1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 27 #include <net/bpf_sk_storage.h> 28 29 #include <uapi/linux/bpf.h> 30 #include <uapi/linux/btf.h> 31 32 #include <asm/tlb.h> 33 34 #include "trace_probe.h" 35 #include "trace.h" 36 37 #define CREATE_TRACE_POINTS 38 #include "bpf_trace.h" 39 40 #define bpf_event_rcu_dereference(p) \ 41 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 42 43 #ifdef CONFIG_MODULES 44 struct bpf_trace_module { 45 struct module *module; 46 struct list_head list; 47 }; 48 49 static LIST_HEAD(bpf_trace_modules); 50 static DEFINE_MUTEX(bpf_module_mutex); 51 52 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 53 { 54 struct bpf_raw_event_map *btp, *ret = NULL; 55 struct bpf_trace_module *btm; 56 unsigned int i; 57 58 mutex_lock(&bpf_module_mutex); 59 list_for_each_entry(btm, &bpf_trace_modules, list) { 60 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 61 btp = &btm->module->bpf_raw_events[i]; 62 if (!strcmp(btp->tp->name, name)) { 63 if (try_module_get(btm->module)) 64 ret = btp; 65 goto out; 66 } 67 } 68 } 69 out: 70 mutex_unlock(&bpf_module_mutex); 71 return ret; 72 } 73 #else 74 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 75 { 76 return NULL; 77 } 78 #endif /* CONFIG_MODULES */ 79 80 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 81 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 82 83 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 84 u64 flags, const struct btf **btf, 85 s32 *btf_id); 86 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 87 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 88 89 /** 90 * trace_call_bpf - invoke BPF program 91 * @call: tracepoint event 92 * @ctx: opaque context pointer 93 * 94 * kprobe handlers execute BPF programs via this helper. 95 * Can be used from static tracepoints in the future. 96 * 97 * Return: BPF programs always return an integer which is interpreted by 98 * kprobe handler as: 99 * 0 - return from kprobe (event is filtered out) 100 * 1 - store kprobe event into ring buffer 101 * Other values are reserved and currently alias to 1 102 */ 103 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 104 { 105 unsigned int ret; 106 107 cant_sleep(); 108 109 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 110 /* 111 * since some bpf program is already running on this cpu, 112 * don't call into another bpf program (same or different) 113 * and don't send kprobe event into ring-buffer, 114 * so return zero here 115 */ 116 ret = 0; 117 goto out; 118 } 119 120 /* 121 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 122 * to all call sites, we did a bpf_prog_array_valid() there to check 123 * whether call->prog_array is empty or not, which is 124 * a heuristic to speed up execution. 125 * 126 * If bpf_prog_array_valid() fetched prog_array was 127 * non-NULL, we go into trace_call_bpf() and do the actual 128 * proper rcu_dereference() under RCU lock. 129 * If it turns out that prog_array is NULL then, we bail out. 130 * For the opposite, if the bpf_prog_array_valid() fetched pointer 131 * was NULL, you'll skip the prog_array with the risk of missing 132 * out of events when it was updated in between this and the 133 * rcu_dereference() which is accepted risk. 134 */ 135 rcu_read_lock(); 136 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 137 ctx, bpf_prog_run); 138 rcu_read_unlock(); 139 140 out: 141 __this_cpu_dec(bpf_prog_active); 142 143 return ret; 144 } 145 146 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 147 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 148 { 149 regs_set_return_value(regs, rc); 150 override_function_with_return(regs); 151 return 0; 152 } 153 154 static const struct bpf_func_proto bpf_override_return_proto = { 155 .func = bpf_override_return, 156 .gpl_only = true, 157 .ret_type = RET_INTEGER, 158 .arg1_type = ARG_PTR_TO_CTX, 159 .arg2_type = ARG_ANYTHING, 160 }; 161 #endif 162 163 static __always_inline int 164 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 165 { 166 int ret; 167 168 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 169 if (unlikely(ret < 0)) 170 memset(dst, 0, size); 171 return ret; 172 } 173 174 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 175 const void __user *, unsafe_ptr) 176 { 177 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 178 } 179 180 const struct bpf_func_proto bpf_probe_read_user_proto = { 181 .func = bpf_probe_read_user, 182 .gpl_only = true, 183 .ret_type = RET_INTEGER, 184 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 185 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 186 .arg3_type = ARG_ANYTHING, 187 }; 188 189 static __always_inline int 190 bpf_probe_read_user_str_common(void *dst, u32 size, 191 const void __user *unsafe_ptr) 192 { 193 int ret; 194 195 /* 196 * NB: We rely on strncpy_from_user() not copying junk past the NUL 197 * terminator into `dst`. 198 * 199 * strncpy_from_user() does long-sized strides in the fast path. If the 200 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 201 * then there could be junk after the NUL in `dst`. If user takes `dst` 202 * and keys a hash map with it, then semantically identical strings can 203 * occupy multiple entries in the map. 204 */ 205 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 206 if (unlikely(ret < 0)) 207 memset(dst, 0, size); 208 return ret; 209 } 210 211 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 212 const void __user *, unsafe_ptr) 213 { 214 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 215 } 216 217 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 218 .func = bpf_probe_read_user_str, 219 .gpl_only = true, 220 .ret_type = RET_INTEGER, 221 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 222 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 223 .arg3_type = ARG_ANYTHING, 224 }; 225 226 static __always_inline int 227 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 228 { 229 int ret; 230 231 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 232 if (unlikely(ret < 0)) 233 memset(dst, 0, size); 234 return ret; 235 } 236 237 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 238 const void *, unsafe_ptr) 239 { 240 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 241 } 242 243 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 244 .func = bpf_probe_read_kernel, 245 .gpl_only = true, 246 .ret_type = RET_INTEGER, 247 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 248 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 249 .arg3_type = ARG_ANYTHING, 250 }; 251 252 static __always_inline int 253 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 254 { 255 int ret; 256 257 /* 258 * The strncpy_from_kernel_nofault() call will likely not fill the 259 * entire buffer, but that's okay in this circumstance as we're probing 260 * arbitrary memory anyway similar to bpf_probe_read_*() and might 261 * as well probe the stack. Thus, memory is explicitly cleared 262 * only in error case, so that improper users ignoring return 263 * code altogether don't copy garbage; otherwise length of string 264 * is returned that can be used for bpf_perf_event_output() et al. 265 */ 266 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 267 if (unlikely(ret < 0)) 268 memset(dst, 0, size); 269 return ret; 270 } 271 272 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 273 const void *, unsafe_ptr) 274 { 275 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 276 } 277 278 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 279 .func = bpf_probe_read_kernel_str, 280 .gpl_only = true, 281 .ret_type = RET_INTEGER, 282 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 283 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 284 .arg3_type = ARG_ANYTHING, 285 }; 286 287 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 288 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 289 const void *, unsafe_ptr) 290 { 291 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 292 return bpf_probe_read_user_common(dst, size, 293 (__force void __user *)unsafe_ptr); 294 } 295 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 296 } 297 298 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 299 .func = bpf_probe_read_compat, 300 .gpl_only = true, 301 .ret_type = RET_INTEGER, 302 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 303 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 304 .arg3_type = ARG_ANYTHING, 305 }; 306 307 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 308 const void *, unsafe_ptr) 309 { 310 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 311 return bpf_probe_read_user_str_common(dst, size, 312 (__force void __user *)unsafe_ptr); 313 } 314 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 315 } 316 317 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 318 .func = bpf_probe_read_compat_str, 319 .gpl_only = true, 320 .ret_type = RET_INTEGER, 321 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 322 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 323 .arg3_type = ARG_ANYTHING, 324 }; 325 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 326 327 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 328 u32, size) 329 { 330 /* 331 * Ensure we're in user context which is safe for the helper to 332 * run. This helper has no business in a kthread. 