xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19 #include <linux/bpf_lsm.h>
20 
21 #include <net/bpf_sk_storage.h>
22 
23 #include <uapi/linux/bpf.h>
24 #include <uapi/linux/btf.h>
25 
26 #include <asm/tlb.h>
27 
28 #include "trace_probe.h"
29 #include "trace.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "bpf_trace.h"
33 
34 #define bpf_event_rcu_dereference(p)					\
35 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
36 
37 #ifdef CONFIG_MODULES
38 struct bpf_trace_module {
39 	struct module *module;
40 	struct list_head list;
41 };
42 
43 static LIST_HEAD(bpf_trace_modules);
44 static DEFINE_MUTEX(bpf_module_mutex);
45 
46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
47 {
48 	struct bpf_raw_event_map *btp, *ret = NULL;
49 	struct bpf_trace_module *btm;
50 	unsigned int i;
51 
52 	mutex_lock(&bpf_module_mutex);
53 	list_for_each_entry(btm, &bpf_trace_modules, list) {
54 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
55 			btp = &btm->module->bpf_raw_events[i];
56 			if (!strcmp(btp->tp->name, name)) {
57 				if (try_module_get(btm->module))
58 					ret = btp;
59 				goto out;
60 			}
61 		}
62 	}
63 out:
64 	mutex_unlock(&bpf_module_mutex);
65 	return ret;
66 }
67 #else
68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
69 {
70 	return NULL;
71 }
72 #endif /* CONFIG_MODULES */
73 
74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
76 
77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
78 				  u64 flags, const struct btf **btf,
79 				  s32 *btf_id);
80 
81 /**
82  * trace_call_bpf - invoke BPF program
83  * @call: tracepoint event
84  * @ctx: opaque context pointer
85  *
86  * kprobe handlers execute BPF programs via this helper.
87  * Can be used from static tracepoints in the future.
88  *
89  * Return: BPF programs always return an integer which is interpreted by
90  * kprobe handler as:
91  * 0 - return from kprobe (event is filtered out)
92  * 1 - store kprobe event into ring buffer
93  * Other values are reserved and currently alias to 1
94  */
95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
96 {
97 	unsigned int ret;
98 
99 	cant_sleep();
100 
101 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
102 		/*
103 		 * since some bpf program is already running on this cpu,
104 		 * don't call into another bpf program (same or different)
105 		 * and don't send kprobe event into ring-buffer,
106 		 * so return zero here
107 		 */
108 		ret = 0;
109 		goto out;
110 	}
111 
112 	/*
113 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
114 	 * to all call sites, we did a bpf_prog_array_valid() there to check
115 	 * whether call->prog_array is empty or not, which is
116 	 * a heuristic to speed up execution.
117 	 *
118 	 * If bpf_prog_array_valid() fetched prog_array was
119 	 * non-NULL, we go into trace_call_bpf() and do the actual
120 	 * proper rcu_dereference() under RCU lock.
121 	 * If it turns out that prog_array is NULL then, we bail out.
122 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
123 	 * was NULL, you'll skip the prog_array with the risk of missing
124 	 * out of events when it was updated in between this and the
125 	 * rcu_dereference() which is accepted risk.
126 	 */
127 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
128 
129  out:
130 	__this_cpu_dec(bpf_prog_active);
131 
132 	return ret;
133 }
134 
135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
137 {
138 	regs_set_return_value(regs, rc);
139 	override_function_with_return(regs);
140 	return 0;
141 }
142 
143 static const struct bpf_func_proto bpf_override_return_proto = {
144 	.func		= bpf_override_return,
145 	.gpl_only	= true,
146 	.ret_type	= RET_INTEGER,
147 	.arg1_type	= ARG_PTR_TO_CTX,
148 	.arg2_type	= ARG_ANYTHING,
149 };
150 #endif
151 
152 static __always_inline int
153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
154 {
155 	int ret;
156 
157 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
158 	if (unlikely(ret < 0))
159 		memset(dst, 0, size);
160 	return ret;
161 }
162 
163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
164 	   const void __user *, unsafe_ptr)
165 {
166 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
167 }
168 
169 const struct bpf_func_proto bpf_probe_read_user_proto = {
170 	.func		= bpf_probe_read_user,
171 	.gpl_only	= true,
172 	.ret_type	= RET_INTEGER,
173 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
174 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
175 	.arg3_type	= ARG_ANYTHING,
176 };
177 
178 static __always_inline int
179 bpf_probe_read_user_str_common(void *dst, u32 size,
180 			       const void __user *unsafe_ptr)
181 {
182 	int ret;
183 
184 	/*
185 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
186 	 * terminator into `dst`.
187 	 *
188 	 * strncpy_from_user() does long-sized strides in the fast path. If the
189 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
190 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
191 	 * and keys a hash map with it, then semantically identical strings can
192 	 * occupy multiple entries in the map.
193 	 */
194 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
195 	if (unlikely(ret < 0))
196 		memset(dst, 0, size);
197 	return ret;
198 }
199 
200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
201 	   const void __user *, unsafe_ptr)
202 {
203 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
204 }
205 
206 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
207 	.func		= bpf_probe_read_user_str,
208 	.gpl_only	= true,
209 	.ret_type	= RET_INTEGER,
210 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
211 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
212 	.arg3_type	= ARG_ANYTHING,
213 };
214 
215 static __always_inline int
216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
217 {
218 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
219 
220 	if (unlikely(ret < 0))
221 		goto fail;
222 	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
223 	if (unlikely(ret < 0))
224 		goto fail;
225 	return ret;
226 fail:
227 	memset(dst, 0, size);
228 	return ret;
229 }
230 
231 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
232 	   const void *, unsafe_ptr)
233 {
234 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
235 }
236 
237 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
238 	.func		= bpf_probe_read_kernel,
239 	.gpl_only	= true,
240 	.ret_type	= RET_INTEGER,
241 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
242 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
243 	.arg3_type	= ARG_ANYTHING,
244 };
245 
246 static __always_inline int
247 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
248 {
249 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
250 
251 	if (unlikely(ret < 0))
252 		goto fail;
253 
254 	/*
255 	 * The strncpy_from_kernel_nofault() call will likely not fill the
256 	 * entire buffer, but that's okay in this circumstance as we're probing
257 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
258 	 * as well probe the stack. Thus, memory is explicitly cleared
259 	 * only in error case, so that improper users ignoring return
260 	 * code altogether don't copy garbage; otherwise length of string
261 	 * is returned that can be used for bpf_perf_event_output() et al.
262 	 */
263 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
264 	if (unlikely(ret < 0))
265 		goto fail;
266 
267 	return ret;
268 fail:
269 	memset(dst, 0, size);
270 	return ret;
271 }
272 
273 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
274 	   const void *, unsafe_ptr)
275 {
276 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
277 }
278 
279 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
280 	.func		= bpf_probe_read_kernel_str,
281 	.gpl_only	= true,
282 	.ret_type	= RET_INTEGER,
283 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
284 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
285 	.arg3_type	= ARG_ANYTHING,
286 };
287 
288 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
289 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
290 	   const void *, unsafe_ptr)
291 {
292 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
293 		return bpf_probe_read_user_common(dst, size,
294 				(__force void __user *)unsafe_ptr);
295 	}
296 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
297 }
298 
299 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
300 	.func		= bpf_probe_read_compat,
301 	.gpl_only	= true,
302 	.ret_type	= RET_INTEGER,
303 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
304 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
305 	.arg3_type	= ARG_ANYTHING,
306 };
307 
308 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
309 	   const void *, unsafe_ptr)
310 {
311 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
312 		return bpf_probe_read_user_str_common(dst, size,
313 				(__force void __user *)unsafe_ptr);
314 	}
315 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
316 }
317 
318 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
319 	.func		= bpf_probe_read_compat_str,
320 	.gpl_only	= true,
321 	.ret_type	= RET_INTEGER,
322 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
323 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
324 	.arg3_type	= ARG_ANYTHING,
325 };
326 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
327 
328 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
329 	   u32, size)
330 {
331 	/*
332 	 * Ensure we're in user context which is safe for the helper to
333 	 * run. This helper has no business in a kthread.
