xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision a17922de)
1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/bpf_perf_event.h>
13 #include <linux/filter.h>
14 #include <linux/uaccess.h>
15 #include <linux/ctype.h>
16 #include <linux/kprobes.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 
20 #include "trace_probe.h"
21 #include "trace.h"
22 
23 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
24 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
25 
26 /**
27  * trace_call_bpf - invoke BPF program
28  * @call: tracepoint event
29  * @ctx: opaque context pointer
30  *
31  * kprobe handlers execute BPF programs via this helper.
32  * Can be used from static tracepoints in the future.
33  *
34  * Return: BPF programs always return an integer which is interpreted by
35  * kprobe handler as:
36  * 0 - return from kprobe (event is filtered out)
37  * 1 - store kprobe event into ring buffer
38  * Other values are reserved and currently alias to 1
39  */
40 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
41 {
42 	unsigned int ret;
43 
44 	if (in_nmi()) /* not supported yet */
45 		return 1;
46 
47 	preempt_disable();
48 
49 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
50 		/*
51 		 * since some bpf program is already running on this cpu,
52 		 * don't call into another bpf program (same or different)
53 		 * and don't send kprobe event into ring-buffer,
54 		 * so return zero here
55 		 */
56 		ret = 0;
57 		goto out;
58 	}
59 
60 	/*
61 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
62 	 * to all call sites, we did a bpf_prog_array_valid() there to check
63 	 * whether call->prog_array is empty or not, which is
64 	 * a heurisitc to speed up execution.
65 	 *
66 	 * If bpf_prog_array_valid() fetched prog_array was
67 	 * non-NULL, we go into trace_call_bpf() and do the actual
68 	 * proper rcu_dereference() under RCU lock.
69 	 * If it turns out that prog_array is NULL then, we bail out.
70 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
71 	 * was NULL, you'll skip the prog_array with the risk of missing
72 	 * out of events when it was updated in between this and the
73 	 * rcu_dereference() which is accepted risk.
74 	 */
75 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
76 
77  out:
78 	__this_cpu_dec(bpf_prog_active);
79 	preempt_enable();
80 
81 	return ret;
82 }
83 EXPORT_SYMBOL_GPL(trace_call_bpf);
84 
85 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
86 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
87 {
88 	regs_set_return_value(regs, rc);
89 	override_function_with_return(regs);
90 	return 0;
91 }
92 
93 static const struct bpf_func_proto bpf_override_return_proto = {
94 	.func		= bpf_override_return,
95 	.gpl_only	= true,
96 	.ret_type	= RET_INTEGER,
97 	.arg1_type	= ARG_PTR_TO_CTX,
98 	.arg2_type	= ARG_ANYTHING,
99 };
100 #endif
101 
102 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
103 {
104 	int ret;
105 
106 	ret = probe_kernel_read(dst, unsafe_ptr, size);
107 	if (unlikely(ret < 0))
108 		memset(dst, 0, size);
109 
110 	return ret;
111 }
112 
113 static const struct bpf_func_proto bpf_probe_read_proto = {
114 	.func		= bpf_probe_read,
115 	.gpl_only	= true,
116 	.ret_type	= RET_INTEGER,
117 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
118 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
119 	.arg3_type	= ARG_ANYTHING,
120 };
121 
122 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
123 	   u32, size)
124 {
125 	/*
126 	 * Ensure we're in user context which is safe for the helper to
127 	 * run. This helper has no business in a kthread.
128 	 *
129 	 * access_ok() should prevent writing to non-user memory, but in
130 	 * some situations (nommu, temporary switch, etc) access_ok() does
131 	 * not provide enough validation, hence the check on KERNEL_DS.
