1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/btf.h> 11 #include <linux/filter.h> 12 #include <linux/uaccess.h> 13 #include <linux/ctype.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/syscalls.h> 17 #include <linux/error-injection.h> 18 #include <linux/btf_ids.h> 19 20 #include <uapi/linux/bpf.h> 21 #include <uapi/linux/btf.h> 22 23 #include <asm/tlb.h> 24 25 #include "trace_probe.h" 26 #include "trace.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "bpf_trace.h" 30 31 #define bpf_event_rcu_dereference(p) \ 32 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 33 34 #ifdef CONFIG_MODULES 35 struct bpf_trace_module { 36 struct module *module; 37 struct list_head list; 38 }; 39 40 static LIST_HEAD(bpf_trace_modules); 41 static DEFINE_MUTEX(bpf_module_mutex); 42 43 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 44 { 45 struct bpf_raw_event_map *btp, *ret = NULL; 46 struct bpf_trace_module *btm; 47 unsigned int i; 48 49 mutex_lock(&bpf_module_mutex); 50 list_for_each_entry(btm, &bpf_trace_modules, list) { 51 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 52 btp = &btm->module->bpf_raw_events[i]; 53 if (!strcmp(btp->tp->name, name)) { 54 if (try_module_get(btm->module)) 55 ret = btp; 56 goto out; 57 } 58 } 59 } 60 out: 61 mutex_unlock(&bpf_module_mutex); 62 return ret; 63 } 64 #else 65 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 66 { 67 return NULL; 68 } 69 #endif /* CONFIG_MODULES */ 70 71 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 72 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 73 74 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 75 u64 flags, const struct btf **btf, 76 s32 *btf_id); 77 78 /** 79 * trace_call_bpf - invoke BPF program 80 * @call: tracepoint event 81 * @ctx: opaque context pointer 82 * 83 * kprobe handlers execute BPF programs via this helper. 84 * Can be used from static tracepoints in the future. 85 * 86 * Return: BPF programs always return an integer which is interpreted by 87 * kprobe handler as: 88 * 0 - return from kprobe (event is filtered out) 89 * 1 - store kprobe event into ring buffer 90 * Other values are reserved and currently alias to 1 91 */ 92 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 93 { 94 unsigned int ret; 95 96 if (in_nmi()) /* not supported yet */ 97 return 1; 98 99 cant_sleep(); 100 101 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 102 /* 103 * since some bpf program is already running on this cpu, 104 * don't call into another bpf program (same or different) 105 * and don't send kprobe event into ring-buffer, 106 * so return zero here 107 */ 108 ret = 0; 109 goto out; 110 } 111 112 /* 113 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 114 * to all call sites, we did a bpf_prog_array_valid() there to check 115 * whether call->prog_array is empty or not, which is 116 * a heurisitc to speed up execution. 117 * 118 * If bpf_prog_array_valid() fetched prog_array was 119 * non-NULL, we go into trace_call_bpf() and do the actual 120 * proper rcu_dereference() under RCU lock. 121 * If it turns out that prog_array is NULL then, we bail out. 122 * For the opposite, if the bpf_prog_array_valid() fetched pointer 123 * was NULL, you'll skip the prog_array with the risk of missing 124 * out of events when it was updated in between this and the 125 * rcu_dereference() which is accepted risk. 126 */ 127 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 128 129 out: 130 __this_cpu_dec(bpf_prog_active); 131 132 return ret; 133 } 134 135 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 136 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 137 { 138 regs_set_return_value(regs, rc); 139 override_function_with_return(regs); 140 return 0; 141 } 142 143 static const struct bpf_func_proto bpf_override_return_proto = { 144 .func = bpf_override_return, 145 .gpl_only = true, 146 .ret_type = RET_INTEGER, 147 .arg1_type = ARG_PTR_TO_CTX, 148 .arg2_type = ARG_ANYTHING, 149 }; 150 #endif 151 152 static __always_inline int 153 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 154 { 155 int ret; 156 157 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 158 if (unlikely(ret < 0)) 159 memset(dst, 0, size); 160 return ret; 161 } 162 163 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 164 const void __user *, unsafe_ptr) 165 { 166 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 167 } 168 169 const struct bpf_func_proto bpf_probe_read_user_proto = { 170 .func = bpf_probe_read_user, 171 .gpl_only = true, 172 .ret_type = RET_INTEGER, 173 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 174 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 175 .arg3_type = ARG_ANYTHING, 176 }; 177 178 static __always_inline int 179 bpf_probe_read_user_str_common(void *dst, u32 size, 180 const void __user *unsafe_ptr) 181 { 182 int ret; 183 184 /* 185 * NB: We rely on strncpy_from_user() not copying junk past the NUL 186 * terminator into `dst`. 187 * 188 * strncpy_from_user() does long-sized strides in the fast path. If the 189 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 190 * then there could be junk after the NUL in `dst`. If user takes `dst` 191 * and keys a hash map with it, then semantically identical strings can 192 * occupy multiple entries in the map. 193 */ 194 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 195 if (unlikely(ret < 0)) 196 memset(dst, 0, size); 197 return ret; 198 } 199 200 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 201 const void __user *, unsafe_ptr) 202 { 203 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 204 } 205 206 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 207 .func = bpf_probe_read_user_str, 208 .gpl_only = true, 209 .ret_type = RET_INTEGER, 210 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 211 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 212 .arg3_type = ARG_ANYTHING, 213 }; 214 215 static __always_inline int 216 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 217 { 218 int ret = security_locked_down(LOCKDOWN_BPF_READ); 219 220 if (unlikely(ret < 0)) 221 goto fail; 222 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 223 if (unlikely(ret < 0)) 224 goto fail; 225 return ret; 226 fail: 227 memset(dst, 0, size); 228 return ret; 229 } 230 231 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 232 const void *, unsafe_ptr) 233 { 234 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 235 } 236 237 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 238 .func = bpf_probe_read_kernel, 239 .gpl_only = true, 240 .ret_type = RET_INTEGER, 241 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 242 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 243 .arg3_type = ARG_ANYTHING, 244 }; 245 246 static __always_inline int 247 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 248 { 249 int ret = security_locked_down(LOCKDOWN_BPF_READ); 250 251 if (unlikely(ret < 0)) 252 goto fail; 253 254 /* 255 * The strncpy_from_kernel_nofault() call will likely not fill the 256 * entire buffer, but that's okay in this circumstance as we're probing 257 * arbitrary memory anyway similar to bpf_probe_read_*() and might 258 * as well probe the stack. Thus, memory is explicitly cleared 259 * only in error case, so that improper users ignoring return 260 * code altogether don't copy garbage; otherwise length of string 261 * is returned that can be used for bpf_perf_event_output() et al. 262 */ 263 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 264 if (unlikely(ret < 0)) 265 goto fail; 266 267 return ret; 268 fail: 269 memset(dst, 0, size); 270 return ret; 271 } 272 273 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 274 const void *, unsafe_ptr) 275 { 276 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 277 } 278 279 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 280 .func = bpf_probe_read_kernel_str, 281 .gpl_only = true, 282 .ret_type = RET_INTEGER, 283 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 