1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_perf_event.h> 10 #include <linux/filter.h> 11 #include <linux/uaccess.h> 12 #include <linux/ctype.h> 13 #include <linux/kprobes.h> 14 #include <linux/syscalls.h> 15 #include <linux/error-injection.h> 16 17 #include <asm/tlb.h> 18 19 #include "trace_probe.h" 20 #include "trace.h" 21 22 #define bpf_event_rcu_dereference(p) \ 23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 24 25 #ifdef CONFIG_MODULES 26 struct bpf_trace_module { 27 struct module *module; 28 struct list_head list; 29 }; 30 31 static LIST_HEAD(bpf_trace_modules); 32 static DEFINE_MUTEX(bpf_module_mutex); 33 34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 35 { 36 struct bpf_raw_event_map *btp, *ret = NULL; 37 struct bpf_trace_module *btm; 38 unsigned int i; 39 40 mutex_lock(&bpf_module_mutex); 41 list_for_each_entry(btm, &bpf_trace_modules, list) { 42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 43 btp = &btm->module->bpf_raw_events[i]; 44 if (!strcmp(btp->tp->name, name)) { 45 if (try_module_get(btm->module)) 46 ret = btp; 47 goto out; 48 } 49 } 50 } 51 out: 52 mutex_unlock(&bpf_module_mutex); 53 return ret; 54 } 55 #else 56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 57 { 58 return NULL; 59 } 60 #endif /* CONFIG_MODULES */ 61 62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 64 65 /** 66 * trace_call_bpf - invoke BPF program 67 * @call: tracepoint event 68 * @ctx: opaque context pointer 69 * 70 * kprobe handlers execute BPF programs via this helper. 71 * Can be used from static tracepoints in the future. 72 * 73 * Return: BPF programs always return an integer which is interpreted by 74 * kprobe handler as: 75 * 0 - return from kprobe (event is filtered out) 76 * 1 - store kprobe event into ring buffer 77 * Other values are reserved and currently alias to 1 78 */ 79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 80 { 81 unsigned int ret; 82 83 if (in_nmi()) /* not supported yet */ 84 return 1; 85 86 preempt_disable(); 87 88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 89 /* 90 * since some bpf program is already running on this cpu, 91 * don't call into another bpf program (same or different) 92 * and don't send kprobe event into ring-buffer, 93 * so return zero here 94 */ 95 ret = 0; 96 goto out; 97 } 98 99 /* 100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 101 * to all call sites, we did a bpf_prog_array_valid() there to check 102 * whether call->prog_array is empty or not, which is 103 * a heurisitc to speed up execution. 104 * 105 * If bpf_prog_array_valid() fetched prog_array was 106 * non-NULL, we go into trace_call_bpf() and do the actual 107 * proper rcu_dereference() under RCU lock. 108 * If it turns out that prog_array is NULL then, we bail out. 109 * For the opposite, if the bpf_prog_array_valid() fetched pointer 110 * was NULL, you'll skip the prog_array with the risk of missing 111 * out of events when it was updated in between this and the 112 * rcu_dereference() which is accepted risk. 113 */ 114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); 115 116 out: 117 __this_cpu_dec(bpf_prog_active); 118 preempt_enable(); 119 120 return ret; 121 } 122 EXPORT_SYMBOL_GPL(trace_call_bpf); 123 124 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 125 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 126 { 127 regs_set_return_value(regs, rc); 128 override_function_with_return(regs); 129 return 0; 130 } 131 132 static const struct bpf_func_proto bpf_override_return_proto = { 133 .func = bpf_override_return, 134 .gpl_only = true, 135 .ret_type = RET_INTEGER, 136 .arg1_type = ARG_PTR_TO_CTX, 137 .arg2_type = ARG_ANYTHING, 138 }; 139 #endif 140 141 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr) 142 { 143 int ret; 144 145 ret = probe_kernel_read(dst, unsafe_ptr, size); 146 if (unlikely(ret < 0)) 147 memset(dst, 0, size); 148 149 return ret; 150 } 151 152 static const struct bpf_func_proto bpf_probe_read_proto = { 153 .func = bpf_probe_read, 154 .gpl_only = true, 155 .ret_type = RET_INTEGER, 156 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 157 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 158 .arg3_type = ARG_ANYTHING, 159 }; 160 161 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src, 162 u32, size) 163 { 164 /* 165 * Ensure we're in user context which is safe for the helper to 166 * run. This helper has no business in a kthread. 167 * 168 * access_ok() should prevent writing to non-user memory, but in 169 * some situations (nommu, temporary switch, etc) access_ok() does 170 * not provide enough validation, hence the check on KERNEL_DS. 171 * 172 * nmi_uaccess_okay() ensures the probe is not run in an interim 173 * state, when the task or mm are switched. This is specifically 174 * required to prevent the use of temporary mm. 175 */ 176 177 if (unlikely(in_interrupt() || 178 current->flags & (PF_KTHREAD | PF_EXITING))) 179 return -EPERM; 180 if (unlikely(uaccess_kernel())) 181 return -EPERM; 182 if (unlikely(!nmi_uaccess_okay())) 183 return -EPERM; 184 if (!access_ok(unsafe_ptr, size)) 185 return -EPERM; 186 187 return probe_kernel_write(unsafe_ptr, src, size); 188 } 189 190 static const struct bpf_func_proto bpf_probe_write_user_proto = { 191 .func = bpf_probe_write_user, 192 .gpl_only = true, 193 .ret_type = RET_INTEGER, 194 .arg1_type = ARG_ANYTHING, 195 .arg2_type = ARG_PTR_TO_MEM, 196 .arg3_type = ARG_CONST_SIZE, 197 }; 198 199 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 200 { 201 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 202 current->comm, task_pid_nr(current)); 203 204 return &bpf_probe_write_user_proto; 205 } 206 207 /* 208 * Only limited trace_printk() conversion specifiers allowed: 209 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s 210 */ 211 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 212 u64, arg2, u64, arg3) 213 { 214 bool str_seen = false; 215 int mod[3] = {}; 216 int fmt_cnt = 0; 217 u64 unsafe_addr; 218 char buf[64]; 219 int i; 220 221 /* 222 * bpf_check()->check_func_arg()->check_stack_boundary() 223 * guarantees that fmt points to bpf program stack, 224 * fmt_size bytes of it were initialized and fmt_size > 0 225 */ 226 if (fmt[--fmt_size] != 0) 227 return -EINVAL; 228 229 /* check format string for allowed specifiers */ 230 for (i = 0; i < fmt_size; i++) { 231 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) 232 return -EINVAL; 233 234 if (fmt[i] != '%') 235 continue; 236 237 if (fmt_cnt >= 3) 238 return -EINVAL; 239 240 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ 241 i++; 242 if (fmt[i] == 'l') { 243 mod[fmt_cnt]++; 244 i++; 245 } else if (fmt[i] == 'p' || fmt[i] == 's') { 246 mod[fmt_cnt]++; 247 /* disallow any further format extensions */ 248 if (fmt[i + 1] != 0 && 249 !isspace(fmt[i + 1]) && 250 !ispunct(fmt[i + 1])) 251 return -EINVAL; 252 fmt_cnt++; 253 if (fmt[i] == 's') { 254 if (str_seen) 255 /* allow only one '%s' per fmt string */ 256 return -EINVAL; 257 str_seen = true; 258 259 switch (fmt_cnt) { 260 case 1: 261 unsafe_addr = arg1; 262 arg1 = (long) buf; 263 break; 264 case 2: 265 unsafe_addr = arg2; 266 arg2 = (long) buf; 267 break; 268 case 3: 269 unsafe_addr = arg3; 270 arg3 = (long) buf; 271 break; 272 } 273 buf[0] = 0; 274 strncpy_from_unsafe(buf, 275 (void *) (long) unsafe_addr, 276 sizeof(buf)); 277 } 278 continue; 279 } 280 281 if (fmt[i] == 'l') { 282 mod[fmt_cnt]++; 283 i++; 284 } 285 286 if (fmt[i] != 'i' && fmt[i] != 'd' && 287 fmt[i] != 'u' && fmt[i] != 'x') 288 return -EINVAL; 289 fmt_cnt++; 290 } 291 292 /* Horrid workaround for getting va_list handling working with different 293 * argument type combinations generically for 32 and 64 bit archs. 294 */ 295 #define __BPF_TP_EMIT() __BPF_ARG3_TP() 296 #define __BPF_TP(...) \ 297 __trace_printk(0 /* Fake ip */, \ 298 fmt, ##__VA_ARGS__) 299 300 #define __BPF_ARG1_TP(...) \ 301 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ 302 ? __BPF_TP(arg1, ##__VA_ARGS__) \ 303 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ 304 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ 305 : __BPF_TP((u32)arg1, ##__VA_ARGS__))) 306 307 #define __BPF_ARG2_TP(...) \ 308 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ 309 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ 310 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ 311 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ 312 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) 313 314 #define __BPF_ARG3_TP(...) \ 315 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ 316 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ 317 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ 318 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ 319 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) 320 321 return __BPF_TP_EMIT(); 322 } 323 324 static const struct bpf_func_proto bpf_trace_printk_proto = { 325 .func = bpf_trace_printk, 326 .gpl_only = true, 327 .ret_type = RET_INTEGER, 328 .arg1_type = ARG_PTR_TO_MEM, 329 .arg2_type = ARG_CONST_SIZE, 330 }; 331 332 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 333 { 334 /* 335 * this program might be calling bpf_trace_printk, 336 * so allocate per-cpu printk buffers 337 */ 338 trace_printk_init_buffers(); 339 340 return &bpf_trace_printk_proto; 341 } 342 343 static __always_inline int 344 get_map_perf_counter(struct bpf_map *map, u64 flags, 345 u64 *value, u64 *enabled, u64 *running) 346 { 347 struct bpf_array *array = container_of(map, struct bpf_array, map); 348 unsigned int cpu = smp_processor_id(); 349 u64 index = flags & BPF_F_INDEX_MASK; 350 struct bpf_event_entry *ee; 351 352 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 353 return -EINVAL; 354 if (index == BPF_F_CURRENT_CPU) 355 index = cpu; 356 if (unlikely(index >= array->map.max_entries)) 357 return -E2BIG; 358 359 ee = READ_ONCE(array->ptrs[index]); 360 if (!ee) 361 return -ENOENT; 362 363 return perf_event_read_local(ee->event, value, enabled, running); 364 } 365 366 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 367 { 368 u64 value = 0; 369 int err; 370 371 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 372 /* 373 * this api is ugly since we miss [-22..