1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/slab.h> 8 #include <linux/bpf.h> 9 #include <linux/bpf_verifier.h> 10 #include <linux/bpf_perf_event.h> 11 #include <linux/btf.h> 12 #include <linux/filter.h> 13 #include <linux/uaccess.h> 14 #include <linux/ctype.h> 15 #include <linux/kprobes.h> 16 #include <linux/spinlock.h> 17 #include <linux/syscalls.h> 18 #include <linux/error-injection.h> 19 #include <linux/btf_ids.h> 20 #include <linux/bpf_lsm.h> 21 #include <linux/fprobe.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 #include <linux/key.h> 25 #include <linux/verification.h> 26 27 #include <net/bpf_sk_storage.h> 28 29 #include <uapi/linux/bpf.h> 30 #include <uapi/linux/btf.h> 31 32 #include <asm/tlb.h> 33 34 #include "trace_probe.h" 35 #include "trace.h" 36 37 #define CREATE_TRACE_POINTS 38 #include "bpf_trace.h" 39 40 #define bpf_event_rcu_dereference(p) \ 41 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) 42 43 #ifdef CONFIG_MODULES 44 struct bpf_trace_module { 45 struct module *module; 46 struct list_head list; 47 }; 48 49 static LIST_HEAD(bpf_trace_modules); 50 static DEFINE_MUTEX(bpf_module_mutex); 51 52 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 53 { 54 struct bpf_raw_event_map *btp, *ret = NULL; 55 struct bpf_trace_module *btm; 56 unsigned int i; 57 58 mutex_lock(&bpf_module_mutex); 59 list_for_each_entry(btm, &bpf_trace_modules, list) { 60 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { 61 btp = &btm->module->bpf_raw_events[i]; 62 if (!strcmp(btp->tp->name, name)) { 63 if (try_module_get(btm->module)) 64 ret = btp; 65 goto out; 66 } 67 } 68 } 69 out: 70 mutex_unlock(&bpf_module_mutex); 71 return ret; 72 } 73 #else 74 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) 75 { 76 return NULL; 77 } 78 #endif /* CONFIG_MODULES */ 79 80 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 81 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 82 83 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 84 u64 flags, const struct btf **btf, 85 s32 *btf_id); 86 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx); 87 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx); 88 89 /** 90 * trace_call_bpf - invoke BPF program 91 * @call: tracepoint event 92 * @ctx: opaque context pointer 93 * 94 * kprobe handlers execute BPF programs via this helper. 95 * Can be used from static tracepoints in the future. 96 * 97 * Return: BPF programs always return an integer which is interpreted by 98 * kprobe handler as: 99 * 0 - return from kprobe (event is filtered out) 100 * 1 - store kprobe event into ring buffer 101 * Other values are reserved and currently alias to 1 102 */ 103 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) 104 { 105 unsigned int ret; 106 107 cant_sleep(); 108 109 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 110 /* 111 * since some bpf program is already running on this cpu, 112 * don't call into another bpf program (same or different) 113 * and don't send kprobe event into ring-buffer, 114 * so return zero here 115 */ 116 ret = 0; 117 goto out; 118 } 119 120 /* 121 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock 122 * to all call sites, we did a bpf_prog_array_valid() there to check 123 * whether call->prog_array is empty or not, which is 124 * a heuristic to speed up execution. 125 * 126 * If bpf_prog_array_valid() fetched prog_array was 127 * non-NULL, we go into trace_call_bpf() and do the actual 128 * proper rcu_dereference() under RCU lock. 129 * If it turns out that prog_array is NULL then, we bail out. 130 * For the opposite, if the bpf_prog_array_valid() fetched pointer 131 * was NULL, you'll skip the prog_array with the risk of missing 132 * out of events when it was updated in between this and the 133 * rcu_dereference() which is accepted risk. 134 */ 135 rcu_read_lock(); 136 ret = bpf_prog_run_array(rcu_dereference(call->prog_array), 137 ctx, bpf_prog_run); 138 rcu_read_unlock(); 139 140 out: 141 __this_cpu_dec(bpf_prog_active); 142 143 return ret; 144 } 145 146 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 147 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) 148 { 149 regs_set_return_value(regs, rc); 150 override_function_with_return(regs); 151 return 0; 152 } 153 154 static const struct bpf_func_proto bpf_override_return_proto = { 155 .func = bpf_override_return, 156 .gpl_only = true, 157 .ret_type = RET_INTEGER, 158 .arg1_type = ARG_PTR_TO_CTX, 159 .arg2_type = ARG_ANYTHING, 160 }; 161 #endif 162 163 static __always_inline int 164 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) 165 { 166 int ret; 167 168 ret = copy_from_user_nofault(dst, unsafe_ptr, size); 169 if (unlikely(ret < 0)) 170 memset(dst, 0, size); 171 return ret; 172 } 173 174 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, 175 const void __user *, unsafe_ptr) 176 { 177 return bpf_probe_read_user_common(dst, size, unsafe_ptr); 178 } 179 180 const struct bpf_func_proto bpf_probe_read_user_proto = { 181 .func = bpf_probe_read_user, 182 .gpl_only = true, 183 .ret_type = RET_INTEGER, 184 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 185 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 186 .arg3_type = ARG_ANYTHING, 187 }; 188 189 static __always_inline int 190 bpf_probe_read_user_str_common(void *dst, u32 size, 191 const void __user *unsafe_ptr) 192 { 193 int ret; 194 195 /* 196 * NB: We rely on strncpy_from_user() not copying junk past the NUL 197 * terminator into `dst`. 198 * 199 * strncpy_from_user() does long-sized strides in the fast path. If the 200 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, 201 * then there could be junk after the NUL in `dst`. If user takes `dst` 202 * and keys a hash map with it, then semantically identical strings can 203 * occupy multiple entries in the map. 204 */ 205 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); 206 if (unlikely(ret < 0)) 207 memset(dst, 0, size); 208 return ret; 209 } 210 211 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, 212 const void __user *, unsafe_ptr) 213 { 214 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); 215 } 216 217 const struct bpf_func_proto bpf_probe_read_user_str_proto = { 218 .func = bpf_probe_read_user_str, 219 .gpl_only = true, 220 .ret_type = RET_INTEGER, 221 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 222 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 223 .arg3_type = ARG_ANYTHING, 224 }; 225 226 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, 227 const void *, unsafe_ptr) 228 { 229 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 230 } 231 232 const struct bpf_func_proto bpf_probe_read_kernel_proto = { 233 .func = bpf_probe_read_kernel, 234 .gpl_only = true, 235 .ret_type = RET_INTEGER, 236 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 237 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 238 .arg3_type = ARG_ANYTHING, 239 }; 240 241 static __always_inline int 242 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) 243 { 244 int ret; 245 246 /* 247 * The strncpy_from_kernel_nofault() call will likely not fill the 248 * entire buffer, but that's okay in this circumstance as we're probing 249 * arbitrary memory anyway similar to bpf_probe_read_*() and might 250 * as well probe the stack. Thus, memory is explicitly cleared 251 * only in error case, so that improper users ignoring return 252 * code altogether don't copy garbage; otherwise length of string 253 * is returned that can be used for bpf_perf_event_output() et al. 254 */ 255 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); 256 if (unlikely(ret < 0)) 257 memset(dst, 0, size); 258 return ret; 259 } 260 261 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, 262 const void *, unsafe_ptr) 263 { 264 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 265 } 266 267 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { 268 .func = bpf_probe_read_kernel_str, 269 .gpl_only = true, 270 .ret_type = RET_INTEGER, 271 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 272 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 273 .arg3_type = ARG_ANYTHING, 274 }; 275 276 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 277 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, 278 const void *, unsafe_ptr) 279 { 280 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 281 return bpf_probe_read_user_common(dst, size, 282 (__force void __user *)unsafe_ptr); 283 } 284 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); 285 } 286 287 static const struct bpf_func_proto bpf_probe_read_compat_proto = { 288 .func = bpf_probe_read_compat, 289 .gpl_only = true, 290 .ret_type = RET_INTEGER, 291 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 292 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 293 .arg3_type = ARG_ANYTHING, 294 }; 295 296 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, 297 const void *, unsafe_ptr) 298 { 299 if ((unsigned long)unsafe_ptr < TASK_SIZE) { 300 return bpf_probe_read_user_str_common(dst, size, 301 (__force void __user *)unsafe_ptr); 302 } 303 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); 304 } 305 306 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { 307 .func = bpf_probe_read_compat_str, 308 .gpl_only = true, 309 .ret_type = RET_INTEGER, 310 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 311 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 312 .arg3_type = ARG_ANYTHING, 313 }; 314 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ 315 316 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, 317 u32, size) 318 { 319 /* 320 * Ensure we're in user context which is safe for the helper to 321 * run. This helper has no business in a kthread. 