xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 #include <linux/fprobe.h>
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 
24 #include <net/bpf_sk_storage.h>
25 
26 #include <uapi/linux/bpf.h>
27 #include <uapi/linux/btf.h>
28 
29 #include <asm/tlb.h>
30 
31 #include "trace_probe.h"
32 #include "trace.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include "bpf_trace.h"
36 
37 #define bpf_event_rcu_dereference(p)					\
38 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
39 
40 #ifdef CONFIG_MODULES
41 struct bpf_trace_module {
42 	struct module *module;
43 	struct list_head list;
44 };
45 
46 static LIST_HEAD(bpf_trace_modules);
47 static DEFINE_MUTEX(bpf_module_mutex);
48 
49 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
50 {
51 	struct bpf_raw_event_map *btp, *ret = NULL;
52 	struct bpf_trace_module *btm;
53 	unsigned int i;
54 
55 	mutex_lock(&bpf_module_mutex);
56 	list_for_each_entry(btm, &bpf_trace_modules, list) {
57 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
58 			btp = &btm->module->bpf_raw_events[i];
59 			if (!strcmp(btp->tp->name, name)) {
60 				if (try_module_get(btm->module))
61 					ret = btp;
62 				goto out;
63 			}
64 		}
65 	}
66 out:
67 	mutex_unlock(&bpf_module_mutex);
68 	return ret;
69 }
70 #else
71 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
72 {
73 	return NULL;
74 }
75 #endif /* CONFIG_MODULES */
76 
77 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
78 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
79 
80 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
81 				  u64 flags, const struct btf **btf,
82 				  s32 *btf_id);
83 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
84 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
85 
86 /**
87  * trace_call_bpf - invoke BPF program
88  * @call: tracepoint event
89  * @ctx: opaque context pointer
90  *
91  * kprobe handlers execute BPF programs via this helper.
92  * Can be used from static tracepoints in the future.
93  *
94  * Return: BPF programs always return an integer which is interpreted by
95  * kprobe handler as:
96  * 0 - return from kprobe (event is filtered out)
97  * 1 - store kprobe event into ring buffer
98  * Other values are reserved and currently alias to 1
99  */
100 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
101 {
102 	unsigned int ret;
103 
104 	cant_sleep();
105 
106 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
107 		/*
108 		 * since some bpf program is already running on this cpu,
109 		 * don't call into another bpf program (same or different)
110 		 * and don't send kprobe event into ring-buffer,
111 		 * so return zero here
112 		 */
113 		ret = 0;
114 		goto out;
115 	}
116 
117 	/*
118 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
119 	 * to all call sites, we did a bpf_prog_array_valid() there to check
120 	 * whether call->prog_array is empty or not, which is
121 	 * a heuristic to speed up execution.
122 	 *
123 	 * If bpf_prog_array_valid() fetched prog_array was
124 	 * non-NULL, we go into trace_call_bpf() and do the actual
125 	 * proper rcu_dereference() under RCU lock.
126 	 * If it turns out that prog_array is NULL then, we bail out.
127 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
128 	 * was NULL, you'll skip the prog_array with the risk of missing
129 	 * out of events when it was updated in between this and the
130 	 * rcu_dereference() which is accepted risk.
131 	 */
132 	rcu_read_lock();
133 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
134 				 ctx, bpf_prog_run);
135 	rcu_read_unlock();
136 
137  out:
138 	__this_cpu_dec(bpf_prog_active);
139 
140 	return ret;
141 }
142 
143 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
144 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
145 {
146 	regs_set_return_value(regs, rc);
147 	override_function_with_return(regs);
148 	return 0;
149 }
150 
151 static const struct bpf_func_proto bpf_override_return_proto = {
152 	.func		= bpf_override_return,
153 	.gpl_only	= true,
154 	.ret_type	= RET_INTEGER,
155 	.arg1_type	= ARG_PTR_TO_CTX,
156 	.arg2_type	= ARG_ANYTHING,
157 };
158 #endif
159 
160 static __always_inline int
161 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
162 {
163 	int ret;
164 
165 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
166 	if (unlikely(ret < 0))
167 		memset(dst, 0, size);
168 	return ret;
169 }
170 
171 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
172 	   const void __user *, unsafe_ptr)
173 {
174 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
175 }
176 
177 const struct bpf_func_proto bpf_probe_read_user_proto = {
178 	.func		= bpf_probe_read_user,
179 	.gpl_only	= true,
180 	.ret_type	= RET_INTEGER,
181 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
182 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
183 	.arg3_type	= ARG_ANYTHING,
184 };
185 
186 static __always_inline int
187 bpf_probe_read_user_str_common(void *dst, u32 size,
188 			       const void __user *unsafe_ptr)
189 {
190 	int ret;
191 
192 	/*
193 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
194 	 * terminator into `dst`.
195 	 *
196 	 * strncpy_from_user() does long-sized strides in the fast path. If the
197 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
198 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
199 	 * and keys a hash map with it, then semantically identical strings can
200 	 * occupy multiple entries in the map.
201 	 */
202 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
203 	if (unlikely(ret < 0))
204 		memset(dst, 0, size);
205 	return ret;
206 }
207 
208 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
209 	   const void __user *, unsafe_ptr)
210 {
211 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
212 }
213 
214 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
215 	.func		= bpf_probe_read_user_str,
216 	.gpl_only	= true,
217 	.ret_type	= RET_INTEGER,
218 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
219 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
220 	.arg3_type	= ARG_ANYTHING,
221 };
222 
223 static __always_inline int
224 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
225 {
226 	int ret;
227 
228 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
229 	if (unlikely(ret < 0))
230 		memset(dst, 0, size);
231 	return ret;
232 }
233 
234 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
235 	   const void *, unsafe_ptr)
236 {
237 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
238 }
239 
240 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
241 	.func		= bpf_probe_read_kernel,
242 	.gpl_only	= true,
243 	.ret_type	= RET_INTEGER,
244 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
245 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
246 	.arg3_type	= ARG_ANYTHING,
247 };
248 
249 static __always_inline int
250 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
251 {
252 	int ret;
253 
254 	/*
255 	 * The strncpy_from_kernel_nofault() call will likely not fill the
256 	 * entire buffer, but that's okay in this circumstance as we're probing
257 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
258 	 * as well probe the stack. Thus, memory is explicitly cleared
259 	 * only in error case, so that improper users ignoring return
260 	 * code altogether don't copy garbage; otherwise length of string
261 	 * is returned that can be used for bpf_perf_event_output() et al.
262 	 */
263 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
264 	if (unlikely(ret < 0))
265 		memset(dst, 0, size);
266 	return ret;
267 }
268 
269 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
270 	   const void *, unsafe_ptr)
271 {
272 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
273 }
274 
275 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
276 	.func		= bpf_probe_read_kernel_str,
277 	.gpl_only	= true,
278 	.ret_type	= RET_INTEGER,
279 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
280 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
281 	.arg3_type	= ARG_ANYTHING,
282 };
283 
284 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
285 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
286 	   const void *, unsafe_ptr)
287 {
288 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
289 		return bpf_probe_read_user_common(dst, size,
290 				(__force void __user *)unsafe_ptr);
291 	}
292 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
293 }
294 
295 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
296 	.func		= bpf_probe_read_compat,
297 	.gpl_only	= true,
298 	.ret_type	= RET_INTEGER,
299 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
300 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
301 	.arg3_type	= ARG_ANYTHING,
302 };
303 
304 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
305 	   const void *, unsafe_ptr)
306 {
307 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
308 		return bpf_probe_read_user_str_common(dst, size,
309 				(__force void __user *)unsafe_ptr);
310 	}
311 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
312 }
313 
314 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
315 	.func		= bpf_probe_read_compat_str,
316 	.gpl_only	= true,
317 	.ret_type	= RET_INTEGER,
318 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
319 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
320 	.arg3_type	= ARG_ANYTHING,
321 };
322 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
323 
324 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
325 	   u32, size)
326 {
327 	/*
328 	 * Ensure we're in user context which is safe for the helper to
329 	 * run. This helper has no business in a kthread.
330 	 *
331 	 * access_ok() should prevent writing to non-user memory, but in
332 	 * some situations (nommu, temporary switch, etc) access_ok() does
333 	 * not provide enough validation, hence the check on KERNEL_DS.
334 	 *
335 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
336 	 * state, when the task or mm are switched. This is specifically
337 	 * required to prevent the use of temporary mm.
338 	 */
339 
340 	if (unlikely(in_interrupt() ||
341 		     current->flags & (PF_KTHREAD | PF_EXITING)))
342 		return -EPERM;
343 	if (unlikely(!nmi_uaccess_okay()))
344 		return -EPERM;
345 
346 	return copy_to_user_nofault(unsafe_ptr, src, size);
347 }
348 
349 static const struct bpf_func_proto bpf_probe_write_user_proto = {
350 	.func		= bpf_probe_write_user,
351 	.gpl_only	= true,
352 	.ret_type	= RET_INTEGER,
353 	.arg1_type	= ARG_ANYTHING,
354 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
355 	.arg3_type	= ARG_CONST_SIZE,
356 };
357 
358 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
359 {
360 	if (!capable(CAP_SYS_ADMIN))
361 		return NULL;
362 
363 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
364 			    current->comm, task_pid_nr(current));
365 
366 	return &bpf_probe_write_user_proto;
367 }
368 
369 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
370 
371 #define MAX_TRACE_PRINTK_VARARGS	3
372 #define BPF_TRACE_PRINTK_SIZE		1024
373 
374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
375 	   u64, arg2, u64, arg3)
376 {
377 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
378 	u32 *bin_args;
379 	static char buf[BPF_TRACE_PRINTK_SIZE];
380 	unsigned long flags;
381 	int ret;
382 
383 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
384 				  MAX_TRACE_PRINTK_VARARGS);
385 	if (ret < 0)
386 		return ret;
387 
388 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
389 	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
390 
391 	trace_bpf_trace_printk(buf);
392 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
393 
394 	bpf_bprintf_cleanup();
395 
396 	return ret;
397 }
398 
399 static const struct bpf_func_proto bpf_trace_printk_proto = {
400 	.func		= bpf_trace_printk,
401 	.gpl_only	= true,
402 	.ret_type	= RET_INTEGER,
403 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
404 	.arg2_type	= ARG_CONST_SIZE,
405 };
406 
407 static void __set_printk_clr_event(void)
408 {
409 	/*
410 	 * This program might be calling bpf_trace_printk,
411 	 * so enable the associated bpf_trace/bpf_trace_printk event.
