xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #define bpf_event_rcu_dereference(p)					\
23 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24 
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 	struct module *module;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33 
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 	struct bpf_raw_event_map *btp, *ret = NULL;
37 	struct bpf_trace_module *btm;
38 	unsigned int i;
39 
40 	mutex_lock(&bpf_module_mutex);
41 	list_for_each_entry(btm, &bpf_trace_modules, list) {
42 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 			btp = &btm->module->bpf_raw_events[i];
44 			if (!strcmp(btp->tp->name, name)) {
45 				if (try_module_get(btm->module))
46 					ret = btp;
47 				goto out;
48 			}
49 		}
50 	}
51 out:
52 	mutex_unlock(&bpf_module_mutex);
53 	return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61 
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64 
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 	unsigned int ret;
82 
83 	if (in_nmi()) /* not supported yet */
84 		return 1;
85 
86 	preempt_disable();
87 
88 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 		/*
90 		 * since some bpf program is already running on this cpu,
91 		 * don't call into another bpf program (same or different)
92 		 * and don't send kprobe event into ring-buffer,
93 		 * so return zero here
94 		 */
95 		ret = 0;
96 		goto out;
97 	}
98 
99 	/*
100 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 	 * to all call sites, we did a bpf_prog_array_valid() there to check
102 	 * whether call->prog_array is empty or not, which is
103 	 * a heurisitc to speed up execution.
104 	 *
105 	 * If bpf_prog_array_valid() fetched prog_array was
106 	 * non-NULL, we go into trace_call_bpf() and do the actual
107 	 * proper rcu_dereference() under RCU lock.
108 	 * If it turns out that prog_array is NULL then, we bail out.
109 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 	 * was NULL, you'll skip the prog_array with the risk of missing
111 	 * out of events when it was updated in between this and the
112 	 * rcu_dereference() which is accepted risk.
113 	 */
114 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115 
116  out:
117 	__this_cpu_dec(bpf_prog_active);
118 	preempt_enable();
119 
120 	return ret;
121 }
122 EXPORT_SYMBOL_GPL(trace_call_bpf);
123 
124 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
125 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
126 {
127 	regs_set_return_value(regs, rc);
128 	override_function_with_return(regs);
129 	return 0;
130 }
131 
132 static const struct bpf_func_proto bpf_override_return_proto = {
133 	.func		= bpf_override_return,
134 	.gpl_only	= true,
135 	.ret_type	= RET_INTEGER,
136 	.arg1_type	= ARG_PTR_TO_CTX,
137 	.arg2_type	= ARG_ANYTHING,
138 };
139 #endif
140 
141 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
142 {
143 	int ret;
144 
145 	ret = probe_kernel_read(dst, unsafe_ptr, size);
146 	if (unlikely(ret < 0))
147 		memset(dst, 0, size);
148 
149 	return ret;
150 }
151 
152 static const struct bpf_func_proto bpf_probe_read_proto = {
153 	.func		= bpf_probe_read,
154 	.gpl_only	= true,
155 	.ret_type	= RET_INTEGER,
156 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
157 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
158 	.arg3_type	= ARG_ANYTHING,
159 };
160 
161 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
162 	   u32, size)
163 {
164 	/*
165 	 * Ensure we're in user context which is safe for the helper to
166 	 * run. This helper has no business in a kthread.
167 	 *
168 	 * access_ok() should prevent writing to non-user memory, but in
169 	 * some situations (nommu, temporary switch, etc) access_ok() does
170 	 * not provide enough validation, hence the check on KERNEL_DS.
171 	 *
172 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
173 	 * state, when the task or mm are switched. This is specifically
174 	 * required to prevent the use of temporary mm.
175 	 */
176 
177 	if (unlikely(in_interrupt() ||
178 		     current->flags & (PF_KTHREAD | PF_EXITING)))
179 		return -EPERM;
180 	if (unlikely(uaccess_kernel()))
181 		return -EPERM;
182 	if (unlikely(!nmi_uaccess_okay()))
183 		return -EPERM;
184 	if (!access_ok(unsafe_ptr, size))
185 		return -EPERM;
186 
187 	return probe_kernel_write(unsafe_ptr, src, size);
188 }
189 
190 static const struct bpf_func_proto bpf_probe_write_user_proto = {
191 	.func		= bpf_probe_write_user,
192 	.gpl_only	= true,
193 	.ret_type	= RET_INTEGER,
194 	.arg1_type	= ARG_ANYTHING,
195 	.arg2_type	= ARG_PTR_TO_MEM,
196 	.arg3_type	= ARG_CONST_SIZE,
197 };
198 
199 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
200 {
201 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
202 			    current->comm, task_pid_nr(current));
203 
204 	return &bpf_probe_write_user_proto;
205 }
206 
207 /*
208  * Only limited trace_printk() conversion specifiers allowed:
209  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
210  */
211 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
212 	   u64, arg2, u64, arg3)
213 {
214 	bool str_seen = false;
215 	int mod[3] = {};
216 	int fmt_cnt = 0;
217 	u64 unsafe_addr;
218 	char buf[64];
219 	int i;
220 
221 	/*
222 	 * bpf_check()->check_func_arg()->check_stack_boundary()
223 	 * guarantees that fmt points to bpf program stack,
224 	 * fmt_size bytes of it were initialized and fmt_size > 0
225 	 */
226 	if (fmt[--fmt_size] != 0)
227 		return -EINVAL;
228 
229 	/* check format string for allowed specifiers */
230 	for (i = 0; i < fmt_size; i++) {
231 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
