_MEM, 962 .arg4_type = ARG_CONST_SIZE, 963 .arg5_type = ARG_ANYTHING, 964 }; 965 966 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 967 { 968 /* This helper call is inlined by verifier. */ 969 return ((u64 *)ctx)[-1]; 970 } 971 972 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 973 .func = bpf_get_func_ip_tracing, 974 .gpl_only = true, 975 .ret_type = RET_INTEGER, 976 .arg1_type = ARG_PTR_TO_CTX, 977 }; 978 979 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 980 { 981 struct kprobe *kp = kprobe_running(); 982 983 return kp ? (uintptr_t)kp->addr : 0; 984 } 985 986 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 987 .func = bpf_get_func_ip_kprobe, 988 .gpl_only = true, 989 .ret_type = RET_INTEGER, 990 .arg1_type = ARG_PTR_TO_CTX, 991 }; 992 993 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 994 { 995 struct bpf_trace_run_ctx *run_ctx; 996 997 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 998 return run_ctx->bpf_cookie; 999 } 1000 1001 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1002 .func = bpf_get_attach_cookie_trace, 1003 .gpl_only = false, 1004 .ret_type = RET_INTEGER, 1005 .arg1_type = ARG_PTR_TO_CTX, 1006 }; 1007 1008 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1009 { 1010 return ctx->event->bpf_cookie; 1011 } 1012 1013 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1014 .func = bpf_get_attach_cookie_pe, 1015 .gpl_only = false, 1016 .ret_type = RET_INTEGER, 1017 .arg1_type = ARG_PTR_TO_CTX, 1018 }; 1019 1020 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1021 { 1022 #ifndef CONFIG_X86 1023 return -ENOENT; 1024 #else 1025 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1026 u32 entry_cnt = size / br_entry_size; 1027 1028 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1029 1030 if (unlikely(flags)) 1031 return -EINVAL; 1032 1033 if (!entry_cnt) 1034 return -ENOENT; 1035 1036 return entry_cnt * br_entry_size; 1037 #endif 1038 } 1039 1040 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1041 .func = bpf_get_branch_snapshot, 1042 .gpl_only = true, 1043 .ret_type = RET_INTEGER, 1044 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1045 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1046 }; 1047 1048 static const struct bpf_func_proto * 1049 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1050 { 1051 switch (func_id) { 1052 case BPF_FUNC_map_lookup_elem: 1053 return &bpf_map_lookup_elem_proto; 1054 case BPF_FUNC_map_update_elem: 1055 return &bpf_map_update_elem_proto; 1056 case BPF_FUNC_map_delete_elem: 1057 return &bpf_map_delete_elem_proto; 1058 case BPF_FUNC_map_push_elem: 1059 return &bpf_map_push_elem_proto; 1060 case BPF_FUNC_map_pop_elem: 1061 return &bpf_map_pop_elem_proto; 1062 case BPF_FUNC_map_peek_elem: 1063 return &bpf_map_peek_elem_proto; 1064 case BPF_FUNC_ktime_get_ns: 1065 return &bpf_ktime_get_ns_proto; 1066 case BPF_FUNC_ktime_get_boot_ns: 1067 return &bpf_ktime_get_boot_ns_proto; 1068 case BPF_FUNC_ktime_get_coarse_ns: 1069 return &bpf_ktime_get_coarse_ns_proto; 1070 case BPF_FUNC_tail_call: 1071 return &bpf_tail_call_proto; 1072 case BPF_FUNC_get_current_pid_tgid: 1073 return &bpf_get_current_pid_tgid_proto; 1074 case BPF_FUNC_get_current_task: 1075 return &bpf_get_current_task_proto; 1076 case BPF_FUNC_get_current_task_btf: 1077 return &bpf_get_current_task_btf_proto; 1078 case BPF_FUNC_task_pt_regs: 1079 return &bpf_task_pt_regs_proto; 1080 case BPF_FUNC_get_current_uid_gid: 1081 return &bpf_get_current_uid_gid_proto; 1082 case BPF_FUNC_get_current_comm: 1083 return &bpf_get_current_comm_proto; 1084 case BPF_FUNC_trace_printk: 1085 return bpf_get_trace_printk_proto(); 1086 case BPF_FUNC_get_smp_processor_id: 1087 return &bpf_get_smp_processor_id_proto; 1088 case BPF_FUNC_get_numa_node_id: 1089 return &bpf_get_numa_node_id_proto; 1090 case BPF_FUNC_perf_event_read: 1091 return &bpf_perf_event_read_proto; 1092 case BPF_FUNC_current_task_under_cgroup: 1093 return &bpf_current_task_under_cgroup_proto; 1094 case BPF_FUNC_get_prandom_u32: 1095 return &bpf_get_prandom_u32_proto; 1096 case BPF_FUNC_probe_write_user: 1097 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1098 NULL : bpf_get_probe_write_proto(); 1099 case BPF_FUNC_probe_read_user: 1100 return &bpf_probe_read_user_proto; 1101 case BPF_FUNC_probe_read_kernel: 1102 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1103 NULL : &bpf_probe_read_kernel_proto; 1104 case BPF_FUNC_probe_read_user_str: 1105 return &bpf_probe_read_user_str_proto; 1106 case BPF_FUNC_probe_read_kernel_str: 1107 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1108 NULL : &bpf_probe_read_kernel_str_proto; 1109 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1110 case BPF_FUNC_probe_read: 1111 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1112 NULL : &bpf_probe_read_compat_proto; 1113 case BPF_FUNC_probe_read_str: 1114 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1115 NULL : &bpf_probe_read_compat_str_proto; 1116 #endif 1117 #ifdef CONFIG_CGROUPS 1118 case BPF_FUNC_get_current_cgroup_id: 1119 return &bpf_get_current_cgroup_id_proto; 1120 case BPF_FUNC_get_current_ancestor_cgroup_id: 1121 return &bpf_get_current_ancestor_cgroup_id_proto; 1122 #endif 1123 case BPF_FUNC_send_signal: 1124 return &bpf_send_signal_proto; 1125 case BPF_FUNC_send_signal_thread: 1126 return &bpf_send_signal_thread_proto; 1127 case BPF_FUNC_perf_event_read_value: 1128 return &bpf_perf_event_read_value_proto; 1129 case BPF_FUNC_get_ns_current_pid_tgid: 1130 return &bpf_get_ns_current_pid_tgid_proto; 1131 case BPF_FUNC_ringbuf_output: 1132 return &bpf_ringbuf_output_proto; 1133 case BPF_FUNC_ringbuf_reserve: 1134 return &bpf_ringbuf_reserve_proto; 1135 case BPF_FUNC_ringbuf_submit: 1136 return &bpf_ringbuf_submit_proto; 1137 case BPF_FUNC_ringbuf_discard: 1138 return &bpf_ringbuf_discard_proto; 1139 case BPF_FUNC_ringbuf_query: 1140 return &bpf_ringbuf_query_proto; 1141 case BPF_FUNC_jiffies64: 1142 return &bpf_jiffies64_proto; 1143 case BPF_FUNC_get_task_stack: 1144 return &bpf_get_task_stack_proto; 1145 case BPF_FUNC_copy_from_user: 1146 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1147 case BPF_FUNC_snprintf_btf: 1148 return &bpf_snprintf_btf_proto; 1149 case BPF_FUNC_per_cpu_ptr: 1150 return &bpf_per_cpu_ptr_proto; 1151 case BPF_FUNC_this_cpu_ptr: 1152 return &bpf_this_cpu_ptr_proto; 1153 case BPF_FUNC_task_storage_get: 1154 return &bpf_task_storage_get_proto; 1155 case BPF_FUNC_task_storage_delete: 1156 return &bpf_task_storage_delete_proto; 1157 case BPF_FUNC_for_each_map_elem: 1158 return &bpf_for_each_map_elem_proto; 1159 case BPF_FUNC_snprintf: 1160 return &bpf_snprintf_proto; 1161 case BPF_FUNC_get_func_ip: 1162 return &bpf_get_func_ip_proto_tracing; 1163 case BPF_FUNC_get_branch_snapshot: 1164 return &bpf_get_branch_snapshot_proto; 1165 default: 1166 return bpf_base_func_proto(func_id); 1167 } 1168 } 1169 1170 static const struct bpf_func_proto * 1171 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1172 { 1173 switch (func_id) { 1174 case BPF_FUNC_perf_event_output: 1175 return &bpf_perf_event_output_proto; 1176 case BPF_FUNC_get_stackid: 1177 return &bpf_get_stackid_proto; 1178 case BPF_FUNC_get_stack: 1179 return &bpf_get_stack_proto; 1180 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1181 case BPF_FUNC_override_return: 1182 return &bpf_override_return_proto; 1183 #endif 1184 case BPF_FUNC_get_func_ip: 1185 return &bpf_get_func_ip_proto_kprobe; 1186 case BPF_FUNC_get_attach_cookie: 1187 return &bpf_get_attach_cookie_proto_trace; 1188 default: 1189 return bpf_tracing_func_proto(func_id, prog); 1190 } 1191 } 1192 1193 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1194 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1195 const struct bpf_prog *prog, 1196 struct bpf_insn_access_aux *info) 1197 { 1198 if (off < 0 || off >= sizeof(struct pt_regs)) 1199 return false; 1200 if (type != BPF_READ) 1201 return false; 1202 if (off % size != 0) 1203 return false; 1204 /* 1205 * Assertion for 32 bit to make sure last 8 byte access 1206 * (BPF_DW) to the last 4 byte member is disallowed. 1207 */ 1208 if (off + size > sizeof(struct pt_regs)) 1209 return false; 1210 1211 return true; 1212 } 1213 1214 const struct bpf_verifier_ops kprobe_verifier_ops = { 1215 .get_func_proto = kprobe_prog_func_proto, 1216 .is_valid_access = kprobe_prog_is_valid_access, 1217 }; 1218 1219 const struct bpf_prog_ops kprobe_prog_ops = { 1220 }; 1221 1222 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1223 u64, flags, void *, data, u64, size) 1224 { 1225 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1226 1227 /* 1228 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1229 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1230 * from there and call the same bpf_perf_event_output() helper inline. 