xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #define bpf_event_rcu_dereference(p)					\
23 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24 
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 	struct module *module;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33 
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 	struct bpf_raw_event_map *btp, *ret = NULL;
37 	struct bpf_trace_module *btm;
38 	unsigned int i;
39 
40 	mutex_lock(&bpf_module_mutex);
41 	list_for_each_entry(btm, &bpf_trace_modules, list) {
42 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 			btp = &btm->module->bpf_raw_events[i];
44 			if (!strcmp(btp->tp->name, name)) {
45 				if (try_module_get(btm->module))
46 					ret = btp;
47 				goto out;
48 			}
49 		}
50 	}
51 out:
52 	mutex_unlock(&bpf_module_mutex);
53 	return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61 
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64 
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 	unsigned int ret;
82 
83 	if (in_nmi()) /* not supported yet */
84 		return 1;
85 
86 	cant_sleep();
87 
88 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 		/*
90 		 * since some bpf program is already running on this cpu,
91 		 * don't call into another bpf program (same or different)
92 		 * and don't send kprobe event into ring-buffer,
93 		 * so return zero here
94 		 */
95 		ret = 0;
96 		goto out;
97 	}
98 
99 	/*
100 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 	 * to all call sites, we did a bpf_prog_array_valid() there to check
102 	 * whether call->prog_array is empty or not, which is
103 	 * a heurisitc to speed up execution.
104 	 *
105 	 * If bpf_prog_array_valid() fetched prog_array was
106 	 * non-NULL, we go into trace_call_bpf() and do the actual
107 	 * proper rcu_dereference() under RCU lock.
108 	 * If it turns out that prog_array is NULL then, we bail out.
109 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 	 * was NULL, you'll skip the prog_array with the risk of missing
111 	 * out of events when it was updated in between this and the
112 	 * rcu_dereference() which is accepted risk.
113 	 */
114 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115 
116  out:
117 	__this_cpu_dec(bpf_prog_active);
118 
119 	return ret;
120 }
121 
122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
124 {
125 	regs_set_return_value(regs, rc);
126 	override_function_with_return(regs);
127 	return 0;
128 }
129 
130 static const struct bpf_func_proto bpf_override_return_proto = {
131 	.func		= bpf_override_return,
132 	.gpl_only	= true,
133 	.ret_type	= RET_INTEGER,
134 	.arg1_type	= ARG_PTR_TO_CTX,
135 	.arg2_type	= ARG_ANYTHING,
136 };
137 #endif
138 
139 static __always_inline int
140 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
141 {
142 	int ret;
143 
144 	ret = probe_user_read(dst, unsafe_ptr, size);
145 	if (unlikely(ret < 0))
146 		memset(dst, 0, size);
147 	return ret;
148 }
149 
150 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
151 	   const void __user *, unsafe_ptr)
152 {
153 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
154 }
155 
156 const struct bpf_func_proto bpf_probe_read_user_proto = {
157 	.func		= bpf_probe_read_user,
158 	.gpl_only	= true,
159 	.ret_type	= RET_INTEGER,
160 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
161 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
162 	.arg3_type	= ARG_ANYTHING,
163 };
164 
165 static __always_inline int
166 bpf_probe_read_user_str_common(void *dst, u32 size,
167 			       const void __user *unsafe_ptr)
168 {
169 	int ret;
170 
171 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
172 	if (unlikely(ret < 0))
173 		memset(dst, 0, size);
174 	return ret;
175 }
176 
177 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
178 	   const void __user *, unsafe_ptr)
179 {
180 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
181 }
182 
183 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
184 	.func		= bpf_probe_read_user_str,
185 	.gpl_only	= true,
186 	.ret_type	= RET_INTEGER,
187 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
188 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
189 	.arg3_type	= ARG_ANYTHING,
190 };
191 
192 static __always_inline int
193 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
194 {
195 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
196 
197 	if (unlikely(ret < 0))
198 		goto fail;
199 	ret = probe_kernel_read(dst, unsafe_ptr, size);
200 	if (unlikely(ret < 0))
201 		goto fail;
202 	return ret;
203 fail:
204 	memset(dst, 0, size);
205 	return ret;
206 }
207 
208 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
209 	   const void *, unsafe_ptr)
210 {
211 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
212 }
213 
214 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
215 	.func		= bpf_probe_read_kernel,
216 	.gpl_only	= true,
217 	.ret_type	= RET_INTEGER,
218 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
219 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
220 	.arg3_type	= ARG_ANYTHING,
221 };
222 
223 static __always_inline int
224 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
225 {
226 	int ret = security_locked_down(LOCKDOWN_BPF_READ);
227 
228 	if (unlikely(ret < 0))
229 		goto fail;
230 
231 	/*
232 	 * The strncpy_from_kernel_nofault() call will likely not fill the
233 	 * entire buffer, but that's okay in this circumstance as we're probing
234 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
235 	 * as well probe the stack. Thus, memory is explicitly cleared
236 	 * only in error case, so that improper users ignoring return
237 	 * code altogether don't copy garbage; otherwise length of string
238 	 * is returned that can be used for bpf_perf_event_output() et al.
239 	 */
240 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
241 	if (unlikely(ret < 0))
242 		goto fail;
243 
244 	return 0;
245 fail:
246 	memset(dst, 0, size);
247 	return ret;
248 }
249 
250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
251 	   const void *, unsafe_ptr)
252 {
253 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
254 }
255 
256 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
257 	.func		= bpf_probe_read_kernel_str,
258 	.gpl_only	= true,
259 	.ret_type	= RET_INTEGER,
260 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
261 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
262 	.arg3_type	= ARG_ANYTHING,
263 };
264 
265 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
266 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
267 	   const void *, unsafe_ptr)
268 {
269 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
270 		return bpf_probe_read_user_common(dst, size,
271 				(__force void __user *)unsafe_ptr);
272 	}
273 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
274 }
275 
276 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
277 	.func		= bpf_probe_read_compat,
278 	.gpl_only	= true,
279 	.ret_type	= RET_INTEGER,
280 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
281 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
282 	.arg3_type	= ARG_ANYTHING,
283 };
284 
285 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
286 	   const void *, unsafe_ptr)
287 {
288 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
289 		return bpf_probe_read_user_str_common(dst, size,
290 				(__force void __user *)unsafe_ptr);
291 	}
292 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
293 }
294 
295 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
296 	.func		= bpf_probe_read_compat_str,
297 	.gpl_only	= true,
298 	.ret_type	= RET_INTEGER,
299 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
300 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
301 	.arg3_type	= ARG_ANYTHING,
302 };
303 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
304 
305 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
306 	   u32, size)
307 {
308 	/*
309 	 * Ensure we're in user context which is safe for the helper to
310 	 * run. This helper has no business in a kthread.
311 	 *
312 	 * access_ok() should prevent writing to non-user memory, but in
313 	 * some situations (nommu, temporary switch, etc) access_ok() does
314 	 * not provide enough validation, hence the check on KERNEL_DS.
315 	 *
316 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
317 	 * state, when the task or mm are switched. This is specifically
318 	 * required to prevent the use of temporary mm.