333 * 334 * access_ok() should prevent writing to non-user memory, but in 335 * some situations (nommu, temporary switch, etc) access_ok() does 336 * not provide enough validation, hence the check on KERNEL_DS. 337 * 338 * nmi_uaccess_okay() ensures the probe is not run in an interim 339 * state, when the task or mm are switched. This is specifically 340 * required to prevent the use of temporary mm. 341 */ 342 343 if (unlikely(in_interrupt() || 344 current->flags & (PF_KTHREAD | PF_EXITING))) 345 return -EPERM; 346 if (unlikely(!nmi_uaccess_okay())) 347 return -EPERM; 348 349 return copy_to_user_nofault(unsafe_ptr, src, size); 350 } 351 352 static const struct bpf_func_proto bpf_probe_write_user_proto = { 353 .func = bpf_probe_write_user, 354 .gpl_only = true, 355 .ret_type = RET_INTEGER, 356 .arg1_type = ARG_ANYTHING, 357 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 358 .arg3_type = ARG_CONST_SIZE, 359 }; 360 361 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 362 { 363 if (!capable(CAP_SYS_ADMIN)) 364 return NULL; 365 366 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 367 current->comm, task_pid_nr(current)); 368 369 return &bpf_probe_write_user_proto; 370 } 371 372 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 373 374 #define MAX_TRACE_PRINTK_VARARGS 3 375 #define BPF_TRACE_PRINTK_SIZE 1024 376 377 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 378 u64, arg2, u64, arg3) 379 { 380 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 381 u32 *bin_args; 382 static char buf[BPF_TRACE_PRINTK_SIZE]; 383 unsigned long flags; 384 int ret; 385 386 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args, 387 MAX_TRACE_PRINTK_VARARGS); 388 if (ret < 0) 389 return ret; 390 391 raw_spin_lock_irqsave(&trace_printk_lock, flags); 392 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 393 394 trace_bpf_trace_printk(buf); 395 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 396 397 bpf_bprintf_cleanup(); 398 399 return ret; 400 } 401 402 static const struct bpf_func_proto bpf_trace_printk_proto = { 403 .func = bpf_trace_printk, 404 .gpl_only = true, 405 .ret_type = RET_INTEGER, 406 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 407 .arg2_type = ARG_CONST_SIZE, 408 }; 409 410 static void __set_printk_clr_event(void) 411 { 412 /* 413 * This program might be calling bpf_trace_printk, 414 * so enable the associated bpf_trace/bpf_trace_printk event. 415 * Repeat this each time as it is possible a user has 416 * disabled bpf_trace_printk events. By loading a program 417 * calling bpf_trace_printk() however the user has expressed 418 * the intent to see such events. 419 */ 420 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 421 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 422 } 423 424 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 425 { 426 __set_printk_clr_event(); 427 return &bpf_trace_printk_proto; 428 } 429 430 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, data, 431 u32, data_len) 432 { 433 static char buf[BPF_TRACE_PRINTK_SIZE]; 434 unsigned long flags; 435 int ret, num_args; 436 u32 *bin_args; 437 438 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 439 (data_len && !data)) 440 return -EINVAL; 441 num_args = data_len / 8; 442 443 ret = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 444 if (ret < 0) 445 return ret; 446 447 raw_spin_lock_irqsave(&trace_printk_lock, flags); 448 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 449 450 trace_bpf_trace_printk(buf); 451 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 452 453 bpf_bprintf_cleanup(); 454 455 return ret; 456 } 457 458 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 459 .func = bpf_trace_vprintk, 460 .gpl_only = true, 461 .ret_type = RET_INTEGER, 462 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 463 .arg2_type = ARG_CONST_SIZE, 464 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 465 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 466 }; 467 468 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 469 { 470 __set_printk_clr_event(); 471 return &bpf_trace_vprintk_proto; 472 } 473 474 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 475 const void *, data, u32, data_len) 476 { 477 int err, num_args; 478 u32 *bin_args; 479 480 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 481 (data_len && !data)) 482 return -EINVAL; 483 num_args = data_len / 8; 484 485 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 486 if (err < 0) 487 return err; 488 489 seq_bprintf(m, fmt, bin_args); 490 491 bpf_bprintf_cleanup(); 492 493 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 494 } 495 496 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 497 498 static const struct bpf_func_proto bpf_seq_printf_proto = { 499 .func = bpf_seq_printf, 500 .gpl_only = true, 501 .ret_type = RET_INTEGER, 502 .arg1_type = ARG_PTR_TO_BTF_ID, 503 .arg1_btf_id = &btf_seq_file_ids[0], 504 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 505 .arg3_type = ARG_CONST_SIZE, 506 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 507 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 508 }; 509 510 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 511 { 512 return seq_write(m, data, len) ? -EOVERFLOW : 0; 513 } 514 515 static const struct bpf_func_proto bpf_seq_write_proto = { 516 .func = bpf_seq_write, 517 .gpl_only = true, 518 .ret_type = RET_INTEGER, 519 .arg1_type = ARG_PTR_TO_BTF_ID, 520 .arg1_btf_id = &btf_seq_file_ids[0], 521 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 522 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 523 }; 524 525 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 526 u32, btf_ptr_size, u64, flags) 527 { 528 const struct btf *btf; 529 s32 btf_id; 530 int ret; 531 532 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 533 if (ret) 534 return ret; 535 536 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 537 } 538 539 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 540 .func = bpf_seq_printf_btf, 541 .gpl_only = true, 542 .ret_type = RET_INTEGER, 543 .arg1_type = ARG_PTR_TO_BTF_ID, 544 .arg1_btf_id = &btf_seq_file_ids[0], 545 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 546 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 547 .arg4_type = ARG_ANYTHING, 548 }; 549 550 static __always_inline int 551 get_map_perf_counter(struct bpf_map *map, u64 flags, 552 u64 *value, u64 *enabled, u64 *running) 553 { 554 struct bpf_array *array = container_of(map, struct bpf_array, map); 555 unsigned int cpu = smp_processor_id(); 556 u64 index = flags & BPF_F_INDEX_MASK; 557 struct bpf_event_entry *ee; 558 559 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 560 return -EINVAL; 561 if (index == BPF_F_CURRENT_CPU) 562 index = cpu; 563 if (unlikely(index >= array->map.max_entries)) 564 return -E2BIG; 565 566 ee = READ_ONCE(array->ptrs[index]); 567 if (!ee) 568 return -ENOENT; 569 570 return perf_event_read_local(ee->event, value, enabled, running); 571 } 572 573 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 574 { 575 u64 value = 0; 576 int err; 577 578 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 579 /* 580 * this api is ugly since we miss [-22..-2] range of valid 581 * counter values, but that's uapi 582 */ 583 if (err) 584 return err; 585 return value; 586 } 587 588 static const struct bpf_func_proto bpf_perf_event_read_proto = { 589 .func = bpf_perf_event_read, 590 .gpl_only = true, 591 .ret_type = RET_INTEGER, 592 .arg1_type = ARG_CONST_MAP_PTR, 593 .arg2_type = ARG_ANYTHING, 594 }; 595 596 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 597 struct bpf_perf_event_value *, buf, u32, size) 598 { 599 int err = -EINVAL; 600 601 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 602 goto clear; 603 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 604 &buf->running); 605 if (unlikely(err)) 606 goto clear; 607 return 0; 608 clear: 609 memset(buf, 0, size); 610 return err; 611 } 612 613 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 614 .func = bpf_perf_event_read_value, 615 .gpl_only = true, 616 .ret_type = RET_INTEGER, 617 .arg1_type = ARG_CONST_MAP_PTR, 618 .arg2_type = ARG_ANYTHING, 619 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 620 .arg4_type = ARG_CONST_SIZE, 621 }; 622 623 static __always_inline u64 624 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 625 u64 flags, struct perf_sample_data *sd) 626 { 627 struct bpf_array *array = container_of(map, struct bpf_array, map); 628 unsigned int cpu = smp_processor_id(); 629 u64 index = flags & BPF_F_INDEX_MASK; 630 struct bpf_event_entry *ee; 631 struct perf_event *event; 632 633 if (index == BPF_F_CURRENT_CPU) 634 index = cpu; 635 if (unlikely(index >= array->map.max_entries)) 636 return -E2BIG; 637 638 ee = READ_ONCE(array->ptrs[index]); 639 if (!ee) 640 return -ENOENT; 641 642 event = ee->event; 643 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 644 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 645 return -EINVAL; 646 647 if (unlikely(event->oncpu != cpu)) 648 return -EOPNOTSUPP; 649 650 return perf_event_output(event, sd, regs); 651 } 652 653 /* 654 * Support executing tracepoints in normal, irq, and nmi context that each call 655 * bpf_perf_event_output 656 */ 657 struct bpf_trace_sample_data { 658 struct perf_sample_data sds[3]; 659 }; 660 661 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 662 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 663 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 664 u64, flags, void *, data, u64, size) 665 { 666 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 667 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 668 struct perf_raw_record raw = { 669 .frag = { 670 .size = size, 671 .data = data, 672 }, 673 }; 674 struct perf_sample_data *sd; 675 int err; 676 677 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 678 err = -EBUSY; 679 goto out; 680 } 681 682 sd = &sds->sds[nest_level - 1]; 683 684 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 685 err = -EINVAL; 686 goto out; 687 } 688 689 perf_sample_data_init(sd, 0, 0); 690 sd->raw = &raw; 691 sd->sample_flags |= PERF_SAMPLE_RAW; 692 693 err = __bpf_perf_event_output(regs, map, flags, sd); 694 695 out: 696 this_cpu_dec(bpf_trace_nest_level); 697 return err; 698 } 699 700 static const struct bpf_func_proto bpf_perf_event_output_proto = { 701 .func = bpf_perf_event_output, 702 .gpl_only = true, 703 .ret_type = RET_INTEGER, 704 .arg1_type = ARG_PTR_TO_CTX, 705 .arg2_type = ARG_CONST_MAP_PTR, 706 .arg3_type = ARG_ANYTHING, 707 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 708 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 709 }; 710 711 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 712 struct bpf_nested_pt_regs { 713 struct pt_regs regs[3]; 714 }; 715 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 716 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 717 718 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 719 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 720 { 721 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 722 struct perf_raw_frag frag = { 723 .copy = ctx_copy, 724 .size = ctx_size, 725 .data = ctx, 726 }; 727 struct perf_raw_record raw = { 728 .frag = { 729 { 730 .next = ctx_size ? &frag : NULL, 731 }, 732 .size = meta_size, 733 .data = meta, 734 }, 735 }; 736 struct perf_sample_data *sd; 737 struct pt_regs *regs; 738 u64 ret; 739 740 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 741 ret = -EBUSY; 742 goto out; 743 } 744 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 