1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/btf.h> 11 #include <linux/filter.h> 12 #include <linux/uaccess.h> 13 #include <linux/ctype.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/syscalls.h> 17 #include <linux/error-injection.h> 18 #include <linux/btf_ids.h> 19 #include <linux/bpf_lsm.h> 20 21 #include <net/bpf_sk_storage.h> 22 23 #include <uapi/linux/bpf.h> 24 #include <uapi/linux/btf.h> 25 26 #include <asm/tlb.h> 27 28 #include "trace_probe.h" 29 #include "trace.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "bpf_trace.h" 33 34 #define bpf_event_rcu_dereference(p) \ 35 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 36 37 #ifdef CONFIG_MODULES 38 struct bpf_trace_module { 39 struct module *module; 40 struct list_head list; 41 }; 42 43 static LIST_HEAD(bpf_trace_modules); 44 static DEFINE_MUTEX(bpf_module_mutex); 45 46 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 47 { 48 struct bpf_raw_event_map *btp, *ret = NULL; 49 struct bpf_trace_module *btm; 50 unsigned int i; 51 52 mutex_lock(&bpf_module_mutex); 53 list_for_each_entry(btm, &bpf_trace_modules, list) { 54 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 55 btp = &btm->module->bpf_raw_events[i]; 56 if (!strcmp(btp->tp->name, name)) { 57 if (try_module_get(btm->module)) 58 ret = btp; 59 goto out; 60 } 61 } 62 } 63 out: 64 mutex_unlock(&bpf_module_mutex); 65 return ret; 66 } 67 #else 68 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 69 { 70 return NULL; 71 } 72 #endif /* CONFIG_MODULES */ 73 74 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 75 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 76 77 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 78 u64 flags, const struct btf **btf, 79 s32 *btf_id); 80 81 /** 82 * trace_call_bpf - invoke BPF program 83 * @call: tracepoint event 84 * @ctx: opaque context pointer 85 * 86 * kprobe handlers execute BPF programs via this helper. 87 * Can be used from static tracepoints in the future. 88 * 89 * Return: BPF programs always return an integer which is interpreted by 90 * kprobe handler as: 91 * 0 - return from kprobe (event is filtered out) 92 * 1 - store kprobe event into ring buffer 93 * Other values are reserved and currently alias to 1 94 */ 95 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 96 { 97 unsigned int ret; 98 99 cant_sleep(); 100 101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 102 /* 103 * since some bpf program is already running on this cpu, 104 * don't call into another bpf program (same or different) 105 * and don't send kprobe event into ring-buffer, 106 * so return zero here 107 */ 108 ret = 0; 109 goto out; 110 } 111 112 /* 113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 114 * to all call sites, we did a bpf_prog_array_valid() there to check 115 * whether call->prog_array is empty or not, which is 116 * a heuristic to speed up execution. 117 * 118 * If bpf_prog_array_valid() fetched prog_array was 119 * non-NULL, we go into trace_call_bpf() and do the actual 120 * proper rcu_dereference() under RCU lock. 121 * If it turns out that prog_array is NULL then, we bail out. 122 * For the opposite, if the bpf_prog_array_valid() fetched pointer 123 * was NULL, you'll skip the prog_array with the risk of missing 124 * out of events when it was updated in between this and the 125 * rcu_dereference() which is accepted risk. 126 */ 127 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 128 129 out: 130 __this_cpu_dec(bpf_prog_active); 131 132 return ret; 133 } 134 135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 137 { 138 regs_set_return_value(regs, rc); 139 override_function_with_return(regs); 140 return 0; 141 } 142 143 static const struct bpf_func_proto bpf_override_return_proto = { 144 .func = bpf_override_return, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_PTR_TO_CTX, 148 .arg2_type = ARG_ANYTHING, 149 }; 150 #endif 151 152 static __always_inline int 153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 154 { 155 int ret; 156 157 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 158 if (unlikely(ret < 0)) 159 memset(dst, 0, size); 160 return ret; 161 } 162 163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 164 const void __user *, unsafe_ptr) 165 { 166 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 167 } 168 169 const struct bpf_func_proto bpf_probe_read_user_proto = { 170 .func = bpf_probe_read_user, 171 .gpl_only = true, 172 .ret_type = RET_INTEGER, 173 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 174 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 175 .arg3_type = ARG_ANYTHING, 176 }; 177 178 static __always_inline int 179 bpf_probe_read_user_str_common(void *dst, u32 size, 180 const void __user *unsafe_ptr) 181 { 182 int ret; 183 184 /* 185 * NB: We rely on strncpy_from_user() not copying junk past the NUL 186 * terminator into `dst`. 187 * 188 * strncpy_from_user() does long-sized strides in the fast path. If the 189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 190 * then there could be junk after the NUL in `dst`. If user takes `dst` 191 * and keys a hash map with it, then semantically identical strings can 192 * occupy multiple entries in the map. 193 */ 194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 195 if (unlikely(ret < 0)) 196 memset(dst, 0, size); 197 return ret; 198 } 199 200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 201 const void __user *, unsafe_ptr) 202 { 203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 204 } 205 206 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 207 .func = bpf_probe_read_user_str, 208 .gpl_only = true, 209 .ret_type = RET_INTEGER, 210 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 211 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 212 .arg3_type = ARG_ANYTHING, 213 }; 214 215 static __always_inline int 216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 217 { 218 int ret; 219 220 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 221 if (unlikely(ret < 0)) 222 memset(dst, 0, size); 223 return ret; 224 } 225 226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 227 const void *, unsafe_ptr) 228 { 229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 230 } 231 232 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 233 .func = bpf_probe_read_kernel, 234 .gpl_only = true, 235 .ret_type = RET_INTEGER, 236 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 237 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 238 .arg3_type = ARG_ANYTHING, 239 }; 240 241 static __always_inline int 242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 243 { 244 int ret; 245 246 /* 247 * The strncpy_from_kernel_nofault() call will likely not fill the 248 * entire buffer, but that's okay in this circumstance as we're probing 249 * arbitrary memory anyway similar to bpf_probe_read_*() and might 250 * as well probe the stack. Thus, memory is explicitly cleared 251 * only in error case, so that improper users ignoring return 252 * code altogether don't copy garbage; otherwise length of string 253 * is returned that can be used for bpf_perf_event_output() et al. 