xref: /openbmc/linux/kernel/trace/bpf_trace.c (revision 7288dd2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 
27 #include <net/bpf_sk_storage.h>
28 
29 #include <uapi/linux/bpf.h>
30 #include <uapi/linux/btf.h>
31 
32 #include <asm/tlb.h>
33 
34 #include "trace_probe.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include "bpf_trace.h"
39 
40 #define bpf_event_rcu_dereference(p)					\
41 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
42 
43 #ifdef CONFIG_MODULES
44 struct bpf_trace_module {
45 	struct module *module;
46 	struct list_head list;
47 };
48 
49 static LIST_HEAD(bpf_trace_modules);
50 static DEFINE_MUTEX(bpf_module_mutex);
51 
52 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
53 {
54 	struct bpf_raw_event_map *btp, *ret = NULL;
55 	struct bpf_trace_module *btm;
56 	unsigned int i;
57 
58 	mutex_lock(&bpf_module_mutex);
59 	list_for_each_entry(btm, &bpf_trace_modules, list) {
60 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
61 			btp = &btm->module->bpf_raw_events[i];
62 			if (!strcmp(btp->tp->name, name)) {
63 				if (try_module_get(btm->module))
64 					ret = btp;
65 				goto out;
66 			}
67 		}
68 	}
69 out:
70 	mutex_unlock(&bpf_module_mutex);
71 	return ret;
72 }
73 #else
74 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
75 {
76 	return NULL;
77 }
78 #endif /* CONFIG_MODULES */
79 
80 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
81 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
82 
83 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
84 				  u64 flags, const struct btf **btf,
85 				  s32 *btf_id);
86 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
87 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
88 
89 /**
90  * trace_call_bpf - invoke BPF program
91  * @call: tracepoint event
92  * @ctx: opaque context pointer
93  *
94  * kprobe handlers execute BPF programs via this helper.
95  * Can be used from static tracepoints in the future.
96  *
97  * Return: BPF programs always return an integer which is interpreted by
98  * kprobe handler as:
99  * 0 - return from kprobe (event is filtered out)
100  * 1 - store kprobe event into ring buffer
101  * Other values are reserved and currently alias to 1
102  */
103 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
104 {
105 	unsigned int ret;
106 
107 	cant_sleep();
108 
109 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
110 		/*
111 		 * since some bpf program is already running on this cpu,
112 		 * don't call into another bpf program (same or different)
113 		 * and don't send kprobe event into ring-buffer,
114 		 * so return zero here
115 		 */
116 		ret = 0;
117 		goto out;
118 	}
119 
120 	/*
121 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
122 	 * to all call sites, we did a bpf_prog_array_valid() there to check
123 	 * whether call->prog_array is empty or not, which is
124 	 * a heuristic to speed up execution.
125 	 *
126 	 * If bpf_prog_array_valid() fetched prog_array was
127 	 * non-NULL, we go into trace_call_bpf() and do the actual
128 	 * proper rcu_dereference() under RCU lock.
129 	 * If it turns out that prog_array is NULL then, we bail out.
130 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
131 	 * was NULL, you'll skip the prog_array with the risk of missing
132 	 * out of events when it was updated in between this and the
133 	 * rcu_dereference() which is accepted risk.
134 	 */
135 	rcu_read_lock();
136 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
137 				 ctx, bpf_prog_run);
138 	rcu_read_unlock();
139 
140  out:
141 	__this_cpu_dec(bpf_prog_active);
142 
143 	return ret;
144 }
145 
146 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
147 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
148 {
149 	regs_set_return_value(regs, rc);
150 	override_function_with_return(regs);
151 	return 0;
152 }
153 
154 static const struct bpf_func_proto bpf_override_return_proto = {
155 	.func		= bpf_override_return,
156 	.gpl_only	= true,
157 	.ret_type	= RET_INTEGER,
158 	.arg1_type	= ARG_PTR_TO_CTX,
159 	.arg2_type	= ARG_ANYTHING,
160 };
161 #endif
162 
163 static __always_inline int
164 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
165 {
166 	int ret;
167 
168 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
169 	if (unlikely(ret < 0))
170 		memset(dst, 0, size);
171 	return ret;
172 }
173 
174 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
175 	   const void __user *, unsafe_ptr)
176 {
177 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
178 }
179 
180 const struct bpf_func_proto bpf_probe_read_user_proto = {
181 	.func		= bpf_probe_read_user,
182 	.gpl_only	= true,
183 	.ret_type	= RET_INTEGER,
184 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
185 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
186 	.arg3_type	= ARG_ANYTHING,
187 };
188 
189 static __always_inline int
190 bpf_probe_read_user_str_common(void *dst, u32 size,
191 			       const void __user *unsafe_ptr)
192 {
193 	int ret;
194 
195 	/*
196 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
197 	 * terminator into `dst`.
198 	 *
199 	 * strncpy_from_user() does long-sized strides in the fast path. If the
200 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
201 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
202 	 * and keys a hash map with it, then semantically identical strings can
203 	 * occupy multiple entries in the map.
204 	 */
205 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
206 	if (unlikely(ret < 0))
207 		memset(dst, 0, size);
208 	return ret;
209 }
210 
211 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
212 	   const void __user *, unsafe_ptr)
213 {
214 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
215 }
216 
217 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
218 	.func		= bpf_probe_read_user_str,
219 	.gpl_only	= true,
220 	.ret_type	= RET_INTEGER,
221 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
222 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
223 	.arg3_type	= ARG_ANYTHING,
224 };
225 
226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
227 	   const void *, unsafe_ptr)
228 {
229 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
230 }
231 
232 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
233 	.func		= bpf_probe_read_kernel,
234 	.gpl_only	= true,
235 	.ret_type	= RET_INTEGER,
236 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
237 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
238 	.arg3_type	= ARG_ANYTHING,
239 };
240 
241 static __always_inline int
242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
243 {
244 	int ret;
245 
246 	/*
247 	 * The strncpy_from_kernel_nofault() call will likely not fill the
248 	 * entire buffer, but that's okay in this circumstance as we're probing
249 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
250 	 * as well probe the stack. Thus, memory is explicitly cleared
251 	 * only in error case, so that improper users ignoring return
252 	 * code altogether don't copy garbage; otherwise length of string
253 	 * is returned that can be used for bpf_perf_event_output() et al.
254 	 */
255 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
256 	if (unlikely(ret < 0))
257 		memset(dst, 0, size);
258 	return ret;
259 }
260 
261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
262 	   const void *, unsafe_ptr)
263 {
264 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
265 }
266 
267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
268 	.func		= bpf_probe_read_kernel_str,
269 	.gpl_only	= true,
270 	.ret_type	= RET_INTEGER,
271 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
272 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
273 	.arg3_type	= ARG_ANYTHING,
274 };
275 
276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
278 	   const void *, unsafe_ptr)
279 {
280 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
281 		return bpf_probe_read_user_common(dst, size,
282 				(__force void __user *)unsafe_ptr);
283 	}
284 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
285 }
286 
287 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
288 	.func		= bpf_probe_read_compat,
289 	.gpl_only	= true,
290 	.ret_type	= RET_INTEGER,
291 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
292 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
293 	.arg3_type	= ARG_ANYTHING,
294 };
295 
296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
297 	   const void *, unsafe_ptr)
298 {
299 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
300 		return bpf_probe_read_user_str_common(dst, size,
301 				(__force void __user *)unsafe_ptr);
302 	}
303 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
304 }
305 
306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
307 	.func		= bpf_probe_read_compat_str,
308 	.gpl_only	= true,
309 	.ret_type	= RET_INTEGER,
310 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
311 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
312 	.arg3_type	= ARG_ANYTHING,
313 };
314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
315 
316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
317 	   u32, size)
318 {
319 	/*
320 	 * Ensure we're in user context which is safe for the helper to
321 	 * run. This helper has no business in a kthread.
322 	 *
323 	 * access_ok() should prevent writing to non-user memory, but in
324 	 * some situations (nommu, temporary switch, etc) access_ok() does
325 	 * not provide enough validation, hence the check on KERNEL_DS.
326 	 *
327 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
328 	 * state, when the task or mm are switched. This is specifically
329 	 * required to prevent the use of temporary mm.
330 	 */
331 
332 	if (unlikely(in_interrupt() ||
333 		     current->flags & (PF_KTHREAD | PF_EXITING)))
334 		return -EPERM;
335 	if (unlikely(!nmi_uaccess_okay()))
336 		return -EPERM;
337 
338 	return copy_to_user_nofault(unsafe_ptr, src, size);
339 }
340 
341 static const struct bpf_func_proto bpf_probe_write_user_proto = {
342 	.func		= bpf_probe_write_user,
343 	.gpl_only	= true,
344 	.ret_type	= RET_INTEGER,
345 	.arg1_type	= ARG_ANYTHING,
346 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
347 	.arg3_type	= ARG_CONST_SIZE,
348 };
349 
350 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
351 {
352 	if (!capable(CAP_SYS_ADMIN))
353 		return NULL;
354 
355 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
356 			    current->comm, task_pid_nr(current));
357 
358 	return &bpf_probe_write_user_proto;
359 }
360 
361 #define MAX_TRACE_PRINTK_VARARGS	3
362 #define BPF_TRACE_PRINTK_SIZE		1024
363 
364 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
365 	   u64, arg2, u64, arg3)
366 {
367 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
368 	struct bpf_bprintf_data data = {
369 		.get_bin_args	= true,
370 		.get_buf	= true,
371 	};
372 	int ret;
373 
374 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
375 				  MAX_TRACE_PRINTK_VARARGS, &data);
376 	if (ret < 0)
377 		return ret;
378 
379 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
380 
381 	trace_bpf_trace_printk(data.buf);
382 
383 	bpf_bprintf_cleanup(&data);
384 
385 	return ret;
386 }
387 
388 static const struct bpf_func_proto bpf_trace_printk_proto = {
389 	.func		= bpf_trace_printk,
390 	.gpl_only	= true,
391 	.ret_type	= RET_INTEGER,
392 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
393 	.arg2_type	= ARG_CONST_SIZE,
394 };
395 
396 static void __set_printk_clr_event(void)
397 {
398 	/*
399 	 * This program might be calling bpf_trace_printk,
400 	 * so enable the associated bpf_trace/bpf_trace_printk event.
401 	 * Repeat this each time as it is possible a user has
402 	 * disabled bpf_trace_printk events.  By loading a program
403 	 * calling bpf_trace_printk() however the user has expressed
404 	 * the intent to see such events.