319 	 */
320 
321 	if (unlikely(in_interrupt() ||
322 		     current->flags & (PF_KTHREAD | PF_EXITING)))
323 		return -EPERM;
324 	if (unlikely(uaccess_kernel()))
325 		return -EPERM;
326 	if (unlikely(!nmi_uaccess_okay()))
327 		return -EPERM;
328 
329 	return probe_user_write(unsafe_ptr, src, size);
330 }
331 
332 static const struct bpf_func_proto bpf_probe_write_user_proto = {
333 	.func		= bpf_probe_write_user,
334 	.gpl_only	= true,
335 	.ret_type	= RET_INTEGER,
336 	.arg1_type	= ARG_ANYTHING,
337 	.arg2_type	= ARG_PTR_TO_MEM,
338 	.arg3_type	= ARG_CONST_SIZE,
339 };
340 
341 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
342 {
343 	if (!capable(CAP_SYS_ADMIN))
344 		return NULL;
345 
346 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
347 			    current->comm, task_pid_nr(current));
348 
349 	return &bpf_probe_write_user_proto;
350 }
351 
352 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
353 		size_t bufsz)
354 {
355 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
356 
357 	buf[0] = 0;
358 
359 	switch (fmt_ptype) {
360 	case 's':
361 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
362 		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
363 			strncpy_from_user_nofault(buf, user_ptr, bufsz);
364 			break;
365 		}
366 		fallthrough;
367 #endif
368 	case 'k':
369 		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
370 		break;
371 	case 'u':
372 		strncpy_from_user_nofault(buf, user_ptr, bufsz);
373 		break;
374 	}
375 }
376 
377 /*
378  * Only limited trace_printk() conversion specifiers allowed:
379  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pks %pus %s
380  */
381 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
382 	   u64, arg2, u64, arg3)
383 {
384 	int i, mod[3] = {}, fmt_cnt = 0;
385 	char buf[64], fmt_ptype;
386 	void *unsafe_ptr = NULL;
387 	bool str_seen = false;
388 
389 	/*
390 	 * bpf_check()->check_func_arg()->check_stack_boundary()
391 	 * guarantees that fmt points to bpf program stack,
392 	 * fmt_size bytes of it were initialized and fmt_size > 0
393 	 */
394 	if (fmt[--fmt_size] != 0)
395 		return -EINVAL;
396 
397 	/* check format string for allowed specifiers */
398 	for (i = 0; i < fmt_size; i++) {
399 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
400 			return -EINVAL;
401 
402 		if (fmt[i] != '%')
403 			continue;
404 
405 		if (fmt_cnt >= 3)
406 			return -EINVAL;
407 
408 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
409 		i++;
410 		if (fmt[i] == 'l') {
411 			mod[fmt_cnt]++;
412 			i++;
413 		} else if (fmt[i] == 'p') {
414 			mod[fmt_cnt]++;
415 			if ((fmt[i + 1] == 'k' ||
416 			     fmt[i + 1] == 'u') &&
417 			    fmt[i + 2] == 's') {
418 				fmt_ptype = fmt[i + 1];
419 				i += 2;
420 				goto fmt_str;
421 			}
422 
423 			/* disallow any further format extensions */
424 			if (fmt[i + 1] != 0 &&
425 			    !isspace(fmt[i + 1]) &&
426 			    !ispunct(fmt[i + 1]))
427 				return -EINVAL;
428 
429 			goto fmt_next;
430 		} else if (fmt[i] == 's') {
431 			mod[fmt_cnt]++;
432 			fmt_ptype = fmt[i];
433 fmt_str:
434 			if (str_seen)
435 				/* allow only one '%s' per fmt string */
436 				return -EINVAL;
437 			str_seen = true;
438 
439 			if (fmt[i + 1] != 0 &&
440 			    !isspace(fmt[i + 1]) &&
441 			    !ispunct(fmt[i + 1]))
442 				return -EINVAL;
443 
444 			switch (fmt_cnt) {
445 			case 0:
446 				unsafe_ptr = (void *)(long)arg1;
447 				arg1 = (long)buf;
448 				break;
449 			case 1:
450 				unsafe_ptr = (void *)(long)arg2;
451 				arg2 = (long)buf;
452 				break;
453 			case 2:
454 				unsafe_ptr = (void *)(long)arg3;
455 				arg3 = (long)buf;
456 				break;
457 			}
458 
459 			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
460 					sizeof(buf));
461 			goto fmt_next;
462 		}
463 
464 		if (fmt[i] == 'l') {
465 			mod[fmt_cnt]++;
466 			i++;
467 		}
468 
469 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
470 		    fmt[i] != 'u' && fmt[i] != 'x')
471 			return -EINVAL;
472 fmt_next:
473 		fmt_cnt++;
474 	}
475 
476 /* Horrid workaround for getting va_list handling working with different
477  * argument type combinations generically for 32 and 64 bit archs.
478  */
479 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
480 #define __BPF_TP(...)							\
481 	__trace_printk(0 /* Fake ip */,					\
482 		       fmt, ##__VA_ARGS__)
483 
484 #define __BPF_ARG1_TP(...)						\
485 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
486 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
487 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
488 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
489 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
490 
491 #define __BPF_ARG2_TP(...)						\
492 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
493 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
494 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
495 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
496 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
497 
498 #define __BPF_ARG3_TP(...)						\
499 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
500 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
501 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
502 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
503 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
504 
505 	return __BPF_TP_EMIT();
506 }
507 
508 static const struct bpf_func_proto bpf_trace_printk_proto = {
509 	.func		= bpf_trace_printk,
510 	.gpl_only	= true,
511 	.ret_type	= RET_INTEGER,
512 	.arg1_type	= ARG_PTR_TO_MEM,
513 	.arg2_type	= ARG_CONST_SIZE,
514 };
515 
516 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
517 {
518 	/*
519 	 * this program might be calling bpf_trace_printk,
520 	 * so allocate per-cpu printk buffers
521 	 */
522 	trace_printk_init_buffers();
523 
524 	return &bpf_trace_printk_proto;
525 }
526 
527 #define MAX_SEQ_PRINTF_VARARGS		12
528 #define MAX_SEQ_PRINTF_MAX_MEMCPY	6
529 #define MAX_SEQ_PRINTF_STR_LEN		128
530 
531 struct bpf_seq_printf_buf {
532 	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
533 };
534 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
535 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
536 
537 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
538 	   const void *, data, u32, data_len)
539 {
540 	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
541 	int i, buf_used, copy_size, num_args;
542 	u64 params[MAX_SEQ_PRINTF_VARARGS];
543 	struct bpf_seq_printf_buf *bufs;
544 	const u64 *args = data;
545 