254 */ 255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 256 if (unlikely(ret < 0)) 257 memset(dst, 0, size); 258 return ret; 259 } 260 261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 262 const void *, unsafe_ptr) 263 { 264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 265 } 266 267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 268 .func = bpf_probe_read_kernel_str, 269 .gpl_only = true, 270 .ret_type = RET_INTEGER, 271 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 272 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 273 .arg3_type = ARG_ANYTHING, 274 }; 275 276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 278 const void *, unsafe_ptr) 279 { 280 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 281 return bpf_probe_read_user_common(dst, size, 282 (__force void __user *)unsafe_ptr); 283 } 284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 285 } 286 287 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 288 .func = bpf_probe_read_compat, 289 .gpl_only = true, 290 .ret_type = RET_INTEGER, 291 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 292 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 293 .arg3_type = ARG_ANYTHING, 294 }; 295 296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 297 const void *, unsafe_ptr) 298 { 299 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 300 return bpf_probe_read_user_str_common(dst, size, 301 (__force void __user *)unsafe_ptr); 302 } 303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 304 } 305 306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 307 .func = bpf_probe_read_compat_str, 308 .gpl_only = true, 309 .ret_type = RET_INTEGER, 310 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 311 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 312 .arg3_type = ARG_ANYTHING, 313 }; 314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 315 316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 317 u32, size) 318 { 319 /* 320 * Ensure we're in user context which is safe for the helper to 321 * run. This helper has no business in a kthread. 322 * 323 * access_ok() should prevent writing to non-user memory, but in 324 * some situations (nommu, temporary switch, etc) access_ok() does 325 * not provide enough validation, hence the check on KERNEL_DS. 326 * 327 * nmi_uaccess_okay() ensures the probe is not run in an interim 328 * state, when the task or mm are switched. This is specifically 329 * required to prevent the use of temporary mm. 330 */ 331 332 if (unlikely(in_interrupt() || 333 current->flags & (PF_KTHREAD | PF_EXITING))) 334 return -EPERM; 335 if (unlikely(uaccess_kernel())) 336 return -EPERM; 337 if (unlikely(!nmi_uaccess_okay())) 338 return -EPERM; 339 340 return copy_to_user_nofault(unsafe_ptr, src, size); 341 } 342 343 static const struct bpf_func_proto bpf_probe_write_user_proto = { 344 .func = bpf_probe_write_user, 345 .gpl_only = true, 346 .ret_type = RET_INTEGER, 347 .arg1_type = ARG_ANYTHING, 348 .arg2_type = ARG_PTR_TO_MEM, 349 .arg3_type = ARG_CONST_SIZE, 350 }; 351 352 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 353 { 354 if (!capable(CAP_SYS_ADMIN)) 355 return NULL; 356 357 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 358 current->comm, task_pid_nr(current)); 359 360 return &bpf_probe_write_user_proto; 361 } 362 363 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 364 365 #define MAX_TRACE_PRINTK_VARARGS 3 366 #define BPF_TRACE_PRINTK_SIZE 1024 367 368 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 369 u64, arg2, u64, arg3) 370 { 371 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 372 u32 *bin_args; 373 static char buf[BPF_TRACE_PRINTK_SIZE]; 374 unsigned long flags; 375 int ret; 376 377 ret = bpf_bprintf_prepare(fmt, fmt_size, args, &bin_args, 378 MAX_TRACE_PRINTK_VARARGS); 379 if (ret < 0) 380 return ret; 381 382 raw_spin_lock_irqsave(&trace_printk_lock, flags); 383 ret = bstr_printf(buf, sizeof(buf), fmt, bin_args); 384 385 trace_bpf_trace_printk(buf); 386 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 387 388 bpf_bprintf_cleanup(); 389 390 return ret; 391 } 392 393 static const struct bpf_func_proto bpf_trace_printk_proto = { 394 .func = bpf_trace_printk, 395 .gpl_only = true, 396 .ret_type = RET_INTEGER, 397 .arg1_type = ARG_PTR_TO_MEM, 398 .arg2_type = ARG_CONST_SIZE, 399 }; 400 401 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 402 { 403 /* 404 * This program might be calling bpf_trace_printk, 405 * so enable the associated bpf_trace/bpf_trace_printk event. 406 * Repeat this each time as it is possible a user has 407 * disabled bpf_trace_printk events. By loading a program 408 * calling bpf_trace_printk() however the user has expressed 409 * the intent to see such events. 410 */ 411 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 412 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 413 414 return &bpf_trace_printk_proto; 415 } 416 417 #define MAX_SEQ_PRINTF_VARARGS 12 418 419 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 420 const void *, data, u32, data_len) 421 { 422 int err, num_args; 423 u32 *bin_args; 424 425 if (data_len & 7 || data_len > MAX_SEQ_PRINTF_VARARGS * 8 || 426 (data_len && !data)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 err = bpf_bprintf_prepare(fmt, fmt_size, data, &bin_args, num_args); 431 if (err < 0) 432 return err; 433 434 seq_bprintf(m, fmt, bin_args); 435 436 bpf_bprintf_cleanup(); 437 438 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 439 } 440 441 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 442 443 static const struct bpf_func_proto bpf_seq_printf_proto = { 444 .func = bpf_seq_printf, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_BTF_ID, 448 .arg1_btf_id = &btf_seq_file_ids[0], 449 .arg2_type = ARG_PTR_TO_MEM, 450 .arg3_type = ARG_CONST_SIZE, 451 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 452 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 453 }; 454 455 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 456 { 457 return seq_write(m, data, len) ? -EOVERFLOW : 0; 458 } 459 460 static const struct bpf_func_proto bpf_seq_write_proto = { 461 .func = bpf_seq_write, 462 .gpl_only = true, 463 .ret_type = RET_INTEGER, 464 .arg1_type = ARG_PTR_TO_BTF_ID, 465 .arg1_btf_id = &btf_seq_file_ids[0], 466 .arg2_type = ARG_PTR_TO_MEM, 467 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 468 }; 469 470 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 471 u32, btf_ptr_size, u64, flags) 472 { 473 const struct btf *btf; 474 s32 btf_id; 475 int ret; 476 477 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 478 if (ret) 479 return ret; 480 481 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 482 } 483 484 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 485 .func = bpf_seq_printf_btf, 486 .gpl_only = true, 487 .ret_type = RET_INTEGER, 488 .arg1_type = ARG_PTR_TO_BTF_ID, 489 .arg1_btf_id = &btf_seq_file_ids[0], 490 .arg2_type = ARG_PTR_TO_MEM, 491 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 492 .arg4_type = ARG_ANYTHING, 493 }; 494 495 static __always_inline int 496 get_map_perf_counter(struct bpf_map *map, u64 flags, 497 u64 *value, u64 *enabled, u64 *running) 498 { 499 struct bpf_array *array = container_of(map, struct bpf_array, map); 500 unsigned int cpu = smp_processor_id(); 501 u64 index = flags & BPF_F_INDEX_MASK; 502 struct bpf_event_entry *ee; 503 504 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 505 return -EINVAL; 506 if (index == BPF_F_CURRENT_CPU) 507 index = cpu; 508 if (unlikely(index >= array->map.max_entries)) 509 return -E2BIG; 510 511 ee = READ_ONCE(array->ptrs[index]); 512 if (!ee) 513 return -ENOENT; 514 515 return perf_event_read_local(ee->event, value, enabled, running); 516 } 517 518 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 519 { 520 u64 value = 0; 521 int err; 522 523 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 524 /* 525 * this api is ugly since we miss [-22..