322 * 323 * access_ok() should prevent writing to non-user memory, but in 324 * some situations (nommu, temporary switch, etc) access_ok() does 325 * not provide enough validation, hence the check on KERNEL_DS. 326 * 327 * nmi_uaccess_okay() ensures the probe is not run in an interim 328 * state, when the task or mm are switched. This is specifically 329 * required to prevent the use of temporary mm. 330 */ 331 332 if (unlikely(in_interrupt() || 333 current->flags & (PF_KTHREAD | PF_EXITING))) 334 return -EPERM; 335 if (unlikely(!nmi_uaccess_okay())) 336 return -EPERM; 337 338 return copy_to_user_nofault(unsafe_ptr, src, size); 339 } 340 341 static const struct bpf_func_proto bpf_probe_write_user_proto = { 342 .func = bpf_probe_write_user, 343 .gpl_only = true, 344 .ret_type = RET_INTEGER, 345 .arg1_type = ARG_ANYTHING, 346 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 347 .arg3_type = ARG_CONST_SIZE, 348 }; 349 350 static const struct bpf_func_proto *bpf_get_probe_write_proto(void) 351 { 352 if (!capable(CAP_SYS_ADMIN)) 353 return NULL; 354 355 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", 356 current->comm, task_pid_nr(current)); 357 358 return &bpf_probe_write_user_proto; 359 } 360 361 #define MAX_TRACE_PRINTK_VARARGS 3 362 #define BPF_TRACE_PRINTK_SIZE 1024 363 364 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, 365 u64, arg2, u64, arg3) 366 { 367 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 }; 368 struct bpf_bprintf_data data = { 369 .get_bin_args = true, 370 .get_buf = true, 371 }; 372 int ret; 373 374 ret = bpf_bprintf_prepare(fmt, fmt_size, args, 375 MAX_TRACE_PRINTK_VARARGS, &data); 376 if (ret < 0) 377 return ret; 378 379 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 380 381 trace_bpf_trace_printk(data.buf); 382 383 bpf_bprintf_cleanup(&data); 384 385 return ret; 386 } 387 388 static const struct bpf_func_proto bpf_trace_printk_proto = { 389 .func = bpf_trace_printk, 390 .gpl_only = true, 391 .ret_type = RET_INTEGER, 392 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 393 .arg2_type = ARG_CONST_SIZE, 394 }; 395 396 static void __set_printk_clr_event(void) 397 { 398 /* 399 * This program might be calling bpf_trace_printk, 400 * so enable the associated bpf_trace/bpf_trace_printk event. 401 * Repeat this each time as it is possible a user has 402 * disabled bpf_trace_printk events. By loading a program 403 * calling bpf_trace_printk() however the user has expressed 404 * the intent to see such events. 405 */ 406 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) 407 pr_warn_ratelimited("could not enable bpf_trace_printk events"); 408 } 409 410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void) 411 { 412 __set_printk_clr_event(); 413 return &bpf_trace_printk_proto; 414 } 415 416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args, 417 u32, data_len) 418 { 419 struct bpf_bprintf_data data = { 420 .get_bin_args = true, 421 .get_buf = true, 422 }; 423 int ret, num_args; 424 425 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 426 (data_len && !args)) 427 return -EINVAL; 428 num_args = data_len / 8; 429 430 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 431 if (ret < 0) 432 return ret; 433 434 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args); 435 436 trace_bpf_trace_printk(data.buf); 437 438 bpf_bprintf_cleanup(&data); 439 440 return ret; 441 } 442 443 static const struct bpf_func_proto bpf_trace_vprintk_proto = { 444 .func = bpf_trace_vprintk, 445 .gpl_only = true, 446 .ret_type = RET_INTEGER, 447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 448 .arg2_type = ARG_CONST_SIZE, 449 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 450 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 451 }; 452 453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void) 454 { 455 __set_printk_clr_event(); 456 return &bpf_trace_vprintk_proto; 457 } 458 459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, 460 const void *, args, u32, data_len) 461 { 462 struct bpf_bprintf_data data = { 463 .get_bin_args = true, 464 }; 465 int err, num_args; 466 467 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || 468 (data_len && !args)) 469 return -EINVAL; 470 num_args = data_len / 8; 471 472 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data); 473 if (err < 0) 474 return err; 475 476 seq_bprintf(m, fmt, data.bin_args); 477 478 bpf_bprintf_cleanup(&data); 479 480 return seq_has_overflowed(m) ? -EOVERFLOW : 0; 481 } 482 483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) 484 485 static const struct bpf_func_proto bpf_seq_printf_proto = { 486 .func = bpf_seq_printf, 487 .gpl_only = true, 488 .ret_type = RET_INTEGER, 489 .arg1_type = ARG_PTR_TO_BTF_ID, 490 .arg1_btf_id = &btf_seq_file_ids[0], 491 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 492 .arg3_type = ARG_CONST_SIZE, 493 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 494 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 495 }; 496 497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) 498 { 499 return seq_write(m, data, len) ? -EOVERFLOW : 0; 500 } 501 502 static const struct bpf_func_proto bpf_seq_write_proto = { 503 .func = bpf_seq_write, 504 .gpl_only = true, 505 .ret_type = RET_INTEGER, 506 .arg1_type = ARG_PTR_TO_BTF_ID, 507 .arg1_btf_id = &btf_seq_file_ids[0], 508 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 509 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 510 }; 511 512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, 513 u32, btf_ptr_size, u64, flags) 514 { 515 const struct btf *btf; 516 s32 btf_id; 517 int ret; 518 519 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 520 if (ret) 521 return ret; 522 523 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); 524 } 525 526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = { 527 .func = bpf_seq_printf_btf, 528 .gpl_only = true, 529 .ret_type = RET_INTEGER, 530 .arg1_type = ARG_PTR_TO_BTF_ID, 531 .arg1_btf_id = &btf_seq_file_ids[0], 532 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 533 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 534 .arg4_type = ARG_ANYTHING, 535 }; 536 537 static __always_inline int 538 get_map_perf_counter(struct bpf_map *map, u64 flags, 539 u64 *value, u64 *enabled, u64 *running) 540 { 541 struct bpf_array *array = container_of(map, struct bpf_array, map); 542 unsigned int cpu = smp_processor_id(); 543 u64 index = flags & BPF_F_INDEX_MASK; 544 struct bpf_event_entry *ee; 545 546 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 547 return -EINVAL; 548 if (index == BPF_F_CURRENT_CPU) 549 index = cpu; 550 if (unlikely(index >= array->map.max_entries)) 551 return -E2BIG; 552 553 ee = READ_ONCE(array->ptrs[index]); 554 if (!ee) 555 return -ENOENT; 556 557 return perf_event_read_local(ee->event, value, enabled, running); 558 } 559 560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) 561 { 562 u64 value = 0; 563 int err; 564 565 err = get_map_perf_counter(map, flags, &value, NULL, NULL); 566 /* 567 * this api is ugly since we miss [-22..-2] range of valid 568 * counter values, but that's uapi 569 */ 570 if (err) 571 return err; 572 return value; 573 } 574 575 static const struct bpf_func_proto bpf_perf_event_read_proto = { 576 .func = bpf_perf_event_read, 577 .gpl_only = true, 578 .ret_type = RET_INTEGER, 579 .arg1_type = ARG_CONST_MAP_PTR, 580 .arg2_type = ARG_ANYTHING, 581 }; 582 583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, 584 struct bpf_perf_event_value *, buf, u32, size) 585 { 586 int err = -EINVAL; 587 588 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 589 goto clear; 590 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, 591 &buf->running); 592 if (unlikely(err)) 593 goto clear; 594 return 0; 595 clear: 596 memset(buf, 0, size); 597 return err; 598 } 599 600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = { 601 .func = bpf_perf_event_read_value, 602 .gpl_only = true, 603 .ret_type = RET_INTEGER, 604 .arg1_type = ARG_CONST_MAP_PTR, 605 .arg2_type = ARG_ANYTHING, 606 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 607 .arg4_type = ARG_CONST_SIZE, 608 }; 609 610 static __always_inline u64 611 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, 612 u64 flags, struct perf_sample_data *sd) 613 { 614 struct bpf_array *array = container_of(map, struct bpf_array, map); 615 unsigned int cpu = smp_processor_id(); 616 u64 index = flags & BPF_F_INDEX_MASK; 617 struct bpf_event_entry *ee; 618 struct perf_event *event; 619 620 if (index == BPF_F_CURRENT_CPU) 621 index = cpu; 622 if (unlikely(index >= array->map.max_entries)) 623 return -E2BIG; 624 625 ee = READ_ONCE(array->ptrs[index]); 626 if (!ee) 627 return -ENOENT; 628 629 event = ee->event; 630 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || 631 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) 632 return -EINVAL; 633 634 if (unlikely(event->oncpu != cpu)) 635 return -EOPNOTSUPP; 636 637 return perf_event_output(event, sd, regs); 638 } 639 640 /* 641 * Support executing tracepoints in normal, irq, and nmi context that each call 642 * bpf_perf_event_output 643 */ 644 struct bpf_trace_sample_data { 645 struct perf_sample_data sds[3]; 646 }; 647 648 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); 649 static DEFINE_PER_CPU(int, bpf_trace_nest_level); 650 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, 651 u64, flags, void *, data, u64, size) 652 { 653 struct bpf_trace_sample_data *sds; 654 struct perf_raw_record raw = { 655 .frag = { 656 .size = size, 657 .data = data, 658 }, 659 }; 660 struct perf_sample_data *sd; 661 int nest_level, err; 662 663 preempt_disable(); 664 sds = this_cpu_ptr(&bpf_trace_sds); 665 nest_level = this_cpu_inc_return(bpf_trace_nest_level); 666 667 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { 668 err = -EBUSY; 669 goto out; 670 } 671 672 sd = &sds->sds[nest_level - 1]; 673 674 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { 675 err = -EINVAL; 676 goto out; 677 } 678 679 perf_sample_data_init(sd, 0, 0); 680 perf_sample_save_raw_data(sd, &raw); 681 682 err = __bpf_perf_event_output(regs, map, flags, sd); 683 out: 684 this_cpu_dec(bpf_trace_nest_level); 685 preempt_enable(); 686 return err; 687 } 688 689 static const struct bpf_func_proto bpf_perf_event_output_proto = { 690 .func = bpf_perf_event_output, 691 .gpl_only = true, 692 .ret_type = RET_INTEGER, 693 .arg1_type = ARG_PTR_TO_CTX, 694 .arg2_type = ARG_CONST_MAP_PTR, 695 .arg3_type = ARG_ANYTHING, 696 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 697 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 698 }; 699 700 static DEFINE_PER_CPU(int, bpf_event_output_nest_level); 701 struct bpf_nested_pt_regs { 702 struct pt_regs regs[3]; 703 }; 704 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); 705 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); 706 707 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 708 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 709 { 710 struct perf_raw_frag frag = { 711 .copy = ctx_copy, 712 .size = ctx_size, 713 .data = ctx, 714 }; 715 struct perf_raw_record raw = { 716 .frag = { 717 { 718 .next = ctx_size ? &frag : NULL, 719 }, 720 .size = meta_size, 721 .data = meta, 722 }, 723 }; 724 struct perf_sample_data *sd; 725 struct pt_regs *regs; 726 int nest_level; 727 u64 ret; 728 729 preempt_disable(); 730 nest_level = this_cpu_inc_return(bpf_event_output_nest_level); 731 732 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { 733 ret = -EBUSY; 734 goto out; 735 } 736 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); 737 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); 738 739 perf_fetch_caller_regs(regs); 740 perf_sample_data_init(sd, 0, 0); 741 perf_sample_save_raw_data(sd, &raw); 742 743 ret = __bpf_perf_event_output(regs, map, flags, sd); 744 out: 745 this_cpu_dec(bpf_event_output_nest_level); 746 preempt_enable(); 747 return ret; 748 } 749 750 