546 	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
547 	if (WARN_ON_ONCE(buf_used > 1)) {
548 		err = -EBUSY;
549 		goto out;
550 	}
551 
552 	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
553 
554 	/*
555 	 * bpf_check()->check_func_arg()->check_stack_boundary()
556 	 * guarantees that fmt points to bpf program stack,
557 	 * fmt_size bytes of it were initialized and fmt_size > 0
558 	 */
559 	if (fmt[--fmt_size] != 0)
560 		goto out;
561 
562 	if (data_len & 7)
563 		goto out;
564 
565 	for (i = 0; i < fmt_size; i++) {
566 		if (fmt[i] == '%') {
567 			if (fmt[i + 1] == '%')
568 				i++;
569 			else if (!data || !data_len)
570 				goto out;
571 		}
572 	}
573 
574 	num_args = data_len / 8;
575 
576 	/* check format string for allowed specifiers */
577 	for (i = 0; i < fmt_size; i++) {
578 		/* only printable ascii for now. */
579 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
580 			err = -EINVAL;
581 			goto out;
582 		}
583 
584 		if (fmt[i] != '%')
585 			continue;
586 
587 		if (fmt[i + 1] == '%') {
588 			i++;
589 			continue;
590 		}
591 
592 		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
593 			err = -E2BIG;
594 			goto out;
595 		}
596 
597 		if (fmt_cnt >= num_args) {
598 			err = -EINVAL;
599 			goto out;
600 		}
601 
602 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
603 		i++;
604 
605 		/* skip optional "[0 +-][num]" width formating field */
606 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
607 		       fmt[i] == ' ')
608 			i++;
609 		if (fmt[i] >= '1' && fmt[i] <= '9') {
610 			i++;
611 			while (fmt[i] >= '0' && fmt[i] <= '9')
612 				i++;
613 		}
614 
615 		if (fmt[i] == 's') {
616 			void *unsafe_ptr;
617 
618 			/* try our best to copy */
619 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
620 				err = -E2BIG;
621 				goto out;
622 			}
623 
624 			unsafe_ptr = (void *)(long)args[fmt_cnt];
625 			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
626 					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
627 			if (err < 0)
628 				bufs->buf[memcpy_cnt][0] = '\0';
629 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
630 
631 			fmt_cnt++;
632 			memcpy_cnt++;
633 			continue;
634 		}
635 
636 		if (fmt[i] == 'p') {
637 			if (fmt[i + 1] == 0 ||
638 			    fmt[i + 1] == 'K' ||
639 			    fmt[i + 1] == 'x') {
640 				/* just kernel pointers */
641 				params[fmt_cnt] = args[fmt_cnt];
642 				fmt_cnt++;
643 				continue;
644 			}
645 
646 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
647 			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
648 				err = -EINVAL;
649 				goto out;
650 			}
651 			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
652 				err = -EINVAL;
653 				goto out;
654 			}
655 
656 			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
657 				err = -E2BIG;
658 				goto out;
659 			}
660 
661 
662 			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
663 
664 			err = probe_kernel_read(bufs->buf[memcpy_cnt],
665 						(void *) (long) args[fmt_cnt],
666 						copy_size);
667 			if (err < 0)
668 				memset(bufs->buf[memcpy_cnt], 0, copy_size);
669 			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
670 
671 			i += 2;
672 			fmt_cnt++;
673 			memcpy_cnt++;
674 			continue;
675 		}
676 
677 		if (fmt[i] == 'l') {
678 			i++;
679 			if (fmt[i] == 'l')
680 				i++;
681 		}
682 
683 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
684 		    fmt[i] != 'u' && fmt[i] != 'x') {
685 			err = -EINVAL;
686 			goto out;
687 		}
688 
689 		params[fmt_cnt] = args[fmt_cnt];
690 		fmt_cnt++;
691 	}
692 
693 	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
694 	 * all of them to seq_printf().
695 	 */
696 	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
697 		   params[4], params[5], params[6], params[7], params[8],
698 		   params[9], params[10], params[11]);
699 
700 	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
701 out:
702 	this_cpu_dec(bpf_seq_printf_buf_used);
703 	return err;
704 }
705 
706 static int bpf_seq_printf_btf_ids[5];
707 static const struct bpf_func_proto bpf_seq_printf_proto = {
708 	.func		= bpf_seq_printf,
709 	.gpl_only	= true,
710 	.ret_type	= RET_INTEGER,
711 	.arg1_type	= ARG_PTR_TO_BTF_ID,
712 	.arg2_type	= ARG_PTR_TO_MEM,
713 	.arg3_type	= ARG_CONST_SIZE,
714 	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
715 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
716 	.btf_id		= bpf_seq_printf_btf_ids,
717 };
718 
719 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
720 {
721 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
722 }
723 
724 static int bpf_seq_write_btf_ids[5];
725 static const struct bpf_func_proto bpf_seq_write_proto = {
726 	.func		= bpf_seq_write,
727 	.gpl_only	= true,
728 	.ret_type	= RET_INTEGER,
729 	.arg1_type	= ARG_PTR_TO_BTF_ID,
730 	.arg2_type	= ARG_PTR_TO_MEM,
731 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
732 	.btf_id		= bpf_seq_write_btf_ids,
733 };
734 
735 static __always_inline int
736 get_map_perf_counter(struct bpf_map *map, u64 flags,
737 		     u64 *value, u64 *enabled, u64 *running)
738 {
739 	struct bpf_array *array = container_of(map, struct bpf_array, map);
740 	unsigned int cpu = smp_processor_id();
741 	u64 index = flags & BPF_F_INDEX_MASK;
742 	struct bpf_event_entry *ee;
743 
744 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
745 		return -EINVAL;
746 	if (index == BPF_F_CURRENT_CPU)
747 		index = cpu;
748 	if (unlikely(index >= array->map.max_entries))
749 		return -E2BIG;
750 
751 	ee = READ_ONCE(array->ptrs[index]);
752 	if (!ee)
753 		return -ENOENT;
754 
755 	return perf_event_read_local(ee->event, value, enabled, running);
756 }
757 
758 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
759 {
760 	u64 value = 0;
761 	int err;
762 
763 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
764 	/*
765 	 * this api is ugly since we miss [-22..-2] range of valid
766 	 * counter values, but that's uapi
767 	 */
768 	if (err)
769 		return err;
770 	return value;
771 }
772 
773 static const struct bpf_func_proto bpf_perf_event_read_proto = {
774 	.func		= bpf_perf_event_read,
775 	.gpl_only	= true,
776 	.ret_type	= RET_INTEGER,
777 	.arg1_type	= ARG_CONST_MAP_PTR,
778 	.arg2_type	= ARG_ANYTHING,
779 };
780 
781 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
782 	   struct bpf_perf_event_value *, buf, u32, size)
783 {
784 	int err = -EINVAL;
785 
786 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
787 		goto clear;
788 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
789 				   &buf->running);