-2] range of valid 526 * counter values, but that's uapi 527 */ 528 if (err) 529 return err; 530 return value; 531 } 532 533 static const struct bpf_func_proto bpf_perf_event_read_proto = { 534 .func = bpf_perf_event_read, 535 .gpl_only = true, 536 .ret_type = RET_INTEGER, 537 .arg1_type = ARG_CONST_MAP_PTR, 538 .arg2_type = ARG_ANYTHING, 539 }; 540 541 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 542 struct bpf_perf_event_value *, buf, u32, size) 543 { 544 int err = -EINVAL; 545 546 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 547 goto clear; 548 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 549 &buf->running); 550 if (unlikely(err)) 551 goto clear; 552 return 0; 553 clear: 554 memset(buf, 0, size); 555 return err; 556 } 557 558 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 559 .func = bpf_perf_event_read_value, 560 .gpl_only = true, 561 .ret_type = RET_INTEGER, 562 .arg1_type = ARG_CONST_MAP_PTR, 563 .arg2_type = ARG_ANYTHING, 564 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 565 .arg4_type = ARG_CONST_SIZE, 566 }; 567 568 static __always_inline u64 569 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 570 u64 flags, struct perf_sample_data *sd) 571 { 572 struct bpf_array *array = container_of(map, struct bpf_array, map); 573 unsigned int cpu = smp_processor_id(); 574 u64 index = flags & BPF_F_INDEX_MASK; 575 struct bpf_event_entry *ee; 576 struct perf_event *event; 577 578 if (index == BPF_F_CURRENT_CPU) 579 index = cpu; 580 if (unlikely(index >= array->map.max_entries)) 581 return -E2BIG; 582 583 ee = READ_ONCE(array->ptrs[index]); 584 if (!ee) 585 return -ENOENT; 586 587 event = ee->event; 588 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 589 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 590 return -EINVAL; 591 592 if (unlikely(event->oncpu != cpu)) 593 return -EOPNOTSUPP; 594 595 return perf_event_output(event, sd, regs); 596 } 597 598 /* 599 * Support executing tracepoints in normal, irq, and nmi context that each call 600 * bpf_perf_event_output 601 */ 602 struct bpf_trace_sample_data { 603 struct perf_sample_data sds[3]; 604 }; 605 606 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 607 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 608 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 609 u64, flags, void *, data, u64, size) 610 { 611 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 612 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 613 struct perf_raw_record raw = { 614 .frag = { 615 .size = size, 616 .data = data, 617 }, 618 }; 619 struct perf_sample_data *sd; 620 int err; 621 622 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 623 err = -EBUSY; 624 goto out; 625 } 626 627 sd = &sds->sds[nest_level - 1]; 628 629 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 630 err = -EINVAL; 631 goto out; 632 } 633 634 perf_sample_data_init(sd, 0, 0); 635 sd->raw = &raw; 636 637 err = __bpf_perf_event_output(regs, map, flags, sd); 638 639 out: 640 this_cpu_dec(bpf_trace_nest_level); 641 return err; 642 } 643 644 static const struct bpf_func_proto bpf_perf_event_output_proto = { 645 .func = bpf_perf_event_output, 646 .gpl_only = true, 647 .ret_type = RET_INTEGER, 648 .arg1_type = ARG_PTR_TO_CTX, 649 .arg2_type = ARG_CONST_MAP_PTR, 650 .arg3_type = ARG_ANYTHING, 651 .arg4_type = ARG_PTR_TO_MEM, 652 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 653 }; 654 655 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 656 struct bpf_nested_pt_regs { 657 struct pt_regs regs[3]; 658 }; 659 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 660 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 661 662 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 663 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 664 { 665 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 666 struct perf_raw_frag frag = { 667 .copy = ctx_copy, 668 .size = ctx_size, 669 .data = ctx, 670 }; 671 struct perf_raw_record raw = { 672 .frag = { 673 { 674 .next = ctx_size ? &frag : NULL, 675 }, 676 .size = meta_size, 677 .data = meta, 678 }, 679 }; 680 struct perf_sample_data *sd; 681 struct pt_regs *regs; 682 u64 ret; 683 684 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 685 ret = -EBUSY; 686 goto out; 687 } 688 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 689 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 690 691 perf_fetch_caller_regs(regs); 692 perf_sample_data_init(sd, 0, 0); 693 sd->raw = &raw; 694 695 ret = __bpf_perf_event_output(regs, map, flags, sd); 696 out: 697 this_cpu_dec(bpf_event_output_nest_level); 698 return ret; 699 } 700 701 BPF_CALL_0(bpf_get_current_task) 702 { 703 return (long) current; 704 } 705 706 const struct bpf_func_proto bpf_get_current_task_proto = { 707 .func = bpf_get_current_task, 708 .gpl_only = true, 709 .ret_type = RET_INTEGER, 710 }; 711 712 BPF_CALL_0(bpf_get_current_task_btf) 713 { 714 return (unsigned long) current; 715 } 716 717 BTF_ID_LIST_SINGLE(bpf_get_current_btf_ids, struct, task_struct) 718 719 static const struct bpf_func_proto bpf_get_current_task_btf_proto = { 720 .func = bpf_get_current_task_btf, 721 .gpl_only = true, 722 .ret_type = RET_PTR_TO_BTF_ID, 723 .ret_btf_id = &bpf_get_current_btf_ids[0], 724 }; 725 726 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 727 { 728 struct bpf_array *array = container_of(map, struct bpf_array, map); 729 struct cgroup *cgrp; 730 731 if (unlikely(idx >= array->map.max_entries)) 732 return -E2BIG; 733 734 cgrp = READ_ONCE(array->ptrs[idx]); 735 if (unlikely(!cgrp)) 736 return -EAGAIN; 737 738 return task_under_cgroup_hierarchy(current, cgrp); 739 } 740 741 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 742 .func = bpf_current_task_under_cgroup, 743 .gpl_only = false, 744 .ret_type = RET_INTEGER, 745 .arg1_type = ARG_CONST_MAP_PTR, 746 .arg2_type = ARG_ANYTHING, 747 }; 748 749 struct send_signal_irq_work { 750 struct irq_work irq_work; 751 struct task_struct *task; 752 u32 sig; 753 enum pid_type type; 754 }; 755 756 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 757 758 static void do_bpf_send_signal(struct irq_work *entry) 759 { 760 struct send_signal_irq_work *work; 761 762 work = container_of(entry, struct send_signal_irq_work, irq_work); 763 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 764 } 765 766 static int bpf_send_signal_common(u32 sig, enum pid_type type) 767 { 768 struct send_signal_irq_work *work = NULL; 769 770 /* Similar to bpf_probe_write_user, task needs to be 771 * in a sound condition and kernel memory access be 772 * permitted in order to send signal to the current 773 * task. 774 */ 775 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 776 return -EPERM; 777 if (unlikely(uaccess_kernel())) 778 return -EPERM; 779 if (unlikely(!nmi_uaccess_okay())) 780 return -EPERM; 781 782 if (irqs_disabled()) { 783 /* Do an early check on signal validity. Otherwise, 784 * the error is lost in deferred irq_work. 785 */ 786 if (unlikely(!valid_signal(sig))) 787 return -EINVAL; 788 789 work = this_cpu_ptr(&send_signal_work); 790 if (irq_work_is_busy(&work->irq_work)) 791 return -EBUSY; 792 793 /* Add the current task, which is the target of sending signal, 794 * to the irq_work. The current task may change when queued 795 * irq works get executed. 