-2] range of valid 374 * counter values, but that's uapi 375 */ 376 if (err) 377 return err; 378 return value; 379 } 380 381 static const struct bpf_func_proto bpf_perf_event_read_proto = { 382 .func = bpf_perf_event_read, 383 .gpl_only = true, 384 .ret_type = RET_INTEGER, 385 .arg1_type = ARG_CONST_MAP_PTR, 386 .arg2_type = ARG_ANYTHING, 387 }; 388 389 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 390 struct bpf_perf_event_value *, buf, u32, size) 391 { 392 int err = -EINVAL; 393 394 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 395 goto clear; 396 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 397 &buf->running); 398 if (unlikely(err)) 399 goto clear; 400 return 0; 401 clear: 402 memset(buf, 0, size); 403 return err; 404 } 405 406 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 407 .func = bpf_perf_event_read_value, 408 .gpl_only = true, 409 .ret_type = RET_INTEGER, 410 .arg1_type = ARG_CONST_MAP_PTR, 411 .arg2_type = ARG_ANYTHING, 412 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 413 .arg4_type = ARG_CONST_SIZE, 414 }; 415 416 static __always_inline u64 417 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 418 u64 flags, struct perf_sample_data *sd) 419 { 420 struct bpf_array *array = container_of(map, struct bpf_array, map); 421 unsigned int cpu = smp_processor_id(); 422 u64 index = flags & BPF_F_INDEX_MASK; 423 struct bpf_event_entry *ee; 424 struct perf_event *event; 425 426 if (index == BPF_F_CURRENT_CPU) 427 index = cpu; 428 if (unlikely(index >= array->map.max_entries)) 429 return -E2BIG; 430 431 ee = READ_ONCE(array->ptrs[index]); 432 if (!ee) 433 return -ENOENT; 434 435 event = ee->event; 436 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 437 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 438 return -EINVAL; 439 440 if (unlikely(event->oncpu != cpu)) 441 return -EOPNOTSUPP; 442 443 return perf_event_output(event, sd, regs); 444 } 445 446 /* 447 * Support executing tracepoints in normal, irq, and nmi context that each call 448 * bpf_perf_event_output 449 */ 450 struct bpf_trace_sample_data { 451 struct perf_sample_data sds[3]; 452 }; 453 454 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 455 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 456 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 457 u64, flags, void *, data, u64, size) 458 { 459 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); 460 int nest_level = this_cpu_inc_return(bpf_trace_nest_level); 461 struct perf_raw_record raw = { 462 .frag = { 463 .size = size, 464 .data = data, 465 }, 466 }; 467 struct perf_sample_data *sd; 468 int err; 469 470 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 471 err = -EBUSY; 472 goto out; 473 } 474 475 sd = &sds->sds[nest_level - 1]; 476 477 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 478 err = -EINVAL; 479 goto out; 480 } 481 482 perf_sample_data_init(sd, 0, 0); 483 sd->raw = &raw; 484 485 err = __bpf_perf_event_output(regs, map, flags, sd); 486 487 out: 488 this_cpu_dec(bpf_trace_nest_level); 489 return err; 490 } 491 492 static const struct bpf_func_proto bpf_perf_event_output_proto = { 493 .func = bpf_perf_event_output, 494 .gpl_only = true, 495 .ret_type = RET_INTEGER, 496 .arg1_type = ARG_PTR_TO_CTX, 497 .arg2_type = ARG_CONST_MAP_PTR, 498 .arg3_type = ARG_ANYTHING, 499 .arg4_type = ARG_PTR_TO_MEM, 500 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 501 }; 502 503 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 504 struct bpf_nested_pt_regs { 505 struct pt_regs regs[3]; 506 }; 507 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 508 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 509 510 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 511 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 512 { 513 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 514 struct perf_raw_frag frag = { 515 .copy = ctx_copy, 516 .size = ctx_size, 517 .data = ctx, 518 }; 519 struct perf_raw_record raw = { 520 .frag = { 521 { 522 .next = ctx_size ? &frag : NULL, 523 }, 524 .size = meta_size, 525 .data = meta, 526 }, 527 }; 528 struct perf_sample_data *sd; 529 struct pt_regs *regs; 530 u64 ret; 531 532 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 533 ret = -EBUSY; 534 goto out; 535 } 536 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 537 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 538 539 perf_fetch_caller_regs(regs); 540 perf_sample_data_init(sd, 0, 0); 541 sd->raw = &raw; 542 543 ret = __bpf_perf_event_output(regs, map, flags, sd); 544 out: 545 this_cpu_dec(bpf_event_output_nest_level); 546 return ret; 547 } 548 549 BPF_CALL_0(bpf_get_current_task) 550 { 551 return (long) current; 552 } 553 554 static const struct bpf_func_proto bpf_get_current_task_proto = { 555 .func = bpf_get_current_task, 556 .gpl_only = true, 557 .ret_type = RET_INTEGER, 558 }; 559 560 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 561 { 562 struct bpf_array *array = container_of(map, struct bpf_array, map); 563 struct cgroup *cgrp; 564 565 if (unlikely(idx >= array->map.max_entries)) 566 return -E2BIG; 567 568 cgrp = READ_ONCE(array->ptrs[idx]); 569 if (unlikely(!cgrp)) 570 return -EAGAIN; 571 572 return task_under_cgroup_hierarchy(current, cgrp); 573 } 574 575 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 576 .func = bpf_current_task_under_cgroup, 577 .gpl_only = false, 578 .ret_type = RET_INTEGER, 579 .arg1_type = ARG_CONST_MAP_PTR, 580 .arg2_type = ARG_ANYTHING, 581 }; 582 583 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, 584 const void *, unsafe_ptr) 585 { 586 int ret; 587 588 /* 589 * The strncpy_from_unsafe() call will likely not fill the entire 590 * buffer, but that's okay in this circumstance as we're probing 591 * arbitrary memory anyway similar to bpf_probe_read() and might 592 * as well probe the stack. Thus, memory is explicitly cleared 593 * only in error case, so