334 	 *
335 	 * access_ok() should prevent writing to non-user memory, but in
336 	 * some situations (nommu, temporary switch, etc) access_ok() does
337 	 * not provide enough validation, hence the check on KERNEL_DS.
338 	 *
339 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
340 	 * state, when the task or mm are switched. This is specifically
341 	 * required to prevent the use of temporary mm.
342 	 */
343 
344 	if (unlikely(in_interrupt() ||
345 		     current->flags & (PF_KTHREAD | PF_EXITING)))
346 		return -EPERM;
347 	if (unlikely(uaccess_kernel()))
348 		return -EPERM;
349 	if (unlikely(!nmi_uaccess_okay()))
350 		return -EPERM;
351 
352 	return copy_to_user_nofault(unsafe_ptr, src, size);
353 }
354 
355 static const struct bpf_func_proto bpf_probe_write_user_proto = {
356 	.func		= bpf_probe_write_user,
357 	.gpl_only	= true,
358 	.ret_type	= RET_INTEGER,
359 	.arg1_type	= ARG_ANYTHING,
360 	.arg2_type	= ARG_PTR_TO_MEM,
361 	.arg3_type	= ARG_CONST_SIZE,
362 };
363 
364 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
365 {
366 	if (!capable(CAP_SYS_ADMIN))
367 		return NULL;
368 
369 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
370 			    current->comm, task_pid_nr(current));
371 
372 	return &bpf_probe_write_user_proto;
373 }
374 
375 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
376 
377 #define MAX_TRACE_PRINTK_VARARGS	3
378 #define BPF_TRACE_PRINTK_SIZE		1024
379 
380 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
381 	   u64, arg2, u64, arg3)
382 {
383 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
384 	u32 *bin_args;
385 	static char buf[BPF_TRACE_PRINTK_SIZE];
386 	unsigned long flags;
387 	int ret;
388 
389 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args,
390 				  MAX_TRACE_PRINTK_VARARGS);
391 	if (ret < 0)
392 		return ret;
393 
394 	raw_spin_lock_irqsave(&trace_printk_lock, flags);
395 	ret = bstr_printf(buf, sizeof(buf), fmt, bin_args);
396 
397 	trace_bpf_trace_printk(buf);
398 	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
399 
400 	bpf_bprintf_cleanup();
401 
402 	return ret;
403 }
404 
405 static const struct bpf_func_proto bpf_trace_printk_proto = {
406 	.func		= bpf_trace_printk,
407 	.gpl_only	= true,
408 	.ret_type	= RET_INTEGER,
409 	.arg1_type	= ARG_PTR_TO_MEM,
410 	.arg2_type	= ARG_CONST_SIZE,
411 };
412 
413 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
414 {
415 	/*
416 	 * This program might be calling bpf_trace_printk,
417 	 * so enable the associated bpf_trace/bpf_trace_printk event.
418 	 * Repeat this each time as it is possible a user has
419 	 * disabled bpf_trace_printk events.  By loading a program
420 	 * calling bpf_trace_printk() however the user has expressed
421 	 * the intent to see such events.
422 	 */
423 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
424 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
425 
426 	return &bpf_trace_printk_proto;
427 }
428 
429 #define MAX_SEQ_PRINTF_VARARGS		12
430 
431 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
432 	   const void *, data, u32, data_len)
433 {
434 	int err, num_args;
435 	u32 *bin_args;
436 
437 	if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 ||
438 	    (data_len && !data))
439 		return -EINVAL;
440 	num_args = data_len / 8;
441 
442 	err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args);
443 	if (err < 0)
444 		return err;
445 
446 	seq_bprintf(m, fmt, bin_args);
447 
448 	bpf_bprintf_cleanup();
449 
450 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
451 }
452 
453 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
454 
455 static const struct bpf_func_proto bpf_seq_printf_proto = {
456 	.func		= bpf_seq_printf,
457 	.gpl_only	= true,
458 	.ret_type	= RET_INTEGER,
459 	.arg1_type	= ARG_PTR_TO_BTF_ID,
460 	.arg1_btf_id	= &btf_seq_file_ids[0],
461 	.arg2_type	= ARG_PTR_TO_MEM,
462 	.arg3_type	= ARG_CONST_SIZE,
463 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
464 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
465 };
466 
467 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
468 {
469 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
470 }
471 
472 static const struct bpf_func_proto bpf_seq_write_proto = {
473 	.func		= bpf_seq_write,
474 	.gpl_only	= true,
475 	.ret_type	= RET_INTEGER,
476 	.arg1_type	= ARG_PTR_TO_BTF_ID,
477 	.arg1_btf_id	= &btf_seq_file_ids[0],
478 	.arg2_type	= ARG_PTR_TO_MEM,
479 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
480 };
481 
482 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
483 	   u32, btf_ptr_size, u64, flags)
484 {
485 	const struct btf *btf;
486 	s32 btf_id;
487 	int ret;
488 
489 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
490 	if (ret)
491 		return ret;
492 
493 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
494 }
495 
496 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
497 	.func		= bpf_seq_printf_btf,
498 	.gpl_only	= true,
499 	.ret_type	= RET_INTEGER,
500 	.arg1_type	= ARG_PTR_TO_BTF_ID,
501 	.arg1_btf_id	= &btf_seq_file_ids[0],
502 	.arg2_type	= ARG_PTR_TO_MEM,
503 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
504 	.arg4_type	= ARG_ANYTHING,
505 };
506 
507 static __always_inline int
508 get_map_perf_counter(struct bpf_map *map, u64 flags,
509 		     u64 *value, u64 *enabled, u64 *running)
510 {
511 	struct bpf_array *array = container_of(map, struct bpf_array, map);
512 	unsigned int cpu = smp_processor_id();
513 	u64 index = flags & BPF_F_INDEX_MASK;
514 	struct bpf_event_entry *ee;
515 
516 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
517 		return -EINVAL;
518 	if (index == BPF_F_CURRENT_CPU)
519 		index = cpu;
520 	if (unlikely(index >= array->map.max_entries))
521 		return -E2BIG;
522 
523 	ee = READ_ONCE(array->ptrs[index]);
524 	if (!ee)
525 		return -ENOENT;
526 
527 	return perf_event_read_local(ee->event, value, enabled, running);
528 }
529 
530 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
531 {
532 	u64 value = 0;
533 	int err;
534 
535 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
536 	/*
537 	 * this api is ugly since we miss [-22..-2] range of valid
538 	 * counter values, but that's uapi
539 	 */
540 	if (err)
541 		return err;
542 	return value;
543 }
544 
545 static const struct bpf_func_proto bpf_perf_event_read_proto = {
546 	.func		= bpf_perf_event_read,
547 	.gpl_only	= true,
548 	.ret_type	= RET_INTEGER,
549 	.arg1_type	= ARG_CONST_MAP_PTR,
550 	.arg2_type	= ARG_ANYTHING,
551 };
552 
553 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
554 	   struct bpf_perf_event_value *, buf, u32, size)
555 {
556 	int err = -EINVAL;
557 
558 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
559 		goto clear;
560 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
561 				   &buf->running);
562 	if (unlikely(err))
563 		goto clear;
564 	return 0;
565 clear:
566 	memset(buf, 0, size);
567 	return err;
568 }
569 
570 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
571 	.func		= bpf_perf_event_read_value,
572 	.gpl_only	= true,
573 	.ret_type	= RET_INTEGER,
574 	.arg1_type	= ARG_CONST_MAP_PTR,
575 	.arg2_type	= ARG_ANYTHING,
576 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
577 	.arg4_type	= ARG_CONST_SIZE,
578 };
579 
580 static __always_inline u64
581 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
582 			u64 flags, struct perf_sample_data *sd)
583 {
584 	struct bpf_array *array = container_of(map, struct bpf_array, map);
585 	unsigned int cpu = smp_processor_id();
586 	u64 index = flags & BPF_F_INDEX_MASK;
587 	struct bpf_event_entry *ee;
588 	struct perf_event *event;
589 
590 	if (index == BPF_F_CURRENT_CPU)
591 		index = cpu;
592 	if (unlikely(index >= array->map.max_entries))
593 		return -E2BIG;
594 
595 	ee = READ_ONCE(array->ptrs[index]);
596 	if (!ee)
597 		return -ENOENT;
598 
599 	event = ee->event;
600 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
601 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
602 		return -EINVAL;
603 
604 	if (unlikely(event->oncpu != cpu))
605 		return -EOPNOTSUPP;
606 
607 	return perf_event_output(event, sd, regs);
608 }
609 
610 /*
611  * Support executing tracepoints in normal, irq, and nmi context that each call
612  * bpf_perf_event_output
613  */
614 struct bpf_trace_sample_data {
615 	struct perf_sample_data sds[3];
616 };
617 
618 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
619 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
620 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
621 	   u64, flags, void *, data, u64, size)
622 {
623 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
624 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
625 	struct perf_raw_record raw = {
626 		.frag = {
627 			.size = size,
628 			.data = data,
629 		},
630 	};
631 	struct perf_sample_data *sd;
632 	int err;
633 
634 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
635 		err = -EBUSY;
636 		goto out;
637 	}
638 
639 	sd = &sds->sds[nest_level - 1];
640 
641 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
642 		err = -EINVAL;
643 		goto out;
644 	}
645 
646 	perf_sample_data_init(sd, 0, 0);
647 	sd->raw = &raw;
648 
649 	err = __bpf_perf_event_output(regs, map, flags, sd);
650 
651 out:
652 	this_cpu_dec(bpf_trace_nest_level);
653 	return err;
654 }
655 
656 static const struct bpf_func_proto bpf_perf_event_output_proto = {
657 	.func		= bpf_perf_event_output,
658 	.gpl_only	= true,
659 	.ret_type	= RET_INTEGER,
660 	.arg1_type	= ARG_PTR_TO_CTX,
661 	.arg2_type	= ARG_CONST_MAP_PTR,
662 	.arg3_type	= ARG_ANYTHING,
663 	.arg4_type	= ARG_PTR_TO_MEM,
664 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
665 };
666 
667 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
668 struct bpf_nested_pt_regs {
669 	struct pt_regs regs[3];
670 };
671 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
672 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
673 
674 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
675 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
676 {
677 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
678 	struct perf_raw_frag frag = {
679 		.copy		= ctx_copy,
680 		.size		= ctx_size,
681 		.data		= ctx,
682 	};
683 	struct perf_raw_record raw = {
684 		.frag = {
685 			{
686 				.next	= ctx_size ? &frag : NULL,
687 			},
688 			.size	= meta_size,
689 			.data	= meta,
690 		},
691 	};
692 	struct perf_sample_data *sd;
693 	struct pt_regs *regs;
694 	u64 ret;
695 
696 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
697 		ret = -EBUSY;
698 		goto out;
699 	}
700 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
701 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
702 
703 	perf_fetch_caller_regs(regs);
704 	perf_sample_data_init(sd, 0, 0);
705 	sd->raw = &raw;
706 
707 	ret = __bpf_perf_event_output(regs, map, flags, sd);
708 out:
709 	this_cpu_dec(bpf_event_output_nest_level);
710 	return ret;
711 }
712 
713 BPF_CALL_0(bpf_get_current_task)
714 {
715 	return (long) current;
716 }
717 
718 const struct bpf_func_proto bpf_get_current_task_proto = {
719 	.func		= bpf_get_current_task,
720 	.gpl_only	= true,
721 	.ret_type	= RET_INTEGER,
722 };
723 
724 BPF_CALL_0(bpf_get_current_task_btf)
725 {
726 	return (unsigned long) current;
727 }
728 
729 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct)
730 
731 static const struct bpf_func_proto bpf_get_current_task_btf_proto = {
732 	.func		= bpf_get_current_task_btf,
733 	.gpl_only	= true,
734 	.ret_type	= RET_PTR_TO_BTF_ID,
735 	.ret_btf_id	= &bpf_get_current_btf_ids[0],
736 };
737 
738 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
739 {
740 	struct bpf_array *array = container_of(map, struct bpf_array, map);
741 	struct cgroup *cgrp;
742 
743 	if (unlikely(idx >= array->map.max_entries))
744 		return -E2BIG;
745 
746 	cgrp = READ_ONCE(array->ptrs[idx]);
747 	if (unlikely(!cgrp))
748 		return -EAGAIN;
749 
750 	return task_under_cgroup_hierarchy(current, cgrp);
751 }
752 
753 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
754 	.func           = bpf_current_task_under_cgroup,
755 	.gpl_only       = false,
756 	.ret_type       = RET_INTEGER,
757 	.arg1_type      = ARG_CONST_MAP_PTR,
758 	.arg2_type      = ARG_ANYTHING,
759 };
760 
761 struct send_signal_irq_work {
762 	struct irq_work irq_work;
763 	struct task_struct *task;
764 	u32 sig;
765 	enum pid_type type;
766 };
767 
768 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
769 
770 static void do_bpf_send_signal(struct irq_work *entry)
771 {
772 	struct send_signal_irq_work *work;
773 
774 	work = container_of(entry, struct send_signal_irq_work, irq_work);
775 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
776 }
777 
778 static int bpf_send_signal_common(u32 sig, enum pid_type type)
779 {
780 	struct send_signal_irq_work *work = NULL;
781 
782 	/* Similar to bpf_probe_write_user, task needs to be
783 	 * in a sound condition and kernel memory access be
784 	 * permitted in order to send signal to the current
785 	 * task.
786 	 */
787 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
788 		return -EPERM;
789 	if (unlikely(uaccess_kernel()))
790 		return -EPERM;
791 	if (unlikely(!nmi_uaccess_okay()))
792 		return -EPERM;
793 
794 	if (irqs_disabled()) {
795 		/* Do an early check on signal validity. Otherwise,
796 		 * the error is lost in deferred irq_work.
797 		 */
798 		if (unlikely(!valid_signal(sig)))
799 			return -EINVAL;
800 
801 		work = this_cpu_ptr(&send_signal_work);
802 		if (irq_work_is_busy(&work->irq_work))
803 			return -EBUSY;
804 
805 		/* Add the current task, which is the target of sending signal,
806 		 * to the irq_work. The current task may change when queued
807 		 * irq works get executed.