796 */ 797 work->task = current; 798 work->sig = sig; 799 work->type = type; 800 irq_work_queue(&work->irq_work); 801 return 0; 802 } 803 804 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 805 } 806 807 BPF_CALL_1(bpf_send_signal, u32, sig) 808 { 809 return bpf_send_signal_common(sig, PIDTYPE_TGID); 810 } 811 812 static const struct bpf_func_proto bpf_send_signal_proto = { 813 .func = bpf_send_signal, 814 .gpl_only = false, 815 .ret_type = RET_INTEGER, 816 .arg1_type = ARG_ANYTHING, 817 }; 818 819 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 820 { 821 return bpf_send_signal_common(sig, PIDTYPE_PID); 822 } 823 824 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 825 .func = bpf_send_signal_thread, 826 .gpl_only = false, 827 .ret_type = RET_INTEGER, 828 .arg1_type = ARG_ANYTHING, 829 }; 830 831 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 832 { 833 long len; 834 char *p; 835 836 if (!sz) 837 return 0; 838 839 p = d_path(path, buf, sz); 840 if (IS_ERR(p)) { 841 len = PTR_ERR(p); 842 } else { 843 len = buf + sz - p; 844 memmove(buf, p, len); 845 } 846 847 return len; 848 } 849 850 BTF_SET_START(btf_allowlist_d_path) 851 #ifdef CONFIG_SECURITY 852 BTF_ID(func, security_file_permission) 853 BTF_ID(func, security_inode_getattr) 854 BTF_ID(func, security_file_open) 855 #endif 856 #ifdef CONFIG_SECURITY_PATH 857 BTF_ID(func, security_path_truncate) 858 #endif 859 BTF_ID(func, vfs_truncate) 860 BTF_ID(func, vfs_fallocate) 861 BTF_ID(func, dentry_open) 862 BTF_ID(func, vfs_getattr) 863 BTF_ID(func, filp_close) 864 BTF_SET_END(btf_allowlist_d_path) 865 866 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 867 { 868 if (prog->type == BPF_PROG_TYPE_TRACING && 869 prog->expected_attach_type == BPF_TRACE_ITER) 870 return true; 871 872 if (prog->type == BPF_PROG_TYPE_LSM) 873 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 874 875 return btf_id_set_contains(&btf_allowlist_d_path, 876 prog->aux->attach_btf_id); 877 } 878 879 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 880 881 static const struct bpf_func_proto bpf_d_path_proto = { 882 .func = bpf_d_path, 883 .gpl_only = false, 884 .ret_type = RET_INTEGER, 885 .arg1_type = ARG_PTR_TO_BTF_ID, 886 .arg1_btf_id = &bpf_d_path_btf_ids[0], 887 .arg2_type = ARG_PTR_TO_MEM, 888 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 889 .allowed = bpf_d_path_allowed, 890 }; 891 892 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 893 BTF_F_PTR_RAW | BTF_F_ZERO) 894 895 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 896 u64 flags, const struct btf **btf, 897 s32 *btf_id) 898 { 899 const struct btf_type *t; 900 901 if (unlikely(flags & ~(BTF_F_ALL))) 902 return -EINVAL; 903 904 if (btf_ptr_size != sizeof(struct btf_ptr)) 905 return -EINVAL; 906 907 *btf = bpf_get_btf_vmlinux(); 908 909 if (IS_ERR_OR_NULL(*btf)) 910 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 911 912 if (ptr->type_id > 0) 913 *btf_id = ptr->type_id; 914 else 915 return -EINVAL; 916 917 if (*btf_id > 0) 918 t = btf_type_by_id(*btf, *btf_id); 919 if (*btf_id <= 0 || !t) 920 return -ENOENT; 921 922 return 0; 923 } 924 925 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 926 u32, btf_ptr_size, u64, flags) 927 { 928 const struct btf *btf; 929 s32 btf_id; 930 int ret; 931 932 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 933 if (ret) 934 return ret; 935 936 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 937 flags); 938 } 939 940 const struct bpf_func_proto bpf_snprintf_btf_proto = { 941 .func = bpf_snprintf_btf, 942 .gpl_only = false, 943 .ret_type = RET_INTEGER, 944 .arg1_type = ARG_PTR_TO_MEM, 945 .arg2_type = ARG_CONST_SIZE, 946 .arg3_type = ARG_PTR_TO_MEM, 947 .arg4_type = ARG_CONST_SIZE, 948 .arg5_type = ARG_ANYTHING, 949 }; 950 951 const struct bpf_func_proto * 952 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 953 { 954 switch (func_id) { 955 case BPF_FUNC_map_lookup_elem: 956 return &bpf_map_lookup_elem_proto; 957 case BPF_FUNC_map_update_elem: 958 return &bpf_map_update_elem_proto; 959 case BPF_FUNC_map_delete_elem: 960 return &bpf_map_delete_elem_proto; 961 case BPF_FUNC_map_push_elem: 962 return &bpf_map_push_elem_proto; 963 case BPF_FUNC_map_pop_elem: 964 return &bpf_map_pop_elem_proto; 965 case BPF_FUNC_map_peek_elem: 966 return &bpf_map_peek_elem_proto; 967 case BPF_FUNC_ktime_get_ns: 968 return &bpf_ktime_get_ns_proto; 969 case BPF_FUNC_ktime_get_boot_ns: 970 return &bpf_ktime_get_boot_ns_proto; 971 case BPF_FUNC_ktime_get_coarse_ns: 972 return &bpf_ktime_get_coarse_ns_proto; 973 case BPF_FUNC_tail_call: 974 return &bpf_tail_call_proto; 975 case BPF_FUNC_get_current_pid_tgid: 976 return &bpf_get_current_pid_tgid_proto; 977 case BPF_FUNC_get_current_task: 978 return &bpf_get_current_task_proto; 979 case BPF_FUNC_get_current_task_btf: 980 return &bpf_get_current_task_btf_proto; 981 case BPF_FUNC_get_current_uid_gid: 982 return &bpf_get_current_uid_gid_proto; 983 case BPF_FUNC_get_current_comm: 984 return &bpf_get_current_comm_proto; 985 case BPF_FUNC_trace_printk: 986 return bpf_get_trace_printk_proto(); 987 case BPF_FUNC_get_smp_processor_id: 988 return &bpf_get_smp_processor_id_proto; 989 case BPF_FUNC_get_numa_node_id: 990 return &bpf_get_numa_node_id_proto; 991 case BPF_FUNC_perf_event_read: 992 return &bpf_perf_event_read_proto; 993 case BPF_FUNC_probe_write_user: 994 return bpf_get_probe_write_proto(); 995 case BPF_FUNC_current_task_under_cgroup: 996 return &bpf_current_task_under_cgroup_proto; 997 case BPF_FUNC_get_prandom_u32: 998 return &bpf_get_prandom_u32_proto; 999 case BPF_FUNC_probe_read_user: 1000 return &bpf_probe_read_user_proto; 1001 case BPF_FUNC_probe_read_kernel: 1002 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? 1003 NULL : &bpf_probe_read_kernel_proto; 1004 case BPF_FUNC_probe_read_user_str: 1005 return &bpf_probe_read_user_str_proto; 1006 case BPF_FUNC_probe_read_kernel_str: 1007 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? 1008 NULL : &bpf_probe_read_kernel_str_proto; 1009 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1010 case BPF_FUNC_probe_read: 1011 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? 