that improper users ignoring return 594 * code altogether don't copy garbage; otherwise length of string 595 * is returned that can be used for bpf_perf_event_output() et al. 596 */ 597 ret = strncpy_from_unsafe(dst, unsafe_ptr, size); 598 if (unlikely(ret < 0)) 599 memset(dst, 0, size); 600 601 return ret; 602 } 603 604 static const struct bpf_func_proto bpf_probe_read_str_proto = { 605 .func = bpf_probe_read_str, 606 .gpl_only = true, 607 .ret_type = RET_INTEGER, 608 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 609 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 610 .arg3_type = ARG_ANYTHING, 611 }; 612 613 struct send_signal_irq_work { 614 struct irq_work irq_work; 615 struct task_struct *task; 616 u32 sig; 617 }; 618 619 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 620 621 static void do_bpf_send_signal(struct irq_work *entry) 622 { 623 struct send_signal_irq_work *work; 624 625 work = container_of(entry, struct send_signal_irq_work, irq_work); 626 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID); 627 } 628 629 BPF_CALL_1(bpf_send_signal, u32, sig) 630 { 631 struct send_signal_irq_work *work = NULL; 632 633 /* Similar to bpf_probe_write_user, task needs to be 634 * in a sound condition and kernel memory access be 635 * permitted in order to send signal to the current 636 * task. 637 */ 638 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 639 return -EPERM; 640 if (unlikely(uaccess_kernel())) 641 return -EPERM; 642 if (unlikely(!nmi_uaccess_okay())) 643 return -EPERM; 644 645 if (in_nmi()) { 646 /* Do an early check on signal validity. Otherwise, 647 * the error is lost in deferred irq_work. 648 */ 649 if (unlikely(!valid_signal(sig))) 650 return -EINVAL; 651 652 work = this_cpu_ptr(&send_signal_work); 653 if (work->irq_work.flags & IRQ_WORK_BUSY) 654 return -EBUSY; 655 656 /* Add the current task, which is the target of sending signal, 657 * to the irq_work. The current task may change when queued 658 * irq works get executed. 659 */ 660 work->task = current; 661 work->sig = sig; 662 irq_work_queue(&work->irq_work); 663 return 0; 664 } 665 666 return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID); 667 } 668 669 static const struct bpf_func_proto bpf_send_signal_proto = { 670 .func = bpf_send_signal, 671 .gpl_only = false, 672 .ret_type = RET_INTEGER, 673 .arg1_type = ARG_ANYTHING, 674 }; 675 676 static const struct bpf_func_proto * 677 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 678 { 679 switch (func_id) { 680 case BPF_FUNC_map_lookup_elem: 681 return &bpf_map_lookup_elem_proto; 682 case BPF_FUNC_map_update_elem: 683 return &bpf_map_update_elem_proto; 684 case BPF_FUNC_map_delete_elem: 685 return &bpf_map_delete_elem_proto; 686 case BPF_FUNC_map_push_elem: 687 return &bpf_map_push_elem_proto; 688 case BPF_FUNC_map_pop_elem: 689 return &bpf_map_pop_elem_proto; 690 case BPF_FUNC_map_peek_elem: 691 return &bpf_map_peek_elem_proto; 692 case BPF_FUNC_probe_read: 693 return &bpf_probe_read_proto; 694 case BPF_FUNC_ktime_get_ns: 695 return &bpf_ktime_get_ns_proto; 696 case BPF_FUNC_tail_call: 697 return &bpf_tail_call_proto; 698 case BPF_FUNC_get_current_pid_tgid: 699 return &bpf_get_current_pid_tgid_proto; 700 case BPF_FUNC_get_current_task: 701 return &bpf_get_current_task_proto; 702 case BPF_FUNC_get_current_uid_gid: 703 return &bpf_get_current_uid_gid_proto; 704 case BPF_FUNC_get_current_comm: 705 return &bpf_get_current_comm_proto; 706 case BPF_FUNC_trace_printk: 707 return bpf_get_trace_printk_proto(); 708 case BPF_FUNC_get_smp_processor_id: 709 return &bpf_get_smp_processor_id_proto; 710 case BPF_FUNC_get_numa_node_id: 711 return &bpf_get_numa_node_id_proto; 712 case BPF_FUNC_perf_event_read: 713 return &bpf_perf_event_read_proto; 714 case BPF_FUNC_probe_write_user: 715 return bpf_get_probe_write_proto(); 716 case BPF_FUNC_current_task_under_cgroup: 717 return &bpf_current_task_under_cgroup_proto; 718 case BPF_FUNC_get_prandom_u32: 719 return &bpf_get_prandom_u32_proto; 720 case BPF_FUNC_probe_read_str: 721 return &bpf_probe_read_str_proto; 722 #ifdef CONFIG_CGROUPS 723 case BPF_FUNC_get_current_cgroup_id: 724 return &bpf_get_current_cgroup_id_proto; 725 #endif 726 case BPF_FUNC_send_signal: 727 return &bpf_send_signal_proto; 728 default: 729 return NULL; 730 } 731 } 732 733 static const struct bpf_func_proto * 734 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 735 { 736 switch (func_id) { 737 case BPF_FUNC_perf_event_output: 738 return &bpf_perf_event_output_proto; 739 case BPF_FUNC_get_stackid: 740 return &bpf_get_stackid_proto; 741 case BPF_FUNC_get_stack: 742 return &bpf_get_stack_proto; 743 case BPF_FUNC_perf_event_read_value: 744 return &bpf_perf_event_read_value_proto; 745 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 746 case BPF_FUNC_override_return: 747 return &bpf_override_return_proto; 748 #endif 749 default: 750 return tracing_func_proto(func_id, prog); 751 } 752 } 753 754 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 755 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 756 const struct bpf_prog *prog, 757 struct bpf_insn_access_aux *info) 758 { 759 if (off < 0 || off >= sizeof(struct pt_regs)) 760 return false; 761 if (type != BPF_READ) 762 return false; 763 if (off % size != 0) 764 return false; 765 /* 766 * Assertion for 32 bit to make sure last 8 byte access 767 * (BPF_DW) to the last 4 byte member is disallowed. 