745 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 746 747 perf_fetch_caller_regs(regs); 748 perf_sample_data_init(sd, 0, 0); 749 sd->raw = &raw; 750 sd->sample_flags |= PERF_SAMPLE_RAW; 751 752 ret = __bpf_perf_event_output(regs, map, flags, sd); 753 out: 754 this_cpu_dec(bpf_event_output_nest_level); 755 return ret; 756 } 757 758 BPF_CALL_0(bpf_get_current_task) 759 { 760 return (long) current; 761 } 762 763 const struct bpf_func_proto bpf_get_current_task_proto = { 764 .func = bpf_get_current_task, 765 .gpl_only = true, 766 .ret_type = RET_INTEGER, 767 }; 768 769 BPF_CALL_0(bpf_get_current_task_btf) 770 { 771 return (unsigned long) current; 772 } 773 774 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 775 .func = bpf_get_current_task_btf, 776 .gpl_only = true, 777 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 778 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 779 }; 780 781 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 782 { 783 return (unsigned long) task_pt_regs(task); 784 } 785 786 BTF_ID_LIST(bpf_task_pt_regs_ids) 787 BTF_ID(struct, pt_regs) 788 789 const struct bpf_func_proto bpf_task_pt_regs_proto = { 790 .func = bpf_task_pt_regs, 791 .gpl_only = true, 792 .arg1_type = ARG_PTR_TO_BTF_ID, 793 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 794 .ret_type = RET_PTR_TO_BTF_ID, 795 .ret_btf_id = &bpf_task_pt_regs_ids[0], 796 }; 797 798 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 799 { 800 struct bpf_array *array = container_of(map, struct bpf_array, map); 801 struct cgroup *cgrp; 802 803 if (unlikely(idx >= array->map.max_entries)) 804 return -E2BIG; 805 806 cgrp = READ_ONCE(array->ptrs[idx]); 807 if (unlikely(!cgrp)) 808 return -EAGAIN; 809 810 return task_under_cgroup_hierarchy(current, cgrp); 811 } 812 813 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 814 .func = bpf_current_task_under_cgroup, 815 .gpl_only = false, 816 .ret_type = RET_INTEGER, 817 .arg1_type = ARG_CONST_MAP_PTR, 818 .arg2_type = ARG_ANYTHING, 819 }; 820 821 struct send_signal_irq_work { 822 struct irq_work irq_work; 823 struct task_struct *task; 824 u32 sig; 825 enum pid_type type; 826 }; 827 828 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 829 830 static void do_bpf_send_signal(struct irq_work *entry) 831 { 832 struct send_signal_irq_work *work; 833 834 work = container_of(entry, struct send_signal_irq_work, irq_work); 835 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 836 } 837 838 static int bpf_send_signal_common(u32 sig, enum pid_type type) 839 { 840 struct send_signal_irq_work *work = NULL; 841 842 /* Similar to bpf_probe_write_user, task needs to be 843 * in a sound condition and kernel memory access be 844 * permitted in order to send signal to the current 845 * task. 846 */ 847 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 848 return -EPERM; 849 if (unlikely(!nmi_uaccess_okay())) 850 return -EPERM; 851 852 if (irqs_disabled()) { 853 /* Do an early check on signal validity. Otherwise, 854 * the error is lost in deferred irq_work. 855 */ 856 if (unlikely(!valid_signal(sig))) 857 return -EINVAL; 858 859 work = this_cpu_ptr(&send_signal_work); 860 if (irq_work_is_busy(&work->irq_work)) 861 return -EBUSY; 862 863 /* Add the current task, which is the target of sending signal, 864 * to the irq_work. The current task may change when queued 865 * irq works get executed. 866 */ 867 work->task = current; 868 work->sig = sig; 869 work->type = type; 870 irq_work_queue(&work->irq_work); 871 return 0; 872 } 873 874 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 875 } 876 877 BPF_CALL_1(bpf_send_signal, u32, sig) 878 { 879 return bpf_send_signal_common(sig, PIDTYPE_TGID); 880 } 881 882 static const struct bpf_func_proto bpf_send_signal_proto = { 883 .func = bpf_send_signal, 884 .gpl_only = false, 885 .ret_type = RET_INTEGER, 886 .arg1_type = ARG_ANYTHING, 887 }; 888 889 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 890 { 891 return bpf_send_signal_common(sig, PIDTYPE_PID); 892 } 893 894 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 895 .func = bpf_send_signal_thread, 896 .gpl_only = false, 897 .ret_type = RET_INTEGER, 898 .arg1_type = ARG_ANYTHING, 899 }; 900 901 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 902 { 903 long len; 904 char *p; 905 906 if (!sz) 907 return 0; 908 909 p = d_path(path, buf, sz); 910 if (IS_ERR(p)) { 911 len = PTR_ERR(p); 912 } else { 913 len = buf + sz - p; 914 memmove(buf, p, len); 915 } 916 917 return len; 918 } 919 920 BTF_SET_START(btf_allowlist_d_path) 921 #ifdef CONFIG_SECURITY 922 BTF_ID(func, security_file_permission) 923 BTF_ID(func, security_inode_getattr) 924 BTF_ID(func, security_file_open) 925 #endif 926 #ifdef CONFIG_SECURITY_PATH 927 BTF_ID(func, security_path_truncate) 928 #endif 929 BTF_ID(func, vfs_truncate) 930 BTF_ID(func, vfs_fallocate) 931 BTF_ID(func, dentry_open) 932 BTF_ID(func, vfs_getattr) 933 BTF_ID(func, filp_close) 934 BTF_SET_END(btf_allowlist_d_path) 935 936 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 937 { 938 if (prog->type == BPF_PROG_TYPE_TRACING && 939 prog->expected_attach_type == BPF_TRACE_ITER) 940 return true; 941 942 if (prog->type == BPF_PROG_TYPE_LSM) 943 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 944 945 return btf_id_set_contains(&btf_allowlist_d_path, 946 prog->aux->attach_btf_id); 947 } 948 949 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 950 951 static const struct bpf_func_proto bpf_d_path_proto = { 952 .func = bpf_d_path, 953 .gpl_only = false, 954 .ret_type = RET_INTEGER, 955 .arg1_type = ARG_PTR_TO_BTF_ID, 956 .arg1_btf_id = &bpf_d_path_btf_ids[0], 957 .arg2_type = ARG_PTR_TO_MEM, 958 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 959 .allowed = bpf_d_path_allowed, 960 }; 961 962 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 963 BTF_F_PTR_RAW | BTF_F_ZERO) 964 965 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 966 u64 flags, const struct btf **btf, 967 s32 *btf_id) 968 { 969 const struct btf_type *t; 970 971 if (unlikely(flags & ~(BTF_F_ALL))) 972 return -EINVAL; 973 974 if (btf_ptr_size != sizeof(struct btf_ptr)) 975 return -EINVAL; 976 977 *btf = bpf_get_btf_vmlinux(); 978 979 if (IS_ERR_OR_NULL(*btf)) 980 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 981 982 if (ptr->type_id > 0) 983 *btf_id = ptr->type_id; 984 else 985 return -EINVAL; 986 987 if (*btf_id > 0) 988 t = btf_type_by_id(*btf, *btf_id); 989 if (*btf_id <= 0 || !t) 990 return -ENOENT; 991 992 return 0; 993 } 994 995 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 996 u32, btf_ptr_size, u64, flags) 997 { 998 const struct btf *btf; 999 s32 btf_id; 1000 int ret; 1001 1002 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1003 if (ret) 1004 return ret; 1005 1006 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1007 flags); 1008 } 1009 1010 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1011 .func = bpf_snprintf_btf, 1012 .gpl_only = false, 1013 .ret_type = RET_INTEGER, 1014 .arg1_type = ARG_PTR_TO_MEM, 1015 .arg2_type = ARG_CONST_SIZE, 1016 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1017 .arg4_type = ARG_CONST_SIZE, 1018 .arg5_type = ARG_ANYTHING, 1019 }; 1020 1021 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1022 { 1023 /* This helper call is inlined by verifier. */ 1024 return ((u64 *)ctx)[-2]; 1025 } 1026 1027 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1028 .func = bpf_get_func_ip_tracing, 1029 .gpl_only = true, 1030 .ret_type = RET_INTEGER, 1031 .arg1_type = ARG_PTR_TO_CTX, 1032 }; 1033 1034 #ifdef CONFIG_X86_KERNEL_IBT 1035 static unsigned long get_entry_ip(unsigned long fentry_ip) 1036 { 1037 u32 instr; 1038 1039 /* Being extra safe in here in case entry ip is on the page-edge. */ 1040 if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1)) 1041 return fentry_ip; 1042 if (is_endbr(instr)) 1043 fentry_ip -= ENDBR_INSN_SIZE; 1044 return fentry_ip; 1045 } 1046 #else 1047 #define get_entry_ip(fentry_ip) fentry_ip 1048 #endif 1049 1050 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1051 { 1052 struct kprobe *kp = kprobe_running(); 1053 1054 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1055 return 0; 1056 1057 return get_entry_ip((uintptr_t)kp->addr); 1058 } 1059 1060 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1061 .func = bpf_get_func_ip_kprobe, 1062 .gpl_only = true, 1063 .ret_type = RET_INTEGER, 1064 .arg1_type = ARG_PTR_TO_CTX, 1065 }; 1066 1067 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1068 { 1069 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1070 } 1071 1072 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1073 .func = bpf_get_func_ip_kprobe_multi, 1074 .gpl_only = false, 1075 .ret_type = RET_INTEGER, 1076 .arg1_type = ARG_PTR_TO_CTX, 1077 }; 1078 1079 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1080 { 1081 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1082 } 1083 1084 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1085 .func = bpf_get_attach_cookie_kprobe_multi, 1086 .gpl_only = false, 1087 .ret_type = RET_INTEGER, 1088 .arg1_type = ARG_PTR_TO_CTX, 1089 }; 1090 1091 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1092 { 1093 struct bpf_trace_run_ctx *run_ctx; 1094 1095 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1096 return run_ctx->bpf_cookie; 1097 } 1098 1099 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1100 .func = bpf_get_attach_cookie_trace, 1101 .gpl_only = false, 1102 .ret_type = RET_INTEGER, 1103 .arg1_type = ARG_PTR_TO_CTX, 1104 }; 1105 1106 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1107 { 1108 return ctx->event->bpf_cookie; 1109 } 1110 1111 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1112 .func = bpf_get_attach_cookie_pe, 1113 .gpl_only = false, 1114 .ret_type = RET_INTEGER, 1115 .arg1_type = ARG_PTR_TO_CTX, 1116 }; 1117 1118 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1119 { 1120 struct bpf_trace_run_ctx *run_ctx; 1121 1122 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1123 return run_ctx->bpf_cookie; 1124 } 1125 1126 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1127 .func = bpf_get_attach_cookie_tracing, 1128 .gpl_only = false, 1129 .ret_type = RET_INTEGER, 1130 .arg1_type = ARG_PTR_TO_CTX, 1131 }; 1132 1133 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1134 { 1135 #ifndef CONFIG_X86 1136 return -ENOENT; 1137 #else 1138 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1139 