1012 NULL : &bpf_probe_read_compat_proto; 1013 case BPF_FUNC_probe_read_str: 1014 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? 1015 NULL : &bpf_probe_read_compat_str_proto; 1016 #endif 1017 #ifdef CONFIG_CGROUPS 1018 case BPF_FUNC_get_current_cgroup_id: 1019 return &bpf_get_current_cgroup_id_proto; 1020 case BPF_FUNC_get_current_ancestor_cgroup_id: 1021 return &bpf_get_current_ancestor_cgroup_id_proto; 1022 #endif 1023 case BPF_FUNC_send_signal: 1024 return &bpf_send_signal_proto; 1025 case BPF_FUNC_send_signal_thread: 1026 return &bpf_send_signal_thread_proto; 1027 case BPF_FUNC_perf_event_read_value: 1028 return &bpf_perf_event_read_value_proto; 1029 case BPF_FUNC_get_ns_current_pid_tgid: 1030 return &bpf_get_ns_current_pid_tgid_proto; 1031 case BPF_FUNC_ringbuf_output: 1032 return &bpf_ringbuf_output_proto; 1033 case BPF_FUNC_ringbuf_reserve: 1034 return &bpf_ringbuf_reserve_proto; 1035 case BPF_FUNC_ringbuf_submit: 1036 return &bpf_ringbuf_submit_proto; 1037 case BPF_FUNC_ringbuf_discard: 1038 return &bpf_ringbuf_discard_proto; 1039 case BPF_FUNC_ringbuf_query: 1040 return &bpf_ringbuf_query_proto; 1041 case BPF_FUNC_jiffies64: 1042 return &bpf_jiffies64_proto; 1043 case BPF_FUNC_get_task_stack: 1044 return &bpf_get_task_stack_proto; 1045 case BPF_FUNC_copy_from_user: 1046 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1047 case BPF_FUNC_snprintf_btf: 1048 return &bpf_snprintf_btf_proto; 1049 case BPF_FUNC_per_cpu_ptr: 1050 return &bpf_per_cpu_ptr_proto; 1051 case BPF_FUNC_this_cpu_ptr: 1052 return &bpf_this_cpu_ptr_proto; 1053 case BPF_FUNC_task_storage_get: 1054 return &bpf_task_storage_get_proto; 1055 case BPF_FUNC_task_storage_delete: 1056 return &bpf_task_storage_delete_proto; 1057 case BPF_FUNC_for_each_map_elem: 1058 return &bpf_for_each_map_elem_proto; 1059 case BPF_FUNC_snprintf: 1060 return &bpf_snprintf_proto; 1061 default: 1062 return NULL; 1063 } 1064 } 1065 1066 static const struct bpf_func_proto * 1067 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1068 { 1069 switch (func_id) { 1070 case BPF_FUNC_perf_event_output: 1071 return &bpf_perf_event_output_proto; 1072 case BPF_FUNC_get_stackid: 1073 return &bpf_get_stackid_proto; 1074 case BPF_FUNC_get_stack: 1075 return &bpf_get_stack_proto; 1076 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1077 case BPF_FUNC_override_return: 1078 return &bpf_override_return_proto; 1079 #endif 1080 default: 1081 return bpf_tracing_func_proto(func_id, prog); 1082 } 1083 } 1084 1085 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1086 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1087 const struct bpf_prog *prog, 1088 struct bpf_insn_access_aux *info) 1089 { 1090 if (off < 0 || off >= sizeof(struct pt_regs)) 1091 return false; 1092 if (type != BPF_READ) 1093 return false; 1094 if (off % size != 0) 1095 return false; 1096 /* 1097 * Assertion for 32 bit to make sure last 8 byte access 1098 * (BPF_DW) to the last 4 byte member is disallowed. 1099 */ 1100 if (off + size > sizeof(struct pt_regs)) 1101 return false; 1102 1103 return true; 1104 } 1105 1106 const struct bpf_verifier_ops kprobe_verifier_ops = { 1107 .get_func_proto = kprobe_prog_func_proto, 1108 .is_valid_access = kprobe_prog_is_valid_access, 1109 }; 1110 1111 const struct bpf_prog_ops kprobe_prog_ops = { 1112 }; 1113 1114 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1115 u64, flags, void *, data, u64, size) 1116 { 1117 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1118 1119 /* 1120 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1121 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1122 * from there and call the same bpf_perf_event_output() helper inline. 1123 */ 1124 return ____bpf_perf_event_output(regs, map, flags, data, size); 1125 } 1126 1127 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1128 .func = bpf_perf_event_output_tp, 1129 .gpl_only = true, 1130 .ret_type = RET_INTEGER, 1131 .arg1_type = ARG_PTR_TO_CTX, 1132 .arg2_type = ARG_CONST_MAP_PTR, 1133 .arg3_type = ARG_ANYTHING, 1134 .arg4_type = ARG_PTR_TO_MEM, 1135 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1136 }; 1137 1138 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1139 u64, flags) 1140 { 1141 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1142 1143 /* 1144 * Same comment as in bpf_perf_event_output_tp(), only that this time 1145 * the other helper's function body cannot be inlined due to being 1146 * external, thus we need to call raw helper function. 1147 */ 1148 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1149 flags, 0, 0); 1150 } 1151 1152 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1153 .func = bpf_get_stackid_tp, 1154 .gpl_only = true, 1155 .ret_type = RET_INTEGER, 1156 .arg1_type = ARG_PTR_TO_CTX, 1157 .arg2_type = ARG_CONST_MAP_PTR, 1158 .arg3_type = ARG_ANYTHING, 1159 }; 1160 1161 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1162 u64, flags) 1163 { 1164 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1165 1166 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1167 (unsigned long) size, flags, 0); 1168 } 1169 1170 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1171 .func = bpf_get_stack_tp, 1172 .gpl_only = true, 1173 .ret_type = RET_INTEGER, 1174 .arg1_type = ARG_PTR_TO_CTX, 1175 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1176 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1177 .arg4_type = ARG_ANYTHING, 1178 }; 1179 1180 static const struct bpf_func_proto * 1181 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1182 { 1183 switch (func_id) { 1184 case BPF_FUNC_perf_event_output: 1185 return &bpf_perf_event_output_proto_tp; 1186 case BPF_FUNC_get_stackid: 1187 return &bpf_get_stackid_proto_tp; 1188 case BPF_FUNC_get_stack: 1189 return &bpf_get_stack_proto_tp; 1190 default: 1191 return bpf_tracing_func_proto(func_id, prog); 1192 } 1193 } 1194 1195 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1196 const struct bpf_prog *prog, 1197 struct bpf_insn_access_aux *info) 1198 { 1199 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1200 return false; 1201 if (type != BPF_READ) 1202 return false; 1203 if (off % size != 0) 1204 return false; 1205 1206 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1207 return true; 1208 } 1209 1210 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1211 .get_func_proto = tp_prog_func_proto, 1212 .is_valid_access = tp_prog_is_valid_access, 1213 }; 1214 1215 const struct bpf_prog_ops tracepoint_prog_ops = { 1216 }; 1217 1218 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1219 struct bpf_perf_event_value *, buf, u32, size) 1220 { 1221 int err = -EINVAL; 1222 1223 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1224 goto clear; 1225 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1226 &buf->running); 1227 if (unlikely(err)) 1228 goto clear; 1229 return 0; 1230 clear: 1231 memset(buf, 0, size); 1232 return err; 1233 } 1234 1235 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1236 .func = bpf_perf_prog_read_value, 1237 .gpl_only = true, 1238 .ret_type = RET_INTEGER, 1239 .arg1_type = ARG_PTR_TO_CTX, 1240 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1241 .arg3_type = ARG_CONST_SIZE, 1242 }; 1243 1244 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1245 void *, buf, u32, size, u64, flags) 1246 { 1247 #ifndef CONFIG_X86 1248 return -ENOENT; 1249 #else 1250 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1251 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1252 u32 to_copy; 1253 1254 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1255 return -EINVAL; 1256 1257 if (unlikely(!br_stack)) 1258 return -EINVAL; 1259 1260 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1261 return br_stack->nr * br_entry_size; 1262 1263 if (!buf || (size % br_entry_size != 0)) 1264 return -EINVAL; 1265 1266 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1267 memcpy(buf, br_stack->entries, to_copy); 1268 1269 return to_copy; 1270 #endif 1271 } 1272 1273 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1274 .func = bpf_read_branch_records, 1275 .gpl_only = true, 1276 .ret_type = RET_INTEGER, 1277 .arg1_type = ARG_PTR_TO_CTX, 1278 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1279 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1280 .arg4_type = ARG_ANYTHING, 1281 }; 1282 1283 static const struct bpf_func_proto * 1284 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1285 { 1286 switch (func_id) { 1287 case BPF_FUNC_perf_event_output: 1288 return &bpf_perf_event_output_proto_tp; 1289 case BPF_FUNC_get_stackid: 1290 return &bpf_get_stackid_proto_pe; 1291 case BPF_FUNC_get_stack: 1292 return &bpf_get_stack_proto_pe; 1293 case BPF_FUNC_perf_prog_read_value: 1294 return &bpf_perf_prog_read_value_proto; 1295 case BPF_FUNC_read_branch_records: 1296 return &bpf_read_branch_records_proto; 1297 default: 1298 return bpf_tracing_func_proto(func_id, prog); 1299 } 1300 } 1301 1302 /* 1303 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1304 * to avoid potential recursive reuse issue when/if tracepoints are added 1305 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1306 * 1307 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1308 * in normal, irq, and nmi context. 1309 */ 1310 struct bpf_raw_tp_regs { 1311 struct pt_regs regs[3]; 1312 }; 1313 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1314 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1315 static struct pt_regs *get_bpf_raw_tp_regs(void) 1316 { 1317 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1318 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1319 1320 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1321 this_cpu_dec(bpf_raw_tp_nest_level); 1322 return ERR_PTR(-EBUSY); 1323 } 1324 1325 return &tp_regs->regs[nest_level - 1]; 1326 } 1327 1328 static void put_bpf_raw_tp_regs(void) 1329 { 1330 this_cpu_dec(bpf_raw_tp_nest_level); 1331 } 1332 1333 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1334 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1335 { 1336 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1337 int ret; 1338 1339 if (IS_ERR(regs)) 1340 return PTR_ERR(regs); 1341 1342 perf_fetch_caller_regs(regs); 1343 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1344 1345 put_bpf_raw_tp_regs(); 1346 return ret; 1347 } 1348 1349 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1350 .func = bpf_perf_event_output_raw_tp, 1351 .gpl_only = true, 1352 .ret_type = RET_INTEGER, 1353 .arg1_type = ARG_PTR_TO_CTX, 1354 .arg2_type = ARG_CONST_MAP_PTR, 1355 .arg3_type = ARG_ANYTHING, 1356 .arg4_type = ARG_PTR_TO_MEM, 1357 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1358 }; 1359 1360 extern const struct bpf_func_proto bpf_skb_output_proto; 1361 extern const struct bpf_func_proto bpf_xdp_output_proto; 1362 1363 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1364 struct bpf_map *, map, u64, flags) 1365 { 1366 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1367 int ret; 1368 1369 if (IS_ERR(regs)) 1370 return PTR_ERR(regs); 1371 1372 perf_fetch_caller_regs(regs); 1373 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1374 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1375 flags, 0, 0); 1376 put_bpf_raw_tp_regs(); 1377 return ret; 1378 } 1379 1380 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1381 .func = bpf_get_stackid_raw_tp, 1382 .gpl_only = true, 1383 .ret_type = RET_INTEGER, 1384 .arg1_type = ARG_PTR_TO_CTX, 1385 .arg2_type = ARG_CONST_MAP_PTR, 1386 .arg3_type = ARG_ANYTHING, 1387 }; 1388 1389 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1390 void *, buf, u32, size, u64, flags) 1391 { 1392 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1393 int ret; 1394 1395 if (IS_ERR(regs)) 1396 return PTR_ERR(regs); 1397 1398 perf_fetch_caller_regs(regs); 1399 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1400 (unsigned long) size, flags, 0); 1401 put_bpf_raw_tp_regs(); 1402 return ret; 1403 } 1404 1405 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1406 .func = bpf_get_stack_raw_tp, 1407 .gpl_only = true, 1408 .ret_type = RET_INTEGER, 1409 .arg1_type = ARG_PTR_TO_CTX, 1410 .arg2_type = ARG_PTR_TO_MEM, 1411 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1412 .arg4_type = ARG_ANYTHING, 1413 }; 1414 1415 static const struct bpf_func_proto * 1416 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1417 { 1418 switch (func_id) { 1419 case BPF_FUNC_perf_event_output: 1420 return &bpf_perf_event_output_proto_raw_tp; 1421 case BPF_FUNC_get_stackid: 1422 return &bpf_get_stackid_proto_raw_tp; 1423 case BPF_FUNC_get_stack: 1424 return &bpf_get_stack_proto_raw_tp; 1425 default: 1426 return bpf_tracing_func_proto(func_id, prog); 1427 } 1428 } 1429 1430 const struct bpf_func_proto * 1431 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1432 { 1433 switch (func_id) { 1434 #ifdef CONFIG_NET 1435 case BPF_FUNC_skb_output: 1436 return &bpf_skb_output_proto; 1437 case BPF_FUNC_xdp_output: 1438 return &bpf_xdp_output_proto; 1439 case BPF_FUNC_skc_to_tcp6_sock: 1440 return &bpf_skc_to_tcp6_sock_proto; 1441 case BPF_FUNC_skc_to_tcp_sock: 1442 return &bpf_skc_to_tcp_sock_proto; 1443 case BPF_FUNC_skc_to_tcp_timewait_sock: 1444 return &bpf_skc_to_tcp_timewait_sock_proto; 1445 case BPF_FUNC_skc_to_tcp_request_sock: 1446 return &bpf_skc_to_tcp_request_sock_proto; 1447 case BPF_FUNC_skc_to_udp6_sock: 1448 return &bpf_skc_to_udp6_sock_proto; 1449 case BPF_FUNC_sk_storage_get: 1450 return &bpf_sk_storage_get_tracing_proto; 1451 case BPF_FUNC_sk_storage_delete: 1452 return &bpf_sk_storage_delete_tracing_proto; 1453 case BPF_FUNC_sock_from_file: 1454 return &bpf_sock_from_file_proto; 1455 case BPF_FUNC_get_socket_cookie: 1456 return &bpf_get_socket_ptr_cookie_proto; 1457 #endif 1458 case BPF_FUNC_seq_printf: 1459 return prog->expected_attach_type == BPF_TRACE_ITER ? 1460 &bpf_seq_printf_proto : 1461 NULL; 1462 case BPF_FUNC_seq_write: 1463 return prog->expected_attach_type == BPF_TRACE_ITER ? 1464 &bpf_seq_write_proto : 1465 NULL; 1466 case BPF_FUNC_seq_printf_btf: 1467 return prog->expected_attach_type == BPF_TRACE_ITER ? 