1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/syscalls.h> 15 #include <linux/error-injection.h> 16 17 #include <asm/tlb.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 #define bpf_event_rcu_dereference(p) \ 23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 24 25 #ifdef CONFIG_MODULES 26 struct bpf_trace_module { 27 struct module *module; 28 struct list_head list; 29 }; 30 31 static LIST_HEAD(bpf_trace_modules); 32 static DEFINE_MUTEX(bpf_module_mutex); 33 34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 35 { 36 struct bpf_raw_event_map *btp, *ret = NULL; 37 struct bpf_trace_module *btm; 38 unsigned int i; 39 40 mutex_lock(&bpf_module_mutex); 41 list_for_each_entry(btm, &bpf_trace_modules, list) { 42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 43 btp = &btm->module->bpf_raw_events[i]; 44 if (!strcmp(btp->tp->name, name)) { 45 if (try_module_get(btm->module)) 46 ret = btp; 47 goto out; 48 } 49 } 50 } 51 out: 52 mutex_unlock(&bpf_module_mutex); 53 return ret; 54 } 55 #else 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 return NULL; 59 } 60 #endif /* CONFIG_MODULES */ 61 62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 64 65 /** 66 * trace_call_bpf - invoke BPF program 67 * @call: tracepoint event 68 * @ctx: opaque context pointer 69 * 70 * kprobe handlers execute BPF programs via this helper. 71 * Can be used from static tracepoints in the future. 72 * 73 * Return: BPF programs always return an integer which is interpreted by 74 * kprobe handler as: 75 * 0 - return from kprobe (event is filtered out) 76 * 1 - store kprobe event into ring buffer 77 * Other values are reserved and currently alias to 1 78 */ 79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 80 { 81 unsigned int ret; 82 83 if (in_nmi()) /* not supported yet */ 84 return 1; 85 86 cant_sleep(); 87 88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 89 /* 90 * since some bpf program is already running on this cpu, 91 * don't call into another bpf program (same or different) 92 * and don't send kprobe event into ring-buffer, 93 * so return zero here 94 */ 95 ret = 0; 96 goto out; 97 } 98 99 /* 100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 101 * to all call sites, we did a bpf_prog_array_valid() there to check 102 * whether call->prog_array is empty or not, which is 103 * a heurisitc to speed up execution. 104 * 105 * If bpf_prog_array_valid() fetched prog_array was 106 * non-NULL, we go into trace_call_bpf() and do the actual 107 * proper rcu_dereference() under RCU lock. 108 * If it turns out that prog_array is NULL then, we bail out. 109 * For the opposite, if the bpf_prog_array_valid() fetched pointer 110 * was NULL, you'll skip the prog_array with the risk of missing 111 * out of events when it was updated in between this and the 112 * rcu_dereference() which is accepted risk. 113 */ 114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 115 116 out: 117 __this_cpu_dec(bpf_prog_active); 118 119 return ret; 120 } 121 122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 124 { 125 regs_set_return_value(regs, rc); 126 override_function_with_return(regs); 127 return 0; 128 } 129 130 static const struct bpf_func_proto bpf_override_return_proto = { 131 .func = bpf_override_return, 132 .gpl_only = true, 133 .ret_type = RET_INTEGER, 134 .arg1_type = ARG_PTR_TO_CTX, 135 .arg2_type = ARG_ANYTHING, 136 }; 137 #endif 138 139 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 140 const void __user *, unsafe_ptr) 141 { 142 int ret = probe_user_read(dst, unsafe_ptr, size); 143 144 if (unlikely(ret < 0)) 145 memset(dst, 0, size); 146 147 return ret; 148 } 149 150 const struct bpf_func_proto bpf_probe_read_user_proto = { 151 .func = bpf_probe_read_user, 152 .gpl_only = true, 153 .ret_type = RET_INTEGER, 154 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 155 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 156 .arg3_type = ARG_ANYTHING, 157 }; 158 159 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 160 const void __user *, unsafe_ptr) 161 { 162 int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size); 163 164 if (unlikely(ret < 0)) 165 memset(dst, 0, size); 166 167 return ret; 168 } 169 170 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 171 .func = bpf_probe_read_user_str, 172 .gpl_only = true, 173 .ret_type = RET_INTEGER, 174 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 175 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 176 .arg3_type = ARG_ANYTHING, 177 }; 178 179 static __always_inline int 180 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr, 181 const bool compat) 182 { 183 int ret = security_locked_down(LOCKDOWN_BPF_READ); 184 185 if (unlikely(ret < 0)) 186 goto out; 187 ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) : 188 probe_kernel_read_strict(dst, unsafe_ptr, size); 189 if (unlikely(ret < 0)) 190 out: 191 memset(dst, 0, size); 192 return ret; 193 } 194 195 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 196 const void *, unsafe_ptr) 197 { 198 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false); 199 } 200 201 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 202 .func = bpf_probe_read_kernel, 203 .gpl_only = true, 204 .ret_type = RET_INTEGER, 205 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 206 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 207 .arg3_type = ARG_ANYTHING, 208 }; 209 210 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 211 const void *, unsafe_ptr) 212 { 213 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true); 214 } 215 216 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 217 .func = bpf_probe_read_compat, 218 .gpl_only = true, 219 .ret_type = RET_INTEGER, 220 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 221 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 222 .arg3_type = ARG_ANYTHING, 223 }; 224 225 static __always_inline int 226 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr, 227 const bool compat) 228 { 229 int ret = security_locked_down(LOCKDOWN_BPF_READ); 230 231 if (unlikely(ret < 0)) 232 goto out; 233 /* 234 * The strncpy_from_unsafe_*() call will likely not fill the entire 235 * buffer, but that's okay in this circumstance as we're probing 236 * arbitrary memory anyway similar to bpf_probe_read_*() and might 237 * as well probe the stack. Thus, memory is explicitly cleared 238 * only in error case, so that improper users ignoring return 239 * code altogether don't copy garbage; otherwise length of string 240 * is returned that can be used for bpf_perf_event_output() et al. 241 */ 242 ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) : 243 strncpy_from_unsafe_strict(dst, unsafe_ptr, size); 244 if (unlikely(ret < 0)) 245 out: 246 memset(dst, 0, size); 247 return ret; 248 } 249 250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 251 const void *, unsafe_ptr) 252 { 253 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false); 254 } 255 256 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 257 .func = bpf_probe_read_kernel_str, 258 .gpl_only = true, 259 .ret_type = RET_INTEGER, 260 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 261 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 262 .arg3_type = ARG_ANYTHING, 263 }; 264 265 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 266 const void *, unsafe_ptr) 267 { 268 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true); 269 } 270 271 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 272 .func = bpf_probe_read_compat_str, 273 .gpl_only = true, 274 .ret_type = RET_INTEGER, 275 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 276 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 277 .arg3_type = ARG_ANYTHING, 278 }; 279 280 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 281 u32, size) 282 { 283 /* 284 * Ensure we're in user context which is safe for the helper to 285 * run. This helper has no business in a kthread. 