1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_perf_event.h> 13 #include <linux/filter.h> 14 #include <linux/uaccess.h> 15 #include <linux/ctype.h> 16 #include <linux/kprobes.h> 17 #include <linux/error-injection.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 23 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 24 25 /** 26 * trace_call_bpf - invoke BPF program 27 * @call: tracepoint event 28 * @ctx: opaque context pointer 29 * 30 * kprobe handlers execute BPF programs via this helper. 31 * Can be used from static tracepoints in the future. 32 * 33 * Return: BPF programs always return an integer which is interpreted by 34 * kprobe handler as: 35 * 0 - return from kprobe (event is filtered out) 36 * 1 - store kprobe event into ring buffer 37 * Other values are reserved and currently alias to 1 38 */ 39 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 40 { 41 unsigned int ret; 42 43 if (in_nmi()) /* not supported yet */ 44 return 1; 45 46 preempt_disable(); 47 48 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 49 /* 50 * since some bpf program is already running on this cpu, 51 * don't call into another bpf program (same or different) 52 * and don't send kprobe event into ring-buffer, 53 * so return zero here 54 */ 55 ret = 0; 56 goto out; 57 } 58 59 /* 60 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 61 * to all call sites, we did a bpf_prog_array_valid() there to check 62 * whether call->prog_array is empty or not, which is 63 * a heurisitc to speed up execution. 64 * 65 * If bpf_prog_array_valid() fetched prog_array was 66 * non-NULL, we go into trace_call_bpf() and do the actual 67 * proper rcu_dereference() under RCU lock. 68 * If it turns out that prog_array is NULL then, we bail out. 69 * For the opposite, if the bpf_prog_array_valid() fetched pointer 70 * was NULL, you'll skip the prog_array with the risk of missing 71 * out of events when it was updated in between this and the 72 * rcu_dereference() which is accepted risk. 73 */ 74 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 75 76 out: 77 __this_cpu_dec(bpf_prog_active); 78 preempt_enable(); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(trace_call_bpf); 83 84 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 85 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 86 { 87 regs_set_return_value(regs, rc); 88 override_function_with_return(regs); 89 return 0; 90 } 91 92 static const struct bpf_func_proto bpf_override_return_proto = { 93 .func = bpf_override_return, 94 .gpl_only = true, 95 .ret_type = RET_INTEGER, 96 .arg1_type = ARG_PTR_TO_CTX, 97 .arg2_type = ARG_ANYTHING, 98 }; 99 #endif 100 101 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 102 { 103 int ret; 104 105 ret = probe_kernel_read(dst, unsafe_ptr, size); 106 if (unlikely(ret < 0)) 107 memset(dst, 0, size); 108 109 return ret; 110 } 111 112 static const struct bpf_func_proto bpf_probe_read_proto = { 113 .func = bpf_probe_read, 114 .gpl_only = true, 115 .ret_type = RET_INTEGER, 116 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 117 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 118 .arg3_type = ARG_ANYTHING, 119 }; 120 121 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 122 u32, size) 123 { 124 /* 125 * Ensure we're in user context which is safe for the helper to 126 * run. This helper has no business in a kthread. 127 * 128 * access_ok() should prevent writing to non-user memory, but in 129 * some situations (nommu, temporary switch, etc) access_ok() does 130 * not provide enough validation, hence the check on KERNEL_DS. 131 */ 132 133 if (unlikely(in_interrupt() || 134 current->flags & (PF_KTHREAD | PF_EXITING))) 135 return -EPERM; 136 if (unlikely(uaccess_kernel())) 137 return -EPERM; 138 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size)) 139 return -EPERM; 140 141 return probe_kernel_write(unsafe_ptr, src, size); 142 } 143 144 static const struct bpf_func_proto bpf_probe_write_user_proto = { 145 .func = bpf_probe_write_user, 146 .gpl_only = true, 147 .ret_type = RET_INTEGER, 148 .arg1_type = ARG_ANYTHING, 149 .arg2_type = ARG_PTR_TO_MEM, 150 .arg3_type = ARG_CONST_SIZE, 151 }; 152 153 