1468 &bpf_seq_printf_btf_proto : 1469 NULL; 1470 case BPF_FUNC_d_path: 1471 return &bpf_d_path_proto; 1472 default: 1473 return raw_tp_prog_func_proto(func_id, prog); 1474 } 1475 } 1476 1477 static bool raw_tp_prog_is_valid_access(int off, int size, 1478 enum bpf_access_type type, 1479 const struct bpf_prog *prog, 1480 struct bpf_insn_access_aux *info) 1481 { 1482 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1483 return false; 1484 if (type != BPF_READ) 1485 return false; 1486 if (off % size != 0) 1487 return false; 1488 return true; 1489 } 1490 1491 static bool tracing_prog_is_valid_access(int off, int size, 1492 enum bpf_access_type type, 1493 const struct bpf_prog *prog, 1494 struct bpf_insn_access_aux *info) 1495 { 1496 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1497 return false; 1498 if (type != BPF_READ) 1499 return false; 1500 if (off % size != 0) 1501 return false; 1502 return btf_ctx_access(off, size, type, prog, info); 1503 } 1504 1505 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1506 const union bpf_attr *kattr, 1507 union bpf_attr __user *uattr) 1508 { 1509 return -ENOTSUPP; 1510 } 1511 1512 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1513 .get_func_proto = raw_tp_prog_func_proto, 1514 .is_valid_access = raw_tp_prog_is_valid_access, 1515 }; 1516 1517 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1518 #ifdef CONFIG_NET 1519 .test_run = bpf_prog_test_run_raw_tp, 1520 #endif 1521 }; 1522 1523 const struct bpf_verifier_ops tracing_verifier_ops = { 1524 .get_func_proto = tracing_prog_func_proto, 1525 .is_valid_access = tracing_prog_is_valid_access, 1526 }; 1527 1528 const struct bpf_prog_ops tracing_prog_ops = { 1529 .test_run = bpf_prog_test_run_tracing, 1530 }; 1531 1532 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1533 enum bpf_access_type type, 1534 const struct bpf_prog *prog, 1535 struct bpf_insn_access_aux *info) 1536 { 1537 if (off == 0) { 1538 if (size != sizeof(u64) || type != BPF_READ) 1539 return false; 1540 info->reg_type = PTR_TO_TP_BUFFER; 1541 } 1542 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1543 } 1544 1545 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1546 .get_func_proto = raw_tp_prog_func_proto, 1547 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1548 }; 1549 1550 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1551 }; 1552 1553 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1554 const struct bpf_prog *prog, 1555 struct bpf_insn_access_aux *info) 1556 { 1557 const int size_u64 = sizeof(u64); 1558 1559 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1560 return false; 1561 if (type != BPF_READ) 1562 return false; 1563 if (off % size != 0) { 1564 if (sizeof(unsigned long) != 4) 1565 return false; 1566 if (size != 8) 1567 return false; 1568 if (off % size != 4) 1569 return false; 1570 } 1571 1572 switch (off) { 1573 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1574 bpf_ctx_record_field_size(info, size_u64); 1575 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1576 return false; 1577 break; 1578 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1579 bpf_ctx_record_field_size(info, size_u64); 1580 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1581 return false; 1582 break; 1583 default: 1584 if (size != sizeof(long)) 1585 return false; 1586 } 1587 1588 return true; 1589 } 1590 1591 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1592 const struct bpf_insn *si, 1593 struct bpf_insn *insn_buf, 1594 struct bpf_prog *prog, u32 *target_size) 1595 { 1596 struct bpf_insn *insn = insn_buf; 1597 1598 switch (si->off) { 1599 case offsetof(struct bpf_perf_event_data, sample_period): 1600 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1601 data), si->dst_reg, si->src_reg, 1602 offsetof(struct bpf_perf_event_data_kern, data)); 1603 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1604 bpf_target_off(struct perf_sample_data, period, 8, 1605 target_size)); 1606 break; 1607 case offsetof(struct bpf_perf_event_data, addr): 1608 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1609 data), si->dst_reg, si->src_reg, 1610 offsetof(struct bpf_perf_event_data_kern, data)); 1611 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1612 bpf_target_off(struct perf_sample_data, addr, 8, 1613 target_size)); 1614 break; 1615 default: 1616 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1617 regs), si->dst_reg, si->src_reg, 1618 offsetof(struct bpf_perf_event_data_kern, regs)); 1619 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1620 si->off); 1621 break; 1622 } 1623 1624 return insn - insn_buf; 1625 } 1626 1627 const struct bpf_verifier_ops perf_event_verifier_ops = { 1628 .get_func_proto = pe_prog_func_proto, 1629 .is_valid_access = pe_prog_is_valid_access, 1630 .convert_ctx_access = pe_prog_convert_ctx_access, 1631 }; 1632 1633 const struct bpf_prog_ops perf_event_prog_ops = { 1634 }; 1635 1636 static DEFINE_MUTEX(bpf_event_mutex); 1637 1638 #define BPF_TRACE_MAX_PROGS 64 1639 1640 int perf_event_attach_bpf_prog(struct perf_event *event, 1641 struct bpf_prog *prog) 1642 { 1643 struct bpf_prog_array *old_array; 1644 struct bpf_prog_array *new_array; 1645 int ret = -EEXIST; 1646 1647 /* 1648 * Kprobe override only works if they are on the function entry, 1649 * and only if they are on the opt-in list. 1650 */ 1651 if (prog->kprobe_override && 1652 (!trace_kprobe_on_func_entry(event->tp_event) || 1653 !trace_kprobe_error_injectable(event->tp_event))) 1654 return -EINVAL; 1655 1656 mutex_lock(&bpf_event_mutex); 1657 1658 if (event->prog) 1659 goto unlock; 1660 1661 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1662 if (old_array && 1663 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1664 ret = -E2BIG; 1665 goto unlock; 1666 } 1667 1668 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1669 if (ret < 0) 1670 goto unlock; 1671 1672 /* set the new array to event->tp_event and set event->prog */ 1673 event->prog = prog; 1674 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1675 bpf_prog_array_free(old_array); 1676 1677 unlock: 1678 mutex_unlock(&bpf_event_mutex); 1679 return ret; 1680 } 1681 1682 void perf_event_detach_bpf_prog(struct perf_event *event) 1683 { 1684 struct bpf_prog_array *old_array; 1685 struct bpf_prog_array *new_array; 1686 int ret; 1687 1688 mutex_lock(&bpf_event_mutex); 1689 1690 if (!event->prog) 1691 goto unlock; 1692 1693 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1694 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1695 if (ret == -ENOENT) 1696 goto unlock; 1697 if (ret < 0) { 1698 bpf_prog_array_delete_safe(old_array, event->prog); 1699 } else { 1700 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1701 bpf_prog_array_free(old_array); 1702 } 1703 1704 bpf_prog_put(event->prog); 1705 event->prog = NULL; 1706 1707 unlock: 1708 mutex_unlock(&bpf_event_mutex); 1709 } 1710 1711 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1712 { 1713 struct perf_event_query_bpf __user *uquery = info; 1714 struct perf_event_query_bpf query = {}; 1715 struct bpf_prog_array *progs; 1716 u32 *ids, prog_cnt, ids_len; 1717 int ret; 1718 1719 if (!perfmon_capable()) 1720 return -EPERM; 1721 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1722 