405 	 */
406 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
407 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
408 }
409 
410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
411 {
412 	__set_printk_clr_event();
413 	return &bpf_trace_printk_proto;
414 }
415 
416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
417 	   u32, data_len)
418 {
419 	struct bpf_bprintf_data data = {
420 		.get_bin_args	= true,
421 		.get_buf	= true,
422 	};
423 	int ret, num_args;
424 
425 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
426 	    (data_len && !args))
427 		return -EINVAL;
428 	num_args = data_len / 8;
429 
430 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
431 	if (ret < 0)
432 		return ret;
433 
434 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
435 
436 	trace_bpf_trace_printk(data.buf);
437 
438 	bpf_bprintf_cleanup(&data);
439 
440 	return ret;
441 }
442 
443 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
444 	.func		= bpf_trace_vprintk,
445 	.gpl_only	= true,
446 	.ret_type	= RET_INTEGER,
447 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
448 	.arg2_type	= ARG_CONST_SIZE,
449 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
450 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
451 };
452 
453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
454 {
455 	__set_printk_clr_event();
456 	return &bpf_trace_vprintk_proto;
457 }
458 
459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
460 	   const void *, args, u32, data_len)
461 {
462 	struct bpf_bprintf_data data = {
463 		.get_bin_args	= true,
464 	};
465 	int err, num_args;
466 
467 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
468 	    (data_len && !args))
469 		return -EINVAL;
470 	num_args = data_len / 8;
471 
472 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
473 	if (err < 0)
474 		return err;
475 
476 	seq_bprintf(m, fmt, data.bin_args);
477 
478 	bpf_bprintf_cleanup(&data);
479 
480 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
481 }
482 
483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
484 
485 static const struct bpf_func_proto bpf_seq_printf_proto = {
486 	.func		= bpf_seq_printf,
487 	.gpl_only	= true,
488 	.ret_type	= RET_INTEGER,
489 	.arg1_type	= ARG_PTR_TO_BTF_ID,
490 	.arg1_btf_id	= &btf_seq_file_ids[0],
491 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
492 	.arg3_type	= ARG_CONST_SIZE,
493 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
494 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
495 };
496 
497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
498 {
499 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
500 }
501 
502 static const struct bpf_func_proto bpf_seq_write_proto = {
503 	.func		= bpf_seq_write,
504 	.gpl_only	= true,
505 	.ret_type	= RET_INTEGER,
506 	.arg1_type	= ARG_PTR_TO_BTF_ID,
507 	.arg1_btf_id	= &btf_seq_file_ids[0],
508 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
509 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
510 };
511 
512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
513 	   u32, btf_ptr_size, u64, flags)
514 {
515 	const struct btf *btf;
516 	s32 btf_id;
517 	int ret;
518 
519 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
520 	if (ret)
521 		return ret;
522 
523 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
524 }
525 
526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
527 	.func		= bpf_seq_printf_btf,
528 	.gpl_only	= true,
529 	.ret_type	= RET_INTEGER,
530 	.arg1_type	= ARG_PTR_TO_BTF_ID,
531 	.arg1_btf_id	= &btf_seq_file_ids[0],
532 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
533 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
534 	.arg4_type	= ARG_ANYTHING,
535 };
536 
537 static __always_inline int
538 get_map_perf_counter(struct bpf_map *map, u64 flags,
539 		     u64 *value, u64 *enabled, u64 *running)
540 {
541 	struct bpf_array *array = container_of(map, struct bpf_array, map);
542 	unsigned int cpu = smp_processor_id();
543 	u64 index = flags & BPF_F_INDEX_MASK;
544 	struct bpf_event_entry *ee;
545 
546 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
547 		return -EINVAL;
548 	if (index == BPF_F_CURRENT_CPU)
549 		index = cpu;
550 	if (unlikely(index >= array->map.max_entries))
551 		return -E2BIG;
552 
553 	ee = READ_ONCE(array->ptrs[index]);
554 	if (!ee)
555 		return -ENOENT;
556 
557 	return perf_event_read_local(ee->event, value, enabled, running);
558 }
559 
560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
561 {
562 	u64 value = 0;
563 	int err;
564 
565 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
566 	/*
567 	 * this api is ugly since we miss [-22..-2] range of valid
568 	 * counter values, but that's uapi
569 	 */
570 	if (err)
571 		return err;
572 	return value;
573 }
574 
575 static const struct bpf_func_proto bpf_perf_event_read_proto = {
576 	.func		= bpf_perf_event_read,
577 	.gpl_only	= true,
578 	.ret_type	= RET_INTEGER,
579 	.arg1_type	= ARG_CONST_MAP_PTR,
580 	.arg2_type	= ARG_ANYTHING,
581 };
582 
583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
584 	   struct bpf_perf_event_value *, buf, u32, size)
585 {
586 	int err = -EINVAL;
587 
588 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
589 		goto clear;
590 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
591 				   &buf->running);
592 	if (unlikely(err))
593 		goto clear;
594 	return 0;
595 clear:
596 	memset(buf, 0, size);
597 	return err;
598 }
599 
600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
601 	.func		= bpf_perf_event_read_value,
602 	.gpl_only	= true,
603 	.ret_type	= RET_INTEGER,
604 	.arg1_type	= ARG_CONST_MAP_PTR,
605 	.arg2_type	= ARG_ANYTHING,
606 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
607 	.arg4_type	= ARG_CONST_SIZE,
608 };
609 
610 static __always_inline u64
611 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
612 			u64 flags, struct perf_sample_data *sd)
613 {
614 	struct bpf_array *array = container_of(map, struct bpf_array, map);
615 	unsigned int cpu = smp_processor_id();
616 	u64 index = flags & BPF_F_INDEX_MASK;
617 	struct bpf_event_entry *ee;
618 	struct perf_event *event;
619 
620 	if (index == BPF_F_CURRENT_CPU)
621 		index = cpu;
622 	if (unlikely(index >= array->map.max_entries))
623 		return -E2BIG;
624 
625 	ee = READ_ONCE(array->ptrs[index]);
626 	if (!ee)
627 		return -ENOENT;
628 
629 	event = ee->event;
630 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
631 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
632 		return -EINVAL;
633 
634 	if (unlikely(event->oncpu != cpu))
635 		return -EOPNOTSUPP;
636 
637 	return perf_event_output(event, sd, regs);
638 }
639 
640 /*
641  * Support executing tracepoints in normal, irq, and nmi context that each call
642  * bpf_perf_event_output
643  */
644 struct bpf_trace_sample_data {
645 	struct perf_sample_data sds[3];
646 };
647 
648 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
649 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
650 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
651 	   u64, flags, void *, data, u64, size)
652 {
653 	struct bpf_trace_sample_data *sds;
654 	struct perf_raw_record raw = {
655 		.frag = {
656 			.size = size,
657 			.data = data,
658 		},
659 	};
660 	struct perf_sample_data *sd;
661 	int nest_level, err;
662 
663 	preempt_disable();
664 	sds = this_cpu_ptr(&bpf_trace_sds);
665 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
666 
667 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
668 		err = -EBUSY;
669 		goto out;
670 	}
671 
672 	sd = &sds->sds[nest_level - 1];
673 
674 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
675 		err = -EINVAL;
676 		goto out;
677 	}
678 
679 	perf_sample_data_init(sd, 0, 0);
680 	perf_sample_save_raw_data(sd, &raw);
681 
682 	err = __bpf_perf_event_output(regs, map, flags, sd);
683 out:
684 	this_cpu_dec(bpf_trace_nest_level);
685 	preempt_enable();
686 	return err;
687 }
688 
689 static const struct bpf_func_proto bpf_perf_event_output_proto = {
690 	.func		= bpf_perf_event_output,
691 	.gpl_only	= true,
692 	.ret_type	= RET_INTEGER,
693 	.arg1_type	= ARG_PTR_TO_CTX,
694 	.arg2_type	= ARG_CONST_MAP_PTR,
695 	.arg3_type	= ARG_ANYTHING,
696 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
697 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
698 };
699 
700 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
701 struct bpf_nested_pt_regs {
702 	struct pt_regs regs[3];
703 };
704 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
705 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
706 
707 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
708 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
709 {
710 	struct perf_raw_frag frag = {
711 		.copy		= ctx_copy,
712 		.size		= ctx_size,
713 		.data		= ctx,
714 	};
715 	struct perf_raw_record raw = {
716 		.frag = {
717 			{
718 				.next	= ctx_size ? &frag : NULL,
719 			},
720 			.size	= meta_size,
721 			.data	= meta,
722 		},
723 	};
724 	struct perf_sample_data *sd;
725 	struct pt_regs *regs;
726 	int nest_level;
727 	u64 ret;
728 
729 	preempt_disable();
730 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
731 
732 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
733 		ret = -EBUSY;
734 		goto out;
735 	}
736 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
737 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
738 
739 	perf_fetch_caller_regs(regs);
740 	perf_sample_data_init(sd, 0, 0);
741 	perf_sample_save_raw_data(sd, &raw);
742 
743 	ret = __bpf_perf_event_output(regs, map, flags, sd);
744 out:
745 	this_cpu_dec(bpf_event_output_nest_level);
746 	preempt_enable();
747 	return ret;
748 }
749 
750 BPF_CALL_0(bpf_get_current_task)
751 {
752 	return (long) current;
753 }
754 
755 const struct bpf_func_proto bpf_get_current_task_proto = {
756 	.func		= bpf_get_current_task,
757 	.gpl_only	= true,
758 	.ret_type	= RET_INTEGER,
759 };
760 
761 BPF_CALL_0(bpf_get_current_task_btf)
762 {
763 	return (unsigned long) current;
764 }
765 
766 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
767 	.func		= bpf_get_current_task_btf,
768 	.gpl_only	= true,
769 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
770 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
771 };
772 
773 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
774 {
775 	return (unsigned long) task_pt_regs(task);
776 }
777 
778 BTF_ID_LIST(bpf_task_pt_regs_ids)
779 BTF_ID(struct, pt_regs)
780 
781 const struct bpf_func_proto bpf_task_pt_regs_proto = {
782 	.func		= bpf_task_pt_regs,
783 	.gpl_only	= true,
784 	.arg1_type	= ARG_PTR_TO_BTF_ID,
785 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
786 	.ret_type	= RET_PTR_TO_BTF_ID,
787 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
788 };
789 
790 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
791 {
792 	struct bpf_array *array = container_of(map, struct bpf_array, map);
793 	struct cgroup *cgrp;
794 
795 	if (unlikely(idx >= array->map.max_entries))
796 		return -E2BIG;
797 
798 	cgrp = READ_ONCE(array->ptrs[idx]);
799 	if (unlikely(!cgrp))
800 		return -EAGAIN;
801 
802 	return task_under_cgroup_hierarchy(current, cgrp);
803 }
804 
805 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
806 	.func           = bpf_current_task_under_cgroup,
807 	.gpl_only       = false,
808 	.ret_type       = RET_INTEGER,
809 	.arg1_type      = ARG_CONST_MAP_PTR,
810 	.arg2_type      = ARG_ANYTHING,
811 };
812 
813 struct send_signal_irq_work {
814 	struct irq_work irq_work;
815 	struct task_struct *task;
816 	u32 sig;
817 	enum pid_type type;
818 };
819 
820 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
821 
822 static void do_bpf_send_signal(struct irq_work *entry)
823 {
824 	struct send_signal_irq_work *work;
825 
826 	work = container_of(entry, struct send_signal_irq_work, irq_work);
827 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
828 	put_task_struct(work->task);
829 }
830 
831 static int bpf_send_signal_common(u32 sig, enum pid_type type)
832 {
833 	struct send_signal_irq_work *work = NULL;
834 
835 	/* Similar to bpf_probe_write_user, task needs to be
836 	 * in a sound condition and kernel memory access be
837 	 * permitted in order to send signal to the current
838 	 * task.