1231 */ 1232 return ____bpf_perf_event_output(regs, map, flags, data, size); 1233 } 1234 1235 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1236 .func = bpf_perf_event_output_tp, 1237 .gpl_only = true, 1238 .ret_type = RET_INTEGER, 1239 .arg1_type = ARG_PTR_TO_CTX, 1240 .arg2_type = ARG_CONST_MAP_PTR, 1241 .arg3_type = ARG_ANYTHING, 1242 .arg4_type = ARG_PTR_TO_MEM, 1243 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1244 }; 1245 1246 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1247 u64, flags) 1248 { 1249 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1250 1251 /* 1252 * Same comment as in bpf_perf_event_output_tp(), only that this time 1253 * the other helper's function body cannot be inlined due to being 1254 * external, thus we need to call raw helper function. 1255 */ 1256 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1257 flags, 0, 0); 1258 } 1259 1260 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1261 .func = bpf_get_stackid_tp, 1262 .gpl_only = true, 1263 .ret_type = RET_INTEGER, 1264 .arg1_type = ARG_PTR_TO_CTX, 1265 .arg2_type = ARG_CONST_MAP_PTR, 1266 .arg3_type = ARG_ANYTHING, 1267 }; 1268 1269 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1270 u64, flags) 1271 { 1272 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1273 1274 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1275 (unsigned long) size, flags, 0); 1276 } 1277 1278 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1279 .func = bpf_get_stack_tp, 1280 .gpl_only = true, 1281 .ret_type = RET_INTEGER, 1282 .arg1_type = ARG_PTR_TO_CTX, 1283 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1284 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1285 .arg4_type = ARG_ANYTHING, 1286 }; 1287 1288 static const struct bpf_func_proto * 1289 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1290 { 1291 switch (func_id) { 1292 case BPF_FUNC_perf_event_output: 1293 return &bpf_perf_event_output_proto_tp; 1294 case BPF_FUNC_get_stackid: 1295 return &bpf_get_stackid_proto_tp; 1296 case BPF_FUNC_get_stack: 1297 return &bpf_get_stack_proto_tp; 1298 case BPF_FUNC_get_attach_cookie: 1299 return &bpf_get_attach_cookie_proto_trace; 1300 default: 1301 return bpf_tracing_func_proto(func_id, prog); 1302 } 1303 } 1304 1305 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1306 const struct bpf_prog *prog, 1307 struct bpf_insn_access_aux *info) 1308 { 1309 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1310 return false; 1311 if (type != BPF_READ) 1312 return false; 1313 if (off % size != 0) 1314 return false; 1315 1316 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1317 return true; 1318 } 1319 1320 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1321 .get_func_proto = tp_prog_func_proto, 1322 .is_valid_access = tp_prog_is_valid_access, 1323 }; 1324 1325 const struct bpf_prog_ops tracepoint_prog_ops = { 1326 }; 1327 1328 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1329 struct bpf_perf_event_value *, buf, u32, size) 1330 { 1331 int err = -EINVAL; 1332 1333 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1334 goto clear; 1335 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1336 &buf->running); 1337 if (unlikely(err)) 1338 goto clear; 1339 return 0; 1340 clear: 1341 memset(buf, 0, size); 1342 return err; 1343 } 1344 1345 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1346 .func = bpf_perf_prog_read_value, 1347 .gpl_only = true, 1348 .ret_type = RET_INTEGER, 1349 .arg1_type = ARG_PTR_TO_CTX, 1350 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1351 .arg3_type = ARG_CONST_SIZE, 1352 }; 1353 1354 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1355 void *, buf, u32, size, u64, flags) 1356 { 1357 #ifndef CONFIG_X86 1358 return -ENOENT; 1359 #else 1360 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1361 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1362 u32 to_copy; 1363 1364 