232 			return -EINVAL;
233 
234 		if (fmt[i] != '%')
235 			continue;
236 
237 		if (fmt_cnt >= 3)
238 			return -EINVAL;
239 
240 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
241 		i++;
242 		if (fmt[i] == 'l') {
243 			mod[fmt_cnt]++;
244 			i++;
245 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
246 			mod[fmt_cnt]++;
247 			/* disallow any further format extensions */
248 			if (fmt[i + 1] != 0 &&
249 			    !isspace(fmt[i + 1]) &&
250 			    !ispunct(fmt[i + 1]))
251 				return -EINVAL;
252 			fmt_cnt++;
253 			if (fmt[i] == 's') {
254 				if (str_seen)
255 					/* allow only one '%s' per fmt string */
256 					return -EINVAL;
257 				str_seen = true;
258 
259 				switch (fmt_cnt) {
260 				case 1:
261 					unsafe_addr = arg1;
262 					arg1 = (long) buf;
263 					break;
264 				case 2:
265 					unsafe_addr = arg2;
266 					arg2 = (long) buf;
267 					break;
268 				case 3:
269 					unsafe_addr = arg3;
270 					arg3 = (long) buf;
271 					break;
272 				}
273 				buf[0] = 0;
274 				strncpy_from_unsafe(buf,
275 						    (void *) (long) unsafe_addr,
276 						    sizeof(buf));
277 			}
278 			continue;
279 		}
280 
281 		if (fmt[i] == 'l') {
282 			mod[fmt_cnt]++;
283 			i++;
284 		}
285 
286 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
287 		    fmt[i] != 'u' && fmt[i] != 'x')
288 			return -EINVAL;
289 		fmt_cnt++;
290 	}
291 
292 /* Horrid workaround for getting va_list handling working with different
293  * argument type combinations generically for 32 and 64 bit archs.
294  */
295 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
296 #define __BPF_TP(...)							\
297 	__trace_printk(0 /* Fake ip */,					\
298 		       fmt, ##__VA_ARGS__)
299 
300 #define __BPF_ARG1_TP(...)						\
301 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
302 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
303 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
304 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
305 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
306 
307 #define __BPF_ARG2_TP(...)						\
308 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
309 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
310 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
311 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
312 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
313 
314 #define __BPF_ARG3_TP(...)						\
315 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
316 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
317 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
318 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
319 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
320 
321 	return __BPF_TP_EMIT();
322 }
323 
324 static const struct bpf_func_proto bpf_trace_printk_proto = {
325 	.func		= bpf_trace_printk,
326 	.gpl_only	= true,
327 	.ret_type	= RET_INTEGER,
328 	.arg1_type	= ARG_PTR_TO_MEM,
329 	.arg2_type	= ARG_CONST_SIZE,
330 };
331 
332 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
333 {
334 	/*
335 	 * this program might be calling bpf_trace_printk,
336 	 * so allocate per-cpu printk buffers
337 	 */
338 	trace_printk_init_buffers();
339 
340 	return &bpf_trace_printk_proto;
341 }
342 
343 static __always_inline int
344 get_map_perf_counter(struct bpf_map *map, u64 flags,
345 		     u64 *value, u64 *enabled, u64 *running)
346 {
347 	struct bpf_array *array = container_of(map, struct bpf_array, map);
348 	unsigned int cpu = smp_processor_id();
349 	u64 index = flags & BPF_F_INDEX_MASK;
350 	struct bpf_event_entry *ee;
351 
352 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
353 		return -EINVAL;
354 	if (index == BPF_F_CURRENT_CPU)
355 		index = cpu;
356 	if (unlikely(index >= array->map.max_entries))
357 		return -E2BIG;
358 
359 	ee = READ_ONCE(array->ptrs[index]);
360 	if (!ee)
361 		return -ENOENT;
362 
363 	return perf_event_read_local(ee->event, value, enabled, running);
364 }
365 
366 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
367 {
368 	u64 value = 0;
369 	int err;
370 
371 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
372 	/*
373 	 * this api is ugly since we miss [-22..-2] range of valid
374 	 * counter values, but that's uapi
375 	 */
376 	if (err)
377 		return err;
378 	return value;
379 }
380 
381 static const struct bpf_func_proto bpf_perf_event_read_proto = {
382 	.func		= bpf_perf_event_read,
383 	.gpl_only	= true,
384 	.ret_type	= RET_INTEGER,
385 	.arg1_type	= ARG_CONST_MAP_PTR,
386 	.arg2_type	= ARG_ANYTHING,
387 };
388 
389 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
390 	   struct bpf_perf_event_value *, buf, u32, size)
391 {
392 	int err = -EINVAL;
393 
394 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
395 		goto clear;
396 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
397 				   &buf->running);
398 	if (unlikely(err))
399 		goto clear;
400 	return 0;
401 clear:
402 	memset(buf, 0, size);
403 	return err;
404 }
405 
406 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
407 	.func		= bpf_perf_event_read_value,
408 	.gpl_only	= true,
409 	.ret_type	= RET_INTEGER,
410 	.arg1_type	= ARG_CONST_MAP_PTR,
411 	.arg2_type	= ARG_ANYTHING,
412 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
413 	.arg4_type	= ARG_CONST_SIZE,
414 };
415 
416 static __always_inline u64
417 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
418 			u64 flags, struct perf_sample_data *sd)
419 {
420 	struct bpf_array *array = container_of(map, struct bpf_array, map);
421 	unsigned int cpu = smp_processor_id();
422 	u64 index = flags & BPF_F_INDEX_MASK;
423 	struct bpf_event_entry *ee;