839 	 */
840 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
841 		return -EPERM;
842 	if (unlikely(!nmi_uaccess_okay()))
843 		return -EPERM;
844 	/* Task should not be pid=1 to avoid kernel panic. */
845 	if (unlikely(is_global_init(current)))
846 		return -EPERM;
847 
848 	if (irqs_disabled()) {
849 		/* Do an early check on signal validity. Otherwise,
850 		 * the error is lost in deferred irq_work.
851 		 */
852 		if (unlikely(!valid_signal(sig)))
853 			return -EINVAL;
854 
855 		work = this_cpu_ptr(&send_signal_work);
856 		if (irq_work_is_busy(&work->irq_work))
857 			return -EBUSY;
858 
859 		/* Add the current task, which is the target of sending signal,
860 		 * to the irq_work. The current task may change when queued
861 		 * irq works get executed.
862 		 */
863 		work->task = get_task_struct(current);
864 		work->sig = sig;
865 		work->type = type;
866 		irq_work_queue(&work->irq_work);
867 		return 0;
868 	}
869 
870 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
871 }
872 
873 BPF_CALL_1(bpf_send_signal, u32, sig)
874 {
875 	return bpf_send_signal_common(sig, PIDTYPE_TGID);
876 }
877 
878 static const struct bpf_func_proto bpf_send_signal_proto = {
879 	.func		= bpf_send_signal,
880 	.gpl_only	= false,
881 	.ret_type	= RET_INTEGER,
882 	.arg1_type	= ARG_ANYTHING,
883 };
884 
885 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
886 {
887 	return bpf_send_signal_common(sig, PIDTYPE_PID);
888 }
889 
890 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
891 	.func		= bpf_send_signal_thread,
892 	.gpl_only	= false,
893 	.ret_type	= RET_INTEGER,
894 	.arg1_type	= ARG_ANYTHING,
895 };
896 
897 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
898 {
899 	struct path copy;
900 	long len;
901 	char *p;
902 
903 	if (!sz)
904 		return 0;
905 
906 	/*
907 	 * The path pointer is verified as trusted and safe to use,
908 	 * but let's double check it's valid anyway to workaround
909 	 * potentially broken verifier.
910 	 */
911 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
912 	if (len < 0)
913 		return len;
914 
915 	p = d_path(&copy, buf, sz);
916 	if (IS_ERR(p)) {
917 		len = PTR_ERR(p);
918 	} else {
919 		len = buf + sz - p;
920 		memmove(buf, p, len);
921 	}
922 
923 	return len;
924 }
925 
926 BTF_SET_START(btf_allowlist_d_path)
927 #ifdef CONFIG_SECURITY
928 BTF_ID(func, security_file_permission)
929 BTF_ID(func, security_inode_getattr)
930 BTF_ID(func, security_file_open)
931 #endif
932 #ifdef CONFIG_SECURITY_PATH
933 BTF_ID(func, security_path_truncate)
934 #endif
935 BTF_ID(func, vfs_truncate)
936 BTF_ID(func, vfs_fallocate)
937 BTF_ID(func, dentry_open)
938 BTF_ID(func, vfs_getattr)
939 BTF_ID(func, filp_close)
940 BTF_SET_END(btf_allowlist_d_path)
941 
942 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
943 {
944 	if (prog->type == BPF_PROG_TYPE_TRACING &&
945 	    prog->expected_attach_type == BPF_TRACE_ITER)
946 		return true;
947 
948 	if (prog->type == BPF_PROG_TYPE_LSM)
949 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
950 
951 	return btf_id_set_contains(&btf_allowlist_d_path,
952 				   prog->aux->attach_btf_id);
953 }
954 
955 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
956 
957 static const struct bpf_func_proto bpf_d_path_proto = {
958 	.func		= bpf_d_path,
959 	.gpl_only	= false,
960 	.ret_type	= RET_INTEGER,
961 	.arg1_type	= ARG_PTR_TO_BTF_ID,
962 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
963 	.arg2_type	= ARG_PTR_TO_MEM,
964 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
965 	.allowed	= bpf_d_path_allowed,
966 };
967 
968 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
969 			 BTF_F_PTR_RAW | BTF_F_ZERO)
970 
971 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
972 				  u64 flags, const struct btf **btf,
973 				  s32 *btf_id)
974 {
975 	const struct btf_type *t;
976 
977 	if (unlikely(flags & ~(BTF_F_ALL)))
978 		return -EINVAL;
979 
980 	if (btf_ptr_size != sizeof(struct btf_ptr))
981 		return -EINVAL;
982 
983 	*btf = bpf_get_btf_vmlinux();
984 
985 	if (IS_ERR_OR_NULL(*btf))
986 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
987 
988 	if (ptr->type_id > 0)
989 		*btf_id = ptr->type_id;
990 	else
991 		return -EINVAL;
992 
993 	if (*btf_id > 0)
994 		t = btf_type_by_id(*btf, *btf_id);
995 	if (*btf_id <= 0 || !t)
996 		return -ENOENT;
997 
998 	return 0;
999 }
1000 
1001 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1002 	   u32, btf_ptr_size, u64, flags)
1003 {
1004 	const struct btf *btf;
1005 	s32 btf_id;
1006 	int ret;
1007 
1008 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1009 	if (ret)
1010 		return ret;
1011 
1012 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1013 				      flags);
1014 }
1015 
1016 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1017 	.func		= bpf_snprintf_btf,
1018 	.gpl_only	= false,
1019 	.ret_type	= RET_INTEGER,
1020 	.arg1_type	= ARG_PTR_TO_MEM,
1021 	.arg2_type	= ARG_CONST_SIZE,
1022 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1023 	.arg4_type	= ARG_CONST_SIZE,
1024 	.arg5_type	= ARG_ANYTHING,
1025 };
1026 
1027 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1028 {
1029 	/* This helper call is inlined by verifier. */
1030 	return ((u64 *)ctx)[-2];
1031 }
1032 
1033 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1034 	.func		= bpf_get_func_ip_tracing,
1035 	.gpl_only	= true,
1036 	.ret_type	= RET_INTEGER,
1037 	.arg1_type	= ARG_PTR_TO_CTX,
1038 };
1039 
1040 #ifdef CONFIG_X86_KERNEL_IBT
1041 static unsigned long get_entry_ip(unsigned long fentry_ip)
1042 {
1043 	u32 instr;
1044 
1045 	/* Being extra safe in here in case entry ip is on the page-edge. */
1046 	if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1047 		return fentry_ip;
1048 	if (is_endbr(instr))
1049 		fentry_ip -= ENDBR_INSN_SIZE;
1050 	return fentry_ip;
1051 }
1052 #else
1053 #define get_entry_ip(fentry_ip) fentry_ip
1054 #endif
1055 
1056 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1057 {
1058 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1059 	struct kprobe *kp;
1060 
1061 #ifdef CONFIG_UPROBES
1062 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1063 	if (run_ctx->is_uprobe)
1064 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1065 #endif
1066 
1067 	kp = kprobe_running();
1068 
1069 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1070 		return 0;
1071 
1072 	return get_entry_ip((uintptr_t)kp->addr);
1073 }
1074 
1075 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1076 	.func		= bpf_get_func_ip_kprobe,
1077 	.gpl_only	= true,
1078 	.ret_type	= RET_INTEGER,
1079 	.arg1_type	= ARG_PTR_TO_CTX,
1080 };
1081 
1082 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1083 {
1084 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1085 }
1086 
1087 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1088 	.func		= bpf_get_func_ip_kprobe_multi,
1089 	.gpl_only	= false,
1090 	.ret_type	= RET_INTEGER,
1091 	.arg1_type	= ARG_PTR_TO_CTX,
1092 };
1093 
1094 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1095 {
1096 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1097 }
1098 
1099 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1100 	.func		= bpf_get_attach_cookie_kprobe_multi,
1101 	.gpl_only	= false,
1102 	.ret_type	= RET_INTEGER,
1103 	.arg1_type	= ARG_PTR_TO_CTX,
1104 };
1105 
1106 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1107 {
1108 	struct bpf_trace_run_ctx *run_ctx;
1109 
1110 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1111 	return run_ctx->bpf_cookie;
1112 }
1113 
1114 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1115 	.func		= bpf_get_attach_cookie_trace,
1116 	.gpl_only	= false,
1117 	.ret_type	= RET_INTEGER,
1118 	.arg1_type	= ARG_PTR_TO_CTX,
1119 };
1120 
1121 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1122 {
1123 	return ctx->event->bpf_cookie;
1124 }
1125 
1126 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1127 	.func		= bpf_get_attach_cookie_pe,
1128 	.gpl_only	= false,
1129 	.ret_type	= RET_INTEGER,
1130 	.arg1_type	= ARG_PTR_TO_CTX,
1131 };
1132 
1133 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1134 {
1135 	struct bpf_trace_run_ctx *run_ctx;
1136 
1137 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1138 	return run_ctx->bpf_cookie;
1139 }
1140 
1141 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1142 	.func		= bpf_get_attach_cookie_tracing,
1143 	.gpl_only	= false,
1144 	.ret_type	= RET_INTEGER,
1145 	.arg1_type	= ARG_PTR_TO_CTX,
1146 };
1147 
1148 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1149 {
1150 #ifndef CONFIG_X86
1151 	return -ENOENT;
1152 #else
1153 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1154 	u32 entry_cnt = size / br_entry_size;
1155 
1156 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1157 
1158 	if (unlikely(flags))
1159 		return -EINVAL;
1160 
1161 	if (!entry_cnt)
1162 		return -ENOENT;
1163 
1164 	return entry_cnt * br_entry_size;
1165 #endif
1166 }
1167 
1168 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1169 	.func		= bpf_get_branch_snapshot,
1170 	.gpl_only	= true,
1171 	.ret_type	= RET_INTEGER,
1172 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1173 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1174 };
1175 
1176 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1177 {
1178 	/* This helper call is inlined by verifier. */
1179 	u64 nr_args = ((u64 *)ctx)[-1];
1180 
1181 	if ((u64) n >= nr_args)
1182 		return -EINVAL;
1183 	*value = ((u64 *)ctx)[n];
1184 	return 0;
1185 }
1186 
1187 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1188 	.func		= get_func_arg,
1189 	.ret_type	= RET_INTEGER,
1190 	.arg1_type	= ARG_PTR_TO_CTX,
1191 	.arg2_type	= ARG_ANYTHING,
1192 	.arg3_type	= ARG_PTR_TO_LONG,
1193 };
1194 
1195 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1196 {
1197 	/* This helper call is inlined by verifier. */
1198 	u64 nr_args = ((u64 *)ctx)[-1];
1199 
1200 	*value = ((u64 *)ctx)[nr_args];
1201 	return 0;
1202 }
1203 
1204 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1205 	.func		= get_func_ret,
1206 	.ret_type	= RET_INTEGER,
1207 	.arg1_type	= ARG_PTR_TO_CTX,
1208 	.arg2_type	= ARG_PTR_TO_LONG,
1209 };
1210 
1211 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1212 {
1213 	/* This helper call is inlined by verifier. */
1214 	return ((u64 *)ctx)[-1];
1215 }
1216 
1217 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1218 	.func		= get_func_arg_cnt,
1219 	.ret_type	= RET_INTEGER,
1220 	.arg1_type	= ARG_PTR_TO_CTX,
1221 };
1222 
1223 #ifdef CONFIG_KEYS
1224 __diag_push();
1225 __diag_ignore_all("-Wmissing-prototypes",
1226 		  "kfuncs which will be used in BPF programs");
1227 
1228 /**
1229  * bpf_lookup_user_key - lookup a key by its serial
1230  * @serial: key handle serial number
1231  * @flags: lookup-specific flags
1232  *
1233  * Search a key with a given *serial* and the provided *flags*.