u32 entry_cnt = size / br_entry_size; 1140 1141 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1142 1143 if (unlikely(flags)) 1144 return -EINVAL; 1145 1146 if (!entry_cnt) 1147 return -ENOENT; 1148 1149 return entry_cnt * br_entry_size; 1150 #endif 1151 } 1152 1153 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1154 .func = bpf_get_branch_snapshot, 1155 .gpl_only = true, 1156 .ret_type = RET_INTEGER, 1157 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1158 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1159 }; 1160 1161 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1162 { 1163 /* This helper call is inlined by verifier. */ 1164 u64 nr_args = ((u64 *)ctx)[-1]; 1165 1166 if ((u64) n >= nr_args) 1167 return -EINVAL; 1168 *value = ((u64 *)ctx)[n]; 1169 return 0; 1170 } 1171 1172 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1173 .func = get_func_arg, 1174 .ret_type = RET_INTEGER, 1175 .arg1_type = ARG_PTR_TO_CTX, 1176 .arg2_type = ARG_ANYTHING, 1177 .arg3_type = ARG_PTR_TO_LONG, 1178 }; 1179 1180 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1181 { 1182 /* This helper call is inlined by verifier. */ 1183 u64 nr_args = ((u64 *)ctx)[-1]; 1184 1185 *value = ((u64 *)ctx)[nr_args]; 1186 return 0; 1187 } 1188 1189 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1190 .func = get_func_ret, 1191 .ret_type = RET_INTEGER, 1192 .arg1_type = ARG_PTR_TO_CTX, 1193 .arg2_type = ARG_PTR_TO_LONG, 1194 }; 1195 1196 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1197 { 1198 /* This helper call is inlined by verifier. */ 1199 return ((u64 *)ctx)[-1]; 1200 } 1201 1202 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1203 .func = get_func_arg_cnt, 1204 .ret_type = RET_INTEGER, 1205 .arg1_type = ARG_PTR_TO_CTX, 1206 }; 1207 1208 #ifdef CONFIG_KEYS 1209 __diag_push(); 1210 __diag_ignore_all("-Wmissing-prototypes", 1211 "kfuncs which will be used in BPF programs"); 1212 1213 /** 1214 * bpf_lookup_user_key - lookup a key by its serial 1215 * @serial: key handle serial number 1216 * @flags: lookup-specific flags 1217 * 1218 * Search a key with a given *serial* and the provided *flags*. 1219 * If found, increment the reference count of the key by one, and 1220 * return it in the bpf_key structure. 1221 * 1222 * The bpf_key structure must be passed to bpf_key_put() when done 1223 * with it, so that the key reference count is decremented and the 1224 * bpf_key structure is freed. 1225 * 1226 * Permission checks are deferred to the time the key is used by 1227 * one of the available key-specific kfuncs. 1228 * 1229 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1230 * special keyring (e.g. session keyring), if it doesn't yet exist. 1231 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1232 * for the key construction, and to retrieve uninstantiated keys (keys 1233 * without data attached to them). 1234 * 1235 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1236 * NULL pointer otherwise. 1237 */ 1238 struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 1239 { 1240 key_ref_t key_ref; 1241 struct bpf_key *bkey; 1242 1243 if (flags & ~KEY_LOOKUP_ALL) 1244 return NULL; 1245 1246 /* 1247 * Permission check is deferred until the key is used, as the 1248 * intent of the caller is unknown here. 1249 */ 1250 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1251 if (IS_ERR(key_ref)) 1252 return NULL; 1253 1254 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1255 if (!bkey) { 1256 key_put(key_ref_to_ptr(key_ref)); 1257 return NULL; 1258 } 1259 1260 bkey->key = key_ref_to_ptr(key_ref); 1261 bkey->has_ref = true; 1262 1263 return bkey; 1264 } 1265 1266 /** 1267 * bpf_lookup_system_key - lookup a key by a system-defined ID 1268 * @id: key ID 1269 * 1270 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1271 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1272 * attempting to decrement the key reference count on that pointer. The key 1273 * pointer set in such way is currently understood only by 1274 * verify_pkcs7_signature(). 1275 * 1276 * Set *id* to one of the values defined in include/linux/verification.h: 1277 * 0 for the primary keyring (immutable keyring of system keys); 1278 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1279 * (where keys can be added only if they are vouched for by existing keys 1280 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1281 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1282 * kerned image and, possibly, the initramfs signature). 1283 * 1284 * Return: a bpf_key pointer with an invalid key pointer set from the 1285 * pre-determined ID on success, a NULL pointer otherwise 1286 */ 1287 struct bpf_key *bpf_lookup_system_key(u64 id) 1288 { 1289 struct bpf_key *bkey; 1290 1291 if (system_keyring_id_check(id) < 0) 1292 return NULL; 1293 1294 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1295 if (!bkey) 1296 return NULL; 1297 1298 bkey->key = (struct key *)(unsigned long)id; 1299 bkey->has_ref = false; 1300 1301 return bkey; 1302 } 1303 1304 /** 1305 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1306 * @bkey: bpf_key structure 1307 * 1308 * Decrement the reference count of the key inside *bkey*, if the pointer 1309 * is valid, and free *bkey*. 1310 */ 1311 void bpf_key_put(struct bpf_key *bkey) 1312 { 1313 if (bkey->has_ref) 1314 key_put(bkey->key); 1315 1316 kfree(bkey); 1317 } 1318 1319 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1320 /** 1321 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1322 * @data_ptr: data to verify 1323 * @sig_ptr: signature of the data 1324 * @trusted_keyring: keyring with keys trusted for signature verification 1325 * 1326 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1327 * with keys in a keyring referenced by *trusted_keyring*. 1328 * 1329 * Return: 0 on success, a negative value on error. 1330 */ 1331 int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr, 1332 struct bpf_dynptr_kern *sig_ptr, 1333 struct bpf_key *trusted_keyring) 1334 { 1335 int ret; 1336 1337 if (trusted_keyring->has_ref) { 1338 /* 1339 * Do the permission check deferred in bpf_lookup_user_key(). 1340 * See bpf_lookup_user_key() for more details. 1341 * 1342 * A call to key_task_permission() here would be redundant, as 1343 * it is already done by keyring_search() called by 1344 * find_asymmetric_key(). 1345 */ 1346 ret = key_validate(trusted_keyring->key); 1347 if (ret < 0) 1348 return ret; 1349 } 1350 1351 return verify_pkcs7_signature(data_ptr->data, 1352 bpf_dynptr_get_size(data_ptr), 1353 sig_ptr->data, 1354 bpf_dynptr_get_size(sig_ptr), 1355 trusted_keyring->key, 1356 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1357 NULL); 1358 } 1359 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1360 1361 __diag_pop(); 1362 1363 BTF_SET8_START(key_sig_kfunc_set) 1364 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1365 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1366 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1367 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1368 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1369 #endif 1370 BTF_SET8_END(key_sig_kfunc_set) 1371 1372 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1373 .owner = THIS_MODULE, 1374 .set = &key_sig_kfunc_set, 1375 }; 1376 1377 static int __init bpf_key_sig_kfuncs_init(void) 1378 { 1379 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1380 &bpf_key_sig_kfunc_set); 1381 } 1382 1383 late_initcall(bpf_key_sig_kfuncs_init); 1384 #endif /* CONFIG_KEYS */ 1385 1386 static const struct bpf_func_proto * 1387 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1388 { 1389 switch (func_id) { 1390 case BPF_FUNC_map_lookup_elem: 1391 return &bpf_map_lookup_elem_proto; 1392 case BPF_FUNC_map_update_elem: 1393 return &bpf_map_update_elem_proto; 1394 case BPF_FUNC_map_delete_elem: 1395 return &bpf_map_delete_elem_proto; 1396 case BPF_FUNC_map_push_elem: 1397 return &bpf_map_push_elem_proto; 1398 case BPF_FUNC_map_pop_elem: 1399 return &bpf_map_pop_elem_proto; 1400 case BPF_FUNC_map_peek_elem: 1401 return &bpf_map_peek_elem_proto; 1402 case BPF_FUNC_map_lookup_percpu_elem: 1403 return &bpf_map_lookup_percpu_elem_proto; 1404 case BPF_FUNC_ktime_get_ns: 1405 return &bpf_ktime_get_ns_proto; 1406 case BPF_FUNC_ktime_get_boot_ns: 1407 return &bpf_ktime_get_boot_ns_proto; 1408 case BPF_FUNC_tail_call: 1409 return &bpf_tail_call_proto; 1410 case BPF_FUNC_get_current_pid_tgid: 1411 return &bpf_get_current_pid_tgid_proto; 1412 case BPF_FUNC_get_current_task: 1413 return &bpf_get_current_task_proto; 1414 case BPF_FUNC_get_current_task_btf: 1415 return &bpf_get_current_task_btf_proto; 1416 case BPF_FUNC_task_pt_regs: 1417 return &bpf_task_pt_regs_proto; 1418 case BPF_FUNC_get_current_uid_gid: 1419 return &bpf_get_current_uid_gid_proto; 1420 case BPF_FUNC_get_current_comm: 1421 return &bpf_get_current_comm_proto; 1422 case BPF_FUNC_trace_printk: 1423 return bpf_get_trace_printk_proto(); 1424 case BPF_FUNC_get_smp_processor_id: 1425 return &bpf_get_smp_processor_id_proto; 1426 case BPF_FUNC_get_numa_node_id: 1427 return &bpf_get_numa_node_id_proto; 1428 case BPF_FUNC_perf_event_read: 1429 return &bpf_perf_event_read_proto; 1430 case BPF_FUNC_current_task_under_cgroup: 1431 return &bpf_current_task_under_cgroup_proto; 1432 case BPF_FUNC_get_prandom_u32: 1433 return &bpf_get_prandom_u32_proto; 1434 case BPF_FUNC_probe_write_user: 1435 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1436 NULL : bpf_get_probe_write_proto(); 1437 case BPF_FUNC_probe_read_user: 1438 return &bpf_probe_read_user_proto; 1439 case BPF_FUNC_probe_read_kernel: 1440 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1441 NULL : &bpf_probe_read_kernel_proto; 1442 case BPF_FUNC_probe_read_user_str: 1443 return &bpf_probe_read_user_str_proto; 1444 case BPF_FUNC_probe_read_kernel_str: 1445 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1446 NULL : &bpf_probe_read_kernel_str_proto; 1447 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1448 case BPF_FUNC_probe_read: 1449 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1450 NULL : &bpf_probe_read_compat_proto; 1451 case BPF_FUNC_probe_read_str: 1452 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1453 NULL : &bpf_probe_read_compat_str_proto; 1454 #endif 1455 #ifdef CONFIG_CGROUPS 1456 case BPF_FUNC_get_current_cgroup_id: 1457 return &bpf_get_current_cgroup_id_proto; 1458 case BPF_FUNC_get_current_ancestor_cgroup_id: 