1 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_perf_event.h> 13 #include <linux/filter.h> 14 #include <linux/uaccess.h> 15 #include <linux/ctype.h> 16 #include <linux/kprobes.h> 17 #include <asm/kprobes.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 23 24 /** 25 * trace_call_bpf - invoke BPF program 26 * @call: tracepoint event 27 * @ctx: opaque context pointer 28 * 29 * kprobe handlers execute BPF programs via this helper. 30 * Can be used from static tracepoints in the future. 31 * 32 * Return: BPF programs always return an integer which is interpreted by 33 * kprobe handler as: 34 * 0 - return from kprobe (event is filtered out) 35 * 1 - store kprobe event into ring buffer 36 * Other values are reserved and currently alias to 1 37 */ 38 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 39 { 40 unsigned int ret; 41 42 if (in_nmi()) /* not supported yet */ 43 return 1; 44 45 preempt_disable(); 46 47 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 48 /* 49 * since some bpf program is already running on this cpu, 50 * don't call into another bpf program (same or different) 51 * and don't send kprobe event into ring-buffer, 52 * so return zero here 53 */ 54 ret = 0; 55 goto out; 56 } 57 58 /* 59 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 60 * to all call sites, we did a bpf_prog_array_valid() there to check 61 * whether call->prog_array is empty or not, which is 62 * a heurisitc to speed up execution. 63 * 64 * If bpf_prog_array_valid() fetched prog_array was 65 * non-NULL, we go into trace_call_bpf() and do the actual 66 * proper rcu_dereference() under RCU lock. 67 * If it turns out that prog_array is NULL then, we bail out. 68 * For the opposite, if the bpf_prog_array_valid() fetched pointer 69 * was NULL, you'll skip the prog_array with the risk of missing 70 * out of events when it was updated in between this and the 71 * rcu_dereference() which is accepted risk. 72 */ 73 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 74 75 out: 76 __this_cpu_dec(bpf_prog_active); 77 preempt_enable(); 78 79 return ret; 80 } 81 EXPORT_SYMBOL_GPL(trace_call_bpf); 82 83 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 84 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 85 { 86 __this_cpu_write(bpf_kprobe_override, 1); 87 regs_set_return_value(regs, rc); 88 arch_ftrace_kprobe_override_function(regs); 89 return 0; 90 } 91 92 static const struct bpf_func_proto bpf_override_return_proto = { 93 .func = bpf_override_return, 94 .gpl_only = true, 95 .ret_type = RET_INTEGER, 96 .arg1_type = ARG_PTR_TO_CTX, 97 .arg2_type = ARG_ANYTHING, 98 }; 99 #endif 100 101 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 102 { 103 int ret; 104 105 ret = probe_kernel_read(dst, unsafe_ptr, size); 106 if (unlikely(ret < 0)) 107 memset(dst, 0, size); 108 109 return ret; 110 } 111 112 static const struct bpf_func_proto bpf_probe_read_proto = { 113 .func = bpf_probe_read, 114 .gpl_only = true, 115 .ret_type = RET_INTEGER, 116 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 117 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 118 .arg3_type = ARG_ANYTHING, 119 }; 120 121 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 122 u32, size) 123 { 124 /* 125 * Ensure we're in user context which is safe for the helper to 126 * run. This helper has no business in a kthread. 127 * 128 * access_ok() should prevent writing to non-user memory, but in 129 * some situations (nommu, temporary switch, etc) access_ok() does 130 * not provide enough validation, hence the check on KERNEL_DS. 131 */ 132 133 if (unlikely(in_interrupt() || 134 current->flags & (PF_KTHREAD | PF_EXITING))) 135 return -EPERM; 136 if (unlikely(uaccess_kernel())) 137 return -EPERM; 138 if (!access_ok(VERIFY_WRITE, unsafe_ptr, size)) 139 return -EPERM; 140 141 return probe_kernel_write(unsafe_ptr, src, size); 142 } 143 144 static const struct bpf_func_proto bpf_probe_write_user_proto = { 145 .func = bpf_probe_write_user, 146 .gpl_only = true, 147 .ret_type = RET_INTEGER, 148 .arg1_type = ARG_ANYTHING, 149 .arg2_type = ARG_PTR_TO_MEM, 150 .arg3_type = ARG_CONST_SIZE, 151 }; 152 153 