424 	struct perf_event *event;
425 
426 	if (index == BPF_F_CURRENT_CPU)
427 		index = cpu;
428 	if (unlikely(index >= array->map.max_entries))
429 		return -E2BIG;
430 
431 	ee = READ_ONCE(array->ptrs[index]);
432 	if (!ee)
433 		return -ENOENT;
434 
435 	event = ee->event;
436 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
437 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
438 		return -EINVAL;
439 
440 	if (unlikely(event->oncpu != cpu))
441 		return -EOPNOTSUPP;
442 
443 	return perf_event_output(event, sd, regs);
444 }
445 
446 /*
447  * Support executing tracepoints in normal, irq, and nmi context that each call
448  * bpf_perf_event_output
449  */
450 struct bpf_trace_sample_data {
451 	struct perf_sample_data sds[3];
452 };
453 
454 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
455 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
456 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
457 	   u64, flags, void *, data, u64, size)
458 {
459 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
460 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
461 	struct perf_raw_record raw = {
462 		.frag = {
463 			.size = size,
464 			.data = data,
465 		},
466 	};
467 	struct perf_sample_data *sd;
468 	int err;
469 
470 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
471 		err = -EBUSY;
472 		goto out;
473 	}
474 
475 	sd = &sds->sds[nest_level - 1];
476 
477 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
478 		err = -EINVAL;
479 		goto out;
480 	}
481 
482 	perf_sample_data_init(sd, 0, 0);
483 	sd->raw = &raw;
484 
485 	err = __bpf_perf_event_output(regs, map, flags, sd);
486 
487 out:
488 	this_cpu_dec(bpf_trace_nest_level);
489 	return err;
490 }
491 
492 static const struct bpf_func_proto bpf_perf_event_output_proto = {
493 	.func		= bpf_perf_event_output,
494 	.gpl_only	= true,
495 	.ret_type	= RET_INTEGER,
496 	.arg1_type	= ARG_PTR_TO_CTX,
497 	.arg2_type	= ARG_CONST_MAP_PTR,
498 	.arg3_type	= ARG_ANYTHING,
499 	.arg4_type	= ARG_PTR_TO_MEM,
500 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
501 };
502 
503 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
504 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
505 
506 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
507 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
508 {
509 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
510 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
511 	struct perf_raw_frag frag = {
512 		.copy		= ctx_copy,
513 		.size		= ctx_size,
514 		.data		= ctx,
515 	};
516 	struct perf_raw_record raw = {
517 		.frag = {
518 			{
519 				.next	= ctx_size ? &frag : NULL,
520 			},
521 			.size	= meta_size,
522 			.data	= meta,
523 		},
524 	};
525 
526 	perf_fetch_caller_regs(regs);
527 	perf_sample_data_init(sd, 0, 0);
528 	sd->raw = &raw;
529 
530 	return __bpf_perf_event_output(regs, map, flags, sd);
531 }
532 
533 BPF_CALL_0(bpf_get_current_task)
534 {
535 	return (long) current;
536 }
537 
538 static const struct bpf_func_proto bpf_get_current_task_proto = {
539 	.func		= bpf_get_current_task,
540 	.gpl_only	= true,
541 	.ret_type	= RET_INTEGER,
542 };
543 
544 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
545 {
546 	struct bpf_array *array = container_of(map, struct bpf_array, map);
547 	struct cgroup *cgrp;
548 
549 	if (unlikely(idx >= array->map.max_entries))
550 		return -E2BIG;
551 
552 	cgrp = READ_ONCE(array->ptrs[idx]);
553 	if (unlikely(!cgrp))
554 		return -EAGAIN;
555 
556 	return task_under_cgroup_hierarchy(current, cgrp);
557 }
558 
559 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
560 	.func           = bpf_current_task_under_cgroup,
561 	.gpl_only       = false,
562 	.ret_type       = RET_INTEGER,
563 	.arg1_type      = ARG_CONST_MAP_PTR,
564 	.arg2_type      = ARG_ANYTHING,
565 };
566 
567 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
568 	   const void *, unsafe_ptr)
569 {
570 	int ret;
571 
572 	/*
573 	 * The strncpy_from_unsafe() call will likely not fill the entire
574 	 * buffer, but that's okay in this circumstance as we're probing
575 	 * arbitrary memory anyway similar to bpf_probe_read() and might
576 	 * as well probe the stack. Thus, memory is explicitly cleared
577 	 * only in error case, so that improper users ignoring return
578 	 * code altogether don't copy garbage; otherwise length of string
579 	 * is returned that can be used for bpf_perf_event_output() et al.
580 	 */
581 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
582 	if (unlikely(ret < 0))
583 		memset(dst, 0, size);
584 
585 	return ret;
586 }
587 
588 static const struct bpf_func_proto bpf_probe_read_str_proto = {
589 	.func		= bpf_probe_read_str,
590 	.gpl_only	= true,
591 	.ret_type	= RET_INTEGER,
592 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
593 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
594 	.arg3_type	= ARG_ANYTHING,
595 };
596 
597 struct send_signal_irq_work {
598 	struct irq_work irq_work;
599 	struct task_struct *task;
600 	u32 sig;
601 };
602 
603 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
604 
605 static void do_bpf_send_signal(struct irq_work *entry)
606 {
607 	struct send_signal_irq_work *work;
608 
609 	work = container_of(entry, struct send_signal_irq_work, irq_work);
610 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
611 }
612 
613 BPF_CALL_1(bpf_send_signal, u32, sig)
614 {
615 	struct send_signal_irq_work *work = NULL;
616 
617 	/* Similar to bpf_probe_write_user, task needs to be
618 	 * in a sound condition and kernel memory access be
619 	 * permitted in order to send signal to the current
620 	 * task.