132 	 */
133 
134 	if (unlikely(in_interrupt() ||
135 		     current->flags & (PF_KTHREAD | PF_EXITING)))
136 		return -EPERM;
137 	if (unlikely(uaccess_kernel()))
138 		return -EPERM;
139 	if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
140 		return -EPERM;
141 
142 	return probe_kernel_write(unsafe_ptr, src, size);
143 }
144 
145 static const struct bpf_func_proto bpf_probe_write_user_proto = {
146 	.func		= bpf_probe_write_user,
147 	.gpl_only	= true,
148 	.ret_type	= RET_INTEGER,
149 	.arg1_type	= ARG_ANYTHING,
150 	.arg2_type	= ARG_PTR_TO_MEM,
151 	.arg3_type	= ARG_CONST_SIZE,
152 };
153 
154 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
155 {
156 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
157 			    current->comm, task_pid_nr(current));
158 
159 	return &bpf_probe_write_user_proto;
160 }
161 
162 /*
163  * Only limited trace_printk() conversion specifiers allowed:
164  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
165  */
166 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
167 	   u64, arg2, u64, arg3)
168 {
169 	bool str_seen = false;
170 	int mod[3] = {};
171 	int fmt_cnt = 0;
172 	u64 unsafe_addr;
173 	char buf[64];
174 	int i;
175 
176 	/*
177 	 * bpf_check()->check_func_arg()->check_stack_boundary()
178 	 * guarantees that fmt points to bpf program stack,
179 	 * fmt_size bytes of it were initialized and fmt_size > 0
180 	 */
181 	if (fmt[--fmt_size] != 0)
182 		return -EINVAL;
183 
184 	/* check format string for allowed specifiers */
185 	for (i = 0; i < fmt_size; i++) {
186 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
187 			return -EINVAL;
188 
189 		if (fmt[i] != '%')
190 			continue;
191 
192 		if (fmt_cnt >= 3)
193 			return -EINVAL;
194 
195 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
196 		i++;
197 		if (fmt[i] == 'l') {
198 			mod[fmt_cnt]++;
199 			i++;
200 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
201 			mod[fmt_cnt]++;
202 			i++;
203 			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
204 				return -EINVAL;
205 			fmt_cnt++;
206 			if (fmt[i - 1] == 's') {
207 				if (str_seen)
208 					/* allow only one '%s' per fmt string */
209 					return -EINVAL;
210 				str_seen = true;
211 
212 				switch (fmt_cnt) {
213 				case 1:
214 					unsafe_addr = arg1;
215 					arg1 = (long) buf;
216 					break;
217 				case 2:
218 					unsafe_addr = arg2;
219 					arg2 = (long) buf;
220 					break;
221 				case 3:
222 					unsafe_addr = arg3;
223 					arg3 = (long) buf;
224 					break;
225 				}
226 				buf[0] = 0;
227 				strncpy_from_unsafe(buf,
228 						    (void *) (long) unsafe_addr,
229 						    sizeof(buf));
230 			}
231 			continue;
232 		}
233 
234 		if (fmt[i] == 'l') {
235 			mod[fmt_cnt]++;
236 			i++;
237 		}
238 
239 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
240 		    fmt[i] != 'u' && fmt[i] != 'x')
241 			return -EINVAL;
242 		fmt_cnt++;
243 	}
244 
245 /* Horrid workaround for getting va_list handling working with different
246  * argument type combinations generically for 32 and 64 bit archs.
247  */
248 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
249 #define __BPF_TP(...)							\
250 	__trace_printk(0 /* Fake ip */,					\
251 		       fmt, ##__VA_ARGS__)
252 
253 #define __BPF_ARG1_TP(...)						\
254 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
255 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
256 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
257 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
258 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
259 
260 #define __BPF_ARG2_TP(...)						\
261 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
262 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
263 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
264 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
265 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
266 
267 #define __BPF_ARG3_TP(...)						\
268 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
269 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
270 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
271 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
272 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
273 
274 	return __BPF_TP_EMIT();
275 }
276 
277 static const struct bpf_func_proto bpf_trace_printk_proto = {
278 	.func		= bpf_trace_printk,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_MEM,
282 	.arg2_type	= ARG_CONST_SIZE,
283 };
284 
285 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
286 {
287 	/*
288 	 * this program might be calling bpf_trace_printk,
289 	 * so allocate per-cpu printk buffers
290 	 */
291 	trace_printk_init_buffers();
292 
293 	return &bpf_trace_printk_proto;
294 }
295 
296 static __always_inline int
297 get_map_perf_counter(struct bpf_map *map, u64 flags,
298 		     u64 *value, u64 *enabled, u64 *running)
299 {
300 	struct bpf_array *array = container_of(map, struct bpf_array, map);
301 	unsigned int cpu = smp_processor_id();
302 	u64 index = flags & BPF_F_INDEX_MASK;
303 	struct bpf_event_entry *ee;
304 
305 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
306 		return -EINVAL;
307 	if (index == BPF_F_CURRENT_CPU)
308 		index = cpu;
309 	if (unlikely(index >= array->map.max_entries))
310 		return -E2BIG;
311 
312 	ee = READ_ONCE(array->ptrs[index]);
313 	if (!ee)
314 		return -ENOENT;
315 
316 	return perf_event_read_local(ee->event, value, enabled, running);
317 }
318 
319 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