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 154 { 155 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 156 current->comm, task_pid_nr(current)); 157 158 return &bpf_probe_write_user_proto; 159 } 160 161 /* 162 * Only limited trace_printk() conversion specifiers allowed: 163 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 164 */ 165 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 166 u64, arg2, u64, arg3) 167 { 168 bool str_seen = false; 169 int mod[3] = {}; 170 int fmt_cnt = 0; 171 u64 unsafe_addr; 172 char buf[64]; 173 int i; 174 175 /* 176 * bpf_check()->check_func_arg()->check_stack_boundary() 177 * guarantees that fmt points to bpf program stack, 178 * fmt_size bytes of it were initialized and fmt_size > 0 179 */ 180 if (fmt[--fmt_size] != 0) 181 return -EINVAL; 182 183 /* check format string for allowed specifiers */ 184 for (i = 0; i < fmt_size; i++) { 185 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 186 return -EINVAL; 187 188 if (fmt[i] != '%') 189 continue; 190 191 if (fmt_cnt >= 3) 192 return -EINVAL; 193 194 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 195 i++; 196 if (fmt[i] == 'l') { 197 mod[fmt_cnt]++; 198 i++; 199 } else if (fmt[i] == 'p' || fmt[i] == 's') { 200 mod[fmt_cnt]++; 201 i++; 202 if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0) 203 return -EINVAL; 204 fmt_cnt++; 205 if (fmt[i - 1] == 's') { 206 if (str_seen) 207 /* allow only one '%s' per fmt string */ 208 return -EINVAL; 209 str_seen = true; 210 211 switch (fmt_cnt) { 212 case 1: 213 unsafe_addr = arg1; 214 arg1 = (long) buf; 215 break; 216 case 2: 217 unsafe_addr = arg2; 218 arg2 = (long) buf; 219 break; 220 case 3: 221 unsafe_addr = arg3; 222 arg3 = (long) buf; 223 break; 224 } 225 buf[0] = 0; 226 strncpy_from_unsafe(buf, 227 (void *) (long) unsafe_addr, 228 sizeof(buf)); 229 } 230 continue; 231 } 232 233 if (fmt[i] == 'l') { 234 mod[fmt_cnt]++; 235 i++; 236 } 237 238 if (fmt[i] != 'i' && fmt[i] != 'd' && 239 fmt[i] != 'u' && fmt[i] != 'x') 240 return -EINVAL; 241 fmt_cnt++; 242 } 243 244 /* Horrid workaround for getting va_list handling working with different 245 * argument type combinations generically for 32 and 64 bit archs. 246 */ 247 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 248 #define __BPF_TP(...) \ 249 __trace_printk(1 /* Fake ip will not be printed. */, \ 250 fmt, ##__VA_ARGS__) 251 252 #define __BPF_ARG1_TP(...) \ 253 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 254 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 255 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 256 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 257 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 258 259 #define __BPF_ARG2_TP(...) \ 260 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 261 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 262 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 263 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 264 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 265 266 #define __BPF_ARG3_TP(...) \ 267 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 268 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 269 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 270 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 271 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 272 273 return __BPF_TP_EMIT(); 274 } 275 276 static const struct bpf_func_proto bpf_trace_printk_proto = { 277 .func = bpf_trace_printk, 278 .gpl_only = true, 279 .ret_type = RET_INTEGER, 280 .arg1_type = ARG_PTR_TO_MEM, 281 .arg2_type = ARG_CONST_SIZE, 282 }; 283 284 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 285 { 286 /* 287 * this program might be calling bpf_trace_printk, 288 * so allocate per-cpu printk buffers 289 */ 290 trace_printk_init_buffers(); 291 292 return &bpf_trace_printk_proto; 293 } 294 295 static __always_inline int 296 get_map_perf_counter(struct bpf_map *map, u64 flags, 297 u64 *value, u64 *enabled, u64 *running) 298 { 299 struct bpf_array *array = container_of(map, struct bpf_array, map); 300 unsigned int cpu = smp_processor_id(); 301 u64 index = flags & BPF_F_INDEX_MASK; 302 struct bpf_event_entry *ee; 303 304 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 305 return -EINVAL; 306 if (index == BPF_F_CURRENT_CPU) 307 index = cpu; 308 if (unlikely(index >= array->map.max_entries)) 309 return -E2BIG; 310 311 ee = READ_ONCE(array->ptrs[index]); 312 if (!ee) 313 return -ENOENT; 314 315 return perf_event_read_local(ee->event, value, enabled, running); 316 } 317 318 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 319 { 320 u64 value = 0; 321 int err; 322 323 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 324 /* 325 * this api is ugly since we miss [-22..-2] range of valid 326 * counter values, but that's uapi 327 */ 328 if (err) 329 return err; 330 return value; 331 } 332 333 static const struct bpf_func_proto bpf_perf_event_read_proto = { 334 .func = bpf_perf_event_read, 335 .gpl_only = true, 336 .ret_type = RET_INTEGER, 337 .arg1_type = ARG_CONST_MAP_PTR, 338 .arg2_type = ARG_ANYTHING, 339 }; 340 341 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 342 struct bpf_perf_event_value *, buf, u32, size) 343 { 344 int err = -EINVAL; 345 346 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 347 goto clear; 348 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 349 &buf->running); 350 if (unlikely(err)) 351 goto clear; 352 return 0; 353 clear: 354 memset(buf, 0, size); 355 return err; 356 } 357 358 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 359 .func = bpf_perf_event_read_value, 360 .gpl_only = true, 361 .ret_type = RET_INTEGER, 362 .arg1_type = ARG_CONST_MAP_PTR, 363 .arg2_type = ARG_ANYTHING, 364 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 365 .arg4_type = ARG_CONST_SIZE, 366 }; 367 368 static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd); 369 370 static __always_inline u64 371 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 372 u64 flags, struct perf_sample_data *sd) 373 { 374 struct bpf_array *array = container_of(map, struct bpf_array, map); 375 unsigned int cpu = smp_processor_id(); 376 u64 index = flags & BPF_F_INDEX_MASK; 377 struct bpf_event_entry *ee; 378 struct perf_event *event; 379 380 if (index == BPF_F_CURRENT_CPU) 381 index = cpu; 382 if (unlikely(index >= array->map.max_entries)) 383 return -E2BIG; 384 385 ee = READ_ONCE(array->ptrs[index]); 386 if (!ee) 387 return -ENOENT; 388 389 event = ee->event; 390 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 391 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 392 return -EINVAL; 393 394 if (unlikely(event->oncpu != cpu)) 395 return -EOPNOTSUPP; 396 397 perf_event_output(event, sd, regs); 398 return 0; 399 } 400 401 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 402 u64, flags, void *, data, u64, size) 403 { 404 struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd); 405 struct perf_raw_record raw = { 406 .frag = { 407 .size = size, 408 .data = data, 409 }, 410 }; 411 412 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 413 return -EINVAL; 414 415 perf_sample_data_init(sd, 0, 0); 416 sd->raw = &raw; 417 418 return __bpf_perf_event_output(regs, map, flags, sd); 419 } 420 421 static const struct bpf_func_proto bpf_perf_event_output_proto = { 422 .func = bpf_perf_event_output, 423 .gpl_only = true, 424 .ret_type = RET_INTEGER, 425 .arg1_type = ARG_PTR_TO_CTX, 426 .arg2_type = ARG_CONST_MAP_PTR, 427 .arg3_type = ARG_ANYTHING, 428 .arg4_type = ARG_PTR_TO_MEM, 429 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 430 }; 431 432 static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); 433 static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd); 434 435 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 436 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 437 { 438 struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd); 439 struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs); 440 struct perf_raw_frag frag = { 441 .copy = ctx_copy, 442 .size = ctx_size, 443 .data = ctx, 444 }; 445 struct perf_raw_record raw = { 446 .frag = { 447 { 448 .next = ctx_size ? &frag : NULL, 449 }, 450 .size = meta_size, 451 .data = meta, 452 }, 453 }; 454 455 