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 154 { 155 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 156 current->comm, task_pid_nr(current)); 157 158 return &bpf_probe_write_user_proto; 159 } 160 161 /* 162 * Only limited trace_printk() conversion specifiers allowed: 163 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 164 */ 165 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 166 u64, arg2, u64, arg3) 167 { 168 bool str_seen = false; 169 int mod[3] = {}; 170 int fmt_cnt = 0; 171 u64 unsafe_addr; 172 char buf[64]; 173 int i; 174 175 /* 176 * bpf_check()->check_func_arg()->check_stack_boundary() 177 * guarantees that fmt points to bpf program stack, 178 * fmt_size bytes of it were initialized and fmt_size > 0 179 */ 180 if (fmt[--fmt_size] != 0) 181 return -EINVAL; 182 183 /* check format string for allowed specifiers */ 184 for (i = 0; i < fmt_size; i++) { 185 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 186 return -EINVAL; 187 188 if (fmt[i] != '%') 189 continue; 190 191 if (fmt_cnt >= 3) 192 return -EINVAL; 193 194 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 195 i++; 196 if (fmt[i] == 'l') { 197 mod[fmt_cnt]++; 198 i++; 199 } else if (fmt[i] == 'p' || fmt[i] == 's') { 200 mod[fmt_cnt]++; 201 i++; 202 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0) 203 return -EINVAL; 204 fmt_cnt++; 205 if (fmt[i - 1] == 's') { 206 if (str_seen) 207 /* allow only one '%s' per fmt string */ 208 return -EINVAL; 209 str_seen = true; 210 211 switch (fmt_cnt) { 212 case 1: 213 unsafe_addr = arg1; 214 arg1 = (long) buf; 215 break; 216 case 2: 217 unsafe_addr = arg2; 218 arg2 = (long) buf; 219 break; 220 case 3: 221 unsafe_addr = arg3; 222 arg3 = (long) buf; 223 break; 224 } 225 buf[0] = 0; 226 strncpy_from_unsafe(buf, 227 (void *) (long) unsafe_addr, 228 sizeof(buf)); 229 } 230 continue; 231 } 232 233 if (fmt[i] == 'l') { 234 mod[fmt_cnt]++; 235 i++; 236 } 237 238 if (fmt[i] != 'i' && fmt[i] != 'd' && 239 fmt[i] != 'u' && fmt[i] != 'x') 240 return -EINVAL; 241 fmt_cnt++; 242 } 243 244 /* Horrid workaround for getting va_list handling working with different 245 * argument type combinations generically for 32 and 64 bit archs. 246 */ 247 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 248 #define __BPF_TP(...) \ 249 __trace_printk(0 /* Fake ip */, \ 250 fmt, ##__VA_ARGS__) 251 252 #define __BPF_ARG1_TP(...) \ 253 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 254 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 255 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 256 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 257 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 258 259 #define __BPF_ARG2_TP(...) \ 260 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 261 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 262 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 263 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 264 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 265 266 #define __BPF_ARG3_TP(...) \ 267 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 268 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 269 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 270 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 271 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 272 273 return __BPF_TP_EMIT(); 274 } 275 276 static const struct bpf_func_proto bpf_trace_printk_proto = { 277 .func = bpf_trace_printk, 278 .gpl_only = true, 279 .ret_type = RET_INTEGER, 280 .arg1_type = ARG_PTR_TO_MEM, 281 .arg2_type = ARG_CONST_SIZE, 282 }; 283 284 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 285 { 286 /* 287 * this program might be calling bpf_trace_printk, 288 * so allocate per-cpu printk buffers 289 */ 290 trace_printk_init_buffers(); 291 292 return &bpf_trace_printk_proto; 293 } 294 295 static __always_inline int 296 get_map_perf_counter(struct bpf_map *map, u64 flags, 297 u64 *value, u64 *enabled, u64 *running) 298 { 299 struct bpf_array *array = container_of(map, struct bpf_array, map); 300 unsigned int cpu = smp_processor_id(); 301 u64 index = flags & BPF_F_INDEX_MASK; 302 struct bpf_event_entry *ee; 303 304 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 305 return -EINVAL; 306 if (index == BPF_F_CURRENT_CPU) 307 index = cpu; 308 if (unlikely(index >= array->map.max_entries)) 309 return -E2BIG; 310 311 ee = READ_ONCE(array->ptrs[index]); 312 if (!ee) 313 return -ENOENT; 314 315 return perf_event_read_local(ee->event, value, enabled, running); 316 } 317 318 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 319 { 320 u64 value = 0; 321 int err; 322 323 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 324 /* 325 * this api is ugly since we miss [-22..