320 {
321 	u64 value = 0;
322 	int err;
323 
324 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
325 	/*
326 	 * this api is ugly since we miss [-22..-2] range of valid
327 	 * counter values, but that's uapi
328 	 */
329 	if (err)
330 		return err;
331 	return value;
332 }
333 
334 static const struct bpf_func_proto bpf_perf_event_read_proto = {
335 	.func		= bpf_perf_event_read,
336 	.gpl_only	= true,
337 	.ret_type	= RET_INTEGER,
338 	.arg1_type	= ARG_CONST_MAP_PTR,
339 	.arg2_type	= ARG_ANYTHING,
340 };
341 
342 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
343 	   struct bpf_perf_event_value *, buf, u32, size)
344 {
345 	int err = -EINVAL;
346 
347 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
348 		goto clear;
349 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
350 				   &buf->running);
351 	if (unlikely(err))
352 		goto clear;
353 	return 0;
354 clear:
355 	memset(buf, 0, size);
356 	return err;
357 }
358 
359 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
360 	.func		= bpf_perf_event_read_value,
361 	.gpl_only	= true,
362 	.ret_type	= RET_INTEGER,
363 	.arg1_type	= ARG_CONST_MAP_PTR,
364 	.arg2_type	= ARG_ANYTHING,
365 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
366 	.arg4_type	= ARG_CONST_SIZE,
367 };
368 
369 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
370 
371 static __always_inline u64
372 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
373 			u64 flags, struct perf_sample_data *sd)
374 {
375 	struct bpf_array *array = container_of(map, struct bpf_array, map);
376 	unsigned int cpu = smp_processor_id();
377 	u64 index = flags & BPF_F_INDEX_MASK;
378 	struct bpf_event_entry *ee;
379 	struct perf_event *event;
380 
381 	if (index == BPF_F_CURRENT_CPU)
382 		index = cpu;
383 	if (unlikely(index >= array->map.max_entries))
384 		return -E2BIG;
385 
386 	ee = READ_ONCE(array->ptrs[index]);
387 	if (!ee)
388 		return -ENOENT;
389 
390 	event = ee->event;
391 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
392 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
393 		return -EINVAL;
394 
395 	if (unlikely(event->oncpu != cpu))
396 		return -EOPNOTSUPP;
397 
398 	perf_event_output(event, sd, regs);
399 	return 0;
400 }
401 
402 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
403 	   u64, flags, void *, data, u64, size)
404 {
405 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
406 	struct perf_raw_record raw = {
407 		.frag = {
408 			.size = size,
409 			.data = data,
410 		},
411 	};
412 
413 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
414 		return -EINVAL;
415 
416 	perf_sample_data_init(sd, 0, 0);
417 	sd->raw = &raw;
418 
419 	return __bpf_perf_event_output(regs, map, flags, sd);
420 }
421 
422 static const struct bpf_func_proto bpf_perf_event_output_proto = {
423 	.func		= bpf_perf_event_output,
424 	.gpl_only	= true,
425 	.ret_type	= RET_INTEGER,
426 	.arg1_type	= ARG_PTR_TO_CTX,
427 	.arg2_type	= ARG_CONST_MAP_PTR,
428 	.arg3_type	= ARG_ANYTHING,
429 	.arg4_type	= ARG_PTR_TO_MEM,
430 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
431 };
432 
433 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
434 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
435 
436 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
437 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
438 {
439 	struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
440 	struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
441 	struct perf_raw_frag frag = {
442 		.copy		= ctx_copy,
443 		.size		= ctx_size,
444 		.data		= ctx,
445 	};
446 	struct perf_raw_record raw = {
447 		.frag = {
448 			{
449 				.next	= ctx_size ? &frag : NULL,
450 			},
451 			.size	= meta_size,
452 			.data	= meta,
453 		},
454 	};
455 
456 	perf_fetch_caller_regs(regs);
457 	perf_sample_data_init(sd, 0, 0);
458 	sd->raw = &raw;
459 
460 	return __bpf_perf_event_output(regs, map, flags, sd);
461 }
462 
463 BPF_CALL_0(bpf_get_current_task)
464 {
465 	return (long) current;
466 }
467 
468 static const struct bpf_func_proto bpf_get_current_task_proto = {
469 	.func		= bpf_get_current_task,
470 	.gpl_only	= true,
471 	.ret_type	= RET_INTEGER,
472 };
473 
474 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
475 {
476 	struct bpf_array *array = container_of(map, struct bpf_array, map);
477 	struct cgroup *cgrp;
478 
479 	if (unlikely(idx >= array->map.max_entries))
480 		return -E2BIG;
481 
482 	cgrp = READ_ONCE(array->ptrs[idx]);
483 	if (unlikely(!cgrp))
484 		return -EAGAIN;
485 
486 	return task_under_cgroup_hierarchy(current, cgrp);
487 }
488 
489 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
490 	.func           = bpf_current_task_under_cgroup,
491 	.gpl_only       = false,
492 	.ret_type       = RET_INTEGER,
493 	.arg1_type      = ARG_CONST_MAP_PTR,
494 	.arg2_type      = ARG_ANYTHING,
495 };
496 
497 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
498 	   const void *, unsafe_ptr)
499 {
500 	int ret;
501 
502 	/*
503 	 * The strncpy_from_unsafe() call will likely not fill the entire
504 	 * buffer, but that's okay in this circumstance as we're probing
505 	 * arbitrary memory anyway similar to bpf_probe_read() and might
506 	 * as well probe the stack. Thus, memory is explicitly cleared
507 	 * only in error case, so that improper users ignoring return
508 	 * code altogether don't copy garbage; otherwise length of string
509 	 * is returned that can be used for bpf_perf_event_output() et al.