284 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 285 .arg3_type = ARG_ANYTHING, 286 }; 287 288 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 289 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 290 const void *, unsafe_ptr) 291 { 292 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 293 return bpf_probe_read_user_common(dst, size, 294 (__force void __user *)unsafe_ptr); 295 } 296 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 297 } 298 299 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 300 .func = bpf_probe_read_compat, 301 .gpl_only = true, 302 .ret_type = RET_INTEGER, 303 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 304 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 305 .arg3_type = ARG_ANYTHING, 306 }; 307 308 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 309 const void *, unsafe_ptr) 310 { 311 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 312 return bpf_probe_read_user_str_common(dst, size, 313 (__force void __user *)unsafe_ptr); 314 } 315 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 316 } 317 318 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 319 .func = bpf_probe_read_compat_str, 320 .gpl_only = true, 321 .ret_type = RET_INTEGER, 322 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 323 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 324 .arg3_type = ARG_ANYTHING, 325 }; 326 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 327 328 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 329 u32, size) 330 { 331 /* 332 * Ensure we're in user context which is safe for the helper to 333 * run. This helper has no business in a kthread. 334 * 335 * access_ok() should prevent writing to non-user memory, but in 336 * some situations (nommu, temporary switch, etc) access_ok() does 337 * not provide enough validation, hence the check on KERNEL_DS. 338 * 339 * nmi_uaccess_okay() ensures the probe is not run in an interim 340 * state, when the task or mm are switched. This is specifically 341 * required to prevent the use of temporary mm. 342 */ 343 344 if (unlikely(in_interrupt() || 345 current->flags & (PF_KTHREAD | PF_EXITING))) 346 return -EPERM; 347 if (unlikely(uaccess_kernel())) 348 return -EPERM; 349 if (unlikely(!nmi_uaccess_okay())) 350 return -EPERM; 351 352 return copy_to_user_nofault(unsafe_ptr, src, size); 353 } 354 355 static const struct bpf_func_proto bpf_probe_write_user_proto = { 356 .func = bpf_probe_write_user, 357 .gpl_only = true, 358 .ret_type = RET_INTEGER, 359 .arg1_type = ARG_ANYTHING, 360 .arg2_type = ARG_PTR_TO_MEM, 361 .arg3_type = ARG_CONST_SIZE, 362 }; 363 364 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 365 { 366 if (!capable(CAP_SYS_ADMIN)) 367 return NULL; 368 369 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 370 current->comm, task_pid_nr(current)); 371 372 return &bpf_probe_write_user_proto; 373 } 374 375 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 376 size_t bufsz) 377 { 378 void __user *user_ptr = (__force void __user *)unsafe_ptr; 379 380 buf[0] = 0; 381 382 switch (fmt_ptype) { 383 case 's': 384 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 385 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 386 strncpy_from_user_nofault(buf, user_ptr, bufsz); 387 break; 388 } 389 fallthrough; 390 #endif 391 case 'k': 392 strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 393 break; 394 case 'u': 395 strncpy_from_user_nofault(buf, user_ptr, bufsz); 396 break; 397 } 398 } 399 400 static DEFINE_RAW_SPINLOCK(trace_printk_lock); 401 402 #define BPF_TRACE_PRINTK_SIZE 1024 403 404 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...) 405 { 406 static char buf[BPF_TRACE_PRINTK_SIZE]; 407 unsigned long flags; 408 va_list ap; 409 int ret; 410 411 raw_spin_lock_irqsave(&trace_printk_lock, flags); 412 va_start(ap, fmt); 413 ret = vsnprintf(buf, sizeof(buf), fmt, ap); 414 va_end(ap); 415 /* vsnprintf() will not append null for zero-length strings */ 416 if (ret == 0) 417 buf[0] = '\0'; 418 trace_bpf_trace_printk(buf); 419 raw_spin_unlock_irqrestore(&trace_printk_lock, flags); 420 421 return ret; 422 } 423 424 /* 425 * Only limited trace_printk() conversion specifiers allowed: 426 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s 427 */ 428 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 429 u64, arg2, u64, arg3) 430 { 431 int i, mod[3] = {}, fmt_cnt = 0; 432 char buf[64], fmt_ptype; 433 void *unsafe_ptr = NULL; 434 bool str_seen = false; 435 436 /* 437 * bpf_check()->check_func_arg()->check_stack_boundary() 438 * guarantees that fmt points to bpf program stack, 439 * fmt_size bytes of it were initialized and fmt_size > 0 440 */ 441 if (fmt[--fmt_size] != 0) 442 return -EINVAL; 443 444 /* check format string for allowed specifiers */ 445 for (i = 0; i < fmt_size; i++) { 446 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 447 return -EINVAL; 448 449 if (fmt[i] != '%') 450 continue; 451 452 if (fmt_cnt >= 3) 453 return -EINVAL; 454 455 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 456 i++; 457 if (fmt[i] == 'l') { 458 mod[fmt_cnt]++; 459 i++; 460 } else if (fmt[i] == 'p') { 461 mod[fmt_cnt]++; 462 if ((fmt[i + 1] == 'k' || 463 fmt[i + 1] == 'u') && 464 fmt[i + 2] == 's') { 465 fmt_ptype = fmt[i + 1]; 466 i += 2; 467 goto fmt_str; 468 } 469 470 if (fmt[i + 1] == 'B') { 471 i++; 472 goto fmt_next; 473 } 474 475 /* disallow any further format extensions */ 476 if (fmt[i + 1] != 0 && 477 !isspace(fmt[i + 1]) && 478 !ispunct(fmt[i + 1])) 479 return -EINVAL; 480 481 goto fmt_next; 482 } else if (fmt[i] == 's') { 483 mod[fmt_cnt]++; 484 fmt_ptype = fmt[i]; 485 fmt_str: 486 if (str_seen) 487 /* allow only one '%s' per fmt string */ 488 return -EINVAL; 489 str_seen = true; 490 491 if (fmt[i + 1] != 0 && 492 !isspace(fmt[i + 1]) && 493 !ispunct(fmt[i + 1])) 494 return -EINVAL; 495 496 switch (fmt_cnt) { 497 case 0: 498 unsafe_ptr = (void *)(long)arg1; 499 arg1 = (long)buf; 500 break; 501 case 1: 502 unsafe_ptr = (void *)(long)arg2; 503 arg2 = (long)buf; 504 break; 505 case 2: 506 unsafe_ptr = (void *)(long)arg3; 507 arg3 = (long)buf; 508 break; 509 } 510 511 bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype, 512 sizeof(buf)); 513 goto fmt_next; 514 } 515 516 if (fmt[i] == 'l') { 517 mod[fmt_cnt]++; 518 i++; 519 } 520 521 if (fmt[i] != 'i' && fmt[i] != 'd' && 522 fmt[i] != 'u' && fmt[i] != 'x') 523 return -EINVAL; 524 fmt_next: 525 fmt_cnt++; 526 } 527 528 /* Horrid workaround for getting va_list handling working with different 529 * argument type combinations generically for 32 and 64 bit archs. 530 */ 531 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 532 #define __BPF_TP(...) \ 533 bpf_do_trace_printk(fmt, ##__VA_ARGS__) 534 535 #define __BPF_ARG1_TP(...) \ 536 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 537 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 538 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 539 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 540 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 541 542 #define __BPF_ARG2_TP(...) \ 543 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 544 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 545 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 546 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 547 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 548 549 #define __BPF_ARG3_TP(...) \ 550 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 551 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 552 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 553 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 554 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 555 556 return __BPF_TP_EMIT(); 557 } 558 559 static const struct bpf_func_proto bpf_trace_printk_proto = { 560 .func = bpf_trace_printk, 561 .gpl_only = true, 562 .ret_type = RET_INTEGER, 563 .arg1_type = ARG_PTR_TO_MEM, 564 .arg2_type = ARG_CONST_SIZE, 565 }; 566 567 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 568 { 569 /* 570 * This program might be calling bpf_trace_printk, 571 * so enable the associated bpf_trace/bpf_trace_printk event. 