768 */ 769 if (off + size > sizeof(struct pt_regs)) 770 return false; 771 772 return true; 773 } 774 775 const struct bpf_verifier_ops kprobe_verifier_ops = { 776 .get_func_proto = kprobe_prog_func_proto, 777 .is_valid_access = kprobe_prog_is_valid_access, 778 }; 779 780 const struct bpf_prog_ops kprobe_prog_ops = { 781 }; 782 783 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 784 u64, flags, void *, data, u64, size) 785 { 786 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 787 788 /* 789 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 790 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 791 * from there and call the same bpf_perf_event_output() helper inline. 792 */ 793 return ____bpf_perf_event_output(regs, map, flags, data, size); 794 } 795 796 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 797 .func = bpf_perf_event_output_tp, 798 .gpl_only = true, 799 .ret_type = RET_INTEGER, 800 .arg1_type = ARG_PTR_TO_CTX, 801 .arg2_type = ARG_CONST_MAP_PTR, 802 .arg3_type = ARG_ANYTHING, 803 .arg4_type = ARG_PTR_TO_MEM, 804 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 805 }; 806 807 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 808 u64, flags) 809 { 810 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 811 812 /* 813 * Same comment as in bpf_perf_event_output_tp(), only that this time 814 * the other helper's function body cannot be inlined due to being 815 * external, thus we need to call raw helper function. 816 */ 817 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 818 flags, 0, 0); 819 } 820 821 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 822 .func = bpf_get_stackid_tp, 823 .gpl_only = true, 824 .ret_type = RET_INTEGER, 825 .arg1_type = ARG_PTR_TO_CTX, 826 .arg2_type = ARG_CONST_MAP_PTR, 827 .arg3_type = ARG_ANYTHING, 828 }; 829 830 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 831 u64, flags) 832 { 833 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 834 835 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 836 (unsigned long) size, flags, 0); 837 } 838 839 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 840 .func = bpf_get_stack_tp, 841 .gpl_only = true, 842 .ret_type = RET_INTEGER, 843 .arg1_type = ARG_PTR_TO_CTX, 844 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 845 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 846 .arg4_type = ARG_ANYTHING, 847 }; 848 849 static const struct bpf_func_proto * 850 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 851 { 852 switch (func_id) { 853 case BPF_FUNC_perf_event_output: 854 return &bpf_perf_event_output_proto_tp; 855 case BPF_FUNC_get_stackid: 856 return &bpf_get_stackid_proto_tp; 857 case BPF_FUNC_get_stack: 858 return &bpf_get_stack_proto_tp; 859 default: 860 return tracing_func_proto(func_id, prog); 861 } 862 } 863 864 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 865 const struct bpf_prog *prog, 866 struct bpf_insn_access_aux *info) 867 { 868 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 869 return false; 870 if (type != BPF_READ) 871 return false; 872 if (off % size != 0) 873 return false; 874 875 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 876 return true; 877 } 878 879 const struct bpf_verifier_ops tracepoint_verifier_ops = { 880 .get_func_proto = tp_prog_func_proto, 881 .is_valid_access = tp_prog_is_valid_access, 882 }; 883 884 const struct bpf_prog_ops tracepoint_prog_ops = { 885 }; 886 887 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 888 struct bpf_perf_event_value *, buf, u32, size) 889 { 890 int err = -EINVAL; 891 892 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 893 goto clear; 894 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 895 &buf->running); 896 if (unlikely(err)) 897 goto clear; 898 return 0; 899 clear: 900 memset(buf, 0, size); 901 return err; 902 } 903 904 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 905 .func = bpf_perf_prog_read_value, 906 .gpl_only = true, 907 .ret_type = RET_INTEGER, 908 .arg1_type = ARG_PTR_TO_CTX, 909 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 910 .arg3_type = ARG_CONST_SIZE, 911 }; 912 913 static const struct bpf_func_proto * 914 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 915 { 916 switch (func_id) { 917 case BPF_FUNC_perf_event_output: 918 return &bpf_perf_event_output_proto_tp; 919 case BPF_FUNC_get_stackid: 920 return &bpf_get_stackid_proto_tp; 921 case BPF_FUNC_get_stack: 922 return &bpf_get_stack_proto_tp; 923 case BPF_FUNC_perf_prog_read_value: 924 return &bpf_perf_prog_read_value_proto; 925 default: 926 return tracing_func_proto(func_id, prog); 927 } 928 } 929 930 /* 931 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 932 * to avoid potential recursive reuse issue when/if tracepoints are added 933 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 934 * 935 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 936 * in normal, irq, and nmi context. 