412 	 * Repeat this each time as it is possible a user has
413 	 * disabled bpf_trace_printk events.  By loading a program
414 	 * calling bpf_trace_printk() however the user has expressed
415 	 * the intent to see such events.
416 	 */
417 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
418 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
419 }
420 
421 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
422 {
423 	__set_printk_clr_event();
424 	return &bpf_trace_printk_proto;
425 }
426 
427 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, data,
428 	   u32, data_len)
429 {
430 	static char buf[BPF_TRACE_PRINTK_SIZE];
431 	unsigned long flags;
432 	int ret, num_args;
433 	u32 *bin_args;
434 
435 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
436 	    (data_len && !data))
437 		return -EINVAL;
438 	num_args = data_len / 8;
439 
440 	ret = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
441 	if (ret < 0)
442 		return ret;
443 
444 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
445 	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
446 
447 	trace_bpf_trace_printk(buf);
448 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
449 
450 	bpf_bprintf_cleanup();
451 
452 	return ret;
453 }
454 
455 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
456 	.func		= bpf_trace_vprintk,
457 	.gpl_only	= true,
458 	.ret_type	= RET_INTEGER,
459 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
460 	.arg2_type	= ARG_CONST_SIZE,
461 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
462 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
463 };
464 
465 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
466 {
467 	__set_printk_clr_event();
468 	return &bpf_trace_vprintk_proto;
469 }
470 
471 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
472 	   const void *, data, u32, data_len)
473 {
474 	int err, num_args;
475 	u32 *bin_args;
476 
477 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
478 	    (data_len && !data))
479 		return -EINVAL;
480 	num_args = data_len / 8;
481 
482 	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
483 	if (err < 0)
484 		return err;
485 
486 	seq_bprintf(m, fmt, bin_args);
487 
488 	bpf_bprintf_cleanup();
489 
490 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
491 }
492 
493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
494 
495 static const struct bpf_func_proto bpf_seq_printf_proto = {
496 	.func		= bpf_seq_printf,
497 	.gpl_only	= true,
498 	.ret_type	= RET_INTEGER,
499 	.arg1_type	= ARG_PTR_TO_BTF_ID,
500 	.arg1_btf_id	= &btf_seq_file_ids[0],
501 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
502 	.arg3_type	= ARG_CONST_SIZE,
503 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
504 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
505 };
506 
507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
508 {
509 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
510 }
511 
512 static const struct bpf_func_proto bpf_seq_write_proto = {
513 	.func		= bpf_seq_write,
514 	.gpl_only	= true,
515 	.ret_type	= RET_INTEGER,
516 	.arg1_type	= ARG_PTR_TO_BTF_ID,
517 	.arg1_btf_id	= &btf_seq_file_ids[0],
518 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
519 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
520 };
521 
522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
523 	   u32, btf_ptr_size, u64, flags)
524 {
525 	const struct btf *btf;
526 	s32 btf_id;
527 	int ret;
528 
529 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
530 	if (ret)
531 		return ret;
532 
533 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
534 }
535 
536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
537 	.func		= bpf_seq_printf_btf,
538 	.gpl_only	= true,
539 	.ret_type	= RET_INTEGER,
540 	.arg1_type	= ARG_PTR_TO_BTF_ID,
541 	.arg1_btf_id	= &btf_seq_file_ids[0],
542 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
543 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
544 	.arg4_type	= ARG_ANYTHING,
545 };
546 
547 static __always_inline int
548 get_map_perf_counter(struct bpf_map *map, u64 flags,
549 		     u64 *value, u64 *enabled, u64 *running)
550 {
551 	struct bpf_array *array = container_of(map, struct bpf_array, map);
552 	unsigned int cpu = smp_processor_id();
553 	u64 index = flags & BPF_F_INDEX_MASK;
554 	struct bpf_event_entry *ee;
555 
556 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
557 		return -EINVAL;
558 	if (index == BPF_F_CURRENT_CPU)
559 		index = cpu;
560 	if (unlikely(index >= array->map.max_entries))
561 		return -E2BIG;
562 
563 	ee = READ_ONCE(array->ptrs[index]);
564 	if (!ee)
565 		return -ENOENT;
566 
567 	return perf_event_read_local(ee->event, value, enabled, running);
568 }
569 
570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
571 {
572 	u64 value = 0;
573 	int err;
574 
575 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
576 	/*
577 	 * this api is ugly since we miss [-22..-2] range of valid
578 	 * counter values, but that's uapi
579 	 */
580 	if (err)
581 		return err;
582 	return value;
583 }
584 
585 static const struct bpf_func_proto bpf_perf_event_read_proto = {
586 	.func		= bpf_perf_event_read,
587 	.gpl_only	= true,
588 	.ret_type	= RET_INTEGER,
589 	.arg1_type	= ARG_CONST_MAP_PTR,
590 	.arg2_type	= ARG_ANYTHING,
591 };
592 
593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
594 	   struct bpf_perf_event_value *, buf, u32, size)
595 {
596 	int err = -EINVAL;
597 
598 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
599 		goto clear;
600 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
601 				   &buf->running);
602 	if (unlikely(err))
603 		goto clear;
604 	return 0;
605 clear:
606 	memset(buf, 0, size);
607 	return err;
608 }
609 
610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
611 	.func		= bpf_perf_event_read_value,
612 	.gpl_only	= true,
613 	.ret_type	= RET_INTEGER,
614 	.arg1_type	= ARG_CONST_MAP_PTR,
615 	.arg2_type	= ARG_ANYTHING,
616 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
617 	.arg4_type	= ARG_CONST_SIZE,
618 };
619 
620 static __always_inline u64
621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
622 			u64 flags, struct perf_sample_data *sd)
623 {
624 	struct bpf_array *array = container_of(map, struct bpf_array, map);
625 	unsigned int cpu = smp_processor_id();
626 	u64 index = flags & BPF_F_INDEX_MASK;
627 	struct bpf_event_entry *ee;
628 	struct perf_event *event;
629 
630 	if (index == BPF_F_CURRENT_CPU)
631 		index = cpu;
632 	if (unlikely(index >= array->map.max_entries))
633 		return -E2BIG;
634 
635 	ee = READ_ONCE(array->ptrs[index]);
636 	if (!ee)
637 		return -ENOENT;
638 
639 	event = ee->event;
640 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
641 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
642 		return -EINVAL;
643 
644 	if (unlikely(event->oncpu != cpu))
645 		return -EOPNOTSUPP;
646 
647 	return perf_event_output(event, sd, regs);
648 }
649 
650 /*
651  * Support executing tracepoints in normal, irq, and nmi context that each call
652  * bpf_perf_event_output
653  */
654 struct bpf_trace_sample_data {
655 	struct perf_sample_data sds[3];
656 };
657 
658 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
659 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
660 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
661 	   u64, flags, void *, data, u64, size)
662 {
663 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
664 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
665 	struct perf_raw_record raw = {
666 		.frag = {
667 			.size = size,
668 			.data = data,
669 		},
670 	};
671 	struct perf_sample_data *sd;
672 	int err;
673 
674 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
675 		err = -EBUSY;
676 		goto out;
677 	}
678 
679 	sd = &sds->sds[nest_level - 1];
680 
681 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
682 		err = -EINVAL;
683 		goto out;
684 	}
685 
686 	perf_sample_data_init(sd, 0, 0);
687 	sd->raw = &raw;
688 
689 	err = __bpf_perf_event_output(regs, map, flags, sd);
690 
691 out:
692 	this_cpu_dec(bpf_trace_nest_level);
693 	return err;
694 }
695 
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697 	.func		= bpf_perf_event_output,
698 	.gpl_only	= true,
699 	.ret_type	= RET_INTEGER,
700 	.arg1_type	= ARG_PTR_TO_CTX,
701 	.arg2_type	= ARG_CONST_MAP_PTR,
702 	.arg3_type	= ARG_ANYTHING,
703 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
704 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
705 };
706 
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709 	struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713 
714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
718 	struct perf_raw_frag frag = {
719 		.copy		= ctx_copy,
720 		.size		= ctx_size,
721 		.data		= ctx,
722 	};
723 	struct perf_raw_record raw = {
724 		.frag = {
725 			{
726 				.next	= ctx_size ? &frag : NULL,
727 			},
728 			.size	= meta_size,
729 			.data	= meta,
730 		},
731 	};
732 	struct perf_sample_data *sd;
733 	struct pt_regs *regs;
734 	u64 ret;
735 
736 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
737 		ret = -EBUSY;