572 * Repeat this each time as it is possible a user has 573 * disabled bpf_trace_printk events. By loading a program 574 * calling bpf_trace_printk() however the user has expressed 575 * the intent to see such events. 576 */ 577 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 578 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 579 580 return &bpf_trace_printk_proto; 581 } 582 583 #define MAX_SEQ_PRINTF_VARARGS 12 584 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 585 #define MAX_SEQ_PRINTF_STR_LEN 128 586 587 struct bpf_seq_printf_buf { 588 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; 589 }; 590 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); 591 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); 592 593 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 594 const void *, data, u32, data_len) 595 { 596 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; 597 int i, buf_used, copy_size, num_args; 598 u64 params[MAX_SEQ_PRINTF_VARARGS]; 599 struct bpf_seq_printf_buf *bufs; 600 const u64 *args = data; 601 602 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); 603 if (WARN_ON_ONCE(buf_used > 1)) { 604 err = -EBUSY; 605 goto out; 606 } 607 608 bufs = this_cpu_ptr(&bpf_seq_printf_buf); 609 610 /* 611 * bpf_check()->check_func_arg()->check_stack_boundary() 612 * guarantees that fmt points to bpf program stack, 613 * fmt_size bytes of it were initialized and fmt_size > 0 614 */ 615 if (fmt[--fmt_size] != 0) 616 goto out; 617 618 if (data_len & 7) 619 goto out; 620 621 for (i = 0; i < fmt_size; i++) { 622 if (fmt[i] == '%') { 623 if (fmt[i + 1] == '%') 624 i++; 625 else if (!data || !data_len) 626 goto out; 627 } 628 } 629 630 num_args = data_len / 8; 631 632 /* check format string for allowed specifiers */ 633 for (i = 0; i < fmt_size; i++) { 634 /* only printable ascii for now. */ 635 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 636 err = -EINVAL; 637 goto out; 638 } 639 640 if (fmt[i] != '%') 641 continue; 642 643 if (fmt[i + 1] == '%') { 644 i++; 645 continue; 646 } 647 648 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { 649 err = -E2BIG; 650 goto out; 651 } 652 653 if (fmt_cnt >= num_args) { 654 err = -EINVAL; 655 goto out; 656 } 657 658 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 659 i++; 660 661 /* skip optional "[0 +-][num]" width formating field */ 662 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 663 fmt[i] == ' ') 664 i++; 665 if (fmt[i] >= '1' && fmt[i] <= '9') { 666 i++; 667 while (fmt[i] >= '0' && fmt[i] <= '9') 668 i++; 669 } 670 671 if (fmt[i] == 's') { 672 void *unsafe_ptr; 673 674 /* try our best to copy */ 675 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 676 err = -E2BIG; 677 goto out; 678 } 679 680 unsafe_ptr = (void *)(long)args[fmt_cnt]; 681 err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt], 682 unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN); 683 if (err < 0) 684 bufs->buf[memcpy_cnt][0] = '\0'; 685 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 686 687 fmt_cnt++; 688 memcpy_cnt++; 689 continue; 690 } 691 692 if (fmt[i] == 'p') { 693 if (fmt[i + 1] == 0 || 694 fmt[i + 1] == 'K' || 695 fmt[i + 1] == 'x' || 696 fmt[i + 1] == 'B') { 697 /* just kernel pointers */ 698 params[fmt_cnt] = args[fmt_cnt]; 699 fmt_cnt++; 700 continue; 701 } 702 703 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 704 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { 705 err = -EINVAL; 706 goto out; 707 } 708 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { 709 err = -EINVAL; 710 goto out; 711 } 712 713 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { 714 err = -E2BIG; 715 goto out; 716 } 717 718 719 copy_size = (fmt[i + 2] == '4') ? 4 : 16; 720 721 err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt], 722 (void *) (long) args[fmt_cnt], 723 copy_size); 724 if (err < 0) 725 memset(bufs->buf[memcpy_cnt], 0, copy_size); 726 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; 727 728 i += 2; 729 fmt_cnt++; 730 memcpy_cnt++; 731 continue; 732 } 733 734 if (fmt[i] == 'l') { 735 i++; 736 if (fmt[i] == 'l') 737 i++; 738 } 739 740 if (fmt[i] != 'i' && fmt[i] != 'd' && 741 fmt[i] != 'u' && fmt[i] != 'x' && 742 fmt[i] != 'X') { 743 err = -EINVAL; 744 goto out; 745 } 746 747 params[fmt_cnt] = args[fmt_cnt]; 748 fmt_cnt++; 749 } 750 751 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give 752 * all of them to seq_printf(). 753 */ 754 seq_printf(m, fmt, params[0], params[1], params[2], params[3], 755 params[4], params[5], params[6], params[7], params[8], 756 params[9], params[10], params[11]); 757 758 err = seq_has_overflowed(m) ? -EOVERFLOW : 0; 759 out: 760 this_cpu_dec(bpf_seq_printf_buf_used); 761 return err; 762 } 763 764 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 765 766 static const struct bpf_func_proto bpf_seq_printf_proto = { 767 .func = bpf_seq_printf, 768 .gpl_only = true, 769 .ret_type = RET_INTEGER, 770 .arg1_type = ARG_PTR_TO_BTF_ID, 771 .arg1_btf_id = &btf_seq_file_ids[0], 772 .arg2_type = ARG_PTR_TO_MEM, 773 .arg3_type = ARG_CONST_SIZE, 774 .arg4_type = ARG_PTR_TO_MEM_OR_NULL, 775 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 776 }; 777 778 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 779 { 780 return seq_write(m, data, len) ? -EOVERFLOW : 0; 781 } 782 783 static const struct bpf_func_proto bpf_seq_write_proto = { 784 .func = bpf_seq_write, 785 .gpl_only = true, 786 .ret_type = RET_INTEGER, 787 .arg1_type = ARG_PTR_TO_BTF_ID, 788 .arg1_btf_id = &btf_seq_file_ids[0], 789 .arg2_type = ARG_PTR_TO_MEM, 790 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 791 }; 792 793 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 794 u32, btf_ptr_size, u64, flags) 795 { 796 const struct btf *btf; 797 s32 btf_id; 798 int ret; 799 800 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 801 if (ret) 802 return ret; 803 804 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 805 } 806 807 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 808 .func = bpf_seq_printf_btf, 809 .gpl_only = true, 810 .ret_type = RET_INTEGER, 811 .arg1_type = ARG_PTR_TO_BTF_ID, 812 .arg1_btf_id = &btf_seq_file_ids[0], 813 .arg2_type = ARG_PTR_TO_MEM, 814 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 815 .arg4_type = ARG_ANYTHING, 816 }; 817 818 static __always_inline int 819 get_map_perf_counter(struct bpf_map *map, u64 flags, 820 u64 *value, u64 *enabled, u64 *running) 821 { 822 struct bpf_array *array = container_of(map, struct bpf_array, map); 823 unsigned int cpu = smp_processor_id(); 824 u64 index = flags & BPF_F_INDEX_MASK; 825 struct bpf_event_entry *ee; 826 827 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 828 return -EINVAL; 829 if (index == BPF_F_CURRENT_CPU) 830 index = cpu; 831 if (unlikely(index >= array->map.max_entries)) 832 return -E2BIG; 833 834 ee = READ_ONCE(array->ptrs[index]); 835 if (!ee) 836 return -ENOENT; 837 838 return perf_event_read_local(ee->event, value, enabled, running); 839 } 840 841 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 842 { 843 u64 value = 0; 844 int err; 845 846 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 847 /* 848 * this api is ugly since we miss [-22..