937 */ 938 struct bpf_raw_tp_regs { 939 struct pt_regs regs[3]; 940 }; 941 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 942 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 943 static struct pt_regs *get_bpf_raw_tp_regs(void) 944 { 945 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 946 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 947 948 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 949 this_cpu_dec(bpf_raw_tp_nest_level); 950 return ERR_PTR(-EBUSY); 951 } 952 953 return &tp_regs->regs[nest_level - 1]; 954 } 955 956 static void put_bpf_raw_tp_regs(void) 957 { 958 this_cpu_dec(bpf_raw_tp_nest_level); 959 } 960 961 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 962 struct bpf_map *, map, u64, flags, void *, data, u64, size) 963 { 964 struct pt_regs *regs = get_bpf_raw_tp_regs(); 965 int ret; 966 967 if (IS_ERR(regs)) 968 return PTR_ERR(regs); 969 970 perf_fetch_caller_regs(regs); 971 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 972 973 put_bpf_raw_tp_regs(); 974 return ret; 975 } 976 977 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 978 .func = bpf_perf_event_output_raw_tp, 979 .gpl_only = true, 980 .ret_type = RET_INTEGER, 981 .arg1_type = ARG_PTR_TO_CTX, 982 .arg2_type = ARG_CONST_MAP_PTR, 983 .arg3_type = ARG_ANYTHING, 984 .arg4_type = ARG_PTR_TO_MEM, 985 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 986 }; 987 988 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 989 struct bpf_map *, map, u64, flags) 990 { 991 struct pt_regs *regs = get_bpf_raw_tp_regs(); 992 int ret; 993 994 if (IS_ERR(regs)) 995 return PTR_ERR(regs); 996 997 perf_fetch_caller_regs(regs); 998 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 999 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1000 flags, 0, 0); 1001 put_bpf_raw_tp_regs(); 1002 return ret; 1003 } 1004 1005 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1006 .func = bpf_get_stackid_raw_tp, 1007 .gpl_only = true, 1008 .ret_type = RET_INTEGER, 1009 .arg1_type = ARG_PTR_TO_CTX, 1010 .arg2_type = ARG_CONST_MAP_PTR, 1011 .arg3_type = ARG_ANYTHING, 1012 }; 1013 1014 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1015 void *, buf, u32, size, u64, flags) 1016 { 1017 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1018 int ret; 1019 1020 if (IS_ERR(regs)) 1021 return PTR_ERR(regs); 1022 1023 perf_fetch_caller_regs(regs); 1024 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1025 (unsigned long) size, flags, 0); 1026 put_bpf_raw_tp_regs(); 1027 return ret; 1028 } 1029 1030 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1031 .func = bpf_get_stack_raw_tp, 1032 .gpl_only = true, 1033 .ret_type = RET_INTEGER, 1034 .arg1_type = ARG_PTR_TO_CTX, 1035 .arg2_type = ARG_PTR_TO_MEM, 1036 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1037 .arg4_type = ARG_ANYTHING, 1038 }; 1039 1040 static const struct bpf_func_proto * 1041 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1042 { 1043 switch (func_id) { 1044 case BPF_FUNC_perf_event_output: 1045 return &bpf_perf_event_output_proto_raw_tp; 1046 case BPF_FUNC_get_stackid: 1047 return &bpf_get_stackid_proto_raw_tp; 1048 case BPF_FUNC_get_stack: 1049 return &bpf_get_stack_proto_raw_tp; 1050 default: 1051 return tracing_func_proto(func_id, prog); 1052 } 1053 } 1054 1055 static bool raw_tp_prog_is_valid_access(int off, int size, 1056 enum bpf_access_type type, 1057 const struct bpf_prog *prog, 1058 struct bpf_insn_access_aux *info) 1059 { 1060 /* largest tracepoint in the kernel has 12 args */ 1061 if (off < 0 || off >= sizeof(__u64) * 12) 1062 return false; 1063 if (type != BPF_READ) 1064 return false; 1065 if (off % size != 0) 1066 return false; 1067 return true; 1068 } 1069 1070 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1071 .get_func_proto = raw_tp_prog_func_proto, 1072 .is_valid_access = raw_tp_prog_is_valid_access, 1073 }; 1074 1075 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 1076 }; 1077 1078 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 1079 enum bpf_access_type type, 1080 const struct bpf_prog *prog, 1081 struct bpf_insn_access_aux *info) 1082 { 1083 if (off == 0) { 1084 if (size != sizeof(u64) || type != BPF_READ) 1085 return false; 1086 info->reg_type = PTR_TO_TP_BUFFER; 1087 } 1088 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 1089 } 1090 1091 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 1092 .get_func_proto = raw_tp_prog_func_proto, 1093 .is_valid_access = raw_tp_writable_prog_is_valid_access, 1094 }; 1095 1096 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 1097 }; 1098 1099 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1100 const struct bpf_prog *prog, 1101 struct bpf_insn_access_aux *info) 1102 { 1103 const int size_u64 = sizeof(u64); 1104 1105 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 1106 return false; 1107 if (type != BPF_READ) 1108 return false; 1109 if (off % size != 0) { 1110 if (sizeof(unsigned long) != 4) 1111 return false; 1112 if (size != 8) 1113 return false; 1114 if (off % size != 4) 1115 return false; 1116 } 1117 1118 switch (off) { 1119 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 1120 bpf_ctx_record_field_size(info, size_u64); 1121 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1122 return false; 1123 break; 1124 case bpf_ctx_range(struct bpf_perf_event_data, addr): 1125 bpf_ctx_record_field_size(info, size_u64); 1126 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 1127 return false; 1128 break; 1129 default: 1130 if (size != sizeof(long)) 1131 return false; 1132 } 1133 1134 return true; 1135 } 1136 1137 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 1138 const struct bpf_insn *si, 1139 struct bpf_insn *insn_buf, 1140 struct bpf_prog *prog, u32 *target_size) 1141 { 1142 struct