738 		goto out;
739 	}
740 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
741 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
742 
743 	perf_fetch_caller_regs(regs);
744 	perf_sample_data_init(sd, 0, 0);
745 	sd->raw = &raw;
746 
747 	ret = __bpf_perf_event_output(regs, map, flags, sd);
748 out:
749 	this_cpu_dec(bpf_event_output_nest_level);
750 	return ret;
751 }
752 
753 BPF_CALL_0(bpf_get_current_task)
754 {
755 	return (long) current;
756 }
757 
758 const struct bpf_func_proto bpf_get_current_task_proto = {
759 	.func		= bpf_get_current_task,
760 	.gpl_only	= true,
761 	.ret_type	= RET_INTEGER,
762 };
763 
764 BPF_CALL_0(bpf_get_current_task_btf)
765 {
766 	return (unsigned long) current;
767 }
768 
769 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
770 	.func		= bpf_get_current_task_btf,
771 	.gpl_only	= true,
772 	.ret_type	= RET_PTR_TO_BTF_ID,
773 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
774 };
775 
776 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
777 {
778 	return (unsigned long) task_pt_regs(task);
779 }
780 
781 BTF_ID_LIST(bpf_task_pt_regs_ids)
782 BTF_ID(struct, pt_regs)
783 
784 const struct bpf_func_proto bpf_task_pt_regs_proto = {
785 	.func		= bpf_task_pt_regs,
786 	.gpl_only	= true,
787 	.arg1_type	= ARG_PTR_TO_BTF_ID,
788 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
789 	.ret_type	= RET_PTR_TO_BTF_ID,
790 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
791 };
792 
793 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
794 {
795 	struct bpf_array *array = container_of(map, struct bpf_array, map);
796 	struct cgroup *cgrp;
797 
798 	if (unlikely(idx >= array->map.max_entries))
799 		return -E2BIG;
800 
801 	cgrp = READ_ONCE(array->ptrs[idx]);
802 	if (unlikely(!cgrp))
803 		return -EAGAIN;
804 
805 	return task_under_cgroup_hierarchy(current, cgrp);
806 }
807 
808 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
809 	.func           = bpf_current_task_under_cgroup,
810 	.gpl_only       = false,
811 	.ret_type       = RET_INTEGER,
812 	.arg1_type      = ARG_CONST_MAP_PTR,
813 	.arg2_type      = ARG_ANYTHING,
814 };
815 
816 struct send_signal_irq_work {
817 	struct irq_work irq_work;
818 	struct task_struct *task;
819 	u32 sig;
820 	enum pid_type type;
821 };
822 
823 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
824 
825 static void do_bpf_send_signal(struct irq_work *entry)
826 {
827 	struct send_signal_irq_work *work;
828 
829 	work = container_of(entry, struct send_signal_irq_work, irq_work);
830 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
831 }
832 
833 static int bpf_send_signal_common(u32 sig, enum pid_type type)
834 {
835 	struct send_signal_irq_work *work = NULL;
836 
837 	/* Similar to bpf_probe_write_user, task needs to be
838 	 * in a sound condition and kernel memory access be
839 	 * permitted in order to send signal to the current
840 	 * task.
841 	 */
842 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
843 		return -EPERM;
844 	if (unlikely(!nmi_uaccess_okay()))
845 		return -EPERM;
846 
847 	if (irqs_disabled()) {
848 		/* Do an early check on signal validity. Otherwise,
849 		 * the error is lost in deferred irq_work.
850 		 */
851 		if (unlikely(!valid_signal(sig)))
852 			return -EINVAL;
853 
854 		work = this_cpu_ptr(&send_signal_work);
855 		if (irq_work_is_busy(&work->irq_work))
856 			return -EBUSY;
857 
858 		/* Add the current task, which is the target of sending signal,
859 		 * to the irq_work. The current task may change when queued
860 		 * irq works get executed.
861 		 */
862 		work->task = current;
863 		work->sig = sig;
864 		work->type = type;
865 		irq_work_queue(&work->irq_work);
866 		return 0;
867 	}
868 
869 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
870 }
871 
872 BPF_CALL_1(bpf_send_signal, u32, sig)
873 {
874 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
875 }
876 
877 static const struct bpf_func_proto bpf_send_signal_proto = {
878 	.func		= bpf_send_signal,
879 	.gpl_only	= false,
880 	.ret_type	= RET_INTEGER,
881 	.arg1_type	= ARG_ANYTHING,
882 };
883 
884 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
885 {
886 	return bpf_send_signal_common(sig, PIDTYPE_PID);
887 }
888 
889 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
890 	.func		= bpf_send_signal_thread,
891 	.gpl_only	= false,
892 	.ret_type	= RET_INTEGER,
893 	.arg1_type	= ARG_ANYTHING,
894 };
895 
896 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
897 {
898 	long len;
899 	char *p;
900 
901 	if (!sz)
902 		return 0;
903 
904 	p = d_path(path, buf, sz);
905 	if (IS_ERR(p)) {
906 		len = PTR_ERR(p);
907 	} else {
908 		len = buf + sz - p;
909 		memmove(buf, p, len);
910 	}
911 
912 	return len;
913 }
914 
915 BTF_SET_START(btf_allowlist_d_path)
916 #ifdef CONFIG_SECURITY
917 BTF_ID(func, security_file_permission)
918 BTF_ID(func, security_inode_getattr)
919 BTF_ID(func, security_file_open)
920 #endif
921 #ifdef CONFIG_SECURITY_PATH
922 BTF_ID(func, security_path_truncate)
923 #endif
924 BTF_ID(func, vfs_truncate)
925 BTF_ID(func, vfs_fallocate)
926 BTF_ID(func, dentry_open)
927 BTF_ID(func, vfs_getattr)
928 BTF_ID(func, filp_close)
929 BTF_SET_END(btf_allowlist_d_path)
930 
931 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
932 {
933 	if (prog->type == BPF_PROG_TYPE_TRACING &&
934 	    prog->expected_attach_type == BPF_TRACE_ITER)
935 		return true;
936 
937 	if (prog->type == BPF_PROG_TYPE_LSM)
938 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
939 
940 	return btf_id_set_contains(&btf_allowlist_d_path,
941 				   prog->aux->attach_btf_id);
942 }
943 
944 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
945 
946 static const struct bpf_func_proto bpf_d_path_proto = {
947 	.func		= bpf_d_path,
948 	.gpl_only	= false,
949 	.ret_type	= RET_INTEGER,
950 	.arg1_type	= ARG_PTR_TO_BTF_ID,
951 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
952 	.arg2_type	= ARG_PTR_TO_MEM,
953 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
954 	.allowed	= bpf_d_path_allowed,
955 };
956 
957 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
958 			 BTF_F_PTR_RAW | BTF_F_ZERO)
959 
960 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
961 				  u64 flags, const struct btf **btf,
962 				  s32 *btf_id)
963 {
964 	const struct btf_type *t;
965 
966 	if (unlikely(flags & ~(BTF_F_ALL)))
967 		return -EINVAL;
968 
969 	if (btf_ptr_size != sizeof(struct btf_ptr))
970 		return -EINVAL;
971 
972 	*btf = bpf_get_btf_vmlinux();
973 
974 	if (IS_ERR_OR_NULL(*btf))
975 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
976 
977 	if (ptr->type_id > 0)
978 		*btf_id = ptr->type_id;
979 	else
980 		return -EINVAL;
981 
982 	if (*btf_id > 0)
983 		t = btf_type_by_id(*btf, *btf_id);
984 	if (*btf_id <= 0 || !t)
985 		return -ENOENT;
986 
987 	return 0;
988 }
989 
990 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
991 	   u32, btf_ptr_size, u64, flags)
992 {
993 	const struct btf *btf;
994 	s32 btf_id;
995 	int ret;
996 
997 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
998 	if (ret)
999 		return ret;
1000 
1001 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1002 				      flags);
1003 }
1004 
1005 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1006 	.func		= bpf_snprintf_btf,
1007 	.gpl_only	= false,
1008 	.ret_type	= RET_INTEGER,
1009 	.arg1_type	= ARG_PTR_TO_MEM,
1010 	.arg2_type	= ARG_CONST_SIZE,
1011 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1012 	.arg4_type	= ARG_CONST_SIZE,
1013 	.arg5_type	= ARG_ANYTHING,
1014 };
1015 
1016 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1017 {
1018 	/* This helper call is inlined by verifier. */
1019 	return ((u64 *)ctx)[-2];
1020 }
1021 
1022 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1023 	.func		= bpf_get_func_ip_tracing,
1024 	.gpl_only	= true,
1025 	.ret_type	= RET_INTEGER,
1026 	.arg1_type	= ARG_PTR_TO_CTX,
1027 };
1028 
1029 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1030 {
1031 	struct kprobe *kp = kprobe_running();
1032 
1033 	return kp ? (uintptr_t)kp->addr : 0;
1034 }
1035 
1036 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1037 	.func		= bpf_get_func_ip_kprobe,
1038 	.gpl_only	= true,
1039 	.ret_type	= RET_INTEGER,
1040 	.arg1_type	= ARG_PTR_TO_CTX,
1041 };
1042 
1043 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1044 {
1045 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1046 }
1047 
1048 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1049 	.func		= bpf_get_func_ip_kprobe_multi,
1050 	.gpl_only	= false,
1051 	.ret_type	= RET_INTEGER,
1052 	.arg1_type	= ARG_PTR_TO_CTX,
1053 };
1054 
1055 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1056 {
1057 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1058 }
1059 
1060 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1061 	.func		= bpf_get_attach_cookie_kprobe_multi,
1062 	.gpl_only	= false,
1063 	.ret_type	= RET_INTEGER,
1064 	.arg1_type	= ARG_PTR_TO_CTX,
1065 };
1066 
1067 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1068 {
1069 	struct bpf_trace_run_ctx *run_ctx;
1070 