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1365 return -EINVAL; 1366 1367 if (unlikely(!br_stack)) 1368 return -EINVAL; 1369 1370 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1371 return br_stack->nr * br_entry_size; 1372 1373 if (!buf || (size % br_entry_size != 0)) 1374 return -EINVAL; 1375 1376 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1377 memcpy(buf, br_stack->entries, to_copy); 1378 1379 return to_copy; 1380 #endif 1381 } 1382 1383 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1384 .func = bpf_read_branch_records, 1385 .gpl_only = true, 1386 .ret_type = RET_INTEGER, 1387 .arg1_type = ARG_PTR_TO_CTX, 1388 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1389 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1390 .arg4_type = ARG_ANYTHING, 1391 }; 1392 1393 static const struct bpf_func_proto * 1394 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1395 { 1396 switch (func_id) { 1397 case BPF_FUNC_perf_event_output: 1398 return &bpf_perf_event_output_proto_tp; 1399 case BPF_FUNC_get_stackid: 1400 return &bpf_get_stackid_proto_pe; 1401 case BPF_FUNC_get_stack: 1402 return &bpf_get_stack_proto_pe; 1403 case BPF_FUNC_perf_prog_read_value: 1404 return &bpf_perf_prog_read_value_proto; 1405 case BPF_FUNC_read_branch_records: 1406 return &bpf_read_branch_records_proto; 1407 case BPF_FUNC_get_attach_cookie: 1408 return &bpf_get_attach_cookie_proto_pe; 1409 default: 1410 return bpf_tracing_func_proto(func_id, prog); 1411 } 1412 } 1413 1414 /* 1415 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1416 * to avoid potential recursive reuse issue when/if tracepoints are added 1417 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1418 * 1419 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1420 * in normal, irq, and nmi context. 1421 */ 1422 struct bpf_raw_tp_regs { 1423 struct pt_regs regs[3]; 1424 }; 1425 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1426 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1427 static struct pt_regs *get_bpf_raw_tp_regs(void) 1428 { 1429 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1430 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1431 1432 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1433 this_cpu_dec(bpf_raw_tp_nest_level); 1434 return ERR_PTR(-EBUSY); 1435 } 1436 1437 return &tp_regs->regs[nest_level - 1]; 1438 } 1439 1440 static void put_bpf_raw_tp_regs(void) 1441 { 1442 this_cpu_dec(bpf_raw_tp_nest_level); 1443 } 1444 1445 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1446 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1447 { 1448 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1449 int ret; 1450 1451 if (IS_ERR(regs)) 1452 return PTR_ERR(regs); 1453 1454 perf_fetch_caller_regs(regs); 1455 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1456 1457 put_bpf_raw_tp_regs(); 1458 return ret; 1459 } 1460 1461 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1462 .func = bpf_perf_event_output_raw_tp, 1463 .gpl_only = true, 1464 .ret_type = RET_INTEGER, 1465 .arg1_type = ARG_PTR_TO_CTX, 1466 .arg2_type = ARG_CONST_MAP_PTR, 1467 .arg3_type = ARG_ANYTHING, 1468 .arg4_type = ARG_PTR_TO_MEM, 1469 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1470 }; 1471 1472 extern const struct bpf_func_proto bpf_skb_output_proto; 1473 extern const struct bpf_func_proto bpf_xdp_output_proto; 1474 1475 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1476 struct bpf_map *, map, u64, flags) 1477 { 1478 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1479 int ret; 1480 1481 if (IS_ERR(regs)) 1482 return PTR_ERR(regs); 1483 1484 perf_fetch_caller_regs(regs); 1485 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1486 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1487 flags, 0, 0); 1488 put_bpf_raw_tp_regs(); 1489 return ret; 1490 } 1491 1492 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1493 .func = bpf_get_stackid_raw_tp, 1494 .gpl_only = true, 1495 .ret_type = RET_INTEGER, 1496 .arg1_type = ARG_PTR_TO_CTX, 1497 .arg2_type = ARG_CONST_MAP_PTR, 1498 .arg3_type = ARG_ANYTHING, 1499 }; 1500 1501 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1502 void *, buf, u32, size, u64, flags) 1503 { 1504 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1505 