BPF_CALL_0(bpf_get_current_task) 751 { 752 return (long) current; 753 } 754 755 const struct bpf_func_proto bpf_get_current_task_proto = { 756 .func = bpf_get_current_task, 757 .gpl_only = true, 758 .ret_type = RET_INTEGER, 759 }; 760 761 BPF_CALL_0(bpf_get_current_task_btf) 762 { 763 return (unsigned long) current; 764 } 765 766 const struct bpf_func_proto bpf_get_current_task_btf_proto = { 767 .func = bpf_get_current_task_btf, 768 .gpl_only = true, 769 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED, 770 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 771 }; 772 773 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task) 774 { 775 return (unsigned long) task_pt_regs(task); 776 } 777 778 BTF_ID_LIST(bpf_task_pt_regs_ids) 779 BTF_ID(struct, pt_regs) 780 781 const struct bpf_func_proto bpf_task_pt_regs_proto = { 782 .func = bpf_task_pt_regs, 783 .gpl_only = true, 784 .arg1_type = ARG_PTR_TO_BTF_ID, 785 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 786 .ret_type = RET_PTR_TO_BTF_ID, 787 .ret_btf_id = &bpf_task_pt_regs_ids[0], 788 }; 789 790 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) 791 { 792 struct bpf_array *array = container_of(map, struct bpf_array, map); 793 struct cgroup *cgrp; 794 795 if (unlikely(idx >= array->map.max_entries)) 796 return -E2BIG; 797 798 cgrp = READ_ONCE(array->ptrs[idx]); 799 if (unlikely(!cgrp)) 800 return -EAGAIN; 801 802 return task_under_cgroup_hierarchy(current, cgrp); 803 } 804 805 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { 806 .func = bpf_current_task_under_cgroup, 807 .gpl_only = false, 808 .ret_type = RET_INTEGER, 809 .arg1_type = ARG_CONST_MAP_PTR, 810 .arg2_type = ARG_ANYTHING, 811 }; 812 813 struct send_signal_irq_work { 814 struct irq_work irq_work; 815 struct task_struct *task; 816 u32 sig; 817 enum pid_type type; 818 }; 819 820 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); 821 822 static void do_bpf_send_signal(struct irq_work *entry) 823 { 824 struct send_signal_irq_work *work; 825 826 work = container_of(entry, struct send_signal_irq_work, irq_work); 827 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); 828 put_task_struct(work->task); 829 } 830 831 static int bpf_send_signal_common(u32 sig, enum pid_type type) 832 { 833 struct send_signal_irq_work *work = NULL; 834 835 /* Similar to bpf_probe_write_user, task needs to be 836 * in a sound condition and kernel memory access be 837 * permitted in order to send signal to the current 838 * task. 839 */ 840 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) 841 return -EPERM; 842 if (unlikely(!nmi_uaccess_okay())) 843 return -EPERM; 844 /* Task should not be pid=1 to avoid kernel panic. */ 845 if (unlikely(is_global_init(current))) 846 return -EPERM; 847 848 if (irqs_disabled()) { 849 /* Do an early check on signal validity. Otherwise, 850 * the error is lost in deferred irq_work. 851 */ 852 if (unlikely(!valid_signal(sig))) 853 return -EINVAL; 854 855 work = this_cpu_ptr(&send_signal_work); 856 if (irq_work_is_busy(&work->irq_work)) 857 return -EBUSY; 858 859 /* Add the current task, which is the target of sending signal, 860 * to the irq_work. The current task may change when queued 861 * irq works get executed. 862 */ 863 work->task = get_task_struct(current); 864 work->sig = sig; 865 work->type = type; 866 irq_work_queue(&work->irq_work); 867 return 0; 868 } 869 870 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); 871 } 872 873 BPF_CALL_1(bpf_send_signal, u32, sig) 874 { 875 return bpf_send_signal_common(sig, PIDTYPE_TGID); 876 } 877 878 static const struct bpf_func_proto bpf_send_signal_proto = { 879 .func = bpf_send_signal, 880 .gpl_only = false, 881 .ret_type = RET_INTEGER, 882 .arg1_type = ARG_ANYTHING, 883 }; 884 885 BPF_CALL_1(bpf_send_signal_thread, u32, sig) 886 { 887 return bpf_send_signal_common(sig, PIDTYPE_PID); 888 } 889 890 static const struct bpf_func_proto bpf_send_signal_thread_proto = { 891 .func = bpf_send_signal_thread, 892 .gpl_only = false, 893 .ret_type = RET_INTEGER, 894 .arg1_type = ARG_ANYTHING, 895 }; 896 897 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) 898 { 899 struct path copy; 900 long len; 901 char *p; 902 903 if (!sz) 904 return 0; 905 906 /* 907 * The path pointer is verified as trusted and safe to use, 908 * but let's double check it's valid anyway to workaround 909 * potentially broken verifier. 910 */ 911 len = copy_from_kernel_nofault(©, path, sizeof(*path)); 912 if (len < 0) 913 return len; 914 915 p = d_path(©, buf, sz); 916 if (IS_ERR(p)) { 917 len = PTR_ERR(p); 918 } else { 919 len = buf + sz - p; 920 memmove(buf, p, len); 921 } 922 923 return len; 924 } 925 926 BTF_SET_START(btf_allowlist_d_path) 927 #ifdef CONFIG_SECURITY 928 BTF_ID(func, security_file_permission) 929 BTF_ID(func, security_inode_getattr) 930 BTF_ID(func, security_file_open) 931 #endif 932 #ifdef CONFIG_SECURITY_PATH 933 BTF_ID(func, security_path_truncate) 934 #endif 935 BTF_ID(func, vfs_truncate) 936 BTF_ID(func, vfs_fallocate) 937 BTF_ID(func, dentry_open) 938 BTF_ID(func, vfs_getattr) 939 BTF_ID(func, filp_close) 940 BTF_SET_END(btf_allowlist_d_path) 941 942 static bool bpf_d_path_allowed(const struct bpf_prog *prog) 943 { 944 if (prog->type == BPF_PROG_TYPE_TRACING && 945 prog->expected_attach_type == BPF_TRACE_ITER) 946 return true; 947 948 if (prog->type == BPF_PROG_TYPE_LSM) 949 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); 950 951 return btf_id_set_contains(&btf_allowlist_d_path, 952 prog->aux->attach_btf_id); 953 } 954 955 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) 956 957 static const struct bpf_func_proto bpf_d_path_proto = { 958 .func = bpf_d_path, 959 .gpl_only = false, 960 .ret_type = RET_INTEGER, 961 .arg1_type = ARG_PTR_TO_BTF_ID, 962 .arg1_btf_id = &bpf_d_path_btf_ids[0], 963 .arg2_type = ARG_PTR_TO_MEM, 964 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 965 .allowed = bpf_d_path_allowed, 966 }; 967 968 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ 969 BTF_F_PTR_RAW | BTF_F_ZERO) 970 971 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, 972 u64 flags, const struct btf **btf, 973 s32 *btf_id) 974 { 975 const struct btf_type *t; 976 977 if (unlikely(flags & ~(BTF_F_ALL))) 978 return -EINVAL; 979 980 if (btf_ptr_size != sizeof(struct btf_ptr)) 981 return -EINVAL; 982 983 *btf = bpf_get_btf_vmlinux(); 984 985 if (IS_ERR_OR_NULL(*btf)) 986 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; 987 988 if (ptr->type_id > 0) 989 *btf_id = ptr->type_id; 990 else 991 return -EINVAL; 992 993 if (*btf_id > 0) 994 t = btf_type_by_id(*btf, *btf_id); 995 if (*btf_id <= 0 || !t) 996 return -ENOENT; 997 998 return 0; 999 } 1000 1001 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, 1002 u32, btf_ptr_size, u64, flags) 1003 { 1004 const struct btf *btf; 1005 s32 btf_id; 1006 int ret; 1007 1008 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); 1009 if (ret) 1010 return ret; 1011 1012 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, 1013 flags); 1014 } 1015 1016 const struct bpf_func_proto bpf_snprintf_btf_proto = { 1017 .func = bpf_snprintf_btf, 1018 .gpl_only = false, 1019 .ret_type = RET_INTEGER, 1020 .arg1_type = ARG_PTR_TO_MEM, 1021 .arg2_type = ARG_CONST_SIZE, 1022 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1023 .arg4_type = ARG_CONST_SIZE, 1024 .arg5_type = ARG_ANYTHING, 1025 }; 1026 1027 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx) 1028 { 1029 /* This helper call is inlined by verifier. */ 1030 return ((u64 *)ctx)[-2]; 1031 } 1032 1033 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = { 1034 .func = bpf_get_func_ip_tracing, 1035 .gpl_only = true, 1036 .ret_type = RET_INTEGER, 1037 .arg1_type = ARG_PTR_TO_CTX, 1038 }; 1039 1040 #ifdef CONFIG_X86_KERNEL_IBT 1041 static unsigned long get_entry_ip(unsigned long fentry_ip) 1042 { 1043 u32 instr; 1044 1045 /* Being extra safe in here in case entry ip is on the page-edge. */ 1046 if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1)) 1047 return fentry_ip; 1048 if (is_endbr(instr)) 1049 fentry_ip -= ENDBR_INSN_SIZE; 1050 return fentry_ip; 1051 } 1052 #else 1053 #define get_entry_ip(fentry_ip) fentry_ip 1054 #endif 1055 1056 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs) 1057 { 1058 struct bpf_trace_run_ctx *run_ctx __maybe_unused; 1059 struct kprobe *kp; 1060 1061 #ifdef CONFIG_UPROBES 1062 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1063 if (run_ctx->is_uprobe) 1064 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr; 1065 #endif 1066 1067 kp = kprobe_running(); 1068 1069 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY)) 1070 return 0; 1071 1072 return get_entry_ip((uintptr_t)kp->addr); 1073 } 1074 1075 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = { 1076 .func = bpf_get_func_ip_kprobe, 1077 .gpl_only = true, 1078 .ret_type = RET_INTEGER, 1079 .arg1_type = ARG_PTR_TO_CTX, 1080 }; 1081 1082 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs) 1083 { 1084 return bpf_kprobe_multi_entry_ip(current->bpf_ctx); 1085 } 1086 1087 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = { 1088 .func = bpf_get_func_ip_kprobe_multi, 1089 .gpl_only = false, 1090 .ret_type = RET_INTEGER, 1091 .arg1_type = ARG_PTR_TO_CTX, 1092 }; 1093 1094 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs) 1095 { 1096 return bpf_kprobe_multi_cookie(current->bpf_ctx); 1097 } 1098 1099 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = { 1100 .func = bpf_get_attach_cookie_kprobe_multi, 1101 .gpl_only = false, 1102 .ret_type = RET_INTEGER, 1103 .arg1_type = ARG_PTR_TO_CTX, 1104 }; 1105 1106 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx) 1107 { 1108 struct bpf_trace_run_ctx *run_ctx; 1109 1110 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1111 return run_ctx->bpf_cookie; 1112 } 1113 1114 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = { 1115 .func = bpf_get_attach_cookie_trace, 1116 .gpl_only = false, 1117 .ret_type = RET_INTEGER, 1118 .arg1_type = ARG_PTR_TO_CTX, 1119 }; 1120 1121 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx) 1122 { 1123 return ctx->event->bpf_cookie; 1124 } 1125 1126 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = { 1127 .func = bpf_get_attach_cookie_pe, 1128 .gpl_only = false, 1129 .ret_type = RET_INTEGER, 1130 .arg1_type = ARG_PTR_TO_CTX, 1131 }; 1132 1133 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx) 1134 { 1135 struct bpf_trace_run_ctx *run_ctx; 1136 1137 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); 1138 return run_ctx->bpf_cookie; 1139 } 1140 1141 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = { 1142 .func = bpf_get_attach_cookie_tracing, 1143 .gpl_only = false, 1144 .ret_type = RET_INTEGER, 1145 .arg1_type = ARG_PTR_TO_CTX, 1146 }; 1147 1148 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags) 1149 { 1150 #ifndef CONFIG_X86 1151 return -ENOENT; 1152 #else 1153 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1154 u32 entry_cnt = size / br_entry_size; 1155 1156 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt); 1157 1158 if (unlikely(flags)) 1159 return -EINVAL; 1160 1161 if (!entry_cnt) 1162 return -ENOENT; 1163 1164 return entry_cnt * br_entry_size; 1165 #endif 1166 } 1167 1168 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = { 1169 .func = bpf_get_branch_snapshot, 1170 .gpl_only = true, 1171 .ret_type = RET_INTEGER, 1172 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1173 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1174 }; 1175 1176 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value) 1177 { 1178 /* This helper call is inlined by verifier. */ 1179 u64 nr_args = ((u64 *)ctx)[-1]; 1180 1181 if ((u64) n >= nr_args) 1182 return -EINVAL; 1183 *value = ((u64 *)ctx)[n]; 1184 return 0; 1185 } 1186 1187 static const struct bpf_func_proto bpf_get_func_arg_proto = { 1188 .func = get_func_arg, 1189 .ret_type = RET_INTEGER, 1190 .arg1_type = ARG_PTR_TO_CTX, 1191 .arg2_type = ARG_ANYTHING, 1192 .arg3_type = ARG_PTR_TO_LONG, 1193 }; 1194 1195 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value) 1196 { 1197 /* This helper call is inlined by verifier. */ 1198 u64 nr_args = ((u64 *)ctx)[-1]; 1199 1200 *value = ((u64 *)ctx)[nr_args]; 1201 return 0; 1202 } 1203 1204 static const struct bpf_func_proto bpf_get_func_ret_proto = { 1205 .func = get_func_ret, 1206 .ret_type = RET_INTEGER, 1207 .arg1_type = ARG_PTR_TO_CTX, 1208 .arg2_type = ARG_PTR_TO_LONG, 1209 }; 1210 1211 BPF_CALL_1(get_func_arg_cnt, void *, ctx) 1212 { 1213 /* This helper call is inlined by verifier. */ 1214 return ((u64 *)ctx)[-1]; 1215 } 1216 1217 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = { 1218 .func = get_func_arg_cnt, 1219 .ret_type = RET_INTEGER, 1220 .arg1_type = ARG_PTR_TO_CTX, 1221 }; 1222 1223 #ifdef CONFIG_KEYS 1224 __diag_push(); 1225 __diag_ignore_all("-Wmissing-prototypes", 1226 "kfuncs which will be used in BPF programs"); 1227 1228 /** 1229 * bpf_lookup_user_key - lookup a key by its serial 1230 * @serial: key handle serial number 1231 * @flags: lookup-specific flags 1232 * 1233 * Search a key with a given *serial* and the provided *flags*. 1234 * If found, increment the reference count of the key by one, and 1235 * return it in the bpf_key structure. 1236 * 1237 * The bpf_key structure must be passed to bpf_key_put() when done 1238 * with it, so that the key reference count is decremented and the 1239 * bpf_key structure is freed. 1240 * 1241 * Permission checks are deferred to the time the key is used by 1242 * one of the available key-specific kfuncs. 1243 * 1244 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested 1245 * special keyring (e.g. session keyring), if it doesn't yet exist. 1246 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting 1247 * for the key construction, and to retrieve uninstantiated keys (keys 1248 * without data attached to them). 1249 * 1250 * Return: a bpf_key pointer with a valid key pointer if the key is found, a 1251 * NULL pointer otherwise. 1252 */ 1253 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags) 1254 { 1255 key_ref_t key_ref; 1256 struct bpf_key *bkey; 1257 1258 if (flags & ~KEY_LOOKUP_ALL) 1259 return NULL; 1260 1261 /* 1262 * Permission check is deferred until the key is used, as the 1263 * intent of the caller is unknown here. 1264 */ 1265 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); 1266 if (IS_ERR(key_ref)) 1267 return NULL; 1268 1269 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); 1270 if (!bkey) { 1271 key_put(key_ref_to_ptr(key_ref)); 1272 return NULL; 1273 } 1274 1275 bkey->key = key_ref_to_ptr(key_ref); 1276 bkey->has_ref = true; 1277 1278 return bkey; 1279 } 1280 1281 /** 1282 * bpf_lookup_system_key - lookup a key by a system-defined ID 1283 * @id: key ID 1284 * 1285 * Obtain a bpf_key structure with a key pointer set to the passed key ID. 1286 * The key pointer is marked as invalid, to prevent bpf_key_put() from 1287 * attempting to decrement the key reference count on that pointer. The key 1288 * pointer set in such way is currently understood only by 1289 * verify_pkcs7_signature(). 1290 * 1291 * Set *id* to one of the values defined in include/linux/verification.h: 1292 * 0 for the primary keyring (immutable keyring of system keys); 1293 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring 1294 * (where keys can be added only if they are vouched for by existing keys 1295 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform 1296 * keyring (primarily used by the integrity subsystem to verify a kexec'ed 1297 * kerned image and, possibly, the initramfs signature). 1298 * 1299 * Return: a bpf_key pointer with an invalid key pointer set from the 1300 * pre-determined ID on success, a NULL pointer otherwise 1301 */ 1302 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) 1303 { 1304 struct bpf_key *bkey; 1305 1306 if (system_keyring_id_check(id) < 0) 1307 return NULL; 1308 1309 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); 1310 if (!bkey) 1311 return NULL; 1312 1313 bkey->key = (struct key *)(unsigned long)id; 1314 bkey->has_ref = false; 1315 1316 return bkey; 1317 } 1318 1319 /** 1320 * bpf_key_put - decrement key reference count if key is valid and free bpf_key 1321 * @bkey: bpf_key structure 1322 * 1323 * Decrement the reference count of the key inside *bkey*, if the pointer 1324 * is valid, and free *bkey*. 1325 */ 1326 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey) 1327 { 1328 if (bkey->has_ref) 1329 key_put(bkey->key); 1330 1331 kfree(bkey); 1332 } 1333 1334 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1335 /** 1336 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature 1337 * @data_ptr: data to verify 1338 * @sig_ptr: signature of the data 1339 * @trusted_keyring: keyring with keys trusted for signature verification 1340 * 1341 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* 1342 * with keys in a keyring referenced by *trusted_keyring*. 1343 * 1344 * Return: 0 on success, a negative value on error. 1345 */ 1346 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr, 1347 struct bpf_dynptr_kern *sig_ptr, 1348 struct bpf_key *trusted_keyring) 1349 { 1350 int ret; 1351 1352 if (trusted_keyring->has_ref) { 1353 /* 1354 * Do the permission check deferred in bpf_lookup_user_key(). 1355 * See bpf_lookup_user_key() for more details. 1356 * 1357 * A call to key_task_permission() here would be redundant, as 1358 * it is already done by keyring_search() called by 1359 * find_asymmetric_key(). 1360 */ 1361 ret = key_validate(trusted_keyring->key); 1362 if (ret < 0) 1363 return ret; 1364 } 1365 1366 return verify_pkcs7_signature(data_ptr->data, 1367 __bpf_dynptr_size(data_ptr), 1368 sig_ptr->data, 1369 __bpf_dynptr_size(sig_ptr), 1370 trusted_keyring->key, 1371 VERIFYING_UNSPECIFIED_SIGNATURE, NULL, 1372 NULL); 1373 } 1374 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ 1375 1376 __diag_pop(); 1377 1378 BTF_SET8_START(key_sig_kfunc_set) 1379 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) 1380 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) 1381 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) 1382 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION 1383 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) 1384 #endif 1385 BTF_SET8_END(key_sig_kfunc_set) 1386 1387 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = { 1388 .owner = THIS_MODULE, 1389 .set = &key_sig_kfunc_set, 1390 }; 1391 1392 static int __init bpf_key_sig_kfuncs_init(void) 1393 { 1394 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 1395 &bpf_key_sig_kfunc_set); 1396 } 1397 1398 late_initcall(bpf_key_sig_kfuncs_init); 1399 #endif /* CONFIG_KEYS */ 1400 1401 static const struct bpf_func_proto * 1402 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1403 { 1404 switch (func_id) { 1405 case BPF_FUNC_map_lookup_elem: 1406 return &bpf_map_lookup_elem_proto; 1407 case BPF_FUNC_map_update_elem: 1408 return &bpf_map_update_elem_proto; 1409 case BPF_FUNC_map_delete_elem: 1410 return &bpf_map_delete_elem_proto; 1411 case BPF_FUNC_map_push_elem: 1412 return &bpf_map_push_elem_proto; 1413 case BPF_FUNC_map_pop_elem: 1414 return &bpf_map_pop_elem_proto; 1415 case BPF_FUNC_map_peek_elem: 1416 return &bpf_map_peek_elem_proto; 1417 case BPF_FUNC_map_lookup_percpu_elem: 1418 return &bpf_map_lookup_percpu_elem_proto; 1419 case BPF_FUNC_ktime_get_ns: 1420 return &bpf_ktime_get_ns_proto; 1421 case BPF_FUNC_ktime_get_boot_ns: 1422 return &bpf_ktime_get_boot_ns_proto; 1423 case BPF_FUNC_tail_call: 1424 return &bpf_tail_call_proto; 1425 case BPF_FUNC_get_current_pid_tgid: 1426 return &bpf_get_current_pid_tgid_proto; 1427 case BPF_FUNC_get_current_task: 1428 return &bpf_get_current_task_proto; 1429 case BPF_FUNC_get_current_task_btf: 1430 return &bpf_get_current_task_btf_proto; 1431 case BPF_FUNC_task_pt_regs: 1432 return &bpf_task_pt_regs_proto; 1433 case BPF_FUNC_get_current_uid_gid: 1434 return &bpf_get_current_uid_gid_proto; 1435 case BPF_FUNC_get_current_comm: 1436 return &bpf_get_current_comm_proto; 1437 case BPF_FUNC_trace_printk: 1438 return bpf_get_trace_printk_proto(); 1439 case BPF_FUNC_get_smp_processor_id: 1440 return &bpf_get_smp_processor_id_proto; 1441 case BPF_FUNC_get_numa_node_id: 1442 return &bpf_get_numa_node_id_proto; 1443 case BPF_FUNC_perf_event_read: 1444 return &bpf_perf_event_read_proto; 1445 case BPF_FUNC_current_task_under_cgroup: 1446 return &bpf_current_task_under_cgroup_proto; 1447 case BPF_FUNC_get_prandom_u32: 1448 return &bpf_get_prandom_u32_proto; 1449 case BPF_FUNC_probe_write_user: 1450 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ? 