510 	 */
511 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
512 	if (unlikely(ret < 0))
513 		memset(dst, 0, size);
514 
515 	return ret;
516 }
517 
518 static const struct bpf_func_proto bpf_probe_read_str_proto = {
519 	.func		= bpf_probe_read_str,
520 	.gpl_only	= true,
521 	.ret_type	= RET_INTEGER,
522 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
523 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
524 	.arg3_type	= ARG_ANYTHING,
525 };
526 
527 static const struct bpf_func_proto *
528 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
529 {
530 	switch (func_id) {
531 	case BPF_FUNC_map_lookup_elem:
532 		return &bpf_map_lookup_elem_proto;
533 	case BPF_FUNC_map_update_elem:
534 		return &bpf_map_update_elem_proto;
535 	case BPF_FUNC_map_delete_elem:
536 		return &bpf_map_delete_elem_proto;
537 	case BPF_FUNC_probe_read:
538 		return &bpf_probe_read_proto;
539 	case BPF_FUNC_ktime_get_ns:
540 		return &bpf_ktime_get_ns_proto;
541 	case BPF_FUNC_tail_call:
542 		return &bpf_tail_call_proto;
543 	case BPF_FUNC_get_current_pid_tgid:
544 		return &bpf_get_current_pid_tgid_proto;
545 	case BPF_FUNC_get_current_task:
546 		return &bpf_get_current_task_proto;
547 	case BPF_FUNC_get_current_uid_gid:
548 		return &bpf_get_current_uid_gid_proto;
549 	case BPF_FUNC_get_current_comm:
550 		return &bpf_get_current_comm_proto;
551 	case BPF_FUNC_trace_printk:
552 		return bpf_get_trace_printk_proto();
553 	case BPF_FUNC_get_smp_processor_id:
554 		return &bpf_get_smp_processor_id_proto;
555 	case BPF_FUNC_get_numa_node_id:
556 		return &bpf_get_numa_node_id_proto;
557 	case BPF_FUNC_perf_event_read:
558 		return &bpf_perf_event_read_proto;
559 	case BPF_FUNC_probe_write_user:
560 		return bpf_get_probe_write_proto();
561 	case BPF_FUNC_current_task_under_cgroup:
562 		return &bpf_current_task_under_cgroup_proto;
563 	case BPF_FUNC_get_prandom_u32:
564 		return &bpf_get_prandom_u32_proto;
565 	case BPF_FUNC_probe_read_str:
566 		return &bpf_probe_read_str_proto;
567 #ifdef CONFIG_CGROUPS
568 	case BPF_FUNC_get_current_cgroup_id:
569 		return &bpf_get_current_cgroup_id_proto;
570 #endif
571 	default:
572 		return NULL;
573 	}
574 }
575 
576 static const struct bpf_func_proto *
577 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
578 {
579 	switch (func_id) {
580 	case BPF_FUNC_perf_event_output:
581 		return &bpf_perf_event_output_proto;
582 	case BPF_FUNC_get_stackid:
583 		return &bpf_get_stackid_proto;
584 	case BPF_FUNC_get_stack:
585 		return &bpf_get_stack_proto;
586 	case BPF_FUNC_perf_event_read_value:
587 		return &bpf_perf_event_read_value_proto;
588 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
589 	case BPF_FUNC_override_return:
590 		return &bpf_override_return_proto;
591 #endif
592 	default:
593 		return tracing_func_proto(func_id, prog);
594 	}
595 }
596 
597 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
598 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
599 					const struct bpf_prog *prog,
600 					struct bpf_insn_access_aux *info)
601 {
602 	if (off < 0 || off >= sizeof(struct pt_regs))
603 		return false;
604 	if (type != BPF_READ)
605 		return false;
606 	if (off % size != 0)
607 		return false;
608 	/*
609 	 * Assertion for 32 bit to make sure last 8 byte access
610 	 * (BPF_DW) to the last 4 byte member is disallowed.