621 	 */
622 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
623 		return -EPERM;
624 	if (unlikely(uaccess_kernel()))
625 		return -EPERM;
626 	if (unlikely(!nmi_uaccess_okay()))
627 		return -EPERM;
628 
629 	if (in_nmi()) {
630 		/* Do an early check on signal validity. Otherwise,
631 		 * the error is lost in deferred irq_work.
632 		 */
633 		if (unlikely(!valid_signal(sig)))
634 			return -EINVAL;
635 
636 		work = this_cpu_ptr(&send_signal_work);
637 		if (work->irq_work.flags & IRQ_WORK_BUSY)
638 			return -EBUSY;
639 
640 		/* Add the current task, which is the target of sending signal,
641 		 * to the irq_work. The current task may change when queued
642 		 * irq works get executed.
643 		 */
644 		work->task = current;
645 		work->sig = sig;
646 		irq_work_queue(&work->irq_work);
647 		return 0;
648 	}
649 
650 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
651 }
652 
653 static const struct bpf_func_proto bpf_send_signal_proto = {
654 	.func		= bpf_send_signal,
655 	.gpl_only	= false,
656 	.ret_type	= RET_INTEGER,
657 	.arg1_type	= ARG_ANYTHING,
658 };
659 
660 static const struct bpf_func_proto *
661 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
662 {
663 	switch (func_id) {
664 	case BPF_FUNC_map_lookup_elem:
665 		return &bpf_map_lookup_elem_proto;
666 	case BPF_FUNC_map_update_elem:
667 		return &bpf_map_update_elem_proto;
668 	case BPF_FUNC_map_delete_elem:
669 		return &bpf_map_delete_elem_proto;
670 	case BPF_FUNC_map_push_elem:
671 		return &bpf_map_push_elem_proto;
672 	case BPF_FUNC_map_pop_elem:
673 		return &bpf_map_pop_elem_proto;
674 	case BPF_FUNC_map_peek_elem:
675 		return &bpf_map_peek_elem_proto;
676 	case BPF_FUNC_probe_read:
677 		return &bpf_probe_read_proto;
678 	case BPF_FUNC_ktime_get_ns:
679 		return &bpf_ktime_get_ns_proto;
680 	case BPF_FUNC_tail_call:
681 		return &bpf_tail_call_proto;
682 	case BPF_FUNC_get_current_pid_tgid:
683 		return &bpf_get_current_pid_tgid_proto;
684 	case BPF_FUNC_get_current_task:
685 		return &bpf_get_current_task_proto;
686 	case BPF_FUNC_get_current_uid_gid:
687 		return &bpf_get_current_uid_gid_proto;
688 	case BPF_FUNC_get_current_comm:
689 		return &bpf_get_current_comm_proto;
690 	case BPF_FUNC_trace_printk:
691 		return bpf_get_trace_printk_proto();
692 	case BPF_FUNC_get_smp_processor_id:
693 		return &bpf_get_smp_processor_id_proto;
694 	case BPF_FUNC_get_numa_node_id:
695 		return &bpf_get_numa_node_id_proto;
696 	case BPF_FUNC_perf_event_read:
697 		return &bpf_perf_event_read_proto;
698 	case BPF_FUNC_probe_write_user:
699 		return bpf_get_probe_write_proto();
700 	case BPF_FUNC_current_task_under_cgroup:
701 		return &bpf_current_task_under_cgroup_proto;
702 	case BPF_FUNC_get_prandom_u32:
703 		return &bpf_get_prandom_u32_proto;
704 	case BPF_FUNC_probe_read_str:
705 		return &bpf_probe_read_str_proto;
706 #ifdef CONFIG_CGROUPS
707 	case BPF_FUNC_get_current_cgroup_id:
708 		return &bpf_get_current_cgroup_id_proto;
709 #endif
710 	case BPF_FUNC_send_signal:
711 		return &bpf_send_signal_proto;
712 	default:
713 		return NULL;
714 	}
715 }
716 
717 static const struct bpf_func_proto *
718 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
719 {
720 	switch (func_id) {
721 	case BPF_FUNC_perf_event_output:
722 		return &bpf_perf_event_output_proto;
723 	case BPF_FUNC_get_stackid:
724 		return &bpf_get_stackid_proto;
725 	case BPF_FUNC_get_stack:
726 		return &bpf_get_stack_proto;
727 	case BPF_FUNC_perf_event_read_value:
728 		return &bpf_perf_event_read_value_proto;
729 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
730 	case BPF_FUNC_override_return:
731 		return &bpf_override_return_proto;
732 #endif
733 	default:
734 		return tracing_func_proto(func_id, prog);
735 	}
736 }
737 
738 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
739 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
740 					const struct bpf_prog *prog,
741 					struct bpf_insn_access_aux *info)
742 {
743 	if (off < 0 || off >= sizeof(struct pt_regs))
744 		return false;
745 	if (type != BPF_READ)
746 		return false;
747 	if (off % size != 0)
748 		return false;
749 	/*
750 	 * Assertion for 32 bit to make sure last 8 byte access
751 	 * (BPF_DW) to the last 4 byte member is disallowed.