286 * 287 * access_ok() should prevent writing to non-user memory, but in 288 * some situations (nommu, temporary switch, etc) access_ok() does 289 * not provide enough validation, hence the check on KERNEL_DS. 290 * 291 * nmi_uaccess_okay() ensures the probe is not run in an interim 292 * state, when the task or mm are switched. This is specifically 293 * required to prevent the use of temporary mm. 294 */ 295 296 if (unlikely(in_interrupt() || 297 current->flags & (PF_KTHREAD | PF_EXITING))) 298 return -EPERM; 299 if (unlikely(uaccess_kernel())) 300 return -EPERM; 301 if (unlikely(!nmi_uaccess_okay())) 302 return -EPERM; 303 304 return probe_user_write(unsafe_ptr, src, size); 305 } 306 307 static const struct bpf_func_proto bpf_probe_write_user_proto = { 308 .func = bpf_probe_write_user, 309 .gpl_only = true, 310 .ret_type = RET_INTEGER, 311 .arg1_type = ARG_ANYTHING, 312 .arg2_type = ARG_PTR_TO_MEM, 313 .arg3_type = ARG_CONST_SIZE, 314 }; 315 316 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 317 { 318 if (!capable(CAP_SYS_ADMIN)) 319 return NULL; 320 321 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 322 current->comm, task_pid_nr(current)); 323 324 return &bpf_probe_write_user_proto; 325 } 326 327 /* 328 * Only limited trace_printk() conversion specifiers allowed: 329 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pks %pus %s 330 */ 331 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 332 u64, arg2, u64, arg3) 333 { 334 int i, mod[3] = {}, fmt_cnt = 0; 335 char buf[64], fmt_ptype; 336 void *unsafe_ptr = NULL; 337 bool str_seen = false; 338 339 /* 340 * bpf_check()->check_func_arg()->check_stack_boundary() 341 * guarantees that fmt points to bpf program stack, 342 * fmt_size bytes of it were initialized and fmt_size > 0 343 */ 344 if (fmt[--fmt_size] != 0) 345 return -EINVAL; 346 347 /* check format string for allowed specifiers */ 348 for (i = 0; i < fmt_size; i++) { 349 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 350 return -EINVAL; 351 352 if (fmt[i] != '%') 353 continue; 354 355 if (fmt_cnt >= 3) 356 return -EINVAL; 357 358 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 359 i++; 360 if (fmt[i] == 'l') { 361 mod[fmt_cnt]++; 362 i++; 363 } else if (fmt[i] == 'p') { 364 mod[fmt_cnt]++; 365 if ((fmt[i + 1] == 'k' || 366 fmt[i + 1] == 'u') && 367 fmt[i + 2] == 's') { 368 fmt_ptype = fmt[i + 1]; 369 i += 2; 370 goto fmt_str; 371 } 372 373 /* disallow any further format extensions */ 374 if (fmt[i + 1] != 0 && 375 !isspace(fmt[i + 1]) && 376 !ispunct(fmt[i + 1])) 377 return -EINVAL; 378 379 goto fmt_next; 380 } else if (fmt[i] == 's') { 381 mod[fmt_cnt]++; 382 fmt_ptype = fmt[i]; 383 fmt_str: 384 if (str_seen) 385 /* allow only one '%s' per fmt string */ 386 return -EINVAL; 387 str_seen = true; 388 389 if (fmt[i + 1] != 0 && 390 !isspace(fmt[i + 1]) && 391 !ispunct(fmt[i + 1])) 392 return -EINVAL; 393 394 switch (fmt_cnt) { 395 case 0: 396 unsafe_ptr = (void *)(long)arg1; 397 arg1 = (long)buf; 398 break; 399 case 1: 400 unsafe_ptr = (void *)(long)arg2; 401 arg2 = (long)buf; 402 break; 403 case 2: 404 unsafe_ptr = (void *)(long)arg3; 405 arg3 = (long)buf; 406 break; 407 } 408 409 buf[0] = 0; 410 switch (fmt_ptype) { 411 case 's': 412 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 413 strncpy_from_unsafe(buf, unsafe_ptr, 414 sizeof(buf)); 415 break; 416 #endif 417 case 'k': 418 strncpy_from_unsafe_strict(buf, unsafe_ptr, 419 sizeof(buf)); 420 break; 421 case 'u': 422 strncpy_from_unsafe_user(buf, 423 (__force void __user *)unsafe_ptr, 424 sizeof(buf)); 425 break; 426 } 427 goto fmt_next; 428 } 429 430 if (fmt[i] == 'l') { 431 mod[fmt_cnt]++; 432 i++; 433 } 434 435 if (fmt[i] != 'i' && fmt[i] != 'd' && 436 fmt[i] != 'u' && fmt[i] != 'x') 437 return -EINVAL; 438 fmt_next: 439 fmt_cnt++; 440 } 441 442 /* Horrid workaround for getting va_list handling working with different 443 * argument type combinations generically for 32 and 64 bit archs. 444 */ 445 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 446 #define __BPF_TP(...) \ 447 __trace_printk(0 /* Fake ip */, \ 448 fmt, ##__VA_ARGS__) 449 450 #define __BPF_ARG1_TP(...) \ 451 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 452 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 453 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 454 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 455 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 456 457 #define __BPF_ARG2_TP(...) \ 458 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 459 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 460 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 461 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 462 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 463 464 #define __BPF_ARG3_TP(...) \ 465 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 466 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 467 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 468 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 469 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 470 471 return __BPF_TP_EMIT(); 472 } 473 474 static const struct bpf_func_proto bpf_trace_printk_proto = { 475 .func = bpf_trace_printk, 476 .gpl_only = true, 477 .ret_type = RET_INTEGER, 478 .arg1_type = ARG_PTR_TO_MEM, 479 .arg2_type = ARG_CONST_SIZE, 480 }; 481 482 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 483 { 484 /* 485 * this program might be calling bpf_trace_printk, 486 * so allocate per-cpu printk buffers 487 */ 488 trace_printk_init_buffers(); 489 490 return &bpf_trace_printk_proto; 491 } 492 493 #define MAX_SEQ_PRINTF_VARARGS 12 494 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 495 #define MAX_SEQ_PRINTF_STR_LEN 128 496 497 struct bpf_seq_printf_buf { 498 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; 499 }; 500 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); 501 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); 502 503 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 