611 	 */
612 	if (off + size > sizeof(struct pt_regs))
613 		return false;
614 
615 	return true;
616 }
617 
618 const struct bpf_verifier_ops kprobe_verifier_ops = {
619 	.get_func_proto  = kprobe_prog_func_proto,
620 	.is_valid_access = kprobe_prog_is_valid_access,
621 };
622 
623 const struct bpf_prog_ops kprobe_prog_ops = {
624 };
625 
626 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
627 	   u64, flags, void *, data, u64, size)
628 {
629 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
630 
631 	/*
632 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
633 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
634 	 * from there and call the same bpf_perf_event_output() helper inline.
635 	 */
636 	return ____bpf_perf_event_output(regs, map, flags, data, size);
637 }
638 
639 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
640 	.func		= bpf_perf_event_output_tp,
641 	.gpl_only	= true,
642 	.ret_type	= RET_INTEGER,
643 	.arg1_type	= ARG_PTR_TO_CTX,
644 	.arg2_type	= ARG_CONST_MAP_PTR,
645 	.arg3_type	= ARG_ANYTHING,
646 	.arg4_type	= ARG_PTR_TO_MEM,
647 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
648 };
649 
650 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
651 	   u64, flags)
652 {
653 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
654 
655 	/*
656 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
657 	 * the other helper's function body cannot be inlined due to being
658 	 * external, thus we need to call raw helper function.
659 	 */
660 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
661 			       flags, 0, 0);
662 }
663 
664 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
665 	.func		= bpf_get_stackid_tp,
666 	.gpl_only	= true,
667 	.ret_type	= RET_INTEGER,
668 	.arg1_type	= ARG_PTR_TO_CTX,
669 	.arg2_type	= ARG_CONST_MAP_PTR,
670 	.arg3_type	= ARG_ANYTHING,
671 };
672 
673 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
674 	   u64, flags)
675 {
676 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
677 
678 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
679 			     (unsigned long) size, flags, 0);
680 }
681 
682 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
683 	.func		= bpf_get_stack_tp,
684 	.gpl_only	= true,
685 	.ret_type	= RET_INTEGER,
686 	.arg1_type	= ARG_PTR_TO_CTX,
687 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
688 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
689 	.arg4_type	= ARG_ANYTHING,
690 };
691 
692 static const struct bpf_func_proto *
693 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
694 {
695 	switch (func_id) {
696 	case BPF_FUNC_perf_event_output:
697 		return &bpf_perf_event_output_proto_tp;
698 	case BPF_FUNC_get_stackid:
699 		return &bpf_get_stackid_proto_tp;
700 	case BPF_FUNC_get_stack:
701 		return &bpf_get_stack_proto_tp;
702 	default:
703 		return tracing_func_proto(func_id, prog);
704 	}
705 }
706 
707 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
708 				    const struct bpf_prog *prog,
709 				    struct bpf_insn_access_aux *info)
710 {
711 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
712 		return false;
713 	if (type != BPF_READ)
714 		return false;
715 	if (off % size != 0)
716 		return false;
717 
718 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
719 	return true;
720 }
721 
722 const struct bpf_verifier_ops tracepoint_verifier_ops = {
723 	.get_func_proto  = tp_prog_func_proto,
724 	.is_valid_access = tp_prog_is_valid_access,
725 };
726 
727 const struct bpf_prog_ops tracepoint_prog_ops = {
728 };
729 
730 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
731 	   struct bpf_perf_event_value *, buf, u32, size)
732 {
733 	int err = -EINVAL;
734 
735 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
736 		goto clear;
737 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
738 				    &buf->running);
739 	if (unlikely(err))
740 		goto clear;
741 	return 0;
742 clear:
743 	memset(buf, 0, size);
744 	return err;
745 }
746 
747 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
748          .func           = bpf_perf_prog_read_value,
749          .gpl_only       = true,
750          .ret_type       = RET_INTEGER,
751          .arg1_type      = ARG_PTR_TO_CTX,
752          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
753          .arg3_type      = ARG_CONST_SIZE,
754 };
755 
756 static const struct bpf_func_proto *
757 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
758 {
759 	switch (func_id) {
760 	case BPF_FUNC_perf_event_output:
761 		return &bpf_perf_event_output_proto_tp;
762 	case BPF_FUNC_get_stackid:
763 		return &bpf_get_stackid_proto_tp;
764 	case BPF_FUNC_get_stack:
765 		return &bpf_get_stack_proto_tp;
766 	case BPF_FUNC_perf_prog_read_value:
767 		return &bpf_perf_prog_read_value_proto;
768 	default:
769 		return tracing_func_proto(func_id, prog);
770 	}
771 }
772 
773 /*
774  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
775  * to avoid potential recursive reuse issue when/if tracepoints are added
776  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
777  */
778 static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
779 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
780 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
781 {
782 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
783 
784 	perf_fetch_caller_regs(regs);
785 	return ____bpf_perf_event_output(regs, map, flags, data, size);
786 }
787 
788 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
789 	.func		= bpf_perf_event_output_raw_tp,
790 	.gpl_only	= true,
791 	.ret_type	= RET_INTEGER,
792 	.arg1_type	= ARG_PTR_TO_CTX,
793 	.arg2_type	= ARG_CONST_MAP_PTR,
794 	.arg3_type	= ARG_ANYTHING,
795 	.arg4_type	= ARG_PTR_TO_MEM,
796 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
797 };
798 
799 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
800 	   struct bpf_map *, map, u64, flags)
801 {
802 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
803 
804 	perf_fetch_caller_regs(regs);
805 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
806 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
807 			       flags, 0, 0);
808 }
809 
810 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
811 	.func		= bpf_get_stackid_raw_tp,
812 	.gpl_only	= true,
813 	.ret_type	= RET_INTEGER,
814 	.arg1_type	= ARG_PTR_TO_CTX,
815 	.arg2_type	= ARG_CONST_MAP_PTR,
816 	.arg3_type	= ARG_ANYTHING,
817 };
818 
819 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
820 	   void *, buf, u32, size, u64, flags)
821 {
822 	struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
823 
824 	perf_fetch_caller_regs(regs);
825 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
826 			     (unsigned long) size, flags, 0);
827 }
828 
829 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
830 	.func		= bpf_get_stack_raw_tp,
831 	.gpl_only	= true,
832 	.ret_type	= RET_INTEGER,
833 	.arg1_type	= ARG_PTR_TO_CTX,
834 	.arg2_type	= ARG_PTR_TO_MEM,
835 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
836 	.arg4_type	= ARG_ANYTHING,
837 };
838 
839 static const struct bpf_func_proto *
840 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
841 {
842 	switch (func_id) {
843 	case BPF_FUNC_perf_event_output:
844 		return &bpf_perf_event_output_proto_raw_tp;
845 	case BPF_FUNC_get_stackid:
846 		return &bpf_get_stackid_proto_raw_tp;
847 	case BPF_FUNC_get_stack:
848 		return &bpf_get_stack_proto_raw_tp;
849 	default:
850 		return tracing_func_proto(func_id, prog);
851 	}
852 }
853 
854 static bool raw_tp_prog_is_valid_access(int off, int size,
855 					enum bpf_access_type type,
856 					const struct bpf_prog *prog,
857 					struct bpf_insn_access_aux *info)
858 {
859 	/* largest tracepoint in the kernel has 12 args */
860 	if (off < 0 || off >= sizeof(__u64) * 12)
861 		return false;
862 	if (type != BPF_READ)
863 		return false;
864 	if (off % size != 0)
865 		return false;
866 	return true;
867 }
868 
869 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
870 	.get_func_proto  = raw_tp_prog_func_proto,
871 	.is_valid_access = raw_tp_prog_is_valid_access,
872 };
873 
874 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
875 };
876 
877 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
878 				    const struct bpf_prog *prog,
879 				    struct bpf_insn_access_aux *info)
880 {
881 	const int size_u64 = sizeof(u64);
882 
883 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
884 		return false;
885 	if (type != BPF_READ)
886 		return false;
887 	if (off % size != 0) {
888 		if (sizeof(unsigned long) != 4)
889 			return false;
890 		if (size != 8)
891 			return false;
892 		if (off % size != 4)
893 			return false;
894 	}
895 
896 	switch (off) {
897 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
898 		bpf_ctx_record_field_size(info, size_u64);
899 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
900 			return false;
901 		break;
902 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
903 		bpf_ctx_record_field_size(info, size_u64);
904 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
905 			return false;
906 		break;
907 	default:
908 		if (size != sizeof(long))
909 			return false;
910 	}
911 
912 	return true;