int ret; 1506 1507 if (IS_ERR(regs)) 1508 return PTR_ERR(regs); 1509 1510 perf_fetch_caller_regs(regs); 1511 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1512 (unsigned long) size, flags, 0); 1513 put_bpf_raw_tp_regs(); 1514 return ret; 1515 } 1516 1517 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1518 .func = bpf_get_stack_raw_tp, 1519 .gpl_only = true, 1520 .ret_type = RET_INTEGER, 1521 .arg1_type = ARG_PTR_TO_CTX, 1522 .arg2_type = ARG_PTR_TO_MEM, 1523 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1524 .arg4_type = ARG_ANYTHING, 1525 }; 1526 1527 static const struct bpf_func_proto * 1528 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1529 { 1530 switch (func_id) { 1531 case BPF_FUNC_perf_event_output: 1532 return &bpf_perf_event_output_proto_raw_tp; 1533 case BPF_FUNC_get_stackid: 1534 return &bpf_get_stackid_proto_raw_tp; 1535 case BPF_FUNC_get_stack: 1536 return &bpf_get_stack_proto_raw_tp; 1537 default: 1538 return bpf_tracing_func_proto(func_id, prog); 1539 } 1540 } 1541 1542 const struct bpf_func_proto * 1543 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1544 { 1545 const struct bpf_func_proto *fn; 1546 1547 switch (func_id) { 1548 #ifdef CONFIG_NET 1549 case BPF_FUNC_skb_output: 1550 return &bpf_skb_output_proto; 1551 case BPF_FUNC_xdp_output: 1552 return &bpf_xdp_output_proto; 1553 case BPF_FUNC_skc_to_tcp6_sock: 1554 return &bpf_skc_to_tcp6_sock_proto; 1555 case BPF_FUNC_skc_to_tcp_sock: 1556 return &bpf_skc_to_tcp_sock_proto; 1557 case BPF_FUNC_skc_to_tcp_timewait_sock: 1558 return &bpf_skc_to_tcp_timewait_sock_proto; 1559 case BPF_FUNC_skc_to_tcp_request_sock: 1560 return &bpf_skc_to_tcp_request_sock_proto; 1561 case BPF_FUNC_skc_to_udp6_sock: 1562 return &bpf_skc_to_udp6_sock_proto; 1563 case BPF_FUNC_sk_storage_get: 1564 return &bpf_sk_storage_get_tracing_proto; 1565 case BPF_FUNC_sk_storage_delete: 1566 return &bpf_sk_storage_delete_tracing_proto; 1567 case BPF_FUNC_sock_from_file: 1568 return &bpf_sock_from_file_proto; 1569 case BPF_FUNC_get_socket_cookie: 1570 return &bpf_get_socket_ptr_cookie_proto; 1571 #endif 1572 case BPF_FUNC_seq_printf: 1573 return prog->expected_attach_type == BPF_TRACE_ITER ? 1574 &bpf_seq_printf_proto : 1575 NULL; 1576 case BPF_FUNC_seq_write: 1577 return prog->expected_attach_type == BPF_TRACE_ITER ? 1578 &bpf_seq_write_proto : 1579 NULL; 1580 case BPF_FUNC_seq_printf_btf: 1581 return prog->expected_attach_type == BPF_TRACE_ITER ? 1582 &bpf_seq_printf_btf_proto : 1583 NULL; 1584 case BPF_FUNC_d_path: 1585 return &bpf_d_path_proto; 1586 default: 1587 fn = raw_tp_prog_func_proto(func_id, prog); 1588 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 1589 fn = bpf_iter_get_func_proto(func_id, prog); 1590 return fn; 1591 } 1592 } 1593 1594 static bool raw_tp_prog_is_valid_access(int off, int size, 1595 enum bpf_access_type type, 1596 const struct bpf_prog *prog, 1597 struct bpf_insn_access_aux *info) 1598 { 1599 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1600 return false; 1601 if (type != BPF_READ) 1602 return false; 1603 if (off % size != 0) 1604 return false; 1605 return true; 1606 } 1607 1608 static bool tracing_prog_is_valid_access(int off, int size, 1609 enum bpf_access_type type, 1610 const struct bpf_prog *prog, 1611 struct bpf_insn_access_aux *info) 1612 { 1613 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1614 return false; 1615 if (type != BPF_READ) 1616 return false; 1617 if (off % size != 0) 1618 return false; 1619 return btf_ctx_access(off, size, type, prog, info); 1620 } 1621 1622 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1623 const union bpf_attr *kattr, 1624 union bpf_attr __user *uattr) 1625 { 1626 return -ENOTSUPP; 1627 } 1628 1629 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1630 .get_func_proto = raw_tp_prog_func_proto, 1631 .is_valid_access = raw_tp_prog_is_valid_access, 1632 }; 1633 1634 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1635 #ifdef CONFIG_NET 1636 .test_run = bpf_prog_test_run_raw_tp, 1637 #endif 1638 }; 1639 1640 const struct bpf_verifier_ops tracing_verifier_ops = { 1641 .get_func_proto = tracing_prog_func_proto, 1642 .is_valid_access = tracing_prog_is_valid_access, 1643 }; 1644 1645 const struct bpf_prog_ops tracing_prog_ops = { 1646 .test_run = bpf_prog_test_run_tracing, 1647 }; 1648 1649 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1650 enum bpf_access_type type, 1651 const struct bpf_prog *prog, 1652 struct bpf_insn_access_aux *info) 1653 { 1654 if (off == 0) { 1655 if (size != sizeof(u64) || type != BPF_READ) 1656 return false; 1657 info->reg_type = PTR_TO_TP_BUFFER; 1658 } 1659 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1660 } 1661 1662 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1663 .get_func_proto = raw_tp_prog_func_proto, 1664 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1665 }; 1666 1667 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1668 }; 1669 1670 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1671 const struct bpf_prog *prog, 1672 struct bpf_insn_access_aux *info) 1673 { 1674 const int size_u64 = sizeof(u64); 1675 1676 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1677 return false; 1678 if (type != BPF_READ) 1679 return false; 1680 if (off % size != 0) { 1681 if (sizeof(unsigned long) != 4) 1682 return false; 1683 if (size != 8) 1684 return false; 1685 if (off % size != 4) 1686 return false; 1687 } 1688 1689 switch (off) { 1690 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1691 bpf_ctx_record_field_size(info, size_u64); 1692 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1693 return false; 1694 break; 1695 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1696 bpf_ctx_record_field_size(info, size_u64); 1697 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1698 return false; 1699 break; 1700 default: 1701 if (size != sizeof(long)) 1702 return false; 1703 } 1704 1705 return true; 1706 } 1707 1708 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1709 const struct bpf_insn *si, 1710 struct bpf_insn *insn_buf, 1711 struct bpf_prog *prog, u32 *target_size) 1712 { 1713 struct bpf_insn *insn = insn_buf; 1714 1715 switch (si->off) { 1716 case offsetof(struct bpf_perf_event_data, sample_period): 1717 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1718 data), si->dst_reg, si->src_reg, 1719 offsetof(struct bpf_perf_event_data_kern, data)); 1720 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1721 bpf_target_off(struct perf_sample_data, period, 8, 1722 target_size)); 1723 break; 1724 case offsetof(struct bpf_perf_event_data, addr): 1725 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1726 data), si->dst_reg, si->src_reg, 1727 offsetof(struct bpf_perf_event_data_kern, data)); 1728 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1729 bpf_target_off(struct perf_sample_data, addr, 8, 1730 target_size)); 1731 break; 1732 default: 1733 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1734 regs), si->dst_reg, si->src_reg, 1735 offsetof(struct bpf_perf_event_data_kern, regs)); 1736 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1737 si->off); 1738 break; 1739 } 1740 1741 return insn - insn_buf; 1742 } 1743 1744 const struct bpf_verifier_ops perf_event_verifier_ops = { 1745 .get_func_proto = pe_prog_func_proto, 1746 .is_valid_access = pe_prog_is_valid_access, 1747 .convert_ctx_access = pe_prog_convert_ctx_access, 1748 }; 1749 1750 const struct bpf_prog_ops perf_event_prog_ops = { 1751 }; 1752 1753 static DEFINE_MUTEX(bpf_event_mutex); 1754 1755 #define BPF_TRACE_MAX_PROGS 64 1756 1757 int perf_event_attach_bpf_prog(struct perf_event *event, 1758 struct bpf_prog *prog, 1759 u64 bpf_cookie) 1760 { 1761 struct bpf_prog_array *old_array; 1762 struct bpf_prog_array *new_array; 1763 int ret = -EEXIST; 1764 1765 /* 1766 * Kprobe override only works if they are on the function entry, 1767 * and only if they are on the opt-in list. 1768 */ 1769 if (prog->kprobe_override && 1770 (!trace_kprobe_on_func_entry(event->tp_event) || 1771 !trace_kprobe_error_injectable(event->tp_event))) 1772 return -EINVAL; 1773 1774 mutex_lock(&bpf_event_mutex); 1775 1776 if (event->prog) 1777 goto unlock; 1778 1779 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1780 if (old_array && 1781 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1782 ret = -E2BIG; 1783 goto unlock; 1784 } 1785 1786 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 1787 if (ret < 0) 1788 goto unlock; 1789 1790 /* set the new array to