504 const void *, data, u32, data_len) 505 { 506 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; 507 int i, buf_used, copy_size, num_args; 508 u64 params[MAX_SEQ_PRINTF_VARARGS]; 509 struct bpf_seq_printf_buf *bufs; 510 const u64 *args = data; 511 512 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); 513 if (WARN_ON_ONCE(buf_used > 1)) { 514 err = -EBUSY; 515 goto out; 516 } 517 518 bufs = this_cpu_ptr(&bpf_seq_printf_buf); 519 520 /* 521 * bpf_check()->check_func_arg()->check_stack_boundary() 522 * guarantees that fmt points to bpf program stack, 523 * fmt_size bytes of it were initialized and fmt_size > 0 524 */ 525 if (fmt[--fmt_size] != 0) 526 goto out; 527 528 if (data_len & 7) 529 goto out; 530 531 for (i = 0; i < fmt_size; i++) { 532 if (fmt[i] == '%') { 533 if (fmt[i + 1] == '%') 534 i++; 535 else if (!data || !data_len) 536 goto out; 537 } 538 } 539 540 num_args = data_len / 8; 541 542 /* check format string for allowed specifiers */ 543 for (i = 0; i < fmt_size; i++) { 544 /* only printable ascii for now. */ 545 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 546 err = -EINVAL; 547 goto out; 548 } 549 550 if (fmt[i] != '%') 551 continue; 552 553 if (fmt[i + 1] == '%') { 554 i++; 555 continue; 556 } 557 558 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { 559 err = -E2BIG; 560 goto out; 561 } 562 563 if (fmt_cnt >= num_args) { 564 err = -EINVAL; 565 goto out; 566 } 567 568 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 569 i++; 570 571 /* skip optional "[0 +-][num]" width formating field */ 572 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 573 fmt[i] == ' ') 574 i++; 575 if (fmt[i] >= '1' && fmt[i] <= '9') { 576 i++; 577 while (fmt[i] >= '0' && fmt[i] <= '9') 578 i++; 579 } 580 581 if (fmt[i] == 's') { 582 /* try our best to copy */ 583 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 584 err = -E2BIG; 585 goto out; 586 } 587 588 err = strncpy_from_unsafe_strict(bufs->buf[memcpy_cnt], 589 (void *) (long) args[fmt_cnt], 590 MAX_SEQ_PRINTF_STR_LEN); 591 if (err < 0) 592 bufs->buf[memcpy_cnt][0] = '\0'; 593 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 594 595 fmt_cnt++; 596 memcpy_cnt++; 597 continue; 598 } 599 600 if (fmt[i] == 'p') { 601 if (fmt[i + 1] == 0 || 602 fmt[i + 1] == 'K' || 603 fmt[i + 1] == 'x') { 604 /* just kernel pointers */ 605 params[fmt_cnt] = args[fmt_cnt]; 606 fmt_cnt++; 607 continue; 608 } 609 610 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 611 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { 612 err = -EINVAL; 613 goto out; 614 } 615 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { 616 err = -EINVAL; 617 goto out; 618 } 619 620 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 621 err = -E2BIG; 622 goto out; 623 } 624 625 626 copy_size = (fmt[i + 2] == '4') ? 4 : 16; 627 628 err = probe_kernel_read(bufs->buf[memcpy_cnt], 629 (void *) (long) args[fmt_cnt], 630 copy_size); 631 if (err < 0) 632 memset(bufs->buf[memcpy_cnt], 0, copy_size); 633 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 634 635 i += 2; 636 fmt_cnt++; 637 memcpy_cnt++; 638 continue; 639 } 640 641 if (fmt[i] == 'l') { 642 i++; 643 if (fmt[i] == 'l') 644 i++; 645 } 646 647 if (fmt[i] != 'i' && fmt[i] != 'd' && 648 fmt[i] != 'u' && fmt[i] != 'x') { 649 err = -EINVAL; 650 goto out; 651 } 652 653 params[fmt_cnt] = args[fmt_cnt]; 654 fmt_cnt++; 655 } 656 657 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give 658 * all of them to seq_printf(). 659 */ 660 seq_printf(m, fmt, params[0], params[1], params[2], params[3], 661 params[4], params[5], params[6], params[7], params[8], 662 params[9], params[10], params[11]); 663 664 err = seq_has_overflowed(m) ? -EOVERFLOW : 0; 665 out: 666 this_cpu_dec(bpf_seq_printf_buf_used); 667 return err; 668 } 669 670 static int bpf_seq_printf_btf_ids[5]; 671 static const struct bpf_func_proto bpf_seq_printf_proto = { 672 .func = bpf_seq_printf, 673 .gpl_only = true, 674 .ret_type = RET_INTEGER, 675 .arg1_type = ARG_PTR_TO_BTF_ID, 676 .arg2_type = ARG_PTR_TO_MEM, 677 .arg3_type = ARG_CONST_SIZE, 678 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 679 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 680 .btf_id = bpf_seq_printf_btf_ids, 681 }; 682 683 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 684 { 685 return seq_write(m, data, len) ? -EOVERFLOW : 0; 686 } 687 688 static int bpf_seq_write_btf_ids[5]; 689 static const struct bpf_func_proto bpf_seq_write_proto = { 690 .func = bpf_seq_write, 691 .gpl_only = true, 692 .ret_type = RET_INTEGER, 693 .arg1_type = ARG_PTR_TO_BTF_ID, 694 .arg2_type = ARG_PTR_TO_MEM, 695 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 696 .btf_id = bpf_seq_write_btf_ids, 697 }; 698 699 static __always_inline int 700 get_map_perf_counter(struct bpf_map *map, u64 flags, 701 u64 *value, u64 *enabled, u64 *running) 702 { 703 struct bpf_array *array = container_of(map, struct bpf_array, map); 704 unsigned int cpu = smp_processor_id(); 705 u64 index = flags & BPF_F_INDEX_MASK; 706 struct bpf_event_entry *ee; 707 708 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 709 return -EINVAL; 710 if (index == BPF_F_CURRENT_CPU) 711 index = cpu; 712 if (unlikely(index >= array->map.max_entries)) 713 return -E2BIG; 714 715 ee = READ_ONCE(array->ptrs[index]); 716 if (!ee) 717 return -ENOENT; 718 719 return perf_event_read_local(ee->event, value, enabled, running); 720 } 721 722 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 723 { 724 u64 value = 0; 725 int err; 726 727 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 728 /* 729 * this api is ugly since we miss [-22..-2] range of valid 730 * counter values, but that's uapi 731 */ 732 if (err) 733 return err; 734 return value; 735 } 736 737 static const struct bpf_func_proto bpf_perf_event_read_proto = { 738 .func = bpf_perf_event_read, 739 .gpl_only = true, 740 .ret_type = RET_INTEGER, 741 .arg1_type = ARG_CONST_MAP_PTR, 742 .arg2_type = ARG_ANYTHING, 743 }; 744 745 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 746 struct bpf_perf_event_value *, buf, u32, size) 747 { 748 int err = -EINVAL; 749 750 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 751 goto clear; 752 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 753 &buf->running); 754 if (unlikely(err)) 755 goto clear; 756 return 0; 757 clear: 758 memset(buf, 0, size); 759 return err; 760 } 761 762 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 763 .func = bpf_perf_event_read_value, 764 .gpl_only = true, 765 .ret_type = RET_INTEGER, 766 .arg1_type = ARG_CONST_MAP_PTR, 767 .arg2_type = ARG_ANYTHING, 768 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 769 .arg4_type = ARG_CONST_SIZE, 770 }; 771 772 static __always_inline u64 773 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 774 u64 flags, struct perf_sample_data *sd) 775 { 776 struct bpf_array *array = container_of(map, struct bpf_array, map); 777 unsigned int cpu = smp_processor_id(); 778 u64 index = flags & BPF_F_INDEX_MASK; 779 struct bpf_event_entry *ee; 780 struct perf_event *event; 781 782 if (index == BPF_F_CURRENT_CPU) 783 index = cpu; 784 if (unlikely(index >= array->map.max_entries)) 785 return -E2BIG; 786 787 ee = READ_ONCE(array->ptrs[index]); 788 if (!ee) 789 return -ENOENT; 790 791 event = ee->event; 792 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 793 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 794 return -EINVAL; 795 796 if (unlikely(event->oncpu != cpu)) 797 return -EOPNOTSUPP; 798 799 return perf_event_output(event, sd, regs); 800 } 801 802 /* 803 * Support executing tracepoints in normal, irq, and nmi context that each call 804 * bpf_perf_event_output 805 */ 806 struct bpf_trace_sample_data { 807 struct perf_sample_data sds[3]; 808 }; 809 810 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 811 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 812 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 813 u64, flags, void *, data, u64, size) 814 { 815 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 816 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 817 struct perf_raw_record raw = { 818 .frag = { 819 .size = size, 820 .data = data, 821 }, 822 }; 823 struct perf_sample_data *sd; 824 int err; 825 826 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 827 err = -EBUSY; 828 goto out; 829 } 830 831 sd = &sds->sds[nest_level - 1]; 832 833 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 834 err = -EINVAL; 835 goto out; 836 } 837 838 perf_sample_data_init(sd, 0, 0); 839 sd->raw = &raw; 840 841 err = __bpf_perf_event_output(regs, map, flags, sd); 842 843 out: 844 this_cpu_dec(bpf_trace_nest_level); 845 return err; 846 } 847 848 static const struct bpf_func_proto bpf_perf_event_output_proto = { 849 .func = bpf_perf_event_output, 850 .gpl_only = true, 851 .ret_type = RET_INTEGER, 852 .arg1_type = ARG_PTR_TO_CTX, 853 .arg2_type = ARG_CONST_MAP_PTR, 854 .arg3_type = ARG_ANYTHING, 855 .arg4_type = ARG_PTR_TO_MEM, 856 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 857 }; 858 859 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 860 struct bpf_nested_pt_regs { 861 struct pt_regs regs[3]; 862 }; 863 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 864 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 865 866 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 867 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 868 { 869 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 870 struct perf_raw_frag frag = { 871 .copy = ctx_copy, 872 .size = ctx_size, 873 .data = ctx, 874 }; 875 struct perf_raw_record raw = { 876 .frag = { 877 { 878 .next = ctx_size ? &frag : NULL, 879 }, 880 .size = meta_size, 881 .data = meta, 882 }, 883 }; 884 struct perf_sample_data *sd; 885 struct pt_regs *regs; 886 u64 ret; 887 888 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 889 ret = -EBUSY; 890 goto out; 891 } 892 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 893 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 894 895 perf_fetch_caller_regs(regs); 896 perf_sample_data_init(sd, 0, 0); 897 sd->raw = &raw; 898 899 ret = __bpf_perf_event_output(regs, map, flags, sd); 900 out: 901 this_cpu_dec(bpf_event_output_nest_level); 902 return ret; 903 } 904 905 BPF_CALL_0(bpf_get_current_task) 906 { 907 return (long) current; 908 } 909 910 const struct bpf_func_proto bpf_get_current_task_proto = { 911 .func = bpf_get_current_task, 912 .gpl_only = true, 913 .ret_type = RET_INTEGER, 914 }; 915 916 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 917 { 918 struct bpf_array *array = container_of(map, struct bpf_array, map); 919 struct cgroup *cgrp; 920 921 if (unlikely(idx >= array->map.max_entries)) 922 return -E2BIG; 923 924 cgrp = READ_ONCE(array->ptrs[idx]); 925 if (unlikely(!cgrp)) 926 return -EAGAIN; 927 928 return task_under_cgroup_hierarchy(current, cgrp); 929 } 930 931 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 932 .func = bpf_current_task_under_cgroup, 933 .gpl_only = false, 934 .ret_type = RET_INTEGER, 935 .arg1_type = ARG_CONST_MAP_PTR, 936 .arg2_type = ARG_ANYTHING, 937 }; 938 939 struct send_signal_irq_work { 940 struct irq_work irq_work; 941 struct task_struct *task; 942 u32 sig; 943 enum pid_type type; 944 }; 945 946 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 947 948 static void do_bpf_send_signal(struct irq_work *entry) 949 { 950 struct send_signal_irq_work *work; 951 952 work = container_of(entry, struct send_signal_irq_work, irq_work); 953 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 954 } 955 956 static int bpf_send_signal_common(u32 sig, enum pid_type type) 957 { 958 struct send_signal_irq_work *work = NULL; 959 960 /* Similar to bpf_probe_write_user, task needs to be 961 * in a sound condition and kernel memory access be 962 * permitted in order to send signal to the current 963 * task. 964 */ 965 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 966 return -EPERM; 967 if (unlikely(uaccess_kernel())) 968 return -EPERM; 969 if (unlikely(!nmi_uaccess_okay())) 970 return -EPERM; 971 972 if (irqs_disabled()) { 973 /* Do an early check on signal validity. Otherwise, 974 * the error is lost in deferred irq_work. 975 */ 976 if (unlikely(!valid_signal(sig))) 977 return -EINVAL; 978 979 work = this_cpu_ptr(&send_signal_work); 980 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) 981 return -EBUSY; 982 983 /* Add the current task, which is the target of sending signal, 984 * to the irq_work. The current task may change when queued 985 * irq works get executed. 986 */ 987 work->task = current; 988 work->sig = sig; 989 work->type = type; 990 irq_work_queue(&work->irq_work); 991 return 0; 992 } 993 994 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 995 } 996 997 BPF_CALL_1(bpf_send_signal, u32, sig) 998 { 999 return bpf_send_signal_common(sig, PIDTYPE_TGID); 1000 } 1001 1002 static const struct bpf_func_proto bpf_send_signal_proto = { 1003 .func = bpf_send_signal, 1004 .gpl_only = false, 1005 .ret_type = RET_INTEGER, 1006 .arg1_type = ARG_ANYTHING, 1007 }; 1008 1009 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 1010 { 1011 return bpf_send_signal_common(sig, PIDTYPE_PID); 1012 } 1013 1014 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 1015 .func = bpf_send_signal_thread, 1016 .gpl_only = false, 1017 .ret_type = RET_INTEGER, 1018 .arg1_type = ARG_ANYTHING, 1019 }; 1020 1021 const struct bpf_func_proto * 1022 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1023 { 1024 switch (func_id) { 1025 case BPF_FUNC_map_lookup_elem: 1026 return &bpf_map_lookup_elem_proto; 1027 case BPF_FUNC_map_update_elem: 1028 return &bpf_map_update_elem_proto; 1029 case BPF_FUNC_map_delete_elem: 1030 return &bpf_map_delete_elem_proto; 1031 case BPF_FUNC_map_push_elem: 1032 return &bpf_map_push_elem_proto; 1033 case BPF_FUNC_map_pop_elem: 1034 return &bpf_map_pop_elem_proto; 1035 case BPF_FUNC_map_peek_elem: 1036 return &bpf_map_peek_elem_proto; 1037 case