1451 NULL : bpf_get_probe_write_proto(); 1452 case BPF_FUNC_probe_read_user: 1453 return &bpf_probe_read_user_proto; 1454 case BPF_FUNC_probe_read_kernel: 1455 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1456 NULL : &bpf_probe_read_kernel_proto; 1457 case BPF_FUNC_probe_read_user_str: 1458 return &bpf_probe_read_user_str_proto; 1459 case BPF_FUNC_probe_read_kernel_str: 1460 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1461 NULL : &bpf_probe_read_kernel_str_proto; 1462 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 1463 case BPF_FUNC_probe_read: 1464 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1465 NULL : &bpf_probe_read_compat_proto; 1466 case BPF_FUNC_probe_read_str: 1467 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1468 NULL : &bpf_probe_read_compat_str_proto; 1469 #endif 1470 #ifdef CONFIG_CGROUPS 1471 case BPF_FUNC_cgrp_storage_get: 1472 return &bpf_cgrp_storage_get_proto; 1473 case BPF_FUNC_cgrp_storage_delete: 1474 return &bpf_cgrp_storage_delete_proto; 1475 #endif 1476 case BPF_FUNC_send_signal: 1477 return &bpf_send_signal_proto; 1478 case BPF_FUNC_send_signal_thread: 1479 return &bpf_send_signal_thread_proto; 1480 case BPF_FUNC_perf_event_read_value: 1481 return &bpf_perf_event_read_value_proto; 1482 case BPF_FUNC_get_ns_current_pid_tgid: 1483 return &bpf_get_ns_current_pid_tgid_proto; 1484 case BPF_FUNC_ringbuf_output: 1485 return &bpf_ringbuf_output_proto; 1486 case BPF_FUNC_ringbuf_reserve: 1487 return &bpf_ringbuf_reserve_proto; 1488 case BPF_FUNC_ringbuf_submit: 1489 return &bpf_ringbuf_submit_proto; 1490 case BPF_FUNC_ringbuf_discard: 1491 return &bpf_ringbuf_discard_proto; 1492 case BPF_FUNC_ringbuf_query: 1493 return &bpf_ringbuf_query_proto; 1494 case BPF_FUNC_jiffies64: 1495 return &bpf_jiffies64_proto; 1496 case BPF_FUNC_get_task_stack: 1497 return &bpf_get_task_stack_proto; 1498 case BPF_FUNC_copy_from_user: 1499 return &bpf_copy_from_user_proto; 1500 case BPF_FUNC_copy_from_user_task: 1501 return &bpf_copy_from_user_task_proto; 1502 case BPF_FUNC_snprintf_btf: 1503 return &bpf_snprintf_btf_proto; 1504 case BPF_FUNC_per_cpu_ptr: 1505 return &bpf_per_cpu_ptr_proto; 1506 case BPF_FUNC_this_cpu_ptr: 1507 return &bpf_this_cpu_ptr_proto; 1508 case BPF_FUNC_task_storage_get: 1509 if (bpf_prog_check_recur(prog)) 1510 return &bpf_task_storage_get_recur_proto; 1511 return &bpf_task_storage_get_proto; 1512 case BPF_FUNC_task_storage_delete: 1513 if (bpf_prog_check_recur(prog)) 1514 return &bpf_task_storage_delete_recur_proto; 1515 return &bpf_task_storage_delete_proto; 1516 case BPF_FUNC_for_each_map_elem: 1517 return &bpf_for_each_map_elem_proto; 1518 case BPF_FUNC_snprintf: 1519 return &bpf_snprintf_proto; 1520 case BPF_FUNC_get_func_ip: 1521 return &bpf_get_func_ip_proto_tracing; 1522 case BPF_FUNC_get_branch_snapshot: 1523 return &bpf_get_branch_snapshot_proto; 1524 case BPF_FUNC_find_vma: 1525 return &bpf_find_vma_proto; 1526 case BPF_FUNC_trace_vprintk: 1527 return bpf_get_trace_vprintk_proto(); 1528 default: 1529 return bpf_base_func_proto(func_id); 1530 } 1531 } 1532 1533 static const struct bpf_func_proto * 1534 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1535 { 1536 switch (func_id) { 1537 case BPF_FUNC_perf_event_output: 1538 return &bpf_perf_event_output_proto; 1539 case BPF_FUNC_get_stackid: 1540 return &bpf_get_stackid_proto; 1541 case BPF_FUNC_get_stack: 1542 return &bpf_get_stack_proto; 1543 #ifdef CONFIG_BPF_KPROBE_OVERRIDE 1544 case BPF_FUNC_override_return: 1545 return &bpf_override_return_proto; 1546 #endif 1547 case BPF_FUNC_get_func_ip: 1548 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ? 1549 &bpf_get_func_ip_proto_kprobe_multi : 1550 &bpf_get_func_ip_proto_kprobe; 1551 case BPF_FUNC_get_attach_cookie: 1552 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ? 1553 &bpf_get_attach_cookie_proto_kmulti : 1554 &bpf_get_attach_cookie_proto_trace; 1555 default: 1556 return bpf_tracing_func_proto(func_id, prog); 1557 } 1558 } 1559 1560 /* bpf+kprobe programs can access fields of 'struct pt_regs' */ 1561 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1562 const struct bpf_prog *prog, 1563 struct bpf_insn_access_aux *info) 1564 { 1565 if (off < 0 || off >= sizeof(struct pt_regs)) 1566 return false; 1567 if (type != BPF_READ) 1568 return false; 1569 if (off % size != 0) 1570 return false; 1571 /* 1572 * Assertion for 32 bit to make sure last 8 byte access 1573 * (BPF_DW) to the last 4 byte member is disallowed. 1574 */ 1575 if (off + size > sizeof(struct pt_regs)) 1576 return false; 1577 1578 return true; 1579 } 1580 1581 const struct bpf_verifier_ops kprobe_verifier_ops = { 1582 .get_func_proto = kprobe_prog_func_proto, 1583 .is_valid_access = kprobe_prog_is_valid_access, 1584 }; 1585 1586 const struct bpf_prog_ops kprobe_prog_ops = { 1587 }; 1588 1589 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, 1590 u64, flags, void *, data, u64, size) 1591 { 1592 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1593 1594 /* 1595 * r1 points to perf tracepoint buffer where first 8 bytes are hidden 1596 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it 1597 * from there and call the same bpf_perf_event_output() helper inline. 1598 */ 1599 return ____bpf_perf_event_output(regs, map, flags, data, size); 1600 } 1601 1602 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { 1603 .func = bpf_perf_event_output_tp, 1604 .gpl_only = true, 1605 .ret_type = RET_INTEGER, 1606 .arg1_type = ARG_PTR_TO_CTX, 1607 .arg2_type = ARG_CONST_MAP_PTR, 1608 .arg3_type = ARG_ANYTHING, 1609 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1610 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1611 }; 1612 1613 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, 1614 u64, flags) 1615 { 1616 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1617 1618 /* 1619 * Same comment as in bpf_perf_event_output_tp(), only that this time 1620 * the other helper's function body cannot be inlined due to being 1621 * external, thus we need to call raw helper function. 1622 */ 1623 return bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1624 flags, 0, 0); 1625 } 1626 1627 static const struct bpf_func_proto bpf_get_stackid_proto_tp = { 1628 .func = bpf_get_stackid_tp, 1629 .gpl_only = true, 1630 .ret_type = RET_INTEGER, 1631 .arg1_type = ARG_PTR_TO_CTX, 1632 .arg2_type = ARG_CONST_MAP_PTR, 1633 .arg3_type = ARG_ANYTHING, 1634 }; 1635 1636 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, 1637 u64, flags) 1638 { 1639 struct pt_regs *regs = *(struct pt_regs **)tp_buff; 1640 1641 return bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1642 (unsigned long) size, flags, 0); 1643 } 1644 1645 static const struct bpf_func_proto bpf_get_stack_proto_tp = { 1646 .func = bpf_get_stack_tp, 1647 .gpl_only = true, 1648 .ret_type = RET_INTEGER, 1649 .arg1_type = ARG_PTR_TO_CTX, 1650 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1651 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1652 .arg4_type = ARG_ANYTHING, 1653 }; 1654 1655 static const struct bpf_func_proto * 1656 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1657 { 1658 switch (func_id) { 1659 case BPF_FUNC_perf_event_output: 1660 return &bpf_perf_event_output_proto_tp; 1661 case BPF_FUNC_get_stackid: 1662 return &bpf_get_stackid_proto_tp; 1663 case BPF_FUNC_get_stack: 1664 return &bpf_get_stack_proto_tp; 1665 case BPF_FUNC_get_attach_cookie: 1666 return &bpf_get_attach_cookie_proto_trace; 1667 default: 1668 return bpf_tracing_func_proto(func_id, prog); 1669 } 1670 } 1671 1672 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, 1673 const struct bpf_prog *prog, 1674 struct bpf_insn_access_aux *info) 1675 { 1676 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) 1677 return false; 1678 if (type != BPF_READ) 1679 return false; 1680 if (off % size != 0) 1681 return false; 1682 1683 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); 1684 return true; 1685 } 1686 1687 const struct bpf_verifier_ops tracepoint_verifier_ops = { 1688 .get_func_proto = tp_prog_func_proto, 1689 .is_valid_access = tp_prog_is_valid_access, 1690 }; 1691 1692 const struct bpf_prog_ops tracepoint_prog_ops = { 1693 }; 1694 1695 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, 1696 struct bpf_perf_event_value *, buf, u32, size) 1697 { 1698 int err = -EINVAL; 1699 1700 if (unlikely(size != sizeof(struct bpf_perf_event_value))) 1701 goto clear; 1702 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, 1703 &buf->running); 1704 if (unlikely(err)) 1705 goto clear; 1706 return 0; 1707 clear: 1708 memset(buf, 0, size); 1709 return err; 1710 } 1711 1712 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { 1713 .func = bpf_perf_prog_read_value, 1714 .gpl_only = true, 1715 .ret_type = RET_INTEGER, 1716 .arg1_type = ARG_PTR_TO_CTX, 1717 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1718 .arg3_type = ARG_CONST_SIZE, 1719 }; 1720 1721 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, 1722 void *, buf, u32, size, u64, flags) 1723 { 1724 static const u32 br_entry_size = sizeof(struct perf_branch_entry); 1725 struct perf_branch_stack *br_stack = ctx->data->br_stack; 1726 u32 to_copy; 1727 1728 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) 1729 return -EINVAL; 1730 1731 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK))) 1732 return -ENOENT; 1733 1734 if (unlikely(!br_stack)) 1735 return -ENOENT; 1736 1737 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) 1738 return br_stack->nr * br_entry_size; 1739 1740 if (!buf || (size % br_entry_size != 0)) 1741 return -EINVAL; 1742 1743 to_copy = min_t(u32, br_stack->nr * br_entry_size, size); 1744 memcpy(buf, br_stack->entries, to_copy); 1745 1746 return to_copy; 1747 } 1748 1749 static const struct bpf_func_proto bpf_read_branch_records_proto = { 1750 .func = bpf_read_branch_records, 1751 .gpl_only = true, 1752 .ret_type = RET_INTEGER, 1753 .arg1_type = ARG_PTR_TO_CTX, 1754 .arg2_type = ARG_PTR_TO_MEM_OR_NULL, 1755 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1756 .arg4_type = ARG_ANYTHING, 1757 }; 1758 1759 static const struct bpf_func_proto * 1760 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1761 { 1762 switch (func_id) { 1763 case BPF_FUNC_perf_event_output: 1764 return &bpf_perf_event_output_proto_tp; 1765 case BPF_FUNC_get_stackid: 1766 return &bpf_get_stackid_proto_pe; 1767 case BPF_FUNC_get_stack: 1768 return &bpf_get_stack_proto_pe; 1769 case BPF_FUNC_perf_prog_read_value: 1770 return &bpf_perf_prog_read_value_proto; 1771 case BPF_FUNC_read_branch_records: 1772 return &bpf_read_branch_records_proto; 1773 case BPF_FUNC_get_attach_cookie: 1774 return &bpf_get_attach_cookie_proto_pe; 1775 default: 1776 return bpf_tracing_func_proto(func_id, prog); 1777 } 1778 } 1779 1780 /* 1781 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp 1782 * to avoid potential recursive reuse issue when/if tracepoints are added 1783 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. 1784 * 1785 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage 1786 * in normal, irq, and nmi context. 