-2] range of valid 326 * counter values, but that's uapi 327 */ 328 if (err) 329 return err; 330 return value; 331 } 332 333 static const struct bpf_func_proto bpf_perf_event_read_proto = { 334 .func = bpf_perf_event_read, 335 .gpl_only = true, 336 .ret_type = RET_INTEGER, 337 .arg1_type = ARG_CONST_MAP_PTR, 338 .arg2_type = ARG_ANYTHING, 339 }; 340 341 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 342 struct bpf_perf_event_value *, buf, u32, size) 343 { 344 int err = -EINVAL; 345 346 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 347 goto clear; 348 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 349 &buf->running); 350 if (unlikely(err)) 351 goto clear; 352 return 0; 353 clear: 354 memset(buf, 0, size); 355 return err; 356 } 357 358 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 359 .func = bpf_perf_event_read_value, 360 .gpl_only = true, 361 .ret_type = RET_INTEGER, 362 .arg1_type = ARG_CONST_MAP_PTR, 363 .arg2_type = ARG_ANYTHING, 364 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 365 .arg4_type = ARG_CONST_SIZE, 366 }; 367 368 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd); 369 370 static __always_inline u64 371 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 372 u64 flags, struct perf_sample_data *sd) 373 { 374 struct bpf_array *array = container_of(map, struct bpf_array, map); 375 unsigned int cpu = smp_processor_id(); 376 u64 index = flags & BPF_F_INDEX_MASK; 377 struct bpf_event_entry *ee; 378 struct perf_event *event; 379 380 if (index == BPF_F_CURRENT_CPU) 381 index = cpu; 382 if (unlikely(index >= array->map.max_entries)) 383 return -E2BIG; 384 385 ee = READ_ONCE(array->ptrs[index]); 386 if (!ee) 387 return -ENOENT; 388 389 event = ee->event; 390 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 391 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 392 return -EINVAL; 393 394 if (unlikely(event->oncpu != cpu)) 395 return -EOPNOTSUPP; 396 397 perf_event_output(event, sd, regs); 398 return 0; 399 } 400 401 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 402 u64, flags, void *, data, u64, size) 403 { 404 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd); 405 struct perf_raw_record raw = { 406 .frag = { 407 .size = size, 408 .data = data, 409 }, 410 }; 411 412 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 413 return -EINVAL; 414 415 perf_sample_data_init(sd, 0, 0); 416 sd->raw = &raw; 417 418 return __bpf_perf_event_output(regs, map, flags, sd); 419 } 420 421 static const struct bpf_func_proto bpf_perf_event_output_proto = { 422 .func = bpf_perf_event_output, 423 .gpl_only = true, 424 .ret_type = RET_INTEGER, 425 .arg1_type = ARG_PTR_TO_CTX, 426 .arg2_type = ARG_CONST_MAP_PTR, 427 .arg3_type = ARG_ANYTHING, 428 .arg4_type = ARG_PTR_TO_MEM, 429 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 430 }; 431 432 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 433 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd); 434 435 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 436 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 437 { 438 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd); 439 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 440 struct perf_raw_frag frag = { 441 .copy = ctx_copy, 442 .size = ctx_size, 443 .data = ctx, 444 }; 445 struct perf_raw_record raw = { 446 .frag = { 447 { 448 .next = ctx_size ? &frag : NULL, 449 }, 450 .size = meta_size, 451 .data = meta, 452 }, 453 }; 454 455 perf_fetch_caller_regs(regs); 456 perf_sample_data_init(sd, 0, 0); 457 sd->raw = &raw; 458 459 return __bpf_perf_event_output(regs, map, flags, sd); 460 } 461 462 BPF_CALL_0(bpf_get_current_task) 