1234  * If found, increment the reference count of the key by one, and
1235  * return it in the bpf_key structure.
1236  *
1237  * The bpf_key structure must be passed to bpf_key_put() when done
1238  * with it, so that the key reference count is decremented and the
1239  * bpf_key structure is freed.
1240  *
1241  * Permission checks are deferred to the time the key is used by
1242  * one of the available key-specific kfuncs.
1243  *
1244  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1245  * special keyring (e.g. session keyring), if it doesn't yet exist.
1246  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1247  * for the key construction, and to retrieve uninstantiated keys (keys
1248  * without data attached to them).
1249  *
1250  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1251  *         NULL pointer otherwise.
1252  */
1253 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1254 {
1255 	key_ref_t key_ref;
1256 	struct bpf_key *bkey;
1257 
1258 	if (flags & ~KEY_LOOKUP_ALL)
1259 		return NULL;
1260 
1261 	/*
1262 	 * Permission check is deferred until the key is used, as the
1263 	 * intent of the caller is unknown here.
1264 	 */
1265 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1266 	if (IS_ERR(key_ref))
1267 		return NULL;
1268 
1269 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1270 	if (!bkey) {
1271 		key_put(key_ref_to_ptr(key_ref));
1272 		return NULL;
1273 	}
1274 
1275 	bkey->key = key_ref_to_ptr(key_ref);
1276 	bkey->has_ref = true;
1277 
1278 	return bkey;
1279 }
1280 
1281 /**
1282  * bpf_lookup_system_key - lookup a key by a system-defined ID
1283  * @id: key ID
1284  *
1285  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1286  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1287  * attempting to decrement the key reference count on that pointer. The key
1288  * pointer set in such way is currently understood only by
1289  * verify_pkcs7_signature().
1290  *
1291  * Set *id* to one of the values defined in include/linux/verification.h:
1292  * 0 for the primary keyring (immutable keyring of system keys);
1293  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1294  * (where keys can be added only if they are vouched for by existing keys
1295  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1296  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1297  * kerned image and, possibly, the initramfs signature).
1298  *
1299  * Return: a bpf_key pointer with an invalid key pointer set from the
1300  *         pre-determined ID on success, a NULL pointer otherwise
1301  */
1302 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1303 {
1304 	struct bpf_key *bkey;
1305 
1306 	if (system_keyring_id_check(id) < 0)
1307 		return NULL;
1308 
1309 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1310 	if (!bkey)
1311 		return NULL;
1312 
1313 	bkey->key = (struct key *)(unsigned long)id;
1314 	bkey->has_ref = false;
1315 
1316 	return bkey;
1317 }
1318 
1319 /**
1320  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1321  * @bkey: bpf_key structure
1322  *
1323  * Decrement the reference count of the key inside *bkey*, if the pointer
1324  * is valid, and free *bkey*.
1325  */
1326 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1327 {
1328 	if (bkey->has_ref)
1329 		key_put(bkey->key);
1330 
1331 	kfree(bkey);
1332 }
1333 
1334 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1335 /**
1336  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1337  * @data_ptr: data to verify
1338  * @sig_ptr: signature of the data
1339  * @trusted_keyring: keyring with keys trusted for signature verification
1340  *
1341  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1342  * with keys in a keyring referenced by *trusted_keyring*.
1343  *
1344  * Return: 0 on success, a negative value on error.
1345  */
1346 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1347 			       struct bpf_dynptr_kern *sig_ptr,
1348 			       struct bpf_key *trusted_keyring)
1349 {
1350 	int ret;
1351 
1352 	if (trusted_keyring->has_ref) {
1353 		/*
1354 		 * Do the permission check deferred in bpf_lookup_user_key().
1355 		 * See bpf_lookup_user_key() for more details.
1356 		 *
1357 		 * A call to key_task_permission() here would be redundant, as
1358 		 * it is already done by keyring_search() called by
1359 		 * find_asymmetric_key().
1360 		 */
1361 		ret = key_validate(trusted_keyring->key);
1362 		if (ret < 0)
1363 			return ret;
1364 	}
1365 
1366 	return verify_pkcs7_signature(data_ptr->data,
1367 				      __bpf_dynptr_size(data_ptr),
1368 				      sig_ptr->data,
1369 				      __bpf_dynptr_size(sig_ptr),
1370 				      trusted_keyring->key,
1371 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1372 				      NULL);
1373 }
1374 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1375 
1376 __diag_pop();
1377 
1378 BTF_SET8_START(key_sig_kfunc_set)
1379 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1380 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1381 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1382 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1383 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1384 #endif
1385 BTF_SET8_END(key_sig_kfunc_set)
1386 
1387 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1388 	.owner = THIS_MODULE,
1389 	.set = &key_sig_kfunc_set,
1390 };
1391 
1392 static int __init bpf_key_sig_kfuncs_init(void)
1393 {
1394 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1395 					 &bpf_key_sig_kfunc_set);
1396 }
1397 
1398 late_initcall(bpf_key_sig_kfuncs_init);
1399 #endif /* CONFIG_KEYS */
1400 
1401 static const struct bpf_func_proto *
1402 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1403 {
1404 	switch (func_id) {
1405 	case BPF_FUNC_map_lookup_elem:
1406 		return &bpf_map_lookup_elem_proto;
1407 	case BPF_FUNC_map_update_elem:
1408 		return &bpf_map_update_elem_proto;
1409 	case BPF_FUNC_map_delete_elem:
1410 		return &bpf_map_delete_elem_proto;
1411 	case BPF_FUNC_map_push_elem:
1412 		return &bpf_map_push_elem_proto;
1413 	case BPF_FUNC_map_pop_elem:
1414 		return &bpf_map_pop_elem_proto;
1415 	case BPF_FUNC_map_peek_elem:
1416 		return &bpf_map_peek_elem_proto;
1417 	case BPF_FUNC_map_lookup_percpu_elem:
1418 		return &bpf_map_lookup_percpu_elem_proto;
1419 	case BPF_FUNC_ktime_get_ns:
1420 		return &bpf_ktime_get_ns_proto;
1421 	case BPF_FUNC_ktime_get_boot_ns:
1422 		return &bpf_ktime_get_boot_ns_proto;
1423 	case BPF_FUNC_tail_call:
1424 		return &bpf_tail_call_proto;
1425 	case BPF_FUNC_get_current_pid_tgid:
1426 		return &bpf_get_current_pid_tgid_proto;
1427 	case BPF_FUNC_get_current_task:
1428 		return &bpf_get_current_task_proto;
1429 	case BPF_FUNC_get_current_task_btf:
1430 		return &bpf_get_current_task_btf_proto;
1431 	case BPF_FUNC_task_pt_regs:
1432 		return &bpf_task_pt_regs_proto;
1433 	case BPF_FUNC_get_current_uid_gid:
1434 		return &bpf_get_current_uid_gid_proto;
1435 	case BPF_FUNC_get_current_comm:
1436 		return &bpf_get_current_comm_proto;
1437 	case BPF_FUNC_trace_printk:
1438 		return bpf_get_trace_printk_proto();
1439 	case BPF_FUNC_get_smp_processor_id:
1440 		return &bpf_get_smp_processor_id_proto;
1441 	case BPF_FUNC_get_numa_node_id:
1442 		return &bpf_get_numa_node_id_proto;
1443 	case BPF_FUNC_perf_event_read:
1444 		return &bpf_perf_event_read_proto;
1445 	case BPF_FUNC_current_task_under_cgroup:
1446 		return &bpf_current_task_under_cgroup_proto;
1447 	case BPF_FUNC_get_prandom_u32:
1448 		return &bpf_get_prandom_u32_proto;
1449 	case BPF_FUNC_probe_write_user:
1450 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1451 		       NULL : bpf_get_probe_write_proto();
1452 	case BPF_FUNC_probe_read_user:
1453 		return &bpf_probe_read_user_proto;
1454 	case BPF_FUNC_probe_read_kernel:
1455 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1456 		       NULL : &bpf_probe_read_kernel_proto;
1457 	case BPF_FUNC_probe_read_user_str:
1458 		return &bpf_probe_read_user_str_proto;
1459 	case BPF_FUNC_probe_read_kernel_str:
1460 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1461 		       NULL : &bpf_probe_read_kernel_str_proto;
1462 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1463 	case BPF_FUNC_probe_read:
1464 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1465 		       NULL : &bpf_probe_read_compat_proto;
1466 	case BPF_FUNC_probe_read_str:
1467 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1468 		       NULL : &bpf_probe_read_compat_str_proto;
1469 #endif
1470 #ifdef CONFIG_CGROUPS
1471 	case BPF_FUNC_cgrp_storage_get:
1472 		return &bpf_cgrp_storage_get_proto;
1473 	case BPF_FUNC_cgrp_storage_delete:
1474 		return &bpf_cgrp_storage_delete_proto;
1475 #endif
1476 	case BPF_FUNC_send_signal:
1477 		return &bpf_send_signal_proto;
1478 	case BPF_FUNC_send_signal_thread:
1479 		return &bpf_send_signal_thread_proto;
1480 	case BPF_FUNC_perf_event_read_value:
1481 		return &bpf_perf_event_read_value_proto;
1482 	case BPF_FUNC_get_ns_current_pid_tgid:
1483 		return &bpf_get_ns_current_pid_tgid_proto;
1484 	case BPF_FUNC_ringbuf_output:
1485 		return &bpf_ringbuf_output_proto;
1486 	case BPF_FUNC_ringbuf_reserve:
1487 		return &bpf_ringbuf_reserve_proto;
1488 	case BPF_FUNC_ringbuf_submit:
1489 		return &bpf_ringbuf_submit_proto;
1490 	case BPF_FUNC_ringbuf_discard:
1491 		return &bpf_ringbuf_discard_proto;
1492 	case BPF_FUNC_ringbuf_query:
1493 		return &bpf_ringbuf_query_proto;
1494 	case BPF_FUNC_jiffies64:
1495 		return &bpf_jiffies64_proto;
1496 	case BPF_FUNC_get_task_stack:
1497 		return &bpf_get_task_stack_proto;
1498 	case BPF_FUNC_copy_from_user:
1499 		return &bpf_copy_from_user_proto;
1500 	case BPF_FUNC_copy_from_user_task:
1501 		return &bpf_copy_from_user_task_proto;
1502 	case BPF_FUNC_snprintf_btf:
1503 		return &bpf_snprintf_btf_proto;
1504 	case BPF_FUNC_per_cpu_ptr:
1505 		return &bpf_per_cpu_ptr_proto;
1506 	case BPF_FUNC_this_cpu_ptr:
1507 		return &bpf_this_cpu_ptr_proto;
1508 	case BPF_FUNC_task_storage_get:
1509 		if (bpf_prog_check_recur(prog))
1510 			return &bpf_task_storage_get_recur_proto;
1511 		return &bpf_task_storage_get_proto;
1512 	case BPF_FUNC_task_storage_delete:
1513 		if (bpf_prog_check_recur(prog))
1514 			return &bpf_task_storage_delete_recur_proto;
1515 		return &bpf_task_storage_delete_proto;
1516 	case BPF_FUNC_for_each_map_elem:
1517 		return &bpf_for_each_map_elem_proto;
1518 	case BPF_FUNC_snprintf:
1519 		return &bpf_snprintf_proto;
1520 	case BPF_FUNC_get_func_ip:
1521 		return &bpf_get_func_ip_proto_tracing;
1522 	case BPF_FUNC_get_branch_snapshot:
1523 		return &bpf_get_branch_snapshot_proto;
1524 	case BPF_FUNC_find_vma:
1525 		return &bpf_find_vma_proto;
1526 	case BPF_FUNC_trace_vprintk:
1527 		return bpf_get_trace_vprintk_proto();
1528 	default:
1529 		return bpf_base_func_proto(func_id);
1530 	}
1531 }
1532 
1533 static const struct bpf_func_proto *
1534 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1535 {
1536 	switch (func_id) {
1537 	case BPF_FUNC_perf_event_output:
1538 		return &bpf_perf_event_output_proto;
1539 	case BPF_FUNC_get_stackid:
1540 		return &bpf_get_stackid_proto;
1541 	case BPF_FUNC_get_stack:
1542 		return &bpf_get_stack_proto;
1543 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1544 	case BPF_FUNC_override_return:
1545 		return &bpf_override_return_proto;
1546 #endif
1547 	case BPF_FUNC_get_func_ip:
1548 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1549 			&bpf_get_func_ip_proto_kprobe_multi :
1550 			&bpf_get_func_ip_proto_kprobe;
1551 	case BPF_FUNC_get_attach_cookie:
1552 		return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ?