perf_fetch_caller_regs(regs); 456 perf_sample_data_init(sd, 0, 0); 457 sd->raw = &raw; 458 459 return __bpf_perf_event_output(regs, map, flags, sd); 460 } 461 462 BPF_CALL_0(bpf_get_current_task) 463 { 464 return (long) current; 465 } 466 467 static const struct bpf_func_proto bpf_get_current_task_proto = { 468 .func = bpf_get_current_task, 469 .gpl_only = true, 470 .ret_type = RET_INTEGER, 471 }; 472 473 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 474 { 475 struct bpf_array *array = container_of(map, struct bpf_array, map); 476 struct cgroup *cgrp; 477 478 if (unlikely(in_interrupt())) 479 return -EINVAL; 480 if (unlikely(idx >= array->map.max_entries)) 481 return -E2BIG; 482 483 cgrp = READ_ONCE(array->ptrs[idx]); 484 if (unlikely(!cgrp)) 485 return -EAGAIN; 486 487 return task_under_cgroup_hierarchy(current, cgrp); 488 } 489 490 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 491 .func = bpf_current_task_under_cgroup, 492 .gpl_only = false, 493 .ret_type = RET_INTEGER, 494 .arg1_type = ARG_CONST_MAP_PTR, 495 .arg2_type = ARG_ANYTHING, 496 }; 497 498 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 499 const void *, unsafe_ptr) 500 { 501 int ret; 502 503 /* 504 * The strncpy_from_unsafe() call will likely not fill the entire 505 * buffer, but that's okay in this circumstance as we're probing 506 * arbitrary memory anyway similar to bpf_probe_read() and might 507 * as well probe the stack. Thus, memory is explicitly cleared 508 * only in error case, so that improper users ignoring return 509 * code altogether don't copy garbage; otherwise length of string 510 * is returned that can be used for bpf_perf_event_output() et al. 511 */ 512 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 513 if (unlikely(ret < 0)) 514 memset(dst, 0, size); 515 516 return ret; 517 } 518 519 static const struct bpf_func_proto bpf_probe_read_str_proto = { 520 .func = bpf_probe_read_str, 521 .gpl_only = true, 522 .ret_type = RET_INTEGER, 523 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 524 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 525 .arg3_type = ARG_ANYTHING, 526 }; 527 528 static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id) 529 { 530 switch (func_id) { 531 case BPF_FUNC_map_lookup_elem: 532 return &bpf_map_lookup_elem_proto; 533 case BPF_FUNC_map_update_elem: 534 return &bpf_map_update_elem_proto; 535 case BPF_FUNC_map_delete_elem: 536 return &bpf_map_delete_elem_proto; 537 case BPF_FUNC_probe_read: 538 return &bpf_probe_read_proto; 539 case BPF_FUNC_ktime_get_ns: 540 return &bpf_ktime_get_ns_proto; 541 case BPF_FUNC_tail_call: 542 return &bpf_tail_call_proto; 543 case BPF_FUNC_get_current_pid_tgid: 544 return &bpf_get_current_pid_tgid_proto; 545 case BPF_FUNC_get_current_task: 546 return &bpf_get_current_task_proto; 547 case BPF_FUNC_get_current_uid_gid: 548 return &bpf_get_current_uid_gid_proto; 549 case BPF_FUNC_get_current_comm: 550 return &bpf_get_current_comm_proto; 551 case BPF_FUNC_trace_printk: 552 return bpf_get_trace_printk_proto(); 553 case BPF_FUNC_get_smp_processor_id: 554 return &bpf_get_smp_processor_id_proto; 555 case BPF_FUNC_get_numa_node_id: 556 return &bpf_get_numa_node_id_proto; 557 case BPF_FUNC_perf_event_read: 558 return &bpf_perf_event_read_proto; 559 case BPF_FUNC_probe_write_user: 560 return bpf_get_probe_write_proto(); 561 case BPF_FUNC_current_task_under_cgroup: 562 return &bpf_current_task_under_cgroup_proto; 563 case BPF_FUNC_get_prandom_u32: 564 return &bpf_get_prandom_u32_proto; 565 case BPF_FUNC_probe_read_str: 566 return &bpf_probe_read_str_proto; 567 default: 568 return NULL; 569 } 570 } 571 572 static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id) 573 { 574 switch (func_id) { 575 case BPF_FUNC_perf_event_output: 576 return &bpf_perf_event_output_proto; 577 case BPF_FUNC_get_stackid: 578 return &bpf_get_stackid_proto; 579 case BPF_FUNC_perf_event_read_value: 580 return &bpf_perf_event_read_value_proto; 581 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 582 case BPF_FUNC_override_return: 583 return &bpf_override_return_proto; 584 #endif 585 default: 586 return tracing_func_proto(func_id); 587 } 588 } 589 590 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 591 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 592 struct bpf_insn_access_aux *info) 593 { 594 if (off < 0 || off >= sizeof(struct pt_regs)) 595 return false; 596 if (type != BPF_READ) 597 return false; 598 if (off % size != 0) 599 return false; 600 /* 601 * Assertion for 32 bit to make sure last 8 byte access 602 * (BPF_DW) to the last 4 byte member is disallowed. 