bpf_insn *insn = insn_buf; 1143 1144 switch (si->off) { 1145 case offsetof(struct bpf_perf_event_data, sample_period): 1146 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1147 data), si->dst_reg, si->src_reg, 1148 offsetof(struct bpf_perf_event_data_kern, data)); 1149 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1150 bpf_target_off(struct perf_sample_data, period, 8, 1151 target_size)); 1152 break; 1153 case offsetof(struct bpf_perf_event_data, addr): 1154 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1155 data), si->dst_reg, si->src_reg, 1156 offsetof(struct bpf_perf_event_data_kern, data)); 1157 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 1158 bpf_target_off(struct perf_sample_data, addr, 8, 1159 target_size)); 1160 break; 1161 default: 1162 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 1163 regs), si->dst_reg, si->src_reg, 1164 offsetof(struct bpf_perf_event_data_kern, regs)); 1165 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 1166 si->off); 1167 break; 1168 } 1169 1170 return insn - insn_buf; 1171 } 1172 1173 const struct bpf_verifier_ops perf_event_verifier_ops = { 1174 .get_func_proto = pe_prog_func_proto, 1175 .is_valid_access = pe_prog_is_valid_access, 1176 .convert_ctx_access = pe_prog_convert_ctx_access, 1177 }; 1178 1179 const struct bpf_prog_ops perf_event_prog_ops = { 1180 }; 1181 1182 static DEFINE_MUTEX(bpf_event_mutex); 1183 1184 #define BPF_TRACE_MAX_PROGS 64 1185 1186 int perf_event_attach_bpf_prog(struct perf_event *event, 1187 struct bpf_prog *prog) 1188 { 1189 struct bpf_prog_array *old_array; 1190 struct bpf_prog_array *new_array; 1191 int ret = -EEXIST; 1192 1193 /* 1194 * Kprobe override only works if they are on the function entry, 1195 * and only if they are on the opt-in list. 1196 */ 1197 if (prog->kprobe_override && 1198 (!trace_kprobe_on_func_entry(event->tp_event) || 1199 !trace_kprobe_error_injectable(event->tp_event))) 1200 return -EINVAL; 1201 1202 mutex_lock(&bpf_event_mutex); 1203 1204 if (event->prog) 1205 goto unlock; 1206 1207 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1208 if (old_array && 1209 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 1210 ret = -E2BIG; 1211 goto unlock; 1212 } 1213 1214 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); 1215 if (ret < 0) 1216 goto unlock; 1217 1218 /* set the new array to event->tp_event and set event->prog */ 1219 event->prog = prog; 1220 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1221 bpf_prog_array_free(old_array); 1222 1223 unlock: 1224 mutex_unlock(&bpf_event_mutex); 1225 return ret; 1226 } 1227 1228 void perf_event_detach_bpf_prog(struct perf_event *event) 1229 { 1230 struct bpf_prog_array *old_array; 1231 struct bpf_prog_array *new_array; 1232 int ret; 1233 1234 mutex_lock(&bpf_event_mutex); 1235 1236 if (!event->prog) 1237 goto unlock; 1238 1239 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 1240 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); 1241 if (ret == -ENOENT) 1242 goto unlock; 1243 if (ret < 0) { 1244 bpf_prog_array_delete_safe(old_array, event->prog); 1245 } else { 1246 rcu_assign_pointer(event->tp_event->prog_array, new_array); 1247 bpf_prog_array_free(old_array); 1248 } 1249 1250 bpf_prog_put(event->prog); 1251 event->prog = NULL; 1252 1253 unlock: 1254 mutex_unlock(&bpf_event_mutex); 1255 } 1256 1257 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 1258 { 1259 struct perf_event_query_bpf __user *uquery = info; 1260 struct perf_event_query_bpf query = {}; 1261 struct bpf_prog_array *progs; 1262 u32 *ids, prog_cnt, ids_len; 1263 int ret; 1264 1265 if (!capable(CAP_SYS_ADMIN)) 1266 return -EPERM; 1267 if (event->attr.type != PERF_TYPE_TRACEPOINT) 1268 return -EINVAL; 1269 if (copy_from_user(&query, uquery, sizeof(query))) 1270 return -EFAULT; 1271 1272 ids_len = query.ids_len; 1273 if (ids_len > BPF_TRACE_MAX_PROGS) 1274 return -E2BIG; 1275 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 1276 if (!ids) 1277 return -ENOMEM; 1278 /* 1279 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 1280 * is required when user only wants to check for uquery->prog_cnt. 1281 * There is no need to check for it since the case is handled 1282 * gracefully in bpf_prog_array_copy_info. 1283 */ 1284 1285 mutex_lock(&bpf_event_mutex); 1286 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 1287 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 1288 mutex_unlock(&bpf_event_mutex); 1289 1290 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 1291 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 1292 ret = -EFAULT; 1293 1294 kfree(ids); 1295 return ret; 1296 } 1297 1298 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 1299 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 1300 1301 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 1302 { 1303 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 1304 1305 for (; btp < __stop__bpf_raw_tp; btp++) { 1306 if (!strcmp(btp->tp->name, name)) 1307 return btp; 1308 } 1309 1310 return bpf_get_raw_tracepoint_module(name); 1311 } 1312 1313 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 1314 { 1315 struct module *mod = __module_address((unsigned long)btp); 1316 1317 if (mod) 1318 module_put(mod); 1319 } 1320 1321 static __always_inline 1322 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 1323 { 1324 rcu_read_lock(); 1325 