463 { 464 return (long) current; 465 } 466 467 static const struct bpf_func_proto bpf_get_current_task_proto = { 468 .func = bpf_get_current_task, 469 .gpl_only = true, 470 .ret_type = RET_INTEGER, 471 }; 472 473 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 474 { 475 struct bpf_array *array = container_of(map, struct bpf_array, map); 476 struct cgroup *cgrp; 477 478 if (unlikely(idx >= array->map.max_entries)) 479 return -E2BIG; 480 481 cgrp = READ_ONCE(array->ptrs[idx]); 482 if (unlikely(!cgrp)) 483 return -EAGAIN; 484 485 return task_under_cgroup_hierarchy(current, cgrp); 486 } 487 488 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 489 .func = bpf_current_task_under_cgroup, 490 .gpl_only = false, 491 .ret_type = RET_INTEGER, 492 .arg1_type = ARG_CONST_MAP_PTR, 493 .arg2_type = ARG_ANYTHING, 494 }; 495 496 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 497 const void *, unsafe_ptr) 498 { 499 int ret; 500 501 /* 502 * The strncpy_from_unsafe() call will likely not fill the entire 503 * buffer, but that's okay in this circumstance as we're probing 504 * arbitrary memory anyway similar to bpf_probe_read() and might 505 * as well probe the stack. Thus, memory is explicitly cleared 506 * only in error case, so that improper users ignoring return 507 * code altogether don't copy garbage; otherwise length of string 508 * is returned that can be used for bpf_perf_event_output() et al. 509 */ 510 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 511 if (unlikely(ret < 0)) 512 memset(dst, 0, size); 513 514 return ret; 515 } 516 517 static const struct bpf_func_proto bpf_probe_read_str_proto = { 518 .func = bpf_probe_read_str, 519 .gpl_only = true, 520 .ret_type = RET_INTEGER, 521 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 522 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 523 .arg3_type = ARG_ANYTHING, 524 }; 525 526 static const struct bpf_func_proto * 527 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 528 { 529 switch (func_id) { 530 case BPF_FUNC_map_lookup_elem: 531 return &bpf_map_lookup_elem_proto; 532 case BPF_FUNC_map_update_elem: 533 return &bpf_map_update_elem_proto; 534 case BPF_FUNC_map_delete_elem: 535 return &bpf_map_delete_elem_proto; 536 case BPF_FUNC_probe_read: 537 return &bpf_probe_read_proto; 538 case BPF_FUNC_ktime_get_ns: 539 return &bpf_ktime_get_ns_proto; 540 case BPF_FUNC_tail_call: 541 return &bpf_tail_call_proto; 542 case BPF_FUNC_get_current_pid_tgid: 543 return &bpf_get_current_pid_tgid_proto; 544 case BPF_FUNC_get_current_task: 545 return &bpf_get_current_task_proto; 546 case BPF_FUNC_get_current_uid_gid: 547 return &bpf_get_current_uid_gid_proto; 548 case BPF_FUNC_get_current_comm: 549 return &bpf_get_current_comm_proto; 550 case BPF_FUNC_trace_printk: 551 return bpf_get_trace_printk_proto(); 552 case BPF_FUNC_get_smp_processor_id: 553 return &bpf_get_smp_processor_id_proto; 554 case BPF_FUNC_get_numa_node_id: 555 return &bpf_get_numa_node_id_proto; 556 case BPF_FUNC_perf_event_read: 557 return &bpf_perf_event_read_proto; 558 case BPF_FUNC_probe_write_user: 559 return bpf_get_probe_write_proto(); 560 case BPF_FUNC_current_task_under_cgroup: 561 return &bpf_current_task_under_cgroup_proto; 562 case BPF_FUNC_get_prandom_u32: 563 return &bpf_get_prandom_u32_proto; 564 case BPF_FUNC_probe_read_str: 565 return &bpf_probe_read_str_proto; 566 default: 567 return NULL; 568 } 569 } 570 571 static const struct bpf_func_proto * 572 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 573 { 574 switch (func_id) { 575 case BPF_FUNC_perf_event_output: 576 return &bpf_perf_event_output_proto; 577 case BPF_FUNC_get_stackid: 578 return &bpf_get_stackid_proto; 579 case BPF_FUNC_get_stack: 580 return &bpf_get_stack_proto; 581 case BPF_FUNC_perf_event_read_value: 582 return &bpf_perf_event_read_value_proto; 583 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 584 case BPF_FUNC_override_return: 585 return &bpf_override_return_proto; 586 #endif 587 default: 588 return tracing_func_proto(func_id, prog); 589 } 590 } 591 592 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 593 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 594 const struct bpf_prog *prog, 595 struct bpf_insn_access_aux *info) 596 { 597 if (off < 0 || off >= sizeof(struct pt_regs)) 598 return false; 599 if (type != BPF_READ) 600 return false; 601 if (off % size != 0) 602 return false; 603 /* 604 * Assertion for 32 bit to make sure last 8 byte access 605 * (BPF_DW) to the last 4 byte member is disallowed. 