790 	if (unlikely(err))
791 		goto clear;
792 	return 0;
793 clear:
794 	memset(buf, 0, size);
795 	return err;
796 }
797 
798 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
799 	.func		= bpf_perf_event_read_value,
800 	.gpl_only	= true,
801 	.ret_type	= RET_INTEGER,
802 	.arg1_type	= ARG_CONST_MAP_PTR,
803 	.arg2_type	= ARG_ANYTHING,
804 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
805 	.arg4_type	= ARG_CONST_SIZE,
806 };
807 
808 static __always_inline u64
809 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
810 			u64 flags, struct perf_sample_data *sd)
811 {
812 	struct bpf_array *array = container_of(map, struct bpf_array, map);
813 	unsigned int cpu = smp_processor_id();
814 	u64 index = flags & BPF_F_INDEX_MASK;
815 	struct bpf_event_entry *ee;
816 	struct perf_event *event;
817 
818 	if (index == BPF_F_CURRENT_CPU)
819 		index = cpu;
820 	if (unlikely(index >= array->map.max_entries))
821 		return -E2BIG;
822 
823 	ee = READ_ONCE(array->ptrs[index]);
824 	if (!ee)
825 		return -ENOENT;
826 
827 	event = ee->event;
828 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
829 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
830 		return -EINVAL;
831 
832 	if (unlikely(event->oncpu != cpu))
833 		return -EOPNOTSUPP;
834 
835 	return perf_event_output(event, sd, regs);
836 }
837 
838 /*
839  * Support executing tracepoints in normal, irq, and nmi context that each call
840  * bpf_perf_event_output
841  */
842 struct bpf_trace_sample_data {
843 	struct perf_sample_data sds[3];
844 };
845 
846 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
847 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
848 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
849 	   u64, flags, void *, data, u64, size)
850 {
851 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
852 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
853 	struct perf_raw_record raw = {
854 		.frag = {
855 			.size = size,
856 			.data = data,
857 		},
858 	};
859 	struct perf_sample_data *sd;
860 	int err;
861 
862 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
863 		err = -EBUSY;
864 		goto out;
865 	}
866 
867 	sd = &sds->sds[nest_level - 1];
868 
869 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
870 		err = -EINVAL;
871 		goto out;
872 	}
873 
874 	perf_sample_data_init(sd, 0, 0);
875 	sd->raw = &raw;
876 
877 	err = __bpf_perf_event_output(regs, map, flags, sd);
878 
879 out:
880 	this_cpu_dec(bpf_trace_nest_level);
881 	return err;
882 }
883 
884 static const struct bpf_func_proto bpf_perf_event_output_proto = {
885 	.func		= bpf_perf_event_output,
886 	.gpl_only	= true,
887 	.ret_type	= RET_INTEGER,
888 	.arg1_type	= ARG_PTR_TO_CTX,
889 	.arg2_type	= ARG_CONST_MAP_PTR,
890 	.arg3_type	= ARG_ANYTHING,
891 	.arg4_type	= ARG_PTR_TO_MEM,
892 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
893 };
894 
895 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
896 struct bpf_nested_pt_regs {
897 	struct pt_regs regs[3];
898 };
899 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
900 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
901 
902 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
903 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
904 {
905 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
906 	struct perf_raw_frag frag = {
907 		.copy		= ctx_copy,
908 		.size		= ctx_size,
909 		.data		= ctx,
910 	};
911 	struct perf_raw_record raw = {
912 		.frag = {
913 			{
914 				.next	= ctx_size ? &frag : NULL,
915 			},
916 			.size	= meta_size,
917 			.data	= meta,
918 		},
919 	};
920 	struct perf_sample_data *sd;
921 	struct pt_regs *regs;
922 	u64 ret;
923 
924 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
925 		ret = -EBUSY;
926 		goto out;
927 	}
928 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
929 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
930 
931 	perf_fetch_caller_regs(regs);
932 	perf_sample_data_init(sd, 0, 0);
933 	sd->raw = &raw;
934 
935 	ret = __bpf_perf_event_output(regs, map, flags, sd);
936 out:
937 	this_cpu_dec(bpf_event_output_nest_level);
938 	return ret;
939 }
940 
941 BPF_CALL_0(bpf_get_current_task)
942 {
943 	return (long) current;
944 }
945 
946 const struct bpf_func_proto bpf_get_current_task_proto = {
947 	.func		= bpf_get_current_task,
948 	.gpl_only	= true,
949 	.ret_type	= RET_INTEGER,
950 };
951 
952 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
953 {
954 	struct bpf_array *array = container_of(map, struct bpf_array, map);
955 	struct cgroup *cgrp;
956 
957 	if (unlikely(idx >= array->map.max_entries))
958 		return -E2BIG;
959 
960 	cgrp = READ_ONCE(array->ptrs[idx]);
961 	if (unlikely(!cgrp))
962 		return -EAGAIN;
963 
964 	return task_under_cgroup_hierarchy(current, cgrp);
965 }
966 
967 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
968 	.func           = bpf_current_task_under_cgroup,
969 	.gpl_only       = false,
970 	.ret_type       = RET_INTEGER,
971 	.arg1_type      = ARG_CONST_MAP_PTR,
972 	.arg2_type      = ARG_ANYTHING,
973 };
974 
975 struct send_signal_irq_work {
976 	struct irq_work irq_work;
977 	struct task_struct *task;
978 	u32 sig;
979 	enum pid_type type;
980 };
981 
982 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
983 
984 static void do_bpf_send_signal(struct irq_work *entry)
985 {
986 	struct send_signal_irq_work *work;
987 
988 	work = container_of(entry, struct send_signal_irq_work, irq_work);
989 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
990 }
991 
992 static int bpf_send_signal_common(u32 sig, enum pid_type type)
993 {
994 	struct send_signal_irq_work *work = NULL;
995 
996 	/* Similar to bpf_probe_write_user, task needs to be
997 	 * in a sound condition and kernel memory access be
998 	 * permitted in order to send signal to the current
999 	 * task.
1000 	 */
1001 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1002 		return -EPERM;
1003 	if (unlikely(uaccess_kernel()))
1004 		return -EPERM;
1005 	if (unlikely(!nmi_uaccess_okay()))
1006 		return -EPERM;
1007 
1008 	if (irqs_disabled()) {
1009 		/* Do an early check on signal validity. Otherwise,
1010 		 * the error is lost in deferred irq_work.
1011 		 */
1012 		if (unlikely(!valid_signal(sig)))
1013 			return -EINVAL;
1014 
1015 		work = this_cpu_ptr(&send_signal_work);
1016 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1017 			return -EBUSY;
1018 
1019 		/* Add the current task, which is the target of sending signal,
1020 		 * to the irq_work. The current task may change when queued
1021 		 * irq works get executed.