1071 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1072 	return run_ctx->bpf_cookie;
1073 }
1074 
1075 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1076 	.func		= bpf_get_attach_cookie_trace,
1077 	.gpl_only	= false,
1078 	.ret_type	= RET_INTEGER,
1079 	.arg1_type	= ARG_PTR_TO_CTX,
1080 };
1081 
1082 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1083 {
1084 	return ctx->event->bpf_cookie;
1085 }
1086 
1087 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1088 	.func		= bpf_get_attach_cookie_pe,
1089 	.gpl_only	= false,
1090 	.ret_type	= RET_INTEGER,
1091 	.arg1_type	= ARG_PTR_TO_CTX,
1092 };
1093 
1094 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1095 {
1096 #ifndef CONFIG_X86
1097 	return -ENOENT;
1098 #else
1099 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1100 	u32 entry_cnt = size / br_entry_size;
1101 
1102 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1103 
1104 	if (unlikely(flags))
1105 		return -EINVAL;
1106 
1107 	if (!entry_cnt)
1108 		return -ENOENT;
1109 
1110 	return entry_cnt * br_entry_size;
1111 #endif
1112 }
1113 
1114 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1115 	.func		= bpf_get_branch_snapshot,
1116 	.gpl_only	= true,
1117 	.ret_type	= RET_INTEGER,
1118 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1119 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1120 };
1121 
1122 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1123 {
1124 	/* This helper call is inlined by verifier. */
1125 	u64 nr_args = ((u64 *)ctx)[-1];
1126 
1127 	if ((u64) n >= nr_args)
1128 		return -EINVAL;
1129 	*value = ((u64 *)ctx)[n];
1130 	return 0;
1131 }
1132 
1133 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1134 	.func		= get_func_arg,
1135 	.ret_type	= RET_INTEGER,
1136 	.arg1_type	= ARG_PTR_TO_CTX,
1137 	.arg2_type	= ARG_ANYTHING,
1138 	.arg3_type	= ARG_PTR_TO_LONG,
1139 };
1140 
1141 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1142 {
1143 	/* This helper call is inlined by verifier. */
1144 	u64 nr_args = ((u64 *)ctx)[-1];
1145 
1146 	*value = ((u64 *)ctx)[nr_args];
1147 	return 0;
1148 }
1149 
1150 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1151 	.func		= get_func_ret,
1152 	.ret_type	= RET_INTEGER,
1153 	.arg1_type	= ARG_PTR_TO_CTX,
1154 	.arg2_type	= ARG_PTR_TO_LONG,
1155 };
1156 
1157 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1158 {
1159 	/* This helper call is inlined by verifier. */
1160 	return ((u64 *)ctx)[-1];
1161 }
1162 
1163 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1164 	.func		= get_func_arg_cnt,
1165 	.ret_type	= RET_INTEGER,
1166 	.arg1_type	= ARG_PTR_TO_CTX,
1167 };
1168 
1169 static const struct bpf_func_proto *
1170 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1171 {
1172 	switch (func_id) {
1173 	case BPF_FUNC_map_lookup_elem:
1174 		return &bpf_map_lookup_elem_proto;
1175 	case BPF_FUNC_map_update_elem:
1176 		return &bpf_map_update_elem_proto;
1177 	case BPF_FUNC_map_delete_elem:
1178 		return &bpf_map_delete_elem_proto;
1179 	case BPF_FUNC_map_push_elem:
1180 		return &bpf_map_push_elem_proto;
1181 	case BPF_FUNC_map_pop_elem:
1182 		return &bpf_map_pop_elem_proto;
1183 	case BPF_FUNC_map_peek_elem:
1184 		return &bpf_map_peek_elem_proto;
1185 	case BPF_FUNC_ktime_get_ns:
1186 		return &bpf_ktime_get_ns_proto;
1187 	case BPF_FUNC_ktime_get_boot_ns:
1188 		return &bpf_ktime_get_boot_ns_proto;
1189 	case BPF_FUNC_tail_call:
1190 		return &bpf_tail_call_proto;
1191 	case BPF_FUNC_get_current_pid_tgid:
1192 		return &bpf_get_current_pid_tgid_proto;
1193 	case BPF_FUNC_get_current_task:
1194 		return &bpf_get_current_task_proto;
1195 	case BPF_FUNC_get_current_task_btf:
1196 		return &bpf_get_current_task_btf_proto;
1197 	case BPF_FUNC_task_pt_regs:
1198 		return &bpf_task_pt_regs_proto;
1199 	case BPF_FUNC_get_current_uid_gid:
1200 		return &bpf_get_current_uid_gid_proto;
1201 	case BPF_FUNC_get_current_comm:
1202 		return &bpf_get_current_comm_proto;
1203 	case BPF_FUNC_trace_printk:
1204 		return bpf_get_trace_printk_proto();
1205 	case BPF_FUNC_get_smp_processor_id:
1206 		return &bpf_get_smp_processor_id_proto;
1207 	case BPF_FUNC_get_numa_node_id:
1208 		return &bpf_get_numa_node_id_proto;
1209 	case BPF_FUNC_perf_event_read:
1210 		return &bpf_perf_event_read_proto;
1211 	case BPF_FUNC_current_task_under_cgroup:
1212 		return &bpf_current_task_under_cgroup_proto;
1213 	case BPF_FUNC_get_prandom_u32:
1214 		return &bpf_get_prandom_u32_proto;
1215 	case BPF_FUNC_probe_write_user:
1216 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1217 		       NULL : bpf_get_probe_write_proto();
1218 	case BPF_FUNC_probe_read_user:
1219 		return &bpf_probe_read_user_proto;
1220 	case BPF_FUNC_probe_read_kernel:
1221 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1222 		       NULL : &bpf_probe_read_kernel_proto;
1223 	case BPF_FUNC_probe_read_user_str:
1224 		return &bpf_probe_read_user_str_proto;
1225 	case BPF_FUNC_probe_read_kernel_str:
1226 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1227 		       NULL : &bpf_probe_read_kernel_str_proto;
1228 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1229 	case BPF_FUNC_probe_read:
1230 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1231 		       NULL : &bpf_probe_read_compat_proto;
1232 	case BPF_FUNC_probe_read_str:
1233 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1234 		       NULL : &bpf_probe_read_compat_str_proto;
1235 #endif
1236 #ifdef CONFIG_CGROUPS
1237 	case BPF_FUNC_get_current_cgroup_id:
1238 		return &bpf_get_current_cgroup_id_proto;
1239 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1240 		return &bpf_get_current_ancestor_cgroup_id_proto;
1241 #endif
1242 	case BPF_FUNC_send_signal:
1243 		return &bpf_send_signal_proto;
1244 	case BPF_FUNC_send_signal_thread:
1245 		return &bpf_send_signal_thread_proto;
1246 	case BPF_FUNC_perf_event_read_value:
1247 		return &bpf_perf_event_read_value_proto;
1248 	case BPF_FUNC_get_ns_current_pid_tgid:
1249 		return &bpf_get_ns_current_pid_tgid_proto;
1250 	case BPF_FUNC_ringbuf_output:
1251 		return &bpf_ringbuf_output_proto;
1252 	case BPF_FUNC_ringbuf_reserve:
1253 		return &bpf_ringbuf_reserve_proto;
1254 	case BPF_FUNC_ringbuf_submit:
1255 		return &bpf_ringbuf_submit_proto;
1256 	case BPF_FUNC_ringbuf_discard:
1257 		return &bpf_ringbuf_discard_proto;
1258 	case BPF_FUNC_ringbuf_query:
1259 		return &bpf_ringbuf_query_proto;
1260 	case BPF_FUNC_jiffies64:
1261 		return &bpf_jiffies64_proto;
1262 	case BPF_FUNC_get_task_stack:
1263 		return &bpf_get_task_stack_proto;
1264 	case BPF_FUNC_copy_from_user:
1265 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1266 	case BPF_FUNC_copy_from_user_task:
1267 		return prog->aux->sleepable ? &bpf_copy_from_user_task_proto : NULL;
1268 	case BPF_FUNC_snprintf_btf:
1269 		return &bpf_snprintf_btf_proto;
1270 	case BPF_FUNC_per_cpu_ptr:
1271 		return &bpf_per_cpu_ptr_proto;
1272 	case BPF_FUNC_this_cpu_ptr:
1273 		return &bpf_this_cpu_ptr_proto;
1274 	case BPF_FUNC_task_storage_get:
1275 		return &bpf_task_storage_get_proto;
1276 	case BPF_FUNC_task_storage_delete:
1277 		return &bpf_task_storage_delete_proto;
1278 	case BPF_FUNC_for_each_map_elem:
1279 		return &bpf_for_each_map_elem_proto;
1280 	case BPF_FUNC_snprintf:
1281 		return &bpf_snprintf_proto;
1282 	case BPF_FUNC_get_func_ip:
1283 		return &bpf_get_func_ip_proto_tracing;
1284 	case BPF_FUNC_get_branch_snapshot:
1285 		return &bpf_get_branch_snapshot_proto;
1286 	case BPF_FUNC_find_vma:
1287 		return &bpf_find_vma_proto;
1288 	case BPF_FUNC_trace_vprintk:
1289 		return bpf_get_trace_vprintk_proto();
1290 	default:
1291 		return bpf_base_func_proto(func_id);
1292 	}
1293 }
1294 
1295 static const struct bpf_func_proto *
1296 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1297 {
1298 	switch (func_id) {
1299 	case BPF_FUNC_perf_event_output:
1300 		return &bpf_perf_event_output_proto;
1301 	case BPF_FUNC_get_stackid:
1302 		return &bpf_get_stackid_proto;
1303 	case BPF_FUNC_get_stack:
1304 		return &bpf_get_stack_proto;
1305 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1306 	case BPF_FUNC_override_return:
1307 		return &bpf_override_return_proto;
1308 #endif
1309 	case BPF_FUNC_get_func_ip:
1310 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1311 			&bpf_get_func_ip_proto_kprobe_multi :
1312 			&bpf_get_func_ip_proto_kprobe;
1313 	case BPF_FUNC_get_attach_cookie:
1314 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1315 			&bpf_get_attach_cookie_proto_kmulti :
1316 			&bpf_get_attach_cookie_proto_trace;
1317 	default:
1318 		return bpf_tracing_func_proto(func_id, prog);
1319 	}
1320 }
1321 
1322 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1323 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1324 					const struct bpf_prog *prog,
1325 					struct bpf_insn_access_aux *info)
1326 {
1327 	if (off < 0 || off >= sizeof(struct pt_regs))
1328 		return false;
1329 	if (type != BPF_READ)
1330 		return false;
1331 	if (off % size != 0)
1332 		return false;
1333 	/*
1334 	 * Assertion for 32 bit to make sure last 8 byte access
1335 	 * (BPF_DW) to the last 4 byte member is disallowed.