return -EINVAL; 1723 if (copy_from_user(&query, uquery, sizeof(query))) 1724 return -EFAULT; 1725 1726 ids_len = query.ids_len; 1727 if (ids_len > BPF_TRACE_MAX_PROGS) 1728 return -E2BIG; 1729 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1730 if (!ids) 1731 return -ENOMEM; 1732 /* 1733 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1734 * is required when user only wants to check for uquery->prog_cnt. 1735 * There is no need to check for it since the case is handled 1736 * gracefully in bpf_prog_array_copy_info. 1737 */ 1738 1739 mutex_lock(&bpf_event_mutex); 1740 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1741 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1742 mutex_unlock(&bpf_event_mutex); 1743 1744 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1745 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1746 ret = -EFAULT; 1747 1748 kfree(ids); 1749 return ret; 1750 } 1751 1752 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1753 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1754 1755 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1756 { 1757 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1758 1759 for (; btp < __stop__bpf_raw_tp; btp++) { 1760 if (!strcmp(btp->tp->name, name)) 1761 return btp; 1762 } 1763 1764 return bpf_get_raw_tracepoint_module(name); 1765 } 1766 1767 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1768 { 1769 struct module *mod; 1770 1771 preempt_disable(); 1772 mod = __module_address((unsigned long)btp); 1773 module_put(mod); 1774 preempt_enable(); 1775 } 1776 1777 static __always_inline 1778 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1779 { 1780 cant_sleep(); 1781 rcu_read_lock(); 1782 (void) BPF_PROG_RUN(prog, args); 1783 rcu_read_unlock(); 1784 } 1785 1786 #define UNPACK(...) __VA_ARGS__ 1787 #define REPEAT_1(FN, DL, X, ...) FN(X) 1788 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1789 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1790 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1791 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1792 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1793 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1794 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1795 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1796 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1797 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1798 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1799 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1800 1801 #define SARG(X) u64 arg##X 1802 #define COPY(X) args[X] = arg##X 1803 1804 #define __DL_COM (,) 1805 #define __DL_SEM (;) 1806 1807 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1808 1809 #define BPF_TRACE_DEFN_x(x) \ 1810 void bpf_trace_run##x(struct bpf_prog *prog, \ 1811 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1812 { \ 1813 u64 args[x]; \ 1814 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1815 __bpf_trace_run(prog, args); \ 1816 } \ 1817 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1818 BPF_TRACE_DEFN_x(1); 1819 BPF_TRACE_DEFN_x(2); 1820 BPF_TRACE_DEFN_x(3); 1821 BPF_TRACE_DEFN_x(4); 1822 BPF_TRACE_DEFN_x(5); 1823 BPF_TRACE_DEFN_x(6); 1824 BPF_TRACE_DEFN_x(7); 1825 BPF_TRACE_DEFN_x(8); 1826 BPF_TRACE_DEFN_x(9); 1827 BPF_TRACE_DEFN_x(10); 1828 BPF_TRACE_DEFN_x(11); 1829 BPF_TRACE_DEFN_x(12); 1830 1831 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1832 { 1833 struct tracepoint *tp = btp->tp; 1834 1835 /* 1836 * check that program doesn't access arguments beyond what's 1837 * available in this tracepoint 1838 */ 1839 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1840 return -EINVAL; 1841 1842 if (prog->aux->max_tp_access > btp->writable_size) 1843 return -EINVAL; 1844 1845 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 1846 prog); 1847 } 1848 1849 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1850 { 1851 return __bpf_probe_register(btp, prog); 1852 } 1853 1854 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1855 { 1856 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1857 } 1858 1859 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1860 u32 *fd_type, const char **buf, 1861 u64 *probe_offset, u64 *probe_addr) 1862 { 1863 bool is_tracepoint, is_syscall_tp; 1864 struct bpf_prog *prog; 1865 int flags, err = 0; 1866 1867 prog = event->prog; 1868 if (!prog) 1869 return -ENOENT; 1870 1871 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1872 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1873 return -EOPNOTSUPP; 1874 1875 *prog_id = prog->aux->id; 1876 flags = event->tp_event->flags; 1877 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1878 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1879 1880 if (is_tracepoint || is_syscall_tp) { 1881 *buf = is_tracepoint ? event->tp_event->tp->name 1882 : event->tp_event->name; 1883 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1884 *probe_offset = 0x0; 1885 *probe_addr = 0x0; 1886 } else { 1887 /* kprobe/uprobe */ 1888 err = -EOPNOTSUPP; 1889 #ifdef CONFIG_KPROBE_EVENTS 1890 if (flags & TRACE_EVENT_FL_KPROBE) 1891 err = bpf_get_kprobe_info(event, fd_type, buf, 1892 probe_offset, probe_addr, 1893 event->attr.type == PERF_TYPE_TRACEPOINT); 1894 #endif 1895 #ifdef CONFIG_UPROBE_EVENTS 1896 if (flags & TRACE_EVENT_FL_UPROBE) 1897 err = bpf_get_uprobe_info(event, fd_type, buf, 1898 probe_offset, 1899 event->attr.type == PERF_TYPE_TRACEPOINT); 1900 #endif 1901 } 1902 1903 return err; 1904 } 1905 1906 static int __init send_signal_irq_work_init(void) 1907 { 1908 int cpu; 1909 struct send_signal_irq_work *work; 1910 1911 for_each_possible_cpu(cpu) { 1912 work = per_cpu_ptr(&send_signal_work, cpu); 1913 init_irq_work(&work->irq_work, do_bpf_send_signal); 1914 } 1915 return 0; 1916 } 1917 1918 subsys_initcall(send_signal_irq_work_init); 1919 1920 #ifdef CONFIG_MODULES 1921 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1922 void *module) 1923 { 1924 struct bpf_trace_module *btm, *tmp; 1925 struct module *mod = module; 1926 int ret = 0; 1927 1928 if (mod->num_bpf_raw_events == 0 || 1929 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1930 goto out; 1931 1932 mutex_lock(&bpf_module_mutex); 1933 1934 switch (op) { 1935 case MODULE_STATE_COMING: 1936 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1937 if (btm) { 1938 btm->module = module; 1939 list_add(&btm->list, &bpf_trace_modules); 1940 } else { 1941 ret = -ENOMEM; 1942 } 1943 break; 1944 case MODULE_STATE_GOING: 1945 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1946 if (btm->module == module) { 1947 list_del(&btm->list); 1948 kfree(btm); 1949 break; 1950 } 1951 } 1952 break; 1953 } 1954 1955 mutex_unlock(&bpf_module_mutex); 1956 1957 out: 1958 return notifier_from_errno(ret); 1959 } 1960 1961 static struct notifier_block bpf_module_nb = { 1962 .notifier_call = bpf_event_notify, 1963 }; 1964 1965 static int __init bpf_event_init(void) 1966 { 1967 register_module_notifier(&bpf_module_nb); 1968 return 0; 1969 } 1970 1971 fs_initcall(bpf_event_init); 1972 #endif /* CONFIG_MODULES */ 1973