1787 */ 1788 struct bpf_raw_tp_regs { 1789 struct pt_regs regs[3]; 1790 }; 1791 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); 1792 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); 1793 static struct pt_regs *get_bpf_raw_tp_regs(void) 1794 { 1795 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); 1796 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); 1797 1798 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { 1799 this_cpu_dec(bpf_raw_tp_nest_level); 1800 return ERR_PTR(-EBUSY); 1801 } 1802 1803 return &tp_regs->regs[nest_level - 1]; 1804 } 1805 1806 static void put_bpf_raw_tp_regs(void) 1807 { 1808 this_cpu_dec(bpf_raw_tp_nest_level); 1809 } 1810 1811 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, 1812 struct bpf_map *, map, u64, flags, void *, data, u64, size) 1813 { 1814 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1815 int ret; 1816 1817 if (IS_ERR(regs)) 1818 return PTR_ERR(regs); 1819 1820 perf_fetch_caller_regs(regs); 1821 ret = ____bpf_perf_event_output(regs, map, flags, data, size); 1822 1823 put_bpf_raw_tp_regs(); 1824 return ret; 1825 } 1826 1827 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { 1828 .func = bpf_perf_event_output_raw_tp, 1829 .gpl_only = true, 1830 .ret_type = RET_INTEGER, 1831 .arg1_type = ARG_PTR_TO_CTX, 1832 .arg2_type = ARG_CONST_MAP_PTR, 1833 .arg3_type = ARG_ANYTHING, 1834 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1835 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1836 }; 1837 1838 extern const struct bpf_func_proto bpf_skb_output_proto; 1839 extern const struct bpf_func_proto bpf_xdp_output_proto; 1840 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto; 1841 1842 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, 1843 struct bpf_map *, map, u64, flags) 1844 { 1845 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1846 int ret; 1847 1848 if (IS_ERR(regs)) 1849 return PTR_ERR(regs); 1850 1851 perf_fetch_caller_regs(regs); 1852 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ 1853 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, 1854 flags, 0, 0); 1855 put_bpf_raw_tp_regs(); 1856 return ret; 1857 } 1858 1859 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { 1860 .func = bpf_get_stackid_raw_tp, 1861 .gpl_only = true, 1862 .ret_type = RET_INTEGER, 1863 .arg1_type = ARG_PTR_TO_CTX, 1864 .arg2_type = ARG_CONST_MAP_PTR, 1865 .arg3_type = ARG_ANYTHING, 1866 }; 1867 1868 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, 1869 void *, buf, u32, size, u64, flags) 1870 { 1871 struct pt_regs *regs = get_bpf_raw_tp_regs(); 1872 int ret; 1873 1874 if (IS_ERR(regs)) 1875 return PTR_ERR(regs); 1876 1877 perf_fetch_caller_regs(regs); 1878 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, 1879 (unsigned long) size, flags, 0); 1880 put_bpf_raw_tp_regs(); 1881 return ret; 1882 } 1883 1884 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { 1885 .func = bpf_get_stack_raw_tp, 1886 .gpl_only = true, 1887 .ret_type = RET_INTEGER, 1888 .arg1_type = ARG_PTR_TO_CTX, 1889 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1890 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 1891 .arg4_type = ARG_ANYTHING, 1892 }; 1893 1894 static const struct bpf_func_proto * 1895 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1896 { 1897 switch (func_id) { 1898 case BPF_FUNC_perf_event_output: 1899 return &bpf_perf_event_output_proto_raw_tp; 1900 case BPF_FUNC_get_stackid: 1901 return &bpf_get_stackid_proto_raw_tp; 1902 case BPF_FUNC_get_stack: 1903 return &bpf_get_stack_proto_raw_tp; 1904 default: 1905 return bpf_tracing_func_proto(func_id, prog); 1906 } 1907 } 1908 1909 const struct bpf_func_proto * 1910 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1911 { 1912 const struct bpf_func_proto *fn; 1913 1914 switch (func_id) { 1915 #ifdef CONFIG_NET 1916 case BPF_FUNC_skb_output: 1917 return &bpf_skb_output_proto; 1918 case BPF_FUNC_xdp_output: 1919 return &bpf_xdp_output_proto; 1920 case BPF_FUNC_skc_to_tcp6_sock: 1921 return &bpf_skc_to_tcp6_sock_proto; 1922 case BPF_FUNC_skc_to_tcp_sock: 1923 return &bpf_skc_to_tcp_sock_proto; 1924 case BPF_FUNC_skc_to_tcp_timewait_sock: 1925 return &bpf_skc_to_tcp_timewait_sock_proto; 1926 case BPF_FUNC_skc_to_tcp_request_sock: 1927 return &bpf_skc_to_tcp_request_sock_proto; 1928 case BPF_FUNC_skc_to_udp6_sock: 1929 return &bpf_skc_to_udp6_sock_proto; 1930 case BPF_FUNC_skc_to_unix_sock: 1931 return &bpf_skc_to_unix_sock_proto; 1932 case BPF_FUNC_skc_to_mptcp_sock: 1933 return &bpf_skc_to_mptcp_sock_proto; 1934 case BPF_FUNC_sk_storage_get: 1935 return &bpf_sk_storage_get_tracing_proto; 1936 case BPF_FUNC_sk_storage_delete: 1937 return &bpf_sk_storage_delete_tracing_proto; 1938 case BPF_FUNC_sock_from_file: 1939 return &bpf_sock_from_file_proto; 1940 case BPF_FUNC_get_socket_cookie: 1941 return &bpf_get_socket_ptr_cookie_proto; 1942 case BPF_FUNC_xdp_get_buff_len: 1943 return &bpf_xdp_get_buff_len_trace_proto; 1944 #endif 1945 case BPF_FUNC_seq_printf: 1946 return prog->expected_attach_type == BPF_TRACE_ITER ? 1947 &bpf_seq_printf_proto : 1948 NULL; 1949 case BPF_FUNC_seq_write: 1950 return prog->expected_attach_type == BPF_TRACE_ITER ? 1951 &bpf_seq_write_proto : 1952 NULL; 1953 case BPF_FUNC_seq_printf_btf: 1954 return prog->expected_attach_type == BPF_TRACE_ITER ? 1955 &bpf_seq_printf_btf_proto : 1956 NULL; 1957 case BPF_FUNC_d_path: 1958 return &bpf_d_path_proto; 1959 case BPF_FUNC_get_func_arg: 1960 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL; 1961 case BPF_FUNC_get_func_ret: 1962 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL; 1963 case BPF_FUNC_get_func_arg_cnt: 1964 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL; 1965 case BPF_FUNC_get_attach_cookie: 1966 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL; 1967 default: 1968 fn = raw_tp_prog_func_proto(func_id, prog); 1969 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER) 1970 fn = bpf_iter_get_func_proto(func_id, prog); 1971 return fn; 1972 } 1973 } 1974 1975 static bool raw_tp_prog_is_valid_access(int off, int size, 1976 enum bpf_access_type type, 1977 const struct bpf_prog *prog, 1978 struct bpf_insn_access_aux *info) 1979 { 1980 return bpf_tracing_ctx_access(off, size, type); 1981 } 1982 1983 static bool tracing_prog_is_valid_access(int off, int size, 1984 enum bpf_access_type type, 1985 const struct bpf_prog *prog, 1986 struct bpf_insn_access_aux *info) 1987 { 1988 return bpf_tracing_btf_ctx_access(off, size, type, prog, info); 1989 } 1990 1991 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, 1992 const union bpf_attr *kattr, 1993 union bpf_attr __user *uattr) 1994 { 1995 return -ENOTSUPP; 1996 } 1997 1998 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { 1999 .get_func_proto = raw_tp_prog_func_proto, 2000 .is_valid_access = raw_tp_prog_is_valid_access, 2001 }; 2002 2003 const struct bpf_prog_ops raw_tracepoint_prog_ops = { 2004 #ifdef CONFIG_NET 2005 .test_run = bpf_prog_test_run_raw_tp, 2006 #endif 2007 }; 2008 2009 const struct bpf_verifier_ops tracing_verifier_ops = { 2010 .get_func_proto = tracing_prog_func_proto, 2011 .is_valid_access = tracing_prog_is_valid_access, 2012 }; 2013 2014 const struct bpf_prog_ops tracing_prog_ops = { 2015 .test_run = bpf_prog_test_run_tracing, 2016 }; 2017 2018 static bool raw_tp_writable_prog_is_valid_access(int off, int size, 2019 enum bpf_access_type type, 2020 const struct bpf_prog *prog, 2021 struct bpf_insn_access_aux *info) 2022 { 2023 if (off == 0) { 2024 if (size != sizeof(u64) || type != BPF_READ) 2025 return false; 2026 info->reg_type = PTR_TO_TP_BUFFER; 2027 } 2028 return raw_tp_prog_is_valid_access(off, size, type, prog, info); 2029 } 2030 2031 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { 2032 .get_func_proto = raw_tp_prog_func_proto, 2033 .is_valid_access = raw_tp_writable_prog_is_valid_access, 2034 }; 2035 2036 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { 2037 }; 2038 2039 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, 2040 const struct bpf_prog *prog, 2041 struct bpf_insn_access_aux *info) 2042 { 2043 const int size_u64 = sizeof(u64); 2044 2045 if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) 2046 return false; 2047 if (type != BPF_READ) 2048 return false; 2049 if (off % size != 0) { 2050 if (sizeof(unsigned long) != 4) 2051 return false; 2052 if (size != 8) 2053 return false; 2054 if (off % size != 4) 2055 return false; 2056 } 2057 2058 switch (off) { 2059 case bpf_ctx_range(struct bpf_perf_event_data, sample_period): 2060 bpf_ctx_record_field_size(info, size_u64); 2061 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2062 return false; 2063 break; 2064 case bpf_ctx_range(struct bpf_perf_event_data, addr): 2065 bpf_ctx_record_field_size(info, size_u64); 2066 if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) 2067 return false; 2068 break; 2069 default: 2070 if (size != sizeof(long)) 2071 return false; 2072 } 2073 2074 return true; 2075 } 2076 2077 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, 2078 const struct bpf_insn *si, 2079 struct bpf_insn *insn_buf, 2080 struct bpf_prog *prog, u32 *target_size) 2081 { 2082 struct bpf_insn *insn = insn_buf; 2083 2084 switch (si->off) { 2085 case offsetof(struct bpf_perf_event_data, sample_period): 2086 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2087 data), si->dst_reg, si->src_reg, 2088 offsetof(struct bpf_perf_event_data_kern, data)); 2089 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2090 bpf_target_off(struct perf_sample_data, period, 8, 2091 target_size)); 2092 break; 2093 case offsetof(struct bpf_perf_event_data, addr): 2094 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2095 data), si->dst_reg, si->src_reg, 2096 offsetof(struct bpf_perf_event_data_kern, data)); 2097 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 2098 bpf_target_off(struct perf_sample_data, addr, 8, 2099 target_size)); 2100 break; 2101 default: 2102 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, 2103 regs), si->dst_reg, si->src_reg, 2104 offsetof(struct bpf_perf_event_data_kern, regs)); 2105 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, 2106 si->off); 2107 break; 2108 } 2109 2110 return insn - insn_buf; 2111 } 2112 2113 const struct bpf_verifier_ops perf_event_verifier_ops = { 2114 .get_func_proto = pe_prog_func_proto, 2115 .is_valid_access = pe_prog_is_valid_access, 2116 .convert_ctx_access = pe_prog_convert_ctx_access, 2117 }; 2118 2119 const struct bpf_prog_ops perf_event_prog_ops = { 2120 }; 2121 2122 static DEFINE_MUTEX(bpf_event_mutex); 2123 2124 #define BPF_TRACE_MAX_PROGS 64 2125 2126 int perf_event_attach_bpf_prog(struct perf_event *event, 2127 struct bpf_prog *prog, 2128 u64 bpf_cookie) 2129 { 2130 struct bpf_prog_array *old_array; 2131 struct bpf_prog_array *new_array; 2132 int ret = -EEXIST; 2133 2134 /* 2135 * Kprobe override only works if they are on the function entry, 2136 * and only if they are on the opt-in list. 2137 */ 2138 if (prog->kprobe_override && 2139 (!trace_kprobe_on_func_entry(event->tp_event) || 2140 !trace_kprobe_error_injectable(event->tp_event))) 2141 return -EINVAL; 2142 2143 mutex_lock(&bpf_event_mutex); 2144 2145 if (event->prog) 2146 goto unlock; 2147 2148 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2149 if (old_array && 2150 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { 2151 ret = -E2BIG; 2152 goto unlock; 2153 } 2154 2155 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array); 2156 if (ret < 0) 2157 goto unlock; 2158 2159 /* set the new array to event->tp_event and