808 		 */
809 		work->task = current;
810 		work->sig = sig;
811 		work->type = type;
812 		irq_work_queue(&work->irq_work);
813 		return 0;
814 	}
815 
816 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
817 }
818 
819 BPF_CALL_1(bpf_send_signal, u32, sig)
820 {
821 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
822 }
823 
824 static const struct bpf_func_proto bpf_send_signal_proto = {
825 	.func		= bpf_send_signal,
826 	.gpl_only	= false,
827 	.ret_type	= RET_INTEGER,
828 	.arg1_type	= ARG_ANYTHING,
829 };
830 
831 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
832 {
833 	return bpf_send_signal_common(sig, PIDTYPE_PID);
834 }
835 
836 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
837 	.func		= bpf_send_signal_thread,
838 	.gpl_only	= false,
839 	.ret_type	= RET_INTEGER,
840 	.arg1_type	= ARG_ANYTHING,
841 };
842 
843 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
844 {
845 	long len;
846 	char *p;
847 
848 	if (!sz)
849 		return 0;
850 
851 	p = d_path(path, buf, sz);
852 	if (IS_ERR(p)) {
853 		len = PTR_ERR(p);
854 	} else {
855 		len = buf + sz - p;
856 		memmove(buf, p, len);
857 	}
858 
859 	return len;
860 }
861 
862 BTF_SET_START(btf_allowlist_d_path)
863 #ifdef CONFIG_SECURITY
864 BTF_ID(func, security_file_permission)
865 BTF_ID(func, security_inode_getattr)
866 BTF_ID(func, security_file_open)
867 #endif
868 #ifdef CONFIG_SECURITY_PATH
869 BTF_ID(func, security_path_truncate)
870 #endif
871 BTF_ID(func, vfs_truncate)
872 BTF_ID(func, vfs_fallocate)
873 BTF_ID(func, dentry_open)
874 BTF_ID(func, vfs_getattr)
875 BTF_ID(func, filp_close)
876 BTF_SET_END(btf_allowlist_d_path)
877 
878 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
879 {
880 	if (prog->type == BPF_PROG_TYPE_TRACING &&
881 	    prog->expected_attach_type == BPF_TRACE_ITER)
882 		return true;
883 
884 	if (prog->type == BPF_PROG_TYPE_LSM)
885 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
886 
887 	return btf_id_set_contains(&btf_allowlist_d_path,
888 				   prog->aux->attach_btf_id);
889 }
890 
891 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
892 
893 static const struct bpf_func_proto bpf_d_path_proto = {
894 	.func		= bpf_d_path,
895 	.gpl_only	= false,
896 	.ret_type	= RET_INTEGER,
897 	.arg1_type	= ARG_PTR_TO_BTF_ID,
898 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
899 	.arg2_type	= ARG_PTR_TO_MEM,
900 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
901 	.allowed	= bpf_d_path_allowed,
902 };
903 
904 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
905 			 BTF_F_PTR_RAW | BTF_F_ZERO)
906 
907 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
908 				  u64 flags, const struct btf **btf,
909 				  s32 *btf_id)
910 {
911 	const struct btf_type *t;
912 
913 	if (unlikely(flags & ~(BTF_F_ALL)))
914 		return -EINVAL;
915 
916 	if (btf_ptr_size != sizeof(struct btf_ptr))
917 		return -EINVAL;
918 
919 	*btf = bpf_get_btf_vmlinux();
920 
921 	if (IS_ERR_OR_NULL(*btf))
922 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
923 
924 	if (ptr->type_id > 0)
925 		*btf_id = ptr->type_id;
926 	else
927 		return -EINVAL;
928 
929 	if (*btf_id > 0)
930 		t = btf_type_by_id(*btf, *btf_id);
931 	if (*btf_id <= 0 || !t)
932 		return -ENOENT;
933 
934 	return 0;
935 }
936 
937 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
938 	   u32, btf_ptr_size, u64, flags)
939 {
940 	const struct btf *btf;
941 	s32 btf_id;
942 	int ret;
943 
944 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
945 	if (ret)
946 		return ret;
947 
948 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
949 				      flags);
950 }
951 
952 const struct bpf_func_proto bpf_snprintf_btf_proto = {
953 	.func		= bpf_snprintf_btf,
954 	.gpl_only	= false,
955 	.ret_type	= RET_INTEGER,
956 	.arg1_type	= ARG_PTR_TO_MEM,
957 	.arg2_type	= ARG_CONST_SIZE,
958 	.arg3_type	= ARG_PTR_TO_MEM,
959 	.arg4_type	= ARG_CONST_SIZE,
960 	.arg5_type	= ARG_ANYTHING,
961 };
962 
963 const struct bpf_func_proto *
964 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
965 {
966 	switch (func_id) {
967 	case BPF_FUNC_map_lookup_elem:
968 		return &bpf_map_lookup_elem_proto;
969 	case BPF_FUNC_map_update_elem:
970 		return &bpf_map_update_elem_proto;
971 	case BPF_FUNC_map_delete_elem:
972 		return &bpf_map_delete_elem_proto;
973 	case BPF_FUNC_map_push_elem:
974 		return &bpf_map_push_elem_proto;
975 	case BPF_FUNC_map_pop_elem:
976 		return &bpf_map_pop_elem_proto;
977 	case BPF_FUNC_map_peek_elem:
978 		return &bpf_map_peek_elem_proto;
979 	case BPF_FUNC_ktime_get_ns:
980 		return &bpf_ktime_get_ns_proto;
981 	case BPF_FUNC_ktime_get_boot_ns:
982 		return &bpf_ktime_get_boot_ns_proto;
983 	case BPF_FUNC_ktime_get_coarse_ns:
984 		return &bpf_ktime_get_coarse_ns_proto;
985 	case BPF_FUNC_tail_call:
986 		return &bpf_tail_call_proto;
987 	case BPF_FUNC_get_current_pid_tgid:
988 		return &bpf_get_current_pid_tgid_proto;
989 	case BPF_FUNC_get_current_task:
990 		return &bpf_get_current_task_proto;
991 	case BPF_FUNC_get_current_task_btf:
992 		return &bpf_get_current_task_btf_proto;
993 	case BPF_FUNC_get_current_uid_gid:
994 		return &bpf_get_current_uid_gid_proto;
995 	case BPF_FUNC_get_current_comm:
996 		return &bpf_get_current_comm_proto;
997 	case BPF_FUNC_trace_printk:
998 		return bpf_get_trace_printk_proto();
999 	case BPF_FUNC_get_smp_processor_id:
1000 		return &bpf_get_smp_processor_id_proto;
1001 	case BPF_FUNC_get_numa_node_id:
1002 		return &bpf_get_numa_node_id_proto;
1003 	case BPF_FUNC_perf_event_read:
1004 		return &bpf_perf_event_read_proto;
1005 	case BPF_FUNC_probe_write_user:
1006 		return bpf_get_probe_write_proto();
1007 	case BPF_FUNC_current_task_under_cgroup:
1008 		return &bpf_current_task_under_cgroup_proto;
1009 	case BPF_FUNC_get_prandom_u32:
1010 		return &bpf_get_prandom_u32_proto;
1011 	case BPF_FUNC_probe_read_user:
1012 		return &bpf_probe_read_user_proto;
1013 	case BPF_FUNC_probe_read_kernel:
1014 		return &bpf_probe_read_kernel_proto;
1015 	case BPF_FUNC_probe_read_user_str:
1016 		return &bpf_probe_read_user_str_proto;
1017 	case BPF_FUNC_probe_read_kernel_str:
1018 		return &bpf_probe_read_kernel_str_proto;
1019 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1020 	case BPF_FUNC_probe_read:
1021 		return &bpf_probe_read_compat_proto;
1022 	case BPF_FUNC_probe_read_str:
1023 		return &bpf_probe_read_compat_str_proto;
1024 #endif
1025 #ifdef CONFIG_CGROUPS
1026 	case BPF_FUNC_get_current_cgroup_id:
1027 		return &bpf_get_current_cgroup_id_proto;
1028 #endif
1029 	case BPF_FUNC_send_signal:
1030 		return &bpf_send_signal_proto;
1031 	case BPF_FUNC_send_signal_thread:
1032 		return &bpf_send_signal_thread_proto;
1033 	case BPF_FUNC_perf_event_read_value:
1034 		return &bpf_perf_event_read_value_proto;
1035 	case BPF_FUNC_get_ns_current_pid_tgid:
1036 		return &bpf_get_ns_current_pid_tgid_proto;
1037 	case BPF_FUNC_ringbuf_output:
1038 		return &bpf_ringbuf_output_proto;
1039 	case BPF_FUNC_ringbuf_reserve:
1040 		return &bpf_ringbuf_reserve_proto;
1041 	case BPF_FUNC_ringbuf_submit:
1042 		return &bpf_ringbuf_submit_proto;
1043 	case BPF_FUNC_ringbuf_discard:
1044 		return &bpf_ringbuf_discard_proto;
1045 	case BPF_FUNC_ringbuf_query:
1046 		return &bpf_ringbuf_query_proto;