-2] range of valid 849 * counter values, but that's uapi 850 */ 851 if (err) 852 return err; 853 return value; 854 } 855 856 static const struct bpf_func_proto bpf_perf_event_read_proto = { 857 .func = bpf_perf_event_read, 858 .gpl_only = true, 859 .ret_type = RET_INTEGER, 860 .arg1_type = ARG_CONST_MAP_PTR, 861 .arg2_type = ARG_ANYTHING, 862 }; 863 864 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 865 struct bpf_perf_event_value *, buf, u32, size) 866 { 867 int err = -EINVAL; 868 869 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 870 goto clear; 871 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 872 &buf->running); 873 if (unlikely(err)) 874 goto clear; 875 return 0; 876 clear: 877 memset(buf, 0, size); 878 return err; 879 } 880 881 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 882 .func = bpf_perf_event_read_value, 883 .gpl_only = true, 884 .ret_type = RET_INTEGER, 885 .arg1_type = ARG_CONST_MAP_PTR, 886 .arg2_type = ARG_ANYTHING, 887 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 888 .arg4_type = ARG_CONST_SIZE, 889 }; 890 891 static __always_inline u64 892 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 893 u64 flags, struct perf_sample_data *sd) 894 { 895 struct bpf_array *array = container_of(map, struct bpf_array, map); 896 unsigned int cpu = smp_processor_id(); 897 u64 index = flags & BPF_F_INDEX_MASK; 898 struct bpf_event_entry *ee; 899 struct perf_event *event; 900 901 if (index == BPF_F_CURRENT_CPU) 902 index = cpu; 903 if (unlikely(index >= array->map.max_entries)) 904 return -E2BIG; 905 906 ee = READ_ONCE(array->ptrs[index]); 907 if (!ee) 908 return -ENOENT; 909 910 event = ee->event; 911 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 912 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 913 return -EINVAL; 914 915 if (unlikely(event->oncpu != cpu)) 916 return -EOPNOTSUPP; 917 918 return perf_event_output(event, sd, regs); 919 } 920 921 /* 922 * Support executing tracepoints in normal, irq, and nmi context that each call 923 * bpf_perf_event_output 924 */ 925 struct bpf_trace_sample_data { 926 struct perf_sample_data sds[3]; 927 }; 928 929 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 930 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 931 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 932 u64, flags, void *, data, u64, size) 933 { 934 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 935 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 936 struct perf_raw_record raw = { 937 .frag = { 938 .size = size, 939 .data = data, 940 }, 941 }; 942 struct perf_sample_data *sd; 943 int err; 944 945 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 946 err = -EBUSY; 947 goto out; 948 } 949 950 sd = &sds->sds[nest_level - 1]; 951 952 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 953 err = -EINVAL; 954 goto out; 955 } 956 957 perf_sample_data_init(sd, 0, 0); 958 sd->raw = &raw; 959 960 err = __bpf_perf_event_output(regs, map, flags, sd); 961 962 out: 963 this_cpu_dec(bpf_trace_nest_level); 964 return err; 965 } 966 967 static const struct bpf_func_proto bpf_perf_event_output_proto = { 968 .func = bpf_perf_event_output, 969 .gpl_only = true, 970 .ret_type = RET_INTEGER, 971 .arg1_type = ARG_PTR_TO_CTX, 972 .arg2_type = ARG_CONST_MAP_PTR, 973 .arg3_type = ARG_ANYTHING, 974 .arg4_type = ARG_PTR_TO_MEM, 975 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 976 }; 977 978 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 979 struct bpf_nested_pt_regs { 980 struct pt_regs regs[3]; 981 }; 982 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 983 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 984 985 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 986 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 987 { 988 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 989 struct perf_raw_frag frag = { 990 .copy = ctx_copy, 991 .size = ctx_size, 992 .data = ctx, 993 }; 994 struct perf_raw_record raw = { 995 .frag = { 996 { 997 .next = ctx_size ? &frag : NULL, 998 }, 999 .size = meta_size, 1000 .data = meta, 1001 }, 1002 }; 1003 struct perf_sample_data *sd; 1004 struct pt_regs *regs; 1005 u64 ret; 1006 1007 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 1008 ret = -EBUSY; 1009 goto out; 1010 } 1011 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 1012 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 1013 1014 perf_fetch_caller_regs(regs); 1015 perf_sample_data_init(sd, 0, 0); 1016 sd->raw = &raw; 1017 1018 ret = __bpf_perf_event_output(regs, map, flags, sd); 1019 out: 1020 this_cpu_dec(bpf_event_output_nest_level); 1021 return ret; 1022 } 1023 1024 BPF_CALL_0(bpf_get_current_task) 1025 { 1026 return (long) current; 1027 } 1028 1029 const struct bpf_func_proto bpf_get_current_task_proto = { 1030 .func = bpf_get_current_task, 1031 .gpl_only = true, 1032 .ret_type = RET_INTEGER, 1033 }; 1034 1035 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 1036 { 1037 struct bpf_array *array = container_of(map, struct bpf_array, map); 1038 struct cgroup *cgrp; 1039 1040 if (unlikely(idx >= array->map.max_entries)) 1041 return -E2BIG; 1042 1043 cgrp = READ_ONCE(array->ptrs[idx]); 1044 if (unlikely(!cgrp)) 1045 return -EAGAIN; 1046 1047 return task_under_cgroup_hierarchy(current, cgrp); 1048 } 1049 1050 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 1051 .func = bpf_current_task_under_cgroup, 1052 .gpl_only = false, 1053 .ret_type = RET_INTEGER, 1054 .arg1_type = ARG_CONST_MAP_PTR, 1055 .arg2_type = ARG_ANYTHING, 1056 }; 1057 1058 struct send_signal_irq_work { 1059 struct irq_work irq_work; 1060 struct task_struct *task; 1061 u32 sig; 1062 enum pid_type type; 1063 }; 1064 1065 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 1066 1067 static void do_bpf_send_signal(struct irq_work *entry) 1068 { 1069 struct send_signal_irq_work *work; 1070 1071 work = container_of(entry, struct send_signal_irq_work, irq_work); 1072 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 1073 } 1074 1075 static int bpf_send_signal_common(u32 sig, enum pid_type type) 1076 { 1077 struct send_signal_irq_work *work = NULL; 1078 1079 /* Similar to bpf_probe_write_user, task needs to be 1080 * in a sound condition and kernel memory access be 1081 * permitted in order to send signal to the current 1082 * task. 1083 */ 1084 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 1085 return -EPERM; 1086 if (unlikely(uaccess_kernel())) 1087 return -EPERM; 1088 if (unlikely(!nmi_uaccess_okay())) 1089 return -EPERM; 1090 1091 if (irqs_disabled()) { 1092 /* Do an early check on signal validity. Otherwise, 1093 * the error is lost in deferred irq_work. 1094 */ 1095 if (unlikely(!valid_signal(sig))) 1096 return -EINVAL; 1097 1098 work = this_cpu_ptr(&send_signal_work); 1099 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) 1100 return -EBUSY; 1101 1102 /* Add the current task, which is the target of sending signal, 1103 * to the irq_work. The current task may change when queued 1104 * irq works get executed. 1105 */ 1106 work->task = current; 1107 work->sig = sig; 1108 work->type = type; 1109 irq_work_queue(&work->irq_work); 1110 return 0; 1111 } 1112 1113 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 1114 } 1115 1116 BPF_CALL_1(bpf_send_signal, u32, sig) 1117 { 1118 return bpf_send_signal_common(sig, PIDTYPE_TGID); 1119 } 1120 1121 static const struct bpf_func_proto bpf_send_signal_proto = { 1122 .func = bpf_send_signal, 1123 .gpl_only = false, 1124 .ret_type = RET_INTEGER, 1125 .arg1_type = ARG_ANYTHING, 1126 }; 1127 1128 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 1129 { 1130 return bpf_send_signal_common(sig, PIDTYPE_PID); 1131 } 1132 1133 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 1134 .func = bpf_send_signal_thread, 1135 .gpl_only = false, 1136 .ret_type = RET_INTEGER, 1137 .arg1_type = ARG_ANYTHING, 1138 }; 1139 1140 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 1141 { 1142 long len; 1143 char *p; 1144 1145 if (!sz) 1146 return 0; 1147 1148 p = d_path(path, buf, sz); 1149 if (IS_ERR(p)) { 1150 len = PTR_ERR(p); 1151 } else { 1152 len = buf + sz - p; 1153 memmove(buf, p, len); 1154 } 1155 1156 return len; 1157 } 1158 1159 BTF_SET_START(btf_allowlist_d_path) 1160 #ifdef CONFIG_SECURITY 1161 BTF_ID(func, security_file_permission) 1162 BTF_ID(func, security_inode_getattr) 1163 BTF_ID(func, security_file_open) 1164 #endif 1165 #ifdef CONFIG_SECURITY_PATH 1166 BTF_ID(func, security_path_truncate) 1167 #endif 1168 BTF_ID(func, vfs_truncate) 1169 BTF_ID(func, vfs_fallocate) 