1553 			&bpf_get_attach_cookie_proto_kmulti :
1554 			&bpf_get_attach_cookie_proto_trace;
1555 	default:
1556 		return bpf_tracing_func_proto(func_id, prog);
1557 	}
1558 }
1559 
1560 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1561 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1562 					const struct bpf_prog *prog,
1563 					struct bpf_insn_access_aux *info)
1564 {
1565 	if (off < 0 || off >= sizeof(struct pt_regs))
1566 		return false;
1567 	if (type != BPF_READ)
1568 		return false;
1569 	if (off % size != 0)
1570 		return false;
1571 	/*
1572 	 * Assertion for 32 bit to make sure last 8 byte access
1573 	 * (BPF_DW) to the last 4 byte member is disallowed.
1574 	 */
1575 	if (off + size > sizeof(struct pt_regs))
1576 		return false;
1577 
1578 	return true;
1579 }
1580 
1581 const struct bpf_verifier_ops kprobe_verifier_ops = {
1582 	.get_func_proto  = kprobe_prog_func_proto,
1583 	.is_valid_access = kprobe_prog_is_valid_access,
1584 };
1585 
1586 const struct bpf_prog_ops kprobe_prog_ops = {
1587 };
1588 
1589 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1590 	   u64, flags, void *, data, u64, size)
1591 {
1592 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1593 
1594 	/*
1595 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1596 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1597 	 * from there and call the same bpf_perf_event_output() helper inline.
1598 	 */
1599 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1600 }
1601 
1602 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1603 	.func		= bpf_perf_event_output_tp,
1604 	.gpl_only	= true,
1605 	.ret_type	= RET_INTEGER,
1606 	.arg1_type	= ARG_PTR_TO_CTX,
1607 	.arg2_type	= ARG_CONST_MAP_PTR,
1608 	.arg3_type	= ARG_ANYTHING,
1609 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1610 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1611 };
1612 
1613 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1614 	   u64, flags)
1615 {
1616 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1617 
1618 	/*
1619 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1620 	 * the other helper's function body cannot be inlined due to being
1621 	 * external, thus we need to call raw helper function.
1622 	 */
1623 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1624 			       flags, 0, 0);
1625 }
1626 
1627 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1628 	.func		= bpf_get_stackid_tp,
1629 	.gpl_only	= true,
1630 	.ret_type	= RET_INTEGER,
1631 	.arg1_type	= ARG_PTR_TO_CTX,
1632 	.arg2_type	= ARG_CONST_MAP_PTR,
1633 	.arg3_type	= ARG_ANYTHING,
1634 };
1635 
1636 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1637 	   u64, flags)
1638 {
1639 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1640 
1641 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1642 			     (unsigned long) size, flags, 0);
1643 }
1644 
1645 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1646 	.func		= bpf_get_stack_tp,
1647 	.gpl_only	= true,
1648 	.ret_type	= RET_INTEGER,
1649 	.arg1_type	= ARG_PTR_TO_CTX,
1650 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1651 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1652 	.arg4_type	= ARG_ANYTHING,
1653 };
1654 
1655 static const struct bpf_func_proto *
1656 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1657 {
1658 	switch (func_id) {
1659 	case BPF_FUNC_perf_event_output:
1660 		return &bpf_perf_event_output_proto_tp;
1661 	case BPF_FUNC_get_stackid:
1662 		return &bpf_get_stackid_proto_tp;
1663 	case BPF_FUNC_get_stack:
1664 		return &bpf_get_stack_proto_tp;
1665 	case BPF_FUNC_get_attach_cookie:
1666 		return &bpf_get_attach_cookie_proto_trace;
1667 	default:
1668 		return bpf_tracing_func_proto(func_id, prog);
1669 	}
1670 }
1671 
1672 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1673 				    const struct bpf_prog *prog,
1674 				    struct bpf_insn_access_aux *info)
1675 {
1676 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1677 		return false;
1678 	if (type != BPF_READ)
1679 		return false;
1680 	if (off % size != 0)
1681 		return false;
1682 
1683 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1684 	return true;
1685 }
1686 
1687 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1688 	.get_func_proto  = tp_prog_func_proto,
1689 	.is_valid_access = tp_prog_is_valid_access,
1690 };
1691 
1692 const struct bpf_prog_ops tracepoint_prog_ops = {
1693 };
1694 
1695 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1696 	   struct bpf_perf_event_value *, buf, u32, size)
1697 {
1698 	int err = -EINVAL;
1699 
1700 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1701 		goto clear;
1702 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1703 				    &buf->running);
1704 	if (unlikely(err))
1705 		goto clear;
1706 	return 0;
1707 clear:
1708 	memset(buf, 0, size);
1709 	return err;
1710 }
1711 
1712 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1713          .func           = bpf_perf_prog_read_value,
1714          .gpl_only       = true,
1715          .ret_type       = RET_INTEGER,
1716          .arg1_type      = ARG_PTR_TO_CTX,
1717          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1718          .arg3_type      = ARG_CONST_SIZE,
1719 };
1720 
1721 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1722 	   void *, buf, u32, size, u64, flags)
1723 {
1724 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1725 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1726 	u32 to_copy;
1727 
1728 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1729 		return -EINVAL;
1730 
1731 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1732 		return -ENOENT;
1733 
1734 	if (unlikely(!br_stack))
1735 		return -ENOENT;
1736 
1737 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1738 		return br_stack->nr * br_entry_size;
1739 
1740 	if (!buf || (size % br_entry_size != 0))
1741 		return -EINVAL;
1742 
1743 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1744 	memcpy(buf, br_stack->entries, to_copy);
1745 
1746 	return to_copy;
1747 }
1748 
1749 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1750 	.func           = bpf_read_branch_records,
1751 	.gpl_only       = true,
1752 	.ret_type       = RET_INTEGER,
1753 	.arg1_type      = ARG_PTR_TO_CTX,
1754 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1755 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1756 	.arg4_type      = ARG_ANYTHING,
1757 };
1758 
1759 static const struct bpf_func_proto *
1760 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1761 {
1762 	switch (func_id) {
1763 	case BPF_FUNC_perf_event_output:
1764 		return &bpf_perf_event_output_proto_tp;
1765 	case BPF_FUNC_get_stackid:
1766 		return &bpf_get_stackid_proto_pe;
1767 	case BPF_FUNC_get_stack:
1768 		return &bpf_get_stack_proto_pe;
1769 	case BPF_FUNC_perf_prog_read_value:
1770 		return &bpf_perf_prog_read_value_proto;
1771 	case BPF_FUNC_read_branch_records:
1772 		return &bpf_read_branch_records_proto;
1773 	case BPF_FUNC_get_attach_cookie:
1774 		return &bpf_get_attach_cookie_proto_pe;
1775 	default:
1776 		return bpf_tracing_func_proto(func_id, prog);
1777 	}
1778 }
1779 
1780 /*
1781  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1782  * to avoid potential recursive reuse issue when/if tracepoints are added
1783  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1784  *
1785  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1786  * in normal, irq, and nmi context.