913 }
914 
915 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
916 				      const struct bpf_insn *si,
917 				      struct bpf_insn *insn_buf,
918 				      struct bpf_prog *prog, u32 *target_size)
919 {
920 	struct bpf_insn *insn = insn_buf;
921 
922 	switch (si->off) {
923 	case offsetof(struct bpf_perf_event_data, sample_period):
924 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
925 						       data), si->dst_reg, si->src_reg,
926 				      offsetof(struct bpf_perf_event_data_kern, data));
927 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
928 				      bpf_target_off(struct perf_sample_data, period, 8,
929 						     target_size));
930 		break;
931 	case offsetof(struct bpf_perf_event_data, addr):
932 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
933 						       data), si->dst_reg, si->src_reg,
934 				      offsetof(struct bpf_perf_event_data_kern, data));
935 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
936 				      bpf_target_off(struct perf_sample_data, addr, 8,
937 						     target_size));
938 		break;
939 	default:
940 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
941 						       regs), si->dst_reg, si->src_reg,
942 				      offsetof(struct bpf_perf_event_data_kern, regs));
943 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
944 				      si->off);
945 		break;
946 	}
947 
948 	return insn - insn_buf;
949 }
950 
951 const struct bpf_verifier_ops perf_event_verifier_ops = {
952 	.get_func_proto		= pe_prog_func_proto,
953 	.is_valid_access	= pe_prog_is_valid_access,
954 	.convert_ctx_access	= pe_prog_convert_ctx_access,
955 };
956 
957 const struct bpf_prog_ops perf_event_prog_ops = {
958 };
959 
960 static DEFINE_MUTEX(bpf_event_mutex);
961 
962 #define BPF_TRACE_MAX_PROGS 64
963 
964 int perf_event_attach_bpf_prog(struct perf_event *event,
965 			       struct bpf_prog *prog)
966 {
967 	struct bpf_prog_array __rcu *old_array;
968 	struct bpf_prog_array *new_array;
969 	int ret = -EEXIST;
970 
971 	/*
972 	 * Kprobe override only works if they are on the function entry,
973 	 * and only if they are on the opt-in list.
974 	 */
975 	if (prog->kprobe_override &&
976 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
977 	     !trace_kprobe_error_injectable(event->tp_event)))
978 		return -EINVAL;
979 
980 	mutex_lock(&bpf_event_mutex);
981 
982 	if (event->prog)
983 		goto unlock;
984 
985 	old_array = event->tp_event->prog_array;
986 	if (old_array &&
987 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
988 		ret = -E2BIG;
989 		goto unlock;
990 	}
991 
992 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
993 	if (ret < 0)
994 		goto unlock;
995 
996 	/* set the new array to event->tp_event and set event->prog */
997 	event->prog = prog;
998 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
999 	bpf_prog_array_free(old_array);
1000 
1001 unlock:
1002 	mutex_unlock(&bpf_event_mutex);
1003 	return ret;
1004 }
1005 
1006 void perf_event_detach_bpf_prog(struct perf_event *event)
1007 {
1008 	struct bpf_prog_array __rcu *old_array;
1009 	struct bpf_prog_array *new_array;
1010 	int ret;
1011 
1012 	mutex_lock(&bpf_event_mutex);
1013 
1014 	if (!event->prog)
1015 		goto unlock;
1016 
1017 	old_array = event->tp_event->prog_array;
1018 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1019 	if (ret == -ENOENT)
1020 		goto unlock;
1021 	if (ret < 0) {
1022 		bpf_prog_array_delete_safe(old_array, event->prog);
1023 	} else {
1024 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1025 		bpf_prog_array_free(old_array);
1026 	}
1027 
1028 	bpf_prog_put(event->prog);
1029 	event->prog = NULL;
1030 
1031 unlock:
1032 	mutex_unlock(&bpf_event_mutex);
1033 }
1034 
1035 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1036 {
1037 	struct perf_event_query_bpf __user *uquery = info;
1038 	struct perf_event_query_bpf query = {};
1039 	u32 *ids, prog_cnt, ids_len;
1040 	int ret;
1041 
1042 	if (!capable(CAP_SYS_ADMIN))
1043 		return -EPERM;
1044 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1045 		return -EINVAL;
1046 	if (copy_from_user(&query, uquery, sizeof(query)))
1047 		return -EFAULT;
1048 
1049 	ids_len = query.ids_len;
1050 	if (ids_len > BPF_TRACE_MAX_PROGS)
1051 		return -E2BIG;
1052 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1053 	if (!ids)
1054 		return -ENOMEM;
1055 	/*
1056 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1057 	 * is required when user only wants to check for uquery->prog_cnt.
1058 	 * There is no need to check for it since the case is handled
1059 	 * gracefully in bpf_prog_array_copy_info.