752 	 */
753 	if (off + size > sizeof(struct pt_regs))
754 		return false;
755 
756 	return true;
757 }
758 
759 const struct bpf_verifier_ops kprobe_verifier_ops = {
760 	.get_func_proto  = kprobe_prog_func_proto,
761 	.is_valid_access = kprobe_prog_is_valid_access,
762 };
763 
764 const struct bpf_prog_ops kprobe_prog_ops = {
765 };
766 
767 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
768 	   u64, flags, void *, data, u64, size)
769 {
770 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
771 
772 	/*
773 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
774 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
775 	 * from there and call the same bpf_perf_event_output() helper inline.
776 	 */
777 	return ____bpf_perf_event_output(regs, map, flags, data, size);
778 }
779 
780 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
781 	.func		= bpf_perf_event_output_tp,
782 	.gpl_only	= true,
783 	.ret_type	= RET_INTEGER,
784 	.arg1_type	= ARG_PTR_TO_CTX,
785 	.arg2_type	= ARG_CONST_MAP_PTR,
786 	.arg3_type	= ARG_ANYTHING,
787 	.arg4_type	= ARG_PTR_TO_MEM,
788 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
789 };
790 
791 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
792 	   u64, flags)
793 {
794 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
795 
796 	/*
797 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
798 	 * the other helper's function body cannot be inlined due to being
799 	 * external, thus we need to call raw helper function.
800 	 */
801 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
802 			       flags, 0, 0);
803 }
804 
805 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
806 	.func		= bpf_get_stackid_tp,
807 	.gpl_only	= true,
808 	.ret_type	= RET_INTEGER,
809 	.arg1_type	= ARG_PTR_TO_CTX,
810 	.arg2_type	= ARG_CONST_MAP_PTR,
811 	.arg3_type	= ARG_ANYTHING,
812 };
813 
814 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
815 	   u64, flags)
816 {
817 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
818 
819 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
820 			     (unsigned long) size, flags, 0);
821 }
822 
823 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
824 	.func		= bpf_get_stack_tp,
825 	.gpl_only	= true,
826 	.ret_type	= RET_INTEGER,
827 	.arg1_type	= ARG_PTR_TO_CTX,
828 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
829 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
830 	.arg4_type	= ARG_ANYTHING,
831 };
832 
833 static const struct bpf_func_proto *
834 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
835 {
836 	switch (func_id) {
837 	case BPF_FUNC_perf_event_output:
838 		return &bpf_perf_event_output_proto_tp;
839 	case BPF_FUNC_get_stackid:
840 		return &bpf_get_stackid_proto_tp;
841 	case BPF_FUNC_get_stack:
842 		return &bpf_get_stack_proto_tp;
843 	default:
844 		return tracing_func_proto(func_id, prog);
845 	}
846 }
847 
848 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
849 				    const struct bpf_prog *prog,
850 				    struct bpf_insn_access_aux *info)
851 {
852 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
853 		return false;
854 	if (type != BPF_READ)
855 		return false;
856 	if (off % size != 0)
857 		return false;
858 
859 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
860 	return true;
861 }
862 
863 const struct bpf_verifier_ops tracepoint_verifier_ops = {
864 	.get_func_proto  = tp_prog_func_proto,
865 	.is_valid_access = tp_prog_is_valid_access,
866 };
867 
868 const struct bpf_prog_ops tracepoint_prog_ops = {
869 };
870 
871 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
872 	   struct bpf_perf_event_value *, buf, u32, size)
873 {
874 	int err = -EINVAL;
875 
876 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
877 		goto clear;
878 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
879 				    &buf->running);
880 	if (unlikely(err))
881 		goto clear;
882 	return 0;
883 clear:
884 	memset(buf, 0, size);
885 	return err;
886 }
887 
888 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
889          .func           = bpf_perf_prog_read_value,
890          .gpl_only       = true,
891          .ret_type       = RET_INTEGER,
892          .arg1_type      = ARG_PTR_TO_CTX,
893          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
894          .arg3_type      = ARG_CONST_SIZE,
895 };
896 
897 static const struct bpf_func_proto *
898 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
899 {
900 	switch (func_id) {
901 	case BPF_FUNC_perf_event_output:
902 		return &bpf_perf_event_output_proto_tp;
903 	case BPF_FUNC_get_stackid:
904 		return &bpf_get_stackid_proto_tp;
905 	case BPF_FUNC_get_stack:
906 		return &bpf_get_stack_proto_tp;
907 	case BPF_FUNC_perf_prog_read_value:
908 		return &bpf_perf_prog_read_value_proto;
909 	default:
910 		return tracing_func_proto(func_id, prog);
911 	}
912 }
913 
914 /*
915  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
916  * to avoid potential recursive reuse issue when/if tracepoints are added
917  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
918  *
919  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
920  * in normal, irq, and nmi context.