preempt_disable(); 1326 (void) BPF_PROG_RUN(prog, args); 1327 preempt_enable(); 1328 rcu_read_unlock(); 1329 } 1330 1331 #define UNPACK(...) __VA_ARGS__ 1332 #define REPEAT_1(FN, DL, X, ...) FN(X) 1333 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 1334 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 1335 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 1336 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 1337 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 1338 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 1339 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 1340 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 1341 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 1342 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 1343 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 1344 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 1345 1346 #define SARG(X) u64 arg##X 1347 #define COPY(X) args[X] = arg##X 1348 1349 #define __DL_COM (,) 1350 #define __DL_SEM (;) 1351 1352 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1353 1354 #define BPF_TRACE_DEFN_x(x) \ 1355 void bpf_trace_run##x(struct bpf_prog *prog, \ 1356 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 1357 { \ 1358 u64 args[x]; \ 1359 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 1360 __bpf_trace_run(prog, args); \ 1361 } \ 1362 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 1363 BPF_TRACE_DEFN_x(1); 1364 BPF_TRACE_DEFN_x(2); 1365 BPF_TRACE_DEFN_x(3); 1366 BPF_TRACE_DEFN_x(4); 1367 BPF_TRACE_DEFN_x(5); 1368 BPF_TRACE_DEFN_x(6); 1369 BPF_TRACE_DEFN_x(7); 1370 BPF_TRACE_DEFN_x(8); 1371 BPF_TRACE_DEFN_x(9); 1372 BPF_TRACE_DEFN_x(10); 1373 BPF_TRACE_DEFN_x(11); 1374 BPF_TRACE_DEFN_x(12); 1375 1376 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1377 { 1378 struct tracepoint *tp = btp->tp; 1379 1380 /* 1381 * check that program doesn't access arguments beyond what's 1382 * available in this tracepoint 1383 */ 1384 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 1385 return -EINVAL; 1386 1387 if (prog->aux->max_tp_access > btp->writable_size) 1388 return -EINVAL; 1389 1390 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog); 1391 } 1392 1393 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1394 { 1395 return __bpf_probe_register(btp, prog); 1396 } 1397 1398 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 1399 { 1400 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 1401 } 1402 1403 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 1404 u32 *fd_type, const char **buf, 1405 u64 *probe_offset, u64 *probe_addr) 1406 { 1407 bool is_tracepoint, is_syscall_tp; 1408 struct bpf_prog *prog; 1409 int flags, err = 0; 1410 1411 prog = event->prog; 1412 if (!prog) 1413 return -ENOENT; 1414 1415 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 1416 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 1417 return -EOPNOTSUPP; 1418 1419 *prog_id = prog->aux->id; 1420 flags = event->tp_event->flags; 1421 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 1422 is_syscall_tp = is_syscall_trace_event(event->tp_event); 1423 1424 if (is_tracepoint || is_syscall_tp) { 1425 *buf = is_tracepoint ? event->tp_event->tp->name 1426 : event->tp_event->name; 1427 *fd_type = BPF_FD_TYPE_TRACEPOINT; 1428 *probe_offset = 0x0; 1429 *probe_addr = 0x0; 1430 } else { 1431 /* kprobe/uprobe */ 1432 err = -EOPNOTSUPP; 1433 #ifdef CONFIG_KPROBE_EVENTS 1434 if (flags & TRACE_EVENT_FL_KPROBE) 1435 err = bpf_get_kprobe_info(event, fd_type, buf, 1436 probe_offset, probe_addr, 1437 event->attr.type == PERF_TYPE_TRACEPOINT); 1438 #endif 1439 #ifdef CONFIG_UPROBE_EVENTS 1440 if (flags & TRACE_EVENT_FL_UPROBE) 1441 err = bpf_get_uprobe_info(event, fd_type, buf, 1442 probe_offset, 1443 event->attr.type == PERF_TYPE_TRACEPOINT); 1444 #endif 1445 } 1446 1447 return err; 1448 } 1449 1450 static int __init send_signal_irq_work_init(void) 1451 { 1452 int cpu; 1453 struct send_signal_irq_work *work; 1454 1455 for_each_possible_cpu(cpu) { 1456 work = per_cpu_ptr(&send_signal_work, cpu); 1457 init_irq_work(&work->irq_work, do_bpf_send_signal); 1458 } 1459 return 0; 1460 } 1461 1462 subsys_initcall(send_signal_irq_work_init); 1463 1464 #ifdef CONFIG_MODULES 1465 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 1466 void *module) 1467 { 1468 struct bpf_trace_module *btm, *tmp; 1469 struct module *mod = module; 1470 1471 if (mod->num_bpf_raw_events == 0 || 1472 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 1473 return 0; 1474 1475 mutex_lock(&bpf_module_mutex); 1476 1477 switch (op) { 1478 case MODULE_STATE_COMING: 1479 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 1480 if (btm) { 1481 btm->module = module; 1482 list_add(&btm->list, &bpf_trace_modules); 1483 } 1484 break; 1485 case MODULE_STATE_GOING: 1486 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 1487 if (btm->module == module) { 1488 list_del(&btm->list); 1489 kfree(btm); 1490 break; 1491 } 1492 } 1493 break; 1494 } 1495 1496 mutex_unlock(&bpf_module_mutex); 1497 1498 return 0; 1499 } 1500 1501 static struct notifier_block bpf_module_nb = { 1502 .notifier_call = bpf_event_notify, 1503 }; 1504 1505 static int __init bpf_event_init(void) 1506 { 1507 register_module_notifier(&bpf_module_nb); 1508 return 0; 1509 } 1510 1511 fs_initcall(bpf_event_init); 1512 #endif /* CONFIG_MODULES */ 1513