1336 	 */
1337 	if (off + size > sizeof(struct pt_regs))
1338 		return false;
1339 
1340 	return true;
1341 }
1342 
1343 const struct bpf_verifier_ops kprobe_verifier_ops = {
1344 	.get_func_proto  = kprobe_prog_func_proto,
1345 	.is_valid_access = kprobe_prog_is_valid_access,
1346 };
1347 
1348 const struct bpf_prog_ops kprobe_prog_ops = {
1349 };
1350 
1351 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1352 	   u64, flags, void *, data, u64, size)
1353 {
1354 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1355 
1356 	/*
1357 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1358 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1359 	 * from there and call the same bpf_perf_event_output() helper inline.
1360 	 */
1361 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1362 }
1363 
1364 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1365 	.func		= bpf_perf_event_output_tp,
1366 	.gpl_only	= true,
1367 	.ret_type	= RET_INTEGER,
1368 	.arg1_type	= ARG_PTR_TO_CTX,
1369 	.arg2_type	= ARG_CONST_MAP_PTR,
1370 	.arg3_type	= ARG_ANYTHING,
1371 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1372 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1373 };
1374 
1375 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1376 	   u64, flags)
1377 {
1378 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1379 
1380 	/*
1381 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1382 	 * the other helper's function body cannot be inlined due to being
1383 	 * external, thus we need to call raw helper function.
1384 	 */
1385 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1386 			       flags, 0, 0);
1387 }
1388 
1389 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1390 	.func		= bpf_get_stackid_tp,
1391 	.gpl_only	= true,
1392 	.ret_type	= RET_INTEGER,
1393 	.arg1_type	= ARG_PTR_TO_CTX,
1394 	.arg2_type	= ARG_CONST_MAP_PTR,
1395 	.arg3_type	= ARG_ANYTHING,
1396 };
1397 
1398 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1399 	   u64, flags)
1400 {
1401 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1402 
1403 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1404 			     (unsigned long) size, flags, 0);
1405 }
1406 
1407 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1408 	.func		= bpf_get_stack_tp,
1409 	.gpl_only	= true,
1410 	.ret_type	= RET_INTEGER,
1411 	.arg1_type	= ARG_PTR_TO_CTX,
1412 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1413 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1414 	.arg4_type	= ARG_ANYTHING,
1415 };
1416 
1417 static const struct bpf_func_proto *
1418 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1419 {
1420 	switch (func_id) {
1421 	case BPF_FUNC_perf_event_output:
1422 		return &bpf_perf_event_output_proto_tp;
1423 	case BPF_FUNC_get_stackid:
1424 		return &bpf_get_stackid_proto_tp;
1425 	case BPF_FUNC_get_stack:
1426 		return &bpf_get_stack_proto_tp;
1427 	case BPF_FUNC_get_attach_cookie:
1428 		return &bpf_get_attach_cookie_proto_trace;
1429 	default:
1430 		return bpf_tracing_func_proto(func_id, prog);
1431 	}
1432 }
1433 
1434 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1435 				    const struct bpf_prog *prog,
1436 				    struct bpf_insn_access_aux *info)
1437 {
1438 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1439 		return false;
1440 	if (type != BPF_READ)
1441 		return false;
1442 	if (off % size != 0)
1443 		return false;
1444 
1445 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1446 	return true;
1447 }
1448 
1449 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1450 	.get_func_proto  = tp_prog_func_proto,
1451 	.is_valid_access = tp_prog_is_valid_access,
1452 };
1453 
1454 const struct bpf_prog_ops tracepoint_prog_ops = {
1455 };
1456 
1457 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1458 	   struct bpf_perf_event_value *, buf, u32, size)
1459 {
1460 	int err = -EINVAL;
1461 
1462 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1463 		goto clear;
1464 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1465 				    &buf->running);
1466 	if (unlikely(err))
1467 		goto clear;
1468 	return 0;
1469 clear:
1470 	memset(buf, 0, size);
1471 	return err;
1472 }
1473 
1474 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1475          .func           = bpf_perf_prog_read_value,
1476          .gpl_only       = true,
1477          .ret_type       = RET_INTEGER,
1478          .arg1_type      = ARG_PTR_TO_CTX,
1479          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1480          .arg3_type      = ARG_CONST_SIZE,
1481 };
1482 
1483 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1484 	   void *, buf, u32, size, u64, flags)
1485 {
1486 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1487 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1488 	u32 to_copy;
1489 
1490 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1491 		return -EINVAL;
1492 
1493 	if (unlikely(!br_stack))
1494 		return -ENOENT;
1495 
1496 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1497 		return br_stack->nr * br_entry_size;
1498 
1499 	if (!buf || (size % br_entry_size != 0))
1500 		return -EINVAL;
1501 
1502 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1503 	memcpy(buf, br_stack->entries, to_copy);
1504 
1505 	return to_copy;
1506 }
1507 
1508 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1509 	.func           = bpf_read_branch_records,
1510 	.gpl_only       = true,
1511 	.ret_type       = RET_INTEGER,
1512 	.arg1_type      = ARG_PTR_TO_CTX,
1513 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1514 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1515 	.arg4_type      = ARG_ANYTHING,
1516 };
1517 
1518 static const struct bpf_func_proto *
1519 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1520 {
1521 	switch (func_id) {
1522 	case BPF_FUNC_perf_event_output:
1523 		return &bpf_perf_event_output_proto_tp;
1524 	case BPF_FUNC_get_stackid:
1525 		return &bpf_get_stackid_proto_pe;
1526 	case BPF_FUNC_get_stack:
1527 		return &bpf_get_stack_proto_pe;
1528 	case BPF_FUNC_perf_prog_read_value:
1529 		return &bpf_perf_prog_read_value_proto;
1530 	case BPF_FUNC_read_branch_records:
1531 		return &bpf_read_branch_records_proto;
1532 	case BPF_FUNC_get_attach_cookie:
1533 		return &bpf_get_attach_cookie_proto_pe;
1534 	default:
1535 		return bpf_tracing_func_proto(func_id, prog);
1536 	}
1537 }
1538 
1539 /*
1540  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1541  * to avoid potential recursive reuse issue when/if tracepoints are added
1542  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1543  *
1544  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1545  * in normal, irq, and nmi context.