1459 return &bpf_get_current_ancestor_cgroup_id_proto; 1460 case BPF_FUNC_cgrp_storage_get: 1461 return &bpf_cgrp_storage_get_proto; 1462 case BPF_FUNC_cgrp_storage_delete: 1463 return &bpf_cgrp_storage_delete_proto; 1464 #endif 1465 case BPF_FUNC_send_signal: 1466 return &bpf_send_signal_proto; 1467 case BPF_FUNC_send_signal_thread: 1468 return &bpf_send_signal_thread_proto; 1469 case BPF_FUNC_perf_event_read_value: 1470 return &bpf_perf_event_read_value_proto; 1471 case BPF_FUNC_get_ns_current_pid_tgid: 1472 return &bpf_get_ns_current_pid_tgid_proto; 1473 case BPF_FUNC_ringbuf_output: 1474 return &bpf_ringbuf_output_proto; 1475 case BPF_FUNC_ringbuf_reserve: 1476 return &bpf_ringbuf_reserve_proto; 1477 case BPF_FUNC_ringbuf_submit: 1478 return &bpf_ringbuf_submit_proto; 1479 case BPF_FUNC_ringbuf_discard: 1480 return &bpf_ringbuf_discard_proto; 1481 case BPF_FUNC_ringbuf_query: 1482 return &bpf_ringbuf_query_proto; 1483 case BPF_FUNC_jiffies64: 1484 return &bpf_jiffies64_proto; 1485 case BPF_FUNC_get_task_stack: 1486 return &bpf_get_task_stack_proto; 1487 case BPF_FUNC_copy_from_user: 1488 return &bpf_copy_from_user_proto; 1489 case BPF_FUNC_copy_from_user_task: 1490 return &bpf_copy_from_user_task_proto; 1491 case BPF_FUNC_snprintf_btf: 1492 return &bpf_snprintf_btf_proto; 1493 case BPF_FUNC_per_cpu_ptr: 1494 return &bpf_per_cpu_ptr_proto; 1495 case BPF_FUNC_this_cpu_ptr: 1496 return &bpf_this_cpu_ptr_proto; 1497 case BPF_FUNC_task_storage_get: 1498 if (bpf_prog_check_recur(prog)) 1499 return &bpf_task_storage_get_recur_proto; 1500 return &bpf_task_storage_get_proto; 1501 case BPF_FUNC_task_storage_delete: 1502 if (bpf_prog_check_recur(prog)) 1503 return &bpf_task_storage_delete_recur_proto; 1504 return &bpf_task_storage_delete_proto; 1505 case BPF_FUNC_for_each_map_elem: 1506 return &bpf_for_each_map_elem_proto; 1507 case BPF_FUNC_snprintf: 1508 return &bpf_snprintf_proto; 1509 case BPF_FUNC_get_func_ip: 1510 return &bpf_get_func_ip_proto_tracing; 1511 case BPF_FUNC_get_branch_snapshot: 1512 return &bpf_get_branch_snapshot_proto; 1513 case BPF_FUNC_find_vma: 1514 return &bpf_find_vma_proto; 1515 case BPF_FUNC_trace_vprintk: 1516 return bpf_get_trace_vprintk_proto(); 1517 default: 1518 return bpf_base_func_proto(func_id); 1519 } 1520 } 1521 1522 static const struct bpf_func_proto * 1523 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1524 { 1525 switch (func_id) { 1526 case BPF_FUNC_perf_event_output: 1527 return &bpf_perf_event_output_proto; 1528 case BPF_FUNC_get_stackid: 1529 return &bpf_get_stackid_proto; 1530 case BPF_FUNC_get_stack: 1531 return &bpf_get_stack_proto; 1532 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1533 case BPF_FUNC_override_return: 1534 return &bpf_override_return_proto; 1535 #endif 1536 case BPF_FUNC_get_func_ip: 1537 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ? 1538 &bpf_get_func_ip_proto_kprobe_multi : 1539 &bpf_get_func_ip_proto_kprobe; 1540 case BPF_FUNC_get_attach_cookie: 1541 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ? 1542 &bpf_get_attach_cookie_proto_kmulti : 1543 &bpf_get_attach_cookie_proto_trace; 1544 default: 1545 return bpf_tracing_func_proto(func_id, prog); 1546 } 1547 } 1548 1549 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1550 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1551 const struct bpf_prog *prog, 1552 struct bpf_insn_access_aux *info) 1553 { 1554 if (off < 0 || off >= sizeof(struct pt_regs)) 1555 return false; 1556 if (type != BPF_READ) 1557 return false; 1558 if (off % size != 0) 1559 return false; 1560 /* 1561 * Assertion for 32 bit to make sure last 8 byte access 1562 * (BPF_DW) to the last 4 byte member is disallowed. 1563 */ 1564 if (off + size > sizeof(struct pt_regs)) 1565 return false; 1566 1567 return true; 1568 } 1569 1570 const struct bpf_verifier_ops kprobe_verifier_ops = { 1571 .get_func_proto = kprobe_prog_func_proto, 1572 .is_valid_access = kprobe_prog_is_valid_access, 1573 }; 1574 1575 const struct bpf_prog_ops kprobe_prog_ops = { 1576 }; 1577 1578 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1579 u64, flags, void *, data, u64, size) 1580 { 1581 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1582 1583 /* 1584 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1585 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1586 * from there and call the same bpf_perf_event_output() helper inline. 1587 */ 1588 return ____bpf_perf_event_output(regs, map, flags, data, size); 1589 } 1590 1591 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1592 .func = bpf_perf_event_output_tp, 1593 .gpl_only = true, 1594 .ret_type = RET_INTEGER, 1595 .arg1_type = ARG_PTR_TO_CTX, 1596 .arg2_type = ARG_CONST_MAP_PTR, 1597 .arg3_type = ARG_ANYTHING, 1598 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1599 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1600 }; 1601 1602 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1603 u64, flags) 1604 { 1605 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1606 1607 /* 1608 * Same comment as in bpf_perf_event_output_tp(), only that this time 1609 * the other helper's function body cannot be inlined due to being 1610 * external, thus we need to call raw helper function. 1611 */ 1612 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1613 flags, 0, 0); 1614 } 1615 1616 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1617 .func = bpf_get_stackid_tp, 1618 .gpl_only = true, 1619 .ret_type = RET_INTEGER, 1620 .arg1_type = ARG_PTR_TO_CTX, 1621 .arg2_type = ARG_CONST_MAP_PTR, 1622 .arg3_type = ARG_ANYTHING, 1623 }; 1624 1625 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1626 u64, flags) 1627 { 1628 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1629 1630 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1631 (unsigned long) size, flags, 0); 1632 } 1633 1634 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1635 .func = bpf_get_stack_tp, 1636 .gpl_only = true, 1637 .ret_type = RET_INTEGER, 1638 .arg1_type = ARG_PTR_TO_CTX, 1639 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1640 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1641 .arg4_type = ARG_ANYTHING, 1642 }; 1643 1644 static const struct bpf_func_proto * 1645 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1646 { 1647 switch (func_id) { 1648 case BPF_FUNC_perf_event_output: 1649 return &bpf_perf_event_output_proto_tp; 1650 case BPF_FUNC_get_stackid: 1651 return &bpf_get_stackid_proto_tp; 1652 case BPF_FUNC_get_stack: 1653 return &bpf_get_stack_proto_tp; 1654 case BPF_FUNC_get_attach_cookie: 1655 return &bpf_get_attach_cookie_proto_trace; 1656 default: 1657 return bpf_tracing_func_proto(func_id, prog); 1658 } 1659 } 1660 1661 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1662 const struct bpf_prog *prog, 1663 struct bpf_insn_access_aux *info) 1664 { 1665 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1666 return false; 1667 if (type != BPF_READ) 1668 return false; 1669 if (off % size != 0) 1670 return false; 1671 1672 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1673 return true; 1674 } 1675 1676 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1677 .get_func_proto = tp_prog_func_proto, 1678 .is_valid_access = tp_prog_is_valid_access, 1679 }; 1680 1681 const struct bpf_prog_ops tracepoint_prog_ops = { 1682 }; 1683 1684 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1685 struct bpf_perf_event_value *, buf, u32, size) 1686 { 1687 int err = -EINVAL; 1688 1689 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1690 goto clear; 1691 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1692 &buf->running); 1693 if (unlikely(err)) 1694 goto clear; 1695 return 0; 1696 clear: 1697 memset(buf, 0, size); 1698 return err; 1699 } 1700 1701 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1702 .func = bpf_perf_prog_read_value, 1703 .gpl_only = true, 1704 .ret_type = RET_INTEGER, 1705 .arg1_type = ARG_PTR_TO_CTX, 1706 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1707 .arg3_type = ARG_CONST_SIZE, 1708 }; 1709 1710 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1711 void *, buf, u32, size, u64, flags) 1712 { 1713 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1714 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1715 u32 to_copy; 1716 1717 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1718 return -EINVAL; 1719 1720 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1721 return -ENOENT; 1722 1723 if (unlikely(!br_stack)) 1724 return -ENOENT; 1725 1726 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1727 return br_stack->nr * br_entry_size; 1728 1729 if (!buf || (size % br_entry_size != 0)) 1730 return -EINVAL; 1731 1732 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1733 memcpy(buf, br_stack->entries, to_copy); 1734 1735 return to_copy; 1736 } 1737 1738 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1739 .func = bpf_read_branch_records, 1740 .gpl_only = true, 1741 .ret_type = RET_INTEGER, 1742 .arg1_type = ARG_PTR_TO_CTX, 1743 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1744 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1745 .arg4_type = ARG_ANYTHING, 1746 }; 1747 1748 static const struct bpf_func_proto * 1749 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1750 { 1751 switch (func_id) { 1752 case BPF_FUNC_perf_event_output: 1753 return &bpf_perf_event_output_proto_tp; 1754 case BPF_FUNC_get_stackid: 1755 return &bpf_get_stackid_proto_pe; 1756 case BPF_FUNC_get_stack: 1757 return &bpf_get_stack_proto_pe; 1758 case BPF_FUNC_perf_prog_read_value: 1759 return &bpf_perf_prog_read_value_proto; 1760 case BPF_FUNC_read_branch_records: 1761 return &bpf_read_branch_records_proto; 1762 case BPF_FUNC_get_attach_cookie: 1763 return &bpf_get_attach_cookie_proto_pe; 1764 default: 1765 return bpf_tracing_func_proto(func_id, prog); 1766 } 1767 } 1768 1769 /* 1770 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1771 * to avoid potential recursive reuse issue when/if tracepoints are added 1772 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1773 * 1774 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1775 * in normal, irq, and nmi context. 