set event->prog */ 2160 event->prog = prog; 2161 event->bpf_cookie = bpf_cookie; 2162 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2163 bpf_prog_array_free_sleepable(old_array); 2164 2165 unlock: 2166 mutex_unlock(&bpf_event_mutex); 2167 return ret; 2168 } 2169 2170 void perf_event_detach_bpf_prog(struct perf_event *event) 2171 { 2172 struct bpf_prog_array *old_array; 2173 struct bpf_prog_array *new_array; 2174 int ret; 2175 2176 mutex_lock(&bpf_event_mutex); 2177 2178 if (!event->prog) 2179 goto unlock; 2180 2181 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); 2182 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array); 2183 if (ret == -ENOENT) 2184 goto unlock; 2185 if (ret < 0) { 2186 bpf_prog_array_delete_safe(old_array, event->prog); 2187 } else { 2188 rcu_assign_pointer(event->tp_event->prog_array, new_array); 2189 bpf_prog_array_free_sleepable(old_array); 2190 } 2191 2192 bpf_prog_put(event->prog); 2193 event->prog = NULL; 2194 2195 unlock: 2196 mutex_unlock(&bpf_event_mutex); 2197 } 2198 2199 int perf_event_query_prog_array(struct perf_event *event, void __user *info) 2200 { 2201 struct perf_event_query_bpf __user *uquery = info; 2202 struct perf_event_query_bpf query = {}; 2203 struct bpf_prog_array *progs; 2204 u32 *ids, prog_cnt, ids_len; 2205 int ret; 2206 2207 if (!perfmon_capable()) 2208 return -EPERM; 2209 if (event->attr.type != PERF_TYPE_TRACEPOINT) 2210 return -EINVAL; 2211 if (copy_from_user(&query, uquery, sizeof(query))) 2212 return -EFAULT; 2213 2214 ids_len = query.ids_len; 2215 if (ids_len > BPF_TRACE_MAX_PROGS) 2216 return -E2BIG; 2217 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); 2218 if (!ids) 2219 return -ENOMEM; 2220 /* 2221 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which 2222 * is required when user only wants to check for uquery->prog_cnt. 2223 * There is no need to check for it since the case is handled 2224 * gracefully in bpf_prog_array_copy_info. 2225 */ 2226 2227 mutex_lock(&bpf_event_mutex); 2228 progs = bpf_event_rcu_dereference(event->tp_event->prog_array); 2229 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); 2230 mutex_unlock(&bpf_event_mutex); 2231 2232 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || 2233 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) 2234 ret = -EFAULT; 2235 2236 kfree(ids); 2237 return ret; 2238 } 2239 2240 extern struct bpf_raw_event_map __start__bpf_raw_tp[]; 2241 extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; 2242 2243 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) 2244 { 2245 struct bpf_raw_event_map *btp = __start__bpf_raw_tp; 2246 2247 for (; btp < __stop__bpf_raw_tp; btp++) { 2248 if (!strcmp(btp->tp->name, name)) 2249 return btp; 2250 } 2251 2252 return bpf_get_raw_tracepoint_module(name); 2253 } 2254 2255 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) 2256 { 2257 struct module *mod; 2258 2259 preempt_disable(); 2260 mod = __module_address((unsigned long)btp); 2261 module_put(mod); 2262 preempt_enable(); 2263 } 2264 2265 static __always_inline 2266 void __bpf_trace_run(struct bpf_prog *prog, u64 *args) 2267 { 2268 cant_sleep(); 2269 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { 2270 bpf_prog_inc_misses_counter(prog); 2271 goto out; 2272 } 2273 rcu_read_lock(); 2274 (void) bpf_prog_run(prog, args); 2275 rcu_read_unlock(); 2276 out: 2277 this_cpu_dec(*(prog->active)); 2278 } 2279 2280 #define UNPACK(...) __VA_ARGS__ 2281 #define REPEAT_1(FN, DL, X, ...) FN(X) 2282 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) 2283 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) 2284 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) 2285 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) 2286 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) 2287 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) 2288 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) 2289 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) 2290 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) 2291 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) 2292 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) 2293 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) 2294 2295 #define SARG(X) u64 arg##X 2296 #define COPY(X) args[X] = arg##X 2297 2298 #define __DL_COM (,) 2299 #define __DL_SEM (;) 2300 2301 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2302 2303 #define BPF_TRACE_DEFN_x(x) \ 2304 void bpf_trace_run##x(struct bpf_prog *prog, \ 2305 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ 2306 { \ 2307 u64 args[x]; \ 2308 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ 2309 __bpf_trace_run(prog, args); \ 2310 } \ 2311 EXPORT_SYMBOL_GPL(bpf_trace_run##x) 2312 BPF_TRACE_DEFN_x(1); 2313 BPF_TRACE_DEFN_x(2); 2314 BPF_TRACE_DEFN_x(3); 2315 BPF_TRACE_DEFN_x(4); 2316 BPF_TRACE_DEFN_x(5); 2317 BPF_TRACE_DEFN_x(6); 2318 BPF_TRACE_DEFN_x(7); 2319 BPF_TRACE_DEFN_x(8); 2320 BPF_TRACE_DEFN_x(9); 2321 BPF_TRACE_DEFN_x(10); 2322 BPF_TRACE_DEFN_x(11); 2323 BPF_TRACE_DEFN_x(12); 2324 2325 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2326 { 2327 struct tracepoint *tp = btp->tp; 2328 2329 /* 2330 * check that program doesn't access arguments beyond what's 2331 * available in this tracepoint 2332 */ 2333 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) 2334 return -EINVAL; 2335 2336 if (prog->aux->max_tp_access > btp->writable_size) 2337 return -EINVAL; 2338 2339 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, 2340 prog); 2341 } 2342 2343 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2344 { 2345 return __bpf_probe_register(btp, prog); 2346 } 2347 2348 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) 2349 { 2350 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); 2351 } 2352 2353 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, 2354 u32 *fd_type, const char **buf, 2355 u64 *probe_offset, u64 *probe_addr) 2356 { 2357 bool is_tracepoint, is_syscall_tp; 2358 struct bpf_prog *prog; 2359 int flags, err = 0; 2360 2361 prog = event->prog; 2362 if (!prog) 2363 return -ENOENT; 2364 2365 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ 2366 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) 2367 return -EOPNOTSUPP; 2368 2369 *prog_id = prog->aux->id; 2370 flags = event->tp_event->flags; 2371 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; 2372 is_syscall_tp = is_syscall_trace_event(event->tp_event); 2373 2374 if (is_tracepoint || is_syscall_tp) { 2375 *buf = is_tracepoint ? event->tp_event->tp->name 2376 : event->tp_event->name; 2377 /* We allow NULL pointer for tracepoint */ 2378 if (fd_type) 2379 *fd_type = BPF_FD_TYPE_TRACEPOINT; 2380 if (probe_offset) 2381 *probe_offset = 0x0; 2382 if (probe_addr) 2383 *probe_addr = 0x0; 2384 } else { 2385 /* kprobe/uprobe */ 2386 err = -EOPNOTSUPP; 2387 #ifdef CONFIG_KPROBE_EVENTS 2388 if (flags & TRACE_EVENT_FL_KPROBE) 2389 err = bpf_get_kprobe_info(event, fd_type, buf, 2390 probe_offset, probe_addr, 2391 event->attr.type == PERF_TYPE_TRACEPOINT); 2392 #endif 2393 #ifdef CONFIG_UPROBE_EVENTS 2394 if (flags & TRACE_EVENT_FL_UPROBE) 2395 err = bpf_get_uprobe_info(event, fd_type, buf, 2396 probe_offset, probe_addr, 2397 event->attr.type == PERF_TYPE_TRACEPOINT); 2398 #endif 2399 } 2400 2401 return err; 2402 } 2403 2404 static int __init send_signal_irq_work_init(void) 2405 { 2406 int cpu; 2407 struct send_signal_irq_work *work; 2408 2409 for_each_possible_cpu(cpu) { 2410 work = per_cpu_ptr(&send_signal_work, cpu); 2411 init_irq_work(&work->irq_work, do_bpf_send_signal); 2412 } 2413 return 0; 2414 } 2415 2416 subsys_initcall(send_signal_irq_work_init); 2417 2418 #ifdef CONFIG_MODULES 2419 static int bpf_event_notify(struct notifier_block *nb, unsigned long op, 2420 void *module) 2421 { 2422 struct bpf_trace_module *btm, *tmp; 2423 struct module *mod = module; 2424 int ret = 0; 2425 2426 if (mod->num_bpf_raw_events == 0 || 2427 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 2428 goto out; 2429 2430 mutex_lock(&bpf_module_mutex); 2431 2432 switch (op) { 2433 case MODULE_STATE_COMING: 2434 btm = kzalloc(sizeof(*btm), GFP_KERNEL); 2435 if (btm) { 2436 btm->module = module; 2437 list_add(&btm->list, &bpf_trace_modules); 2438 } else { 2439 ret = -ENOMEM; 2440 } 2441 break; 2442 case MODULE_STATE_GOING: 2443 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { 2444 if (btm->module == module) { 2445 list_del(&btm->list); 2446 kfree(btm); 2447 break; 2448 } 2449 } 2450 break; 2451 } 2452 2453 mutex_unlock(&bpf_module_mutex); 2454 2455 out: 2456 return notifier_from_errno(ret); 2457 } 2458 2459 static struct notifier_block bpf_module_nb = { 2460 .notifier_call = bpf_event_notify, 2461 }; 2462 2463 static int __init bpf_event_init(void) 2464 { 2465 register_module_notifier(&bpf_module_nb); 2466 return 0; 2467 } 2468 2469 fs_initcall(bpf_event_init); 2470 #endif /* CONFIG_MODULES */ 2471 2472 #ifdef CONFIG_FPROBE 2473 struct bpf_kprobe_multi_link { 2474 struct bpf_link link; 2475 struct fprobe fp; 2476 unsigned long *addrs; 2477 u64 *cookies; 2478 u32 cnt; 2479 u32 mods_cnt; 2480 struct module **mods; 2481 u32 flags; 2482 }; 2483 2484 struct bpf_kprobe_multi_run_ctx { 2485 struct bpf_run_ctx run_ctx; 2486 struct bpf_kprobe_multi_link *link; 2487 unsigned long entry_ip; 2488 }; 2489 2490 struct user_syms { 2491 const char **syms; 2492 char *buf; 2493 }; 2494 2495 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt) 2496 { 2497 unsigned long __user usymbol; 2498 const char **syms = NULL; 2499 char *buf = NULL, *p; 2500 int err = -ENOMEM; 2501 unsigned int i; 2502 2503 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL); 2504 if (!syms) 2505 goto error; 2506 2507 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL); 2508 if (!buf) 2509 goto error; 2510 2511 for (p = buf, i = 0; i < cnt; i++) { 2512 if (__get_user(usymbol, usyms + i)) { 2513 err = -EFAULT; 2514 goto error; 2515 } 2516 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN); 2517 if (err == KSYM_NAME_LEN) 2518 err = -E2BIG; 2519 if (err < 0) 2520 goto error; 2521 syms[i] = p; 2522 p += err + 1; 2523 } 2524 2525 us->syms = syms; 2526 us->buf = buf; 2527 return 0; 2528 2529 error: 2530 if (err) { 2531 kvfree(syms); 2532 kvfree(buf); 2533 } 2534 return err; 2535 } 2536 2537 static void kprobe_multi_put_modules(struct module **mods, u32 cnt) 2538 { 2539 u32 i; 2540 2541 for (i = 0; i < cnt; i++) 2542 module_put(mods[i]); 2543 } 2544 2545 static void free_user_syms(struct user_syms *us) 2546 { 2547 kvfree(us->syms); 2548 kvfree(us->buf); 2549 } 2550 2551 static void bpf_kprobe_multi_link_release(struct bpf_link *link) 2552 { 2553 struct bpf_kprobe_multi_link *kmulti_link; 2554 2555 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2556 unregister_fprobe(&kmulti_link->fp); 2557 