BPF_FUNC_ktime_get_ns: 1038 return &bpf_ktime_get_ns_proto; 1039 case BPF_FUNC_ktime_get_boot_ns: 1040 return &bpf_ktime_get_boot_ns_proto; 1041 case BPF_FUNC_tail_call: 1042 return &bpf_tail_call_proto; 1043 case BPF_FUNC_get_current_pid_tgid: 1044 return &bpf_get_current_pid_tgid_proto; 1045 case BPF_FUNC_get_current_task: 1046 return &bpf_get_current_task_proto; 1047 case BPF_FUNC_get_current_uid_gid: 1048 return &bpf_get_current_uid_gid_proto; 1049 case BPF_FUNC_get_current_comm: 1050 return &bpf_get_current_comm_proto; 1051 case BPF_FUNC_trace_printk: 1052 return bpf_get_trace_printk_proto(); 1053 case BPF_FUNC_get_smp_processor_id: 1054 return &bpf_get_smp_processor_id_proto; 1055 case BPF_FUNC_get_numa_node_id: 1056 return &bpf_get_numa_node_id_proto; 1057 case BPF_FUNC_perf_event_read: 1058 return &bpf_perf_event_read_proto; 1059 case BPF_FUNC_probe_write_user: 1060 return bpf_get_probe_write_proto(); 1061 case BPF_FUNC_current_task_under_cgroup: 1062 return &bpf_current_task_under_cgroup_proto; 1063 case BPF_FUNC_get_prandom_u32: 1064 return &bpf_get_prandom_u32_proto; 1065 case BPF_FUNC_probe_read_user: 1066 return &bpf_probe_read_user_proto; 1067 case BPF_FUNC_probe_read_kernel: 1068 return &bpf_probe_read_kernel_proto; 1069 case BPF_FUNC_probe_read_user_str: 1070 return &bpf_probe_read_user_str_proto; 1071 case BPF_FUNC_probe_read_kernel_str: 1072 return &bpf_probe_read_kernel_str_proto; 1073 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1074 case BPF_FUNC_probe_read: 1075 return &bpf_probe_read_compat_proto; 1076 case BPF_FUNC_probe_read_str: 1077 return &bpf_probe_read_compat_str_proto; 1078 #endif 1079 #ifdef CONFIG_CGROUPS 1080 case BPF_FUNC_get_current_cgroup_id: 1081 return &bpf_get_current_cgroup_id_proto; 1082 #endif 1083 case BPF_FUNC_send_signal: 1084 return &bpf_send_signal_proto; 1085 case BPF_FUNC_send_signal_thread: 1086 return &bpf_send_signal_thread_proto; 1087 case BPF_FUNC_perf_event_read_value: 1088 return &bpf_perf_event_read_value_proto; 1089 case BPF_FUNC_get_ns_current_pid_tgid: 1090 return &bpf_get_ns_current_pid_tgid_proto; 1091 case BPF_FUNC_ringbuf_output: 1092 return &bpf_ringbuf_output_proto; 1093 case BPF_FUNC_ringbuf_reserve: 1094 return &bpf_ringbuf_reserve_proto; 1095 case BPF_FUNC_ringbuf_submit: 1096 return &bpf_ringbuf_submit_proto; 1097 case BPF_FUNC_ringbuf_discard: 1098 return &bpf_ringbuf_discard_proto; 1099 case BPF_FUNC_ringbuf_query: 1100 return &bpf_ringbuf_query_proto; 1101 default: 1102 return NULL; 1103 } 1104 } 1105 1106 static const struct bpf_func_proto * 1107 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1108 { 1109 switch (func_id) { 1110 case BPF_FUNC_perf_event_output: 1111 return &bpf_perf_event_output_proto; 1112 case BPF_FUNC_get_stackid: 1113 return &bpf_get_stackid_proto; 1114 case BPF_FUNC_get_stack: 1115 return &bpf_get_stack_proto; 1116 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1117 case BPF_FUNC_override_return: 1118 return &bpf_override_return_proto; 1119 #endif 1120 default: 1121 return bpf_tracing_func_proto(func_id, prog); 1122 } 1123 } 1124 1125 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1126 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1127 const struct bpf_prog *prog, 1128 struct bpf_insn_access_aux *info) 1129 { 1130 if (off < 0 || off >= sizeof(struct pt_regs)) 1131 return false; 1132 if (type != BPF_READ) 1133 return false; 1134 if (off % size != 0) 1135 return false; 1136 /* 1137 * Assertion for 32 bit to make sure last 8 byte access 1138 * (BPF_DW) to the last 4 byte member is disallowed. 1139 */ 1140 if (off + size > sizeof(struct pt_regs)) 1141 return false; 1142 1143 return true; 1144 } 1145 1146 const struct bpf_verifier_ops kprobe_verifier_ops = { 1147 .get_func_proto = kprobe_prog_func_proto, 1148 .is_valid_access = kprobe_prog_is_valid_access, 1149 }; 1150 1151 const struct bpf_prog_ops kprobe_prog_ops = { 1152 }; 1153 1154 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1155 u64, flags, void *, data, u64, size) 1156 { 1157 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1158 1159 /* 1160 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1161 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1162 * from there and call the same bpf_perf_event_output() helper inline. 1163 */ 1164 return ____bpf_perf_event_output(regs, map, flags, data, size); 1165 } 1166 1167 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1168 .func = bpf_perf_event_output_tp, 1169 .gpl_only = true, 1170 .ret_type = RET_INTEGER, 1171 .arg1_type = ARG_PTR_TO_CTX, 1172 .arg2_type = ARG_CONST_MAP_PTR, 1173 .arg3_type = ARG_ANYTHING, 1174 .arg4_type = ARG_PTR_TO_MEM, 1175 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1176 }; 1177 1178 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1179 u64, flags) 1180 { 1181 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1182 1183 /* 1184 * Same comment as in bpf_perf_event_output_tp(), only that this time 1185 * the other helper's function body cannot be inlined due to being 1186 * external, thus we need to call raw helper function. 1187 */ 1188 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1189 flags, 0, 0); 1190 } 1191 1192 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1193 .func = bpf_get_stackid_tp, 1194 .gpl_only = true, 1195 .ret_type = RET_INTEGER, 1196 .arg1_type = ARG_PTR_TO_CTX, 1197 .arg2_type = ARG_CONST_MAP_PTR, 1198 .arg3_type = ARG_ANYTHING, 1199 }; 1200 1201 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1202 u64, flags) 1203 { 1204 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1205 1206 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1207 (unsigned long) size, flags, 0); 1208 } 1209 1210 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1211 .func = bpf_get_stack_tp, 1212 .gpl_only = true, 1213 .ret_type = RET_INTEGER, 1214 .arg1_type = ARG_PTR_TO_CTX, 1215 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1216 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1217 .arg4_type = ARG_ANYTHING, 1218 }; 1219 1220 static const struct bpf_func_proto * 1221 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1222 { 1223 switch (func_id) { 1224 case BPF_FUNC_perf_event_output: 1225 return &bpf_perf_event_output_proto_tp; 1226 case BPF_FUNC_get_stackid: 1227 return &bpf_get_stackid_proto_tp; 1228 case BPF_FUNC_get_stack: 1229 return &bpf_get_stack_proto_tp; 1230 default: 1231 return bpf_tracing_func_proto(func_id, prog); 1232 } 1233 } 1234 1235 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1236 const struct bpf_prog *prog, 1237 struct bpf_insn_access_aux *info) 1238 { 1239 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1240 return false; 1241 if (type != BPF_READ) 1242 return false; 1243 if (off % size != 0) 1244 return false; 1245 1246 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1247 return true; 1248 } 1249 1250 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1251 .get_func_proto = tp_prog_func_proto, 1252 .is_valid_access = tp_prog_is_valid_access, 1253 }; 1254 1255 const struct bpf_prog_ops tracepoint_prog_ops = { 1256 }; 1257 1258 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1259 struct bpf_perf_event_value *, buf, u32, size) 1260 { 1261 int err = -EINVAL; 1262 1263 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1264 goto clear; 1265 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1266 &buf->running); 1267 if (unlikely(err)) 1268 goto clear; 1269 return 0; 1270 clear: 1271 memset(buf, 0, size); 1272 return err; 1273 } 1274 1275 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1276 .func = bpf_perf_prog_read_value, 1277 .gpl_only = true, 1278 .ret_type = RET_INTEGER, 1279 .arg1_type = ARG_PTR_TO_CTX, 1280 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1281 .arg3_type = ARG_CONST_SIZE, 1282 }; 1283 1284 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1285 void *, buf, u32, size, u64, flags) 1286 { 1287 #ifndef CONFIG_X86 1288 return -ENOENT; 1289 #else 1290 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1291 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1292 u32 to_copy; 1293 1294 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1295 return -EINVAL; 1296 1297 if (unlikely(!br_stack)) 1298 return -EINVAL; 1299 1300 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1301 return br_stack->nr * br_entry_size; 1302 1303 if (!buf || (size % br_entry_size != 0)) 1304 return -EINVAL; 1305 1306 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1307 memcpy(buf, br_stack->entries, to_copy); 1308 1309 return to_copy; 1310 #endif 1311 } 1312 1313 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1314 .func = bpf_read_branch_records, 1315 .gpl_only = true, 1316 .ret_type = RET_INTEGER, 1317 .arg1_type = ARG_PTR_TO_CTX, 1318 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1319 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1320 .arg4_type = ARG_ANYTHING, 1321 }; 1322 1323 static const struct bpf_func_proto * 1324 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1325 { 1326 switch (func_id) { 1327 case BPF_FUNC_perf_event_output: 1328 return &bpf_perf_event_output_proto_tp; 1329 case BPF_FUNC_get_stackid: 1330 return &bpf_get_stackid_proto_tp; 1331 case BPF_FUNC_get_stack: 1332 return &bpf_get_stack_proto_tp; 1333 case BPF_FUNC_perf_prog_read_value: 1334 return &bpf_perf_prog_read_value_proto; 1335 case BPF_FUNC_read_branch_records: 1336 return &bpf_read_branch_records_proto; 1337 default: 1338 return bpf_tracing_func_proto(func_id, prog); 1339 } 1340 } 1341 1342 /* 1343 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1344 * to avoid potential recursive reuse issue when/if tracepoints are added 1345 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1346 * 1347 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1348 * in normal, irq, and nmi context. 1349 */ 1350 struct bpf_raw_tp_regs { 1351 struct pt_regs regs[3]; 1352 }; 1353 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1354 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1355 static struct pt_regs *get_bpf_raw_tp_regs(void) 1356 { 1357 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1358 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1359 1360 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1361 this_cpu_dec(bpf_raw_tp_nest_level); 1362 return ERR_PTR(-EBUSY); 1363 } 1364 1365 return &tp_regs->regs[nest_level - 1]; 1366 } 1367 1368 static void put_bpf_raw_tp_regs(void) 1369 { 1370 this_cpu_dec(bpf_raw_tp_nest_level); 1371 } 1372 1373 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1374 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1375 { 1376 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1377 int ret; 1378 1379 if (IS_ERR(regs)) 1380 return PTR_ERR(regs); 1381 1382 perf_fetch_caller_regs(regs); 1383 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1384 1385 put_bpf_raw_tp_regs(); 1386 return ret; 1387 } 1388 1389 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1390 .func = bpf_perf_event_output_raw_tp, 1391 .gpl_only = true, 1392 .ret_type = RET_INTEGER, 1393 .arg1_type = ARG_PTR_TO_CTX, 1394 .arg2_type = ARG_CONST_MAP_PTR, 1395 .arg3_type = ARG_ANYTHING, 1396 .arg4_type = ARG_PTR_TO_MEM, 1397 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1398 }; 1399 1400 extern const struct bpf_func_proto bpf_skb_output_proto; 1401 extern const struct bpf_func_proto bpf_xdp_output_proto; 1402 1403 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1404 struct bpf_map *, map, u64, flags) 1405 { 1406 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1407 int ret; 1408 1409 if (IS_ERR(regs)) 1410 return PTR_ERR(regs); 1411 1412 perf_fetch_caller_regs(regs); 1413 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1414 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1415 flags, 0, 0); 1416 put_bpf_raw_tp_regs(); 1417 return ret; 1418 } 1419 1420 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1421 .func = bpf_get_stackid_raw_tp, 1422 .gpl_only = true, 1423 .ret_type = RET_INTEGER, 1424 .arg1_type = ARG_PTR_TO_CTX, 1425 .arg2_type = ARG_CONST_MAP_PTR, 1426 .arg3_type = ARG_ANYTHING, 1427 }; 1428 1429 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1430 void *, buf, u32, size, u64, flags) 1431 { 1432 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1433 int ret; 1434 1435 if (IS_ERR(regs)) 1436 return PTR_ERR(regs); 1437 1438 perf_fetch_caller_regs(regs); 1439 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1440 (unsigned long) size, flags, 0); 1441 put_bpf_raw_tp_regs(); 1442 return ret; 1443 } 1444 1445 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1446 .func = bpf_get_stack_raw_tp, 1447 .gpl_only = true, 1448 .ret_type = RET_INTEGER, 1449 .arg1_type = ARG_PTR_TO_CTX, 1450 .arg2_type = ARG_PTR_TO_MEM, 1451 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1452 .arg4_type = ARG_ANYTHING, 1453 }; 1454 1455 static const struct bpf_func_proto * 1456 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1457 { 1458 switch (func_id) { 1459 case BPF_FUNC_perf_event_output: 1460 return &bpf_perf_event_output_proto_raw_tp; 1461 case BPF_FUNC_get_stackid: 1462 return &bpf_get_stackid_proto_raw_tp; 1463 case BPF_FUNC_get_stack: 1464 return &bpf_get_stack_proto_raw_tp; 1465 default: 1466 return bpf_tracing_func_proto(func_id, prog); 1467 } 1468 } 1469 1470 const struct bpf_func_proto * 1471 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1472 { 1473 switch (func_id) { 1474 #ifdef CONFIG_NET 1475 case BPF_FUNC_skb_output: 1476 return &bpf_skb_output_proto; 1477 case BPF_FUNC_xdp_output: 1478 return &bpf_xdp_output_proto; 1479 #endif 1480 case BPF_FUNC_seq_printf: 1481 return prog->expected_attach_type == BPF_TRACE_ITER ? 1482 &bpf_seq_printf_proto : 1483 NULL; 1484 case BPF_FUNC_seq_write: 1485 return prog->expected_attach_type == BPF_TRACE_ITER ? 