1776 */ 1777 struct bpf_raw_tp_regs { 1778 struct pt_regs regs[3]; 1779 }; 1780 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1781 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1782 static struct pt_regs *get_bpf_raw_tp_regs(void) 1783 { 1784 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1785 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1786 1787 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1788 this_cpu_dec(bpf_raw_tp_nest_level); 1789 return ERR_PTR(-EBUSY); 1790 } 1791 1792 return &tp_regs->regs[nest_level - 1]; 1793 } 1794 1795 static void put_bpf_raw_tp_regs(void) 1796 { 1797 this_cpu_dec(bpf_raw_tp_nest_level); 1798 } 1799 1800 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1801 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1802 { 1803 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1804 int ret; 1805 1806 if (IS_ERR(regs)) 1807 return PTR_ERR(regs); 1808 1809 perf_fetch_caller_regs(regs); 1810 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1811 1812 put_bpf_raw_tp_regs(); 1813 return ret; 1814 } 1815 1816 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1817 .func = bpf_perf_event_output_raw_tp, 1818 .gpl_only = true, 1819 .ret_type = RET_INTEGER, 1820 .arg1_type = ARG_PTR_TO_CTX, 1821 .arg2_type = ARG_CONST_MAP_PTR, 1822 .arg3_type = ARG_ANYTHING, 1823 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1824 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1825 }; 1826 1827 extern const struct bpf_func_proto bpf_skb_output_proto; 1828 extern const struct bpf_func_proto bpf_xdp_output_proto; 1829 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1830 1831 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1832 struct bpf_map *, map, u64, flags) 1833 { 1834 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1835 int ret; 1836 1837 if (IS_ERR(regs)) 1838 return PTR_ERR(regs); 1839 1840 perf_fetch_caller_regs(regs); 1841 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1842 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1843 flags, 0, 0); 1844 put_bpf_raw_tp_regs(); 1845 return ret; 1846 } 1847 1848 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1849 .func = bpf_get_stackid_raw_tp, 1850 .gpl_only = true, 1851 .ret_type = RET_INTEGER, 1852 .arg1_type = ARG_PTR_TO_CTX, 1853 .arg2_type = ARG_CONST_MAP_PTR, 1854 .arg3_type = ARG_ANYTHING, 1855 }; 1856 1857 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1858 void *, buf, u32, size, u64, flags) 1859 { 1860 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1861 int ret; 1862 1863 if (IS_ERR(regs)) 1864 return PTR_ERR(regs); 1865 1866 perf_fetch_caller_regs(regs); 1867 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1868 (unsigned long) size, flags, 0); 1869 put_bpf_raw_tp_regs(); 1870 return ret; 1871 } 1872 1873 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1874 .func = bpf_get_stack_raw_tp, 1875 .gpl_only = true, 1876 .ret_type = RET_INTEGER, 1877 .arg1_type = ARG_PTR_TO_CTX, 1878 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1879 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1880 .arg4_type = ARG_ANYTHING, 1881 }; 1882 1883 static const struct bpf_func_proto * 1884 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1885 { 1886 switch (func_id) { 1887 case BPF_FUNC_perf_event_output: 1888 return &bpf_perf_event_output_proto_raw_tp; 1889 case BPF_FUNC_get_stackid: 1890 return &bpf_get_stackid_proto_raw_tp; 1891 case BPF_FUNC_get_stack: 1892 return &bpf_get_stack_proto_raw_tp; 1893 default: 1894 return bpf_tracing_func_proto(func_id, prog); 1895 } 1896 } 1897 1898 const struct bpf_func_proto * 1899 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1900 { 1901 const struct bpf_func_proto *fn; 1902 1903 switch (func_id) { 1904 #ifdef CONFIG_NET 1905 case BPF_FUNC_skb_output: 1906 return &bpf_skb_output_proto; 1907 case BPF_FUNC_xdp_output: 1908 return &bpf_xdp_output_proto; 1909 case BPF_FUNC_skc_to_tcp6_sock: 1910 return &bpf_skc_to_tcp6_sock_proto; 1911 case BPF_FUNC_skc_to_tcp_sock: 1912 return &bpf_skc_to_tcp_sock_proto; 1913 case BPF_FUNC_skc_to_tcp_timewait_sock: 1914 return &bpf_skc_to_tcp_timewait_sock_proto; 1915 case BPF_FUNC_skc_to_tcp_request_sock: 1916 return &bpf_skc_to_tcp_request_sock_proto; 1917 case BPF_FUNC_skc_to_udp6_sock: 1918 return &bpf_skc_to_udp6_sock_proto; 1919 case BPF_FUNC_skc_to_unix_sock: 1920 return &bpf_skc_to_unix_sock_proto; 1921 case BPF_FUNC_skc_to_mptcp_sock: 1922 return &bpf_skc_to_mptcp_sock_proto; 1923 case BPF_FUNC_sk_storage_get: 1924 return &bpf_sk_storage_get_tracing_proto; 1925 case BPF_FUNC_sk_storage_delete: 1926 return &bpf_sk_storage_delete_tracing_proto; 1927 case BPF_FUNC_sock_from_file: 1928 return &bpf_sock_from_file_proto; 1929 case BPF_FUNC_get_socket_cookie: 1930 return &bpf_get_socket_ptr_cookie_proto; 1931 case BPF_FUNC_xdp_get_buff_len: 1932 return &bpf_xdp_get_buff_len_trace_proto; 1933 #endif 1934 case BPF_FUNC_seq_printf: 1935 return prog->expected_attach_type == BPF_TRACE_ITER ? 1936 &bpf_seq_printf_proto : 1937 NULL; 1938 case BPF_FUNC_seq_write: 1939 return prog->expected_attach_type == BPF_TRACE_ITER ? 1940 &bpf_seq_write_proto : 1941 NULL; 1942 case BPF_FUNC_seq_printf_btf: 1943 return prog->expected_attach_type == BPF_TRACE_ITER ? 1944 &bpf_seq_printf_btf_proto : 1945 NULL; 1946 case BPF_FUNC_d_path: 1947 return &bpf_d_path_proto; 1948 case BPF_FUNC_get_func_arg: 1949 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 1950 case BPF_FUNC_get_func_ret: 1951 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 1952 case BPF_FUNC_get_func_arg_cnt: 1953 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 1954 case BPF_FUNC_get_attach_cookie: 1955 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 1956 default: 1957 fn = raw_tp_prog_func_proto(func_id, prog); 1958 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 1959 fn = bpf_iter_get_func_proto(func_id, prog); 1960 return fn; 1961 } 1962 } 1963 1964 static bool raw_tp_prog_is_valid_access(int off, int size, 1965 enum bpf_access_type type, 1966 const struct bpf_prog *prog, 1967 struct bpf_insn_access_aux *info) 1968 { 1969 return bpf_tracing_ctx_access(off, size, type); 1970 } 1971 1972 static bool tracing_prog_is_valid_access(int off, int size, 1973 enum bpf_access_type type, 1974 const struct bpf_prog *prog, 1975 struct bpf_insn_access_aux *info) 1976 { 1977 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 1978 } 1979 1980 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1981 const union bpf_attr *kattr, 1982 union bpf_attr __user *uattr) 1983 { 1984 return -ENOTSUPP; 1985 } 1986 1987 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1988 .get_func_proto = raw_tp_prog_func_proto, 1989 .is_valid_access = raw_tp_prog_is_valid_access, 1990 }; 1991 1992 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1993 #ifdef CONFIG_NET 1994 .test_run = bpf_prog_test_run_raw_tp, 1995 #endif 1996 }; 1997 1998 const struct bpf_verifier_ops tracing_verifier_ops = { 1999 .get_func_proto = tracing_prog_func_proto, 2000 .is_valid_access = tracing_prog_is_valid_access, 2001 }; 2002 2003 const struct bpf_prog_ops tracing_prog_ops = { 2004 .test_run = bpf_prog_test_run_tracing, 2005 }; 2006 2007 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 2008 enum bpf_access_type type, 2009 const struct bpf_prog *prog, 2010 struct bpf_insn_access_aux *info) 2011 { 2012 if (off == 0) { 2013 if (size != sizeof(u64) || type != BPF_READ) 2014 return false; 2015 info->reg_type = PTR_TO_TP_BUFFER; 2016 } 2017 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 2018 } 2019 2020 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 2021 .get_func_proto = raw_tp_prog_func_proto, 2022 .is_valid_access = raw_tp_writable_prog_is_valid_access, 2023 }; 2024 2025 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 2026 }; 2027 2028 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2029 const struct bpf_prog *prog, 2030 struct bpf_insn_access_aux *info) 2031 { 2032 const int size_u64 = sizeof(u64); 2033 2034 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2035 return false; 2036 if (type != BPF_READ) 2037 return false; 2038 if (off % size != 0) { 2039 if (sizeof(unsigned long) != 4) 2040 return false; 2041 if (size != 8) 2042 return false; 2043 if (off % size != 4) 2044 return false; 2045 } 2046 2047 switch (off) { 2048 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2049 bpf_ctx_record_field_size(info, size_u64); 2050 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2051 return false; 2052 break; 2053 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2054 bpf_ctx_record_field_size(info, size_u64); 2055 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2056 return false; 2057 break; 2058 default: 2059 if (size != sizeof(long)) 2060 return false; 2061 } 2062 2063 return true; 2064 } 2065 2066 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2067 const struct bpf_insn *si, 2068 struct bpf_insn *insn_buf, 2069 struct bpf_prog *prog, u32 *target_size) 2070 { 2071 struct bpf_insn *insn = insn_buf; 2072 2073 switch (si->off) { 2074 case offsetof(struct bpf_perf_event_data, sample_period): 2075 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2076 data), si->dst_reg, si->src_reg, 2077 offsetof(struct bpf_perf_event_data_kern, data)); 2078 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2079 bpf_target_off(struct perf_sample_data, period, 8, 2080 target_size)); 2081 break; 2082 case offsetof(struct bpf_perf_event_data, addr): 2083 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2084 data), si->dst_reg, si->src_reg, 2085 offsetof(struct bpf_perf_event_data_kern, data)); 2086 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2087 bpf_target_off(struct perf_sample_data, addr, 8, 2088 target_size)); 2089 break; 2090 default: 2091 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2092 regs), si->dst_reg, si->src_reg, 2093 offsetof(struct bpf_perf_event_data_kern, regs)); 2094 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2095 si->off); 2096 break; 2097 } 2098 2099 return insn - insn_buf; 2100 } 2101 2102 const struct bpf_verifier_ops perf_event_verifier_ops = { 2103 .get_func_proto = pe_prog_func_proto, 2104 .is_valid_access = pe_prog_is_valid_access, 2105 .convert_ctx_access = pe_prog_convert_ctx_access, 2106 }; 2107 2108 const struct bpf_prog_ops perf_event_prog_ops = { 2109 }; 2110 2111 static DEFINE_MUTEX(bpf_event_mutex); 2112 2113 #define BPF_TRACE_MAX_PROGS 64 2114 2115 int perf_event_attach_bpf_prog(struct perf_event *event, 2116 struct bpf_prog *prog, 2117 u64 bpf_cookie) 2118 { 2119 struct bpf_prog_array *old_array; 2120 struct bpf_prog_array *new_array; 2121 int ret = -EEXIST; 2122 2123 /* 2124 * Kprobe override only works if