1787  */
1788 struct bpf_raw_tp_regs {
1789 	struct pt_regs regs[3];
1790 };
1791 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1792 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1793 static struct pt_regs *get_bpf_raw_tp_regs(void)
1794 {
1795 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1796 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1797 
1798 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1799 		this_cpu_dec(bpf_raw_tp_nest_level);
1800 		return ERR_PTR(-EBUSY);
1801 	}
1802 
1803 	return &tp_regs->regs[nest_level - 1];
1804 }
1805 
1806 static void put_bpf_raw_tp_regs(void)
1807 {
1808 	this_cpu_dec(bpf_raw_tp_nest_level);
1809 }
1810 
1811 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1812 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1813 {
1814 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1815 	int ret;
1816 
1817 	if (IS_ERR(regs))
1818 		return PTR_ERR(regs);
1819 
1820 	perf_fetch_caller_regs(regs);
1821 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1822 
1823 	put_bpf_raw_tp_regs();
1824 	return ret;
1825 }
1826 
1827 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1828 	.func		= bpf_perf_event_output_raw_tp,
1829 	.gpl_only	= true,
1830 	.ret_type	= RET_INTEGER,
1831 	.arg1_type	= ARG_PTR_TO_CTX,
1832 	.arg2_type	= ARG_CONST_MAP_PTR,
1833 	.arg3_type	= ARG_ANYTHING,
1834 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1835 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1836 };
1837 
1838 extern const struct bpf_func_proto bpf_skb_output_proto;
1839 extern const struct bpf_func_proto bpf_xdp_output_proto;
1840 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1841 
1842 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1843 	   struct bpf_map *, map, u64, flags)
1844 {
1845 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1846 	int ret;
1847 
1848 	if (IS_ERR(regs))
1849 		return PTR_ERR(regs);
1850 
1851 	perf_fetch_caller_regs(regs);
1852 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1853 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1854 			      flags, 0, 0);
1855 	put_bpf_raw_tp_regs();
1856 	return ret;
1857 }
1858 
1859 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1860 	.func		= bpf_get_stackid_raw_tp,
1861 	.gpl_only	= true,
1862 	.ret_type	= RET_INTEGER,
1863 	.arg1_type	= ARG_PTR_TO_CTX,
1864 	.arg2_type	= ARG_CONST_MAP_PTR,
1865 	.arg3_type	= ARG_ANYTHING,
1866 };
1867 
1868 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1869 	   void *, buf, u32, size, u64, flags)
1870 {
1871 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1872 	int ret;
1873 
1874 	if (IS_ERR(regs))
1875 		return PTR_ERR(regs);
1876 
1877 	perf_fetch_caller_regs(regs);
1878 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1879 			    (unsigned long) size, flags, 0);
1880 	put_bpf_raw_tp_regs();
1881 	return ret;
1882 }
1883 
1884 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1885 	.func		= bpf_get_stack_raw_tp,
1886 	.gpl_only	= true,
1887 	.ret_type	= RET_INTEGER,
1888 	.arg1_type	= ARG_PTR_TO_CTX,
1889 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1890 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1891 	.arg4_type	= ARG_ANYTHING,
1892 };
1893 
1894 static const struct bpf_func_proto *
1895 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1896 {
1897 	switch (func_id) {
1898 	case BPF_FUNC_perf_event_output:
1899 		return &bpf_perf_event_output_proto_raw_tp;
1900 	case BPF_FUNC_get_stackid:
1901 		return &bpf_get_stackid_proto_raw_tp;
1902 	case BPF_FUNC_get_stack:
1903 		return &bpf_get_stack_proto_raw_tp;
1904 	default:
1905 		return bpf_tracing_func_proto(func_id, prog);
1906 	}
1907 }
1908 
1909 const struct bpf_func_proto *
1910 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1911 {
1912 	const struct bpf_func_proto *fn;
1913 
1914 	switch (func_id) {
1915 #ifdef CONFIG_NET
1916 	case BPF_FUNC_skb_output:
1917 		return &bpf_skb_output_proto;
1918 	case BPF_FUNC_xdp_output:
1919 		return &bpf_xdp_output_proto;
1920 	case BPF_FUNC_skc_to_tcp6_sock:
1921 		return &bpf_skc_to_tcp6_sock_proto;
1922 	case BPF_FUNC_skc_to_tcp_sock:
1923 		return &bpf_skc_to_tcp_sock_proto;
1924 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1925 		return &bpf_skc_to_tcp_timewait_sock_proto;
1926 	case BPF_FUNC_skc_to_tcp_request_sock:
1927 		return &bpf_skc_to_tcp_request_sock_proto;
1928 	case BPF_FUNC_skc_to_udp6_sock:
1929 		return &bpf_skc_to_udp6_sock_proto;
1930 	case BPF_FUNC_skc_to_unix_sock:
1931 		return &bpf_skc_to_unix_sock_proto;
1932 	case BPF_FUNC_skc_to_mptcp_sock:
1933 		return &bpf_skc_to_mptcp_sock_proto;
1934 	case BPF_FUNC_sk_storage_get:
1935 		return &bpf_sk_storage_get_tracing_proto;
1936 	case BPF_FUNC_sk_storage_delete:
1937 		return &bpf_sk_storage_delete_tracing_proto;
1938 	case BPF_FUNC_sock_from_file:
1939 		return &bpf_sock_from_file_proto;
1940 	case BPF_FUNC_get_socket_cookie:
1941 		return &bpf_get_socket_ptr_cookie_proto;
1942 	case BPF_FUNC_xdp_get_buff_len:
1943 		return &bpf_xdp_get_buff_len_trace_proto;
1944 #endif
1945 	case BPF_FUNC_seq_printf:
1946 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1947 		       &bpf_seq_printf_proto :
1948 		       NULL;
1949 	case BPF_FUNC_seq_write:
1950 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1951 		       &bpf_seq_write_proto :
1952 		       NULL;
1953 	case BPF_FUNC_seq_printf_btf:
1954 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1955 		       &bpf_seq_printf_btf_proto :
1956 		       NULL;
1957 	case BPF_FUNC_d_path:
1958 		return &bpf_d_path_proto;
1959 	case BPF_FUNC_get_func_arg:
1960 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1961 	case BPF_FUNC_get_func_ret:
1962 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1963 	case BPF_FUNC_get_func_arg_cnt:
1964 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1965 	case BPF_FUNC_get_attach_cookie:
1966 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1967 	default:
1968 		fn = raw_tp_prog_func_proto(func_id, prog);
1969 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1970 			fn = bpf_iter_get_func_proto(func_id, prog);
1971 		return fn;
1972 	}
1973 }
1974 
1975 static bool raw_tp_prog_is_valid_access(int off, int size,
1976 					enum bpf_access_type type,
1977 					const struct bpf_prog *prog,
1978 					struct bpf_insn_access_aux *info)
1979 {
1980 	return bpf_tracing_ctx_access(off, size, type);
1981 }
1982 
1983 static bool tracing_prog_is_valid_access(int off, int size,
1984 					 enum bpf_access_type type,
1985 					 const struct bpf_prog *prog,
1986 					 struct bpf_insn_access_aux *info)
1987 {
1988 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1989 }
1990 
1991 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1992 				     const union bpf_attr *kattr,
1993 				     union bpf_attr __user *uattr)
1994 {
1995 	return -ENOTSUPP;
1996 }
1997 
1998 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1999 	.get_func_proto  = raw_tp_prog_func_proto,
2000 	.is_valid_access = raw_tp_prog_is_valid_access,
2001 };
2002 
2003 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2004 #ifdef CONFIG_NET
2005 	.test_run = bpf_prog_test_run_raw_tp,
2006 #endif
2007 };
2008 
2009 const struct bpf_verifier_ops tracing_verifier_ops = {
2010 	.get_func_proto  = tracing_prog_func_proto,
2011 	.is_valid_access = tracing_prog_is_valid_access,
2012 };
2013 
2014 const struct bpf_prog_ops tracing_prog_ops = {
2015 	.test_run = bpf_prog_test_run_tracing,
2016 };
2017 
2018 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2019 						 enum bpf_access_type type,
2020 						 const struct bpf_prog *prog,
2021 						 struct bpf_insn_access_aux *info)
2022 {
2023 	if (off == 0) {
2024 		if (size != sizeof(u64) || type != BPF_READ)
2025 			return false;
2026 		info->reg_type = PTR_TO_TP_BUFFER;
2027 	}
2028 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2029 }
2030 
2031 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2032 	.get_func_proto  = raw_tp_prog_func_proto,
2033 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2034 };
2035 
2036 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2037 };
2038 
2039 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2040 				    const struct bpf_prog *prog,
2041 				    struct bpf_insn_access_aux *info)
2042 {
2043 	const int size_u64 = sizeof(u64);
2044 
2045 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2046 		return false;
2047 	if (type != BPF_READ)
2048 		return false;
2049 	if (off % size != 0) {
2050 		if (sizeof(unsigned long) != 4)
2051 			return false;
2052 		if (size != 8)
2053 			return false;
2054 		if (off % size != 4)
2055 			return false;
2056 	}
2057 
2058 	switch (off) {
2059 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2060 		bpf_ctx_record_field_size(info, size_u64);
2061 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2062 			return false;
2063 		break;
2064 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2065 		bpf_ctx_record_field_size(info, size_u64);
2066 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2067 			return false;
2068 		break;
2069 	default:
2070 		if (size != sizeof(long))
2071 			return false;
2072 	}
2073 
2074 	return true;
2075 }
2076 
2077 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2078 				      const struct bpf_insn *si,
2079 				      struct bpf_insn *insn_buf,
2080 				      struct bpf_prog *prog, u32 *target_size)
2081 {
2082 	struct bpf_insn *insn = insn_buf;
2083 
2084 	switch (si->off) {
2085 	case offsetof(struct bpf_perf_event_data, sample_period):
2086 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2087 						       data), si->dst_reg, si->src_reg,
2088 				      offsetof(struct bpf_perf_event_data_kern, data));
2089 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2090 				      bpf_target_off(struct perf_sample_data, period, 8,
2091 						     target_size));
2092 		break;
2093 	case offsetof(struct bpf_perf_event_data, addr):
2094 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2095 						       data), si->dst_reg, si->src_reg,
2096 				      offsetof(struct bpf_perf_event_data_kern, data));
2097 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2098 				      bpf_target_off(struct perf_sample_data, addr, 8,
2099 						     target_size));
2100 		break;
2101 	default:
2102 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2103 						       regs), si->dst_reg, si->src_reg,
2104 				      offsetof(struct bpf_perf_event_data_kern, regs));
2105 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2106 				      si->off);
2107 		break;
2108 	}
2109 
2110 	return insn - insn_buf;
2111 }
2112 
2113 const struct bpf_verifier_ops perf_event_verifier_ops = {
2114 	.get_func_proto		= pe_prog_func_proto,
2115 	.is_valid_access	= pe_prog_is_valid_access,
2116 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2117 };
2118 
2119 const struct bpf_prog_ops perf_event_prog_ops = {
2120 };
2121 
2122 static DEFINE_MUTEX(bpf_event_mutex);
2123 
2124 #define BPF_TRACE_MAX_PROGS 64
2125 
2126 int perf_event_attach_bpf_prog(struct perf_event *event,
2127 			       struct bpf_prog *prog,
2128 			       u64 bpf_cookie)
2129 {
2130 	struct bpf_prog_array *old_array;
2131 	struct bpf_prog_array *new_array;
2132 	int ret = -EEXIST;
2133 
2134 	/*
2135 	 * Kprobe override only works if they are on the function entry,
2136 	 * and only if they are on the opt-in list.