1047 	case BPF_FUNC_jiffies64:
1048 		return &bpf_jiffies64_proto;
1049 	case BPF_FUNC_get_task_stack:
1050 		return &bpf_get_task_stack_proto;
1051 	case BPF_FUNC_copy_from_user:
1052 		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1053 	case BPF_FUNC_snprintf_btf:
1054 		return &bpf_snprintf_btf_proto;
1055 	case BPF_FUNC_per_cpu_ptr:
1056 		return &bpf_per_cpu_ptr_proto;
1057 	case BPF_FUNC_this_cpu_ptr:
1058 		return &bpf_this_cpu_ptr_proto;
1059 	case BPF_FUNC_task_storage_get:
1060 		return &bpf_task_storage_get_proto;
1061 	case BPF_FUNC_task_storage_delete:
1062 		return &bpf_task_storage_delete_proto;
1063 	case BPF_FUNC_for_each_map_elem:
1064 		return &bpf_for_each_map_elem_proto;
1065 	case BPF_FUNC_snprintf:
1066 		return &bpf_snprintf_proto;
1067 	default:
1068 		return NULL;
1069 	}
1070 }
1071 
1072 static const struct bpf_func_proto *
1073 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1074 {
1075 	switch (func_id) {
1076 	case BPF_FUNC_perf_event_output:
1077 		return &bpf_perf_event_output_proto;
1078 	case BPF_FUNC_get_stackid:
1079 		return &bpf_get_stackid_proto;
1080 	case BPF_FUNC_get_stack:
1081 		return &bpf_get_stack_proto;
1082 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1083 	case BPF_FUNC_override_return:
1084 		return &bpf_override_return_proto;
1085 #endif
1086 	default:
1087 		return bpf_tracing_func_proto(func_id, prog);
1088 	}
1089 }
1090 
1091 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1092 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1093 					const struct bpf_prog *prog,
1094 					struct bpf_insn_access_aux *info)
1095 {
1096 	if (off < 0 || off >= sizeof(struct pt_regs))
1097 		return false;
1098 	if (type != BPF_READ)
1099 		return false;
1100 	if (off % size != 0)
1101 		return false;
1102 	/*
1103 	 * Assertion for 32 bit to make sure last 8 byte access
1104 	 * (BPF_DW) to the last 4 byte member is disallowed.
1105 	 */
1106 	if (off + size > sizeof(struct pt_regs))
1107 		return false;
1108 
1109 	return true;
1110 }
1111 
1112 const struct bpf_verifier_ops kprobe_verifier_ops = {
1113 	.get_func_proto  = kprobe_prog_func_proto,
1114 	.is_valid_access = kprobe_prog_is_valid_access,
1115 };
1116 
1117 const struct bpf_prog_ops kprobe_prog_ops = {
1118 };
1119 
1120 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1121 	   u64, flags, void *, data, u64, size)
1122 {
1123 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1124 
1125 	/*
1126 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1127 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1128 	 * from there and call the same bpf_perf_event_output() helper inline.
1129 	 */
1130 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1131 }
1132 
1133 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1134 	.func		= bpf_perf_event_output_tp,
1135 	.gpl_only	= true,
1136 	.ret_type	= RET_INTEGER,
1137 	.arg1_type	= ARG_PTR_TO_CTX,
1138 	.arg2_type	= ARG_CONST_MAP_PTR,
1139 	.arg3_type	= ARG_ANYTHING,
1140 	.arg4_type	= ARG_PTR_TO_MEM,
1141 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1142 };
1143 
1144 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1145 	   u64, flags)
1146 {
1147 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1148 
1149 	/*
1150 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1151 	 * the other helper's function body cannot be inlined due to being
1152 	 * external, thus we need to call raw helper function.
1153 	 */
1154 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1155 			       flags, 0, 0);
1156 }
1157 
1158 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1159 	.func		= bpf_get_stackid_tp,
1160 	.gpl_only	= true,
1161 	.ret_type	= RET_INTEGER,
1162 	.arg1_type	= ARG_PTR_TO_CTX,
1163 	.arg2_type	= ARG_CONST_MAP_PTR,
1164 	.arg3_type	= ARG_ANYTHING,
1165 };
1166 
1167 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1168 	   u64, flags)
1169 {
1170 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1171 
1172 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1173 			     (unsigned long) size, flags, 0);
1174 }
1175 
1176 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1177 	.func		= bpf_get_stack_tp,
1178 	.gpl_only	= true,
1179 	.ret_type	= RET_INTEGER,
1180 	.arg1_type	= ARG_PTR_TO_CTX,
1181 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1182 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1183 	.arg4_type	= ARG_ANYTHING,
1184 };
1185 
1186 static const struct bpf_func_proto *
1187 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1188 {
1189 	switch (func_id) {
1190 	case BPF_FUNC_perf_event_output:
1191 		return &bpf_perf_event_output_proto_tp;
1192 	case BPF_FUNC_get_stackid:
1193 		return &bpf_get_stackid_proto_tp;
1194 	case BPF_FUNC_get_stack:
1195 		return &bpf_get_stack_proto_tp;
1196 	default:
1197 		return bpf_tracing_func_proto(func_id, prog);
1198 	}
1199 }
1200 
1201 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1202 				    const struct bpf_prog *prog,
1203 				    struct bpf_insn_access_aux *info)
1204 {
1205 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1206 		return false;
1207 	if (type != BPF_READ)
1208 		return false;
1209 	if (off % size != 0)
1210 		return false;
1211 
1212 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1213 	return true;
1214 }
1215 
1216 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1217 	.get_func_proto  = tp_prog_func_proto,
1218 	.is_valid_access = tp_prog_is_valid_access,
1219 };
1220 
1221 const struct bpf_prog_ops tracepoint_prog_ops = {
1222 };
1223 
1224 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1225 	   struct bpf_perf_event_value *, buf, u32, size)
1226 {
1227 	int err = -EINVAL;
1228 
1229 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1230 		goto clear;
1231 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1232 				    &buf->running);
1233 	if (unlikely(err))
1234 		goto clear;
1235 	return 0;
1236 clear:
1237 	memset(buf, 0, size);
1238 	return err;
1239 }
1240 
1241 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1242          .func           = bpf_perf_prog_read_value,
1243          .gpl_only       = true,
1244          .ret_type       = RET_INTEGER,
1245          .arg1_type      = ARG_PTR_TO_CTX,
1246          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1247          .arg3_type      = ARG_CONST_SIZE,
1248 };
1249 
1250 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1251 	   void *, buf, u32, size, u64, flags)
1252 {
1253 #ifndef CONFIG_X86
1254 	return -ENOENT;
1255 #else
1256 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1257 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1258 	u32 to_copy;
1259 
1260 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1261 		return -EINVAL;
1262 
1263 	if (unlikely(!br_stack))
1264 		return -EINVAL;
1265 
1266 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1267 		return br_stack->nr * br_entry_size;
1268 
1269 	if (!buf || (size % br_entry_size != 0))
1270 		return -EINVAL;
1271 
1272 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1273 	memcpy(buf, br_stack->entries, to_copy);
1274 
1275 	return to_copy;
1276 #endif
1277 }
1278 
1279 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1280 	.func           = bpf_read_branch_records,