1022 		 */
1023 		work->task = current;
1024 		work->sig = sig;
1025 		work->type = type;
1026 		irq_work_queue(&work->irq_work);
1027 		return 0;
1028 	}
1029 
1030 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1031 }
1032 
1033 BPF_CALL_1(bpf_send_signal, u32, sig)
1034 {
1035 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
1036 }
1037 
1038 static const struct bpf_func_proto bpf_send_signal_proto = {
1039 	.func		= bpf_send_signal,
1040 	.gpl_only	= false,
1041 	.ret_type	= RET_INTEGER,
1042 	.arg1_type	= ARG_ANYTHING,
1043 };
1044 
1045 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1046 {
1047 	return bpf_send_signal_common(sig, PIDTYPE_PID);
1048 }
1049 
1050 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1051 	.func		= bpf_send_signal_thread,
1052 	.gpl_only	= false,
1053 	.ret_type	= RET_INTEGER,
1054 	.arg1_type	= ARG_ANYTHING,
1055 };
1056 
1057 const struct bpf_func_proto *
1058 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1059 {
1060 	switch (func_id) {
1061 	case BPF_FUNC_map_lookup_elem:
1062 		return &bpf_map_lookup_elem_proto;
1063 	case BPF_FUNC_map_update_elem:
1064 		return &bpf_map_update_elem_proto;
1065 	case BPF_FUNC_map_delete_elem:
1066 		return &bpf_map_delete_elem_proto;
1067 	case BPF_FUNC_map_push_elem:
1068 		return &bpf_map_push_elem_proto;
1069 	case BPF_FUNC_map_pop_elem:
1070 		return &bpf_map_pop_elem_proto;
1071 	case BPF_FUNC_map_peek_elem:
1072 		return &bpf_map_peek_elem_proto;
1073 	case BPF_FUNC_ktime_get_ns:
1074 		return &bpf_ktime_get_ns_proto;
1075 	case BPF_FUNC_ktime_get_boot_ns:
1076 		return &bpf_ktime_get_boot_ns_proto;
1077 	case BPF_FUNC_tail_call:
1078 		return &bpf_tail_call_proto;
1079 	case BPF_FUNC_get_current_pid_tgid:
1080 		return &bpf_get_current_pid_tgid_proto;
1081 	case BPF_FUNC_get_current_task:
1082 		return &bpf_get_current_task_proto;
1083 	case BPF_FUNC_get_current_uid_gid:
1084 		return &bpf_get_current_uid_gid_proto;
1085 	case BPF_FUNC_get_current_comm:
1086 		return &bpf_get_current_comm_proto;
1087 	case BPF_FUNC_trace_printk:
1088 		return bpf_get_trace_printk_proto();
1089 	case BPF_FUNC_get_smp_processor_id:
1090 		return &bpf_get_smp_processor_id_proto;
1091 	case BPF_FUNC_get_numa_node_id:
1092 		return &bpf_get_numa_node_id_proto;
1093 	case BPF_FUNC_perf_event_read:
1094 		return &bpf_perf_event_read_proto;
1095 	case BPF_FUNC_probe_write_user:
1096 		return bpf_get_probe_write_proto();
1097 	case BPF_FUNC_current_task_under_cgroup:
1098 		return &bpf_current_task_under_cgroup_proto;
1099 	case BPF_FUNC_get_prandom_u32:
1100 		return &bpf_get_prandom_u32_proto;
1101 	case BPF_FUNC_probe_read_user:
1102 		return &bpf_probe_read_user_proto;
1103 	case BPF_FUNC_probe_read_kernel:
1104 		return &bpf_probe_read_kernel_proto;
1105 	case BPF_FUNC_probe_read_user_str:
1106 		return &bpf_probe_read_user_str_proto;
1107 	case BPF_FUNC_probe_read_kernel_str:
1108 		return &bpf_probe_read_kernel_str_proto;
1109 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1110 	case BPF_FUNC_probe_read:
1111 		return &bpf_probe_read_compat_proto;
1112 	case BPF_FUNC_probe_read_str:
1113 		return &bpf_probe_read_compat_str_proto;
1114 #endif
1115 #ifdef CONFIG_CGROUPS
1116 	case BPF_FUNC_get_current_cgroup_id:
1117 		return &bpf_get_current_cgroup_id_proto;
1118 #endif
1119 	case BPF_FUNC_send_signal:
1120 		return &bpf_send_signal_proto;
1121 	case BPF_FUNC_send_signal_thread:
1122 		return &bpf_send_signal_thread_proto;
1123 	case BPF_FUNC_perf_event_read_value:
1124 		return &bpf_perf_event_read_value_proto;
1125 	case BPF_FUNC_get_ns_current_pid_tgid:
1126 		return &bpf_get_ns_current_pid_tgid_proto;
1127 	case BPF_FUNC_ringbuf_output:
1128 		return &bpf_ringbuf_output_proto;
1129 	case BPF_FUNC_ringbuf_reserve:
1130 		return &bpf_ringbuf_reserve_proto;
1131 	case BPF_FUNC_ringbuf_submit:
1132 		return &bpf_ringbuf_submit_proto;
1133 	case BPF_FUNC_ringbuf_discard:
1134 		return &bpf_ringbuf_discard_proto;
1135 	case BPF_FUNC_ringbuf_query:
1136 		return &bpf_ringbuf_query_proto;
1137 	default:
1138 		return NULL;
1139 	}
1140 }
1141 
1142 static const struct bpf_func_proto *
1143 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1144 {
1145 	switch (func_id) {
1146 	case BPF_FUNC_perf_event_output:
1147 		return &bpf_perf_event_output_proto;
1148 	case BPF_FUNC_get_stackid:
1149 		return &bpf_get_stackid_proto;
1150 	case BPF_FUNC_get_stack:
1151 		return &bpf_get_stack_proto;
1152 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1153 	case BPF_FUNC_override_return:
1154 		return &bpf_override_return_proto;
1155 #endif
1156 	default:
1157 		return bpf_tracing_func_proto(func_id, prog);
1158 	}
1159 }
1160 
1161 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1162 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1163 					const struct bpf_prog *prog,
1164 					struct bpf_insn_access_aux *info)
1165 {
1166 	if (off < 0 || off >= sizeof(struct pt_regs))
1167 		return false;
1168 	if (type != BPF_READ)
1169 		return false;
1170 	if (off % size != 0)
1171 		return false;
1172 	/*
1173 	 * Assertion for 32 bit to make sure last 8 byte access
1174 	 * (BPF_DW) to the last 4 byte member is disallowed.
1175 	 */
1176 	if (off + size > sizeof(struct pt_regs))
1177 		return false;
1178 
1179 	return true;
1180 }
1181 
1182 const struct bpf_verifier_ops kprobe_verifier_ops = {
1183 	.get_func_proto  = kprobe_prog_func_proto,
1184 	.is_valid_access = kprobe_prog_is_valid_access,
1185 };
1186 
1187 const struct bpf_prog_ops kprobe_prog_ops = {
1188 };
1189 
1190 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1191 	   u64, flags, void *, data, u64, size)
1192 {
1193 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1194 
1195 	/*
1196 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1197 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1198 	 * from there and call the same bpf_perf_event_output() helper inline.
1199 	 */
1200 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1201 }
1202 
1203 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1204 	.func		= bpf_perf_event_output_tp,
1205 	.gpl_only	= true,
1206 	.ret_type	= RET_INTEGER,
1207 	.arg1_type	= ARG_PTR_TO_CTX,
1208 	.arg2_type	= ARG_CONST_MAP_PTR,
1209 	.arg3_type	= ARG_ANYTHING,
1210 	.arg4_type	= ARG_PTR_TO_MEM,
1211 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1212 };
1213 
1214 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1215 	   u64, flags)
1216 {
1217 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1218 
1219 	/*
1220 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1221 	 * the other helper's function body cannot be inlined due to being
1222 	 * external, thus we need to call raw helper function.