2137 	 */
2138 	if (prog->kprobe_override &&
2139 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2140 	     !trace_kprobe_error_injectable(event->tp_event)))
2141 		return -EINVAL;
2142 
2143 	mutex_lock(&bpf_event_mutex);
2144 
2145 	if (event->prog)
2146 		goto unlock;
2147 
2148 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2149 	if (old_array &&
2150 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2151 		ret = -E2BIG;
2152 		goto unlock;
2153 	}
2154 
2155 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2156 	if (ret < 0)
2157 		goto unlock;
2158 
2159 	/* set the new array to event->tp_event and set event->prog */
2160 	event->prog = prog;
2161 	event->bpf_cookie = bpf_cookie;
2162 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2163 	bpf_prog_array_free_sleepable(old_array);
2164 
2165 unlock:
2166 	mutex_unlock(&bpf_event_mutex);
2167 	return ret;
2168 }
2169 
2170 void perf_event_detach_bpf_prog(struct perf_event *event)
2171 {
2172 	struct bpf_prog_array *old_array;
2173 	struct bpf_prog_array *new_array;
2174 	int ret;
2175 
2176 	mutex_lock(&bpf_event_mutex);
2177 
2178 	if (!event->prog)
2179 		goto unlock;
2180 
2181 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2182 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2183 	if (ret == -ENOENT)
2184 		goto unlock;
2185 	if (ret < 0) {
2186 		bpf_prog_array_delete_safe(old_array, event->prog);
2187 	} else {
2188 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2189 		bpf_prog_array_free_sleepable(old_array);
2190 	}
2191 
2192 	bpf_prog_put(event->prog);
2193 	event->prog = NULL;
2194 
2195 unlock:
2196 	mutex_unlock(&bpf_event_mutex);
2197 }
2198 
2199 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2200 {
2201 	struct perf_event_query_bpf __user *uquery = info;
2202 	struct perf_event_query_bpf query = {};
2203 	struct bpf_prog_array *progs;
2204 	u32 *ids, prog_cnt, ids_len;
2205 	int ret;
2206 
2207 	if (!perfmon_capable())
2208 		return -EPERM;
2209 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2210 		return -EINVAL;
2211 	if (copy_from_user(&query, uquery, sizeof(query)))
2212 		return -EFAULT;
2213 
2214 	ids_len = query.ids_len;
2215 	if (ids_len > BPF_TRACE_MAX_PROGS)
2216 		return -E2BIG;
2217 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2218 	if (!ids)
2219 		return -ENOMEM;
2220 	/*
2221 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2222 	 * is required when user only wants to check for uquery->prog_cnt.
2223 	 * There is no need to check for it since the case is handled
2224 	 * gracefully in bpf_prog_array_copy_info.
2225 	 */
2226 
2227 	mutex_lock(&bpf_event_mutex);
2228 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2229 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2230 	mutex_unlock(&bpf_event_mutex);
2231 
2232 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2233 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2234 		ret = -EFAULT;
2235 
2236 	kfree(ids);
2237 	return ret;
2238 }
2239 
2240 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2241 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2242 
2243 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2244 {
2245 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2246 
2247 	for (; btp < __stop__bpf_raw_tp; btp++) {
2248 		if (!strcmp(btp->tp->name, name))
2249 			return btp;
2250 	}
2251 
2252 	return bpf_get_raw_tracepoint_module(name);
2253 }
2254 
2255 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2256 {
2257 	struct module *mod;
2258 
2259 	preempt_disable();
2260 	mod = __module_address((unsigned long)btp);
2261 	module_put(mod);
2262 	preempt_enable();
2263 }
2264 
2265 static __always_inline
2266 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2267 {
2268 	cant_sleep();
2269 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2270 		bpf_prog_inc_misses_counter(prog);
2271 		goto out;
2272 	}
2273 	rcu_read_lock();
2274 	(void) bpf_prog_run(prog, args);
2275 	rcu_read_unlock();
2276 out:
2277 	this_cpu_dec(*(prog->active));
2278 }
2279 
2280 #define UNPACK(...)			__VA_ARGS__
2281 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2282 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2283 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2284 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2285 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2286 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2287 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2288 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2289 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2290 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2291 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2292 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2293 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2294 
2295 #define SARG(X)		u64 arg##X
2296 #define COPY(X)		args[X] = arg##X
2297 
2298 #define __DL_COM	(,)
2299 #define __DL_SEM	(;)
2300 
2301 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2302 
2303 #define BPF_TRACE_DEFN_x(x)						\
2304 	void bpf_trace_run##x(struct bpf_prog *prog,			\
2305 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2306 	{								\
2307 		u64 args[x];						\
2308 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2309 		__bpf_trace_run(prog, args);				\
2310 	}								\
2311 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2312 BPF_TRACE_DEFN_x(1);
2313 BPF_TRACE_DEFN_x(2);
2314 BPF_TRACE_DEFN_x(3);
2315 BPF_TRACE_DEFN_x(4);
2316 BPF_TRACE_DEFN_x(5);
2317 BPF_TRACE_DEFN_x(6);
2318 BPF_TRACE_DEFN_x(7);
2319 BPF_TRACE_DEFN_x(8);
2320 BPF_TRACE_DEFN_x(9);
2321 BPF_TRACE_DEFN_x(10);
2322 BPF_TRACE_DEFN_x(11);
2323 BPF_TRACE_DEFN_x(12);
2324 
2325 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2326 {
2327 	struct tracepoint *tp = btp->tp;
2328 
2329 	/*
2330 	 * check that program doesn't access arguments beyond what's
2331 	 * available in this tracepoint
2332 	 */
2333 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2334 		return -EINVAL;
2335 
2336 	if (prog->aux->max_tp_access > btp->writable_size)
2337 		return -EINVAL;
2338 
2339 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2340 						   prog);
2341 }
2342 
2343 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2344 {
2345 	return __bpf_probe_register(btp, prog);
2346 }
2347 
2348 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2349 {
2350 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2351 }
2352 
2353 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2354 			    u32 *fd_type, const char **buf,
2355 			    u64 *probe_offset, u64 *probe_addr)
2356 {
2357 	bool is_tracepoint, is_syscall_tp;
2358 	struct bpf_prog *prog;
2359 	int flags, err = 0;
2360 
2361 	prog = event->prog;
2362 	if (!prog)
2363 		return -ENOENT;
2364 
2365 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2366 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2367 		return -EOPNOTSUPP;
2368 
2369 	*prog_id = prog->aux->id;
2370 	flags = event->tp_event->flags;
2371 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2372 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2373 
2374 	if (is_tracepoint || is_syscall_tp) {
2375 		*buf = is_tracepoint ? event->tp_event->tp->name
2376 				     : event->tp_event->name;
2377 		/* We allow NULL pointer for tracepoint */
2378 		if (fd_type)
2379 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2380 		if (probe_offset)
2381 			*probe_offset = 0x0;
2382 		if (probe_addr)
2383 			*probe_addr = 0x0;
2384 	} else {
2385 		/* kprobe/uprobe */
2386 		err = -EOPNOTSUPP;
2387 #ifdef CONFIG_KPROBE_EVENTS
2388 		if (flags & TRACE_EVENT_FL_KPROBE)
2389 			err = bpf_get_kprobe_info(event, fd_type, buf,
2390 						  probe_offset, probe_addr,
2391 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2392 #endif
2393 #ifdef CONFIG_UPROBE_EVENTS
2394 		if (flags & TRACE_EVENT_FL_UPROBE)
2395 			err = bpf_get_uprobe_info(event, fd_type, buf,
2396 						  probe_offset, probe_addr,
2397 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2398 #endif
2399 	}
2400 
2401 	return err;
2402 }
2403 
2404 static int __init send_signal_irq_work_init(void)
2405 {
2406 	int cpu;
2407 	struct send_signal_irq_work *work;
2408 
2409 	for_each_possible_cpu(cpu) {
2410 		work = per_cpu_ptr(&send_signal_work, cpu);
2411 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2412 	}
2413 	return 0;
2414 }
2415 
2416 subsys_initcall(send_signal_irq_work_init);
2417 
2418 #ifdef CONFIG_MODULES
2419 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2420 			    void *module)
2421 {
2422 	struct bpf_trace_module *btm, *tmp;
2423 	struct module *mod = module;
2424 	int ret = 0;
2425 
2426 	if (mod->num_bpf_raw_events == 0 ||
2427 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2428 		goto out;
2429 
2430 	mutex_lock(&bpf_module_mutex);
2431 
2432 	switch (op) {
2433 	case MODULE_STATE_COMING:
2434 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2435 		if (btm) {
2436 			btm->module = module;
2437 			list_add(&btm->list, &bpf_trace_modules);
2438 		} else {
2439 			ret = -ENOMEM;
2440 		}
2441 		break;
2442 	case MODULE_STATE_GOING:
2443 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2444 			if (btm->module == module) {
2445 				list_del(&btm->list);
2446 				kfree(btm);
2447 				break;
2448 			}
2449 		}
2450 		break;
2451 	}
2452 
2453 	mutex_unlock(&bpf_module_mutex);
2454 
2455 out:
2456 	return notifier_from_errno(ret);
2457 }
2458 
2459 static struct notifier_block bpf_module_nb = {
2460 	.notifier_call = bpf_event_notify,
2461 };
2462 
2463 static int __init bpf_event_init(void)
2464 {
2465 	register_module_notifier(&bpf_module_nb);
2466 	return 0;
2467 }
2468 
2469 fs_initcall(bpf_event_init);
2470 #endif /* CONFIG_MODULES */
2471 
2472 #ifdef CONFIG_FPROBE
2473 struct bpf_kprobe_multi_link {
2474 	struct bpf_link link;
2475 	struct fprobe fp;
2476 	unsigned long *addrs;
2477 	u64 *cookies;
2478 	u32 cnt;
2479 	u32 mods_cnt;
2480 	struct module **mods;
2481 	u32 flags;
2482 };
2483 
2484 struct bpf_kprobe_multi_run_ctx {
2485 	struct bpf_run_ctx run_ctx;
2486 	struct bpf_kprobe_multi_link *link;
2487 	unsigned long entry_ip;
2488 };
2489 
2490 struct user_syms {
2491 	const char **syms;
2492 	char *buf;
2493 };
2494 
2495 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2496 {
2497 	unsigned long __user usymbol;
2498 	const char **syms = NULL;
2499 	char *buf = NULL, *p;
2500 	int err = -ENOMEM;
2501 	unsigned int i;
2502 
2503 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2504 	if (!syms)
2505 		goto error;
2506 
2507 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2508 	if (!buf)
2509 		goto error;
2510 
2511 	for (p = buf, i = 0; i < cnt; i++) {
2512 		if (__get_user(usymbol, usyms + i)) {
2513 			err = -EFAULT;
2514 			goto error;
2515 		}
2516 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2517 		if (err == KSYM_NAME_LEN)
2518 			err = -E2BIG;
2519 		if (err < 0)
2520 			goto error;
2521 		syms[i] = p;
2522 		p += err + 1;
2523 	}
2524 
2525 	us->syms = syms;
2526 	us->buf = buf;
2527 	return 0;
2528 
2529 error:
2530 	if (err) {
2531 		kvfree(syms);
2532 		kvfree(buf);
2533 	}
2534 	return err;
2535 }
2536 
2537 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2538 {
2539 	u32 i;
2540 
2541 	for (i = 0; i < cnt; i++)
2542 		module_put(mods[i]);
2543 }
2544 
2545 static void free_user_syms(struct user_syms *us)
2546 {
2547 	kvfree(us->syms);