they are on the function entry, 2125 * and only if they are on the opt-in list. 2126 */ 2127 if (prog->kprobe_override && 2128 (!trace_kprobe_on_func_entry(event->tp_event) || 2129 !trace_kprobe_error_injectable(event->tp_event))) 2130 return -EINVAL; 2131 2132 mutex_lock(&bpf_event_mutex); 2133 2134 if (event->prog) 2135 goto unlock; 2136 2137 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2138 if (old_array && 2139 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2140 ret = -E2BIG; 2141 goto unlock; 2142 } 2143 2144 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2145 if (ret < 0) 2146 goto unlock; 2147 2148 /* set the new array to event->tp_event and set event->prog */ 2149 event->prog = prog; 2150 event->bpf_cookie = bpf_cookie; 2151 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2152 bpf_prog_array_free_sleepable(old_array); 2153 2154 unlock: 2155 mutex_unlock(&bpf_event_mutex); 2156 return ret; 2157 } 2158 2159 void perf_event_detach_bpf_prog(struct perf_event *event) 2160 { 2161 struct bpf_prog_array *old_array; 2162 struct bpf_prog_array *new_array; 2163 int ret; 2164 2165 mutex_lock(&bpf_event_mutex); 2166 2167 if (!event->prog) 2168 goto unlock; 2169 2170 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2171 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2172 if (ret == -ENOENT) 2173 goto unlock; 2174 if (ret < 0) { 2175 bpf_prog_array_delete_safe(old_array, event->prog); 2176 } else { 2177 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2178 bpf_prog_array_free_sleepable(old_array); 2179 } 2180 2181 bpf_prog_put(event->prog); 2182 event->prog = NULL; 2183 2184 unlock: 2185 mutex_unlock(&bpf_event_mutex); 2186 } 2187 2188 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2189 { 2190 struct perf_event_query_bpf __user *uquery = info; 2191 struct perf_event_query_bpf query = {}; 2192 struct bpf_prog_array *progs; 2193 u32 *ids, prog_cnt, ids_len; 2194 int ret; 2195 2196 if (!perfmon_capable()) 2197 return -EPERM; 2198 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2199 return -EINVAL; 2200 if (copy_from_user(&query, uquery, sizeof(query))) 2201 return -EFAULT; 2202 2203 ids_len = query.ids_len; 2204 if (ids_len > BPF_TRACE_MAX_PROGS) 2205 return -E2BIG; 2206 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2207 if (!ids) 2208 return -ENOMEM; 2209 /* 2210 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2211 * is required when user only wants to check for uquery->prog_cnt. 2212 * There is no need to check for it since the case is handled 2213 * gracefully in bpf_prog_array_copy_info. 2214 */ 2215 2216 mutex_lock(&bpf_event_mutex); 2217 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2218 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2219 mutex_unlock(&bpf_event_mutex); 2220 2221 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2222 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2223 ret = -EFAULT; 2224 2225 kfree(ids); 2226 return ret; 2227 } 2228 2229 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2230 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2231 2232 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2233 { 2234 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2235 2236 for (; btp < __stop__bpf_raw_tp; btp++) { 2237 if (!strcmp(btp->tp->name, name)) 2238 return btp; 2239 } 2240 2241 return bpf_get_raw_tracepoint_module(name); 2242 } 2243 2244 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2245 { 2246 struct module *mod; 2247 2248 preempt_disable(); 2249 mod = __module_address((unsigned long)btp); 2250 module_put(mod); 2251 preempt_enable(); 2252 } 2253 2254 static __always_inline 2255 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 2256 { 2257 cant_sleep(); 2258 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2259 bpf_prog_inc_misses_counter(prog); 2260 goto out; 2261 } 2262 rcu_read_lock(); 2263 (void) bpf_prog_run(prog, args); 2264 rcu_read_unlock(); 2265 out: 2266 this_cpu_dec(*(prog->active)); 2267 } 2268 2269 #define UNPACK(...) __VA_ARGS__ 2270 #define REPEAT_1(FN, DL, X, ...) FN(X) 2271 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2272 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2273 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2274 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2275 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2276 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2277 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2278 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2279 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2280 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2281 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2282 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2283 2284 #define SARG(X) u64 arg##X 2285 #define COPY(X) args[X] = arg##X 2286 2287 #define __DL_COM (,) 2288 #define __DL_SEM (;) 2289 2290 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2291 2292 #define BPF_TRACE_DEFN_x(x) \ 2293 void bpf_trace_run##x(struct bpf_prog *prog, \ 2294 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2295 { \ 2296 u64 args[x]; \ 2297 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2298 __bpf_trace_run(prog, args); \ 2299 } \ 2300 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2301 BPF_TRACE_DEFN_x(1); 2302 BPF_TRACE_DEFN_x(2); 2303 BPF_TRACE_DEFN_x(3); 2304 BPF_TRACE_DEFN_x(4); 2305 BPF_TRACE_DEFN_x(5); 2306 BPF_TRACE_DEFN_x(6); 2307 BPF_TRACE_DEFN_x(7); 2308 BPF_TRACE_DEFN_x(8); 2309 BPF_TRACE_DEFN_x(9); 2310 BPF_TRACE_DEFN_x(10); 2311 BPF_TRACE_DEFN_x(11); 2312 BPF_TRACE_DEFN_x(12); 2313 2314 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2315 { 2316 struct tracepoint *tp = btp->tp; 2317 2318 /* 2319 * check that program doesn't access arguments beyond what's 2320 * available in this tracepoint 2321 */ 2322 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2323 return -EINVAL; 2324 2325 if (prog->aux->max_tp_access > btp->writable_size) 2326 return -EINVAL; 2327 2328 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 2329 prog); 2330 } 2331 2332 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2333 { 2334 return __bpf_probe_register(btp, prog); 2335 } 2336 2337 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2338 { 2339 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 2340 } 2341 2342 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2343 u32 *fd_type, const char **buf, 2344 u64 *probe_offset, u64 *probe_addr) 2345 { 2346 bool is_tracepoint, is_syscall_tp; 2347 struct bpf_prog *prog; 2348 int flags, err = 0; 2349 2350 prog = event->prog; 2351 if (!prog) 2352 return -ENOENT; 2353 2354 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2355 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2356 return -EOPNOTSUPP; 2357 2358 *prog_id = prog->aux->id; 2359 flags = event->tp_event->flags; 2360 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2361 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2362 2363 if (is_tracepoint || is_syscall_tp) { 2364 *buf = is_tracepoint ? event->tp_event->tp->name 2365 : event->tp_event->name; 2366 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2367 *probe_offset = 0x0; 2368 *probe_addr = 0x0; 2369 } else { 2370 /* kprobe/uprobe */ 2371 err = -EOPNOTSUPP; 2372 #ifdef CONFIG_KPROBE_EVENTS 2373 if (flags & TRACE_EVENT_FL_KPROBE) 2374 err = bpf_get_kprobe_info(event, fd_type, buf, 2375 probe_offset, probe_addr, 2376 event->attr.type == PERF_TYPE_TRACEPOINT); 2377 #endif 2378 #ifdef CONFIG_UPROBE_EVENTS 2379 if (flags & TRACE_EVENT_FL_UPROBE) 2380 err = bpf_get_uprobe_info(event, fd_type, buf, 2381 probe_offset, 2382 event->attr.type == PERF_TYPE_TRACEPOINT); 2383 #endif 2384 } 2385 2386 return err; 2387 } 2388 2389 static int __init send_signal_irq_work_init(void) 2390 { 2391 int cpu; 2392 struct send_signal_irq_work *work; 2393 2394 for_each_possible_cpu(cpu) { 2395 work = per_cpu_ptr(&send_signal_work, cpu); 2396 init_irq_work(&work->irq_work, do_bpf_send_signal); 2397 } 2398 return 0; 2399 } 2400 2401 subsys_initcall(send_signal_irq_work_init); 2402 2403 #ifdef CONFIG_MODULES 2404 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2405 void *module) 2406 { 2407 struct bpf_trace_module *btm, *tmp; 2408 struct module *mod = module; 2409 int ret = 0; 2410 2411 if (mod->num_bpf_raw_events == 0 || 2412 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2413 goto out; 2414 2415 mutex_lock(&bpf_module_mutex); 2416 2417 switch (op) { 2418 case MODULE_STATE_COMING: 2419 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2420 if (btm) { 2421 btm->module = module; 2422 list_add(&btm->list, &bpf_trace_modules); 2423 } else { 2424 ret = -ENOMEM; 2425 } 2426 break; 2427 case MODULE_STATE_GOING: 2428 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2429 if (btm->module == module) { 2430 list_del(&btm->list); 2431 kfree(btm); 2432 break; 2433 } 2434 } 2435 break; 2436 } 2437 2438 mutex_unlock(&bpf_module_mutex); 2439 2440 out: 2441 return notifier_from_errno(ret); 2442 } 2443 2444 static struct notifier_block bpf_module_nb = { 2445 .notifier_call = bpf_event_notify, 2446 }; 2447 2448 static int __init bpf_event_init(void) 2449 { 2450 register_module_notifier(&bpf_module_nb); 2451 return 0; 2452 } 2453 2454 fs_initcall(bpf_event_init); 2455 #endif /* CONFIG_MODULES */ 2456 2457 #ifdef CONFIG_FPROBE 2458 struct bpf_kprobe_multi_link { 2459 struct bpf_link link; 2460 struct fprobe fp; 2461 unsigned long *addrs; 2462 u64 *cookies; 2463 u32 cnt; 2464 u32 mods_cnt; 2465 struct module **mods; 2466 }; 2467 2468 struct bpf_kprobe_multi_run_ctx { 2469 struct bpf_run_ctx run_ctx; 2470 struct bpf_kprobe_multi_link *link; 2471 unsigned long entry_ip; 2472 }; 2473 2474 struct user_syms { 2475 const char **syms; 2476 char *buf; 2477 }; 2478 2479 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2480 { 2481 unsigned long __user usymbol; 2482 const char **syms = NULL; 2483 char *buf = NULL, *p; 2484 int err = -ENOMEM; 2485 unsigned int i; 2486 2487 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2488 if (!syms) 2489 goto error; 2490 2491 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2492 if (!buf) 2493 goto error; 2494 2495 for (p = buf, i = 0; i < cnt; i++) { 2496 if (__get_user(usymbol, usyms + i)) { 2497 err = -EFAULT; 2498 goto error; 2499 } 2500 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2501 if (err == KSYM_NAME_LEN) 2502 err = -E2BIG; 2503 