1281 	.gpl_only       = true,
1282 	.ret_type       = RET_INTEGER,
1283 	.arg1_type      = ARG_PTR_TO_CTX,
1284 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1285 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1286 	.arg4_type      = ARG_ANYTHING,
1287 };
1288 
1289 static const struct bpf_func_proto *
1290 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1291 {
1292 	switch (func_id) {
1293 	case BPF_FUNC_perf_event_output:
1294 		return &bpf_perf_event_output_proto_tp;
1295 	case BPF_FUNC_get_stackid:
1296 		return &bpf_get_stackid_proto_pe;
1297 	case BPF_FUNC_get_stack:
1298 		return &bpf_get_stack_proto_pe;
1299 	case BPF_FUNC_perf_prog_read_value:
1300 		return &bpf_perf_prog_read_value_proto;
1301 	case BPF_FUNC_read_branch_records:
1302 		return &bpf_read_branch_records_proto;
1303 	default:
1304 		return bpf_tracing_func_proto(func_id, prog);
1305 	}
1306 }
1307 
1308 /*
1309  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1310  * to avoid potential recursive reuse issue when/if tracepoints are added
1311  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1312  *
1313  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1314  * in normal, irq, and nmi context.
1315  */
1316 struct bpf_raw_tp_regs {
1317 	struct pt_regs regs[3];
1318 };
1319 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1320 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1321 static struct pt_regs *get_bpf_raw_tp_regs(void)
1322 {
1323 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1324 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1325 
1326 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1327 		this_cpu_dec(bpf_raw_tp_nest_level);
1328 		return ERR_PTR(-EBUSY);
1329 	}
1330 
1331 	return &tp_regs->regs[nest_level - 1];
1332 }
1333 
1334 static void put_bpf_raw_tp_regs(void)
1335 {
1336 	this_cpu_dec(bpf_raw_tp_nest_level);
1337 }
1338 
1339 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1340 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1341 {
1342 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1343 	int ret;
1344 
1345 	if (IS_ERR(regs))
1346 		return PTR_ERR(regs);
1347 
1348 	perf_fetch_caller_regs(regs);
1349 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1350 
1351 	put_bpf_raw_tp_regs();
1352 	return ret;
1353 }
1354 
1355 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1356 	.func		= bpf_perf_event_output_raw_tp,
1357 	.gpl_only	= true,
1358 	.ret_type	= RET_INTEGER,
1359 	.arg1_type	= ARG_PTR_TO_CTX,
1360 	.arg2_type	= ARG_CONST_MAP_PTR,
1361 	.arg3_type	= ARG_ANYTHING,
1362 	.arg4_type	= ARG_PTR_TO_MEM,
1363 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1364 };
1365 
1366 extern const struct bpf_func_proto bpf_skb_output_proto;
1367 extern const struct bpf_func_proto bpf_xdp_output_proto;
1368 
1369 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1370 	   struct bpf_map *, map, u64, flags)
1371 {
1372 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1373 	int ret;
1374 
1375 	if (IS_ERR(regs))
1376 		return PTR_ERR(regs);
1377 
1378 	perf_fetch_caller_regs(regs);
1379 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1380 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1381 			      flags, 0, 0);
1382 	put_bpf_raw_tp_regs();
1383 	return ret;
1384 }
1385 
1386 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1387 	.func		= bpf_get_stackid_raw_tp,
1388 	.gpl_only	= true,
1389 	.ret_type	= RET_INTEGER,
1390 	.arg1_type	= ARG_PTR_TO_CTX,
1391 	.arg2_type	= ARG_CONST_MAP_PTR,
1392 	.arg3_type	= ARG_ANYTHING,
1393 };
1394 
1395 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1396 	   void *, buf, u32, size, u64, flags)
1397 {
1398 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1399 	int ret;
1400 
1401 	if (IS_ERR(regs))
1402 		return PTR_ERR(regs);
1403 
1404 	perf_fetch_caller_regs(regs);
1405 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1406 			    (unsigned long) size, flags, 0);
1407 	put_bpf_raw_tp_regs();
1408 	return ret;
1409 }
1410 
1411 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1412 	.func		= bpf_get_stack_raw_tp,
1413 	.gpl_only	= true,
1414 	.ret_type	= RET_INTEGER,
1415 	.arg1_type	= ARG_PTR_TO_CTX,
1416 	.arg2_type	= ARG_PTR_TO_MEM,
1417 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1418 	.arg4_type	= ARG_ANYTHING,
1419 };
1420 
1421 static const struct bpf_func_proto *
1422 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1423 {
1424 	switch (func_id) {
1425 	case BPF_FUNC_perf_event_output:
1426 		return &bpf_perf_event_output_proto_raw_tp;
1427 	case BPF_FUNC_get_stackid:
1428 		return &bpf_get_stackid_proto_raw_tp;
1429 	case BPF_FUNC_get_stack:
1430 		return &bpf_get_stack_proto_raw_tp;
1431 	default:
1432 		return bpf_tracing_func_proto(func_id, prog);
1433 	}
1434 }
1435 
1436 const struct bpf_func_proto *
1437 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1438 {
1439 	switch (func_id) {
1440 #ifdef CONFIG_NET
1441 	case BPF_FUNC_skb_output:
1442 		return &bpf_skb_output_proto;
1443 	case BPF_FUNC_xdp_output:
1444 		return &bpf_xdp_output_proto;
1445 	case BPF_FUNC_skc_to_tcp6_sock:
1446 		return &bpf_skc_to_tcp6_sock_proto;
1447 	case BPF_FUNC_skc_to_tcp_sock:
1448 		return &bpf_skc_to_tcp_sock_proto;
1449 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1450 		return &bpf_skc_to_tcp_timewait_sock_proto;
1451 	case BPF_FUNC_skc_to_tcp_request_sock:
1452 		return &bpf_skc_to_tcp_request_sock_proto;
1453 	case BPF_FUNC_skc_to_udp6_sock:
1454 		return &bpf_skc_to_udp6_sock_proto;
1455 	case BPF_FUNC_sk_storage_get:
1456 		return &bpf_sk_storage_get_tracing_proto;
1457 	case BPF_FUNC_sk_storage_delete:
1458 		return &bpf_sk_storage_delete_tracing_proto;
1459 	case BPF_FUNC_sock_from_file:
1460 		return &bpf_sock_from_file_proto;
1461 	case BPF_FUNC_get_socket_cookie:
1462 		return &bpf_get_socket_ptr_cookie_proto;
1463 #endif
1464 	case BPF_FUNC_seq_printf:
1465 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1466 		       &bpf_seq_printf_proto :
1467 		       NULL;
1468 	case BPF_FUNC_seq_write:
1469 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1470 		       &bpf_seq_write_proto :
1471 		       NULL;
1472 	case BPF_FUNC_seq_printf_btf:
1473 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1474 		       &bpf_seq_printf_btf_proto :
1475 		       NULL;
1476 	case BPF_FUNC_d_path:
1477 		return &bpf_d_path_proto;
1478 	default:
1479 		return raw_tp_prog_func_proto(func_id, prog);
1480 	}
1481 }
1482 
1483 static bool raw_tp_prog_is_valid_access(int off, int size,
1484 					enum bpf_access_type type,
1485 					const struct bpf_prog *prog,
1486 					struct bpf_insn_access_aux *info)
1487 {
1488 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1489 		return false;
1490 	if (type != BPF_READ)
1491 		return false;
1492 	if (off % size != 0)
1493 		return false;
1494 	return true;
1495 }
1496 
1497 static bool tracing_prog_is_valid_access(int off, int size,
1498 					 enum bpf_access_type type,
1499 					 const struct bpf_prog *prog,
1500 					 struct bpf_insn_access_aux *info)
1501 {
1502 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1503 		return false;
1504 	if (type != BPF_READ)