2548 	kvfree(us->buf);
2549 }
2550 
2551 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2552 {
2553 	struct bpf_kprobe_multi_link *kmulti_link;
2554 
2555 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2556 	unregister_fprobe(&kmulti_link->fp);
2557 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2558 }
2559 
2560 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2561 {
2562 	struct bpf_kprobe_multi_link *kmulti_link;
2563 
2564 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2565 	kvfree(kmulti_link->addrs);
2566 	kvfree(kmulti_link->cookies);
2567 	kfree(kmulti_link->mods);
2568 	kfree(kmulti_link);
2569 }
2570 
2571 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2572 						struct bpf_link_info *info)
2573 {
2574 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2575 	struct bpf_kprobe_multi_link *kmulti_link;
2576 	u32 ucount = info->kprobe_multi.count;
2577 	int err = 0, i;
2578 
2579 	if (!uaddrs ^ !ucount)
2580 		return -EINVAL;
2581 
2582 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2583 	info->kprobe_multi.count = kmulti_link->cnt;
2584 	info->kprobe_multi.flags = kmulti_link->flags;
2585 
2586 	if (!uaddrs)
2587 		return 0;
2588 	if (ucount < kmulti_link->cnt)
2589 		err = -ENOSPC;
2590 	else
2591 		ucount = kmulti_link->cnt;
2592 
2593 	if (kallsyms_show_value(current_cred())) {
2594 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2595 			return -EFAULT;
2596 	} else {
2597 		for (i = 0; i < ucount; i++) {
2598 			if (put_user(0, uaddrs + i))
2599 				return -EFAULT;
2600 		}
2601 	}
2602 	return err;
2603 }
2604 
2605 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2606 	.release = bpf_kprobe_multi_link_release,
2607 	.dealloc = bpf_kprobe_multi_link_dealloc,
2608 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2609 };
2610 
2611 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2612 {
2613 	const struct bpf_kprobe_multi_link *link = priv;
2614 	unsigned long *addr_a = a, *addr_b = b;
2615 	u64 *cookie_a, *cookie_b;
2616 
2617 	cookie_a = link->cookies + (addr_a - link->addrs);
2618 	cookie_b = link->cookies + (addr_b - link->addrs);
2619 
2620 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2621 	swap(*addr_a, *addr_b);
2622 	swap(*cookie_a, *cookie_b);
2623 }
2624 
2625 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2626 {
2627 	const unsigned long *addr_a = a, *addr_b = b;
2628 
2629 	if (*addr_a == *addr_b)
2630 		return 0;
2631 	return *addr_a < *addr_b ? -1 : 1;
2632 }
2633 
2634 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2635 {
2636 	return bpf_kprobe_multi_addrs_cmp(a, b);
2637 }
2638 
2639 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2640 {
2641 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2642 	struct bpf_kprobe_multi_link *link;
2643 	u64 *cookie, entry_ip;
2644 	unsigned long *addr;
2645 
2646 	if (WARN_ON_ONCE(!ctx))
2647 		return 0;
2648 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2649 	link = run_ctx->link;
2650 	if (!link->cookies)
2651 		return 0;
2652 	entry_ip = run_ctx->entry_ip;
2653 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2654 		       bpf_kprobe_multi_addrs_cmp);
2655 	if (!addr)
2656 		return 0;
2657 	cookie = link->cookies + (addr - link->addrs);
2658 	return *cookie;
2659 }
2660 
2661 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2662 {
2663 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2664 
2665 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2666 	return run_ctx->entry_ip;
2667 }
2668 
2669 static int
2670 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2671 			   unsigned long entry_ip, struct pt_regs *regs)
2672 {
2673 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2674 		.link = link,
2675 		.entry_ip = entry_ip,
2676 	};
2677 	struct bpf_run_ctx *old_run_ctx;
2678 	int err;
2679 
2680 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2681 		err = 0;
2682 		goto out;
2683 	}
2684 
2685 	migrate_disable();
2686 	rcu_read_lock();
2687 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2688 	err = bpf_prog_run(link->link.prog, regs);
2689 	bpf_reset_run_ctx(old_run_ctx);
2690 	rcu_read_unlock();
2691 	migrate_enable();
2692 
2693  out:
2694 	__this_cpu_dec(bpf_prog_active);
2695 	return err;
2696 }
2697 
2698 static int
2699 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2700 			  unsigned long ret_ip, struct pt_regs *regs,
2701 			  void *data)
2702 {
2703 	struct bpf_kprobe_multi_link *link;
2704 
2705 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2706 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2707 	return 0;
2708 }
2709 
2710 static void
2711 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2712 			       unsigned long ret_ip, struct pt_regs *regs,
2713 			       void *data)
2714 {
2715 	struct bpf_kprobe_multi_link *link;
2716 
2717 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2718 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2719 }
2720 
2721 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2722 {
2723 	const char **str_a = (const char **) a;
2724 	const char **str_b = (const char **) b;
2725 
2726 	return strcmp(*str_a, *str_b);
2727 }
2728 
2729 struct multi_symbols_sort {
2730 	const char **funcs;
2731 	u64 *cookies;
2732 };
2733 
2734 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2735 {
2736 	const struct multi_symbols_sort *data = priv;
2737 	const char **name_a = a, **name_b = b;
2738 
2739 	swap(*name_a, *name_b);
2740 
2741 	/* If defined, swap also related cookies. */
2742 	if (data->cookies) {
2743 		u64 *cookie_a, *cookie_b;
2744 
2745 		cookie_a = data->cookies + (name_a - data->funcs);
2746 		cookie_b = data->cookies + (name_b - data->funcs);
2747 		swap(*cookie_a, *cookie_b);
2748 	}
2749 }
2750 
2751 struct modules_array {
2752 	struct module **mods;
2753 	int mods_cnt;
2754 	int mods_cap;
2755 };
2756 
2757 static int add_module(struct modules_array *arr, struct module *mod)
2758 {
2759 	struct module **mods;
2760 
2761 	if (arr->mods_cnt == arr->mods_cap) {
2762 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2763 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2764 		if (!mods)
2765 			return -ENOMEM;
2766 		arr->mods = mods;
2767 	}
2768 
2769 	arr->mods[arr->mods_cnt] = mod;
2770 	arr->mods_cnt++;
2771 	return 0;
2772 }
2773 
2774 static bool has_module(struct modules_array *arr, struct module *mod)
2775 {
2776 	int i;
2777 
2778 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2779 		if (arr->mods[i] == mod)
2780 			return true;
2781 	}
2782 	return false;
2783 }
2784 
2785 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2786 {
2787 	struct modules_array arr = {};
2788 	u32 i, err = 0;
2789 
2790 	for (i = 0; i < addrs_cnt; i++) {
2791 		struct module *mod;
2792 
2793 		preempt_disable();
2794 		mod = __module_address(addrs[i]);
2795 		/* Either no module or we it's already stored  */
2796 		if (!mod || has_module(&arr, mod)) {
2797 			preempt_enable();
2798 			continue;
2799 		}
2800 		if (!try_module_get(mod))
2801 			err = -EINVAL;
2802 		preempt_enable();
2803 		if (err)
2804 			break;
2805 		err = add_module(&arr, mod);
2806 		if (err) {
2807 			module_put(mod);
2808 			break;
2809 		}
2810 	}
2811 
2812 	/* We return either err < 0 in case of error, ... */
2813 	if (err) {
2814 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2815 		kfree(arr.mods);
2816 		return err;
2817 	}
2818 
2819 	/* or number of modules found if everything is ok. */
2820 	*mods = arr.mods;
2821 	return arr.mods_cnt;
2822 }
2823 
2824 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2825 {
2826 	struct bpf_kprobe_multi_link *link = NULL;
2827 	struct bpf_link_primer link_primer;
2828 	void __user *ucookies;
2829 	unsigned long *addrs;
2830 	u32 flags, cnt, size;
2831 	void __user *uaddrs;
2832 	u64 *cookies = NULL;
2833 	void __user *usyms;
2834 	int err;
2835 
2836 	/* no support for 32bit archs yet */
2837 	if (sizeof(u64) != sizeof(void *))
2838 		return -EOPNOTSUPP;
2839 
2840 	if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2841 		return -EINVAL;
2842 
2843 	flags = attr->link_create.kprobe_multi.flags;
2844 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2845 		return -EINVAL;
2846 
2847 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2848 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2849 	if (!!uaddrs == !!usyms)
2850 		return -EINVAL;
2851 
2852 	cnt = attr->link_create.kprobe_multi.cnt;
2853 	if (!cnt)
2854 		return -EINVAL;
2855 
2856 	size = cnt * sizeof(*addrs);
2857 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2858 	if (!addrs)
2859 		return -ENOMEM;
2860 
2861 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2862 	if (ucookies) {
2863 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2864 		if (!cookies) {
2865 			err = -ENOMEM;
2866 			goto error;
2867 		}
2868 		if (copy_from_user(cookies, ucookies, size)) {
2869 			err = -EFAULT;
2870 			goto error;
2871 		}
2872 	}
2873 
2874 	if (uaddrs) {
2875 		if (copy_from_user(addrs, uaddrs, size)) {
2876 			err = -EFAULT;
2877 			goto error;
2878 		}
2879 	} else {
2880 		struct multi_symbols_sort data = {
2881 			.cookies = cookies,
2882 		};
2883 		struct user_syms us;
2884 
2885 		err = copy_user_syms(&us, usyms, cnt);
2886 		if (err)
2887 			goto error;
2888 
2889 		if (cookies)
2890 			data.funcs = us.syms;
2891 
2892 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2893 		       symbols_swap_r, &data);
2894 
2895 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2896 		free_user_syms(&us);
2897 		if (err)
2898 			goto error;
2899 	}
2900 
2901 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2902 	if (!link) {
2903 		err = -ENOMEM;
2904 		goto error;
2905 	}
2906 
2907 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2908 		      &bpf_kprobe_multi_link_lops, prog);
2909 
2910 	err = bpf_link_prime(&link->link, &link_primer);
2911 	if (err)
2912 		goto error;
2913 
2914 	if (flags & BPF_F_KPROBE_MULTI_RETURN)
2915 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
2916 	else
2917 		link->fp.entry_handler = kprobe_multi_link_handler;
2918 
2919 	link->addrs = addrs;
2920 	link->cookies = cookies;
2921 	link->cnt = cnt;
2922 	link->flags = flags;
2923 
2924 	if (cookies) {
2925 		/*
2926 		 * Sorting addresses will trigger sorting cookies as well
2927 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2928 		 * find cookie based on the address in bpf_get_attach_cookie
2929 		 * helper.
2930 		 */
2931 		sort_r(addrs, cnt, sizeof(*addrs),
2932 		       bpf_kprobe_multi_cookie_cmp,
2933 		       bpf_kprobe_multi_cookie_swap,
2934 		       link);
2935 	}
2936 
2937 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2938 	if (err < 0) {
2939 		bpf_link_cleanup(&link_primer);
2940 		return err;
2941 	}
2942 	link->mods_cnt = err;
2943 
2944 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2945 	if (err) {
2946 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2947 		bpf_link_cleanup(&link_primer);
2948 		return err;
2949 	}
2950 
2951 	return bpf_link_settle(&link_primer);
2952 
2953 error:
2954 	kfree(link);
2955 	kvfree(addrs);
2956 	kvfree(cookies);
2957 	return err;
2958 }
2959 #else /* !CONFIG_FPROBE */
2960 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2961 {
2962 	return -EOPNOTSUPP;
2963 }
2964 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2965 {
2966 	return 0;
2967 }
2968 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2969 {
2970 	return 0;
2971 }
2972 #endif
2973