1486 &bpf_seq_write_proto : 1487 NULL; 1488 default: 1489 return raw_tp_prog_func_proto(func_id, prog); 1490 } 1491 } 1492 1493 static bool raw_tp_prog_is_valid_access(int off, int size, 1494 enum bpf_access_type type, 1495 const struct bpf_prog *prog, 1496 struct bpf_insn_access_aux *info) 1497 { 1498 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1499 return false; 1500 if (type != BPF_READ) 1501 return false; 1502 if (off % size != 0) 1503 return false; 1504 return true; 1505 } 1506 1507 static bool tracing_prog_is_valid_access(int off, int size, 1508 enum bpf_access_type type, 1509 const struct bpf_prog *prog, 1510 struct bpf_insn_access_aux *info) 1511 { 1512 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1513 return false; 1514 if (type != BPF_READ) 1515 return false; 1516 if (off % size != 0) 1517 return false; 1518 return btf_ctx_access(off, size, type, prog, info); 1519 } 1520 1521 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1522 const union bpf_attr *kattr, 1523 union bpf_attr __user *uattr) 1524 { 1525 return -ENOTSUPP; 1526 } 1527 1528 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1529 .get_func_proto = raw_tp_prog_func_proto, 1530 .is_valid_access = raw_tp_prog_is_valid_access, 1531 }; 1532 1533 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1534 }; 1535 1536 const struct bpf_verifier_ops tracing_verifier_ops = { 1537 .get_func_proto = tracing_prog_func_proto, 1538 .is_valid_access = tracing_prog_is_valid_access, 1539 }; 1540 1541 const struct bpf_prog_ops tracing_prog_ops = { 1542 .test_run = bpf_prog_test_run_tracing, 1543 }; 1544 1545 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1546 enum bpf_access_type type, 1547 const struct bpf_prog *prog, 1548 struct bpf_insn_access_aux *info) 1549 { 1550 if (off == 0) { 1551 if (size != sizeof(u64) || type != BPF_READ) 1552 return false; 1553 info->reg_type = PTR_TO_TP_BUFFER; 1554 } 1555 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1556 } 1557 1558 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1559 .get_func_proto = raw_tp_prog_func_proto, 1560 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1561 }; 1562 1563 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1564 }; 1565 1566 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1567 const struct bpf_prog *prog, 1568 struct bpf_insn_access_aux *info) 1569 { 1570 const int size_u64 = sizeof(u64); 1571 1572 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1573 return false; 1574 if (type != BPF_READ) 1575 return false; 1576 if (off % size != 0) { 1577 if (sizeof(unsigned long) != 4) 1578 return false; 1579 if (size != 8) 1580 return false; 1581 if (off % size != 4) 1582 return false; 1583 } 1584 1585 switch (off) { 1586 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1587 bpf_ctx_record_field_size(info, size_u64); 1588 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1589 return false; 1590 break; 1591 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1592 bpf_ctx_record_field_size(info, size_u64); 1593 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1594 return false; 1595 break; 1596 default: 1597 if (size != sizeof(long)) 1598 return false; 1599 } 1600 1601 return true; 1602 } 1603 1604 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1605 const struct bpf_insn *si, 1606 struct bpf_insn *insn_buf, 1607 struct bpf_prog *prog, u32 *target_size) 1608 { 1609 struct bpf_insn *insn = insn_buf; 1610 1611 switch (si->off) { 1612 case offsetof(struct bpf_perf_event_data, sample_period): 1613 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1614 data), si->dst_reg, si->src_reg, 1615 offsetof(struct bpf_perf_event_data_kern, data)); 1616 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1617 bpf_target_off(struct perf_sample_data, period, 8, 1618 target_size)); 1619 break; 1620 case offsetof(struct bpf_perf_event_data, addr): 1621 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1622 data), si->dst_reg, si->src_reg, 1623 offsetof(struct bpf_perf_event_data_kern, data)); 1624 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1625 bpf_target_off(struct perf_sample_data, addr, 8, 1626 target_size)); 1627 break; 1628 default: 1629 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1630 regs), si->dst_reg, si->src_reg, 1631 offsetof(struct bpf_perf_event_data_kern, regs)); 1632 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1633 si->off); 1634 break; 1635 } 1636 1637 return insn - insn_buf; 1638 } 1639 1640 const struct bpf_verifier_ops perf_event_verifier_ops = { 1641 .get_func_proto = pe_prog_func_proto, 1642 .is_valid_access = pe_prog_is_valid_access, 1643 .convert_ctx_access = pe_prog_convert_ctx_access, 1644 }; 1645 1646 const struct bpf_prog_ops perf_event_prog_ops = { 1647 }; 1648 1649 static DEFINE_MUTEX(bpf_event_mutex); 1650 1651 #define BPF_TRACE_MAX_PROGS 64 1652 1653 int perf_event_attach_bpf_prog(struct perf_event *event, 1654 struct bpf_prog *prog) 1655 { 1656 struct bpf_prog_array *old_array; 1657 struct bpf_prog_array *new_array; 1658 int ret = -EEXIST; 1659 1660 /* 1661 * Kprobe override only works if they are on the function entry, 1662 * and only if they are on the opt-in list. 1663 */ 1664 if (prog->kprobe_override && 1665 (!trace_kprobe_on_func_entry(event->tp_event) || 1666 !trace_kprobe_error_injectable(event->tp_event))) 1667 return -EINVAL; 1668 1669 mutex_lock(&bpf_event_mutex); 1670 1671 if (event->prog) 1672 goto unlock; 1673 1674 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1675 if (old_array && 1676 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1677 ret = -E2BIG; 1678 goto unlock; 1679 } 1680 1681 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1682 if (ret < 0) 1683 goto unlock; 1684 1685 /* set the new array to event->tp_event and set event->prog */ 1686 event->prog = prog; 1687 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1688 bpf_prog_array_free(old_array); 1689 1690 unlock: 1691 mutex_unlock(&bpf_event_mutex); 1692 return ret; 1693 } 1694 1695 void perf_event_detach_bpf_prog(struct perf_event *event) 1696 { 1697 struct bpf_prog_array *old_array; 1698 struct bpf_prog_array *new_array; 1699 int ret; 1700 1701 mutex_lock(&bpf_event_mutex); 1702 1703 if (!event->prog) 1704 goto unlock; 1705 1706 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1707 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1708 if (ret == -ENOENT) 1709 goto unlock; 1710 if (ret < 0) { 1711 bpf_prog_array_delete_safe(old_array, event->prog); 1712 } else { 1713 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1714 bpf_prog_array_free(old_array); 1715 } 1716 1717 bpf_prog_put(event->prog); 1718 event->prog = NULL; 1719 1720 unlock: 1721 mutex_unlock(&bpf_event_mutex); 1722 } 1723 1724 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1725 { 1726 struct perf_event_query_bpf __user *uquery = info; 1727 struct perf_event_query_bpf query = {}; 1728 struct bpf_prog_array *progs; 1729 u32 *ids, prog_cnt, ids_len; 1730 int ret; 1731 1732 if (!perfmon_capable()) 1733 return -EPERM; 1734 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1735 return -EINVAL; 1736 if (copy_from_user(&query, uquery, sizeof(query))) 1737 return -EFAULT; 1738 1739 ids_len = query.ids_len; 1740 if (ids_len > BPF_TRACE_MAX_PROGS) 1741 return -E2BIG; 1742 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1743 if (!ids) 1744 return -ENOMEM; 1745 /* 1746 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1747 * is required when user only wants to check for uquery->prog_cnt. 1748 * There is no need to check for it since the case is handled 1749 * gracefully in bpf_prog_array_copy_info. 1750 */ 1751 1752 mutex_lock(&bpf_event_mutex); 1753 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1754 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1755 mutex_unlock(&bpf_event_mutex); 1756 1757 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1758 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1759 ret = -EFAULT; 1760 1761 kfree(ids); 1762 return ret; 1763 } 1764 1765 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1766 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1767 1768 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1769 { 1770 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1771 1772 for (; btp < __stop__bpf_raw_tp; btp++) { 1773 if (!strcmp(btp->tp->name, name)) 1774 return btp; 1775 } 1776 1777 return bpf_get_raw_tracepoint_module(name); 1778 } 1779 1780 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1781 { 1782 struct module *mod = __module_address((unsigned long)btp); 1783 1784 if (mod) 1785 module_put(mod); 1786 } 1787 1788 static __always_inline 1789 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1790 { 1791 cant_sleep(); 1792 rcu_read_lock(); 1793 (void) BPF_PROG_RUN(prog, args); 1794 rcu_read_unlock(); 1795 } 1796 1797 #define UNPACK(...) __VA_ARGS__ 1798 #define REPEAT_1(FN, DL, X, ...) FN(X) 1799 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1800 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1801 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1802 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1803 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1804 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1805 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1806 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1807 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1808 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1809 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1810 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1811 1812 #define SARG(X) u64 arg##X 1813 #define COPY(X) args[X] = arg##X 1814 1815 #define __DL_COM (,) 1816 #define __DL_SEM (;) 1817 1818 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1819 1820 #define BPF_TRACE_DEFN_x(x) \ 1821 void bpf_trace_run##x(struct bpf_prog *prog, \ 1822 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1823 { \ 1824 u64 args[x]; \ 1825 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1826 __bpf_trace_run(prog, args); \ 1827 } \ 1828 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1829 BPF_TRACE_DEFN_x(1); 1830 BPF_TRACE_DEFN_x(2); 1831 BPF_TRACE_DEFN_x(3); 1832 BPF_TRACE_DEFN_x(4); 1833 BPF_TRACE_DEFN_x(5); 1834 BPF_TRACE_DEFN_x(6); 1835 BPF_TRACE_DEFN_x(7); 1836 BPF_TRACE_DEFN_x(8); 1837 BPF_TRACE_DEFN_x(9); 1838 BPF_TRACE_DEFN_x(10); 1839 BPF_TRACE_DEFN_x(11); 1840 BPF_TRACE_DEFN_x(12); 1841 1842 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1843 { 1844 struct tracepoint *tp = btp->tp; 1845 1846 /* 1847 * check that program doesn't access arguments beyond what's 1848 * available in this tracepoint 1849 */ 1850 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1851 return -EINVAL; 1852 1853 if (prog->aux->max_tp_access > btp->writable_size) 1854 return -EINVAL; 1855 1856 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1857 } 1858 1859 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1860 { 1861 return __bpf_probe_register(btp, prog); 1862 } 1863 1864 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1865 { 1866 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1867 } 1868 1869 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1870 u32 *fd_type, const char **buf, 1871 u64 *probe_offset, u64 *probe_addr) 1872 { 1873 bool is_tracepoint, is_syscall_tp; 1874 struct bpf_prog *prog; 1875 int flags, err = 0; 1876 1877 prog = event->prog; 1878 if (!prog) 1879 return -ENOENT; 1880 1881 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1882 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1883 return -EOPNOTSUPP; 1884 1885 *prog_id = prog->aux->id; 1886 flags = event->tp_event->flags; 1887 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1888 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1889 1890 if (is_tracepoint || is_syscall_tp) { 1891 *buf = is_tracepoint ? event->tp_event->tp->name 1892 : event->tp_event->name; 1893 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1894 *probe_offset = 0x0; 1895 *probe_addr = 0x0; 1896 } else { 1897 /* kprobe/uprobe */ 1898 err = -EOPNOTSUPP; 1899 #ifdef CONFIG_KPROBE_EVENTS 1900 if (flags & TRACE_EVENT_FL_KPROBE) 1901 err = bpf_get_kprobe_info(event, fd_type, buf, 1902 probe_offset, probe_addr, 1903 event->attr.type == PERF_TYPE_TRACEPOINT); 1904 #endif 1905 #ifdef CONFIG_UPROBE_EVENTS 1906 if (flags & TRACE_EVENT_FL_UPROBE) 1907 err = bpf_get_uprobe_info(event, fd_type, buf, 1908 probe_offset, 1909 event->attr.type == PERF_TYPE_TRACEPOINT); 1910 #endif 1911 } 1912 1913 return err; 1914 } 1915 1916 static int __init send_signal_irq_work_init(void) 1917 { 1918 int cpu; 1919 struct send_signal_irq_work *work; 1920 1921 for_each_possible_cpu(cpu) { 1922 work = per_cpu_ptr(&send_signal_work, cpu); 1923 init_irq_work(&work->irq_work, do_bpf_send_signal); 1924 } 1925 return 0; 1926 } 1927 1928 subsys_initcall(send_signal_irq_work_init); 1929 1930 #ifdef CONFIG_MODULES 1931 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1932 void *module) 1933 { 1934 struct bpf_trace_module *btm, *tmp; 1935 struct module *mod = module; 1936 1937 if (mod->num_bpf_raw_events == 0 || 1938 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1939 return 0; 1940 1941 mutex_lock(&bpf_module_mutex); 1942 1943 switch (op) { 1944 case MODULE_STATE_COMING: 1945 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1946 if (btm) { 1947 btm->module = module; 1948 list_add(&btm->list, &bpf_trace_modules); 1949 } 1950 break; 1951 case MODULE_STATE_GOING: 1952 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1953 if (btm->module == module) { 1954 list_del(&btm->list); 1955 kfree(btm); 1956 break; 1957 } 1958 } 1959 break; 1960 } 1961 1962 mutex_unlock(&bpf_module_mutex); 1963 1964 return 0; 1965 } 1966 1967 static struct notifier_block bpf_module_nb = { 1968 .notifier_call = bpf_event_notify, 1969 }; 1970 1971 static int __init bpf_event_init(void) 1972 { 1973 register_module_notifier(&bpf_module_nb); 1974 return 0; 1975 } 1976 1977 fs_initcall(bpf_event_init); 1978 #endif /* CONFIG_MODULES */ 1979