1505 		return false;
1506 	if (off % size != 0)
1507 		return false;
1508 	return btf_ctx_access(off, size, type, prog, info);
1509 }
1510 
1511 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1512 				     const union bpf_attr *kattr,
1513 				     union bpf_attr __user *uattr)
1514 {
1515 	return -ENOTSUPP;
1516 }
1517 
1518 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1519 	.get_func_proto  = raw_tp_prog_func_proto,
1520 	.is_valid_access = raw_tp_prog_is_valid_access,
1521 };
1522 
1523 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1524 #ifdef CONFIG_NET
1525 	.test_run = bpf_prog_test_run_raw_tp,
1526 #endif
1527 };
1528 
1529 const struct bpf_verifier_ops tracing_verifier_ops = {
1530 	.get_func_proto  = tracing_prog_func_proto,
1531 	.is_valid_access = tracing_prog_is_valid_access,
1532 };
1533 
1534 const struct bpf_prog_ops tracing_prog_ops = {
1535 	.test_run = bpf_prog_test_run_tracing,
1536 };
1537 
1538 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1539 						 enum bpf_access_type type,
1540 						 const struct bpf_prog *prog,
1541 						 struct bpf_insn_access_aux *info)
1542 {
1543 	if (off == 0) {
1544 		if (size != sizeof(u64) || type != BPF_READ)
1545 			return false;
1546 		info->reg_type = PTR_TO_TP_BUFFER;
1547 	}
1548 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1549 }
1550 
1551 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1552 	.get_func_proto  = raw_tp_prog_func_proto,
1553 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1554 };
1555 
1556 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1557 };
1558 
1559 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1560 				    const struct bpf_prog *prog,
1561 				    struct bpf_insn_access_aux *info)
1562 {
1563 	const int size_u64 = sizeof(u64);
1564 
1565 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1566 		return false;
1567 	if (type != BPF_READ)
1568 		return false;
1569 	if (off % size != 0) {
1570 		if (sizeof(unsigned long) != 4)
1571 			return false;
1572 		if (size != 8)
1573 			return false;
1574 		if (off % size != 4)
1575 			return false;
1576 	}
1577 
1578 	switch (off) {
1579 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1580 		bpf_ctx_record_field_size(info, size_u64);
1581 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1582 			return false;
1583 		break;
1584 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1585 		bpf_ctx_record_field_size(info, size_u64);
1586 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1587 			return false;
1588 		break;
1589 	default:
1590 		if (size != sizeof(long))
1591 			return false;
1592 	}
1593 
1594 	return true;
1595 }
1596 
1597 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1598 				      const struct bpf_insn *si,
1599 				      struct bpf_insn *insn_buf,
1600 				      struct bpf_prog *prog, u32 *target_size)
1601 {
1602 	struct bpf_insn *insn = insn_buf;
1603 
1604 	switch (si->off) {
1605 	case offsetof(struct bpf_perf_event_data, sample_period):
1606 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1607 						       data), si->dst_reg, si->src_reg,
1608 				      offsetof(struct bpf_perf_event_data_kern, data));
1609 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1610 				      bpf_target_off(struct perf_sample_data, period, 8,
1611 						     target_size));
1612 		break;
1613 	case offsetof(struct bpf_perf_event_data, addr):
1614 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1615 						       data), si->dst_reg, si->src_reg,
1616 				      offsetof(struct bpf_perf_event_data_kern, data));
1617 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1618 				      bpf_target_off(struct perf_sample_data, addr, 8,
1619 						     target_size));
1620 		break;
1621 	default:
1622 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1623 						       regs), si->dst_reg, si->src_reg,
1624 				      offsetof(struct bpf_perf_event_data_kern, regs));
1625 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1626 				      si->off);
1627 		break;
1628 	}
1629 
1630 	return insn - insn_buf;
1631 }
1632 
1633 const struct bpf_verifier_ops perf_event_verifier_ops = {
1634 	.get_func_proto		= pe_prog_func_proto,
1635 	.is_valid_access	= pe_prog_is_valid_access,
1636 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1637 };
1638 
1639 const struct bpf_prog_ops perf_event_prog_ops = {
1640 };
1641 
1642 static DEFINE_MUTEX(bpf_event_mutex);
1643 
1644 #define BPF_TRACE_MAX_PROGS 64
1645 
1646 int perf_event_attach_bpf_prog(struct perf_event *event,
1647 			       struct bpf_prog *prog)
1648 {
1649 	struct bpf_prog_array *old_array;
1650 	struct bpf_prog_array *new_array;
1651 	int ret = -EEXIST;
1652 
1653 	/*
1654 	 * Kprobe override only works if they are on the function entry,
1655 	 * and only if they are on the opt-in list.
1656 	 */
1657 	if (prog->kprobe_override &&
1658 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1659 	     !trace_kprobe_error_injectable(event->tp_event)))
1660 		return -EINVAL;
1661 
1662 	mutex_lock(&bpf_event_mutex);
1663 
1664 	if (event->prog)
1665 		goto unlock;
1666 
1667 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1668 	if (old_array &&
1669 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1670 		ret = -E2BIG;
1671 		goto unlock;
1672 	}
1673 
1674 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1675 	if (ret < 0)
1676 		goto unlock;
1677 
1678 	/* set the new array to event->tp_event and set event->prog */
1679 	event->prog = prog;
1680 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1681 	bpf_prog_array_free(old_array);
1682 
1683 unlock:
1684 	mutex_unlock(&bpf_event_mutex);
1685 	return ret;
1686 }
1687 
1688 void perf_event_detach_bpf_prog(struct perf_event *event)
1689 {
1690 	struct bpf_prog_array *old_array;
1691 	struct bpf_prog_array *new_array;
1692 	int ret;
1693 
1694 	mutex_lock(&bpf_event_mutex);
1695 
1696 	if (!event->prog)
1697 		goto unlock;
1698 
1699 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1700 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1701 	if (ret == -ENOENT)
1702 		goto unlock;
1703 	if (ret < 0) {
1704 		bpf_prog_array_delete_safe(old_array, event->prog);
1705 	} else {
1706 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1707 		bpf_prog_array_free(old_array);
1708 	}
1709 
1710 	bpf_prog_put(event->prog);
1711 	event->prog = NULL;
1712 
1713 unlock:
1714 	mutex_unlock(&bpf_event_mutex);
1715 }
1716 
1717 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1718 {
1719 	struct perf_event_query_bpf __user *uquery = info;
1720 	struct perf_event_query_bpf query = {};
1721 	struct bpf_prog_array *progs;
1722 	u32 *ids, prog_cnt, ids_len;
1723 	int ret;
1724 
1725 	if (!perfmon_capable())
1726 		return -EPERM;
1727 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1728 		return -EINVAL;
1729 	if (copy_from_user(&query, uquery, sizeof(query)))
1730 		return -EFAULT;
1731 
1732 	ids_len = query.ids_len;
1733 	if (ids_len > BPF_TRACE_MAX_PROGS)
1734 		return -E2BIG;
1735 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1736 	if (!ids)
1737 		return -ENOMEM;
1738 	/*
1739 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1740 	 * is required when user only wants to check for uquery->prog_cnt.