1060 	 */
1061 
1062 	mutex_lock(&bpf_event_mutex);
1063 	ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
1064 				       ids,
1065 				       ids_len,
1066 				       &prog_cnt);
1067 	mutex_unlock(&bpf_event_mutex);
1068 
1069 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1070 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1071 		ret = -EFAULT;
1072 
1073 	kfree(ids);
1074 	return ret;
1075 }
1076 
1077 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1078 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1079 
1080 struct bpf_raw_event_map *bpf_find_raw_tracepoint(const char *name)
1081 {
1082 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1083 
1084 	for (; btp < __stop__bpf_raw_tp; btp++) {
1085 		if (!strcmp(btp->tp->name, name))
1086 			return btp;
1087 	}
1088 	return NULL;
1089 }
1090 
1091 static __always_inline
1092 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1093 {
1094 	rcu_read_lock();
1095 	preempt_disable();
1096 	(void) BPF_PROG_RUN(prog, args);
1097 	preempt_enable();
1098 	rcu_read_unlock();
1099 }
1100 
1101 #define UNPACK(...)			__VA_ARGS__
1102 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1103 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1104 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1105 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1106 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1107 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1108 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1109 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1110 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1111 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1112 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1113 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1114 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1115 
1116 #define SARG(X)		u64 arg##X
1117 #define COPY(X)		args[X] = arg##X
1118 
1119 #define __DL_COM	(,)
1120 #define __DL_SEM	(;)
1121 
1122 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1123 
1124 #define BPF_TRACE_DEFN_x(x)						\
1125 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1126 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1127 	{								\
1128 		u64 args[x];						\
1129 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1130 		__bpf_trace_run(prog, args);				\
1131 	}								\
1132 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1133 BPF_TRACE_DEFN_x(1);
1134 BPF_TRACE_DEFN_x(2);
1135 BPF_TRACE_DEFN_x(3);
1136 BPF_TRACE_DEFN_x(4);
1137 BPF_TRACE_DEFN_x(5);
1138 BPF_TRACE_DEFN_x(6);
1139 BPF_TRACE_DEFN_x(7);
1140 BPF_TRACE_DEFN_x(8);
1141 BPF_TRACE_DEFN_x(9);
1142 BPF_TRACE_DEFN_x(10);
1143 BPF_TRACE_DEFN_x(11);
1144 BPF_TRACE_DEFN_x(12);
1145 
1146 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1147 {
1148 	struct tracepoint *tp = btp->tp;
1149 
1150 	/*
1151 	 * check that program doesn't access arguments beyond what's
1152 	 * available in this tracepoint
1153 	 */
1154 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1155 		return -EINVAL;
1156 
1157 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1158 }
1159 
1160 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1161 {
1162 	int err;
1163 
1164 	mutex_lock(&bpf_event_mutex);
1165 	err = __bpf_probe_register(btp, prog);
1166 	mutex_unlock(&bpf_event_mutex);
1167 	return err;
1168 }
1169 
1170 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1171 {
1172 	int err;
1173 
1174 	mutex_lock(&bpf_event_mutex);
1175 	err = tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1176 	mutex_unlock(&bpf_event_mutex);
1177 	return err;
1178 }
1179 
1180 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1181 			    u32 *fd_type, const char **buf,
1182 			    u64 *probe_offset, u64 *probe_addr)
1183 {
1184 	bool is_tracepoint, is_syscall_tp;
1185 	struct bpf_prog *prog;
1186 	int flags, err = 0;
1187 
1188 	prog = event->prog;
1189 	if (!prog)
1190 		return -ENOENT;
1191 
1192 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1193 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1194 		return -EOPNOTSUPP;
1195 
1196 	*prog_id = prog->aux->id;
1197 	flags = event->tp_event->flags;
1198 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1199 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1200 
1201 	if (is_tracepoint || is_syscall_tp) {
1202 		*buf = is_tracepoint ? event->tp_event->tp->name
1203 				     : event->tp_event->name;
1204 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1205 		*probe_offset = 0x0;
1206 		*probe_addr = 0x0;
1207 	} else {
1208 		/* kprobe/uprobe */
1209 		err = -EOPNOTSUPP;
1210 #ifdef CONFIG_KPROBE_EVENTS
1211 		if (flags & TRACE_EVENT_FL_KPROBE)
1212 			err = bpf_get_kprobe_info(event, fd_type, buf,
1213 						  probe_offset, probe_addr,
1214 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1215 #endif
1216 #ifdef CONFIG_UPROBE_EVENTS
1217 		if (flags & TRACE_EVENT_FL_UPROBE)
1218 			err = bpf_get_uprobe_info(event, fd_type, buf,
1219 						  probe_offset,
1220 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1221 #endif
1222 	}
1223 
1224 	return err;
1225 }
1226