921  */
922 struct bpf_raw_tp_regs {
923 	struct pt_regs regs[3];
924 };
925 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
926 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
927 static struct pt_regs *get_bpf_raw_tp_regs(void)
928 {
929 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
930 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
931 
932 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
933 		this_cpu_dec(bpf_raw_tp_nest_level);
934 		return ERR_PTR(-EBUSY);
935 	}
936 
937 	return &tp_regs->regs[nest_level - 1];
938 }
939 
940 static void put_bpf_raw_tp_regs(void)
941 {
942 	this_cpu_dec(bpf_raw_tp_nest_level);
943 }
944 
945 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
946 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
947 {
948 	struct pt_regs *regs = get_bpf_raw_tp_regs();
949 	int ret;
950 
951 	if (IS_ERR(regs))
952 		return PTR_ERR(regs);
953 
954 	perf_fetch_caller_regs(regs);
955 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
956 
957 	put_bpf_raw_tp_regs();
958 	return ret;
959 }
960 
961 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
962 	.func		= bpf_perf_event_output_raw_tp,
963 	.gpl_only	= true,
964 	.ret_type	= RET_INTEGER,
965 	.arg1_type	= ARG_PTR_TO_CTX,
966 	.arg2_type	= ARG_CONST_MAP_PTR,
967 	.arg3_type	= ARG_ANYTHING,
968 	.arg4_type	= ARG_PTR_TO_MEM,
969 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
970 };
971 
972 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
973 	   struct bpf_map *, map, u64, flags)
974 {
975 	struct pt_regs *regs = get_bpf_raw_tp_regs();
976 	int ret;
977 
978 	if (IS_ERR(regs))
979 		return PTR_ERR(regs);
980 
981 	perf_fetch_caller_regs(regs);
982 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
983 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
984 			      flags, 0, 0);
985 	put_bpf_raw_tp_regs();
986 	return ret;
987 }
988 
989 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
990 	.func		= bpf_get_stackid_raw_tp,
991 	.gpl_only	= true,
992 	.ret_type	= RET_INTEGER,
993 	.arg1_type	= ARG_PTR_TO_CTX,
994 	.arg2_type	= ARG_CONST_MAP_PTR,
995 	.arg3_type	= ARG_ANYTHING,
996 };
997 
998 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
999 	   void *, buf, u32, size, u64, flags)
1000 {
1001 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1002 	int ret;
1003 
1004 	if (IS_ERR(regs))
1005 		return PTR_ERR(regs);
1006 
1007 	perf_fetch_caller_regs(regs);
1008 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1009 			    (unsigned long) size, flags, 0);
1010 	put_bpf_raw_tp_regs();
1011 	return ret;
1012 }
1013 
1014 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1015 	.func		= bpf_get_stack_raw_tp,
1016 	.gpl_only	= true,
1017 	.ret_type	= RET_INTEGER,
1018 	.arg1_type	= ARG_PTR_TO_CTX,
1019 	.arg2_type	= ARG_PTR_TO_MEM,
1020 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1021 	.arg4_type	= ARG_ANYTHING,
1022 };
1023 
1024 static const struct bpf_func_proto *
1025 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1026 {
1027 	switch (func_id) {
1028 	case BPF_FUNC_perf_event_output:
1029 		return &bpf_perf_event_output_proto_raw_tp;
1030 	case BPF_FUNC_get_stackid:
1031 		return &bpf_get_stackid_proto_raw_tp;
1032 	case BPF_FUNC_get_stack:
1033 		return &bpf_get_stack_proto_raw_tp;
1034 	default:
1035 		return tracing_func_proto(func_id, prog);
1036 	}
1037 }
1038 
1039 static bool raw_tp_prog_is_valid_access(int off, int size,
1040 					enum bpf_access_type type,
1041 					const struct bpf_prog *prog,
1042 					struct bpf_insn_access_aux *info)
1043 {
1044 	/* largest tracepoint in the kernel has 12 args */
1045 	if (off < 0 || off >= sizeof(__u64) * 12)
1046 		return false;
1047 	if (type != BPF_READ)
1048 		return false;
1049 	if (off % size != 0)
1050 		return false;
1051 	return true;
1052 }
1053 
1054 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1055 	.get_func_proto  = raw_tp_prog_func_proto,
1056 	.is_valid_access = raw_tp_prog_is_valid_access,
1057 };
1058 
1059 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1060 };
1061 
1062 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1063 						 enum bpf_access_type type,
1064 						 const struct bpf_prog *prog,
1065 						 struct bpf_insn_access_aux *info)
1066 {
1067 	if (off == 0) {
1068 		if (size != sizeof(u64) || type != BPF_READ)
1069 			return false;
1070 		info->reg_type = PTR_TO_TP_BUFFER;
1071 	}
1072 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1073 }
1074 
1075 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1076 	.get_func_proto  = raw_tp_prog_func_proto,
1077 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1078 };
1079 
1080 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1081 };
1082 
1083 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1084 				    const struct bpf_prog *prog,
1085 				    struct bpf_insn_access_aux *info)
1086 {
1087 	const int size_u64 = sizeof(u64);
1088 
1089 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1090 		return false;
1091 	if (type != BPF_READ)
1092 		return false;
1093 	if (off % size != 0) {
1094 		if (sizeof(unsigned long) != 4)
1095 			return false;
1096 		if (size != 8)
1097 			return false;
1098 		if (off % size != 4)
1099 			return false;
1100 	}