606 */ 607 if (off + size > sizeof(struct pt_regs)) 608 return false; 609 610 return true; 611 } 612 613 const struct bpf_verifier_ops kprobe_verifier_ops = { 614 .get_func_proto = kprobe_prog_func_proto, 615 .is_valid_access = kprobe_prog_is_valid_access, 616 }; 617 618 const struct bpf_prog_ops kprobe_prog_ops = { 619 }; 620 621 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 622 u64, flags, void *, data, u64, size) 623 { 624 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 625 626 /* 627 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 628 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 629 * from there and call the same bpf_perf_event_output() helper inline. 630 */ 631 return ____bpf_perf_event_output(regs, map, flags, data, size); 632 } 633 634 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 635 .func = bpf_perf_event_output_tp, 636 .gpl_only = true, 637 .ret_type = RET_INTEGER, 638 .arg1_type = ARG_PTR_TO_CTX, 639 .arg2_type = ARG_CONST_MAP_PTR, 640 .arg3_type = ARG_ANYTHING, 641 .arg4_type = ARG_PTR_TO_MEM, 642 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 643 }; 644 645 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 646 u64, flags) 647 { 648 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 649 650 /* 651 * Same comment as in bpf_perf_event_output_tp(), only that this time 652 * the other helper's function body cannot be inlined due to being 653 * external, thus we need to call raw helper function. 654 */ 655 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 656 flags, 0, 0); 657 } 658 659 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 660 .func = bpf_get_stackid_tp, 661 .gpl_only = true, 662 .ret_type = RET_INTEGER, 663 .arg1_type = ARG_PTR_TO_CTX, 664 .arg2_type = ARG_CONST_MAP_PTR, 665 .arg3_type = ARG_ANYTHING, 666 }; 667 668 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 669 u64, flags) 670 { 671 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 672 673 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 674 (unsigned long) size, flags, 0); 675 } 676 677 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 678 .func = bpf_get_stack_tp, 679 .gpl_only = true, 680 .ret_type = RET_INTEGER, 681 .arg1_type = ARG_PTR_TO_CTX, 682 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 683 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 684 .arg4_type = ARG_ANYTHING, 685 }; 686 687 static const struct bpf_func_proto * 688 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 689 { 690 switch (func_id) { 691 case BPF_FUNC_perf_event_output: 692 return &bpf_perf_event_output_proto_tp; 693 case BPF_FUNC_get_stackid: 694 return &bpf_get_stackid_proto_tp; 695 case BPF_FUNC_get_stack: 696 return &bpf_get_stack_proto_tp; 697 default: 698 return tracing_func_proto(func_id, prog); 699 } 700 } 701 702 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 703 const struct bpf_prog *prog, 704 struct bpf_insn_access_aux *info) 705 { 706 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 707 return false; 708 if (type != BPF_READ) 709 return false; 710 if (off % size != 0) 711 return false; 712 713 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 714 return true; 715 } 716 717 const struct bpf_verifier_ops tracepoint_verifier_ops = { 718 .get_func_proto = tp_prog_func_proto, 719 .is_valid_access = tp_prog_is_valid_access, 720 }; 721 722 const struct bpf_prog_ops tracepoint_prog_ops = { 723 }; 724 725 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 726 struct bpf_perf_event_value *, buf, u32, size) 727 { 728 int err = -EINVAL; 729 730 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 731 goto clear; 732 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 733 &buf->running); 734 if (unlikely(err)) 735 goto clear; 736 return 0; 737 clear: 738 memset(buf, 0, size); 739 return err; 740 } 741 742 