1546  */
1547 struct bpf_raw_tp_regs {
1548 	struct pt_regs regs[3];
1549 };
1550 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1551 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1552 static struct pt_regs *get_bpf_raw_tp_regs(void)
1553 {
1554 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1555 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1556 
1557 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1558 		this_cpu_dec(bpf_raw_tp_nest_level);
1559 		return ERR_PTR(-EBUSY);
1560 	}
1561 
1562 	return &tp_regs->regs[nest_level - 1];
1563 }
1564 
1565 static void put_bpf_raw_tp_regs(void)
1566 {
1567 	this_cpu_dec(bpf_raw_tp_nest_level);
1568 }
1569 
1570 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1571 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1572 {
1573 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1574 	int ret;
1575 
1576 	if (IS_ERR(regs))
1577 		return PTR_ERR(regs);
1578 
1579 	perf_fetch_caller_regs(regs);
1580 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1581 
1582 	put_bpf_raw_tp_regs();
1583 	return ret;
1584 }
1585 
1586 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1587 	.func		= bpf_perf_event_output_raw_tp,
1588 	.gpl_only	= true,
1589 	.ret_type	= RET_INTEGER,
1590 	.arg1_type	= ARG_PTR_TO_CTX,
1591 	.arg2_type	= ARG_CONST_MAP_PTR,
1592 	.arg3_type	= ARG_ANYTHING,
1593 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1594 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1595 };
1596 
1597 extern const struct bpf_func_proto bpf_skb_output_proto;
1598 extern const struct bpf_func_proto bpf_xdp_output_proto;
1599 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1600 
1601 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1602 	   struct bpf_map *, map, u64, flags)
1603 {
1604 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1605 	int ret;
1606 
1607 	if (IS_ERR(regs))
1608 		return PTR_ERR(regs);
1609 
1610 	perf_fetch_caller_regs(regs);
1611 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1612 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1613 			      flags, 0, 0);
1614 	put_bpf_raw_tp_regs();
1615 	return ret;
1616 }
1617 
1618 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1619 	.func		= bpf_get_stackid_raw_tp,
1620 	.gpl_only	= true,
1621 	.ret_type	= RET_INTEGER,
1622 	.arg1_type	= ARG_PTR_TO_CTX,
1623 	.arg2_type	= ARG_CONST_MAP_PTR,
1624 	.arg3_type	= ARG_ANYTHING,
1625 };
1626 
1627 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1628 	   void *, buf, u32, size, u64, flags)
1629 {
1630 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1631 	int ret;
1632 
1633 	if (IS_ERR(regs))
1634 		return PTR_ERR(regs);
1635 
1636 	perf_fetch_caller_regs(regs);
1637 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1638 			    (unsigned long) size, flags, 0);
1639 	put_bpf_raw_tp_regs();
1640 	return ret;
1641 }
1642 
1643 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1644 	.func		= bpf_get_stack_raw_tp,
1645 	.gpl_only	= true,
1646 	.ret_type	= RET_INTEGER,
1647 	.arg1_type	= ARG_PTR_TO_CTX,
1648 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1649 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1650 	.arg4_type	= ARG_ANYTHING,
1651 };
1652 
1653 static const struct bpf_func_proto *
1654 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1655 {
1656 	switch (func_id) {
1657 	case BPF_FUNC_perf_event_output:
1658 		return &bpf_perf_event_output_proto_raw_tp;
1659 	case BPF_FUNC_get_stackid:
1660 		return &bpf_get_stackid_proto_raw_tp;
1661 	case BPF_FUNC_get_stack:
1662 		return &bpf_get_stack_proto_raw_tp;
1663 	default:
1664 		return bpf_tracing_func_proto(func_id, prog);
1665 	}
1666 }
1667 
1668 const struct bpf_func_proto *
1669 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1670 {
1671 	const struct bpf_func_proto *fn;
1672 
1673 	switch (func_id) {
1674 #ifdef CONFIG_NET
1675 	case BPF_FUNC_skb_output:
1676 		return &bpf_skb_output_proto;
1677 	case BPF_FUNC_xdp_output:
1678 		return &bpf_xdp_output_proto;
1679 	case BPF_FUNC_skc_to_tcp6_sock:
1680 		return &bpf_skc_to_tcp6_sock_proto;
1681 	case BPF_FUNC_skc_to_tcp_sock:
1682 		return &bpf_skc_to_tcp_sock_proto;
1683 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1684 		return &bpf_skc_to_tcp_timewait_sock_proto;
1685 	case BPF_FUNC_skc_to_tcp_request_sock:
1686 		return &bpf_skc_to_tcp_request_sock_proto;
1687 	case BPF_FUNC_skc_to_udp6_sock:
1688 		return &bpf_skc_to_udp6_sock_proto;
1689 	case BPF_FUNC_skc_to_unix_sock:
1690 		return &bpf_skc_to_unix_sock_proto;
1691 	case BPF_FUNC_sk_storage_get:
1692 		return &bpf_sk_storage_get_tracing_proto;
1693 	case BPF_FUNC_sk_storage_delete:
1694 		return &bpf_sk_storage_delete_tracing_proto;
1695 	case BPF_FUNC_sock_from_file:
1696 		return &bpf_sock_from_file_proto;
1697 	case BPF_FUNC_get_socket_cookie:
1698 		return &bpf_get_socket_ptr_cookie_proto;
1699 	case BPF_FUNC_xdp_get_buff_len:
1700 		return &bpf_xdp_get_buff_len_trace_proto;
1701 #endif
1702 	case BPF_FUNC_seq_printf:
1703 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1704 		       &bpf_seq_printf_proto :
1705 		       NULL;
1706 	case BPF_FUNC_seq_write:
1707 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1708 		       &bpf_seq_write_proto :
1709 		       NULL;
1710 	case BPF_FUNC_seq_printf_btf:
1711 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1712 		       &bpf_seq_printf_btf_proto :
1713 		       NULL;
1714 	case BPF_FUNC_d_path:
1715 		return &bpf_d_path_proto;
1716 	case BPF_FUNC_get_func_arg:
1717 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1718 	case BPF_FUNC_get_func_ret:
1719 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1720 	case BPF_FUNC_get_func_arg_cnt:
1721 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1722 	default:
1723 		fn = raw_tp_prog_func_proto(func_id, prog);
1724 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1725 			fn = bpf_iter_get_func_proto(func_id, prog);
1726 		return fn;
1727 	}
1728 }
1729 
1730 static bool raw_tp_prog_is_valid_access(int off, int size,
1731 					enum bpf_access_type type,
1732 					const struct bpf_prog *prog,
1733 					struct bpf_insn_access_aux *info)
1734 {
1735 	return bpf_tracing_ctx_access(off, size, type);
1736 }
1737 
1738 static bool tracing_prog_is_valid_access(int off, int size,
1739 					 enum bpf_access_type type,
1740 					 const struct bpf_prog *prog,
1741 					 struct bpf_insn_access_aux *info)
1742 {
1743 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1744 }
1745 
1746 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1747 				     const union bpf_attr *kattr,
1748 				     union bpf_attr __user *uattr)
1749 {
1750 	return -ENOTSUPP;
1751 }
1752 
1753 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1754 	.get_func_proto  = raw_tp_prog_func_proto,
1755 	.is_valid_access = raw_tp_prog_is_valid_access,
1756 };
1757 
1758 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1759 #ifdef CONFIG_NET
1760 	.test_run = bpf_prog_test_run_raw_tp,
1761 #endif
1762 };
1763 
1764 const struct bpf_verifier_ops tracing_verifier_ops = {
1765 	.get_func_proto  = tracing_prog_func_proto,
1766 	.is_valid_access = tracing_prog_is_valid_access,
1767 };
1768 
1769 const struct bpf_prog_ops tracing_prog_ops = {
1770 	.test_run = bpf_prog_test_run_tracing,
1771 };
1772 
1773 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1774 						 enum bpf_access_type type,
1775 						 const struct bpf_prog *prog,
1776 						 struct bpf_insn_access_aux *info)
1777 {
1778 	if (off == 0) {
1779 		if (size != sizeof(u64) || type != BPF_READ)
1780 			return false;
1781 		info->reg_type = PTR_TO_TP_BUFFER;
1782 	}
1783 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1784 }
1785 
1786 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1787 	.get_func_proto  = raw_tp_prog_func_proto,
1788 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1789 };
1790 
1791 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1792 };
1793 
1794 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1795 				    const struct bpf_prog *prog,
1796 				    struct bpf_insn_access_aux *info)
1797 {
1798 	const int size_u64 = sizeof(u64);
1799 
1800 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1801 		return false;
1802 	if (type != BPF_READ)
1803 		return false;
1804 	if (off % size != 0) {
1805 		if (sizeof(unsigned long) != 4)
1806 			return false;
1807 		if (size != 8)
1808 			return false;
1809 		if (off % size != 4)
1810 			return false;
1811 	}
1812 
1813 	switch (off) {
1814 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1815 		bpf_ctx_record_field_size(info, size_u64);
1816 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1817 			return false;
1818 		break;
1819 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1820 		bpf_ctx_record_field_size(info, size_u64);
1821 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1822 			return false;
1823 		break;
1824 	default:
1825 		if (size != sizeof(long))
1826 			return false;
1827 	}
1828 
1829 	return true;
1830 }
1831 
1832 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1833 				      const struct bpf_insn *si,
1834 				      struct bpf_insn *insn_buf,
1835 				      struct bpf_prog *prog, u32 *target_size)
1836 {
1837 	struct bpf_insn *insn = insn_buf;
1838 
1839 	switch (si->off) {
1840 	case offsetof(struct bpf_perf_event_data, sample_period):
1841 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1842 						       data), si->dst_reg, si->src_reg,
1843 				      offsetof(struct bpf_perf_event_data_kern, data));
1844 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1845 				      bpf_target_off(struct perf_sample_data, period, 8,
1846 						     target_size));
1847 		break;
1848 	case offsetof(struct bpf_perf_event_data, addr):
1849 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1850 						       data), si->dst_reg, si->src_reg,
1851 				      offsetof(struct bpf_perf_event_data_kern, data));
1852 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1853 				      bpf_target_off(struct perf_sample_data, addr, 8,
1854 						     target_size));
1855 		break;
1856 	default:
1857 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1858 						       regs), si->dst_reg, si->src_reg,
1859 				      offsetof(struct bpf_perf_event_data_kern, regs));
1860 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1861 				      si->off);
1862 		break;
1863 	}
1864 
1865 	return insn - insn_buf;
1866 }
1867 
1868 const struct bpf_verifier_ops perf_event_verifier_ops = {
1869 	.get_func_proto		= pe_prog_func_proto,
1870 	.is_valid_access	= pe_prog_is_valid_access,
1871 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1872 };
1873 
1874 const struct bpf_prog_ops perf_event_prog_ops = {
1875 };
1876 
1877 static DEFINE_MUTEX(bpf_event_mutex);
1878 
1879 #define BPF_TRACE_MAX_PROGS 64
1880 
1881 int perf_event_attach_bpf_prog(struct perf_event *event,
1882 			       struct bpf_prog *prog,
1883 			       u64 bpf_cookie)
1884 {
1885 	struct bpf_prog_array *old_array;
1886 	struct bpf_prog_array *new_array;
1887 	int ret = -EEXIST;
1888 
1889 	/*
1890 	 * Kprobe override only works if they are on the function entry,
1891 	 * and only if they are on the opt-in list.