1101 
1102 	switch (off) {
1103 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1104 		bpf_ctx_record_field_size(info, size_u64);
1105 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1106 			return false;
1107 		break;
1108 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1109 		bpf_ctx_record_field_size(info, size_u64);
1110 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1111 			return false;
1112 		break;
1113 	default:
1114 		if (size != sizeof(long))
1115 			return false;
1116 	}
1117 
1118 	return true;
1119 }
1120 
1121 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1122 				      const struct bpf_insn *si,
1123 				      struct bpf_insn *insn_buf,
1124 				      struct bpf_prog *prog, u32 *target_size)
1125 {
1126 	struct bpf_insn *insn = insn_buf;
1127 
1128 	switch (si->off) {
1129 	case offsetof(struct bpf_perf_event_data, sample_period):
1130 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1131 						       data), si->dst_reg, si->src_reg,
1132 				      offsetof(struct bpf_perf_event_data_kern, data));
1133 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1134 				      bpf_target_off(struct perf_sample_data, period, 8,
1135 						     target_size));
1136 		break;
1137 	case offsetof(struct bpf_perf_event_data, addr):
1138 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1139 						       data), si->dst_reg, si->src_reg,
1140 				      offsetof(struct bpf_perf_event_data_kern, data));
1141 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1142 				      bpf_target_off(struct perf_sample_data, addr, 8,
1143 						     target_size));
1144 		break;
1145 	default:
1146 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1147 						       regs), si->dst_reg, si->src_reg,
1148 				      offsetof(struct bpf_perf_event_data_kern, regs));
1149 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1150 				      si->off);
1151 		break;
1152 	}
1153 
1154 	return insn - insn_buf;
1155 }
1156 
1157 const struct bpf_verifier_ops perf_event_verifier_ops = {
1158 	.get_func_proto		= pe_prog_func_proto,
1159 	.is_valid_access	= pe_prog_is_valid_access,
1160 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1161 };
1162 
1163 const struct bpf_prog_ops perf_event_prog_ops = {
1164 };
1165 
1166 static DEFINE_MUTEX(bpf_event_mutex);
1167 
1168 #define BPF_TRACE_MAX_PROGS 64
1169 
1170 int perf_event_attach_bpf_prog(struct perf_event *event,
1171 			       struct bpf_prog *prog)
1172 {
1173 	struct bpf_prog_array *old_array;
1174 	struct bpf_prog_array *new_array;
1175 	int ret = -EEXIST;
1176 
1177 	/*
1178 	 * Kprobe override only works if they are on the function entry,
1179 	 * and only if they are on the opt-in list.
1180 	 */
1181 	if (prog->kprobe_override &&
1182 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1183 	     !trace_kprobe_error_injectable(event->tp_event)))
1184 		return -EINVAL;
1185 
1186 	mutex_lock(&bpf_event_mutex);
1187 
1188 	if (event->prog)
1189 		goto unlock;
1190 
1191 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1192 	if (old_array &&
1193 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1194 		ret = -E2BIG;
1195 		goto unlock;
1196 	}
1197 
1198 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1199 	if (ret < 0)
1200 		goto unlock;
1201 
1202 	/* set the new array to event->tp_event and set event->prog */
1203 	event->prog = prog;
1204 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1205 	bpf_prog_array_free(old_array);
1206 
1207 unlock:
1208 	mutex_unlock(&bpf_event_mutex);
1209 	return ret;
1210 }
1211 
1212 void perf_event_detach_bpf_prog(struct perf_event *event)
1213 {
1214 	struct bpf_prog_array *old_array;
1215 	struct bpf_prog_array *new_array;
1216 	int ret;
1217 
1218 	mutex_lock(&bpf_event_mutex);
1219 
1220 	if (!event->prog)
1221 		goto unlock;
1222 
1223 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1224 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1225 	if (ret == -ENOENT)
1226 		goto unlock;
1227 	if (ret < 0) {
1228 		bpf_prog_array_delete_safe(old_array, event->prog);
1229 	} else {
1230 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1231 		bpf_prog_array_free(old_array);
1232 	}
1233 
1234 	bpf_prog_put(event->prog);
1235 	event->prog = NULL;
1236 
1237 unlock:
1238 	mutex_unlock(&bpf_event_mutex);
1239 }
1240 
1241 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1242 {
1243 	struct perf_event_query_bpf __user *uquery = info;
1244 	struct perf_event_query_bpf query = {};
1245 	struct bpf_prog_array *progs;
1246 	u32 *ids, prog_cnt, ids_len;
1247 	int ret;
1248 
1249 	if (!capable(CAP_SYS_ADMIN))
1250 		return -EPERM;
1251 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1252 		return -EINVAL;
1253 	if (copy_from_user(&query, uquery, sizeof(query)))
1254 		return -EFAULT;
1255 
1256 	ids_len = query.ids_len;
1257 	if (ids_len > BPF_TRACE_MAX_PROGS)
1258 		return -E2BIG;
1259 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1260 	if (!ids)
1261 		return -ENOMEM;
1262 	/*
1263 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1264 	 * is required when user only wants to check for uquery->prog_cnt.
1265 	 * There is no need to check for it since the case is handled
1266 	 * gracefully in bpf_prog_array_copy_info.