event->tp_event and set event->prog */ 1791 event->prog = prog; 1792 event->bpf_cookie = bpf_cookie; 1793 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1794 bpf_prog_array_free(old_array); 1795 1796 unlock: 1797 mutex_unlock(&bpf_event_mutex); 1798 return ret; 1799 } 1800 1801 void perf_event_detach_bpf_prog(struct perf_event *event) 1802 { 1803 struct bpf_prog_array *old_array; 1804 struct bpf_prog_array *new_array; 1805 int ret; 1806 1807 mutex_lock(&bpf_event_mutex); 1808 1809 if (!event->prog) 1810 goto unlock; 1811 1812 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1813 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 1814 if (ret == -ENOENT) 1815 goto unlock; 1816 if (ret < 0) { 1817 bpf_prog_array_delete_safe(old_array, event->prog); 1818 } else { 1819 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1820 bpf_prog_array_free(old_array); 1821 } 1822 1823 bpf_prog_put(event->prog); 1824 event->prog = NULL; 1825 1826 unlock: 1827 mutex_unlock(&bpf_event_mutex); 1828 } 1829 1830 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1831 { 1832 struct perf_event_query_bpf __user *uquery = info; 1833 struct perf_event_query_bpf query = {}; 1834 struct bpf_prog_array *progs; 1835 u32 *ids, prog_cnt, ids_len; 1836 int ret; 1837 1838 if (!perfmon_capable()) 1839 return -EPERM; 1840 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1841 return -EINVAL; 1842 if (copy_from_user(&query, uquery, sizeof(query))) 1843 return -EFAULT; 1844 1845 ids_len = query.ids_len; 1846 if (ids_len > BPF_TRACE_MAX_PROGS) 1847 return -E2BIG; 1848 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1849 if (!ids) 1850 return -ENOMEM; 1851 /* 1852 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1853 * is required when user only wants to check for uquery->prog_cnt. 1854 * There is no need to check for it since the case is handled 1855 * gracefully in bpf_prog_array_copy_info. 1856 */ 1857 1858 mutex_lock(&bpf_event_mutex); 1859 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1860 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1861 mutex_unlock(&bpf_event_mutex); 1862 1863 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1864 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1865 ret = -EFAULT; 1866 1867 kfree(ids); 1868 return ret; 1869 } 1870 1871 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1872 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1873 1874 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1875 { 1876 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1877 1878 for (; btp < __stop__bpf_raw_tp; btp++) { 1879 if (!strcmp(btp->tp->name, name)) 1880 return btp; 1881 } 1882 1883 return bpf_get_raw_tracepoint_module(name); 1884 } 1885 1886 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1887 { 1888 struct module *mod; 1889 1890 preempt_disable(); 1891 mod = __module_address((unsigned long)btp); 1892 module_put(mod); 1893 preempt_enable(); 1894 } 1895 1896 static __always_inline 1897 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1898 { 1899 cant_sleep(); 1900 rcu_read_lock(); 1901 (void) bpf_prog_run(prog, args); 1902 rcu_read_unlock(); 1903 } 1904 1905 #define UNPACK(...) __VA_ARGS__ 1906 #define REPEAT_1(FN, DL, X, ...) FN(X) 1907 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1908 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1909 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1910 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1911 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1912 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1913 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1914 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1915 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1916 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1917 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1918 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1919 1920 #define SARG(X) u64 arg##X 1921 #define COPY(X) args[X] = arg##X 1922 1923 #define __DL_COM (,) 1924 #define __DL_SEM (;) 1925 1926 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1927 1928 #define BPF_TRACE_DEFN_x(x) \ 1929 void bpf_trace_run##x(struct bpf_prog *prog, \ 1930 