1892 	 */
1893 	if (prog->kprobe_override &&
1894 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1895 	     !trace_kprobe_error_injectable(event->tp_event)))
1896 		return -EINVAL;
1897 
1898 	mutex_lock(&bpf_event_mutex);
1899 
1900 	if (event->prog)
1901 		goto unlock;
1902 
1903 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1904 	if (old_array &&
1905 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1906 		ret = -E2BIG;
1907 		goto unlock;
1908 	}
1909 
1910 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1911 	if (ret < 0)
1912 		goto unlock;
1913 
1914 	/* set the new array to event->tp_event and set event->prog */
1915 	event->prog = prog;
1916 	event->bpf_cookie = bpf_cookie;
1917 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1918 	bpf_prog_array_free(old_array);
1919 
1920 unlock:
1921 	mutex_unlock(&bpf_event_mutex);
1922 	return ret;
1923 }
1924 
1925 void perf_event_detach_bpf_prog(struct perf_event *event)
1926 {
1927 	struct bpf_prog_array *old_array;
1928 	struct bpf_prog_array *new_array;
1929 	int ret;
1930 
1931 	mutex_lock(&bpf_event_mutex);
1932 
1933 	if (!event->prog)
1934 		goto unlock;
1935 
1936 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1937 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1938 	if (ret == -ENOENT)
1939 		goto unlock;
1940 	if (ret < 0) {
1941 		bpf_prog_array_delete_safe(old_array, event->prog);
1942 	} else {
1943 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1944 		bpf_prog_array_free(old_array);
1945 	}
1946 
1947 	bpf_prog_put(event->prog);
1948 	event->prog = NULL;
1949 
1950 unlock:
1951 	mutex_unlock(&bpf_event_mutex);
1952 }
1953 
1954 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1955 {
1956 	struct perf_event_query_bpf __user *uquery = info;
1957 	struct perf_event_query_bpf query = {};
1958 	struct bpf_prog_array *progs;
1959 	u32 *ids, prog_cnt, ids_len;
1960 	int ret;
1961 
1962 	if (!perfmon_capable())
1963 		return -EPERM;
1964 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1965 		return -EINVAL;
1966 	if (copy_from_user(&query, uquery, sizeof(query)))
1967 		return -EFAULT;
1968 
1969 	ids_len = query.ids_len;
1970 	if (ids_len > BPF_TRACE_MAX_PROGS)
1971 		return -E2BIG;
1972 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1973 	if (!ids)
1974 		return -ENOMEM;
1975 	/*
1976 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1977 	 * is required when user only wants to check for uquery->prog_cnt.
1978 	 * There is no need to check for it since the case is handled
1979 	 * gracefully in bpf_prog_array_copy_info.
1980 	 */
1981 
1982 	mutex_lock(&bpf_event_mutex);
1983 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1984 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1985 	mutex_unlock(&bpf_event_mutex);
1986 
1987 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1988 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1989 		ret = -EFAULT;
1990 
1991 	kfree(ids);
1992 	return ret;
1993 }
1994 
1995 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1996 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1997 
1998 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1999 {
2000 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2001 
2002 	for (; btp < __stop__bpf_raw_tp; btp++) {
2003 		if (!strcmp(btp->tp->name, name))
2004 			return btp;
2005 	}
2006 
2007 	return bpf_get_raw_tracepoint_module(name);
2008 }
2009 
2010 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2011 {
2012 	struct module *mod;
2013 
2014 	preempt_disable();
2015 	mod = __module_address((unsigned long)btp);
2016 	module_put(mod);
2017 	preempt_enable();
2018 }
2019 
2020 static __always_inline
2021 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2022 {
2023 	cant_sleep();
2024 	rcu_read_lock();
2025 	(void) bpf_prog_run(prog, args);
2026 	rcu_read_unlock();
2027 }
2028 
2029 #define UNPACK(...)			__VA_ARGS__
2030 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2031 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2032 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2033 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2034 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2035 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2036 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2037 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2038 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2039 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2040 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2041 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2042 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2043 
2044 #define SARG(X)		u64 arg##X
2045 #define COPY(X)		args[X] = arg##X
2046 
2047 #define __DL_COM	(,)
2048 #define __DL_SEM	(;)
2049 
2050 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2051 
2052 #define BPF_TRACE_DEFN_x(x)						\
2053 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2054 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2055 	{								\
2056 		u64 args[x];						\
2057 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2058 		__bpf_trace_run(prog, args);				\
2059 	}								\
2060 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2061 BPF_TRACE_DEFN_x(1);
2062 BPF_TRACE_DEFN_x(2);
2063 BPF_TRACE_DEFN_x(3);
2064 BPF_TRACE_DEFN_x(4);
2065 BPF_TRACE_DEFN_x(5);
2066 BPF_TRACE_DEFN_x(6);
2067 BPF_TRACE_DEFN_x(7);
2068 BPF_TRACE_DEFN_x(8);
2069 BPF_TRACE_DEFN_x(9);
2070 BPF_TRACE_DEFN_x(10);
2071 BPF_TRACE_DEFN_x(11);
2072 BPF_TRACE_DEFN_x(12);
2073 
2074 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2075 {
2076 	struct tracepoint *tp = btp->tp;
2077 
2078 	/*
2079 	 * check that program doesn't access arguments beyond what's
2080 	 * available in this tracepoint
2081 	 */
2082 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2083 		return -EINVAL;
2084 
2085 	if (prog->aux->max_tp_access > btp->writable_size)
2086 		return -EINVAL;
2087 
2088 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2089 						   prog);
2090 }
2091 
2092 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2093 {
2094 	return __bpf_probe_register(btp, prog);
2095 }
2096 
2097 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2098 {
2099 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2100 }
2101 
2102 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2103 			    u32 *fd_type, const char **buf,
2104 			    u64 *probe_offset, u64 *probe_addr)
2105 {
2106 	bool is_tracepoint, is_syscall_tp;
2107 	struct bpf_prog *prog;
2108 	int flags, err = 0;
2109 
2110 	prog = event->prog;
2111 	if (!prog)
2112 		return -ENOENT;
2113 
2114 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2115 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2116 		return -EOPNOTSUPP;
2117 
2118 	*prog_id = prog->aux->id;
2119 	flags = event->tp_event->flags;
2120 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2121 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2122 
2123 	if (is_tracepoint || is_syscall_tp) {
2124 		*buf = is_tracepoint ? event->tp_event->tp->name
2125 				     : event->tp_event->name;
2126 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
2127 		*probe_offset = 0x0;
2128 		*probe_addr = 0x0;
2129 	} else {
2130 		/* kprobe/uprobe */
2131 		err = -EOPNOTSUPP;
2132 #ifdef CONFIG_KPROBE_EVENTS
2133 		if (flags & TRACE_EVENT_FL_KPROBE)
2134 			err = bpf_get_kprobe_info(event, fd_type, buf,
2135 						  probe_offset, probe_addr,
2136 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2137 #endif
2138 #ifdef CONFIG_UPROBE_EVENTS
2139 		if (flags & TRACE_EVENT_FL_UPROBE)
2140 			err = bpf_get_uprobe_info(event, fd_type, buf,
2141 						  probe_offset,
2142 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2143 #endif
2144 	}
2145 
2146 	return err;
2147 }
2148 
2149 static int __init send_signal_irq_work_init(void)
2150 {
2151 	int cpu;
2152 	struct send_signal_irq_work *work;
2153 
2154 	for_each_possible_cpu(cpu) {
2155 		work = per_cpu_ptr(&send_signal_work, cpu);
2156 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2157 	}
2158 	return 0;
2159 }
2160 
2161 subsys_initcall(send_signal_irq_work_init);
2162 
2163 #ifdef CONFIG_MODULES
2164 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2165 			    void *module)
2166 {
2167 	struct bpf_trace_module *btm, *tmp;
2168 	struct module *mod = module;
2169 	int ret = 0;
2170 
2171 	if (mod->num_bpf_raw_events == 0 ||
2172 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2173 		goto out;
2174 
2175 	mutex_lock(&bpf_module_mutex);
2176 
2177 	switch (op) {
2178 	case MODULE_STATE_COMING:
2179 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2180 		if (btm) {
2181 			btm->module = module;
2182 			list_add(&btm->list, &bpf_trace_modules);
2183 		} else {
2184 			ret = -ENOMEM;
2185 		}
2186 		break;
2187 	case MODULE_STATE_GOING:
2188 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2189 			if (btm->module == module) {
2190 				list_del(&btm->list);
2191 				kfree(btm);
2192 				break;
2193 			}
2194 		}
2195 		break;
2196 	}
2197 
2198 	mutex_unlock(&bpf_module_mutex);
2199 
2200 out:
2201 	return notifier_from_errno(ret);
2202 }
2203 
2204 static struct notifier_block bpf_module_nb = {
2205 	.notifier_call = bpf_event_notify,
2206 };
2207 
2208 static int __init bpf_event_init(void)
2209 {
2210 	register_module_notifier(&bpf_module_nb);
2211 	return 0;
2212 }
2213 
2214 fs_initcall(bpf_event_init);
2215 #endif /* CONFIG_MODULES */
2216 
2217 #ifdef CONFIG_FPROBE
2218 struct bpf_kprobe_multi_link {
2219 	struct bpf_link link;
2220 	struct fprobe fp;
2221 	unsigned long *addrs;
2222 	u64 *cookies;
2223 	u32 cnt;
2224 };
2225 
2226 struct bpf_kprobe_multi_run_ctx {
2227 	struct bpf_run_ctx run_ctx;
2228 	struct bpf_kprobe_multi_link *link;
2229 	unsigned long entry_ip;
2230 };
2231 
2232 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2233 {
2234 	struct bpf_kprobe_multi_link *kmulti_link;
2235 
2236 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2237 	unregister_fprobe(&kmulti_link->fp);
2238 }
2239 
2240 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2241 {
2242 	struct bpf_kprobe_multi_link *kmulti_link;
2243 
2244 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2245 	kvfree(kmulti_link->addrs);
2246 	kvfree(kmulti_link->cookies);
2247 	kfree(kmulti_link);
2248 }
2249 
2250 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2251 	.release = bpf_kprobe_multi_link_release,
2252 	.dealloc = bpf_kprobe_multi_link_dealloc,
2253 };
2254 
2255 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2256 {
2257 	const struct bpf_kprobe_multi_link *link = priv;
2258 	unsigned long *addr_a = a, *addr_b = b;
2259 	u64 *cookie_a, *cookie_b;
2260 
2261 	cookie_a = link->cookies + (addr_a - link->addrs);
2262 	cookie_b = link->cookies + (addr_b - link->addrs);
2263 
2264 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2265 	swap(*addr_a, *addr_b);
2266 	swap(*cookie_a, *cookie_b);
2267 }
2268 
2269 static int __bpf_kprobe_multi_cookie_cmp(const void *a, const void *b)
2270 {
2271 	const unsigned long *addr_a = a, *addr_b = b;
2272 
2273 	if (*addr_a == *addr_b)
2274 		return 0;
2275 	return *addr_a < *addr_b ? -1 : 1;
2276 }
2277 
2278 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2279 {
2280 	return __bpf_kprobe_multi_cookie_cmp(a, b);
2281 }
2282 
2283 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2284 {
2285 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2286 	struct bpf_kprobe_multi_link *link;
2287 	u64 *cookie, entry_ip;
2288 	unsigned long *addr;
2289 
2290 	if (WARN_ON_ONCE(!ctx))
2291 		return 0;
2292 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2293 	link = run_ctx->link;
2294 	if (!link->cookies)
2295 		return 0;
2296 	entry_ip = run_ctx->entry_ip;
2297 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2298 		       __bpf_kprobe_multi_cookie_cmp);
2299 	if (!addr)
2300 		return 0;
2301 	cookie = link->cookies + (addr - link->addrs);
2302 	return *cookie;
2303 }
2304 
2305 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2306 {
2307 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2308 
2309 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2310 	return run_ctx->entry_ip;
2311 }
2312 
2313 static int
2314 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2315 			   unsigned long entry_ip, struct pt_regs *regs)
2316 {
2317 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2318 		.link = link,
2319 		.entry_ip = entry_ip,
2320 	};
2321 	struct bpf_run_ctx *old_run_ctx;
2322 	int err;
2323 
2324 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2325 		err = 0;
2326 		goto out;
2327 	}
2328 
2329 	migrate_disable();
2330 	rcu_read_lock();
2331 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2332 	err = bpf_prog_run(link->link.prog, regs);
2333 	bpf_reset_run_ctx(old_run_ctx);
2334 	rcu_read_unlock();
2335 	migrate_enable();
2336 
2337  out:
2338 	__this_cpu_dec(bpf_prog_active);
2339 	return err;
2340 }
2341 
2342 static void
2343 kprobe_multi_link_handler(struct fprobe *fp, unsigned long entry_ip,
2344 			  struct pt_regs *regs)
2345 {
2346 	struct bpf_kprobe_multi_link *link;
2347 
2348 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2349 	kprobe_multi_link_prog_run(link, entry_ip, regs);
2350 }
2351 
2352 static int
2353 kprobe_multi_resolve_syms(const void __user *usyms, u32 cnt,
2354 			  unsigned long *addrs)
2355 {
2356 	unsigned long addr, size;
2357 	const char __user **syms;
2358 	int err = -ENOMEM;
2359 	unsigned int i;
2360 	char *func;
2361 
2362 	size = cnt * sizeof(*syms);
2363 	syms = kvzalloc(size, GFP_KERNEL);
2364 	if (!syms)
2365 		return -ENOMEM;
2366 
2367 	func = kmalloc(KSYM_NAME_LEN, GFP_KERNEL);
2368 	if (!func)
2369 		goto error;
2370 
2371 	if (copy_from_user(syms, usyms, size)) {
2372 		err = -EFAULT;
2373 		goto error;
2374 	}
2375 
2376 	for (i = 0; i < cnt; i++) {
2377 		err = strncpy_from_user(func, syms[i], KSYM_NAME_LEN);
2378 		if (err == KSYM_NAME_LEN)
2379 			err = -E2BIG;
2380 		if (err < 0)
2381 			goto error;
2382 		err = -EINVAL;
2383 		addr = kallsyms_lookup_name(func);
2384 		if (!addr)
2385 			goto error;
2386 		if (!kallsyms_lookup_size_offset(addr, &size, NULL))
2387 			goto error;
2388 		addr = ftrace_location_range(addr, addr + size - 1);
2389 		if (!addr)
2390 			goto error;
2391 		addrs[i] = addr;
2392 	}
2393 
2394 	err = 0;
2395 error:
2396 	kvfree(syms);
2397 	kfree(func);
2398 	return err;
2399 }
2400 
2401 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2402 {
2403 	struct bpf_kprobe_multi_link *link = NULL;
2404 	struct bpf_link_primer link_primer;
2405 	void __user *ucookies;
2406 	unsigned long *addrs;
2407 	u32 flags, cnt, size;
2408 	void __user *uaddrs;
2409 	u64 *cookies = NULL;
2410 	void __user *usyms;
2411 	int err;
2412 
2413 	/* no support for 32bit archs yet */
2414 	if (sizeof(u64) != sizeof(void *))
2415 		return -EOPNOTSUPP;
2416 
2417 	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2418 		return -EINVAL;
2419 
2420 	flags = attr->link_create.kprobe_multi.flags;
2421 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2422 		return -EINVAL;
2423 
2424 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2425 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2426 	if (!!uaddrs == !!usyms)
2427 		return -EINVAL;
2428 
2429 	cnt = attr->link_create.kprobe_multi.cnt;
2430 	if (!cnt)
2431 		return -EINVAL;
2432 
2433 	size = cnt * sizeof(*addrs);
2434 	addrs = kvmalloc(size, GFP_KERNEL);
2435 	if (!addrs)
2436 		return -ENOMEM;
2437 
2438 	if (uaddrs) {
2439 		if (copy_from_user(addrs, uaddrs, size)) {
2440 			err = -EFAULT;
2441 			goto error;
2442 		}
2443 	} else {
2444 		err = kprobe_multi_resolve_syms(usyms, cnt, addrs);
2445 		if (err)
2446 			goto error;
2447 	}
2448 
2449 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2450 	if (ucookies) {
2451 		cookies = kvmalloc(size, GFP_KERNEL);
2452 		if (!cookies) {
2453 			err = -ENOMEM;
2454 			goto error;
2455 		}
2456 		if (copy_from_user(cookies, ucookies, size)) {
2457 			err = -EFAULT;
2458 			goto error;
2459 		}
2460 	}
2461 
2462 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2463 	if (!link) {
2464 		err = -ENOMEM;
2465 		goto error;
2466 	}
2467 
2468 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2469 		      &bpf_kprobe_multi_link_lops, prog);
2470 
2471 	err = bpf_link_prime(&link->link, &link_primer);
2472 	if (err)
2473 		goto error;
2474 
2475 	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2476 		link->fp.exit_handler = kprobe_multi_link_handler;
2477 	else
2478 		link->fp.entry_handler = kprobe_multi_link_handler;
2479 
2480 	link->addrs = addrs;
2481 	link->cookies = cookies;
2482 	link->cnt = cnt;
2483 
2484 	if (cookies) {
2485 		/*
2486 		 * Sorting addresses will trigger sorting cookies as well
2487 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2488 		 * find cookie based on the address in bpf_get_attach_cookie
2489 		 * helper.
2490 		 */
2491 		sort_r(addrs, cnt, sizeof(*addrs),
2492 		       bpf_kprobe_multi_cookie_cmp,
2493 		       bpf_kprobe_multi_cookie_swap,
2494 		       link);
2495 	}
2496 
2497 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2498 	if (err) {
2499 		bpf_link_cleanup(&link_primer);
2500 		return err;
2501 	}
2502 
2503 	return bpf_link_settle(&link_primer);
2504 
2505 error:
2506 	kfree(link);
2507 	kvfree(addrs);
2508 	kvfree(cookies);
2509 	return err;
2510 }
2511 #else /* !CONFIG_FPROBE */
2512 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2513 {
2514 	return -EOPNOTSUPP;
2515 }
2516 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2517 {
2518 	return 0;
2519 }
2520 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2521 {
2522 	return 0;
2523 }
2524 #endif
2525