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 743 .func = bpf_perf_prog_read_value, 744 .gpl_only = true, 745 .ret_type = RET_INTEGER, 746 .arg1_type = ARG_PTR_TO_CTX, 747 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 748 .arg3_type = ARG_CONST_SIZE, 749 }; 750 751 static const struct bpf_func_proto * 752 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 753 { 754 switch (func_id) { 755 case BPF_FUNC_perf_event_output: 756 return &bpf_perf_event_output_proto_tp; 757 case BPF_FUNC_get_stackid: 758 return &bpf_get_stackid_proto_tp; 759 case BPF_FUNC_get_stack: 760 return &bpf_get_stack_proto_tp; 761 case BPF_FUNC_perf_prog_read_value: 762 return &bpf_perf_prog_read_value_proto; 763 default: 764 return tracing_func_proto(func_id, prog); 765 } 766 } 767 768 /* 769 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 770 * to avoid potential recursive reuse issue when/if tracepoints are added 771 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack 772 */ 773 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs); 774 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 775 struct bpf_map *, map, u64, flags, void *, data, u64, size) 776 { 777 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 778 779 perf_fetch_caller_regs(regs); 780 return ____bpf_perf_event_output(regs, map, flags, data, size); 781 } 782 783 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 784 .func = bpf_perf_event_output_raw_tp, 785 .gpl_only = true, 786 .ret_type = RET_INTEGER, 787 .arg1_type = ARG_PTR_TO_CTX, 788 .arg2_type = ARG_CONST_MAP_PTR, 789 .arg3_type = ARG_ANYTHING, 790 .arg4_type = ARG_PTR_TO_MEM, 791 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 792 }; 793 794 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 795 struct bpf_map *, map, u64, flags) 796 { 797 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 798 799 perf_fetch_caller_regs(regs); 800 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 801 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 802 flags, 0, 0); 803 } 804 805 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 806 .func = bpf_get_stackid_raw_tp, 807 .gpl_only = true, 808 .ret_type = RET_INTEGER, 809 .arg1_type = ARG_PTR_TO_CTX, 810 .arg2_type = ARG_CONST_MAP_PTR, 811 .arg3_type = ARG_ANYTHING, 812 }; 813 814 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 815 void *, buf, u32, size, u64, flags) 816 { 817 struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs); 818 819 perf_fetch_caller_regs(regs); 820 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 821 (unsigned long) size, flags, 0); 822 } 823 824 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 825 .func = bpf_get_stack_raw_tp, 826 .gpl_only = true, 827 .ret_type = RET_INTEGER, 828 .arg1_type = ARG_PTR_TO_CTX, 829 .arg2_type = ARG_PTR_TO_MEM, 830 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 831 .arg4_type = ARG_ANYTHING, 832 }; 833 834 static const struct bpf_func_proto * 835 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 836 { 837 switch (func_id) { 838 case BPF_FUNC_perf_event_output: 839 return &bpf_perf_event_output_proto_raw_tp; 840 case BPF_FUNC_get_stackid: 841 return &bpf_get_stackid_proto_raw_tp; 842 case BPF_FUNC_get_stack: 843 return &bpf_get_stack_proto_raw_tp; 844 default: 845 return tracing_func_proto(func_id, prog); 846 } 847 } 848 849 static bool raw_tp_prog_is_valid_access(int off, int size, 850 enum bpf_access_type type, 851 const struct bpf_prog *prog, 852 struct bpf_insn_access_aux *info) 853 { 854 /* largest tracepoint in the kernel has 12 args */ 855 if (off < 0 || off >= sizeof(__u64) * 12) 856 return false; 857 if (type != BPF_READ) 858 return false; 859 if (off % size != 0) 860 return false; 861 return true; 862 } 863 864 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 865 .get_func_proto = raw_tp_prog_func_proto, 866 .is_valid_access = raw_tp_prog_is_valid_access, 867 }; 868 869 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 870 }; 871 872 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 873 const struct bpf_prog *prog, 874 struct bpf_insn_access_aux *info) 875 { 876 const int size_u64 = sizeof(u64); 877 878 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 