1223 	 */
1224 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1225 			       flags, 0, 0);
1226 }
1227 
1228 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1229 	.func		= bpf_get_stackid_tp,
1230 	.gpl_only	= true,
1231 	.ret_type	= RET_INTEGER,
1232 	.arg1_type	= ARG_PTR_TO_CTX,
1233 	.arg2_type	= ARG_CONST_MAP_PTR,
1234 	.arg3_type	= ARG_ANYTHING,
1235 };
1236 
1237 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1238 	   u64, flags)
1239 {
1240 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1241 
1242 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1243 			     (unsigned long) size, flags, 0);
1244 }
1245 
1246 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1247 	.func		= bpf_get_stack_tp,
1248 	.gpl_only	= true,
1249 	.ret_type	= RET_INTEGER,
1250 	.arg1_type	= ARG_PTR_TO_CTX,
1251 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1252 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1253 	.arg4_type	= ARG_ANYTHING,
1254 };
1255 
1256 static const struct bpf_func_proto *
1257 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1258 {
1259 	switch (func_id) {
1260 	case BPF_FUNC_perf_event_output:
1261 		return &bpf_perf_event_output_proto_tp;
1262 	case BPF_FUNC_get_stackid:
1263 		return &bpf_get_stackid_proto_tp;
1264 	case BPF_FUNC_get_stack:
1265 		return &bpf_get_stack_proto_tp;
1266 	default:
1267 		return bpf_tracing_func_proto(func_id, prog);
1268 	}
1269 }
1270 
1271 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1272 				    const struct bpf_prog *prog,
1273 				    struct bpf_insn_access_aux *info)
1274 {
1275 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1276 		return false;
1277 	if (type != BPF_READ)
1278 		return false;
1279 	if (off % size != 0)
1280 		return false;
1281 
1282 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1283 	return true;
1284 }
1285 
1286 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1287 	.get_func_proto  = tp_prog_func_proto,
1288 	.is_valid_access = tp_prog_is_valid_access,
1289 };
1290 
1291 const struct bpf_prog_ops tracepoint_prog_ops = {
1292 };
1293 
1294 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1295 	   struct bpf_perf_event_value *, buf, u32, size)
1296 {
1297 	int err = -EINVAL;
1298 
1299 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1300 		goto clear;
1301 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1302 				    &buf->running);
1303 	if (unlikely(err))
1304 		goto clear;
1305 	return 0;
1306 clear:
1307 	memset(buf, 0, size);
1308 	return err;
1309 }
1310 
1311 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1312          .func           = bpf_perf_prog_read_value,
1313          .gpl_only       = true,
1314          .ret_type       = RET_INTEGER,
1315          .arg1_type      = ARG_PTR_TO_CTX,
1316          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1317          .arg3_type      = ARG_CONST_SIZE,
1318 };
1319 
1320 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1321 	   void *, buf, u32, size, u64, flags)
1322 {
1323 #ifndef CONFIG_X86
1324 	return -ENOENT;
1325 #else
1326 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1327 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1328 	u32 to_copy;
1329 
1330 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1331 		return -EINVAL;
1332 
1333 	if (unlikely(!br_stack))
1334 		return -EINVAL;
1335 
1336 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1337 		return br_stack->nr * br_entry_size;
1338 
1339 	if (!buf || (size % br_entry_size != 0))
1340 		return -EINVAL;
1341 
1342 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1343 	memcpy(buf, br_stack->entries, to_copy);
1344 
1345 	return to_copy;
1346 #endif
1347 }
1348 
1349 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1350 	.func           = bpf_read_branch_records,
1351 	.gpl_only       = true,
1352 	.ret_type       = RET_INTEGER,
1353 	.arg1_type      = ARG_PTR_TO_CTX,
1354 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1355 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1356 	.arg4_type      = ARG_ANYTHING,
1357 };
1358 
1359 static const struct bpf_func_proto *
1360 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1361 {
1362 	switch (func_id) {
1363 	case BPF_FUNC_perf_event_output:
1364 		return &bpf_perf_event_output_proto_tp;
1365 	case BPF_FUNC_get_stackid:
1366 		return &bpf_get_stackid_proto_tp;
1367 	case BPF_FUNC_get_stack:
1368 		return &bpf_get_stack_proto_tp;
1369 	case BPF_FUNC_perf_prog_read_value:
1370 		return &bpf_perf_prog_read_value_proto;
1371 	case BPF_FUNC_read_branch_records:
1372 		return &bpf_read_branch_records_proto;
1373 	default:
1374 		return bpf_tracing_func_proto(func_id, prog);
1375 	}
1376 }
1377 
1378 /*
1379  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1380  * to avoid potential recursive reuse issue when/if tracepoints are added
1381  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1382  *
1383  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1384  * in normal, irq, and nmi context.
1385  */
1386 struct bpf_raw_tp_regs {
1387 	struct pt_regs regs[3];
1388 };
1389 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1390 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1391 static struct pt_regs *get_bpf_raw_tp_regs(void)
1392 {
1393 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1394 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1395 
1396 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1397 		this_cpu_dec(bpf_raw_tp_nest_level);
1398 		return ERR_PTR(-EBUSY);
1399 	}
1400 
1401 	return &tp_regs->regs[nest_level - 1];
1402 }
1403 
1404 static void put_bpf_raw_tp_regs(void)
1405 {
1406 	this_cpu_dec(bpf_raw_tp_nest_level);
1407 }
1408 
1409 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1410 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1411 {
1412 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1413 	int ret;
1414 
1415 	if (IS_ERR(regs))
1416 		return PTR_ERR(regs);
1417 
1418 	perf_fetch_caller_regs(regs);
1419 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1420 
1421 	put_bpf_raw_tp_regs();
1422 	return ret;
1423 }
1424 
1425 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1426 	.func		= bpf_perf_event_output_raw_tp,
1427 	.gpl_only	= true,
1428 	.ret_type	= RET_INTEGER,
1429 	.arg1_type	= ARG_PTR_TO_CTX,
1430 	.arg2_type	= ARG_CONST_MAP_PTR,
1431 	.arg3_type	= ARG_ANYTHING,
1432 	.arg4_type	= ARG_PTR_TO_MEM,
1433 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1434 };
1435 
1436 extern const struct bpf_func_proto bpf_skb_output_proto;
1437 extern const struct bpf_func_proto bpf_xdp_output_proto;
1438 
1439 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1440 	   struct bpf_map *, map, u64, flags)
1441 {
1442 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1443 	int ret;
1444 
1445 	if (IS_ERR(regs))
1446 		return PTR_ERR(regs);
1447 
1448 	perf_fetch_caller_regs(regs);
1449 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1450 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1451 			      flags, 0, 0);
1452 	put_bpf_raw_tp_regs();
1453 	return ret;
1454 }
1455 
1456 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1457 	.func		= bpf_get_stackid_raw_tp,
1458 	.gpl_only	= true,
1459 	.ret_type	= RET_INTEGER,
1460 	.arg1_type	= ARG_PTR_TO_CTX,
1461 	.arg2_type	= ARG_CONST_MAP_PTR,
1462 	.arg3_type	= ARG_ANYTHING,
1463 };
1464 
1465 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1466 	   void *, buf, u32, size, u64, flags)
1467 {
1468 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1469 	int ret;
1470 
1471 	if (IS_ERR(regs))
1472 		return PTR_ERR(regs);
1473 
1474 	perf_fetch_caller_regs(regs);
1475 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1476 			    (unsigned long) size, flags, 0);
1477 	put_bpf_raw_tp_regs();
1478 	return ret;
1479 }
1480 
1481 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1482 	.func		= bpf_get_stack_raw_tp,
1483 	.gpl_only	= true,
1484 	.ret_type	= RET_INTEGER,
1485 	.arg1_type	= ARG_PTR_TO_CTX,
1486 	.arg2_type	= ARG_PTR_TO_MEM,
1487 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1488 	.arg4_type	= ARG_ANYTHING,
1489 };
1490 
1491 static const struct bpf_func_proto *
1492 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1493 {
1494 	switch (func_id) {
1495 	case BPF_FUNC_perf_event_output:
1496 		return &bpf_perf_event_output_proto_raw_tp;
1497 	case BPF_FUNC_get_stackid:
1498 		return &bpf_get_stackid_proto_raw_tp;
1499 	case BPF_FUNC_get_stack:
1500 		return &bpf_get_stack_proto_raw_tp;
1501 	default:
1502 		return bpf_tracing_func_proto(func_id, prog);