1170 BTF_ID(func, dentry_open) 1171 BTF_ID(func, vfs_getattr) 1172 BTF_ID(func, filp_close) 1173 BTF_SET_END(btf_allowlist_d_path) 1174 1175 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 1176 { 1177 return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id); 1178 } 1179 1180 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 1181 1182 static const struct bpf_func_proto bpf_d_path_proto = { 1183 .func = bpf_d_path, 1184 .gpl_only = false, 1185 .ret_type = RET_INTEGER, 1186 .arg1_type = ARG_PTR_TO_BTF_ID, 1187 .arg1_btf_id = &bpf_d_path_btf_ids[0], 1188 .arg2_type = ARG_PTR_TO_MEM, 1189 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1190 .allowed = bpf_d_path_allowed, 1191 }; 1192 1193 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 1194 BTF_F_PTR_RAW | BTF_F_ZERO) 1195 1196 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 1197 u64 flags, const struct btf **btf, 1198 s32 *btf_id) 1199 { 1200 const struct btf_type *t; 1201 1202 if (unlikely(flags & ~(BTF_F_ALL))) 1203 return -EINVAL; 1204 1205 if (btf_ptr_size != sizeof(struct btf_ptr)) 1206 return -EINVAL; 1207 1208 *btf = bpf_get_btf_vmlinux(); 1209 1210 if (IS_ERR_OR_NULL(*btf)) 1211 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 1212 1213 if (ptr->type_id > 0) 1214 *btf_id = ptr->type_id; 1215 else 1216 return -EINVAL; 1217 1218 if (*btf_id > 0) 1219 t = btf_type_by_id(*btf, *btf_id); 1220 if (*btf_id <= 0 || !t) 1221 return -ENOENT; 1222 1223 return 0; 1224 } 1225 1226 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 1227 u32, btf_ptr_size, u64, flags) 1228 { 1229 const struct btf *btf; 1230 s32 btf_id; 1231 int ret; 1232 1233 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1234 if (ret) 1235 return ret; 1236 1237 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1238 flags); 1239 } 1240 1241 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1242 .func = bpf_snprintf_btf, 1243 .gpl_only = false, 1244 .ret_type = RET_INTEGER, 1245 .arg1_type = ARG_PTR_TO_MEM, 1246 .arg2_type = ARG_CONST_SIZE, 1247 .arg3_type = ARG_PTR_TO_MEM, 1248 .arg4_type = ARG_CONST_SIZE, 1249 .arg5_type = ARG_ANYTHING, 1250 }; 1251 1252 const struct bpf_func_proto * 1253 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1254 { 1255 switch (func_id) { 1256 case BPF_FUNC_map_lookup_elem: 1257 return &bpf_map_lookup_elem_proto; 1258 case BPF_FUNC_map_update_elem: 1259 return &bpf_map_update_elem_proto; 1260 case BPF_FUNC_map_delete_elem: 1261 return &bpf_map_delete_elem_proto; 1262 case BPF_FUNC_map_push_elem: 1263 return &bpf_map_push_elem_proto; 1264 case BPF_FUNC_map_pop_elem: 1265 return &bpf_map_pop_elem_proto; 1266 case BPF_FUNC_map_peek_elem: 1267 return &bpf_map_peek_elem_proto; 1268 case BPF_FUNC_ktime_get_ns: 1269 return &bpf_ktime_get_ns_proto; 1270 case BPF_FUNC_ktime_get_boot_ns: 1271 return &bpf_ktime_get_boot_ns_proto; 1272 case BPF_FUNC_tail_call: 1273 return &bpf_tail_call_proto; 1274 case BPF_FUNC_get_current_pid_tgid: 1275 return &bpf_get_current_pid_tgid_proto; 1276 case BPF_FUNC_get_current_task: 1277 return &bpf_get_current_task_proto; 1278 case BPF_FUNC_get_current_uid_gid: 1279 return &bpf_get_current_uid_gid_proto; 1280 case BPF_FUNC_get_current_comm: 1281 return &bpf_get_current_comm_proto; 1282 case BPF_FUNC_trace_printk: 1283 return bpf_get_trace_printk_proto(); 1284 case BPF_FUNC_get_smp_processor_id: 1285 return &bpf_get_smp_processor_id_proto; 1286 case BPF_FUNC_get_numa_node_id: 1287 return &bpf_get_numa_node_id_proto; 1288 case BPF_FUNC_perf_event_read: 1289 return &bpf_perf_event_read_proto; 1290 case BPF_FUNC_probe_write_user: 1291 return bpf_get_probe_write_proto(); 1292 case BPF_FUNC_current_task_under_cgroup: 1293 return &bpf_current_task_under_cgroup_proto; 1294 case BPF_FUNC_get_prandom_u32: 1295 return &bpf_get_prandom_u32_proto; 1296 case BPF_FUNC_probe_read_user: 1297 return &bpf_probe_read_user_proto; 1298 case BPF_FUNC_probe_read_kernel: 1299 return &bpf_probe_read_kernel_proto; 1300 case BPF_FUNC_probe_read_user_str: 1301 return &bpf_probe_read_user_str_proto; 1302 case BPF_FUNC_probe_read_kernel_str: 1303 return &bpf_probe_read_kernel_str_proto; 1304 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1305 case BPF_FUNC_probe_read: 1306 return &bpf_probe_read_compat_proto; 1307 case BPF_FUNC_probe_read_str: 1308 return &bpf_probe_read_compat_str_proto; 1309 #endif 1310 #ifdef CONFIG_CGROUPS 1311 case BPF_FUNC_get_current_cgroup_id: 1312 return &bpf_get_current_cgroup_id_proto; 1313 #endif 1314 case BPF_FUNC_send_signal: 1315 return &bpf_send_signal_proto; 1316 case BPF_FUNC_send_signal_thread: 1317 return &bpf_send_signal_thread_proto; 1318 case BPF_FUNC_perf_event_read_value: 1319 return &bpf_perf_event_read_value_proto; 1320 case BPF_FUNC_get_ns_current_pid_tgid: 1321 return &bpf_get_ns_current_pid_tgid_proto; 1322 case BPF_FUNC_ringbuf_output: 1323 return &bpf_ringbuf_output_proto; 1324 case BPF_FUNC_ringbuf_reserve: 1325 return &bpf_ringbuf_reserve_proto; 1326 case BPF_FUNC_ringbuf_submit: 1327 return &bpf_ringbuf_submit_proto; 1328 case BPF_FUNC_ringbuf_discard: 1329 return &bpf_ringbuf_discard_proto; 1330 case BPF_FUNC_ringbuf_query: 1331 return &bpf_ringbuf_query_proto; 1332 case BPF_FUNC_jiffies64: 1333 return &bpf_jiffies64_proto; 1334 case BPF_FUNC_get_task_stack: 1335 return &bpf_get_task_stack_proto; 1336 case BPF_FUNC_copy_from_user: 1337 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; 1338 case BPF_FUNC_snprintf_btf: 1339 return &bpf_snprintf_btf_proto; 1340 case BPF_FUNC_bpf_per_cpu_ptr: 1341 return &bpf_per_cpu_ptr_proto; 1342 case BPF_FUNC_bpf_this_cpu_ptr: 1343 return &bpf_this_cpu_ptr_proto; 1344 default: 1345 return NULL; 1346 } 1347 } 1348 1349 static const struct bpf_func_proto * 1350 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1351 { 1352 switch (func_id) { 1353 case BPF_FUNC_perf_event_output: 1354 return &bpf_perf_event_output_proto; 1355 case BPF_FUNC_get_stackid: 1356 return &bpf_get_stackid_proto; 1357 case BPF_FUNC_get_stack: 1358 return &bpf_get_stack_proto; 1359 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1360 case BPF_FUNC_override_return: 1361 return &bpf_override_return_proto; 1362 #endif 1363 default: 1364 return bpf_tracing_func_proto(func_id, prog); 1365 } 1366 } 1367 1368 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1369 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1370 const struct bpf_prog *prog, 1371 struct bpf_insn_access_aux *info) 1372 { 1373 if (off < 0 || off >= sizeof(struct pt_regs)) 1374 return false; 1375 if (type != BPF_READ) 1376 return false; 1377 if (off % size != 0) 1378 return false; 1379 /* 1380 * Assertion for 32 bit to make sure last 8 byte access 1381 * (BPF_DW) to the last 4 byte member is disallowed. 1382 */ 1383 if (off + size > sizeof(struct pt_regs)) 1384 return false; 1385 1386 return true; 1387 } 1388 1389 const struct bpf_verifier_ops kprobe_verifier_ops = { 1390 .get_func_proto = kprobe_prog_func_proto, 1391 .is_valid_access = kprobe_prog_is_valid_access, 1392 }; 1393 1394 const struct bpf_prog_ops kprobe_prog_ops = { 1395 }; 1396 1397 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1398 u64, flags, void *, data, u64, size) 1399 { 1400 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1401 1402 /* 1403 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1404 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1405 * from there and call the same bpf_perf_event_output() helper inline. 1406 */ 1407 return ____bpf_perf_event_output(regs, map, flags, data, size); 1408 } 1409 1410 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1411 .func = bpf_perf_event_output_tp, 1412 .gpl_only = true, 1413 .ret_type = RET_INTEGER, 1414 .arg1_type = ARG_PTR_TO_CTX, 1415 .arg2_type = ARG_CONST_MAP_PTR, 1416 .arg3_type = ARG_ANYTHING, 1417 .arg4_type = ARG_PTR_TO_MEM, 1418 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1419 }; 1420 1421 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1422 u64, flags) 1423 { 1424 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1425 1426 /* 1427 * Same comment as in bpf_perf_event_output_tp(), only that this time 1428 * the other helper's function body cannot be inlined due to being 1429 * external, thus we need to call raw helper function. 