603 */ 604 if (off + size > sizeof(struct pt_regs)) 605 return false; 606 607 return true; 608 } 609 610 const struct bpf_verifier_ops kprobe_verifier_ops = { 611 .get_func_proto = kprobe_prog_func_proto, 612 .is_valid_access = kprobe_prog_is_valid_access, 613 }; 614 615 const struct bpf_prog_ops kprobe_prog_ops = { 616 }; 617 618 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 619 u64, flags, void *, data, u64, size) 620 { 621 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 622 623 /* 624 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 625 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 626 * from there and call the same bpf_perf_event_output() helper inline. 627 */ 628 return ____bpf_perf_event_output(regs, map, flags, data, size); 629 } 630 631 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 632 .func = bpf_perf_event_output_tp, 633 .gpl_only = true, 634 .ret_type = RET_INTEGER, 635 .arg1_type = ARG_PTR_TO_CTX, 636 .arg2_type = ARG_CONST_MAP_PTR, 637 .arg3_type = ARG_ANYTHING, 638 .arg4_type = ARG_PTR_TO_MEM, 639 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 640 }; 641 642 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 643 u64, flags) 644 { 645 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 646 647 /* 648 * Same comment as in bpf_perf_event_output_tp(), only that this time 649 * the other helper's function body cannot be inlined due to being 650 * external, thus we need to call raw helper function. 651 */ 652 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 653 flags, 0, 0); 654 } 655 656 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 657 .func = bpf_get_stackid_tp, 658 .gpl_only = true, 659 .ret_type = RET_INTEGER, 660 .arg1_type = ARG_PTR_TO_CTX, 661 .arg2_type = ARG_CONST_MAP_PTR, 662 .arg3_type = ARG_ANYTHING, 663 }; 664 665 BPF_CALL_3(bpf_perf_prog_read_value_tp, struct bpf_perf_event_data_kern *, ctx, 666 struct bpf_perf_event_value *, buf, u32, size) 667 { 668 int err = -EINVAL; 669 670 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 671 goto clear; 672 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 673 &buf->running); 674 if (unlikely(err)) 675 goto clear; 676 return 0; 677 clear: 678 memset(buf, 0, size); 679 return err; 680 } 681 682 static const struct bpf_func_proto bpf_perf_prog_read_value_proto_tp = { 683 .func = bpf_perf_prog_read_value_tp, 684 .gpl_only = true, 685 .ret_type = RET_INTEGER, 686 .arg1_type = ARG_PTR_TO_CTX, 687 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 688 .arg3_type = ARG_CONST_SIZE, 689 }; 690 691 static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id) 692 { 693 switch (func_id) { 694 case BPF_FUNC_perf_event_output: 695 return &bpf_perf_event_output_proto_tp; 696 case BPF_FUNC_get_stackid: 697 return &bpf_get_stackid_proto_tp; 698 case BPF_FUNC_perf_prog_read_value: 699 return &bpf_perf_prog_read_value_proto_tp; 700 default: 701 return tracing_func_proto(func_id); 702 } 703 } 704 705 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 706 struct bpf_insn_access_aux *info) 707 { 708 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 709 return false; 710 if (type != BPF_READ) 711 return false; 712 if (off % size != 0) 713 return false; 714 715 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 716 return true; 717 } 718 719 const struct bpf_verifier_ops tracepoint_verifier_ops = { 720 .get_func_proto = tp_prog_func_proto, 721 .is_valid_access = tp_prog_is_valid_access, 722 }; 723 724 const struct bpf_prog_ops tracepoint_prog_ops = { 725 }; 726 727 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 728 struct bpf_insn_access_aux *info) 729 { 730 