1503 	}
1504 }
1505 
1506 const struct bpf_func_proto *
1507 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1508 {
1509 	switch (func_id) {
1510 #ifdef CONFIG_NET
1511 	case BPF_FUNC_skb_output:
1512 		return &bpf_skb_output_proto;
1513 	case BPF_FUNC_xdp_output:
1514 		return &bpf_xdp_output_proto;
1515 #endif
1516 	case BPF_FUNC_seq_printf:
1517 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1518 		       &bpf_seq_printf_proto :
1519 		       NULL;
1520 	case BPF_FUNC_seq_write:
1521 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1522 		       &bpf_seq_write_proto :
1523 		       NULL;
1524 	default:
1525 		return raw_tp_prog_func_proto(func_id, prog);
1526 	}
1527 }
1528 
1529 static bool raw_tp_prog_is_valid_access(int off, int size,
1530 					enum bpf_access_type type,
1531 					const struct bpf_prog *prog,
1532 					struct bpf_insn_access_aux *info)
1533 {
1534 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1535 		return false;
1536 	if (type != BPF_READ)
1537 		return false;
1538 	if (off % size != 0)
1539 		return false;
1540 	return true;
1541 }
1542 
1543 static bool tracing_prog_is_valid_access(int off, int size,
1544 					 enum bpf_access_type type,
1545 					 const struct bpf_prog *prog,
1546 					 struct bpf_insn_access_aux *info)
1547 {
1548 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1549 		return false;
1550 	if (type != BPF_READ)
1551 		return false;
1552 	if (off % size != 0)
1553 		return false;
1554 	return btf_ctx_access(off, size, type, prog, info);
1555 }
1556 
1557 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1558 				     const union bpf_attr *kattr,
1559 				     union bpf_attr __user *uattr)
1560 {
1561 	return -ENOTSUPP;
1562 }
1563 
1564 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1565 	.get_func_proto  = raw_tp_prog_func_proto,
1566 	.is_valid_access = raw_tp_prog_is_valid_access,
1567 };
1568 
1569 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1570 };
1571 
1572 const struct bpf_verifier_ops tracing_verifier_ops = {
1573 	.get_func_proto  = tracing_prog_func_proto,
1574 	.is_valid_access = tracing_prog_is_valid_access,
1575 };
1576 
1577 const struct bpf_prog_ops tracing_prog_ops = {
1578 	.test_run = bpf_prog_test_run_tracing,
1579 };
1580 
1581 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1582 						 enum bpf_access_type type,
1583 						 const struct bpf_prog *prog,
1584 						 struct bpf_insn_access_aux *info)
1585 {
1586 	if (off == 0) {
1587 		if (size != sizeof(u64) || type != BPF_READ)
1588 			return false;
1589 		info->reg_type = PTR_TO_TP_BUFFER;
1590 	}
1591 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1592 }
1593 
1594 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1595 	.get_func_proto  = raw_tp_prog_func_proto,
1596 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1597 };
1598 
1599 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1600 };
1601 
1602 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1603 				    const struct bpf_prog *prog,
1604 				    struct bpf_insn_access_aux *info)
1605 {
1606 	const int size_u64 = sizeof(u64);
1607 
1608 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1609 		return false;
1610 	if (type != BPF_READ)
1611 		return false;
1612 	if (off % size != 0) {
1613 		if (sizeof(unsigned long) != 4)
1614 			return false;
1615 		if (size != 8)
1616 			return false;
1617 		if (off % size != 4)
1618 			return false;
1619 	}
1620 
1621 	switch (off) {
1622 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1623 		bpf_ctx_record_field_size(info, size_u64);
1624 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1625 			return false;
1626 		break;
1627 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1628 		bpf_ctx_record_field_size(info, size_u64);
1629 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1630 			return false;
1631 		break;
1632 	default:
1633 		if (size != sizeof(long))
1634 			return false;
1635 	}
1636 
1637 	return true;
1638 }
1639 
1640 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1641 				      const struct bpf_insn *si,
1642 				      struct bpf_insn *insn_buf,
1643 				      struct bpf_prog *prog, u32 *target_size)
1644 {
1645 	struct bpf_insn *insn = insn_buf;
1646 
1647 	switch (si->off) {
1648 	case offsetof(struct bpf_perf_event_data, sample_period):
1649 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1650 						       data), si->dst_reg, si->src_reg,
1651 				      offsetof(struct bpf_perf_event_data_kern, data));
1652 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1653 				      bpf_target_off(struct perf_sample_data, period, 8,
1654 						     target_size));
1655 		break;
1656 	case offsetof(struct bpf_perf_event_data, addr):
1657 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1658 						       data), si->dst_reg, si->src_reg,
1659 				      offsetof(struct bpf_perf_event_data_kern, data));
1660 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1661 				      bpf_target_off(struct perf_sample_data, addr, 8,
1662 						     target_size));
1663 		break;
1664 	default:
1665 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1666 						       regs), si->dst_reg, si->src_reg,
1667 				      offsetof(struct bpf_perf_event_data_kern, regs));
1668 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1669 				      si->off);
1670 		break;
1671 	}
1672 
1673 	return insn - insn_buf;
1674 }
1675 
1676 const struct bpf_verifier_ops perf_event_verifier_ops = {
1677 	.get_func_proto		= pe_prog_func_proto,
1678 	.is_valid_access	= pe_prog_is_valid_access,
1679 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1680 };
1681 
1682 const struct bpf_prog_ops perf_event_prog_ops = {
1683 };
1684 
1685 static DEFINE_MUTEX(bpf_event_mutex);
1686 
1687 #define BPF_TRACE_MAX_PROGS 64
1688 
1689 int perf_event_attach_bpf_prog(struct perf_event *event,
1690 			       struct bpf_prog *prog)
1691 {
1692 	struct bpf_prog_array *old_array;
1693 	struct bpf_prog_array *new_array;
1694 	int ret = -EEXIST;
1695 
1696 	/*
1697 	 * Kprobe override only works if they are on the function entry,
1698 	 * and only if they are on the opt-in list.
1699 	 */
1700 	if (prog->kprobe_override &&
1701 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1702 	     !trace_kprobe_error_injectable(event->tp_event)))
1703 		return -EINVAL;
1704 
1705 	mutex_lock(&bpf_event_mutex);
1706 
1707 	if (event->prog)
1708 		goto unlock;
1709 
1710 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1711 	if (old_array &&
1712 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1713 		ret = -E2BIG;
1714 		goto unlock;
1715 	}
1716 
1717 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1718 	if (ret < 0)
1719 		goto unlock;
1720 
1721 	/* set the new array to event->tp_event and set event->prog */
1722 	event->prog = prog;
1723 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1724 	bpf_prog_array_free(old_array);
1725 
1726 unlock:
1727 	mutex_unlock(&bpf_event_mutex);
1728 	return ret;
1729 }
1730 
1731 void perf_event_detach_bpf_prog(struct perf_event *event)
1732 {
1733 	struct bpf_prog_array *old_array;
1734 	struct bpf_prog_array *new_array;
1735 	int ret;
1736 
1737 	mutex_lock(&bpf_event_mutex);
1738 
1739 	if (!event->prog)
1740 		goto unlock;
1741 
1742 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1743 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1744 	if (ret == -ENOENT)
1745 		goto unlock;
1746 	if (ret < 0) {
1747 		bpf_prog_array_delete_safe(old_array, event->prog);
1748 	} else {
1749 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1750 		bpf_prog_array_free(old_array);
1751 	}
1752 
1753 	bpf_prog_put(event->prog);
1754 	event->prog = NULL;
1755 
1756 unlock:
1757 	mutex_unlock(&bpf_event_mutex);
1758 }
1759 
1760 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1761 {
1762 	struct perf_event_query_bpf __user *uquery = info;
1763 	struct perf_event_query_bpf query = {};
1764 	struct bpf_prog_array *progs;
1765 	u32 *ids, prog_cnt, ids_len;
1766 	int ret;
1767 
1768 	if (!perfmon_capable())
1769 		return -EPERM;
1770 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1771 		return -EINVAL;
1772 	if (copy_from_user(&query, uquery, sizeof(query)))
1773 		return -EFAULT;
1774 
1775 	ids_len = query.ids_len;
1776 	if (ids_len > BPF_TRACE_MAX_PROGS)
1777 		return -E2BIG;
1778 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1779 	if (!ids)
1780 		return -ENOMEM;
1781 	/*
1782 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1783 	 * is required when user only wants to check for uquery->prog_cnt.