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt); 2558 } 2559 2560 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link) 2561 { 2562 struct bpf_kprobe_multi_link *kmulti_link; 2563 2564 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2565 kvfree(kmulti_link->addrs); 2566 kvfree(kmulti_link->cookies); 2567 kfree(kmulti_link->mods); 2568 kfree(kmulti_link); 2569 } 2570 2571 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link, 2572 struct bpf_link_info *info) 2573 { 2574 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs); 2575 struct bpf_kprobe_multi_link *kmulti_link; 2576 u32 ucount = info->kprobe_multi.count; 2577 int err = 0, i; 2578 2579 if (!uaddrs ^ !ucount) 2580 return -EINVAL; 2581 2582 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link); 2583 info->kprobe_multi.count = kmulti_link->cnt; 2584 info->kprobe_multi.flags = kmulti_link->flags; 2585 2586 if (!uaddrs) 2587 return 0; 2588 if (ucount < kmulti_link->cnt) 2589 err = -ENOSPC; 2590 else 2591 ucount = kmulti_link->cnt; 2592 2593 if (kallsyms_show_value(current_cred())) { 2594 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64))) 2595 return -EFAULT; 2596 } else { 2597 for (i = 0; i < ucount; i++) { 2598 if (put_user(0, uaddrs + i)) 2599 return -EFAULT; 2600 } 2601 } 2602 return err; 2603 } 2604 2605 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = { 2606 .release = bpf_kprobe_multi_link_release, 2607 .dealloc = bpf_kprobe_multi_link_dealloc, 2608 .fill_link_info = bpf_kprobe_multi_link_fill_link_info, 2609 }; 2610 2611 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv) 2612 { 2613 const struct bpf_kprobe_multi_link *link = priv; 2614 unsigned long *addr_a = a, *addr_b = b; 2615 u64 *cookie_a, *cookie_b; 2616 2617 cookie_a = link->cookies + (addr_a - link->addrs); 2618 cookie_b = link->cookies + (addr_b - link->addrs); 2619 2620 /* swap addr_a/addr_b and cookie_a/cookie_b values */ 2621 swap(*addr_a, *addr_b); 2622 swap(*cookie_a, *cookie_b); 2623 } 2624 2625 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b) 2626 { 2627 const unsigned long *addr_a = a, *addr_b = b; 2628 2629 if (*addr_a == *addr_b) 2630 return 0; 2631 return *addr_a < *addr_b ? -1 : 1; 2632 } 2633 2634 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv) 2635 { 2636 return bpf_kprobe_multi_addrs_cmp(a, b); 2637 } 2638 2639 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2640 { 2641 struct bpf_kprobe_multi_run_ctx *run_ctx; 2642 struct bpf_kprobe_multi_link *link; 2643 u64 *cookie, entry_ip; 2644 unsigned long *addr; 2645 2646 if (WARN_ON_ONCE(!ctx)) 2647 return 0; 2648 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx); 2649 link = run_ctx->link; 2650 if (!link->cookies) 2651 return 0; 2652 entry_ip = run_ctx->entry_ip; 2653 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip), 2654 bpf_kprobe_multi_addrs_cmp); 2655 if (!addr) 2656 return 0; 2657 cookie = link->cookies + (addr - link->addrs); 2658 return *cookie; 2659 } 2660 2661 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2662 { 2663 struct bpf_kprobe_multi_run_ctx *run_ctx; 2664 2665 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx); 2666 return run_ctx->entry_ip; 2667 } 2668 2669 static int 2670 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link, 2671 unsigned long entry_ip, struct pt_regs *regs) 2672 { 2673 struct bpf_kprobe_multi_run_ctx run_ctx = { 2674 .link = link, 2675 .entry_ip = entry_ip, 2676 }; 2677 struct bpf_run_ctx *old_run_ctx; 2678 int err; 2679 2680 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { 2681 err = 0; 2682 goto out; 2683 } 2684 2685 migrate_disable(); 2686 rcu_read_lock(); 2687 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2688 err = bpf_prog_run(link->link.prog, regs); 2689 bpf_reset_run_ctx(old_run_ctx); 2690 rcu_read_unlock(); 2691 migrate_enable(); 2692 2693 out: 2694 __this_cpu_dec(bpf_prog_active); 2695 return err; 2696 } 2697 2698 static int 2699 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip, 2700 unsigned long ret_ip, struct pt_regs *regs, 2701 void *data) 2702 { 2703 struct bpf_kprobe_multi_link *link; 2704 2705 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2706 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs); 2707 return 0; 2708 } 2709 2710 static void 2711 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip, 2712 unsigned long ret_ip, struct pt_regs *regs, 2713 void *data) 2714 { 2715 struct bpf_kprobe_multi_link *link; 2716 2717 link = container_of(fp, struct bpf_kprobe_multi_link, fp); 2718 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs); 2719 } 2720 2721 static int symbols_cmp_r(const void *a, const void *b, const void *priv) 2722 { 2723 const char **str_a = (const char **) a; 2724 const char **str_b = (const char **) b; 2725 2726 return strcmp(*str_a, *str_b); 2727 } 2728 2729 struct multi_symbols_sort { 2730 const char **funcs; 2731 u64 *cookies; 2732 }; 2733 2734 static void symbols_swap_r(void *a, void *b, int size, const void *priv) 2735 { 2736 const struct multi_symbols_sort *data = priv; 2737 const char **name_a = a, **name_b = b; 2738 2739 swap(*name_a, *name_b); 2740 2741 /* If defined, swap also related cookies. */ 2742 if (data->cookies) { 2743 u64 *cookie_a, *cookie_b; 2744 2745 cookie_a = data->cookies + (name_a - data->funcs); 2746 cookie_b = data->cookies + (name_b - data->funcs); 2747 swap(*cookie_a, *cookie_b); 2748 } 2749 } 2750 2751 struct modules_array { 2752 struct module **mods; 2753 int mods_cnt; 2754 int mods_cap; 2755 }; 2756 2757 static int add_module(struct modules_array *arr, struct module *mod) 2758 { 2759 struct module **mods; 2760 2761 if (arr->mods_cnt == arr->mods_cap) { 2762 arr->mods_cap = max(16, arr->mods_cap * 3 / 2); 2763 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL); 2764 if (!mods) 2765 return -ENOMEM; 2766 arr->mods = mods; 2767 } 2768 2769 arr->mods[arr->mods_cnt] = mod; 2770 arr->mods_cnt++; 2771 return 0; 2772 } 2773 2774 static bool has_module(struct modules_array *arr, struct module *mod) 2775 { 2776 int i; 2777 2778 for (i = arr->mods_cnt - 1; i >= 0; i--) { 2779 if (arr->mods[i] == mod) 2780 return true; 2781 } 2782 return false; 2783 } 2784 2785 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt) 2786 { 2787 struct modules_array arr = {}; 2788 u32 i, err = 0; 2789 2790 for (i = 0; i < addrs_cnt; i++) { 2791 struct module *mod; 2792 2793 preempt_disable(); 2794 mod = __module_address(addrs[i]); 2795 /* Either no module or we it's already stored */ 2796 if (!mod || has_module(&arr, mod)) { 2797 preempt_enable(); 2798 continue; 2799 } 2800 if (!try_module_get(mod)) 2801 err = -EINVAL; 2802 preempt_enable(); 2803 if (err) 2804 break; 2805 err = add_module(&arr, mod); 2806 if (err) { 2807 module_put(mod); 2808 break; 2809 } 2810 } 2811 2812 /* We return either err < 0 in case of error, ... */ 2813 if (err) { 2814 kprobe_multi_put_modules(arr.mods, arr.mods_cnt); 2815 kfree(arr.mods); 2816 return err; 2817 } 2818 2819 /* or number of modules found if everything is ok. */ 2820 *mods = arr.mods; 2821 return arr.mods_cnt; 2822 } 2823 2824 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2825 { 2826 struct bpf_kprobe_multi_link *link = NULL; 2827 struct bpf_link_primer link_primer; 2828 void __user *ucookies; 2829 unsigned long *addrs; 2830 u32 flags, cnt, size; 2831 void __user *uaddrs; 2832 u64 *cookies = NULL; 2833 void __user *usyms; 2834 int err; 2835 2836 /* no support for 32bit archs yet */ 2837 if (sizeof(u64) != sizeof(void *)) 2838 return -EOPNOTSUPP; 2839 2840 if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI) 2841 return -EINVAL; 2842 2843 flags = attr->link_create.kprobe_multi.flags; 2844 if (flags & ~BPF_F_KPROBE_MULTI_RETURN) 2845 return -EINVAL; 2846 2847 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs); 2848 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms); 2849 if (!!uaddrs == !!usyms) 2850 return -EINVAL; 2851 2852 cnt = attr->link_create.kprobe_multi.cnt; 2853 if (!cnt) 2854 return -EINVAL; 2855 2856 size = cnt * sizeof(*addrs); 2857 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2858 if (!addrs) 2859 return -ENOMEM; 2860 2861 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies); 2862 if (ucookies) { 2863 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL); 2864 if (!cookies) { 2865 err = -ENOMEM; 2866 goto error; 2867 } 2868 if (copy_from_user(cookies, ucookies, size)) { 2869 err = -EFAULT; 2870 goto error; 2871 } 2872 } 2873 2874 if (uaddrs) { 2875 if (copy_from_user(addrs, uaddrs, size)) { 2876 err = -EFAULT; 2877 goto error; 2878 } 2879 } else { 2880 struct multi_symbols_sort data = { 2881 .cookies = cookies, 2882 }; 2883 struct user_syms us; 2884 2885 err = copy_user_syms(&us, usyms, cnt); 2886 if (err) 2887 goto error; 2888 2889 if (cookies) 2890 data.funcs = us.syms; 2891 2892 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r, 2893 symbols_swap_r, &data); 2894 2895 err = ftrace_lookup_symbols(us.syms, cnt, addrs); 2896 free_user_syms(&us); 2897 if (err) 2898 goto error; 2899 } 2900 2901 link = kzalloc(sizeof(*link), GFP_KERNEL); 2902 if (!link) { 2903 err = -ENOMEM; 2904 goto error; 2905 } 2906 2907 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI, 2908 &bpf_kprobe_multi_link_lops, prog); 2909 2910 err = bpf_link_prime(&link->link, &link_primer); 2911 if (err) 2912 goto error; 2913 2914 if (flags & BPF_F_KPROBE_MULTI_RETURN) 2915 link->fp.exit_handler = kprobe_multi_link_exit_handler; 2916 else 2917 link->fp.entry_handler = kprobe_multi_link_handler; 2918 2919 link->addrs = addrs; 2920 link->cookies = cookies; 2921 link->cnt = cnt; 2922 link->flags = flags; 2923 2924 if (cookies) { 2925 /* 2926 * Sorting addresses will trigger sorting cookies as well 2927 * (check bpf_kprobe_multi_cookie_swap). This way we can 2928 * find cookie based on the address in bpf_get_attach_cookie 2929 * helper. 2930 */ 2931 sort_r(addrs, cnt, sizeof(*addrs), 2932 bpf_kprobe_multi_cookie_cmp, 2933 bpf_kprobe_multi_cookie_swap, 2934 link); 2935 } 2936 2937 err = get_modules_for_addrs(&link->mods, addrs, cnt); 2938 if (err < 0) { 2939 bpf_link_cleanup(&link_primer); 2940 return err; 2941 } 2942 link->mods_cnt = err; 2943 2944 err = register_fprobe_ips(&link->fp, addrs, cnt); 2945 if (err) { 2946 kprobe_multi_put_modules(link->mods, link->mods_cnt); 2947 bpf_link_cleanup(&link_primer); 2948 return err; 2949 } 2950 2951 return bpf_link_settle(&link_primer); 2952 2953 error: 2954 kfree(link); 2955 kvfree(addrs); 2956 kvfree(cookies); 2957 return err; 2958 } 2959 #else /* !CONFIG_FPROBE */ 2960 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 2961 { 2962 return -EOPNOTSUPP; 2963 } 2964 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx) 2965 { 2966 return 0; 2967 } 2968 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx) 2969 { 2970 return 0; 2971 } 2972 #endif 2973