const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data, 731 sample_period); 732 733 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 734 return false; 735 if (type != BPF_READ) 736 return false; 737 if (off % size != 0) 738 return false; 739 740 switch (off) { 741 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 742 bpf_ctx_record_field_size(info, size_sp); 743 if (!bpf_ctx_narrow_access_ok(off, size, size_sp)) 744 return false; 745 break; 746 default: 747 if (size != sizeof(long)) 748 return false; 749 } 750 751 return true; 752 } 753 754 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 755 const struct bpf_insn *si, 756 struct bpf_insn *insn_buf, 757 struct bpf_prog *prog, u32 *target_size) 758 { 759 struct bpf_insn *insn = insn_buf; 760 761 switch (si->off) { 762 case offsetof(struct bpf_perf_event_data, sample_period): 763 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 764 data), si->dst_reg, si->src_reg, 765 offsetof(struct bpf_perf_event_data_kern, data)); 766 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 767 bpf_target_off(struct perf_sample_data, period, 8, 768 target_size)); 769 break; 770 default: 771 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 772 regs), si->dst_reg, si->src_reg, 773 offsetof(struct bpf_perf_event_data_kern, regs)); 774 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 775 si->off); 776 break; 777 } 778 779 return insn - insn_buf; 780 } 781 782 const struct bpf_verifier_ops perf_event_verifier_ops = { 783 .get_func_proto = tp_prog_func_proto, 784 .is_valid_access = pe_prog_is_valid_access, 785 .convert_ctx_access = pe_prog_convert_ctx_access, 786 }; 787 788 const struct bpf_prog_ops perf_event_prog_ops = { 789 }; 790 791 static DEFINE_MUTEX(bpf_event_mutex); 792 793 #define BPF_TRACE_MAX_PROGS 64 794 795 int perf_event_attach_bpf_prog(struct perf_event *event, 796 struct bpf_prog *prog) 797 { 798 struct bpf_prog_array __rcu *old_array; 799 struct bpf_prog_array *new_array; 800 int ret = -EEXIST; 801 802 /* 803 * Kprobe override only works for ftrace based kprobes, and only if they 804 * are on the opt-in list. 805 */ 806 if (prog->kprobe_override && 807 (!trace_kprobe_ftrace(event->tp_event) || 808 !trace_kprobe_error_injectable(event->tp_event))) 809 return -EINVAL; 810 811 mutex_lock(&bpf_event_mutex); 812 813 if (event->prog) 814 goto unlock; 815 816 old_array = event->tp_event->prog_array; 817 if (old_array && 818 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 819 ret = -E2BIG; 820 goto unlock; 821 } 822 823 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 824 if (ret < 0) 825 goto unlock; 826 827 /* set the new array to event->tp_event and set event->prog */ 828 event->prog = prog; 829 rcu_assign_pointer(event->tp_event->prog_array, new_array); 830 bpf_prog_array_free(old_array); 831 832 unlock: 833 mutex_unlock(&bpf_event_mutex); 834 return ret; 835 } 836 837 void perf_event_detach_bpf_prog(struct perf_event *event) 838 { 839 struct bpf_prog_array __rcu *old_array; 840 struct bpf_prog_array *new_array; 841 int ret; 842 843 mutex_lock(&bpf_event_mutex); 844 845 if (!event->prog) 846 goto unlock; 847 848 old_array = event->tp_event->prog_array; 849 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 850 if (ret < 0) { 851 bpf_prog_array_delete_safe(old_array, event->prog); 852 } else { 853 rcu_assign_pointer(event->tp_event->prog_array, new_array); 854 bpf_prog_array_free(old_array); 855 } 856 857 bpf_prog_put(event->prog); 858 event->prog = NULL; 859 860 unlock: 861 mutex_unlock(&bpf_event_mutex); 862 } 863 864 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 865 { 866 struct perf_event_query_bpf __user *uquery = info; 867 struct perf_event_query_bpf query = {}; 868 int ret; 869 870 if (!capable(CAP_SYS_ADMIN)) 871 return -EPERM; 872 if (event->attr.type != PERF_TYPE_TRACEPOINT) 873 return -EINVAL; 874 if (copy_from_user(&query, uquery, sizeof(query))) 875 return -EFAULT; 876 877 mutex_lock(&bpf_event_mutex); 878 ret = bpf_prog_array_copy_info(event->tp_event->prog_array, 879 uquery->ids, 880 query.ids_len, 881 &uquery->prog_cnt); 882 mutex_unlock(&bpf_event_mutex); 883 884 return ret; 885 } 886