1784 	 * There is no need to check for it since the case is handled
1785 	 * gracefully in bpf_prog_array_copy_info.
1786 	 */
1787 
1788 	mutex_lock(&bpf_event_mutex);
1789 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1790 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1791 	mutex_unlock(&bpf_event_mutex);
1792 
1793 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1794 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1795 		ret = -EFAULT;
1796 
1797 	kfree(ids);
1798 	return ret;
1799 }
1800 
1801 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1802 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1803 
1804 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1805 {
1806 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1807 
1808 	for (; btp < __stop__bpf_raw_tp; btp++) {
1809 		if (!strcmp(btp->tp->name, name))
1810 			return btp;
1811 	}
1812 
1813 	return bpf_get_raw_tracepoint_module(name);
1814 }
1815 
1816 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1817 {
1818 	struct module *mod = __module_address((unsigned long)btp);
1819 
1820 	if (mod)
1821 		module_put(mod);
1822 }
1823 
1824 static __always_inline
1825 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1826 {
1827 	cant_sleep();
1828 	rcu_read_lock();
1829 	(void) BPF_PROG_RUN(prog, args);
1830 	rcu_read_unlock();
1831 }
1832 
1833 #define UNPACK(...)			__VA_ARGS__
1834 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1835 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1836 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1837 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1838 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1839 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1840 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1841 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1842 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1843 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1844 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1845 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1846 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1847 
1848 #define SARG(X)		u64 arg##X
1849 #define COPY(X)		args[X] = arg##X
1850 
1851 #define __DL_COM	(,)
1852 #define __DL_SEM	(;)
1853 
1854 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1855 
1856 #define BPF_TRACE_DEFN_x(x)						\
1857 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1858 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1859 	{								\
1860 		u64 args[x];						\
1861 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1862 		__bpf_trace_run(prog, args);				\
1863 	}								\
1864 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1865 BPF_TRACE_DEFN_x(1);
1866 BPF_TRACE_DEFN_x(2);
1867 BPF_TRACE_DEFN_x(3);
1868 BPF_TRACE_DEFN_x(4);
1869 BPF_TRACE_DEFN_x(5);
1870 BPF_TRACE_DEFN_x(6);
1871 BPF_TRACE_DEFN_x(7);
1872 BPF_TRACE_DEFN_x(8);
1873 BPF_TRACE_DEFN_x(9);
1874 BPF_TRACE_DEFN_x(10);
1875 BPF_TRACE_DEFN_x(11);
1876 BPF_TRACE_DEFN_x(12);
1877 
1878 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1879 {
1880 	struct tracepoint *tp = btp->tp;
1881 
1882 	/*
1883 	 * check that program doesn't access arguments beyond what's
1884 	 * available in this tracepoint
1885 	 */
1886 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1887 		return -EINVAL;
1888 
1889 	if (prog->aux->max_tp_access > btp->writable_size)
1890 		return -EINVAL;
1891 
1892 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1893 }
1894 
1895 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1896 {
1897 	return __bpf_probe_register(btp, prog);
1898 }
1899 
1900 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1901 {
1902 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1903 }
1904 
1905 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1906 			    u32 *fd_type, const char **buf,
1907 			    u64 *probe_offset, u64 *probe_addr)
1908 {
1909 	bool is_tracepoint, is_syscall_tp;
1910 	struct bpf_prog *prog;
1911 	int flags, err = 0;
1912 
1913 	prog = event->prog;
1914 	if (!prog)
1915 		return -ENOENT;
1916 
1917 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1918 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1919 		return -EOPNOTSUPP;
1920 
1921 	*prog_id = prog->aux->id;
1922 	flags = event->tp_event->flags;
1923 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1924 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1925 
1926 	if (is_tracepoint || is_syscall_tp) {
1927 		*buf = is_tracepoint ? event->tp_event->tp->name
1928 				     : event->tp_event->name;
1929 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1930 		*probe_offset = 0x0;
1931 		*probe_addr = 0x0;
1932 	} else {
1933 		/* kprobe/uprobe */
1934 		err = -EOPNOTSUPP;
1935 #ifdef CONFIG_KPROBE_EVENTS
1936 		if (flags & TRACE_EVENT_FL_KPROBE)
1937 			err = bpf_get_kprobe_info(event, fd_type, buf,
1938 						  probe_offset, probe_addr,
1939 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1940 #endif
1941 #ifdef CONFIG_UPROBE_EVENTS
1942 		if (flags & TRACE_EVENT_FL_UPROBE)
1943 			err = bpf_get_uprobe_info(event, fd_type, buf,
1944 						  probe_offset,
1945 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1946 #endif
1947 	}
1948 
1949 	return err;
1950 }
1951 
1952 static int __init send_signal_irq_work_init(void)
1953 {
1954 	int cpu;
1955 	struct send_signal_irq_work *work;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		work = per_cpu_ptr(&send_signal_work, cpu);
1959 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1960 	}
1961 	return 0;
1962 }
1963 
1964 subsys_initcall(send_signal_irq_work_init);
1965 
1966 #ifdef CONFIG_MODULES
1967 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1968 			    void *module)
1969 {
1970 	struct bpf_trace_module *btm, *tmp;
1971 	struct module *mod = module;
1972 
1973 	if (mod->num_bpf_raw_events == 0 ||
1974 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1975 		return 0;
1976 
1977 	mutex_lock(&bpf_module_mutex);
1978 
1979 	switch (op) {
1980 	case MODULE_STATE_COMING:
1981 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1982 		if (btm) {
1983 			btm->module = module;
1984 			list_add(&btm->list, &bpf_trace_modules);
1985 		}
1986 		break;
1987 	case MODULE_STATE_GOING:
1988 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1989 			if (btm->module == module) {
1990 				list_del(&btm->list);
1991 				kfree(btm);
1992 				break;
1993 			}
1994 		}
1995 		break;
1996 	}
1997 
1998 	mutex_unlock(&bpf_module_mutex);
1999 
2000 	return 0;
2001 }
2002 
2003 static struct notifier_block bpf_module_nb = {
2004 	.notifier_call = bpf_event_notify,
2005 };
2006 
2007 static int __init bpf_event_init(void)
2008 {
2009 	register_module_notifier(&bpf_module_nb);
2010 	return 0;
2011 }
2012 
2013 fs_initcall(bpf_event_init);
2014 #endif /* CONFIG_MODULES */
2015