if (err < 0) 2504 goto error; 2505 syms[i] = p; 2506 p += err + 1; 2507 } 2508 2509 us->syms = syms; 2510 us->buf = buf; 2511 return 0; 2512 2513 error: 2514 if (err) { 2515 kvfree(syms); 2516 kvfree(buf); 2517 } 2518 return err; 2519 } 2520 2521 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2522 { 2523 u32 i; 2524 2525 for (i = 0; i < cnt; i++) 2526 module_put(mods[i]); 2527 } 2528 2529 static void free_user_syms(struct user_syms *us) 2530 { 2531 kvfree(us->syms); 2532 kvfree(us->buf); 2533 } 2534 2535 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2536 { 2537 struct bpf_kprobe_multi_link *kmulti_link; 2538 2539 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2540 unregister_fprobe(&kmulti_link->fp); 2541 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2542 } 2543 2544 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2545 { 2546 struct bpf_kprobe_multi_link *kmulti_link; 2547 2548 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2549 kvfree(kmulti_link->addrs); 2550 kvfree(kmulti_link->cookies); 2551 kfree(kmulti_link->mods); 2552 kfree(kmulti_link); 2553 } 2554 2555 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2556 .release = bpf_kprobe_multi_link_release, 2557 .dealloc = bpf_kprobe_multi_link_dealloc, 2558 }; 2559 2560 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2561 { 2562 const struct bpf_kprobe_multi_link *link = priv; 2563 unsigned long *addr_a = a, *addr_b = b; 2564 u64 *cookie_a, *cookie_b; 2565 2566 cookie_a = link->cookies + (addr_a - link->addrs); 2567 cookie_b = link->cookies + (addr_b - link->addrs); 2568 2569 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2570 swap(*addr_a, *addr_b); 2571 swap(*cookie_a, *cookie_b); 2572 } 2573 2574 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2575 { 2576 const unsigned long *addr_a = a, *addr_b = b; 2577 2578 if (*addr_a == *addr_b) 2579 return 0; 2580 return *addr_a < *addr_b ? -1 : 1; 2581 } 2582 2583 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2584 { 2585 return bpf_kprobe_multi_addrs_cmp(a, b); 2586 } 2587 2588 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2589 { 2590 struct bpf_kprobe_multi_run_ctx *run_ctx; 2591 struct bpf_kprobe_multi_link *link; 2592 u64 *cookie, entry_ip; 2593 unsigned long *addr; 2594 2595 if (WARN_ON_ONCE(!ctx)) 2596 return 0; 2597 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx); 2598 link = run_ctx->link; 2599 if (!link->cookies) 2600 return 0; 2601 entry_ip = run_ctx->entry_ip; 2602 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2603 bpf_kprobe_multi_addrs_cmp); 2604 if (!addr) 2605 return 0; 2606 cookie = link->cookies + (addr - link->addrs); 2607 return *cookie; 2608 } 2609 2610 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2611 { 2612 struct bpf_kprobe_multi_run_ctx *run_ctx; 2613 2614 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx); 2615 return run_ctx->entry_ip; 2616 } 2617 2618 static int 2619 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2620 unsigned long entry_ip, struct pt_regs *regs) 2621 { 2622 struct bpf_kprobe_multi_run_ctx run_ctx = { 2623 .link = link, 2624 .entry_ip = entry_ip, 2625 }; 2626 struct bpf_run_ctx *old_run_ctx; 2627 int err; 2628 2629 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2630 err = 0; 2631 goto out; 2632 } 2633 2634 migrate_disable(); 2635 rcu_read_lock(); 2636 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2637 err = bpf_prog_run(link->link.prog, regs); 2638 bpf_reset_run_ctx(old_run_ctx); 2639 rcu_read_unlock(); 2640 migrate_enable(); 2641 2642 out: 2643 __this_cpu_dec(bpf_prog_active); 2644 return err; 2645 } 2646 2647 static void 2648 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2649 struct pt_regs *regs) 2650 { 2651 struct bpf_kprobe_multi_link *link; 2652 2653 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2654 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs); 2655 } 2656 2657 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2658 { 2659 const char **str_a = (const char **) a; 2660 const char **str_b = (const char **) b; 2661 2662 return strcmp(*str_a, *str_b); 2663 } 2664 2665 struct multi_symbols_sort { 2666 const char **funcs; 2667 u64 *cookies; 2668 }; 2669 2670 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2671 { 2672 const struct multi_symbols_sort *data = priv; 2673 const char **name_a = a, **name_b = b; 2674 2675 swap(*name_a, *name_b); 2676 2677 /* If defined, swap also related cookies. */ 2678 if (data->cookies) { 2679 u64 *cookie_a, *cookie_b; 2680 2681 cookie_a = data->cookies + (name_a - data->funcs); 2682 cookie_b = data->cookies + (name_b - data->funcs); 2683 swap(*cookie_a, *cookie_b); 2684 } 2685 } 2686 2687 struct module_addr_args { 2688 unsigned long *addrs; 2689 u32 addrs_cnt; 2690 struct module **mods; 2691 int mods_cnt; 2692 int mods_cap; 2693 }; 2694 2695 static int module_callback(void *data, const char *name, 2696 struct module *mod, unsigned long addr) 2697 { 2698 struct module_addr_args *args = data; 2699 struct module **mods; 2700 2701 /* We iterate all modules symbols and for each we: 2702 * - search for it in provided addresses array 2703 * - if found we check if we already have the module pointer stored 2704 * (we iterate modules sequentially, so we can check just the last 2705 * module pointer) 2706 * - take module reference and store it 2707 */ 2708 if (!bsearch(&addr, args->addrs, args->addrs_cnt, sizeof(addr), 2709 bpf_kprobe_multi_addrs_cmp)) 2710 return 0; 2711 2712 if (args->mods && args->mods[args->mods_cnt - 1] == mod) 2713 return 0; 2714 2715 if (args->mods_cnt == args->mods_cap) { 2716 args->mods_cap = max(16, args->mods_cap * 3 / 2); 2717 mods = krealloc_array(args->mods, args->mods_cap, sizeof(*mods), GFP_KERNEL); 2718 if (!mods) 2719 return -ENOMEM; 2720 args->mods = mods; 2721 } 2722 2723 if (!try_module_get(mod)) 2724 return -EINVAL; 2725 2726 args->mods[args->mods_cnt] = mod; 2727 args->mods_cnt++; 2728 return 0; 2729 } 2730 2731 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2732 { 2733 struct module_addr_args args = { 2734 .addrs = addrs, 2735 .addrs_cnt = addrs_cnt, 2736 }; 2737 int err; 2738 2739 /* We return either err < 0 in case of error, ... */ 2740 err = module_kallsyms_on_each_symbol(module_callback, &args); 2741 if (err) { 2742 kprobe_multi_put_modules(args.mods, args.mods_cnt); 2743 kfree(args.mods); 2744 return err; 2745 } 2746 2747 /* or number of modules found if everything is ok. */ 2748 *mods = args.mods; 2749 return args.mods_cnt; 2750 } 2751 2752 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2753 { 2754 struct bpf_kprobe_multi_link *link = NULL; 2755 struct bpf_link_primer link_primer; 2756 void __user *ucookies; 2757 unsigned long *addrs; 2758 u32 flags, cnt, size; 2759 void __user *uaddrs; 2760 u64 *cookies = NULL; 2761 void __user *usyms; 2762 int err; 2763 2764 /* no support for 32bit archs yet */ 2765 if (sizeof(u64) != sizeof(void *)) 2766 return -EOPNOTSUPP; 2767 2768 if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI) 2769 return -EINVAL; 2770 2771 flags = attr->link_create.kprobe_multi.flags; 2772 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 2773 return -EINVAL; 2774 2775 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 2776 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 2777 if (!!uaddrs == !!usyms) 2778 return -EINVAL; 2779 2780 cnt = attr->link_create.kprobe_multi.cnt; 2781 if (!cnt) 2782 return -EINVAL; 2783 2784 size = cnt * sizeof(*addrs); 2785 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2786 if (!addrs) 2787 return -ENOMEM; 2788 2789 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 2790 if (ucookies) { 2791 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2792 if (!cookies) { 2793 err = -ENOMEM; 2794 goto error; 2795 } 2796 if (copy_from_user(cookies, ucookies, size)) { 2797 err = -EFAULT; 2798 goto error; 2799 } 2800 } 2801 2802 if (uaddrs) { 2803 if (copy_from_user(addrs, uaddrs, size)) { 2804 err = -EFAULT; 2805 goto error; 2806 } 2807 } else { 2808 struct multi_symbols_sort data = { 2809 .cookies = cookies, 2810 }; 2811 struct user_syms us; 2812 2813 err = copy_user_syms(&us, usyms, cnt); 2814 if (err) 2815 goto error; 2816 2817 if (cookies) 2818 data.funcs = us.syms; 2819 2820 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 2821 symbols_swap_r, &data); 2822 2823 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 2824 free_user_syms(&us); 2825 if (err) 2826 goto error; 2827 } 2828 2829 link = kzalloc(sizeof(*link), GFP_KERNEL); 2830 if (!link) { 2831 err = -ENOMEM; 2832 goto error; 2833 } 2834 2835 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 2836 &bpf_kprobe_multi_link_lops, prog); 2837 2838 err = bpf_link_prime(&link->link, &link_primer); 2839 if (err) 2840 goto error; 2841 2842 if (flags & BPF_F_KPROBE_MULTI_RETURN) 2843 link->fp.exit_handler = kprobe_multi_link_handler; 2844 else 2845 link->fp.entry_handler = kprobe_multi_link_handler; 2846 2847 link->addrs = addrs; 2848 link->cookies = cookies; 2849 link->cnt = cnt; 2850 2851 if (cookies) { 2852 /* 2853 * Sorting addresses will trigger sorting cookies as well 2854 * (check bpf_kprobe_multi_cookie_swap). This way we can 2855 * find cookie based on the address in bpf_get_attach_cookie 2856 * helper. 2857 */ 2858 sort_r(addrs, cnt, sizeof(*addrs), 2859 bpf_kprobe_multi_cookie_cmp, 2860 bpf_kprobe_multi_cookie_swap, 2861 link); 2862 } else { 2863 /* 2864 * We need to sort addrs array even if there are no cookies 2865 * provided, to allow bsearch in get_modules_for_addrs. 2866 */ 2867 sort(addrs, cnt, sizeof(*addrs), 2868 bpf_kprobe_multi_addrs_cmp, NULL); 2869 } 2870 2871 err = get_modules_for_addrs(&link->mods, addrs, cnt); 2872 if (err < 0) { 2873 bpf_link_cleanup(&link_primer); 2874 return err; 2875 } 2876 link->mods_cnt = err; 2877 2878 err = register_fprobe_ips(&link->fp, addrs, cnt); 2879 if (err) { 2880 kprobe_multi_put_modules(link->mods, link->mods_cnt); 2881 bpf_link_cleanup(&link_primer); 2882 return err; 2883 } 2884 2885 return bpf_link_settle(&link_primer); 2886 2887 error: 2888 kfree(link); 2889 kvfree(addrs); 2890 kvfree(cookies); 2891 return err; 2892 } 2893 #else /* !CONFIG_FPROBE */ 2894 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2895 { 2896 return -EOPNOTSUPP; 2897 } 2898 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2899 { 2900 return 0; 2901 } 2902 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2903 { 2904 return 0; 2905 } 2906 #endif 2907