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1931 { \ 1932 u64 args[x]; \ 1933 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1934 __bpf_trace_run(prog, args); \ 1935 } \ 1936 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1937 BPF_TRACE_DEFN_x(1); 1938 BPF_TRACE_DEFN_x(2); 1939 BPF_TRACE_DEFN_x(3); 1940 BPF_TRACE_DEFN_x(4); 1941 BPF_TRACE_DEFN_x(5); 1942 BPF_TRACE_DEFN_x(6); 1943 BPF_TRACE_DEFN_x(7); 1944 BPF_TRACE_DEFN_x(8); 1945 BPF_TRACE_DEFN_x(9); 1946 BPF_TRACE_DEFN_x(10); 1947 BPF_TRACE_DEFN_x(11); 1948 BPF_TRACE_DEFN_x(12); 1949 1950 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1951 { 1952 struct tracepoint *tp = btp->tp; 1953 1954 /* 1955 * check that program doesn't access arguments beyond what's 1956 * available in this tracepoint 1957 */ 1958 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1959 return -EINVAL; 1960 1961 if (prog->aux->max_tp_access > btp->writable_size) 1962 return -EINVAL; 1963 1964 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 1965 prog); 1966 } 1967 1968 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1969 { 1970 return __bpf_probe_register(btp, prog); 1971 } 1972 1973 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1974 { 1975 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1976 } 1977 1978 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1979 u32 *fd_type, const char **buf, 1980 u64 *probe_offset, u64 *probe_addr) 1981 { 1982 bool is_tracepoint, is_syscall_tp; 1983 struct bpf_prog *prog; 1984 int flags, err = 0; 1985 1986 prog = event->prog; 1987 if (!prog) 1988 return -ENOENT; 1989 1990 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1991 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1992 return -EOPNOTSUPP; 1993 1994 *prog_id = prog->aux->id; 1995 flags = event->tp_event->flags; 1996 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1997 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1998 1999 if (is_tracepoint || is_syscall_tp) { 2000 *buf = is_tracepoint ? event->tp_event->tp->name 2001 : event->tp_event->name; 2002 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2003 *probe_offset = 0x0; 2004 *probe_addr = 0x0; 2005 } else { 2006 /* kprobe/uprobe */ 2007 err = -EOPNOTSUPP; 2008 #ifdef CONFIG_KPROBE_EVENTS 2009 if (flags & TRACE_EVENT_FL_KPROBE) 2010 err = bpf_get_kprobe_info(event, fd_type, buf, 2011 probe_offset, probe_addr, 2012 event->attr.type == PERF_TYPE_TRACEPOINT); 2013 #endif 2014 #ifdef CONFIG_UPROBE_EVENTS 2015 if (flags & TRACE_EVENT_FL_UPROBE) 2016 err = bpf_get_uprobe_info(event, fd_type, buf, 2017 probe_offset, 2018 event->attr.type == PERF_TYPE_TRACEPOINT); 2019 #endif 2020 } 2021 2022 return err; 2023 } 2024 2025 static int __init send_signal_irq_work_init(void) 2026 { 2027 int cpu; 2028 struct send_signal_irq_work *work; 2029 2030 for_each_possible_cpu(cpu) { 2031 work = per_cpu_ptr(&send_signal_work, cpu); 2032 init_irq_work(&work->irq_work, do_bpf_send_signal); 2033 } 2034 return 0; 2035 } 2036 2037 subsys_initcall(send_signal_irq_work_init); 2038 2039 #ifdef CONFIG_MODULES 2040 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2041 void *module) 2042 { 2043 struct bpf_trace_module *btm, *tmp; 2044 struct module *mod = module; 2045 int ret = 0; 2046 2047 if (mod->num_bpf_raw_events == 0 || 2048 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2049 goto out; 2050 2051 mutex_lock(&bpf_module_mutex); 2052 2053 switch (op) { 2054 case MODULE_STATE_COMING: 2055 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2056 if (btm) { 2057 btm->module = module; 2058 list_add(&btm->list, &bpf_trace_modules); 2059 } else { 2060 ret = -ENOMEM; 2061 } 2062 break; 2063 case MODULE_STATE_GOING: 2064 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2065 if (btm->module == module) { 2066 list_del(&btm->list); 2067 kfree(btm); 2068 break; 2069 } 2070 } 2071 break; 2072 } 2073 2074 mutex_unlock(&bpf_module_mutex); 2075 2076 out: 2077 return notifier_from_errno(ret); 2078 } 2079 2080 static struct notifier_block bpf_module_nb = { 2081 .notifier_call = bpf_event_notify, 2082 }; 2083 2084 static int __init bpf_event_init(void) 2085 { 2086 register_module_notifier(&bpf_module_nb); 2087 return 0; 2088 } 2089 2090 fs_initcall(bpf_event_init); 2091 #endif /* CONFIG_MODULES */ 2092