1430 */ 1431 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1432 flags, 0, 0); 1433 } 1434 1435 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1436 .func = bpf_get_stackid_tp, 1437 .gpl_only = true, 1438 .ret_type = RET_INTEGER, 1439 .arg1_type = ARG_PTR_TO_CTX, 1440 .arg2_type = ARG_CONST_MAP_PTR, 1441 .arg3_type = ARG_ANYTHING, 1442 }; 1443 1444 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1445 u64, flags) 1446 { 1447 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1448 1449 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1450 (unsigned long) size, flags, 0); 1451 } 1452 1453 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1454 .func = bpf_get_stack_tp, 1455 .gpl_only = true, 1456 .ret_type = RET_INTEGER, 1457 .arg1_type = ARG_PTR_TO_CTX, 1458 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1459 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1460 .arg4_type = ARG_ANYTHING, 1461 }; 1462 1463 static const struct bpf_func_proto * 1464 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1465 { 1466 switch (func_id) { 1467 case BPF_FUNC_perf_event_output: 1468 return &bpf_perf_event_output_proto_tp; 1469 case BPF_FUNC_get_stackid: 1470 return &bpf_get_stackid_proto_tp; 1471 case BPF_FUNC_get_stack: 1472 return &bpf_get_stack_proto_tp; 1473 default: 1474 return bpf_tracing_func_proto(func_id, prog); 1475 } 1476 } 1477 1478 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1479 const struct bpf_prog *prog, 1480 struct bpf_insn_access_aux *info) 1481 { 1482 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1483 return false; 1484 if (type != BPF_READ) 1485 return false; 1486 if (off % size != 0) 1487 return false; 1488 1489 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1490 return true; 1491 } 1492 1493 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1494 .get_func_proto = tp_prog_func_proto, 1495 .is_valid_access = tp_prog_is_valid_access, 1496 }; 1497 1498 const struct bpf_prog_ops tracepoint_prog_ops = { 1499 }; 1500 1501 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1502 struct bpf_perf_event_value *, buf, u32, size) 1503 { 1504 int err = -EINVAL; 1505 1506 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1507 goto clear; 1508 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1509 &buf->running); 1510 if (unlikely(err)) 1511 goto clear; 1512 return 0; 1513 clear: 1514 memset(buf, 0, size); 1515 return err; 1516 } 1517 1518 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1519 .func = bpf_perf_prog_read_value, 1520 .gpl_only = true, 1521 .ret_type = RET_INTEGER, 1522 .arg1_type = ARG_PTR_TO_CTX, 1523 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1524 .arg3_type = ARG_CONST_SIZE, 1525 }; 1526 1527 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1528 void *, buf, u32, size, u64, flags) 1529 { 1530 #ifndef CONFIG_X86 1531 return -ENOENT; 1532 #else 1533 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1534 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1535 u32 to_copy; 1536 1537 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1538 return -EINVAL; 1539 1540 if (unlikely(!br_stack)) 1541 return -EINVAL; 1542 1543 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1544 return br_stack->nr * br_entry_size; 1545 1546 if (!buf || (size % br_entry_size != 0)) 1547 return -EINVAL; 1548 1549 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1550 memcpy(buf, br_stack->entries, to_copy); 1551 1552 return to_copy; 1553 #endif 1554 } 1555 1556 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1557 .func = bpf_read_branch_records, 1558 .gpl_only = true, 1559 .ret_type = RET_INTEGER, 1560 .arg1_type = ARG_PTR_TO_CTX, 1561 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1562 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1563 .arg4_type = ARG_ANYTHING, 1564 }; 1565 1566 static const struct bpf_func_proto * 1567 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1568 { 1569 switch (func_id) { 1570 case BPF_FUNC_perf_event_output: 1571 return &bpf_perf_event_output_proto_tp; 1572 case BPF_FUNC_get_stackid: 1573 return &bpf_get_stackid_proto_pe; 1574 case BPF_FUNC_get_stack: 1575 return &bpf_get_stack_proto_pe; 1576 case BPF_FUNC_perf_prog_read_value: 1577 return &bpf_perf_prog_read_value_proto; 1578 case BPF_FUNC_read_branch_records: 1579 return &bpf_read_branch_records_proto; 1580 default: 1581 return bpf_tracing_func_proto(func_id, prog); 1582 } 1583 } 1584 1585 /* 1586 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1587 * to avoid potential recursive reuse issue when/if tracepoints are added 1588 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1589 * 1590 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1591 * in normal, irq, and nmi context. 1592 */ 1593 struct bpf_raw_tp_regs { 1594 struct pt_regs regs[3]; 1595 }; 1596 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1597 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1598 static struct pt_regs *get_bpf_raw_tp_regs(void) 1599 { 1600 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1601 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1602 1603 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1604 this_cpu_dec(bpf_raw_tp_nest_level); 1605 return ERR_PTR(-EBUSY); 1606 } 1607 1608 return &tp_regs->regs[nest_level - 1]; 1609 } 1610 1611 static void put_bpf_raw_tp_regs(void) 1612 { 1613 this_cpu_dec(bpf_raw_tp_nest_level); 1614 } 1615 1616 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1617 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1618 { 1619 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1620 int ret; 1621 1622 if (IS_ERR(regs)) 1623 return PTR_ERR(regs); 1624 1625 perf_fetch_caller_regs(regs); 1626 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1627 1628 put_bpf_raw_tp_regs(); 1629 return ret; 1630 } 1631 1632 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1633 .func = bpf_perf_event_output_raw_tp, 1634 .gpl_only = true, 1635 .ret_type = RET_INTEGER, 1636 .arg1_type = ARG_PTR_TO_CTX, 1637 .arg2_type = ARG_CONST_MAP_PTR, 1638 .arg3_type = ARG_ANYTHING, 1639 .arg4_type = ARG_PTR_TO_MEM, 1640 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1641 }; 1642 1643 extern const struct bpf_func_proto bpf_skb_output_proto; 1644 extern const struct bpf_func_proto bpf_xdp_output_proto; 1645 1646 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1647 struct bpf_map *, map, u64, flags) 1648 { 1649 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1650 int ret; 1651 1652 if (IS_ERR(regs)) 1653 return PTR_ERR(regs); 1654 1655 perf_fetch_caller_regs(regs); 1656 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1657 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1658 flags, 0, 0); 1659 put_bpf_raw_tp_regs(); 1660 return ret; 1661 } 1662 1663 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1664 .func = bpf_get_stackid_raw_tp, 1665 .gpl_only = true, 1666 .ret_type = RET_INTEGER, 1667 .arg1_type = ARG_PTR_TO_CTX, 1668 .arg2_type = ARG_CONST_MAP_PTR, 1669 .arg3_type = ARG_ANYTHING, 1670 }; 1671 1672 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1673 void *, buf, u32, size, u64, flags) 1674 { 1675 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1676 int ret; 1677 1678 if (IS_ERR(regs)) 1679 return PTR_ERR(regs); 1680 1681 perf_fetch_caller_regs(regs); 1682 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1683 (unsigned long) size, flags, 0); 1684 put_bpf_raw_tp_regs(); 1685 return ret; 1686 } 1687 1688 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1689 .func = bpf_get_stack_raw_tp, 1690 .gpl_only = true, 1691 .ret_type = RET_INTEGER, 1692 .arg1_type = ARG_PTR_TO_CTX, 1693 .arg2_type = ARG_PTR_TO_MEM, 1694 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1695 .arg4_type = ARG_ANYTHING, 1696 }; 1697 1698 static const struct bpf_func_proto * 1699 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1700 { 1701 switch (func_id) { 1702 case BPF_FUNC_perf_event_output: 1703 return &bpf_perf_event_output_proto_raw_tp; 1704 case BPF_FUNC_get_stackid: 1705 return &bpf_get_stackid_proto_raw_tp; 1706 case BPF_FUNC_get_stack: 1707 return &bpf_get_stack_proto_raw_tp; 1708 default: 1709 return bpf_tracing_func_proto(func_id, prog); 1710 } 1711 } 1712 1713 const struct bpf_func_proto * 1714 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1715 { 1716 switch (func_id) { 1717 #ifdef CONFIG_NET 1718 case BPF_FUNC_skb_output: 1719 return &bpf_skb_output_proto; 1720 case BPF_FUNC_xdp_output: 1721 return &bpf_xdp_output_proto; 1722 case BPF_FUNC_skc_to_tcp6_sock: 1723 return &bpf_skc_to_tcp6_sock_proto; 1724 case BPF_FUNC_skc_to_tcp_sock: 1725 return &bpf_skc_to_tcp_sock_proto; 1726 case BPF_FUNC_skc_to_tcp_timewait_sock: 1727 return &bpf_skc_to_tcp_timewait_sock_proto; 1728 case BPF_FUNC_skc_to_tcp_request_sock: 1729 return &bpf_skc_to_tcp_request_sock_proto; 1730 case BPF_FUNC_skc_to_udp6_sock: 1731 return &bpf_skc_to_udp6_sock_proto; 1732 #endif 1733 case BPF_FUNC_seq_printf: 1734 return prog->expected_attach_type == BPF_TRACE_ITER ? 1735 &bpf_seq_printf_proto : 1736 NULL; 1737 case BPF_FUNC_seq_write: 1738 return prog->expected_attach_type == BPF_TRACE_ITER ? 1739 &bpf_seq_write_proto : 1740 NULL; 1741 case BPF_FUNC_seq_printf_btf: 1742 return prog->expected_attach_type == BPF_TRACE_ITER ? 1743 &bpf_seq_printf_btf_proto : 1744 NULL; 1745 case BPF_FUNC_d_path: 1746 return &bpf_d_path_proto; 1747 default: 1748 return raw_tp_prog_func_proto(func_id, prog); 1749 } 1750 } 1751 1752 static bool raw_tp_prog_is_valid_access(int off, int size, 1753 enum bpf_access_type type, 1754 const struct bpf_prog *prog, 1755 struct bpf_insn_access_aux *info) 1756 { 1757 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1758 return false; 1759 if (type != BPF_READ) 1760 return false; 1761 if (off % size != 0) 1762 return false; 1763 return true; 1764 } 1765 1766 static bool tracing_prog_is_valid_access(int off, int size, 1767 enum bpf_access_type type, 1768 const struct bpf_prog *prog, 1769 struct bpf_insn_access_aux *info) 1770 { 1771 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1772 return false; 1773 if (type != BPF_READ) 1774 return false; 1775 if (off % size != 0) 1776 return false; 1777 return btf_ctx_access(off, size, type, prog, info); 1778 } 1779 1780 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1781 const union bpf_attr *kattr, 1782 union bpf_attr __user *uattr) 1783 { 1784 return -ENOTSUPP; 1785 } 1786 1787 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1788 .get_func_proto = raw_tp_prog_func_proto, 1789 .is_valid_access = raw_tp_prog_is_valid_access, 1790 }; 1791 1792 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1793 #ifdef CONFIG_NET 1794 .test_run = bpf_prog_test_run_raw_tp, 1795 #endif 1796 }; 1797 1798 const struct bpf_verifier_ops tracing_verifier_ops = { 1799 .get_func_proto = tracing_prog_func_proto, 1800 .is_valid_access = tracing_prog_is_valid_access, 1801 }; 1802 1803 const struct bpf_prog_ops tracing_prog_ops = { 1804 .test_run = bpf_prog_test_run_tracing, 1805 }; 1806 1807 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1808 enum bpf_access_type type, 1809 const struct bpf_prog *prog, 1810 struct bpf_insn_access_aux *info) 1811 { 1812 if (off == 0) { 1813 if (size != sizeof(u64) || type != BPF_READ) 1814 return false; 1815 info->reg_type = PTR_TO_TP_BUFFER; 1816 } 1817 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1818 } 1819 1820 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1821 .get_func_proto = raw_tp_prog_func_proto, 1822 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1823 }; 1824 1825 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1826 }; 1827 1828 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1829 const struct bpf_prog *prog, 1830 struct bpf_insn_access_aux *info) 1831 { 1832 const int size_u64 = sizeof(u64); 1833 1834 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1835 return false; 1836 if (type != BPF_READ) 1837 return false; 1838 if (off % size != 0) { 1839 if (sizeof(unsigned long) != 4) 1840 return false; 1841 if (size != 8) 1842 return false; 1843 if (off % size != 4) 1844 return false; 1845 } 1846 1847 switch (off) { 1848 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1849 bpf_ctx_record_field_size(info, size_u64); 1850 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1851 return false; 1852 break; 1853 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1854 bpf_ctx_record_field_size(info, size_u64); 1855 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1856 return false; 1857 break; 1858 default: 1859 if (size != sizeof(long)) 1860 return false; 1861 } 1862 1863 return true; 1864 } 1865 1866 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1867 const struct bpf_insn *si, 1868 struct bpf_insn *insn_buf, 1869 struct bpf_prog *prog, u32 *target_size) 1870 { 1871 struct bpf_insn *insn = insn_buf; 1872 1873 switch (si->off) { 1874 case offsetof(struct bpf_perf_event_data, sample_period): 1875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1876 data), si->dst_reg, si->src_reg, 1877 offsetof(struct bpf_perf_event_data_kern, data)); 1878 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1879 bpf_target_off(struct perf_sample_data, period, 8, 1880 target_size)); 1881 break; 1882 case offsetof(struct bpf_perf_event_data, addr): 1883 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1884 data), si->dst_reg, si->src_reg, 1885 offsetof(struct bpf_perf_event_data_kern, data)); 1886 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1887 bpf_target_off(struct perf_sample_data, addr, 8, 1888 target_size)); 1889 break; 1890 default: 1891 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1892 regs), si->dst_reg, si->src_reg, 1893 offsetof(struct bpf_perf_event_data_kern, regs)); 1894 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1895 si->off); 1896 break; 1897 } 1898 1899 return insn - insn_buf; 1900 } 1901 1902 const struct bpf_verifier_ops perf_event_verifier_ops = { 1903 .get_func_proto = pe_prog_func_proto, 1904 .is_valid_access = pe_prog_is_valid_access, 1905 .convert_ctx_access = pe_prog_convert_ctx_access, 1906 }; 1907 1908 const struct bpf_prog_ops perf_event_prog_ops = { 1909 }; 1910 1911 static DEFINE_MUTEX(bpf_event_mutex); 1912 1913 #define BPF_TRACE_MAX_PROGS 64 1914 1915 int perf_event_attach_bpf_prog(struct perf_event *event, 1916 struct bpf_prog *prog) 1917 { 1918 struct bpf_prog_array *old_array; 1919 struct bpf_prog_array *new_array; 1920 int ret = -EEXIST; 1921 1922 /* 1923 * Kprobe override only works if they are on the function entry, 1924 * and only if they are on the opt-in list. 1925 */ 1926 if (prog->kprobe_override && 1927 (!trace_kprobe_on_func_entry(event->tp_event) || 1928 !trace_kprobe_error_injectable(event->tp_event))) 1929 return -EINVAL; 1930 1931 mutex_lock(&bpf_event_mutex); 1932 1933 if (event->prog) 1934 goto unlock; 1935 1936 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1937 if (old_array && 1938 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1939 ret = -E2BIG; 1940 goto unlock; 1941 } 1942 1943 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1944 if (ret < 0) 1945 goto unlock; 1946 1947 /* set the new array to event->tp_event and set event->prog */ 1948 event->prog = prog; 1949 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1950 bpf_prog_array_free(old_array); 1951 1952 unlock: 1953 mutex_unlock(&bpf_event_mutex); 1954 return ret; 1955 } 1956 1957 void perf_event_detach_bpf_prog(struct perf_event *event) 1958 { 1959 struct bpf_prog_array *old_array; 1960 struct bpf_prog_array *new_array; 1961 int ret; 1962 1963 mutex_lock(&bpf_event_mutex); 