879 return false; 880 if (type != BPF_READ) 881 return false; 882 if (off % size != 0) 883 return false; 884 885 switch (off) { 886 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 887 bpf_ctx_record_field_size(info, size_u64); 888 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 889 return false; 890 break; 891 case bpf_ctx_range(struct bpf_perf_event_data, addr): 892 bpf_ctx_record_field_size(info, size_u64); 893 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 894 return false; 895 break; 896 default: 897 if (size != sizeof(long)) 898 return false; 899 } 900 901 return true; 902 } 903 904 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 905 const struct bpf_insn *si, 906 struct bpf_insn *insn_buf, 907 struct bpf_prog *prog, u32 *target_size) 908 { 909 struct bpf_insn *insn = insn_buf; 910 911 switch (si->off) { 912 case offsetof(struct bpf_perf_event_data, sample_period): 913 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 914 data), si->dst_reg, si->src_reg, 915 offsetof(struct bpf_perf_event_data_kern, data)); 916 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 917 bpf_target_off(struct perf_sample_data, period, 8, 918 target_size)); 919 break; 920 case offsetof(struct bpf_perf_event_data, addr): 921 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 922 data), si->dst_reg, si->src_reg, 923 offsetof(struct bpf_perf_event_data_kern, data)); 924 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 925 bpf_target_off(struct perf_sample_data, addr, 8, 926 target_size)); 927 break; 928 default: 929 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 930 regs), si->dst_reg, si->src_reg, 931 offsetof(struct bpf_perf_event_data_kern, regs)); 932 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 933 si->off); 934 break; 935 } 936 937 return insn - insn_buf; 938 } 939 940 const struct bpf_verifier_ops perf_event_verifier_ops = { 941 .get_func_proto = pe_prog_func_proto, 942 .is_valid_access = pe_prog_is_valid_access, 943 .convert_ctx_access = pe_prog_convert_ctx_access, 944 }; 945 946 const struct bpf_prog_ops perf_event_prog_ops = { 947 }; 948 949 static DEFINE_MUTEX(bpf_event_mutex); 950 951 #define BPF_TRACE_MAX_PROGS 64 952 953 int perf_event_attach_bpf_prog(struct perf_event *event, 954 struct bpf_prog *prog) 955 { 956 struct bpf_prog_array __rcu *old_array; 957 struct bpf_prog_array *new_array; 958 int ret = -EEXIST; 959 960 /* 961 * Kprobe override only works if they are on the function entry, 962 * and only if they are on the opt-in list. 963 */ 964 if (prog->kprobe_override && 965 (!trace_kprobe_on_func_entry(event->tp_event) || 966 !trace_kprobe_error_injectable(event->tp_event))) 967 return -EINVAL; 968 969 mutex_lock(&bpf_event_mutex); 970 971 if (event->prog) 972 goto unlock; 973 974 old_array = event->tp_event->prog_array; 975 if (old_array && 976 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 977 ret = -E2BIG; 978 goto unlock; 979 } 980 981 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 982 if (ret < 0) 983 goto unlock; 984 985 /* set the new array to event->tp_event and set event->prog */ 986 event->prog = prog; 987 rcu_assign_pointer(event->tp_event->prog_array, new_array); 988 bpf_prog_array_free(old_array); 989 990 unlock: 991 mutex_unlock(&bpf_event_mutex); 992 return ret; 993 } 994 995 void perf_event_detach_bpf_prog(struct perf_event *event) 996 { 997 struct bpf_prog_array __rcu *old_array; 998 struct bpf_prog_array *new_array; 999 int ret; 1000 1001 mutex_lock(&bpf_event_mutex); 1002 1003 if (!event->prog) 1004 goto unlock; 1005 1006 old_array = event->tp_event->prog_array; 1007 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1008 if (ret < 0) { 1009 bpf_prog_array_delete_safe(old_array, event->prog); 1010 } else { 1011 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1012 bpf_prog_array_free(old_array); 1013 } 1014 1015 bpf_prog_put(event->prog); 1016 event->prog = NULL; 1017 1018 unlock: 1019 mutex_unlock(&bpf_event_mutex); 1020 } 1021 1022 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1023 { 1024 struct perf_event_query_bpf __user *uquery = info; 1025 struct perf_event_query_bpf query = {}; 1026 u32 *ids, prog_cnt, ids_len; 1027 int ret; 1028 1029 if (!capable(CAP_SYS_ADMIN)) 1030 return -EPERM; 1031 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1032 return -EINVAL; 1033 if (copy_from_user(&query, uquery, sizeof(query))) 1034 return -EFAULT; 1035 1036 ids_len = query.ids_len; 1037 if (ids_len > BPF_TRACE_MAX_PROGS) 1038 return -E2BIG; 1039 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1040 if (!ids) 1041 return -ENOMEM; 1042 /* 1043 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1044 * is required when user only wants to check for uquery->prog_cnt. 1045 * There is no need to check for it since the case is handled 1046 * gracefully in bpf_prog_array_copy_info. 1047 */ 1048 1049 mutex_lock(&bpf_event_mutex); 1050 ret = bpf_prog_array_copy_info(event->tp_event->prog_array, 1051 ids, 1052 ids_len, 1053 &prog_cnt); 1054 mutex_unlock(&bpf_event_mutex); 1055 1056 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1057 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1058 ret = -EFAULT; 1059 1060 kfree(ids); 1061 return ret; 1062 } 1063 1064 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1065 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1066 1067 struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name) 1068 { 1069 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1070 1071 for (; btp < __stop__bpf_raw_tp; btp++) { 1072 if (!strcmp(btp->tp->name, name)) 1073 return btp; 1074 } 1075 return NULL; 1076 } 1077 1078 static __always_inline 1079 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1080 { 1081 rcu_read_lock(); 1082 preempt_disable(); 1083 (void) BPF_PROG_RUN(prog, args); 1084 preempt_enable(); 1085 rcu_read_unlock(); 1086 } 1087 1088 #define UNPACK(...) __VA_ARGS__ 1089 #define REPEAT_1(FN, DL, X, ...) FN(X) 1090 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1091 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1092 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1093 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1094 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1095 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1096 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1097 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1098 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1099 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1100 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1101 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1102 1103 #define SARG(X) u64 arg##X 1104 #define COPY(X) args[X] = arg##X 1105 1106 #define __DL_COM (,) 1107 #define __DL_SEM (;) 1108 1109 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1110 1111 #define BPF_TRACE_DEFN_x(x) \ 1112 void bpf_trace_run##x(struct bpf_prog *prog, \ 1113 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1114 { \ 1115 u64 args[x]; \ 1116 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1117 __bpf_trace_run(prog, args); \ 1118 } \ 1119 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1120 BPF_TRACE_DEFN_x(1); 1121 BPF_TRACE_DEFN_x(2); 1122 BPF_TRACE_DEFN_x(3); 1123 BPF_TRACE_DEFN_x(4); 1124 BPF_TRACE_DEFN_x(5); 1125 BPF_TRACE_DEFN_x(6); 1126 BPF_TRACE_DEFN_x(7); 1127 BPF_TRACE_DEFN_x(8); 1128 BPF_TRACE_DEFN_x(9); 1129 BPF_TRACE_DEFN_x(10); 1130 BPF_TRACE_DEFN_x(11); 1131 BPF_TRACE_DEFN_x(12); 1132 1133 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1134 { 1135 struct tracepoint *tp = btp->tp; 1136 1137 /* 1138 * check that program doesn't access arguments beyond what's 1139 * available in this tracepoint 1140 */ 1141 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1142 return -EINVAL; 1143 1144 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1145 } 1146 1147 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1148 { 1149 int err; 1150 1151 mutex_lock(&bpf_event_mutex); 1152 err = __bpf_probe_register(btp, prog); 1153 mutex_unlock(&bpf_event_mutex); 1154 return err; 1155 } 1156 1157 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1158 { 1159 int err; 1160 1161 mutex_lock(&bpf_event_mutex); 1162 err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1163 mutex_unlock(&bpf_event_mutex); 1164 return err; 1165 } 1166