1267 	 */
1268 
1269 	mutex_lock(&bpf_event_mutex);
1270 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1271 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1272 	mutex_unlock(&bpf_event_mutex);
1273 
1274 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1275 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1276 		ret = -EFAULT;
1277 
1278 	kfree(ids);
1279 	return ret;
1280 }
1281 
1282 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1283 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1284 
1285 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1286 {
1287 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1288 
1289 	for (; btp < __stop__bpf_raw_tp; btp++) {
1290 		if (!strcmp(btp->tp->name, name))
1291 			return btp;
1292 	}
1293 
1294 	return bpf_get_raw_tracepoint_module(name);
1295 }
1296 
1297 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1298 {
1299 	struct module *mod = __module_address((unsigned long)btp);
1300 
1301 	if (mod)
1302 		module_put(mod);
1303 }
1304 
1305 static __always_inline
1306 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1307 {
1308 	rcu_read_lock();
1309 	preempt_disable();
1310 	(void) BPF_PROG_RUN(prog, args);
1311 	preempt_enable();
1312 	rcu_read_unlock();
1313 }
1314 
1315 #define UNPACK(...)			__VA_ARGS__
1316 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1317 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1318 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1319 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1320 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1321 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1322 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1323 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1324 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1325 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1326 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1327 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1328 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1329 
1330 #define SARG(X)		u64 arg##X
1331 #define COPY(X)		args[X] = arg##X
1332 
1333 #define __DL_COM	(,)
1334 #define __DL_SEM	(;)
1335 
1336 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1337 
1338 #define BPF_TRACE_DEFN_x(x)						\
1339 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1340 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1341 	{								\
1342 		u64 args[x];						\
1343 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1344 		__bpf_trace_run(prog, args);				\
1345 	}								\
1346 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1347 BPF_TRACE_DEFN_x(1);
1348 BPF_TRACE_DEFN_x(2);
1349 BPF_TRACE_DEFN_x(3);
1350 BPF_TRACE_DEFN_x(4);
1351 BPF_TRACE_DEFN_x(5);
1352 BPF_TRACE_DEFN_x(6);
1353 BPF_TRACE_DEFN_x(7);
1354 BPF_TRACE_DEFN_x(8);
1355 BPF_TRACE_DEFN_x(9);
1356 BPF_TRACE_DEFN_x(10);
1357 BPF_TRACE_DEFN_x(11);
1358 BPF_TRACE_DEFN_x(12);
1359 
1360 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1361 {
1362 	struct tracepoint *tp = btp->tp;
1363 
1364 	/*
1365 	 * check that program doesn't access arguments beyond what's
1366 	 * available in this tracepoint
1367 	 */
1368 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1369 		return -EINVAL;
1370 
1371 	if (prog->aux->max_tp_access > btp->writable_size)
1372 		return -EINVAL;
1373 
1374 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1375 }
1376 
1377 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1378 {
1379 	return __bpf_probe_register(btp, prog);
1380 }
1381 
1382 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1383 {
1384 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1385 }
1386 
1387 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1388 			    u32 *fd_type, const char **buf,
1389 			    u64 *probe_offset, u64 *probe_addr)
1390 {
1391 	bool is_tracepoint, is_syscall_tp;
1392 	struct bpf_prog *prog;
1393 	int flags, err = 0;
1394 
1395 	prog = event->prog;
1396 	if (!prog)
1397 		return -ENOENT;
1398 
1399 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1400 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1401 		return -EOPNOTSUPP;
1402 
1403 	*prog_id = prog->aux->id;
1404 	flags = event->tp_event->flags;
1405 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1406 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1407 
1408 	if (is_tracepoint || is_syscall_tp) {
1409 		*buf = is_tracepoint ? event->tp_event->tp->name
1410 				     : event->tp_event->name;
1411 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1412 		*probe_offset = 0x0;
1413 		*probe_addr = 0x0;
1414 	} else {
1415 		/* kprobe/uprobe */
1416 		err = -EOPNOTSUPP;
1417 #ifdef CONFIG_KPROBE_EVENTS
1418 		if (flags & TRACE_EVENT_FL_KPROBE)
1419 			err = bpf_get_kprobe_info(event, fd_type, buf,
1420 						  probe_offset, probe_addr,
1421 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1422 #endif
1423 #ifdef CONFIG_UPROBE_EVENTS
1424 		if (flags & TRACE_EVENT_FL_UPROBE)
1425 			err = bpf_get_uprobe_info(event, fd_type, buf,
1426 						  probe_offset,
1427 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1428 #endif
1429 	}
1430 
1431 	return err;
1432 }
1433 
1434 static int __init send_signal_irq_work_init(void)
1435 {
1436 	int cpu;
1437 	struct send_signal_irq_work *work;
1438 
1439 	for_each_possible_cpu(cpu) {
1440 		work = per_cpu_ptr(&send_signal_work, cpu);
1441 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1442 	}
1443 	return 0;
1444 }
1445 
1446 subsys_initcall(send_signal_irq_work_init);
1447 
1448 #ifdef CONFIG_MODULES
1449 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1450 			    void *module)
1451 {
1452 	struct bpf_trace_module *btm, *tmp;
1453 	struct module *mod = module;
1454 
1455 	if (mod->num_bpf_raw_events == 0 ||
1456 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1457 		return 0;
1458 
1459 	mutex_lock(&bpf_module_mutex);
1460 
1461 	switch (op) {
1462 	case MODULE_STATE_COMING:
1463 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1464 		if (btm) {
1465 			btm->module = module;
1466 			list_add(&btm->list, &bpf_trace_modules);
1467 		}
1468 		break;
1469 	case MODULE_STATE_GOING:
1470 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1471 			if (btm->module == module) {
1472 				list_del(&btm->list);
1473 				kfree(btm);
1474 				break;
1475 			}
1476 		}
1477 		break;
1478 	}
1479 
1480 	mutex_unlock(&bpf_module_mutex);
1481 
1482 	return 0;
1483 }
1484 
1485 static struct notifier_block bpf_module_nb = {
1486 	.notifier_call = bpf_event_notify,
1487 };
1488 
1489 static int __init bpf_event_init(void)
1490 {
1491 	register_module_notifier(&bpf_module_nb);
1492 	return 0;
1493 }
1494 
1495 fs_initcall(bpf_event_init);
1496 #endif /* CONFIG_MODULES */
1497