1964 1965 if (!event->prog) 1966 goto unlock; 1967 1968 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1969 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1970 if (ret == -ENOENT) 1971 goto unlock; 1972 if (ret < 0) { 1973 bpf_prog_array_delete_safe(old_array, event->prog); 1974 } else { 1975 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1976 bpf_prog_array_free(old_array); 1977 } 1978 1979 bpf_prog_put(event->prog); 1980 event->prog = NULL; 1981 1982 unlock: 1983 mutex_unlock(&bpf_event_mutex); 1984 } 1985 1986 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1987 { 1988 struct perf_event_query_bpf __user *uquery = info; 1989 struct perf_event_query_bpf query = {}; 1990 struct bpf_prog_array *progs; 1991 u32 *ids, prog_cnt, ids_len; 1992 int ret; 1993 1994 if (!perfmon_capable()) 1995 return -EPERM; 1996 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1997 return -EINVAL; 1998 if (copy_from_user(&query, uquery, sizeof(query))) 1999 return -EFAULT; 2000 2001 ids_len = query.ids_len; 2002 if (ids_len > BPF_TRACE_MAX_PROGS) 2003 return -E2BIG; 2004 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2005 if (!ids) 2006 return -ENOMEM; 2007 /* 2008 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2009 * is required when user only wants to check for uquery->prog_cnt. 2010 * There is no need to check for it since the case is handled 2011 * gracefully in bpf_prog_array_copy_info. 2012 */ 2013 2014 mutex_lock(&bpf_event_mutex); 2015 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2016 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2017 mutex_unlock(&bpf_event_mutex); 2018 2019 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2020 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2021 ret = -EFAULT; 2022 2023 kfree(ids); 2024 return ret; 2025 } 2026 2027 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2028 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2029 2030 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2031 { 2032 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2033 2034 for (; btp < __stop__bpf_raw_tp; btp++) { 2035 if (!strcmp(btp->tp->name, name)) 2036 return btp; 2037 } 2038 2039 return bpf_get_raw_tracepoint_module(name); 2040 } 2041 2042 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2043 { 2044 struct module *mod = __module_address((unsigned long)btp); 2045 2046 if (mod) 2047 module_put(mod); 2048 } 2049 2050 static __always_inline 2051 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 2052 { 2053 cant_sleep(); 2054 rcu_read_lock(); 2055 (void) BPF_PROG_RUN(prog, args); 2056 rcu_read_unlock(); 2057 } 2058 2059 #define UNPACK(...) __VA_ARGS__ 2060 #define REPEAT_1(FN, DL, X, ...) FN(X) 2061 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2062 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2063 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2064 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2065 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2066 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2067 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2068 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2069 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2070 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2071 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2072 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2073 2074 #define SARG(X) u64 arg##X 2075 #define COPY(X) args[X] = arg##X 2076 2077 #define __DL_COM (,) 2078 #define __DL_SEM (;) 2079 2080 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2081 2082 #define BPF_TRACE_DEFN_x(x) \ 2083 void bpf_trace_run##x(struct bpf_prog *prog, \ 2084 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2085 { \ 2086 u64 args[x]; \ 2087 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2088 __bpf_trace_run(prog, args); \ 2089 } \ 2090 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2091 BPF_TRACE_DEFN_x(1); 2092 BPF_TRACE_DEFN_x(2); 2093 BPF_TRACE_DEFN_x(3); 2094 BPF_TRACE_DEFN_x(4); 2095 BPF_TRACE_DEFN_x(5); 2096 BPF_TRACE_DEFN_x(6); 2097 BPF_TRACE_DEFN_x(7); 2098 BPF_TRACE_DEFN_x(8); 2099 BPF_TRACE_DEFN_x(9); 2100 BPF_TRACE_DEFN_x(10); 2101 BPF_TRACE_DEFN_x(11); 2102 BPF_TRACE_DEFN_x(12); 2103 2104 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2105 { 2106 struct tracepoint *tp = btp->tp; 2107 2108 /* 2109 * check that program doesn't access arguments beyond what's 2110 * available in this tracepoint 2111 */ 2112 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2113 return -EINVAL; 2114 2115 if (prog->aux->max_tp_access > btp->writable_size) 2116 return -EINVAL; 2117 2118 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 2119 } 2120 2121 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2122 { 2123 return __bpf_probe_register(btp, prog); 2124 } 2125 2126 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2127 { 2128 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 2129 } 2130 2131 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2132 u32 *fd_type, const char **buf, 2133 u64 *probe_offset, u64 *probe_addr) 2134 { 2135 bool is_tracepoint, is_syscall_tp; 2136 struct bpf_prog *prog; 2137 int flags, err = 0; 2138 2139 prog = event->prog; 2140 if (!prog) 2141 return -ENOENT; 2142 2143 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2144 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2145 return -EOPNOTSUPP; 2146 2147 *prog_id = prog->aux->id; 2148 flags = event->tp_event->flags; 2149 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2150 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2151 2152 if (is_tracepoint || is_syscall_tp) { 2153 *buf = is_tracepoint ? event->tp_event->tp->name 2154 : event->tp_event->name; 2155 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2156 *probe_offset = 0x0; 2157 *probe_addr = 0x0; 2158 } else { 2159 /* kprobe/uprobe */ 2160 err = -EOPNOTSUPP; 2161 #ifdef CONFIG_KPROBE_EVENTS 2162 if (flags & TRACE_EVENT_FL_KPROBE) 2163 err = bpf_get_kprobe_info(event, fd_type, buf, 2164 probe_offset, probe_addr, 2165 event->attr.type == PERF_TYPE_TRACEPOINT); 2166 #endif 2167 #ifdef CONFIG_UPROBE_EVENTS 2168 if (flags & TRACE_EVENT_FL_UPROBE) 2169 err = bpf_get_uprobe_info(event, fd_type, buf, 2170 probe_offset, 2171 event->attr.type == PERF_TYPE_TRACEPOINT); 2172 #endif 2173 } 2174 2175 return err; 2176 } 2177 2178 static int __init send_signal_irq_work_init(void) 2179 { 2180 int cpu; 2181 struct send_signal_irq_work *work; 2182 2183 for_each_possible_cpu(cpu) { 2184 work = per_cpu_ptr(&send_signal_work, cpu); 2185 init_irq_work(&work->irq_work, do_bpf_send_signal); 2186 } 2187 return 0; 2188 } 2189 2190 subsys_initcall(send_signal_irq_work_init); 2191 2192 #ifdef CONFIG_MODULES 2193 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2194 void *module) 2195 { 2196 struct bpf_trace_module *btm, *tmp; 2197 struct module *mod = module; 2198 int ret = 0; 2199 2200 if (mod->num_bpf_raw_events == 0 || 2201 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2202 goto out; 2203 2204 mutex_lock(&bpf_module_mutex); 2205 2206 switch (op) { 2207 case MODULE_STATE_COMING: 2208 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2209 if (btm) { 2210 btm->module = module; 2211 list_add(&btm->list, &bpf_trace_modules); 2212 } else { 2213 ret = -ENOMEM; 2214 } 2215 break; 2216 case MODULE_STATE_GOING: 2217 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2218 if (btm->module == module) { 2219 list_del(&btm->list); 2220 kfree(btm); 2221 break; 2222 } 2223 } 2224 break; 2225 } 2226 2227 mutex_unlock(&bpf_module_mutex); 2228 2229 out: 2230 return notifier_from_errno(ret); 2231 } 2232 2233 static struct notifier_block bpf_module_nb = { 2234 .notifier_call = bpf_event_notify, 2235 }; 2236 2237 static int __init bpf_event_init(void) 2238 { 2239 register_module_notifier(&bpf_module_nb); 2240 return 0; 2241 } 2242 2243 fs_initcall(bpf_event_init); 2244 #endif /* CONFIG_MODULES */ 2245