1741 	 * There is no need to check for it since the case is handled
1742 	 * gracefully in bpf_prog_array_copy_info.
1743 	 */
1744 
1745 	mutex_lock(&bpf_event_mutex);
1746 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1747 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1748 	mutex_unlock(&bpf_event_mutex);
1749 
1750 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1751 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1752 		ret = -EFAULT;
1753 
1754 	kfree(ids);
1755 	return ret;
1756 }
1757 
1758 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1759 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1760 
1761 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1762 {
1763 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1764 
1765 	for (; btp < __stop__bpf_raw_tp; btp++) {
1766 		if (!strcmp(btp->tp->name, name))
1767 			return btp;
1768 	}
1769 
1770 	return bpf_get_raw_tracepoint_module(name);
1771 }
1772 
1773 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1774 {
1775 	struct module *mod;
1776 
1777 	preempt_disable();
1778 	mod = __module_address((unsigned long)btp);
1779 	module_put(mod);
1780 	preempt_enable();
1781 }
1782 
1783 static __always_inline
1784 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1785 {
1786 	cant_sleep();
1787 	rcu_read_lock();
1788 	(void) BPF_PROG_RUN(prog, args);
1789 	rcu_read_unlock();
1790 }
1791 
1792 #define UNPACK(...)			__VA_ARGS__
1793 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1794 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1795 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1796 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1797 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1798 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1799 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1800 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1801 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1802 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1803 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1804 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1805 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1806 
1807 #define SARG(X)		u64 arg##X
1808 #define COPY(X)		args[X] = arg##X
1809 
1810 #define __DL_COM	(,)
1811 #define __DL_SEM	(;)
1812 
1813 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1814 
1815 #define BPF_TRACE_DEFN_x(x)						\
1816 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1817 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1818 	{								\
1819 		u64 args[x];						\
1820 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1821 		__bpf_trace_run(prog, args);				\
1822 	}								\
1823 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1824 BPF_TRACE_DEFN_x(1);
1825 BPF_TRACE_DEFN_x(2);
1826 BPF_TRACE_DEFN_x(3);
1827 BPF_TRACE_DEFN_x(4);
1828 BPF_TRACE_DEFN_x(5);
1829 BPF_TRACE_DEFN_x(6);
1830 BPF_TRACE_DEFN_x(7);
1831 BPF_TRACE_DEFN_x(8);
1832 BPF_TRACE_DEFN_x(9);
1833 BPF_TRACE_DEFN_x(10);
1834 BPF_TRACE_DEFN_x(11);
1835 BPF_TRACE_DEFN_x(12);
1836 
1837 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1838 {
1839 	struct tracepoint *tp = btp->tp;
1840 
1841 	/*
1842 	 * check that program doesn't access arguments beyond what's
1843 	 * available in this tracepoint
1844 	 */
1845 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1846 		return -EINVAL;
1847 
1848 	if (prog->aux->max_tp_access > btp->writable_size)
1849 		return -EINVAL;
1850 
1851 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1852 }
1853 
1854 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1855 {
1856 	return __bpf_probe_register(btp, prog);
1857 }
1858 
1859 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1860 {
1861 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1862 }
1863 
1864 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1865 			    u32 *fd_type, const char **buf,
1866 			    u64 *probe_offset, u64 *probe_addr)
1867 {
1868 	bool is_tracepoint, is_syscall_tp;
1869 	struct bpf_prog *prog;
1870 	int flags, err = 0;
1871 
1872 	prog = event->prog;
1873 	if (!prog)
1874 		return -ENOENT;
1875 
1876 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1877 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1878 		return -EOPNOTSUPP;
1879 
1880 	*prog_id = prog->aux->id;
1881 	flags = event->tp_event->flags;
1882 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1883 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1884 
1885 	if (is_tracepoint || is_syscall_tp) {
1886 		*buf = is_tracepoint ? event->tp_event->tp->name
1887 				     : event->tp_event->name;
1888 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1889 		*probe_offset = 0x0;
1890 		*probe_addr = 0x0;
1891 	} else {
1892 		/* kprobe/uprobe */
1893 		err = -EOPNOTSUPP;
1894 #ifdef CONFIG_KPROBE_EVENTS
1895 		if (flags & TRACE_EVENT_FL_KPROBE)
1896 			err = bpf_get_kprobe_info(event, fd_type, buf,
1897 						  probe_offset, probe_addr,
1898 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1899 #endif
1900 #ifdef CONFIG_UPROBE_EVENTS
1901 		if (flags & TRACE_EVENT_FL_UPROBE)
1902 			err = bpf_get_uprobe_info(event, fd_type, buf,
1903 						  probe_offset,
1904 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1905 #endif
1906 	}
1907 
1908 	return err;
1909 }
1910 
1911 static int __init send_signal_irq_work_init(void)
1912 {
1913 	int cpu;
1914 	struct send_signal_irq_work *work;
1915 
1916 	for_each_possible_cpu(cpu) {
1917 		work = per_cpu_ptr(&send_signal_work, cpu);
1918 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1919 	}
1920 	return 0;
1921 }
1922 
1923 subsys_initcall(send_signal_irq_work_init);
1924 
1925 #ifdef CONFIG_MODULES
1926 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1927 			    void *module)
1928 {
1929 	struct bpf_trace_module *btm, *tmp;
1930 	struct module *mod = module;
1931 	int ret = 0;
1932 
1933 	if (mod->num_bpf_raw_events == 0 ||
1934 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1935 		goto out;
1936 
1937 	mutex_lock(&bpf_module_mutex);
1938 
1939 	switch (op) {
1940 	case MODULE_STATE_COMING:
1941 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1942 		if (btm) {
1943 			btm->module = module;
1944 			list_add(&btm->list, &bpf_trace_modules);
1945 		} else {
1946 			ret = -ENOMEM;
1947 		}
1948 		break;
1949 	case MODULE_STATE_GOING:
1950 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1951 			if (btm->module == module) {
1952 				list_del(&btm->list);
1953 				kfree(btm);
1954 				break;
1955 			}
1956 		}
1957 		break;
1958 	}
1959 
1960 	mutex_unlock(&bpf_module_mutex);
1961 
1962 out:
1963 	return notifier_from_errno(ret);
1964 }
1965 
1966 static struct notifier_block bpf_module_nb = {
1967 	.notifier_call = bpf_event_notify,
1968 };
1969 
1970 static int __init bpf_event_init(void)
1971 {
1972 	register_module_notifier(&bpf_module_nb);
1973 	return 0;
1974 }
1975 
1976 fs_initcall(bpf_event_init);
1977 #endif /* CONFIG_MODULES */
1978